

Lecture Notes in Computer Science 7636
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA

Michael P. Papazoglou, University of Tilburg, The Netherlands

Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia

Athman Bouguettaya, Australia

Murthy Devarakonda, USA

Carlo Ghezzi, Italy

Chi-Hung Chi, China

Hani Jamjoom, USA

Paul Klingt, The Netherlands

Ingolf Krueger, USA

Paul Maglio, USA

Christos Nikolaou, Greece

Klaus Pohl, Germany

Stefan Tai, Germany

Yuzuru Tanaka, Japan

Christopher Ward, USA

Chengfei Liu Heiko Ludwig
Farouk Toumani Qi Yu (Eds.)

Service-Oriented
Computing
10th International Conference, ICSOC 2012
Shanghai, China, November 12-15, 2012
Proceedings

13

Volume Editors

Chengfei Liu
Swinburne University of Technology, Faculty of ICT
John Street, Hawthorn, VIC 3122, Australia
E-mail: cliu@swin.edu.au

Heiko Ludwig
IBM, Almaden Research Center
650 Harry Road
San Jose, CA 95120, USA
E-mail: hludwig@us.ibm.com

Farouk Toumani
Blaise Pascal University, LIMOS - UMR 6158
Complexe scientifique des Cézeaux, 63177 Aubiere, France
E-mail: ftoumani@isima.fr

Qi Yu
Rochester Institute of Technology
College of Computing and Information Sciences
1 Lomb Memorial Drive, Rochester, NY 14623, USA
E-mail: qi.yu@rit.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34320-9 e-ISBN 978-3-642-34321-6
DOI 10.1007/978-3-642-34321-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949454

CR Subject Classification (1998): D.2, C.2, H.4, H.3, H.5, J.1, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the conference proceedings of the 10th International
Conference on Service-Oriented Computing (ICSOC 2012), which took place
in Shanghai, China, November 12–15, 2012. The ICSOC conference series is
the prime forum for academics and industry researchers and developers to re-
port and share ground-breaking work in service-oriented computing. The series
provides cross-community scientific excellence by the gathering of experts from
various disciplines, such as business process management, distributed systems,
computer networks, wireless and mobile computing, grid computing, network-
ing, service science, management science, and software engineering. ICSOC 2012
placed an emphasis on results that solve open research problems and have sig-
nificant impact on the field of service-oriented computing and also in particular
cloud services.

ICSOC 2012 attracted 185 research paper submissions, out of which 32 full
papers and 21 short papers were selected for this volume after a careful review
by the Program Committee (PC) for originality, novelty, rigor, and relevance.
Each paper was reviewed by at least three reviewers and the discussion on each
paper was moderated by an experienced senior PC member. The research track
was very competitive with an acceptance rate of 17% for full papers, and an ad-
ditional 11% for short papers. Furthermore, this volume contains nine industrial
papers (six full papers and three short papers selected out of 20 submissions to
the industrial track).

The conference program was complemented by an invited talk, three out-
standing keynotes, a panel discussion, demonstrations, a PhD symposium as
well as a collection of workshops.

We would like to express our gratitude to everyone who helped make ICSOC
2012 a success: the conference Organizing Committee for providing an excellent
environment for the conference, the Research and Industrial Program Committee
members as well as the additional reviewers for their conscientious and diligent
work to ensure the high quality of the conference scientific program. Finally,
and most importantly, we want to thank all the authors for their high-quality
contributions.

November 2012 Chengfei Liu
Heiko Ludwig

Farouk Toumani

Organization

Honorary Chair

Junliang Chen Beijing Post and Communication University,
China

General Chairs

Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Advisory Committee

Jifeng He Eastern China Normal University, China
Jian Lv Nanjing University, China
Baile Shi Fudan University, China
Zhaohui Wu Zhejiang University, China

Program Chairs

Chengfei Liu Swinburne University, Australia
Heiko Ludwig IBM Almaden Research Center, USA
Farouk Toumani Université Blaise Pascal, France

Workshop Chairs

Aditya Ghose University of Wollongong, Australia
Huibiao Zhu Eastern China Normal University, China

Industry Chairs

Yanbo Han Chinese Academy of Sciences
Nanjangud C. Narendra IBM India Software Lab, Bangalore, India
Surya Nepal ICT CSIRO, Australia

Demonstration Chairs

Alex Delis University of Athens, Greece
Quang Z. Sheng Adelaide University, Australia

VIII Organization

Panel Chairs

Cesare Pautasso University of Lugano, Switzerland
Thomas Sandholm HP Labs, USA

PHD Symposium Chairs

Olivier Perrin Nancy 2 University, France
Jianmin Wang Tsinghua University, China
Yan Wang Macquarie University, Australia

Publicity Chairs

Florian Daniel University of Trento, Italy
Yunzhan Gong Beijing Post and Communication University,

China
Zaki Malik Wayne State University, USA

Local Organization Chairs

Jian Cao Shanghai Jiaotong University, China
Zhenying He Fudan University, China
Guohua Liu Donghua Univesity, China
Budan Wu Beijing Post and Communication University,

China

Corporate Sponsor Chairs

Genxing Yang Shanghai Software Industry Association, China
Shiyong Zhang Fudan University, China
Yingsheng Li Fudan University, China

Financial Chair

Weiwei Sun Fudan University, China

Publication Chair

Qi Yu Rochester Institute of Technology, USA

Web Chair

Xiang Fu Hofstra University, USA

Organization IX

Senior Program Committee Members

Benatallah Boualem UNSW, Australia
Bouguettaya Athman RMIT, Australia
Casati Fabio University of Trento, Italy
Curbera Paco IBM, USA
De Paoli Flavio Università di Milano Bicocca, Italy
Dustdar Schahram TU Wien, Austria
Hacid Mohand-Said Université Claude Bernard Lyon 1, France
Maximilien Michael IBM Research, USA
Motahari-Nezhad Hamid Reza HP, USA
Pernici Barbara Politecnico di Milano, Italy
Quang Z. Sheng Adelaide University, Australia
Rinderle-Ma Stefanie University of Vienna, Austria
Rossi Gustavo UNLP, Argentina
Su Jianwen U C Santa Barbara, USA
Tai Stefan Karlsruhe Institute of Technology, Germany
Tari Zahir RMIT University, Australia
Weske Mathias HP / University of Potsdam, Germany
Wolf Karsten University of Rostock, Germany

Research Program Committee Members

Accorsi Rafael University of Freiburg, Germany
Aiello Marco University of Groningen, The Netherlands
Akkiraju Rama IBM/USA, USA
Arenas Alvaro Instituto de Empresa Business School, Spain
Bagheri Ebrahim Athabasca University, Canada
Bartolini Claudio HP Labs, Palo Alto, USA
Basu Samik Iowa State University, USA
Basu Sujoy HP Labs, USA
Benbernou Salima Université Paris Descartes, France
Bertolino Antonia ISTI-CNR, Italy
Binder Walter University of Lugano, Switzerland
Bussler Christoph Analytica, Inc., USA
C. Narendra Nanjangud IBM India Software Lab, Bangalore, India
Carro Manuel UPM and IMDEA Software Institute, Spain
Chen Shiping CSIRO ICT, Australia
Chung Lawrence The University of Texas at Dallas, USA
Coquery Emmanuel Université de Lyon, France
D’Andrea Vincenzo University of Trento, Italy
Daniel Florian University of Trento, Italy
Demirkan Haluk Arizona State University, USA
Deng Shuiguang Zhejiang University, China
Drira Khalil LAAS Toulouse, France
Engels Gregor University of Paderborn, Germany

X Organization

Eshuis Rik Eindhoven University of Technology,
The Netherlands

Friesen Andreas SAP AG, Germany
Gasevic Dragan Athabasca University, Canada
Ghezzi Carlo Politecnico di Milano, Italy
Ghose Aditya University of Wollongong, Australia
Giorgini Paolo University of Trento, Italy
Graupner Sven HP Labs, Palo Alto, USA
Grefen Paul Eindhoven University of Technology,

The Netherlands
Hacid Hakim Bell Labs France, France
Han Peng Chongqing Academy of Science and

Technology, China
Han Yanbo Chinese Academy of sciences, China
Khalaf Rania IBM T.J. Watson Research Center, USA
Kirchberg Markus Hewlett-Packard Labs, Singapore
Kongdenfha Woralak Naresuan University, Thailand
Kotonya Gerald Lancaster University, UK
Lago Patricia VU University Amsterdam, The Netherlands
Lelli Francesco European Research Institute on Service

Science, Tilburg, The Netherlands
Leymann Frank Univerisity of Stuttgart, Germany
Li Jun HP Labs, USA
Li Ying Zhejiang University, China
Lin Fu-ren National Tsing Hua University, Taiwan, R.O.C.
Liu Xumin Rochester Institute of Technology, USA
Maamar Zakaria Zayed University, United Arab Emirates
Maglio Paul IBM Research Amaden, USA
Malik Zaki Wayne State University, USA
Mecella Massimo SAPIENZA Università di Roma, Italy
Mrissa Michael University of Lyon, France
Nepal Surya CSIRO, Australia
Paik Helen UNSW, Australia
Pautasso Cesare University of Lugano, Switzerland
Perez Christian INRIA, France
Perrin Olivier Lorraine University, France
Pisipati RadhaKrishna Infosys Technologies Limited, India
Poizat Pascal University of Evry and LRI, France
Psaier Harald Vienna University of Technology, Austria
Puhlmann Frank inubit AG, Germany
Qiao Mu The Pennsylvania State University, USA
Reichert Manfred University of Ulm, Germany
Reisig Wolfgang Humboldt-Universität zu Berlin, Germany
Roland Colette Université Paris 1 Panthéon Sorbonne, France
Rosenberg Florian IBM Research, USA
Ruiz-Cortés Antonio University of Seville, Spain

Organization XI

Saint-Paul Regis Create-Net, Italy
Shwartz Larisa IBM T.J. Watson Research Center, USA
Silva-Lepe Ignacio IBM, USA
Singh Munindar P. North Carolina State University, USA
Smirnov Sergey SAP Research, Germany
Spanoudakis George City University London, UK
Stroulia Eleni University of Alberta, Canada
Tan Wei IBM T.J. Watson Research Center, USA
Toledo Beatriz UNICAMP, Brazil
van Hillegersberg Jos University of Twente, The Netherlands
Venugopal Srikumar UNSW, Australia
Wang Changzhou Boeing, USA
Wang Yan Macquarie University, Australia
Weber Ingo NICTA, Australia
Wombacher Andreas Univeresity of Twente, The Netherlands
Xu Lai Bournemouth University, UK
Yahyapour Ramin University of Goettingen, Germany
Yu Jian Swinburne University of Technology, Australia
Zadeh Hossein RMIT University, Australia
Zhao Weiliang University of Wollongong, Australia
Zhao Xiaohui Unitec Institute of Technology, New Zealand
Zheng Yan Aalto University/Xidian University,

Finland/China
Zisman Andrea City University London, UK

Industry Program Committee Members

Roman Vaculin IBM Research, T.J. Watson Research Center,
USA

Ryan Ko HP Laboratories, Singapore
Liam O’Brien CSIRO, Australia
Jenny Yan Liu Pacific Northwest National Laboratory, USA
G.R. Gangadharan IDRBT, Hyderabad, India
Karthikeyan Ponnalagu IBM Research, India
Vladimir Tosic NICTA, Australia
Guiling Wang North China University of Technology, China
Jun Wei Chinese Academy of Sciences, China
Jianwu Wang University of California, San Diego, USA
D. Janaki Ram IIT Madras, India
Mathias Weske Hasso Plattner Institute, Germany
Bernhard Holtkamp Fraunhofer ISST, Germany
Zhongjie Wang Harbin Institute of Technologies (HIT), China
Umesh Bellur IIT Bombay, India
Abdelkarim Erradi Qatar University, Qatar
Andreas Wombacher University of Twente, The Netherlands
Sami Bhiri DERI, Ireland

XII Organization

Gero Decker Signavio GmbH, Germany
Sergey Smirnov Hasso Plattner Institute, Germany
Daniel Gmach HP Labs, USA
Zakaria Maamar Zayed University, UAE

External Reviewers

David Allison
Mohsen Asadi
Kelly R. Braghetto
Pavel Bulanov
Marco Comerio
Daniel de Angelis Cordeiro
Paul de Vreize
Codé Diop
Ando Emerencia
Marios Fokaefs
José Maŕıa Garćıa
Marcela O. Garcia
Ilche Georgievski
Morteza Ghandehari
Christian Gierds
Genady Ya. Grabarnik
Victor Guana
Joyce El Haddad
Riadh Ben Halima
Dan Han
Chung-Wei Hang
Mohamed Amine Hannachi
Florian Haupt
Konstantin Hoesch-Klohe
Zhengxiong Hou
Keman Huang
Aymen Kamoun
Nesrine Khabou
David Knuplesch
Jens Kolb
Andreas Lanz
Jim Zhanwen Li
Zhenwen Li
Qinghua Lu

Maude Manouvrier
Riccardo De Masellis
Emna Mezgani
Bardia Mohabbati
Carlos Muller
Richard Müller
Nicolas Mundbrod
Daniel Oberle
Marcio K. Oikawa
Giuliano Andrea Pagani
José Antonio Parejo
Fabio Patrizi
Achille Peternier
Robert Prüfer
Manuel Resinas
Szabolcs Rosznyal
Jonathan Rouzaud-Cornabas
Alessandro Russo
Johannes Schobel
Ankit Srivastava
Steve Strauch
Yutian Sun
Jen Sürmeli
Osvaldo K. Takai
Julian Tiedeken
Hiroshi Wada
Sebastian Wagner
Haiqin Wang
Yonghong Wang
Ehsan Ullah Warriach
Wei Xu
Jinghui Yao
Jun Yuan
Sema Zor

Table of Contents

Research Papers

Service Engineering 1

Specification and Detection of SOA Antipatterns . 1
Naouel Moha, Francis Palma, Mathieu Nayrolles,
Benjamin Joyen Conseil, Yann-Gaël Guéhéneuc,
Benoit Baudry, and Jean-Marc Jézéquel

Verification of GSM-Based Artifact-Centric Systems through Finite
Abstraction . 17

Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi

Service Component Architecture Extensions for Dynamic Systems 32
João Claudio Américo and Didier Donsez

Service Management 1

Who Do You Call? Problem Resolution through Social Compute
Units . 48

Bikram Sengupta, Anshu Jain, Kamal Bhattacharya,
Hong-Linh Truong, and Schahram Dustdar

Relationship-Preserving Change Propagation in Process Ecosystems 63
Tri A. Kurniawan, Aditya K. Ghose, Hoa Khanh Dam, and
Lam-Son Lê

Scheduling Service Tickets in Shared Delivery . 79
Hari S. Gupta and Bikram Sengupta

Cloud

Programming Hybrid Services in the Cloud . 96
Hong-Linh Truong, Schahram Dustdar, and Kamal Bhattacharya

QoS-Aware Cloud Service Composition Based on Economic Models 111
Zhen Ye, Athman Bouguettaya, and Xiaofang Zhou

Cloud Service Selection Based on Variability Modeling 127
Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel

XIV Table of Contents

Service Engineering 2

Extending Enterprise Service Design Knowledge Using Clustering 142
Marcus Roy, Ingo Weber, and Boualem Benatallah

Participatory Service Design through Composed and Coordinated
Service Feature Models . 158

Erik Wittern, Nelly Schuster, Jörn Kuhlenkamp, and Stefan Tai

PerCAS: An Approach to Enabling Dynamic and Personalized
Adaptation for Context-Aware Services . 173

Jian Yu, Jun Han, Quan Z. Sheng, and Steven O. Gunarso

Service Management 2

A Method for Assessing Influence Relationships among KPIs of Service
Systems . 191

Yedendra Babu Shrinivasan, Gargi Banerjee Dasgupta,
Nirmit Desai, and Jayan Nallacherry

Dynamic Performance Management in Multi-tenanted Business Process
Servers Using Nonlinear Control . 206

Tharindu Patikirikorala, Indika Kumara, Alan Colman, Jun Han,
Liuping Wang, Denis Weerasiri, and Waruna Ranasinghe

An Optimized Derivation of Event Queries to Monitor Choreography
Violations . 222

Aymen Baouab, Olivier Perrin, and Claude Godart

Service QoS

Dynamic Service Selection with End-to-End Constrained Uncertain
QoS Attributes . 237

Rene Ramacher and Lars Mönch

A Constraint-Based Approach to Quality Assurance in Service
Choreographies . 252

Dragan Ivanović, Manuel Carro, and Manuel V. Hermenegildo

Structural Optimization of Reduced Ordered Binary Decision Diagrams
for SLA Negotiation in IaaS of Cloud Computing . 268

Kuan Lu, Ramin Yahyapour, Edwin Yaqub, and
Constantinos Kotsokalis

Table of Contents XV

Service Engineering 3

A Service Composition Framework Based on Goal-Oriented
Requirements Engineering, Model Checking, and Qualitative Preference
Analysis . 283

Zachary J. Oster, Syed Adeel Ali, Ganesh Ram Santhanam,
Samik Basu, and Partha S. Roop

WCP-Nets: A Weighted Extension to CP-Nets for Web Service
Selection . 298

Hongbing Wang, Jie Zhang, Wenlong Sun, Hongye Song,
Guibing Guo, and Xiang Zhou

WS-Finder: A Framework for Similarity Search of Web Services 313
Jiangang Ma, Quan Z. Sheng, Kewen Liao, Yanchun Zhang, and
Anne H.H. Ngu

Service Security, Privacy and Personalization

A Framework for Trusted Services . 328
Icamaan da Silva and Andrea Zisman

Configuring Private Data Management as Access Restrictions:
From Design to Enforcement . 344

Aurélien Faravelon, Stéphanie Chollet, Christine Verdier, and
Agnès Front

Modeling User’s Non-functional Preferences for Personalized Service
Ranking . 359

Rozita Mirmotalebi, Chen Ding, and Chi-Hung Chi

Service Applications in Business and Society

An Adaptive Mediation Framework for Mobile P2P Social Content
Sharing . 374

Chii Chang, Satish Narayana Srirama, and Sea Ling

Socially-Enriched Semantic Mashup of Web APIs . 389
Jooik Jung and Kyong-Ho Lee

Application of Business-Driven Decision Making to RESTful Business
Processes . 404

Qinghua Lu, Xiwei Xu, Vladimir Tosic, and Liming Zhu

Service Composition and Choreography

Declarative Choreographies for Artifacts . 420
Yutian Sun, Wei Xu, and Jianwen Su

XVI Table of Contents

Managing Resource Contention in Embedded Service-Oriented Systems
with Dynamic Orchestration . 435

Peter Newman and Gerald Kotonya

Semantic Service Composition Framework for Multidomain Ubiquitous
Computing Applications . 450

Mohamed Hilia, Abdelghani Chibani, Karim Djouani, and
Yacine Amirat

Service Scaling and Cloud

Sparse Functional Representation for Large-Scale Service Clustering 468
Qi Yu

Updatable Process Views for User-Centered Adaption of Large Process
Models . 484

Jens Kolb, Klaus Kammerer, and Manfred Reichert

Management-Based License Discovery for the Cloud (Short Paper) 499
Minkyong Kim, Han Chen, Jonathan Munson, and Hui Lei

Research Papers – Short

Service Composition and Choreography

Ensuring Well-Formed Conversations between Control and Operational
Behaviors of Web Services . 507

Scott Bourne, Claudia Szabo, and Quan Z. Sheng

Variability in Service-Oriented Systems: An Analysis of Existing
Approaches . 516

Holger Eichelberger, Christian Kröher, and Klaus Schmid

A Symbolic Framework for the Conformance Checking of Value-Passing
Choreographies . 525

Huu Nghia Nguyen, Pascal Poizat, and Fatiha Zäıdi

Service Composition Management Using Risk Analysis and Tracking . . . 533
Shang-Pin Ma and Ching-Lung Yeh

Process Management

Assisting Business Process Design by Activity Neighborhood Context
Matching . 541

Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata

Table of Contents XVII

Adaptive Case Management in the Social Enterprise 550
Hamid Reza Motahari-Nezhad, Claudio Bartolini,
Sven Graupner, and Susan Spence

Automating Form-Based Processes through Annotation 558
Sung Wook Kim, Hye-Young Paik, and Ingo Weber

PASOAC-Net: A Petri-Net Model to Manage Authorization
in Service-Based Business Process . 566

Haiyang Sun, Weiliang Zhao, and Surya Nepal

Service Description and Discovery

WSTRank: Ranking Tags to Facilitate Web Service Mining 574
Liang Chen, Zibin Zheng, Yipeng Feng, Jian Wu, and Michael R. Lyu

Maintaining Motivation Models (in BMM) in the Context of a
(WSDL-S) Service Landscape . 582

Konstantin Hoesch-Klohe, Aditya K. Ghose, and Hoa Khanh Dam

Ontology-Learning-Based Focused Crawling for Online Service
Advertising Information Discovery and Classification 591

Hai Dong, Farookh Khadeer Hussain, and Elizabeth Chang

A Learning Method for Improving Quality of Service Infrastructure
Management in New Technical Support Groups . 599

David Loewenstern, Florian Pinel, Larisa Shwartz,
Máıra Gatti, and Ricardo Herrmann

Service Management

Adaptive Service-Oriented Mobile Applications:
A Declarative Approach . 607

Gianpaolo Cugola, Carlo Ghezzi, Leandro Sales Pinto, and
Giordano Tamburrelli

Algorithmic Aspects of Planning under Uncertainty for Service Delivery
Organizations . 615

Sreyash Kenkre, Ranganath Kondapally, and Vinayaka Pandit

A Dynamic QoS-Aware Semantic Web Service Composition
Algorithm . 623

Pablo Rodriguez-Mier, Manuel Mucientes, and Manuel Lama

IT Incident Management by Analyzing Incident Relations 631
Rong Liu and Juhnyoung Lee

XVIII Table of Contents

Service Security, Privacy and Personalization

An Association Probability Based Noise Generation Strategy
for Privacy Protection in Cloud Computing . 639

Gaofeng Zhang, Xuyun Zhang, Yun Yang, Chang Liu, and
Jinjun Chen

ARIMA Model-Based Web Services Trustworthiness Evaluation
and Prediction . 648

Meng Li, Zhebang Hua, Junfeng Zhao, Yanzhen Zou, and Bing Xie

Analyzing Coopetition Strategies of Services within Communities 656
Babak Khosravifar, Mahsa Alishahi, Ehsan Khosrowshahi Asl,
Jamal Bentahar, Rabeb Mizouni, and Hadi Otrok

Trust-Based Service Discovery in Multi-relation Social Networks 664
Amine Louati, Joyce El Haddad, and Suzanne Pinson

Industrial Papers

Service Applications

RETRAiN: A REcommendation Tool for Reconfiguration of RetAil
BaNk Branch . 672

Rakesh Pimplikar and Sameep Mehta

Automate Back Office Activity Monitoring to Drive Operational
Excellence . 688

Miao He, Tao Qin, Sai Zeng, Changrui Ren, and Lei Yuan

Collective Intelligence for Enhanced Quality Management
of IT Services . 703

Maja Vukovic and Arjun Natarajan

Cloud Computing

MapReduce-Based Data Stream Processing over Large History Data 718
Kaiyuan Qi, Zhuofeng Zhao, Jun Fang, and Yanbo Han

An Efficient Data Dissemination Approach for Cloud Monitoring 733
Xingjian Lu, Jianwei Yin, Ying Li, Shuiguang Deng, and Mingfa Zhu

A Service Oriented Architecture for Exploring High Performance
Distributed Power Models . 748

Yan Liu, Jared M. Chase, and Ian Gorton

Table of Contents XIX

Industrial Papers – Short

Business Process Extensions as First-Class Entities — A Model-Driven
and Aspect-Oriented Approach . 763

Heiko Witteborg, Anis Charfi, Mohamed Aly, and Ta’id Holmes

Towards Dynamic Reconfiguration for QoS Consistent Services
Based Applications . 771

Yuyu Yin and Ying Li

An Ontology-Based IoT Resource Model for Resources Evolution
and Reverse Evolution . 779

Shuai Zhao, Yang Zhang, and Junliang Chen

Author Index . 791

Cloud Service Selection Based on Variability Modeling
Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel

Erratum

E1

Specification and Detection of SOA Antipatterns

Naouel Moha1, Francis Palma1,2, Mathieu Nayrolles1,3,
Benjamin Joyen Conseil1,3, Yann-Gaël Guéhéneuc2,

Benoit Baudry4, and Jean-Marc Jézéquel4

1 Département d’informatique, Université du Québec à Montréal, Canada
moha.naouel@uqam.ca

2 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca
3 École Supérieur en Informatique Appliquée, France

{mathieu.nayrolles,benjamin.joyen-conseil}@viacesi.fr
4 INRIA Rennes, Université Rennes 1, France

{bbaudry,jezequel}@irisa.fr

Abstract. Like any other complex software system, Service Based Sys-
tems (SBSs) must evolve to fit new user requirements and execution
contexts. The changes resulting from the evolution of SBSs may degrade
their design and quality of service (QoS) and may often cause the ap-
pearance of common poor solutions, called Antipatterns. Antipatterns
resulting from these changes also hinder the future maintenance and
evolution of SBSs. The automatic detection of antipatterns is thus im-
portant to assess the design and QoS of SBSs and ease their maintenance
and evolution. However, methods and techniques for the detection of an-
tipatterns in SBSs are still in their infancy despite their importance. In
this paper, we introduce a novel and innovative approach supported by a
framework for specifying and detecting antipatterns in SBSs. Using our
approach, we specify 10 well-known and common antipatterns, includ-
ing Multi Service and Tiny Service, and we automatically generate their
detection algorithms. We apply and validate the detection algorithms in
terms of precision and recall on Home-Automation, an SBS developed
independently. This validation demonstrates that our approach enables
the specification and detection of SOA antipatterns with the precision of
more than 90% and the recall of 100%.

Keywords: Antipatterns, Service based systems, Specification, Detec-
tion, Quality of service, Design, Software evolution and maintenance.

1 Introduction

Service Oriented Architecture (SOA) [8] is an emerging architectural style that
is becoming broadly adopted in industry because it allows the development of
low-cost, flexible, and scalable distributed systems by composing ready-made
services, i.e., autonomous, reusable, and platform-independent software units
that can be accessed through a network, such as the Internet. This architectural
style can be implemented using a wide range of SOA technologies, such as OSGi,

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 N. Moha et al.

SCA, and Web Services. SOA allows building different types of Service Based
Systems (SBSs) from business systems to cloud-based systems. Google Maps,
Amazon, eBay, PayPal, and FedEx are examples of large scale SBSs.

However, the emergence of such systems raises several challenges. Indeed, like
any other complex software system, SBSs must evolve to fit new user require-
ments in terms of functionalities and Quality of Service (QoS). SBSs must also
evolve to accommodate new execution contexts, such as addition of new devices,
technologies, or protocols. All of these changes may degrade the design and QoS
of SBSs, and may often result in the appearance of common poor solutions to
recurring problems, called Antipatterns—by opposition to design patterns, which
are good solutions to such problems that software engineers face when designing
and developing systems. In addition to the degradation of the design and QoS,
antipatterns resulting from these changes make it hard for software engineers to
maintain and evolve systems.

Multi Service and Tiny Service are two common antipatterns in SBSs and
it has been shown, in particular, that Tiny Service is the root cause of many
SOA failures [15]. Multi Service is an SOA antipattern that corresponds to a
service that implements a multitude of methods related to different business
and technical abstractions. Such a service is not easily reusable because of the
low cohesion of its methods and is often unavailable to end-users because of its
overload. Conversely, Tiny Service is a small service with just a few methods,
which only implements part of an abstraction. Such service often requires several
coupled services to be used together, resulting in higher development complexity
and reduced flexibility.

The automatic detection of such antipatterns is an important activity to assess
the design and QoS of SBSs and ease the maintenance and evolution tasks of
software engineers. However, few works have been devoted to SOA antipatterns,
and methods and techniques for the detection of antipatterns in SBSs are still
in their infancy.

Our goal is to assess the design and QoS of SBSs. To achieve this goal, we
propose a novel and innovative approach (named SODA for Service Oriented De-
tection for Antipatterns) supported by a framework (named SOFA for Service
Oriented Framework for Antipatterns) to specify SOA antipatterns and detect
them automatically in SBSs. This framework supports the static and dynamic
analysis of SBSs, along with their combination. Static analysis involves mea-
surement of structural properties related to the design of SBSs, while dynamic
analysis requires the runtime execution of SBSs for the measurement of runtime
properties, mainly related to the QoS of SBSs. The SODA approach relies on the
first language to specify SOA antipatterns in terms of metrics. This language is
defined from a thorough domain analysis of SOA antipatterns in the literature.
It allows the specifications of SOA antipatterns using high-level domain-related
abstractions. It also allows the adaptation of the specifications of antipatterns to
the context of the analyzed SBSs. Using this language and the SOFA framework
dedicated to the static and dynamic analysis of SBSs, we generate detection
algorithms automatically from the specifications of SOA antipatterns and apply

Specification and Detection of SOA Antipatterns 3

them on any SBSs under analysis. The originality of our approach stems from
the ability for software engineers to specify SOA antipatterns at a high-level of
abstraction using a consistent vocabulary and from the use of a domain-specific
language for automatically generating the detection algorithms.

We apply SODA by specifying 10 well-known and common antipatterns and
generating their detection algorithms. Then, we validate the detection results
in terms of precision and recall on Home-Automation, an SBS developed indepen-
dently by two Masters students. We consider two different versions of
Home-Automation: (a) an original version, which includes 13 services, and (b)
a version modified by adding and modifying services to inject intentionally some
antipatterns. We show that SODA allows the specification and detection of a rep-
resentative set of SOA antipatterns with a precision of 92.5% and a recall of 100%.

The remainder of this paper is organized as follows. Section 2 surveys related
work on the detection of antipatterns in general, and in SBSs in particular.
Section 3 presents our specification and detection approach, SODA, along with
the specification language and the underlying detection framework, SOFA. Sec-
tion 4 presents experiments performed on Home-Automation for validating our
approach. Finally, Section 5 concludes and sketches future work.

2 Related Work

Architectural (or design) quality is essential for building well-designed, main-
tainable, and evolvable SBSs. Patterns and antipatterns have been recognized
as one of the best ways to express architectural concerns and solutions. How-
ever, unlike Object Oriented (OO) antipatterns, methods and techniques for the
detection and correction of SOA antipatterns are still in their infancy.

Unlike OO antipatterns, fewer books and papers deal with SOA antipatterns:
most references are Web sites where SOA practitioners share their experiences
in SOA design and development [4; 13; 17]. In 2003, Dudney et al. [7] published
the first book on SOA antipatterns. This book provides a catalog of approxi-
mately 50 antipatterns related to the architecture, design and implementation
of systems based on J2EE technologies, such as EJB, JSP, Servlet, and Web
services. Most antipatterns described in this book cannot be detected automati-
cally and are specific to a technology and correspond to variants of the Tiny and
Multi Service. Another book by Rotem-Gal-Oz et al. [22] on SOA patterns and
antipatterns will soon be published in Summer 2012. In a recent paper, Král et
al. [15] described seven SOA antipatterns, which are caused by an improper use
of SOA standards and improper practices borrowed from the OO design style.
Other books exist on SOA patterns and principles [6; 9] that provide guidelines
and principles characterizing “good” service oriented designs. Such books enable
software engineers to manually assess the quality of their systems and provide a
basis for improving design and implementation.

Several methods and tools exist for the detection [14; 16; 19; 24] and cor-
rection [1; 25; 26] of antipatterns in OO systems and various books have been
published on that topic. For example, Brown et al. [2] introduced a collection
of 40 antipatterns, Beck, in Fowler’s highly-acclaimed book on refactoring [10],

4 N. Moha et al.

compiled 22 code smells that are low-level antipatterns in source code, suggest-
ing where engineers should apply refactorings. One of the root causes of OO
antipatterns is the adoption of a procedural design style in OO system whereas
for SOA antipatterns, it stems from the adoption of an OO style design in SOA
system [15]. However, these OO detection methods and tools cannot be directly
applied to SOA. Indeed, SOA focuses on services as first-class entities whereas
OO focuses on classes, which are at the lower level of granularity. Moreover, the
highly dynamic nature of an SOA environment raises several challenges that are
not faced in OO development and requires dynamic analysis.

Other related works have focused on the detection of specific antipatterns
related to system’s performance and resource usage and–or given technologies.
For example, Wong et al. [27] used a genetic algorithm for detecting software
faults and anomalous behavior related to the resource usage of a system (e.g.,
memory usage, processor usage, thread count). Their approach is based on util-
ity functions, which correspond to predicates that identify suspicious behavior
based on resource usage metrics. For example, a utility function may report an
anomalous behavior corresponding to spam sending if it detects a large number
of threads. In another relevant work, Parsons et al. [21] introduced an approach
for the detection of performance antipatterns specifically in component-based
enterprise systems (in particular, JEE applications) using a rule-based approach
relying on static and dynamic analysis.

Although different, all these previous works on OO systems and performance
antipattern detection form a sound basis of expertise and technical knowledge
for building methods for the detection of SOA antipatterns.

3 The SODA Approach

We propose a three-step approach, named SODA, for the specification and de-
tection of SOA antipatterns:

Step 1. Specify SOA antipatterns: This step consists of identifying properties in
SBSs relevant to SOA antipatterns. Using these properties, we define a Domain-
Specific Language (DSL) for specifying antipatterns at a high level of abstraction.
Step 2. Generate detection algorithms: In this step, detection algorithms are gen-
erated automatically from the specifications defined in the previous step.
Step 3. Detect automatically SOA antipatterns: The third step consists of ap-
plying, on the SBSs analyzed, the detection algorithms generated in Step 2 to
detect SOA antipatterns.

The following sections describe the first two steps. The third step is described
in Section 4, where we detail experiments performed for validating SODA.

3.1 Specification of SOA Antipatterns

We perform a domain analysis of SOA antipatterns by studying their definition
and specification in the literature [7; 15; 22] and in online resources and arti-
cles [4; 13; 17]. This domain analysis allows us to identify properties relevant to

Specification and Detection of SOA Antipatterns 5

SOA antipatterns, including static properties related to their design (e.g., co-
hesion and coupling) and also dynamic properties, such as QoS criteria (e.g.,
response time and availability). Static properties are properties that apply to
the static descriptions of SBSs, such as WSDL (Web Services Description Lan-
guage) files, whereas dynamic properties are related to the dynamic behavior of
SBSs as observed during their execution. We use these properties as the base
vocabulary to define a DSL, in the form of a rule-based language for specifying
SOA antipatterns. The DSL offers software engineers high-level domain-related
abstractions and variability points to express different properties of antipatterns
depending on their own judgment and context.

1 rule card ::= RULE CARD:rule cardName { (rule)+ };
2 rule ::= RULE:ruleName { content rule };

3 content rule ::= metric | relationship | operator ruleType (ruleType)+

4 | RULE CARD: rule cardName

5 ruleType ::= ruleName | rule cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id metric ordi value
8 | id metric comparator num value
9 id metric ::= NMD | NIR | NOR | CPL | COH | ANP | ANPT | ANAM | ANIM

10 | NMI | NTMI | RT | A
11 ordi value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
12 comparator ::= EQUAL | LESS | LESS EQUAL | GREATER | GREATER EQUAL

13 relationship ::= relationType FROM ruleName cardinality TO ruleName cardinality
14 relationType ::= ASSOC | COMPOS
15 cardinality ::= ONE | MANY | ONE OR MANY | num value NUMBER OR MANY

16 rule cardName, ruleName, ruleClass ∈ string
17 num value ∈ double

Fig. 1. BNF Grammar of Rule Cards

We specify antipatterns using rule cards, i.e., sets of rules. We formalize rule
cards with a Backus-Naur Form (BNF) grammar, which determines the syntax
of our DSL. Figure 1 shows the grammar used to express rule cards. A rule
card is identified by the keyword RULE CARD, followed by a name and a set of
rules specifying this specific antipattern (Figure 1, line 1). A rule (line 3 and
4) describes a metric, an association or composition relationship among rules
(lines 13-15) or a combination with other rules, based on set operators including
intersection, union, difference, inclusion, and negation (line 6). A rule can refer
also to another rule card previously specified (line 4). A metric associates to
an identifier a numerical or an ordinal value (lines 7 and 8). Ordinal values are
defined with a five-point Likert scale: very high, high, medium, low, and very low
(line 11). Numerical values are used to define thresholds with comparators (line
12), whereas ordinal values are used to define values relative to all the services
of a SBS under analysis (line 11). We define ordinal values with the box-plot
statistical technique [3] to relate ordinal values with concrete metric values while
avoiding setting artificial thresholds. The metric suite (lines 9-10) encompasses

6 N. Moha et al.

1 RULE CARD: MultiService {
2 RULE: MultiService {INTER MultiMethod
3 HighResponse LowAvailability LowCohesion};
4 RULE: MultiMethod {NMD VERY HIGH};
5 RULE: HighResponse {RT VERY HIGH};
6 RULE: LowAvailability {A LOW};
7 RULE: LowCohesion {COH LOW};
8 };

(a) Multi Service

1 RULE CARD: TinyService {
2 RULE: TinyService {INTER FewMethod
3 HighCoupling};
4 RULE: FewMethod {NMD VERY LOW};
5 RULE: HighCoupling {CPL HIGH};
6 };

(b) Tiny Service

Fig. 2. Rule Cards for Multi Service and Tiny Service

both static and dynamic metrics. The static metric suite includes (but is not
limited to) the following metrics: number of methods declared (NMD), number of
incoming references (NIR), number of outgoing references (NOR), coupling (CPL),
cohesion (COH), average number of parameters in methods (ANP), average number
of primitive type parameters (ANPT), average number of accessor methods (ANAM),
and average number of identical methods (ANIM). The dynamic metric suite
contains: number of method invocations (NMI), number of transitive methods
invoked (NTMI), response time (RT), and availability (A). Other metrics can be
included by adding them to the SOFA framework.

Figure 2 illustrates the grammar with the rule cards of the Multi Service and
Tiny Service antipatterns. The Multi Service antipattern is characterized by very
high response time and number of methods and low availability and cohesion. A
Tiny Service corresponds to a service that declares a very low number of methods
and has a high coupling with other services. For the sake of clarity, we illustrate
the DSL with two intra-service antipatterns, i.e., antipatterns within a service.
However, the DSL allows also the specification of inter-service antipatterns, i.e.,
services spreading over more than one service. We provide the rule cards of such
other more complex antipatterns later in the experiments (see Section 4).

Using a DSL offers greater flexibility than implementing ad hoc detection
algorithms, because it allows describing antipatterns using high-level domain-
related abstractions and focusing on what to detect instead of how to detect
it [5]. Indeed, the DSL is independent of any implementation concern, such
as the computation of static and dynamic metrics and the multitude of SOA
technologies underlying SBSs. Moreover, the DSL allows the adaptation of the
antipattern specifications to the context and characteristics of the analyzed SBSs
by adjusting the metrics and associated values.

3.2 Generation of Detection Algorithms

From the specifications of SOA antipatterns described with the DSL, we auto-
matically generate detection algorithms.

We implement the generation of the detection algorithms as a set of visitors
on models of antipattern rule cards. The generation is based on templates and
targets the services of the underlying framework described in the following sub-
section. Templates are excerpts of Java source code with well-defined tags. We
use templates because the detection algorithms have common structures.

Specification and Detection of SOA Antipatterns 7

Rule Cards
of Antipatterns

Parsing Models of
Rule Cards

Visiting & Replacing Generated
Code

Templates

1 2

Fig. 3. Generation of Detection Algorithms

Figure 3 sketches the different steps and artifacts of this generation process.
First, rule cards of antipatterns are parsed and reified as models. Then, during
the visit of the rule card models, the tags of templates are replaced with the
data and values appropriate to the rules. The final source code generated for a
rule card is the detection algorithm of the corresponding antipattern and this
code is directly compilable and executable without any manual intervention.

This generative process is fully automated to avoid any manual tasks, which
are usually repetitive and error-prone. This process also ensures the traceability
between the specifications of antipatterns with the DSL and their concrete detec-
tion in SBSs using our underlying framework. Consequently, software engineers
can focus on the specification of antipatterns, without considering any technical
aspects of the underlying framework.

3.3 SOFA: Underlying Framework

We developed a framework, called SOFA (Service Oriented Framework for An-
tipatterns), that supports the detection of SOA antipatterns in SBSs. This frame-
work, designed itself as an SBS and illustrated in Figure 4, provides different
services corresponding to the main steps for the detection of SOA antipatterns
(1) the automated generation of detection algorithms; (2) the computation of
static and dynamic metrics; and (3) the specification of rules including different
sub-services for the rule language, the box-plot statistical technique, and the set
operators. The rule specification and algorithm generation services provide all
constituents to describe models of rule cards as well as the algorithms to visit

Detection

Algorithm
Generation

SOFA Framework

Rule
Specification Rule

Operator

Boxplot

Metric

Fig. 4. The SOFA Framework

8 N. Moha et al.

rule card models and to generate detection algorithms from these models. These
different constituents rely on Model Driven Engineering techniques, which pro-
vide the means to define a DSL, parse it, and check its conformance with the
grammar. We also use Kermeta [18], an executable metamodeling language, for
generating the detection algorithms based on models of rule cards.

With respect to the computation of metrics, the generated detection algo-
rithms call sensors and triggers implemented using the modules of the Galaxy
framework [12]. These sensors and triggers, implemented as join points in an
aspect-oriented programming style, allow, at runtime, the introspection of the
interface of services and the triggering of events to add non-functional concerns,
such as transactions, debugging, and, in our case, the computation of metrics
such as response time.

We chose Kermeta and Galaxy for the sake of convenience because they are
developed and maintained within our research team. Galaxy [12] is an open ag-
ile SOA framework supporting the SCA (Service Component Architecture) stan-
dard [20]. SCA is a relatively new standard, advocated by researchers and major
software vendors, like IBM and Oracle, for developing technology agnostic and
extensible SBSs. Galaxy encompasses different modules for building, deploying,
running, and monitoring SBSs. Such a framework is essential for allowing the de-
tection of SOA antipatterns at execution time through FraSCAti [23], which pro-
vides runtime support for the SCA standard. Furthermore, the SOFA framework
is implemented itself as an SCA component to ease its use and evolution and to
offer it as a service to end-users concerned by the design and QoS of their SBSs.

4 Experiments

To show the completeness and extensibility of our DSL, the accuracy of the gen-
erated algorithms, and the usefulness of the detection results with their related
performance, we performed experiments with 10 antipatterns on a service-based
SCA system, Home-Automation. This SBS has been developed independently
for controlling remotely many basic household functions for elderly home care
support. It includes 13 services with a set of 7 predefined scenarios for executing
it at runtime.

4.1 Assumptions

The experiments aim at validating the following four assumptions:

A1. Generality: The DSL allows the specification of many different SOA an-
tipatterns, from simple to more complex ones. This assumption supports the
applicability of SODA using the rule cards on 10 SOA antipatterns, composed
of 14 static and dynamic metrics.

A2. Accuracy: The generated detection algorithms have a recall of 100%, i.e.,
all existing antipatterns are detected, and a precision greater than 75%, i.e., more

Specification and Detection of SOA Antipatterns 9

Table 1. List of Antipatterns. (The first seven antipatterns are extracted from the
literature and three others are newly defined.)

Multi Service also known as God Object corresponds to a service that implements a multitude of
methods related to different business and technical abstractions. This aggregates too much into a
single service, such a service is not easily reusable because of the low cohesion of its methods and is
often unavailable to end-users because of its overload , which may induce a high response time [7].

Tiny Service is a small service with few methods, which only implements part of an abstraction. Such
service often requires several coupled services to be used together, resulting in higher development
complexity and reduced usability . In the extreme case, a Tiny Service will be limited to one method ,
resulting in many services that implement an overall set of requirements [7].

Sand Pile is also known as ‘Fine-Grained Services’. It appears when a service is composed by
multiple smaller services sharing common data. It thus has a high data cohesion. The common data
shared may be located in a Data Service antipattern (see below) [15].

Chatty Service corresponds to a set of services that exchange a lot of small data of primitive types,
usually with a Data Service antipattern. The Chatty Service is also characterized by a high number
of method invocations. Chatty Service chats a lot with each other [7].

The Knot is a set of very low cohesive services, which are tightly coupled . These services are thus
less reusable. Due to this complex architecture, the availability of these services can be low , and
their response time high [22].

Nobody Home corresponds to a service, defined but actually never used by clients. Thus, the methods
from this service are never invoked , even though it may be coupled to other services. But still they
require deployment and management, despite of their no usage [13].

Duplicated Service a.k.a. The Silo Approach introduced by IBM corresponds to a set of highly
similar services. Since services are implemented multiple times as a result of the silo approach,
there may have common or identical methods with the same names and/or parameters [4].

Bottleneck Service is a service that is highly used by other services or clients. It has a high incoming
and outgoing coupling . Its response time can be high because it may be used by too many external
clients, for which clients may need to wait to get access to the service. Moreover, its availability may
also be low due to the traffic.

Service Chain a.k.a. Message Chain [10] in OO systems corresponds to a chain of services. The
Service Chain appears when clients request consecutive service invocations to fulfill their goals. This
kind of dependency chain reflects the action of invocation in a transitive manner.

Data Service a.k.a. Data Class [10] in OO systems corresponds to a service that contains mainly
accessor methods, i.e., getters and setters. In the distributed applications, there can be some services
that may only perform some simple information retrieval or data access to such services. Data
Services contain usually accessor methods with small parameters of primitive types. Such service
has a high data cohesion.

than three-quarters of detected antipatterns are true positive. Given the trade-off
between precision and recall, we assume that 75% precision is significant enough
with respect to 100% recall. This assumption supports the precision of the rule
cards and the accuracy of the algorithm generation and of the SOFA framework.

A3. Extensibility: The DSL and the SOFA framework are extensible for adding
new SOA antipatterns. Through this assumption, we show how well the DSL,
and in particular the metrics, with the supporting SOFA framework, can be
combined to specify and detect new antipatterns.

A4. Performance: The computation time required for the detection of antipat-
terns using the generated algorithms is reasonably very low, i.e., in the order of
few seconds. This assumption supports the performance of the services provided
by the SOFA framework for the detection of antipatterns.

10 N. Moha et al.

4.2 Subjects

We apply our SODA approach using the SOFA framework to specify 10 different
SOA antipatterns. Table 1 summarizes these antipatterns, of which the first seven
are from the literature and three others have been newly defined, namely, the
Bottleneck Service, Service Chain, and Data Service. These new antipatterns are
inspired from OO code smells [10]. In these summaries, we highlight in bold the
key concepts relevant for the specification of their rule cards given in Figure 5.

1 RULE CARD: DataService {
2 RULE: DataService {INTER HighDataAccessor
3 SmallParameter PrimitiveParameter HighCohesion};
4 RULE: SmallParameter {ANP LOW};
5 RULE: PrimitiveParameter {ANPT HIGH};
6 RULE: HighDataAccessor {ANAM VERY HIGH};
7 RULE: HighCohesion {COH HIGH};
8 };

(a) Data Service

1 RULE CARD: TheKnot {
2 RULE: TheKnot {INTER HighCoupling
3 LowCohesion LowAvailability HighResponse};
4 RULE: HighCoupling {CPL VERY HIGH};
5 RULE: LowCohesion {COH VERY LOW};
6 RULE: LowAvailability {A LOW};
7 RULE: HighResponse {RT HIGH};
8 };

(b) The Knot

1 RULE CARD: ChattyService {
2 RULE: ChattyService {
3 INTER TotalInvocation DSRuleCard};
4 RULE: DSRuleCard {RULE CARD: DataService};
5 RULE: TotalInvocation {NMI VERY HIGH};
6 };

(c) Chatty Service

1 RULE CARD: NobodyHome {
2 RULE: NobodyHome {
3 INTER IncomingReference MethodInvocation};
4 RULE: IncomingReference {NIR GREATER 0};
5 RULE: MethodInvocation {NMI EQUAL 0};
6 };

(d) Nobody Home

1 RULE CARD: BottleneckService {
2 RULE: BottleneckService {
3 INTER LowPerformance HighCoupling};
4 RULE: LowPerformance {
5 INTER LowAvailability HighResponse};
6 RULE: HighResponse {RT HIGH};
7 RULE: LowAvailability {A LOW};
8 RULE: HighCoupling {CPL VERY HIGH};
9 };

(e) Bottleneck Service

1 RULE CARD: SandPile {
2 RULE: SandPile {COMPOS FROM
3 ParentService ONE TO ChildService MANY};
4 RULE: ChildService {ASSOC FROM
5 ContainedService MANY TO DataSource ONE};
6 RULE: ParentService {COH HIGH};
7 RULE: DataSource {RULE CARD: DataService};
8 RULE: ContainedService {NRO > 1};
9 };

(f) Sand Pile

1 RULE CARD: ServiceChain {
2 RULE: ServiceChain {INTER TransitiveInvocation
3 LowAvailability};
4 RULE: TransitiveInvocation {NTMI VERY HIGH};
5 RULE: LowAvailability {A LOW};
6 };

(g) Service Chain

1 RULE CARD: DuplicatedService {
2 RULE: DuplicatedService {ANIM HIGH};
3 };

(h) Duplicated Service

Fig. 5. Rule Cards for Different Antipatterns

4.3 Objects

We perform the experiments on two different versions of the Home-Automation
system: the original version of the system, which includes 13 services, and a
version modified by adding and modifying services to inject intentionally some
antipatterns. The modifications have been performed by an independent engineer
to avoid biasing the results. Details on the two versions of the system including all
the scenarios and involved services are available online at http://sofa.uqam.ca.

Specification and Detection of SOA Antipatterns 11

4.4 Process

Using the SOFA framework, we generated the detection algorithms correspond-
ing to the rule cards of the 10 antipatterns. Then, we applied these algorithms at
runtime on the Home-Automation system using its set of 7 predefined scenarios.
Finally, we validated the detection results by analyzing the suspicious services
manually to (1) validate that these suspicious services are true positives and (2)
identify false negatives (if any), i.e., missing antipatterns. For this last validation
step, we use the measures of precision and recall [11]. Precision estimates the
ratio of true antipatterns identified among the detected antipatterns, while re-
call estimates the ratio of detected antipatterns among the existing antipatterns.
This validation has been performed manually by two independent software en-
gineers, whom we provided the descriptions of antipatterns and the two versions
of the analyzed system Home-Automation.

4.5 Results

Table 2 presents the results for the detection of the 10 SOA antipatterns on
the original and evolved version of Home-Automation. For each antipattern, the
table reports the involved services in the second column, the version analyzed of
Home-Automation in the third column, the analysis method: static (S) and–or
dynamic (D) in the fourth, then the metrics values of rule cards in the fifth,
and finally the computation times in the sixth. The two last columns report the
precision and recall.

4.6 Details of the Results

We briefly present the detection results of the Tiny Service and Multi Service.
The service IMediator has been identified as a Multi Service because of its
very high number of methods (i.e., NMD equal 13) and its low cohesion (i.e.,
COH equal 0.027). These metric values have been evaluated by the Box-Plot
service respectively as high and low in comparison with the metric values of
other services of Home-Automation. For example, for the metric NMD, the Box-
Plot estimates the median value of NMD in Home-Automation as equal to 2.
In the same way, the detected Tiny Service has a very low number of methods
(i.e., NMD equal 1) and a high coupling (i.e., CPL equal 0.44) with respect to
other values. The values of the cohesion COH and coupling CPL metrics range
from 0 to 1. In the original version of Home-Automation, we did not detect any
Tiny Service. We then extracted one method from IMediator and moved it in a
new service named MediatorDelegate, and then this service has been detected
as a Tiny Service.

We also detected 7 other antipatterns within the original version of Home-
Automation, namely, Duplicated Service, Chatty Service, Sand Pile, The Knot,
Bottleneck Service, Data Service, and Service Chain. All these antipatterns in-
volve more than one service, except Data Service and Duplicated Service. The
service PatientDAO has been detected as a Data Service because it performs

12 N. Moha et al.

Table 2. Results for the Detection of 10 SOA Antipatterns in the Original and Evolved
Version of Home-Automation System (S: Static, D: Dynamic)

�����������	�
� ��������������� ������� �������� ������ �������
� �������� �����

Tiny Service [MediatorDelegate] evolved S
NOR: 4

0.194s [1/1] [1/1]CPL: 0.440

NMD: 1 100% 100%

Multi Service [IMediator] original S, D
COH: 0.027

0.462s [1/1] [1/1]NMD: 13

RT: 132ms 100% 100%

Duplicated Service
[Communication-

original S ANIM: 25% 0.215s [2/2] [2/2]Service]
[IMediator] 100% 100%

Chatty Service
[PatientDAO]

original S, D

ANP: 1.0

0.383s [2/2] [2/2]
ANPT: 1.0

NMI: 3

[IMediator] ANAM: 100% 100% 100%
COH: 0.167

Nobody Home [UselessService] evolved S, D
NIR: >0

1.154s
[1/1] [1/1]

NMI: 0 100% 100%

Sand Pile [HomeAutomation] original S

NCS: 13

0.310s [1/1] [1/1]
ANP: 1.0

ANPT: 1.0

ANAM: 100% 100% 100%
COH: 0.167

The Knot

[IMediator]

original S, D

COH: 0.027

0.412s
[1/2] [1/1]NIR: 7

[PatientDAO] NOR: 7

CPL: 1.0 50% 100%
RT: 57ms

Bottleneck Service
[IMediator]

original S, D

NIR: 7

0.246s
[2/2] [2/2]NOR: 7

[PatientDAO] CPL: 1.0 100% 100%
RT: 40ms

Data Service [PatientDAO] original S

ANAM: 100%

0.268s
[1/1] [1/1]COH: 0.167

ANPT: 1.0 100% 100%
ANP: 1.0

Service Chain

[IMediator]

original D NTMI: 4.0 0.229s
[3/4] [3/3][SunSpotService]

[PatientDAO] 75% 100%
[PatientDAO2]

Average 0.387s
[15/17] [15/15]

92.5% 100%

simple data accesses. Moreover, in the evolved version, we detected the Nobody
Home antipattern, after an independent developer introduced the service Use-

lessService, which is defined but never used in any scenarios. We detected a
consecutive chain of invocations of IMediator→ SunSpotService→ Patient-

DAO → PatientDAO2, which forms a Service Chain, whereas engineers validated
IMediator → PatientDAO→ PatientDAO2. Therefore, we had the precision of
75% and recall of 100% for the Service Chain antipattern. Moreover, we detected
the HomeAutomation itself as Sand Pile. Finally, an important point is that we
use in some rule cards the dynamic property Availability (A). However, we did
not report this value because it corresponds to 100% since the services of the
system were deployed locally.

Specification and Detection of SOA Antipatterns 13

4.7 Discussion on the Assumptions

We now verify each of the four assumptions stated previously using the detection
results.

A1. Generality: The DSL allows the specification of many different SOA an-
tipatterns, from simple to more complex ones. Using our DSL, we specified 10
SOA antipatterns described in Table 1, as shown in rule cards given in Figure
2 and 5. These antipatterns range from simple ones, such as the Tiny Service
and Multi Service, to more complex ones such as the Bottleneck and Sand Pile,
which involve several services and complex relationships. In particular, Sand Pile
has both the ASSOC and COMPOS relation type. Also, both Sand Pile and Chatty
Service refer in their specifications to another antipattern, namely DataService.
Thus, we show that we can specify from simple to complex antipatterns, which
support the generality of our DSL.

A2. Accuracy: The generated detection algorithms have a recall of 100%, i.e.,
all existing antipatterns are detected, and a precision greater than 75%, i.e.,
more than three-quarters of detected antipatterns are true positive. As indicated
in Table 2, we obtain a recall of 100%, which means all existing antipatterns
are detected, whereas the precision is 92.5%. We have high precision and re-
call because the analyzed system, Home-Automation is a small SBS with 13
services. Also, the evolved version includes two new services. Therefore, con-
sidering the small but significant number of services and the well defined rule
cards using DSL, we obtain such a high precision and recall. For the original
Home-Automation version, out of 13 services, we detected 6 services that are
responsible for 8 antipatterns. Besides, we detected 2 services (out of 15) that
are responsible for 2 other antipatterns in the evolved system.

A3. Extensibility: The DSL and the SOFA framework are extensible for adding
new SOA antipatterns. The DSL has been initially designed for specifying the
seven antipatterns described in the literature (see Table 1). Then, through in-
spection of the SBS and inspiration from OO code smells, we added three new
antipatterns, namely the Bottleneck Service, Service Chain and Data Service.
When specifying these new antipatterns, we reused four already-defined metrics
and we added in the DSL and SOFA four more metrics (ANAM, NTMI, ANP and
ANPT). The language is flexible in the integration of new metrics. However, the
underlying SOFA framework should also be extended to provide the operational
implementations of the new metrics. Such an addition can only be realized by
skilled developers with our framework, that may require from 1 hour to 2 days
according to the complexity of the metrics. Thus, by extending the DSL with
these three new antipatterns and integrating them within the SOFA framework,
we support A3.

A4. Performance: The computation time required for the detection of antipat-
terns using the generated algorithms is reasonably very low, i.e., in the order of
few seconds. We perform all experiments on an Intel Dual Core at 3.30GHz with
3GB of RAM. Computation times include computing metric values,

14 N. Moha et al.

introspection delay during static and dynamic analysis, and applying detection
algorithms. The computation times for the detection of antipatterns is reason-
ably low, i.e., ranging from 0.194s to 1.154s with an average of 0.387s. Such low
computation times suggest that SODA could be applied on SBSs with larger
number of services. Thus, we showed that we can support the fourth assumption
positively.

4.8 Threats to Validity

The main threat to the validity of our results concerns their external validity,
i.e., the possibility to generalize our approach to other SBSs. As future work,
we plan to run these experiments on other SBSs. However, we considered two
versions of Home-Automation. For internal validity, the detection results depend
on the services provided by the SOFA framework but also on the antipattern
specifications using rule cards. We performed experiments on a representative
set of antipatterns to lessen this threat to the internal validity. The subjective
nature of specifying and validating antipatterns is a threat to construct validity.
We try to lessen this threat by defining rule cards based on a literature review and
domain analysis and by involving two independent engineers in the validation.
We minimize reliability validity by automating the generation of the detection
algorithm. Each subsequent detection produce consistent sets of results with
high precision and recall.

5 Conclusion and Future Work

The specification and detection of SOA antipatterns are important to assess the
design and QoS of SBSs and thus, ease the maintenance and evolution of SBSs. In
this paper, we presented a novel approach, named SODA, for the specification
and detection of SOA antipatterns, and SOFA, its underlying framework. We
proposed a DSL for specifying SOA antipatterns and a process for automatically
generating detection algorithms from the antipattern specifications. We applied
and validated SODA with 10 different SOA antipatterns on an original and
a evolved version of Home-Automation, a SBS developed independently. We
demonstrated the usefulness of our approach and discussed its precision and
recall.

As future work, we intend to enhance the detection approach with a correction
approach to suggest refactorings and automatically, at runtime, correct detected
SOA antipatterns, enabling software engineers to improve the design and QoS
of their SBSs. Furthermore, we intend to perform other experiments on differ-
ent SBSs from different SOA technologies, including SCA, Web Services, REST
and EJB. The approach may require some adaptations from one technology to
another because although SOA technologies share some common concepts and
principles, they also have their own specific characteristics. Another targeted
SBS is the SOFA framework itself since because this SBS will certainly evolve
to handle various antipatterns and SBSs. We will thus ensure that the evolution
of the SOFA framework does not introduce itself antipatterns.

Specification and Detection of SOA Antipatterns 15

Acknowledgments. The authors thank Yousri Kouki and Mahmoud Ben Has-
sine for their help with the implementation of Home-Automation. This work is
partly supported by the NESSOS European Network of Excellence and a NSERC
Discovery Grant. And, this work is in memory of Anne-Françoise Le Meur, our
dearly departed colleague, who initiated the work.

References

1. Bart Du Bois, J.V., Demeyer, S.: Refactoring - Improving Coupling and Cohesion
of Existing Code. In: Proceedings of the 11th IEEE Working Conference on Reverse
Engineering, pp. 144–151 (2004)

2. Brown, W., Malveau, R., McCormick III, H., Mowbray, T.: Anti Patterns: Refac-
toring Software, Architectures, and Projects in Crisis. John Wiley and Sons (1998)

3. Chambers, J., Cleveland, W., Tukey, P., Kleiner, B.: Graphical methods for data
analysis. Wadsworth International (1983)

4. Cherbakov, L., Ibrahim, M., Ang, J.: SOA Antipatterns: The Obstacles to the
Adoption and Successful Realization of Service-Oriented Architecture,
www.ibm.com/developerworks/webservices/library/ws-antipatterns/

5. Consel, C., Marlet, R.: Architecturing Software Using a Methodology for Language
Development. In: Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and
PLILP 1998. LNCS, vol. 1490, pp. 170–194. Springer, Heidelberg (1998)

6. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley (November 2011)

7. Dudney, B., Asbury, S., Krozak, J., Wittkopf, K.: J2EE AntiPatterns. John Wiley
& Sons Inc. (2003)

8. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR (2005)

9. Erl, T.: SOA Design Patterns. Prentice Hall PTR (2009)
10. Fowler, M.J., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving

the Design of Existing Code. Addison-Wesley (1999)

11. Frakes, W.B., Baeza-Yates, R.A. (eds.): Information Retrieval: Data Structures &
Algorithms. Prentice-Hall (1992)

12. Galaxy INRIA: The French National Institute for Research in Computer Science
and Control, http://galaxy.gforge.inria.fr

13. Jones, S.: SOA Anti-patterns,
http://www.infoq.com/articles/SOA-anti-patterns

14. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance From Perfection is a Better
Criterion Than Closeness To Evil When Identifying Risky Code. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
ASE 2010, pp. 113–122. ACM, New York (2010)

15. Král, J., Žemlička, M.: Crucial Service-Oriented Antipatterns, vol. 2, pp. 160–171.
International Academy, Research and Industry Association, IARIA (2008)

16. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer (2006)
17. Modi, T.: SOA Management: SOA Antipatterns,

http://www.ebizq.net/topics/soa_management/features/7238.html

18. Moha, N., Sen, S., Faucher, C., Barais, O., Jézéquel, J.M.: Evaluation of Ker-
meta for Solving Graph-based Problems. Journal on Software Tools for Technology
Transfer 12(3-4), 273–285 (2010)

www.ibm.com/developerworks/webservices/library/ws-antipatterns/
http://galaxy.gforge.inria.fr
http://www.infoq.com/articles/SOA-anti-patterns
http://www.ebizq.net/topics/soa_management/features/7238.html

16 N. Moha et al.

19. Munro, M.J.: Product Metrics for Automatic Identification of “Bad Smell” Design
Problems in Java Source-Code. In: Proceedings of the 11th International Software
Metrics Symposium. IEEE Computer Society Press (September 2005)

20. Open SOA: SCA Service Component Architecture - Assembly Model Specification,
version 1.00 (March 2007), www.osoa.org

21. Parsons, T., Murphy, J.: Detecting Performance Antipatterns in Component Based
Enterprise Systems. Journal of Object Technology 7(3), 55–90 (2008)

22. Rotem-Gal-Oz, A., Bruno, E., Dahan, U.: SOA Patterns. Manning Publications
Co. (2012), to be published in Summer 2012

23. Seinturier, L., Merle, P., Fournier, D., Schiavoni, V., Demarey, C., Dolet, N., Pe-
titprez, N.: FraSCAti - Open SCA Middleware Platform v1.4,
http://frascati.ow2.org

24. Settas, D.L., Meditskos, G., Stamelos, I.G., Bassiliades, N.: SPARSE: A symptom-
based antipattern retrieval knowledge-based system using Semantic Web technolo-
gies. Expert Systems with Applications 38(6), 7633–7646 (2011)

25. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics Based Refactoring. In: Pro-
ceedings of the 5th European Conference on Software Maintenance and Reengi-
neering, pp. 14–16 (March 2001)

26. Trifu, A., Dragos, I.: Strategy-Based Elimination of Design Flaws in Object-
Oriented Systems. In: Proceedings of the 4th International Workshop on Object-
Oriented Reengineering. Universiteit Antwerpen (July 2003)

27. Wong, S., Aaron, M., Segall, J., Lynch, K., Mancoridis, S.: Reverse Engineering
Utility Functions Using Genetic Programming to Detect Anomalous Behavior in
Software. In: Proceedings of the 2010 17th Working Conference on Reverse En-
gineering, WCRE 2010, pp. 141–149. IEEE Computer Society, Washington, DC
(2010)

www.osoa.org
http://frascati.ow2.org

Verification of GSM-Based Artifact-Centric Systems
through Finite Abstraction

Francesco Belardinelli1, Alessio Lomuscio1, and Fabio Patrizi2

1 Department of Computing, Imperial College London
{f.belardinelli,a.lomuscio}@imperial.ac.uk

2 DIIAG, Sapienza Università di Roma
patrizi@dis.uniroma1.it

Abstract. The GSM framework provides a methodology for the development
of artifact-centric systems, an increasingly popular paradigm in service-oriented
computing. In this paper we tackle the problem of verifying GSM programs in a
multi-agent system setting. We provide an embedding from GSM into a suitable
multi-agent systems semantics for reasoning about knowledge and time at the
first-order level. While we observe that GSM programs generate infinite mod-
els, we isolate a large class of “amenable” systems, which we show admit finite
abstractions and are therefore verifiable through model checking. We illustrate
the contribution with a procurement use-case taken from the relevant business
process literature.

1 Introduction

The artifact-centric paradigm [8, 9] has recently gained considerable prominence in the
business processes and services communities as a promising and novel methodology for
quick and inexpensive deployment of data-intensive web-services. In the artifact-centric
approach data feature prominently and drive the execution of the system, together with
the associated process-based description of the services. The Guard-Stage-Milestone
(GSM) language [15], together with its Barcelona production and execution suite, pro-
vides a declarative framework to deploy artifact-centric systems. In a nutshell, GSM
offers the constructs for the definition of artifacts as typed records of data, their evo-
lution (or lifecycles) through a dedicated rule-driven semantics, and the interface for
the interaction of the artifacts with the users. This interface is composed of services
that agents can invoke thereby affecting the artifacts in the system through chains of
operations.

We see two deficiencies in the GSM approach as it currently stands. Firstly, simi-
larly to database-inspired techniques, GSM programs only define the evolution of the
artifacts and provide no precise mechanism for accounting for any users or automatic
agents interacting with the system. Yet, if we wish to follow an approach of imple-
menting services through agents, these need to be present in the model. Secondly, GSM
currently lacks any support for automatic verification. Yet, validation through verifica-
tion is increasingly being regarded as an important aspect of service deployment [17].

This paper aims to make a direct contribution towards these two key problems. To
solve the first concern, we provide a semantics, based on multi-agent systems, to GSM

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 17–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 F. Belardinelli, A. Lomuscio, and F. Patrizi

programs, where we give first-class citizenship to human actors and automatic agents
present in the service composition. To solve the second, we observe that GSM programs
generate infinite-state systems thereby making traditional model checking impractica-
ble. Our contribution here is to show that GSM programs admit, under some rather
general conditions, finite models, thus opening the way for their effective verification.
The rest of the paper is organised as follows. In Section 2 we introduce artifacts and
GSM programs, which are illustrated by the Requisition and Procurement Orders sce-
nario in Section 3. In Section 4 we adopt the semantics of artifact-centric multi-agent
systems (AC-MAS) to deal with the verification of GSM programs. Finally, in Section 5
we show how to embed GSM programs into AC-MAS; thus obtaining finite abstractions
for the former.

Related Work. The exploration of finite abstraction in the context of artifact-centric en-
vironments has attracted considerable attention recently [2–5, 10, 11, 14]. While these
make a noteworthy contribution and are in some cases used here as a stepping stone
for our results [2–4], the key point of departure from the literature of the present con-
tribution is that we here operate directly on GSM programs and not on logical models
derived manually from them. We see this as an essential step towards the construction
of automatic verification techniques for GSM programs.

2 GSM Programs

Artifact-centric systems are based on the notion of artifact, i.e., a record of structured
data, that are born, evolve, and die during a system run either as a consequence of chains
of internal actions of other artifacts, or through external actions performed by actors.
GSM [15] is a declarative language, interpreted by specialised toolkits, that enables the
user to implement guard-stage-milestone models for artifact systems.

For simplicity, here we work on an untyped version of GSM programs in which
we also neglect timestamps: while GSM programs are richer, the version we consider
enables us to present decidability results concisely while at the same time supporting
complex use-cases as we show in Section 3. The present section makes use of notions
and definitions from [15].

Definition 1 (Artifact Type). An artifact type is a tuple AT = 〈P, x,Att, Stg,Mst,
Lcyc〉 such that

– P is the name of the artifact type;
– x is a variable that ranges over the IDs of instances of AT ; this is the context

variable of AT , which is used in the logical formulas in Lcyc;
– Att is the set of attributes, which is partitioned into the set Attdata of data attributes

and Attstatus of status attributes;
– Stg is the set of stages;
– Mst is the set of milestone;
– Lcyc is the lifecycle model of the artifact type AT , which is formally defined below.

Intuitively, artifact types can be seen as records of structured data. The set Attdata
includes the attribute mostRecEventType, which holds the type of the most recent

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 19

event. Milestones and stages describe the evolution of the artifact type. We associate
a Boolean milestone status attribute, denoted as m, to each milestone m ∈ Mst in
Attstatus. Analogously, for each stage S ∈ Stg, in Attstatus there is a Boolean stage
status attribute activeS .

While the data content of an artifact type is specified by its datamodel, i.e., all its
attributes excluding the lifecycle, its execution is described by its lifecycle.

Definition 2 (Lifecycle). The lifecycle of an artifact typeAT is a tupleLcyc=〈Substg,
T ask,Owns,Guards,Ach, Inv〉 such that

– Substg is a function fromStg to finite subsets ofStg, where the relation {(S, S′)|S′∈
Substg(S)} is a forest. The leaves of the forest are called atomic stages.

– Task is a function from the atomic stages in Stg to tasks.
– Owns is a function from Stg to finite, non-empty subsets of Mst. A stage S owns

a milestone m if m ∈ Owns(S).
– Guards is a function from Stg to finite sets of sentries, as defined in Section 2.1.

An element of Guards(S) is called a guard for S.
– Ach is a function from Mst to finite sets of achieving sentries.
– Inv is a function from Mst to finite sets of invalidating sentries.

More details are given in Section 2.1. Intuitively, every artifact goes through a number
of stages, which are activated by the relevant guards. A stage is closed when the tasks
associated with it and its substages are fulfilled. When this happens, the milestones
associated with the stage become true and possibly trigger the guards associated with
another stage. We now introduce GSM programs.

Definition 3 (GSM program). A GSM program Γ is a set of artifact types ATi for
i ≤ n.

For convenience, we assume that all context variables are distinct. Artifact instances are
then defined as mappings from artifact types to a possibly infinite interpretation domain
U of data values.

Definition 4 (AT and GSM snapshot). A snapshot for the artifact type AT is a map-
ping σ from x,Att to the interpretation domain U . A snapshot for the GSM program Γ
is a mapping Σ from each type AT ∈ Γ to a set Σ(AT) of snapshots for type AT .

Intuitively, a snapshot for the artifact type AT is an assignment of the values in U to
the attributes of AT . A GSM snapshot is then a collection of AT snapshots. Notice
that different instances of the same artifact type are distinguished by their IDs σ(x),
hereafter denoted as ρ.

2.1 Execution of GSM Programs

Events are responsible for the evolution of a GSM system from one snapshot to the next.
Three types of incoming events are considered: 1-way messages M , 2-way service call
returns F return, and artifact instance creation requests createcallAT . A ground event e
has a payload (A1 : c1, . . . , An : cn) where Ai is a data attribute and ci is a value
in the domain U . Intuitively, incoming events are processed by the sentries associated
with guards and milestones, and the payload determines the evolution of the stage as
detailed below.

20 F. Belardinelli, A. Lomuscio, and F. Patrizi

Definition 5 (Immediate effect). The immediate effect of a ground event e on a snap-
shot Σ, or ImmEffect(Σ, e), is the snapshot that results from incorporating e into Σ,
including (i) changing the values of the mostRecEventType attribute of affected (or
created) artifact instances; (ii) changing the values of data attributes of affected artifact
instances, as indicated by the payload of e.

The operational semantics for GSM programs is given through the notion of business
step, or B-step, which represents the impact of a single ground incoming event e on a
snapshot Σ. The semantics of B-steps is characterised by 3-tuples (Σ, e,Σ′) where

1. Σ is the previous snapshot;
2. e is a ground incoming event;
3. Σ′ is the next snapshot;
4. there is a sequence Σ0, Σ1, . . . , Σn of snapshots such that (i) Σ0 = Σ; (ii) Σ1 =

ImmEffect(Σ, e); (iii) Σn = Σ′; and (iv) for 1 ≤ j < n, Σj+1 is obtained from Σj

by a PAC rule (see below).

Business steps follow Prerequisite-Antecedent-Consequent (PAC) rules [15]. To intro-
duce PAC rules we first define formally event expressions and sentries. In what follows
τAT is a path expression x. < path > where x is the ID variable for some artifact type
AT ∈ Γ . An example of a path expression is ρ.S.m, which refers to the milestone m
of stage S, for some AT instance ρ.

Definition 6 (Event expression). An event expression ξ(x) for an artifact type AT
with ID variable x has one of the following forms:

– Incoming event expression x.e: (i) x.M for 1-way message type M ; (ii) x.F return

for service call return from F ; (iii) x.createcallAT for a call to create an artifact
instance of type AT .

– Internal event expression: (i) +τAT ′ .m and−τAT ′ .m, where m is a milestone for
type AT ′; (ii) +τAT ′ .activeS and−τAT ′ .activeS , where S is a stage of type AT ′.

Intuitively, an event occurrence of type +τAT ′ .m (resp. −τAT ′ .m) arises whenever
the milestone m of the instance identified by x. < path > changes value from false
to true (resp. true to false). Similarly, an event occurrence of type +τAT ′ .activeS
(resp. −τAT ′ .activeS) arises whenever the stage S of the instance identified by x. <
path > changes value from closed to open (resp. open to closed).

We can now define sentries for guards and milestones. These represent the conditions
to open and close stages.

Definition 7 (Sentry). A sentry for an artifact type AT is an expression χ(x) having
one of the following forms: on ξ(x) if ϕ(x)∧x.activeS , on ξ(x), or if ϕ(x)∧x.activeS
such that (i) ξ(x) is an event expression; and (ii) ϕ(x) is a first-order (FO) logical
formula over the artifact types occurring in Γ that has exactly one free variable.

We now discuss the interpretation of sentries, i.e., when a snapshot Σ satisfies a sentry
χ, or Σ |= χ. Satisfaction of an FO-formula ϕ at Σ is defined as standard. Further, the
expression ρ.e for an artifact instance ρ is true at Σ if ρ.mostRecEventType = e.
Finally, the internal event expression �ρ.τ.s for polarity � ∈ {+,−}, path expression
τ , and status attribute s, is true at Σ if the value of ρ.τ.s matches the polarity.

We can now introduce PAC rules.

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 21

Definition 8 (PAC rules). A PAC rule is a tuple 〈π(x), α(x), γ(x)〉 such that

– π(x) is of the form τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS;
– α(x) is of the form χ(x) ∧ ψ(x), where χ(x) is a sentry and ψ(x) is of the form
τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS;

– γ(x) is an internal event expression as in Def. 6.

Given a B-step Σ = Σ0, Σ1, . . . , Σj for a ground event e, the PAC rule 〈π, α, γ〉 is
applicable if Σ |= π and Σj |= α. Applying such a rule yields a new snapshot Σj+1,
which is constructed from Σj by applying the effect called for by γ.

Additional conditions can also be assumed for the application of PAC rules, which
notably ensure the absence of cycles [15].

3 The RPO Scenario

The Requisition and Procurement Orders (RPO) scenario is a business process use-
case. We analyse an implementation in which a GSM program is used to instantiate
the procurement process [15]. We illustrate the notions presented in Section 2 in the
context of a fragment of this scenario. In the RPO scenario a Requisition Order is sent
by a Customer to a Manufacturer to request some goods or services. The Requisition
Order has one or more Line Items, which are bundled into Procurement Orders and
sent to different Suppliers. A Supplier can either accept or reject a Procurement Order.
In the latter case, the rejected Line Items are bundled into new Procurement Orders.
Otherwise, the order is fulfilled by the Supplier and sent to the Manufacturer, who in
turn forwards it to the Customer.

In GSM programs it is natural to model the Requisition and Procurement Orders as
artifact types RO and PO respectively. In particular, the datamodel of the Requisition
Order, i.e., all its attributes excluding the lifecycle, can be encoded as in Fig. 1, which
is adapted from [15]. The definition of the Procurement Order datamodel is similar.
Notice that in the datamodel we have both data and status attributes; the latter contain
milestone and stage data as detailed in Def. 1.

ID

Li
ne

 It
em

s

Pr
oc

O
rd

er
s

…

Milestone
data

Stage
data

Status AttributesData Attributes

M
os

t R
ec

en
t

Ev
en

t T
yp

e
M

os
t R

ec
en

t

Ev
en

t T
im

e

Fig. 1. The Requisition Order datamodel

22 F. Belardinelli, A. Lomuscio, and F. Patrizi

Create Proc Orders

Planning Proc OrdersLaunching Line Items

Initiate
Req.

Order

Re-Order
Line Items

of Rejected
Proc

Orders

All Line
Items
ordered

Req.
Order
cancelled

Fig. 2. A stage of the Requisition Order lifecycle

Fig. 2 illustrates part of the lifecycle for the Requisition Order [15]. Stages are rep-
resented as rounded boxes. The stage Create Proc Orders contains the child-stages
Launching Line Items and Planning Proc Orders; the former is atomic. Milestones
are shown as small circles associated with stages. For instance, the milestones All Line
Items ordered and Req. Order cancelled are associated with the stage Create Proc
Orders. The former is an achieving milestone, i.e., when All Line Items ordered be-
comes true the stage is closed; while the latter is invalidating, that is, when Req. Order
cancelled holds, the stage is reopened. The diamond nodes are guards. The stage Cre-
ate Proc Orders is triggered by guards Initiate Req. Order and Re-order Line Items
of Rejected Proc Orders. A diamond with a cross represents a “bootstrapping” guard,
which indicates the conditions to create new artifact instances. Similar representations
can be given for all other stages in the Requisition and Procurement Orders.

As mentioned in Section 2 the execution of GSM programs is governed by PAC
rules. To illustrate these we consider PAC2 as given in [15]:

Prerequisite π Antecedent α Consequent γ
PAC2 x.activeS on e(x) if ϕ(x) +x.m

where stage S has milestone m and on e(x) if ϕ(x) is an achieving sentry for m.
Suppose that Σ0, Σ1, . . . , Σj is a sequence of snapshots in a B-step. Intuitively, if Σ |=
π, then there is an artifact instance ρ s.t. ρ.activeS is true, i.e., the stage S is active
for ρ. Furthermore, if Σj |= α then ρ.mostRecEventType = e and the achieving
condition ϕ for milestone m holds. Finally, Σj+1 is obtained by applying +ρ.m, i.e.,
by toggling the flag m for the milestone status of S to true.

The discussion above shows that GSM programs are expressive enough to formalise
business processes such as the Requisition and Procurement Orders scenario.

4 Artifact-Centric MAS with Parametric Actions

In Section 5 we introduce a sufficient condition for obtaining finite abstractions for a
notable class of the GSM programs. In order to define an embedding into an agent-based
semantics, as well as to state precisely the model checking problem for these structures,
we here generalise the framework of [4] to parametric actions. This is required to obtain

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 23

effective model checking procedures. The material below extends [4] and follows its
structure and some of the definitions. We start by introducing some terminology on
databases [1].

Definition 9 (Database schema and instance). A database schema is a setD={P1/q1,
. . . , Pn/qn} of predicate symbols Pi with arity qi ∈ N.

A D-instance on a (possibly infinite) domain U is a mapping D associating each
predicate symbol Pi with a finite qi-ary relation over U , i.e., D(Pi) ⊆ U qi .

The set D(U) denotes all D-instances on the domain U . The active domain ad(D) of
D is the finite set of all individuals occurring in some predicate interpretation D(Pi).
The primed version of a database schemaD as above is the schema D′ = {P ′

1/q1, . . . ,
P ′
n/qn}. Given two D-instances D and D′, D ⊕D′ is the (D ∪ D′)-instance such that

(i) D⊕D′(Pi) = D(Pi); and (ii) D⊕D′(P ′
i) = D′(Pi). The⊕ operator will be used

later in relation with temporal transitions in artifact systems.
We now extend the definition of AC-MAS in [4] to accommodate parametric actions,

where U is the interpretation domain.

Definition 10 (Agent). An agent is a tuple i = 〈Di, Li, Acti, P ri〉 such that

– Di is the local database schema;
– Li ⊆ Di(U) is the set of local states li;
– Acti is the set of local actions αi(�x) with parameters �x;
– Pri : Li �→ 2Acti(U) is the local protocol function, where Acti(U) is the set of

ground actions αi(�u) for �u ∈ U |�x|.

Given a set Ag = {0, . . . , n} of agents, we define the global database schema of Ag
as D = D0 ∪ · · · ∪ Dn, i.e., the set of all predicate symbols appearing in some local
database schema. Agent 0 is usually referred to as the environment E.

AC-MAS are models representing the evolution of a system of agents.

Definition 11 (AC-MAS). Given a set Ag of agents, an artifact-centric multi-agent
system is a tuple P = 〈S, U, s0, τ〉 such that

– S ⊆ LE × L1 × · · · × Ln is the set of reachable global states;
– U is the interpretation domain;
– s0 ∈ S is the initial global state;
– τ : S × Act(U) �→ 2S is the transition function, where Act = ActE × Act1 ×
· · · × Actn is the set of global actions, Act(U) is the set of ground actions, and
τ(〈lE , l1, . . . , ln〉, �α(�u)) is defined iff αi(�u) ∈ Pri(li) for every i ∈ Ag.

We can interpret a global state s = 〈lE , l1, . . . , ln〉 as the D-instance D s.t. D(Pi) =⋃
j∈Ag lj(Pi), for Pi ∈ D. Notice that for each s ∈ S there exists a unique D-instance

D as above, however the converse is not true in general. The way D has to be interpreted
will be clear from the context. We define the transition relation s → s′ if there exists
�α(�u) ∈ Act(U) and s′ ∈ τ(s, �α(�u)). The notion of reachability is defined as in [4].
In what follows we assume that the relation→ is serial, and that S is the set of states
reachable from s0. Notice that by definition S is infinite in general. Hence, the AC-
MAS P is an infinite-state system. Finally, s and s′ are epistemically indistinguishable

24 F. Belardinelli, A. Lomuscio, and F. Patrizi

for agent i, or s ∼i s
′, if li(s) = li(s

′). This is consistent with the standard definition
of knowledge as identity of local states [12].

We are interested in temporal-epistemic specifications in a first-order setting.

Definition 12 (FO-CTLK). Given a set V ar of individual variables and a set Con ⊆
U of individual constants, the first-order CTLK formulas ϕ on the database schema D
are defined in BNF as follows:

ϕ ::= t = t′ | Pi(�t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

where Pi ∈ D, �t is a qi-tuple of terms, and t, t′ are terms, i.e., elements in V ar ∪Con.

The language FO-CTLK is the extension to first-order of the branching-time logic CTL
enriched with an epistemic operator Ki for each agent i ∈ Ag [2]. For a formula ϕ we
denote the set of variables as var(ϕ), the set of free variables as fr(ϕ), and the set of
constants as con(ϕ). We consider also the non-modal first-order fragment of FO-CTLK,
obtained by omitting the modal operators in Def. 12.

An assignment is a function σ : V ar �→ U . We denote by σ
(
x
u

)
the assignment s.t. (i)

σ
(
x
u

)
(x) = u; and (ii) σ

(
x
u

)
(x′) = σ(x′) for x′ �= x. We assume that no confusion will

arise between assignments in AC-MAS and snapshots in GSM programs. Also, we
assume a Herbrand interpretation of constants.

Definition 13 (Semantics of FO-CTLK). We define whether an AC-MAS P satisfies a
formula ϕ in a state s under assignment σ as usual (see, e.g., [4]). In particular,

(P , s, σ) |= Pi(t1, . . . , tqi) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ s(Pi)
(P , s, σ) |= t = t′ iff σ(t) = σ(t′)
(P , s, σ) |= ∀xϕ iff for all u ∈ ad(s), (P , s, σ

(
x
u

)
) |= ϕ

(P , s, σ) |= Kiϕ iff for all s′, s ∼i s
′ implies (P , s′, σ) |= ϕ

A formula ϕ is true at s, written (P , s) |= ϕ, if (P , s, σ) |= ϕ for all assignments σ; ϕ
is true in P , written P |= ϕ, if (P , s0) |= ϕ.

Note that we adopt an active domain semantics, that is, quantified variables range over
the active domain of s.

Given an AC-MAS P and an FO-CTLK formula ϕ, the model checking problem
amounts to finding an assignment σ such that (P , s0, σ) |= ϕ. Note that the model
checking problem for this logic is undecidable in general [2].

4.1 Finite Abstractions

We now extend the techniques in [4] to define finite abstractions for AC-MAS with
parametric actions. We fix a finite set C ⊇ ad(s0) of constants. Further, whenever we
consider an FO-CTLK formula ϕ, we assume w.l.o.g. that con(ϕ) ⊆ C. Finally, the
states s and s′ are defined on the interpretation domains U and U ′ respectively, and
P = 〈S, U, s0, τ〉 and P ′ = 〈S ′, U ′, s′0, τ

′〉 are AC-MAS. To introduce the notion of
bisimulation as defined in [4], we first need to state when two states are isomorphic.

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 25

Definition 14 (Isomorphism). The states s and s′ are isomorphic, or s � s′, iff there
exists a bijection ι : ad(s) ∪ C �→ ad(s′) ∪ C s.t. (i) ι is the identity on C; and (ii) for
every Pi ∈ D, j ∈ Ag, and �u ∈ U qi , �u ∈ lj(Pi) iff ι(�u) ∈ l′j(Pi).

Any function ι as above is a witness for s � s′. Notice that isomorphic instances pre-
serve first-order (non-modal) formulas:

Proposition 1. Let ϕ be an FO-formula, assume that s � s′, and let σ : V ar �→ U and
σ′ : V ar �→ U ′ be assignments s.t. (i) there is a bijection γ : ad(s)∪C ∪ σ(fr(ϕ)) �→
ad(s′) ∪ C ∪ σ′(fr(ϕ)); (ii) γ is a witness for s � s′; and (iii) σ′ = γ ◦ σ. Then
(P , s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

Prop. 1 states that isomorphic instances cannot distinguish FO-formulas. We now gen-
eralise this result to the language FO-CTLK.

Definition 15 (Similarity). An AC-MAS P ′ simulates P , or P � P ′, iff there exists a
simulation relation on S × S ′, i.e., a relation� s.t. (i) s0 � s′0; and (ii) if s � s′ then

1. s � s′;
2. for every t, if s→ t then there is t′ s.t. s′ → t′, s⊕ t � s′ ⊕ t′ and t � t′;
3. for every t, if s ∼i t then there is t′ s.t. s′ ∼i t

′, s⊕ t � s′ ⊕ t′ and t � t′.

Moreover, we say that P and P ′ are bisimilar, or P ≈ P ′, iff there exists a bisimulation
relation on S × S ′, i.e., a relation ≈ s.t. both ≈ and ≈−1= {〈s′, s〉 | s ≈ s′} are
simulation relations.

We can now introduce the class of AC-MAS of interest here.

Definition 16 (Uniformity). An AC-MAS P is uniform iff for every s, t, s′ ∈ S, t′ ∈
D(U), if t ∈ τ(s, α(�u)) and s⊕ t � s′ ⊕ t′ for some witness ι, then for every bijection
ι′ extending ι, t′ ∈ τ(s′, α(ι′(�u))).

Intuitively, uniformity requires that the definition of transitions does not depend on
the data content of each state, apart from constants in C. This definition of uniformity
extends [4] as parametric actions are considered explicitly, thus allowing for effective
abstraction.

We now show that uniformity, together with bisimilarity and boundedness, is suffi-
cient to preserve FO-CTLK formulas, where an AC-MAS P is b-bounded, for b ∈ N, if
for all s ∈ S, |ad(s)| ≤ b [3].

Observe that boundedness imposes no restriction on the domain U of P . Thus, if U
is infinite, so is the state space of P in general.

The next results show that, although infinite-state, a uniform and b-bounded AC-
MASP can be verified by model checking its finite abstraction. In what followsNAg =
maxα(�x)∈Act{|�x|}.
Definition 17. Let Ag be a set of agents and let U ′ be a set. For each agent i =
〈D, L,Act, Pr〉 in Ag we define an agent i′ = 〈D′, L′, Act′, P r′〉 s.t. (i) D′ = D;
(ii) L′ = D′(U ′); (iii) Act = Act; (iv) α(�u) ∈ Pr′(l′) iff there is l ∈ L s.t. l′ � l for
some witness ι, and α(ι′(�u)) ∈ Pr(l) for some bijection ι′ extending ι. Let Ag′ be the
set of all i′ thus defined.

Notice that the definition of i′ depends on the set U ′. However, we omit U ′ when it is
clear from the context.

26 F. Belardinelli, A. Lomuscio, and F. Patrizi

Definition 18 (Abstraction). Let P be an AC-MAS over Ag, the abstraction P ′ over
Ag′ is defined as follows:

– s′0 = s0;
– t′ ∈ τ ′(s′, α(�u)) iff there are s, t, and �u′ s.t. t ∈ τ(s, α(�u′)), s ⊕ t � s′ ⊕ t′ for

some witness ι, and �u = ι′(�u′) for some bijection ι′ extending ι;
– S ′ is the set of reachable states.

Notice that P ′ is an AC-MAS. In particular, P ′ satisfies the conditions on protocols and
transitions, and it is finite whenever U ′ is.

We can now prove the main result of this section, which extends Theorem 4.7 in [4]
to AC-MAS with parametric actions.

Theorem 1. Given an infinite, b-bounded and uniform AC-MAS P , an FO-CTLK for-
mula ϕ, and a finite set U ′ ⊇ C s.t. |U ′| ≥ 2b + |C| + max{var(ϕ), NAg}, the
abstraction P ′ is finite, uniform and bisimilar to P . In particular,

P |= ϕ iff P ′ |= ϕ

This result states that by using a sufficient number of elements in P ′, we can reduce
the verification of an infinite AC-MAS to verifying a finite one. Also notice that U ′

can be taken to be any finite subset of U satisfying the condition on cardinality. By
doing so, the finite abstraction P ′ can be defined simply as the restriction of P to U ′.
Thus, every infinite, b-bounded and uniform AC-MAS is bisimilar to a proper finite
subsystem, which can be effectively generated.

5 AC-MAS Associated to GSM Programs

In this section we associate GSM programs to AC-MAS. By doing so we achieve two
results. Firstly, we provide a formal semantics to GSM programs via AC-MAS that can
be used to interpret FO-CTLK specifications. Secondly, this enables us to apply the
finite abstraction methodology in Section 4 to GSM programs.

To begin with, for each artifact typeAT = 〈P, x,Att, Stg,Mst, Lcyc〉we introduce
a predicate symbol P with attributes x, Att. Hence, the arity of P is qP = 1 + |Att|.

Definition 19. Given a GSM program Γ = {ATj}j≤n we define a database schema
DΓ = {Pj}j≤n such that each Pj is the predicate symbol corresponding to the artifact
type ATj .

We now introduce agents in GSM programs.

Definition 20. Given a GSM program Γ and an interpretation domain U , an agent is
a tuple i = 〈Di, Li, Acti, P ri〉 s.t.

– Di ⊆ DΓ is the local database schema, and DE = DΓ ;
– Li = Di(U) is the set of local states, and LE = DΓ (U);

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 27

– Acti is the set of actions αe(�y) for each event type e with payload �y. Further, we
introduce a skip action skipi for each agent i. ActE is defined similarly.

– For every ground action αi(�u), for every local state li, αi(�u) ∈ Pri(li), i.e., a
ground action αi(�u) is always enabled.

We observe that the original formulation of GSM programs in [15] does not account
for agents. In fact, artifacts are bundled together in the Artifact Service Center (ASC),
which interacts with the external environment through incoming and generated events.
According to Def. 20 the Artifact Service Center of GSM programs is mapped into the
environment of AC-MAS; while the environment of GSM programs is mapped to the
agents in an AC-MAS. So, the notion of environment corresponds to different entities
in GSM programs and AC-MAS. We keep the original terminology, as the distinction is
clear. Furthermore, each agent, including the environment, perform actions correspond-
ing to sending an event to the ASC. As illustrated in Section 2.1, these include 1-way
messages M , 2-way service call returns F return, and artifact instance creation requests
createcallAT . We assume that actions are always enabled as no protocol is explicitly given
for GSM programs.

Given a set of agents defined as above, the AC-MAS PΓ associated to the GSM
program Γ is defined according to Def. 11.

Definition 21. Given a set Ag of agents over the GSM program Γ and a snapshot Σ0,
the AC-MAS associated with Γ is a tuple PΓ = 〈S, U, sΣ0 , τ〉 s.t.

– S ⊆ Le × L1 × · · · × Ln is the set of reachable global states;
– U is the interpretation domain;
– sΣ0 ∈ S is the initial global state corresponding to Σ0;
– τ : S × Act(U) �→ 2S is the global transition function s.t. t ∈ τ(s, α(�u)) iff (i) if
α = 〈αe, α1, . . . , αn〉 then at most one αi is different from skipi; (ii) if αi = αe

then (Σs, e, Σt) holds in Γ , where �u is the payload of event e.

Notice that, given a set Ag of agents, there is a one-to-one correspondence between
snapshots in Γ and states in the AC-MAS PΓ . Given a snapshot Σ we denote the
corresponding state as sΣ . Similarly, Σs is the snapshot corresponding to the global
state s. Also, GSM programs do not specify initial states; therefore the definition of
PΓ is parametric in Σ0, the snapshot chosen as the initial state of Γ . Most importantly,
the transition function τ mirrors the B-step semantics of GSM programs. Since each
B-step consumes a single event, we require that at most one agent performs an event
action at each given time, while all other agents remain idle. This has correspondences
with other approaches in multi-agent systems literature, such as interleaved interpreted
systems [16].

5.1 Finite Abstractions of GSM Programs

In this section we show that GSM programs admit finite abstractions. Specifically, by
suitably restricting the language of sentries we can prove that the AC-MASPΓ obtained
from a GSM program Γ is uniform. So, by applying Theorem 1 we obtain that if PΓ is
also bounded, then it admits a finite abstraction, hence its model checking problem is

28 F. Belardinelli, A. Lomuscio, and F. Patrizi

decidable. Hereafter, LDΓ is the first-order (non-modal) language of formulas built on
the predicate symbols in the database schema DΓ in Def. 19.

Definition 22 (Amenable GSM programs). A sentry χ(x) is amenable iff the FO-
formula ϕ(x) in χ(x) belongs to the language LDΓ . A GSM program is amenable iff
all sentries occurring in any guard or milestone are amenable.

It is known that, given a database schema D, the language LD built on it is sufficiently
expressive to define a wide range of systems [4, 14]. As an example, the scenario in
Section 3 adheres to this property. Therefore we see amenable GSM programs as a
rather general class of GSM programs with potentially wide applicability.

The next results show that the AC-MAS PΓ is uniform whenever Γ is amenable.

Lemma 1. For every states s, t ∈ PΓ , if s � t for some witness ι, then Σt = ι(Σs).

Proof. Notice that if ι is a witness for s � t, then in particular the attributes x and Att
in Σs are mapped to the corresponding attributes in Σt. Further, the attributes in Stg,
Mst and Lcyc remain the same.

The next result is of essence in the proof of uniformity for PΓ .

Lemma 2. For every s, t , s′ ∈ S, t′ ∈ DΓ (U), if s ⊕ t � s′ ⊕ t′ for some witness ι,
then (Σs, e, Σt) implies (Σs′ , ι

′(e), Σt′) where ι′ is any bijection extending ι

Proof. Assume that (Σs, e, Σt) and ι is a witness for s ⊕ t � s′ ⊕ t′. We show
that (Σs′ , ι

′(e), Σt′) where ι′ is a bijection extending ι. If (Σs, e, Σt) then there is
a sequence Σ0, . . . , Σk of snapshots s.t. Σ0 = Σs, Σ1 = ImmEffect(Σs, e), and
Σk = Σt. Also, for 1 ≤ j < k, Σj+1 is obtained from Σj by the application
of a PAC rule. We show that we can define a sequence Σ′

0, . . . , Σ
′
k s.t. Σ′

0 = Σs′ ,
Σ′

1 = ImmEffect(Σs′ , ι
′(e)), Σ′

k = Σt′ , and for 1 ≤ j < k, Σ′
j+1 is obtained from Σ′

j

by the application of a PAC rule. This is sufficient to show that (Σs′ , ι
′(e), Σt′). First,

for 0 ≤ j ≤ k define Σ′
j = ι′(Σj). By Lemma 1 we have that Σ′

0 = ι′(Σs) = Σs′

and Σ′
k = ι′(Σt) = Σt′ . Also, it is clear that if Σ1 = ImmEffect(Σs, e), then we

have that Σ′
1 = ι′(Σ1) = ι′(ImmEffect(Σs, e)) is equal to ImmEffect(ι′(Σs), ι

′(e)) =
ImmEffect(Σs′ , ι

′(e)). Finally, we show that if Σj+1 is obtained from Σj by an applica-
tion of a PAC rule, then also Σ′

j+1 is obtained from Σ′
j by the same PAC rule. Consider

the PAC rule 〈π(x), α(x), γ(x)〉. We have that if Σs |= π(ρ) for some artifact ID ρ in
Σs, then clearly Σs′ |= π(ι′(ρ)). Further, let Σj |= α(ρ) ≡ χ(ρ) ∧ ψ(ρ), where χ(x)
is an amenable sentry and ψ(x) is of the form τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS .
Clearly, if Σj |= ψ(ρ) then Σ′

j |= ψ(ι′(ρ)). Further, since χ(x) is of the form on ξ(x) if
ϕ(x) and ϕ(x) is an FO-formula in LDΓ , then by Prop. 1 we have that Σ′

j |= χ(ι′(ρ)).
Hence, Σ′

j |= α(ι′(ρ)). Finally, if Σj+1 is constructed from Σj by applying the effect
called for by γ(ρ), then Σ′

j+1 is constructed from Σ′
j by applying the effect called for

by γ(ι′(ρ)). Thus, we have the desired result.

Lemma 2 enables us to state the first of our two key results.

Theorem 2. If the GSM program Γ is amenable, then the AC-MAS PΓ is uniform.

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 29

Proof. Let us assume that t ∈ τ(s, α(�u)) for some ground action α(�u) ∈ Act(U), and
s ⊕ t � s′ ⊕ t′ for some witness ι. We prove that t′ ∈ τ(s′, α(ι′(�u)), where ι′ is a
bijection extending ι. By the definition of τ in PΓ , t ∈ τ(s, α(�u)) if (Σs, e, Σt), where
e is a ground event with payload �u, and αi = αe for exactly one of the components in
α. By Lemma 2 we have that (Σs′ , ι

′(e), Σt′), and again by definition of τ we obtain
that t′ ∈ τ(s′, α(ι′(�u))). As a result, PΓ is uniform.

By combining Theorems 1 and 2 we obtain a decidable model checking procedure for
amenable GSM programs. Specifically, a GSM program Γ is b-bounded if the cardi-
nality of all snapshots is bounded, i.e., there is a b ∈ N s.t. |Σ| ≤ b for all snapshots
Σ ∈ Γ . Hence, we have the following result.

Corollary 1. Assume a b-bounded and amenable GSM program Γ on an infinite do-
main U , an FO-CTLK formula ϕ, and a finite set U ′ ⊇ C such that |U ′| ≥ 2b+ |C|+
max{var(ϕ), NAg}. Then, the abstraction P ′ of PΓ is uniform and bisimilar to PΓ . In
particular, PΓ |= ϕ iff P ′ |= ϕ.

Thus, to verify a GSM program we can model check the finite abstraction of the cor-
responding AC-MAS. Notice that by the remarks at the end of Section 4.1 the latter
procedure can be computed effectively.

To conclude, in [4] it was proved that the model checking problem for finite AC-
MAS is PSPACE-complete in the size of the state space S and the specification ϕ. So,
we obtain the following:

Proposition 2. Model checking bounded and amenable GSM programs is in PSPACE
in the number of states of its corresponding finite abstraction and the length of the
specification.

Notice that amenability is a sufficient condition for decidability, but may not be neces-
sary. Indeed, a larger class of GSM programs may admit finite abstraction. This point
demands further investigations.

5.2 The RPO Scenario as an AC-MAS

We briefly show how the GSM program RPO for the Requisition and Procurement
Orders scenario of Section 3 translates into its corresponding AC-MAS PRPO. Firstly,
we associate the RPO program with the database schemaDRPO containing a predicate
symbol PRO for the Requisition Order artifact type, as well as a predicate symbol PPO

for the Procurement Order artifact type. In particular, the predicate symbol PRO has
data and status attributes as specified in the datamodel in Fig. 1. The definition of PPO

is similar.
A number of agents appears in the RPO scenario: a Customer C, a Manufacturer

M, and one or more Suppliers S. According to Def. 20 each agent has a partial view
of the database schema DRPO = {PRO, PPO}. We can assume that the Customer
can only access the Requisition Order (i.e., DC = {PRO}), and the Supplier only the
Procurement Order (i.e., DS = {PPO}), while the Manufacturer can access both (i.e.,
DM = {PRO, PPO} = DRPO). Finally, the AC-MAS PRPO = 〈S, U, s0, τ〉 defined

30 F. Belardinelli, A. Lomuscio, and F. Patrizi

according to Def. 21, is designed to mimic the behaviour of the RPO program. In
particular, S is the set of reachable states; U is the interpretation domain containing
relevant items and data; s0 is an initial state (e.g., the one where all relations are empty);
τ is the transition function as in Def. 21. We define a temporal transition s → s′ in
PRPO iff there is some ground event e s.t. 〈Σs, e, Σs′〉 holds in RPO.

By means of the AC-MAS PRPO we can model check the RPO program against
first-order temporal epistemic specifications. For instance, the following FO-CTLK for-
mula specifies that the manufacturer M knows that each Procurement Order has to match
a corresponding Requisition Order:

φ = AG ∀ro id, �x (PO(id, ro id, �x)→ KM ∃�y RO(ro id, �y))

We remark that the RPO program can be defined so that any clause ϕ(x) in any sen-
try χ(x) belongs to the FO-language LDRPO . Hence, the RPO program is amenable
and by Theorem 2 the AC-MAS PRPO is uniform. Finally, if we also assume that the
RPO program is bounded, then according to Def. 18 we can introduce a finite abstrac-
tion P ′ of PRPO . This can be effectively constructed as the subsystem P ′ of PRPO

defined on a finite subset of the interpretation domain satisfying the cardinality condi-
tion, that is, P ′ is defined as PRPO but for the domain of interpretation U ′, which can
be taken as the finite U ′ ⊇ C s.t. |U | = 2b + |C| + max{var(φ), NAg}. By Corol-
lary 1 we can check whether the RPO program satisfies φ by model checking the finite
abstraction P ′.

This leaves open the problem of checking whether the RPO program is actually
bounded. A partial answer to this is provided in [14], which isolates a sufficient condi-
tion that guarantees boundedness of processes operating on artifacts.

6 Conclusions

GSM environments currently lack support for full verification. While abstraction
methodologies for various artifact-inspired systems and multi-agent systems have been
put forward [4, 6, 7, 10, 14], they all lack support for program verification and operate
on logical models, thereby making automatic model checking impracticable. Our objec-
tive in this paper was to overcome this limitation and provide GSM with an agent-based
semantics, so that information-theoretic properties such as knowledge of the partici-
pants could be verified. We achieved this by extending minimally the semantics of AC-
MAS [4] to account for parametric actions, while at the same time maintaining the key
results concerning finite abstractions. We then proceeded to map GSM constructs into
the corresponding notions in AC-MAS, and identified what we called “amenable GSM
programs” that we showed to admit finite abstractions. We remarked that amenability is
not a significant limitation in applications and demonstrated the approach on a fraction
of a use-case from [15]. In further work we intend to use the results here presented to
improve GSMC, an experimental model checker for artifact-centric systems [13].

Acknowledgements. This research was supported by the EC STREP Project “ACSI”
(grant no. 257593) and by the UK EPSRC Leadership Fellowship “Trusted Autonomous
Systems” (grant no. EP/I00520X/1).

Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction 31

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Belardinelli, F., Lomuscio, A., Patrizi, F.: A computationally-grounded semantics for

artifact-centric systems and abstraction results. In: Proc. of IJCAI (2011)
3. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of Deployed Artifact Systems via Data

Abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS,
vol. 7084, pp. 142–156. Springer, Heidelberg (2011)

4. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of
artifact-centric systems. In: Proc. of KR (2012)

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: View-based query answering in
description logics: Semantics and complexity. J. Comput. Syst. Sci. 78(1), 26–46 (2012)

6. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-agent
systems. In: Proc. of AAMAS (2) (2009)

7. Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A Data Symmetry Reduction Technique for
Temporal-epistemic Logic. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 69–83. Springer, Heidelberg (2009)

8. Cohn, D., Hull, R.: Business Artifacts: A Data-Centric Approach to Modeling Business Op-
erations and Processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

9. Damaggio, E., Hull, R., Vaculı́n, R.: On the Equivalence of Incremental and Fixpoint Se-
mantics for Business Artifacts with Guard-Stage-Milestone Lifecycles. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396–412. Springer, Heidelberg
(2011)

10. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of ICDT (2009)

11. Deutsch, A., Sui, L., Vianu, V.: Specification and Verification of Data-Driven Web Applica-
tions. J. Comput. Syst. Sci. 73(3), 442–474 (2007)

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT
Press (1995)

13. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying GSM-based business artifacts. In:
Proc. of ICWS (2012)

14. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Foundations
of Relational Artifacts Verification. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 379–395. Springer, Heidelberg (2011)

15. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath, F.T., Hobson, S.,
Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculı́n, R.: Business artifacts
with guard-stage-milestone lifecycles: managing artifact interactions with conditions and
events. In: Proc. of DEBS (2011)

16. Lomuscio, A., Penczek, W., Qu, H.: Partial Order Reductions for Model Checking Temporal-
epistemic Logics over Interleaved Multi-agent Systems. Fundamenta Informaticae 101(1-2),
71–90 (2010)

17. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service composi-
tion. Journal of Autonomous Agents and Multi-Agent Systems 24(3), 345–373 (2012)

Service Component Architecture Extensions
for Dynamic Systems

João Claudio Américo and Didier Donsez

Grenoble University, LIG Erods Team, Grenoble, France
{Joao.Americo,Didier.Donsez}@imag.fr

Abstract. The Service Component Architecture (SCA) is a set of specifications
which defines a model in which components may interact by means of services.
SCA is supported by major software vendors due to its several advantages, such
as technology independence and portability. However, SCA in its current form
does not address components substitutability, one of the goals of the Service-
Oriented Architectures style. This paper discusses this limitation and proposes
a set of extensions to SCA in order to manage dynamic substitutability of ser-
vices and their life cycle, which allows components to change service providers
at run-time whenever they need to. These extensions are validated by NaSCAr,
an iPOJO-based tool which enables the dynamic deployment and adaptation of
SCA composites on the OSGi service platform.

Keywords: SCA, Software Engineering, Service-Oriented Architectures,
Component-Based Design, Dynamic Adaptability.

1 Introduction

Structuring systems as interacting components is the result of years of research in
software engineering [1][2]. It is also one of the solutions proposed in order to deal
with software scalability, evolution, and complexity issues. Component-Based Design
(CBD) [3] and Service-Oriented Architectures (SOA) [4] are two software engineering
approaches widely used for structuring systems. The former primes for the separation
of concerns, independence between software units, and explicit functional dependen-
cies; while the latter defines a communication model between software units based on
the provision and the consumption of entities called services, resulting in increased
scalability and decreased integration issues.

Although these two approaches address different concerns [5], service oriented com-
ponent models (SOCMs) are component models which conciliate both paradigms.
Service-oriented components interact through the requirement and provision of services
[6]. SOCMs merge modularity and separation of concerns of the CBD approach with
loose coupling, late binding and substitutability of the SOA approach. It is also worth to
mention that most of SOCM frameworks deal automatically with dynamism issues and
SOA basic mechanisms (such as service publication, discovery and selection), allowing
developers to focus on applications business logic. Some examples are Declarative Ser-
vices [6], iPOJO [7], and the Service Component Architecture (SCA) model [8]. Among
the existing SOCMs today, only SCA proposes a technology-independent model, since

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 32–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Service Component Architecture Extensions for Dynamic Systems 33

all the others target OSGi and Java consequently. SCA targets business solutions and
provides a programming model that allows exploiting many SOA benefits.

The service-oriented approach can be extended to incorporate dynamic (i.e. at run-
time) modifications regarding software architecture. Dynamic evolutions are motivated
by the need of updating software without interrupting its execution and adapting it to
context changes (for instance, to substitute software components by others more appro-
priate in a given moment) [9][10]. Generally, dynamic service frameworks allow com-
ponents to be deployed, updated, and stopped without interrupting both the platforms
on which the application is executed and the services that are not related to the adapta-
tion. In the context of network devices, some examples of dynamic service platforms are
Apache River 1, Universal Plug and Play (UPnP) [12], Devices Profile for Web Services
(DPWS) [13], and the OSGi Service platform [14]. Most SOCMs integrate dynamism on
their models, allowing components to be installed and uninstalled at runtime. As com-
ponents are dynamically deployed and undeployed, their services must be respectively
published and unpublished. By this, components may consume the same service from
different providers during its execution. However, this feature is not enabled in SCA,
where links between components are indicated statically in a configuration file.

This paper provides a SCA extension which supports components binding dynamic
reconfiguration. Just as SCA, the extension is technology-independent, which allows
developers to implement it on the top of any dynamic service platform and even switch
between different platforms depending on the context of the execution (e.g. using a
particular technology to bind devices located on the same network and a different one
which fits better for distributed applications).

The remainder of this paper is organized as follows: Section 2 gives an outline of
the SCA model. Section 3 presents a set of extensions for dynamism issues, whose im-
plementation and validation are discussed in Section 4. Section 5 relates the extensions
presented in this paper with other solutions. Finally, Section 6 concludes the paper and
presents our perspectives for future works.

2 Service Component Architecture

The Service Component Architecture (SCA) [8] was created in 2005 by a group of
major software vendors, such as IBM and Oracle. This group was called the Open SOA
Collaboration and it aimed to create a programming model to facilitate the development
of service-oriented applications. SCA specification core has four major parts:

– the Assembly specification defines components packaging, composition and wires.
Components assembly is defined outside implementation code, which increases
software reuse.

– the Client and Implementation Model specification defines how services must be
accessed and packaged for each programming language. This mechanism allows
SCA components to be technology-independent.

– the Binding specification defines mechanisms for accessing components. It allows
SCA to be independent from communication protocols.

1 Available at http://river.apache.org, based on Sun’s ancient Jini [11] platform.

http://river.apache.org

34 J.C. Américo and D. Donsez

– the Policy Framework specification defines policies for quality of service (QoS)
aspects. These QoS attributes are defined outside the code.

The main entities of the SCA assembly model are software components. A component
is a configured instance of an implementation, which may implement or not business
functions. Components may interact with each other by means of a set of abstractions.
The ones that implement business functions may expose them as services. Services
are composed by operations which may be accessed by component’s clients. Service
description depends on the technology used to implement the component (Java in-
terfaces for Java implementations, WSDL for BPEL implementations and so forth).
Components may consume services from other components by means of references,
which contain the operations that the component needs to invoke. A reference is linked
to a service through an abstraction called wire. Components can be combined into
larger logical constructs called composites. Component services and references can be
promoted to composite services and references, allowing them to be visible to other
composites. This assembly is described in a configuration file which uses a XML-like
language called Service Component Definition Language. Non-functional aspects in
SCA can be specified in two ways. The first one is the policy sets, which holds one or
more policies. A policy is a constraint or capability which can be applied to a com-
ponent or to an interaction between components, and which is expressed in a concrete
form. An example of a policy is Encryption, which can be described by WS-Policy as-
sertions and be applied to service interactions. The second way is by means of intents,
which are high-level abstract forms of policies, independent of configuration. An exam-
ple of an intent is confidentiality, which indirectly means that the developer must use a
policy set containing an encryption policy.

An application contains one or more composites. Component implementations and
the artifacts necessary for their deployment are packaged into contributions (typically,
a zip archive containing a file that lists deployable composites). At runtime, composites
and components are contained in a domain, which corresponds to a set of SCA runtimes
from a specific SCA vendor managed by a single group. In the context of distributed
applications, the domain is responsible for defining how components from different
machines (but in the same domain) will communicate. Components and composites
are limited to one domain, but they may communicate with applications outside their
domain through the protocols defined on the bindings of their services and references.

3 Dynamic Binding Extensions for SCA

Several implementations and runtimes for SCA are available, including open source
projects such as Apache Tuscany2, Fabric33, the already extinct Newton project, and
OW2 FraSCAti [16]. One of the most remarkable features of the SCA specification is
that it allows for developers to extend its assembly model for supporting new implemen-
tations, bindings, and interfaces. In this section, a set of SCA extensions is presented.
These extensions enable SCA components to deal with dynamism and its related issues,
such as life cycle management.

2 Available at http://tuscany.apache.org
3 Available at http://fabric3.org

http://tuscany.apache.org
http://fabric3.org

Service Component Architecture Extensions for Dynamic Systems 35

3.1 Motivations

Typically, an application which follows the service-oriented architecture model is a sys-
tem with three main elements: service registries that store service descriptions and asso-
ciate them with their respective providers; service providers, which implement business
functions and publish the description of its services in a service register; and service
consumers, which query the registry to find a required service. This three-part archi-
tecture enables loose coupling and late binding, as consumers only know the service
descriptors and through this description they may invoke operations on any service im-
plementation which provides this service [17].

In SCA, this model consists basically of service providers and service consumers.
Developers must inform which provider is bound to a given reference inside a com-
posite, through an abstraction called wire. The auto-wire feature in the SCA Assembly
Model enables the automatic wiring of references to services, but it is limited to services
and references inside the same composite. Thus, if a developer wants to bind a reference
with services from other composites, this must be done manually at design time. Fur-
thermore, since there is no registry to publish services, a composite has no knowledge
of other composites which are not included on its description, and thus can not establish
wires towards them. In addition, the auto-wire feature does not have a selection mecha-
nism in order to filter service providers and to find the best fit service. A solution based
on the dynamic update of the composite files could improve the flexibility of SCA ap-
plications; however, the developers would still need to modify the composite files and
know all the composites present in the system.

3.2 Dynamic Binding Extension

Dynamic Publication and Discovery. The Dynamic Binding Extension proposed in
this work is an extension to the SCA Assembly Model allowing providers to publish
their services and for consumers to query for and select services implementations. This
is done by adding three concepts to SCA: service registry, filters and service properties.

<sca:component name="DigitalSecurityCamera">
<sca:implementation.java class="com.video.Camera"/>
<sca:service name="MotionImageService">
<interface.java interface="IFrameService.java" />
<xdyn:binding.dynamic>

<xdyn:property name="frameRate" value="30" />
<xdyn:property name="resolution" value="640x480" />

</xdyn:binding.dynamic>
</sca:service>
<sca:service name="PanTiltZoomService">
<interface.java interface="IPTZService.java" />
<xdyn:binding.dynamic>

<xdyn:property name="panAngle" value="180" />
<xdyn:property name="tiltAngle" value="90" />
<xdyn:property name="zoomRatio" value="10" />

</xdyn:binding.dynamic>
</sca:service>

</component>
Listing 1: SCA Dynamic Binding Extension - Service Publication

36 J.C. Américo and D. Donsez

Listing 1 shows the configuration of a component which publishes two services through
the dynamic binding extension. The first one, named MotionImageService, has a Java
interface called IFrameService as service description. Along with the description, two
properties are published in the registry: its frame rate and its resolution. Similarly, the
second service, called PanTiltZoomService and described by Java interface IPTZSer-
vice, is published with information related to its covering angle and zoom ratio.

Listing 2 exemplifies a query for the IFrameService in the service registry. This query
contains an LDAP filter expression4. For instance, although the service description is
the same, this query would not return the service depicted in Listing 1, due to the fact
that it searches for cameras whose resolution is 800x600, and not 640x480.

<sca:component name="MotionDetector">
<sca:implementation.java class="com.module.MotionDetector"/>
<sca:reference name="MotionImageReference">
<interface.java interface="IFrameService.java" />
<xdyn:binding.dynamic>

<xdyn:filter ldap:query="(&(resolution=‘800x600’)(frameRate>15))"/>
<xdyn:binding.dynamic>

</sca:reference>
</sca:component>

Listing 2: SCA Dynamic Binding Extension - Service Active Discovery

The binding.dynamic element can be used on services and references. Two types of ser-
vice registries are used: a local service registry, whose scope is limited to unpromoted
services inside the composite; and a global service registry, whose scope
includes the whole SCA domain, allowing references to invoke services from other
composites. Besides this scope rule, very few assumptions are made about the reg-
istries: first, registries are passive, that is, instead of pushing information to the com-
ponents, it awaits components query; second, their query take as input an interface I1

and a set of contraints C and must return a set of service references whose interfaces
I2 ⊇ I1 and whose set of properties satisfies C; and third, the access to the registry
is somehow synchronized, that is, at any given instant t, at most one component is
accessing the registry, either for publishing, unpublishing or for querying. SCA’s auto-
wire feature could have been used to bind references to services intra-composite, but it
does not contain mechanisms for filtering service providers. When used on services, the
binding.dynamic element has the following sub-nodes and attributes, here presented in
XPath notation:

– (service/)binding.dynamic: this binding type informs the SCA runtime that this
service must be published in the service registry. This publication respects SCA’s
visibility rules: if the published service is not promoted, it can solely be found by
references contained in the same composite; however, promoted services can be
found by other composites inside the domain.

– (service/)binding.dynamic/property (Optional): This element is optional and iden-
tifies an exported property. Based on the exported properties, service consumers
may select an implementation among the potential service providers. A service

4 LDAP (Lightweight Directory Access Protocol) is a protocol for accessing information ser-
vices over IP networks [18].

Service Component Architecture Extensions for Dynamic Systems 37

published without any property can only be selected by references which do not
specify filters. Services may publish more than one property.

– (service/)binding.dynamic/property/@name: Name of the property.
– (service/)binding.dynamic/property/@value: Value of the property.

In turn, when used on a reference, the binding.dynamic element has the following at-
tributes and nodes:

– (reference/)binding.dynamic: Through this binding type, components inform the
SCA runtime that this reference will be dynamically wired to a service. This service
may be provided by components from the same composite or from other composites
inside the domain (promoted references only). In the first case, the framework looks
for services published in the local service registry; the global service registry is used
only in the second case.

– (reference/)binding.dynamic/filter: This element is optional and identifies a filter
for performing service selection based on the properties exported by the services.
If no filter is specified, any provider can be bound to the corresponding reference.

– (reference/)binding.dynamic/filter/@expression: The query to be executed over
the service providers properties. In the example, filters are expressed in LDAP syn-
tax, but other types of filter/query expressions can be used.

As we add the capabilities of dynamic component deployment5, service selection and
service substitutability, references may end up with no services to get linked to. Next
subsections introduce others aspects which must be taken considered for dynamic
service-oriented composites and their corresponding elements in the proposed SCA
extension.

Components Life Cycle: Since references may not find matching services at runtime,
the concept of valid and invalid components was introduced in SCA. A SCA valid
component is a SCA component which has all its references satisfied; otherwise, it is
considered as invalid. Although at deployment time it is not known whether a com-
ponent is valid or not (it depends on the already deployed components), only valid
components may publish services. Not all references might be necessary to activate a
given component though. This type of reference is called optional. Thus, revisiting the
definition of a valid SCA component, a SCA valid component is a component whose
mandatory (i.e. non-optional) references are all satisfied (that is, have a service which
matches its interface and its defined filters); otherwise, the component is considered in-
valid. These concepts are represented in Figure 1 as a SCA components life cycle state
diagram.

The initial and final states correspond to the moments when a SCA component is
respectively added to and removed from the SCA domain (i.e., installed/uninstalled in
the SCA runtime platform). Started components can be either valid or invalid (transi-
tions 1 and 2, respectively), depending on the services which are present on the domain.

5 For sake of simplicity, from this point on the term component is used for both components and
composites, since composites may be seen as components of components.

38 J.C. Américo and D. Donsez

Fig. 1. SCA Components Life Cycle

Only valid components become active (transition 3), that is, it may publish and consume
services. As components may be dynamically installed and uninstalled in the platform,
active components may eventually become invalid (transition 4). The component then
has two options: either it waits until a new provider of its unsatisfied mandatory refer-
ences is deployed in the SCA domain (transition 5), or it is stopped (transition 6), eras-
ing its published services from service registries and releasing its consumed services.
Active services that are stopped by an administrator must also pass by the transition 4
before their full stop. Components may also be updated: in that case, components are
first invalidated, stopped and then a new version is started.

Another concept added to the SCA Dynamic Binding Extension that affects compo-
nents life cycle is that of a blocking reference. Its semantics are slightly different from
optional references: as optional references, the absence of a blocking reference do not
invalidate a component; however, when the service corresponding to a blocking refer-
ence is invoked inside the component, it is blocked (transition 7) either until a service
that corresponds to its requirements is published or until a given timeout. In the first
case, the service is revalidated (transition 8), whereas in the second case the service is
invalidated afterwards (transition 9).

Since SCA allows informing whether a reference is optional by means of its mul-
tiplicity, an element was included in the SCA Dynamic Binding Extension to specify
blocking references.

– (reference/)binding.dynamic/@blocking: A boolean field that informs whether a
component reference is blocking or not. This field is optional and its default value
is FALSE.

– (reference/)binding.dynamic/@timeout: A field that indicates how long the plat-
form must wait before invalidating a blocking reference. This field is only present
if there is also a blocking field in the reference. If this field is not informed, the
platform will keep the component blocked until a new matching service is found.

Service-Level Dependencies: Missing references may also indirectly affect provided
services. For instance, if a component has a reference towards an email service and pro-
vides a service which sends reports to company shareholders. The fact that no email ser-
vice is present at the platform should consequently imply that the report dispatch service
should not be published, as it will not work. This is called a service-level dependency.

Service Component Architecture Extensions for Dynamic Systems 39

Although the SCA specification does not address this issue, the SCA Dynamic Binding
Extension does, by means of the following elements:

– (service/)binding.dynamic/dependency: In this sub-element, developers describe
which references a given service depends on. More than one dependency element
can be described for a given service.

– (service/)binding.dynamic/dependency/@ref name: This field indicates the name
of the reference that the service depends on. This name must match exactly with
one existing component reference.

A service can only be published in the service registry if all its dependencies are sat-
isfied. That means, for instance, that components may not have all of their services
published in a given instant. They may also be active and do not publish any of their
services due to dependency on optional or blocking references.

Life Cycle Management Callbacks: In several SOCMs, changes in components’ life
cycle generate events that are treated by callbacks. Although SCA itself has a callback
mechanism, it is not related to components’ and services’ life cycle (SCA does not
contain a life cycle model); it is used instead to provide bi-directional asynchronous
services. Callbacks corresponding to changes in the life cycle of components and ser-
vices can be indicated in the SCA Dynamic Binding Extension. Today, two event types
are taken into account in the extension: Reference binding/unbinding and service regis-
tration/unregistration6. The following elements correspond to the definition of life cycle
management callbacks:

– (service/)binding.dynamic/lccallback: In this sub-element, developers indicate
callbacks corresponding to changes in the service life cycle (registered/ unregis-
tered).

– (service/)binding.dynamic/lccallback/@event: Event type the callback refers to.
Two types are possible here: REGISTER and UNREGISTER. At most one callback
can be specified to each type of event.

– (service/)binding.dynamic/lccallback/@handler: The function (or method, or
procedure, depending on the language that is being used to implement the com-
ponent) that must be called in case of the given event.

– (reference/)binding.dynamic/lccallback: In this sub-element, developers indicate
callbacks corresponding to changes in the state of component references. Compo-
nents references state directly affects components’ life cycle, because components
validation depends on it.

– (reference/)binding.dynamic/lccallback/@event: In this field, developers must
specify the event type the callback refers to. Two types are possible here: BIND
and UNBIND. At most one callback can be specified to each type of event.

– (reference/)binding.dynamic/lccallback/@handler: Similar to services’ callback
handler field, the developer can specify the function that must be called in case of
the given event.

6 The component validation/invalidation could also be taken into account, but SCA current spec-
ifications do not allow us to introduce component-level data.

40 J.C. Américo and D. Donsez

Service Level Agreements: Service Level Agreement (SLA) is an agreement estab-
lished between the service consumer and provider, associated with a specific service
specification, whose negotiated quality of service guarantees are enforced and moni-
tored at runtime [19]. The Dynamic Binding Extension allows the expression of con-
tracts from both service providers and consumers. When a service consumer reference
specifies a contract, only service providers who have specified a contract can be linked
to them. The framework will then analyze both contracts and establish an agreement for
the service utilization. SLAs can be specified by means of the following elements:

– (service/)binding.dynamic/sla: Through this sub-element, developers indicate that
the service provided has a contract.

– (service/)binding.dynamic/sla/@contract: In this field, developers specify the file
containing the service contract.

– (reference/)binding.dynamic/sla: Through this sub-element, developers indicate
that the reference has an associated contract and that it will only get bound to ser-
vices which also have a contract.

– (reference/)binding.dynamic/sla/@contract: Similarly to its service counterpart,
this field specifies the file which contains the reference contract.

Several languages exist for specifying SLA contracts, such as WSLA [20] and SLAng
[21]. Different implementations of the extension may support different SLA languages.

4 Implementation and Validation

4.1 Dynamic Deployment and Substitution of SCA Components

A proof-of-concept implementation of the extension presented above was created on top
of the OSGi Service Platform [14]. Instead of developing an extension to a static SCA
runtime, it was preferred to create a tool to parse SCA composites and deploy them as
dynamic components in the OSGi Platform. This way, the OSGi Service Registry could
be used to bind services and references from different composites dynamically.

Composites promoted services containing a dynamic binding are published in the
OSGi Service Registry with an special property that enables the differentiation between
OSGi and SCA services. Consequently, SCA and non-SCA applications can be hosted
on the same platform and virtual machine, which could decrease the cost of invocations
to external applications through Java-based bindings. Since non-promoted references
can only be bound to services inside the composite, and the composite is a static unit
of deployment (new components cannot be dynamically added to a composite), the
resolution of non-promoted references can be performed before its execution.

The tool that deploys SCA contributions onto the OSGi platform is called NaSCAr 7,
and it uses the iPOJO’s component model and composite API to create OSGi bundles
that provide and require SCA services. Contributions may be conditioned into artifacts
such as zip files (as preconized in SCA standard) or OSGi bundles, which allows to
benefit from OSGi deployment tools like Apache ACE, OBR and Eclipse P2. NaSCAr
parses the contribution file to identify deployable composites; then, for each composite
file, it creates its containing components and includes them inside an iPOJO composite.

7 NaSCAr stands for “Not another SCA runtime”.

Service Component Architecture Extensions for Dynamic Systems 41

IPOJO composites have their own internal service registry and may publish and discover
services published by other composites, which corresponds exactly to the behavior ex-
pected for the SCA Dynamic Binding Extension.

Mapping concepts from SCA and the SCA Dynamic Binding Extension to iPOJO is
very straightforward. IPOJO already contains the basic SCA concepts, such as compos-
ites, components, services, references (known in iPOJO as dependencies), properties,
and services and references promotions (which are presented in the iPOJO API as Ex-
ported and Imported services respectively). The ‘optional reference’ flag and life cycle
callbacks from the SCA Dynamic Binding Extensions are already present in iPOJO
dependencies. Same for service properties, which are native from the OSGi Service
Platform service layer. Blocking services are implemented by using iPOJO’s Temporal
Dependency handler. SLA support is based on the works of Touseau et al. [15]. Service-
level dependencies combine two iPOJO mechanisms: service callbacks and service con-
trollers. In fact, NaSCAr instruments the component class byte-code in order to inject
two methods: the first is invoked every time a service is bound to the component refer-
ence; the second is called when a consumed service is unregistered (respectively “bind”
and “unbind” callback methods). In addiction, a boolean field is added to the class; this
field, called service controller, indicates whether a service must be registered or not, i.e.
setting this field to true causes a service to be registered, and it is automatically unreg-
istered when the same field is set to false. Thus, NaSCAr injects a bind (and unbind)
method associated to the reference indicated by a given service that sets the controller
field linked to the latter to true (and false, respectively).

Currently, IPOJO has one strong limitation: components and composites may publish
at most one service. Consequently, as NaSCAr is currently based on iPOJO, only SCA
components and composites that contain at most one service may be deployed.

4.2 Evaluation

NaSCAr processes composites in three stages: first, it parses the contributions com-
posite files and creates an object model representation of the applications’ assembly;
then it creates iPOJO composites from this representation; finally, it starts composites
instances in the OSGi platform. Its real (uncompressed) bundle size is 79.7 kB (where
17.4 KB correspond to classes used to represent the SCA component model and 40.9
KB correspond to the implementation itself). NaSCAr publishes a service in the OSGi
registry which contains four operations: deploy, undeploy, list and info. A second mod-
ule, NaSCAr-Shell, retrieves this service and enables the deployment of SCA compos-
ites by means of Apache Karaf Shell commands.

NaSCAr was tested against a container microbenchmark available at https://
github.com/rouvoy/container-benchmark. This benchmark is composed
by a Fibonacci calculator application: a client invokes a method on the Fibonacci cal-
culator object which returns the nth member of the Fibonacci series (n being a method
parameter). The microbenchmark is based on Google Caliper microbenchmark frame-
work, which is responsible for running the benchmark and publishing its results. Figure
2 shows the microbenchmark application architecture for the different tested containers.

https://github.com/rouvoy/container-benchmark
https://github.com/rouvoy/container-benchmark

42 J.C. Américo and D. Donsez

Fig. 2. Microbenchmark application architecture

A standard Java version of the benchmark follows the architecture style (a): a client
is connected directly to the Fibonacci implementation. An OSGi application would fit
the architecture style (b): the client must first retrieve the service implementation in or-
der to access the object and directly invoke the service. NaSCAr, SCA containers and
iPOJO follow the architecture style (c): the implementation has a membrane which is
automatically created and managed by the container based on the component’s metadata.

Figure 3 presents a chart in logarithmic scale containing results of the benchmark in
terms of ns/service call and a comparison with results obtained by the standard Java,
OSGi, iPOJO (simple components with direct injection), Apache Tuscany and OW2
Frascati SCA runtimes (with request scope) versions. A detailed version of the bench-
mark, containing the execution times and a complete description of the environment is
available at http://microbenchmarks.appspot.com/user/jcamerico
@gmail.com. NaSCAr presents a slightly higher overhead compared to iPOJO and
OSGi components, due to the fact that components’ services and references must be
respectively exported and imported by the iPOJO composite that wraps them.

Fig. 3. Microbenchmark results

4.3 Case Study

The following use case illustrates the dynamic reconfiguration capabilities of the SCA
Dynamic Binding Extension and its implementation on NaSCAr. The example repre-
sents a building automation application where devices (sensors and actuators) can be
installed and uninstalled (e.g. faulty or powered-out devices) in rooms without inter-
rupting the application’s execution. This example focuses on the lighting control (which

http://microbenchmarks.appspot.com/user/jcamerico@gmail.com
http://microbenchmarks.appspot.com/user/jcamerico@gmail.com

Service Component Architecture Extensions for Dynamic Systems 43

depends on the presence of persons in a given room), the light intensity (for optimal vi-
sual comfort) and room occupancy schedule.

In the lighting control application, each instance of the ‘Room Lighting Manager’
(RLM) component manages a room or a hall section. A singleton instance of the ‘Build-
ing Lighting Manager’ (BLM) component coordinates the RLM component instances
through a reference towards the Room Lighting Service provided by them. A RLM in-
stance is active if there is at least one active actuator for its corresponding room. RLM
and actuators are bound by means of services too. These actuators can be, for example,
UPnP and DPWS devices implementing the SwitchPower and DimmingLight services
described in the UPnP Lighting Control standard profile. RLMs are also bound to sen-
sors, in order to detect human presence and luminosity. These presence sensing devices
could be either UPnP Digital Security Cameras or motion sensors. Luminosity sen-
sors can be implemented with photo-resistors. Optionally, the system may connect to
a Google Calendar component, in order to verify a room occupancy schedule and turn
the lights on in case of an event scheduled for a given time.
Since sensors and actuators can be dynamically added, removed, turned on and off,
RLMs can not establish a static wire towards their services. In addition, its Room Light-
ing Service depends on the presence of actuators, which characterizes a service-level
dependency. The BLM also needs dynamic bindings towards RLMs, as their may reg-
ister and unregister their services during the system execution.

In order to connect UPnP devices in SCA, a tool called UPnPServiceFactory was de-
veloped. It is implemented by a SCA composite whose components serve as proxy with
UPnP. In total, 54 proxy classes were generated for different devices service interfaces.
49 of these proxy classes correspond to the services described by the UPnP Forum Stan-
dard Specifications. After the code generation, classes are conditioned in bundles.The
code generation is based on XSTL stylesheets. Figure 4 illustrates the complete use-
case architecture.

Fig. 4. Use Case Application Architecture

44 J.C. Américo and D. Donsez

5 Related Work

In the CBD approach, software components are independent software units, which
are composed in order to build a complete system, with contractually specified in-
terfaces and explicit context dependencies. Dynamic adaptation can be performed us-
ing late binding mechanisms, which allows coupling components at runtime through
well-defined interfaces [3]. Service-oriented component models, such as iPOJO[7] and
Declarative Services[6] are good alternatives for creating dynamically adaptable soft-
ware, but they are OSGi (and consequently Java)-based. Although SCA is considered
as being a technology-agnostic service-oriented component model, no works about dy-
namic availability have been done until now. In fact, SCA may offer some forms of
dynamism (mechanisms that change references in case of absence of a given reference,
for instance). But those solutions are extremely limited due to the use of statically-
defined wires between services and references. In addition, most dynamic features are
considered as some of many possible behaviors in the SCA specification.

Pautasso et al. have classified in [22] the different bindings types between service
providers and consumers. According to their definition, SCA wires would constitute a
binding by reference, since developers must inform the component and the service to
be invoked. The auto-wire feature in SCA would turn this binding model more flexible,
just like a binding by constraint, where the binding specifies a set of services S. In
this model, each service s ∈ S satisfies the set of constraints C. In this specific case,
C includes two constraints: 1) the services must have the same interface and 2) the
services must be in the same composite. The dynamic binding extension removes the
second constraint and enables developers to customize the set of constraints.

The use of service registries instead of static links increases software flexibility and
component substitutability. The OSGi-based service-oriented component models use
them in several different ways, either locally or remotely (as defined by the OSGi Re-
mote Services specification and implemented by frameworks such as ROSE [23] and
R-OSGi[24]). Non OSGi-based Java applications may benefit from the advantages of
a service registry by means of POJOSR8, an implementation of the OSGi service layer
without the modularity concerns.

The Service Abstract Machine (SAM) [25] is a virtual service platform which ad-
dresses incompatibilities among different service-oriented technologies. It creates a
global and homogeneous state that wraps different machines and platforms dynami-
cally. Just like SCA, it supports several different technologies. Differently of SAM,
SCA developers need only to perform the component assembly, leaving concepts such
as “instances” and “service objects” to the runtime and its technology specific
implementations.

FraSCAti, a SCA implementation based on the Fractal component model, enables
dynamic reconfiguration of components by means of computational reflection [16].
However, this application reconfiguration is performed by means of an API and fol-
lows the standard SCA style, where we must specify the source and the target of each
wire. So, the burden of substituting a component by another is entirely on the assembler.
Our approach to dynamic reconfiguration applies the late binding paradigm: rewiring

8 Available at http://pojosr.googlecode.com

http://pojosr.googlecode.com

Service Component Architecture Extensions for Dynamic Systems 45

is automatic and based on a selection among the available services. CEVICHE[26], a
framework which enables the runtime adaptation of web services partner links and ac-
tivities within a business process, is based on FraSCAti. Recently, FraSCAti has added
OSGi support, which allows components to publish and discover services. The dynamic
binding extension however is not bound to OSGi and can be implemented in other tech-
nologies. TuSCAny and Fabric3 do not present dynamic reconfiguration mechanisms.

When a query returns more than one service provider, NaSCAr just injects either
an unsorted list of all implementations or the first implementation of the list. Bottaro
and Hall [27] have extended the Declarative Services component model by adding a
utility function-based mechanism for ranking services. This utility function is based on
published service properties. Injected service providers may be dynamically substituted
by newly deployed services whose rank are higher than the former ones.

6 Conclusions and Perspectives

SCA is a technology-agnostic service-oriented component model which combines ben-
efits from the SOA and CBD approaches, such as late binding and loose coupling. SCA
focuses on the hierarchical assembly of components independently of the technology
they use, which increases reuse and decrease development cost. However, SCA does
not address dynamic reconfiguration, which limits its use on several domains of appli-
cations. This paper proposed a set of extensions for the SCA model in order to address
this issue. These extensions were implemented by a tool that generates iPOJO compos-
ites from SCA composites, called NaSCAr. NaSCAr presented a very small overhead
compared to other SCA runtimes. Differently of the currently most used open source
SCA runtimes, NaSCAr targets memory and space-limited devices, as pictured in the
use case. Nonetheless, it still has some limitations: for instance, since it is based on
iPOJO, components may provide at most one service. This issue could be overcome if
NaSCAr was based directly on the OSGi API, but the latter does not present a hierar-
chical composition model onto which SCA composites may be mapped.

Future works include taking into account other policies related to composites life-
cycle. For instance, since NaSCAr composites may be dynamically started and stopped,
some components could keep its state before being stopped, or transfer its state to an-
other instance of the same composite. It is also important to enable an extension mech-
anism for allowing NaSCAr to deploy custom implementation and binding types.

Acknowledgements. The authors would like to acknowledge the OW2 FraSCAti team
for their comments and their support on the container benchmark.

References

1. Parnas, D.: On the criteria for decomposing systems into modules. Communications of the
ACM 15(12), 1053–1058 (1972)

2. Garlan, D., Shaw, M.: An Introduction to Software Architecture. In: Advances in Software
Engineering and Knowledge Engineering, vol. I. World Scientific (1993)

3. Szyperski, C.: Component Software - Beyond Object-Oriented Programming, 2nd edn.
Addison-Wesley, ACM Press (2002)

46 J.C. Américo and D. Donsez

4. Papazoglou, M., Georgakopoulos, D.: Service-oriented computing. Communications of the
ACM 46, 25–28 (2003)

5. Papazoglou, M., Andrikopoulos, V., Benbernou, S.: Managing Evolving Systems. IEEE Soft-
ware 28(3), 49–55 (2011)

6. Cervantes, H., Hall, R.: Autonomous Adaptation to Dynamic Availability Using a Service-
Oriented Component Model. In: ICSE 2004, pp. 614–623 (2004)

7. Escoffier, C., Hall, R., Lalanda, P.: iPOJO: An Extensible Service-Oriented Component
Framework. In: Proc. IEEE Int’l Conf. Services Computing (SCC 2007), pp. 474–481 (2007)

8. Open Service-Oriented Architecture Collaboration: Service Component Architecture Speci-
fications (2007), http://www.osoa.org/display/Main/
Service+Component+Architecture+Specifications

9. Oreizy, P., Medvidovic, N., Tayler, R.N.: Runtime Software Adaptation: Frameworks, Ap-
proaches and Styles. In: Proceedings of the 30th Int’l Conference on Software Engineering,
pp. 899–910 (2008)

10. Kramer, J., Magee, J.: Analysing Dynamic Change in Software Architectures: A case study.
In: 4th IEEE Int’l Conference on Configuration Distributed Systems, pp. 91–100 (1998)

11. Edwards, K.W.: Core Jini, 2nd edn. Prentice Hall (2001)
12. UPnP: Universal Plug and Play, http://www.upnp.org/
13. Zeeb, E., Bobek, A., Bohn, H., Golatowski, F.: Service-oriented architectures for embed-

ded systems using devices profile for web services. In: Proceedings of the 2nd Int’l IEEE
Workshop on SOCNE 2007, pp. 956–963 (2007)

14. The OSGi Alliance: OSGi service platform core specification, release 4.3 (2011),
http://www.osgi.org/Specifications

15. Touseau, L., Donsez, D., Rudametkin, R.: Towards a SLAbased Approach to Handle Service
Disruptions. In: Proceedings of the 2008 IEEE Int’l Conference on Services Computing, pp.
415–422 (2008)

16. Seinturier, L., et al.: Reconfigurable SCA Applications with the FraSCAti Platform. In: Pro-
ceedings of the 6th IEEE Int’l Conference on Service Computing, pp. 268–275 (2009)

17. Michlmayr, A., et al.: Towards recovering the broken SOA triangle: a software engineering
perspective. In: 2nd Int’l Workshop on SoSE, pp. 22–28 (2007)

18. IETF: Lightweight Directory Access Protocol (LDAP) Syntaxes and Matching Rules. IETF
RFC 4517

19. Verma, D.: Supporting Service Level Agreements on IP Networks. Macmillan Technical
Publishing (1999)

20. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification. IBM (2003)

21. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: A Language for Service Level Agree-
ments. In: Proceedings of the 9th IEEE Workshop on Future Trends in Distributed Comput-
ing Systems, pp. 100–106 (2003)

22. Pautasso, C., Alonso, G.: Flexible Binding for Reusable Composition of Web Services.
In: Gschwind, T., Aßmann, U., Wang, J. (eds.) SC 2005. LNCS, vol. 3628, pp. 151–166.
Springer, Heidelberg (2005)

23. Bardin, J., Lalanda, P., Escoffier, C.: Towards an automatic integration of heterogeneous ser-
vices and devices. In: Proceedings of the 2010 Asia-Pacific Services Computing Conference,
pp. 171–178 (2010)

24. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications Through Soft-
ware Modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.upnp.org/
http://www.osgi.org/Specifications

Service Component Architecture Extensions for Dynamic Systems 47

25. Estublier, J., Simon, E.: Universal and extensible service-oriented platform feasibility and
experience: The service abstract machine. In: Proceedings of the 33rd IEEE Int’l Computer
Software and Applications Conference, pp. 96–103 (2009)

26. Hermosillo, G., Seinturier, L., Duchien, L.: Creating Context-Adaptive Business Processes.
In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470,
pp. 228–242. Springer, Heidelberg (2010)

27. Bottaro, A., Hall, R.S.: Dynamic Contextual Service Ranking. In: Lumpe, M., Vanderperren,
W. (eds.) SC 2007. LNCS, vol. 4829, pp. 129–143. Springer, Heidelberg (2007)

Who Do You Call? Problem Resolution

through Social Compute Units

Bikram Sengupta1, Anshu Jain1, Kamal Bhattacharya1,
Hong-Linh Truong2, and Schahram Dustdar2

1 IBM Research - India
{bsengupt,anshu.jain,kambhatt}@in.ibm.com

2 Distributed Systems Group, Vienna University of Technology, Austria
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. Service process orchestration using workflow technologies
have led to significant improvements in generating predicable outcomes
by automating tedious manual tasks but suffer from challenges related
to the flexibility required in work especially when humans are involved.
Recently emerging trends in enterprises to explore social computing con-
cepts have realized value in more agile work process orchestrations but
tend to be less predictable with respect to outcomes. In this paper we
use IT services management, specifically, incident management for large
scale systems, to investigate the interplay of workflow systems and social
computing. We apply a recently introduced concept of Social Compute
Units, and flexible teams sourced based on various parameters such as
skills, availability, incident urgency, etc. in the context of resolution of
incidents in an IT service provider organization. Results from simulation-
based experiments indicate that the combination of SCUs and workflow
based processes can lead to significant improvement in key service deliv-
ery outcomes, with average resolution time per incident and number of
SLO violations being at times as low as 52.7% and 27.3% respectively of
the corresponding values for pure workflow based incident management.

1 Introduction

Business process management (BPM) and workflow systems have had tremen-
dous success in the past two decades with respect to both mindshare and de-
ployment. We can safely consider service-oriented architecture (SOA) to be a
business-as-usual design practice. On the other hand, we are observing enter-
prises embracing social computing as an alternative for executing more un-
structured yet team-based collaborative, outcome-based strategies. Gartner [1]
predicts that by 2015, we will observe a deeper penetration of social computing
for the business as enterprises struggle to deal with the rigidity of business pro-
cess techniques. Current workflows are suitable for automation of menial tasks
but inflexible when it comes to supporting business users who must deal with
complex decision making. However, a significant conceptual gap clearly exists
between workflows on the one hand, and social computing as it is known today.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 48–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Who Do You Call? Problem Resolution through Social Compute Units 49

The goal of this paper is to introduce a framework that establishes the inter-
actions of business processes and workflows with a concept called Social Com-
pute Units (SCU) [8], recently introduced by some of the authors. A SCU is
an abstraction of a team consisting of human resources that bring together the
appropriate expertise to solve a given problem. The SCU abstraction treats the
SCU as a programmable entity. The resources that make up a SCU are socially
connected. The term socially implies connectedness of an individual beyond his
or her organizational scope. The reason for connectedness could be prior ad-hoc
collaborations but also collaboration within a given scope of responsibility where
the scope is distributed across organizational verticals.

The context in which we propose the use of SCUs in this paper is the IT
Service Management (ITSM) domain. More specifically, we are interested in
the Incident Management process within ITSM. IT service vendors maintain
large, complex IT infrastructure on behalf of their clients, and set up skill-based
teams with the responsibility of maintaining different infrastructure components,
such as applications, servers, databases and so on. When an interruption or
degradation in service in some part of the IT infrastructure is detected, service
requests are raised in the form of tickets that describe the incident. However,
due to inherent dependencies between different system components, identifying
the root cause of the problem is a complex, and often time-consuming, activity.
The traditional approach to incident management is to have a human dispatcher
intercept the ticket and review the incident description. Using his/her knowledge
of the system and dependencies, the dispatcher then determines the most likely
component that may be faulty and forwards the ticket to the relevant team,
where it is assigned to a practitioner for investigation. The practitioner may
determine the presence of a fault in the component and the incident may be
resolved by taking corrective action to remove the fault. However, often the
practitioner may discover that the fault does not lie in the component s/he is
managing, and sends the ticket back to the dispatcher, who then needs to decide
on the next team the ticket should be sent to, and this process continues till the
right team receives the ticket and resolves the incident.

Such a process-driven approach may be reasonable when the problem descrip-
tion is detailed and clear. In reality, we find the end user reporting the incident
to state the symptom at best. It is the human dispatcher’s responsibility to
guess the root-cause and identify the right person for the resolution job. This
may be appropriate for simple and low severity incidents, but is risky in more
complex situations. In those cases the overall resolution time may exceed the con-
tractually agreed upon response time as manifested in Service Level Objectives
(SLO). The consequences can be degradation of client satisfaction and/or mon-
etary penalties. Our proposal is to demonstrate the benefits of bringing together
appropriate resolution units, conceptualized as a SCUs, that possess the right
skills composition to deal with the eventualities of the given context, as defined
by the system where the incident occurs. The members of a SCU may be drawn
from components where there is a higher likelihood of a fault, and component
dependency information may be used to on/off-board members as investigation

50 B. Sengupta et al.

proceeds. Such an agile way of managing incident resolution should help facili-
tate parallel investigations and thereby quicker resolution. However, SCUs may
also incur a higher cost (since multiple practitioners are investigating a problem
at once), hence its use has to be judiciously interleaved with the more standard
workflow-driven sequential investigation of incidents, so that the right trade-off
between quicker resolution and higher cost may be achieved.
The main contributions of the paper are as follows:

1. The development of a technical framework for SCU sourcing, invocation and
evolution in the context of IT incident management spanning multiple teams
and organizational verticals.

2. A simulation based approach to study the efficiencies that may be gained
through SCUs over standard process management approaches, and the trade-
offs involved.

The rest of the paper is organized as follows. In Section 2 we present a motivating
example and introduce the concept of SCUs. In Section 3 we introduce the formal
system model for the use of SCUs in incident management, and describe the life-
cycle of a SCU from its invocation, evolution to dissolution. Section 4 presents
a simulation based method to demonstrate the benefits that may be achieved
through a combination of SCUs and workflow based approaches. After discussing
related work in Section 5, we conclude with a discussion on future work and
extensions of our framework in Section 6.

2 Motivating Example

Consider an IT service provider that manages applications on behalf of a client.
Each application is a complex eco-system of its own, consisting of actual appli-
cation code, the hosting middleware and operating system, servers, storage com-
ponents, network and firewall configurations etc. An incident in any application
may have its root-cause in any of its sub-systems. Resolving the incident for the
application may henceforth require multiple skills, from programming skills to
networking skills. IT service providers that manage hundreds or thousands of
applications cannot scale by assigning individual teams to manage individual
applications. Instead, it is more cost-efficient to form organizational units that
are formed around skills and manage specific, similar system components.

Figure 1 shows an example of a component dependency graph for an appli-
cation and its management context. The connectors between nodes indicate the
nature of relationship or dependency between the components. For example, the
straight line between Application and Application Server denotes a tight cou-
pling as in a component being hosted on another (thus the dependency type is
isHostedOn). Each dotted line, e.g. between Web Server and Application Server
denotes a loose coupling between components as in one component being con-
nected to the other through a web-service call or an HTTP request (isConnect-
edTo being the dependency type).

Who Do You Call? Problem Resolution through Social Compute Units 51

Each layer of an application is managed by an organizational entity as denoted
on the left side. The Application component is managed by the Application Man-
agement team, which has the right set of coding skills and application knowledge
to debug issues or extend functionality. The middleware layer (web server, ap-
plication server and DBMS) is managed by the Application Hosting team that
knows how to manage application servers and databases. In principle each man-
agement entity can be modeled as another node in the dependency graph but for
simplicity we have depicted management entities as dotted line boxes around the
components they are responsible for. For example, the dotted line box around
the DBMS component could also be represented by a DBMS node connected to
a Database Management node through a connector stereotyped as isManagedBy.

Fig. 1. Dependencies between application components and their management context

Let us now consider incident management - an important area in ITSM [3] -
for the above example. An incident is an event which is not part of the standard
operation of a service and causes, or may cause, an interruption to or a reduction
in, the quality of that service. The goal of incident management is to restore the
service functionality as quickly as required. The service restoration time is tied
to the Service Level Objective (SLO) the client and provider have agreed upon
and usually depends on the severity of the incident. An incident may be caused
by a known problem for which there exists an action plan, or, may also require
problem resolution as the root-cause is not known. Let us now examine incident
resolution through two scenarios, with a focus on who is resolving an issue.

1. An incident states an issue with capacity exceeded on the server hosting the
Application Server. The action plan (1.1 in Figure 1) is to delete all unnec-
essary temporary files using a pre-defined sequence of steps. The resource
required is a member of the Operating System team and has Windows skills.

2. An incident indicates an issue with slow performance of the database man-
agement system (DBMS). The root cause needs to be identified. The IT Help
Desk responsible for dispatching the ticket will route the ticket to the Ap-
plication Hosting team and a resource will be assigned to look for standard
causes, such as full log files (2.1 in Figure 1). The assigned resource deter-
mines that the cause is capacity exceeded on the server and hence passes

52 B. Sengupta et al.

the incident on to the Server support to free up capacity (2.2 in Figure 1).
The Server support team member executes some pre-defined steps to free up
space, however notices that this is not solving the issue as the problem lies
in the growth of the tables. This requires the ticket to be passed on to the
storage team (2.3 in Figure 1). The storage team allocates space and takes
necessary steps to resolve the issue and close the incident.

In the first scenario, the incident description has sufficient clarity for a dispatcher
to quickly identify the relevant component and required skills. The ticket can be
dispatched to the Windows Operating System team, where an available practi-
tioner will execute a standard set of actions to resolve the issue. Thus such a
ticket is amenable to a well-defined, repeatable incident management process.
On the other hand, the second case involves a ticket where the symptom reported
can be due to one of several possible causes. Using the standard sequential ap-
proach to incident management, we can try to proceed one component at a time,
ruling out the presence of a fault in one component, before passing on the ticket
to the next likely component. However, by the time the actual problem is dis-
covered and fixed, significant time may have elapsed and a SLO may also have
been breached. It may be noted that the time spent is not only due to the inves-
tigations that have to be carried out by each team, but also due to the delays
that occur when a ticket has to be transferred across organizational boundaries,
and the time that is wasted when a ticket is pending in a queue, waiting for a
practitioner to become available and accept the ticket.

We posit that tickets such as in the second case above, need a different ap-
proach to incident management. Instead of being investigated by one practitioner
from one component team at a time, they may need simultaneous attention from
multiple practitioners and teams. In this paper we will apply the concept of a
Social Compute Unit (SCU) [8] to address the second scenario above. A SCU is
a “loosely coupled, virtual and nimble” team of socially-connected experts with
skills in domains relevant to the problem at hand. Socially connected in common
terms is widely understood outside of the work context. We define connectedness
with respect to a social fabric. We believe that in general a human resource is a
connected entity represented as a point (or node) in the social fabric. The social
fabric consists of a continuum of network expressions such as an organizational
network or a collaboration network. The former is typically well defined with
specific roles and responsibilities assigned to nodes in the network. The latter is
an expression of an individual’s ability to transcend organizational boundaries
to act as a source or sink of information.

A SCU team member may not be a dedicated resource, but someone who can
invest a certain amount of time towards solving a problem, when the require-
ment comes up. A SCU is created on request (e.g. from the problem domain’s
business owner), has a certain amount of computing power derived from the
skills and availability of its members and from their collaboration, uses its com-
puting power towards addressing the problem which triggered its creation, and
is dissolved upon problem resolution. These characteristics make the SCU an

Who Do You Call? Problem Resolution through Social Compute Units 53

attractive approach for incident resolution management in an IT service organi-
zation. For more details on the SCU concept, the interested reader is referred to
[8]. In the rest of the paper, we will describe in detail how SCUs may be used
within an IT service management environment for facilitating collaborative in-
cident resolution spanning multiple teams/organizations.

3 Incident Management Using SCUs: A Technical
Framework

We first describe our system model, and then outline the basic principles that
guide a SCU through its life-cycle. There may be different ways of realizing the
abstract framework presented in this section and a concrete instantiation will be
described and evaluated in the following section.

3.1 System Model

We assume a component dependency model represented as a graph G = (V,E),
where V is a set of nodes, each representing a component of the overall IT
infrastructure being managed, and E is a set of directed edges representing de-
pendency relationships between the nodes. Each edge may be represented by a
triple < Ci, Cj , DTk >, where Ci, Cj ∈ V and represent system components,
and DTk ∈ DT is the dependency relationship that exists between Ci (source)
and Cj (target), drawn from a set DT of possible relationships relevant to the
domain. A component Ci ∈ V has a set of possible features CF

i through which
it provides services to the end-user. A ticket Ti is raised when an interruption
or degradation in IT performance is detected, and may be initially represented
as < TSi, Di, Pi >, where TSi is the time-stamp when the ticket was raised, Di

is a textual description of the problem, Pi is a priority level indicating the criti-
cality of the problem that may be drawn from an ordered sequence of numbers
{1, 2, ...p}, with 1 representing the highest priority and p the lowest. Based on
its priority Pi, a ticket will also have a Service Level Objective SLO(Pi) which is
the window of time Wi within which the incident needs to be resolved, thereby
setting a deadline TSi+Wi that the ITSM team has to strive to meet. Each ticket
is also implicitly associated with a fault profile FP = {(Ci, fj)|Ci ∈ V, f ∈ CF

i },
which is a set of features in a set of system components that have developed a
fault, and need to be investigated and fixed. In the majority of cases, we may
expect a ticket to be associated with a single malfunctioning feature in one com-
ponent. Of course, the fault profile is not known when a ticket arrives, but needs
to be discovered in course of the incident management process.

When a ticket is raised, it is the dispatcher’s responsibility to review the prob-
lem description, and try to identify the likely component(s) that are not func-
tioning correctly, so that the ticket may be dispatched to the relevant team(s).
The dispatcher is aided in this task by the component dependency graph, and
in general, s/he may be expected to devise a dispatch strategy that contains an
ordered sequence of components {Ci1 , Ci2 , ..., Ci|V |}, which we call the Likelihood

54 B. Sengupta et al.

Sequence (LS(t)) for a ticket t, going from the most to the least likely component
that may be the cause for this incident. LS(t) represents the order in which the
ticket should be dispatched to the different components for investigation, till the
root cause is identified and fixed. Note that we assume a fully ordered sequence
only for simplicity; the likelihood of some of the elements may be deemed to be
equal, in which case any of them may be picked as the next component to be
investigated. LS(t) would depend on the ticket description, which may contain
some indicators of the potential source of the problem, while the component
dependency graph would make certain related components candidates for in-
vestigation as well, based on the nature of the relationship they have with the
sources. The Likelihood Sequence is a key construct in our incident management
framework. It not only drives the dispatch strategy for the business-as-usual
(BAU) way of routing tickets one team at a time, but is also the sequence our
SCU-based approach would refer to, to help decide on the composition and dy-
namic reconfiguration of the SCU during an incident resolution activity. The
Likelihood Sequence may be expected to evolve as investigation proceeds and
better understanding is achieved regarding the nature of the problem.

ITSM services will be provided by a set of practitioners (human resources)
R. Each Ri ∈ R has a skill profile SP (Ri) = {(Cp, fq, lr)|Cp ∈ V, fq ∈ CF

p , lr ∈
L}, where L is an ordered sequence of skill levels {1, 2, ..., l}, with 1 being the
lowest (most basic) and l being the highest skill level for any skill. A skill is
the ability to investigate and correct a particular feature in a given component.
Most practitioners will possess a set of skills, with varying skill levels, and the
skills of a practitioner will usually be centered around different features in a
single IT component, although there may be a few experienced practitioners with
skills that span multiple components. Given this, each component is immediately
associated with a team - a group of practitioners who have skills in one or more of
the component features and may be called upon to investigate an incident that
may have potentially been caused by the component. For a component Ci, this
is given by Team(Ci) = {Ri|Ri ∈ R, ∃l ∈ L, ∃f ∈ CF

i .(Ci, f, l) ∈ SP (Ri)}. For
each combination (f, l) of a feature f and skill level l, we have an effort tuple
< Einv(f, l), Eres(f, l) >, which indicates representative (e.g. average) effort
needed by a practitioner with skill level l in feature f to investigate if the feature
is working correctly (Einv(f, l)), and to restore the feature to working condition
(Eres(f, l)) in case a fault is detected.

A Social Compute Unit SCU(Tp, t) for a ticket Tp at a point in time t, may
be represented by < C(t),R(t),S(t) >, where C(t) ⊆ V is the set of components
currently being investigated (i.e. at time t), R(t) ⊆ R is the set of practitioners
that are part of the SCU at time t, and S(t) is an abstraction of the current
state of the investigation, encompassing all components/features that have been
verified to be functioning correctly till this point, all the faulty features that
have been restored, and the all features that are currently under investigation
or restoration. Thus a SCU is a dynamic entity whose composition (in terms of
components and practitioners) as well as state (in terms of features investigated
or restored), will continually evolve with time.

Who Do You Call? Problem Resolution through Social Compute Units 55

The management of an incident - from its creation to closure - will incur a
cost, primarily due to effort spent by practitioners on various investigation tasks.
We assume that when a practitioner joins an investigation effort, s/he will need
to spend a certain amount of effort Einit to familiarize with the problem and
the current investigation state. Subsequently, s/he will expend effort on feature
investigation and restoration, commensurate with her skill levels. If s/he is part
of a SCU, she will be expected to spend Ecollab effort to collaborate with the
larger team through the sharing of findings. This effort may be proportional
to the duration of her stay in the SCU, as well as the size of the SCU during
that period (in terms of the number of practitioners and components/features
involved). If we wish to monetize the effort spent, we may assume a function
UnitSalary(Ri) : SP (Ri)− > R (where R is the set of Real numbers), that
returns the cost of unit effort spent by the practitioner, based on his/her skill
profile. We also assume there is a certain amount of effort needed to set up and
dissolve a SCU, given by SCUsetup and SCUdisolve respectively. Also, in the
process-driven sequential way of incident management, there will be a certain
delay Dtransfer imposed each time a ticket is transferred from one team to the
next. Finally, delays may be introduced due to unavailability of practitioners.

Fig. 2. Incident Management Using SCUs

3.2 SCU Based Incident Management

Figure 2 depicts the overall incident management process that we propose. It is
important to note that our SCU approach complements, rather than replaces,
sequential process-driven incident management, represented in Figure 2 as the
Business As Usual (BAU) flow. We do not expect a SCU to be required for ev-
ery ticket, rather we base this decision upon the specific context of a ticket at
a given point in time. When an incident arrives, the problem description should

56 B. Sengupta et al.

be reviewed, and the relative likelihood of different components being the source
of the problem, has to be evaluated. This may be done by a human agent (e.g. a
dispatcher) who uses a combination of ticket description and knowledge of com-
ponent dependencies to identify potential faulty components. Supervised learn-
ing techniques such as Support Vector Machine (SVM) [15] may also be used to
suggest for new tickets the likelihood (represented by a probability distribution)
of each component being the source of the problem [2]. A combination involving
a human dispatcher being assisted by an automated agent is also possible. It
may be noted that such a likelihood evaluation is anyway done (even if implic-
itly) as part of a standard incident management process, since the dispatcher
has to decide each time s/he receives a ticket, which component team needs to
be contacted next to investigate the problem. Also, it is not necessary for the
entire likelihood sequence to be generated as soon as an incident arrives. Instead,
this may also be done incrementally, by considering at any point in time which
are the most likely components that may be the cause for the incident (taking
into account components that have already been investigated), and involve only
those teams in the next phase of investigation.

Fig. 3. Investigation Within A Component

Once this initial analysis has been done, we need to decide whether or not to
invoke a SCU. In case the ticket deadline is sufficiently far away and/or there
is a very strong likelihood of one particular component being the source of the
problem, then the system may decide to follow the BAU mode, in which the
ticket is dispatched to the most likely faulty component, where a practitioner
will have to investigate it (this is explained in more detail later in the context of
Figure 3). However, there will still be a need to monitor the situation so that
in case the deadline is approaching without the root cause been detected, then
a decision may be taken to set up a SCU to accelerate the investigation.

In case the BAU mode is not deemed appropriate in view of an impending
deadline or lack of clarity in the problem description, a SCU may be invoked.
Here, a few of the more likely faulty components are identified, and a set of
practitioners who have the necessary skills in these components are on-boarded
to the SCU. The decision on how many such components to consider, how many

Who Do You Call? Problem Resolution through Social Compute Units 57

practitioners to on-board, what their skill levels should be etc. may be taken
based on availability and the urgency of the situation. For example, if there is
a crisis situation with the deadline of a high priority ticket being near at hand,
then highly skilled practitioners from most/all of the component teams may have
to be involved. In less urgent cases, one practitioner per component, for a small
number of components at a time (say, 2-3) may be sufficient. Once on-boarded,
the practitioners representing a component would try to determine if the incident
has been caused by a fault in one of its features, using the process depicted
in Figure 3. Here, a practitioner would proceed through the feature list of a
component in the order of their relative likelihood of having a fault (as inferred
by him/her based on the ticket description and understanding of features), and
for each feature, investigate if it is correctly functioning, and if not, apply a fix
to restore the feature. If the fix resolves the incident as well, then any ongoing
investigation will be stopped across all components. Suitable findings from the
investigation process will be harvested for later reference, and the SCU will
be dissolved (Figure 2). Otherwise, the practitioner may move on to the next
feature. If the current practitioner(s) representing a component do not have all
the skills needed to cover the complete feature set, then on completion of their
investigation, they may be replaced by other suitable practitioners. Note that
this basic approach towards investigating a component remains the same whether
a BAU or SCU mode is used. In case multiple practitioners are investigating the
same component together in a SCU, they may partition the feature list amongst
themselves to ensure there is no redundancy of effort. Also, within a SCU, a
practitioner will be expected to collaborate with others e.g. through the sharing
of findings, as shown in Figure 2.

As investigation proceeds, it is necessary to periodically monitor the situation
and take appropriate action (Figure 2). For example, if the incident deadline
is approaching, then there would be a need to re-configure the SCU by on-
boarding more practitioners to cover other components. In case a high priority
ticket arrives that needs the attention of a practitioner who is currently part
of another (relatively less urgent) ticket’s SCU, then the practitioner may have
to leave the SCU and be replaced by another suitably skilled colleague who
is available. Again, if all the features of a component have been verified to be
functioning correctly, then the component may be removed from the SCU and
the corresponding practitioners off-boarded. New SCU members may then be
added from the next likely set of component(s). Finally, in the unusual case
when all components have been investigated without the defect being identified,
the SCU may be re-constituted and re-run, with higher skilled practitioners if
needed.

4 Experiments

To experimentally evaluate our proposed SCU-based approach for incident man-
agement, we have designed an event driven simulator that mimics the flow of
tickets through an IT service delivery environment. We first describe the exper-
imental set-up, and then present the results.

58 B. Sengupta et al.

4.1 Experimental Set-Up

The simulation framework is built on java and has 4 major components: Events
Generator that generates standard events related to incidence creation and man-
agement; Ticket Lifecycle Simulator, which manages various timers and notifi-
cations related to a ticket; Delivery Model, which includes the basic models of
all the system entities (tickets, components, features, resources etc.) and rela-
tionships, and whose generated runtime is directly used within the simulation
framework; and SCU Runtime Manager, designed as a library for implementing
a SCU model in a service delivery environment.

For our experiments, we have considered an IT system with 30 components,
with each component having between 0 to 5 dependencies generated as a random
graph. For generating ticket data, we used a power law probability distribution
of tickets across components, which is suitable for generating Pareto-like long
tailed distributions. Based on our experience from working with large ITSM or-
ganizations, we have set this closer to a 70:30 distribution, which means that
only 30% of the components cause 70% of the tickets. Overall, we generated 1154
tickets to cover a 1 week period of study, and maintained a resource pool of 200
practitioners to ensure a reasonable service rate. The ticket arrival rate is mod-
eled as a stochastic process using a Poisson distribution initialized by average
hourly arrival rates of tickets as we have seen in several actual service delivery
environments. We assumed 4 different priority levels for tickets, with SLOs of 4
hours (highest priority), 8 hours, 24 hours and 48 hours (lowest priority) respec-
tively. The relative distribution of the priority levels, were 2% (highest priority),
8%, 20% and 70% (lowest probability). All these values were selected based on
our review of multiple ticket sets and SLOs. We assumed each practitioner to
have skills in all the features of one component (which is often the case since
practitioners in such environments are usually specialists in a particular techni-
cal domain). The staffing levels of each component were determined based on
their relative workload (in terms of number of tickets received, the number of
features, and the effort needed to investigate and fix each feature). Each ticket
was assigned a fault profile of a single feature in one component. The likelihood
sequence of each ticket was generated carefully by assuming the faulty compo-
nent to be amongst the most likely ones in a high percentage of cases, but we
also generated tickets with unclear root causes, where the faulty component oc-
curred later in the sequence (with a probability that decreased progressively as
the likelihood decreased). Moreover, we adjusted each sequence to ensure that
the position of a likely component correlated well with that of some of its neigh-
bours in the dependency graph, so that these neighbours were likely candidates
as well.

We studied two modes of incident management - a fully process driven BAU
mode, and a heterogeneous mode of BAU and SCUs. In the former, a ticket is
investigated by one practitioner from one component at a time, and whenever a
ticket has to cross organization boundaries, we assumed a delay of 30 minutes
to account for the process-related overheads. This is actually a conservative
estimate, since in real life service environments we have found tickets to be stuck

Who Do You Call? Problem Resolution through Social Compute Units 59

for hours or days together in transfer between the components, and this was a key
motivation for the SCU. In the heterogeneous mode, SCUs were automatically
assembled for every highest priority ticket. For the rest of the tickets (including
those initially dispatched in BAU mode), the decision to compose a SCU was
based on the urgency of the situation at a given point in time. We used 4 levels
of urgency, based on distance from the SLO deadline, and gradually increased
the span of a SCU to cover more components (while having a single practitioner
per SCU component) as the ticket moved from one urgency level to the next
higher one.

4.2 Results and Discussion

The table in Figure 4 presents the results obtained from our simulation-based
experiments. The column BAU stands for the mode where only process-driven
sequential investigation was carried out for each ticket, while the rest of the
columns involve situations where the BAU mode was complemented by SCUs.
We experimented with different variations of this latter mode. We started with
a conservative policy of initializing each SCU with a single component (Start1),
but still investing in the SCU set-up cost (e.g. for getting the collaboration
platform ready) in anticipation of the need to onboard more practitioners. In
the other variations, we initialized each SCU with 2, 3 and 5 components. Once
set up, a SCU was, of course, allowed to expand in size by onboarding more
components, as the ticket progressed towards its deadline.

Fig. 4. Experimental Results

We compare the performance of BAU and SCU modes along two main dimen-
sions: effort and time to resolve. In terms of effort spent, the BAU mode is, in
general, more efficient than the SCU mode. This is because in the former, only a
single practitioner is being assigned at a time to conduct an investigation (on the
most likely component at that point), while in the latter, multiple practitioners
are assigned, and the aggregate effort invested is likely to be higher. Thus both
the metrics Average Number of Resources Per Ticket and Average Person Hours
Effort Per Ticket (aggregated across all resources who worked on a ticket) shows

60 B. Sengupta et al.

an increase as we go from BAU to SCU mode, and across the different variants
of SCU modes. The only exception to this is when we start a SCU with a single
component, in which case the Average Person Hours Effort Per Ticket decreases
by about 5% relative to the BAU mode. This is an interesting case, and one
probable reason for this may be that the Start1 mode, being at the boundary
between full BAU and SCU modes, is able to effectively leverage the advantages
of both, combining the power of quicker resolution with the low initial effort to
bring down the total effort per ticket.

While the overall effort spent in SCU mode is, in general, higher, the col-
laborative investigation power of a SCU also significantly reduces the time to
resolution, as seen from the values of the metrics Average Time To Resolve,
Average Time Investigating and Max Time to Resolve. In all of these, the per-
formance of the BAU mode lags far behind that of the SCU modes. From the
business impact perspective, the most compelling case for the SCU comes from
the dramatically improved SLO performance that results from its faster reso-
lution of tickets, with Number of SLO Violations ranging between only 27.3%
to 46.7% of the corresponding number for BAU. With the stringent penalties
that IT vendors have to pay for poor SLA performance, the financial implica-
tions of this are far reaching. It may also be noted that while the SCU approach
may consume more aggregate effort from practitioners, this does not necessarily
translate to higher costs for the vendor. This is because, vendors typically main-
tain a dedicated team to provide production support to customer systems, and
the effort available from these practitioners, if not utilized, may go waste and
result in under-utilization, even though the vendor would still have to bear the
same costs in terms of employee salary.

While a SCU has the flexibility to scale up as needed, we find that the average
SCU size at any point in time (or its “strength”) ranges from 2.2 to 4.03. While
this may also partly be due to resource unavailability that prevents it from
growing very large (since there will be many other tickets that keep practitioners
engaged), the size is small enough for easy governance. Finally, we see that by
virtue of being in a SCU, a practitioner is able to increase his/her sphere of
interaction substantially, and the average number of colleagues they collaborate
with during this brief period of study ranges from 12 to as high as 55. There are
several long-term benefits an organization can derive from this that we intend
to study in detail going forward, as mentioned in Section 6.

5 Related Work

We believe the novelty of our work is in the usage of SCU teams in problem res-
olution of otherwise sequential services processes. For example, the authors of
[5] developed SYMIAN, a simulation framework for optimizing incident manage-
ment via a queueing model based approach, which identifies bottlenecks in the
sequential execution of ticket resolution. SYMIAN is based on the current imple-
mentation of incident management in the IT service provider organizations. Our
approach is different from [5] as it takes into account optimization of resolution

Who Do You Call? Problem Resolution through Social Compute Units 61

time through parallelization of work effort in the context of otherwise sequential
execution of work.

A number of researchers have looked at the problem of mapping tickets to
teams based on the problem description. For example, [14] develops a Markov
model by mining ticket resolution sequences of historical tickets that were trans-
ferred from one team to another before being resolved. In [10] supervised learning
techniques are used to determine the likelihood that a service request corresponds
to a specific problem symptom; prior performances of teams are then analyzed
to identify groups that have the necessary skills to resolve these problems. In
[12] an auction-based pull model for ticket allocation is proposed, along with
incentive mechanisms for practitioners to be truthful about expected resolution
time when bidding for tickets. Unlike our approach, however, none of these works
consider dynamic team formation to facilitate faster resolution of tickets through
collaborative problem solving. The use of component dependency graphs in the
incident management process has also been explored [11,9]. However, these have
mainly been used to correlate problems and to search possible solutions rather
than to automatically establish a suitable team for solving problems.

Human-based tasks, e.g., in BPEL4People [4], can be used to specify hu-
man capabilities or certain management tasks, e.g., by utilizing human-specific
patterns [13]. However, this model relies on specific, pre-defined management
processes which are not suitable for complex problem resolution, as we have dis-
cussed in this paper. Crowdsourcing [6,7] has been employed for solving complex
problems, but while it also offers parallel computation power, our approach is
distinct in its use of social collaboration to harness complementary skills within
an organization and drive towards a common goal.

6 Conclusions and Future Work

This paper is a starting point into a broader mission to investigate the interplay
of service-oriented and social computing concepts. So far we have introduced the
fundamental concept of Social Compute Units and in this paper demonstrated
the cost-benefit aspects of SCU’s for a typical enterprise process. Whereas we be-
lieve the initial results from our simulations based on real-world experiences from
the service delivery business of a large IT Service provider are very promising,
future work will address the following:

1. Our current model assumes the SCU to be an organizationally implemented
work model, i.e. skill and availability of resources will drive SCU forma-
tion. Social computing has a richer set of mechanisms, such as incentive and
rewards, that are not yet part of our framework

2. The culture of collaboration that an SCU will nurture should have several
long-term benefits in terms of knowledge management and enhancement in
skill profiles. We will incorporate these in our framework going forward.

3. An important next step is to realize this approach in a real service delivery
environment.

62 B. Sengupta et al.

References

1. http://www.gartner.com/it/page.jsp?id=1470115

2. IBM SPSS, http://spss.co.in/
3. IT infrastructure library. ITIL service support, version 2.3. Office of Government

Commerce (June 2000)
4. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1 (Novem-

ber 2009), http://docs.oasis-open.org/
bpel4people/bpel4people-1.1-spec-cd-06.pdf

5. Bartolini, C., Stefanelli, C., Tortonesi, M.: SYMIAN: A Simulation Tool for the
Optimization of the IT Incident Management Process. In: De Turck, F., Kellerer,
W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 83–94. Springer,
Heidelberg (2008)

6. Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to
track sentiment in online media. In: Proceeding of the 2010 Conference on ECAI
2010: 19th European Conference on Artificial Intelligence, pp. 145–150. IOS Press,
Amsterdam (2010)

7. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

8. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Comput-
ing 15(3), 64–69 (2011)

9. Gupta, R., Prasad, K.H., Mohania, M.: Automating ITSM incident management
process. In: International Conference on Autonomic Computing (2008)

10. Khan, A., Jamjoom, H., Sun, J.: AIM-HI: a framework for request routing in large-
scale IT global service delivery. IBM Journal of Research and Development 53(6)
(2009)

11. Marcu, P., Grabarnik, G., Luan, L., Rosu, D., Shwartz, L., Ward, C.: Towards an
optimized model of incident ticket correlation. In: Integrated Network Management
(IM), pp. 569–576. IEEE Press, Piscataway (2009)

12. Deshpande, P.M., Garg, D., Suri, N.R.: Auction based model for ticket allocation
in IT service delivery industry. In: IEEE SCC (2008)

13. Russell, N., van der Aalst, W.M.P.: Work Distribution and Resource Management
in BPEL4People: Capabilities and Opportunities. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 94–108. Springer, Heidelberg (2008)

14. Shao, Q., Chen, Y., Tao, S., et al.: Efficient ticket routing by resolution sequence
mining. In: 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2008)

15. van Gestel, T., Suykens, J.A.K., Baesens, B., et al.: Benchmarking least squares
support vector machine classifiers. Machine Learning 54(1), 5–32 (2004)

http://www.gartner.com/it/page.jsp?id=1470115
http://spss.co.in/
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf

Relationship-Preserving Change Propagation

in Process Ecosystems

Tri A. Kurniawan�, Aditya K. Ghose, Hoa Khanh Dam, and Lam-Son Lê

Decision Systems Lab., School of Computer Science and Software Engineering,
University of Wollongong, NSW 2522, Australia

{tak976,aditya,hoa,lle}@uow.edu.au

Abstract. As process-orientation continues to be broadly adopted – ev-
idenced by the increasing number of large business process repositories,
managing changes in such complex repositories becomes a growing issue.
A critical aspect in evolving business processes is change propagation:
given a set of primary changes made to a process in a repository, what
additional changes are needed to maintain consistency of relationships
between various processes in the repository. In this paper, we view a col-
lection of interrelated processes as an ecosystem in which inter-process
relationships are formally defined through their annotated semantic ef-
fects. We also argue that change propagation is in fact the process of
restoring consistency-equilibrium of a process ecosystem. In addition, the
underlying change propagation mechanism of our framework is leveraged
upon the well-known Constraint Satisfaction Problem (CSP) technology.
Our initial experimental results indicate the efficiency of our approach
in propagating changes within medium-sized process repositories.

Keywords: inter-process relationship, semantic effect, process ecosys-
tem, change propagation, constraint network.

1 Introduction

Nowadays, modeling and managing business processes is an important approach
for managing organizations from an operational perspective. In fact, a recent
study [11] has shown that the business process management (BPM) software
market reached nearly $1.7 billion in total software revenue in 2006 and this
number continues to grow. In addition, today’s medium to large organizations
may have collections of hundreds or even thousands of business process models
(e.g. 6,000+ process models in Suncorp’s process model repository for insur-
ance [16]). Therefore, it becomes increasingly critical for those organizations to
effectively manage such large business process repositories.

In recent years, the ever-changing business environment demands an orga-
nization to continue improving and evolving its business processes to remain
competitive. As a result, the most challenging aspect of managing a repository
of business processes is dealing with changes. Since business processes within

� On leave from a lecturership at University of Brawijaya, East Java, Indonesia

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 63–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 T.A. Kurniawan et.al.

a repository can be inter-dependent (in terms of both design and execution),
changes to one process can potentially have impact on a range of other pro-
cesses. For example, changes initially made to a sub-process (e.g. removing an
activity) may lead to secondary changes made to the processes that contain this
sub-process. Such changes may lead to further changes in other dependent pro-
cesses. The ripple effect that an initial change may cause in a process repository
is termed change propagation. In a large business process repository, it becomes
costly and labor intensive to correctly propagate changes to maintain the consis-
tency among the inter-dependent process models. Therefore, there is an emerg-
ing need for techniques and tools that provide more effective (semi-)automated
support for change propagation within a complex process repository.

There has been however very little work on supporting change propagation
in process model collections [7]. Our proposed framework aims to fill that gap.
We view a collection of interrelated process models as an ecosystem [9]. In such
ecosystem, process models play a role analogous to that of biological entities in
a biological ecosystem. They are created (or discovered, using automated toolk-
its [10]), constantly changed during their lifetimes, and eventually discarded.
Changes made to a process may cause perturbations (i.e. inconsistencies) in the
ecosystem in the form of critical inter-process relationships being violated. In this
view, a process ecosystem is considered to be in an (consistency-)equilibrium if
its all inter-process relationships are mutually consistent. Change propagation is
therefore reduced to finding an equilibrium in a process ecosystem.

We further view the problem of finding an equilibrium in a process ecosys-
tem as a constraint satisfaction problem (CSP) in which each process model
is mapped to a node and each relationship (between two process models) is a
constraint (between the corresponding nodes) in a CSP. This paper is also built
on top of our previous work [15], which provides formal definitions for three
common types of inter-process relationships (namely part-whole, generalization-
specialization and inter-operation) based on concepts of semantic effect-annotated
business processes [12]. Specifically, in this paper we propose a machinery to
automatically establish relationships between process models in a process repos-
itory based on these formalizations. Based on these established relationships,
we construct a constraint network [6] of a process ecosystem containing a vio-
lated relationship. Candidate values for each individual process node in a CSP
can be obtained from the redesign of the process, which can be implemented
using existing business process redesign approaches (see, e.g. [13, 19]) or man-
ually produced by the analysts. The CSP encoding allows us to plug different
individual process redesign modules without affecting the remaining parts of the
architecture.

The rest of the paper is organized as follows. Sec. 2 briefly describes semantic
effect-annotated process model and inter-process relationships. Sec. 3 explains
how such relationships can be established. Sec. 4 proposes our approach to pre-
serve such relationships in propagating changes within a process ecosystem. In
Sec. 5, we present an empirical validation of our approach. We then discuss
related work in Sec. 6, and conclude and layout some future work in Sec. 7.

Relationship-Preserving Change Propagation in Process Ecosystems 65

2 Preliminaries

Semantic Effect-Annotated Process Model. An effect annotation relates
to a particular result or outcome to an activity in a process model [14]. An
activity represents the work performed within a process. Activities are either
atomic (called a task, i.e. they are at the lowest level of detail presented in the
diagram and can not be further broken down) or compound (called a sub-process,
i.e. they can be broken down to see another level of process below) [21]. In an
annotated BPMN process model, as our approach relies on, we annotate each
activity with its (immediate) effects. We define these immediate effects as the
immediate results or outcomes of executing an activity in a process model. We
consider that multiple effects can be immediately resulted in such execution.
We shall leverage the ProcessSEER [12] tool to annotate process model with
the semantic effects. This annotation allows us to determine, at design time,
the effects of the process if it were to be executed up to a certain point in the
model. These effects are necessarily non-deterministic, since a process might have
taken one of many possible alternative paths through a process design to get to
that point. We define a procedure for pair-wise effect accumulation, which, given
an ordered pair of activities with effect annotations, determines the cumulative
effect after both activities have been executed in contiguous sequence.

Let ti and tj be an ordered pair of activities connected by a sequence flow
such that ti precedes tj . Let ei = {ci1, . . . , cim} and ej = {cj1, . . . , cjn} be the
corresponding pair of effect annotations, respectively. If ei ∪ ej is consistent,
then the resulting cumulative effect is ei ∪ ej . Otherwise, we define e′i = {ck}
where ck ∈ ei and {ck} ∪ ej is consistent, and the resulting cumulative effect
to be e′i ∪ ej . In the following, we shall use ACC (ep, eq) to denote the result
of pair-wise effect accumulation of two contiguous activities tp and tq with the
immediate effects ep and eq, respectively.

Effects are only accumulated within participant lanes (i.e. role represented as
a pool) and are not including inter-participant within inter-operation business
process. In addition to the effect annotation of each activity, we also denote Et

as the cumulative effect of activity t. Et is defined as a set {est1, . . . , estm} of
alternative effect scenarios based on the 1, . . . ,m alternative paths reaching the
activity. Alternative effect scenarios are introduced by AND-joins or XOR-joins
or OR-joins. We accumulate effects through a left-to-right pass of a participant
lane, applying the pair-wise effect accumulation procedure on contiguous pairs
of activities connected via control flow links. The process continues without
modification over splits. Joins require special consideration. In the following, we
describe the procedure to be followed in the case of 2-way joins only, for brevity.
The procedure generalizes in a straightforward manner for n-way joins.

In the following, let tp and tq be two activities immediately preceding a join.
Let their cumulative effect annotations be Ep = {esp1, . . . , espm} and Eq =
{esq1, . . . , esqn}, respectively. Let e be immediate effect and E be cumulative
effect of an activity t immediately following the join.

For AND-joins, we define E = {ACC (espi, e) ∪ ACC (esqj , e)} where espi ∈
Ep and esqj ∈ Eq. Note that we do not consider the possibility of a pair of

66 T.A. Kurniawan et.al.

Fig. 1. Management of patients on arrival process

effect scenarios espi and esqj being inconsistent, since this would only hap-
pen in the case of intrinsically and obviously erroneously constructed process
models. The result of effect accumulation in the setting described here is de-
noted by ANDacc (Ep, Eq, e). For XOR-joins, we define E = {ACC (esr, e)}
where esr ∈ Ep or esr ∈ E2. The result of effect accumulation in the set-
ting described here is denoted by XORacc (Ep, Eq, e). For OR-joins, the re-
sult of effect accumulation in such setting is denoted by ORacc (Ep, Eq, e) =
ANDacc (Ep, Eq, e) ∪XORacc (Ep, Eq, e).

Figure 1 illustrates a semantic effect-annotated BPMN process model. The
immediate effect ei of each activity ti is represented in a Conjunctive Normal
Form (CNF) allowing us to describe such effect as a set of outcome clauses. Let p
be patient to be observed and treated. For example, activity t13 has an immediate
effect e13 = observed(p) which depicts the outcomes of executing such activity.
The cumulative effects of execution the process until t13 can be computed by
accumulating the effects starting from t11 until t13, i.e. assessed(p)∧observed(p).
We can also compute for the other activities in a similar way.

Inter-process Relationships. We recap relationships formalization described
in our previous work [15]. We classify these relationships into two categories:
functional dependencies and consistency links. A functional dependency exists
between a pair of processes when one process needs support from the other for
realizing some of its functionalities. In this category, we define two relationship
types, i.e. part-whole and inter-operation. A consistency link exists between a
pair of processes when both of them have intersecting parts which represent
the same functionality, i.e. the outcomes of these parts are exactly the same.
They are functionally independent. We identify one type in this category, i.e.
generalization-specialization. Our framework focuses on these three types.

Relationship-Preserving Change Propagation in Process Ecosystems 67

Fig. 2. Expansion of Patients in emergency sub-process in Figure 1

We use acc (P) to denote the end cumulative effects of process P ; CE (P, ti)
to describe cumulative effect at the point of activity ti within process P ; and
esj to denote an effect scenario j-th. Noted, each of acc (P) or CE (P, ti) is a set
of effect scenarios. Each effect scenario is represented as a set of clauses and will
be viewed, implicitly, as their conjunction.

(i) Part-Whole. A part-whole relationship exists between two processes when
one process is required by the other to fulfill some of its functionalities. More
specifically, there must be an activity in the ’whole’ process representing the
functionalities of the ’part’ process. The ’part’ process is also commonly referred
to as a sub-process within the ’whole’ process. Logically, there is an insertion of
the functionalities of the ’part’ into the ’whole’.

We define the insertion of process P2 in process P1 at activity t, P1 ↑t
P2, is a process design obtained by viewing P2 as the sub-process expan-
sion of t in P1. We then define the part-whole as follows: P2 is a direct part
of P1 iff there exists an activity t in P1 s.t. CE (P1, t) = CE (P1 ↑t P2, t).
Let us consider an example1 of the part-whole relationship which is illustrated
in Figures 1 and 2 (called P1 and P2, respectively). Such relationship is re-
flected by the activity Patients in emergency (t14) in P1 whose functional-
ity represents P2. This means that the result of executing activity t14 in P1
is solely the result of executing P2, and vice-versa. The insertion point here
is at t14 in P1. The cumulative effect of P1 at this point is CE (P1, t14) =
{es14}; es14 = assessed (p) ∧ to be operated (p) ∧ examined (p) ∧ operated (p) ∧
1 We will only exemplify the part-whole relationship due to space limitation. In this
paper, we only address direct relationships for the shake of efficiency in propagating
the changes. The indirect ones can be referred in our previous work [15].

68 T.A. Kurniawan et.al.

hospitalized (p)∧(recovered (p) ∨ dead (p)). We only have one effect scenario, i.e.
es14. Furthermore, the cumulative effect of P1 at t14 by inserting P2 at this ac-
tivity is CE (P1 ↑t14 P2, t14) = assessed (p)∧to be operated (p)∧examined (p)∧
operated (p)∧ hospitalized (p)∧ (recovered (p) ∨ dead (p)). Finally, we can infer
that P2 is a part of P1 since CE (P1, t14) = CE (P1 ↑t14 P2, t14).

(ii) Inter-operation. An inter-operation relationship exists between two pro-
cesses when there is at least one message exchanged between them and there is no
cumulative effect contradiction between tasks involved in exchanging messages.
Formally, given processes P1 and P2, an inter-operation relationship exists be-
tween them including activities ti and tj iff the following holds: (i) ∃ti in P1
∃tj in P2 such that ti ⇀ tj denotes that ti sends a message to tj , or tj ⇀ ti,
if the message is in the opposite direction; (ii) let Ei = {esi1, esi2, . . . , esim}
be the cumulative effects of process P1 at task ti, i.e. CE (P1, ti), and Ej =
{esj1, esj2, . . . , esjn} be the cumulative effects of process P2 at task tj , i.e.
CE (P2, tj). Then, there is no contradiction between Ei and Ej for all esip ∈ Ei

and esjq ∈ Ej s.t. esip∪esjq � ⊥ does not hold, where 1 ≤ p ≤ m and 1 ≤ q ≤ n.
Effect contradiction exists if the expected effects differ from the given effects.

If this is the case, we do not consider such relationship as an inter-operation one
even though there is a message between both processes.

(iii) Generalization-Specialization. A generalization-specialization relation-
ship exists between two processes when one process becomes the functional ex-
tension of the other. More specifically, the specialized process has the same func-
tionalities as in the generalized one and also extends it with some additional
functionalities. One way to extend the functionalities is by adding some addi-
tional activities so that the intended end cumulative effects of the process are
consequently extended. Another way involves enriching the immediate effects of
the existing activities. In this case, the number of activities remains the same
for both processes but the capabilities of the specialized process is extended.
Noted, the specialized process inherits all functionalities of the generalized pro-
cess, as formally defined as follows. Given process models P1 and P2, P2 is a
specialization of P1 iff ∀esi ∈ acc (P1), ∃esj ∈ acc (P2) such that esj |= esi;
and ∀esj ∈ acc (P2), ∃esi ∈ acc (P1) such that esi |= esj.

3 Establishing Inter-process Relationships

The formal definitions of inter-process relationships that we discussed in the pre-
vious section empower us to systematically specify (manually or automatically)
which process models are related to others in a process repository. To do so,
analysts who need to manage the large and complex process repositories must
effectively explore the space of all possible pairings of process designs to deter-
mine what relationships (if any) should hold in each instance. Note that this
generates a space of

(
n
2

)
possibilities, where n is the number of distinct process

designs in the repository. Clearly, this has the potential to be an error-prone ex-
ercise. An analyst may normatively specify a relationship that does not actually

Relationship-Preserving Change Propagation in Process Ecosystems 69

hold (with regard to our definition of the relationship) between a pair of process
designs. In some cases, an analyst might need help in deciding what relationship
ought to hold. We therefore develop a user-interactive machinery to assist ana-
lysts in deciding what type of normative relationship should hold between a pair
of processes. We consider two approaches in such assistance, i.e. checking and
generating modes. In the checking mode, we will assess whether a relationship
specified by an analyst does indeed hold with regard to our formal definition. If
this is the case, the relationship between the two processes can be established.
Otherwise, the tool would alert the analyst and also suggest the actual relation-
ship that may be found between the two processes2. In the generating mode, our
machinery systematically goes through all process models in the repository, gen-
erates all possible relationships between them, and present these to the analyst
for confirmation. Note that the space of alternative relationships can be large,
specially in the case of part-whole relationships. For example, given 4 processes
P1, P2, P3 and P4 where P2 is part of P1, P3 is part of P2 and P4 is part of P3.
Not only direct relationships, the tool would also suggest all indirect relation-
ships among them, e.g. P4 is (indirectly) part of P1, P4 is (indirectly) part of
P2. However, these indirect relationships would not be useful to be maintained
since change propagation can still be performed through the direct ones. Hence,
the decision should be made by the analyst in both approaches.

Once a relationship is established, a relationship descriptor is created. Such
a descriptor contains details that are relevant to its associated relationship in-
cluding identities of each pair of processes and their established relationship
type. However, a descriptor can also be enriched with any additional informa-
tion relevant to the existing relationship types, e.g. the insertion point activity in
a part-whole relationship. Relationship descriptors are maintained (i.e. created,
updated, and removed) during the relationships establishment and maintenance.

The relationship-establishing algorithms for both approaches, require trans-
formation of each process model into a graph, i.e. transforming each activity,
gateway and start/end events into a node and each flow into an edge. These
algorithms may involve two runs in evaluating a given pair of processes for each
relationship type excluding the inter-operation. On the first run, we evaluate the
first process with respect to a normative relationship constraint to the second
one. If the constraint does hold, we establish the relationship between the two
processes. Otherwise, in the second run we evaluate the second process with
respect to the constraint to the first one. For example, the part-whole estab-
lishment algorithm can be described as follows3. The inputs are two process
graphs, i.e. denoted pa and pb, and the outputs are either an instance of rela-
tionship descriptor or null. The algorithm will assess whether pa is part of pb by
computing CE (pb, n) and CE (pb ↑n pa, n) of each sub-process node n ∈ pb. If
CE (pb, n) = CE (pb ↑n pa, n) then it returns an instance of relationship descrip-
tor of such relationship. Otherwise, it returns null. On the first run, we evaluate
the first process to the second one. If it is not satisfied, we then evaluate the

2 If it is “unknown” relationship (refers to our formal definitions), it is not maintained.
3 Algorithms for the two other relationships are not explained due to space limitation.

70 T.A. Kurniawan et.al.

second process to the first one on the second run. If a given relationship type
cannot be established, we continue the evaluation with the other relationships
between the processes in consideration. Note that the part-whole relationship
evaluation must be performed before the generalization-specialization relation-
ship evaluation, since the former is a special case of the latter. Inappropriate
evaluation ordering of these two relationships might have unexpected result, i.e.
every part-whole will be suggested as generalization-specialization. There is no
evaluation ordering constraint for inter-operation relationship type.

4 Relationship-Preserving Change Propagation

To preserve the established relationships, the changes need to be propagated
across different processes. To do so, the process ecosystem containing the initial
changes should firstly defined as the boundary of such propagation. We then deal
with how to redesign a process for resolving the relationships violations. Further,
we apply our CSP approach to find an equilibrium in a process ecosystem.

Process Ecosystem.We view a collection of interrelated process models within
a process repository as an ecosystem [9]. However, we further restrict that any
process model in a process ecosystem must be traceable to any other process
models in the ecosystem. This traceability may involve many relationships with
regard to the relationships we formally defined earlier. A process model may have
more than one relationship with the others in the ecosystem. In addition, there
may be more than one process ecosystem within a process repository. Further-
more, since a change made to a process would only affect other processes in the
same ecosystem, we will only propagate changes within this process ecosystem.
A process ecosystem is in (consistency-)equilibrium if and only if every inter-
process relationship in the ecosystem is consistent with our earlier definitions.
We shall refer to a process ecosystem that violates the consistency equilibrium
condition a perturbed-equilibrium ecosystem. Consistency perturbation is often
the outcome of change to one or more process models in an ecosystem. Restoring
consistency-equilibrium involves making further changes to other process models
in the ecosystem and so on, which is, in fact, change propagation. We shall refer
to an ecosystem resulted from such restoration a restored-equilibrium ecosystem.

Resolving Relationship Violations. To resolve a relationship violation, the
processes involving in this relationship need to be changed. There can be many
options to do such changes, each of which results in a variant of the original
process (called process variant). Generating a process variant for a given process
can be done automatically by a machinery4 or manually by the analyst. The
procedure required to resolve a relationship violation between a pair of processes
P1 and P2 due to changes to one of them, e.g. P1, can be described as follows.

4 The techniques for automatically generating all process variants are out of scope of
this paper. We leave them as our future investigations. We have used only analyst-
mediated process redesign in our implementation and current evaluation.

Relationship-Preserving Change Propagation in Process Ecosystems 71

Fig. 3. Transforming a process ecosystem into a constraint graph

We identify such changes in P1 that can trigger the violation with regard to
our formal definitions. Based on the relationship type, the changes must be
propagated to P2 to get its variant such that the relationship constraint can be
re-satisfied. For example, let P1 and P2 be the whole and the part, respectively.
Let ti in P1, with immediate effects eti , be a sub-process representing P2 s.t.
the condition C is satisfied, i.e. CE (P1, ti) = CE (P1 ↑ti P2, ti). The possible
change introduced in P1 that can cause violations is a change to ti, i.e. either
by: (i) changing eti to be e′ti s.t. eti �= e′ti or (ii) dropping ti. In the first case,
we need to change P2 to be P2′ by either adding or deleting some activities or
reducing or extending some immediate effects of some particular activities s.t.
C is satisfied with e′ti . We no longer need to maintain the relationship for the
second case. Note that changing P1 by excluding ti will not cause any violation.

CSP in Process Ecosystems. A CSP consists of a set of variables X , for each
variable there exists a finite set of possible values D, and a set of constraints
C restricting the values that the variables can simultaneously take [2]. Each
constraint defines a relation between a subset of variables and constraints the
possible values for the involved variables. We consider a constraint involving only
one variable as a unary constraint, two variables as a binary, and so on.

A solution to a CSP is an assignment of a value from its domain to every
variable, in such a way that every constraint is satisfied. We may want to find
only one solution, all solutions or an optimal solution [2]. Solutions to a CSP can
be performed by searching systematically for the possible values which can be
assigned to a variable. There are generally two search methods. The first method
involves either traversing the space of partial solutions [2] (e.g. backtracking,
backjumping and backmarking algorithms) or reducing the search space through
constraint propagation (i.e. look-ahead). In variable selection, the look-ahead
strategy seeks to control the size of the remaining search space. In value selection,
it seeks a value that is most likely to lead to a consistent solution. Performing
constraint propagation at each variable will result a smaller search space, but
the overall cost can be higher since the cost for processing each variable will be
more expensive. The second method involves repairing an inconsistent complete
assignment/solution (e.g. min-conflicts and repair-based algorithms [17])

72 T.A. Kurniawan et.al.

Algorithm 1:Generating a restored-equilibrium process ecosystem : repair
approach

Input:
p, a changed process model
PEp, graph of a perturbed-equilibrium process ecosystem

Result: a restored-equilibrium PEx or null

1 begin
2 Vdone, a set of evaluated process identifiers, initially empty
3 pvar, the selected variant of a redesigned process, initially null
4 pm, the process to be changed, initially null
5 PEx ← PEp; pvar ← p;
6 Vdone ← Vdone ∪ {identifier of p};
7 pm ← GetNextProcess(PEx, Vdone);
8 while pm �= null and pvar �= null do
9 pvar ← ProcessChangeForMinConflicts(pm, PEx, Vdone);

10 if pvar �= null then
11 replace pm in PEx by pvar;
12 Vdone ← Vdone ∪ {identifier of pm};
13 pm ← GetNextProcess(PEx, Vdone);

14 else
15 PEx ← null;
16 end

17 end
18 return PEx;

19 end

Empirically, it is shown that ordering variables for value assignment can have
substantial impacts on the performance of finding CSP solution [2]. The ordering
variables could be either: (i) static ordering, the order of variables is defined
before the search starts and not be changed until the search complete or (ii)
dynamic ordering, the next variables to be assigned are dynamically defined at
any point depends on the current state of the search. There are some heuristics
in selecting variable ordering, i.e. variable with the smallest domain (in dynamic
ordering) or variable which participates in the most constraints.

We argue that maintaining the equilibrium in a process ecosystem can be
casted as a binary CSP. We can build a constraint network [6], represented in a
constraint graph, of the process ecosystems to depict a binary CSP in which each
node represents a process model, all possible variants of redesigning a process can
be considered as domain value of each node and each edge represents a relation-
ship constraint between processes, as in Figure 3. Process P1 in Figure 3a can
be mapped into a node P1 in Figure 3b, as well as its relationship to process P2,
i.e. R1, which is mapped into an edge between nodes P1 and P2, and so forth for
the remaining processes and relationships. Indeed, the domain value of each node
is finite since there exist constraints (at least, end cumulative effects and activ-
ity temporal constraints) that must be satisfied by process variants. We consider

Relationship-Preserving Change Propagation in Process Ecosystems 73

Algorithm 2: Generating a restored-equilibrium process ecosystem : con-
structive approach

Input:
p, a changed process model
PEp, graph of a perturbed-equilibrium process ecosystem

Result: a restored-equilibrium PEx or null

1 begin
2 Vdone, a set of evaluated process identifiers, initially empty
3 pvar, the selected variant of a redesigned process, initially null
4 pm, the process to be changed, initially null
5 PEx ← PEp; pvar ← p;
6 Vdone ← Vdone ∪ {identifier of p};
7 pm ← GetNextProcess(PEx, Vdone);
8 while pm �= null and pvar �= null do
9 pvar ← a process variant of pm which maintains the existing

relationships with other processes identified in Vdone, if no possible
variant then pvar = null;

10 if pvar �= null then
11 replace pm in PEx by pvar;
12 Vdone ← Vdone ∪ {identifier of pm};
13 pm ← GetNextProcess(PEx, Vdone);

14 else
15 Ipm ← a path running from p to pm;
16 pmdb ← the preceding of pm in Ipm ;
17 if pmdb = p then
18 PEx ← null;
19 else
20 remove identifier of pmdb from Vdone;
21 pm ← pmdb;
22 pvar ← pmdb;

23 end

24 end

25 end
26 return PEx;

27 end

constraint graph of a process ecosystem as a tuple Ge = (V,C) where V and C
denote a set of process nodes and a set of relationship constraints between pro-
cesses, respectively. In the resulting constraint graph Ge, each process node is of
the form (id, T, E,G, start, end) where id, T, E,G, start, end represent ID, set of
activities, set of edges, set of gateways, start and end events of a process, respec-
tively. And, each relationship constraint is of the form (id, source, target, type)
where id, source, target, type represent ID, source node, target node and type of
an inter-process relationship, respectively. An equilibrium in process ecosystem
then is considered as a solution in CSP once all constraints are satisfied by value

74 T.A. Kurniawan et.al.

assigned to each node, i.e. a variant of each process. We might not have a solution
for a given perturbed-equilibrium process ecosystem since there does not exist a
variant of a particular process node for resolving the violations5.

Algorithms. We propose two algorithms, i.e. repair and constructive, for gen-
erating a restored-equilibrium process ecosystem, as shown in Algorithms 1 and
2, respectively. The analyst can perform either one or both of them to generate
a restored-equilibrium process ecosystem. We implement dynamic ordering in
searching process to be evaluated through one which participates in the most
constraints, represented by GetNextProcess function. We search a process in
the perturbed-equilibrium process ecosystem which is in the following conditions:
(i) not yet evaluated, (ii) violates its relationship constraints with the previously
evaluated processes and (iii) participates in the most constraints.

In the repair approach, inspired by Min-Conflicts algorithm [17], we search the
new equilibrium of process ecosystems by minimizing conflicts between variants
of process being changed with the other processes which are not yet evaluated,
and satisfying relationship constraint with the previously evaluated processes. It
is represented by ProcessChangeForMinConflicts function which searches
a variant of changed process by satisfying the following criteria: (i) satisfies all
relationship constraints with the previously evaluated processes and (ii) has the
minimal violations with all the rest processes in the ecosystem. Finally, we would
select a variant which has the minimum conflict and continue until all constraints
satisfied, shown in Algorithm 1.

In the constructive approach, inspired by Graph-based backjumping algo-
rithm [5], we search a new equilibrium of a process ecosystem by redesigning
the process being evaluated to satisfy its constraint with the previous evaluated
process until all constraints are satisfied. Once there is no variant of the pro-
cess being evaluated to satisfy the constraint, we would jump back to the most
recent related process (with respect to the process being evaluated) which is
already evaluated, as shown in Algorithm 2. Then, this recent process should be
redesigned to make the following process to be evaluated satisfy its constraint.

5 Evaluation

We have performed an empirical validation6 to assess how the repair and
constructive approaches perform on different sizes of the process ecosystem.
Specifically, we established process ecosystems with sizes ranging from 10 to
80 processes. All these processes have 5-20 activities. We also annotated each
activity with immediate effects and had the tool compute the cumulative effects
in each process at every stage. The established process ecosystems are equipped
with the inter-process relationships discussed earlier. Our framework generates
all possible relationships between different processes and presents the constraint
graph of every process ecosystem.

5 Finding an optimal solution would be our next investigation.
6 All experiments were run on a i3 Intel Core-2.27 GHz, RAM 2.85 Gb laptop.

Relationship-Preserving Change Propagation in Process Ecosystems 75

The experiments are conducted as follows. A process, denoted as P1, was
selected to have some initial changes, which are then propagated to other re-
lated processes to maintain the consistency of the process ecosystem. In general,
the total time required to establish a restored-equilibrium process ecosystem is
(s+ nt) where s is the time our CSP algorithms compute, n is the number of
processes needing to be changed (as identified by our tool) and t is the average
time for making changes to a process. In our experiments, we assume that when
a process is flagged as needing changing, the actual changes would be done by
the analyst. As such, we are only interested in the time elapsed for propagating
changes in our CSP algorithms.

Table 1. Elapsed time for searching the process ordering and checking the constraints
of various sizes of process ecosystems

Elapsed time

No. of No. of No. of Repair Constructive
processes violated redesigned mode mode

constraints processes n (sec) (sec)

10 3 3 64 63
20 8 8 331 329
30 11 11 875 844
40 12 12 1,316 1,272
50 12 12 1,642 1,512
60 13 13 2,199 1,988
70 14 14 2,699 2,443
80 18 18 3,395 3,163

Table 1 describes how the repair and constructive approaches perform in pro-
portion to the size of the process ecosystem in terms of the elapsed time for
establishing a new equilibrium of process ecosystem. Our experimental results
suggest that the proposed approach is efficient (i.e. helps analysts propagate
changes regardless of the complexity of the inter-process relationships in the
process ecosystem) and scalable in propagating changes to maintain the equi-
librium of a medium-sized process ecosystem (up to 80 processes). Additionally,
performing the repair approach to get a restored-equilibrium process ecosystem
takes longer time than performing the constructive approach. This could be ex-
plained as follows. In the repair approach, we need to verify the consistency
between all processes that are related to the process being modified whereas in
constructive approach, we only check the consistency between the process being
modified and related processes that were already modified. However, we have not
taken into account the complexity of redesigning an individual process in our ex-
periments (i.e. how long it would take, for the analyst, to redesign a process that
needs changing). Furthermore, we have not analyzed the complexity of our algo-
rithms in order to correlate the elapsed time with parameters represented by the

76 T.A. Kurniawan et.al.

three leftmost columns of Table 1. The scalability of our framework for dealing
with a large-sized ecosystem will be addressed in our future investigations.

6 Related Work

Change propagation approaches have been intensively investigated in software
evolution/maintenance, engineering management and software modeling (see,
e.g. [1, 3, 4]). Recently, this approach has also been applied to BPM and service
computing (see, e.g. [18, 20]). However, there exist little work on change propa-
gation in process model collections [7], as can be seen in [8]. Weidlich et al. [20]
attempt to determine a change region in another model by exploiting the behav-
ioral profile of corresponding activities due to a model change. Their behavioral
profile relies on three relations, which are based on the notion of weak order,
between nodes in a process graph. Wang et al. [18] present analysis of dependen-
cies between services and their supporting business processes. On the top of this
analysis, they define change types and impact patterns which are used to analyze
the necessary change propagation occurring in business processes and services.
To the best of our understanding, these researches are only dealing with a pair of
business artifacts. The closely related work to our proposed framework is done
by Ekanayake et al. [8], which deals with processes in a collection. They propose
change propagation based on the shared fragments between process models. To
propagate changes, they develop a special data structure for storing these frag-
ments and process models. Once changes are made to a fragment, all processes
which this fragment belongs to are considered to be changed. This fragment-
based approach would be closely related to one of our research interests, namely
change propagation for the specialization-generalization relationship.

We leverage constraint networks [6] using CSP approach in propagating the
changes between processes. To the best of our knowledge, CSP technology has
not been used in the existing researches to deal with change propagation in
a complex process repository. We are interested in how changes on one process
can be properly propagated to the related processes to maintain the consistency-
equilibrium of a process ecosystem. We focus on three kind of relationships be-
tween semantic effect-annotated BPMN models, i.e. part-whole, specialization-
generalization and inter-operation.

7 Conclusion and Future Work

Being inspired by CSP approach, we have proposed a novel framework for man-
aging relationship-preserving change propagation in process ecosystems. This
framework can assist the process analysts in maintaining the equilibrium of
their process ecosystems within a complex process repository. Future work in-
cludes development of techniques for generating process variants for a given
process, finding the optimal solution with minimal change strategy of restored-
equilibrium process ecosystem and performing experiments on our framework
using case-studies taken from the industry.

Relationship-Preserving Change Propagation in Process Ecosystems 77

References

1. Aryani, A., Peake, I.D., Hamilton, M.: Domain-based change propagation analy-
sis: An enterprise system case study. In: 2010 IEEE International Conference on
Software Maintenance (ICSM), pp. 1–9. IEEE (2010)

2. Bartak, R.: Constraint propagation and backtracking-based search. Charles Uni-
versität, Prag (2005)

3. Chua, D.K.H., Hossain, M.A.: Predicting change propagation and impact on design
schedule due to external changes. IEEE Trans. on Eng. Management (99), 1–11

4. Dam, H.K., Winikoff, M.: Supporting change propagation in UML models. In: 2010
IEEE International Conf. on Software Maintenance (ICSM), pp. 1–10. IEEE (2010)

5. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence 41, 271–312 (1990)

6. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
7. Dijkman, R., Rosa, M., Reijers, H.: Managing large collections of business process

models-current techniques and challenges. Comp. in Industry 63(2), 91–97 (2012)
8. Ekanayake, C.C., La Rosa, M., ter Hofstede, A.H.M., Fauvet, M.-C.: Fragment-

Based Version Management for Repositories of Business Process Models. In: Meers-
man, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C.,
Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M.
(eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 20–37. Springer, Heidelberg (2011)

9. Ghose, A., Koliadis, G.: Model eco-systems: preliminary work. In: The Fifth Asia-
Pacific Conf. on Conceptual Modelling, pp. 19–26. Australian Comp. Society (2008)

10. Ghose, A., Koliadis, G., Chueng, A.: Rapid Business Process Discovery (R-BPD).
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 391–406. Springer, Heidelberg (2007)

11. Hill, J.B., Cantara, M., Deitert, E., Kerremans, M.: Magic quadrant for business
process management suites. Tech. rep., Gartner Research (2007)

12. Hinge, K., Ghose, A., Koliadis, G.: Process SEER: A tool for semantic effect anno-
tation of business process models. In: IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2009, pp. 54–63. IEEE (2009)

13. Koliadis, G., Ghose, A.: A Conceptual Framework for Business Process Redesign.
In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor,
R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 14–26. Springer,
Heidelberg (2009)

14. Koliadis, G., Ghose, A.: Verifying semantic business process models in inter-
operation. In: Int. Conf. on Services Computing 2007, pp. 731–738. IEEE (2007)

15. Kurniawan, T.A., Ghose, A.K., Lê, L.-S., Dam, H.K.: On Formalizing Inter-process
Relationships. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops
2011, Part II. LNBIP, vol. 100, pp. 75–86. Springer, Heidelberg (2012)

16. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging:
an approach to business process consolidation. ACM Transactions on Software
Engineering and Methodology (TOSEM) (in press, 2012)

17. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence 58, 161–205 (1992)

78 T.A. Kurniawan et.al.

18. Wang, Y., Yang, J., Zhao, W.: Change impact analysis for service based business
processes. In: IEEE International Conference on Service-Oriented Computing and
Applications, SOCA 2010, pp. 1–8. IEEE (2010)

19. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre,
G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

20. Weidlich, M., Weske, M., Mendling, J.: Change propagation in process models
using behavioural profiles. In: Int. Conf. on Services Computing, SCC 2009, pp.
33–40. IEEE (2009)

21. White, S.A., Miers, D.: BPMN: Modeling and Reference Guide. Future Strategies
Inc. (2008)

Scheduling Service Tickets in Shared Delivery

Hari S. Gupta and Bikram Sengupta

IBM Research, Bangalore, India
{hsgupta1,bsengupt}@in.ibm.com

Abstract. We study the problem of optimally scheduling tickets in
shared delivery of IT services. Such delivery models are characterized
by a common pool of skilled agents who collectively support the service
needs of several customers at a time. The ticket scheduling problem be-
comes interesting in this scenario due to the need to provide satisfactory
experience to multiple customers with different Service Level Agreements
(SLAs) in a cost-efficient and optimal way, by intelligently leveraging the
available skill set and balancing workload across agents. We present a de-
tailed description of the problem domain and introduce a novel metric
for estimating the relative criticality of tickets from different customers
at any point in time, taking into account several factors such as the dis-
tance from SLA breach, the SLA penalty and the expected volume of
tickets during the rest of the service time window. This criticality mea-
sure is used within a Mixed Integer Programming (MIP) based solution
approach to the ticket scheduling problem, where we consider the objec-
tives of SLA penalty minimization, balancing breaches across customers,
load balancing across agents, and maximizing skill match. Due to the
complexity of the problem, optimization engines may not always return
feasible or efficient solutions within reasonable time limits. Hence, we also
develop a custom heuristic algorithm that returns acceptable solutions
very fast. Detailed simulation experiments are used to compare these ap-
proaches and to demonstrate their efficiency in meeting the scheduling
objectives of shared delivery.

1 Introduction

IT service delivery organizations (henceforth called service vendors) employ
skilled practitioners to address service requests from customers. Many of these
requests are relatively small, atomic tasks that require a specific skill and may be
handled by a single practitioner within a short duration (e.g., a few minutes to
a few days). Such requirements, which the vendor receives in the form of service
tickets, may represent a specific IT problem experienced by the customer (e.g.,
“server down”, “transaction failed” etc.) or may be a request for a new capability
(e.g., “create a new disk partition”). These requirements are generally of some
business priority, with the expectation that it will be completed in a time-bound
manner, as specified in Service Level Agreements (SLAs) between the customer
and the vendor. If there are delays, then the customer’s business may be severely
impacted, leading to significant financial losses. The consequent degradation in

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 79–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 H.S. Gupta and B. Sengupta

customer satisfaction may have implications on the vendor’s future business
with the customer. Moreover, vendors would need to compensate the customer
by paying a penalty for any additional breach beyond the SLA threshold. Thus
business imperatives and economic reasons call for timely, careful and intelligent
handling of service tickets.

In this paper, we will study the problem of efficiently scheduling tickets in
a service delivery organization. In particular, we study ticket scheduling in the
context of the shared delivery or factory model [5,1], which is increasingly being
used by IT vendors. What distinguishes these models is that instead of dedicated,
customer-specific teams, a common pool of agents belonging to a specialization
area (e.g., say a packaged application system) supports the needs of several cus-
tomers who need services in that area. These customers may have different SLAs
with the vendor, depending on the criticality of their business, and the price they
are willing to pay for the vendor’s services. Such shared delivery makes the as-
signment of tickets to agents an involved balancing exercise: for example, the
vendor has to strive to reduce the aggregate SLA penalty it has to pay, while
trying to maintain some parity between the service experiences provided to the
different customers; at the same time, the vendor has to ensure that, to the
extent possible, the workload of different agents are balanced (to prevent agent
fatigue or reduce idle time), and tickets are assigned to agents with high levels
of skill in the relevant areas (so that customers are satisfied with the quality of
service provided). Naturally, as the number of tickets and customers scale up,
balancing the various ticket assignment criteria and analysing the trade-offs, are
way beyond what a human dispatcher will be capable of. There is a need to
explore automated decision-making systems that can intelligently schedule tick-
ets through an expert knowledge of shared service delivery, and that is encoded
through a robust optimization or heuristic formulation.

Towards that end, this paper makes the following important contributions.
After discussing related work (Sec. 2), we present a detailed description of the
problem domain of scheduling tickets in a shared delivery system (Sec. 3), in-
cluding its differences with the traditional model of delivery via customer-specific
teams. We then develop a set of scheduling objectives for shared delivery, that at-
tempts to balance the vendor’s needs for profitability and delivery efficiency, with
the need to ensure parity in the service experience of individual customers. To
the best of our knowledge, this is the first work that investigates the complexities
of work scheduling in a shared environment to this depth. After introducing the
problem, over the next few sections, we present a number of solution approaches:
a mixed integer programming (MIP) based formulation (Sec. 4) that attempts
to optimize the scheduling objectives in a priority order; a heuristic algorithm
that attempts to balance the objectives over multiple phases guided by several
policies (Sec. 6); and two greedy algorithms (Sec. 5) that each tries to opti-
mize on a specific objective, and represent baselines with which we can compare
our approaches. In Sec. 7, we report on detailed simulation-based experiments
to study the performance of all the approaches and analyse their scheduling
effectiveness. We find that both MIP and heuristic approaches do very well in

Scheduling Service Tickets in Shared Delivery 81

balancing the various scheduling objectives for moderate-sized problems, but the
heuristic algorithm scales much better. Finally, Sec. 8 presents our conclusions
and directions for future research.

2 Related Work

There is a rich body of literature related to the general problem of scheduling
jobs on machines (job shop scheduling or JSS) [8,6], and different variants (e.g.,
online or offline scheduling, related or unrelated machines) have been investi-
gated in depth. The most common scheduling objectives of JSS are minimization
of makespan, total completion time, total tardiness, and load balancing. While
these are standard objectives with wide applicability, scheduling of tickets need
specific focus on the management of SLAs. In particular, shared delivery calls
for scheduling objectives that are sensitive to the SLA and expertise needs of
individual customer, even as they seek to maximize a vendor’s profitability and
delivery efficiency.

The allocation of tickets to agents also has (superficial) similarities with the
routing of calls in a call-center. Skill-based routing (SBR) [3,11] segments calls
based on the skills needed to handle them and routes a call to an available agent
with appropriate skill. Given the low limits of caller patience, the objective is to
minimize waiting time and calls drop rate, and thus there is no scope for batch
scheduling. In contrast, service tickets can be batched together at the start of a
shift and then at specific intervals, and dispatched to agent queues. Moreover,
unlike a call that will naturally drop off beyond a waiting time, each ticket that
arrives has to be serviced, even if its service level objective (SLO) has been
breached; these tickets thus impose an additional burden that can potentially
delay other tickets.

In recent years, there has been considerable interest on automation, measure-
ment and optimization of service delivery. For example, [4] proposes a solution
for efficient seat utilization to reduce infrastructure costs. [12] models the cost
overheads in distributed service delivery and proposes relevant metrics to assess
the same. Our work combines automation and optimization is scheduling of ser-
vice tickets in shared delivery, using the novel metric of relative ticket criticality.
There has been limited research on the topic of optimal allocation of service tick-
ets, and the few papers in the area mostly address issues that are complementary
to our work. For example, [10] studies game theoretic aspects of the problem and
designs incentive mechanisms for ticket complexity elicitation in a truthful way
from agents. In [2], an auction-based pull model for ticket allocation is proposed,
along with incentive mechanisms for agents to be truthful about expected reso-
lution time when bidding for tickets. While theoretically appealing, it is unlikely
that large-scale service delivery bound by SLAs can function effectively when it
completely depends on agents to bid for tickets. [9] develops a Markov model by
mining ticket resolution sequences of historical tickets that were transferred from
one group to another before being resolved. This model is then used to guide
future ticket transfers and reduce mis-routing. In [7], supervised learning tech-
niques are used to determine the likelihood that a service request corresponds

82 H.S. Gupta and B. Sengupta

to a specific problem symptom; prior performances of support groups are then
analyzed to identify groups that have the necessary skills to resolve these prob-
lems. While expertise is indeed an important consideration for ticket assignment,
there are other practical objectives (e.g., manage SLAs, balance load etc.) that
need to be taken into account in a real-life delivery organization.

3 Domain Description

The traditional mode of delivery of IT services has been through a dedicated
team of agents for every customer. In practice, this simplifies the task of assigning
and scheduling tickets within the team. All agents work towards a common goal
(of serving the customer’s interests in the best possible way) and this synergy of
purpose helps in prioritization of tasks, often in consultation with the customer.
However, while this model is responsive to the needs of individual customers, it
has a number of drawbacks from the vendor’s perspective. The most significant
of these are that utilization of agents may be poor/uneven across teams due to
variability in demand, and that dedicated teams tend to operate in silos making
knowledge sharing and deployment of best practices difficult. For these reasons,
many vendors [5,1] are now adopting a shared delivery model, wherein groups
of agents who specialize in a particular domain are pooled together and made
responsible for addressing the needs of multiple customers who require services
in that domain. What makes this approach feasible is that for a significant
body of IT services, the skills needed are more domain-specific than customer-
centric. Such a model can translate to reduced service costs (due to increased
sharing of resources and practices), whose benefits may then be shared with
the customer. However, in a shared delivery model, the vendor needs to assume
greater ownership of scheduling work. Tickets from different customers would
compete for the attention of the same set of agents, and this would introduce a
natural conflict into the system. How well the vendor manages this conflict will
determine the service experience of individual customers from the shared delivery
system, as well as the financial returns of the vendor. It is in this context that
we study the ticket scheduling problem.

We begin with an informal description of the problem domain, introducing the
main concepts and their relationships. An IT service vendor will be employing
a pool of agents for each specialization area that it supports (for example, man-
agement of servers, packaged application systems etc.) Within the specialization
area, different categories of service requests may arise. An agent will be skilled
in handling one or more of these request categories. Each pool of agents from
a given specialization area will be servicing tickets received from a set of cus-
tomers. A ticket usually contains a description of the problem or request, based
on which it may be assigned the appropriate service category at the time of its
creation. A ticket will also contain a priority level, which reflects its business
urgency from the perspective of the customer. The service vendor and customer
would have entered into a Service Level Agreement (SLA) for resolving tickets
within a specific time limit, based on their priority. For example, for priority 1
tickets (having the highest urgency) from customer X, the agreement may be

Scheduling Service Tickets in Shared Delivery 83

that 90% of such tickets within a given service delivery time window (e.g., a
month) will be resolved within 4 hours. If the SLA is breached, the vendor is
generally required to pay a penalty to the customer, per additional ticket that
exceeds the time limit. A Service Level Objective (SLO) represents the manifes-
tation of a SLA at a per-ticket level and is the time-limit by which a vendor
attempts to resolve each ticket of a given priority from a customer. Thus for the
SLA example introduced above, the SLO for priority 1 tickets from customer X
would be 4 hours. While an agent needs to have specific skill(s) to be eligible
to resolve a ticket of a given category, the resolution effort i.e., the time spent
by the agent on the ticket to resolve it, would depend on the agent’s degree of
expertise for the ticket (higher the expertise, lower the effort). There may be dif-
ferent ways to estimate expertise e.g., by number of relevant tickets successfully
resolved, level of training received, number of years of experience in the area
etc. In this paper, we will assume that expertise values are available, without
going into specific computation methods. We will consider the following states
of a ticket: New Arrival (a ticket has just arrived), Queued, (it has been placed
in an agent’s queue), Work-in-Progress or WIP (an agent is working on it), and
Closed (it has been resolved).

Relative Criticality Measure

In order to help a vendor prioritize tickets coming in from different customers
to the same pool of agents, we now introduce a notion of relative criticality of
tickets. For a given customer c and priority p, let

– rcp = % of tickets allowed to breach SLA
– qcp = Penalty of a SLO breach beyond SLA
– ucp = Number of tickets to be scheduled now
– vcp = Number of tickets closed in the past
– wcp = Number of tickets expected to come in future
– ncp = Number of tickets breached SLO in the past (among the closed tickets)

Given the above information, we can compute the estimated number of tickets
allowed to breach (at max) among present and future tickets (mcp) by:

mcp =
(ucp + vcp + wcp) ∗ rcp

100
− ncp

Now, we define a ticket’s criticality belonging to the given customer-priority as:

Ccp =

{
(ucp+wcp)∗qcp

mcp+1 if mcp < ucp + wcp

0 otherwise

Intuitively, the criticality of a ticket is less when the number of allowed SLO
breaches (mcp) is more; criticality is more when the volume of tickets (ucp+wcp)
over which these breaches are allowed is more; criticality is more when the SLA
penalty is more; and criticality is negligible (zero) when the number of allowed
SLO breaches that remain is more than or equal to the current and future ticket
volume. It may be noted that the criticality measure depends on knowledge of the

84 H.S. Gupta and B. Sengupta

future volume of tickets. Usually the volume of tickets from a specific customer
over a given service window can be reasonably estimated based on historical
data, and this estimate is also used by the vendor to draw up staffing plans. The
more accurate this information, the more refined will the criticality measure be.
Of course, the vendor can also update this estimate at any time during a service
window (e.g. based on some unanticipated event) and the criticality measure
would be adjusted accordingly for subsequent tickets.

Problem Objectives and Constraints

Given this background, we consider the following problem: assume we have a
pool of agents, where each agent has a queue of tickets, and may have a WIP
ticket she is working on; given a set of new tickets that have arrived, how do we
optimally allocate the new and queued tickets to the agents? Below, we introduce
our scheduling objectives in the order of their (decreasing) relative importance,
from the vendor’s perspective.

The first objective (SLA Penalty Minimization) that the vendor will try to
meet is minimization of the penalty it has to pay due to SLO breaches beyond
the SLA limit. Assume there is a ticket t from a customer c with priority p, where
the permitted number of breaches for priority p tickets from c under the SLA
has already been reached or exceeded. The vendor would then want to schedule
t in a way that it does not breach its SLO, since otherwise the vendor will have
to pay a penalty. Note that, to achieve this, the vendor may have to breach (in
some cases) other ticket(s) that are either within their respective SLA limits, or
carry a lower penalty.

The above objective helps a vendor minimize financial losses after a SLA has
already been violated. However, the vendor would want to schedule tickets in a
way that minimizes the chance of a SLA breach in the first place. This leads
to our second objective set SLO Breach Balancing and Minimization, which (i)
helps a vendor reduce SLO breaches for high criticality tickets (thereby reducing
the risk of an SLA breach) by minimizing the maximum criticality value of a
ticket with SLO breach, and (ii) minimizes the total number of SLO breaches.

Our third objective (Load Balancing) is to ensure that some agents are not
overloaded with work, while others are relatively idle. An inequitable load dis-
tribution need not always lead to an SLO breach, but it would adversely impact
agent’s motivation, thereby justifying a separate objective to ensure fairness.
In general, of course, a balanced workload distribution also helps in reducing
delays, thus this objective complements the first two introduced above.

Our fourth objective (Expertise Maximization) helps in assigning tickets to
agents who are highly skilled in resolving the associated problem categories while
maintaining the fairness across customers (achieved by a sub-objective). In par-
ticular, for the shared delivery system, we want to ensure this not only at an
aggregate level, but for each customer being supported, since it will help ensure
that tickets are resolved faster and the solution quality is high, both of which
will positively impact customer satisfaction.

Scheduling Service Tickets in Shared Delivery 85

As is usually the case with multi-objective optimization, the solutions moti-
vated by individual objectives will differ, even conflict. For example, expertise
maximization without load balance may lead to some highly skilled people being
assigned excessive work, which can de-motivate them as well as lead to delays
and SLO breaches. Hence it is essential to arrange the objectives in the right
sequence (as introduced above), so as to address the vendor’s scheduling goals
most optimally.

In addition to finding an efficient solution for the given objectives, we adhere to
a few constraints, a couple of which need some explanation. First, once a ticket has
been assigned to an agent, we do not re-assign it to another agent subsequently
(even if it improves the scheduling objectives), although, as new tickets arrive,
we may change its position in the queue. This is to prevent a ticket from hopping
from one agent to anothermultiple times, which would be an irritant for the agents
(since, they may have already reviewed tickets in queue) and will also confuse cus-
tomers (who are notified of ticket assignments). There may indeed be a few cases
where re-assignment is a practical necessity, but for now we leave it to the agents
and supervisors to identify these instances and manually re-assign. Secondly, once
a ticket has breached its SLO, we limit the number of tickets in the queue that ar-
rived later than this ticket but are placed ahead of it. This ensures that no ticket
starves, since otherwise such tickets can get indefinitely delayed as the scheduler
tries to avoid further SLO breaches in new tickets.

4 MIP Formulation

We will now develop a Mixed Integer Programming (MIP) based formulation for
optimal assignment of tickets in shared delivery. This will formalize the objectives
and constraints introduced in Sec. 3.

The set of inputs for the given problem are: (a) a set of customers SC , a set of
priorities SP , a set of ticket categories TC and a set of (Min, Max) resolution time
tuples RT for the different ticket categories; (b) a set of SLAs (SLACP) appli-
cable over a specific service time window (e.g., a month) for different (customer,
priority) combinations, from which we can further derive the sets, (i) SLOCP

representing the time-limits by which tickets of different (customer, priority)
combinations are expected to be solved, (ii) RCP , representing the maximum
percentage of tickets that are allowed to breach the SLO time-limits for different
(customer, priority) combinations, and (iii) QCP , which denotes the penalty per
additional SLO breach beyond maximum allowed percentage limits, for differ-
ent customers and priorities; (c) a set of agents SA {1, 2, ..., M}, and for each
agent a ∈ SA, (i) a set of skills SKa ⊆ TC , comprising the set of ticket cate-
gories the agent can resolve, and (ii) existing load on the agent La due to WIP
ticket’s remaining resolution time in the agent’s queue; (d) a set of (New Arrival
and Queued) tickets ST {1, 2, ..., N} that need to be assigned to the agents,
where each ticket tk contains, (i) information about the customer (Cust(tk)),
priority (Pri(tk)) and category (Cat(tk)) to which it belongs, (ii) time stamp
representing the arrival time of the ticket into the system, denoted by TSk, and

86 H.S. Gupta and B. Sengupta

(iii) information about any existing agent assignment, which needs to be main-
tained in the next run; (e) expertise value fij for each ticket j and agent i; (f)
resolution time tij for each ticket j and agent i (calculated from the min and
max resolution times of the category to which the ticket belongs, and from fij).

Note: In the MIP model of the problem, for compactness we have used the
logical expressions at several places, all of which are linearisable, and have been
linearised for the implementation.

Before describing the MIP model, we first describe the set of decision variables
used in the formulation, secondly the constraints on these variables, and finally
the objectives.

A N×M decision variables matrix (A) is used to record assignment, in which
each entry aij ∈ {0, 1} represents whether a ticket j is assigned to an agent i
or not. The value of any entry aij should result 1 if the ticket j is assigned to
agent i, or 0 otherwise. Similarly, we define two more decision variables matrices
S and E, in which each entry sij ≥ 0 (eij ≥ 0) represents the start time (end
time) of the ticket j if it is assigned to the agent i, or 0 otherwise.

We maintain another N ×M Assignment History Matrix (H) to constrain
the decision matrix (A), and each entry hij ∈ {0, 1} in H is 1 if ticket j was
assigned to agent i (when j is a Queued ticket), or 0 otherwise. Therefore,

∀j ∈ ST ,
∑
i∈SA

hij ≤ 1

Let βij represents the number of tickets in Closed or WIP state, which arrived
later than ticket j, but scheduled before ticket j on agent i. We define also,
αijk ∈ {0, 1} as an indicator variable identifying whether a ticket k arrived later
than a ticket j, and is assigned to agent i ahead of j, i.e.,

αijk =

{
1 if aij = aik = 1 ∧ TSk > TSj ∧ sij ≥ eik
0 otherwise

The completion time for each ticket can be defined as the sum of its end times
on all agents, as the end time of the ticket would be 0 for the agents to whom

ticket is not assigned, i.e., ∀j ∈ ST , cj =
∑
i∈SA

eij

For a ticket j, we use bj ∈ {0, 1} to record if j will breach its SLO or not. The
variable bj = 1 if the ticket’s completion time (cj) is greater than its remaining
SLO time, and 0 otherwise Let tc is the current time (i.e., time when scheduling
starts), then

bj =

⎧⎨
⎩

1 if (Pr(j) = p) ∧ (Cust(j) = c)
∧(cj > SLOcp − (tc − TSj))

0 otherwise

Let for a customer c and priority p, ncp denotes the set of tickets with already
breached SLO’s, rcp denotes the max percentage of tickets allowed to breach
according to SLA, ucp denotes the New Arrivals and the existing tickets which
are in Queued state, vcp denotes the tickets Closed in the past and the tickets
in WIP state, wcp denotes the expected number of tickets in future, mcp denotes

Scheduling Service Tickets in Shared Delivery 87

the maximum number of tickets allowed to breach in the current and future
schedules, qcp denotes the penalty for an SLO breach beyond SLA, and zcp
denotes the number of tickets breaching SLO beyond SLA. Also, an indicator
values matrix G is given, in which each entry γjcp ∈ {0, 1}, is 1 if a ticket j
belongs to customer c and is of priority p, or is 0 otherwise. Now, we can define
mcp and zcp as follows:

mcp = �(|ucp|+ |vcp|+ |wcp|) ∗
rcp
100
� − |ncp|

zcp = max(
∑
j∈ST

(γjcp ∗ bj)−mcp, 0)

Next we specify the set of constraints using the variables and other elements
mentioned earlier.

C1 : Each ticket is assigned to one and only one agent.

∀j ∈ ST ,
∑
i∈SA

aij = 1

C2 : A ticket can only be assigned to an agent who has the required skill to
resolve it.

∀i ∈ SA, j ∈ ST , (aij = 1⇒ Cat(j) ∈ SKi)

C3 : The difference between the end time and start time of a ticket i on agent i
should be equal to the resolution time tij if the ticket is assigned to the agent,
and 0 otherwise:

∀i ∈ SA, j ∈ ST , (eij − sij = tij ∗ aij)
C4 : If a ticket j is assigned to an agent i then the start time (sij) would be
≥ Li, as agent cannot start working on the ticket without closing the ticket in
WIP state with the agent, i.e.,

∀i ∈ SA, j ∈ ST , (sij ≥ aij ∗ Li)

C5 : Since a ticket assigned to an agent is never transferred to another agent in
a subsequent run of the scheduler, and to put this constrain we use the History
Assignment Matrix (H) defined earlier.

∀i ∈ SA, j ∈ ST , (hij = 1⇒ aij = 1)

C6 : To prevent starvation of any ticket j breaching SLO, we put a bound MDC
on the number of tickets which can be scheduled before ticket j and have arrived
later than j in the system (i.e., the number of tickets having time stamp greater
than the time stamp of ticket j):

∀i ∈ SA, ∀j ∈ ST , (bj = 1⇒ (
∑
k∈ST

αijk + βij) ≤MDC)

C7 : The constraint that the tickets do not have overlapping schedule (i.e., an
agent works on one ticket at a time), is defined as follows:

88 H.S. Gupta and B. Sengupta

∀i ∈ SA, j, k ∈ ST (j �= k⇒ (sij ≥ eik ∨ sik ≥ eij))

Subject to the constraints given above, the MIP tries to optimize for the fol-
lowing objectives. The objectives are defined in the order of their priority, as we
discussed in Sec. 3.

Objective 1: Minimizing the total penalty due to SLO breaches beyond SLA’s
of different customer-priority tickets:

minimize(
∑
c∈SC

∑
p∈SP

zcp ∗ qcp)

Objective 2: While the above objective is concerned with SLO breaches be-
yond the SLA limit, we have to try and minimize SLO breaches at each step,
well before the SLA limit has been reached. In addition, we need to ensure that
the SLO breaches, when they must occur, are balanced to the extent possible
across different (customer, priority) combinations, taking into account the rel-
ative criticality of each breach. Since a further mcp + 1 breaches will lead to a
penalty of qcp for a customer c and priority p, we estimate the criticality of each

individual breach as
qcp∗(ucp+wcp)

mcp+1 . We thus have the following two goals:

minimize(max
c∈SC,p∈SP ,mcp>0

(
qcp ∗ (ucp + wcp)

mcp + 1
∗
∑
j

bj ∗ γjcp))

minimize
∑
j∈ST

bj

Objective 3: Load balancing across agents:

minimize(max
i∈SA

(Li +
∑
j∈ST

tij ∗ aij))

Objective 4: To ensure that tickets are assigned to agents with high expertise
whenever possible, we try to maximize the aggregate agent expertise across all
tickets. However, in shared delivery, we also need to ensure that every customer
individually receives a fair share of available expertise, hence we try to maximize
the minimum average expertise of assignments received by any customer. This
is handled through the following objectives:

maximize(min
c∈SC

Fc +
∑
j∈uc

∑
i∈SA

(aij ∗ fij)

uc + vc
)

maximize(
∑
j∈ST

∑
iinSA

(aij ∗ fij))

In the above, uc =
∑
p∈SP

ucp and vc =
∑
p∈SP

vcp. Fc represents the aggregate

expertise received by customer c for all closed and WIP tickets. For a ticket

j ∈ vc, let Ag(j) return the agent who was assigned j. Then, Fc =
∑

j∈vc,Ag(j)=i

fij .

Scheduling Service Tickets in Shared Delivery 89

As the overall problem is multi-objective and there are trade-offs involved
while optimizing for these objectives, we solve for the objectives in the order of
their relative importance, and use the results from one solution as a constraint
when solving the next objective. Although one can go for a dynamic prioritization
of objectives considering the knowledge of their relative importance, but to our
knowledge the presented prioritization of objectives best referred to the current
service delivery environment.

5 Greedy Algorithms

In this section, we present two greedy algorithms which we have used to compare
the MIP approach and the heuristic algorithm that we will propose next. The
first algorithm (GTMin), tries to greedily minimize the number of tardy tickets
(i.e., tickets breaching SLO’s), while the second algorithm (GEMax), maximizes
the average expertise of ticket assignments. In a way, these algorithms represent
baselines for standard scheduling/assignment objectives.

Algorithm: Greedy Tardy Tickets Minimization (GTMin): First sort
the tickets in the increasing order of SLO time limits; Pick the tickets one by
one in the sorted order: (a) assign a Queued ticket to an agent whom it was
assigned previously, and (b) assign a newly arrived ticket to an agent a such
that the ticket’s completion time is least, if is assigned to a. Whenever a ticket
is assigned to an agent, the ticket is added in the end of the agent’s ticket queue.

Algorithm: Greedy Expertise Maximization (GEMax): First sort the
tickets in the increasing order of SLO time limits; Pick the tickets one by one in
the sorted order: (a) assign a Queued ticket to an agent whom it was assigned
previously, and (b) assign a newly arrived ticket to an agent a such that a’s ex-
pertise level is maximum for the category to which the ticket belongs. Whenever
a ticket is assigned to an agent, the ticket is added in the end of the agent’s
ticket queue.

6 Heuristic Algorithm

The heuristic algorithm runs in two phases. The first phase is a variant ofGTMin,
in which the heuristic tries to minimize the number of SLO breaches along with
load balancing (lines 1 to 6), and additionally tries to increase the expertise if
possible (line 6). In the second phase, it tries to reposition a ticket in the same
agent’s queue to whom the ticket is assigned (line 13) , or swap the tickets across
agents with repositioning after swapping (line 15), so that the total penalty
decreases. It is guided by 3 policies: pick-ticket defines the order of selecting
tickets one at a time and either repositioning it in the same queue using tuning-
policy or swapping it with some other ticket along with repositioning according
to swap-policy. Overall, the heuristic considers all objectives during its run, while
meeting constraints.

90 H.S. Gupta and B. Sengupta

Algorithm: Heuristic
Phase 1:
1. Sort the tickets in the increasing order of SLO time limits (deadlines);
2. For each ticket t in sorted order, do
3. CT = minimum completion time, if t is assigned to any agent at the last

position in the agent’s queue;
4. sa = set of agents: ∀a ∈ sa, t’s completion time is within x% (we use

x = 20) of CT , if t is assigned to a at the last position in a’s ticket-queue;
5. If t is in Queued state and previously assigned to agent a′, then

assign t back to agent a′ at last position in a′’s ticket-queue;
6. Otherwise, assign t to an agent a ∈ sa such that a’s expertise is

maximum among all the agents in sa for the category to which t belongs;
Phase 2:
7. PT = total penalty due to SLO breaches so far including past breaches,

beyond SLA’s for all customer-priority pairs;
8. For N = 1 to #tickets, do
9. Pick a ticket t using algorithm pick-ticket;
10. Ptuning = total penalty on tuning the position of t using tuning-policy;
11. Pswap = total penalty on swapping t with other tickets using swap-policy;
12. If Ptuning < PT AND Ptuning ≤ Pswap

13. Readjust the positions of the tickets as suggested by tuning-policy;
14. Else If Pswap ≤ PT

15. Readjust the positions and assignments of the tickets as suggested by
swap-policy;

Pick-Ticket: Choose a ticket from the unpicked tickets abide by the following
rules: (a) choose a ticket which is breaching SLO and for corresponding customer-
priority pair the percentage of SLO breaches is more than the SLA, (b) in case
of a tie from the rule-a, then choose a ticket, the penalty of which is maximum
among all the penalized breaching unpicked tickets, (c) to break a tie further,
choose a ticket having highest criticality value, (d) in case of further tie, choose
a ticket having least deadline (SLO time limit) which can be negative also, (e) if
more than one ticket follow all the three rules, then pick any of them and return.

Tuning-policy(t): Shift the ticket t backward and forward in the same agent’s
queue to whom the ticket is assigned, by shifting other tickets in the queue
appropriately. Pick a shift among all the positions tried, such that the total
penalty after the shift is minimum among the total penalties after other shifts,
and is also less than the total penalty before the shift. If more than one shifts
induce same amount of reduction in the total penalty, then choose the position
such that the shift is minimum from the original position. While shifting the
tickets maintain the starvation constraints (i.e., any Queued ticket is not delayed
by more than MDC number of tickets arrived later than t). Suggest the new
positions of the tickets.

Swap-policy(t): Swap the ticket t with each of the other tickets t′, one by one.
Let t is assigned to agent a and t′ is assigned to agent a′. If t and t′ are assigned

Scheduling Service Tickets in Shared Delivery 91

to same agent (i.e., a = a′) then do nothing. Otherwise, swap the positions and
assignments of the tickets (i.e., assign t to a′ and t′ to a). Tune the positions of
t in a′’s queue and t′ in a’s queue respectively, such that the reduction in total
penalty after tuning the positions is maximum. Restore the assignments and
positions of the tickets, and repeat the swapping of t with other tickets. Among
all the swaps, pick a swap such that the total penalty is minimum among all the
swaps with different tickets. Suggest the new assignments and positions of the
tickets.

7 Experiments

7.1 Methodology

To test the efficacy of our scheduling approaches (MIP, heuristic) through exper-
iments, we have designed an event driven simulator, which mimics the service
delivery system by tracking events such as: ticket generation, dispatch event,
start ticket event (which occurs when an agent picks a ticket from queue), and
ticket departure event (when a ticket is closed). For our experiments, data sets
were designed with utmost care, by studying historical data sets and through in-
teractions with service delivery practitioners. We consider 10 different ticket cat-
egories, 5 different customers and 4 priority levels P1 (highest priority) through
P4 (lowest priority). Approximate distribution of tickets across different priority
levels is as follows: P1 : 5%, P2 : 10%, P3 : 35%, P4 : 50%. For each (customer,
priority) combination, the SLOs are generated in the range of 3 to 40 time units,
the maximum allowed breaches are varied from 5% to 20%, while SLA penalties
are generated in the range of 1 to 20 monetary units. To ensure realistic SLAs,
the data generation procedure was constrained so that for each customer, SLOs
for higher priority tickets are smaller than for lower priority tickets, maximum
allowed breach level %s are lower, while SLA penalties are higher, reflecting the
higher criticality associated with higher priority. For each category c, we assume
we have a minimum (tcmin) and a maximum (tcmax) observed resolution time
(ORT), through historical analysis of tickets of that category. With each agent,
we associate between 2 to 6 categories reflecting his/her skills, generated from a
Gaussian distribution. For each (agent, category) pair, we set an expertise level
= 0 if the agent does not have the corresponding skill, otherwise an expertise
value is assigned in the range of 0.1 to 0.9, using a Gaussian distribution. We
define the Estimated Resolution Time (ERT) tij for a ticket j (of category c)
and agent i as follows, where α the expertise of the agent for the category c:

tij = tcmax −
tcmax − tcmin

2
∗ α2

For an agent with very high expertise, this means that the resolution time is
estimated to be around the middle of the (min, max) ORT range. This is a
realistic approach, since the historical minimum time observed for a ticket of
a given category cannot be directly and completely linked to the expertise of

92 H.S. Gupta and B. Sengupta

the agent who had resolved it. Also, we use α2, so that ERT grows sub-linearly
with decrease in expertise. To predict the future volume (used in computing the
criticality value) corresponding to a customer and priority, we perturb the future
volume from the dataset randomly within ±20% for a period of 1000 time units.
We do all the experiments for a stream of 1000 tickets, and with number of agents
varying from 10 to 50. The frequency of scheduling is set to 0.3 time units, i.e.,
after every 0.3 time units the scheduler (MIP, heuristic, GTMin, or GEMax)
is invoked to schedule and reposition, the new arrivals within this period and
Queued tickets respectively.

We consider a Poisson model for tickets arrival, where the inter-arrival times
follow an exponential distribution, with bursts following Gaussian distribution
(as bursts are periodic, occurring mostly at the start of a service shift). To
generate the ticket arrivals, (i) first, we generate a large number of tickets (nor-
mal stream) with exponentially distributed inter-arrival times (mean arrival rate
λ = 1

avg. ERT), (ii) then, generate a sequence of bursts (burst-stream) following
Gaussian distribution with independent exponentially distributed inter-arrivals
within each burst, (iii) for each experiment, as the number of agents (m) is var-
ied, the inter-arrival times in the normal stream is adjusted uniformly to match
the arrival rate of the merged stream (normal-stream merged with burst-stream)
with the service rate (y), where m = y+ y1/3. This makes the overall utilization
more aggressive than the well-known square-root staffing approach [11]. Finally,
we set maximum delay count (MDC) to 8, to avoid starvation for tickets that
breach SLO. To solve the MIP formulation, we used Java APIs of ILOG-CPLEX,
with a time bound of 3 min. for each of the objectives.

7.2 Results

To analyze the efficacy of our scheduling algorithms for shared delivery, we mea-
sure a set of metrics in course of our simulation experiments. These metrics
follow directly from the scheduling objectives introduced earlier.

Fig. 1. Total penalty due to SLO breaches beyond SLAs of customer-priority pairs

Scheduling Service Tickets in Shared Delivery 93

The first metric (corresponding to SLA Penalty Minimization) is the total
penalty induced by the SLO breaches beyond SLAs, the results of which are shown
in Fig 1 along with the table of values in the bottom. As we see, for the first two
experiments (with 10 and 20 agents),MIP andHeuristic induce the least penalty.
GTMin causes a penalty increase of 24.4% and 21.8% overMIP penalties for the
two experiments respectively. The GEMax algorithm does not perform well, as it
is concerned mainly with the maximization of expertise in assignments. Starting
from the third experiment (with 30 agents), we found that MIP fails to return
any feasible assignment within the allotted time. On deeper investigation, we
discovered that due to bursty arrival and queued tickets, the number of tickets
to be scheduled in some runs was around 50. This led to a huge increase in the
number of internal variables and constraints (>70,000), since these are of the
order of O(MN2) whereM and N refer to #agents and #tickets respectively. To
circumvent this problem, for MIP experiments with (30, 40, 50) agents, we did
not consider all the Queued tickets at every scheduling run, but fixed many of
them at their existing queue positions. This made scheduling tractable, but led
to a sharp increase in SLA penalty for MIP, as seen in Fig 1. This demonstrates
that by usually allowing ticket positions to change in a queue, we are able to
save on a lot of SLO breaches and SLA penalty.

Fig. 2. Standard deviation of average expertise of assignments of tickets belonging to
different customers

Next, we measure the S.D. of agent load at every run (corresponding to the
load balancing objective). MIP, heuristic and GTMin all did well on this metric,
showing that load is well-balanced by all of them. For example, for 20 agents,
the S.D. value for MIP ranges from (1.78 to 36.7), and is only slightly higher for
the heuristic and GTMin. Expectedly, GEMax returns poor results, with a S.D.
range of (4.09 to 631.19) across all the runs for 20 agents. This is because there
are a few multi-skilled people with high expertise in our experimental set-up,
who attract many tickets due to expertise maximization, irrespective of their
current load (which also leads to high SLA penalty, as seen above).

94 H.S. Gupta and B. Sengupta

We then compute the S.D. of average expertise of assignments across all cus-
tomers (Fig. 2). We find that while GEMax performs consistently well on the
fourth objective, the other approaches show slightly higher S.D., which means
that each customer is given a lesser balanced share of the available expertise.
We also measured the average expertise of all assignments across all customers,
and found that it ranges between [0.73, 0.86] for GEMax when aggregated over
all runs, while the corresponding values for GTMin are [0.59, 0.63]. MIP and
heuristic performed comparably with ranges from [0.60, 0.67] and [0.63, 0.71]
respectively.

Finally, we measure the average time taken by various algorithms per run.
MIP takes comparatively large time (235.8 - 416.9 sec.) per run for all the
experiments across different numbers of agents, while all other approaches take
negligible time (< 6 seconds at most). It should be noted that for the MIP, we
accepted whatever feasible solution it provided in cases where optimal solution
could not be reached in the bounded time.

8 Discussions

Our experimental results demonstrate the effectiveness of our scheduling ap-
proaches for shared service delivery. Compared to GTMin which greedily reduces
SLO breaches, the MIP and heuristic approaches give comparable or better re-
sults for SLA penalty minimization and load balancing. Another highlight of
the results is that we are able to balance individual customer interests very well,
both in terms of criticality of SLO breaches and the sharing of expertise. We also
observe that the MIP-based approach works well for moderate sized problems
but its performance degrades with scale, while the heuristic scales very well and
can rapidly generate solutions of acceptable quality. Thus a combination of the
two approaches can allow us to traverse a large problem space very effectively. In
future, we plan to empirically study a service delivery system to determine how
well we can estimate ticket resolution effort, agent expertise, and the relationship
between the same.

References

1. Application assembly optimization: a distinct approach to global delivery. White
Paper, IBM GBS (2010)

2. Deshpande, P.M., Garg, D., Rama Suri, N.: Auction based models for ticket allo-
cation problem in it service delivery industry. In: IEEE Intl. Conf. on Ser. Comp.,
SCC (2008)

3. Gans, N., et al.: Telephone call centers: Tutorial, review, and research prospects.
Manf. & Ser. Op. Mgmt. 5 (2003)

4. Gupta, P., Parija, G.R.: Efficient seat utilization in global it delivery service sys-
tems. In: IEEE SCC, pp. 97–103 (2009)

5. Kakal, C.S.: Global shared support service: Leveraging expertise, sharing costs,
and deriving value. White Paper, Infosys (May 2005)

Scheduling Service Tickets in Shared Delivery 95

6. Karger, D., Stein, C., Wein, J.: Scheduling algorithms. In: Algorithms and Theory
of Computation Handbook (2010)

7. Khan, A., et al.: Aim-hi: a framework for request routing in large-scale it global
service delivery. IBM J. Res. Dev. 53 (2009)

8. Lawler, E.L., et al.: Sequencing and scheduling: Algorithms and complexity. In:
Logistics of Production and Inventory, vol. 4, pp. 445–522. Elsevier (1993)

9. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Efficient ticket routing by
resolution sequence mining. In: KDD (2008)

10. Subbian, K., et al.: Incentive compatible mechanisms for group ticket allocation in
software maintenance services. In: APSEC (2007)

11. Wallace, R.B., Whitt, W.: A staffing algorithm for call centers with skill-based
routing. Manufacturing & Service Operations Management 7 (2005)

12. Zhou, N., Ma, Q., Ratakonda, K.: Quantitative modeling of communication cost
for global service delivery. In: IEEE SCC, pp. 388–395 (2009)

Programming Hybrid Services in the Cloud

Hong-Linh Truong1, Schahram Dustdar1, and Kamal Bhattacharya2

1 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

2 IBM Research - India
kambhatt@in.ibm.com

Abstract. For solving complex problems, we advocate constructing “social com-
puters” which combine software and human services. However, to date, human
capabilities cannot be easily programmed into applications in a similar way
like software capabilities. Existing approaches exploiting human capabilities via
crowds do not support well on-demand, proactive, team-based human computa-
tion. In this paper, we explore a new way to virtualize, provision and program
human capabilities using cloud computing concepts and service delivery mod-
els. We propose novel methods for modeling clouds of human-based services and
combine human-based services with software-based services to establish clouds
of hybrid services. In our model, we present common APIs, similar to APIs for
software services, to access individual and team-based compute units in clouds of
human-based services. Based on that, we propose frameworks and programming
primitives for hybrid services. We illustrate our concepts via some examples of
using our cloud APIs and existing cloud APIs for software.

1 Introduction

Recently the concept of building social computers has emerged, in which the main
principle is to combine human capabilities and software capabilities into composite ap-
plications solving complex problems [1, 2]. Furthermore, concrete technologies have
been employed to provide human capabilities via standard, easy-to-use interface, such
as Web services and Web platforms [3–5] and some efforts have been devoted for mod-
eling and coordinating flows of human works in the process level [6, 7]. In all these
works, a fundamental issue is how to program human capabilities. We observed two
main approaches in utilizing human capabilities: (i) passively proposing tasks and wait-
ing for human input, such as in crowd platforms [5], and (ii) actively finding and bind-
ing human capabilities into applications. While the first one is quite popular and has
many successful applications [8–10, 5, 11], it mainly exploits individual capabilities
and is platform-specific. In the second approach, it is difficult to proactively invoke hu-
man capabilities in Internet-scale due to the lack of techniques and systems supporting
proactive utilization of human capabilities [2].

In this paper, we conceptualize human capabilities under the service model and com-
bine them with software establishing clouds of hybrid services. In our approach, we
explore novel ways to actively program and utilize human capabilities in a similar way
to software services. Our research question is how to provision and program human
capabilities using cloud service and deployment models for high level frameworks and
programming languages to build “social computers”.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 96–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Programming Hybrid Services in the Cloud 97

1.1 Motivation

Hybrid services, in our notion, include software-based services (SBS) and human-based
services (HBS). We argue that we could provide a cloud of HBS working in a similar
manner to contemporary clouds of SBS (such as Amazon services and Microsoft Azure
services) so that HBS can be invoked and utilized in a proactive manner, rather than in
a passive way like in crowdsourcing platforms. Furthermore, HBS can be programmed
together with SBS in a composite application, instead of being used separately from
SBS as in contemporary crowdsourcing platforms.

Our goal is to program HBS and SBS together in an easier way because several com-
plex applications need to utilize SBS and HBS in a similar way. For example, several
Information Technology (IT) problems, such as in incident management for IT systems,
software component development, and collaborative data analytics, can be described as
a dependency graph of tasks in which a task represents a unit of work that should be
solved by a human or a software. Solving a task may need to concurrently consider
other relevant tasks in the same graph as well as introduce new tasks (this in turns ex-
pands the task graph). Utilizing team and hybrid services is important here as tasks are
interdependent, but unlike crowdsourcing scenarios in which different humans solving
different tasks without the context of teamwork and without the connectedness to SBS.
Teamwork is crucial as it allows team members to delegate tasks when they cannot
deal with the task as well as newly tasks can be identified and created that need to be
solved. SBS for teamwork is crucial for team working platforms in terms of communi-
cation, coordination, and analytics. Therefore, it is crucial to have solutions to provision
individual- and team-based human capabilities under clouds of human capabilities, in
parallel with the provisioning of SBS.

These clouds require novel service models and infrastructures to provide and support
on-demand and elastic HBS provisioning. We need solutions allowing us to buy and
provision human capabilities via simple interfaces in a similar way to buying and pro-
visioning virtual machines in contemporary clouds of Infrastructure-as-a-Service (IaaS)
and Software-as-a-Service (SaaS). However, so far, to our best knowledge, there is no
proposed solution towards a cloud model for human capabilities that enables to acquire,
program, and utilize HBS in a similar way to that of IaaS, Platform-as-a-Service (PaaS)
and SaaS.

1.2 Contributions and Paper Structure

We concentrate on conceptualizing the cloud of HBS and how clouds of HBS and SBS
can be programmed for solving complex problems. Our main contributions are:

– a novel model for clouds of HBS and hybrid services provisioning
– a framework for solving complex problems using clouds of hybrid services
– programming primitives for hybrid services

The rest of this paper is organized as follows. Section 2 discusses our model of clouds
of hybrid services. Section 3 describes a generic framework for using hybrid services.
Section 4 describes programming primitives and examples utilizing clouds of hybrid
services. We discuss related work in Section 5. Section 6 concludes the paper and out-
lines our future work.

98 H.-L. Truong, S. Dustdar, and K. Bhattacharya

2 Models for Clouds of Hybrid Services

In our work, we consider two types of computing elements: software-based comput-
ing elements and human-based computing elements. In software-based computing ele-
ments, different types of services can be provided to exploit machine capabilities and
we consider these types of services under Software-based Service (SBS) category. Sim-
ilarly, human-based computing elements can also offer different types of services under
the HBS category. We consider a cloud of hybrid services as follows:

Definition 1 (Cloud of hybrid services). A cloud of hybrid services includes SBS and
HBS that can be provisioned, deployed and utilized on-demand based on different pric-
ing models.

In principle, a cloud of hybrid services can also be built atop clouds of SBS and clouds
of HBS. As SBS and clouds of SBS are well-researched, in the following we will discuss
models for clouds of HBS and of hybrid services.

2.1 Models for HBS

In principle, human capabilities can be provisioned under the service model, e.g., our
previous work introduced a technology to offer individual human capabilities under
Web services [3]. However, at the moment, there exists no cloud system that the con-
sumer can program HBS in a similar way like IaaS (e.g., Amazon EC) or data (e.g.,
Microsoft Azure Data Marketplace). Before discussing how clouds of hybrid services
can be used, we propose a conceptual model for clouds of HBS.

HBS Communication Interface. Humans have different ways to interact with other
humans and ICT systems. Conceptually, we can assume that HBS (and corresponding
HBS clouds) abstracting human capabilities can provide different communication in-
terfaces to handle tasks based on a request and response model. Requests can be used
to describe tasks/messages that an HBS should perform or receive. In SBS, specific
request representations (e.g., based on XML) are designed for specific software layers
(e.g., application layer, middleware layer, or hardware layer). In HBS we can assume
that a single representation can be used, as HBS does not have similar layer structures
seen in SBS. Requests in HBS can, therefore, be composed and decomposed into differ-
ent (sub)requests. The use of the request/response model will facilitate the integration
between SBS and HBS as via similar service APIs.

Unlike SBS in which communication can be synchronous or asynchronous, in HBS
all communication is asynchronous. In general, the upper bound of the communication
delay in and the internal request processing mechanism in HBS are unknown. However,
HBS intercommunication can be modeled using:

– message-passing in which two HBS can directly exchange requests: hbsi →
request

hbsj . One example is that hbsi sends a request via SMS to hbsj . Similarly, an SBS
can also send a request directly to an HBS.

– shared-memory in which two HBS can exchange requests via a SBS. For exam-
ple, hbsi stores a request into a Dropbox1 directory and hbsj obtains the request

1 www.dropbox.com

www.dropbox.com

Programming Hybrid Services in the Cloud 99

from the Dropbox directory. Similarly, an SBS and HBS can also exchange re-
quests/responses via an SBS or an HBS (e.g., a software can be built atop Dropbox
to trigger actions when a file is stored into a Dropbox directory (see http://
www.wappwolf.com)).

Similarly to machine instances which offer facilities for remote job deployment and
execution, an HBS communication interface can be used to run requests/jobs on HBS.

Human Power Unit (HPU). The first issue is to define a basic model for describing the
notion of “computing power” of HBS. Usually, the computing capability of a human-
based computing element is described via human skills and skill levels. Although there
is no standard way to compare skills and skill levels described and/or verified by dif-
ferent people and organizations, we think that it is feasible to establish a common,
comparative skills for a particular cloud of HBS.

– the cloud can enforce different evaluation techniques to ensure that any HBS in
its system will declare skills and skill levels in a cloud-wide consistency. This is,
for example, similar to some crowdsourcing systems which have rigorous tests to
verify claimed skills.

– the cloud can use different benchmarks to test humans to validate skills and skill
levels. Each benchmark can be used to test a skill and skill level. This is, for exam-
ple, similar to Amazon which uses benchmarks to define its elastic compute unit.

– the cloud can map different skills from different sources into a common view which
is consistent in the whole cloud.

We define HPU for an HBS as follows:

Definition 2 (Human Power Unit). HPU is a value describing the computing power
of an HBS measured in an abstract unit. A cloud of HBS has a pre-defined basic power
unit, hpuθ, corresponding to the baseline skill bsθ of the cloud.

Without the loss of generality, we assume hpuθ = f(bsθ). A cloud C provisioning HBS
can support a set of n skills SK = {sk1, · · · , skn} and a set of m cloud skill levels
SL = {1, · · · ,m}. C can define the human power unit wrt ski for slj as follows:

hpu(ski, slj) = hpuθ ×
f(ski)

f(bsθ)
× slj (1)

For the cloud C, f(ski)
f(bsθ)

is known (based on the definition of SK). Given the capability
of an hbs – CS(hbs) = {(sk1, sl1), · · · , (sku, slu)} – the corresponding hpu can be
calculated as follows:

hpu(CS(hbs)) =

u∑
i=1

hpu(ski, sli) (2)

Note that two HBS can have the same hpu value, even their skills are different. To dis-
tinguish them, we propose to use a set of “architecture” types (e.g., similar to different
types of instruction set architectures such as x86, SPARC, and ARM), and the cloud

http://www.wappwolf.com
http://www.wappwolf.com

100 H.-L. Truong, S. Dustdar, and K. Bhattacharya

provider can map an HBS into an architecture type by using its skills and skill levels.
Given a human offering her capabilities to C, she can be used exclusively or shared
among different consumers. In case an hbs is provisioned exclusively for a particular
consumer, the hbs can be associated with a theoretical utilization u – describing the uti-
lization of a human – and CS(hbs); its theoretical HPU would be u× hpu(CS(hbs)).
In case a hbs is provisioned for multiple consumers, the hbs can be described as a
set of multiple instances, each has a theoretical power as ui × hpu(CSi(hbs)) where
u =

∑
(ui) ≤ 1 and CS(hbs) = CS1(hbs) ∪CS2(hbs) ∪ · · · ∪ CSq(hbs) .

Using this model, we can determine theoretical power for individual HBS as well as
for a set of individual HBS. Note that the power of a set of HBS may be more than the
sum of power units of its individual HBS, due to teamwork. However, we can assume
that, similar to individual and cluster of machines, theoretical power units are different
from the real one and are mainly useful for selecting HBS and defining prices.

2.2 HBS Instances Provisioning

Types of HBS Instances For HBS we will consider two types of instances:

Definition 3 (Individual Compute Unit instances (iICU)). iICU describe instances
of HBS built atop capabilities of individuals. An individual can provide different iICU.
Analogous to SBS, an iICU is similar to an instance of a virtual machine or a software.

Definition 4 (Social Compute Unit instances (iSCU)). iSCU describe instances of
HBS built atop capabilities of multiple individuals and SBS. Analogous to SBS, an iSCU
is similar to a virtual cluster of machines or a complex set of software services.

In our approach, iICU is built based on the concept that an individual can offer her
capabilities via services [3] and iSCU is built based on the concept of Social Compute
Units [12]) which represents a team of individuals.

HBS Instance Description. Let C be a cloud of hybrid services. All services in C can
be described as follows: C = HBS ∪ SBS where HBS is the set of HBS instances
and SBS is the set of SBS instances. The model for SBS is well-known in contem-
porary clouds and can be characterized as SBS(capability, price). The provisioning
description models for HBS instances are proposed as follows:

– For an iICU its provisioning description includes (CS, HPU , price, utilization,
location, APIs).

– For an iSCU its provisioning description includes (CS,HPU , price, utilization,
connectedness, location, APIs).

From the consumer perspective, iSCU can be offered by the cloud provider or the con-
sumer can build its own iSCU . In principle, in order to build an SCU, the provider or
the consumer can follow the following steps: first, selecting suitable iICU for an iSCU
and, second, combining and configuring SBS to have a working platform for iSCU .
The connectedness reflects the intercommunication topology connecting members of
iSCU , such as ring, star, and master-slave, typically configured via SBS. APIs de-
scribe how to communicate to and execute requests on HBS. Moreover, similar to SBS,
HBS can also be linked to user rating information, often managed by third-parties.

Programming Hybrid Services in the Cloud 101

Pricing Factors. Similar to existing SBS clouds, we propose clouds of HBS to define
different pricing models for different types of HBS instances. The baseline for the prices
can be based on hpuθ. We propose to consider the following specific pricing factors:

– utilization: unlike individual machines whose theoretical utilization when selling
is 100%, ICU has much lower theoretical utilization, e.g., normal full time people
have a utilization of 33.33% (8 hours per day). However, an SCU can theoretically
have 100% utilization. The real utilization of an HBS is controlled by the HBS
rather than by the consumer as in machine/software instances.

– offering communication APIs: it is important that different communication capa-
bilities will foster the utilization of HBS. Therefore, the provider can also bill con-
sumers based on communication APIs (e.g., charge more when SMS is enabled).

– connectedness: similar to capabilities of (virtual) networks between machines in
a (virtual) cluster, the connectedness of an iSCU will have a strong impact on
the performance of iSCU . Similar to pricing models in existing collaboration ser-
vices2, the pricing factor for connectedness can be built based on which SBS and
collaboration features are used for iSCU.

Furthermore, other conventional factors used in SBS such as usage duration and loca-
tion are considered.

2.3 Cloud APIs for Provisioning Hybrid Services

Services in a cloud of hybrid services can be requested and provisioned on-demand. As
APIs for provisioning SBS are well developed, we will focus on APIs for provisioning
HBS. Table 1 describes some APIs that we develop for hybrid services in our VieCOM
(Vienna Elastic Computing Model). These APIs are designed in a similar manner to
common APIs for SBS.

Figure 1 shows main Java-based classes representing HPU, HBS and its subclasses
(ICU and SCU), requests and messages for HBS (HBSRequest and HBSMessage),
and skills (CloudSkill, Skill, and SkillLevel). Currently, we simulate our
cloud of HBS. For SBS, we use existing APIs provided by cloud providers and common
client APIs libraries, such as JClouds (www.jclouds.org) and boto (http://
docs.pythonboto.org/en/latest/index.html).

3 Framework for Utilizing Hybrid Services

By utilizing hybrid services in clouds, we could potentially solve several complex prob-
lems that need both SBS and HBS. In our work, we consider complex problems that
can be described under dependency graphs. Let DG be dependency graph of tasks to be
solved;DG can be provided or extracted automatically. In order to solve a task t ∈ DG,
we need to determine whether t will be solved by SBS, HBS or their combination. For
example, let t be a virtual machine failure and the virtual machine is provisioned by

2 Such as in Google Apps for Business (http://www.google.com/enterprise/apps/
business/pricing.html)

www.jclouds.org
http://docs.pythonboto.org/en/latest/index.html
http://docs.pythonboto.org/en/latest/index.html
http://www.google.com/enterprise/apps/business/pricing.html
http://www.google.com/enterprise/apps/business/pricing.html

102 H.-L. Truong, S. Dustdar, and K. Bhattacharya

Table 1. Main APIs for provisioning HBS

APIs Description

APIs for service information and management
listSkills ();listSkillLevels() list all pre-defined skills and skill levels of clouds
listICU();listSCU() list all iICU and iSCU instances that can be used. Different filters

can be applied to the listing
negotiateHBS() negotiate service contract with an iICU or an iSCU . In many

cases, the cloud can just give the service contract and the consumer
has to accept it (e.g., similar to SBS clouds)

startHBS() start an iICU or an iSCU . By starting, the HBS is being used.
Depending on the provisioning contract, the usage can be time-
based (subscription model) or task-based (pay-per-use model)

suspendHBS () suspend the operation of an iICU or iSCU . Note that in suspend-
ing mode, the HBS is not released yet for other consumers yet.

resumeHBS () resume the work of an iICU or iSCU

stopHBS() stop the operation of an iICU or iSCU . By stopping the HBS is
no longer available for the consumer

reduceHBS() reduce the capabilities of iICU or iSCU

expandHBS() expand the capabilities of iICU or iSCU

APIs for service execution and communication
runRequestOnHBS() execute a request on an iICU or iSCU . By execution, the HBS

will receive the request and perform it.
receiveResultFromHBS() receive the result from an iICU or iSCU

sendMessageToHBS() send (support) messages to HBS
receiveMessageFromHBS() receive messages from HBS

Fig. 1. Example of some Java-based APIs for clouds of HBS

Programming Hybrid Services in the Cloud 103

Amazon EC2. Two possibilities can be performed: (i) request a new virtual machine
from Amazon EC and configure the new virtual machine suitable for the work or (ii)
request an HBS to fix the virtual machine. In case (i) SBS can be invoked, while for
case (ii) we need to invoke an HBS which might need to be provisioned with extra SBS
for supporting the failure analysis.

Our approach for utilizing hybrid services includes the following points:

– link tasks with their required human power units via skills and skill levels, before
programming how to utilize HBS and SBS.

– form or select suitable iSCU or iICU for solving tasks. Different strategies will
be developed for forming or selecting suitable iSCU or iICU , such as utilizing
different ways to traverse the dependency graph and to optimize the formation ob-
jective.

– program different strategies of utilizing iSCU and iICU , such as considering the
elasticity of HBS due to changes of tasks and HBS. This is achieved by using
programming primitives and constructs atop APIs for hybrid services.

HBS
Formation

description

HBS Change
 Management

Task Change
Management

solve tasks

Change
Adaptation

change detection

changerequest HBS

create/modify

iICU|iSCU
change detection

change

algo

algo

algo

human power
unithuman power

unit

SBS
Adaptation

cloud of hybrid services

description

task dependency

Fig. 2. Conceptual architecture

Figure 2 describes the conceptual architecture of our framework for solving com-
plex problems. Given a task dependency graph, we can detect changes in required hu-
man computing power by using Task Change Management. Detected required power
changes will be sent to Change Adaptation, which in turns triggers different operations
on HBS usage, such as creating new HBS or adapting an existing HBS. The opera-
tions on HBS are provided via different algorithms, each suitable for specific situations.

104 H.-L. Truong, S. Dustdar, and K. Bhattacharya

When an HBS deals with a task graph, the HBS can change the task graph and its
required human power units (this will trigger HBS operations again). During the solving
process, HBS can change and this can be detected by HBS Change Management. The
HBS change will be sent to Change Adaptation.

4 Programming Hybrid Services

In this section, we discuss some programming primitives for hybrid services that can be
applied to complex application framework that we mentioned before. Such a primitives
can be used in different components, such as HBSFormation and ChangeAdaptation, in
our framework described in Figure 2. In illustrating programming examples, we con-
sider a virtualized cloud of hybrid services that are built atop our cloud of HBS and
real-world clouds of SBS. Consequently, we will combine our APIs, described in Sec-
tion 2.3, with existing client cloud API libraries.

4.1 Modeling HPU-Aware Task Dependency Graphs

Our main idea in modeling HPU-aware task dependencies is to link tasks to required
management skills and compliance constraints:

– human resource skills: represent skill sets that are required for dealing with prob-
lems/management activities.

– constraints: represent constraints, such as resource locations, governance compli-
ance, time, cost, etc., that are associated with management activities and humans
dealing with these activities.

Given a dependency graph of tasks, these types of information can be provided man-
ually or automatically (e.g., using knowledge extraction). Generally, we model depen-
dencies among tasks and required skills and compliance constraints as a directed graph
G(N,E) where N is a set of nodes and E is a set of edges. A node n ∈ N represents
a task or required skills/compliance constraints, whereas an edge e(ni, nj) ∈ E means
that nj is dependent on ni (ni can cause some effect on nj or ni can manage nj). Edges
may be associated with weighted factors to indicate the importance of edges. The re-
quired skills, compliance constraints and weighted factors will be used to determine the
required human power unit (HPU) for a task, to select iICU and members for iSCU ,
and to build the connectedness for SCUs.

Examples and Implementation. Figure 3 presents an example of a dependency graph
of an IT system linked to management skills. In our implementation of dependency
graph, we use JGraphT (http://jgrapht.org/). We define two main types of
Node – ITProblem and Management. All relationships are dependency. It is also pos-
sible to use TOSCA [13] to link people skills and map TOSCA-based description to
JGraphT.

4.2 Combining HBS and SBS

Combining HBS and SBS is a common need in solving complex problems (e.g., in
evaluating quality of data in simulation workflows). In our framework, this feature can

http://jgrapht.org/

Programming Hybrid Services in the Cloud 105

lotusdomino

w a s

isDeployedOn

BusinessApplicationsServices

supportedBy EmailandCollaborationServices

supportedBy

aix

isDeployedOn

db2

dependsOn supportedBy

WebMiddleware

supportedBy

emcbackup

dependsOn

PlatformSupportUnix

supportedBy

nasbox

dependsOn

n e t w o r k

dependsOn

DatabaseManagemen t

supportedBy

StorageDASDBackupRestore

supportedBydependsOn supportedBysupportedBy

NetworkService

supportedBy

Fig. 3. An example of HPU-aware dependency graph. A component box describes a software and
its problems (ITProblem node). An eclipse describes management skills (Management node).

be used for preparing inputs managed by SBS for an HBS work or managing outputs
from HBS work. Furthermore, it can be used to provision SBS as utilities for HBS work
(e.g., requiring HBS to utilize specific SBS in order to produce the result where SBS is
provisioned by the consumer).

Examples. Listing 1.1 shows an example of programming a combination of HBS and
SBS for a task using our cloud APIs and JClouds. In this example, we want to invoke
Amazon S3 to store a log file of a Web application sever and invoke an HBS to find
problems. Using this way, we can also combine HBS with HBS and of course SBS with
SBS from different clouds.

/ / u s i n g JClouds APIs t o s t o r e l o g f i l e o f web a p p l i c a t i o n s e r v e r
B l o b S t o r e C o n t e x t c o n t e x t =

new B l o b S t o r e C o n t e x t F a c t o r y () . c r e a t e C o n t e x t ("aws-s3" ,"REMOVED
" ,"REMOVED") ;

B l o b S t o r e b l o b S t o r e = c o n t e x t . g e t B l o b S t o r e () ;
/ / and add f i l e i n t o Amazon S3
Blob blob = b l o b S t o r e . b l o b B u i l d e r ("hbstest") . b u i l d () ;
b lob . s e t P a y l o a d (new F i l e ("was.log")) ;
b l o b S t o r e . pu tB lob ("hbstest" , b lob) ;
S t r i n g u r i = b lob . g e t M e t a d a t a () . g e t P u b l i c U r i () . t o S t r i n g () ;
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
/ / assume t h a t WM6 i s t h e HBS t h a t can a n a l y z e t h e Web Middleware

problem
vieCOMHBS . s t a r tHBS ("WM6") ;
HBSRequest r e q u e s t = new HBSRequest () ;
r e q u e s t . s e t D e s c r i p t i o n ("Find possible problems from " + u r i) ;
vieCOMHBS . runRequestOnHBS ("WM6" , r e q u e s t) ;

Listing 1.1. Example of HBS combined with SBS

106 H.-L. Truong, S. Dustdar, and K. Bhattacharya

4.3 Forming and Configuring iSCUs

A cloud provider can form an iSCU and provide it to the consumer as well as a con-
sumer can select iICU and SBS to form an iSCU . An iSCU not only includes HBS
(iICU or other sub iSCU) but also consists of possible SBS for ensuring the connect-
edness within iSCU and for supporting the work. There are different ways to form
SCUs. In the following, we will describe some approaches for forming SCUs to solve
a dependency graph of tasks.

Selecting Resources for iSCU. Given a task t ∈ DG, our approach in dealing with
t is that we do not just simply take required management resources suitable for t but
we need to consider possible impacts of other tasks when solving t and the chain of
dependencies. To this end, we utilizeDG to determine a set of suitable human resources
to deal with t and t’s possible impact. Such human resources establish HBS capabilities
in an iSCU . Overall, the following steps are carried out to determine required SCU:

– Step 1: determine DGBAU ⊆ DG where DGBAU includes all tj ∃ a walk (tj , t),
tj is the task that must be dealt together with t in typical Business-As-Usual cases.

– Step 2: determine DGCA ⊆ DG that includes tasks that should be taken into
account under corrective action (CA) cases. DGCA = {tr} ∃ a walk(tr, tj) with
tj ∈ DGBAU .

– Step 3: merge DGSCU = DGBAU ∪DGCA by (re)assigning weighted factors to
links between (tk, tl) ∈ DGSCU based on whether (i) tk and tl belong to DGBAU

or DGCA, (ii) reaction chain from t to tk or to tl, and (iii) the original weighted
factor of links consisting of tk or tl.

– Step 4: traverse DGSCU , ∀ti ∈ DGSCU , consider all (ti, ri) where ri is manage-
ment resource node linking to ti in order to determine human resources.

Based on the above-mentioned description different SCU formation strategies can be
developed. Note that our principles mentioned above aim at forming iSCU enough

Table 2. Examples of SCU formation strategies

Algorithms Description
SkillWithNPath Select iICU for iSCU based on only skills with a pre-defined network path

length starting from the task to be solved.
SkillMinCostWith
NPath

Select iICU for iSCU based on only skills with minimum cost, considering
a pre-defined network path length starting from the task to be solved.

SkillMinCostMax
LevelWithNPath

Select iICU for iSCU based on skills with minimum cost and maximum
skill levels, considering a pre-defined network path length starting from the
task to be solved.

SkillWithNPathUn
Directed

Similar to SkillW ithNPath but considering undirected dependency

MinCostWithNPath
UnDirected

Similar to MinCostWithNPath but considering undirected dependency

MinCostWithAvail
NPathUnDirected

Select Select iICU for iSCU based on skills with minimum cost, consider-
ing availability and a pre-defined network path length starting from the task
to be solved. Undirected dependencies are considered.

Programming Hybrid Services in the Cloud 107

D e f a u l t D i r e c t e d G r a p h <Node , R e l a t i o n s h i p > dg ; / / graph o f prob l ems
/ / . . .
double hpu = HPU. hpu (dg) ; / / d e t e r m i n e
SCUFormation app = new SCUFormation (dg) ;
ManagementRequest r e q u e s t = new ManagementReques t () ;
/ / d e f i n e r e q u e s t s p e c i f y i n g o n l y main prob lems t o be s o l v e d
/ /
/ / c a l l a l g o r i t h m s t o f i n d s u i t a b l e HBS . Path l e n g t h =2 and

a v a i l a b i l i t y f rom 4am t o 19pm i n GMT zone
ResourceP oo l scu = app .

M i n C o s t W i t h A v a i l a b i l i t y N P a t h U n D i r e c t e d F o r m a t i o n (r e q u e s t , 2 ,
4 , 19) ;

i f (scu == n u l l) { re tu rn ; }
A r r a y L i s t <HumanResource> scuMembers = scu . g e t R e s o u r c e s () ;
SCU iSCU = new SCU () ;
iSCU . setScuMembers (scuMembers) ;
/ / s e t t i n g up SBS f o r scuMember . . .

Listing 1.2. Example of forming iSCU by minimizing cost and considering no direction

for solving main tasks and let iSCU evolve during its runtime. There could be several
possible ways to obtain DGBAU and DGCA, dependent on specific configurations and
graphs for specific problems. Therefore, potentially the cloud of HBS can provide sev-
eral algorithms for selecting HBS to form SCUs. As we aim at presenting a generic
framework, we do not describe here specific algorithms, however, Table 2 describes
some selection strategies that we implement in our framework. Listing 1.2 describes an
example of forming an SCU.

Setting up iSCU connectedness. After selecting members of iSCU , we can also pro-
gram SBS and HBS for the iSCU to have a complete working environment. iSCU can
have different connectedness configurations, such as

– ring-based iSCU : the topology of iSCU is based on a ring. In this case for each
(hbsi, hbsj) ∈ iSCU then we program hbsi →

request
hbsj based on message-

passing or shared memory models. For example a common Dropbox directory can
be created for hbsi and hbsj to exchange requests/responses.

– star-based iSCU : a common SBS can be programmed as a shared memory for
iSCU . Let sbs be SBS for iSCU then ∀hbsi ∈ iSCU give hbsi access to sbs. For
example, a common Dropbox directory can be created and shared for all hbsi ∈
iSCU .

– master-slave iSCU : an hbs ∈ iSCU can play the role of a shared memory and
scheduler for all other hbsi ∈ iSCU .

Listing 1.3 presents an example of establishing the connectedness for an iSCU us-
ing Dropbox. Note that finding suitable configurations by using HBS information and
compliance constraints is a complex problem that is out of the scope of this paper.

108 H.-L. Truong, S. Dustdar, and K. Bhattacharya

SCU iSCU ;
/ / . . . f i n d members f o r SCU
DropboxAPI<WebAuthSession> scuDropbox ; / / u s i n g dropbox a p i s
/ / . . .
AppKeyPair appKeys = new AppKeyPair (APP KEY , APP SECRET) ;
WebAuthSession s e s s i o n =

new WebAuthSession (appKeys , WebAuthSession . AccessType .
DROPBOX) ;

/ / . . .
s e s s i o n . s e t A c c e s s T o k e n P a i r (acce s sToken) ;
scuDropbox = new DropboxAPI<WebAuthSession >(s e s s i o n) ;
/ / s h a r i n g t h e dropbox d i r e c t o r y t o a l l scu members
/ / f i r s t c r e a t e a s h a r e
DropboxAPI . DropboxLink l i n k = scuDropbox . s h a r e ("/hbscloud") ;
/ / t h e n send t h e l i n k t o a l l members
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
f o r (HBS hbs : iSCU . getScuMembers ()) {

vieCOMHBS . s t a r t HB S (i c u) ;
HBSMessage msg = new HBSMessage () ;
msg . setMsg ("pls. use shared Dropbox for communication " +

l i n k . u r l) ;
vieCOMHBS . sendMessageToHBS (hbs , msg) ;

/ / . . .
}

Listing 1. 3. Example of star-based iSCU using Dropbox as a communication hub

SCU iSCU ;
/ / . . .
iSCU . setScuMembers (scuMembers) ;
/ / s e t t i n g up SBS f o r scuMember
/ / . . .
double hpu = HPU . hpu (dg) ; / / d e t e r m i n e c u r r e n t hpu
/ / SCU s o l v e s / adds t a s k s i n DG
/ /
/ / graph change − e l a s t i c i t y based on human power u n i t
double dHPU = HPU. d e l t a (dg , hpu) ;
D e f a u l t D i r e c t e d G r a p h<Node , R e l a t i o n s h i p > changeg raph ;
/ / o b t a i n changes
Set<C l o u d S k i l l> changeCS = HPU. d e t e r m i n e C l o u d S k i l l (changeg raph) ;
i f (dHPU > SCALEOUT LIMIT) {

iSCU . s c a l e o u t (changeCS) ; / / expand iSCU
}

e l s e i f (dHPU < SCALEIN LIMIT) {
iSCU . s c a l e i n (changeCS) ; / / r e d u c e iSCU

/ / . . .
}

Listing 1. 4. Example of elasticity for SCU based on task graph change

Programming Hybrid Services in the Cloud 109

4.4 Change Model for Task Graph’s Human Power Unit

When a member in an iSCU receives a task, she might revise the task into a set of sub-
tasks. Then she might specify human compute units required for sub tasks and revise
the task graph by adding these sub-tasks. As the task graph will change, its required
human power unit is changed. By capturing the change of the task graph, we can decide
to scale in/out the iSCU . Listing 1.4 describes some primitives for scaling in/out iSCU
based on the change of HPU.

5 Related Work

Most clouds of SBS offering different possibilities to acquire SBS on-demand. How-
ever, similar efforts for HBS are missing today. Although both, humans and software,
can perform similar work and several complex problems need both of them in the same
system, currently there is a lack of programming models and languages for hybrid ser-
vices of SBS and HBS. Most clouds of SBS offering different possibilities to acquire
SBS on-demand, however, similar efforts for HBS are missing today.

Existing systems for utilizing crowds for solving complex problems [14, 5] do not
consider how to integrate and virtualize software in a similar manner to that for hu-
mans. As we have analyzed, current support can be divided in three approaches [2]:
(i) using plug-ins to interface to human, such as BPEL4People[4] or tasks integrated
into SQL processing systems[11], (ii) using separate crowdsourcing platforms, such as
MTurk[15], and (iii) using workflows, such as Turkomatic [8]. A drawback is that all of
them consider humans individually and human capabilities have not been provisioned
in a similar manner like software capabilities. As a result, an application must split tasks
into sub-tasks that are suitable for individual humans, which do not collaborate to each
other, before the application can invoke humans to solve these sub-tasks. Furthermore,
the application must join the results from several sub-tasks and it is difficult to integrate
work performed by software with work performed by humans. This is not trivial for the
application when dealing with complex problems required human capabilities. In terms
of communication models and coordination models, existing models such as in MTurk
and HPS are based on push/pull/mediator but they are platforms/middleware built-in
rather than reusable programming primitives of programming models.

In our work, we develop models for clouds of HBS. Our techniques for virtualizing
HBS and programming HBS in a similar way to SBS are different from related work.
Such techniques can be used by high-level programming primitives and languages for
social computers.

6 Conclusions and Future Work

In this paper, we have proposed novel methods for modeling clouds of HBS and de-
scribe how we can combine them with clouds of SBS to create hybrid services. We
believe that clouds of hybrid services are crucial for complex applications which need
to proactively invoke SBS and HBS in similar ways. We describe general frameworks
and programming APIs where and how hybrid services can be programmed.

110 H.-L. Truong, S. Dustdar, and K. Bhattacharya

In this paper, we focus on designing models, frameworks and APIs and illustrating
programming examples. Further real-world experiments should be conducted in the fu-
ture. Furthermore, we are also working on the integration with programming languages
for social collaboration processes [7] using hybrid services. Other related aspects, such
as pricing models and contract negotiation protocols, will be also investigated.

References

1. The Social Computer - Internet-Scale Human Problem Solving (socialcomputer.eu) (last ac-
cess: May 3, 2012)

2. Dustdar, S., Truong, H.L.: Virtualizing software and humans for elastic processes in mul-
tiple clouds – a service management perspective. International Journal of Next-Generation
Computing 3(2) (2012)

3. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in web-scale
collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

4. WS-BPEL Extension for People (BPEL4People) Specification Version 1.1 (2009),
http://docs.oasis-open.org/bpel4people/
bpel4people-1.1-spec-cd-06.pdf

5. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.
Commun. ACM 54(4), 86–96 (2011)

6. Oppenheim, D.V., Varshney, L.R., Chee, Y.-M.: Work as a Service. In: Kappel, G., Maamar,
Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 669–678. Springer,
Heidelberg (2011)

7. Liptchinsky, V., Khazankin, R., Truong, H.-L., Dustdar, S.: Statelets: Coordination of Social
Collaboration Processes. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp.
1–16. Springer, Heidelberg (2012)

8. Kulkarni, A.P., Can, M., Hartmann, B.: Turkomatic: automatic recursive task and workflow
design for mechanical turk. In: Proceedings of the 2011 Annual Conference Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA 2011, pp. 2053–2058. ACM, New
York (2011)

9. Barowy, D.W., Berger, E.D., McGregor, A.: Automan: A platform for integrating human-
based and digital computation. Technical Report UMass CS TR 2011-44, University of Mas-
sachusetts, Amherst (2011), http://www.cs.umass.edu/˜emery/pubs/
AutoMan-UMass-CS-TR2011-44.pdf

10. Baird, H.S., Popat, K.: Human Interactive Proofs and Document Image Analysis. In: Lo-
presti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 507–518. Springer,
Heidelberg (2002)

11. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins.
Proc. VLDB Endow. 5, 13–24 (2011)

12. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Computing 15(3),
64–69 (2011)

13. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable cloud services using tosca. IEEE
Internet Computing 16(3), 80–85 (2012)

14. Brew, A., Greene, D., Cunningham, P.: Using crowdsourcing and active learning to track
sentiment in online media. In: Proceeding of the 2010 Conference on ECAI 2010: 19th Eu-
ropean Conference on Artificial Intelligence, pp. 145–150. IOS Press, Amsterdam (2010)

15. Amazon mechanical turk (2011) (last access: November 27, 2011)

http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://www.cs.umass.edu/~emery/pubs/AutoMan-UMass-CS-TR2011-44.pdf
http://www.cs.umass.edu/~emery/pubs/AutoMan-UMass-CS-TR2011-44.pdf

QoS-Aware Cloud Service Composition

Based on Economic Models

Zhen Ye1,2, Athman Bouguettaya3, and Xiaofang Zhou1

1 The University of Queensland, Australia
2 CSIRO ICT Centre, Australia

3 Royal Melbourne Institute of Technology, Australia

Abstract. Cloud service composition is usually long term based and
economically driven. We consider cloud service composition from a user-
based perspective. Specifically, the contributions are shown in three as-
pects. We propose to use discrete Bayesian Network to represent the
economic model of end users. The cloud service composition problem is
modeled as an Influence Diagram problem. A novel influence-diagram-
based cloud service composition approach is proposed. Analytical and
simulational results are presented to show the performance of the pro-
posed composition approach.

1 Introduction

Cloud computing is increasingly becoming the technology of choice as the next-
generation platform for conducting business [1]. Big companies such as Amazon,
Microsoft, Google and IBM are already offering cloud computing solutions in
the market. A fast increasing number of organizations are already outsourcing
their business tasks to the cloud, instead of deploying their own local infrastruc-
tures [2]. A significant advantage of cloud computing is its economic benefits for
both users and service providers.

Cloud computing has been intertwined with SOC since its inception [3]. Ser-
vice oriented computing (SOC) has been widely accepted as the main technol-
ogy enabler for delivering cloud solutions [4]. Service composition is an active
research area in service-oriented computing [5]. Compared to traditional service
composition, cloud service composition is usually long-term based and econom-
ically driven. Traditional quality-based composition techniques usually consider
the qualities at the time of the composition [6]. This is fundamentally differ-
ent in cloud environments where the cloud service composition should last for a
long period. Specifically, we identify the following problems in existing solutions:
First, end users in cloud environment are usually large companies and organiza-
tions who aim to construct long-term business relationships with cloud service
providers [4]. This aspect is largely lacking in existing service composition solu-
tions, e.g., [5] [6]. Besides, end users and service providers participant in service
composition according to their economic models [7]. However, existing models
addressing economic aspects do not consider service composition but mostly fo-
cus on resource provision to specific applications [8] (e.g. cloud cache, scientific
applications).

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 111–126, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

112 Z. Ye, A. Bouguettaya, and X. Zhou

This paper presents a novel quality-based cloud service composition approach.
The research focuses on the selection of composition plans based solely on
non-functional (Quality-of-Service, or QoS) attributes. Our main contributions
include: (1) Economic models are constructed for end users to model their long-
term behaviors. (2) The cloud service composition problem is considered from
a decision analysis perspective. Specifically, this research proposes to use Influ-
ence Diagrams [9] to represent and solve cloud service composition problem. (3)
An exemplary scenario is considered where the composition framework aids a
department in a university compose cloud services to process tenure cases. An-
alytical and simulational results are presented to show the performance of the
proposed approach.

The remainder of the paper is structured as follows: Section 2 presents a moti-
vating scenario. Section 3 provides an overview of the cloud service composition
problem. Section 4 gives a detail analysis of the research challenges and then
elaborates the proposed composition approach. Section 5 evaluates the proposed
approaches and shows the experiment results. Related work are presented in
section 6. Section 7 concludes this paper and highlights some future work.

2 Motivating Scenario

We use the tenure process [10] in the US to motivate and illustrate the cloud
service composition problem. American universities take great care in making
tenure decisions. A junior professor is usually not promoted to a tenured posi-
tion without demonstrating a strong record of research and teaching. Specifically,
tenure decisions are made based mainly on the evaluation of a candidate’s pub-
lication and citation records. A university typically includes dozens of colleges.
Each college includes dozens of departments. Each department deals with multi-
ple (most likely 5 to 10) tenure cases per year. The tenure process is highly labor
intensive. The whole process is usually error prone and conducted manually. To
overcome these problems, universities tend to outsource the tenure tasks (e.g.,
analysis, storage, computation) to clouds.

Let us consider a simple example, where University A contains only one college
and the college contains only one department. Suppose the university outsources
three main tasks to the clouds during 2012 and 2015. The proposed composi-
tion framework would generate a composite tenure application for University
A. Specifically, the tenure application (Fig. 1) has three abstract SaaS. Tenure
application will first search and find the publication and citation records of a
candidate (task 1, T1). It will then find the the publication and citation records
of the comparable professors (task 2, T2). Finally, the tenure application will
generate the evaluation report (task 3, T3). Besides these abstract SaaS, the
composite tenure application also needs CPU, network and storage resources
from IaaS providers. CPU services (denoted as CPU) are used to do computa-
tions on data. Storage services (denoted as Sto) are used to keep intermediate
data. The whole tenure application should be as fair as and as transparent as
possible. Therefore, all the input and output data, should be stored in case some

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 113

Find
Publications

&Citations (T1)

Find Comparable
Professors (T2)

Generate
Reports (T3)

e

CPU Sto Net
IaaS Provider

SaaS
Provider

SaaS
Provider

SaaS
Provider

Fig. 1. Tenure application for University A

appeals arise. Network services (denoted as Net) are needed to transfer data be-
tween end users and the application, and between components in the composite
application.

University A would have different QoS requirements (response time, cost etc.)
on the composite tenure application during the long period, i.e., from 2012 to
2015. University A presents these preferences through a Score Function [6]. Com-
posite services with higher score are more preferred. University A changes the
preferences by change the weights in the score function for different periods. For
example, in 2012, University A may prefer composite service that has less re-
sponse time. While in 2013, University A may find response time is less important
but want to save the cost as much as possible. To obtain an optimal composi-
tion, the composition framework needs a long-term economically driven model
to model the preferences of the end users. Based on the user’s economic model,
the composition framework makes decisions to select concrete SaaS providers
and IaaS providers for university A. The ultimate goal of the composition is to
find an optimal plan during a long period, which has the maximal score.

3 Background

This section presents the background of the cloud service composition problem.
First, the cloud environment is presented followed by the composition procedure.
The adopted QoS model is then explained. Cloud service composition problem
is defined at the end of this section.

3.1 Cloud Service Composition Framework

In this research, we identify four actors in the cloud environment (Fig. 2): End
Users, Composer, SaaS (Software as a Service) Providers and IaaS (Infrastruc-
ture as a Service) Providers. Platform as a Service (PaaS) layer is omitted as we
assume that it is included in the IaaS layer. End Users are usually large com-
panies and organizations, e.g., universities, governments. The composer in this
paper represents the proposed composition framework. SaaS providers supply
SaaS [4] to end users. IaaS providers supply IaaS [4], i.e., CPU services, storage
services, and network services, to SaaS providers and end users. The composer

114 Z. Ye, A. Bouguettaya, and X. Zhou

committee
/ university

committee
/ university End User

Composition
Framework

SaaS Provider

IP1 IP2 IaaS ProviderIP3

1:N1:1

SP1 SP2

committee
/ university

Composer

1:N 1:N

Fig. 2. Four actors in cloud computing

acts on the behave of the end users to form composite services that contains
services from multiple SaaS providers and IaaS providers (Fig. 2). Here, we
make the assumption that the composer interact directly with SaaS providers,
SaaS providers interact directly with IaaS providers. The composer can interact
with IaaS providers indirectly only through SaaSs. This assumption is reasonable
since even if the composer aims to use some CPU/Network/storage resources, it
must invoke these resources through some kind of software interfaces.

Similar to traditional service composition [11], cloud service composition is
conducted in two steps. First, a composition schema is constructed for a compo-
sition request. Second, the optimal composition plan is selected. A composition
plan is formed by choosing concrete cloud service providers for each abstract
SaaS and abstract IaaS in the composition schema. Since the research focuses
on the selection of composition plans based solely on QoS attributes, we assume
that existing composition techniques for matching functional attributes will be
used, e.g., [5] to generate composition schema.

A Composition Schema (or Abstract Composite Service) is constructed using
abstract SaaS and abstract IaaS, and combined according to a set of composition
patterns. There are four Composition Patterns according to the data-flow and
control-flow: Sequential Pattern (SP), Parallel Pattern (PP), Optional Pattern
(OP) and Loop Pattern (LP) [12]. To simplify the discussion, we initially assume
that all the abstract composite services we deal with are acyclic. If an abstract
composite service contains cycles (LP), a technique [6] for unfolding it into an
acyclic composition schema will be applied. Composition schema is represented
using Directed Acyclic Graph (DAG). Ovals denote abstract SaaS. Rectangles
denote abstract IaaS. Arcs among nodes (i.e., ovals and rectangles) represent the
control flow and data flow. To differentiate PP from CP, we use normal lines to
represent PP and dotted lines to represent CP. A composition schema may have
multiple Execution Paths [6] if the schema contains CP patterns. For example,
in the motivating scenario, the composition schema for the tenure requests is
presented in Fig. 3. T1, T2, T3 are abstract SaaSs. CPUi denotes the computa-
tion request for the output data from Ti. For example, the composite application

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 115

T1 T2CPU1 NIn2Sto1

Sto2

NOut1

NOut2

Sto0 NIn1

CPU2 T3 Sto3 eNIn3 NOut3

Fig. 3. Composition schema for University A

needs CPUs after receives output data from T1. These CPUs adapt the output
data to the input of T2. Stoi denotes the storage request for the intermediate
data NOut)i. All the intermediate data are stored in case someone will appeal
the decisions in the following years. NIni denotes the network resources for
inputs, NOuti represents the network resources for outputs.

3.2 QoS Model

To differentiate composition plans during selection, their non-functional prop-
erties need to be considered. For this purpose, we adopt a discrete QoS model
that is applicable to all the SaaS and IaaS. Without loss of generality, we only
consider the QoS attributes listed as follows. Although the adopted QoS models
have a limited number of attributes, they are extensible and new QoS attributes
can be added. We assume IaaS are homogeneous. One unit of IaaS, i.e., CPU,
network or storage, possess the same resources.

QoS Model for Elementary Services. Three QoS attributes are considered
for component services: throughput, response time, and cost.

– Throughput. Given an SaaS provider SP , the throughput of its SaaS qsr(SP)
is the number of requests the SaaS provider is able to process per sec-

ond. Given an IaaS provider IP , the service rate of its IaaS
−−−−−→
qsr(IP) =

[qCPU
sr (IP), qNet

sr (IP), qSto
sr (IP)] is a three-attribute vector, where qCPU

sr (IP)
(qNet

sr (IP), qSto
sr (IP)) represents the number of CPU (network, storage) re-

quests the IaaS provider is able to process per second.
– Response time. Given an SaaS provider SP , the response time of its SaaS
qrt(SP) measures the expected delay in seconds between the moment when
a request is sent and the moment when the results are received. Given an

IaaS provider IP , the capability of its IaaS
−−−−−→
qcap(IP) = [qCPU

cap (IP),qNet
cap (IP),

qSto
cap(IP)] is a three-attribute vector, where qCPU

cap (IP) (qNet
cap (IP), qSto

cap(IP))
is the number of CPU (network, storage) units used for processing a compu-
tation (data transfer, storage) request. For CPU request, the response time
to adapt the output data from task ti is calculated as: qCPU

rt (ti) =
CPUi

qCPU
cap (IP) .

For network request, the response time of transferring input data for task
ti is denoted as: qINrt (ti) =

NIni

qNet
cap (IP) . The response time of transferring output

116 Z. Ye, A. Bouguettaya, and X. Zhou

Fig. 4. Aggregation functions for computing the QoS of a composite service

data for task ti is denoted as: qOUT
rt (ti) =

NOuti
qNet
cap (IP) . For storage request, no

response time is needed to compute, since we do not consider setup time or
other time for storage resources in this research.

– Cost. Given an SaaS provider, the execution cost qcost(SP) is the fee that a
customer needs to pay for a single request. If the SaaS provider agrees to sup-
ply SaaS at service rate qsr(SP). The total execution cost is computed using
the expression: cost = qsr(SP) · qcost(SP). Given an IaaS provider IP , the
cost for using unit IaaS for one second is denoted as a three-attribute vector−−−−−−→
qcost(IP) = [qCPU

cost (IP), qNet
cost(IP), qSto

cost(IP)], where qCPU
cost (IP), qNet

cost(IP)
and qSto

cost(IP) are the price for using unit CPU IaaS, unit network IaaS
and unit storage IaaS for one second correspondingly. For CPU request, the
cost of computing output data from task ti is represented as: qCPU

cost (ti) =
qCPU
cost (IP) · qCPU

cap (IP) · qCPU
rt (ti). The cost to transfer input data for task

ti is calculated using: qINcost(ti) = qNet
cost(IP) · qNet

cap (IP) · qINrt (ti). The cost to

transfer output data for task ti can be calculated as: qOUT
cost (ti) = qNet

cost(IP) ·
qNet
cap (IP) · qOUT

rt (ti). The cost to store intermediate data Stoi is computed

as: qSTO
cost (Stoi) = qSto

cost(IP) ·Stoi · time, where time denotes the seconds the
intermediate data should be stored.

QoS Model for Composite Services. The quality criteria defined above are
in the context of elementary cloud services. Aggregation functions are used to
compute the QoS of the composite service. Fig. 4 presents these aggregation
functions:

– Throughput. The throughput of a composite service denotes the number
of requests it serves per second. For an abstract composite service aCS,
the throughput qsr(aCS) is the minimal service rate of the selected SaaS
providers qsr(SP) and the IaaS provider qsr(IP).

– Response time. The response time qrt(aCS) of an abstract composite service
aCS is computed using the Critical Path Algorithm (CPA) [13]. Specifically,
the CPA is applied to the execution path Path(aCS) of the abstract com-
posite service aCS. The critical path is a path from the initial node to the
final node which has the longest total sum of weights labeling its nodes.
In the case at hand, a node corresponds to an abstract SaaS or IaaS in an
execution path, and its weight is the response time of the SaaS or IaaS.

– Cost. The cost of an abstract service is the sum of execution cost of all the
selected SaaS and IaaS.

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 117

3.3 Problem Definition

Based on the analysis above, this section presents the general definition of the
cloud service composition problem. Suppose an end user has a set of requests
during a long period. Each request demands the same execution path (denoted
as Path = {Sto0,NIn1, t1, NOut1, Sto1, CPU1, NIn2, t2, NOut2, Sto2, CPU2,
. . ., NInnj , tnj ,NOutnj , Ston}). The end user represents its QoS preferences by
determining the weights in the score function during a long period. We denote
the QoS requirements of the end user as: W (Path) = {W (1), W (2),W (3),. . . ,
W (t)}. Each tuple W (t) represents the weights for different QoS attributes for
the composite service at period periodt. To illustrate the composition problem,
we use the three QoS attributes for saaS discussed earlier, other QoS attributes
can be used instead without any fundamental changes. The QoS dimensions are
numbered from 1 to 3, with 1 = throughput, 2 = response time and 3 = cost.
Hence, Each W (t) is further denoted as a matrix: W (t) = [w1(t), w2(t), w3(t)],
where wa(t) denotes the weight of QoS attribute a for the composite service at
period periodt.

For task Ti, a set of ki candidate SaaS providers can be used to implement the
task: SPi = {SPi(1), SPi(2), . . . , SPi(ki)}. A set of pp candidate IaaS providers
supply IaaS to composite services: SP0 = SP0(1), SP0(2), . . . , SP0(pp)}. A can-
didate composition plan (denoted as Plan[SP0(k0), SP1(k1), SP2(k2), . . .,
SPn(kn)]) is formed by selecting certain SaaS providers and IaaS providers for
an end user. In the composition plan, the composite service is supported by the
IaaS provider SP0(k0). Task Ti is implemented by SaaS provider SPi(ki). The
QoS values for a composition plan Plan is denoted as: q(plan) = {q(1), q(2),
q(3),. . . , q(t)}. Each tuple (q(t)) is further denoted as a matrix: [q01(t), q

1
1(t), . . .,

qi1(t), q
0
2(t), q

1
2(t), . . ., q

i
2(t), q

0
3(t), q

1
3(t), . . .,q

i
3(t)], where q

i
a(t) denotes the adver-

tising QoS value of attribute a for the abstract SaaS Ti at period periodt. Each
composite plan has an aggregated QoS values computed using the aggregation
functions stated above. These values are then scaled using the SAW method in
[6] to a real number in [0, 1]. qta(Plan) denotes the scaled value of QoS attribute a
for the composition plan at period periodt. Each composition plan is associated
with a “score” from the end user’s perspective. A commonly used score function
is the weighted sum of QoS values of the composite service:

St(Plan) = w1(t) · qt1(Plan) + w2(t) · qt2(Plan) + w3(t) · qt3(Plan), (1)

The score function over the long period is then represented as: S(Plan) =∫ t

1
st(Plan)dt. The composition problem is to find an optimal composition plan,

which has the maximal score value.

4 ID-Based Composition Approach

This section first presents the economic model for end users. Influence diagram
approach is then detailed. The proposed composition approach is presented at
the end of this section.

118 Z. Ye, A. Bouguettaya, and X. Zhou

(b) Economic model for university A

2013 2014 2015 2016

w1(1) w1(2) w1(3) w1(4)

w2(1) w2(2) w2(3) w2(4)

period

(a) Historical data

w3(1) w3(2) w3(3) w3(4)

2012

time

0.4

request
amount

cost

weights in ...

0.2

throughtput

0.8 10

0.60.2 0.8 5

0.40.4 0.8 1

0.60.4 0.6 2

time

0.4

request
amount

cost

weights in 2009

0.2

throughtput

0.8 8

0.60.2 0.8 7

0.40.4 0.6 2

0.60.4 0.6 1

time

0.4

request
amount

cost

weights in 2010

0.2

throughtput

0.8 8

0.60.2 0.8 7

0.40.4 0.6 2

0.60.4 0.6 1

time

0.4

request
amount

cost

weights in 2011

0.2

throughtput

0.8 8

0.60.2 0.8 7

0.40.4 0.6 2

0.60.4 0.6 1

Fig. 5. Economic model: an example

4.1 Cloud Economic Model

When the composition system makes decisions on which concrete SaaS providers
and IaaS providers should be selected for the end user, it has no idea about how
will the ultimate composite service behave during a long period. To enable long-
term cloud service composition, economic models are needed to predict the long-
term preferences of the end users. An economic model is defined as “a theoretical
construct that represents economic processes by a set of variables and a set of
logical and quantitative relationships between them. ”[14].

We adopt Bayesian Networks (BN) [15] to represent the economic model for
the end users. BN is a probabilistic graphical model that represents a set of ran-
dom variables and their conditional dependency using a directed acyclic graph.
A BN consists of a set of random variables as nodes which are connected through
directed links (arcs). Each node has a conditional probability table that quan-
tifies the effects the parents have on the nodes. If we represent the weights at
different periods as nodes in a BN, we can then leverage the network as a means
to represent the economic model for the end users.

For end users, we make the assumption that all the requests, initialised at the
same period, have the score function with the same weights. However, requests
initialised at different periods have different score functions. For example, Fig. 5
shows the economic model of university A in the tenure example. This economic
model is constructed based on historical data (Fig. 5(a)) from university A.
Fig. 5(a) shows the QoS preferences of university A for the last several years.
The weight for each QoS attribute is a real number between 0 and 1. The larger
the weight the more important is the corresponding QoS attribute to univer-
sity A. The last column represents the number of tenure requests that have the
preferences. Based on these historical data, we construct the economic model
for university A as shown in Fig. 5(b). wa(t), a = 1, 2 denotes the weight for
QoS attribute a at period periodt. In the same period periodt, the weights have

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 119

conditional probability relationship with each other, i.e., w2(t) depends on the
value of w1(t). For different periods, a weight wa(t) at period periodt would
depend on the weights in the previous periods, i.e., wa(1), wa(2), . . . , wa(t− 1).
However, this research only considers two previous weights, since it is reasonable
to assume that the weights at the most recent periods will have more affection
on the weights at present. Hence, as shown in Fig. 5(a), wa(t) depends on the
values of wa(t− 1) and wa(t− 2).

4.2 Influence Diagram Problem

Based on the economic models for the end users, we adopt Influence Diagram to
represent and solve the cloud service composition problem. Influence diagrams
(IDs) [9] are graphical models for representing and solving complex decision-
making problems based on uncertain information. IDs are directed acyclic graphs
that is seen as BN augmented with decision and value nodes.

An ID is a directed acyclic graph (N,A): N = D ∪ C ∪ U . D correspond
to a set of decision variables under the control of the decision maker. C is the
set of chance nodes correspond to random variables. U is a set of utility nodes
that represent the objective functions of the model. A is the set of directed arcs
between the nodes. Arcs pointing to a decision node indicate what information
will be known to the decision maker at the time the decision is made. Arcs to a
chance node indicate which variables condition the probability distribution for
the associated random variables. Arcs to a utility node indicate which variables
condition the associated expected utility. Each node in an ID is associated with a
frame of data. For a chance node x, this data includes the outcome space of x, Ωx,
and the conditional probability distribution of x, πx. For each decision node d,
this data includes the alternatives of the associated decision variable,Ωd. Finally,
the data frame for utility node r contains the conditional expected value of r
conditioned on the predecessors of r. The conditional expectation of r is actually
a deterministic function of the conditioning variables: U [r|C(r)] = g(C(r)). The
outcome space of r is Ωr. To solve an ID problem (or to evaluate an ID problem)
is to find the maximal utility value and the decision values at the time when the
utility values are maximised.

Regarding cloud service composition problem stated above, we model cloud
service composition problem to an ID problem as follows. We represent the
weights from end users and the advertising QoS values from cloud providers as
chance nodes in an ID.The QoS values from cloud service providers have con-
ditional probabilistic relationship. All the selection decisions on abstract SaaS
and IaaS are represented as decision nodes in the ID. Utility nodes represent the
score of a composition plan. For example, Fig. 6 shows the influence diagram
representation for the tenure example. In Fig. 6, node qia(t) in denotes the adver-
tising value of QoS attribute a for task Ti at period periodt. wqa(t) denotes the
weighted score for QoS attribute a at period periodt. S(t) = wq1(t)+ wq2(t)+
wq3(t), denotes the score for the composition plan at period periodt, which can
be computed using Equ. 1. Stotal = S(1)+ S(2)+ S(3), denotes the total score

120 Z. Ye, A. Bouguettaya, and X. Zhou

q10(1)

D0

D1

q20(1)

q30(1)

D2

D3

q10(2)

q20(2)

q30(2)

wq1(1) wq2(1) qw3(1) wq1(2) wq2(2) wq3(2)

w1(1)

w2(1)

w3(1)

w1(2)

w2(2)

w3(2)

q10(3)

q20(3)

q30(3)

wq1(3) wq2(3) wq3(3)

w1(3)

w2(3)

w3(3)

q10(4)

q20(4)

q30(4)

wq1(4) wq2(4) wq3(4)

w1(4)

w2(4)

w3(4)

Stotal

……

……

q13(1)

q23(1)

q33(1)

q13(2)

q23(2)

q33(2)

q13(3)

q23(3)

q33(3)

q13(4)

q23(4)

q33(4)

S(1) S(2) S(3) S(4)

Fig. 6. Influence diagram for the tenure example when one QoS attribute is considered

for this ID. The separable nature of the utility function is represented in the
structure of the graph using these multiple utility nodes. In the cloud service
composition problem, there are two kinds of utility nodes. A super utility node
is either a sum node or product node (e.g., S(1), S(2), Stotal), and a non-super
utility node is any other utility node (e.g., wq1(1), wq2(1)). There is exactly one
utility node, the terminal utility node (e.g., Stotal), which has no successors in an
ID. This represents the objective function for the model. Super utility nodes can
only have utility nodes (either super or non-super) as conditional predecessors.
Non-super utility nodes, on the other hand, can only have chance and decision
nodes as conditional predecessors.

4.3 Dynamic Programming Algorithm

ID problems can be solved using two types of solutions [16]: A brute force solution
is first transfer the ID to the corresponding decision tree, then compute all the
possible scenarios with their probability and finally obtains the optimal decision
variables that maximise the utility value. Another type of solution is to itera-
tively reduce the diagram using influence diagram reductions [17]. Considering
the properties of cloud service composition, we propose a dynamic programming
reduction algorithm to solve the ID problem.

Solving an ID problem using reductions involves applying a sequence of max-
imization and expectation operators to the utility function. In the influence
diagram, these operators correspond to remove decision and chance nodes at the

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 121

x U

a b c

U

a b c

d U

a b

U

b

(a)
(b)

Fig. 7. Influence diagram reductions

utility node by performing maximizations or expectations. The special proper-
ties of the maximization and expectation operators when applied to separable
functions are foundation of the proposed dynamic programming algorithm. They
allow maximizations and expectations to be performed over an addend or factor
in the utility function instead of over the entire utility function. In those cases,
only a subspace of the utility function needs to be examined. This may signifi-
cantly reduce the dimensionality of the operations necessary to solve a decision
problem.

Two main reductions to solve an ID problem are: removing a chance node
by expectation and removing a decision node by maximization. Removal of a
chance node by expectation, as in Fig. 7(a), can be performed whenever the
only successor of a chance node is the utility node. In the mathematics this
corresponds to: Utility[U |a, b, c]← UtilityΩx[Utility[U |x, b, c]|a, b]. Note that in
this case, the utility node U inherits the predecessors of chance node x. The
removal of a decision node by maximization, as in Fig. 7(b), can be performed
whenever the decision node has the utility node as its only successor and all
conditional predecessors of that utility node, other than the decision node, are
informational predecessors of the decision node. In the mathematics, decision
node removal corresponds to: Utility[U |b] ← maxd{Utility [U |b, d]} and d∗ =
argmaxd{Utility[U |b, d]}. Note that the utility node U does not inherit any
predecessors of d as a result of this operation. Consider the motivating example
in Fig. 6, the cloud service composition problem can always be solved by reducing
the chance nodes and decision nodes in the following sequence: qia(t), wa(t), Di.
Nodes qia(t) can be removed using expectation operators as in Fig. 7(a). Nodes
Di can be removed using maximisation operators as in Fig. 7(b). Interested
readers can refer to [17] for the details of other basic reductions of ID: e.g., arc
reversal using Bayes theorem, summing a variable out of the joint.

Algorithm. 1 presents the dynamic programming algorithm to solve the com-
position problem as an ID problem. The algorithm will continue reducing nodes
from the ID until there is only one terminal utility node left (line 2). If two util-
ity nodes r1 and r2 have the same successor, a super value node r, and C(r1) is
contained in C(r2), then removing r1 and r2 (if they are the only predecessors of
r, or merging r1 and r2, into new value node r′ if they are not) will not increase
the size of any operation necessary to solve the influence diagram and so we
should remove them (line 3:4). After each step of the algorithm (line 6:11), the
net change in total number of nodes in the diagram will be at least one less. The
algorithm always reduces an influence diagram to the terminal value node thus
producing the optimal policy and maximum expected value for the problem.

122 Z. Ye, A. Bouguettaya, and X. Zhou

Algorithm 1. Dynamic programming approach to evaluate ID

1: ID ← The influence diagram with the terminal utility node U
2: while C(U) �= ∅ do
3: if there is removable utility nodes then
4: remove all the necessary utility nodes
5: else
6: if there is a removable decision node d then
7: remove d and the necessary utility nodes
8: else
9: there must be a removable chance node x
10: remove x and the necessary utility nodes
11: end if
12: end if
13: end while

5 Experiments and Results

We conduct a set of experiments to assess the performance of the proposed
approach. We use the tenure scenario as our testing environment to setup the
experiment parameters. We run our experiments on a Macbook Pro with 2.2
GHz Intel Core i7 processor and 4G Ram under Mac OS X 10.7.3. Since there is
not any sizable cloud service test case that is in the tenure application domain
and that can be used for experimentation purposes, we focus on evaluating the
proposed approach using synthetic cloud services.

We compare the proposed approach with the brute force ID approach. The
brute force approach is to generate all the possible candidate composition plans,
consider all the possible scenarios for each plan regarding the economic models
and compute the score and the probability for each scenario (i.e., transfer ID
to a corresponding decision tree). The optimal composition plan is the one that
has the maximal weighted sum score. We implement the brute force approach
in Java. The dynamic programming approach is implemented using Elvira [18]
and Java. Computation times are measured in experiments to compare the two
approaches. In this process, the number of alternatives for each chance node and
decision node is varied from 2 to 10 with the step of 1 and the length of the
considered periods is varied from 2 to 5 with steps of 1. All experiments are
conducted 5 times and the average results are computed.

Fig. 8 presents the computation time when the number of alternatives of the
decision nodes is varied from 2 to 10. For these experiments, we set the other
parameters as follows: the number of the decision nodes is set to be 4. The num-
ber of alternatives of chance nodes (Ωwa(t) and Ωqia(t)

) is set to be 2. This means
there are two options for all the chance nodes in the ID. The considered period
is set to be t = 2, i.e., we consider the tenure example for the period during
2012 and 2013. And the number of QoS attributes is set to be 3. From Fig. 8,
we can see that both approaches will have polynomial time complexity. But the
dynamic programming has better performance than the brute force approach.

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 123

 0

 5000

 10000

 15000

 20000

 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

tim
e

Alternatives of a decision node

Brute force approach
ID approach

Fig. 8. Computation time VS. Ωd

When the number of alternatives of the decision nodes is small (i.e., 2), both
approaches have similar computation time. When the number of alternatives
becomes larger, the dynamic programming approach behaves much better than
the brute force approach.

Fig. 9 presents the computation time when the number of alternatives of the
chance nodes is varied from 2 to 10. For these experiments, we set the other
parameters as follows: the number of the decision nodes is set to be 4. The
number of alternatives of decision nodes (Di) is set to be 4. This means there
are four options for all the decision nodes in the ID. The considered period is set
to be t = 2, i.e., we consider the tenure example for the period during 2012 and
2013. And the number of QoS attributes is set to be 3. From Fig. 9, we can see
that both approaches will have polynomial time complexity. But the dynamic
programming approach behaves much better than the brute force approach.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 2 3 4 5 6

C
om

pu
ta

tio
n

tim
e

(m
s)

Alternatives of a chance node

Brute force approach
ID approach

Fig. 9. Computation time VS. Ωc

124 Z. Ye, A. Bouguettaya, and X. Zhou

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 2 3 4 5

C
om

pu
ta

tio
n

tim
e

(m
s)

Considered period

Brute force approach
ID approach

Fig. 10. Computation time VS. t

Fig. 10 presents the computation time when the considered period is varied
from 2 to 5. For these experiments, we set the other parameters as follows: the
number of the decision nodes is set to be 4. The number of alternatives of decision
nodes (Di) is set to be 4. The number of alternatives of chance nodes (Ωwa(t)

and Ωqia(t)
) is set to be 2. This means there are two options for all the decision

nodes and chance nodes in the ID. And the number of QoS attributes is set to
be 3. From Fig. 10, we can see that both approaches will have exponential time
complexity. When the considered period is short (i.e., 2 years or 3 years), both
approaches have similar computation time. When the consider period becomes
longer, the dynamic programming approach behaves much better than the brute
force approach.

6 Related Work

Service composition is an active research area in service-oriented computing [5].
During the last decade, service composition problem can be categorized into two
groups. One group focuses on the functional composability among component
services. The other group aims to make optimal decisions to select the best
component services based on non-functional properties (QoS).

Functional-driven service composition approaches typically adopt semantic
descriptions of services. Examples of automatic approaches include Policy-based
approach proposed by [19] and composability model driven approach proposed
by [5]. Other functional-driven composition approaches use AI planning methods.
Most of them [20] assume that each service is an action which alters the state of
the world as a result of its execution. The inputs and outputs parameters of a
service act as preconditions and effects in the planning context. Users only need
to specify the inputs and the outputs of the desired composite service, a plan
(or a composite service) would automatically generated by the AI planners.

Functional-driven service composition approaches mostly do not attempt to
find an optimal solution but only to find a solution. However, the non-functional

QoS-Aware Cloud Service Composition Based on Discrete QoS Model 125

properties (QoS) of resulting composite service is a determinant factor to ensure
customer satisfaction. Different users may have different requirements and prefer-
ences regarding QoS. Therefore, QoS-aware composition approaches are needed.
QoS-aware service composition problem is usually modelled as a Multiple Crite-
ria Decision Making [6] problem. The most popular approaches include integer
linear programming and genetic algorithms. An Integer Linear Program (ILP)
consists of a set of variables, a set of linear constraints and a linear objective
function. After having translated the composition problem into this formalism,
specific solver software such as LPSolve [21] can be used. [22] and [23] use Ge-
netic Algorithms (GA) for service composition. Individuals of the population
correspond to different composition solutions, their genes to the abstract com-
ponent services and the possible gene values to the available real services. While
GAs do not guarantee to find the optimal solution, they can be more efficient
than ILP-based methods (which have exponential worst-case time complexity).

Most of the existing composition approaches are not well suited for cloud envi-
ronment [23]. They usually consider the qualities at the time of the composition
[5]. The proposed composition approach consider the problem from a long-term
perspective.

7 Conclusion

This paper proposes a cloud service composition approach to aid end users select-
ing and composing SaaS providers and IaaS providers in the cloud environment.
Compared to traditional service composition framework in SOC, the proposed
approach considers service composition from a long-term perspective. Cloud eco-
nomic models for both end users and cloud service providers are leveraged during
the composition. Specially, an influence diagram approach is adopted to solve
cloud service composition problems. In future work, discrete QoS model will be
extended to continuous model, where each chance node in an ID has infinite
alternatives. Besides, machine learning algorithms will be researched on refining
the economic model for both end users and cloud service providers to improve
the performance.

References

1. Motahari-Nezhad, H., Stephenson, B., Singhal, S.: Outsourcing business to cloud
computing services: Opportunities and challenges. IEEE Internet Computing
(2009)

2. Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud comput-
ing. In: Grid Computing Environments Workshop (2009)

3. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web
services: issues, solutions, and directions. The VLDB Journal 17(3), 537–572 (2008)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view
of cloud computing. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28 (2009)

126 Z. Ye, A. Bouguettaya, and X. Zhou

5. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the
semantic web. The VLDB Journal 12(4), 333–351 (2003)

6. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

7. Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud
caching. In: IEEE 25th International Conference on Data Engineering, pp. 1687–
1693 (2009)

8. Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., Ailamaki, A.: Optimal
Service Pricing for a Cloud Cache. IEEE Transactions on Knowledge and Data
Engineering (2011)

9. Shachter, R.: Probabilistic inference and influence diagrams. Operations Research,
589–604 (1988)

10. Gelmon, S., Agre-Kippenhan, S.: Promotion, tenure and the engaged scholar.
AAHE Bulletin 54(5), 7–11 (2002)

11. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing, 51–59 (2004)

12. Wu, B., Chi, C., Chen, Z., Gu, M., Sun, J.: Workflow-based resource allocation to
optimize overall performance of composite services. Future Generation Computer
Systems 25(3), 199–212 (2009)

13. Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)
14. Baumol, W., Blinder, A.: Economics: principles and policy. South-Western Pub.

(2011)
15. Jensen, F.: An introduction to Bayesian networks, vol. 74. UCL Press, London

(1996)
16. Shachter, R.: Evaluating influence diagrams. Operations Research 34(6), 871–882

(1986)
17. Tatman, J., Shachter, R.: Dynamic programming and influence diagrams. IEEE

Transactions on Systems, Man and Cybernetics 20(2), 365–379 (1990)
18. Elvira, a Java implementation of influence diagram (2005),

http://www.ia.uned.es/~elvira

19. Chun, S.A., Atluri, V., Adam, N.R.: Using semantics for policy-based web service
composition. Distributed and Parallel Databases 18(1), 37–64 (2005)

20. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web
Services Composition Using SHOP2, p. 195 (2003)

21. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-
integer) linear programming system. Eindhoven U. of Technology (2004)

22. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)

23. Ye, Z., Zhou, X., Bouguettaya, A.: Genetic Algorithm Based QoS-Aware Service
Compositions in Cloud Computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.)
DASFAA 2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)

http://www.ia.uned.es/~elvira

Cloud Service Selection

Based on Variability Modeling

Erik Wittern1, Jörn Kuhlenkamp1, and Michael Menzel2

1 eOrganization Research Group, Karlsruhe Institute of Technology (KIT)
Englerstr. 11, 76131 Karlsruhe, Germany

{Erik.Wittern,Joern.Kuhlenkamp}@kit.edu
http://www.eorganization.de

2 Research Center for Information Technology
Karlsruhe Institute of Technology (KIT)

Menzel@fzi.de

Abstract. The selection among Cloud services is a recent problem in
research and practice. The diversity of decision-relevant criteria, con-
figurability of Cloud services and the need to involve human decision-
makers require holistic support through models, methodologies and tools.
Existing Cloud service selection approaches do not address all stated dif-
ficulties at the same time. We present an approach to capture capabil-
ities of Cloud services and requirements using variability modeling. We
use Cloud feature models (CFMs) as a representation mechanism and
describe how they are utilized for requirements elicitation and filtering
within a presented Cloud service selection process (CSSP) that includes
human decision-makers. Filtering produces a reduced number of valid
Cloud service configurations that can be further assessed with current
multi-criteria decision making-based selection approaches. We present
software tools that we use to demonstrate the applicability of our ap-
proach in a use case about selecting among Cloud storage services.

Keywords: Cloud service selection, variability modeling, feature mod-
eling, decision-making.

1 Introduction

Since the dawn of service computing, the problem of how to select software ser-
vices is omnipresent for IT decision-makers. Service selection, typically, builds
upon a) the representation of decision-relevant capabilities of the candidates to
select among and b) the representation of the requirements and preferences of
the decision-maker (e.g. a person, institution or automated agent). Both repre-
sentations are matched to determine the candidate that best fulfills the decision-
maker’s needs. For example, in service-oriented computing, the selection of Web
services has been addressed similarly: In policy matchmaking, policies capture
capabilities and requirements towards Web services and are matched to deter-
mine a service to fulfill the request, e.g., in [17].

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 127–141, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

128 E. Wittern, J. Kuhlenkamp, and M. Menzel

Recently, the growing number of Cloud services raises the need for dedicated
representation of their capabilities as well as requirements and preferences to-
wards them and for corresponding selection methods. Such approaches need
to consider the specifics of selecting Cloud services: Cloud services typically
hold state, for example, a Cloud storage service persists user data. Because
of this and because Cloud service interfaces are not standardized, exchanging
them is costly. Thus, Cloud service selection is a relatively long-lasting decision,
compared, for example, with Web service selection. It must include strategic
considerations like vendor lock-in or legal aspects that require involvement of
human decision-makers. Cloud services, especially Infrastructure as a Service,
frequently feature configurability: consumers can choose among many options
on how to consume the service. For example, Amazon’s simple storage solution
(S3) allows consumers to define a preferred geographical location for the servers
or to use different pricing schemes1. Overall, representations to support Cloud
service selection need to be capable of representing the diverse decision-relevant
aspects, must support integration of human decision-makers and must reflect
Cloud services’ configurability.

In this paper, we contribute to Cloud service selection in two ways: First, we
present an approach to improve the way that Cloud service capabilities and con-
sumer requirements towards them are represented. We introduce Cloud feature
modeling, based on variability modeling, to address the presented challenges of
representing Cloud services. Second, utilizing Cloud feature models (CFMs), we
present a Cloud service selection process (CSSP) as a methodology for decision-
making. It includes narrowing down the number of service candidates based on
stated requirements. Enabling automated support for delimiting the number of
candidates is required to keep following decision phases manageable. The process
also encompasses selection based on preferences that can make use of previously
introduced multi-criteria decision making approaches, e.g. [10].

The remainder of this paper is structured as follows: Section 2 discusses related
work from the area of Cloud service selection. Section 3 introduces our approach
to model the Cloud service selection problem with Cloud feature modeling. We
provide a formalization of the introduced modeling elements to clearly define
their usage. Section 4 presents our CSSP, addressing the involved roles and
activities. Section 5 presents our prototypical implementation of a modeling tool
supporting our approach and discusses a use case to illustrate the approach’s
applicability. Finally, Section 6 discusses our work and gives an outlook on future
research.

2 Related Work

Cloud service selection has recently been addressed in numerous publications:
in [12], the authors propose a mechanism to automatically select Cloud stor-
age services. Capabilities of candidate services are expressed in an XML schema
and matched with requirements. The usage of multi-criteria decision making

1 http://aws.amazon.com/de/ec2/

http://aws.amazon.com/de/ec2/

Cloud Service Selection Based on Variability Modeling 129

(MCDM) approaches for the selection of Cloud services has been proposed in
multiple papers. In [13], the authors use a combination of a revised wide-band
Delphi method to weight attributes and simple additive weighting to determine
candidate ranking. In [7] and [10], the authors utilize Analytical Hierarchy Pro-
cess (AHP) or Analytical Network Process (ANP) to support the selection.
The presented hierarchies are designed to address aspects relevant to specific
classes of Cloud services, i.e., IaaS, PaaS and SaaS. In [11], the authors present
an overview of existing Cloud service selection approaches. They formalize the
Cloud service selection problem and propose an approach to determine the sim-
ilarities between a requirement vector and all candidates’ capability vectors to
recommend the most suitable candidate.

The presented approaches face certain limitations that we address in this pa-
per. [12] omit support for XML definitions making the approach rather arduous
to human decision-makers. It is commonly assumed, e.g. in [13,9,10,7], that rep-
resentations of the service candidates to choose from are provided as input for the
presented MCDM approaches. However, it is not discussed how to derive these
representations. In contrast, we present a modeling approach and correspond-
ing methodology to create such representations. The configurability that today’s
Cloud services offer is neglected in existing approaches that focus only on a hand-
ful of candidates. By considering configurability, we provide decision-makers with
a decision-basis that better reflects actual choices. Many MCDM approaches also
base their selection recommendation on preferences only, e.g. [7,10]. In contrast,
we consider both requirements and preferences in our CSSP.

Overall, our approach addresses modeling of Cloud service candidates and a
holistic approach for selecting among them - both aspects have not yet been
addressed in literature.

3 Modeling the Cloud Service Selection Problem

We propose to utilize variability modeling as a foundation to model decision-
relevant criteria of Cloud services. Variability modeling approaches, such as
feature modeling [3], are commonly used to capture the commonalities and dif-
ferences in system families. They enable to represent multiple configurations of
a system in a single model. Within this section, we introduce our Cloud feature
modeling approach.

3.1 Feature Modeling Basics

Our modeling approach builds upon extended feature modeling [3,2] to represent
the commonalities and differences of Cloud services. We assume the definition
of feature as a system property that is relevant to some stakeholder, be it a
functional or non-functional property of the system [5]. Following this definition,
we consider features to be on the right level of abstraction to capture aspects of
value for service consumers [15] - and thus also to capture the diverse aspects
relevant in Cloud service selection.

As a basis to describe our adaptations, we formalize feature modeling as fol-
lows: A Feature Model (FM) is represented by a directed graph G = (V,E)

130 E. Wittern, J. Kuhlenkamp, and M. Menzel

with the set of vertices V representing features and the set of edges E repre-
senting relationships between features. Each FM contains a single root feature
r ∈ V . A relationship e = {init(e), ter(e)} is described by the initial vertex
init(e) ∈ V and the terminal vertex ter(e) ∈ V . We distinguish between two
types of relationships [8]: In decomposition relationships Ede ⊆ E, we refer to
init(e) as pe and parent feature and to ter(e) as ce and child feature. The four
sets Emandatory, Eoptional, EXOR, EOR ⊆ Ede represent relationships that de-
compose features hierarchically. Cross-tree relationships Ecr ⊆ E consist of the
two sets Erequires, Eexcludes ⊆ Ecr. They restrict the number of configurations
represented by a FM. A configuration is a valid selection of features from a FM
[2] that fulfills all specified relationships (e.g., a mandatory feature needs to be
contained in each configuration where its parent feature is also contained). A
feature is described by a number of feature attributes (FAs). We use the nota-
tion vi.x to refer to the feature attribute x of feature vi. We capture FAs in
a quantitative manner [3]. A quantitative approach enables automatic analysis
upon FMs and to capture infinite domains in a clear and concise way [6]. Ac-
cording to [2] no consensus on a notation on FAs exists, but it is agreed on that
FAs at least comprise of the basic building blocks name, domain and value. We
refer to the basic building blocks by name(vi.x), dom(vi.x) and val(vi.x).

3.2 Cloud Feature Modeling

Despite the described potential of FMs for Cloud service selection (i.e. level of
abstraction of features, capability to represent configurability), FMs were neither
specifically designed for decision support nor to model Cloud services. Therefore,
in this section, we describe how to adapt the model and notation of FMs to
support our CSSP presented in Section 4. We refer to an adopted feature model
as Cloud feature model (CFM). Figure 1 presents a very simple example of our
approach’s models and their elements for illustration purposes.

Enriched Feature Attributes. Feature attributes serve different purposes in
our modeling approach: they describe quantitative and numeric properties of
Cloud service offers and requirements of decision-makers regarding these prop-
erties. Feature attributes allow for an automated mapping of configurations to
MCDM approaches.

Feature Attribute Types (FAT) are introduced to specify global informa-
tion regarding multiple feature attributes of the same type. Using them avoids
redundant specification of attribute information and allows to provide standard
aggregation strategies (SASs) for feature attributes. FATs are referenced by the
name of a FA. Therefore, two FAs vi.x and vj .x reference the same FAT if
name(vi.x) = name(vj .x) holds. Within a FAT at least the attribute domain
and a SAS for a group of feature attributes is specified. We limit our approach
to quantitative attribute values. Therefore, attribute domains can be discrete or
continuous and finite or infinite. Examples for attribute domains are integer and
real. A boolean domain may be represented by 0,1 [8].

Cloud Service Selection Based on Variability Modeling 131

Cloud Compute
Service

Security / Legal

Grouping
Feature

Abstract
Feature

Instance
Feature

Key:

Attribute type

Disk space [GByte]

Machine size

Geo. location Authentication

Cost <= 2 Euro /
hour

A: Domain model B: Service model Cloud Service X

Security / Legal

Disk space =
120 GByte

Machine size

AuthenticationGeo. location"Small" "Big"

OAuth
Disk space =
240 GByte

C: Requirements model D: Alternative model

Europe Big

Alternative x:
Service name: Cloud Service X
 Machine size: "Small"
 Disk space: 120 GByte
 Cost: 1.5 Euro / hour
 Security / Legal
 Authentication: OAuth
 Geo. location: Europe

Cost [Euro / hour]

Cost = 1.5
Euro / hour

Cost = 2.5
Euro / hour

Cloud Compute
Service

Security / LegalMachine size

Authentication
{req.}

Geo. location

Europe

Attribute
= mandatory
 feature

= optional
 feature

= XOR = OR

= Requires

= Excludes

Fig. 1. Exemplary models illustrating model types and modeling elements

Standard Aggregation Strategies (SAS) are used to aggregate all values of
FAs with the same FAT for a single configuration. Within literature, approaches
exist that aggregate feature attributes [3] or specify global constraints for aggre-
gations of feature attribute values [8]. However, our approach takes an explicit
process model, re-usability of models and multiple stakeholders into account. We
define a SAS of a FAT abstractly as a closed (binary) function on the attribute
domain specified within the FAT. Examples for commutative SASs on the at-
tribute domain integer are functions that represent addition and multiplication.

Feature Types. We use feature types to represent additional design con-
straints, limiting the number of valid modeling choices, and provide additional
semantics in contrast to traditional features. Therefore, a number of existing au-
tomated analysis approaches for FMs [2] are applicable for resulting CFMs, re-
spectively. We propose to utilize grouping features, abstract features and instance
features. Each feature type is represented by a set of features V gr , V ab, V in ⊆ V .
No additional feature types are included.

V \(V gr ∪ V ab ∪ V in) = ∅ (1)

Furthermore, each feature belongs to a single feature type.

V gr ∩ V ab = V gr ∩ V in = V ab ∩ V in = ∅ (2)

Grouping Feature: Grouping features decompose the decision problem, thus
helping to organize and structure the CFM. Grouping features contain a set of
abstract features which address a similar concern, thus providing a comprehen-
sive view for different stakeholders. For example, all abstract features concerning

132 E. Wittern, J. Kuhlenkamp, and M. Menzel

security can be grouped underneath an according grouping feature. The root
feature of a CFM is a grouping feature.

r ∈ V gr (3)

The parent feature of a grouping feature must be a grouping feature.

cei ∈ V gr → pei ∈ V gr∀ei ∈ Ede (4)

Grouping features decompose to abstract features and grouping features and not
to instance features.

pei ∈ V gr → cei ∈ (V gr ∪ V ab)∀ei ∈ Ede (5)

The purpose of grouping features is to solely structure abstract features. Group-
ing features are only decomposed by mandatory decomposition relationships.
Therefore, grouping features do not add variability to a CFM.

pei ∈ V gr → ei ∈ Emandatory∀ei ∈ Ede (6)

Abstract Feature: An abstract feature defines an abstract capability of a Cloud
service that can be instantiated in different ways by Cloud service offers, e.g.,
“authentication”. Therefore, abstract features are to be considered by decision-
makers in the CSSP. An abstract feature corresponds to a variability point be-
cause it potentially contains multiple instance features, one or some of which
can be selected to instantiate the abstract feature.

pei ∈ V ab → cei ∈ V in∀ei ∈ Ede (7)

The parent feature of an abstract feature must be a grouping feature.

cei ∈ V ab → pei ∈ V gr∀ei ∈ Ede (8)

Instance Feature: An instance feature represents a concrete capability of a
single Cloud service offer. For example, “OAuth” can be an instance feature for
the abstract feature “authentication”. Instance features can be decomposed into
instance features and represent additional variability points.

pei ∈ V in → cei ∈ V in∀ei ∈ Ede (9)

Model Types. CFMs and their configurations represent artifacts within the
Cloud service selection process (CSSP) presented in Section 4. We propose to
differentiate distinct model types based on the usage of models in the CSSP.
Three of the model types are themselves CFMs, namely domain model, service
model and requirements model, whereas the fourth type, the alternative model,
can be represented by other notations. In the following, for each CFM type, its
purpose and formal model within the overall CSSP are presented followed by an
example.

Domain Model: The domain model’s purpose is to represent all relevant ab-
stract decision aspects of the selection problem, e.g., technical, legal or business

Cloud Service Selection Based on Variability Modeling 133

ones. The domain model does not state the concrete realization of a Cloud ser-
vice offer or requirements of a decision-maker, but serves as a common blueprint
for both service and requirements models. Service and requirements models must
not address all abstract decision aspects stated in the domain model. Therefore,
the domain model itself does not require to contain variability. Abstract deci-
sion aspects are represented by abstract features and hierarchically structured
by grouping features. Therefore, a domain model GD = (VD, ED, FATD) only
includes a reduced set of features.

VD\(V gr
D ∪ V ab

D) = ∅ (10)

A domain model contains a set of feature attribute types FAT to specify the
non-functional properties to regard in the CSSP. Furthermore, a domain model
does not contain cross-tree relationships.

Ecr
D = ∅ (11)

By acting as a common basis, the domain model supports aggregation of and
comparability between service and requirements models. Our approach uses a
single domain model within each CSSP. The example domain model illustrated
in figure 1 A describes which aspects to regard and how to structure them for se-
lecting a “Cloud Compute Service”. For example, the abstract feature “machine
size” can contain each service candidate’s machine sizes in the corresponding
service models. The grouping feature “Security / Legal” categorizes abstract
features addressing this concern. Furthermore, attribute types like “cost” with
the unit “Euro / hour” define quantitative aspects to regard.

Service Model: A service model GSD = (VSD , ESD , FATSD) represents a single
concrete Cloud service offer considered in the CSSP. A service model’s purpose is
to capture how this Cloud service offer concretely realizes the abstract decision
aspects defined in the domain model. Service models encompass the configura-
bility of Cloud services with regard to these aspects. Therefore, a single service
model represents multiple configurations of a Cloud service. A service model
GSD contains the same grouping and abstract features as the domain model GD

it relates to.
V gr
SD
∪ V ab

SD
= V gr

D ∪ V ab
D (12)

Additionally, it includes instance features to represent the modeled Cloud ser-
vice’s implementation options. Service models also contain the same attribute
types as the domain model they relate to.

FATSD = FATD (13)

Therefore, each instance feature can be described by feature attributes that relate
to one of the attribute types defined in the corresponding domain model. Service
models may also contain cross-tree relationships that limit the number of possible
configurations. Ultimately, a service model is a CFM without additional design
constraints. An example service model is illustrated in figure 1 B. It describes a

134 E. Wittern, J. Kuhlenkamp, and M. Menzel

specific Cloud compute service called “Cloud Service x”. It has, for example, two
instance features for “machine size”, one of which can be chosen, namely “small”
or “big”. Attributes attached to the instance features denote the instances’ “disk
space” and “cost”.

Requirements Model: A requirements model GRD = (VRD , ERD , FATRD)
represents the requirements that a decision-maker has with regard to the ab-
stract decision aspects in a CSSP. Similar to service models, requirements mod-
els contain the same grouping and abstract features as the domain model they
relate to.

V gr
RD
∪ V ab

RD
= V gr

D ∪ V ab
D (14)

Requirements models also contain the same attribute types as the domain model
they relate to.

FATRD = FATD (15)

This provides the decision-maker with the same structure of decision-relevant
aspects as stated in the domain model, thus guiding the requirements stating.
The following requirements statements are possible:

– Any instance feature required: This requirement states that an abstract
feature needs to be instantiated. It does, however, not matter which specific
instance feature is chosen if multiple exist. To capture this requirement in
the requirements model, the abstract feature is marked required using a
dedicated property.

– Specific instance feature required: This requirement states that an ab-
stract feature needs to be instantiated by a specific instance feature. To
model this requirement, the required instance feature is modeled in the re-
quirements model underneath the corresponding abstract feature.

Within the requirements model, a decision-maker can further state requirements
regarding values of attributes. The following statements are possible:

– Threshold for attribute value: This requirement states that the attribute
value of the chosen alternative needs to conform to the specified threshold.
To model this requirement, a subset of the corresponding attribute type’s
domain dom(vi.x) is chosen in the requirements model to determine the set
of valid instantiation values.

– Specific numerical value required: This requirement states that the at-
tribute value of the chosen alternative needs to match the specified value.
To model this requirement, a specific value for the corresponding attribute
type is chosen in the requirements model to determine the valid instantiation
value.

The stated requirements represent minimum requirements. This means, for ex-
ample, that if a required instance feature is contained next to other instance fea-
tures in a service configuration, the configuration fulfills the stated requirements.
An example requirements model is illustrated in figure 1 C. The model states
that the attribute “cost” needs to be < 2Euro/hour for a service (configuration)

Cloud Service Selection Based on Variability Modeling 135

to be considered in the selection. Further, the abstract feature “geographical lo-
cation” is marked as required and instance feature “Europe” is modeled and thus
required.

Alternative Model: An alternative model represents a single valid configu-
ration derived from a service model, thus a concrete candidate to be selected.
Alternative models are not CFMs. Rather, they are represented in a format
that allows to use them in further selection steps (i.e. ranking based on pref-
erences). Because alternative models represent valid configurations of a Cloud
service, they might be used as basis to deploy the service. Alternative models list
the features contained in the configuration they represent. Further, aggregated
values for each attribute type defined in the corresponding domain model are
contained. An example alternative model is illustrated in figure 1 D. It represents
a valid configuration of the “Cloud Service X” service. The presented alternative
model fulfills all requirements stated in the requirements model in figure 1 C.

3.3 Model Type Transitions

The transitions between the different model types are illustrated in figure 2.
The domain model is the basis for all other models by defining the structure of
grouping and abstract features and the relevant attribute types. Service and re-
quirements models are derived from a domain model by adding instance features.
Adding optional instance features increases the configurability of the service or
requirements model if compared to the domain model: all configurations of the
domain model are possible plus additional configurations in which the instance
features are contained. Adding optional instance features thus corresponds to the
unidirectional refactoring add optional node defined by [1]. Adding mandatory
instance features, however, does not increase the configurability because is no
longer possible to configure the service model in a way that no instance feature
is chosen. Thus, overall the transition from a domain model to a service or re-
quirements model can best be described as an arbitrary edit [14]. To denote the
move from a completely abstract model to a model containing concrete instance
features, we refer to this arbitrary edit as instantiation. In our approach, the
service models define all possible configurations on how to use a Cloud service.
Each configuration is potentially represented by an alternative model. We de-
limit the set of alternative models by determining only those configurations that

Domain model

Service model
Requirements

model

instantiation instantiation

Alternative
model

specialization

Fig. 2. Transitions between model types

136 E. Wittern, J. Kuhlenkamp, and M. Menzel

fulfill the constraints stated in the requirements model. Thus, overall the pro-
cess of deriving alternative models from service models under consideration of
the requirements model removes configurations from the service models, which
is in literature denoted as specialization of a feature model [5].

4 Cloud Service Selection Process (CSSP)

The models and their transitions defined in Section 3 are basis for the CSSP
that aims to select Cloud service configurations that fulfill requirements and
align best with a decision-maker’s objectives. The CSSP involves two roles to
execute different tasks and communicate in immediate interactions: Firstly, the
role (human) decision-maker might be filled by a single or multiple (human)
actors. Secondly, the role decision support tools presumes software tool imple-
mentations of our approach that return Cloud service selection recommendations
based on given model inputs. Figure 3 depicts the process and included roles in
Business Process Model and Notation (BPMN). The process is triggered by
decision-makers that intend to select a Cloud service. Their task is to define
multiple models: a domain model, multiple service models and a requirements
model. Subsequently, the tool processes the models as input, and generates and
evaluates viable Cloud service configurations into a list of recommendations. A
detailed description of the activities is given in the following:

– Define domain model: Initially, a domain model must be devised to fix a
feature hierarchy for future service and requirements models. The modeling
process can be self-contained and repetitive. However, eventually, the human
decision-makers who participate must release a CFM in a consent to finish
the activity.

– Define service models and requirements model: Given a complete
domain model, next, the current Cloud service landscape can be reflected
in service models that follow the domain model’s structure. In parallel, in
a requirements model, constraints on features and attributes can be set.

O
rg
an
iz
at
io
n

(H
um

an
)

de
ci

si
on

-m
ak

er
D

ec
is

io
n

su
pp

or
t t

oo
ls

Define domain
model

Domain model

Define service
models

Define
requirements

model

Derive eligible
alternatives

Perform preference-
based ranking

Review alternative
recommentations

Service
model Req. model

Service
model

Service to be
selected

Service
alternative
selected

Satisfied with
recommendations?

no

yes

Alternative
modelAlternative

model

Fig. 3. Cloud Service Selection Process in BPMN

Cloud Service Selection Based on Variability Modeling 137

However, some constraints are based on instance features of existing service
models (see section 3.2) and, hence, premise a prior modeling of a subset of
service models.

– Derive eligible alternatives: Based on the set of service models, eligi-
ble alternatives can be generated. This can be done by matching the stated
requirements of a requirements model with all service models for according
node pairs to find viable service configurations, since both models are follow-
ing the structure of one domain model. Matching can be performed similar to
approaches in policies, where name spaces are compared. Alternative models
are employed to represent eligible, alternative configurations in a map-like
structure.

– Perform preference-based ranking: Resulting alternative models can
serve as a basis for multi-criteria decision-making (MCDM) methods that al-
low to obtain a preference-based ranking of the alternatives. Decision criteria
can be defined upon the attributes of alternative models derived from ser-
vice models. Few other Cloud service selection approaches based on MCDM,
e.g., the (MC2)2 framework [10] using an analytic hierarchy process, mention
the need for extensive requirements elicitation and filtering. Our approach
replaces their alternative definition and simple requirements checks.

– Retrieve alternative recommendations: The recommended alternative
can subsequently be assessed by a decision-maker. In case of satisfaction,
the CSSP stops. Otherwise, further iterations of the process are possible as
discussed below.

Our approach allows for cycles to foster evolutionary Cloud service selection.
Decision-makers can start with simple models and few requirements and in-
crementally improve models to strive for more precise results. After reviewing
recommendations, a decision-maker can step back and either improve the domain
model, service models, or requirements model. However, changes in a model can
affect the validity of other models, e.g., an extended domain model requires to
change all other models and changing a service model might induce changes in
the requirements model. On the other hand, the requirements model allows fre-
quent adjustments to the set of requirements, which is supposed to be common.
The process depicted in Figure 3 illustrates the cycle with an optional path from
reviewing recommendations back to the start activity (i.e., domain model defi-
nition). Entering a new cycle, a decision-maker has the chance to alter models
if needed and gain new service recommendations. Dependencies between models
have been addressed in Section 3.3 and their management is not automated in
our approach yet, and, hence, left to a modeler.

5 Use Case: Cloud Storage Selection

To evaluate the applicability of our modeling approach and subsequent selection
process, we applied it to a use case that aims select among Cloud storage services.
Cloud storage services allow to easily upload data to Cloud data centers, for
instance for backup purposes or to share and access data on diverse devices,

138 E. Wittern, J. Kuhlenkamp, and M. Menzel

e.g., mobile phones. The use case is relevant for (technical) decision-makers in
search for decision support to select Cloud storage services.

5.1 Implementation

We created a prototypical implementation of a Cloud feature model editor. The
implementation builds upon our previous tool suite for service feature model-
ing [16] and is based on the Eclipse Modeling Framework (EMF)2. Our editor
provides a graphical interface to model CFMs, including attribute and feature
types. We also implemented a reasoning engine that determines the possible con-
figurations for a given CFM and aggregates the attributes based on the standard
aggregation strategy defined in the attribute type (see section 3.2). The reasoning
engine uses the freely available CHOCO constraint satisfaction problem solver3,
that has also been successfully used by other researchers for such purposes [2]. A
requirements matching module determines alternative models in text-form that
fulfill the needs stated in the requirements model. The implementation of our
tool is publicly available4.

5.2 Performing the Use Case

We performed the use case with regard to those parts of the CSSP that concern
modeling and derivation of alternatives, leaving the preference-based ranking
open because it is not focus of this work (for details about this step, see for
example [10,11,13]).

Definition of Domain Model: We defined a domain model to specify all
aspects to be included in the selection. These aspects are derived from published
descriptions of the services in focus5. As illustrated in Figure 4 A, we defined
two grouping features “safety” and “usability”. We used abstract features to
denote the aspects whose concrete instantiations we want to assess, e.g., “ver-
sioning” and “data encryption”. The abstract feature “plans” relates to offered
combinations of “data volume” and “price”. Attribute types denote quantita-
tive characteristics to regard in the selection, for example, “storage capacity” in
GByte and “monthly cost” in Dollar.

Definition of Service Models: Based on the domain model, we created 3
service models that represent a random selection of Cloud storage offers: “Drop-
box”, “Box.net” and “Wuala”. Per service model, we specified concrete capabil-
ities in form of instance features and attributes based on the publicly available
service descriptions. Figure 4 B illustrates parts of the service model we created
for Drobpox. Instance features are used, for example, to indicate the “data en-
cryption” mechanisms that Dropbox offers. Attributes denote, for example, the
“monthly cost” for the “free” plan, which are 0. Dropbox’s “user management

2 http://www.eclipse.org/modeling/emf/
3 http://www.emn.fr/z-info/choco-solver/
4 https://github.com/ErikWittern/CloudServiceSelection
5 http://www.dropbox.com, http://www.box.com, http://www.wuala.com

http://www.eclipse.org/modeling/emf/
http://www.emn.fr/z-info/choco-solver/
https://github.com/ErikWittern/CloudServiceSelection
http://www.dropbox.com
http://www.box.com
http://www.wuala.com

Cloud Service Selection Based on Variability Modeling 139

A: Domain model B: Service model

Fig. 4. Domain model and service model for “Dropbox” of the use case; screen shots
taken from our prototype CFM tool

console” and “rewind” recovery feature are not part of the free plan and thus
excluded using cross-tree relationships.

Definition of Requirements Model: Based again on the domain model, we
created a simple requirements model. The model states that any “user manage-
ment” instantiation is required by setting an according property in the abstract
feature. Further, attribute type “storage capacity” ought to be > 60GByte, while
“monthly cost” should be < 20.00$/user/month.

Derivation of Eligible Alternatives: Having the 3 service models and the
requirements model in place, we triggered matching of the models to determine
those configurations that fulfill the stated requirements. From the original 45
configurations contained in the 3 service models (4 for Box.com, 12 for Dropbox
and 29 for Wuala), 5 fulfilled the stated requirements (1 from Box.com and 4
from Wuala).

5.3 Discussion

The use case shows that our modeling approach is capable to efficiently capture
the configurations to select from when consuming a Cloud storage service - the 3
service models contained 45 configurations. The requirements elicitation allows
to eliminate configurations that do not meet stated requirements, leading in this
case to a reduction of configurations by factor 9. The models produced in this

140 E. Wittern, J. Kuhlenkamp, and M. Menzel

use case are publicly available6. Because all 3 service models are based on the
same domain model, their resulting configurations are comparable to each other.
Hence, configurations allow for a service selection already or, after transferring
them into adequate alternative models, they can act as input for further MCDM
approaches. The application of the use case indicated multiple theses worth
following: first, stating the requirements model for existing service models is
easy for human decision-makers compared to the creation of the service models,
thus allowing to iteratively adapt it if needed. Second, the reuse of existing
service models in multiple CSSPs can greatly reduce modeling effort. Third, the
collaboration of multiple experts from different domains improves the quality of
created service models.

6 Conclusion and Future Work

In this paper, we addressed human-centered modeling of capabilities of Cloud
service offers and requirements towards them with a holistic support consisting
of models, a process, and a software tool. We adapt feature modeling to capture
diverse aspects and configurations of Cloud services: we introduced extended
feature attributes, feature types and model types to enable the resulting CFMs
to be used within the also presented CSSP. We demonstrate the applicability
of our approach in a use case where we compare overall 45 configurations of 3
Cloud storage services. The large number of configurations illustrates how useful
it is to utilize variability modeling to represent Cloud services. By applying
requirements filtering we showed that we can effectively delimit the number
of alternative models, thus generating suitable input for subsequent selection
phases (i.e. preference-based ranking).

In future work, we want to involve multiple stakeholders into the modeling
of and selection among Cloud services by providing means for collaboration. To
better address the dynamics of Cloud computing, we envision to (automatically)
incorporate dynamic attribute values into the CFMs that allow for example to
consider up to date benchmark results in the Cloud service selection. Next to
selecting single Cloud services, the selection and composition of multiple services,
concepts for model reuse and an iterative process should be considered.

Acknowledgment. This work was supported by the COCKPIT project [4].

References

1. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring
Product Lines. In: Proc. of the 5th Int. Conf. on Generative Programming and
Component Engineering, GPCE 2006, pp. 201–210. ACM, Portland (2006)

2. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models
20 Years Later: A Literature Review. Information Systems 35(6), 615–636 (2010)

6 http://bit.ly/CloudServiceSelectionModels

http://bit.ly/CloudServiceSelectionModels

Cloud Service Selection Based on Variability Modeling 141

3. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

4. COCKPIT Project: Citizens Collaboration and Co-Creation in Public Service De-
livery (2012), http://www.cockpit-project.eu

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Fea-
ture Models and their Specialization. Software Process: Improvement and Prac-
tice 10(1), 7–29 (2005)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2), 143–169 (2005)

7. Godse, M., Mulik, S.: An Approach for Selecting Software-as-a-Service (SaaS)
Product. In: Proc. of the 2009 IEEE Int. Conf. on Cloud Computing, CLOUD
2009, pp. 155–158. IEEE, Washington, DC (2009)

8. Karataş, A.S., Oğuztüzün, H., Doğru, A.: Mapping Extended Feature Models to
Constraint Logic Programming over Finite Domains. In: Bosch, J., Lee, J. (eds.)
SPLC 2010. LNCS, vol. 6287, pp. 286–299. Springer, Heidelberg (2010)

9. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: Comparing Public Cloud
Providers. In: Proc. of the 10th Annual Conf. on Internet Measurement, IMC 2010,
pp. 1–14. ACM, New York (2010)

10. Menzel, M., Schönherr, M., Tai, S.: (MC2)2: Criteria, Requirements and a Software
Prototype for Cloud Infrastructure Decisions. Software: Practice and Experience
(2011)

11. ur Rehman, Z., Hussain, F., Hussain, O.: Towards Multi-Criteria Cloud Service
Selection. In: Proc. of the 5th Int. Conf. on Innovative Mobile and Internet Services
in Ubiquitous Computing, IMIS 2011, pp. 44–48. IEEE, Perth (2011)

12. Ruiz-Alvarez, A., Humphrey, M.: An Automated Approach to Cloud Storage Ser-
vice Selection. In: Proc. of the 2nd Int. Workshop on Scientific Cloud Computing,
pp. 39–48. ACM, New York (2011)

13. Saripalli, P., Pingali, G.: MADMAC: Multiple Attribute Decision Methodology
for Adoption of Clouds. In: Proc. of the 4th Int. Conf. on Cloud Computing, pp.
316–323. IEEE, Washington, DC (2011)

14. Thüm, T., Batory, D., Kastner, C.: Reasoning About Edits to Feature Models.
In: Proc. of the 31st Int. Conf. on Software Engineering, ICSE 2009, pp. 254–264.
IEEE, Washington, DC (2009)

15. Wittern, E., Zirpins, C.: On the Use of Feature Models for Service Design: The
Case of Value Representation. In: Cezon, M., Wolfsthal, Y. (eds.) ServiceWave
2010 Workshops. LNCS, vol. 6569, pp. 110–118. Springer, Heidelberg (2011)

16. Wittern, E., Zirpins, C., Rajshree, N., Jain, A.N., Spais, I., Giannakakis, K.: A Tool
Suite to Model Service Variability and Resolve It Based on Stakeholder Preferences.
In: Pallis, G., Jmaiel, M., Charfi, A., Graupner, S., Karabulut, Y., Guinea, S.,
Rosenberg, F., Sheng, Q.Z., Pautasso, C., Ben Mokhtar, S. (eds.) ICSOC 2011.
LNCS, vol. 7221, pp. 250–251. Springer, Heidelberg (2012)

17. Wohlstadter, E., Tai, S., Mikalsen, T., Rouvellou, I., Devanbu, P.: GlueQoS: Mid-
dleware to Sweeten Quality-of-Service Policy Interactions. In: Proc. of the 26th Int.
Conf. on Software Engineering, ICSE 2004, pp. 189–199. IEEE Computer Society,
Washington, DC (2004)

http://www.cockpit-project.eu

Extending Enterprise Service Design

Knowledge Using Clustering

Marcus Roy1,2, Ingo Weber2,3,�, and Boualem Benatallah2

1 SAP Research, Sydney, Australia
2 School of Computer Science & Engineering, University of New South Wales

3 Software Systems Research Group, NICTA, Sydney, Australia
{m.roy,ingo.weber,boualem}@cse.unsw.edu.au

Abstract. Automatically constructing or completing knowledge bases
of SOA design knowledge puts traditional clustering approaches beyond
their limits. We propose an approach to amend incomplete knowledge
bases of Enterprise Service (ES) design knowledge, based on a set of ES
signatures. The approach employs clustering, complemented with vari-
ous filtering and ranking techniques to identify potentially new entities.
We implemented and evaluated the approach, and show that it signifi-
cantly improves the detection of entities compared to a state-of-the-art
clustering technique. Ultimately, extending an existing knowledge base
with entities is expected to further improve ES search result quality.

1 Introduction

In large-scale software development efforts, such as enterprise Service-Oriented
Architectures (SOAs), ESs are commonly developed using service design guide-
lines – guarded by SOA Governance [13,8,16]. These guidelines may include
entities (e.g. Sales Order) and naming conventions used to construct unambigu-
ous ES operation names, referred to as ES signatures. For instance, consider
the ES signature “SalesOrderItemChangeRequestConfirmation In” from SAP’s
ESR1. Although such service design knowledge is largely used to consistently
design ES signatures, it can also be utilized for other applications, e.g. tools to
automatically generate, duplicate-check and validate compliant ES signatures as
well as to search for ESs. We tested the latter in an ongoing, separate stream of
work, where we use service design knowledge in an entity-centric keyword search
for ESs, with highly encouraging results. However, such service design knowl-
edge can be incomplete, e.g. due to partial modeling, or become outdated as
related systems and business requirements evolve over time. Particularly when
customers tailor an off-the-shelf enterprise application to their specific need, they
may disregard design guidelines when developing new ESs. Therefore, resulting

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

1 Enterprise Service Registry: http://sr.esworkplace.sap.com

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 142–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sr.esworkplace.sap.com

Extending Enterprise Service Design Knowledge Using Clustering 143

ESs may not fully comply with existing service design guidelines and possibly
incorporate new knowledge, i.e. new entities or additions to naming conventions.
This knowledge is inherent to ES signatures and may not be reflected in service
design knowledge yet. The absence of such knowledge can therefore limit the ef-
fectiveness of above mentioned applications, e.g. it strongly affects the precision
and recall of search results in an entity-centric search. Hence, there is a need to
extract design knowledge from existing ES signatures.

To amend existing knowledge bases, there are a few approaches that can be
used such as entity recognition [3,5,9] or clustering techniques [7,23,12,21]. With
entity recognition, known entities can be recognized from text, e.g. using entity
graphs [3]. The recognition effectiveness hereby also depends on the complete-
ness of the entity graph and becomes uncertain when entities are missing. On
the other hand, clustering techniques, e.g. hierarchical agglomerative clustering
(HAC) [12,7], can be used to find term clusters from text representing poten-
tially new entities. Although these clusters can be used, e.g. for Web service
matchmaking [7], it is not clear how well these clusters represent exact entity
names. This is because clustering tries to assign terms to discrete clusters, which
does not work well for entities consisting of repetitive terms overlapping with
other entities, e.g. “Sales Order” and “Sales Price”. Also, clustering assumes
potential entities to be statistically independent. In that context, we observed
that naming conventions may cause terms of entities to frequently co-occur with
each other, which clustering can misunderstand as a cluster.

In this paper, we propose an approach that combines entity recognition and
a knowledge base-driven clustering to find names of unknown entities from ES
signatures. We hereby aim to improve the accuracy of recognizing new entities
by removing known entities from the input to our knowledge base-driven clus-
tering, and by possibly merging newly formed clusters with co-exiting entities.
First, we utilize existing service design knowledge to learn existing naming con-
ventions. Second, we reuse naming conventions to recognize known entities in
ES signatures. Third, we perform the knowledge base-driven clustering over the
remaining, unknown terms and check their co-occurrence with recognized en-
tities. For this, we introduce measures of confidence and cohesion, to describe
the quality of (potentially overlapping) term clusters and the strength of their
connectivity to co-occurring entities. Finally, resulting clusters are added to the
knowledge base, as either new or specialized entities.

We implemented the proposed approach and evaluated the knowledge base-
driven clustering compared to the HAC used in [7] on a large-scale repository
from SAP with more than 1600 ES signatures. Our evaluation shows that the pro-
posed approach achieves reasonably high precision and recall values of clustered
entities and outperforms the HAC. In short, our contributions are as follows:

– Reusing service design knowledge to recognize entities from signatures
– A knowledge base-driven clustering approach, which uses generated (poten-

tially overlapping) term clusters and recognized entities to find new entities.
– An in-depth evaluation using a real-world testbed.

144 M. Roy, I. Weber, and B. Benatallah

We next describe the knowledge base and challenges in its effective use. In Sec-
tion 3, we explain the proposed approach, followed by the evaluation in Section 4.
Related work is discussed in Section 5, Section 6 concludes the paper.

2 Using Service Design Knowledge

We start by motivating and describing an abstract representation of service de-
sign knowledge, followed by open challenges how to effectively use the knowledge.

2.1 A Representation of Service Design Knowledge

Organizations use SOA Governance to better manage their SOA [13], which can
be applied to any part of a service life-cycle addressing areas such as service de-
sign and development among others. In this work, we only focus on the service
design phase [2]. In this phase, enterprises employ service design methodologies
to create business-aligned, reusable and long-living ESs [16,8]. Such methodolo-
gies typically describe guidelines and best practises providing clear instructions
to developers on how to create and name services that comply with agreed-on
design principles. These design principles are the basis of our knowledge base,
as described in detail in previous work [15]. There we also showed how to derive
an abstract representation of this service design knowledge consisting of (i) a
graph of entities and (ii) an automaton describing a set of ES signatures. This
representation is summarized below.

First, we define a Directed Acyclic Graph (DAG) of typed entities e ∈ EKB

with type c ∈ CKB in RDF. This DAG captures an abstract view of a data model
and related design patterns, stemming from a service design methodology. Fig. 1
shows a partial example DAG, depicting entities ei as white boxes (i.e. RDF
literals) and associated types cj as grey ovals (i.e. RDF classes). For instance,
entity e14 : Sales Order is of type c9 : Business Object; e14 belongs to entity
e15 : Sales Order Processing of type c10 : Process Component. We consider
such a DAG as a structured vocabulary of typed entities.

c0:Representational_Model

c2:DataModelc1:Pattern
c3:Access
Pattern

c6:Communication
Pattern

c7:Direction
Pattern

c4:Interface
Pattern

c5:Operation
Pattern

c12:Software
Component

c9:Business
Object

c8:Business
ObjectNode

c11:Deployment
Unit

c10:Process
Component

type

belongs to

Relationship Concepts

cx:Type
e10:Information

e9:QueryResponsee8:Notification

e7:RequestConfirmation

e1:Action

e2:Query

e3:Manage

e4:Create

e5:Find

e6:Approve

e11:In e12:Out

e13:Item

e14:SalesOrder

e15:SalesOrder
Processing

e16:SalesOrder
Processing w/o HCM

e17:ERPex:Entity

Fig. 1. Example of a typed entity graph representing a structured vocabulary

Extending Enterprise Service Design Knowledge Using Clustering 145

Second, we define a non-deterministic automata with epsilon moves to capture
a (possibly incomplete) set of naming conventions. We defined the automaton on
a set of entities, the input alphabet. The set of transitions uses the types of en-
tities. As such, an ES signature Si ∈ S is interpreted as a sequence of entities ei,
where each respective type cj triggers a state transition. A governance-compliant
signature is accepted by the corresponding automaton, if it reaches a final state
in the automaton after its last entity. Fig. 2 shows an excerpt of an automaton,
related to the example DAG in Fig. 1.

c9:Business
Object

c8:Business
Object Node

c5:Operation
Pattern

c6:Communication
Pattern

c7:Direction
Pattern

c5:OperationPattern / ε

q1 q2 q3 q5

t8:Business
Object Node

q7q0

Fig. 2. Example of an automaton describing a subset of ES signatures

The following example ES signature, Sx1 , is accepted by the automaton from
Figure 2, according to the split into entities of (abbreviated) types shown below.

Sx1 : SalesOrder︸ ︷︷ ︸
c9:BO

Item︸ ︷︷ ︸
c8:BON

Change︸ ︷︷ ︸
c5:OP

RequestConfirmation︸ ︷︷ ︸
c6:CP

In︸︷︷︸
c7:DP

2.2 Challenges of Using Service Design Knowledge

In the previous section we provided an example of an ES signature that com-
pletely matched exact entities in the knowledge base and is accepted by a respec-
tive automaton. Although these types of ES signatures constitute the majority
of cases, there are signatures that can only be matched partially as shown in
the example below2. Apart from recognized entities, the signature also contains
terms (here: Reporting and Bulk) that cannot be matched to entities. In this
context, we refer to terms as single words separated by their camel case notation.

Sx2 : Reporting︸ ︷︷ ︸
?

Employee︸ ︷︷ ︸
c9:BO

Bulk︸ ︷︷ ︸
?

Notification︸ ︷︷ ︸
c8:BON

ByID︸ ︷︷ ︸
c5:OP

QueryResponse︸ ︷︷ ︸
c6:CP

In︸︷︷︸
c7:DP

Since these terms do not match existing entities, they might be (parts of) entities
missing from the KB. Using signature Sx2 as an example, we introduce two types
of new entities as follows. First, the term Reporting alone does not seem to
represent an independent entity. Instead, Reporting together with the entity
following it, i.e. Employee, describes a specialization of the existing Employee.
In contrast, the term Bulk is not a specialization of Notification, but rather a

2 We used a constructed example of a signature to illustrate two common pitfalls.

146 M. Roy, I. Weber, and B. Benatallah

general property: Bulk is also found in the context of other entities, e.g. Payment
or Message. In the following section, we describe an approach that recognizes
known entities, extracts unknown terms and determines whether they are likely
a specialization of an existing entity or a separate, new entity.

3 Extending Services Design Knowledge Using Clustering

In this section, we describe the proposed solution to identify unknown entities
from ES signatures. We start with an overview, before explaining each step of
the approach in detail. The inputs to the approach are a list of ES signatures
and a populated entity graph (cf. Section 2). Given this input, the following four
phases are executed (see Fig. 3).

Strict Classification recognizes signatures that are completely matched with
entities from the knowledge base. For each of these signatures, it extracts
the corresponding entity sequence and consolidates all sequences into an
automaton using [19].

Approximate Classification uses the automaton from the first step to detect
known entities in the remaining signatures. All unknown terms are collected.

Knowledge base-driven Clustering applies two measures to candidate en-
tities: (i) a confidence measure to form term clusters of closely connected
unknown terms and (ii) a cohesion measure to merge term clusters with
already recognized entities. If predefined thresholds are exceeded, a cluster
can be considered as a new entity. In contrast to common clustering meth-
ods which only take into account unknown terms, our knowledge base-driven
clustering uses the existing KB in addition to the unknown terms.

KB Extension adds new entities to the KB: pure term clusters represent sep-
arate new entities; term clusters merged with existing entities represent spe-
cialization of these entities.

D
at

a
K

no
w

le
dg

e
B

as
e

Pr
oc

es
s

Strict
Classification

Approximate
Classification

KB-driven
Clustering

[Yes]
[No]

Known
Entities

Unknown
Terms

add

Entity
Sequence

populate annotate

extend

Automaton Signatures Entity Graph

A S E

AES E S
Signature

Completely
Recognized?

Entity
Clusters

KB
Extension

[Yes]
Found More
Clusters?

[No]

Fig. 3. Overview of the different components of the proposed approach

Extending Enterprise Service Design Knowledge Using Clustering 147

The strict and approximate classification can be considered as a pre-clustering of
signatures Si ∈ S into a set of recognized entities Ei ∈ E and a set of unknown
terms Ti ∈ T . In the remainder, we therefore refer to a signature Si as a 3-tuple of
Ei, Ti, and Oi:

Si := (Ei, Ti, Oi) (1)

where Oi specifies the order of terms and entities: Oi = (xi1 , ..., xim) where xij ∈
Ei∪Ti. A pair of signature parts xij , xik ∈ Ei∪Ti is said to be neighbors in Si iff
j = k+1 or j = k−1. A set of signature parts X = {xj , ..., xk} with X ⊆ Ei∪Ti

is said to be connected in Si iff there is a permutation X ′ = (xj1 , ..., xjn) of X
such that all pairs (xjl , xjl+1

) are neighbors in Si.

3.1 Strict Classification

The goal of this phase is to reverse-engineer approximate naming rules from
signatures that can be explained fully and unambiguously. For this, the strict
classification uses as input the set of ES signatures (S) and an entity graph (E) as
depicted in Figure 3. First, it identifies matches between all parts of a signature
and the vocabulary defined in the entity graph. If not every part of a signature
matches some entity from the vocabulary, the signature is rejected.

For the remaining signatures, there may be more than one explanation – i.e.
more than one set of known entities that together matches all parts of the sig-
nature. To reject signatures with unclear explanations, the classification uses
the relationships from the entity graph as follows. For the recognized entities, it
traverses the ancestors and descendants from the “belongs-to” relationship, and
builds sets of graph-related entities and types respectively. It then requires that
all entities in the signature whose types are graph-related, are themselves graph-
related as well. For instance, the signature “SalesOrderItemCreateRequestCon-
firmation In” contains the entity “Item” (typed “Business Object Node” (BON))
and the entity “Sales Order” (typed “Business Object”(BO)). Due to BON be-
ing graph-related to BO (see Fig. 1), “Item” is also required to be graph-related
to “Sales Order” – which is indeed the case. If, for any pair of entities in an
explanation, this constraint does not hold, the classification rejects the expla-
nation. Note that this is, in practical terms, very strict indeed: some correct
explanations are likely to be rejected. Finally, the strict classification rejects any
signature where the number of remaining explanations is not exactly 1.

The result of the strict classification is a set of signatures, each explained by
sequence of recognized entities. These entity sequences are then used to build a
minimal automaton as described in [19], and annotate related signatures with
the recognized entities [15]. Inversely, the automaton transitions are annotated
with their respective popularity, i.e., the absolute number, of how often a given
transition has been used in the strictly classified signatures.

Example 1. Strict Classification result for Sx1 :
Sx1 = (Ex1 , ∅)
Ex1 = {SalesOrder, Item, Change, RequestConfirmation, In}
Ox1 = (SalesOrder, Item, Change, RequestConfirmation, In)

148 M. Roy, I. Weber, and B. Benatallah

3.2 Approximate Classification

The approximate classification takes as an input the ESs signatures (S), the
entity graph (E), and the automaton (A) built in the previous step. For each
signature that has been rejected by the strict classification, the approximate
classification aims to find known entities that explain parts of it.

As in the previous step, approximate classification has to deal with the chal-
lenge of multiple possible explanations for signature parts. For example, the com-
pound term “Sales Order Confirmation” could be considered (a) a single entity
(typed BO) or (b) as a concatenation of two independent entities “Sales Order”
(typed BO) and “Confirmation” (typed “Communication Pattern” (CP)). The
approximate classification therefore uses the automaton to find the most likely
explanation amongst multiple possibilities.

This phase starts off like the previous one, by matching neighboring signature
parts against entities from the entity graph, to produce a set of possible expla-
nations (if any) for the parts of each signature. For signatures with multiple
explanations, the approximate classification filters and ranks the explanations
according to their level of match and popularity with the automaton. That is,
explanations that are contradictory to the automaton are rejected. For the re-
maining explanations, the classification computes the sum of the popularity of
the transitions taken by this explanation, and ranks the remaining explanations
accordingly. It then rejects all but the highest-ranked explanation.

As an example for the filtering, the automaton may denote that a valid signa-
ture only contains one CP. Therefore, using the above partial signature example
“Sales Order Confirmation”, explanation (b) would be rejected if another CP
appears later in the signature and explanation (a) is kept. As an example for
the ranking, say there was no other CP. Then, say explanation (a) might have a
partial popularity of 320, and explanation (b) a partial popularity of 320 + 80
= 400, the ranking would prefer explanation (b). Finally, we collect recognized
entities Ei and remaining unknown terms Ti to be used in the next step.

Example 2. Approximate Classification result for Sx2 :

Sx2 = (Ex2 , Tx2, Ox2)

Ex2 = {Employee, Notification, By, ID, QueryResponse, In}
Tx2 = {Reporting, Bulk}
Ox2 = (Reporting,Employee,Bulk,Notification,By,ID,QueryResponse,In)

3.3 Knowledge Base-Driven Clustering

The goal of the knowledge base-driven Clustering is to find potential clusters of
entities fromthe set of unknowntermsTi, in the context of existing sets of entitiesEi

and the orderOi. For this we use a confidence and a cohesionmeasure, as illustrated
in Figure 4. In summary, the clustering first groups terms that co-occur inmultiple
signatures into term clusters (cf. right dashed bounding box), and computes the
term cluster confidence score conf of the cluster candidates. Second, itmerges term
cluster candidates that have a high conf value with co-occurring entities using the

Extending Enterprise Service Design Knowledge Using Clustering 149

e1

Entity Cohesion
coh (e,Ti)

Potential Term
Cluster with

conf (Ti)

e2 e3 t1 t2 t3

e4 e5 t2 t3

e7 e5 t2 t3

Entity Sets Ei Term Sets Ti

n

l

Fig. 4. Schematic clustering example, using Term Confidence and Entity Cohesion.
Not shown is the influence of the term/entity order.

entity cohesion score coh: the cohesion between term clusters and entities (cf. left
and right dashed bounding boxes). We now explain both measures in detail.

Term Cluster Confidence. To identify potential term clusters, we consider
any non-empty subset of terms Ti ⊆ T , as long as some signature contains this
subset (formally: ∃Sj : Ti ⊆ Tj) and the terms in Ti are connected in Sj (as per
the above definition). We refer to the set of all potential term clusters fulfilling
this condition as T . To calculate a confidence value conf (Ti) for an arbitrary,
but fixed term cluster Ti, we first define St ⊆ S as the set of signatures whose
respective term set Tj is a superset of Ti:

St(Ti) := {Sj ∈ S | Ti ⊆ Tj, Sj = (Ej , Tj , Oj)} (2)

We further define pn as the size of St (the number of signatures containing Ti),
pl as the size of Ti, and pr as the average size of the complete term sets contained
in St:

pn(Ti) := |St| (3)

pl(Ti) := |Ti| (4)

pr(Ti) :=

∑
j:Sj∈St

|Tj |
pn(Ti)

(5)

Finally, we define the term cluster confidence conf for Ti, normalized over all
term cluster candidates T where a, b ∈ [1,∞) are decimal values:

pt(Ti) := ln(pn(Ti))×
pl(Ti)

a

pr(Ti)b
(6)

conf (Ti) :=
pt(Ti)

max({pt(Tk)|Tk ∈ T })
(7)

The fraction pl/pr hereby represents the ratio of the sizes of the term clus-
ter vs. the average size of all term sets in the signatures in which Ti occurs.

150 M. Roy, I. Weber, and B. Benatallah

This fraction can be seen as a signal-to-noise ratio Ti in relation to all unknown
terms. We further exponentiate the numerator of the fraction by a and the de-
nominator with b. Intuitively, setting higher values for a prioritizes long term
clusters. In contrast, setting higher values for b increases the penalty for long
“rests”, i.e., unknown terms that are not part of the candidate cluster. Since pr
is the average number of all unknown terms, i.e., the rest as well as the cluster,
we recommend setting a ≥ b – otherwise longer clusters would in general be pe-
nalized. Based on samples, we found that a = 3 and b = 2 returns best results.
The third main factor in pt is pn, the number of occurrences of the cluster can-
didate. To mitigate imbalance due to high variance in pn, we apply the natural
logarithm function. Preference between pn and pl/pr can be expressed with the
ratio a/b: the higher, the less important pn becomes. In summary, the confidence
score prioritizes long clusters, appearing often, but with little noise.

Next, we define a threshold trconf : after calculating the confidence values for
all candidate clusters, all term cluster candidates Ti with conf (Ti) > trconf are
added to the set of resulting clusters. This threshold primarily works by allowing
rivaling explanations of term clusters to get added to the result set simultane-
ously. The whole confidence computation step is run as a fixpoint algorithm:
term clusters that are added to the result set in one round are removed from the
set of unknown terms. This results in a changed set of cluster candidates. For
these we re-calculate conf , and so on. This is done until no more clusters are
found. Since conf is normalized among the current set of candidates, at least the
cluster with maximal confidence is added to the result set.

Finally, we filter the term cluster result set with a two-dimensional threshold
trf := (trf1, trf2) as follows. trf1 is a relative threshold: clusters in the result
set are ranked according to their pt value, and the lowest-ranked portion of size
trf2 are removed – e.g., the last 10%. In contrast, trf2 is an absolute threshold,
with respect to pt: all term clusters Ti with pt(Ti) ≤ trf2 are removed from the
result set. The combined threshold works to remove noise from the result set.

Entity Cohesion. As motivated with the example of “Reporting” and “Em-
ployee” above, some term clusters (e.g., “Reporting”) should not form entities
by themselves, but should be merged with other entities to form a specialization
of those (e.g., “ReportingEmployee”).

To determine which cluster candidates from the previous step should be
merged with some entity, we compute a cohesion score coh that captures co-
occurrences of connected term clusters Ti with entities. For this, we first define
the projection ρ(Ti) as the set of entity sets E′

j that (i) co-occur with Ti in some
signature Ej , and (ii) contain only entities neighboring with some term from Ti

in Sj . We further define the entity set Uc as the union of these entity sets.

ρ(Ti) := {E′
j | Ti ⊆ Tj , Sj = (Ej , Tj, Oj), E

′
i ⊆ Ej ,

∀e ∈ E′
j ∃t ∈ Ti : t, e are neighbors} (8)

Uc :=
⋃

E′
j∈ρ(Ti)

E′
j (9)

Extending Enterprise Service Design Knowledge Using Clustering 151

We then define the cohesion coh(e, Ti) between an entity e and a term cluster
Ti as the ratio between signatures containing both e and Ti and all signatures
containing Ti:

coh(e, Ti) :=
|{E′

k | e∈E′
k,Ti⊆Tj ,E

′
k∈ρ(Tj)}|

pn(Ti)
(10)

Note that coh uses the projection defined above, and thus only counts co-
occurrences between e and Ti where e is the neighbor of some term in Ti.

After calculating the cohesion between Ti and all candidate entities e, we
decide if and how to combine Ti and the candidates as follows. If each occurrence
of Ti is a co-occurrence with e (formally: coh(e, Ti) = 1), we merge Ti with e
and add the result as a specialization of e. If for each candidate entity e we have
coh(e, Ti) < 1, a threshold trcoh is applied to determine if the co-occurrence
between e and Ti is frequent enough to justify merging. If the cohesion exceeds
trcoh merging is justified – however, there must be cases where the term cluster
appears without e (else the cohesion would have been 1). Therefore, we add both
the term cluster by itself, as a new entity, and term cluster merged with entity
to the knowledge base. The merged cluster hereby becomes a specialization of
e as well as the new entity. If the cohesion is below the threshold, we only add
the original term cluster to the knowledge base as a new entity. The clustering
result C(e, Ti) between e and Ti can thus be formally defined as:

C(e, Ti) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e ∪ Ti , ∀e ∈ Uc : coh(e, Ti) = 1
{Ti, e ∪ Ti} , �e′ ∈ Uc : coh(e

′, Ti) = 1
∧ ∀e ∈ Uc : trcoh < coh(e, Ti) < 1

Ti , �e′ ∈ Uc : trcoh < coh(e, Ti) ≤ 1
∧ ∀e ∈ Uc : coh(e, Ti) < trcoh

(11)

3.4 Knowledge Base Extension

The outcome of the clustering are cluster sets – independent, new entities and
new entities as specializations of existing entities. Depending on the type of
cluster, different implications apply regarding the extension of the entity graph
and automata with clustered entities as follows.

Adding Entities to the Entity Graph. Term clusters that have not been
merged with existing entities only consists of terms and are therefore treated as
independent entities. Every independent entity gets assigned a new, specific type,
which is added directly under the root node in the entity graph. This is done
because there is insufficient information to determine if the new entity should
be considered to be of an existing entity type. In contrast, a specialization of an
entity is added to the entity graph as a new entity under the same parent as the
original entity and gets assigned the same type of the original entity.

Adding Entities to the Automaton. Since the automaton uses entity types
as it alphabet, each newly added independent entity requires a new state to
be added to the automaton. The corresponding new type is added as a new

152 M. Roy, I. Weber, and B. Benatallah

transition. Figure 5 shows this for our example. Since specialized entities inherit
the type of the original entity, the transition already exists and no changes have
to be made to the automaton. Note that the update of the automaton is done
automatically during the next strict classification using the revised entity graph.

Example 3 (Knowledge Base Extension Example)
Say, term clusters Tb = {Bulk} and Tr = {Reporting} both exceed given thresh-
olds trconf and trf , and that Tr plus entity Employee exceeds a given trcoh.
Therefore, Tb is added to the entity graph as a new entity eb = Bulk with
equally-named type c13 = Bulk. During the next iteration, eb will be recognized
as an entity and incorporated into the automaton (cf. Figure 5). In contrast,
term cluster Tr will be merged with entity Employee and added to the knowl-
edge base as entity er = Reporting Employee with the same type as Employee,
i.e. c9 : Business Object. During the next iteration, er will be recognized as an
entity supporting the already existing transition based on type c9.

c9:Business
Object

c8:Business
Object Node

c5:Operation
Pattern

c6:Communication
Pattern

c7:Direction
Pattern

c5:OperationPattern / ε

q1 q2 q3 q5

t8:Business
Object Node

q7q0

q2'c13:Bulk
c8:Business
Object Node

Fig. 5. Extending the example service design automaton from Fig. 2

As a result, the revised automaton also accepts signature Sx2 as follows:

Sx2 : Reporting Employee︸ ︷︷ ︸
c9:BO

Bulk︸ ︷︷ ︸
c13:BULK

Notification︸ ︷︷ ︸
c8:BON

ByID︸ ︷︷ ︸
c5:OP

QueryResponse︸ ︷︷ ︸
c6:CP

In︸︷︷︸
c7:DP

4 Evaluation

We implemented the proposed, knowledge base-driven clustering approach Akb.
As a baseline, we also implemented the HAC approach Acl used in [7], and
evaluated the performance of both approaches on a real-world testbed.

4.1 Evaluation Setup

The performance evaluation is based on a corpus of 1651 of SAP’s (A2X) Enter-
prise Services, as well as an entity graph (cf. Figure 1) which we extracted from
SAP’s Enterprise Service Registry. Using the set of signatures and the entity
graph as an input, we first performed a strict classification (cf. Section 3.1). The
list of completely recognized signatures is from here on referred to as St, the set

Extending Enterprise Service Design Knowledge Using Clustering 153

Signatures St

Akb

Input

Remove

Retrieved PRkb

Relevant

Input

E1

Acl

Input

Generate
Clusters

Generate
Clusters

Ei

PRcl

Relevant

Retrieved

Ckb

Ccl

E

...E2 En

Et

E

Strict
Classification

Fig. 6. Evaluation Setup for Akb and Acl

of contained entities as Et. We use St and Et as the basis to determine precision,
i.e. the fraction of clustered entities that is correct, and recall, i.e. the fraction of
correct entities that has been clustered, for Akb and Acl. Finally, we conducted
the evaluation process as shown in Figure 6.

Knowledge Base-Driven Clustering Akb. For Akb, we used the set of sig-
natures St and a shortened version of the entity graph as an input. The entity
graph is reduced by removing a subset of entities from Et, so that when we fed
it into Akb, we can check if it produces clusters that match the entities removed
before. By doing so, we can realistically simulate the situation where an incom-
plete KB has to be extended, while being able to check with certainty which
clustering results are correct. For this, we apply a round robin strategy to de-
termine equally-sized random subsets of entities Ei ∈ Et, which are iteratively
removed from the entity graph. The so-obtained shortened entity graphs are fed
to Akb. For instance, a round robin partition of 3 initiates three different itera-
tions, each having a third of Et randomly removed from the entity graph and the
result fed into Akb. By comparing the outputted clusters from Akb against the
previously removed Ei, we can calculate the average precision and recall PRkb

over all partitions. As usually, the F-Measure F1 is the harmonic mean between
PR. Using different numbers of round robin partitions allows us to investigate
clustering performance in relation to how much of the entity graph is missing
– i.e., how incomplete the KB is to begin with. In our experiment, we used the
round robin partitions RR ∈ [2, 3, 4, 5, 6, 8, 10, 20], which we each executed three
times to mitigate randomness-based effects. For each round robin partition, we
ran different combinations of the thresholds for confidence trconf ∈ [0.1, . . . , 0.9]
and entity cohesion trcoh ∈ [0.1, . . . , 0.9]. Due to the way in which we created
the test cases (all signatures in St were completely recognized before removing
some entities), there is no noise present in the input signatures St. Hence, we
switched the noise-filtering off by setting trf = (0, 0).

Hierarchical Agglomerative Clustering Acl. For Acl, we used the HAC
described in [7], which only requires a list of signatures St as an input. As in

154 M. Roy, I. Weber, and B. Benatallah

the strict classification, we split signatures in St into terms using their camel
case notation. We then ran the term clustering with different values of support
ps ∈ [1, . . . , 10] (occurrences of a term – see [7] for details) and confidence pc ∈
[0.1, . . . , 0.9] (co-occurrence of two terms). The outcome is a set of term clusters
Ccl. As for Akb, we determined precision and recall PRcl, but here based on Ccl

and the complete set of entities Et used in St.

4.2 Evaluation Results

First, consider the influence of entity cohesion. Figure 7(b) depicts the average F-
Measure for various cohesion thresholds trcoh. As shown, the average F-Measure
steadily increases until its maximum at trcoh = 0.7 and only slightly decreases
beyond that. Figure 7(a) shows average F-Measures (AvgF1) and maximum F-
Measure (MaxF1) for Akb without (–Coh) and with cohesion (+Coh). With
cohesion, AvgF1 and MaxF1 are continuously higher than without: F-Measure
increases with cohesion by 11% − 21% (AvgF1) and by 14% − 24% (MaxF1).
The graph also shows that AvgF1+ trcoh steadily increases with growing round
robin partitions, as illustrated by the trend line. Therefore, the highest results
can be found at RR = 20, with an average F1 of 0.55 and maximum F1 of 0.70.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 8 10 20

F
-M

ea
su

re

RR: Round Robin Partitions

Avg F1 - Coh Max F1 - Coh Avg F1 + Coh Max F1 + Coh Linear (Trend Avg F1 + Coh)

(a) Avg and Max F-Measure for RR

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v

er
a

g
e

F
-M

ea
su

re

cohesion threshold trcoh

(b) Avg F-Measure for trcoh

Fig. 7. Impact of Cohesion and Round Robin Partitions on F-Measure

2

3

4
5

6
8

10
20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

RR: Round

Robin Partitions

F
-M

ea
su

re

Confidence

Threshold trconf

0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8

(a) F-Measure for Akb

1
2

3
4

5
6

7
8

9

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1
0.2

0.3
0.4

0.5
0.6

0.7

0.8

0.9

1.0

Support

ps

F
-M

ea
su

re

Confidence

pc

0.0-0.1 0.1-0.2 0.2-0.3

(b) F-Measure for Acl

Fig. 8. Overall effectiveness of Akb and Acl for varying parameters

Extending Enterprise Service Design Knowledge Using Clustering 155

Figure 8(a) and 8(b) show the F-measure of Akb and Acl for combinations
of trconf × RR (with a fixed trcoh = 0.7) and pc × ps respectively. From Fig-
ure 8(a), it becomes clear that the term confidence trconf significantly influences
the effectiveness of the Akb clustering. That is, the F-Measure significantly in-
creases with growing confidence thresholds and plateaus around its maximum
of ≈ 0.7 for trconf ≥ 0.6. The graph also shows a slightly higher F-Measure
with increasing round robin partitions, and reaches a local maximum (relative
to trconf) at RR = 20. Hence, we found the globally maximal F-Measure of
≈ 0.7 for RR = 20, trconf ≥ 0.6 and trcoh = 0.7. Figure 8(b) shows the results
for the Acl clustering. The F-Measure here ranges from 0.1 to a maximum of
0.21 (pc = 0.2 and ps = 1). It also shows that the parameters pc and ps do not
have a significant impact on the overall performance of the clustering. From close
observation of the data, we found that, when increasing pc and ps, infrequent
but relevant terms are ignored, thus affecting both precision and recall. On the
other hand, smaller values for pc and ps increase the number of terms considered
by Acl to find more term clusters – relevant and irrelevant alike. Therefore, an
increase of recall might largely be outweighed by a decrease of precision.

5 Related Work

Since the proposed approach combines entity recognition with clustering, we
mainly focus on prior work related to these two areas.

Named Entity Recognition Using Entity Graphs. Although most Named
Entity Recognition (NER) references can be found with unstructured text, de-
scribed recognition techniques, e.g. based on similarity scores [3] might be rel-
evant. For instance, [9,20,3] describe graph based identification of entities us-
ing entity (and relationship) similarity measures. In [5], the authors calculate a
similarity score of overlapping segments of text with entities from dictionaries.
Similar to [4], they use a TF-IDF similarity score [22] and assume statistically
independent terms, which is not the case for compact ES signatures where terms
appear in a specific order. Moreover, for such structured signatures, a similar-
ity score seems to be less feasible. That is, potential entities are found as exact
matches during strict/approx. classification or as new entities during clustering.

Named Entity Recognition Using Supervised Learning. In general, rule-
based approaches can be applied to extract named entities from documents,
which often requires a significant manual effort. Therefore, supervised machine
learning techniques [6,17] and bootstrapping algorithms [1,11] have been pro-
posed to recognize entities or classify, e.g. Web Services [10,14]. For instance, [11]
describes a similar approach based on a three level bootstrapping algorithm used
with machine learning for regular expressions. The difference to our work is that
no upfront naming definitions are required as they are extracted from unam-
biguous signatures - for multiple entity types. Further, we do not extract entities
similar to recognized entities but compliant to recognized naming definitions.

156 M. Roy, I. Weber, and B. Benatallah

Unsupervised Clustering. Many clustering approaches have been proposed
using e.g. document similarity to merge cluster at document level. For instance,
single and complete link [18] use the smallest minimum and maximum pair-
wise similarity distance between two clusters. Word-IC [23] uses a hierarchical
agglomerative clustering (HAC) [21] based on the number of intersection terms
within documents. Our work differs that we use clustering on operation-level
to cluster entities (rather than documents) and thus can better determine the
accuracy of intersecting terms relative to their noise. In [7,12] the authors also use
HAC, e.g. based on term co-occurrences in operation names [7], to measure the
cohesion and correlation within and between term clusters. However, we showed
that such clustering performs moderate for entities with overlapping terms whose
appearance is not statistically independent (e.g. using naming conventions).

6 Conclusion

In this paper, we presented an approach for amending incomplete knowledge
bases of ES design knowledge. The approach only requires a set of ES signatures
and an incomplete KB. It first reverse-engineers naming conventions and uses
them to filter out unlikely explanations for partially understood signatures. The
approach then suggests term clusters from unknown parts of the signature and
possibly merges them with co-existing entities to form new entities. We evaluated
the approach on a testbed of 1651 ES signatures from SAP. After removing parts
of the KB, we tested how successful the approach re-added missing parts. The
approach performed reasonably well when half of the KB was removed, and
even better when only smaller chunks were missing. Moreover, the approach
performed significantly better than a state-of-the-art clustering approach. In
future work, we plan to improve our search engine for ESs and extend the current
comparative experiment to other clustering techniques.

References

1. Agichtein, E., Gravano, L.: Snowball: Extracting Relations From Large Plain-Text
Collections. In: DL 2000, pp. 85–94. ACM, New York (2000)

2. Bennett, S.G., Gee, C., Laird, R., Manes, A.T., Schneider, R., Shuster, L., Tost,
A., Venable, C.: SOA Governance: Governing Shared Services On-Premise and in
the Cloud. Prentice Hall (2011)

3. Brauer, F., Huber, M., Hackenbroich, G., Leser, U., Naumann, F., Barczynski,
W.M.: Graph-Based Concept Identification and Disambiguation for Enterprise
Search. In: WWW 2010, pp. 171–180. ACM, New York (2010)

4. Chakaravarthy, V.T., Gupta, H., Roy, P., Mohania, M.: Efficiently Linking Text
Documents With Relevant Structured Information. In: VLDB 2006, pp. 667–678
(2006)

5. Chandel, A., Nagesh, P., Sarawagi, S.: Efficient Batch Top-k Search for Dictionary-
based Entity Recognition. In: ICDE 2006, p. 28 (April 2006)

6. Chieu, H.L., Ng, H.T.: Named Entity Recognition: A Maximum Entropy Approach
Using Global Information. In: COLING 2002, USA, pp. 1–7 (2002)

Extending Enterprise Service Design Knowledge Using Clustering 157

7. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: VLDB 2004, pp. 372–383. VLDB Endowment (2004)

8. Falkl, J., Laird, R., Carrato, T., Kreger, H.: IBM Advantage for SOA Governance
Standards (July 2009), http://www.ibm.com/developerworks/webservices/
library/ws-soagovernanceadv/index.html

9. Hassell, J., Aleman-Meza, B., Budak Arpinar, I.: Ontology-Driven Automatic En-
tity Disambiguation in Unstructured Text. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 44–57. Springer, Heidelberg (2006)

10. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

11. Irmak, U., Kraft, R.: A Scalable Machine-Learning Approach for Semi-Structured
Named Entity Recognition. In: WWW 2010, pp. 461–470. ACM, USA (2010)

12. Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical Clustering Using
Dynamic Modeling. Computer 32(8), 68–75 (1999)

13. Malinverno, P.: Service-oriented architecture craves governance (October 2006),
http://www.gartner.com/DisplayDocument?id=488180

14. Oldham, N., Thomas, C., Sheth, A., Verma, K.: METEOR-S Web Service Anno-
tation Framework with Machine Learning Classification. In: Cardoso, J., Sheth, A.
(eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 137–146. Springer, Heidelberg (2005)

15. Roy, M., Suleiman, B., Schmidt, D., Weber, I., Benatallah, B.: Using SOA Gov-
ernance Design Methodologies to Augment Enterprise Service Descriptions. In:
Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 566–581.
Springer, Heidelberg (2011)

16. SAP. Governance for Modeling and Implementing Enterprise Services at SAP
(April 2007), http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/
docs/library/uuid/f0763dbc-abd3-2910-4686-ab7adfc8ed92

17. Saquete, E., Ferrández, O., Ferrández, S., Mart́ınez-Barco, P., Muñoz, R.: Combin-
ing Automatic Acquisition of Knowledge With Machine Learning Approaches for
Multilingual Temporal Recognition and Normalization. In: IS 2008, pp. 3319–3332
(2008)

18. Voorhees, E.M.: The Effectiveness and Efficiency of Agglomerative Hierarchic Clus-
tering in Document Retrieval. PhD thesis, Ithaca, NY, USA (1986)

19. Watson, B.W.: A New Algorithm for the Construction of Minimal Acyclic DFAs.
Science of Computer Programming 48(2-3), 81–97 (2003)

20. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient Approximate Entity Extrac-
tion With Edit Distance Constraints. In: SIGMOD 2009, pp. 759–770. ACM, USA
(2009)

21. Willett, P.: Recent Trends in Hierarchic Document Clustering: A Critical Review.
Information Processing and Management 24(5), 577–597 (1988)

22. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann, San Francisco (1999)

23. Zamir, O., Etzioni, O., Madani, O., Karp, R.: Fast and Intuitive Clustering of Web
Documents. In: Knowledge Discovery and Data Mining, pp. 287–290 (1997)

http://www.ibm.com/developerworks/webservices/library/ws-soagovernanceadv/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soagovernanceadv/index.html
http://www.gartner.com/DisplayDocument?id=488180
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/f0763dbc-abd3-2910-4686-ab7adfc8ed92
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/f0763dbc-abd3-2910-4686-ab7adfc8ed92

Participatory Service Design through Composed

and Coordinated Service Feature Models

Erik Wittern, Nelly Schuster, Jörn Kuhlenkamp, and Stefan Tai

eOrganization Research Group, Karlsruhe Institute of Technology
Englerstr. 11, 76131 Karlsruhe, Germany

{Erik.Wittern,Nelly.Schuster,Joern.Kuhlenkamp,Stefan.Tai}@kit.edu
http://www.eOrganization.de

Abstract. Active participation of diverse stakeholders such as
consumers or experts in service engineering is critical. It ensures that
relevant aspects of service quality, service acceptance and service compli-
ance are addressed. However, coordination of diverse stakeholder inputs
is difficult and their collaborative creation of common design artifacts
demands novel engineering solutions. We present a service-oriented ap-
proach for engineering design artifacts: service feature models
are introduced as compositions of model parts that can be contributed
by different stakeholders and software resources acting as services. Our
method and tool applies service-orientation to collaborative design,
thereby taking participatory service engineering to the level of coordi-
nated service composition.

Keywords: Service engineering, service feature modeling, coordination,
collaboration, participatory service design.

1 Introduction

Participatory service engineering is about the involvement of different stake-
holders, in the role of service providers and service consumers, into the analysis,
design, and development of services [10,11]. In the public sector, for instance,
stakeholders include citizens, municipalities, and corporations. Involving differ-
ent stakeholders into the service engineering life cycle is a non-trivial task; how-
ever, participation promises to better meet the interests and needs of all parties
involved, to improve customer satisfaction, and to better comply with relevant
policies and laws [10].

In service design, stakeholders typically are represented by groups of experts,
including software engineers, infrastructure providers, decision-makers, and le-
gal experts. These stakeholders collaborate with each other, contributing specific
knowledge. Results of the collaboration are manifested in one or more design ar-
tifacts (such as documents or code), which correspondingly address the diversity
of relevant service aspects, including technical, business-related or legal ones.

Participatory service design can thus be seen as the process of coordinating a
set of stakeholders, where each stakeholder is represented by one or more experts

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 158–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.eOrganization.de

Participatory Service Design 159

and contributes to the creation of design artifacts. Here, we introduce service
feature models (SFMs) as a modeling approach for service design to create such
coordinated, composed design artifacts: SFMs capture design aspects that are
contributed by different stakeholders (or even other sources). SFMs include de-
sign alternatives (e.g. the set of authentication mechanisms the implementation
of a service could use), decisions (e.g. which authentication mechanism to use),
and constraints (e.g. that a service has to be delivered electronically). They can
be composed to serve as a single design artifact that describes diverse relevant
design issues.

This design artifact is a document composed of services: model parts are
contributed by human-provided services or by software services. Thus, respon-
sibilities for the specification of design aspects can be delegated to dedicated
experts who can work on them in parallel. In addition, data from software ser-
vices or form resources on the Web can be integrated, which can serve as a
base for design decision-making. To manage causal dependencies between model
parts and to govern the collaborative composition activities, we define coordina-
tion mechanisms that involve a coordinator role along with a set of lightweight
coordination rules.

The remainder of this paper is structured as follows: In Section 2 we introduce
and discuss service feature modeling as a technique to support service design.
We present its methodology in service design, its modeling elements and shortly
discuss how we used the approach in the context of the COCKPIT project [6].
In Section 3, we present our approach to compose SFMs of services. For this
purpose, we build on our composition and coordination model for document-
based collaboration [16] and define (a) a service composition model which allows
coordinators to delegate modeling tasks to responsible experts based on the
modularization of SFMs and (b) a set of coordination rules which allow the
(semi-)automated management of dependencies between different model parts
and activities. The system architecture and proof-of-concept implementation
that we used to determine the applicability of our approach is described in
Section 4. In Section 5, we discuss related work. Finally, we summarize our work
and present an outlook in Section 6.

2 Service Feature Models

To provide a comprehensive view of a participatory service design, design ar-
tifacts stemming from experts of different domains or disciplines need to be
captured and integrated in one service model. Service feature modeling has been
designed for this purpose and has been conceptualized in previous work [19].
Service feature modeling builds upon the well-established feature modeling ap-
proach from software product line engineering [12]. Therefore, SFMs benefit from
efficient modeling methodologies, formalisms and automatic reasoning capabili-
ties designed for standard feature models, e.g., [4,3,7,8,13].

160 E. Wittern et al.

2.1 Methodology

Iterative service design and rapid development of service design alternatives
allow to communicate, discuss and assess design alternatives, improving overall
service quality. We distinguish two phases in iterative service design: first, a
rapid modeling phase, second, a detailed configuration phase.

In the modeling phase, a SFM is created as a design artifact that represents
a number of relevant design aspects. Multiple design alternatives are modeled
in this design artifact that represents a set of possible implementations of the
service.

In the configuration phase, decisions between design alternatives are made.
The resulting artifact of the configuration phase is a configuration. In contrast
to a SFM, a configuration represents only a single valid service design. A con-
figuration serves as input for service implementation and documents the design
decisions made. During the configuration phase, constraints and preferences are
specified based on requirements. Requirements are collected from stakeholders,
for instance citizens in public service design. Modeling of constraints and pref-
erences improves service design because it reveals trade-offs that result from
choosing one design alternative over another.

2.2 Modeling Elements

An exemplary SFM is illustrated in Figure 1. It represents (simplified) the “Ac-
cess extracts of insurance record in Social Security Organization (GR01)” service
that the Greek Ministry of Interior provided as a service scenario in the COCK-
PIT project. The service’s goal is to allow employees to access their insurance
record to verify that their employers contributed to the social security insurance.

The service feature diagram is the graphical representation of a SFM, in which
features are decomposed into a tree-structure. Features represent service design

Feature
Key:

Attribute type

GR01 service

Record delivery
method

Attribute

= mandatory
feature

= optional
feature

= XOR = OR

Postal Electronic

Delivery cost
= 0.45

Delivery cost
= 0.01

Delivery cost [€/
delivered record]

= Requires

= Excludes

Security / Legal

Proof of
authenticity

Pre-request
authentication

Stamp &
signature

Digital
signature

Online
registration

Personal
appearance

Fig. 1. Exemplary “Access extracts of insurance record in Social Security Organization
(GR01)” service modeled (simplified) as SFM

Participatory Service Design 161

aspects of relevance for a stakeholder, e.g. an access channel, a work-flow vari-
ant or a legal aspect. Features can be denoted as mandatory or optional. This
allows service engineers to derive several configurations during the configuration
phase. Features can also be grouped in XOR or OR groups, meaning that for
a valid configuration, exactly one or at least one feature from the group needs
to be selected. Causal dependencies can be specified through cross-tree relation-
ships. They depict that one feature either requires or excludes another feature
to be part of a valid configuration. For example, in Figure 1, if “stamp & sig-
nature” is selected, the record delivery method “electronic” cannot be selected
and vice versa. Attributes describe measurable, non-functional characteristics of
features [4]. For example, an attribute can denote the “delivery cost” of a feature
representing the delivery method. Attribute types capture common characteris-
tics of attributes. For example, in Figure 1, the attribute type “delivery cost”
defines the measure for all attributes of that type to be “e/ delivered record”.

2.3 Service Feature Modeling in Practice

The COCKPIT EU project aims to enable diverse stakeholders, including e.g.
citizens, to participate in the design of public services [6]. We developed service
feature modeling in this context to address the necessity of combining diverse
service design aspects in a single model. In COCKPIT, service feature modeling
was applied to three public service (re-) design scenarios. SFMs were modeled
that represent multiple variants of how to provide the public service in question.
During the configuration phase, citizens participated by stating their preferences
regarding the SFM’s attribute types on a deliberation platform. These prefer-
ences were, using multi-criteria decision making, applied to the possible service
alternatives to determine a ranking of the alternatives. However, we learned in
COCKPIT that it is highly desirable not only to enable participation in the
configuration but also in the modeling of SFMs to integrate expert knowledge
from diverse disciplines at an early stage. This is what motivated our approach
for composed and coordinated SFMs.

3 Collaborative Service Feature Modeling

In collaborative service feature modeling, model parts contributed by diverse
participants are composed into a single SFM. The structure of the composition
is defined by our service composition model. Roles describe activities that par-
ticipants perform. Coordination mechanisms provide the required coordination
of the service composition and modeling activities.

Figure 2 depicts an example where several participants collaborate to create
the “GR01” service. As illustrated, responsibilities for the modeling of certain
service aspects are separated among several participants: a “service engineer”, re-
sponsible for the creation of the overall service design, contributes an initial SFM
representing the “GR01” service. For the aspect “security / legal”, a dedicated
SFM is delivered by a “legal expert”. On the lower left side, a “cost estima-
tion service” contributes attribute values for two attributes of the type “delivery

162 E. Wittern et al.

GR01 service

Security / Legal

Security / Legal

Proof of
authenticity

Authorization

Legal expert
Cost estimation

service

Delivery cost
Value = 0.45

Delivery cost
Value = 0.02

Stamp &
signature

Digital
signature

Online
registration

Personal
appearance

call
CostEstimationService

/cost/electronic

call
LegalExpert

call
CostEstimationService

/cost/postal

Record delivery
method

Postal Electronic

Delivery cost Delivery cost

Service engineer

Fig. 2. Example of SFM composed of services

cost”. The overall SFM representing the “GR01” service is thus a composition
of results contributed by human and non-human service providers.

3.1 Service Composition Model

The service composition model defines how results and services can be composed
in order to derive a coherent SFM. The model is illustrated in Figure 3. It is
based on and extends previous work [16,17]. Note that service does not denote
the service to be modeled but the services that contribute results.

The intended outcome of the collaboration, a composed SFM, consists of
multiple results. We distinguish two specific types of (expected) results:

– SFMs are parts of a larger SFM. The sub result relationship denotes the
potential nesting of SFMs. For example, in Figure 2, the SFM corresponding
to the “GR01” service contains another SFM corresponding to the service’s
“security / legal” aspects. The tree structure of the SFM itself does not

Contribution Result

Service

sub result

0…1

*

*
*

*

* 0…1
input

output

Attribute value

SFM

1

*

*

Fig. 3. Service composition model, based on [16]

Participatory Service Design 163

necessarily correspond to the tree structure of the service composition model.
As defined in Section 2.2, SFMs contain features, attribute types, attributes
and cross-tree relationships.

– Attribute values are primitive data types (i.e. integer, double or string)
representing measurable, non-functional characteristics of a feature. As such,
attribute values cannot, in contrast to SFMs, be decomposed further into sub
results. In Figure 2, two attribute values are contributed to the “delivery
cost” attributes of the “postal” and “electronic” delivery.

Contributions denote the delivery or transformation of results. Results are the
output of one or more contributions. A contribution is performed by a dedicated
human-based or software service. This service may transform existing results
which it gets as input. Separating contributions from results provides the flexi-
bility of having multiple contributions collectively work on a result or of using
a single contribution for delivering or transforming multiple results. For exam-
ple, for a SFM the contributions “create SFM”, “validate SFM” and “approve
SFM” may exist. In Figure 2, contributions are illustrated as speech bubbles
delivered by the services “service engineer”, “cost estimation service” and “legal
expert”. Results themselves are offered as services and can be reused in other
SFM modeling projects.

3.2 Roles

During collaboration, participants take different roles. A role describes a set of
activities an actor may perform in participatory service design. A single actor
may engage in multiple roles at the same time or vary roles over time [18]. We
refer to an actor in one of the three following roles by the name of the role:

– Modelers contribute SFMs. They define how to decompose features, which
attributes to use to describe properties of features and what attribute types
they relate to, and finally what cross-tree relationships exist between fea-
tures. In general, we assume that human actors hold the role modeler (e.g.
a legal expert).

– Attribute value providers provide contributions to attribute values. To
account for dynamic changes in attribute values during and after service
design as well as for complex calculations of attribute values, we propose to
utilize non-human actors, e.g. Web services, for the role of an attribute value
provider (e.g. a benchmark service).

– Coordinators have two assigned responsibilities. Firstly, they identify con-
tributions and assign modeling tasks for both SFMs and attribute values.
Secondly, coordinators assign services to identified contributions in the role
of either modeler or attribute value provider. Coordination activities can be
delegated by assigning the coordinator role with respect to a single result.
This allows for coordination activities within a different department involved
in the collaborative service design (e.g. the legal department).

Modeler and coordinator roles are closely related because the division of labor
is performed using the overall SFM structure and requires basic understanding
of modeling.

164 E. Wittern et al.

3.3 Coordination Mechanisms for Service Feature Modeling

During service feature modeling, human experts collaborate to construct the
SFM according to the component model described in Section 3.1. To start the
collaboration, a coordinator defines several required results and contributions.
In order to delegate tasks, the coordinator assigns human experts or software
services to the contributions. During collaboration, additional results or contri-
butions are added or services assigned. As soon as services are assigned, they
are allowed to participate through delivering or transforming respective results.

The challenge in realizing such collaboration is to coordinate interactions of
services with the overall SFM in order to avoid inconsistencies due to depen-
dencies between tasks or contributions, e.g., due to cross-tree relationships. To
coordinate collaborative service feature modeling, we identified four required
types of coordination mechanisms.

Coordination of Basic Interactions. In our previous work, we specified and
visualized a service binding protocol for service assignments [16] allowing the
delegation of results to responsible modelers. This protocol is suitable for SFM
compositions as well: The binding of a service to a contribution is initiated by
the coordinator, asking the service for its commitment to contribute. The service
may accept or decline. We expect that, in most cases, the service provider will
accept the binding as he was selected based on his expertise for the respective
service model part. Software services automatically accept a binding request.

As soon as a service is bound, it can deliver the results related to the assigned
contribution, e.g., new SFMs or attribute values. The response of the service is
an update of the associated output results. In addition, during collaboration,
a bound service can be manually called by a coordinator, for instance, as a
reminder to contribute not yet delivered results. The results can be updated
by the service until they are approved by a coordinator. This is defined in the
service request / response protocol [16].

These protocols allow easy integration of human and software services alike
as they do not require complex activities. All service providers need to imple-
ment the protocols. This hierarchical coordination model is suitable for multi-
disciplinary service design projects, where experts for different domains as well
as responsible service engineers for a SFM exist that are responsible for the
delegation of work to experts.

Coordination of Cross-Tree Relationships. Cross-tree relationships denote
that one feature either requires or excludes the existence of another feature in a
configuration (see Section 2.2). Changing or deleting a feature that is part of a
cross-tree relationship can cause inconsistencies in a SFM. Thus, if a cross-tree
relationship in a result relates to a feature in another result, a notification to the
modeler of the cross-tree relationship should be sent if the feature is changed or
deleted.

For the management of such dependencies, we use the event-condition-action
(ECA) rule mechanism of [16] and configure it with event types and rules required

Participatory Service Design 165

for collaborative service feature modeling. Events are emitted on changes of
results as well as on each transition in the basic interaction protocols presented
above. Events are input to rules which might trigger actions, e.g. service calls or
the sending of notification messages.

To coordinate cross-tree relationships, we define the events FeatureUpdated
and FeatureDeleted that are emitted on changing or deleting an SFM containing
the feature. Additionally, if a cross-tree relationship is specified by a modeler
in an SFM and the SFM is updated, a rule is automatically instantiated that
triggers adequate measures in reaction to these events. For example, based on
the SFM illustrated in Figure 2, as soon as the legal expert identifies the exclude
relationship between delivery method “electronic”and “stamp & signature”, a
rule is created as defined below. If “electronic” is changed to “certified mail”,
the legal expert is notified to check the excludes dependency to “stamp & signa-
ture” for validity and possibly adapt it. (Note: the values “electronic” and “legal
expert” in the following rule denote unique, non-changeable IDs of the results
or contributions, respectively.)

EVERY FeatureUpdated("electronic") OR FeatureDeleted("electronic")

DO notify("legal expert");

Coordination of Attribute Type Dependencies. Attribute types allow
modelers to define common characteristics of attributes, e.g. the measurement
unit for “cost”. If an attribute type is changed or deleted, potential inconsisten-
cies can occur with regard to the attributes relating to this type. Thus, a modeler
of an attribute should be notified in such cases. Similar to handling cross-tree
relationships, attribute type dependencies are coordinated using ECA rules. The
dedicated events are AttributeTypeUpdated and AttributeTypeDeleted. Rules for
such attribute type dependencies listen for events denoting a change of the at-
tribute type. The rules are automatically created as soon as an SFM is created or
updated including an attribute that relates to an attribute type in another result.
As action, notifications are sent to the modelers of SFMs including attributes of
this type. For instance, if the measurement unit of an attribute type “delivery
cost” is changed from “e/ delivered record” to “e/ month”, the modelers of
SFMs including an attribute using this attribute type are notified and possibly
request the according attribute value providers with updated parameters.

EVERY AttributeTypeUpdated("delivery cost")

OR AttributeTypeDeleted("delivery cost")

DO notify("service engineer")

Coordination of Attribute Provisioning Dependencies. Contributions of
attribute value providers are useful to include real-time data into the SFM or
include complex data that results from a calculation. The invocation of such
services should be performed during the configuration phase since currentness
of attribute values influences the selection among alternatives. As we can not
always count on the automated push of attribute values from external Web
services in case they have recent data, we suggest to define new event types

166 E. Wittern et al.

which denote the end of the modeling phase and are emitted, for instance, if
requested via the modeling tool. The event might then trigger a rule which
requests all services delivering an attribute value. Additionally, a rule might
request services at certain points in time, e.g., every morning at 8am. Such rules
can be manually specified throughout the collaboration by the coordinators of
SFMs. Alternatively, we suggest that they are created as soon as attribute value
providers are bound to a contribution and deleted if the binding is removed.

EVERY ModelingPhaseFinished

DO requestContribution("big machine benchmark");

AT (timer:8am)

DO requestContribution("big machine benchmark");

We believe that the proposed event types and rules are suitable to avoid inconsis-
tencies during service feature modeling. However, we do not claim completeness.
As the ECA rules coordination approach is very generic and extensible, addi-
tional rules and event types can be specified whenever needed. For example,
modelers can specify rules which notify them if a certain result was delivered or
updated, using events of type SFMUpdated or SFMDeleted.

4 Proof of Concept

We designed a system architecture supporting the conceptualized collabora-
tion model and prototypically implemented it. The implementation strongly
builds upon and extends the implementation used within the COCKPIT EU
project [20].

4.1 Architecture and Components

The architecture is shown in Figure 4. The individual components are presented
in the following subsections.

Service Feature Model Designer (SFM Designer): The SFM designer
provides a user interface for participating experts. It addresses two basic func-
tionalities. First, it provides modeling capabilities via graphical UI used to cre-
ate and adapt SFMs that are provided as results. As such, it acts as a service
adapter for these human experts who, as modelers, contribute results. Second,
the SFM designer provides coordination capabilities. It allows coordinators to
define (expected) results and to define which services should contribute the re-
sults. Supporting the configuration phase, the SFM designer can determine all
possible configurations for a given SFM and aggregates their attributes.

Participatory Service Design 167

Collaboration server

Adapter

REST modeler
interface

Coordination
interface

Adapter

REST modeler
interface

Coordination
interface

SFM manager

Model interface

Model Integrator

SFM
persistency

Coordination engine

Coordination
interface

Rule
repository

Rule creator

Rule engine

Contribution
/ Service
mapping

Protocol engine

Adapter

Model interface

Coordination
interface

Rule interface

Event interface

Service &
user

repository

SFM designer

Web services

Fig. 4. Architecture of a system for collaborative service feature modeling

Adapters: Our system design foresees numerous adapters that allow services to
participate in the collaboration. Adapters ensure compatibility of the service in-
terfaces and our system’s interfaces, e.g. they implement the coordination proto-
cols described in Section 3.3. Per service interface, a dedicated adapter is required.
Adapters have two interfaces to communicatewith our system: via the coordination
interface, services can be asked for binding and can then be requested to update ac-
cording results. Themodel interface is used to retrieve existing results of the model
in focus and to contribute (create, update, or delete) results.

Collaboration Server: The collaboration server handles the coordination re-
quired for asynchronous collaboration in service feature modeling. It consists
of three components, the service & user repository, the SFM manager and the
collaboration engine.

The SFM manager stores the contributed results, namely SFMs and attribute
values, in the SFM persistency component. Using the model interface, any service
bound via adapters can create, retrieve, update or delete results - thus, for both
SFM and attribute value results, CRUDmethods are provided. Results sent or re-
quested pass through themodel integrator. It checks committed results for a)model
elements that require coordination rules to be defined, e.g. attributes relating to at-
tribute types outside of the result, andb) changesw.r.t.model elements that require
coordination, e.g. changes to cross-tree relationships. In such cases, themodel inte-
grator triggers the coordination engine to create rules or throw events. Further, if
a result from the collaboration server is requested, the model integrator composes
it by integrating all sub results into one coherent SFM.

168 E. Wittern et al.

The coordination engine contains the coordination logic. The coordination
interface allows services via adapters to participate in the coordination. A co-
ordinator can consult the service & user repository to find an adequate service
to associate with a contribution. The association is stored in the contribution
/ service mapping. The protocol engine controls the binding and the service re-
quest / response protocol of the service based on information found in both the
contribution / service mapping and the service & user repository. The rule in-
terface triggers the rule creator when new model elements are contributed that
require creation of a new coordination rule. Additionally, it can be used by any
coordinator to manually define rules. Rules are stored in the rule repository.
Through the event interface events can be sent to the rule engine. On receiving
an event the rule engine checks existing rules and possibly triggers an action.
For example, if an attribute type is changed, the “AttributeTypeUpdated” event
triggers a previously specified rule which notifies all depending modelers. Notifi-
cations are sent via the protocol engine that communicates via the coordination
interface with the respective service adapters.

4.2 Implementation

We implemented the SFM designer as an Eclipse-based rich client on top of the
Eclipse Modeling Framework (EMF)1. Adapters are built on RESTful design
principles utilizing Jersey2. Figure 5 shows the user interface of the SFM de-
signer. We implemented our collaboration server based on the Grails Web

Fig. 5. Screen shot of the SFM designer with exemplary SFM and menu bar entries
allowing to coordinate collaboration

1 http://www.eclipse.org/modeling/emf/
2 http://jersey.java.net/

http://www.eclipse.org/modeling/emf/
http://jersey.java.net/

Participatory Service Design 169

application framework3 andRESTful design principles.We built Java andGroovy4

server libraries. The SFM manager stores SFMs within the SFM persistency in
XML format. Service repository, rule repository and contribution/service map-
ping persist data in a MySQL database. We use ESPER5 to implement our rule
engine. Rules are expressed in the ESPER Event Processing Language (EPL).

Using our prototype implementation, we asserted the functionality of the pre-
sented approach. We are able to successfully assign contributions to human-
based and Web services. For SFM results, corresponding resources are created,
updated, retrieved and deleted by the SFM manager. On updating SFMs, the
model integrator triggers the creation of rules and triggers events w.r.t. exist-
ing rules as conceptualized in Section 3.3. Notifications are currently send via
e-mail. Alternative reactions depend on the implementation and can include, for
instance, triggering service calls. Our implementation overall shows the appli-
cability of our approach to enable collaborative creation of SFMs composed of
services and thus affirms its ability to foster participatory service design.

5 Related Work

Some approaches to participatory service design exist. For example, [10] presents
a high-level methodology for the participatory analysis, design, and optimization
of services in the public sector. Our approach is in-line with this methodology
and similar works and extends them by contributing a specific modeling notation
and corresponding tools.

Regarding collaborative modeling, most of the approaches we found discuss
the creation of models in the CAD domain where several experts work together to
derive a graphical model of a product. For instance, the authors of [5] present an
approach for collaborative editing of a central model maintained on a server, also
addressing basic coordination problems, e.g. concurrency and synchronization.
They do not consider a human coordinator or the creation of model parts by
services. In contrast, we aim to allow a coordinator to split the model into parts
to be delegated to responsible experts. We thus provide coordination mechanism
on an application level.

Several works address how multiple feature models can be combined. [1] pro-
poses to compose feature models that address specific domains, aiming to bet-
ter deal with rising complexity for large feature models, to foster the model’s
evolution and also to engage diverse stakeholders into the modeling. In [2], a
representation of feature models using description logics and a corresponding
configuration method is presented to allow multiple experts to model and con-
figure feature models. Both works focus on how to combine multiple models but
do not address the coordinated creation of models or the integration of up-to-
date values. Methodologies addressing the modeling of modular feature models

3 http://www.grails.org
4 http://groovy.codehaus.org/
5 http://esper.codehaus.org/

http://www.grails.org
http://groovy.codehaus.org/
http://esper.codehaus.org/

170 E. Wittern et al.

are named as an intended future work. In contrast, we focus on the coordination
of creating modular feature models collaboratively.

The approach presented in [9] focuses on collaborative modeling in software
engineering. It allows software engineers to decompose UML diagrams into fine-
grained design model parts that can be modified by distributed participants. The
approach has some similarities to our approach, e.g., hierarchically breakdown
of models into parts, event-based notifications and coordination mechanisms to
manage concurrent access and dependencies between model parts. In [22] a model
and tool are presented that enable software architects to collaboratively capture
architectural decision alternatives and decision outcomes in a specialized Wiki.
In the modeling phase, architects can define dependencies between decisions.
Alternatives are used to ensure consistent and correct decision-making during
the configuration phase. Despite some similarities, both presented approaches
do not (yet) support delegation of modeling parts through a coordinator and
do not enable the integration of content provided by software services into the
models.

Flexible composition of services through end-users has been discussed in the
mashups area [21]. Mashups allow end-users to easily compose and integrate
(Web) services into artifacts. In addition, approaches for the integration of
human-provided services into collaboration exist [15]. However, we are not aware
of any approach that allows participants to create models through a mashup
mechanism.

Overall, having analyzed related work in various research areas, we believe
that our approach uniquely combines coordination and service-composition con-
cepts to support participation of various experts in service design.

6 Conclusion and Future Work

In this paper, we addressed participatory service design by presenting SFMs as
design artifacts capable of integrating various design issues. As we experienced
in the COCKPIT project, especially the modeling phase in the SFM methodol-
ogy allows for discussion and knowledge exchange in an early stage of the service
design. Accordingly, we presented a service-composition model which allows par-
ticipants to delegate responsibilities for model parts to experts who can indepen-
dently contribute their parts to a central, uniform design artifact. By separating
responsibilities based on the model structure, we tackle the challenge of integrat-
ing sub-models into a coherent model while still allowing participants to model
in parallel [14]. In our approach participants act as human or software services,
allowing the integration of dynamic or complex data into SFMs which can be
kept up to date automatically. Collaboration activities are coordinated through
a) the delegation of work based on the SFM structure and b) interaction proto-
cols and a simple event-condition-action rule mechanism. This mechanism can
also be used as a notification mechanism to manage causal dependencies between
model parts, for instance cross-tree relationships. We presented the architecture
of a system realizing our approach and a proof-of-concept implementation that
allowed us to act out the relevant use cases of our approach.

Participatory Service Design 171

In future work, we plan to address the collaborative configuration of SFMs.
Configuration results could be used to incorporate the configuration of a (sub)
SFM. It may be noted, however, that the collaborative configuration of feature
models is already addressed in numerous works, e.g. [7,13]. Further, we want
to investigate means to support consensus-based decisions on model parts, e.g.
quorum-based decisions. We also envision the parameterization of service calls
from a SFM based on dependent results, which would allow for even more flexible
integration of results.

Acknowledgment. This work was supported by the COCKPIT project [6].

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Composing Feature Models. In: van
den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81.
Springer, Heidelberg (2010)

2. Bagheri, E., Ensan, F., Gasevic, D., Boskovic, M.: Modular Feature Models: Rep-
resentation and Configuration. Journal of Research and Practice in Information
Technology 43(2), 109–140 (2011)

3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models
20 Years Later: A Literature Review. Information Systems 35(6), 615–636 (2010)

4. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

5. Bidarra, R., Berg, E.V.D., Bronsvoort, W.F.: Collaborative Modeling with Fea-
tures. In: Proc. of the 2001 ASME Design Engineering Technical Conferences,
DETC 2001, Pittsburgh, Pennsylvania (2001)

6. COCKPIT Project: Citizens Collaboration and Co-Creation in Public Service De-
livery (March 2012), http://www.cockpit-project.eu

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Fea-
ture Models and their Specialization. Software Process: Improvement and Prac-
tice 10(1), 7–29 (2005)

8. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2), 143–169 (2005)

9. De Lucia, A., Fasano, F., Scanniello, G., Tortora, G.: Enhancing collaborative
synchronous UML modelling with fine-grained versioning of software artefacts.
Journal of Visual Languages and Computing 18(5), 492–503 (2007)

10. Hartman, A., Jain, A.N., Ramanathan, J., Ramfos, A., Van der Heuvel, W.-J.,
Zirpins, C., Tai, S., Charalabidis, Y., Pasic, A., Johannessen, T., Grønsund, T.:
Participatory Design of Public Sector Services. In: Andersen, K.N., Francesconi,
E., Grönlund, Å., van Engers, T.M. (eds.) EGOVIS 2010. LNCS, vol. 6267,
pp. 219–233. Springer, Heidelberg (2010)

11. Holmlid, S.: Participative, co-operative, emancipatory: From participatory design
to service design. In: 1st Nordic Conference on Service Design and Service, Oslo,
Norway (2009)

12. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie Mellon
University (November 1990)

http://www.cockpit-project.eu

172 E. Wittern et al.

13. Mendonça, M., Cowan, D., Malyk, W., Oliveira, T.: Collaborative Product Config-
uration: Formalization and Efficient Algorithms for Dependency Analysis. Journal
of Software 3(2) (2008)

14. Renger, M., Kolfschoten, G.L., de Vreede, G.J.: Challenges in Collaborative Mod-
eling: A Literature Review. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.) CIAO!
2008 and EOMAS 2008. LNBIP, vol. 10, pp. 61–77. Springer, Heidelberg (2008)

15. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in
web-scale collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

16. Schuster, N., Zirpins, C., Scholten, U.: How to Balance between Flexibility and
Coordination? Model and Architecture for Document-based Collaboration on the
Web. In: Proc. on the 2011 IEEE Int. Conf. on Service-Oriented Computing and
Applications (SOCA), pp. 1–9 (2011)

17. Schuster, N., Zirpins, C., Tai, S., Battle, S., Heuer, N.: A Service-Oriented Ap-
proach to Document-Centric Situational Collaboration Processes. In: Proc. of the
18th IEEE Int. Workshops on Enabling Technologies: Infrastructures for Collab-
orative Enterprises, WETICE 2009, pp. 221–226. IEEE Computer Society, Wash-
ington, DC (2009)

18. Sonnenwald, D.H.: Communication roles that support collaboration during the
design process. Design Studies 17(3), 277–301 (1996)

19. Wittern, E., Zirpins, C.: On the Use of Feature Models for Service Design: The
Case of Value Representation. In: Cezon, M., Wolfsthal, Y. (eds.) ServiceWave
2010 Workshops. LNCS, vol. 6569, pp. 110–118. Springer, Heidelberg (2011)

20. Wittern, E., Zirpins, C., Rajshree, N., Jain, A.N., Spais, I., Giannakakis, K.: A Tool
Suite to Model Service Variability and Resolve It Based on Stakeholder Preferences.
In: Pallis, G., Jmaiel, M., Charfi, A., Graupner, S., Karabulut, Y., Guinea, S.,
Rosenberg, F., Sheng, Q.Z., Pautasso, C., Ben Mokhtar, S. (eds.) ICSOC 2011.
LNCS, vol. 7221, pp. 250–251. Springer, Heidelberg (2012)

21. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

22. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
Architectural Decision Models with Dependency Relations, Integrity Constraints,
and Production Rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

PerCAS: An Approach to Enabling Dynamic

and Personalized Adaptation
for Context-Aware Services

Jian Yu1, Jun Han1, Quan Z. Sheng2, and Steven O. Gunarso1

1 Faculty of Information and Communication Technologies,
Swinburne University of Technology,

Hawthorn, 3122, Melbourne, Victoria, Australia
{jianyu,jhan}@swin.edu.au, 7253702@student.swin.edu.au

2 School of Computer Science,
The University of Adelaide, SA 5005, Australia

qsheng@cs.adelaide.edu.au

Abstract. Context-aware services often need to adapt their behaviors
according to physical situations and user preferences. However, most of
the existing approaches to developing context-aware services can only do
adaptation based on globally defined adaptation logic without consider-
ing the personalized context-aware adaptation needs of a specific user.
In this paper, we propose a novel model-driven approach called PerCAS
to developing and executing personalized context-aware services that are
able to adapt to a specific user’s adaptation needs at runtime. To enable
dynamic and personalized context-aware adaptation, user-specific adap-
tation logic is encoded as rules, which are then weaved into a base process
with an aspect-oriented mechanism. At runtime, the active user-specific
rule set will be switched depending on who is using/invoking the service.
A model-driven platform has been implemented to support the devel-
opment and maintenance of personalized context-aware services from
specification, design, to deployment and execution. Initial in-lab perfor-
mance experiments have been conducted to demonstrate the efficiency
of our approach.

Keywords: Context-aware services, web services, personalized adapta-
tion, model-driven development, aspect-oriented methodology, business
rules.

1 Introduction

Context awareness refers to the system capability of both sensing and reacting
to situational changes, which is one of the most exciting trends in computing
today that holds the potential to make our daily life more productive, convenient,
and enjoyable [7,14,10]. Recently, with the rapid development of service-oriented
computing paradigm, Web services have become a major technology for building
distributed software systems and applications over the Internet [21]. Through the

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 173–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 J. Yu et al.

use of context, a new generation of smartWeb services is currently emerging as an
important technology for building innovative context-aware applications [27,29].

To date, how to build context-aware Web services (CASs in short) that are
able to dynamically change its adaptation logic is still a major challenge [13]. Al-
though CASs are meant to be aware of and adaptive to context change, in most
existing approaches context-awareness logic is usually tightly coupled with the
main functionality of a service and thus not able to change at runtime [26,23].
Another issue that hinders the usability of CASs is that existing context-aware
systems and services usually define the context-awareness logic based on a spe-
cific context instead of a specific user, which may lead to system behavior that is
not in accord with this user’s preference. For example, in a context-aware travel
booking system, one of the context-awareness features is that if the weather
forecast in the destination is rainy when the customer arrives, then a pickup
service will be arranged. Such context-awareness logic may be suitable for Alice,
but may not be suitable for Bob, who wants to have a rent-car service instead.
Because user’s long tail of needs can never be exhausted [1], CASs that are able
to do context-aware adaptation according to user’s personalized needs are highly
desirable.

To tackle the above-mentioned challenges, in this paper, we present a novel
approach called PerCAS to developing and executing a type of dynamically
adaptive CASs that are able to automatically switch context-awareness logic at
runtime according to a user’s unique adaptation needs. We call such CASs the
personalized CASs. We have designed and implemented a model-driven develop-
ment approach to facilitate the modeling of personalized context-aware adapta-
tion logic and the automatic generation of executable service code. A high-level
business rule language is proposed to facilitate the specification of a user’s per-
sonalized context-aware adaptation logic, and an aspect-oriented mechanism is
used to integrate the adaptation logic into the main functionality. A runtime en-
vironment that integrates both a rule engine and a Web service process engine is
implemented to support the dynamic switching between personalized adaptation
logic and the execution of personalized context-aware services.

The rest of the paper is organized as follows. Section 2 introduces a motivating
scenario that will be referred to throughout the paper. Section 4 describes the
PerCAS approach in detail. Section 4 introduce the PerCAS model-driven de-
velopment platform. Section 5 discusses the execution environment architecture
and demonstrates how dynamic and personalized adaptation is achieved in this
architecture. In this section, we also discuss an initial performance evaluation of
the execution environment. Section 6 is related work discussion and we conclude
our paper in Section 7.

2 A Motivating Scenario

In this section, we present a context-aware travel booking service as a motivating
scenario. It is worth noting that part of this scenario is borrowed from the case
study used in [13].

PerCAS: Enabling Dynamic and Personalized Adaptation 175

Fig. 1. The travel booking scenario

Figure 1 is the main process of the travel booking service. As we can see, the
travel booking service is started when a customer issues a booking request. When
the request is received, the service invokes three ticket booking services provided
by three different airlines. After that, according to the weather forecast, if it is
rainy at the destination when the customer arrives, a pickup service is invoked.
Finally the offer is sent to the customer.

The context-awareness features of the travel booking service are as following:
1) if the customer is PriceConscious, then the lowest quote from the three
airlines will be used; 2) if the customer is BrandConscious, then only one airline
service needs to be invoked instead of three; 3) if it is forecasted to be rainy at
the destination, a pickup service will be invoked.

At runtime, it is highly desirable that this context-aware travel booking service
can dynamically change its context-awareness logic to suit the personalized needs
of customers. For example, if a customer Alice happens to be RegionConscious,
which means she prefers to fly airlines from a certain region because of her food
preference, how can we introduce this new context and its associated context-
awareness logic to the service? Furthermore, the other customer Bob may want
to use a rent car service instead of the pickup service if it rains, while Alice still
wants to use the pickup service. How can we solve this conflict by providing
personalized context-awareness logic unique to individual customers?

176 J. Yu et al.

3 The PerCAS Approach

3.1 Overview

In this section, we briefly introduce the PerCAS approach and discuss several
key principles used in the design of this approach.

Fig. 2. Overview of the PerCAS approach

As illustrated in Figure 2, PerCAS is a model-driven approach that contains
a Platform Independent Model (PIM) and a Platform Specific Model (PSM).
In the PIM, the main components include a Base Functionality Model (BFM
in short) that represents the core functionality of the service, a Personalized
Context-Awareness Logic Model (PCLM in short) that represents the person-
alized context-awareness logic of the user, a Weave Mechanism that integrate
the above two models using an aspect-oriented technique, and a Personalization
Mechanism for switching context-awareness logic between individual users. Be-
cause dynamically adaptive systems are generally difficult to specify due to its
high complexity and variability [30,20], we adopt the separation of concerns prin-
ciple [15] to manage complexity and variability: the context-awareness logic that
needs to be changed is separated from the main functionality. The BFM repre-
sents the relatively stable processing procedure of a service; while the PCLM
represents the variable context-awareness logic. A process language adapted
from BPMN (Business Process Modeling Notation)1 has been designed as the
modeling language for the BFM. As to the PCLM, we have designed a natu-
ral language-like high-level rule language as its modeling language. We adopt

1 http://www.bpmn.org/

http://www.bpmn.org/

PerCAS: Enabling Dynamic and Personalized Adaptation 177

a rule language to specify the PCLM because: i) Business-level rules are eas-
ier to be used by technically non-experienced users because of their atomic and
declarative nature [25,5]. In our case, the user may use our rule language to
define his/her personalized context-awareness rules. ii) Context-awareness rules
as a type of business rules are one of the core components in specifying re-
quirements. Keeping rules in the design model instead of translating them into
complex conditional branches of a process not only prevents the paradigm shift
from declarative rules to procedural processes but also maintains the modular-
ity and traceability of rules. We adopt an aspect-oriented approach to integrate
the BFM and the PCLM using the Weave Mechanism. This approach ensures
the modularity of the BFM and the PCLM so that they can evolve indepen-
dently. If we directly translate rules into process structures and insert them into
a process, both modularity and traceability of the rules are lost. Based on the
aspect-oriented methodology [8], context-awareness rules can be applied before,
after a service, or around it to replace this service. Finally, a personalization
mechanism is applied to the BFM for switching between personalized context-
awareness rules that are encapsulated in PCLM.

In the PSM, WS-BPEL (BPEL in short) [9], the de facto industry standard
for service composition, is used as the process execution language, and Drools2

is used as the rule execution language. Accordingly, the BFM is transformed to a
BPEL process and the PCLM is translated to Drools rules. An aspect service that
encapsulates the invocation logic to Drools rules is used as the communication
bridge between the BPEL engine and the Drools rule engine. At runtime, the
aspect service takes the unique URL to the Drools rule file (corresponding to
a unique PCLM, or user) to switch aspects containing personalized context-
awareness rules.

3.2 The Base Functionality Model

The BFM captures the main processing logic of a service, excluding all the
context-awareness logic. Mainly we reuse the language constructs defined in
BPMN for its popularity. To make the BFM and PCLM semantically inter-
operable, we have extended the Business Activity element of BPMN with
semantic annotations.

As illustrated in Figure 3, the BFM modeling language in general has two
types of elements: the Flow Object and the Connecting Object, where flow ob-
jects are processing entities and connecting objects specify the flow relations
between flow objects. There are three types of flow objects: the Business Activ-
ity, the Event, and the Parallel Gateway. Business activities represent the main
processing unit of a service. Events have the common meaning as defined in
BPMN: they are happenings that affect the execution of a process, for exam-
ple start events and exceptions. Gateways also have the common meaning as
defined in BPMN: they determines forking and merging of paths. It is worth
noting that although context-awareness logic usually can be specified as static

2 http://www.jboss.org/drools/

http://www.jboss.org/drools/

178 J. Yu et al.

Fig. 3. The BFM language structure

gateway structures, but in our approach, such logic must not be specified in
BFM, instead, they should be specified in PCLM.

The detailed definition of the Business Activity is given as follows. A business
activity is a tuple of name, inputs, and outputs: t = <name: Name, I: Name×
C, O: Name×C>, where Name is a finite set of names; C is a finite set of types,
and every input or output of a business activity has a name and a type. The
type of an input or output parameter is a concept or property defined in an
ontology. As we know, an ontology provides a shared vocabulary, which can be
used to model a domain—that is, the type of objects and concepts that exist,
and their properties and relations [2]. The purpose that we associate an I/O
parameter with an ontology concept or property is twofold: first, the ontology
serves as the common ground between the BFM and the PCLM and thus makes
these two models semantically interoperable; second, the semantics attached
to business activities later can be used to semantically discover services that
implement business activities. For example, suppose the BookTicket activity
needs to use the customer information as an input parameter, then we may use
an ontology concept Customer that has properties such as firstName, lastName,
and passportNumber, to give a semantic meaning to this input parameter.

Figure 4 shows the BFM of the motivating example. It only contains two
business activities: BookTicket and SendOffer. We do not include the arrival
service in it because the arrival service is part of the context-awareness logic,
and such logic needs to be defined in the PCLM instead.

Fig. 4. The BFM of the motivating scenario

PerCAS: Enabling Dynamic and Personalized Adaptation 179

3.3 The Personalized Context-Awareness Logic Model

The PCLM captures the context-awareness logic. Usually there are more than
one PCLM defined for one BFM. PCLMs can be defined either at design time or
runtime, and a specific user can choose one of the PCLM or dynamically defines
a new PCLM as his/her PCLM.

A PCLM is composed of a set of rules, and each rule r is defined as a 3-tuple:
r = < type, condition, action >. Type is defined based on the context related
to a PCLM. For example, two contexts PriceConscious and BrandConscious

have the same context type TicketingPreference. Rules having the same type
can be switched dynamically at runtime. The definition of condition and action
follows the typical event-condition-action (ECA) pattern but the event part is
specified in the weave mechanism (see the next subsection for details) because
the triggering of rules is determined by point cuts in the aspect.

We have designed a natural-language-like high-level rule language to facilitate
the specification of PCLM. This language is defined based on the propositional
logic based constraint languages such as WSCoL [3] and JML [4], . The syntax
of this rule language is defined as follows:

<rule > ::= <type >, <cond > , <action >

<type > ::= <concept >

<cond > ::= not <cond > | <cond > and <cond > |

<cond > or <cond > | <term > <relop > <term >

<term > ::= <property > | <term > <arop > <term > |

<const > | <fun > (<term > <term >*)

<property > ::= <concept >(_<n>)?(.< obj_prop >)*.

<datatype_prop >

<relop > ::= less than | less than or equal to |

equal to | greater than or equal to |

greater than

<arop > ::= + | - | * | /

<n> ::= 1 | 2 | 3 |...

<fun > ::= <predef > | <usrdef >

<predef > ::= abs | replace | substring | sum | avg

| min | max | ...

<action > ::= (<activity >) | (<property > | <concept >(_<n>)?

= <term > | <activity >))*

As we can see, ontology concepts and properties are used in the specification of a
PCLM rule. Because of the atomic feature of rules, in many situations, only one
instance (or variable) of the same concept/type is involved in the definition of a
rule. In such cases, the name of an ontology concept is directly used to represent
one of its instances to bring certain convenience to the rule author. For example,
to define the condition “if the customer is price conscious”, we can just write the
following natural-language-like condition expression: “Customer.PriceConscious

180 J. Yu et al.

equal to true”, in which the ontology concept Customer actually means a specific
customer in the context of the rule. If more than one instance of the same con-
cept is needed in a rule expression, number subscriptions, such as Customer 1,
Customer 2, are used to identify a specific instance. Based on Web Ontology
Language (OWL) [19], an ontology concept could be a complex structure having
both object properties and datatype properties, where an object property navi-
gates to another concept in the ontology and a datatype property has a specific
primitive data type such as integer, boolean, or string. For example, suppose the
Customer concept has an object property contact whose range is the concept
Contact, and phoneNumber is a string datatype property of Contact. Finally, for
the action part, we can either assign the result of a term expression to a variable,
or assign the result of the invocation of a business activity to a variable.

The following are examples of three PCLM rules:

R1: If a customer is brand conscious, use the airline with the specified
brand.

[type] TicketingPreference

[Cond] Customer.Preference .brandConscious equal to

"true"

[Action] BookTicket (Customer.Preference .brand).

R2: If it rains at the arrival airport, use the pickup service:

[type] Weather

[Cond] ArrivalAirport .weatherCondition equal to "

Rainy"

[Action] Pickup(Customer).

R3: If it rains at the arrival airport, use the rent-car service:

[type] Weather

[Cond] ArrivalAirport .weatherCondition equal to "

Rainy"

[Action] RentCar(Customer).

The user can dynamically put rules into his/her own PCLM. For example, Alice’s
PCLM is composed of two rules R1 and R2: PCLM1 = {R1, R2}, while Bob’s
PCLM contains one rule R3 only: PCLM2 = {R3}. It is worth noting that
because the rule type is used for dynamic switching between rules, rules with the
same type are not allowed to be put in the same PCLM to achieve deterministic
selection.

3.4 The Weave Mechanism and Personalization Mechanism

The weave mechanism connect PCLM rules to BFM business activities based on
the concept of aspect: each aspect asp weaves a type of PCLM rules to a BFM
activity: asp ∈ {Before,Around,After} × T × R.Type, where T is the set of

PerCAS: Enabling Dynamic and Personalized Adaptation 181

BFM business activities and R.Type is the set of PCLM rule types. Similar
to AspectJ [11], we also identify three types of aspect: before aspects, around
aspects, and after aspects. An aspect is always associated with a business activity.
Both before aspects and around aspects are executed before the execution of the
associated activity, but if an activity has an around aspect, the execution of this
activity will be skipped after the execution of the around aspect. In another
word, the around aspect replaces its associated activity. From the perspective of
the ECA pattern, event ∈ {Before,Around,After}×T becomes the triggering
event of a PCLM rule.

PCLM rules are associated with an aspect based on their types. So it is a
type (or set) of PCLM rules that are associated with a BFM activity instead of
a single PCLM rule. For example, we can define two context-awareness aspects
for the travel booking service discussed in Section 2:

asp1 = {Around,BookT icket, T icketingPreference}
asp2 = {After, ArrivalService,Weather}

In asp2, Because R2 and R3 belong to the same type Weather, they can be
dynamically switched and applied to the ArrivalService activity.

It is worth noting that the interoperability between an BFM activity and
its associated PCLM rules is established through the predefined ontology. For
example, the input parameters of the BookTicket activity must contain two pa-
rameters having semantic annotation DepartureAirport and ArrivalAirport,
so that the associated rule (for example R2) can use these properties in its defi-
nition.

Finally the personalization mechanism is used to associate a user to a PCLM,
for example PCLM1.user = Alice, so that at runtime when it is identified
that the invocation is from this user, his/her specific PCLM will be used, and
rules will be selected from this PCLM to apply to the corresponding BFM. If
a context-awareness aspect is defined while there is no rule can be used (based
on the rule type) in the specific PCLM, then this aspect will be ignored. For
example, suppose Bob’s PCLM has no rule with type T icketingPreference,
then asp1 will be ignored when Bob invokes the travel booking service.

4 The PerCAS Development Platform

We have implemented a model-driven platform for graphically specifying the
PerCAS PIM models and for automatic transformation of these models to exe-
cutable PSM code.

4.1 The Graphical Development Interface

Figure 5 shows the main graphical development interface of the PerCAS plat-
form. There are totally three tabs: the left tab is an OWL viewer used for users
to explore ontology concepts defined in OWL; the middle tab, as shown in Fig-
ure 5, is the main environment for defining PerCAS models; the right tab is for

182 J. Yu et al.

Fig. 5. Snapshot of the PerCAS Platform

transforming models to executable code. For space limitation, we only introduce
the main graphical environment (the middle tab). As we can see, the left pane
displays the structure of the PCLM rule repository: there are two PCLMs de-
fined: one contains the BrandConscious rule (R1) and the Pickup rule (R2), and
the other contains the RentCar rule (R3). As discussed in Section 3.4, PCLM1

may be used by Alice, and PCLM2 by Bob. In the rest of the structure, two rule
types: TicketingPreference and Weather are defined, with each type contains
two rules.

The middle pane is the main canvas for composing a PerCAS service. BFM
language constructs are displayed as a list of buttons on top of the canvas. When
the user creates a BFM activity, its semantics can be specified in the bottom
pane. If we select a concept or datatype property from the drop-down menu
that contains all the concepts and datatype properties in the domain ontology
as the type for a parameter, a variable is automatically created to represent this
parameter. As shown in the snapshot, the BookTicket activity has three input
parameters with type Customer, DepartureAirport and ArrivalAirport, and
one output parameter with type Flight.

After the BFM model is created, the user may drag-n-drop one of the rule
types from the left pane to an activity in the middle canvas. The platform then
will ask the user whether weave the rule type before, around, or after the
activity. As shown in the figure, the TicketingPreference type is weaved as an

PerCAS: Enabling Dynamic and Personalized Adaptation 183

Fig. 6. The PCLM Rule Editor

around aspect, and the Weather type is weaved as an after aspect. It is worth
noting that if a BFM activity is attached with PCLM rules, then the solid line
of its shape becomes the dash line to indicate that it is context-dependent and
adaptive.

A new PCLM rule can be created in the “Rule Editor” dialog box, which will
appear if we right-click one of the folder icons in the left rule repository pane and
select “New Rule” from the pop-up menu. As shown in Figure 6, the rule editor
uses the concepts in the domain ontology to define the condition and action
components of a rule. It is worth noting that all the I/O parameter variables
in the base model that are visible to a rule will be automatically bound to the
corresponding concepts or properties in the rule.

4.2 Transformation

Before we can transform the defined PerCAS PIM to executable code, we need
to associate each BFM activity with a Web service. This can be done in the
“Association and Transformation” tab of the graphical interface.

Each PCLM rule is automatically transformed to an executable Drools rule.
Figure 7 shows the generated Drools rule code for rule R1 discussed in Sec-
tion 3.3. In order to keep the invocation of Web services associated with activities
defined within rules self-contained, service information for Web services associ-
ated with activities defined within rules are encoded directly into the rule code.
First, the bindings for ontology classes used in the rule as well as an enabler
helper-class are defined (Lines 5-6), followed by the condition statement as trans-
lated into Drools syntax (Lines 8). If the condition is evaluated as true, the Web
service associated with the BookT icket will be invoked, using the enabler helper
class (Lines 12-25).

The weaved BFM model is transformed to a BPEL process. Constructs such
as Start Event and Activity that does not have aspects are translated directly
into their corresponding BPEL constructs (in this case, receive and invoke).

184 J. Yu et al.

1 rule "BrandConscious "

2 dialect "java"

3

4 when

5 $enabler : Enabler ()

6 $Customer : Customer ()

7

8 Customer ((Preference (brandConscious == "true"))

9

10 then

11

12 try {

13 String[] wsInfo = { "http :// localhost :8080/

14 BookTicket ",

15 "bookTicket ", "BookTicketService ",

16 "ContactServicePort ",

17 "http :// localhost :8080/

18 BookTicketService /BookTicketService

?

19 wsdl"};

20

21 String [][] varInfo = {{ $Customer .getBrand ()}};

22 String [][] varNames = { { " CustomerBrand " }};

23

24 $enabler.runService (wsInfo , varInfo , varNames);

25 } catch (Exception e) { e.printStackTrace () };

26

27 end

Fig. 7. Drools rule code corresponding to Rule R1

For activities that have aspects, we use a special Web service called aspect
service as the communication bridge between the BPEL process and the rules
running on the Drools rule engine. An aspect service will be invoked before
invoking an activity if it has before and/or around aspects, and another as-
pect service will be invoked after invoking an activity if it has after aspects.
To achieve dynamic switching between PCLMs, each PCLM is translated to a
Drools rule file, and the aspect service takes as input a URI to the Drools rule
file, along with the values and ontology class names of all variables involved in
the aspect. When a user invokes a PerCAS service, his/her unique PCLM URL
will be used as an parameter to the aspect service. The aspect service returns
two Boolean values corresponding to abort and skip evaluation outcomes, as well
as the values of all variables that may have been updated based on rule evalua-
tion. Finally, conditional constructs are inserted around the activity invocation
to handle abort and skip actions based on the return of the aspect service.

PerCAS: Enabling Dynamic and Personalized Adaptation 185

Fig. 8. The architecture of the PerCAS runtime environment

5 The Runtime Environment

We have implemented the PerCAS runtime environment based on Riftsaw-2.3.0
open source BPEL engine 3 and Drools-5.0 rule engine. Both engines are running
inside the JBoss Application Server-7.0.

Figure 8 is the architecture of the PerCAS runtime environment. The bottom
level of the anatomy includes the main components of the runtime environment:
a Drool engine, a BPEL engine, and a generic aspect service that encapsulates
the rule invocation logic. The aspect service is written in Java and exposed as a
Web service for the BPEL process to invoke. Every time when an aspect in the
process is reached for execution, the aspect service is invoked and corresponding
variables (including the IO parameters of its associated activity and user selected
variables) are passed from the process to it; these variables are used in the
execution of the rules of the aspect. After all the rules in the aspect are executed,
these variables are updated and passed back to the process.

Next we use this architecture and the motivating scenario to briefly demon-
strate how dynamic and personalized adaptation is achieved in PerCAS. Suppose
Alice is using the travel booking service, then the url to PCLM1 (defined in Sec-
tion 3.3) will be used as an parameter to the aspect service, and because asp1
(defined in Section 3.4) is an around aspect to the BookTicket service, this as-
pect will select a rule with type TicketingPreference from PCLM1, which
is R1. Similarly, when Bob is invoking the service, PCLM2 will be used and
R2 will be selected and executed instead. Because the BFM process and the
PCLM rules are separately deployed, it is possible to change the PCLM rules
while the process is still running. For example, when the BookTicket service is
still running, Alice may change the rules defined in PCLM1, e.g., change her
arrival service preference from Pickup to RentCar. If the modified PCLM1 is
successfully deployed before asp2 (the after aspect) is executed, the new rule will
be used in asp2.

3 http://www.jboss.org/riftsaw/

http://www.jboss.org/riftsaw/

186 J. Yu et al.

Number of Passed Variables

T
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90 100
22

24

26

28

30

32

Fig. 9. Execution time of a single aspect service w.r.t. the number of passed variables

According to the above discussed architecture, we can see that the main per-
formance impact of this runtime environment lies in the aspect service, which
is responsible for executing the context-awareness logic outside the BPEL en-
gine. We have conducted an initial experiment to test the impact of invoking a
single aspect service with various number of randomly generated primitive type
variables passed. Every setting is tested five times and the average execution
time of an empty aspect service w.r.t. the number of passed variables is shown
in Figure 9. As we can see, it costs 22 ms to invoke an empty aspect service
without passing any variables and costs 32 ms to invoke an empty aspect service
with 100 variables passed to it. This result shows that the variable exchange
between the Riftsaw BPEL server and the Drools server is very fast, and there
is only 10 ms increase from passing no variable to passing 100 variables. The
reason could be that these two servers are two components that both run inside
the same JBoss application server.

6 Related Work

The PerCAS approach presented in this paper is closely related to two categories
of research work: one is model-driven development of context-aware services, and
the other is dynamic context-aware process adaptation. In the rest of this section,
we discuss related work from these two perspectives.

As mentioned by Kapitsaki et al. [16], the model-driven approach is a popu-
lar approach to developing context-aware services because of its strong support
to the development process. ContextServ [26] is a platform that uses UML4

to model contexts, context-awareness, and services, and then transforms the
model to an executable context-aware Web service. Composite contexts can be
modeled by composing atomic contexts using UML state diagrams. The main
context-awareness features that can be modeled by ContextServ include con-
text binding, which binds a context to the input parameter of a service, and

4 http://www.uml.org/

http://www.uml.org/

PerCAS: Enabling Dynamic and Personalized Adaptation 187

context triggering, which modifies the output of a service to suit a specific con-
text. CAMEL (Context Awareness ModEling Language) and its associated de-
velopment tools [12,28] combine model-driven development and aspect-oriented
design paradigms so that the design of the application core can be decoupled
from the design of the adaptation logic. In particular, CAMEL categorizes con-
text into state-based which characterizes the current situation of an entity and
event-based which represents changes in an entity’s state. Accordingly, state con-
straints, which are defined by logical predicates on the value of the attributes
of a state-based context, and event constraints, which are defined as patterns of
event, are used to specify context-aware adaptation feature of the application.
CAAML (Context-aware Adaptive Activities Modeling Language) [17] aims at
modeling context-aware adaptive learning activities in the E-learning domain.
This language focuses on modeling two classes of rules - rules for context adap-
tation and rules for activity adaptation - to support pedagogical designing. The
above approaches mainly focus on how to specify context-awareness features of
a single service or software component at design time. The focus of the PerCAS
approach instead is on making the context-awareness features changeable at
runtime based on user preferences. Also, PerCAS supports to do context-aware
adaptation on a process instead of a single service, which is the reason that we
adopt BPMN instead of UML as the base modeling language.

In terms of dynamic context-aware process adaptation, Apto [13] is a model-
driven approach for generating the process variants that corresponding to the
changes in requirements and context. Necessary changes to a process is mod-
eled as evolution fragments using UML, and a process variant can be created
by applying an evolution fragment to the base process. Dynamic adaptation is
achieved by first generating a new process variant, then transforming the process
variant to a BPEL process, and then re-deploying this new BPEL process. Al-
though both Apto and PerCAS can achieve the same goal of creating dynamic
and personalized context-aware services, Apto clearly needs more professional
experience to create a correct evolution fragment as it needs full understanding
of both the process logic and the process language constructs, while PerCAS
advocates to use natural language-like rules to define context-awareness logic.
There are quite a few works aiming at extending the dynamic adaptability of
BPEL processes using aspects and rules. AO4BPEL [6] is an aspect-oriented ex-
tension to BPEL that supports dynamic weaving of aspects in BPEL processes.
Although they also advocate to use rules in an aspect, a rule engine is not inte-
grated in their approach and rules are manually mapped to BPEL conditionals.
Marconi et al. [18] also proposed a set of constructs and principles for embedding
the adaptation logic within a flow language specification and showed how BPEL
can be extended to support the proposed constructs. Rosenberg and Dustdar [24]
proposed a runtime environment where both a BPEL engine and a rule engine
are connected to a service bus. Dynamic adaptation is achieved through inter-
cepting the messages exchanged between the process and a partner service and
invoking business rules running on the rule engine before and after the execu-
tion of the partner service. This approach may not be able to implement the

188 J. Yu et al.

around aspect as rules are inserted before and after the invocation of a partner
services while the partner service cannot be disabled or replaced. Paschke and
Teymourian [22] discussed a rule based business process execution environment
where a rule engine is deployed on an ESB (Enterprise Service Bus) and exposed
as Web services. Dynamic adaptation is achieved by explicitly defining and inte-
grating Rule Activities, which invoke the rule service, in the BPEL process, and
rules can be modified and applied without re-deploying the process. The above
works mainly focus on the execution language and environment, while PerCAS
is a systematic engineering approach with a graphical modeling language and
development platform.

7 Conclusion

In this paper, we have presented PerCAS, a model-driven approach for devel-
oping dynamic and personalized context-aware services using aspects and rules.
We have introduced the models and methodology of separating the context-
awareness logic from the base functionality logic of a service, as well as weaving
the context-awareness logic to the base process. A natural language-like rule lan-
guage is proposed for specifying context-awareness logic and personalized rules
can be dynamically switched at runtime. We have also developed a development
platform to support the graphical modeling and transformation of such services,
and a runtime environment that integrates both a BPEL engine and a Drools
rule engine for their execution. In the future, we plan to apply this approach in
more real-life case studies to validate its effectiveness. We also plan to investi-
gate runtime validation techniques that can be used to check the consistency of
context-awareness logic switching.

References

1. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More.
Hyperion Books (2006)

2. Arvidsson, F., Flycht-Eriksson, A.: Ontologies I (2008),
http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf

3. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Transaction on
Software Engineering 37(2), 247–263 (2011)

4. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An Overview of JML Tools and Applications. Int’l J. Software
Tools for Technology Transfer 25(3), 40–51 (2005)

5. Charfi, A., Mezini, M.: Hybrid Web Service Composition: Business Processes Meet
Business Rules. In: Proc. of the 2nd International Conference on Service Oriented
Computing (ICSOC 2004), pp. 30–38 (2004)

6. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World
Wide Web 10, 309–344 (2007)

7. Dey, A.K., Mankoff, J.: Designing Mediation for Context-aware Applications. ACM
Trans. on Computer-Human Interaction 12(1), 53–80 (2005)

8. Elrad, T., Filman, R.E., Bader, A.: Aspect-Oriented Programming: Introduction.
Commun. ACM 44(10), 29–32 (2001)

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf

PerCAS: Enabling Dynamic and Personalized Adaptation 189

9. Evdemon, J., Arkin, A., Barreto, A., Curbera, B., Goland, F., Kartha, G., Kha-
laf, L., Marin, K., van der Rijn, M.T., Yiu, Y.: Web Services Business Process
Execution Language Version 2.0. BPEL4WS Specifications (2007)

10. Ferscha, A.: 20 Years Past Weiser: What’s Next? IEEE Pervasive Computing 11,
52–61 (2012)

11. Gradecki, J.D., Lesiecki, N.: Mastering AspectJ: Aspect-Oriented Programming in
Java. Wiley (2003)

12. Grassi, V., Sindico, A.: Towards Model Driven Design of Service-Based Context-
Aware Applications. In: Proc. of the International Workshop on Engineering of
Software Services for Pervasive Environments: In Conjunction with the Sixth ES-
EC/FSE Joint Meeting, pp. 69–74 (2007)

13. Jaroucheh, Z., Liu, X., Smith, S.: Apto: A MDD-based Generic Framework for
Context-Aware Deeply Adaptive Service-based Processes. In: Proc. of the 2010
IEEE International Conference on Web Services (ICWS 2010), pp. 219–226 (2010)

14. Julien, C., Roman, G.C.: EgoSpaces: Facilitating Rapid Development of Context-
Aware Mobile Applications. IEEE Trans. on Software Engineering 32(5), 281–298
(2006)

15. Kambayashi, Y., Ledgard, H.F.: The Separation Principle: A Programming
Paradigm. IEEE Software 21(2), 78–87 (2004)

16. Kapitsaki, G.M., et al.: Context-Aware Service Engineering: A Survey. J. Syst.
Software (2009)

17. Malek, J., Laroussi, M., Derycke, A., Ben Ghezala, H.: Model-Driven Development
of Context-aware Adaptive Learning Systems. In: Proc. of the 10th IEEE Interna-
tional Conference on Advanced Learning Technologies (ICALT 2010), Washington,
DC, USA, pp. 432–434 (2010)

18. Marconi, A., Pistore, M., Sirbu, A., Eberle, H., Leymann, F., Unger, T.: Enabling
Adaptation of Pervasive Flows: Built-in Contextual Adaptation. In: Baresi, L., Chi,
C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 445–454.
Springer, Heidelberg (2009)

19. Mcguiness, D.L., van Harmelen, F.: OWLWeb Ontology Language Overview. W3C
Recommendation (February 2004), http://www.w3.org/TR/owl-features/

20. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming Dynamically Adaptive
Systems using Models and Aspects. In: Proc. of the 31st International Conference
on Software Engineering (ICSE 2009), pp. 122–132 (2009)

21. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)

22. Paschke, A., Teymourian, K.: Rule Based Business Process Execution with
BPEL+. In: Proc. of I-KNOW 2009 and I’SEMANTICS 2009, pp. 588–601 (2009)

23. Prezerakos, G.N., Tselikas, N., Cortese, G.: Model-Driven Composition of Context-
Aware Web Services Using ContextUML and Aspects. In: Proc. of the IEEE In-
ternational Conference on Web Services 2007 (ICWS 2007), pp. 320–329 (2007)

24. Rosenberg, F., Dustdar, S.: Usiness Rules Integration in BPEL - a Service-Oriented
Approach. In: Proc. of the 7th IEEE International Conference on E-Commerce
Technology, pp. 476–479 (2005)

25. Ross, R.G.: Principles of the Business Rules Approach. Addison-Wesley (2003)
26. Sheng, Q.Z., Pohlenz, S., Yu, J., Wong, H.S., Ngu, A.H.H., Maamar, Z.: Con-

textServ: A Platform for Rapid and Flexible Development of Context-Aware Web
Services. In: Proc. of the 31st International Conference on Software Engineering
(ICSE 2009), pp. 619–622 (2009)

27. Sheng, Q.Z., Yu, J., Dustdar, S. (eds.): Enabling Context-Aware Web Services:
Methods, Architectures, and Technologies. CRC Press (2010)

http://www.w3.org/TR/owl-features/

190 J. Yu et al.

28. Sindico, A., Grassi, V.: Model Driven Development of Context Aware Software Sys-
tems. In: Proc. of the International Workshop on Context-Oriented Programming
(COP 2009), New York, NY, USA, pp. 7:1–7:5 (2009)

29. Truong, H.L., Dustdar, S.: A Survey on Context-Aware Web Service Systems.
International Journal of Web Information Systems 5(1), 5–31 (2009)

30. Zhang, J., Cheng, B.H.C.: Model-Based Development of Dynamically Adaptive
Software. In: Proc. of the 28th International Conference on Software Engineering
(ICSE 2006), pp. 371–380 (2006)

A Method for Assessing Influence Relationships
among KPIs of Service Systems

Yedendra Babu Shrinivasan, Gargi Banerjee Dasgupta, Nirmit Desai,
and Jayan Nallacherry

IBM Research, Bangalore, India
{yshriniv,gaargidasgupta,nirmit.desai,

jayan.nallacherry}@in.ibm.com

Abstract. The operational performance of service systems is commonly mea-
sured with key performance indicators (KPIs), e.g., time-to-resolve, SLA compli-
ance, and workload balance. The assumption is that healthy KPIs lead to healthy
business outcomes such as customer satisfaction, cost savings, and service qual-
ity. Although the domain experts have an intuitive understanding of the causal re-
lationships among the KPIs, the degree of influence a cause KPI has on the effect
KPI is difficult to estimate based on intuition. Also, the intuitive understanding
could be wrong. Further, we show how the causal relationships are intricate with
aspects such as the rate of influence and conditionality in measurements. As a
result, although crucial, it is nontrivial to estimate the degree of influence. With-
out the degree of influence, prediction of business outcomes and decisions based
on them tend to be ad hoc. This paper presents a novel method for validating the
intuitive direction and the polarity of a causal relationship provided by domain
experts. Further, the method also estimates the degree of influence based on the
measure of Pearson’s correlation. Using the degree of influence and least squares
regression, the method predicts values of effect KPIs. The method is evaluated
by applying it on 10 widely used KPIs from 29 real-life service systems. We find
that the method validates 8 of the 15 intuitive relationships and estimates the de-
gree of influence for each of the validated relationships. Further, based on the
degrees of influence and the regression model learned from the 29 service sys-
tems, the method could estimate the values of the effect KPIs with an average
root-mean-squared error (RMSE) of 1.2%, in 9 additional service systems.

1 Introduction

A Service System (SS) is an organization composed of (a) the resources that support,
and (b) the processes that drive service interactions so that the outcomes meet customer
expectations [1,18,15]. SS are labor intensive due to the large variation in the tasks and
skills of service workers (SWs) required to address service requests from multiple cus-
tomers. A service provider would typically need multiple SS to support its customers.
Given that the problem solving and other activities in the SS vary greatly with cus-
tomers, processes are rarely supported by workflow engines and manually executed by
the SWs. Hence, the KPI data availability is limited to coarse-grained and high-level
measures.

Although we refer to the examples in the IT services domain, the ideas and the ap-
proach presented later apply to SS in general. To achieve service quality in the domain

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 191–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

192 Y.B. Shrinivasan et al.

of IT services, the service providers adopt standardized process frameworks such as
ITIL 1, COBIT 2, and Lean [2] Six Sigma 3. Such frameworks also define the KPIs
to enable performance assessment of each of the processes. For example, an incident
management process maybe measured by the MTTR (mean time to resolve) as well as
incidents resolved within SLA target time. Similarly, a work assignment process maybe
measured by the mean waiting time for an incident and mean utilization of SWs. Such
KPIs are widely used by service providers in making business decisions. Naturally, a
poorly performing KPI attracts attention and the service provider invests in improving
the underlying process.

However, the service delivery processes are inter-related in an intricate manner. For
example, the KPIs of the incident management process maybe impacted by the KPIs
of the work assignment process. We say that the direction of this causal relationship is
from the work assignment process KPI to the incident management process KPI. Addi-
tionally, an increase in one KPI may imply a decrease in another. In such cases, We say
that the polarity of the causal relationship is negative. Further, the degree of influence
one KPI has on another varies — some KPIs are independent implying no influence.
Lastly, the influences among KPIs do not occur instantaneously, the performance of one
process influences another with a certain latency. We say that each causal relationship
has a rate of influence associated with it. Sometimes, the validity of the method of mea-
suring a KPI is conditional to assumptions about performance levels of other KPIs it is
dependent on, e.g., optimal staffing level maybe computed by assuming that the work
assignment process is at its best performance level and the work execution process is
performing as-is on the ground. We say that the effect KPI of a causal relationship is
conditional on the assumption that the performance level of the cause KPI is best, as-
is, or worst. These attributes of causal relationships may also evolve over time, e.g.,
incident management may be automated in future, making it independent of the work
assignment process. Given that such changes are rare, this paper assumes that the SS
are in a steady state.

In both of the above examples, an investment in the improvement of the incident
management process maybe misplaced without having predicted the impact it would
have on the business outcomes such as cost savings. Assessing the direction, polarity,
and degree of influence among the KPIs is a prerequisite to predicting their impact to
the business outcomes. As an added benefit, if the degree and rate influence of causal
relationships can be assessed, a system dynamics simulation model can be created,
which can answer questions such as the feasibility and cost of reaching a performance
goal across multiple KPIs [11].

A possible approach is to gather KPI data to assess each of the above attributes
for all pairs of KPIs to guide the decisions. However, because the KPIs involved in a
relationship may come from multiple processes, inferring causality from data is dif-
ficult at best [17]. Though the domain experts can intuitively identify the cause and
effect in a KPI relationship based on their knowledge of implicit temporal or data flow

1 http://www.itilofficialsite.com/home/home.aspx
2 http://www.isaca.org/Knowledge-Center/cobit
3 http://asq.org/learn-about-quality/six-sigma/
overview/overview.html

http://www.itilofficialsite.com/home/home.aspx
http://www.isaca.org/Knowledge-Center/cobit
http://asq.org/learn-about-quality/six-sigma/overview/overview.html
http://asq.org/learn-about-quality/six-sigma/overview/overview.html

A Method for Assessing Influence Relationships among KPIs of Service Systems 193

dependencies involved, the intuition may not hold in reality. For example, it is intuitive
that SLA performance influences customer satisfaction. However, it has been shown
that consistently meeting customer SLAs does not have any impact on customer satis-
faction [10]. Hence, there needs to be a validation of the intuitive causal relationships
and a method for estimating the degree of influence for validated relationships.

Hence, this paper (1) assumes that the intuitive direction, conditionality, and the
polarity of the causal relationships among KPIs (including KPIs representing business
objectives) is given by domain experts; then it proposes a method for (2) validating the
direction and the polarity of a causal relationship, (3) estimating the degree of influence
of a causal relationship based on a measure of correlation, and (4) predicting the values
of effect KPIs for new SS by applying linear regression. We defer the assessment of
the rate of influence to future work. The conditionality of a causal relationship does not
need validation as it simply reflects how the KPIs are measured on the ground.

We validate this method by applying it to 3 inter-related processes and 10 KPIs used
by a large IT services provider. One of the KPIs is the business outcome of staffing
deficit. Equipped with data on these KPIs from 38 real-life SS and a set of intuitive
causal relationships, we apply our method to 29 SS and find that 8 of the 15 intuitive
relationships are validated and the remaining are found to be invalid. Based on the
interviews of the domain experts, these results match the skepticism they expressed
about the invalidated relationships and a confidence about the validated ones. Further,
based on the data from the same 29 SS, we estimate the degree of influence for each of
the validated relationships based on the measure of Pearson’s correlation. We express
the relationships as a set of linear equations and apply least squares linear regression to
predict the values of effect KPIs of the remaining 9 SS. We find that the average RMSE
in the estimated values is quite low at 1.2%.

Business process KPIs and their influence relationships have received significant
attention. In the area of SOA, it is mostly focused on measures that are collected auto-
matically during process executions and relate to individual process instances [21,20].
These data help construction of models that detect risky situations within a process in-
stance and adapt its course towards desirable outcomes. This paper focuses on separat-
ing the process expertise from the method user by clearly defining the information that
process experts provide and the results that the method user produces. This helps make
the method generally applicable in the services domain. Further, we predict high-level
business objectives based on coarse-grained KPIs which are not available at a process
instance level and hence harder to learn from. Also, the influence relationships vali-
dated by the method are not process or SS specific and hold for any SS in the domain
of IT services. Approaches to KPIs in the management science area study the influence
relationships only at a conceptual level and do not lead to prediction of effect KPI val-
ues [7,6,16]. Also, these approaches do not consider the important notion of internal
performance of KPIs.

The rest of the paper is organized as follows. Section 2 presents our general method.
Section 3 describes the IT service processes, the KPIs, and the intuitive causal relation-
ships provided by the domain experts. Section 4 describes the application of the method
to the IT service KPIs and the results. We summarize the related works in Section 5 and
conclude in Section 6.

194 Y.B. Shrinivasan et al.

2 Method: Influence Estimation

Based on KPI data from multiple SS, the goal of the method is to validate the direction
and polarity of the intuitive relationships provided by the domain experts, estimate the
degree of influence for the validated relationships, and construct a regression model to
predict the effect KPIs for new SS. The basic measure of influence we employ is that
of the Pearson’s correlation coefficient 4. Before describing the steps of our method, we
introduce the notations used in the following.

Fig. 1. Example of intuitive relationships among KPIs provided by the domain experts

Figure 1 shows an example of the relationships provided by the domain experts for
a SS. KPIs B and C measure the performance of Process2 whereas KPIs D and E
measure the performance of Process1. KPIs A and F measure performance of the SS
as a whole and are not associated with any particular process. We call such process in-
dependent KPIs business outcomes. The direction of the edges among the KPIs indicate
the direction of the causality and the signs on the edges indicate the polarity of the re-
lationship. For example, higher the value of C higher the value of B whereas lower the

value of D higher the value of B. We write these as C
+→ B and D

−→ B, respectively.
The conditionality of the relationships is indicated by the line type: as-is indicated by a
solid line, best by a dotted line, and worst by a dashed line.

4 http://en.wikipedia.org/wiki/Pearson product-moment
correlation coefficient

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

A Method for Assessing Influence Relationships among KPIs of Service Systems 195

Fig. 2. (a) Influence relationships with internal performance (shown as circles) (b) Validated influ-
ence relationships among KPIs where the thickness of the edges denotes the degree of influence
in relationships

2.1 Internal and Observed KPIs

The value of an effect KPI is not completely defined by the cause KPIs. This is be-
cause an effect KPI may have an associated process that influences the observed mea-
surement of the KPI. For example, although a work assignment process influences the
mean-time-to-resolve (MTTR), the process of problem resolution itself significantly
determines the value of MTTR. Hence, we distinguish between KPIs reflecting the in-
ternal performance of the associated process alone and those reflecting the observed
performance that factors in all the causal dependencies. The internal KPIs are shown as
circles whereas the observed KPIs are shown as squares. For example, in Figure 2(a),Bi

is the internal measure whereas B is observed. Each observed KPI K is associated with
an internal KPI Ki having a causal relationship to K with a positive polarity and as-is
conditionality. Note that A and F do not have associated internal KPIs because they
are not associated with a process and are classified as business outcomes as described
earlier. Intuitively, the value of observed KPI would be same as that of the internal KPI
if the observed KPI were causally dependent on no other KPI. This distinction implies
that an observed KPI can be expressed in terms of the associated internal KPI as well
as the other observed KPIs on which the KPI is causally dependent on.

2.2 Problem Formulation: KPI Value Prediction

Here, we formulate the problem of predicting the value of an effect KPI via linear
regression. Let K be the set of all KPIs in the relationships provided by the domain
experts. If Ko is the set of observed KPIs and Ki is the set of internal KPIs, then K =
Ko ∪Ki and Ko ∩Ki = φ. Let S denote the set of all SS with Sl being the set of SS in
the training set and St being the test set, S = Sl ∪ St and Sl ∩ St = φ.

Value of a KPI K in SS Sj is indicated by Sj(K) and takes the values [0, 1]. Whereas
γKiKj ∈ [−1, 1] denotes the degree of influence measured by our method for the edge

196 Y.B. Shrinivasan et al.

from Ki to Kj (Ki, Kj ∈ K), αKiKj ∈ [−1, 1] denotes the coefficients of regression
learned from Sl for the same edge. For an observed KPI Y ∈ Ko that is causally
dependent on KPIs X1, X2, . . . , Xn ∈ Ko as well as the internal KPI IY ∈ Ki, the
linear regression model is give by Equation 1, where εi represents the error for Si.

Si(Y) = αIY Y ·Si(IY)+αX1Y ·Si(X1)+αX2Y ·Si(X2)+. . .+αXnY ·Si(Xn)+εi (1)

To allow a regression solver to fit a linear curve, each of the Si ∈ Sl. Hence, the values
of each of the Si(Y) and Si(Xj) (1 < j < n) are available from the training set.
However, because the values of Si(IY) (internal performance of Y) are not available,
the coefficients cannot be fitted by a regression solver. To circumvent this issue, we
apply the degree of influences to compute the Si(IY) as follows. Because all the values
on the RHS of Equation 2 are known, we directly derive the value of Si(Iy) for all
Si ∈ Sl.

Si(IY) = Si(Y)− γX1Y · Si(X1)− γX2Y · Si(X2)− . . .− αXnY · Si(Xn) (2)

The γ terms represent the degree of influences computed via our method that is de-
scribed next and show in Table 1.

Table 1. Rules for the validation of intuitive relationships and estimating the degree of influence

State of
cause KPI

assumed by
the effect

KPI

Intuitive
polarity of

relationship
(p)

Cause KPI
performance

State

Correlation
between

cause and
effect KPIs

Sign of
Observed
Correla-

tion

Validation
test

Degree of
influence

Best perfor-
mance
state

+
Healthy a

+ Valid

p. (|a|+|b|)
2 ,

only if
valid

- Invalid

Weak b
+ Invalid
- Valid

-
Healthy a

+ Invalid
- Valid

Weak b
+ Valid
- Invalid

Worst per-
formance
state

+
Healthy a

+ Invalid

p. (|a|+|b|)
2 ,

only if
valid

- Valid

Weak b
+ Valid
- Invalid

-
Healthy a

+ Valid
- Invalid

Weak b
+ Invalid
- Valid

As-is per-
formance
state

+ All states a
+ Valid

p.|a|,
only if
valid

- Invalid

- All states a
+ Invalid
- Valid

A Method for Assessing Influence Relationships among KPIs of Service Systems 197

2.3 Steps

Step M0. From domain experts, gather the set of observed KPIs Ko and the direction,
polarity, and conditionality of the intuitive causal relationships among them. The output
of this step would look like Figure 2(a).

Step M1. Measure the values of each of the observed KPIs for a long enough period
in a large enough set of SS, depending on the inherent variation and rate of change in
the processes involved. Aggregate the KPIs collected over time with a suitable measure
of central tendency, e.g., mean, median, or mode. The output of this step would be the
value Si(Xj) for KPI Xj and SS Si in [0, 1], where 0 indicates the best performance
and 1 indicates the worst performance.

Step M2. For each cause KPI, decide the threshold of performance level such that
values better than this level reflect healthy performance and values worse than this level
reflect weak performance (better would be lower and worse would be higher values).
Based on these thresholds, decide the performance state of the cause KPI.

Step M3. Compute the Pearson’s correlation coefficient for the pair of KPIs having a
causal relationship. If the conditionality is either best or worst, compute the coefficient
of correlation a between KPI values from SS having only healthy performance in the
cause KPI and b between KPI values from SS having only weak performance. This
is because if the measurement of an effect KPI assumes the cause KPI to be in the
best state, then for the SS where the cause KPI is in the healthy state, the cause KPI’s
influence would be limited. However, a positive correlation is expected because the
healthier the cause KPI, the healthier the effect KPI. On the other hand, if the cause
KPI is in the weak state, it has a higher negative influence on the the effect KPI.

Step M4. For each intuitive causal relationship from M0, look up the row from Table 1
that matches the conditionality, the polarity, the performance state of cause KPI, and
the sign of the correlation coefficient computed from M3. The “Validation test” column
provides the validation result of the intuitive relationship. The “Degree of influence”
column provides the estimated degree of influence γXY for validated relationship be-
tween each KPI pair X and Y from M0. The output of this Step looks like Figure 2(b).

Step M5. From Equation 2, compute the estimated internal performance measure iYi

for each Si in the training set. Using these iYi, feed the Equation 1 to a regression solver
to estimate the coefficients of regression αXY for the validated relationship between
each KPI pair X and Y from M4.

Step M6. For each Si ∈ St, and each effect KPI involved in a validated causal relation-
ship, apply Equation 1 to estimate the value of the effect KPI Si(Y). Compute RMSE
based on the difference between the estimated and the actual values.

3 Case Study: IT Services

This section describes the case study from the domain of IT services. In this domain,
the customers own data centers and other IT infrastructures supporting their business.

198 Y.B. Shrinivasan et al.

The size, complexity, and uniqueness of the technology installations drive outsourc-
ing of the management responsibilities to specialized service providers. The service
providers manage the data-centers from remote locations called delivery centers where
groups of SWs skilled in specific technology areas support corresponding SRs.

Each SW has an associated skill level (discreet skill levels) and usually works on
issues equal or below her skill-level. Customers submit SRs along with its associated
priority. The work also arrives as internal SRs corresponding to all the internal work that
goes on such as proactive fixes, preparing reports, and attending meetings. Each SR is
routed to a queue manager who assesses the minimum skill-level required to service
the SR. The SR is then queued up in the corresponding skill-level priority queue, where
the priority may be the same as the one assigned by the customer or a modified priority
based on factors such as earliest deadline or shortest service time. A resource allocator
follows two alternative models: (a) as soon as an SR is queued up, it is pushed to the
best SW and queued in the work queue of the SW, or (b) the SR waits in the skill-
level queue until it reaches the head of the queue and a SW with a matching skill level
becomes available and pulls it.

In some cases a work assignment policy may assign work to a appropriately skilled
SW, but a swing policy can overrule it by utilizing a higher skilled SW for servicing
a SR with lower skill-level requirement. Typically, this is to control the growth of a
lower-skill queue. A SW would service the SR by carrying out necessary work which
consumes time. This time is referred to as service time with distributions that vary by
the priority of a SR as well as the minimum skill-level required to service it [5]. Once a
SW is done with an SR, it exits the system. A preemption policy may specify that a SR
with higher priority preempts those with lower priority. For each customer and priority
there are contractual SLA targets defined representing the SR resolution time deadlines
and the percentage of the all SRs that must be resolved within this deadline within a
month. For example, the contractual agreement (customer1, High) = 〈4, 95〉, means
that 95% of all SRs from customer1 with priority=High in a month must be resolved
within 4 hours. Also, the SWs work in shifts that specifies the working times as well
as days. The aim is to cover the business hours of each of the customers by deploying
shifts with a consummate staffing levels.

3.1 KPIs in IT Services

We consider three processes of work assignment, work execution, and proactive check-
ing. Each process is further measured by several KPIS as shown in Table 2. Staffing
deficit is a KPI that is a business outcome because it is measured for the entire SS and
cannot be tied to any particular process. We estimate the optimal staffing, on which
the measurement of staffing deficit depends, using the recently proposed and widely
adopted simulation optimization framework [3,14,5]. The framework essentially mini-
mizes the staffing requirement such that the SLA targets are met, the SR queues are not
growing unbounded, and SWs do not work overtime.

A Method for Assessing Influence Relationships among KPIs of Service Systems 199

3.2 Intuitive KPI Relationships

The intuitive KPI relationships are shown in Figure 3. We explain the intuition behind
each of the relationships in the following.

Table 2. KPIs and their measurements

Work Assignment (1− p) where p is:
A. Central Assignment: SRs should be centrally assigned
to SWs

Fraction of SRs dispatched via dedi-
cated dispatchers.

B. Workload distribution: Achieve even distribution of
workload among SWs in each skill group.

Proximity among utilizations of all
SWs of all skill groups.

C. Planned Up-skilling: SRs are assigned to SWs with
lower skills in a planned manner to up-skill them.

Fraction of higher-skill SRs assigned
to lower-skilled SWs as per skill plan.

D. Skill Under-Utilization: SRs are assigned to SWs with
higher skills to control backlogs.

Fraction of low-skill SRs assigned to
higher-skilled SWs.

E. Cross Customer work SWs should work on SRs from
multiple customers.

Fraction of SWs working for multiple
customers.

Work Execution (1− p) where p is:
F. Rework: Number of attempts to required to resolve
SRs.

Fraction of SRs resolved in the first at-
tempt.

Proactive checking (1− p) where p is:
G. Workload Complexity: Majority of SRs are of low
complexity.

Fraction of SRs requiring the lowest
skill level.

H. Customer coverage: Proactive checking covers all
customers.

Fraction of customers proactively
checked in the last 60 days.

I. Issues Identified: Issues found via proactive checking. 1 if at least one issue identified per
week, 0 otherwise.

Business Outcomes Measured as:
J. Staffing Deficit: optimal staffing minus current staffing

divided by current staffing (optimal
staffing described later).

1. Centralized Assignment (A)
−→ Staffing Deficit (J): Lower the value of A more the

work in the SS being centrally assigned. Hence, greater are the chances of it being
timely assigned to the right skilled workers, which should lower the staffing re-
quirement leading to lower current staffing. Because the measurement of J assumes
A to be in the best state, J does not vary based on the actual performance in A.
Hence, the staffing deficit increases, which accounts for the negative influence.

2. Skills Underutilization (D)
+→ Staffing Deficit (J): Higher skilled people are more

expensive than their lower skilled counterparts. Higher the value of D, more the
skill underutilization level, which should increase the staffing requirement. Because
the measurement of J assumes D to be in the worst possible state, J does not vary
based on the actual performance in D. Hence the staffing deficit increases. This
accounts for the positive influence.

200 Y.B. Shrinivasan et al.

Work load
distribution

Central
Assignment

Planned
Upskilling

Skills under-
utilization

Cross customer
work

Rework

Workload
complexity

Customer
Coverage

Issue
Identification

Staffing
Deficit

Fig. 3. Hypothetical KPIs relationship model of a SS

3. Cross Customer Work (E)
−→ Staffing Deficit (J): Lower the value of E more work-

ers in the SS are able to work across accounts. Hence, greater is the flexibility in
work assignment which should lower the staffing requirement leading to lower cur-
rent staffing. Because the measurement of J assumes E to be in the best state, J does
not vary based on the actual performance in E. Hence, the staffing deficit increases,
which accounts for the negative influence.

4. Rework (F)
+→ Staffing Deficit (J): Higher the value of F, more rework is required.

Hence higher is the workload which increases the staffing requirement. Because
the measurement of J assumes F to be in the as-is state, J should be higher, when
F is higher. Hence the staffing deficit increases which accounts for the positive
influence.

5. Workload Complexity (G)
+→ Staffing Deficit (J): Higher the value of G, more is the

work complexity, which increases the staffing requirement. Because the measure-
ment of J assumes G to be in the as-is state, J should be higher when G is higher.
Hence the staffing deficit increases which accounts for the positive influence.

6. Customer Coverage (H)
−→ Staffing Deficit (J): Lower the value of H, more pro-

active checks are triggered for customers. This translates to additional work, which
increases workload and hence increases the staffing requirement. Because the

A Method for Assessing Influence Relationships among KPIs of Service Systems 201

measurement of J assumes H to be in the as-is state, J should be higher, when
H is lower. Hence the staffing deficit increases which accounts for the negative
influence.

7. Central Assignment (A)
+→Workload Distribution (B): More the work in the SS is

centrally assigned, the greater are the chances of it being distributed evenly among
the workers.

8. Central Assignment (A)
+→ Planned Up-skilling (C): More the work in the SS is

centrally assigned, the greater are the chances of a Up-skilling plan being followed.

9. Central Assignment (A)
+→ Cross-customer work (E): More the work in the SS is

centrally assigned, the greater are the chances of it assigning multiple customers’
work to a worker.

10. Central Assignment (A)
−→ Skill under-utilization (D): More the work in the SS is

centrally assigned, the lower are the chances of a high skilled worker being assigned
low skilled work.

11. Skills under-utilization (D)
−→Workload Complexity (G): Higher the workers’ skills

under-utilization, lower are the chances of having repeatable less complex work in
the SS.

12. Issues Identified (I)
+→ Customer Coverage (H): Higher the number of issues iden-

tified in time, greater the chances of the proactive checks being triggered for every
customer.

13. Planned Up-skilling (C)
+→Work Complexity (G): Higher the number of high skill

requests assigned to low skilled workers to up-skill them, the complexity of the
work in the SS becomes higher.

14. Planned Up-skilling (C)
−→ Skills under-utilization (D): Higher the number of high

skill requests assigned to low skilled workers to up-skill them, the number of high
skilled workers doing low skilled work becomes lower.

15. Workload Distribution (B)
−→Rework (F):More evenly is the work distributed among

the workers, lower are the chances that rework may be needed.

4 Method Validation: IT Services

We use the method proposed in Section 2 to analyze real data from a major IT services
provider and validate/revisit the intuitive relationships.

We found that only 8 out of the 15 intuitive relationship hold. Table 3 provides the
results of validation study and the estimated degree of influence for validated relation-
ships based on data from 29 SS. Figure 4 shows these validated relationships along with
their degree of influence. Also, the RMSE on prediction of each of the effect KPI values
are shown in Table 4 with the average RMSE of 1.2%. The fact that some intuitions got
invalidated implies that this method is valuable. However, if an edge was missed by an
expert, our method would not discover it, which is a limitation of our method. The fact
that we can predict staffing deficit so accurately means that it is possible to apply this
method to predict high-level business outcomes based on KPI data.

202 Y.B. Shrinivasan et al.

Table 3. Influence relationship validation summary

Effect Cause Assumed
state of
cause

Intuitive
polarity

Population Expected
Polarity

Observed
Correlation

Validation Influence

1 Staffing deficit
Central
Assignment

Best -
Healthy - -0.187 Valid

-0.11
Weak + 0.034 Valid

2
Staffing deficit

Cross Customer
Work

Best
-

Healthy - 0.22 Invalid
Weak + -0.012 Invalid

3 Staffing deficit
Skills under-
utilization

Worst +
Healthy - -0.095 Valid

0.05
Weak + -0.058 Invalid

4 Staffing deficit Rework As-is + All + 0.289 Valid 0.29
5 Staffing deficit Workload

complexity
As-is + All + 0.053 Valid

0.05

6 Staffing deficit Customer
Coverage

As-is - All - -0.035 Valid
-0.04

7 Work load
distribution

Central
Assignment

As-is + All + 0.931 Valid
0.93

8 Planned
Up-skilling

Central
Assignment

As-is + All + -0.243 Invalid

9 Skills under-
utilization

Central
Assignment

As-is - All - 0.865 Invalid

10 Skills under-
utilization

Planned
Up-skilling

As-is - All - -0.361 Valid
-0.36

11 Cross customer
work

Central
Assignment

As-is + All + -0.131 Invalid

12 Rework Work load
distribution

As-is - All - 0.761 Invalid

13 Workload
complexity

Skills under-
utilization

As-is - All - 0.738 Invalid

14 Workload
complexity

Planned
Up-skilling

As-is + All + -0.375 Invalid

15 Customer
Coverage

Issue
Identification

As-is + All + 0.608 Valid
0.61

5 Related Work

Over the last few years, industry has witnessed increased focus on attaining excellence
in service systems in many verticals. Current days of service systems have been highly
IT oriented and there have been studies around the need of measurement frameworks
especially for IT services [9]. A fair amount of research is also focusing on service
quality [16] that measures wellness of meeting the customer expectations. It has been
widely discussed and adopted by delivery frameworks [7] that the operational processes
and their KPIs are inter-related to each other and they influence the business outcomes
of the service systems.

Human provided services especially in the areas of IT Services are highly people-
intensive and complex. Service system performance and KPIs are measured generally
at a coarse-grained level rather than at process instance level and also gathering such
KPI metrics is highly manual. While our work is dealing with such service systems,
we found that similar studies in the areas of BPM and Service Oriented Architecture
(SOA) deal with automated processes and instance level KPIs [4]. One such study [20]
proposes a framework for monitoring and automatically managing dependency trees
using machine learning. Further work [21] observed in this area is also about preventing
KPI violations based on decision tree learning and proactive runtime adaptation.

A Method for Assessing Influence Relationships among KPIs of Service Systems 203

Work load
distribution

Central
Assignment

Planned
Upskilling

Skills under-
utilization

Rework

Workload
complexity

Customer
Coverage

Issue
Identification

Staffing
Deficit

Fig. 4. Validated influence relationships among KPIs based on 29 Service Systems. The thickness
of the edges denotes the degree of influence in relationships.

Additional studies in the similar area [11] use intuitive models to develop the rela-
tions of KPI and apply cognitive mapping cluster analysis. These are complementary
because this paper uses real data from SS to validate such intuitive models. Other related
studies [8] discuss developing intuitive models but use them for simulation to develop
new processes rather than methods to validate the same with real SS. More studies ex-
ist [13,19,12], however we did not find them to be proposing a method to validate the
relationships of KPIs.

The main difference between the above works and this paper is that, this paper fo-
cuses on the separating the process expertise from the application of the method for
process KPI analysis. This is done by clearly defining the information that process ex-
perts provide and the results that the method users produce. This helps make the method
generally applicable in the services domain because it does not assume any process in-
sights. Further, we predict high-level business objectives based on coarse-grained KPIs
which are not available at a process instance level and hence harder to learn from. Also,
the influence relationships validated by the method are not process or SS specific and
hold for any SS in the domain of service systems.

204 Y.B. Shrinivasan et al.

Table 4. KPI prediction on 9 new SS using linear regression

Effect Cause Regression co-efficient RMSE

Staffing deficit

Central Assignment -0.2124

0.0495

Skills under- utilization -0.0584
Rework 0.3346
Workload complexity -0.0259
Customer Coverage 0.0402
Constant -0.0288

Work load distribution
Central Assignment 0.93

5.487E-11Internal Influence 1
Constant 5.25616E-11

Skills under- utilization
Planned Up-skilling -0.36

2.188E-10Internal Influence 1
Constant 1.04131E-10

Customer Coverage
Issue Identification 0.61

2.333E-10Internal Influence 1
Constant 3.5942E-10

6 Conclusions

With the aim of being able to predict the business outcomes based on KPIs alone, we
presented a novel method that takes intuitive causal relationships among KPIs as an in-
put, validates them by estimating a degree of influence based on correlation, and formu-
lates a linear regression model based on training that can predict the business outcome.
The evaluation of the method on 38 real-life SS from the IT services domain shows that
the method is able to validate or invalidate the intuitive relationships as well as predict
the business outcome of staffing deficit with an RMSE of only 1.2%. A limitation of
our method is that if a process expert missed a causal relationship, our method has no
way of discovering it. However, because the prediction is based on regression, a few
missing edges may simply cause a different fit in the regression and may increase the
RMSE. Hence, the prediction is more robust against missing edges.

References

1. Alter, S.: Service system fundamentals: Work system, value chain, and life cycle. IBM Sys-
tems Journal 47(1), 71–85 (2008)

2. Apte, U.M., Goh, C.H.: Applying lean manufacturing principles to information intensive
services (2004)

3. Banerjee, D., Dasgupta, G., Desai, N.: Simulation-based evaluation of dispatching policies
in service systems. In: Winter Simulation Conference (2011)

4. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. Journal of Web Semantics 1(3), 281–308 (2004)

5. Diao, Y., Heching, A.: Staffing optimization in complex service delivery systems. In: CNSM,
pp. 1–9 (2011)

6. Elbashir, M.Z., Collier, P.A., Davern, M.J.: Measuring the effects of business intelligence
systems: The relationship between business process and organizational performance. Inter-
national Journal of Accounting Information Systems 9(3), 135–153 (2008)

A Method for Assessing Influence Relationships among KPIs of Service Systems 205

7. Grembergen, W.V., Haes, S.D.: Cobit’s management guidelines revisited: The kgis/kpis cas-
cade. Information Systems Control Journal 6(1), 1–3 (2005)

8. Han, K.H., Kang, J.G., Song, M.: Two-stage process analysis using the process-based per-
formance measurement framework and business process simulation. Expert Systems with
Applications 36(3, Part 2), 7080–7086 (2009)

9. Lepmets, M., Ras, E., Renault, A.: A quality measurement framework for it services by
marion lepmets. In: SRII Global Conference (2011)

10. Lin, S.P., Chen, L.F., Chan, Y.H.: What is the valuable service quality gap for improving
customer satisfaction? In: ICSSSM, pp. 242–247 (2009)

11. Linard, K., Fleming, C., Dvorsky, L.: System dynamics as the link between corporate vision
and key performance indicators. In: System Dynamics Conference, pp. 1–13 (2002)

12. Motta, G., Pignatelli, G., Barroero, T., Longo, A.: Service level analysis method - SLAM. In:
Proceedings of ICCSIT, pp. 460–466 (2010)

13. Nor, R., Nor, H., Alias, R.A., Rahman, A.A.: The ICTSQ-PM model in the context of mus:
consideration of KPI and CFS. In: UTM Postgraduate Annual Research Seminar, pp. 1–5
(2008)

14. Prashanth, L.A., Prasad, H.L., Desai, N., Bhatnagar, S., Dasgupta, G.: Stochastic Optimiza-
tion for Adaptive Labor Staffing in Service Systems. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 487–494. Springer, Heidelberg
(2011)

15. Ramaswamy, L., Banavar, G.: A formal model of service delivery. In: SCC, pp. 517–520
(2008)

16. Schneider, B., White, S.S.: Service Quality: Research Perspectives (Foundations for Organi-
zational Science). Sage Publications (2003)

17. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal
structures. Data Mining and Knowledge Discovery 4, 163–192 (2000)

18. Spohrer, J., Maglio, P., Bailey, J., Gruhl, D.: Steps toward a science of service systems.
Computer 40(1), 71–77 (2007)

19. Strasunskas, D., Tomasgard, A.: A method to assess value of integrated operations. In: AM-
CIS, p. 459 (2010)

20. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Monitoring
and analyzing influential factors of business process performance. In: Proceedings of EDOC.
IEEE Computer Society (2009)

21. Wetzstein, B., Zengin, A., Kazhamiakin, R., Marconi, A., Pistore, M., Karastoyanova, D.,
Leymann, F.: Preventing kpi violations in business processes based on decision tree learning
and proactive runtime adaptation. Journal of Systems Integration 3(1), 3–18 (2012)

Dynamic Performance Management

in Multi-tenanted Business Process Servers
Using Nonlinear Control

Tharindu Patikirikorala1, Indika Kumara1, Alan Colman1, Jun Han1,
Liuping Wang2, Denis Weerasiri3, and Waruna Ranasinghe3

1 Swinburne University of Technology, Australia
2 Royal Melbourne Institute of Technology, Australia

3 WSO2 Inc, Palo Alto, CA

Abstract. The methodologies to develop multi-tenanted architectures
have been investigated in the recent literature due to the popularity of
cloud computing. A number of challenges need to be overcome if multi-
tenanted architectures are to be effective and efficient. Among the chal-
lenges is the management of performance properties while effectively
sharing the limited resources between the tenants. This work presents
an approach to design such a management system for a multi-tenanted
business process server. This approach not only enables performance to
be maintained at different levels for different tenants depending on their
priorities, but also autonomously detects the overloads of aggressive ten-
ants and dynamically changes the control objectives to safeguard the
business operations of other tenants. The novelty of the proposed ap-
proach is the use of the nonlinear feedback control. The experiment re-
sults indicate that the proposed nonlinear control approach achieves the
objectives much better compared to the existing fixed and linear control
techniques.

1 Introduction

With the popularity of the cloud computing, multi-tenanted architectures are
becoming important to realize economies of scale in a flexible manner. In such ar-
chitectures, pools of resources are shared by multiple tenants/customers thereby
raising many challenges for the practitioners. These challenges include enabling
tenant-specific customizations, data isolation, security isolation and performance
management while effectively achieving high resource utilization and sharing.
However, these objectives are often competing with each other.

Researchers from SAP present three implementation and deployment options
for multi-tenanted software systems in [12] with different levels of trade-offs.
1) Shared infrastructure: The tenant specific application instance is deployed in
individual virtual machine (VM) instances. This option enables customizations
to be provided as per tenant requirements, data and performance isolation [7].
The main drawbacks of this approach are the under-utilization of resources and
requirement of a significantly large number of VMs to cater a larger number

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 206–221, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic Performance Management 207

of tenants [7]. 2) Shared Middleware: In this option, the application instances
of many tenants share a single middleware instance with the view of having a
dedicated middleware instance for each tenant. Consequently, higher resource
utilization, tenant consolidation and customizability can be achieved compared
to the first option. However, effective performance and resource management
techniques have to be provided by the multi-tenanted middleware provider. 3)
Shared application: In previous two options the application is unaware of the
tenants. In this option, tenant management techniques have to be integrated and,
in the ideal case, any application instance can serve requests of any tenant. This
option enables higher resource utilization and consolidation, but the monolithic
application makes customizability and runtime isolation more problematic.

Although the shared infrastructure mechanism can be enabled by the well es-
tablished virtualization technology to share hardware resources, it is evident that
the shared middleware option provides many advantages to the stake-holders.
However, as mentioned the issues related to multi-tenancy such as i) data, se-
curity and execution isolation, ii) performance and resource management, iii)
overload detection and protection, iv) scaling the tenant application instance
have to be considered in the development of the multi-tenanted middleware
compared to the traditional middleware.

This paper presents a middleware platform which takes into account the first
three requirements1. Work in [14] has implemented a multi-tenanted Business
Process Server (BPS) which enables business process deployments for multiple
tenants with the capabilities of data, security and execution isolation. Here, we
extend the same BPS and focus on the implementation of performance and over-
load management. To maintain the performance properties of tenants at accept-
able levels depending on the business objectives or priorities in a multi-tenanted
environment effective resource management is required at runtime [12,4]. In or-
der to achieve these control objectives this work uses a relative management
scheme [9], which also provides facilities to adjust the tenant priority levels at
runtime. However, the novelty of our approach compared to the existing ap-
proaches (e.g., [9,13]) is that we take into account the nonlinear dynamics of
the system and design compensators to reduce the impact of the nonlinearities
on the management system, which enables the control system to operate in a
wider operating range. Furthermore, the management system is also equipped
with a novel overload management mechanism, to detect and react efficiently
by degrading the priority of the aggressive tenant workloads in order to safe-
guard the business operations of the rest of the tenants. The experiment results
conducted by deploying the BPS and control system in a VM environment and
under instantaneous and real-world workload settings indicate that the proposed
nonlinear control methodology achieves the management objectives significantly
better compared to the existing fixed resource partitioning and linear control
schemes.

1 Scaling includes migration of the specific application to another middleware instance
or starting new middleware instances [12]. This is out of the scope of this paper.

208 T. Patikirikorala et al.

2 Background

WSO2 BPS: WSO2 Stratos Business Process Server2 is a multi-tenanted work-
flow engine which executes business processes compliant with WS-BPEL stan-
dard, and is built on top of WSO2 Carbon platform3. WSO2 Stratos BPS also
supports data and execution isolation [14]. Figure 1a) shows its high level ar-
chitecture. A user of a tenant can consume a business process via a business
process endpoint, which is a standard web service endpoint. WSO2 Stratos
Identity Server (IS) provides security services such as authentication and au-
thorization of tenants and users. WSO2 Stratos Manager is used to provision
and manage tenants including tenant subscriptions and billing. Business pro-
cess artifacts for each tenant are kept in WSO2 Stratos Governance Registry
which is a multi-tenanted governance tool that follows the shared database and
shared schema multi-tenanted data architecture pattern defined in [2]. WSO2
Stratos BPS uses Apache ODE4 as its BPEL execution run-time environment.
The ODE-Axis2 Integration Layer encapsulates the tenant-ware business process
executions. In the current multi-tenanted BPS instance, a single ODE process
engine is shared by multiple tenants. Therefore, a workload of each tenant is
treated equally, which does not maintain the performance at required priorities
or does not detect and avoid interference between tenants under the overload
situations.

Relative Guarantee Scheme: Maintaining absolute values for the perfor-
mance properties at runtime is difficult due to the workload characteristics of
software systems [9]. As a result, maintaining the performance properties of mul-
tiple classes (or in other words tenants) at different priorities levels using relative
performance management scheme has been identified as a promising alternative
[20,9]. In the relative management scheme, the performance properties of the
classes are maintained proportional to the performance differentiation factors
derived from the business or system design requirements. Let Qi, Pi be the
actual performance property value of interest and the specified differentiation
factor respectively of a class i =0,. . . n-1, out of n number of classes. Between
the pair of classes i and j, the objective of the relative management scheme is
to maintain

Qj

Qi
=

Pj

Pi
(i = 0 . . . n − 1, i �= j) at runtime under varying work-

load conditions. For instance, P1

P0
= 2 means that the performance attribute of

class1 has to be maintained twice as of class0. However, the main challenge to
maintain the performance differentiation ratio in a shared resource environment
is to compute the dynamic resource allocation ratio

Sj

Si
(where Si and Sj, are

the resource caps for i and j classes respectively). Lu et al. in [9] proposed a
linear feedback control algorithm to automate relative performance and resource
management.

2 http://wso2.com/products/business-process-server/
3 http://wso2.com/products/carbon/
4 http://ode.apache.org/

http://wso2.com/products/business-process-server/
http://wso2.com/products/carbon/
http://ode.apache.org/

Dynamic Performance Management 209

3 Related Work

Much of the work related to multi-tenanted systems has been done in the last
few years including work on maturity levels [2], data isolation [18,19], enabling
customizations [11] and tenant placement [3,6].

A survey of the application of control engineering approaches to build self-
adaptive software system can be found in [15]. The relative performance man-
agement scheme combined with linear model based feedback control is applied to
manage the connection delay in web servers [9,10] and database processing delay
in database servers [13]. In addition, Ying et al. analyze the nonlinearities and
the related issues of relative management scheme in [10]. These existing control
approaches use linear models to represent the inherently nonlinear behavior of
the software system. Such models are insufficient to capture the nonlinearities
exist in the relative management scheme as shown in this paper.

Feedback control has been also applied for the case of multi-tenanted soft-
ware system in [8]. Their work is based on adjusting the thread priorities of
different tenants depending on their level of importance. Consequently, this ap-
proach cannot provide finer grain performance differentiations depending on the
business requirements because they rely on thread priority scheduling of the un-
derlying environment. SPIN [7] implements a performance isolation technique by
detecting aggressive tenants and reacting to reduce the negative effect on other
tenants. However, this work does not consider typical performance variables such
as response time in the management solution and the solution depends on highly
stochastic workload rates, which are hard to measure or predict accurately.

In this paper we focus on the performance management of a multi-tenanted
BPS. In particular, compared to general linear control approaches, we integrate
a nonlinear control mechanism proposed in [16] to implement a relative manage-
ment scheme and a novel overload detection method to achieve the performance
objectives of the multi-tenanted BPS. To the best of our knowledge this is the
first approach that provides data, security and execution isolation and perfor-
mance management together in a multi-tenanted BPS.

4 Problem Overview and Analysis

In this section we present an overview of the performance management problem
of a BPS serving multiple tenants.

4.1 Assumptions

For the purposes of this paper we have made a number of working assumptions:
1) The number of tenants (say n) placed in a single BPS instance is known

at the design time.
2) The number of concurrent process instances (or worker threads) is consid-

ered as the shared and main bottlenecked resource as mentioned in [12]. This is
because the hardware resources such as CPU and memory cannot be controlled
in the granularity of the tenants at the middleware level.

210 T. Patikirikorala et al.

3) When a tenant has overloaded the BPS, a portion of the workload will be
rejected to avoid instabilities due to unbounded growth of the queues. Alterna-
tively, tenant migration or scaling out can be done, which are out of the scope
of this paper.

4) BPS profiling has been done, and the number of concurrent process in-
stances that could exist in the BPS is determined (say Stotal) based on the re-
sponse time requirements of the tenants. This property is important to constrain
the total resources and concurrent number of process worker threads affecting
the response time of the BPS.

4.2 Performance Management Problem Definition

The main control objective is to share the available Stotal process instances in
an effective way to maintain the response time at levels that are acceptable or
depending on the tenant’s priority levels, with low interference between 0, 1, . . .,
n tenants. In addition, the unpredictable overload situations of an aggressive
tenant have to be automatically detected and resource allocation decisions have
to be made to protect the performance of other tenants.

To achieve these performance objectives we adopt a hybrid of fixed and flex-
ible resource management mechanisms as recommended in [4] to increase re-
source sharing and utilization. That is, some amount of process instances (say,
Si,min, where i = 0, 1, . . . n) need to be reserved for each tenant during the
entire period of operations in order to avoid starvation of resources, however

under unpredictable workloads the discretionary resources Stotal −
n−1∑

i=0

Si,min are

shared between the tenants depending on the demands. To enable the flexible re-

source partitioning Stotal−
n−1∑

i=0

Si,min > 0. With these settings, the control objectives

are now specified based on the relative performance and resource management
scheme as follows.

Control objectives: According to the business requirements let us say dif-
ferentiation/priority factors for n classes are set statically or dynamically as
Pi(k), i = 0 . . . n− 1. Then, the control objective according to the relative man-
agement scheme becomes maintaining the response time ratio of (i − 1)th and

(i)th classes Ri(k)
Ri−1(k)

, around Pi(k)
Pi−1(k)

while computing the process instance caps

Si(k), i = 0, 1 . . . n− 1. Furthermore, the management system should honor the
following constraints, related to total resource availability and per-tenant re-
source reservations at all times.

Si(k) ≥ Si,min,

n−1∑

i=0

Si(k)) = Stotal (1)

Example: Let us consider a BPS instance with two tenants, 0 and 1. R0(k) and
R1(k) are the response times of two tenants respectively at the kth sample. Fur-
thermore, the process instance caps are S0(k) and S1(k) where S0(k) + S1(k) =
Stotal = 20 and S0,min, S1,min = 4. According to [9] the manipulated variable is

u = S0(k)
S1(k)

and the controlled variable is y = R1(k)
R0(k)

.

Dynamic Performance Management 211

4.3 Analysis of Nonlinearity

Input nonlinearity: When the above requirements are embedded in the de-

sign, the manipulated variable u = S0(k)
S1(k)

can only take certain discrete values.

By choosing S0 = 4, 5, . . . , 16, with Stotal = 20 the manipulated variable u = S0

S1

takes value at 4
16 ,

5
15 , . . . ,

15
5 ,

16
4 . When these data points are plotted, one of the

observations is that the operating points that the controller can take are un-
equally spaced. If we take the nominal operating point as when both tenants
get equal number of process instances, 10

10 , the spacing increases towards the
right side and spacing decreases towards the left side of the nominal point. Such,
unequally spaced operating points exhibit the characteristics of static input non-
linearities, which could adversely affect the management of a linear controller.

Output nonlinearity : The controlled variable y (R1

R0
) of the system exhibits

the similar behavior to the u because of the division operation, however it cannot
be predetermined. This is because R0 and R1 can take a large range of values,
causing the R1

R0
ratio to have a large set of values. For example, when R1 increases

the R1

R0
increases at a high rate. In contrast, when R0 increases the R1

R0
decays at

a high rate. The divider operator in the output creates an asymmetric behavior
leading to this nonlinearity. Such output nonlinear behavior may also cause
performance degradation in a linear controller.

From this analysis it is evident that the above nonlinearities have to be taken
in to account in the design of relative performance management system.

5 Approach

This section presents the methodology to design the management system that
takes into account the requirements formulated in Sections 4.

Firstly, a set of major modifications was done to WSO2 BPS, in order to
enable the performance and resource management capabilities. In particular,
tenant-aware queues, response time monitors/sensors for each tenant and re-
source partition scheduler were integrated. Figure 1a) shows the architecture
of the BPS after these modifications. The Tomcat transport layer receives the
requests from the users of tenants, and forwards the requests to Axis2 mes-
sage handler chain. Upon processing the request in the handler chain, an Axis2
message context is created, and the information about the tenant (so-called ten-
ant domain) in the request is used to identify the corresponding BPEL process.
When ODE-Axis2 Integration Layer receives an Axis2 message context, the mes-
sage context is classified based on the available tenant information and put to
the message queue corresponding to that tenant. The thread that processed the
request waits until a notification of the result is available, in order to send back
the response to the client. The management system informs the Scheduler via
the actuator about the process instance caps for each tenant. The scheduler is
implemented based on the algorithm specified in [9]. In addition, the average
response time of requests is calculated in a 2 seconds sample window by the
sensor for each tenant (Ri, i = 0, 1, . . . n) and sent to the management system.

212 T. Patikirikorala et al.

Management Console Business process end points

Tomcat Transport Layer

Classifier

Scheduler

Q
u

eu
e

-0

Q
u

eu
e

–
1

...
Q

ue
u

e
–

n

Apache ODE BPEL runtime

...

WSO2 Stratos
IS

��������	�
��

�������

WSO2 Stratos
Manager

UsersUsers

Axis2 Handler Chain

ODE-AXIS2
Integration Layer

Tenant nTenant 0
AdminAdmin

S
en

so
r

A
ctuator

Target system

Admin
Services

Measured
output

(y)Input
Nonlinear
block (f)

Linear
component

(LTI)

Intermediate
input variable

(v)

Target system

Output
Nonlinear
block (g)

Intermediate
output variable

(w)

Hammerstein Wiener

Hammerstein – Wiener

SA

Controller

-
Control error (e)

Control input
(u)

Measured
output

(y)

Actuator Sensor

Target
system

Adapter
f-1(v)

(v) Intermediate
input variable

Set
point (r)

Adapter
g-1(y)

Adapter
g-1(y)

(w) Intermediate
output variable

Set point
r(HW)

��

��

��

Fig. 1. Block diagram of a) WSO2 BPS, b) Hammerstein-Wiener model and c) Pro-
posed control system

According to the analysis in Section 4.3, the control system designer must
consider the aforementioned dominant input and output nonlinear dynamics of
the system. A possible way to compensate these nonlinearities is by estimating
the existing nonlinearities and then design compensators. Hammerstein-Wiener
block structure model is well known in control literature to characterize input
and output nonlinearities [16]. As shown in Figure 1b), the Hammerstein-Wiener
model has a linear block surrounded by two nonlinear blocks. The entire model
can be divided in to two segments called Hammerstein and Wiener block struc-
tures. The Hammerstein model has a nonlinear component preceding a linear
component. In contrast, the Wiener model has a linear component followed by
a nonlinear component. The nonlinear blocks capture the static nonlinearities
in the system, while the linear block captures the rest of the dynamics of the
system. u and y denote the input and output of the Hammerstein-Wiener model
respectively. The intermediate variables v and w are, in general, not measurable.

In this work we use Hammerstein-Wiener model to formally estimate the
nonlinear dynamics of the system, followed by their inverse functions to design
compensators, which will effectively remove or reduce the impact of nonlinearities
on the control system. The novelty of the proposed management system design
compared to the linear control system architecture is the integration of the pre-
input and post-output compensator as shown in Figure 1c). In this work, the
approach proposed in [16] is utilized to design a Hammerstein-Wiener control
system. The following subsections present the design details of the control system
briefly together with the new overload management method.

5.1 Input Nonlinear Block Design

From the example analyzed in Section 4.3, the discontinuous operating points (u)
may induce significant static input nonlinearity. If we implement equally spaced

Dynamic Performance Management 213

operating points, a linear controller may provide better performance in the entire
operating region. Such a conversion mechanism can be implemented by using
the input nonlinear component of Hammerstein-Wiener model, transforming the
input (u) into the intermediate input (v) with equal spaces.

Firstly, in order to compute the possible operating points (range of u) for
the controller in the original system, we can utilize equation (1) and calculate
a point for each S0 ∈

{
S0,min, Stotal − ∑n−1

j=0
(Sj,min)

}
. Here, we have computed the

operating points for a controller of the first pair of tenants, assuming that the
rest of the tenants are guaranteed the required minimum allocation Si,min. Let
us represent these p > 1 number of operating points as u = {u1, u2, . . . up}.
Then, select an arbitrary vmin ≤ v ≤ vmax for the intermediate input variable
v5. With δv defined as δv = vmax−vmin

p−1 , the intermediate input variable takes
its own operating points as v1 = vmin, v2 = v1 + δv, . . . , vl+1 = vl + δv, . . . , vp =
vmax. Thirdly, map the individual values ul and vl in the u and v sets to create
data pairs, where l = 1, 2 . . . , p. These data pairs can be used to approximate
a polynomial v = f−1(u) of order m using curve fitting. After estimation of
the f−1 function, it is used to implement the pre-input compensator and then
integrated to the BPS as shown in Figure 1c). The same compensation is done
for each controller, managing the class pair i− 1 and i according to the relative
management control scheme (see, [9]).

5.2 Output Nonlinear Block Design

The output nonlinearity described in Section 4.3 cannot be estimated using the
similar methodology in Section 5.1 because the output nonlinearity cannot be
analytically defined. In [16], a method is proposed to estimate the output non-
linearity of the relative management scheme based on the Wiener model. We can
use the same estimation approach because after the integration of the pre-input
compensator the system can be treated as a Wiener model.

Firstly, the possible values of v are applied as a sinusoidal input signal to
gather output data, after applying suitable workloads for the first pair of ten-
ants for a sufficient amount of time. The gathered data is then input to the
nlhw command in the Matlab: system identification toolbox, which provides al-
gorithms to estimate the Wiener model. Afterwards, following the procedure in
[16] data for w is computed and then (w−y) data pairs are used to estimate the
coefficients in the inverse output nonlinearity with a suitable function using the
least squares approach. In this work we use a log function. Upon the estimation
of the inverse output nonlinearity, the w = g−1(y) function is implemented as a
component and integrated to each control system managing class pair i− 1 and
i as shown in Figure 1c).

5 The simulation results in [17] indicate the values selected for vmin and vmax has
less/no effect on the performance of the control system

214 T. Patikirikorala et al.

5.3 Linear Model Design

The next step is to derive the linear component of the Hammerstein-Wiener
model to capture the rest of the dynamics in the system. For this purpose a
linear autoregressive exogenous input (ARX) model can be estimated similar to
the existing work [9,13] by conducting a system identification [5] experiment.
However, the transformed variables v and w have to be used in this experiment
because of the integration of the compensators into the system.

5.4 Controller Design

By integrating the nonlinear compensators, the system can be assumed to be
linear. Consequently, even though the nonlinearities are explicitly considered we
can still use a linear controller and the well-established formal design method-
ologies, which is an added advantage of this proposed nonlinear control ap-
proach. We implement a Propositional Integral (PI) controller, which is one
of the widely adopted controllers due to their robustness, disturbance rejec-
tion capabilities and simplicity [15]. The control equation of the PI controller
is shown in equation (2) for the case of Hammerstein-Wiener model. The con-
troller calculates v(k) for k ≥ 0, given v(0), which is then converted to u(k)
using f−1(v(k)). e(k) represents the control error, computed by g−1(y)−g−1(r),
where r is the set point of the original system. Kp (propositional gain) and Ki

(integral gain) are called gains of the PI controller. Upon calculation u(k),the al-
gorithm presented in [9] can be used to compute the individual process instance
caps (Si(k), i = 0, 1 . . . , n− 1) implemented in the BPS.

v(k) = v(k − 1) + (Kp +Ki)e(k)−Kpe(k − 1) (2)

5.5 Overload Detection and Adaptation

A typical behavior observed during a persistent overload caused by a single
tenant is the unbounded growth of the request queue of that tenant [1]. As a
consequence, the average response time of that tenant will increase substantially
leading to system instabilities or failures. In such situations, if a single queue was
implemented without the tenant-aware queuing, the requests of less aggressive
tenants will also be rejected while significantly degrading their performance.
Therefore, tenant-aware queuing and admission control mechanisms have to be
implemented to reject a portion of the workloads in order to limit the response
time and to maintain the performance isolation. Furthermore, because of the
unpredictable overloads of different tenants, the management system should self-
adapt at runtime after detecting the overloads.

An approach to detect server overloads by setting threshold on the queue
length was proposed in [1] for a single queue based web server. In this work,
we use a similar approach, however for multiple queues. We set queue limits
(qlen,i, iε 0, 1, . . . n − 1) for each tenant as a configuration parameter, where
the incoming requests will be rejected with a SOAP fault message when the
queue limit is reached. With the effective resource management the portion of

Dynamic Performance Management 215

workload rejected can be reduced avoiding the overloads of one tenant affecting
the others. To detect the overload, we set a threshold on the queue qThresh,i(≤
qlen,i, iε 0, 1, . . . n− 1) for each tenant. Then, the queue length (qi(k)) signal of
each tenant is evaluated against the qThresh,i. If qi(k) stays above the threshold
for Twindow number of consecutive time samples, we say that the tenant i has
overloaded the system. Similarly, to detect the end of an overload, qi(k) must
stay below the threshold for Twindow number of consecutive samples.

When an overload is detected, the system self-adapts by triggering a change
to the specified priority levels of the tenants in the control system. When there
is no overload by any tenant we assume that all the tenants placed in the BPS
have equal priorities. Then, when an overload is detected, say, by tenant i, less
priority is given to the requests of tenant i compared to other tenants. This can
be implemented using the relative performance management scheme simply by
adjusting the differentiation factor Pi dynamically (see Section 2). Afterwards,
these differentiation settings can be implemented as simple rules in the manage-
ment system. As a result, under overload situations our approach maintains the
response times of each tenant according to the priority levels specified in the
rules, with no human interventions.

6 Experimentation

This section provides the details of the experiments. A BPS with two tenants
(n = 2) is considered. The BPS and database was deployed in a VM with two
2.67 GHz CPUs and 3 GB memory. We used the LoanProcess6 as the deployed
business process for each tenant, which invokes three partner services sequen-
tially. The workload generators and partner web services were deployed in two
VMs each with a 2.67 GHz CPU and 2 GB memory. After initial profiling the
maximum concurrent process instances Stotal was set to 20. Although higher
Stotal increases the throughput, the response time was significantly affected as
well (e.g., Stotal = 30 increased response time around 100 ms). In addition,
S1,min, S2,min = 4. Furthermore, BPS can handle 75 to 80 requests/sec work-
load without any overload.

6.1 System Modeling and Controller Design

This section gives the design details of the control system. Firstly, to design the
pre-input compensator the possible operating points for u were calculated as
4
16 , . . . , 1, . . . ,

16
14 . Then, the points of the intermediate variable v were selected

as values −6,−5, . . .− 1, 0, 1 . . .5, 6 by setting δv = 1, vmin = −6 and vmax = 6.
Following the design process in Section 5.1, a fourth order polynomial was used
to represent the inverse input nonlinear function (see equation (3)).

u = f−1(v) = 0.0003828∗v4+0.003445∗v3+0.01722∗v2+0.1857∗v+1.006 (3)

6 It is sample BPEL process available at https://svn.wso2.org/repos/wso2/
branches/carbon/3.2.0/products/bps/2.1.2/modules/samples/product/src/

main/resources/bpel/2.0/LoanProcess/

https://svn.wso2.org/repos/wso2/branches/carbon/3.2.0/products/bps/2.1.2/modules/samples/product/src/main/resources/bpel/2.0/LoanProcess/
https://svn.wso2.org/repos/wso2/branches/carbon/3.2.0/products/bps/2.1.2/modules/samples/product/src/main/resources/bpel/2.0/LoanProcess/
https://svn.wso2.org/repos/wso2/branches/carbon/3.2.0/products/bps/2.1.2/modules/samples/product/src/main/resources/bpel/2.0/LoanProcess/

216 T. Patikirikorala et al.

Similarly, following the design process in Section 5.2, a sinusoidal signal was
designed with the possible values of v and then 40 requests/sec workloads were
applied for each tenant to gather output data for 500 sample periods. Subse-
quently, the output inverse nonlinear function was represented by the equation
(4). For the linear model estimation an experiment with a pseudo random input
signal and 35 requests/sec workload for each tenant were used. The estimated
ARX model is given in equation (5).

The final step is to implement the Hammerstein-Wiener control system (called
as HWCS) using the ARX model and pole-placement design method [5]. The
finalized parameters after placing poles at 0.7 are Kp = 0.47, Ki = 0.16 and
v(0) = 0. In order to compare the management provided by the HWCS we also
implemented a linear control system (called as LCS), with the same setting used
in HWCS implementation. The parameters of LCS are Kp = 0.64, Ki = 0.25
and u(0) = 1.

w = g−1(y) = 7.48log(y)− 0.08 (4)

w(t+ 1) = 0.79w(t) + 0.58v(t) (5)

6.2 Experiment Results

This section compares the management capabilities of LCS and HWCS. Due to
the variability of the operating conditions, each experiment was conducted 10
times and the average statistics of Sum of Square Error (SSE) are compared in
Table 1.

6.2.1 High Workload Separately
This experiment compares the performance of LCS and HWCS when the total
workload from two tenants is under the system capacity, however each tenant
increases its workload to a high level requiring more resources than the other
at separate time periods. Till the 20th sample workloads of 25 requests/sec was
applied for tenant0 and tenant1. Then, at the 20th sample tenant0 workload
increases to 60 requests/sec. This could be a scenario where a high resource
demand for tenant0, while tenant1 is at a lower workload rate. Afterwards, at
the 90th sample tenant0 workload reduces to 25 requests/sec. Then, at the 120th
sample, tenant1 workload increases to 60 requests/sec from 25 requests/sec. The
set point (P1

P0
) is fixed at 1, where both classes are treated equally. The output

and control signals of the LCS and HWCS are shown in Figure 2.

0 50 100 150 200
0

2

4

6

Sample Id

R
es

po
ns

e
tim

e
ra

tio

y Set point

(a) LCS output (y)

0 50 100 150 200
0

2

4

6

Sample Id

R
es

po
ns

e
tim

e
ra

tio

y Set point

(b) HWCS output (y)

0 50 100 150 200
0

2

4

Sample Id

C
on

tr
ol

 s
ig

na
l

LCS HWCS

(c) Control signals (u)

Fig. 2. Results of the LCS and HWCS under high workloads separately

Dynamic Performance Management 217

First, let us analyze the performance of the control systems in region where
tenant0 gets more resources (between 20th and 90th samples). The settling times
and overshooting of the LCS is higher than HWCS. This is because of the out-
put nonlinearity, the variations in the output signal are damped out so that the
linear controller takes time to reject the workload disturbance and adjust the re-
source caps. In contrast, the output nonlinearity compensated HWCS rejects the
disturbance much efficiently compared to LCS. Then, after settling down, both
control systems provide similar steady state behavior, achieving the set point
with small errors. At the 120th sample when tenant1 increases its workload de-
manding more resources. LCS shows a highly oscillatory/unstable behavior with
large steady state errors (see Figure 2(a)). The control signal (resource allocation
decisions) of LCS illustrated in Figure 2(c), shows a highly oscillatory behavior,
which led to this unstable behavior at the output. The reason for this behav-
ior is the issue of input nonlinearity discussed in Section 4.3. The smaller gaps
between the operating points when tenant1 requires more resources affect the
LCS under noisy workload conditions making the LCS to jump between several
resource allocation points without settling down. This is an indication that the
LCS cannot provide effective performance and resource management when the
workload of tenant1 is high. However, the performance in this region can be im-
proved by reducing the aggressiveness (gains) of the controller. This adversely
affects the performance when the workload of tenant0 is high. Consequently, LCS
fails to achieve effective performance management in the entire operating region
under aforementioned nonlinearities. In contrast, the pre-input compensator of
the HWCS reduces the impact of input nonlinearity by maintaining the control
signal at a steady state (see Figure 2(c)), providing highly satisfactory steady
state performance after the disturbance at the 120th sample without affecting
the stability. The statistics in Table 1 show significant improvements in the case
of HWCS compared to LCS.

6.2.2 Different Priority Levels between Tenants
This section compares the performance differentiation capabilities of the control
systems when the set point is P1

P0
= 1.5, making tenant0 more important than

tenant1. For this case 25 and 55 requests/sec were applied for tenant0 and tenant1
respectively. Table 1 shows the results of two control systems.

The performance of LCS is similar to what was observed in the previous sec-
tion. In particular, due to high workload of tenant1, LCS has to operate in the
region where the input nonlinearity is severe. Consequently, LCS produces highly
oscillatory outputs and unstable behavior in the system. In contrast, the non-
linearity compensated HWCS provides significantly better steady state behavior
compared to LCS. The statistics from Table 1 shows a significant reduction in
SSE statistics for the case of HWCS.

6.2.3 Overload Detection and Adaptation
In this case we evaluate the overload detection and adaptation capabilities of
the proposed control approach. The parameters related to overload detection,
i.e. qlen,i, qThresh,i and Twindow were set to 30, 20 and 4 respectively. As the

218 T. Patikirikorala et al.

Table 1. The SSE
statistics of LCS and
HWCS

Section LCS HWCS

6.2.1 602.43 12.41

6.2.1 994.71 16.71

Table 2. The total num-
ber of requests rejected
from each tenant

Tenant FCS LCS HWCS

0 4262 2296 1968

1 4012 5095 1859

0 200 400 600
0

50

100

150

Sample id

R
eq

ue
st

s

Tenant 0
Tenant 1

Fig. 3. Workload settings ex-
tracted from 1998 world cup
website workload traces

0 200 400 600
0

2

4

6

8

Sample Id

R
es

po
ns

e
tim

e
ra

tio

y Set point

(a) LCS output

0 200 400 600
0

1

2

3

Sample Id

R
es

po
ns

e
tim

e
ra

tio

y Set point

(b) HWCS output

0 200 400 600
0

2

4

Sample Id

R
es

po
ns

e
tim

e
ra

tio

y

(c) FCS output

Fig. 4. Results of the control systems under persistent overloading by tenants

adaptive rules, we set P0 : P1 = 1:3 when tenant1 overloads the system, while
P0 : P1 = 3:1 when tenant0 overloads the system. If both tenants are running
below the system capacity or overload the system at the same time P0 : P1 set
to 1 : 1. In this experiment the workload settings extracted from 1998 football
world cup workload traces7 were used. However, the workload rates have to be
scaled to fit the requirements of this experiment. Figure 3 shows the workload
rates applied on the BPS for two tenants, which overloads the system in separate
time periods. In addition to LCS and HWCS, we also provide the results of a
fixed partition controller (FCS) that sets S0(k) : S1(k) = 10:10. Figure 4 shows
the results of these control systems.

In order to analyze the overload detection capabilities let us investigate the
behavior of the set point signal implemented by the management systems (see
Figures 4(a), 4(b)). Initially, the set point is at 1 indicating both workloads are
running below the system capacity, therefore both tenants are equally treated.
However, when tenant0 overloads the system, the proposed control solution has
detected the overload around the 60th sample and dynamically changed the set
point to be 1

3 . Consequently, the overload of the aggressive tenant0 has not de-
graded the performance of tenant1 during the overload, maintaining its response
time approximately 3 times less than tenant0’s. Similarly, the control system has
detected the overload of tenant1 when it overloads the system, and has changed
the set point to 3, giving high priority to tenant0. Therefore, it is evident that
the proposed overload detection and adaptation mechanism can implement effec-
tive performance management and isolation under heavy overload and varying
workload conditions.

7 http://ita.ee.lbl.gov/html/contrib/WorldCup.html

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Dynamic Performance Management 219

When LCS is compared with HWCS, it is clear that the nonlinearities have af-
fected the performance of LCS when tenant1 overloads the system and demands
more resources after the 420th sample. Thereby leading to oscillations at the
output and affecting the performance of the less aggressive tenant at that time
period. The total requests rejected during the experiment listed in Table 2 indi-
cates significantly larger workload rejections for tenant1 and moderate workload
rejections for tenant0, in the case of LCS compared to HWCS. When FCS is com-
pared to HWCS, it is evident that the response time of the overloaded tenant has
significantly degraded compared to HWCS. For instance, the response time ratio
is around 1

4 and 4 when tenant0 and tenant1 overload the system respectively.
Further, the request rejection statistics in Table 2 indicate significantly larger
rejections compared to HWCS as well. The reason for this observation is that
the resources are not shared or utilized efficiently in FCS, where some resources
reserved for one tenant are wasted, while the other requires more resources than
are allocated. Therefore, the proposed overload detection and self-adaptive pri-
ority adjustment mechanism coupled with HWCS achieves the performance and
resource management objectives of the multi-tenanted BPS significantly better
compared to the existing fixed partition and linear control methods.

7 Conclusions and Discussion

In this work we have implemented a BPS that can manage performance and re-
source under unpredictable workload conditions of different tenants. The priority
levels of the performance variables are enforced by using the relative performance
management scheme, while resource management was done using a hybrid of
resource reservation and flexible resource partitioning scheme. In order to auto-
mate the management a nonlinear control technique was presented based on the
Hammerstein-Wiener model. From the experiment results in Section 6.2, it is evi-
dent that the input and output nonlinearities in the relative management scheme
significantly affects the performance of a linear control mechanism, consequently
leading to instabilities in the system. In contrast, Hammerstein-Wiener model
based nonlinear control system, which compensates the nonlinearities, improves
the management capabilities compared to linear control. In addition, the pro-
posed overload detection and self-adaptive mechanism shows accurate detection
and stable adaptation under unpredictable overloads of different tenants.

Threats to Validity: Although the approach presented in Section 5 is gener-
alized for system with n tenants, the experiment presented in this paper limits
the number of tenants to 2. This is because only two tenants could be placed
to effectively share the resources depending on the resource availability of the
VM and number of the process threads that can run concurrently in the BPS
without affecting the response time (see [14] for profiling results). In addition,
the number of process instances used was limited to 20 to maintain the perfor-
mance isolation with the increase of concurrent process worker threads. Further
evaluation results are presented for the cases of more than two tenants and large
number of resources based on a shared application multi-tenanted system in the
technical report [17]. Furthermore, the proposed approach is validated using a

220 T. Patikirikorala et al.

business process executes in short time periods. However, some real world sce-
narios may have long running business processes (may be days) which may affect
the experiment results.

References

1. Abdelzaher, T.F., Bhatti, N.: Web content adaptation to improve server overload
behavior. Comput. Netw. 31(11-16), 1563–1577 (1999)

2. Chong, F., Carraro, G.: Architecture strategies for catching the long tail. MSDN
(2006)

3. Fehling, C., Leymann, F., Mietzner, R.: A framework for optimized distribution of
tenants in cloud applications. In: International Conference on Cloud Computing
(CLOUD), pp. 252–259 (2010)

4. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-
tenancy application development and management. In: Conference on Enterprise
Computing, E-Commerce, and E-Services, pp. 551–558 (2007)

5. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons (2004)

6. Kwok, T., Mohindra, A.: Resource Calculations with Constraints, and Placement
of Tenants and Instances for Multi-tenant SaaS Applications. In: Bouguettaya,
A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 633–648.
Springer, Heidelberg (2008)

7. Li, X.H., Liu, T.C., Li, Y., Chen, Y.: SPIN: Service Performance Isolation Infras-
tructure in Multi-tenancy Environment. In: Bouguettaya, A., Krueger, I., Margaria,
T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 649–663. Springer, Heidelberg (2008)

8. Lin, H., Sun, K., Zhao, S., Han, Y.: Feedback-control-based performance regula-
tion for multi-tenant applications. In: International Conference on Parallel and
Distributed Systems, pp. 134–141 (2009)

9. Lu, C., Lu, Y., Abdelzaher, T.F., Stankovic, J.A., Son, S.H.: Feedback control
architecture and design methodology for service delay guarantees in web servers.
IEEE Trans. Parallel Distrib. Syst. 17, 1014–1027 (2006)

10. Lu, Y., Abdelzaher, T., Lu, C., Sha, L., Liu, X.: Feedback control with queueing-
theoretic prediction for relative delay guarantees in web servers. In: IEEE Real-
Time and Embedded Technology and Applications Symposium, p. 208 (2003)

11. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining different multi-tenancy
patterns in service-oriented applications. In: Enterprise Distributed Object Com-
puting Conference, pp. 131–140 (2009)

12. Momm, C., Krebs, R.: A qualitative discussion of different approaches for imple-
menting multi-tenant saas offerings. In: Software Engineering (Workshops), pp.
139–150 (2011)

13. Pan, W., Mu, D., Wu, H., Yao, L.: Feedback control-based qos guarantees in web
application servers. In: IEEE International Conference on High Performance Com-
puting and Communications, pp. 328–334 (2008)

14. Pathirage, M., Perera, S., Kumara, I., Weerawarana, S.: A multi-tenant architec-
ture for business process executions. In: IEEE International Conference on Web
Services, pp. 121–128 (2011)

15. Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the de-
sign of self-adaptive software systems using control engineering approaches. In:
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(2012)

Dynamic Performance Management 221

16. Patikirikorala, T., Wang, L., Colman, A., Han, J.: Hammerstein-wiener nonlinear
model based predictive control for relative qos performance and resource manage-
ment of software systems. Control Engineering Practice 20(1), 49–61 (2011)

17. Patikirikorala, T., Wang, L., Colman, A., Han, J.: A nonlinear feedback control
approach for differentiated performance management in autonomic systems. Tech-
nical report (2011)

18. Wang, Z.H., Guo, C.J., Gao, B., Sun, W., Zhang, Z., An, W.H.: A study and
performance evaluation of the multi-tenant data tier design patterns for service
oriented computing. In: Conference on e-Business Engineering, pp. 94–101 (2008)

19. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. In: International Conference on Management of
Data, pp. 889–896 (2009)

20. Zhou, X., Wei, J., Xu, C.-Z.: Quality-of-service differentiation on the internet: A
taxonomy. Journal of Network and Computer Applications 30(1), 354–383 (2007)

An Optimized Derivation of Event Queries

to Monitor Choreography Violations

Aymen Baouab, Olivier Perrin, and Claude Godart

Loria - Inria Nancy - Université de Lorraine - UMR 7503,
BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France

{aymen.baouab,olivier.perrin,claude.godart}@loria.fr

Abstract. The dynamic nature of the cross-organizational business pro-
cesses poses various challenges to their successful execution. Choreogra-
phy description languages help to reduce such complexity by providing
means for describing complex systems at a higher level. However, this
does not necessarily guarantee that erroneous situations cannot occur
due to inappropriately specified interactions. Complex event processing
can address this concern by analyzing and evaluating message exchange
events, to the aim of checking if the actual behavior of the interacting
entities effectively adheres to the modeled business constraints. This pa-
per proposes a runtime event-based approach to deal with the problem of
monitoring conformance of interaction sequences. Our approach allows
for an automatic and optimized generation of rules. After parsing the
choreography graph into a hierarchy of canonical blocks, tagging each
event by its block ascendancy, an optimized set of monitoring queries is
generated. We evaluate the concepts based on a scenario showing how
much the number of queries can be significantly reduced.

Keywords: web-service choreography, cross-organizational processes,
event processing, business activity monitoring.

1 Introduction

The ability of linking cross-organizational business processes is receiving in-
creased attention in an ever more networked economy [1]. Indeed, collaborative
computing grows in importance and processes have to deal with complicated
transactions that may take days or weeks to complete across wide ranging ge-
ographies, time zones, and enterprise boundaries.

Building complex distributed processes, without introducing unintended con-
sequences, represents a real challenge. Choreography description languages help
to reduce such complexity by providing means for describing complex systems at
a higher level. The birth of a service choreography is often determined by putting
together external norms, regulations, policies, best practices, and business goals
of each participating organization. All these different requirements have the ef-
fect of constraining the possible allowed interactions between a list of partners.
However, this does not necessarily guarantee that erroneous situations cannot

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 222–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimized Derivation of Event Queries to Monitor Choreographies 223

occur due to inappropriately specified interactions. Indeed, runtime verification
must be taken into consideration, to the aim of checking if the actual behavior of
the interacting entities effectively adheres to the modeled business constraints.

Run-time monitoring of services composition have been a subject of interest
of several research efforts [2–8]. Todays business process monitors mostly use
complex event processing (CEP) to track and report the health of a process
and its individual instances. During the last ten years, CEP was a growing and
active area for business applications. Business activity monitoring (BAM) was
one of the most successful areas where CEP has been used. Based on key per-
formance indicators (KPIs), BAM technology enables continuous, near real-time
event-based monitoring of business processes. Most commercial BPM software
products (e.g. Oracle BAM, Nimbus, Tibco and IBM Tivoli) include BAM dash-
board facilities for monitoring, reporting violations of service level agreements
(SLAs), and displaying the results as graphical meters. However, such products
are typically limited to internal processes that are under control, i.e., intra-
organizational setting.

Providing an easy, real-time way to monitor cross-organizational processes,
i.e., when each step is executed by a different company in a collaborative network,
represents a complicated task. This is due to the fact that monitors have to
deal with huge volumes of unstructured data coming from different sources.
Moreover, errors may propagate and failures can cascade across partners. By
managing aggregations of various alerts, CEP might give business administrators
a better visibility, provide accurate information about the status and results of
the monitored processes, and help to automatically respond immediately when
problems occur.

In this paper, we address the problem of monitoring conformance of inter-
action sequences with normative cross-organizational process models. We have
chosen to take the choreography description as a basis for the generation of
rules. We first define a notification event structure by specifying which data it
should contain. After parsing the choreography graph into a hierarchy of canon-
ical blocks, tagging each event by its block ascendancy, an optimized set of
monitoring queries is generated. Derived queries can be directly used in a com-
plex event processing environment. Further, we evaluate the concepts based on a
scenario showing how much the number of queries can be significantly reduced.

The rest of the paper is organized as follows. Section 2 presents a motivat-
ing example. Section 3 illustrates our approach and Section 4 presents some
evaluation results. Section 5 outlines some implementation guidelines, Section 6
discusses related work, and Section 7 summarizes the contribution and outlines
future directions.

2 Scenario and Motivation

To illustrate the concepts of our work, we adopt the scenario of a business-to-
business choreography involving a customer (C), a supplier (S) and two shippers
(S1 and S2). In this cross-organizational choreography, the customer first inter-
acts with a supplier by sending a request for a quote (messageM1) and receiving an

224 A. Baouab, O. Perrin, and C. Godart

Fig. 1. Cross-organizational choreography example (BPMN 2.0 Diagram)

answer (M2). This step (M1, M2) can be repeated until the customer gets its final
decision by selecting items for purchase and the preferred shipper (M3). Then,
the supplier transmits a shipping order (M4 or M6) to the selected shipper and
sends, in parallel, an invoice to the customer (M8). After finishing the shipment
phase, the shipper sends a shipment notice (M5 or M7) to the customer. Finally,
the customer proceeds to the payment phase by sending a remittance advice to
the supplier (M9) indicating which payables are scheduled for payment. Figure 1
shows how to model such a choreography using the BPMN 2.0 notation [9].

During the execution phase, many choreographies shared between different
business partners may be instantiated. Indeed, each organization may have mul-
tiple external interactions associated with different choreographies instances.
Here, there is a need to check the consistency of all incoming and outgoing
calls with respect to the current step in each choreography that an organization
is participating to. The set of allowed service calls at any given point in time
should be dynamic and minimal. Thus, ability to derive instant insights into
the cross-organizational interactions is essential. That is, companies should be
able to create intelligent agents that monitor their message exchange with the
external world in real-time, and automate analysis to detect unusual interac-
tion sequences that fall outside choreography patterns. For instance, a call that
is not associated with any current expected step of the instantiated choreogra-
phies should be reported to the monitoring applications as a potential violation.
Controlling incoming calls at earlier stage may reduce some of common attacks
(e.g. DoS attack). Furthermore, it represents a crucial requirement to prevent
any malicious peer from exploiting external flow authorizations.

3 Complex Event Queries to Monitor Choreographies

Before we dive headfirst into our approach, we briefly formalize some basic no-
tions . Section 3.1 gives background information on Complex Event Processing

Optimized Derivation of Event Queries to Monitor Choreographies 225

(CEP). Section 3.2 introduces some formal definitions of a choreography. Af-
terward, we present the conceptual architecture and we describe the detailed
procedure of our approach.

3.1 Complex Event Processing (CEP)

Monitoring business in a highly distributed environment is critical for most en-
terprises. In the SOA world, CEP can play a significant role through its ability
to monitor and detect any deviations from the fixed process models [10]. Indeed,
such a technology enables the real time monitoring of multiple streams of event
data, allows to analyze them following defined event rules, and permits to react
upon threats and opportunities, eventually by creating new derived events, or
simply forwarding raw events.

To support real time queries over event data, queries are stored persistently
and evaluated by a CEP system as new event data arrives. An event processor
is an application that analyzes incoming event streams, flags relevant events,
discards those that are of no importance, and performs a variety of operations
(e.g. reading, creating, filtering, transforming, aggregating) on events objects.

Event processing tools allow users to define patterns of events and monitors
are supposed to detect instances of these patterns. Event patterns become more
and more sophisticated and queries more complicated. Thus, there is a need to
assist the administrator by a semi-automatic generation of event pattern rules
from any process model. To identify non-trivial patterns in event sequences and
to trigger appropriate actions, CEP techniques to encode the control flow of a
process model as a set of event queries have been introduced [11, 12]. Following
this strategy, violations can be detected when defined anti-patterns are matched
by the CEP engine.

3.2 Formal Foundation (Choreography)

A choreography defines re-usable common rules that govern the ordering of ex-
changed messages, and the provisioning patterns of collaborative behavior, as
agreed upon between two or more interacting participants [13]. In this paper,
we perceive a choreography as a description of admissible sequences of send and
receive messages between collaborating parties. Our approach focuses on the
global behavior of the choreography. Only ordering structures (sequence, par-
allel, exclusiveness, and iteration) and interaction activities (message exchange
activities) are considered. In other words, it is outside the scope of this paper to
specify internal activities (e.g. assign activities, silent activities) since they do not
generate message exchanges. For the sake of simplicity, we also omit assignment
of global variables. We use ”participant” and ”partner” interchangeably.

We formalize the semantics of a choreography as follows.

Definition 1 (Choreography). Formally, a choreography C is a tuple (P , I,
O) where

– P is a finite set of participants,
– I is a finite set of interactions,

226 A. Baouab, O. Perrin, and C. Godart

– O is a finite set of ordering structures defining constraints on the sequencing
of interactions.

An interaction is the basic building block of a choreography, which results in an
exchange of information between parties. Every interaction I ∈ I corresponds to
a certain type of message (e.g. XML Schema), and is associated with a direction
of communication, i.e., a source and a destination of the exchanged message. Let
MT be the set of message types. Formally, an interaction is defined as follows.

Definition 2 (Interaction). An interaction I ∈ I is a tuple (Iid,s,d,mt)
where Iid is a unique identifier of the interaction, s,d ∈ P are the source and
the destination of the message, and mt ∈ MT is the type of the message.

The sequencing of interactions is typically captured by four major types of or-
dering structures:

Sequence. The sequence ordering structure restricts the series of enclosed in-
teractions to be enabled sequentially, in the same order that they are defined.

Exclusiveness. The exclusiveness ordering structure enables specifying that
only one of two or more interactions should be performed.

Parallel. The parallel ordering structure contains one or more interactions that
are enabled concurrently.

Iteration. An iteration (loop) structure describes the conditional and repeated
execution of one or more interactions.

3.3 Approach Overview

Our approach relies only on choreography state changes, i.e., when a global
message is sent or received, monitoring only the interactions between the peers in
an unobtrusive way, i.e., the exchanged messages are not altered by the monitors
and the peers are not aware of the monitors.

Figure 2 provides an overview of the approach. We assume that events that
reflect occurrences of message exchanges are provided by one or multiple external

Fig. 2. Conceptual Architecture

Optimized Derivation of Event Queries to Monitor Choreographies 227

components, i.e., event producers. Before being forwarded to a CEP engine,
these basic events are enriched by their ascendancy nodes in the structure tree
that is derived from the choreography model. Afterwards, the event processor
executes predefined complex event queries over the enriched event stream in
order to target behavioral deviations during the execution of each choreography.
These queries are derived, during design time, from a pre-generated set of rules.
Detected violations are sent to be shown in dashboards.

3.4 Basic-Level Events Generation

Most agree, an event is just a fact of something occurring. In the context of
a choreography of services, events occur when messages are sent and received.
In our case, for each exchanged message, a new notification event is generated.
In other words, notification events are generated as transitions occur in the
choreography interaction graph. Each notification event is correlated to a chore-
ography message and is generated in order to inform about the occurrence of
that message. We define a notification event as follows.

Definition 3 (Notification Event). A notification n ∈ N is a tuple

event = (Eid, Cid, Iid, TS)

where Eid is a unique identifier of the event, Cid is a unique identifier for
the choreography instance (used for correlation), Iid ∈ I is the identifier of
the interaction associated to the observed choreography message, and TS is the
timestamp of generation).

The field Cid is required to correlate events to the different choreography in-
stances. During the execution phase, we may have several instances of different
defined choreography models. Obviously, we need to correlate notification events
belonging to the same instance. The most common solution [14] to deal with this
issue is to define two identifiers that have to be contained in each message (e.g.
included in the SOAP header): The choreography ID (a unique identifier for each
choreography model) and the choreography instance ID (a unique identifier for
each choreography instance). An additional component along the boundary of
each participant may be adapted to include and read the identifier whenever a
choreography message is exchanged.

The field TS represents the time at which the choreographymessage is recorded
by the event producer. Timestamping events allows for a local ordering through
a sequential numbering which is required to analyze the acquired monitoring
data.

In this paper, we assume the asynchronous communications among the part-
ners to have an exactly-once in-order reception, i.e., exchanged messages are
received exactly once and in the same order in which they are sent. Although
this assumption seems to be strong, it is feasible through the adoption of reliable
messaging standards (e.g. WS-ReliableMessaging [15]).

228 A. Baouab, O. Perrin, and C. Godart

3.5 Causal Behavioral Profiles

To pinpoint conformance violations during runtime, event rules need to be gen-
erated from the fixed interaction-ordering constraints. Following the concept of
causal behavioral profiles, [11] proposes to generate a rule between each cou-
ple of interaction. As introduced in [16], a causal behavioral profile provides an
abstraction of the behavior defined by a process model. It captures behavioral
characteristics by relations on the level of activity pairs. That is, a relation is
fixed between each couple of activities indicating whether they should be in strict
order, in interleaving order, or exclusive to each other. In a choreography, an in-
teraction can be seen as the basic activity. Thus, the same type of relation might
be used. For instance, in the model presented in figure 1, interactions (M1) and
(M2) are in strict order. Interactions (M4) and (M7) are exclusive to each other.
However, interactions (M5) and (M8) are in interleaving order. Interleaving or-
der can be seen as the absence of an ordering constraint. Therefore, this relation
is not considered when monitoring choreography execution.

Following this approach, in a given choreography with n interactions, the
number of rules is equal to n2. This may overhead the the number of generated
queries by extra overlapping ones. For instance, if we have two constraints stating
that M1 should occur before M2 and M2 before M3, then there is no need to fix
an additional constraint stating that M1 should occur before M3, because this
can be deduced automatically. This can be justified by the fact that ordering
constraints are transitive. Moreover, when an interaction is performed at an
unexpected stage, generated queries may result in multiple redundant alerts.
Then, additional queries have to be added in order to identify the root cause for
the set of violations as it is done in [11].

Instead of fixing a constraint between each couple of interaction, our approach
consists on fixing constraints only between neighbor interactions. To do that, a
structural fragmentation of the choreography model is needed.

3.6 Choreography Structure Tree

Until now, we have defined what constitutes a basic level event. In order to reduce
the number of constraints, and thus the number of event queries, we provide a
decomposition that is inspired from the refined program structure tree (R-PST)
of business processes defined in [17] which is a technique for parsing and dis-
covering the structure of a workflow graph. R-PST is proposed as a hierarchical
decomposition of a process model into single-entry / single-exit (SESE) canon-
ical blocks. A block F is non-canonical if there are blocks X ,Y ,Z such that X
and Y are in sequence, F = X ∪Y , and F and Z are in sequence; otherwise F is
said to be canonical [18]. It has been proved that such a SESE decomposition is
unique, modular, and can be computed in linear time [17]. In fact, derived blocks
never overlap, i.e., given two blocks either one block is completely contained in
another block or these blocks are disjoint.

Following this approach, we parse the choreography graph into a hierarchy of
SESE canonical blocks. Figure 3 illustrates canonical blocks of our motivating

Optimized Derivation of Event Queries to Monitor Choreographies 229

Fig. 3. Fragment decomposition

example. The result of such a decomposition can be represented as a tree that
we name Choreography Structure Tree (CST). The largest block that contains
the whole graph is the root block of the generated tree. The child blocks of a
sequence are ordered left to right from the entry to the exit. Figure 4(a) shows
the generated CST of our motivation example. We concretize the internal tree
nodes by annotating them with the type of ordering pattern, i.e., sequence,
parallel, exclusiveness, loop, relating direct descendants. As such, we explicitly
establish the structural relation between them.

(a) Resulting CST (b) Enriching/Tagging events

Fig. 4. Enriching basic level events

3.7 Enriching Events

After generating the CST, we propose to enrich each basic level event by adding
a new field called ascendancy containing the list of all superior blocks of the
observed message. For instance, the event related to the message (M4) in our
motivating example (Figure 3) is tagged by the sequence < B211,B21,B2 > as it
belongs, respectively, to the blocks B211, B21 and B2. This is a kind of tagging
each incoming event in order to put it in context, i.e., its supposed location in
the CST. After the enrichment step, each basic-level event is transformed into
the following structure:

event = (Eid, Cid,Iid, < ascendancy >, TS)

This step might be performed by a preprocessor component handling basic event
filtering and enrichment. Upon reception of each new basic event, the preproces-
sor fetches in the CST the ascendancy of the related interaction, and includes

230 A. Baouab, O. Perrin, and C. Godart

the result as a list of blocks identifiers. Figure 4(b) exemplifies how to generate
enriched events from the CST and shows the newly enriched events of our moti-
vating example. The produced stream of enriched events serves as input to the
main event processor.

3.8 Rules and Higher-Level Events Generation

After enriching events by their superior blocks, rules can be applied to fix block
ordering. By doing so, the number of rules decreases exponentially from a level
to its higher. Here, we need a generation of higher level events at the end of
execution of each block. These newly generated events, indicates the block ter-
mination – we note End(B). In the CEP world, a high level event is an event
that is an abstraction of other events called its members. In our case, events
members are those related to interactions contained in the same block.

To specify these rules, two types of constraints are defined:

– The strict order constraint, denoted by the function Seq(B1, B2), holds for
two messages M1 and M2, respectively tagged with B1 and B2, if M2 never
occurs before End(B1) and M1 never occurs after M2.

– The exclusiveness constraint, denoted by the function Ex(B1, B2), holds for
two messages M1 and M2, respectively tagged with B1 and B2, if they never
occur together within the same choreography instance.

Depending on the ordering patterns, i.e., sequence, parallel, exclusiveness, and
iteration, rules are automatically defined to fix when to generate block termina-
tion events. Figure 5 illustrates the rules for each type of pattern.

Sequence Block. When we have a sequential enactment of n interaction blocks
B1, ..., Bn , we can simply enforce the order between each two consecutive blocks,
i.e., Seq(Bi, Bi+1), i ∈ {1..n− 1}. The completion of the final block in the list
induces the generation of the whole block termination event, i.e., End(Bn) =>
Generate(End(B)).

Parallel Block. In case of parallel enactment of n interactions blocksB1, ..., Bn,
a violation can only be detected by the absence of one of the internal blocks.
Thus, such a violation materializes only at the completion of the whole block B.
The completion event is generated only after the termination of all child blocks,
i.e, End(B1)&...&End(Bn) => Generate(End(B)).

Exclusiveness Block. This choreography construct models the conditional
choice. Here, one enactment of only one of the branches is allowed. The decision
about which of the branches is enacted is taken internally by one of the par-
ticipants. In case of n branches of interactions blocks B1, ..., Bn, exclusiveness
constraint between each possible couple is generated, i.e., Ex(Bi, Bj), i �= j ,
i, j ∈ {1..n}. The completion event is generated after the termination of one of
child blocks, i.e, End(B1) or...or End(Bn) => Generate(End(B)).

Optimized Derivation of Event Queries to Monitor Choreographies 231

B

BB

B
B1 B2 Bn

B1

B2

Bn

B1

B2

Bn

B1

Seq(B1,B2),Seq(B2,B3),...Seq(Bn-1,Bn).
End(Bn) => Generate(End(B)). End(B1) => DeleteAll(B1)

 & Generate(End(B)).

End(B1) &..& End(Bn) => Generate(End(B)). Ex(Bi,Bj) , i≠j , i,j ∈ {1,2,...,n}.
End(B1) or...or End(Bn) => Generate(End(B)).

EX
C
LU
S
IV
EN
ES
S

IT
ER
A
TI
O
N

PA
R
A
LL
EL

S
EQ
U
EN
C
E

Fig. 5. Rules for each pattern

Iteration Block. In a choreography, an iteration (also called loop) activity B
specifies the repeated enactment of a branch B1, which is said to be the body
of the iteration. To allow for the repetition of the body’s interactions without
raising other violations, we need to erase a part of the event history at the
end of each iteration and generate the whole block termination event in order
to allow the following block to be executed, i.e., End(B1) => DeleteAll(B1)
& Generate(End(B)). Here, DeleteAll(B1) deletes from the history all events
containing B1 in their ascendancy field.

Following this four basic rules and a level per level exploring of the CST, spe-
cific rule instances can be automatically generated after the definition of any
choreography model. For instance, table 1 shows the generated rules from the
choreography model presented in figure 3. We use the character ’;’ as a separator
between them. The level number represents the depth in the CST.

Table 1. Generated Rules

Level Generated rules

1 Seq(B1,M3) ; Seq(M3, B2) ; Seq(B2,M9) ;
M9 ⇒ generate(End(C))

2 End(B11) ⇒ deleteAll(B11) & generate(End(B1)) ;
End(B21) & M8 ⇒ generate(End(B2))

3 Seq(M1,M2) ; M2 ⇒ generate(End(B11)) ; Ex(B211, B212) ;
End(B211) or End(B212) ⇒ generate(End(B21))

4 Seq(M4,M5) ; M5 ⇒ generate(End(B211)) ; Seq(M6,M7) ;
M7 ⇒ generate(End(B212))

232 A. Baouab, O. Perrin, and C. Godart

3.9 Runtime Pattern Matching

In order to detect violations, rules need to be automatically formulated into event
processing queries. Indeed, a generated event query has to match a negation of
a rule pattern. For instance, the constraint Seq(B1, B2) is violated if and only if
the event processor matches any event belonging to the block B2 that is followed
by another event belonging to the block B1 or simply followed by the high level
event End(B1). However, the constraint Ex(B1, B2) is violated when it matches
two events, respectively tagged with B1 and B2, occur together within the same
instance.

When executing the event queries, three types of violation can be detected:

Message ordering mismatch. This violation occurs when the order of mes-
sages is not in line with the defined behavior. As an example, when consid-
ering the model presented in figure 3, let < M1,M2,M4,M8,M3,M5,M9 >
be the sequence of recorded events for one choreography instance. Referring
to the generated rules in table 1, Seq(M3, B2) is twice violated because two
messages (M4 and M8 that are tagged with B2) have occurred before M3.

Extra message mismatch. This violation is detected by the presence of an
extra message. It can be matched by a joint occurrence of two exclusive mes-
sages. For instance, let < M1,M2,M4,M8,M6,M5,M9 > be the sequence
of recorded events. Here, M6 is an extra message. Ex(B211, B212) is twice
violated because two messages (M4 and M5 that are tagged with B211) have
occurred together with M6 (that is tagged with B212) within the same in-
stance.

Missing message mismatch. This violation is detected by the absence of a
message. This can be materialized only at the competition of the smallest
block containing the message. In fact, when the End event of this block
is not generated, the following sequence is violated. For instance, let <
M1,M2,M3,M8,M4,M9 > be the sequence of recorded events. As we can
see, M5 is missing after M4. Here, End(B211), and thus End(B21) and
End(B2) are not generated. As M9 occurred before End(B2), Seq(B2,M9)
is then violated.

4 Evaluation

As we can see in table 1, we have 14 generated rules. To these rules we may add 9
other rules Ex(Mi,Mi), i ∈ {1..9} in order to indicate that each message should
occur only once. Note that this does not affect the messages inside the loop
block as their events are deleted at the end of each iteration. These additional
rules bring the total number out to 23 (instead of 9x9=81 using the classic
behavioral profile approach [11]). Clearly, the benefit of our approach depends
on the topology of the CST, e.g., the average number of interactions per blocks,
the types of ordering patterns.

For instance, figure 6 shows a case where two blocks B1 and B2, contain-
ing respectively N and M messages in sequence, are exclusive to each other.

Optimized Derivation of Event Queries to Monitor Choreographies 233

Fig. 6. Special case : Exclusiveness

Here, the total number of generated rules is equal to N+M+2 instead of NxM .
Clearly, when N and M increase, the difference increases also. For instance,
when N=M=5, the number of rules is equal to 12 instead of 25 (48%). However,
when N=M=10, the number of rules is equal to 22 instead of 100 (22%). This
is one case, among others, that illustrates how our approach can significantly
reduce the number of needed queries.

5 Implementation

To execute the queries, we assume the utilization of a CEP engine, coupled
with SOAP handlers in order to capture events. First, an input stream and a
window to store incoming events on the input stream are created. Queries might
be encoded in any dedicated query language that provides pattern definitions.
Typical patterns are conjunction, disjunction, negation, and causality. To show
the feasibility of our approach, we have chosen to encode the generated queries
of our motivating example using the Esper Processing Language [19] as it is
a commercially proven system and available as open source. This language is
a SQL-like language used for querying the inbound event streams. Here, event
objects are used instead of specifying tables in which to pull data. The defined
queries are registered within the Esper engine in form of event patterns. Then,
incoming events are continuously analyzed and processed against these patterns.
When matching results are found, defined actions can be undertaken.

Figure 7 shows three queries of our motivating example written in Esper.
The first matches if the rule Seq(M1,M2) is violated. It detects if a message
M1 is not preceded by a message M2 that belongs to the same choreography
instance (e2.Cid = e1.Cid). The second query matches if the rule Ex(B211, B212)
is violated. It detects any two messages having respectively B211 and B212 as
substrings in their ascendancy field and belonging to the same choreography
instance. However, the third query matches if the rule Seq(B1,M3) is violated.
In other words, it detects any message of type M3 that is not preceded by the
generated event End(B1).

234 A. Baouab, O. Perrin, and C. Godart

 // Matching Seq(M1,M2) violations :
"@Name('Seq M1 M2') select * from pattern "
 + "[(e2=MsgEvent(e2.iid=2) and not e1=MsgEvent(e1.iid=1))] where e1.cid=e2.cid" ,

// Matching Ex(B211,B212) violations :
"@Name('Ex B211 B212') select * from pattern "
 + "[e1=MsgEvent(e1.ascendancy like '%B211,%') and "
 + "e2=MsgEvent(e2.ascendancy like '%B212,%')] where e1.cid=e2.cid",

// Matching Seq(B1,M3) violations :
"@Name('Seq B1 M3') select * from pattern "
 + "[e3=MsgEvent(e3.iid=3) and not b1=MsgEvent(b1.endOf like 'B1')] "
 + "where e3.cid=b1.cid",
/*...*/

Fig. 7. Coding event queries using Esper

6 Related Work

Run-time monitoring of services composition have been a subject of interest of
several research efforts. In this section we want to outline some of the most
relevant contributions with the aim to provide a distinction to our work.

Subramanian et al. [20] presented an approach for enhancing BPEL engines
by proposing a new dedicated engine called ”SelfHealBPEL” that implements
additional facilities for runtime detection and handling of failures. Barbon et al.
[21] proposed an architecture that separates the business logic of a web service
from the monitoring functionality and defined a language that allows for spec-
ifying statistic and time-related properties. However, their approach focus on
single BPEL orchestrations and do not deal with monitoring of choreographies
in a cross-organizational setting. Ardissono et al. [2] presented a framework for
supporting the monitoring of the progress of a choreography in order to ensure
the early detection of faults and the notification of the affected participants.
The approach consists on a central monitor which is notified by each participant
whenever he sends or receives a message.

In case of decentralized processes within the same organization (or within a
circle of trust), Chafle et al. [7] have modeled a central entity as a status monitor
which is implemented as a web service. On each partition, a local monitoring
agent captures the local state of the composite service partition and periodically
updates the centralized status monitor. The status monitor maintains the status
of all the activities of the global composite service. In [8], the authors introduce
the concept of monitor-based messenger (MBM), which processes exchanged
messages through a runtime monitor. Each local monitor stamps its outgoing
messages with the current monitor state to prevent desynchronizations, provide
a total ordering of messages, and offer protection against unreliable messaging.

Regarding event-centric perspectives, process monitoring solutions focus on
intra-organizational processes and are mostly based on Business Activity Moni-
toring (BAM) technology [22]. To the best of our knowledge, only two event-
centric approaches deal with monitoring cross-organizational choreographies.

Optimized Derivation of Event Queries to Monitor Choreographies 235

The first one [23] uses a common audit format which allows processing and
correlating events across different BPEL engines. The second approach [14] in-
troduces complex event specification and uses a choreography instance identifier
(ciid) to deal with event correlation (which is not supported in [23]).

In contrast to the previously mentioned works, we rather focus on provid-
ing an approach for the automated generation of an optimized set of monitoring
queries from any choreography specification. These queries are then directly used
in a CEP environment. Weidlich et al. [11] proposes a formal technique to derive
monitoring event-based queries from a process model. Following the concept of
causal behavioral profiles [16], authors propose to generate a rule between each
couple of interaction. Then, additional queries have to be added in order to
identify the root cause for the set of violations. Instead of fixing a constraint
between each couple of interaction, our approach consists on fixing constraints
only between neighbor blocks of interactions.

7 Conclusion and Future Work

In this paper, we have proposed an approach for monitoring message exchange
deviations in cross-organizational choreographies. Our contribution is a formal
technique to generate event-based monitoring queries that match message or-
dering violations. We have demonstrated that after parsing the choreography
graph into a hierarchy of canonical blocks, and tagging each event by its block
ascendancy, our approach allows to significantly reduce the number of needed
queries. Furthermore, we have shown how can these queries be directly used in
a CEP environment by providing implementation guidelines.

As future work, we plan to investigate the efficiency of our approach for dif-
ferent types of choreographies. Moreover, we aim to enhance it by providing
additional monitoring features to address some quality of service concerns. For
instance, it would be interesting to deal with delays in message exchanges. To
this end, time constraints violations might be calculated by fixing timeouts and
expected time to elapse between messages.

References

1. Grefen, P.: Towards dynamic interorganizational business process management. In:
Enabling Technologies: Infrastructure for Collaborative Enterprises (2006)

2. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Monitoring chore-
ographed services. In: Innovations and Advanced Techniques in Computer and
Information Sciences and Engineering, CISSE 2006, pp. 283–288 (2006)

3. Francalanza, A., Gauci, A., Pace, G.: Runtime monitoring of distributed systems
(extended abstract). Technical report, University of Malta, WICT (2010)

4. Moser, O., Rosenberg, F., Dustdar, S.: Event Driven Monitoring for Service Com-
position Infrastructures. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 38–51. Springer, Heidelberg (2010)

5. Baouab, A., Fdhila, W., Perrin, O., Godart, C.: Towards decentralized monitoring
of supply chains. In: 19th IEEE International Conference on Web Services, ICWS
(2012)

236 A. Baouab, O. Perrin, and C. Godart

6. Baouab, A., Perrin, O., Godart, C.: An event-driven approach for runtime verifica-
tion of inter-organizational choreographies. In: 2011 IEEE International Conference
on Services Computing, SCC (2011)

7. Chafle, G.B., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration
of composite web services. In: Proceedings of the 13th International World Wide
Web Conference, WWW Alt. 2004. ACM, New York (2004)

8. Halle, S., Villemaire, R.: Flexible and reliable messaging using runtime monitor-
ing. In: 13th Enterprise Distributed Object Computing Conference Workshops,
EDOCW 2009 (September 2009)

9. OMG: Business process model and notation (bpmn), version 2.0 (2011)
10. Etzion, O., Niblett, P., Luckham, D.: Event Processing in Action. Manning Pubs.

Co Series. Manning Publications (2010)
11. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-

Based Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg
(2011)

12. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36(7) (November 2011)

13. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web services choreography description language version 1.0. W3C (2005)

14. Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F., Zwink, D.: Cross-
organizational process monitoring based on service choreographies. In: Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC 2010 (2010)

15. Fremantle, P., Patil, S., Davis, D., Karmarkar, A., Pilz, G., Winkler, S., Yalçinalp,
U.: Web Services Reliable Messaging (WS-ReliableMessaging). OASIS (2009)

16. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation
of Causal Behavioural Profiles Using Structural Decomposition. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer,
Heidelberg (2010)

17. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and General-
ization of the Refined Process Structure Tree. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)

18. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55.
Springer, Heidelberg (2007)

19. EsperTech: Esper - Complex Event Processing (2011),
http://esper.codehaus.org

20. Subramanian, S., Thiran, P., Narendra, N., Mostefaoui, G., Maamar, Z.: On the
enhancement of bpel engines for self-healing composite web services. In: Interna-
tional Symposium on Applications and the Internet, SAINT 2008 (2008)

21. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: IEEE International Conference
on Web Services (2006)

22. Dahanayake, A., Welke, R.J., Cavalheiro, G.: Improving the understanding of bam
technology for real-time decision support. Int. J. Bus. Inf. Syst. 7 (2011)

23. Kikuchi, S., Shimamura, H., Kanna, Y.: Monitoring method of cross-sites’ processes
executed by multiple ws-bpel processors. In: CEC/EEE 2007 (2007)

http://esper.codehaus.org

Dynamic Service Selection with End-to-End

Constrained Uncertain QoS Attributes

Rene Ramacher and Lars Mönch

Chair of Enterprise-wide Software Systems,
Univerity of Hagen, 58084 Hagen, Germany

{Rene.Ramacher,Lars.Moench}@FernUni-Hagen.de

Abstract. Services and service compositions are executed in an uncer-
tain environment with regard to several aspects of quality. Static service
selection approaches that determine the entire service selection prior to
the execution of a service composition are extensively discussed in the lit-
erature. Nevertheless, the uncertainty of quality aspects has been not well
addressed in the service selection phase so far, leading to time-consuming
and expensive reconfiguration of service compositions at their execution
time. Due to the uncertain and dynamic nature of the execution envi-
ronment, a dynamic service selection approach is highly desirable. In
a dynamic service selection, the services are selected during the execu-
tion of a service composition taking into account the conditions caused
by already executed services. A dynamic service selection contributes to
implement robust service compositions to support reliable business pro-
cesses, where robustness is measured in terms of fulfilling quality con-
straints of a service composition. In this paper, we examine a dynamic
service selection approach based on a Markov decision process. The ser-
vice selection is considered from a cost minimizing point of view with an
end-to-end constrained execution time. A simulation study demonstrates
that the dynamic service selection outperforms an optimal static service
selection in an uncertain environment with respect to robustness of the
service compositions and cost minimizing.

Keywords: Dynamic Service Selection, Uncertain QoS, Markov Deci-
sion Process.

1 Introduction

Complex business functionality is implemented by the composition of already
existing services in Service-oriented Architectures (SOAs) [7]. Process models
are used to formulate the business or application logic of a service composition.
A task within a process model represents certain functionality associated with
functional requirements. These requirements have to be provided by a service to
execute the corresponding service composition. Therefore, for each task a certain
service has to be selected from a set of appropriate services which is known as
the service selection problem (SSP). Taken into account the principle of loose
coupling, the service selection for each task can be postponed until its execution,

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 237–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 R. Ramacher and L. Mönch

i.e., late binding. The quality of a service (QoS) and its cost are considered to
distinguish between services providing an identical or a similar functionality [10].
A service selection aims for optimizing certain QoS attributes of a service com-
position while other QoS attributes are end-to-end constrained [13,14].

Service compositions are executed in an uncertain environment with regard to
several QoS aspects. For example, the response time of a service depends on the
utilization of the service itself and the underlying network. Because the value of
an uncertain QoS attribute is unknown until the service is executed, estimated
values are taken into account when a service selection is determined. The actual
QoS value will often deviate from the estimated one. The deviation of a QoS
value may cause a violation of end-to-end constraints or the deterioration of
QoS attributes to be optimized. When end-to-end constraints are exceeded, the
execution of the entire service compositions fails.

Most of the approaches for the SSP discussed in the literature deal with a
static service selection [4,11,14]. The services for all tasks are selected prior to
the execution of the composition in a static service selection. Those approaches
are not able to react on unforeseen events like the deviation of QoS values during
the execution of a service composition. An apparent approach to deal with devi-
ations is to adjust the service selection for unexecuted tasks in a reconfiguration
step taking into account the conditions caused by already executed services [1].
Because the reconfiguration of a service composition considering the entire set
of services leads to a high computational and communication effort [5], several
efficient reconfiguration approaches based on heuristics are proposed in the lit-
erature [5,6]. Due to the uncertainty of several QoS attributes, the execution of
a service composition is dynamic and hard to predict. Therefore, a dynamic ser-
vice selection that takes into account the uncertainty inherent to estimated QoS
attributes is appropriate. In contrast to a static service selection, in a dynamic
service selection the services are determined individually for each task consid-
ering the conditions caused by formerly executed tasks. Although the service
selection is carried out locally for each task using an appropriate decision model,
a dynamic service selection is able to account for end-to-end constrained QoS
attributes.

In this paper, we propose a dynamic service selection approach for sequential
service compositions. The SSP is modeled as a Markov Decision Process (MDP)
that is able to capture the uncertainty of the QoS attributes. Solving the MDP,
we obtain a service selection strategy that is used to drive the dynamic service
selection at the execution time. We study the proposed dynamic service selec-
tion model for a cost minimizing service selection considering an end-to-end con-
strained execution time. Its performance is compared to an optimal static service
selection approach with reconfiguration by means of randomly generated prob-
lem instances. We show that the dynamic service selection ensures robust service
compositions fullfiling their end-to-end constraints with lower costs compared to
an optimal static service selection approach when an uncertain environment is
assumed.

Dynamic Service Selection with End-to-End Constraints 239

The rest of the paper is organized as follows. The service composition model is
formalized in Section 2. The MDP formalism is briefly summarized in Section 3.
Furthermore, it is described how the dynamic service selection is modeled as an
MDP. The design of the computational experiments and the results are presented
in Section 4. Related work is discussed in Section 5. Finally, Section 6 concludes
the paper summarizing the major findings and motivating future research.

2 Service Composition Model

The process or business logic, i.e., control and data flow, of a service composition
is formulated using a process model. We consider abstract process models based
on tasks. A task ti represents a certain functionality with associated functional
requirements. An approach to formulate and execute abstract process models is
proposed in [2]. The set of services, a service class, that fulfills the functional
requirements of a task ti is denoted with Si. A service from Si offered by a
provider j is denoted as sij ∈ Si. Each task ti has to be bound to a service sij to
execute the corresponding service composition. The binding of the service sij to
the task ti is indicated by ti ← sij . For abbreviation, we denote the service sij for
which ti ← sij holds with si. In this paper, we consider sequential process models
with n tasks. The predecessor of the task ti+1 is the task ti, i = 1, . . . , n − 1.
The task ti+1 can only be started after the processing of ti is completed, i.e., the
service si+1 is invoked after the service si has been terminated.

The cost of a service and its response time are considered as non-functional
attributes. The cost of a service sij , assumed to be known in advance, is de-
noted with c(sij). In contrast to the cost, the response time of a service sij
can only be estimated prior to the execution of sij . We distinguish between the
actual response time p(sij), the expected response time E[p(sij)], and the vari-
ance of the response time V ar[p(sij)] of a service sij . The quantities E[p(sij)]
and V ar[p(sij)] can be determined using a monitoring system for gathering
execution-related information.

We consider the total cost c(sc) and the total execution time p(sc) for a given
service composition sc. The cost of a service composition is the sum of costs
c(si) of the services si bound to the tasks:

c(sc) =
n∑

i=1

c(si). (1)

Since we consider sequential service compositions, the total execution time p(sc)
is the sum of the response times of the services bound to the tasks:

p(sc) =

n∑
i=1

p(si). (2)

The total execution time of a service composition is restricted to a predefined
value R > 0. The execution of a service composition is feasible if p(sc) ≤ R
holds. Otherwise, the execution of sc is failed. When penalty costs for failed

240 R. Ramacher and L. Mönch

service compositions are known, e.g. due to an Service Level Agreement, we
denote them by cp.

3 Dynamic Service Selection

3.1 Markov Decision Processes

An MDP can be used to model decision processes containing uncertainty. For-
mally, an MDP is represented as a four-tuple (Γ,A, T,R) where Γ is the set of
states the decision process consists of and A is the set of possible actions. The
mapping T : Γ × A × Γ → [0, 1] provides for γ1, γ2 ∈ Γ and a ∈ A the proba-
bility T (γ1, a, γ2) that the process moves to state γ2 when action a is performed
in state γ1. The mapping R : Γ ×A× Γ → IR is the reward function. The value
of R(γ1, a, γ2) is for γ1, γ2 ∈ Γ and a ∈ A the expected utility when action a is
performed in state γ1 and the process moves to state γ2. Solving an MDP results
in a strategy π : Γ → A that maps each state γ ∈ Γ to an appropriate action
a ∈ A such that the expected total reward of the entire process is maximized.

A dynamic service selection based on an MDP requires an appropriate mod-
eling of states and actions as well as determining the transition probabilities and
choosing an appropriate reward function. For the researched problem, states are
used to represent the task currently to be processed and a time interval in which
the processing of a task will be started. The processing of a task ti is modeled as
an action. The state model with the corresponding actions, the state transitions
probability, and the cost function as negative reward function are formulated in
Subsection 3.2. Based on the proposed state model, Subsection 3.3 describes the
probability model used to define the state transition function.

3.2 State Model

The execution of a service composition requires the selection of a service sij ∈ Si

that is invoked to execute the task ti. With regard to a constrained execution
time, the service selection for a certain task has to be driven by the time already
consumed by previously executed services. The difference of the consumed time
and the execution time restriction R determines the time that is still available
to execute the remaining tasks. For this reason, we propose a state model that
captures the already consumed time. A set of states Γi is used for each single task
ti. The state γik ∈ Γi is associated with a time interval [lik, uik]. The processing
of task ti cannot start before lik and not later than uik in state γik.

We distinguish mi states with disjunct time intervals for each task ti, i =
2, . . . , n. The task t1 is represented by the single state γ11 with l11 = 0 and
u11 = 0. Moreover, two final states γn+1,1 and γn+1,2 are introduced. The interval
boundaries of these states are set to ln+1,1 = 0 and un+1,1 = R as well as
ln+1,2 = R and un+1,2 = ∞, respectively. The complete state model consists of∑n+1

i=1 mi + 3 states. The set of all states is Γ =
⋃n+1

i=1 Γi.

Dynamic Service Selection with End-to-End Constraints 241

The interval boundaries of the states in Γi with i = 2, . . . , n are determined
taking into account the earliest time (pi) and the latest time (pi) at which the
processing of task ti can be started. These quantities are calculate as:

pi =

i−1∑
a=1

min{E[p(saj)]|saj ∈ Sa}. (3)

pi =
i−1∑
a=1

max{E[p(saj)]|saj ∈ Sa}. (4)

Taking into account pi and pi, the interval boundaries lik and uik of each state
γik ∈ Γi are determined as:

– state γi1: li,1 = 0 and ui1 = pi
– state γik, k = 2, . . . ,mi − 1: lik = pi + (k − 2)Δ and uik = pi + (k − 1)Δ,

where Δ :=
(
pi − pi

)
/(mi − 2)

– state γi,mi : li,mi = pi and ui,mi =∞.

The quantities mi are parameters of the approach. Note that because of our
choice of Δ the model requires mi > 2.

The set of actions Ai that can be performed in each state γik ∈ Γi is derived
from the service class Si. Note that each γik ∈ Γi represents the task ti. An
action aij ∈ Ai corresponds to the invocation of the service sij ∈ Si. The final
states in Γn+1 are associated with the empty action set An+1 = ∅. The set of all
actions is A =

⋃n+1
i=1 Ai.

The state transitions of the MDP reflect the sequential processing of the tasks
of a service composition. The selection of an action aij ∈ Ai in state γik ∈ Γi

corresponds to the invocation of the service sij ∈ Si to process the task ti. The
invocation of the service sij terminates with a certain probability in the time
interval of each state γi+1,y ∈ Γi+1 in which either the processing of the task
ti+1 can be started for i < n or the processing of the service composition is
completed for i = n. Accordingly, the decision process moves from γik to each
state γi+1,y ∈ Γi+1 with a certain probability when aij is selected for γik. The
probability T (γik, aij , γi+1,y) of moving to γi+1,y ∈ Γi+1 depends on the response
time of service sij that is associated with aij and the time interval represented
by γik. Details on calculating the probability T (γik, aij , γzy) are discussed in
Subsection 3.3.

A state model for a simple service composition consisting of three tasks and
m1 = m2 = 3 is shown in Figure 1. For each state except of γ11, the associated
time interval is plotted on the horizontal axis. The state γ11 is associated with
the degenerated interval 0. For the sake of simplicity, some state transitions are
only indicated by a dashed line.

The cost function C maps each state transition to the cost c(sij) resulting
from the invocation of the service associated with the action aij and a penalty
value p that is applied when the decision process moves to an undesired state.
We obtain:

242 R. Ramacher and L. Mönch

Final statesTask t3Task t2Task t1

11 22

23

time
Ru2,1

= l2,2

u2,2

= l2,3

u3,1

= l3,2

u3,2

= l3,3

Fig. 1. State model of a service composition consisting of three tasks and m1 = m2 = 3

C(γik, aij , γzy) = c(sij) + p. (5)

The decision process contains only the single undesired state γn+1,2. This is the
state the process is moved to when the execution time restriction R is exceeded.
Therefore, p is 0 for all states γzy with z �= n + 1 and y �= 2. When penalty
costs are available (cf. Section 2), then p is set to cp. Otherwise, the value of p
is calculated dependening on a risk factor rf as:

p = rf
n∑

i=1

(max{c(sij)|sij ∈ Si} −min{c(sij)|sij ∈ Si}) . (6)

Modeling the dynamic service selection as an MDP requires that the Markov
condition is fulfilled. It states that the optimality of an action does not depend on
the sequence of actions already performed. Based on the proposed state model,
the Markov condition is fulfilled because the consequences of already performed
actions are summarized in the time interval of a certain state. Therefore, the
optimality of an action in a certain state only depends on the state and the
expected costs of the states the process is supposed to move to.

3.3 State Transition Probability Model

The quantity T (γik, aij , γzy) is the probability that the process moves to γzy
when the action aij is performed in γik. Because of the sequential processing
of the service composition, T (γik, aij , γzy) is 0 for all γzy ∈ Γz with z �= i + 1.
To determine T (γik, aij , γi+1,y), we assume that the processing of task ti starts
at some point βik ∈ [lik, uik]. Thus, the service sij that is associated with the
action aij is invoked at time βik. T (γik, aij , γi+1,y) is the probability that the
invocation of sij terminates at some point in the time interval [ui+1,y, li+1,y]
represented by γi+1,y.

Dynamic Service Selection with End-to-End Constraints 243

We assume that βik is uniformely distributed on the interval [lik, uik], i.e.
βik ∼ U [lik, uik]. The assumption is reasonable when the intervals [lik, uik] are
small which is ensured by an appropriate selection of mi. The response time of a
service sij is modeled as a random variable ρij . We assume that the distribution
information of ρij is available either in closed form or in form of an empirical
distribution function. The later one can be derived using information from a
monitoring system. When the service sij is invoked in the interval [lik, uik] then
the time at which the invocation of sij terminates is a random variable Ψijk,
with Ψijk = βik + ρij . Accordingly, T (γik, aij , γi+1,y) is the probability that
Ψijk ≥ li+1,y and Ψijk ≤ ui+1,y holds. We obtain:

T (γik, aij , γi+1,y) = (1− F (li+1,y))F (ui+1,y), (7)

where F (x) = P (Ψijk ≤ x) is the probability distribution of Ψijk. The distribu-
tion F can be calculated as a convolution of βik and ρij because the two random
variables are independent. When the convolution of βik and ρij is not available
in closed form, then F has to be numerically evaluated by sampling βik + ρij .

In this paper, we assume that the response time of a service sij follows a
normal distribution with μij = E[p(sij)] and σ2

ij = V ar[p(sij)], i.e., we have

ρij ∼ N(μij , σ
2
ij). A closed form expression can be derived for the density func-

tion of Ψijk in this specific situation. Figure 2 shows the density function of Ψijk

for an action aij that is performed in state γik. The integral of the shaded area
(b) represents the state transition probability T (γik, aij , γi+1,y). The probability
density of the equal distribution is depicted as the shaded area (a).

time
li,k ui,k li+1,y ui+1,y

(b)(a)

E[p(si,j)]

i,k i+1,y

ai,jState transition

Probability density

i,j,ki,k

Fig. 2. State transition probability T (γik, aij , γi+1,y) when ρij ∼ N(μij , σ
2
ij)

3.4 Algorithm

A strategy π : Γ → A determines the action π(γ) ∈ A that is chosen in the state
γ ∈ Γ . An optimal solution of the dynamic SSP is a strategy π that minimizes the
expected cost of a service composition. Algorithms to solve an MDP are based
on the expected costs V (γ) for each state γ ∈ Γ . With regard to the dynamic
service selection, the expected cost V (γik) for a state γik ∈ Γi represents the
immediate cost associated with γik, i.e. invocation of a service and penalty costs
if an undesired state is reached, and the cost V (γzy) of the states γzy the process

244 R. Ramacher and L. Mönch

is expected to move to. For z < n the cost of each γzy consists of the sum of
costs resulting from the invocation of services to process the remaining tasks
tz, . . . , tn and the penalty costs that occur when an undesired state is reached.
Therefore, the expected cost of a state γ ∈ Γ is calculated recursively as:

V (γ) = min
a∈A

∑
γ′∈Γ

T (γ, a, γ′) {C(γ, a, γ′) + λV (γ′)} , (8)

where C(γ, a, γ′) represents the immediate cost when action a is performed in
γ and the process is moved to γ′ (cf. Subsection 3.2). The sum of the immedi-
ate costs and the expected costs of a subsequent state γ′ is weighted with the
probability T (γ, a, γ′) that the process is moved to γ′. Note that the cost of a
service associated with the action a is considered in total because the proba-
bilities T (γ, a, γ′) sum up to 1. The penalty cost included in C(γ, a, γ′) when
an undesired state γ′ is reached is considered only as a fraction depending on
the probability that the process is moved to γ′. The equation (8) is known as
the Bellman update. The parameter λ in expression (8) represents the impact
of the costs expected for future states on the costs of earlier states. A standard
algorithm to calculate the expected costs for each state γ ∈ Γ is given by the
backward value iteration. Here, the Bellman update is applied iteratively where
convergence of the scheme is ensured by choosing 0 ≤ λ < 1.

The dynamic SSP is formulated as a finite MDP with non-stationary expected
costs and due to the sequential processing, each strategy π is guaranteed to be
a proper strategy, i.e. it ends in a finite state of the MDP. Therefore, it turns
out that the special case of additive costs, i.e. λ = 1, is approved without losing
the convergence property of the backward value iteration algorithm [8]. Hence,
based on the expected cost for each state, the action a ∈ A chosen in a state
γ ∈ Γ is determined as follows:

π(γ) = argmin
a∈A

∑
γ′∈Γ

T (γ, a, γ′) {C(γ, a, γ′) + V (γ′)} . (9)

4 Performance Study

A simulation study is conducted to evaluate the performance of the dynamic ser-
vice selection. The MDP approach described in Section 3 is compared with an
optimal static service selection approach with reconfiguration. The average cost
of a service composition and the number of failed service compositions are con-
sidered as performance indicators. Furthermore, we examine the computational
effort required to evaluate the service selection strategy at the execution time
of a service composition. Randomly generated problem instances are used. The
experimental design is described in Subsection 4.1. Subsection 4.2 elaborates on
the optimal static service selection approach with reconfiguration. The results of
the computational experiments are presented and discussed in Subsection 4.3.

Dynamic Service Selection with End-to-End Constraints 245

4.1 Generation of Problem Instances

A problem instance consists of n tasks. A set of m services is generated for each
task. The services are distinguished into the gold, silver, and bronze categories
with respect to their prices and response times. These categories mimic the
assumption that a service of a higher price is also expected to have a higher
quality, i.e. a lower response time.

The price of a service depends on the categorie the service belongs to and the
factor mclass that represents the ratio between the price and the quality of the
services in different categories. We consider crefsilver = 100r, crefgold = mclass · crefsilver ,

and prefbronze = 1/mclass · prefsilver as reference prices for each service category,
where r is a realization of a random variable X ∼ U [0, 1]. Moreover, we consider

prefgold = 10, prefsilver = 50, and prefbronze = 90 as reference response times for the
different service categories.

The price and the expected response time of a service sij that belongs to the
service category cat ∈ {gold, silver, bronze} is chosen as:

c(sij) = crefcat + (r − 0.5)crefcat , (10)

and

E[p(sij)] = prefcat + (r − 0.5)prefcat , (11)

where r is a realization of an random variable X ∼ U [0, 1]. The variance of the
response time is selected depending on the factor mσ as follows:

V ar[p(sij)] = mσE[p(sij)]. (12)

Because our comparison approach likewise the majority of existing reconfigura-
tion approaches does not consider penalty costs, we exclude the evaluation of
the effects caused by penalty costs from the experimentation. Instead, we eval-
uate the influence of the risk factor rf (see equation (6)) on the performance
of the dynamic service selection. The factors and their levels are summarized in
Table 1.

Table 1. Factors used to generated problem instances

Factor Level Count

Number of tasks n ∈ {5, 10, 15, 20} 4
Number of providers per task m ∈ {5, 10, 15} 3
Expected price difference mclass ∈ {1, 3, 5, 6} 4
Variance in response time mσ ∈ {0.1, 0.15, 0.2, 0.25} 4

Risk factor rf ∈ {0.3, 0.5, 0.7} 3

246 R. Ramacher and L. Mönch

4.2 Comparison Approach

We use a Mixed Inter Programming (MIP)-based service selection with reconfig-
uration as an optimal service selection approach. The approach is based on the
MIP shown in (13) - (16). The MIP determines a cost minimizing service selec-
tion taking into account an end-to-end constrained execution time. In addition
to the price c(sij) of a service sij and its expected processing time E[p(sij)], the
MIP contains two parameters α and β. These parameters are required to use the
MIP in a reconfiguration setting. The quantities α and β represent the current
progress of a service composition. The parameter α = 1, . . . , n− 1 identifies the
task that is to be processed next. The value of β represents the time, passed
since the start of processing the service composition.

The MIP contains the binary decision variables zij . The value of zij is 1, if
the service sij is used to execute the task ti, otherwise 0. The MIP model is
formulated as follows:

min

n∑
i=α

m∑
j=1

c(sij)zij (13)

subject to:
m∑
j=1

zij = 1, ∀i : i = {α, . . . , n} (14)

n∑
i=α

E[p(sij)]zij ≤ R− β (15)

zij ∈ {0, 1}, ∀i, j : i = {1, . . . , n}, j = {1, . . . ,m}. (16)

The objective function (13) minimizes the costs resulting from the services used
to execute the tasks. The equations (14) force that exactly one service sij is
selected for each task ti. The inequality (15) ensures that the expected amount
of time to process the remaining tasks tk, k = α, . . . , n is smaller than the
difference of the execution time restriction R the time β already passed. The
constraints (16) make sure that the decision variables are binary.

Instead of using the reconfiguration in a heuristic manner, i.e. only by ex-
ceeding a threshold, the reconfiguration is invoked after the processing of each
task.

4.3 Simulation Results

The execution of a service composition is simulated using the discrete-event
simulation engine SLX. The response time of each service sij follows a normal
distribution N(E[p(sij)], V ar[p(sij)]). The MIP is implemented and solved by
ILOG OPL 6.3 and CPLEX solver 12.3, respectively.

The influence of the number of states used in the MDP approach is evaluated.
Therefore, each problem instance is solved with mi = 10, 20, and 40 states for

Dynamic Service Selection with End-to-End Constraints 247

each i = 2, . . . , n + 1, respectively. The corresponding approaches are denoted
by MDP (10), MDP (20), and MDP (40).

For each approach A ∈ {MIP,MDP (10),MPD(20),MDP (40)}, 100 invo-
cations are simulated for each problem instance. The simulation records the
average cost cA per successfully executed service composition and the percent-
age of requests vA that are successfully executed for each approach A. Moreover,
the simulation keeps tracks of the average computation time ctA, required by
the approach A to determine the service selection of all tasks at the execution
time of the service composition.

Figure 3 shows an evaluation of the MIP and the MDP(40) approach with
respect to the uncertainty expressed through the factor mσ. Different values of
the risk factor rf are considered for MDP(40). The average cost per service
composition is summarized in Figure 3 a). In general, the results state that
the MIP is outperformed by the MDP approaches with respect to costs. The
advantage of the MDP approaches increases with increasing uncertainty. The
lowest average cost are observed for MDP (40) with rf = 0.3 independently
of mσ. The average costs observed for the MDP approaches increase with an
increasing risk factor.

Results with repect to v are shown in Figure 3 b). The data reveals that the
MIP leads to a large fraction of failed service compositions, i.e., a low value
of v. The value of v decreases from 87 percent for mσ = 0.1 to 81 percent
for mσ = 0.25. For mσ = 0.1 and mσ = 0.15, a value close to 100 percent of
successfully executed service compositions is observed for all MDP approaches.
For the remaining values of mσ, it can be concluded that a higher risk factor
leads to a higher value of v. The execution time restriction is fulfilled in 99
percent for rf = 0.7.

An evaluation of cA with respect to different values of mclass is shown in
Figure 4 a). The data reveals that in the case of homogenous costs, i.e. mclass =
1, a similar performance is observed for all approaches. The MIP leads to the
minimal average cost per service composition for mclass = 1. However, the costs
determined by the MDP approaches are lower than the cost of the MIP for the
remaining values of mclass. The results point out that a larger number of states

1000

1200

1400

1600

0.1 0.15 0.2 0.25

MIP MDP/0.3 MDP/0.5 MDP/0.7

70

80

90

100

0.1 0.15 0.2 0.25

MIP MDP/0.3 MDP/0.5 MDP/0.7
a) b)

A
ve

ra
ge

 c
os

t (
cA

)

0.1 0.15 0.2 0.25
Variance in response time (m)

1

Su
cc

se
ss

fu
l e

xe
cu

tio
n

(v
)

Variance in response time (m)

Fig. 3. a) Average cost depending on mσ for MIP and MDP(40) with different rf
values b) percentage of succesfully executed service compositions depending on mσ.

248 R. Ramacher and L. Mönch

1000

1100

1200

1300

1400

1 3 5 7

MIP MDP(10) MDP(20) MDP(40)

0

1000

2000

3000

5 10 15 20

MIP MDP(10) MDP(20) MDP(40)
a) b)

Price difference (mclass) Number of tasks (n)

1

1

1

1

1

A
ve

ra
ge

 c
os

t (
cA

)

2

3

A
ve

ra
ge

 c
os

t (
cA

)

Fig. 4. Average cost per service composition depending on mclass (a) and on n (b)

improves the performance of the MDP. The lowest values for cA are obtained for
MDP (40). Results of a sensitive analysis with respect to the number of tasks
are shown in Figure 4 b). The performance gap of the MIP compared to the
MDP increases with an increasing number of tasks.

Figure 5 presents the results of an sensitive analysis of v for different values
of m and n. It can be observed that v is close to 100 percent for all MDP
approaches, independently from n and m. The values of v observed for the MIP
point out that an increasing number of tasks as well as an increasing number
of providers lead to a higher fraction of failed service compositions. Taken into
account the number of tasks, the fraction of failed service compositions increases
from 9 percent for n = 5 tasks up to more than 30 percent for n = 20 tasks.

The computation time ctA required to evaluate the service selection strategy
varies from 0.4 seconds for the MDP(40) approach on average for n = 15 to less
than 0.03 seconds on average for the MDP(10) approach for n = 5.

60

70

80

90

100

5 10 15

MIP MDP(10) MDP(20) MDP(40)

60

70

80

90

100

5 10 15 20

MIP MDP(10) MDP(20) MDP(40)
a) b)

Number of providers (m) Number of tasks (n)

1

Su
cc

se
ss

fu
l e

xe
cu

tio
n

(v
)

1

Su
cc

se
ss

fu
l e

xe
cu

tio
n

(v
)

Fig. 5. Percentage of succesful executions for different m (a) and n (b)

5 Related Work

The service selection with uncertain QoS values has been tackled by researchers
in the recent years. The majority of the existing work is devoted to the recon-
figuration of service compositions. A reconfiguration is required when services

Dynamic Service Selection with End-to-End Constraints 249

fail [12] or the QoS values deviate from the original specification [1,5,6]. Service
breakdowns are addressed by Yu and Lin [12]. Two algorithms are proposed
to reconfigure the service compositions which are already in execution and to
provide a backup service selection that is used by future requests of a service
composition, respectively. Both algorithms are offline approaches, i.e., the service
reconfiguration as well as the backup path are determined simultaneously with
the initial service selection. Both approaches are restricted to a single service
failure. A failure of several services can neither be handled by the reconfigura-
tion nor by the backup service selection. The violation of end-to-end constrained
QoS values due to the deviation of QoS values is not considered at all.

Canfora et al. [1] consider the reconfiguration of end-to-end constrained service
compositions with uncertain QoS attributes. An approach for an online reconfig-
uration of service compositions is presented. Reconfiguration regions are identi-
fied taking into account conditional branches, parallelizing operators, and loops.
A reconfiguration region consists of all unexecuted tasks that will be reselected to
avoid the violation of the end-to-end constraints. The reselection is performed
by a common static service selection approach e.g. an Integer Programming-
based [14] or Genetic Algorithm-based [4] service selection.

Another reconfiguration approach is discussed by Lin, Zhang, and Zhai [6].
The efficiency of the reconfiguration is addressed. A heuristic is proposed that
restricts the size of the reconfiguration regions using a distance measure [6].
The distance is increased iteratively until a reconfiguration region is identified
that is of a sufficient size to successful reconfigure the service composition. In
addition to restricting the size of a reconfiguration region, Li et al. [5] propose a
restriction of the number of tasks considered by the reconfiguration. Supplement
services are identified during the initial service selection. The reconfiguration of
each task is then narrowed to the set of supplement services to improve the
efficiency of the reconfiguration.

Each of the reconfiguration approaches discussed so far has to be regarded as a
static service selection. Gao et al. [3] propose an approach for a dynamic service
selectionbased onMDP.The uncertaintywith respect to the availability of services
is taken into account. The service selection aims for the optimization of a single
QoS attribute, e.g. the total cost of a service composition or their execution time.

A further MDP-based dynamic service selection approach for the adaption of
processes with inter-process dependencies is discussed by Verma et al [9]. The
process execution is affected by exogenous factors. The corresponding implica-
tions require an adaption of the service selection at the execution time. The
combination of services is restricted by the inter-process dependencies i.e. the
combination of services used for different tasks has to be coordinated. As exoge-
nous factor they consider a delayed delivery that requires a decision to wait for
the delayed delivery or to place a new order at a different service provider.

End-to-end constrained QoS attributes are neither considered in [3] nor in [9].
Therefore, both approaches are not suitable for a dynamic service selection with
an end-to-end constrained execution time. Although delays are considered in [9],
the approach is only based on the information that a delay occurs but the

250 R. Ramacher and L. Mönch

delay itself is not quantified. However, the quantification of the actual delay
is mandatory with regard to an end-to-end constrained processing time to drive
the service selection for the tasks to be executed.

6 Conclusion

Services and service compositions are executed in an uncertain environment
with respect to several aspects of quality. The uncertainty is not addressed suf-
ficiently by existing static service selection approaches leading to expensive and
time-consuming reconfigurations at the execution time of a service composition.
Anticipating deviations resulting from estimated QoS values improve the over-
all quality of service compositions and their robustness, measured in terms of
violated end-to-end constraints.

A dynamic service selection approach modeled as an MDP is proposed in this
paper. Modeling the service selection decision as an MDP allows for explicating
the uncertainty inherent to several QoS attributes within the decision model. The
performance of the proposed approach is studied for a cost minimizing service
selection with an end-to-end constrained execution time. An extensive simulation
study reveals that in an uncertain environment the dynamic service selection
outperforms a static service selection approach with reconfiguration with respect
to robustness of the service compositions and to costs. Furthermore, it is shown
that the approach is efficient with respect to the computational burden resulting
from the service selection decision at the execution time of a service composition.

There are several directions for future research. Although the proposed ap-
proach allows for taking into account arbitrary distributed response times, the
experiments conducted in this paper are based on the assumption that the re-
sponse times of the serivces are normally distributed. The normal dsitribution
assumption for response times might be violated in a real-world environment.
Therefore, further experiments should be performed to assess the performance
of the proposed dynamic service selection approach when arbitrary distributions
are considered. It should also be evaluated whether the normal distribution as-
sumption represents a sufficient approximation to deal with arbitrary distributed
response times or not.

Furthermore, the decision model proposed in this paper is based on sequential
process models. Although the sequential process model is a fundamental service
composition pattern and serves as a basis for many other service composition
patterns with regard to an QoS optimizing service selection [11], a further di-
rection for future research is to extend the model proposed in this paper to
more complex process models including conditional branches and parallelizing
operators.

References

1. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of
composite web services. In: Proceedings of the IEEE International Conference on
Web Services, pp. 121–129 (2005)

Dynamic Service Selection with End-to-End Constraints 251

2. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and
Dynamic Service Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.)
CAiSE 2000. LNCS, vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

3. Gao, A., Yang, D., Tang, S., Zhang, M.: Web Service Composition Using Markov
Decision Processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS,
vol. 3739, pp. 308–319. Springer, Heidelberg (2005)

4. Jaeger, M.C., Mühl, G.: QoS-based selection of services: The implementation of a
genetic algorithm. In: Proceedings of the KiVS Workshop 2007: Service-Oriented
Architectures und Service Oriented Computing (SOA/SOC), pp. 359–370. VDE
(2007)

5. Li, J., Ma, D., Mei, X., Sun, H., Zheng, Z.: Adaptive QoS-aware service process
reconfiguration. In: Proceedings of the 2011 IEEE International Conference on
Services Computing, SCC 2011, pp. 282–289. IEEE Computer Society, Washington,
DC (2011)

6. Lin, K.-J., Zhang, J., Zhai, Y.: An efficient approach for service process recon-
figuration in SOA with end-to-end QoS constraints. In: Proceedings of the 11th
International Conference on Commerce and Enterprise Computing, pp. 146–153
(2009)

7. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: a research roadmap. International Journal of Cooperative Information Sys-
tems 17(02), 223–255 (2008)

8. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall, Inc., Upper Saddle River (2009)

9. Verma, K., Doshi, P., Gomadam, K., Miller, J., Sheth, A.: Optimal adaptation in
web processes with coordination constraints. In: Proceedings of the IEEE Interna-
tional Conference on Web Services, pp. 257–264 (2006)

10. Wang, S.G., Sun, Q.B., Yang, F.C.: Towards web service selection based on QoS
estimation. International Journal of Web Grid Services 6(4), 424–443 (2010)

11. Yu, T., Lin, K.-J.: Service selection algorithms for web services with end-to-end QoS
constraints. In: Proceedings of the IEEE International Conference on E-Commerce
Technology, pp. 129–136. IEEE Computer Society (2004)

12. Yu, T., Lin, K.-J.: Adaptive algorithms for finding replacement services in auto-
nomic distributed business processes. In: Proceedings of the International Sympo-
sium on Autonomous Decentralized Systems, pp. 427–434 (2005)

13. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Transactions on the Web (TWeb) 1(1) (2007)

14. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th International Conference on
World Wide Web, pp. 411–421. ACM (2003)

A Constraint-Based Approach
to Quality Assurance in Service Choreographies�

Dragan Ivanović1, Manuel Carro1,2, and Manuel V. Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM), Spain
idragan@clip.dia.fi.upm.es, {mcarro,herme}@fi.upm.es

2 IMDEA Software Institute, Spain

Abstract. The knowledge about the quality characteristics (QoS) of
service compositions is crucial for determining their usability and eco-
nomic value; the quality of service compositions is usually regulated us-
ing Service Level Agreements (SLAs). While end-to-end SLAs are well
suited for request-reply interactions, more complex, decentralized, multi-
participant compositions (service choreographies) typically need multiple
message exchanges between stateful parties and the corresponding SLAs
thus involve several cooperating parties with interdependent QoS. The
usual approaches to determining QoS ranges structurally (which are by
construction easily composable) are not applicable in this scenario. Ad-
ditionally, the intervening SLAs may depend on the exchanged data.
We present an approach to data-aware QoS assurance in choreographies
through the automatic derivation of composable QoS models from par-
ticipant descriptions. Such models are based on a message typing system
with size constraints and are derived using abstract interpretation. The
models obtained have multiple uses including run-time prediction, adap-
tive participant selection, or design-time compliance checking. We also
present an experimental evaluation and discuss the benefits of the pro-
posed approach.

Keywords: Service Compositions, Quality of Service, Quality Assur-
ance, Constraints, Abstract Interpretation.

1 Introduction

Service-Oriented Computing (SOC) is a widely-accepted paradigm for the de-
velopment of highly dynamic, flexible, and distributed Service-Based Applica-
tions (SBAs). Service compositions allow putting together several specialized,
loosely coupled, and platform-independent service components in order to per-
form complex and/or inter-organizational tasks [10]. In such scenarios, many of
those components may be provided and controlled by third parties [22].

The Quality of Service (QoS) properties of service components and composi-
tions are critical for their usability. Service Level Agreements (SLAs) are a means
� The authors were partially supported by Spanish MINECO project 2008-05624/TIN

DOVES and Community of Madrid project P2009/TIC/1465 PROMETIDOS-CM.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 252–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Constraint-Based Approach to Quality Assurance 253

for defining permissible values for QoS attributes that are relevant in some sce-
nario or for a particular purpose (such as execution time, monetary cost, or
availability) and that a service (composition) provider is expected to deliver to a
client. SLAs are commonly specified under the assumption that each interaction
between the client and the service is viewed as a single session, and, accordingly,
such end-to-end SLAs correspond to a request-reply message exchange pattern
between the two parties. However, many business processes involve more com-
plex message exchange patterns between two or more stateful participants, where
several interactions may belong to the same session and build upon each other,
and where the data that is exchanged may significantly affect the behavior of
the participants in terms of QoS, including the number of messages exchanged.

For such complex, multi-participant choreographies, a coherent support for
QoS assurance which includes negotiation, prediction, and QoS-driven adapta-
tion [16] is relevant both theoretically and practically. While several types of
run-time adaptation aimed at avoiding or mitigating SLA violations have been
proposed [10,12,21], these are often only applicable to the request-response mes-
sage exchange pattern and/or to acyclic control structures. Several prediction
and run-time adaptation approaches based on machine learning [15], online test-
ing [19], and model checking [20], well suited for orchestrations with centralized
control flow, have been proposed.

In this paper, we propose a constraint-based approach for supporting QoS
assurance for service choreographies that involve multiple, stateful participants
and complex message exchanges. The proposed approach can be applied both
at design time and at run time to support QoS negotiation, prediction, and
QoS-driven adaptation. This work extends [14] for the case of service composi-
tions with interconnected constraint models of stateful, interacting choreography
participants, combining the derivation of QoS constraints with static analysis
techniques.

We first present a motivational example (Section 2), then describe our ap-
proach (Section 3), review several examples of its application (Section 4), and
finish with some conclusions (Section 5).

2 Motivation

Figure 1 shows a simplified example of a choreography for purchasing goods or
services in a large organization where the procurement function is centralized.
It uses the BPMN notation [17] with swim lanes delimiting participants, and
dashed lines showing the flow of messages between them.

Participant A is the procurement process, which starts by receiving a pro-
curement request (a0), and continues by sending the list of specifications to the
agent (a3) and retrieving budget line information for this purchase (a2), in par-
allel. Participant B is the agent which receives the list of specifications (a13) and
performs a loop (a14) for each item from the specification list. For each item, B
looks into the supplier catalogs (a15) to find out alternative purchasing options;
since that can depend on the choice of earlier items, specifications are processed
sequentially. If only one alternative is found, it is automatically chosen (a19), but

254 D. Ivanović, M. Carro, and M.V. Hermenegildo

�

a0

+
a1

Get bud-
get line

a2

Send
spec.
list

a3 +

a4

�

Receive
alternatives

a5

×
a6

¬forced

forced

Choose
best

a7

Choose
cheapest

a8 × Send
choice

a9

Receive
P.O.

a10

Start
purchase

a11

a12 Get spec.
list
a13

a14

�

Generate
alterna-

tives

a15

×
a16

count>1

count=1

Send al-
ternatives

a17

Receive
choice
a18

Automatic
choice

a19 ×
Put

choice
into P.O.

a20

Send
P.O.
a21

P
ar

ti
ci

pa
nt

A
P
ar

ti
ci

pa
nt

B

Fig. 1. An example choreography for purchase ordering

User A B

request

list of specs

alternatives

choice

foreach specforeach spec >1 alternative

purchase order

response

A

req
response

(1)
request

(1)

agent

purchase
order (1)

list of
specs (1)

check

alternatives (N)

choice (N)

B

client
purchase
order (1)

list of
specs (1)

approval
choice (M)

alternatives (M)

M = N

Fig. 2. Message exchange sequence and a component model for a choreography session

if two or more alternatives exist, B asks A to chose among them (a17) and waits
for the answer (a18). The choice is added to the purchase order (a20). After pro-
cessing all specifications, agent B returns the final purchase order document to
A (a21). Whenever A is asked to choose between alternatives (a5), it acts based
on the budget line restrictions: if forced, it uses the cheapest option; otherwise it
tries to chose the best solution. After answering all choice queries, A receives the
purchase order from B (a10) and starts the purchase (a11), which provides the
return notification to the requester, to whom the purchased goods and services
will be delivered directly.

Figure 2 abstracts away the logic of the participants from Figure 1, and con-
centrates only on the exchange of messages. The left-hand side of the figure shows
a sequence diagram for message exchanges in a session involving the initiating
user and the participants A and B. The right-hand side of the figure shows A and
B as components with connector links (req, agent, and check for A, client and

A Constraint-Based Approach to Quality Assurance 255

approval for B), with messages sent and received over these links. The number
of message of each kind within a single session is shown in parentheses. Wiring
between the connectors is shown with thick dotted lines. For each wire, both the
kind and the cardinality of messages in both directions must match.

The end-to-end QoS characteristics of A (such as, e.g., its execution time)
depend on several factors. Firstly, if the number of specification items n is > 0,
there can be between 0 and n callbacks from B to A in the foreach loop. Secondly,
the behavior of A for each callback from B depends on whether it is forced
to choose the cheapest alternative, which is known at the exit of a2. Some of
these factors are controlled by the user (n), some by third parties (a2 which
sets the forced flag for a6, a15 which generates alternatives), and some on the
implementation of A (the logic and complexity of determining the best choice
in a7). With respect to the quality assurance issues illustrated by this example,
we are interested in tackling the following problems:

– Automatically deriving a QoS model of the choreography for a given input
request or a class of input requests. Such a model can be used as an input
for determining SLA offerings from the service provider to the users.

– Using the QoS model of the choreography to predict SLA violations at run-
time, at different points in execution. E.g., greater accuracy of prediction
can be obtained when the forced flag becomes known after a2.

– SLA compliance checking of choreography participants at design-time for a
given class of input requests. This is the basis for adaptive dynamic selection
(binding) of service components.

3 Constraint-Based QoS Modeling for Choreographies

The proposed constraint-based approach to modeling QoS for service choreogra-
phies is implemented in two main phases. The first one focuses on the creation of
QoS models for the choreography participants as Constraint Satisfaction Prob-
lems [7,1] (CSP). We will show how to generate a model of the QoS metrics
under consideration (Section 3.1), capture the view of each participant regard-
ing the effective QoS at every moment in the execution (Section 3.2), and how
to automatically derive these models (Section 3.3). The model is enriched with
information about the shape and size of messages, inferred using static analysis
techniques, in order to increment its accuracy and the precision of the prediction
(Section 3.4).

The second phase of the approach consists of connecting the models for the
different participants and solving them as a whole (Section 3.5). Note that when
deriving QoS models for choreographies, joining the different sub-models is done
following the structure of the composition. In the present case, the overall struc-
ture may not lend itself to structural analysis and participants take a prominent
role. Therefore determining the overall QoS characteristics is done by joining
per-partner models (Section 3.5) mimicking the topology of the choreography.

256 D. Ivanović, M. Carro, and M.V. Hermenegildo

3.1 Modeling Cumulative QoS Metrics

Execution time, availability, reputation, bandwidth consumed, and cost are some
of the most common QoS attributes. In this work we focus on attributes that
can be numerically quantified using some measurement scale, or QoS metric: e.g.,
execution time can be measured using time units. QoS metrics do not need to
have a fixed origin (a “true zero” value), but one unit of distance needs to express
the same variation in the attribute everywhere on the scale. This requirement
excludes, for instance, ordinal voting-based reputation ranking between services,
where the unit difference in ranking does not carry information about the dif-
ference in votes received.

We additionally require QoS metrics to be cumulative and non-negative: QoS
values of activities in a sequence add up to give the QoS value for the sequence,
and this value should never decrease by adding more activities. Some QoS met-
rics, such as availability (expressed in terms of probabilities), that do not use
addition to calculate aggregation in a sequence, can be converted into additive
metrics using a suitable transformation. For instance, the availability p of n se-
quential activities with availabilities pi is p = Πn

i=1pi and can be converted into
λ = Σn

i=1λi with the transformation λ = − log p.
Cumulative QoS metrics allow us to represent the QoS of a service com-

position at any point in execution as a sum of two components: the previously
accumulated QoS up to that point, and the pending QoS for the remainder of the
execution. Non-negativity guarantees that the pending QoS can only decrease
as the execution proceeds. While the accumulated QoS can be estimated em-
pirically (by measuring elapsed time, network traffic, or accumulated monetary
cost), the pending QoS for the remainder of the execution is in our approach
modeled as a CSP over variables that represent QoS values for composition
activities and control constructs. Solving this CSP gives a prediction of the
pending QoS.

3.2 QoS Models of Participants and Continuations

Service choreographies provide a “global view” of a multi-participant, stateful
message exchange within some logical unit of work. There are several possibilities
to provide both abstract and executable descriptions of choreographies. On the
more abstract side BPMN (as in Figure 1) or WS-CDL [24], which is a high-level
specialized choreography language, can be used. On the more executable side, we
can use choreography extensions of standard process (orchestration) languages,
such as BPEL 4Chor [8]. In our approach, we assume that the implementation
details of the participants are essentially private and that the participants can
be viewed as communicating components that conform to the protocol (as in
Figure 2). Conformance, compatibility, and realizability of choreographies has
been studied using formal methods such as Petri Nets [23], session types [9], and
state machines [3].

As mentioned before, we proceed by developing a separate QoS model for each
participant in the choreography. Each participant is seen as a component with
a number of connector links (or channels, in WS-CDL terminology). Each link

A Constraint-Based Approach to Quality Assurance 257

S := send(c, E) | recv(c, v) | invoke(c, E, v) (send/receive messages)
| let v = E (variable assignment)
| [S, S, ..., S] (sequence of n ≥ 0 activities)
| (if(E) → S ; S) (if-then-else)
| S and S (parallel "and" split/join)
| foreach(v : E) do S (iterate over list elements)
| foreach(recv(c, v)) do S (iteratively receive multiple messages)
| stream(c) do S (send multiple messages)
| relax (do nothing)

c, v := 〈identifier〉
E := 〈expression〉

Fig. 3. Abstract syntax of the participant continuation language.

c is bi-directional, and each direction (in/out) is characterized by a triplet of
the form 〈Nin/out(c), q̄in/out(c), Δq̄in/out(c)〉, where N is multiplicity of in/out
messages, q̄ are QoS values corresponding to the first in/out message, and Δq̄ are
increments of QoS values for the successive messages (for N>1). For example, for
the case of execution time, Tin(c) is the time when the first message was received
over link c and ΔTin(c) is the time interval between the successive messages. N ,
q̄ and Δq̄, as well as other variables in the constraint QoS models developed
in this section, are not numeric constants, but represent intervals of possible
numeric values for all legal execution cases, whose upper and lower bounds are
inferred from the constraint model.

We build the QoS model of a participant by looking at its current point in
execution. To stay close to the executable specifications, we follow the same
approach as in our previous work on run-time prediction for orchestrations [14].
We use the notion of a continuation which describes the current state of the
participant and the remainder of the computation until its end [18]. At the
beginning, the continuation is the entire process and it is gradually reduced by
eliminating the completed activities as the execution proceeds. The continuation
information is always implicitly present in the state of the engine which executes
the participant, and, in principle, can be obtained either by inspecting its internal
state or by observing the process events from the outside. The latter is less
robust since missed events or run-time composition modifications can invalidate
the information inferred through external observation.

We represent continuations using an abstract language for the participant
processes (Figure 3). It is based on a prototypical process language implemen-
tation that provides the continuation information explicitly at each execution
step [14]. The participant state is kept in variables whose types are described in
Section 3.4. Variable values are assigned using the let construct or received over
some link with recv. The standard sequential operator, if-then-elses, and AND-
parallel splits/joins are supported. For simplicity, we present only two foreach
looping constructs: one over elements of a list and another one over messages
received over some channel. The send and recv messaging constructs can be

258 D. Ivanović, M. Carro, and M.V. Hermenegildo

combined into an invoke; note that request-reply patterns are not enforced (this
is left to the protocol). Participants use the stream construct to send a series
of messages within the same session which can be received with a recv-based
foreach.

3.3 Automatic Derivation of the QoS Constraint Model for a
Participant

The constraint QoS model for a participant is inferred automatically from the
continuation and the previously accumulated QoS, using the structural approach
of [14], where QoS values for complex constructs are derived from their compo-
nents. A separate constraint QoS model is derived for each QoS metric of interest.
Due to space constraints, we will present here only on the derivation of execution
time. More details and treatment of other metrics, such as availability, can be
found in [14].

1 recv(req,request), T−
1 = max(TA, Tin(request)), T+

4 = T−
1 , Nin(req) = 1 ;

2 (invoke(budget, T+
4 ≤ T+

2 ≤ T−
4 , Tout(budget) = T+

2 + tsend,

request,line) T
−
2 = Tin(budget), Nin/out(budget) = 1

3 and send(agent, T+
4 ≤ T+

3 ≤ T−
4 ,

request/specs) T−
3 = Tout(agent) = T+

3 + tsend, Nout(agent) = 1

4), max(T−
2 − T+

2 , T−
3 − T+

3) ≤ T−
4 − T+

4 ≤ (T−
2 − T+

2) + (T−
3 − T+

3)

5 foreach(recv(check,alts)) do T+
5 = max(T−

4 , Tin(check),) k5 = Nin(check) ≥ 0

6 [(if(not(line/forced)) T+
6 = T+

7 = T+
8 , c6 ∈ {0, 1}, L5 = max(T−

10 − T+
6 , ΔTin(check))

7 -> invoke(best,alts,choice) T
−
7 = T

+
7 + ΔTbest

8 ; let choice=first(alts) T−
8 = T+

8 + texpr

9), (c6 = 1 ∧ T−
6 = T−

7) ∨ (c6 = 0 ∧ T−
6 = T−

7)

10 send(check,choice) Nout(check) = k5, Tout(check) = T+
10 = T−

6 , ΔTout(check) = L5

11], T−
5 = T+

5 + k5 × L5

12 recv(agent,po), T−
12 = max(T−

5 , Tin(agent)), Nin(agent) = 1

13 send(req,po) T+
13 = T−

12, Nout(req) = 1, T−
13 = Tout(req) = T+

13 + tsend

Fig. 4. Structurally derived QoS constraint model for participant A

Figure 4 shows the automatically derived QoS constraint model for the ex-
ecution time for participant A at its start, i.e., when the continuation consists
of the entire participant process. The code for the participant A is shown on
the left-hand side in the abstract syntax, and the generated constraints appear
on the corresponding lines to the right. For an activity on line i, we denote its
starting time with T +

i and its end time with T−
i , T−

i ≥ T +
i . TA represents the

execution time at the current execution point (here at the start), and is an in-
put to the model.1 The code communicates over channels req, agent, and check
(Figure 2), plus an additional channel budget which is used to invoke the budget
line information service a2 from Figure 1.

The execution of participant A is a sequence of commands, and the metric for
the execution time is cumulative. Therefore for a sequence S = [S1, S2, ..., Sn]

1 Remember (Section 3.2) that these variables actually contain admissible ranges.

A Constraint-Based Approach to Quality Assurance 259

we have T + = T +
1 , T− = T−

n , and for adjacent activities Si and Si+1 we have
T−

i = T +
i+1. For clarity of presentation, here we ignore the internal time used by

the process engine between steps, which needs to be taken into account in real
applications (see [14]).

The reception of a single message with recv(c, v) (lines 1 and 12) finishes at
time T−

i = max(T−
j , Tin(c)), where T−

j is the finish time of the previous activity,
and Tin(c) is the time at which the message arrives on the channel c. Since in
our case messages are received over the same channel at a single place in code,
the recv construct also sets Nin(c) = 1. The command send(c, E) (lines 3, 10,
13) delivers a message to the mailbox on the other side of the channel, for which
it takes some time marked with tsend, which is also a constrained variable and
considered an input to the model. Tout(c) is equated with the finish time T−

i

of the send construct. Outside a loop (lines 3 and 12), Nout(c) is set to 1, and
ΔTout(c) is not constrained, because it is not applicable. The invoke construct
in line 2 is treated as a send-recv sequence.

The timing for the AND-parallel flow (ending in line 4) depends on the partic-
ular process engine implementation, and can vary between real parallelism and
sequential execution of the two activities. Without a more detailed knowledge of
the implementation details, the duration of the parallel flow T−

4 − T +
4 may vary

between the maximum and the sum of durations of the two “parallel” activities.
The recv-based loop (line 5) starts when both the preceding activity has fin-

ished (T−
4) and the first message on the check channel has become available

(Tin(check)). The number of iterations of the loop (k5) equals the number of
messages arriving through the channel, Nin(check). Since every loop iteration
can start only upon message reception, the effective length of a loop iteration
L5 is the maximum between the actual duration of the loop iteration (T−

10 −T +
6)

and the interval between incoming messages ΔTin(check). Sending a message in
each iteration of the loop (line 10) equates the multiplicity of outgoing messages
Nout(check) to the number of loop iterations k5, and the interval between mes-
sages ΔTout(check) to the effective iteration length L5.The if-then-else construct
(line 6) introduces a binary constraint variable c6 which captures the truth value
of the condition, and a disjunctive constraint (line 9) which covers the then and
the else cases. Finally, the internal operations, such as the expression evalua-
tion (line 8) and a call to an internal procedure best (line 7), simply add the
corresponding time intervals (resp. Δtexpr and Δtbest).

3.4 Analysis of Message Types with Size Constraints

The constraint QoS models whose derivation we described above include a num-
ber of internal structural parameters, such as the number of loop iterations and
condition truth values (k5 and c6 in Figure 4) that depend on data that is re-
ceived by these services. There are several ways in which the information about
shape of the data can be organized and used to further constrain the values
of these structural parameters and, therefore, make the constraint models more
precise. One possibility would be to apply computational cost analysis techniques
to an appropriate abstraction of the participant processes in order to obtain an

260 D. Ivanović, M. Carro, and M.V. Hermenegildo

τ := any | none (some unspecified value and no value)

| bool(a..b) (Boolean between a and b, a, b ∈ {0, 1}, a ≤ b)

| number(a..b) (number between a ∈ R ∪ {−∞} and b ∈ R ∪ {+∞}, a ≤ b)

| string(a..b) (string with finite size between a ∈ N and b ∈ N ∪ {+∞}, a ≤ b)

| list(a..b, τ) (list with finite size between a ∈ N and b ∈ N ∪ {+∞}, a ≤ b)

| { x1 : τ, x2 : τ, ..., xn : τ } (record with named fields x1, ..., xn, n ≥ 0)

Abbrev.: bool ≡ bool(0..1), number ≡ number(−∞.. + ∞), string ≡ string(0.. +∞), list(τ) ≡ list(0.. + ∞, τ)

Fig. 5. A simple typing system for messages with size constraints

analytic functional relationship between the size of input data (number mag-
nitudes, list lengths, etc.) and the upper and lower bounds of possible values
for the structural parameters [13]. Another possibility, which we discuss in this
subsection, is to use a simple form of type analysis which is directly applicable
to the abstract representations of continuations used in our approach.

Figure 5 shows a simple type system with size constraints which includes Bool-
eans, numbers, strings, lists, and records with named fields. Each type τ in this
system has a denotation [[τ]] which is the set of all values that belong to it. For
instance, [[number(0..1)]] = { x ∈ R |0 ≤ x ≤ 1}. By definition, we take [[none]] =
∅. We write τ1 � τ2 as a synonym for set inclusion [[τ1]] ⊆ [[τ2]]. The set of all types
with size constraints together with the relation � forms a complete lattice [6] with
any as the top element, and none as the bottom element, i.e., none � τ � any for
arbitrary τ . We introduce the least upper bound operation
 on types, where τ1

τ2 = τ means that τ is the smallest type (w.r.t.�) such that τ1 � τ and τ2 � τ . For
example, number(0..10)
number(8..100) = number(0..100), list(1..5, number)

list(9..9, bool) = list(1..9, any), and none
 τ = τ
 none = τ .

The lattice structure of types from Figure 5 provides a domain for the appli-
cation of abstract interpretation-based analysis techniques [4] to obtain a com-
bination of type and size analysis for data in the participant processes before
constructing the QoS model. This kind of analysis is well suited for our case in
which looping is done by iterating over list elements and streams of messages,
where the size range of the list type directly translates into the range of loop
iterations. We enrich the link (channel) descriptions by adding input and output
message types, τin(c) and τout(c).

For instance, in Figure 4, we start with τin(req) = {specs :
list(a..b, τspec), userId : number} where a ≥ 1 and we derive that
τout(budget) = number and τin(budget) � {forced : bool}. Also, in participant
B, τout(agent) = list(a..b, τspec) = τin(client). The result of the analysis for B
is shown in Figure 6. From it, we infer that A.Nin(check) = B.Nout(approval)
is between 0 and max(a, b).

3.5 Centralized and Distributed Processing of QoS Constraints

Solving a constraint model involves finding one (or several) set(s) of values for the
constrained variables that satisfy the set of constraints, or determining that the
set of constraints is unsatisfiable. Constraint solvers sometimes need to give an

A Constraint-Based Approach to Quality Assurance 261

1 recv(client,specs), τin(client) = list(a..b, τspec), 1 ≤ a ≤ b

2 let po = [], po : list(0..0, none)

3 stream(approval) do
4 foreach(spec:specs) do [a ≤ k4 ≤ b

5 invoke(gen,spec,alts), τout(gen) = τspec, τin(gen) = list(1.. + ∞, τalt)

6 (if(count(alts)>1)
7 -> invoke(approval, τout(approval) = list(1.. + ∞, τalt),

alts,choice) 0 ≤ Nout(approval) ≤ max(a, b)

8 ; let choice=first(alts)
9), choice : τalt

10 let po = po + [choice] pobefore : list(n..m, τ) ⇒
⇒ poafter : list(n + 1..m + 1, τ � τalt)

11], po : list(a..b, τalt)

12 send(client,po) τout(client) = list(a..b, τalt)

Fig. 6. Analysis of types with size constraints for participant B

E
ve

nt
bu

s

Engine
A

continuation

monitor events

Engine
B

continuation

monitor events

...
continuation

monitor events

Type and size analysis

QoS model derivation

Constraint solving

continuations & events

predicted QoS ranges

Event bus

Engine
A

Engine
B · · ·

continuations & monitoring events

Modeler
&

Solver A

Modeler
&

Solver B
· · ·

participant QoS
metrics ranges

Fig. 7. Centralized (left) and distributed (right) processing of choreography QoS con-
straints.

approximation of the actual solutions. These approximations are always complete
(no solution is discarded), but maybe not correct (they may contain values that
are not part of any solution [7]). Some constraint solvers are better suited for
some classes of constraints than others. E.g., if the generated constraints are
linear, a linear constraint solver is likely to detect inconsistencies and to narrow
down the value sets closer to the actual answers, compared to a more general one.
The constraint models generated using our approach in general involve non-linear
integer and real arithmetic constraints, as well as disjunctions of constraints.

The constraint QoS models for each participant can be, in principle, derived
and analyzed for the different message types separately, and the models ob-
tained in that way can be composed together by connecting the appropriate
input/output links and solving the resulting integrated model centrally. This ar-
chitecture is shown on the left-hand side of Figure 7. Different participants may,
in general, execute on different nodes (process execution engines) in a Service-
Oriented System. They publish participant continuations and the related mon-
itoring events (which can be used for establishing the previously accumulated
QoS) to an event bus. An aggregated feed of continuations is read from the event
bus and processed by a single component that performs the analysis, modeling,
and constraint solving of the integrated participant models, and publishes the
(updated) QoS metrics ranges for the entire choreography. An advantage of the

262 D. Ivanović, M. Carro, and M.V. Hermenegildo

centralized approach is that it offers integrated information about the behavior
of the participants and QoS for the choreography. However, it may not scale
well, since it requires global streaming of continuations, monitoring events and
results to and from a single processing component. Besides, it can be undesirable
in some settings since data regarding execution characteristics may need to be
sent from their administrative domains to a central, external point.

A decentralized approach aimed at alleviating somehow these issues is shown
on the right-hand side of Figure 7. Here, continuations and monitoring events
published by process engines are processed by modules which can be close in
the network topology to the engines, and (optionally) inside their administra-
tive boundaries. These modules perform a per-participant QoS analysis that
updates the ranges for 〈τout, Nout, q̄out, Δq̄out〉 for each outgoing channel using
the corresponding ranges for 〈τin, Nin, q̄in, Δq̄in〉 that are produced by the mod-
elers/solvers for participants at the other end. The updates are communicated
to the connected participant models and the process is repeated until a stable
solution is reached. This can be achieved using distributed constraint solving
algorithms [11], which ensure termination, completeness, and correctness.

4 Examples of Application

In this section, we illustrate how the proposed constraint-based approach can be
of benefit in providing answers to the questions posed at the end of Section 2,
using the motivating example. The aim of the approach is to be fully automated
and supported by tools. Currently, our prototype executes processes written in
the continuation language (Section 3.2), transmits continuations, and formulates
and solves the QoS constraint models.

4.1 Supporting SLA Negotiation for Classes of Input Data

A constraint-based QoS model can be used at design time to help the providers
of the participating processes in a choreography develop realistic SLA offers that
can be used to negotiate with their users. In such a case, participant providers
(e.g., the provider for participant A from Figure 1) can use the derived models,
along with assumptions and empirical assessments of the behavior of the envi-
ronment (network latency, component behavior, etc.) to develop reasonable SLA
offers to the end users.

We illustrate this application with an experiment on an SLA addressing ex-
ecution time. Assuming that participant A receives the request of some user at
time Tin(req) = 0, we are interested in knowing which guarantees can be offered
to the user with respect to Tout(req) for a given class of input data. Besides
the data, the participant QoS models for A and B depend on several internal
activity parameters: tsend is the time needed by a participant to deliver the mes-
sage to a participant mailbox, tbudget is the time needed to retrieve budget line
information in activity a3, and tbest is the time required by activity a7 to find
the best choice among the alternatives offered.

A Constraint-Based Approach to Quality Assurance 263

Table 1. Experimental inputs and outputs of the execution time model

Ranges for internal activity parameters
Parameter Confidence interval 99% Confidence interval 90% Confidence interval 80%

name parameter range [ms] parameter range [ms] parameter range [ms]
a3: tbudget 500 .. 1 500 642 .. 1 167 673 .. 1 094
a7: tbest 100 .. 700 195 .. 509 215 .. 468

a15: tgen 200 .. 500 247 .. 404 257 .. 384
tsend 25 .. 150

Case 1: Varying confidence intervals for participants A and B
Spec. list Confidence interval 99% Confidence interval 90% Confidence interval 80%

size Tout(req) range [ms] Tout(req) range [ms] Tout(req) range [ms]
1 .. 10 274 .. 17 100 322 .. 14 868 332 .. 14 376

11 .. 20 2 274 .. 32 100 2 797 .. 27 970 2 912 .. 27 057
21 .. 50 4 274 .. 77 100 5 272 .. 67 273 5 492 .. 65 103
50 .. 100 10 074 .. 152 100 12 450 .. 132 780 12 972 .. 128 512

101 .. 200 20 274 .. 302 101 25 069 .. 263 793 26 128 .. 255 330

Case 2: Varying confidence intervals for A and B with force=true
Spec. list Confidence interval 99% Confidence interval 90% Confidence interval 80%

size Tout(req) range [ms] Tout(req) range [ms] Tout(req) range [ms]
1 .. 10 274 .. 10 100 322 .. 8817 332 .. 8 535

11 .. 20 2 274 .. 18 100 2 797 .. 15 867 2 912 .. 15 376
21 .. 50 4 274 .. 42 100 5 272 .. 37 017 5 492 .. 35 900
50 .. 100 10 074 .. 82 100 12 450 .. 72 268 12 972 .. 70 106

101 .. 200 20 274 .. 162 100 25 069 .. 142 768 26 128 .. 138 518

The ranges of values for these parameters are normally empirically estab-
lished by monitoring. Such empirical data is effectively a sample (or a collection
of samples) of the “true population” set from which the QoS metric values are
drawn and whose exact bounds are generally unknown. We can use well-known
techniques of descriptive statistics on these samples to estimate the parameters
of central tendency (mean, median) and dispersion (standard deviation) for the
whole population of values. In that way, we can define intervals whose bounds
include the QoS values with some level of confidence. This level will be < 100%,
since, in general, total confidence is not attainable. Note that the choice of the
confidence level is generally a matter of heuristics. A 99% confidence interval,
for instance, is wider (and thus safer) than a 90% one, but, depending on the
distribution of values, it may lead to overly conservative predictions and SLA
offers to the clients that are safer, but too pessimistic, unattractive, and uncom-
petitive. The top part of Table 1 lists the ranges of the mentioned component
execution time across three experimental confidence levels: 99%, 90% and 80%,
with a common range for tsend.

The central part of Table 1 shows the ranges for Tout(req) obtained by solving
the model for each confidence interval in the experiment. In general, for each class
of input data sizes, the range of Tout(req) contracts, and its maximum, which

264 D. Ivanović, M. Carro, and M.V. Hermenegildo

can be offered as an element of the SLA, decreases when using smaller confidence
intervals. To further refine the SLA offer, the provider for participant A can look
at the branch condition in a6, and offer more attractive “fast-track” conditions
(with circa 40% reduction in the upper execution time bound) when it becomes
known that the force flag will be set to true, as shown in the lower part of
Table 1.

We used the ECLiPS e constraint logic programming system [2] which has
native support for integer and real non-linear arithmetic constraints, including
disjunctions of constraints, that are used in the derivation of the model. Deriving
the constraint models with our pilot implementation and solving them with a
centralized solver took on average around 260 ms on an i86_64 laptop computer
with 4GB of RAM running Mac OS X 10.7.3.

4.2 Predicting SLA Violations at Run Time

execution time

14 376 ms

27 057 ms

63 103 ms
Tmax

9 10 17 20 41 50input data size

Fig. 8. An example of SLA failure prediction
zones

The constraint-based QoS model
can be used for predicting SLA
violations at runtime. Since
the participant SLA is always
related to some event that
happens in one of the partici-
pants (such as sending the re-
ply in activity a11 of our sample
choreography), we can apply a
variation of the constraint-based
prediction method for orchestra-
tions [14]. In that method, we
make predictions at each point
in execution of the participant processes for which we have the continuation
and the monitoring data describing the previously accumulated QoS metrics. In
the case of execution time, the imminent failure condition for participant A is
predicted when the constraint Tout(req) ≤ Tmax is proven unsatisfiable in the
constraint QoS model, i.e., when SLA compliance cannot possibly be achieved.

Using the experimental settings from the previous subsection, we predict SLA
violations for a running choreography with fixed input data size (known at run
time), by taking Tmax to be the upper bound of Tout(req) for the 80% confidence
interval in each input data class from Table 1. The thick black line in Figure 8
shows Tmax for input data sizes in the range 1..50. The dashed lines show the
upper and lower bound of Tout(req) for a 99% confidence interval. SLA violations
are possible in the gray zones that correspond to data size intervals 9..10, 17..20,
and 41..50. In those intervals, imminent SLA violation can be predicted between
175 ms and 325 ms ahead of Tmax. For other input data sizes (in ranges 1..8,
11..16, and 21..40), the predictor is able to predict SLA conformance at the very
start. In both cases, the percentage of correctly predicted cases is typically very
high, between 94% and 99% [5].

A Constraint-Based Approach to Quality Assurance 265

4.3 SLA Compliance Checking, Dynamic Binding and Adaptation

We now turn to a situation where there exist several implementations for a
participant role in a choreography, that are known to be compatible with the
communication protocol, message data types, and message cardinalities. We now
want to see how the knowledge about participant QoS models can help us rule
out some combinations of participant implementations (or promote others) at
design time.

For instance, let us take participant A from Figure 1, and assume that there
are two implementations that can take the role of B and which differ only in
the method for generating alternatives in activity a15: while B1 can generate
one or more alternatives, B2 always generates at least two. Although the ranges
for all participant model variables of B2 are subsets of the corresponding ranges
for B1, the combination of A with B2 is illegal for some SLAs and input data
sizes for which A with B1 may work. E.g., for Tmax = 18 000 ms, the constraint
model predicts that the combination of A and B2 is guaranteed to fail for input
data sizes of 50 and above when forced=false in A. Since A does not control
forced, for such data sizes it should rule out B2, and choose B1 which has a
chance to meet the SLA.

16 17 18 19

13

14

15

16
kA

kB

T =25 508 ms

T =25 608 ms

T =25 708 ms

T =25 808 ms

Fig. 9. Adaptation need detection
in B.

This kind of analysis can be performed by
checking that every internal structural pa-
rameter of A in the constraint QoS model
for the choreography (such as the condition
in a6 and the number of iterations of a4) aug-
mented with condition Tout(req) > Tmax has
at least one value for which the condition
Tout(req) ≤ Tmax is satisfiable for the given
range of input data sizes. Alternatively, the
same check can be used for dynamic binding
at run-time to select an implementation for the role of B for the known size
of the particular input request. Such dynamic binding provides a finer-grained
per-request selection, at the cost of additional run-time analysis.

However, selecting B1 does not guarantee Tout(req) ≤ Tmax: if at run time
each invocation of a15 happens to return more than one alternative (thus behav-
ing in the same way as B2), the SLA will be violated for some input data sizes.
Participant B can use its QoS model to detect such a situation and to adapt by
forcing a15 to start returning single items. At the beginning of each iteration in
loop a14 from Figure 1, B can test whether the execution of a15, if it generates
multiple alternatives, can lead to an SLA violation. If so, it can coerce a15 to
produce a single item and so enforce the SLA. The earliest points in time when
that can happen for input data sizes in the range 17..20 and Tmax = 27 057 ms
(the central gray zone in Figure 8), are shown in Figure 9. kB stands for the
previous number of iterations of a14, and kA stands for the previous number of
times when more than one alternative was generated in a15.

266 D. Ivanović, M. Carro, and M.V. Hermenegildo

5 Conclusions

The constraint-based approach to QoS assurance for service choreographies pre-
sented is based on the automatic derivation of QoS constraint models from
abstract descriptions of multiple participating processes that can engage in com-
plex, stateful conversations. The QoS attributes that can be modeled include
execution time, availability, monetary cost, the quantity of data transferred, and
any others that can be mapped onto cumulative, non-negative numerical met-
rics. For greater precision, the model derivation is augmented with an analysis of
message types with size constraints, and the resulting models are data sensitive.
The participant models can be derived, integrated, and solved centrally, or in
a distributed fashion. The approach can be used at design-time, for classes of
input data, and also at run time, with the actual data, whenever the informa-
tion about the current point in execution is provided for the participants. The
resulting models can be used to support SLA negotiation, SLA violation predic-
tion, design-time SLA conformance for classes of input data, dynamic binding
of participants, and SLA-driven run-time adaptation.

Based on our prototype implementation, our future work will aim at the
development of the supporting tools and systems, and interfacing them with
the service infrastructure components, such as the execution engines and service
buses, and with choreography design tools. We will also aim at evaluating the
quality of QoS prediction offered by the constraint-based models in distributed
settings and when used with incomplete or inaccurate information about the
QoS properties of the service environment and components.

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press
(2003)

2. Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLIPSE. Cam-
bridge University Press (2007)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, pp. 191–202. ACM, New York (2012)

4. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
POPL 1977, pp. 238–252. ACM Press (1977)

5. Ivanović, D., Carro, M., Hermenegildo, M.: Exploring the impact of inaccuracy
and imprecision of qos assumptions on proactive constraint-based QoS prediction
for service orchestrations. In: Proceedings of the 4th International Workshop on
Principles of Engineering Service-Oriented Systems, PESOS 2012, pp. 931–937.
IEEE Press (June 2012)

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press (2002)

7. Dechter, R.: Constraint Processing. Morgan Kauffman Publishers (2003)
8. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for

Modeling Choreographies. In: ICWS, pp. 296–303 (2007)

A Constraint-Based Approach to Quality Assurance 267

9. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: An Overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010)

10. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to
highly dynamic, self-adaptive service-based applications. Automated Software En-
gineering 15, 313–341 (2008), doi:10.1007/s10515-008-0032-x

11. Faltings, B., Yokoo, M. (eds.): Artificial Intelligence Journal: Special Issue on Dis-
tributed Constraint Satisfaction, vol. 161. Elsevier Science Publishers Ltd., Essex
(2005)

12. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proac-
tive Self-adaptation of Service-Based Applications Based on Online Testing. In:
Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp.
122–133. Springer, Heidelberg (2008)

13. Ivanović, D., Carro, M., Hermenegildo, M.: Towards Data-Aware QoS-Driven
Adaptation for Service Orchestrations. In: Proceedings of the 2010 IEEE Inter-
national Conference on Web Services, ICWS 2010, Miami, FL, USA, July 5-10, pp.
107–114. IEEE (2010)

14. Ivanović, D., Carro, M., Hermenegildo, M.: Constraint-Based Runtime Prediction
of SLA Violations in Service Orchestrations. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 62–76. Springer, Heidelberg
(2011)

15. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and
prevention of sla violations in composite services. In: ICWS, pp. 369–376. IEEE
Computer Society (2010)

16. Metzger, A., Benbernou, S., Carro, M., Driss, M., Kecskemeti, G., Kazhamiakin,
R., Krytikos, K., Mocci, A., Di Nitto, E., Wetzstein, B., Silvestril, F.: Analytical
Quality Assurance. In: Papazoglou, M.P., Pohl, K., Parkin, M., Metzger, A. (eds.)
Service Research Challenges and Solutions. LNCS, vol. 6500, pp. 209–270. Springer,
Heidelberg (2010)

17. Object Management Group. Business Process Modeling Notation (BPMN), Version
1.2 (January 2009)

18. Reynolds, J.C.: The discoveries of continuations. LISP and Symbolic Computation
Journal 6, 233–247 (1993)

19. Sammodi, O., Metzger, A., Franch, X., Oriol, M., Marco, J., Pohl, K.: Usage-based
online testing for proactive adaptation of service-based applications. In: COMP-
SAC 2011 – The Computed World: Software Beyond the Digital Society. IEEE
Computer Society (2011)

20. Schmieders, E., Metzger, A.: Preventing Performance Violations of Service Com-
positions Using Assumption-Based Run-Time Verification. In: Abramowicz, W.,
Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011.
LNCS, vol. 6994, pp. 194–205. Springer, Heidelberg (2011)

21. Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using
redundancy and advance reservations. IEEE T. Services Computing 4(2), 125–139
(2011)

22. Tselentis, G., Dominigue, J., Galis, A., Gavras, A., Hausheer, D.: Towards the
Future Internet: A European Research Perspective. IOS Press, Amsterdam (2009)

23. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.:
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets. In: The Role of Business Processes in Service Oriented Architectures,
Dagstuhl Seminar Proceedings (2006)

24. World Wide Web Consortium. Web Services Choreography Description Language
Version 1.0 (November 2005)

Structural Optimization of Reduced Ordered

Binary Decision Diagrams for SLA Negotiation
in IaaS of Cloud Computing�

Kuan Lu1, Ramin Yahyapour1, Edwin Yaqub1, and Constantinos Kotsokalis2

1 Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen, Germany
2 IT & Media Center of Dortmund University of Technology, Germany

{kuan.lu,ramin.yahyapour,edwin.yaqub}@gwdg.de,
constantinos.kotsokalis@tu-dortmund.de

Abstract. In cloud computing, an automated SLA is an electronic con-
tract used to record the rights and obligations of service providers and
customers for their services. SLA negotiation can be a time-consuming
process, mainly due to the unpredictable rounds of negotiation and the
complicated possible dependencies among SLAs. The operation of ne-
gotiating SLAs can be facilitated when SLAs are translated into Re-
duced Ordered Binary Decision Diagrams (ROBDDs). Nevertheless, an
ROBDD may not be optimally structured upon production. In this pa-
per, we show how to reduce the number of 1-paths and nodes of ROBDDs
that model SLAs, using ROBDD optimization algorithms. In addition,
we demonstrate the reduction of 1-paths via the application of Term
Rewriting Systems with mutually exclusive features. Using the latter,
ROBDDs can be generated accurately without redundant 1-paths. We
apply the principles onto the negotiation of IaaS SLAs via simulation,
and show that negotiation is accelerated by assessing fewer SLA propos-
als (1-paths), while memory consumption is also reduced.

Keywords: Cloud computing, IaaS, SLA negotiation, Term rewriting,
ROBDD structural optimization.

1 Introduction

Recent years have witnessed wide adoption of utility computing for service pro-
visioning, in favor of more adaptive, flexible and simple access to computing
resources. Utility computing has enabled a pay-as-you-go consumption model
for computing similar to traditional utilities such as water, gas or electricity [1].
As a realization of utility computing [2], cloud computing provides computing
utilities that can be leased and released by the customers through the Internet
in an on-demand fashion. More recently, from the perspective of service type,
three service delivery models are commonly used, namely, Software-as-a-Service

� The research leading to these results is supported by Gesellschaft für wis-
senschaftliche Datenverarbeitung mbH Göttingen (GWDG) in Germany.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 268–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 269

(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) [5].
Automated negotiation may be used to accommodate a customer’s heteroge-
neous requirements against a service provider’s capabilities and acceptable usage
terms. The result of such a negotiation is a Service Level Agreement (SLA), an
electronic contract that establishes all relevant aspects of the service. SLA ne-
gotiation can be time-consuming, mainly due to the unpredictable rounds of ne-
gotiation and the possible complicated dependencies among SLAs. For instance,
an SaaS provider negotiates with one or more IaaS providers for computing re-
sources to host her applications. Thus, a SaaS SLA could have dependencies with
one or more IaaS SLAs. Establishing an SLA might need one or more rounds of
negotiation until both sides agree with the stipulation of the contract.

In our previous work [20], SLAs were canonically represented as Reduced
Ordered Binary Decision Diagrams (ROBDDs), aiming to facilitate SLA nego-
tiation. A BDD diagram includes some decision nodes and two terminal nodes
(0-terminal and 1-terminal). A path from the root node to the 1-terminal repre-
sents a variable assignment for which the Boolean function is true. Such a path
is called “1-path”. A 1-path can also be treated as an SLA proposal. Neverthe-
less, ROBDDs may be suboptimal in structure. Firstly, the ROBDDs should be
maintained throughout the whole life cycle of SLAs, so diagrams with too many
nodes may waste a lot of memory. Secondly, an ROBDD may have semantically
redundant 1-paths that improperly reflect a customer’s requirements; as a result,
SLA negotiation may slow down.

In this paper, we propose that by applying BDD node optimization algo-
rithms, the number of nodes for the ROBDDs can be decreased efficiently. Thus,
SLAs occupy less memory space. Additionally, the size and number of paths
(especially as regards 1-paths) can be reduced by eliminating those that are
semantically redundant via BDD path optimization algorithms. Consequently,
the SLA negotiation is accelerated by assessing fewer SLA proposals (1-paths).
Furthermore, a novel alternative solution for reducing semantically redundant
1-paths during construction is introduced. We argue that all the options of an
SLA term are mutually exclusive. Thus, customizing an SLA term is rewritten
as correctly selecting an option for this term. This process can be treated as an
implementation of an SLA Term Rewriting System.

The remainder of this paper is structured as follows. In Section 2, we discuss
related work. Section 3 describes how an SLA can be modeled as an ROBDD. In
Section 4, we present how the structure of an initial ROBDD can be optimized. In
order to validate our mechanisms, in Section 5, we simulate the SLA negotiation
by transforming IaaS SLAs into ROBDDs and optimizing the initial ROBDDs.
Finally, we conclude the paper in Section 6.

2 Related Work

In cloud computing, SLAs are used to ensure that service quality is kept at
acceptable levels [8]. An SLA management component may consist of several
components: discovery, (re-)negotiation, pricing, scheduling, risk analysis, moni-
toring, SLA enforcement and dispatching [7], where SLA negotiation determines

270 K. Lu et al.

the cardinality of parties involved, their roles, the visibility of the offers ex-
changed and so on [30]. Furthermore, Ron et al. in [9] define the SLA life cycle
in three phases: creation phase, operation phase and removal phase. Our focus
is on IaaS SLA negotiation during the SLA creation phase.

Based on [7], our framework [3] [4] [20] (developed in the SLA@SOI EU Inte-
grated Project [29]) covers the features for multi-round negotiation with coun-
teroffers customer and service provider. In general, apart from IaaS, the frame-
work can be easily extended to other scenarios (e.g., SaaS, PaaS) as well in which
automated SLA management is considered. In our scenario, virtual resources are
created and provisioned through Open Cloud Computing Interface (OCCI) [25]
and OpenNebula [26]. The VMs are compute instances, connected with OS im-
age and network instances. The storage pool is formed by several images, which
means that customers are able to uploade their own images.

The service provider can abstract the services in perspicuous terms, e.g., the
instances of Amazon EC2 [21]. Thus, non-technical customers can mainly focus
on the service as a whole rather than considering the service in too much detail.
However, the service provider would best allow customers with flexibility and
adaptability [22]. Chandra et al. [23] suggest that fine-grained temporal and
spatial resource allocation may lead to substantial improvements in capacity
utilization. Therefore, in IaaS, this means that customers are free to customize
the VM configuration. Namely, the granularity of customizing VMs evolves from
setting the number of predefined VM to the detailed specification of each term
in a VM. In this paper, the SLA terms that can be customized (see Table 1), the
ROBDD structural optimization in Section 4 and the simulation in Section 5 are
based on the cloud infrastructure provided by the GWDG for its customers and
scientific communities.

Service availability is one of the most important Quality of Service (QoS) met-
rics with respect to IaaS. In [24], authors outline that the service availability

Table 1. SLA terms and descriptions

SLA term Option Variable

Service name [service name] [x1]

Business hours [09:00-17:00] [x2]

VM number [1] [x3]

CPU core [1, 2, 4] [x4, x5, x6]

CPU speed [2.4 GHz, 3.0 GHz] [x7, x8]

Memory [1 GB, 2 GB] [x9, x10]

Network [Net-1, Net-2] [x11, x12]

Storage image [Private, OS-1, OS-2] [x13, x14, x15]

Service availability [99.99%, 99.9%] [x16, x17]

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 271

guaranteedby three large cloud providers (Amazon, Google andRackspaceCloud)
is more than 99.9% in order to obtain good reputation in todays competitive mar-
ket. Therefore, we propose to provide a basic service availability of 99.9% and an
advanced availability of 99.99%.The later one implies that the service provider has
to pay special attention (e.g., extra resources) on the service during SLA monitor-
ing phase in order to avoid SLA violation.

At the moment, many representations of SLAs, e.g., WS-Agreement [16],
WSLA [17] and the SLA model in [19], focus on enabling interoperability be-
tween independent agents. However, our focus is on a system-internal represen-
tation that is able to efficiently support decision-making during SLA negotiation.
In [20], we presented a novel application of ROBDD, for representing, managing
and facilitating the construction of SLAs. During BDD construction, although
pushing all facts and conditions to the top of the diagram provides a possibil-
ity for optimizing the BDD, there could still be lots of semantically redundant
1-paths. Furthermore, this kind of ordering does not reduce the total number of
decision nodes, which waste memory space.

In order to optimize the structure of the ROBDD, we studied Term Rewrit-
ing Systems (TRS) for Boolean functions [14] [15] that could be applied in SLA
terms selection to reduce the number of redundant 1-paths of an ROBDD. In
mathematics, rewriting systems cover a wide range of methods of transforming
terms of a formula with other terms. In TRS, a term can be recursively defined
to a constant c, or a set of variables x1... xn, or a function f [15]. The terms
are composed of binary operators logical conjunction “∧”, logical disjunction
“∨” and unary operator “¬”. In IaaS, an SLA term contains one or more vari-
ables, namely the options. We make an effort to rewrite the set of SLA terms
while customizing SLA templates in a way that depicts the customer’s request
precisely.

Alternatively, the existing BDD optimization algorithms in [10] [12] [28] [31]
provide us with the theoretical foundation to reduce the size of ROBDD. Fur-
thermore, JavaBDD [13], a Java library for manipulating BDDs, is the tool we
chose for setting up the BDD handling and programming environment.

3 Modeling SLA with ROBDD

An SLA is essentially a set of facts and a set of rules. Facts are globally (with
respect to the contract) applicable truths, such as parties involved, monetary
unit, etc. Rules include:

– the conditions that must hold for a certain clause to be in effect;
– the clause, typically describing the expected result that the customer wishes

to receive and which is usually referred to as Service Level Objective (SLO);
– a fall-back clause in the case that the aforementioned clause is not honored.

As an example, for the condition “time of day is after 08:00”, the clause could be
“service availability ≥ 99.9%”, and the fall-back clause could be an applicable
penalty. This kind of format actually reflects real-life contracts and their if-then-
else structure.

272 K. Lu et al.

BDDs, based on Shannon’s decomposition theorem [6], are well-known in
the domain of Computer Aided Design (CAD) for Very Large Scale Integrated
(VLSI) circuits. They can represent Boolean functions as rooted, directed and
acyclic graphs, which consist of decision nodes and two terminal nodes called 0-
terminal and 1-terminal. Each decision node is labeled by a Boolean variable and
has two child nodes called low child and high child. A path from the root node to
the 1-terminal represents a variable assignment for which the Boolean function
is true. Such a path is also called “1-path”. Compared to other techniques to
represent Boolean functions, e.g., truth tables or Karnaugh maps, BDDs often
require less memory and offer faster algorithms for their manipulation [10].

A BDD, with all variables occurring in the same order on all paths from
the root, is said to be ordered (OBDD). Furthermore, if all identical nodes are
shared and all syntactically redundant paths are eliminated, the OBDD is said
to be reduced, shortly termed ROBDD [12]. For example, Eq. (1) is a disjunction
Boolean function with 3 variables. Its corresponding ROBDD is illustrated in
Fig. 1 (a), including 3 decision nodes (x1, x2, x3) and 3 1-paths (x1 = true, x2 =
false, x3 = false), (x1 = false, x2 = true, x3 = false) and (x1 = false, x2 = false,
x3 = true). As already mentioned, ROBDDs are useful for modeling SLAs due to
their capability to provide canonical representations generated on the grounds of
if-then-else rules. Especially, ROBDDs can express SLAs unambiguously. Equiv-
alent SLAs, which are structurally different, are eventually represented by the
same ROBDD. On the contrary, using formats developed for on-the-wire repre-
sentation such as WS-Agreement [16] does not guarantee this property. Hence,
ROBDDs can be used internally in systems that have to manage SLAs.

f(x1, x2, x3) = x1 ∨ x2 ∨ x3 (1)

An SLA could have dependencies with one or more sub-SLAs. The SLA manager
has to parse the SLA request into an ROBDD and analyze all of its 1-paths. A
1-path is a potential SLA proposal that satisfies the customer’s requirements.
Nevertheless, an ROBDD may have semantically redundant 1-paths that reflect
the customer’s requirements improperly and reduce the time efficiency of the
negotiation process. Moreover, the SLA manager should maintain the ROBDDs
throughout the whole life cycle of SLAs. Accordingly, the size of 1-path and node
of ROBDDs for SLAs ought to be simplified and controlled.

4 ROBDD Structural Optimization

4.1 SLA Term Rewriting System with Mutual Exclusiveness in
ROBDD

According to the canonicity Lemma in [12], by reducing all the syntactically
redundant paths, there is exactly one ROBDD with n basic variables in the order
of x1 < x1 < ... < xn. In this unique ROBDD, all variables of a disjunction
function are mutually exclusive. Based on the truth table, e.g., a disjunction
function is true when all its variables are true. However, such an assignment does

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 273

not exist in ROBDD; as the ROBDD checks these variables one after another,
the first true variable already ensures this function to be true and that leaves the
rest of the variables not evaluated. For instance, as we explained in Section 3,
the ROBDD (Fig. 1 (a)) of Eq. (1) has 3 decision nodes and 3 1-paths and its
structure can’t be simplified anymore. Therefore, if the inputs of a disjunction
function are the basic variables, they are mutually exclusive and the ROBDD
contains no redundant nodes and 1-paths. In contrast, when the inputs are not
basic variables, despite the mutually exclusive feature among the inputs (only
one of the inputs will be selected), the ROBDD of this disjunction function
might have redundant nodes and 1-paths. Semantically, options of most SLA
terms are mutual exclusive, which means the customer can only choose one of
them and this term must be represented as a combination of all the options with
binary operators “logical conjunction” (∧), “logical disjunction” (∨) and unary
“negation” (¬). While constructing an ROBDD, using Table 1, a simple SLA (see
Eq. (2)) can be customized by specifying SLA term “Network” with 2 mutually
exclusive options “x11” and “x12” and SLA term “Service availability” with 2
mutually exclusive options “x16” and “x17”. This SLA indicates that inputs
“x11 ∧ x16” and “x12 ∧ x17” both are acceptable for the customer.

SLA = (x11 ∧ x16) ∨ (x12 ∧ x17) (2)

Its ROBDD (see Fig. 1 (b)) includes 6 decision nodes and 4 1-paths. However,
two of those paths, namely (x11 = true, x12 = true, x16 = false, x17 = true) and
(x11 = true, x12 = true, x16 = true), are not correct, since x11 and x12 cannot
be true concurrently. In IaaS, selecting both “Net-1” and “Net-2” as network
is an illogical clause. Therefore this inaccurate SLA representation creates two
unrealistic semantically redundant 1-paths and such paths should be eliminated
at the very beginning.

Consequently, we propose that specifying an SLA term (t) with 2 options (α1

and α2) can be rewritten as illustrated in Formula (3).

t→ (α1 ∧ ¬α2) ∨ (¬α1 ∧ α2)→ α1 ⊕ α2 (3)

Mutual exclusiveness cannot be simply represented as a combination of all the
options with the exclusive disjunction “⊕”, when there are more than 2 options
in an SLA term. Because the output is true when the number of “true” variables
is odd and the output is false when the number of “true” variables is even [27].
For example, all-true assignment makes the expression α1⊕α2⊕α3 true, which
is however not what we expect. Thus, when an SLA term (t) contains n (n ≥ 3)
options (α1,..., αn), we have the following assumptions:

N = {1, ..., n} (4)

A ∪B = N (5)

A ∩B = ∅ (6)

274 K. Lu et al.

01

X1

X2

X3

0 1

X11

X12

X12

X17 X16

X16

0 1

X11

X12 X12

X16 X16

X17 X17

0 1

X11

X12

X16

X17

(a) (b) (c) (d)

Fig. 1. (a) The ROBDD of disjunction function, (b) Mutual exclusiveness of disjunction
function but with semantically redundant 1-path in ROBDD, (c) Mutual exclusiveness
of disjunction function without semantically redundant 1-path in TRS ROBDD, (d)
ROBDD after path optimization

A �= ∅, B �= N (7)

From Eq. (4) to (6), N is a set of sequential numbers of all options. N can be
further divided into 2 disjoint subsets. Options that concern a customer are put
into A and indifferent ones are in B. Eq. (7) means that the customer should
select at least one option. Thereby specifying an SLA term (t) with n (n ≥ 3)
options can be rewritten as Eq. (8).

t→
∨
l∈A

((∧
k∈A

¬αk

)
∧ αl

)
∧
(∧

m∈B

¬αm

)
, l �= k �= m (8)

For SLA term t,
⋃

l∈A al is a set of options that the customer is flexible with
and the rest of the options in A (

⋃
k∈A ak) should be denied explicitly with

“¬”. In the meanwhile, the unconcerned options in N , namely set B, should
also be negated with “¬” in order to not conflict with other SLA option(s) from
the same customer. Therefore, when n = 3, Eq. (8) can be specified as Eq. (9),
in this case the set B is empty, which means the customer is flexible with any
option of α1, α2, α3.

(α1 ∧ ¬α2 ∧ ¬α3) ∨ (¬α1 ∧ α2 ∧ ¬α3) ∨ (¬α1 ∧ ¬α2 ∧ α3) (9)

Based on above concepts, Eq. (2) can be written as Eq. (10) with 7 decision nodes
and 2 1-paths in its TRS ROBDD (see Fig. 1 (c)). The number of redundant
1-paths is reduced efficiently although the node size increases by 1.

(x11 ∧ x16 ∧ ¬x12 ∧ ¬x17) ∨ (x12 ∧ x17 ∧ ¬x11 ∧ ¬x16) (10)

In summary, the above term rewriting concepts can be set into a dictionary
and updated dynamically according to the use case, whereby the semantically
redundant 1-paths can be eliminated efficiently. This also reduces the complex-
ity of planning and optimization processes for SLA management. However, the
shortcoming is that perhaps this approach might introduce extra decision nodes.

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 275

4.2 ROBDD Variable Swap and Sifting Algorithm

Alternatively, structural optimization algorithms can be applied to reduce the
size of ROBDD. Here, the size means the number of nodes or paths. The al-
gorithms make use of basic techniques such as variable swaps and the sifting
algorithm. As approved in [10], a swap of adjacent variables in a BDD only
affects the graph structure of the two levels involved in the swap, leaving the
semantic meaning of Boolean function unchanged.

Algorithm 1. Sifting algorithm [11]

sort level numbers by descending level sizes and store them in array sl;
for i = 1 → n do

if sl[i] = 1 then
sift down(i, n); // the BDD size is recorded in sift down();

else if sl[i] = n then
sift up(i, 1); // the BDD size is recorded in sift up();

else if (sl[i]− 1) > (n− sl[i]) then
sift down(i, n);
sift up(n, 1);

else
sift up(i, 1);
sift down(1, n);

end if
sift back();

end for

Based on the variable swap, the classical sifting algorithm is described in
Algorithm 1, where the levels are sorted by descending level sizes. The largest
level contains the most nodes and is considered first. Then, the variable is moved
downwards until the terminal nodes and upwards from the initial position to the
top. In the previous steps, the BDD size resulting from every variable swap is
recorded. In the end, the variable is moved back to the position, which led to a
minimal BDD size. Here, the size could be the number of nodes or the 1-paths.

4.3 Node Optimization

The sifting algorithm, based on the efficient exchange of adjacent variables, is
able to dynamically reorder the structure of BDD in a way to change the number
of decision nodes. While the sifting algorithm is executing, we record the BDD
node size for each variable swap. In the meanwhile, we also store all the <
node, 1 − path > pairs into a < node, 1 − path > array, which can further be
used in Section 4.5 for determining the optimal < node, 1− path > pair. In the
end, a BDD with minimum number of decision nodes is derived.

In Section 4.1, we strive to define the TRS ROBDD accurately enough so
that no semantically redundant 1-paths exist. Thereby, we say the quantity and
semantic meaning of 1-path of TRS ROBDD do not vary with the changes of

276 K. Lu et al.

variable ordering of TRS ROBDD. As we showed that a TRS ROBDD might
introduce extra decision nodes, we can further use node optimization to reduce
its node size. Clearly, in this case node optimization only improves the node size
and leaves the 1-path unchanged.

In-memory, each decision node requires an index and pointers to the succeed-
ing nodes [28]. Since each decision node in an ROBDD has two pointers, the
memory size required to represent an ROBDD is given by Eq. (11).

Memory(ROBDD) = (1 + 2)× nodes(ROBDD) (11)

4.4 Path Optimization

Apart from the BDD node optimization, another criterion –namely, the number
of 1-paths– for BDD optimality is also considered. As the variable ordering
heavily influences the number of nodes of a BDD, the sifting algorithm can be
modified to minimize the number of 1-paths instead of the node size of a given
BDD. After each swap of two adjacent variables, i.e. after processing all nodes
in the two levels, changes are only propagated from those two levels down to the
terminal nodes. During modified sifting no upper limit on the number of 1-paths
is used to stop the swapping operations [10].

Similarly, we record the 1-paths number of BDD for each variable swap. In
the meanwhile, we also store all the < 1 − path, node > pairs into a < 1 −
path, node > array, which can further be used in Section 4.5 for determining
the optimal < 1−path, node > pair. In the end, a BDD with minimum number
of 1-paths is derived.

Although for Eq. (2), the 1-paths number can be reduced from 4 to 3, path
(x11 = true, x12 = true, x16 = false, x17 = true) still exists (see Fig. 1 (d)),
where x11 and x12 are true at the same time. Path optimization relieves the
work of SLA management, but it does not eliminate the semantically redundant
1-paths completely. Thus, the SLA manager still needs to evaluate the validity
of each 1-path despite the partial reduction of 1-paths.

4.5 Multicriteria Optimization Problem

As it is demonstrated in [10], the number of paths can be significantly reduced for
some benchmarks. At the same time, the number of nodes does not necessarily
increase and may even be reduced.

The path optimization algorithm re-constructs an ROBDD with the mini-
mal number of 1-paths, but not necessarily the minimal number of decision
nodes. Similarly, node optimization algorithm re-constructs the ROBDD with
the minimal number of decision nodes, but not necessarily the minimal number
of 1-paths. As Lemma 5.5 in [10], for all Boolean functions of two or three vari-
ables there exists a BDD that is minimal both in size and the number of 1-paths.
This is however not true for functions of more than three variables. Therefore,
this becomes a multicriteria optimization (MCO) problem for gaining a minimal
number of decision nodes and 1-paths (see Algorithm 2).

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 277

Algorithm 2. Calculate optimal (node, path) pair

store node and 1 path size of node minimization() into n nopti and p nopti;
store node and 1 path size of path minimization() into n popti and p popti;
if n nopti = n popti then

return (n popti, p popti);
else if p nopti = p popti then

return (n nopti, p nopti);
else

return node path pair selection();
end if

In Algorithm 2, if the node size of an ROBDD after executing the path op-
timization is equal to that after executing the node optimization, the result of
the path optimization will be taken. An analogous statement holds if the path
size of an ROBDD after executing the node optimization is equal to that after
executing the path optimization, thus we take the result of the node optimiza-
tion. These two situations mean we can get minimal size of paths and decision
nodes at the same time. Otherwise, we can’t have an optimized ROBDD in
both ways. A compromise between the two measures should be considered in
node path pair selection(). Here, end users have to specify it according with
their requirements. For example, the customer may only concern the number of
1-paths regardless of number of nodes or the other way around. A sample solu-
tion based on geometric distance [32] for this MCO problem could be resolved by
Eq. (12). Selection of a point that is closest to the Optimal Point (OP). A pref-
erence is given to the point with the smallest number of 1-paths, when multiple
points have the same distance to the OP.

Distance to OP =

√
(n opti)

2
+ (p opti)

2 (12)

5 Experimental Verification

Based on the SLA template (Table 1), we assume that a customer starts an SLA
negotiation for service “IaaS-1”, given that business hours are between 09:00 and
17:00. The customer needs one VM with 2 or 4 CPU cores, CPU speed is either
2.4 GHz or 3.0 GHz, memory size is 2 GB, network is 10 Gb/s Net-1, either OS-1
or OS-2 is selected and customer’s private image is uploaded, service availability
must be 99.99% or higher; Or a VM with 1 CPU core, CPU speed must be 2.4
GHz, memory size is 1 GB, network is 10 Gb/s either Net-1 or Net-2, either
OS-1 or OS-2 is selected, no private image is uploaded, service availability is at
least 99.9% or higher.

Table 2 illustrates the set of facts and clauses that we will use for this use
case scenario. It is straightforward to see that these facts and clauses can be
considered as Boolean variables, which evaluate to true or false. The SLA can
also be correctly evaluated if it is modeled according to the following equations.

f1 = x1 ∧ x2 (13)

278 K. Lu et al.

Table 2. Example clauses of an SLA template

Variable Proposition Proposition Type

x1 Service name = “IaaS-1” Fact

x2 Business hours = 09:00 - 17:00 Fact

x3 VM = “1” Clause

x5 ∨ x6 CPU core = “2” or “4” Clause

x7 ∨ x8 CPU speed = “2.4 or 3.0” GHz Clause

x10 Memory = “2 GB” Clause

x11 10 Gb/s Network = “Net-1” Clause

x13 Storage = “Private image” Clause

x14 ∨ x15 Storage = “OS-1 image” or “OS-2 image” Clause

x16 Service availability ≥ 99.99% Clause

x3 VM = “1” Clause

x4 CPU core = “1” Clause

x7 CPU speed = “2.4 GHz” Clause

x9 Memory = “1 GB” Clause

x11 ∨ x12 10 Gb/s Network = “Net-1” or “Net-2” Clause

¬x13 Storage != “Self image” Clause

x14 ∨ x15 Storage = “OS-1 image” or “OS-2 image” Clause

x17 Service availability ≥ 99.9% Clause

f2 = x3 ∧ (x5 ∨ x6) ∧ (x7 ∨ x8) ∧ x10 ∧ x11 (14)

f3 = x13 ∧ (x14 ∨ x15) ∧ x16 (15)

f4 = x3 ∧ x4 ∧ x7 ∧ x9 ∧ (x11 ∨ x12) (16)

f5 = ¬x13 ∧ (x14 ∨ x15) ∧ x17 (17)

SLA = f1 ∧ ((f2 ∧ f3) ∨ (f4 ∧ f5)) (18)

This SLA request is firstly transformed to an initial ROBDD with 29 decision
nodes and 40 1-paths. Memory requirement is 87 indices and pointers. By apply-
ing the term rewriting, the number of 1-paths of the initial ROBDD is reduced
to be 12, however, the decision nodes are increased by 2 (31 decision nodes).

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 279

As already mentioned in Section 4.3, we can further optimize this ROBDD by
using the node optimization. There will be 30 decision nodes in this ROBDD
(see Fig. 2 (a)). Memory requirement is 90 indices and pointers. Alternatively,
by applying the path and node optimization, the initial ROBDD is optimized
to be with 21 decision nodes and 12 1-paths. Memory requirement is 63 in-
dices and pointers. (see Fig. 2 (b)). Eventually, we attempted to simulate the
similar SLA negotiation above for 1000 times to compare the performance of
three approaches. We reused our planning and optimization algorithms in [3]
to balance the price, profit and failure rate. Each time, the SLA template was
customized randomly by selecting different combinations of options for all the
SLA terms. Each SLA template was first transformed into an initial ROBDD
using the approach in [20]. Then we rewrote the same initial ROBDD using TRS,
and following that we used BDD node optimization to reduce the nodes of TRS
ROBDD by the greatest extent. Finally, we optimized the initial ROBDD by
using BDD optimization algorithms. All the decision nodes and 1-paths for each
approach were aggregated and compared with each other. Additionally, we as-
sumed that each round of negotiation starts when the customer submits the SLA
template to SLA manager and stops when the SLA manager sends an offer or a
counter-offer back to the customer. The total negotiation time of each approach

0 1

X1

X2

X3

X5

X6

X4 X4

X7 X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X8 X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

0 1

X1

X2

X3

X13

X4

X5

X7

X6

X7

X9

X11

X12

X14

X15

X17

X8

X10

X11

X14

X15

X16

(a) (b)

Fig. 2. (a) The ROBDD with 30 decision nodes and 12 1-paths by applying term
rewriting and node optimization. (b) The ROBDD with 21 decision nodes and 12 1-
paths by applying path and node optimization

280 K. Lu et al.

0 200 400 600 800 1000

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

Number of SLAs

N
um

be
r o

f D
ec

is
io

n
N

od
es

node_I
node_TRS
node_O

0 200 400 600 800 1000

0
10
00
0

20
00
0

30
00
0

40
00
0

Number of SLAs

N
um

be
r o

f 1
-P

at
hs

path_I
path_TRS
path_O

0 200 400 600 800 1000

0
50
0

10
00

15
00

20
00

Number of SLAs

S
um

m
at

io
n

of
 N

eg
ot

ia
tio

n
Ti

m
e

(m
ill

is
ec

on
d) time_I

time_TRS
time_O

(a) (b) (c)

Fig. 3. The number of nodes (a), 1-paths (b) and negotiation time (c) statistics of the
initial ROBDD (blue), the TRS ROBDD (red) and the ROBDD after running BDD
optimization algorithms (green)

was counted. Thus, the whole simulation took approximately 13521 seconds on
a 1.8 GHz processor. Initial ROBDDs had 22123 decision nodes (node I) and
47880 1-paths (path I) and the negotiation time (time I) was 1982 milliseconds
(ms). Fig. 3 (a) illustrates that the number of decision nodes increased pro-
portionally in all approaches. The TRS ROBDDs had the most decision nodes
(node TRS=26421), because the least number of 1-path (path TRS=16554) in
Fig. 3 (b) and the least negotiation time (time TRS=1432 ms) in Fig. 3 (c) were
realized at the cost of nodes. Eclectically, BDD optimization algorithms not only
reduced the number of decision nodes (node O=17838) and redundant 1-paths
(path O=19804) efficiently, but also showed their time saving (time O=1505
ms) feature. The TRS approach accurately represented the requirements of the
customer, therefore all its 1-paths were valid paths. By setting path TRS as a
benchmark, the differences between path TRS and the 1-path number of other
approaches were semantically redundant 1-paths. Thus, the time I and time O
were greater than the time TRS, since they had to use an extra algorithm to ver-
ify the invalid 1-paths during the SLA negotiation. Experimentally, it was proved
that after running 1-path verification, the rest 1-paths of the initial ROBDD and
the ROBDD by applying path and node optimization was exactly the same as
the one of the TRS ROBDD with respect to quantity and semantic meaning.

In summary, the TRS/node optimization led to the most reduction in num-
ber of 1-paths (65.43%) and negotiation time (27.75%), although the number
of decision nodes had an increase of 19.43%. Furthermore, BDD node/path op-
timizations led to the most reduction in number of decision nodes, which was
19.37%. Moreover, they had reduction in number of 1-paths (58.64%) and nego-
tiation time (24.07%), but it may still not completely eliminate all the seman-
tically redundant 1-paths, for which reason, the SLA manager requires more
time to verify 1-paths during the negotiation. However, it could be a good eclec-
tic approach. From another standpoint, for example, at 1000 ms of the SLA
negotiation, the respective SLA number of three approaches were SLAs I=397,
SLAs TRS=650 and SLAs O=605. Therefore, the TRS approach had the most
SLAs and potentially led to more profits and higher customer satisfaction.

Structural Optimization of Binary Decision Diagrams for SLAs in IaaS 281

6 Conclusions and Future Work

The negotiation of SLAs in service computing overall, and cloud computing in
specific, can be supported by the modeling of SLAs as ROBDDs. Nevertheless,
ROBDDs may be suboptimal in structure. In this paper, we show that by apply-
ing the BDD node optimization, the number of nodes can be decreased efficiently.
Thus, SLAs occupy less memory space. Additionally, the size of semantically
redundant 1-paths can be eliminated through the BDD path optimization. Con-
sequently, the SLA negotiation is accelerated by assessing fewer SLA proposals
(1-paths). Furthermore, we build on the observation that the options of an SLA
term may be mutually exclusive. Thus, an SLA term is rewritten as correctly
selecting an option for this term. This process can be treated as an implementa-
tion of an SLA term rewriting system. Hence, the approach above can eliminate
the number of semantically redundant 1-paths at BDD creation phase. Finally,
we discuss the strengths and weaknesses of the approaches with an IaaS use case.

In the future, we wish to apply TRS to SLA translation. Furthermore, a
suitable representation and transformation would need to be defined to be able to
use term rewriting into our scenario. Besides, there is a gap in using the canonical
form of the structure for outsourcing and decision-making, related to matching
paths from different BDDs and finding out whether they are equivalent so that
the outsourced requirements match the available services from sub-contractors.

References

1. Vázquez, T., Huedo, E., Montero, R.S., Llorente, I.M.: Evaluation of a Utility
Computing Model Based on the Federation of Grid Infrastructures. In: Kermarrec,
A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 372–381.
Springer, Heidelberg (2007)

2. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 7–18 (2010)

3. Lu, K., Roeblitz, T., Chronz, P., Kotsokalis, C.: SLA-Based Planning for Multi-
Domain Infrastructure as a Service. In: 1st International Conference on Cloud
Computing and Services Science, pp. 343–351. Springer (2011)

4. Lu, K., Roeblitz, T., Yahyapour, R., Yaqub, E., Kotsokalis, C.: QoS-aware SLA-
based Advanced Reservation of Infrastructure as a Service. In: Third IEEE In-
ternational Conference on Coud Computing Technology and Science (CloudCom
2011), pp. 288–295. IEEE Computer Society (2011)

5. Antonopoulos, N., Gillam, L.: Cloud Computing: Principles, Systems and Appli-
cations. Springer (2010)

6. Shannon, C.E.: A symbolic analysis of relay and switching circuits. AIEE (57),
713–723 (1938)

7. Wu, L.L., Buyya, R.: Service Level Agreement (SLA) in Utility Computing Sys-
tems. Architecture, 27 (2010)

8. Chazalet, A.: Service Level Checking in the Cloud Computing Context. In: IEEE
3rd International Conference on Cloud Computing, pp. 297–304 (2010)

9. Ron, S., Aliko, P.: Service level agreements. Internet NG project (2001)
10. Ebendt, R., Drechsler, R.: Advanced BDD Optimization. Springer (2005)

282 K. Lu et al.

11. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
IEEE/ACM International Conference on Computer-Aided Design, pp. 8–15. IEEE
Computer Society Press, Los Alamitos (1993)

12. Andersen, H.R.: An Introduction to Binary Decision Diagrams, pp. 8–15. Citeseer
(1999)

13. JavaBDD (2007), http://javabdd.sourceforge.net/
14. Klop, J.W.: Term Rewriting Systems. Stichting Mathematisch Centrum, Amster-

dam (1990)
15. Baader, F., Nipkow, T.: Term Rewriting and All That, pp. 1–2, 34–35. Cambridge

University Press (1999)
16. Open Grid: Web Services Agreement Specification (2007), http://www.ogf.org/
17. Keller, A., Ludwig, H.: Specifying and Monitoring Service Level Agreements for

Web Services. Journal of Network and Systems Management, 57–81 (2003)
18. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-

scription Language (WSDL) 1.1 W3C Note, World Wide Web Consortium (2001)
19. Kearney, K.T., Torelli, F., Kotsokalis, C.: SLA*: An abstract syntax for Service

Level Agreements. In: GRID, pp. 217–224 (2010)
20. Kotsokalis, C., Yahyapour, R., Rojas Gonzalez, M.A.: Modeling Service Level

Agreements with Binary Decision Diagrams. In: Baresi, L., Chi, C.-H., Suzuki,
J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 190–204. Springer, Hei-
delberg (2009)

21. Amazon EC2 Cloud (2012), http://aws.amazon.com/ec2/
22. Bartlett, J.: Best Practice for Service Delivery. The Stationery Office (2007)
23. Chandra, A., Goyal, P., Shenoy, P.: Quantifying the benefits of resource multi-

plexing in on-demand data centers. In: 1st ACM Workshop on Algorithms and
Architectures for Self-Managing Systems (2003)

24. Machado, G.S., Stillerm, B.: Investigations of an SLA Support System for Cloud
Computing. In: Praxis der Informationsverarbeitung und Kommunikation (2011)

25. Open Cloud Computing Interface Specification (2012),
http://occi-wg.org/about/specification/

26. Opennebula (2012), http://opennebula.org/
27. 74LVC1G386, 3-input Exclusive-Or gate, Data Sheet, NXP B.V. (2007)
28. Prasad, P.W.C., Raseen, M., Senanayake, S.M.N.A., Assi, A.: BDD Path Length

Minimization Based on Initial Variable Ordering. Journal of Computer Science
(2005)

29. SLA@SOI (2011), http://sla-at-soi.eu/
30. Yaqub, E., Wieder, P., Kotsokalis, C., Mazza, V., Pasquale, L., Rueda, J., Gomez,

S., Chimeno, A.: A Generic Platform for Conducting SLA Negotiations. In: Wieder,
P., Butler, J., Yahyapour, R. (eds.) Service Level Agreements For Cloud Comput-
ing, Part 4, pp. 187–206. Springer (2011)

31. Drechsler, R., Guenther, W., Somenzi, F.: Using lower bounds during dynamic
BDD minimization. IEEE Trans. on CAD, 50–57 (2001)

32. Ehrgott, M.: Multicriteria Optimization, 2nd edn., pp. 171–195. Springer (2005)

http://javabdd.sourceforge.net/
http://www.ogf.org/
http://aws.amazon.com/ec2/
http://occi-wg.org/about/specification/
http://opennebula.org/
http://sla-at-soi.eu/

A Service Composition Framework Based on

Goal-Oriented Requirements Engineering, Model
Checking, and Qualitative Preference Analysis�

Zachary J. Oster1, Syed Adeel Ali2, Ganesh Ram Santhanam1,
Samik Basu1, and Partha S. Roop2

1 Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA
{zjoster,gsanthan,sbasu}@iastate.edu

2 Department of Electrical and Computer Engineering,
The University of Auckland, New Zealand

{sali080,p.roop}@auckland.ac.nz

Abstract. To provide an effective service-oriented solution for a
business problem by composing existing services, it is necessary to ex-
plore all available options for providing the required functionality while
considering both the users’ preferences between various non-functional
properties (NFPs) and any low-level constraints. Existing service compo-
sition frameworks often fall short of this ideal, as functional requirements,
low-level behavioral constraints, and preferences between non-functional
properties are often not considered in one unified framework. We pro-
pose a new service composition framework that addresses all three of
these aspects by integrating existing techniques in requirements engi-
neering, preference reasoning, and model checking. We prove that any
composition produced by our framework provides the required high-level
functionality, satisfies all low-level constraints, and is at least as preferred
(w.r.t. NFPs) as any other possible composition that fulfills the same re-
quirements. We also apply our framework to examples adapted from the
existing service composition literature.

1 Introduction

Service-oriented architectures [8] have become increasingly popular as a way
to support rapid development of new applications. These applications may be
implemented as composite services (also known as compositions) that are formed
from existing services. The process of developing a composite service that satisfies
a given set of user requirements is called service composition [16].

Requirements for a service composition may be divided into three main types:
functional requirements, behavioral constraints, and non-functional properties.
Functional requirements describe what actions or capabilities are to be provided;
for instance, an e-commerce composite service must have a component that han-
dles online payment options. These include both high-level requirements (e.g.,

� This work is supported in part by U.S. National Science Foundation grants
CCF0702758 and CCF1143734.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 283–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 Z.J. Oster et al.

the composition must process online payments) and more detailed low-level re-
quirements (e.g., the composition shall verify the identity of credit-card users).
Behavioral constraints describe how the functionality must be provided by spec-
ifying required interactions and/or ordering of the component services. For ex-
ample, the e-commerce composite service must be composed so that the shipping
service is not invoked before the payment is confirmed and an address is verified.

Non-functional properties (NFPs) may include quality of service (QoS), cost,
scalability, or other desirable properties that are not necessary for the composi-
tion to perform the required tasks. Ideally, a composition would satisfy the entire
set of NFPs, but in practice trade-offs between NFPs must often be considered.
For example, some users might prefer the increased security of locally-hosted ser-
vices over the greater scalability of cloud-based services. A service composition
framework must consider preferences and trade-offs between NFPs in order to
identify a composition that satisfies all functional requirements and behavioral
constraints while fulfilling an optimal set of NFPs.

The Driving Problem. While there exist a number of service composition
frameworks and algorithms associated with them (many of which are surveyed
in [16]), very few of them consider all of these aspects in a single framework.
These existing methods often have one or more other important drawbacks:

– They frequently treat all functional requirements as mandatory, choosing be-
tween several versions of the same low-level functionality instead of consid-
ering diverse low-level implementations of the same high-level functionality.

– They typically do not focus on verifying low-level behavioral constraints.
– They often consider only NFPs that affect the QoS of the composition but

ignore other important NFPs, especially those that are not easily quantified.
– They typically require that the names and/or structures of a service’s ac-

cepted inputs and available outputs exactly match those of other services.

Our Solution. The contribution of our work is a service composition framework
that addresses the above shortcomings in the following fashion:

– A Goal Model (as used in the Goal-Oriented Requirements Engineering
(GORE) [5] methodology) is used to describe the functional requirements
for a composite service. Non-functional properties are associated with the
nodes of the goal model to indicate how satisfaction of each requirement by
an existing service contributes to the satisfaction of the NFPs.

– A Conditional Importance Preference Network (CI-net) [3] is used
to formally describe qualitative preferences and trade-offs between non-
functional properties. We claim that it is more intuitive to express pref-
erences over NFPs in qualitative terms because not all trade-offs may be
naturally quantifiable (e.g., it may be difficult or even impossible to describe
to what extent locally hosted services are preferred to cloud-based services).

– Model Checking is used to automatically construct a composition that sat-
isfies behavioral constraints specified in Computation Tree Logic (CTL) [7].
The final composite service is chosen from a set of preferred candidate com-
positions that satisfy the overall functional requirements. Structural mis-
matches between input/output data types are also resolved in this step.

A Service Composition Framework 285

Fig. 1. HelpMeOut goal model

We formally prove the correctness of the results computed by our framework.
We also show our framework’s practical feasibility by applying it to produce a
correct composite service that solves a non-trivial service composition problem.

This work advances the state of the art in service composition by consid-
ering high-level functional requirements, low-level behavioral specifications [1],
and NFPs [14] all at once, which allows the search space for candidate composi-
tions to be effectively reduced (relative to considering these aspects separately).
Although a few existing techniques provide such integrated solutions, our frame-
work handles a wider range of problems than those techniques.

Organization. Section 2 introduces the example used to demonstrate our ap-
proach. Section 3 describes the existing concepts that form the basis of our
composition framework. Section 4 presents our framework in detail and proves
its correctness. Section 5 describes our implementation and results from three
case studies. Section 6 discusses related work on similar problems in service com-
position. Section 7 concludes the paper and discusses future avenues for research.

2 Illustrative Example

We motivate our composition approach using the example of HelpMeOut, a pro-
posed service composition (taken and modified from [1]) that makes it easier for
a vehicle’s driver to call for assistance in case of an emergency.

Functional Requirements. Figure 1 presents the functional requirements
for the HelpMeOut system using a goal model (AND-OR graph). They include
collecting the vehicle’s location and problem, searching for a nearby point of as-
sistance, locating a mechanic that can visit the user, receiving payment, and re-
porting the event. Intermediate requirements appear in round-edged boxes, while
basic requirements that may be realized from available services are shown in

286 Z.J. Oster et al.

hexagons. The graph illustrates dependencies between the requirements. For in-
stance, the root (level 0) describes the overall functional requirement, which is re-
alizable if all of the requirements at level 1 are satisfied (AND-decomposition).
In contrast, the requirement Receive Payment is satisfied if either of the require-
ments On the Spot or Later On is satisfied (OR-decomposition).

Preferences and Trade-offs. Along with functional requirements, Figure 1
captures dependencies between NFPs and services. These are represented in
boxes which are connected to functional requirements via edges annotated with
“+” or “-”. The “+” annotation represents the satisfaction of the functional re-
quirement having a positive impact on the non-functional property, while the “-”
annotation represents a negative impact. For instance, satisfying the requirement
that the users can contact an operator via a phone call may result in a happier
user (positive impact) but will have a negative impact on reducing operational
cost.

It may not be possible to consider a set of basic requirements such that (a)
they have only positive impacts on the NFPs, (b) all NFPs are considered, and
(c) the root-level requirement is satisfied following the traditional semantics of
“and” and “or”. Therefore, preferences and trade-offs over NFPs are important
for identifying a preferred set of basic requirements that result in satisfying the
root-level requirement. Consider the following preference statements:

1. If robust documentation is used, payment traceability is more important
than reducing operational costs.

2. If costs are reduced at the expense of customer satisfaction, then using robust
documentation takes precedence over ensuring payment traceability.

Behavioral Constraints. While functional requirements describe the neces-
sary functionalities, behavioral constraints ensure correct low-level interaction
or ordering of the services participating in the composition. For example, Help-
MeOut requires that if the EFTPOS or the Cash service is used for payment on
the spot, then a printed report should be sent instead of an electronic report.

Annotated Service Repository. Suppose there is a repository of services
that are available for use in the composition. Each service is specified using a
standard service specification language such as WSDL [4], which describes the
service’s high-level functionality (semantics) as well as its inputs, outputs, and
low-level behavior. From this complete specification, a labeled transition system
(LTS), which captures the dynamics of the service, is extracted manually.

LTSs for the services in our repository are depicted in Figure 3. Because the
PhoneCall and SMS services serve only as interfaces between a user and the
system, their LTSs are not shown to avoid complexity.

3 Preliminaries

3.1 Goal Model: Decomposition of Functional Requirements

The overall functionality of the compositionΘ can be decomposed into a Boolean
combination of individual functionalities θ [14]. The relationships between θs in

A Service Composition Framework 287

this Boolean combination can be represented graphically as an AND-OR graph
GΘ such as the one for the HelpMeOut service in Figure 1. The basic func-
tional requirements that can be realized from available services are optionally
associated with NFPs to denote their positive or negative impact. This combi-
nation of decomposition of functional requirements and associations to NFPs is
known as a goal model. Goal models are key to the Goal-Oriented Requirements
Engineering [5] methodology, where they are used for the same purposes.

3.2 CI-Nets: Expressing NFP Preferences

In our framework, the user specifies preferences between different sets of NFPs in
a qualitative preference language called Conditional Importance Networks (CI-
nets) [3]. A CI-net P is a collection of statements of the form S+, S− : S1 > S2,
where S+, S−, S1, and S2 are pairwise disjoint subsets of NFPs. Each statement
specifies that if there are two outcomes (two candidate services satisfying all
functional requirements) where both satisfy S+ and none satisfy S−, then the
outcome that satisfies S1 is preferred to the one that satisfies S2. The preference
order induced by the CI-net follows the semantics of these statements as well as
a monotonicity rule, which ensures that an outcome satisfying a set Γ of NFPs
is preferred to outcomes that satisfy the set Γ ′ ⊂ Γ (all else being equal).

The semantics of CI-nets is given formally in terms of a flipping sequence [3].
Given two outcomes γ and γ′, γ′ is preferred to γ (denoted by γ′ % γ) if and
only if there exists a sequence of outcomes γ = γ1, γ2, . . . , γn = γ′ such that for
each i ∈ [1, n− 1], one of the following is true:

– γi+1 satisfies one more NFP than γi.
– γi+1 satisfies S+ ∪ S1 and does not satisfy S−; γi satisfies S

+ ∪ S2 and
does not satisfy S−; and there exists a CI-net statement S+, S−;S1 > S2.

Deciding whether one outcome is preferred to another (with respect to the CI-net
semantics) is referred to as dominance testing. It relies on generating an induced
preference graph (IPG), which represents the partial order between outcomes
based on the preference semantics, and then verifying reachability of one outcome
from another: γ′ is reachable from γ if and only if an improving flipping sequence
exists from γ to γ′. In [13], we have presented a model checking-based approach
for dominance testing based on preferences expressed in CI-nets.

Example 1. Consider the preferences given in Section 2. The first preference can
be expressed as CI-net statement

{Robust Documentation}; {} :
{Payment Traceability} > {Reduced Operational Costs} (1)

The second preference can be expressed as CI-net statement

{Reduced Operational Costs}; {Happier User} :
{Robust Documentation} > {Payment Traceability} (2)

288 Z.J. Oster et al.

Fig. 2. Induced preference graph for CI-net statements 1 and 2

Figure 2 shows the IPG corresponding to the preferences expressed by these CI-
net statements for the illustrative example in Section 2. Each directed edge in the
graph represents a “flip” from a less-preferred set of NFPs to a more-preferred
set. Solid edges (e.g., from {c} to {bc}) indicate monotonicity flips ; here, the set
{Reduced Operational Costs, Payment Traceability} is preferred because it has
one more NFP than the set {Payment Traceability}. Dashed edges (e.g., from
{bc} to {bd}) indicate importance flips, which are induced by a CI-net statement
(in this case, by statement 2 above). Figure 2 shows that the set of all NFPs is
most preferred, while the empty set (no NFPs satisfied) is least preferred.

3.3 Service Representations and Composition

Labeled transition systems (LTS) [7] represent the low-level behaviors of services
in our system. An LTS is a digraph where nodes model states and edges represent
transitions. It is given by a tuple: (S, s0, Δ, I, O,AP,L), where S is the set of
states, s0 ∈ S is the start state, Δ ⊆ S × (I ∪ O) × S is the set of transitions
where each transition is labeled with an input action ∈ I or an output action ∈ O,
AP is the set of atomic propositions, and L is a labeling function which maps
each state ∈ S to a set of propositions ⊆ AP . The labeling function describes

configurations or states of the LTS. We use the notation s
!a−→ s′ (resp. s

?a−→ s′)
to denote output (resp. input) action a when the system moves from s to s′.

Figure 3 illustrates the LTSs of available services that can be used to realize
the composite service discussed in Section 2. With AP = {t0, t1, t2, t3, t4} and
S = {s0, s1, s2, s3, s4}, the LTS for the Vehicle service moves from the start state

s0 to state s1 after the action Location: s0
Location−→ s1. The state s1 moves to

state s2 when the service outputs the Problem description. This is followed by
the input MechCntct, which contains the contact information for the mechanic,

A Service Composition Framework 289

Fig. 3. HelpMeOut services. Circled services constitute the final composition.

and then by the output PymntInfo. Finally, the system moves back from state
s4 to state s0 with the output of a Report of the incident.

Formally, given LTSi = (Si, s0i, Δi, Ii, Oi, APi, Li) where i ∈ {1, 2} and AP1∩
AP2 = ∅, the synchronous parallel composition LTS1×LTS2 is defined as
(S, s0, Δ, τ, AP, L), such that S ⊆ S1 × S2, s0 = (s01, s02), AP = AP1 ∪ AP2,

L((s1, s2)) = L(s1) ∪ L(s2), and Δ ⊆ S × [τ]S: (s1s2)
τ−→ (s′1s

′
2) ⇐ s1

!a−→
s′1 ∧ s2

?a−→ s′2. In other words, a parallel composition of LTSs representing ser-
vices describes all possible behaviors exhibited by the services via exchange of
messages (output from one is consumed by input to another).

3.4 Behavioral Constraints

We use an expressive temporal logic named Computation Tree Logic (CTL) [7]
to describe the behavioral constraints. A CTL formula ϕ is described over a set
of atomic propositions AP as follows:

ϕ→ AP | true | ¬ϕ | ϕ ∧ ϕ | E(ϕUϕ) | AFϕ

The semantics of a CTL formula, denoted by [[ϕ]], is given in terms of the sets
of states where the formula is satisfied. AP is satisfied in all states which are
labeled with the propositions in AP , true is satisfied in all states, ¬ϕ is satisfied
in states which do not satisfy ϕ, and ϕ1 ∧ ϕ2 is satisfied in states which satisfy
both ϕ1 and ϕ2. E(ϕ1Uϕ2) is satisfied in states from which there exists a path
to a state satisfying ϕ2 along which ϕ1 is satisfied in all states. Finally, AFϕ is
satisfied in states from which all paths eventually end in a state satisfying ϕ.

290 Z.J. Oster et al.

Example 2. Recall the behavioral constraint specified in Section 2, which stated
that if either the EFTPOS or the Cash service is used for payment On the Spot,
then a printed report should be sent instead of an electronic report. This can be
expressed by the CTL statement AG((EFTPOS ∨ Cash)⇒ AX(PrintedReport)).

3.5 Data Mismatches

A data mismatch occurs when the input and output actions of two services that
can potentially communicate do not match. Data mismatches can be classified
as systemic, syntactic, structural, and semantic [15]. Systemic level mismatches
are no longer a problem due to standardized network protocols like IP, TCP, and
UDP. Syntactic mismatches are automatically resolved by using a standard ser-
vice description language such asWSDL (Web Service Description Language [4]).

A semantic mismatch occurs when communicating services refer to the same
piece of information with different names. For example, in Figure 3 the vehicle’s
location is sent via an output Location, while FuelStation and Mechanic ser-
vices expect to consume the location information via input actions Address and
Destination respectively. We address this problem using a data dictionary [1].
The dictionary elements — expressing distinct concepts — are grouped as sets
of synonyms, resulting in a collection of meaningfully linked words and concepts.

A structural mismatch occurs when the data received by a service is found
in other-than-expected order, style or shape. Differences in number or order of
XML tags of interacting services are examples of structural mismatches. We
utilize the graph-theoretic solution introduced in [1] to address this problem.

4 Service Composition Framework

Our service composition framework takes as input the entire set of functional
requirements, the preferences and trade-offs over non-functional properties, the
given behavioral constraints, and a repository of available services. Given these
inputs, our framework automatically constructs a composite service that is most
preferred (optimal) with respect to the users’ non-functional property preferences
and that satisfies the functional requirements and all behavioral constraints.

4.1 Specifying the Service Composition Problem

The inputs to the service composition framework are:

Θ A goal model, which shows a Boolean (AND/OR) combination of functional
requirements θ and their impact on non-functional properties.

P A preference relation specified using a CI-net, which forms a partial order
over the powerset of all NFPs under consideration.

Ψ A set of Computation Tree Logic (CTL) statements ψ that formally describe
the behavioral constraints as temporal properties of the composition.

R A repository of services, which are each specified in a standard description
language (e.g., WSDL) from which a corresponding LTS has been extracted.

A Service Composition Framework 291

NEXTPREF

SERVSELECT
(SATSOLVER)

ORCH
GENERATOR

VSEL

H

N

S

NFP

CI-net γ1, γ2 … γn

Θ

Ψ

ω I
 N

P

 U

T
 S

O
RC

HA
N

DV
ER

IF

O
GΨ

(S

R

Fig. 4. Overview of framework

The Composition Problem. The objective is to solve the following problem:
Does there exist a composition C of services ∈ R such that

[C satisfies Θ ∧ Ψ] and
∀ composition C′ of services ∈ R : [C′ satisfies Θ ∧ Ψ ⇒ C′ �% C]

(3)

In other words, our objective is to identify a composition C such that (1) C
satisfies all functional requirements and behavioral constraints and (2) no other
composition C′ that satisfies these requirements/constraints is preferred to C.

4.2 Selecting, Creating, and Verifying a Composition

Figure 4 illustrates the proposed framework for addressing this problem. The
first module NextPref uses the non-functional properties NFP and the CI-
net statements describing the preferences and trade-offs over them to compute
an ordered sequence γ1, γ2, . . . , γn. Each γi in the sequence represents a subset
of NFP where γi+1 �% γi with respect to the CI-net statements. In other words,
the sequence of γis forms a total order consistent with the partial order of the
induced preference graph. Based on the techniques proposed in [13], this mod-
ule represents the induced preference graph (see Figure 2) as an input model
of a standard model checker (specifically, NuSMV [6]) and identifies sequence
γ1, γ2, . . . , γn by verifying carefully selected temporal properties of the IPG.

Example 3. Consider the IPG in Figure 2. To conserve space, let a = Happier
User, b = Reduced Operational Costs, c = Payment Traceability, and d = Robust
Documentation. Clearly γ1 = {a, b, c, d} is the most preferred set of NFPs. Next,
consider all sets of NFPs with edges pointing to {a, b, c, d}. Figure 2 contains no
edges between three of these sets, which means that none of them are strictly
preferred to each other; however, the graph does contain an edge from {a, b, d}
to {a, c, d}, which is induced by CI-net statement 1. Therefore, we assign γ2 =
{a, b, c}, γ3 = {b, c, d}, and γ4 = {a, c, d} (although these sets could be in any
order). We then assign γ5 = {a, b, d}, as it is strictly less preferred than γ4
according to Figure 2. This process continues until all sets of NFPs (including
the empty set) have been placed into the sequence.

292 Z.J. Oster et al.

The second module is ServSelect. This module takes into account the goal
model representing the overall functional requirementΘ and its relationship with
the NFPs, the repository R of available services, and the sequence of γis in order
of preference starting from γ1. For each γi, the module identifies

– the set of services (say X+
i) that realize functional requirements which have

only positive impacts on the non-functional properties in γi; and
– the set of services (say X−

i) that realize functional requirements which have
some negative impacts on the non-functional properties in γi.

Example 4. Consider the NFP set γ4 in Example 3 and the goal model in Fig-
ure 1. Based on the dependencies between services that satisfy functional require-
ments (hexagons in Figure 1) and the NFPs that each service satisfies, Serv-
Select identifies X+

4 = {PhoneCall, CreditCard, PrintedReport} and X−
4 =

{SMSCall, Cash, BankChq}. Services in X+
4 have only positive impacts on the

NFPs in γ4, while services in X−
4 have a negative impact on some NFP in γ4.

Next, ServSelect solves the satisfaction problem and identifies the set W of
all sets of services Y such that the composition of all services in Y realizes a
set of functional requirements which, when satisfied, result in satisfaction of Θ.
Note that the presence of OR-nodes in the graph allows Θ to be satisfied in
many different ways. Finally, ServSelect verifies X+

i ⊆ Y and X−
i ∩ Y = ∅.

Satisfaction of these conditions ensures that Y is the most preferred set of ser-
vices that satisfy Θ and the non-functional properties in γi. If the conditions
are not satisfied by any assignment Y , the module considers γi+1 from the se-
quence of γis. This is repeated until a suitable service set Y is obtained. In the
worst case, the least-preferred (empty) NFP set γn will be used; when this oc-
curs, X+

n = X−
n = ∅, making the above conditions vacuously true. Therefore, a

non-empty set Y will always be obtained.

Example 5. Initially, ServSelect uses the goal model in Figure 1 and the repos-
itory of services that includes all services in Figure 3 to identify all possible com-
positions of available services that may satisfy the overall functional requirement
Θ. Recall the sequence of NFP sets identified in Example 3. Observe in Figure 1
that there exists no combination of low-level functionalities that leads to satisfac-
tion of γ1 (all NFPs), γ2, or γ3. Fortunately, the set of services Y = {PhoneCall,
Vehicle, WorkShop, Mechanic, CreditCard, PrintedReport} satisfies the required
conditions for γ4: X

+
4 ⊆ Y and X−

4 ∩ Y = ∅.

The third module, OrchAndVerif, takes as input the set W of sets of ser-
vices Y from the ServSelect module and the set of behavioral constraints
Ψ expressed in CTL. This module verifies whether there exists an orchestra-
tion of services ∈ Y that satisfies Ψ ; it also considers data mismatches when
composing services (see Section 3.5). The core of the verification technique is a
tableau algorithm which takes services in Y and constructs their orchestration
in a goal-directed fashion, possibly including interleaving of services; details of
the technique are available in [1]. If the verification fails, a different Y is selected

A Service Composition Framework 293

Algorithm 1. Driver Program

1: procedure VeriComp(Θ, NFP, P , Ψ , R)
2: 〈γ1, γ2, . . . , γn〉 := NextPref(NFP,P)
3: for i = 1 → n do
4: W := ServSelect(Θ, γi, R)
5: for all Y ∈ W do
6: C := OrchAndVerif(Y, Ψ,R)
7: if C �= ∅ then
8: return C
9: return false

from W and the process is repeated until a suitable Y is identified (success)
or all elements of W have been considered (failure). Successful termination of
the process results in a set of services which (1) satisfies the functional require-
ments Θ, (2) satisfies all behavioral constraints Ψ , and (3) is most preferred with
respect to CI-net preferences over the set of NFPs.

Example 6. Figure 5 presents the successfully generated orchestration of the
most preferred set of services (given in Example 5) that fulfills the behavioral
constraints (given in Example 2). Recall that the PhoneCall service serves as an
interface only, so it is omitted from Figure 5 to avoid complexity.

The entire process is presented in the procedure VeriComp in Algorithm 1.
Line 2 invokes NextPref. Lines 3–8 iterate over the sequence of γis where
ServSelect in Line 4 identifies a set W , and OrchAndVerif is iteratively
invoked in Lines 5–8 to identify the most preferred orchestration C.

Fig. 5. States and transitions of the synthesized orchestrator. Services are ordered as:
[Vehicle, WorkShop, Mechanic, CreditCard, PrintedReport].

294 Z.J. Oster et al.

4.3 Theoretical Properties

Theorem 1 (Soundness & Completeness). Given an AND-OR combina-
tion of functional requirements Θ, a set of behavioral constraints Ψ in terms of
temporal properties in CTL, a set of non-functional properties NFP, preferences
and trade-offs in CI-nets, and a repository of services R, VeriComp returns a
composition C if and only if C satisfies the condition in (3).

Proof. The ServSelect module identifies all sets of services Y such that if the
services in Y can be composed, the resulting composition satisfies Θ. Further,
given Ψ and a set of services Y as input, the OrchAndVerif module returns
a composition C if and only if the services in Y can be composed in a way that
satisfies all behavioral constraints in Ψ ; this follows directly from results in [1].

It remains to prove that for any composition C returned by our framework
and for all other compositions C′ that satisfy both Θ and Ψ , C′ �% C. Suppose in
contradiction that C′ % C, i.e., C′ satisfies a more preferred set of NFPs than C,
but our framework returns C. Let γC and γC′ be the sets of NFPs satisfied by C
and C′ respectively. By Theorem 1 in [13], γC′ precedes γC in the sequence re-
turned by NextPref; therefore, our framework attempts to compose and verify
C′ before considering C. Because C′ satisfies both Θ and Ψ , OrchAndVerif

succeeds in creating and verifying C′. As a result, our framework returns C′,
contradicting our earlier assumption. '(

Complexity. Let n be the number of leaf-level functional requirements in Θ,
let k be the maximum number of services in R satisfying any requirement θ ∈ Θ,
and let p be the number of NFPs considered. Algorithm 1 (VeriComp) iterates
up to 2p times over the outer loop (lines 3–8), once per subset of NFP. The largest
number of possible compositions returned by ServSelect is kn if all non-leaf
nodes in GΘ are AND nodes and if the composition has up to n services. The
inner loop (lines 5–8) calls OrchAndVerif at most kn times (once for each
possible composition that satisfies the NFP set γ), taking O(2n2|Ψ |) time per
call (where |Ψ | is the number of CTL formulae to be satisfied). The worst-
case complexity of our framework, given an AND-OR tree with only leaf and
AND nodes, is therefore O(2pkn2n2|Ψ |). However, we expect k and p to be small
in most practical applications. Additionally, each OR node in GΘ improves the
worst-case complexity by reducing the number of leaf-level requirements to verify.

5 Implementation and Case Studies

We have implemented our framework as a Java-based tool that is based on
existing components. The ServSelect module is derived from the goal-model
analysis tool in [13], the OrchAndVerif module is based on the composition
tool in [1], and the NextPref module is built on the NuSMV [6] model checker.

Table 1 displays results from applying our service composition and verifica-
tion framework to three case studies adapted from the existing literature. These

A Service Composition Framework 295

Table 1. Results of Applying Our Implementation to Three Case Studies

High- Total Preference Orch. and
Level CI-net Orchestrator Run Reasoning Verif.

Case Study Functions Services NFPs Rules States Trans Time (s) Time (s) Time (s)

HelpMeOut [1] 9 12 4 2 9 9 2.69 1.44 1.25
Online
Bookseller [13] 5 9 4 3 16 16 3.00 1.59 1.41
Multimedia
Delivery [14] 8 15 3 2 9 10 2.03 0.84 1.19

results were obtained by running our tool on a machine running Windows 7
Professional (32-bit) with 2 GB of RAM and an Intel Core 2 Duo processor
running at 1.83 GHz. Each time shown is the mean of the times observed for
10 runs of that operation on that case study. The preference reasoning and or-
chestration/verification modules each take time on the order of seconds, while
service selection (satisfiability analysis) requires minimal time. This is because
the semantics of CI-nets requires exploration of the entire induced preference
graph, while the behavioral constraints must be verified with respect to all pos-
sible executions of the composite service. These results show the feasibility of
our composition framework for real-world applications.

More information on our implementation and on the case studies used in this
evaluation is available at http://fmg.cs.iastate.edu/project-pages/icsoc12/.

6 Related Work

All service composition frameworks are designed to produce composite services
that satisfy users’ functional requirements. Some also account for low-level be-
havioral constraints or non-functional properties, but very few integrate all three
in a unified way. The TQoS algorithm [9] provides one such framework. TQoS
considers both transactional and QoS properties when composing services, se-
lecting services that have locally optimal QoS for each part of the desired func-
tionality. Additionally, TQoS guarantees by construction that composite services
it produces satisfy a standard set of transactional constraints. Our framework
goes beyond TQoS in two ways: (1) it more accurately represents users’ true
preferences between sets of NFPs by using CI-nets instead of a weighted-average
method, and (2) it can verify that a composition satisfies any behavioral con-
straint that can be specified using CTL, not just a small fixed set of properties.

The composition method presented in [18] is representative of many tech-
niques that consider both functional and non-functional properties. [18] models
the entire problem as an integer linear programming problem, employing sim-
ple syntactic matching of inputs and outputs to form the composite service and
utilizing quantitative preference valuations for NFPs. In contrast, [17] uses qual-
itative NFP valuations to select services to compose based on a set of preferences
expressed by the user in a different language for qualitative preferences, namely
tradeoff-enhanced conditional preference networks (TCP-nets). Our framework’s
strategy for handling NFP preferences is inspired in part by [17].

296 Z.J. Oster et al.

In [2], ter Beek et al. focus on verification of functional requirements in a sce-
nario similar to our example in Section 2. The service-oriented architecture in [2]
is modeled as a set of state machines illustrated as UML-like diagrams. Temporal
constraints representing functional requirements and behavioral constraints are
specified in the temporal logic UCTL (an extension of CTL) and verified over the
diagrams using an on-the-fly model checking tool. Though [2] does not consider
NFPs, it shows that model checking is feasible in an industrial-scale service-
oriented computing scenario. Our framework employs model checking for both
verifying behavioral constraints and reasoning over users’ NFP preferences to
construct a service composition that truly satisfies the users’ needs.

The matching of I/O variable names or types, known as semantic or concept-
based similarity matching, is typically performed using a data dictionary. Liu et
al. [10] used the lexical database WordNet [12] to perform concept-based simi-
larity matching, while we use our own universal dictionary [1] for the same pur-
pose. Another data-related operation, data flow (without handling mismatches),
is performed via routing the data among the ports of Web services. An example
of this is the ASTRO approach [11], where data flow requirements are collected
in a hypergraph called a data net, which is then transformed into a State Tran-
sition System to become part of a planning domain for composition. Because
neither semantic matching nor data routing are complete data solutions due to
the complex XML schema associated with Web service data types, we proposed
a graph-theoretic solution [1] that bridges these gaps by addressing the problem
at the XML schema level; this is incorporated into the framework in this paper.

7 Conclusions and Future Work

We have presented a framework for service composition that takes into account
high-level functionalities, low-level behaviors, and non-functional properties in
order to identify and create the most preferred service composition that provides
the required functionality (if such a composition exists). Our framework makes
use of user-friendly representations for specifying functional requirements and
non-functional properties, but it also uses model checking to obtain guarantees
that a composition will satisfy specified low-level temporal properties. We proved
that our composition algorithm is sound, complete, and weakly optimal with
respect to the user’s non-functional property preferences, and we presented initial
results obtained from a prototype implementation of our framework.

The next steps for this work are to refine our current proof-of-concept imple-
mentation and empirically compare our tool’s performance to similar algorithms
such as [2] and [9]. Our future work includes allowing partial satisfaction of
NFPs as in [5], automating translation of WSDL service specifications to LTSs,
exploring different approaches to dominance testing and different semantics for
expressing preferences, and applying our approach for service composition to the
related problems of service substitution and adaptation.

A Service Composition Framework 297

References

1. Ali, S.A., Roop, P.S., Warren, I., Bhatti, Z.E.: Unified management of control flow
and data mismatches in web service composition. In: Gao, J.Z., Lu, X., Younas,
M., Zhu, H. (eds.) SOSE, pp. 93–101. IEEE (2011)

2. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: ICSE, pp. 613–622. ACM, New
York (2008)

3. Bouveret, S., Endriss, U., Lang, J.: Conditional importance networks: A graphical
language for representing ordinal, monotonic preferences over sets of goods. In:
International Joint Conference on Artificial Intelligence, pp. 67–72 (2009)

4. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language version 2.0 part 1: Core language. W3C Recommendation, World Wide
Web Consortium (June 2007), http://www.w3.org/TR/wsdl20/

5. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic (2000)

6. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

7. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (January 2000)
8. Erl, T.: SOA: Principles of Service Design. Prentice Hall (2008)
9. Haddad, J.E., Manouvrier, M., Rukoz, M.: TQoS: Transactional and QoS-aware

selection algorithm for automatic web service composition. IEEE T. Services Com-
puting 3(1), 73–85 (2010)

10. Liu, X., Huang, G., Mei, H.: A user-oriented approach to automated service com-
position. In: ICWS, pp. 773–776. IEEE Computer Society (2008)

11. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

12. Miller, G.A.: WordNet: A lexical database for English. Communications of the
ACM 38(11), 39–41 (1995)

13. Oster, Z.J., Santhanam, G.R., Basu, S.: Automating analysis of qualitative pref-
erences in goal-oriented requirements engineering. In: Alexander, P., Pasareanu,
C.S., Hosking, J.G. (eds.) ASE, pp. 448–451. IEEE (2011)

14. Oster, Z.J., Santhanam, G.R., Basu, S.: Identifying optimal composite services
by decomposing the service composition problem. In: ICWS, pp. 267–274. IEEE
Computer Society (2011)

15. Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems.
SIGMOD Rec. 28, 5–12 (1999)

16. Pessoa, R.M., da Silva, E.G., van Sinderen, M., Quartel, D.A.C., Pires, L.F.: En-
terprise interoperability with SOA: a survey of service composition approaches.
In: van Sinderen, M., Almeida, J.P.A., Pires, L.F., Steen, M. (eds.) EDOCW, pp.
238–251. IEEE Computer Society (2008)

17. Santhanam, G.R., Basu, S., Honavar, V.G.: TCP−Compose� – A TCP-Net Based
Algorithm for Efficient Composition of Web Services Using Qualitative Preferences.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 453–467. Springer, Heidelberg (2008)

18. Yoo, J.W., Kumara, S.R.T., Lee, D., Oh, S.C.: A web service composition frame-
work using integer programming with non-functional objectives and constraints.
In: CEC/EEE, pp. 347–350. IEEE (2008)

http://www.w3.org/TR/wsdl20/

WCP-Nets: A Weighted Extension

to CP-Nets for Web Service Selection

Hongbing Wang1,�, Jie Zhang2, Wenlong Sun1,
Hongye Song1, Guibing Guo2, and Xiang Zhou1

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
2 School of Computer Engineering, Nanyang Technological University, Singapore

hbw@seu.edu.cn

Abstract. User preference often plays a key role in personalized appli-
cations such as web service selection. CP-nets is a compact and intuitive
formalism for representing and reasoning with conditional preferences.
However, the original CP-nets does not support fine-grained preferences,
which results in the inability to compare certain preference combinations
(service patterns). In this paper, we propose a weighted extension to CP-
nets called WCP-nets by allowing users to specify the relative importance
(weights) between attribute values and between attributes. Both linear
and nonlinear methods are proposed to adjust the attribute weights when
conflicts between users’ explicit preferences and their actual behaviors of
service selection occur. Experimental results based on two real datasets
show that our method can effectively enhance the expressiveness of user
preference and select more accurate services than other counterparts.

1 Introduction

User preference often plays a key role in personalized and AI applications [5] such
as web service selection [15,20] in order to support automatic decision making
[11,10]. Basically, it can be represented in two ways: quantitative (“I prefer Thai
Airline at the level of 0.7”) or qualitative (“I prefer Qantas Airline to Thai
Airline”). In addition, it can be expressed unconditionally (“No matter what
time it is, I always prefer Qantas Airline to Thai Airline”) or conditionally (“If
time is late, I prefer Qantas Airline to Thai Airline”). However, it is generally
agreed that users feel more comfortable and natural to express their preferences
in a qualitative and conditional manner [4].

CP-nets [4] is a compact and intuitive formalism for representing and reason-
ing with conditional preferences under the ceteris paribus (“all else being equal”)
semantics. It has attracted much attention in the literature [3,6,9,7,16,17]. How-
ever, it suffers from two inherent issues: 1) users are unable to express their
fine-grained preferences. More specifically, they cannot specify the level of their
preferences between attribute values or between attributes; 2) due to the lim-
ited expressiveness [21], many service patterns, each of which is defined as a

� This work is supported by NSFC project titled with “System of Systems Software
Mechanisms and Methods based on Service Composition” and JSNSF(BK2010417).

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 298–312, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 299

combination of attribute values for all attributes, are incomparable. It is critical
and essential for web service selection to effectively reason and represent user
preference. Therefore, the expressiveness of CP-nets and the ability to compare
service patterns have important impacts on web service selection. To solve these
problems, some approaches attempt to enhance the expressiveness by relaxing
the ceteris paribus semantics of CP-nets and defining a logical framework [21],
or by adding relative importance in statements [6], etc. Some others focus on
the comparison of service patterns such as using a utility function [3]. However,
none of them can well solve these two problems at the same time.

In this paper, we propose a weighted extension to CP-nets called WCP-nets
by allowing users to express their preferences in a fine-grained manner. More
specifically, user preference can be delineated at multiple levels as described in
[22]. For example, an attribute value x0 can be preferred to another attribute
value x1 equally at level 1, or mildly at level 2, ..., or extremely at the maximum
level. In addition, the relative importance (weight) between attributes can be
explicitly specified as well, reflecting the extent to which an attribute is more
important than another. We also propose a new measurement for the degree of
preference of any given service pattern, which can be calculated both in linear
or nonlinear methods. In this way, not only the expressiveness of WCP-nets is
high, but all service patterns can also be compared. Experimental results based
on two real datasets demonstrate that WCP-nets outperforms other approaches.
In addition, the results also indicate that linear method can converge faster but
nonlinear method achieves better accuracy.

2 Background and Related Work

To begin with, we will introduce the basic principles and the concerned problems
of CP-nets. Then we will detail the major variants of CP-nets in the literature
proposed to enhance the expressiveness of user preference and the effectiveness
in comparisons between service patterns. Finally, we will review several recent
studies based on CP-nets or its variants for web service selection.

2.1 CP-Nets

CP-nets [4] is a graphical model for representing and reasoning with conditional
preference in a compact, intuitive and structural manner. It consists of two parts,
namely directed dependence graph (DDG) and conditional preference tables
(CPTs). DDG contains a set of attributes V = {X1, ...Xn} represented as nodes,
where each node Xi is associated with a finite domain D(Xi) = {xi1, . . . , xin}.
A child node Xi is dependent on a set of directed parent nodes Pa(Xi). They
are connected by arcs from Pa(Xi) to Xi in the graph. Under the semantics of
ceteris paribus (“all else being equal”), the values of Xi is only dependent on
the values of Pa(Xi). Thus, a service pattern can be defined as a combination of
attribute values for all attributes represented in CP-nets, i.e. sp = x1x2 . . . xn,
where xi ∈ D(Xi) for i = 1 . . . n represents a specific value on attribute Xi.

300 H. Wang et al.

In addition, each node Xi is annotated with a CPT denoted by CPT (Xi),
which expresses user preferences over the attribute values of Xi. A preference
between two attribute values xi1 and xi2 can be specified by the relation %
given the conditions of the values of Pa(Xi). For example, the preference x11 :
x21 % x22 indicates that attribute value x21 is preferred to another value x22 for
attribute X2 if its parent node X1 has the value x11.

A typical CP-nets is illustrated in Figure 1(a, b). It describes the data storage
and access service of a company which consists of three attributes with respect to
the quality of service (QoS), namely A : Platform, B : Location and C : Provider.
Figure 1(e) shows that each attribute has two specific values. Specifically, data
can be stored in either a file system a1 or a database a2 which can be located in
New York b1 or Beijing b2 and can be accessed publicly c1 or privately c2. The
user has an unconditional preference on Platform that a file system is always
preferred to a database. But for the preference of the others, it depends on the
choices of previous attributes. For example, if the database is chosen for data
storage, then the location in New York is preferred to Beijing. In that case, users
prefer data to be accessed publicly rather than privately. Note that this example
will be used throughout the rest of this paper.

A: Platform

B: Location

C: Provider

 A: Platform

 B: Location

C: Provider

 3

 5

(a) (b) (c) (d) (e)

122

211

:
:

bba
bba

21 aa

122

211

:
:

ccb
ccb

221 aa

1322

2111

:
:

bba
bba

1222

2311

:
:

ccb
ccb

Databasea
SystemFilea

:
 :

2

1

Beijingb
YorkNewb

:
 :

2

1

Priavte:
:

2

1

c
Publicc

Fig. 1. (a, b) CP-nets; (c, d) WCP-nets; (e) Attribute Values

2.2 Problems of CP-Nets

Although CP-nets is an effective tool to represent and reason with conditional
preference, it suffers from two inherent issues. The first is that users are unable
to represent more fine-grained preference. For example, in Figure 1(b), the user
can only specify that a1 is preferred to a2 (i.e. a1 % a2), but not able to indicate
to what extent the preference would be. The user may indeed desire to express
that a1 is strongly preferred to a2.

Another concern is regarding the relative importance between attributes. The
dependence relationship in CP-nets merely indicates that parent nodes are more
important than their children nodes. This fact usually results in that many ser-
vice patterns are non-comparable. Take the service patterns a2b2c2 and a1b2c1 in

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 301

Figure 1(a, b) as an example. Although a2b2c2 has preferred values on attributes
B and C and only violates on attribute A, it is difficult to compare with a1b2c1
that has only one preferred value on attribute A but two violations on attributes
B and C. The reason is that multiple violations on lower priority (children) at-
tributes may not be preferred to a single violation on a higher priority (parent)
attribute.

2.3 Extensions and Variants of CP-Nets

In order to overcome the aforementioned issues, a number of approaches to
date have been proposed to extend the original CP-nets in the literature. Some
other variations for different purposes (e.g. cyclic preference [9], uncertainty in
preference [7]) are not considered in this paper.

Wilson [21] relaxes the ceteris paribus semantics of the CP-nets and proposes a
logical framework for expressing conditional preference statements. Specifically,
it allows conditional preference statements on the values of an attribute and a
set of attributes can vary while interpreting the preference statement. Although
this method indeed increases the expressiveness of the CP-nets, it changes the
basic reasoning foundations which is different from our proposal.

Boutilier et al. [3] propose a quantitative formalism UCP-nets by enabling
users to apply a utility value to each value of attributes other than preference
orderings. Service patterns can be compared based on the summed utility value of
all attributes. The utility function is a GAI (Generalized Additive Independent)
[2] which relies on the structure of CP-nets. Therefore, it is difficult for users to
identify a well-suited utility function that can also guarantee the satisfaction of
the principles of CP-nets.

Another noticeable extension to CP-nets is proposed by Brafman et al. [6],
called Tradeoff CP-net (TCP-nets). It strengthens preference statements by
adding relative (qualitative) importance to different attributes. In addition, it
maintains the structures and ceteris paribus semantics of CP-nets. Although the
expressiveness of TCP-nets is increased to some extent, it is demonstrated in
[21] that the expressiveness of TCP-nets is still limited.

In this paper, we propose another significant extension to CP-nets by adding
relative importance (weights) between attribute values and between attributes.
We name this variant weighted CP-nets, or WCP-nets. The intuition behind is
that users may have multiple levels of preference for one state over another [22].
Hence, users are able to express fine-grained preference at multiple preference
levels. The concept of Violation Degree is introduced to measure the extent to
which a service pattern is preferred. In this way, all service patterns can be
compared based on this computed value. In addition, we provide two (one linear
and another non-linear) methods to flexibly adjust attribute weights such that
the measured violation degree well matches users’ true preferences.

302 H. Wang et al.

2.4 CP-Nets in Web Service Selection

There have been a number of studies that model users’ qualitative preferences
based on CP-nets in order to provide them with personalized web service rec-
ommendations. A typical problem for qualitative preference is that users may
not express their preferences in detail and some of them could be unspecified.
Wang et al. [18] propose that user’s missing qualitative preferences could be
complemented based on the preferences of similar users, that is, a collaborative
filtering method. Wang et al. [19] also indicate that effective web service selection
could be done in the absence of complete user preference. Our work does not
attempt to elicit more preferences from users, but allow them to express more
fine-grained preferences through which web services could be correctly selected.

In addition to CP-nets, other approaches or variants have also been applied to
model qualitative preference for web service selection. For example, Santhanam
et al. [15] represent user preference by means of TCP-nets through which a set of
composite services can be returned. Garćıa et al. [8] propose an ontology-based
method that transforms user preference modeling to an optimization problem.
However, Wang et al. [17] point out that using a qualitative or quantitative ap-
proach alone cannot completely handle user preference of web services. Instead,
they present user preference by adopting both qualitative and quantitative ap-
proaches. In particular, users’ qualitative preferences are described by TCP-nets
while quantitative preferences are specified by arbitrary positive numbers. In-
spired by these studies, we propose to represent user preference in a qualitative
way (WCP-nets) and base web service selection on a quantitative method to
compute violation degree, i.e. the extent to which a service pattern is preferred.

3 WCP-Nets: A Weighted Extension

In this section, we first describe in detail how to extend CP-nets and how to
compare service patterns using the relative importance (weights) based on the
concept of violation degree. The weights can be further adjusted linearly or
nonlinearly to resolve conflicts between user preference and user behavior. An
intuitive example will be presented to exemplify the detailed procedure in the
end of this section.

Table 1. The Level of Relative Importance

Level Definition Description

1 Equally important Two values are equally preferred
2 Moderately importance The first value is mildly preferred to the second
3 Quite importance The first value is strongly preferred to the second
4 Demonstrably important The first value is very strongly preferred to the second
5 Extremely important The first value is extremely preferred to the second

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 303

3.1 Adding Weights to Conditional Preference

We adopt the concept of multiple levels of relative importance in [22] but use
different level scales, as shown in Table 1. Five-level importance is utilized rang-
ing from level 1 “Equally important” to level 5 “Extremely important”. This
semantics can be applied to both the relative importance between attribute val-
ues and the relative importance between attributes. Formally, we use %k instead
of % to represent the preference relations in the CPTs, where k refers to the level
of relative importance. In addition, the importance level between attributes is
assigned and tapped to the arcs in the DDG. The WCP-nets of the previous ex-
ample is illustrated in Figure 1(c, d). It can be explained that value a1 is mildly
preferred to value a2 on attribute A which is more important than attribute B
at the level of 3. This explanation also holds for the rest.

Since the level of relative importance between attributes is known and the
summation of all weights should be 1, the computation of the weights of at-
tributes is trivial. In Figure 1(c), we know wB/wA = 1/3 and wC/wB = 1/5,
where wA, wB, and wC denote the weight of A, B and C, respectively. Since
wA+wB +wC = 1, we can easily yield the values of all attribute weights. These
computed weights are regarded as the initial attribute weights in our work.

3.2 The Concept of Violation Degree

WCP-nets bases the comparison between service patterns on the concept of
violation degree whose definition is given as follows.

Definition 1. Violation Degree of an Attribute refers to the level of relative
importance if the attribute value selected is not preferred for an attribute of a
service pattern according to the corresponding CPT. Formally, it is denoted as
VX(sp), where X represents an attribute of a service pattern sp.

For the attribute A in Figure 1(d), given the preference a1 %2 a2, if value
a2 is selected in a service pattern (e.g. a2b2c2) rather than value a1 (i.e. the
preference is violated), then the violation degree V of attribute A is 2, denoted
as VA(a2b2c2) = 2. Similarly, given the service pattern a1b1c2, we can get the
violation degree of attribute C is 3, i.e. VC(a1b1c2) = 3. Generally, the greater
the violation degree of an attribute is, the less preferred is the attribute value.

Definition 2. Violation Degree of a Service Pattern refers to the com-
bination of violation degrees of all attributes for a service pattern, taking into
consideration the weights of all attributes. Formally, it is denoted as V (sp) and
calculated by

V (sp) = F (wX , VX(sp)) (1)

where F is an aggregation function, taking into account attribute weights wX

and attribute violation degrees VX(sp).

There could be different methods to define specific functions for F to calculate
the violation degree of a service pattern, linearly or nonlinearly. A simple linear

304 H. Wang et al.

method is a weighted summation of violation degrees of all attributes and the
attribute weights. And artificial neuron network (ANN) is used as a nonlinear
implementation for the aggregation function F . We will discuss it later in detail.
Intuitively, a service pattern is more preferred if it has a smaller violation degree.

3.3 Adjusting Initial Attribute Weights

Although users express their preference explicitly, it does not guarantee that
what services they select is consist with what are claimed they would like.
Conflicts between user behavior and stated preference could occur in real life.
O’Sullivan et al. [14] also confirm that explicit preferences are not always consis-
tent with implicit user behaviors in the filed of recommendations. In this paper,
we propose to flexibly adjust attribute weights such that the measured violation
degree based on users’ explicit preferences well matches users’ actual behaviors.
Two models are utilized to adjust the attribute weights in line with the two
methods (linear and nonlinear) to calculate violation degree of a service pattern.
In particular, the Lagrangian model [13] is used for linear adjustment and artifi-
cial neuron network (ANN) is for the nonlinear. The basic principle is to adjust
the attribute weights of a service pattern when it is selected by a user rather
than the one with the smallest violation degree. Given different applications and
real constrains, other linear and nonlinear methods may be more suitable since
we focus on how to adjust attribute weights in general rather than optimization.

3.3.1 Lagrangian Linear Weight Adjustment
We apply the Lagrangian model [13] to adjust the attribute weights of a selected
service pattern if it does not have the smallest violation degree. Luenberger and
Ye [13] contend that this method is clear in meaning, simple and practical to
change the constrained optimization into unconstrained problems.

Assume that sp′ is the best service pattern calculated using the initial at-
tribute weights and sp is the service pattern that a user actually selects. Let
w′

k be the initial weight of attribute k, and wk be the adjusted weight of the
same attribute. To be expected, users select the service pattern with the smallest
violation degree, i.e. V (sp) ≤ V (sp′). Ideally when the selected service pattern
is exactly the computed best service pattern, it can be re-written as

m∑
k=1

(
Vk(sp

′)− Vk(sp)
)
wk = 0 (2)

where m is the number of attributes for the service and
∑m

k=1 wk = 1. The
weights that minimize the summed square of weight variations are the optimal.
Aiming to obtain the optimal attribute weights, we construct a single objective
optimization model as follows:⎧⎨

⎩
minF (w) =

∑m
k=1(wk − w′

k)
2;∑m

k=1

(
Vk(sp

′)− Vk(sp)
)
wk = 0;∑m

k=1 wk = 1.
(3)

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 305

The Lagrangian model will linearly aggregate constrains in (3) as

m∑
k=1

(wk − w′
k)

2 + λ1

m∑
k=1

(Vk(sp
′)− Vk(sp))wk + λ2

m∑
k=1

wk = 1 (4)

Then take the partial derivative of variables to obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L
∂w1

= 2(w1 − w′
1) + (V1(sp′)− V1(sp′)) + λ2 = 0

...
∂L
∂wm

= 2(wm − w′
m) + (Vm(sp′)− Vm(sp)) + λ2 = 0∑m

k=1

(
Vk(sp

′)− Vk(sp)
)
wk = 0∑m

k=1 wk = 0

(5)

Finally, we can determine the optimal weights

wk = w′
k − [δk −

∑m
n=1 δn
m

] ∗
∑m

n=1 δn ∗ w′
n∑m

n=1 δ
2
n −

[
∑

m
n=1 δn]2

m

(6)

where δn = Vn(sp
′)− Vn(sp).

3.3.2 BP-ANN Nonlinear Weight Adjustment
Back propagation (BP) is a supervised learning algorithm which is often used
to learn the best weights for the neurons (attributes) in the artificial neural net-
works (ANNs). ANN is well-suited for learning without a specific mathematical
model and able to perform accurate non-linear fit [12]. A typical BP-ANN is
shown in Figure 2. The first layer consists of n input units. Each input unit
is fully connected to all h hidden units in the middle layer which results in m
outputs in the last layer using the same connectivity. One of the advantages
of ANN is that it can effectively approximate any complex nonlinear functions
which correspond to the nonlinear combination functions in our case.

BP attempts to minimize the Mean Square Error (MSE) between the actual
outputs and the desired ones. A set of training data is iteratively imported into
the network until the learning is converged and the adjusted weights are kept
stable. The training data is usually in the form of < x1, . . . , xn, d1, . . . , dn >,
where xi represents the initial input and di is the desired output.

In our case, the inputs of the network are the violation degrees of attributes
of the selected service pattern, and the outputs are those of the calculated best
service pattern. The strength of the links between the first and second layers is
the initial attribute weights of the selected service pattern. We normalize the
attribute weights to be in [0, 1].

Using the initial attribute weights, a number of service patterns, including
the computed best service pattern and some random service patterns that are
ordered by the violation degrees, will be returned to users and they may make
a decision to select the most preferred one. If users choose some random ser-
vice pattern instead of the expected best one, the adjustment process will be

306 H. Wang et al.

Input Layer Hidden Layer

1x

2x

xn

........

.......

.......

 Output Layer

1d

2d

dn

Fig. 2. A Typical BP Artificial Neural Network

activated. Then we assign the violation degree of the best service patten to the
selected pattern. After the adjustment, BP algorithm is applied to retrieve an-
other set of service patterns again and allow users to select again. This process
will be continued until the best computed service pattern is selected by users,
that is, the weight adjustment has converged.

3.4 Example

This section is introduced here to exemplify how WCP-nets works step by step.
Since the relative importance between attributes is wA/wB = 3, wB/wC = 5
while the summation of all weights is wA + wB + wC = 1, we can determine
the initial attribute weights: wA = 0.7143, wB = 0.2381, wC = 0.0476. There are
eight service patterns, i.e. (sp1, sp2, sp3, sp4, sp5, sp6, sp7, sp8) = (a1b1c1,
a1b1c2, a1b2c1, a1b2c2, a2b1c1, a2b1c2, a2b2c1, a2b2c2). If we use linear method to
calculate the violation degrees of service patterns, the values of them are 0,
0.1428, 0.1190, 0.2381, 2.1429, 2.2857, 1.5238, 1.4286, respectively. Thus the
ranking sequence of service patterns is

sp1 > sp3 > sp2 > sp4 > sp8 > sp7 > sp5 > sp6 (7)

To select the proper services, we first find out if there are any web services in
the database that are in line with the best preferred service pattern sp1. If so,
we recommend these web services to a user Bill, otherwise we return those that
satisfy the next best service pattern sp3. This process repeats until some services
are returned. However, the problem is that in practice the service Bill selects may
conflict with his aforementioned preferences due to some reasons like preference
drifting over time. Assume his real preference ranking of service patterns is

sp1 > sp6 > sp2 > sp3 > sp4 > (sp5 = sp8) > sp7 (8)

To solve this issue, we need to adjust the initial attribute weights to obtain
accurate violation degree of a service pattern. To show the adjustment process,
we do not generate web services in the database that meet the description of

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 307

sp1. Now we detail the adjustment process. Considering preference sequence
(7), we return 4 web service patterns (here every service pattern responses to a
unique web service) to Bill, including the computed best service pattern sp3 and
three random service patterns (sp6, sp4, sp7). He then selects the most preferred
service pattern in the light of real sequence (8), i.e. sp6 rather than sp3. Since
the conflict occurs, the adjustment process is subsequently activated. Applying
the Lagrangian method described in Section 3.3.1 to adjust the weights, we can
obtain a new set of attribute weights based on which a new preference sequence
is produced as below.

sp1 > sp2 > sp4 > sp3 > sp7 > sp8 > sp5 > sp6 (9)

At this iteration, Bill will select his most preferred service pattern among the
retrieved 4 patters, say (sp2, sp4, sp3, sp7). According to Bill’s real preference se-
quence (8), sp2 will also be selected, hence there is no need to alter any attribute
weights. We may continue this adjustment process to judge whether sp2 is the
most preferred available service pattern.

An alternative weight adjustment method is nonlinear and conducted by BP-
ANN. The first step is to initialize a BP-ANN. Specifically, the violation degrees
and weights of attributes of a service pattern will be imported into the net-
work. And the eight outputs derived from the network will be ordered. Suppose
after a few iterations of training, the violation degrees of eight service patterns
are (113.5641, 117.3781, 92.0738, 108.8373, 49.4641, 87.3097, 58.6806, 143.2908).
The best computed service pattern sp5 together with three randomly selected
patterns sp6, sp8, sp2 are returned for further selection. According to sequence
(8), Bill is likely to select sp6 and hence the conflict happens. For weight ad-
justment, we assign the violation degree of sp5 to sp6. These new values of four
service patterns will be regarded as the desired outputs for next iterative train-
ing. We continue this adjustment process until the attribute weights are stable.

4 Experimental Validation

The major concern we would like to verify for WCP-nets is threefold: 1) how good
it is to distinguish service patterns compared with CP-nets and TCP-nets1? 2)
how accurate the retrieved service patterns would be? 3) what is the distinction
between linear and nonlinear weight adjustments?

4.1 Data Acquisition

For the experiments, we use two real datasets: Adult2 and QWS [1]. The for-
mer is obtained form the UCI Machine Learning Repository, consisting of 32,561
records. Each record is regarded hereafter as a concrete dating service that con-
tains 14 attributes. The latter contains 2507 real web services which stem from
1 UCP-nets is excluded in our experiments because it is essentially a quantitative
approach for CP-nets rather than a CP-nets extension.

2 http://archive.ics.uci.edu/ml/datasets/Adult

http://archive.ics.uci.edu/ml/datasets/Adult

308 H. Wang et al.

public sources on the web including Universal Description, Discovery, and Inte-
gration (UDDI) registries, search engines, and service portals. Each web service
contains nine attributes.All experiments are conducted using an IBM server with
8 CPUs of 2.13 GHz and a RAM of 16 GB.

4.2 Performance Analysis

The performance of WCP-nets is measured by the percent of comparable ser-
vice patterns (CSPs) and the accuracy of returned web services. The difference
between linear and nonlinear weight adjustment methods is also distinguished.

4.2.1 The Percent of Comparable Service Patterns
The first concern is the ability of WCP-nets in comparing different service pat-
terns (CSPs) relative to CP-nets and TCP-nets. Specifically, for each experi-
ment, we vary the number of attributes from 3 to 11 with step 2 and record the
percents of service patterns that are comparable using three different methods.
We conduct in total four experiments where the number of attribute values is
taken from {2, 4, 6, 8}, respectively. In each case, 1000 CP-nets are randomly
generated (for both dependency graphs and CPTs) to represent users’ prefer-
ences. Based on CP-nets, TCP-nets is constructed by adding relative qualitative
importance, and WCP-nets is built by adding relative quantitative importance
between attributes. Each experiment is executed 1000 times and the average of
the percent of CSPs is computed. The results are illustrated in Figure 3, where
(a) - (d) represents the results when the number of attribute values is 2, 4, 6, 8
respectively.

Consistent results are obtained in four experiments, showing that WCP-nets
outperforms CP-nets and TCP-nets in comparing different service patterns. In
particular, since the relative quantitative importance between attributes is added
to the CP-nets, the expressiveness of TCP-nets is better than CP-nets. But
there are still a number of service patterns that cannot be comparable. On the
contrary, WCP-nets are always able to compare all services patterns in terms of
the computed violation degree.

4.2.2 The Accuracy of Retrieved Web Services
Another batch of experiments are conducted to investigate the accuracy of the
web services (WSs) that are retrieved by three different methods, i.e. WCP-nets,
TCP-nets and CP-nets. The experiments are based on the aforementioned two
real datasets. Specifically, we randomly choose 3, 5, 7, 9, 11 attributes from
the dataset and apply three methods to model user preference and retrieve the
suitable WSs as required. A pre-processing is utilized to convert continuous
attribute value to three sections. For example, the value of the attribute Response
time in QWS is continuous from 0 to the maximum 4207.5ms which is then
uniformly segmented into three parts. Finally, the three parts are symbolized as
three attribute values of Response time. CP-nets is generated randomly as well
as TCP-nets and WCP-nets. Generally, the best WS pattern is retrieved if it

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 309

 0.9

 0.92

 0.94

 0.96

 0.98

 1

3 5 7 9 11

C
P

S
s

P
er

ce
nt

Attribute Number

cp-nets
tcp-nets

wcp-nets
 0.9

 0.92

 0.94

 0.96

 0.98

 1

3 5 7 9 11

C
P

S
s

P
er

ce
nt

Attribute Number

cp-nets
tcp-nets

wcp-nets

(a) (b)

 0.9

 0.92

 0.94

 0.96

 0.98

 1

3 5 7 9 11

C
P

S
s

P
er

ce
nt

Attribute Number

cp-nets
tcp-nets

wcp-nets
 0.9

 0.92

 0.94

 0.96

 0.98

 1

3 5 7 9 11

C
P

S
s

P
er

ce
nt

Attribute Number

cp-nets
tcp-nets

wcp-nets

(c) (d)

Fig. 3. The Percent of Comparable Service Patterns (CSPs)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

3 5 7 9 11

R
et

rie
ve

d
W

S
s

N
um

be
r

Attribute Number

cp-nets
tcp-nets

wcp-nets

 0

 50

 100

 150

 200

 250

 300

3 5 7 9 11

R
et

rie
ve

d
W

S
s

N
um

be
r

Attribute Number

cp-nets
tcp-nets

wcp-nets

(a) Adult (b) QWS

Fig. 4. The Accuracy of the Retrieved Web Services (WSs)

meets user preference expressed in (W, T)CP-nets. Otherwise, the second best
WS pattern will be returned. All experiments are repeated 1000 times and the
results of the average performance are delineated in Figure 4.

We count the number of retrieved WSs as the measurement of accuracy. The
intuition is that the more accurate user preference is, the less number of retrieved
WSs is. Clearly, TCP-nets show its strength relative to CP-nets whereas WCP-
nets achieves the best accuracy. Theoretically, TCP-nets covers more aspects
that are unknown to CP-nets, while WCP-nets expresses not only more but also
fine-grained user preference that is not available in the others.

4.2.3 Linear vs. Nonlinear Weight Adjustments
The purpose of this subsection is to investigate the distinctions between linear
and nonlinear weight adjustment methods and give readers guides on how to

310 H. Wang et al.

select suitable adjustment method for their own applications. The comparison
will be focused on the efficiency and effectiveness for weight adjustments.

The experiments are based on the real datasets. A set of WCP-nets with
3, 5, 7, 9, 11 attributes are generated randomly, and 8 services are randomly
selected in each time from the real datasets. The same preprocessing is used for
continuous attribute value as Section 4.2.1. The adjustment of attribute weights
is activated when conflicts occur, i.e. users select a random service rather than
the expected one with minimum violation degree. We continue the adjustment
process for at least 30 times even when users do select the computed best service.
The purpose is to reduce the selection due to chance and avoid local optimal
values. For the nonlinear method, three hidden layers are used in the BP-ANN.
The violation degrees of attribute values are used as inputs and the weights of
attributes as the weights of inputs. The number of neurons in hidden layer is
empirically set 75% of the number of inputs. The training function we utilize is
traingd, the transfer function between hidden layers is tansig and the transfer
function of output layer is purelin. All experiments is repeated 1000 times and
the average performance is adopted.

The efficiency is measured as the number of interactions required before con-
vergence. The effectiveness is reflected by the accuracy of the retrieved WSs
using different methods. A web service will be labeled accurate if it meets user
preference which is simulated by a random function. A set of accurate WSs are
selected as the benchmark. Hence the accuracy is computed as the percentage
of retrieved WSs over the benchmark. The results shown in Figures 5 and 6
represent the efficiency and effectiveness, respectively.

 0

 20

 40

 60

 80

 100

 120

 140

3 5 7 9 11

In
te

ra
ct

io
n

N
um

be
r

Attribute Number

Linear
Nonlinear

 0

 20

 40

 60

 80

 100

 120

3 5 7 9 11

In
te

ra
ct

io
n

N
um

be
r

Attribute Number

Linear
Nonlinear

(a) Adult (b) QWS

Fig. 5. The Efficiency of Linear and Nonlinear Methods

Figure 5 shows that the linear method consistently converges much faster than
the nonlinear one as the number of interactions required by the former is greatly
less than the latter. However, Figure 6 indicates that the latter achieves much
better accuracy than the former. A conclusion can be drawn that, for those who
require fast convergence, the linear method is more preferred and for those who
seek best accuracy, the nonlinear method should be adopted.

WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection 311

 0

 0.2

 0.4

 0.6

 0.8

 1

3 5 7 9 11

A
cc

ur
ac

y

Attribute Number

Linear
Nonlinear

 0

 0.2

 0.4

 0.6

 0.8

 1

3 5 7 9 11

A
cc

ur
ac

y

Attribute Number

Linear
Nonlinear

(a) Adult (b) QWS

Fig. 6. The Accuracy of Linear and Nonlinear Methods

5 Conclusion

We proposed a weighted extension to CP-nets called WCP-nets, aiming to solve
the issues of CP-nets described in Section 2.2. More specifically, the relative im-
portance (weights) between attribute values and that between attributes were
added to the original CP-nets to allow users to express more fine-grained pref-
erence. The concept of violation degree was introduced to measure the extent to
which a service pattern is preferred. Both linear and nonlinear methods were pre-
sented to adjust users’ initial weights when conflicts between stated preference
and actual choices occur. Experiments on two real datasets were conducted and
the results showed that our method can not only increase the expressiveness of
user preference, but also select more accurate services than other counterparts.

References

1. Al-Masri, E., Mahmoud, Q.: Discovering the best web service. In: Proceedings of
the 16th International Conference on World Wide Web, pp. 1257–1258 (2007)

2. Bacchus, F., Grove, A.: Graphical models for preference and utility. In: Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 3–10.
Morgan Kaufmann Publishers Inc. (1995)

3. Boutilier, C., Bacchus, F., Brafman, R.: Ucp-networks: A directed graphical rep-
resentation of conditional utilities. In: Proceedings of the Seventeenth Conference
on Uncertainty in Artificial Intelligence, pp. 56–64 (2001)

4. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: Cp-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements.
J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

5. Brafman, R., Domshlak, C.: Preference handling-an introductory tutorial. AI Mag-
azine 30(1), 58 (2009)

6. Brafman, R., Domshlak, C., Shimony, S.: On graphical modeling of preference and
importance. Journal of Artificial Intelligence Research 25(1), 389–424 (2006)

7. Châtel, P., Truck, I., Malenfant, J., et al.: Lcp-nets: A linguistic approach for
non-functional preferences in a semantic soa environment. Journal of Universal
Computer Science 16(1), 198–217 (2010)

312 H. Wang et al.

8. Garćıa, J., Ruiz, D., Ruiz-Cortés, A., Parejo, J.: Qos-aware semantic service selec-
tion: An optimization problem. In: Proceedings of 2008 IEEE Congress on Services-
Part I, pp. 384–388 (2008)

9. Gavanelli, M., Pini, M.: Fcp-nets: extending constrained cp-nets with objective
functions. In: Constraint Solving and Constraint Logic Programming, ERCIM
(2008)

10. Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artificial In-
telligence 174(11), 685–703 (2010)

11. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: Proceedings of the 16th International Confer-
ence on World Wide Web, pp. 1013–1022. ACM (2007)

12. Liu, J., Chang, H., Hsu, T., Ruan, X.: Prediction of the flow stress of high-speed
steel during hot deformation using a bp artificial neural network. Journal of Ma-
terials Processing Technology 103(2), 200–205 (2000)

13. Luenberger, D., Ye, Y.: Linear and nonlinear programming, vol. 116. Springer
(2008)

14. O’Sullivan, D., Smyth, B., Wilson, D., Mcdonald, K., Smeaton, A.: Improving the
quality of the personalized electronic program guide. User Modeling and User-
Adapted Interaction 14(1), 5–36 (2004)

15. Santhanam, G.R., Basu, S., Honavar, V.G.: TCP−Compose� – A TCP-Net Based
Algorithm for Efficient Composition of Web Services Using Qualitative Preferences.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 453–467. Springer, Heidelberg (2008)

16. Sun, X., Liu, J.: Representation and realization of binary-valued cp-nets in single-
branch tree. In: Proceedings of the 2010 Seventh International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD, vol. 4, pp. 1908–1911 (2010)

17. Wang, H., Liu, W.: Web service selection with quantitative and qualitative user
preferences. In: Proceedings of IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 404–411 (2011)

18. Wang, H., Zhang, J., Tang, Y., Shao, S.: Collaborative approaches to complement-
ing qualitative preferences of agents for effective service selection. In: Proceedings
of the 2011 IEEE International Conference on Tools with Artificial Intelligence,
ICTAI, pp. 51–58 (2011)

19. Wang, H., Zhang, J., Wan, C., Shao, S., Cohen, R., Xu, J., Li, P.: Web service
selection for multiple agents with incomplete preferences. In: Proceedings of the
2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology, WI-IAT, pp. 565–572 (2010)

20. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive Ser-
vice Composition Based on Reinforcement Learning. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer,
Heidelberg (2010)

21. Wilson, N.: Extending cp-nets with stronger conditional preference statements.
In: Proceedings of the National Conference on Artificial Intelligence, pp. 735–741
(2004)

22. Xu, H., Hipel, K., Marc Kilgour, D.: Multiple levels of preference in interactive
strategic decisions. Discrete Applied Mathematics 157(15), 3300–3313 (2009)

WS-Finder: A Framework for Similarity Search

of Web Services

Jiangang Ma1, Quan Z. Sheng1, Kewen Liao1,
Yanchun Zhang2, and Anne H.H. Ngu3

1 School of Computer Science, The University of Adelaide, Australia
{jiangang.ma,michael.sheng,kewen.liao}@adelaide.edu.au

2 School of Engineering and Science, Victoria University, Australia
yanchun.zhang@vu.edu.au

3 Department of Computer Science, Texas State University, USA
angu@txstate.edu

Abstract. Most existing Web service search engines employ keyword
search over databases, which computes the distance between the query
and the Web services over a fixed set of features. Such an approach often
results in incompleteness of search results. The Earth Mover’s Distance
(EMD) has been successfully used in multimedia databases due to its
ability to capture the differences between two distributions. However,
calculating EMD is computationally intensive. In this paper, we present a
novel framework called WS-Finder, which improves the existing keyword-
based search techniques for Web services. In particular, we employ EMD
for many-to-many partial matching between the contents of the query
and the service attributes. We also develop a generalized minimization
lower bound as a new EMD filter for partial matching. This new EMD
filter is then combined to a k-NN algorithm for producing complete top-k
search results. Furthermore, we theoretically and empirically show that
WS-Finder is able to produce query answers effectively and efficiently.

1 Introduction

Similarity search of Web services (WSs) is a crucial task in many practical appli-
cations such as services discovery, service composition and Web applications like
incorporating Google Maps to locate businesses [1–6]. In addition, because WSs
have become one of the standard technologies for sharing data and programs
on the Web, and also because new paradigm of the pay-per-use is adopted by
the recent Cloud Computing, a number of enterprises are developing large-scale
software applications by wrapping their data, business processes, and databases
applications into WSs. These WSs can be further composed to new services
that provide value-added functionalities. For example, according to a recent
statistics1(accessed on 07/05/2012), there are 28,606 WSs available on the Web,
provided by 7,739 different providers. As a result, searching desired services is
described to be akin to looking for a needle in a haystack [7].

1 http://webservices.seekda.com

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 313–327, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://webservices.seekda.com

314 J. Ma et al.

Currently, most existing WSs search engines employ simple keyword search
on WSs descriptions in databases. This is based on the fact that WSs are syntac-
tically described by Web Services Description Language (WSDL), which makes
it feasible to index these WSDL files through using keywords strategy [5].

However, the simple keyword search strategy adopted by these search engines
suffer from a limitation. The exact keyword search may miss many relevant
search results. This is because exact keyword-based search approaches compute
the distance between the query and the services over a fixed set of features.
That is, most existing Web-based search engines [1, 4] compute a similarity score
by matching each keyword in the query against the keyword at corresponding
position in the WSs descriptions in database, not considering the impact of the
similarity of the neighboring keywords. We refer to this type of search as one-
to-one search. The limitation of this approach is that one-to-one search may not
return all relevant results. For example, consider a typical keyword searching
query WHOLESALE issued against the service database. In this case, WSs whose
function descriptions contain keyword SALE may not be returned because the
keyword WHOLESALE in the query are not present in the WSs description, which
results in incompleteness of search results. However, we can see that there is
some partial similarity between WHOLESALE and SALE.

One potential approach to capture the partial similarity is to integrate the
neighboring keywords into the similarity computation by using the term partial
match techniques such as the Earth Mover’s Distance (EMD)[8]. EMD has been
successfully used in multimedia databases due to its ability to capture the differ-
ences between two distributions. However, calculating EMD is computationally
intensive. Another possible method is to describe services capabilities by using
the Semantic Web. For example, some research [9] uses ontology to annotate the
elements in WSs for finding common semantic concepts between the query and
services advertisements. As we here focus on similarity search of WSs from the
point of view of algorithms, Semantic Web is beyond the scope of this paper and
will not be discussed further.

To address the challenges involved in similarity search for WSs, in this paper,
we have designed and implemented a novel framework called WS-Finder, which
improves the existing keyword-based search techniques for WSs. In particular,
we employ EMD for many-to-many partial matching between the contents of
the query and the service attributes. To facilitate search of WSs in an efficient
manner, we design a new WS model. We also develop a generalized minimization
lower bound as a new EMD filter for partial matching in order to overcome the
complexity of computing EMD. This new EMD filter is then combined to a
k-NN algorithm for producing complete top-k search results. Furthermore, we
theoretically and empirically show that WS-Finder is able to produce query
answers effectively and efficiently. Our key contributions are as the following:

– We propose a novel WS model that incorporates WS architecture informa-
tion into records stored in databases. Such model could not only be searched
in WS entries but also mined by the optimization algorithm proposed in the
paper.

WS-Finder: A Framework for Similarity Search of Web Services 315

– We develop a generalized independent minimization lower bound (LBGIM)
extended from the LBIM lower bound in [10] as a new EMD filter for par-
tial matching. The filter is then incorporated into a k-NN algorithm for
producing top-k results. To the best of our knowledge, LBGIM is the first
effective and easy-to-compute lower bound for the general EMD. In par-
ticular, it is flexible and suitable for keyword-based content searches where
words are always compared with different lengths. Whereas almost all other
lower bound filters [8, 10, 11] are only developed for special EMD with equal
total weights. For this reason, LBGIM also has great potential to be used
in other application domains. We compute LBGIM by proposing a unified
greedy algorithm.

– We conduct an extensive experimental evaluation over a set of real datasets of
WSs. Our experimental results show that WS-Finder produces query answers
with high recall and precision and low response time.

The remainder of this paper is organized as follows. In Section 2, we describe a
Web service model and the WS-Finder architecture and in Section 3, we discuss
an EMD-based optimization algorithm. In Section 4, we present experimental
results to show the effectiveness and efficiency of our approach. Section 5 is ded-
icated to related work, and finally, Section 6 concludes the paper and discusses
some future research directions.

2 Web Service Model and WS-Finder Architecture

In this section, we briefly describe a model to represent Web services and the
architecture of the WS-Finder system.

2.1 Web Service Model

As one of key factors resulting in an effective similarity search of WSs is howWSs
are stored [5], we first introduce a new model to represent WSs. The model in-
corporates WSs’ architecture information such as functional and non-functional
requirements (FRs and NFRs). The FR attributes of a WS are name, category,
function and description while NFR attributes include QoS such as response
time (RT), availability (AVA), reliability (REL) and etc. Specifically, we model
WSs as records stored in a database, where each WS usually has a record with
some attributes and values to describe the basic structured information of the
entry. Such records could not only be searched in WS entries but also mined by
algorithms. Thus, all these records form a WS database DB.

Definition 1. A Web service record r ∈ DB is represented by a tuple r =
〈nr, cr, f r, dr, QoSr〉, where nr, cr, f r and dr contain the content of the at-
tribute name, category, function , description, and QoSr = {QoSr

1 , QoS
r
2 , . . .}

contains an ordered set of numerical NFR contents respectively. �

The examples of WS records are shown in Table 1.

316 J. Ma et al.

Table 1. Web service records

FR Attributes NFR Attributes

ID Name Category Function Description RT (s) AVA (%) REL (%)

1 B.S. Stillwell Ford New cars getCarPrice Finance facilities at competitive rates 1.2 86 88

2 City Holden Used cars getCarColor Minimise the hassle of a second hand vehicle 0.8 92 80

input

WS-Finder
Registration

WS 1

Ranking Results

Agent

WS 2mode

WS-Database

Web Services

Optimization

Fig. 1. WS-Finder Architecture

2.2 WS-Finder Architecture

The proposed architecture consists of three main components (see Figure 1). The
registration component deals with the registration of WSs. Service providers
can register their WSs through this component. The registered WSs are pre-
processed to remove common terms and stopwords by using word stemming
and the stopwords removing approaches. Then the processed WSs are stored
in service database in terms of records, with the techniques and approaches
introduced in this paper for enabling similarity search. The registration process
can be performed offline.

The optimization component handles the query optimization for similarity
search. It enables effective and efficient search by using EMD techniques. In this
paper, we mainly concentrate on this optimization component.

3 EMD-Based Optimization Algorithm

In this section, we discuss an EMD-based optimization algorithm to support
similarity search. Formally, given a database DB containing WS records and a
query q, similarity search returns all records r ∈ DB, such that dis(q, r) ≤ ε,
where dis(q, r) is a distance function, and ε the specified similarity threshold.
We use EMD as a measure for the distance disEMD(q, r) between a keyword
and an attribute word sequences kwq and awr,Mq

from a query q and a record
r, which describes their similarity. The problem we focus on here is the design of

WS-Finder: A Framework for Similarity Search of Web Services 317

efficient computing EMD methods that will minimize the total number of actual
EMD computations.

3.1 Earth Mover’s Distance

The Earth Mover’s Distance was first introduced in computer vision for improv-
ing distance measure between two distributions. As it can effectively capture the
differences between two distributions and allow for partial matching, EMD is
successfully exploited for various applications like phishing detection [12], docu-
ment retrieval [13], and databases [10, 14].

Traditional distance measure in computer vision is based on computing the
similarity between histograms of two objects. Given two objects histograms

x={xi} and y = {yi}, the Lp distance, defined as Lp(x, y) = (
∑n

i=0 |xi − yi|p)
1
p ,

is used to compute the distance of the histograms. Due to its rigid binning dis-
tance measure, a small shift of bins in the histograms often results in a large
distance in LP . To overcome the limitation of bin-by-bin approach, EMD incor-
porates information cross bins into the definition of the distances between two
objects. This can be achieved with the help of the solution of solving transport-
ing problem, where the distribution of one object is regarded as a mass of earth
with quality W and the other as a collection holes with a given limited capacity
U. Mathematically, the EMD involves in the solution of transportation problem
in linear programming.

3.2 Defining EMD

EMD describes the normalized minimum amount of work required to transform
one distribution to the other. Computing the exact EMD requires solving the
famous transportation problem [8] in operations research.

In our context, the subtask is to find EMD between a keyword and an attribute
word sequences kwq and awr,Mq

from a query q and a record r, which describes
their similarity. For simplicity, let any subtask to involve two word sequences
kw and aw instead of kwq and awr,Mq

, where |kw| = n1 and |aw| = n2.
Finding the minimum work of the subtask to transform kw to aw through the
flow f = {∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : fij} is equivalent to computing the optimal
solution to the following linear program (LP) with variable fij :

minimize :
∑n1

i=1

∑n2
j=1 fijdij

subject to :
∀1 ≤ i ≤ n1 :

∑n2
j=1 fij ≤ wkwi (1.1)

∀1 ≤ j ≤ n2 :
∑n1

i=1 fij ≤ wawj (1.2)
∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : fij ≥ 0 (1.3)∑n1

i=1

∑n2
j=1 fij = min

(∑n1
i=1 wkwi ,

∑n2
j=1 wawj

)
(1.4)

(1)

where d = {∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : dij} is the ground distance matrix be-
tween kw and aw; wkw and waw are weight vectors of keywords and attribute
words respectively. These distances and weights are necessary input values to LP

318 J. Ma et al.

(1) that will be defined later. Furthermore, constraint (1.1) restricts the total
outgoing flow from any keyword not to exceed the corresponding weight; (1.2)
limits the total incoming flow to any attribute word to be no larger than the
weight; (1.3) ensures the positiveness of all flows; (1.4) defines the amount of to-
tal flow which is equal to the minimum of keyword and attribute word sequences’
total weights. Note that unlike in [10, 14, 15], the flow system we consider here
is more general, which means the total weights of word sequences may not be
equal. Therefore, the system can be modeled as a directed complete bipartite
graph with n1 keyword nodes and n2 attribute word nodes as two parts. For
simplicity, let the total number of nodes n = n1 + n2 and total number of edges
(representing flows) m = n1 × n2.

Now if we assume the optimal flow f∗ is found for the above LP, the EMD is
then the corresponding work normalized by the amount of total flow:

EMD (kw, aw) =

∑n1

i=1

∑n2

j=1 f
∗
ijdij∑n1

i=1

∑n2

j=1 f
∗
ij

which has the capability to avoid favoring shorter queries in our partial words
matching context.

3.3 Web Service Query Processing

WS-Finder processes queries in a multi-step manner. In particular, there are
two processing paths depending on the query type: basic or advanced. On both
paths, content filtering is the main technique for efficient query computation.

EMD-Based Query Processing without Filter. For each query q and its k required
answers, WS-Finder is able to operate the search process in database with a
boolean function φq,k: r → {0, 1}, where φq,k (r) = 1 if EMD

(
kwq, awr,Mq) ≤

EMDsq,DB (k)2. EMD function computes EMD between keyword and attribute
word sequences, and the ascendingly sorted set of all EMD values is defined as :

EMDsq,DB =
{
∀r ∈ DB : EMD

(
kwq, awr,Mq)}+

. This process can then be
translated into the following SQL query:

SELECT ∗ FROM DB

WHERE φq,k (r)

ORDER BY ¯EMD

where φq,k (r) is a boolean predicate in SQL and ¯EMD denotes the extra created
attribute name storing contents of EMDsq,DB.

EMD-BasedQuery Processing with Filter. Because generating the setEMDsq,DB

may take too long for a large number of exact EMD computations, we use LBGIM

filter for basic query uses ˆEMD function to approximate EMD, and computes the

2 The k-th element in the set EMDsq,DB.

WS-Finder: A Framework for Similarity Search of Web Services 319

set : ˆEMDs
q,DB

=
{
∀r ∈ DB : ˆEMD

(
kwq, awr,Mq)}+

in a much shorter time.

This set together with range and top-k queries is able to generate a filtered set
DB′ ⊆ DB for processing the final top-k query. Therefore, the boolean function
which describes the search process is revised to be : φq,k: r ∈ DB′ → {0, 1}, where
φq,k (r) = 1 if EMD

(
kwq, awr,Mq) ≤ EMDsq,DB′

(k).

3.4 Defining Input Values

Before computing the EMD, we need to decide the input values wkw, waw and
d. Intuitively, the weight of a word can be calculated by its length, so wkw and
waw can be easily computed. Note that waw is computed offline while wkw

is online. However, the ground distance is not so obvious because it needs to
reflect the similarity between a pair of words with possibly different lengths.
Assume the words to compare are kwi and awj with lengths wkwi and wawj

respectively, our first adopted distance metric SED compares them character-
wise3 in O

(
min

(
wkwi , wawj

))
time and gets the number of different characters

diff . The value of SED is therefore:

SED (kwi, awj) = diff +
∣∣wkwi − wawj

∣∣
For example, SED (“CAR”, “CITY”) = 2+1 = 3. The advantage of this metric
is the linear time complexity and no required extra space. However it is not
robust enough to capture the distance between words having similar structures.
For instance, SED (“SALE”, “WHOLESALE”) = 9, but these two words have
the similar suffixes. Our second chosen metric LD [16] instead represents the edit
distance between two words. LD is a classical distance metric that has been used
in many important applications such as spell-checkers, Unix diff command and
DNA sequence alignment. The following definition explains LD in our context.

Definition 2. The edit distance (LD) between a keyword and an attribute word
is the least total number of character insertions, deletions and substitutions re-
quired to transform one to the other. �

LD can be computed in O
(
wkwiwawj

)
time using dynamic programming (dp)

to solve an equivalent sequence alignment problem. Also, there is an efficient
way in maintaining the dp table that only requires O

(
min

(
wkwi , wawj

))
space.

For the details, refer to the Hirschberg’s algorithm [17]. Adopting this metric,
LD (“SALE”, “WHOLESALE”) = 5 since a minimum of five insertions are re-
quired. Despite that LD provides more robustness than SED in partial matching
between words, its computation takes quadratic time and requires linear extra
space which is more expensive. In Section 4, we also empirically compare the
impacts of SED and LD on the performance of WS-Finder.

3 Compare capitalized characters at the same index.

320 J. Ma et al.

3.5 The EMD Filter: LBGIM

We now discuss the generation of the EMD filter LBGIM for word sequences
partial matching. We will prove that LBGIM lower bounds the general EMD
and is suitable for EMD computation with unequal total weights case.

There are many ways in computing exact EMD with arbitrary distance metric.
The streamlined approach we adopted is the transportation-simplex method [18]
due to its supercubic (between Ω

(
n3
)
and O

(
n4
)
) empirical performance [8, 19].

Also, this algorithm exploits the special structure of the transportation problem
and hence runs fast in practice.

Even though the algorithms for calculating the exact EMD are deemed to be
efficient, as the amount of WS contents continue to increase, the framework’s
response time for top-k queries may be increased quickly. Hence we use the fil-
tering idea similar to [8, 10, 11] to minimize the total number of actual EMD
computations. However, their lower bound filters are only for EMD with equal
weights (

∑n1

i=1 wkwi =
∑n2

j=1 wawj in our case), which is clearly not suitable for
the comparison of word sequences that requires solving the general EMD (in-
cluding the unequal total weights case). For this reason, we develop the LBGIM

filter generalized from LBIM in [10] for word sequences partial matching. We
will also see in the next subsection how this filter is incorporated into the k-NN
algorithm for producing the final results.

Our LBGIM is a conditional lower bound depending on three cases of LP
(1): 1)

∑n1

i=1 wkwi <
∑n2

j=1 wawj ; 2)
∑n1

i=1 wkwi >
∑n2

j=1 wawj ; 3)
∑n1

i=1 wkwi =∑n2

j=1 wawj . In particular, case 3) is the same as LBIM . For cases 1) and 2),
we develop new lower bound LPs (3) and (2) respectively in the following and
LBGIM can be either of their normalized optimal solutions.

minimize
∑n1

i=1

∑n2
j=1 fijdij

subject to ∀1 ≤ i ≤ n1 :
∑n2

j=1 fij = wkwi (2.1)

∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : fij ≤ wawj (2.2)
∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : fij ≥ 0 (2.3)

(2)

minimize
∑n1

i=1

∑n2
j=1 fijdij

subject to ∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : fij ≤ wkwi (3.1)
∀1 ≤ j ≤ n2 :

∑n1
i=1 fij = wawj (3.2)

∀1 ≤ i ≤ n1, 1 ≤ j ≤ n2 : fij ≥ 0 (3.3)

(3)

Theorem 1. LBGIM lower bounds the general EMD.

Proof. For case 3), the theorem holds as the proof in [10] states that LBIM lower
bounds the EMD with equal total weights. For case 1), the constraint (1.4) in LP
(1) immediately becomes constraint (2.1) that also subsumes constraint (1.1).
Also, constraint (2.2) provides a more relaxed search space of fij than (1.2),
since satisfying (1.2)⇒ satisfying (2.2) but not vice versa. So LP (2) will attain
the same or a smaller optimal solution than LP (1). After being normalized by
the amount of total flow, we obtain LBGIM as a lower bound. Finally, because
case 2) with LP (3) is similar to the situation of case 1) we analyzed, we have
LBGIM lower bounds the general EMD in all cases.

WS-Finder: A Framework for Similarity Search of Web Services 321

Although LBGIM seems to involve 3 cases, we can still provide a fast unified
greedy algorithm to resolve this. Moreover, the algorithm enables us to avoid
explicitly solving these LPs which take much longer time. The main idea for
developing the greedy algorithm is to look at LBGIM from the point of view
of algorithms rather than restricting ourselves to its mathematical view (the
LP formulations). The algorithmic view of the problem is explained by Figure
2. In this problem, we are asked to find the minimum cost flow subject to the
constraints in LPs. If case 1) happens (the upper figure), we can consider each of
keyword in turn due to the relaxed constraint (2.2). For each keyword, we first
ascendingly sort all its edges by distances. Then the greedy strategy is always
trying to assign a larger flow value along the edge with the shorter distance until
constraint (2.1) is fulfilled. Afterwards the unassigned edges associated with the
keyword will have zero flow value. LBGIM can then be easily calculated from
assigned flows and edge distances. If case 2) happens (the lower figure), without
loss of generality, we can reverse the direction of flow, consider each attribute
word in turn instead and do the same thing as case 1). Finally, if case 3) happens,
we consider both case 1) and case 2) and take the larger LBGIM value which is
closer to the exact EMD value.

For example, as shown in Figure 3, kw={“HOLDEN”, “CAR”, “SERVICES”}
and aw={“CITY”, “HOLDEN”}. Also, for simplicity if we use SED as the dis-

tance metric, then d =

⎛
⎝6 0

3 6
8 8

⎞
⎠, wkw = {6, 3, 8} and waw = {4, 6} and the

problem falls into the case 2) of LBGIM . So we reverse the flow direction with

dT =

(
6 3 8
0 6 8

)
and follow the greedy algorithm to get the total cost of as-

signed flows TC = 3 × 3 + (4− 3) × 6 + 6 × 0 = 15, where the total flow is
TF = 4+ 6 = 10 . Hence LBGIM = TC

TF = 1.5. In the following, we also provide
the greedy algorithm’s optimality proof and the runtime complexity analysis.

waw1
waw2

waw3

wkw1
wkw2

wkw3

waw4
. . .

. . .

waw1 waw2
waw3

wkw1
wkw2

wkw3

waw4
. . .

. . .

Upper

Lower

Fig. 2. Algorithmic view of LBGIM

HOLDEN

CAR

SERVICES

HOLDEN

CITY

Fig. 3. An example of computing LBGIM

Lemma 1. The unified greedy algorithm obtains the normalized optimal solu-
tions of LPs, i.e. the LBGIM , and it runs in O

(
n2 logn

)
time.

322 J. Ma et al.

Proof. The optimality of the algorithm is quite clear, since the relaxed con-
straints (2.2) and (3.1) enable us to treat either keywords or attribute words
independently. Therefore the local greedy optimal choices for the words will
combine to the global optimal choice. In terms of the runtime complexity, for
every independent keyword/attribute word, in the worst case the algorithm needs
to compare it with all attribute words/keywords, which takes O

(
n2
)
in total.

However, we need to sort every word’s associated distances first, which totally
takes O

(
n2 logn

)
that dominates the runtime.

3.6 Top-k Records Retrieval

In this section, we would like to study how this filter is incorporated into the k-
NN algorithm for producing the final results. There are two common query types
in any retrieval systems, namely the range query, and the top-k query that is
also known as the k nearest neighbor (k-NN) query. A range query is associated
with a specified metric and a threshold. The answer to this query is the set
of all objects within the threshold after measuring by the metric. On the other
hand, a top-k query is more flexible, since the threshold which is sometimes hard
to decide is not needed anymore. Instead, it requires an input k that specifies
the cardinality of the result set. In our problem, the two metrics are EMD and
its lower bound filter, which are calculated by the EMD and ˆEMD functions
respectively as introduced in Section 3.3. Continuing from that section, we then
define the queries in our framework as follows:

Definition 3. A range query q to a domain D ⊆ DB with metric c and a thresh-
old ε asks for a range set of records RSq,D

c,ε =
{
∀r ∈ D | c

(
kwq, awr,Mq) ≤ ε

}
,

where c is either EMD or ˆEMD. �

Definition 4. A top-k query q to a domain D ⊆ DB with metric c asks for
a top-k set of records TKSq,D

c =
{
∀r ∈ D | c

(
kwq, awr,Mq) ≤ ε′

}
, where c is

either EMD or ˆEMD, and ε′ = EMDs
q,D

(k). �

The domain D for a query in our framework is either DB or its subset and
EMDsq,D (k) was defined similarly in Section 3.3. A range set of records are
returned for a range query and a top-k set of records for a top-k query. Now,
in order to correctly utilize an ˆEMD filter to reduce the number of exact EMD
calculations in the framework, it is necessary to combine range and top-k queries
together as shown in Algorithm 1. In the algorithm, step 1 and 2 issue a top-
k query to DB with ˆEMD as the metric. In the framework, assume we use
LBGIM with LD for ˆEMD and there are totally R records in domain DB, then
for a query these two steps take O

(
RN2 logN +R logR

)
time where N is the

maximum number of words (≥ anyn) contained in a pair of matching word se-
quences. Step 3 and 4 then computes the exact EMDs for the set of k records
obtained in step 2, and set the maximum one as the threshold to issue a range
query to DB with ˆEMD as the metric. These steps take O

(
kN3 logN +R

)
time. Finally, step 5 and 6 issue another top-k query to the remaining records

WS-Finder: A Framework for Similarity Search of Web Services 323

Algorithm 1. k-NN Algorithm with LBGIM

Input: query q with kwq and Mq , input number k
Output: set TKSq,DB

EMD.

1. ∀r ∈ DB: compute ˆEMD
(
kwq , awr,Mq

)
.

2. Construct the set I = TKSq,DB
ˆEMD

.

3. ∀r ∈ I: compute EMD
(
kwq, awr,Mq

)
. Set ε = maxr EMD

(
kwq , awr,Mq

)
.

4. Construct the set DB′ = RSq,DB
ˆEMD,ε

.

5. ∀r ∈ DB′: compute EMD
(
kwq, awr,Mq

)
.

6. Construct the result set TKSq,DB′
EMD which will be proved to be the same as the

required output TKSq,DB
EMD.

(DB′ obtained in step 4) with EMD as metric for getting the result set. Assum-
ing there are total R′ records left after filtering in step 3 and 4, the final steps
then take O

(
R′N3 logN +R′ logR′) time. Note that following Algorithm 1, we

first show an important property of the ˆEMD metric w.r.t. range queries.

Lemma 2. Range sets obtained from domain D satisfy RSq,D
ˆEMD,ε

⊇ RSq,D
EMD,ε.

The last thing left is to verify the completeness of the result set TKSq,DB′
EMD , i.e.

this set does not lose any actual k-NN records from DB using EMD as the
metric. This is shown through the following lemma.

Lemma 3. Top-k set TKSq,DB′
EMD produced from Algorithm 1 guarantees no false

drops of the actual k-nn records.

The proofs of Lemma 2 and 3 are omitted due to the constraint of the space.

4 Experiments

4.1 Experimental Setting

Dataset and preprocessing. The experiments were conducted over four datasets
which were synthetically generated from the two publicly accessible WS data
colletions4,5 The WS data in these collections are gathered from real world ser-
vice sites. Also, they are classified into different categories which are suitable
for our requirements of the empirical study. Our created datasets include con-
tents of both FR and NFR attributes (as described in Section 2.1) for query
processing of our framework. Each dataset contains 139, 218, 315 and 404 WS

4 http://www.uoguelph.ca/~qmahmoud/qws/dataset
5 http://www.andreas-hess.info/projects/annotator/ws2003.html.

http://www.uoguelph.ca/~qmahmoud/qws/dataset
http://www.andreas-hess.info/projects/annotator/ws2003.html

324 J. Ma et al.

records respectively that covers different WS categories. In particular, we focus
on business, communication and countryInfo categories. The raw WSs in-
formation is then preprocessed, transforming from datasets into formatted WS
records in the database of our framework.

Implementation. We used C++ programming language to implement the algo-
rithms described in Section 3.6. All of our experiments were conducted on a low
to middle sized laptop computer running Windows Vista with 3GB RAM and
1.66GHz Intel(R) Core(TM)2 Duo CPU.

Similarity Search Measure. In order to evaluate the effectiveness of EMD for
similarity search of WSs, we use the widely adopted standards in information
retrieval: recall and precision to measure the overall performance of the frame-
work. In particular, given a query q, let C be the total number of retrieved
services, A be the total number of relevant services in the service collection and
B be the number of relevant services retrieved. The recall and precision of WS
search are defined as Recall=B/A and Precision=B/C respectively. Both recall
and precision values are in the range between 0 and 1. The higher value of the
measure indicates the more effective search results.

Variable Parameters. We identify 3 variable parameters in the experiment and
investigate their impact on the experimental results. These parameters are the
size of WS database, value of k in top-k queries, and the ground distance used
in computing EMD which is either SED or LD.

4.2 Experimental Results

We conducted 3 groups of experimental studies. The first two explored the ef-
fectiveness of our EMD approach according to the recall and precision mea-
surements respectively. The last group demonstrates the efficiency of similarity
search using EMD and the lower bound filter LBGIM .

Measuring Recall. Wemeasured the recall of EMD-based similarity search against
two variable parameters: the DB size and the ground distance. For a test query,
we fixed the other variable parameter k to be the total number of relevant ser-
vices in the respective database. We also compared recalls on three chosen WS
categories as mentioned in the dataset description. For instance, for a query q if
we know there are total p relevant service records from the business category in a
database with size s, then k is fixed to be p for q searching against this particular
database’s business category. Therefore, for queries q’s against different categories
and databases with different sizes, we need to measure different p’s in order to de-
termine respective values of k.

Figure 4 shows the impact of DB sizes and ground distances. Overall, the
impact of DB size on the recall of EMD-based WS search is not significant, which
indicates a good property of EMD approach. Recall values in both diagrams are
well above 0.6 for all DB sizes. For the impact of ground distances chosen for
EMD, LD in general outperforms SED, especially in the case of larger DB sizes.

WS-Finder: A Framework for Similarity Search of Web Services 325

0

0.2

0.4

0.6

0.8

1

139 218 315 404

Re
ca

ll

DB Sizes

business

communication

countryInfo

0

0.2

0.4

0.6

0.8

1

139 218 315 404

Re
ca

ll

DB Sizes

business

communication

countryInfo

Fig. 4. EMD recall (left with SED, right with LD) v.s. DB Sizes

0

0.2

0.4

0.6

0.8

1

4 6 8 10

Pr
ec

is
io

n

Top-k

business

communication

countryInfo

0

0.2

0.4

0.6

0.8

1

4 6 8 10

Pr
ec

is
io

n

Top-k

business

communication

countryInfo

Fig. 5. EMD precision (left with SED, right with LD) v.s. Top-k queries

Measuring Precision. For a top-k query, the precision measures the value p
k

where p is the number of relevant services retrieved out of k services. Therefore
this experiment is irrelevant to the parameter of DB size, but relevant to the
other two parameters: k and the ground distance. For k, we chose the value
of 4, 6, 8 and 10 to see its impact. The ground distance has still two choices:
SED or LD. For simplicity, we again focused on the business, communication
and countryInfo categories for retriving WSs and measuring the respective
precisions.

Figure 5 presents the results from the precision measurements. Regarding
the ground distances, LD outperforms SED significantly. Most noticeably, for
the category countryInfo values of precisions are ones for k = 4, 6, 8. LD
also provides much higher precision than SED for matching individual words
having similar structures. For the impact of k, we can generally conclude that
the precision descreases as the value of k increases. Nevertheless, even for top-10
queries precision values in both diagrams are still well above 0.6.

5 Related Work

Dong et al. [2] put forward a valuable similarity search approach to find Web
services based on the keyword strategy. With the help of the co-occurrence of
the terms appearing in service inputs and outputs, names of operation and de-
scription in services, the similarity search approach employs the agglomerative
clustering algorithm to match WSs. There are also a number of work focusing
on services matching and selection based on information retrieval (IR), which

326 J. Ma et al.

analyses the one-to-one relationship between keywords. A very recent work [4]
has proposed a QoS aware search engine for WSs. Although these approaches
work well in searching WSs, they ignore many-to-many similarity and partial
matching. Our work shares some flavour with the optimal WSs matching search
proposed in [20]. However, our work differs from these works in that we employ
EMD to capture partial similarity for searching WSs.

EMD is first proposed in [8] to model similarity measure between two distribu-
tions. Because of its various advantages such as allowing for partial matching and
matching human perception better than other simiarity measures, it is widely
exploited for various applications like phishing detection [12], document retrieval
[13], and databases [10, 14]. However, the computation cost of EMD is expensive
because of its principle based on linear programming. For this reason, there are
a number of research [10] focusing on designing effective lower bound on EMD
to improve the efficiency of computing EMD. Nevertheless, their lower bound
filters are only for EMD with equal weights (

∑n1

i=1 wkwi =
∑n2

j=1 wawj in our
case), which is clearly not suitable for the comparison of word sequences that
requires solving the general EMD (including the unequal total weights case). For
this reason, we develop the LBGIM filter generalized from LBIM in [10] for word
sequences partial matching.

6 Conclusions

In this paper, we propose a new EMD-based approach for effective Web services
search. The proposed EMD filter is the first effective and fast-to-compute lower
bound for the general EMD. Our approach is flexible and suitable for keyword-
based content searches where words with different lengths are compared. We
conducted experiments over a set of real datasets of Web services and the ex-
perimental result show that WS-Finder produces query answers with high recall
and precision.

The proposed approach and techniques open up some interesting directions
for future research. For example, by integrating with Semantic Web technique,
we can perform similarity serach for distinguishing words such as post and mail.
To further improve the perfromance of EMD search, we can leverage various
index structures such as inverted lists, signature files or R Tree.

References

1. Platzer, C., Dustdar, S.: A vector space search engine for web services. In: Pro-
ceedings of the 3rd European IEEE Conference on Web Services (ECOWS 2005),
pp. 14–16. IEEE Computer Society Press (2005)

2. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: Proceedings of the Thirtieth International Conference on Very
Large Data Bases (VLDB 2004), pp. 372–383. VLDB Endowment (2004)

3. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering se-
mantic approach. In: Proceedings of the 16th International Workshop on Context
Enabled Source and Service Selection, Integration and Adaptation: Organized with
the 17th International World Wide Web Conference (WWW 2008). ACM (2008)

WS-Finder: A Framework for Similarity Search of Web Services 327

4. Zhang, Y., Zheng, Z., Lyu, M.: Wsexpress: a qos-aware search engine for web
services. In: Proceedings of the IEEE International Conference on Web Services
(ICWS 2010), pp. 91–98. IEEE (2010)

5. Al-Masri, E., Mahmoud, Q.: Investigating web services on the world wide web. In:
Proceeding of the 17th International World Wide Web Conference (WWW 2008),
pp. 795–804. ACM (2008)

6. Ma, J., Zhang, Y., He, J.: Web services discovery based on latent semantic ap-
proach. In: Proceedings of the IEEE International Conference on Web Services
(ICWS 2008), pp. 740–747. IEEE (2008)

7. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web service discovery
mechanisms: Looking for a needle in a haystack? In: Proceedings of the Interna-
tional Workshop on Web Engineering (2004)

8. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

9. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

10. Assent, I., Wenning, A., Seidl, T.: Approximation techniques for indexing the earth
mover’s distance in multimedia databases. In: Proceedings of the 22nd Interna-
tional Conference on Data Engineering (ICDE 2006), pp. 11–22. IEEE (2006)

11. Ljosa, V., Bhattacharya, A., Singh, A.K.: Indexing spatially sensitive distance mea-
sures using multi-resolution lower bounds. In: Proceedings of the 10th International
Conference on Advances in Database Technology (EDBT 2006), pp. 865–883. ACM
(2006)

12. Fu, A., Wenyin, L., Deng, X.: Detecting phishing web pages with visual similarity
assessment based on earth mover’s distance (emd). IEEE Transactions on Depend-
able and Secure Computing, 301–311 (2006)

13. Wan, X.: A novel document similarity measure based on earth mover’s distance.
Information Sciences 177(18), 3718–3730 (2007)

14. Xu, J., Zhang, Z., Tung, A., Yu, G.: Efficient and effective similarity search over
probabilistic data based on earth mover’s distance. Proceedings of the VLDB En-
dowment 3(1-2), 758–769 (2010)

15. Assent, I., Wichterich, M., Meisen, T., Seidl, T.: Efficient similarity search using
the earth mover’s distance for large multimedia databases. In: Proceedings of the
24th International Conference on Data Engineering (ICDE 2008) (2008)

16. Navarro, G., Raffinot, M.: Flexible pattern matching in strings: practical on-line
search algorithms for texts and biological sequences. Cambridge Press (2002)

17. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Communications of ACM 18, 341–343 (1975)

18. Hillier, F., Liberman, G.: Introduction to mathematical programming. McGraw-
Hill, New York (1991)

19. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust his-
togram comparison. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 840–853 (2007)

20. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over
web services. In: Proceedings of the 32nd International Conference on Very Large
Data Bases (VLDB 2006), pp. 355–366. VLDB Endowment (2006)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 328–343, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Framework for Trusted Services

Icamaan da Silva and Andrea Zisman

Department of Computer Science, City University London, United Kingdom
icamaan.silva.1@city.ac.uk, a.zisman@soi.city.ac.uk

Abstract. An existing challenge when selecting services to be used in a service-
based system is to be able to distinguish between good and bad services. In this
paper we present a trust-based service selection framework. The framework
uses a trust model that calculates the level of trust a user may have with a
service based on past experience of the user with the service and feedback about
the service received from other users. The model takes into account different
levels of trust among users, different relationships between users, and different
levels of importance that a user may have for certain quality aspects of a
service. A prototype tool has been implemented to illustrate and evaluate the
work. The trust model has been evaluated in terms of its capacity to adjust itself
due to changes in user ratings and its robustness.

Keywords: Trust model, direct interaction, and recommended feedback.

1 Introduction

Despite the advances in the area, service selection is still a challenging problem for
service-oriented computing. Several approaches have been developed to support the
selection of services based on one, or a combination of, functional, behavioural,
quality, and contextual aspects [3][17][18][26]. However, given the large number of
existing (similar) services and the open characteristics of SOC in which anyone can
freely publish services, it is necessary to have mechanisms to distinguish between
“good” and “bad” services.

The use of QoS information supplied by service providers [8], or even behavioural
information as assumed in certain approaches [17][23], is not enough to distinguish
between good and bad services during the selection process. (After all, this
information can be inaccurate or exaggerated by service providers.) The use of service
level agreements (SLAs) to guarantee certain quality aspects of a service does not
assist with the selection process (SLAs are created after services have been selected).
In addition, SLA requires extra cost and time to establish and monitor the agreement
between the involved parties. As outlined in [9][22], it is important to use
mechanisms for service selection that rely on feedback from consumers such as trust
and reputation approaches. Furthermore, in recent years, we have experienced
increasing use of SOC for business-to-consumer interactions in which provision of
support for the needs and demands of consumers and applications is required. Service
providers need to consider the reputation of their services to improve them and make
a difference in a competitive environment.

 A Framework for Trusted Services 329

Trust and reputation have been the focus of research in several open systems such
as e-commerce, peer-to-peer, and multi-agent systems [5][10][15][16]. Some trust and
reputation approaches have been suggested for web-service systems [8][19][22]. In
general, web-services based approaches are limited and immature [22]. For example,
the majority of these approaches present one or more of the followings issues: (i)
assume that information given by service providers can be trusted; (ii) assume that
feedbacks provided can always be trusted; (iii) give the same importance for
feedbacks provided by different users; and (iv) demand a large number of interactions
or non-intuitive information from users.

In this paper we describe a trust-based service selection framework to support the
selection of services based on the level of trust a user may have with a service. More
specifically, the framework uses a trust model that we have developed to calculate the
level of trust a user may have with a service based on past experience of the user with
the service (viz. direct interactions), and feedback about the service received from
other users (viz. recommended feedback). Unlike existing approaches and models
[1][4][5][24], the trust model that we describe in this paper considers different levels
of importance that a user may have for the various quality aspects of a requested
service, different levels of trust among users, and different relationships between
users. For a user U, the approach considers three groups of related users, namely (a)
trusted group, composed by people that U trusts; (b) non-trusted group, composed by
people that U does not trust; and (c) unknown group, composed by people that U does
not know and cannot say anything about the level of trust with them. The different
types of relationships will interfere on how the recommended feedbacks are used
during the computation of the trust values. The framework also supports the
identification of malicious users.

The remainder of this paper is structured as follows. In Section 2 we describe an
overview of the framework. In Section 3 we present the trust model used in the
framework. In Section 4 we discuss implementation and evaluation aspects of our
work. In Section 5 we give an account of related work. Finally, in Section 6 we
discuss concluding remarks and future work.

2 Overview of the Framework

Figure 1 shows an overview of the architecture of trust-based service selection
framework with its main components, interactions, and different types of data used as
input or generated as output by the main components.

The framework supports a service selection process in which a service requester
(consumer) creates a query to be executed by the service discovery component. The
service discovery component searches for services that can fulfil the query and
provides a list of candidate services. This list of services is used by the trust manager
component to calculate trust values associated with the services in the list and to
generate a ranked list of services. The consumer receives the ranked list of services,
decides on the service to use, and provides his/her own rating for the service after
using the service. This rating is stored in the rating repository and will be used by the
trust manager in future computations of trust values for the service.

330 I. da Silva and A. Zis

Fig. 1. Overv

The service discovery co
(query). The framework use
one of the authors of this pa
quality, and contextual asp
scope of this paper and can

The trust manager comp
based on a trust model tha
service S is calculated by co
S, the level of trust that th
from other users, and the
aspects of S. All feedbacks

The group manager com
associated with a user; i.e.
the group to which a user s
group to another. For a use
associated with U are defin
users. The level of trust is c
ratings provided by the othe
invalid ratings provided for
a service S, a rating for S p
for S given by U, and it is
trust between U and U’ incr
U and U’ decreases. It is po
of users associated with U,
service S, the feedbacks of
calculation of the trust valu

The rating repository sto
of the quality aspects for a
information about the vario

3 Trust Model

As described before, the tru
interaction of user Ui with s
service S, given by the func

sman

view of trust-based service selection framework

omponent identifies candidate services for a service requ
es the service discovery component that was developed
aper to identify services that match functional, behaviou
pects of a query. Details of this component are out of

be found in [18][26].
mponent is responsible to calculate trust values of servi

t we have developed (see Section 3). The trust value o
onsidering the past experiences that the consumer had w
he consumer has with other users, the feedbacks abou
level of importance the consumer may give for qua
about S are stored in the rating repository.

mponent assists the framework with the concepts of gro
, trusted, non-trusted, and unknown groups. It decides
hould be allocated and when a user should move from
r U, the groups of trusted, non-trusted, and unknown us
ned based on the level of trust that U has with these ot
calculated by comparing the ratings provided by U and
er users for the services. The framework assumes valid
r a service S. More specifically, for two users U and U’
provided by U’ is valid when the rating matches the rat
s invalid otherwise. When the rating is valid, the level
reases; when the rating is invalid, the level of trust betw
ossible to move a user U’ from one group to another gro
 depending on the level of trust between U and U’. Fo

f the users in the non-trusted group are ignored during
e of S.
ores ratings provided by the users, the level of importa
a service, the levels of trust associated with the users,
ous groups.

ust value that a user Ui has for a service S is based on dir
service S, and recommended feedback from other users

ction below:

uest
d by
ural,

the

ices
of a
with
ut S
ality

oups
s on
one
sers
ther
the
and
and
ting
l of

ween
oup
or a
the

ance
and

rect
 for

(1)

 A Framework for Trusted Services 331

where:

• TUi(S): is the final trust value calculated for a service S for user Ui;
• DUi(S): is a score for service S based on past interactions of user Ui with S;
• FUi(S): is a score for service S based on recommended feedback from other users

considering the relationships that Ui has with these users (i.e., trusted group, non-
trusted group, and unknown group);

• wd ,wf: associated weights, with wd + wf = 1.

In the case where a user did not have a past interaction with the service, or there are
no feedback from other users for the service, these respective values are not
considered to calculate the trust value.

Direct Interaction. The score given for the direct interaction with a service (DUi(S))
is calculated based on the work proposed by Josang et al. [6] that uses multinomial
Dirichlet probability distribution. In this case, a user provides continuous rating
values between 0 and 10, which are mapped to one of the following five categories,
namely (i) mediocre, (ii) bad, (iii) satisfactory, (iv) good, and (v) excellent. The
rationale for using Dirichlet distribution is to allow support for several category
values with a solid statistical foundation, and to be able to represent discrete ratings as
a function of a continuous rating.

In the model, the mapping of a rating c [0,10] into a discrete 5-component variable
(v1, v2, …, v5) representing the categories (i) to (v) above is based on the calculation
of the level of membership of c for each vi variable according to the function
presented in [6]. The levels of memberships are represented as a vector of size five
(viz. membership vector) and c is a rating provided by the user divided by 10. The
sum of the values of the vi representing c in vector is equal to 1. For example, in the
situation in which a user gives rating 7.0 for a service S, the values for categories (i)
to (v) above (represented as v1, v2, v3, v4, v5) are = [0, 0, 0.2, 0.8, 0], respectively[6].

Our approach considers membership vectors for all the past ratings for a service S
provided by user Ui, as well as the level of importance that Ui gives for different
quality aspects of S. When a user requests a particular service, the user can specify the
importance of the service quality aspects by using different weights for each of the
aspects. For example, it is possible to use the weights 2: most important aspect; 1:
less important aspect; and 0: non-important aspect. A rating given by a user is
associated with the service as a whole. The weights given for each of the quality
aspects are used to measure the level of similarity between different interactions with
the service and to support distribution of ratings with the various quality aspects.

In order to illustrate, consider the scenario in Table 1 in which user U1 had two past
interactions with service S (i1 and i2), with ratings 7.0 (c=0.7) and 8.0 (c=0.8)
respectively. For this scenario, assume the quality aspects of cost, availability, and
response time with their respective importance for U1 as shown in the table. Suppose
i3 the current interaction of the user. The direct interaction score will be calculated
based on the similarities that exist between the quality aspects considered in
interaction i3 and the other interactions.

332 I. da Silva and A. Zisman

Table 1. Scenario for past interactions

U1/S Rating c Cost Availability Response Time
i1/S 7.0 0.7 1 1 0
i2/S 8.0 0.8 2 0 1
i3/S 2 1 1

In the model, the similarity between the different interactions is calculated by:

 1 ∑ | , |10 (2)

where:

• dl: is the similarity distance between the current and the l-th previous interactions;
• pl,x: is the weight associated with each service quality aspect x in the l-th previous

interaction;
• p’x: is the weight associated with each service quality aspect x in the current

interaction.

The score for a service S based on past interactions of user Ui with S is calculated by
the function below:

 ∑ with ∑ ∑ ∆ (3)

where:

• : is the aggregated vector calculated by the weighted sum of all the vectors ;
• : is the membership vector for a past interaction of Ui;
• n: is the total number of past interactions of Ui;
• k: is the total number of categories (k=5);
• dl: is the similarity value for the various quality aspects of S calculated as in (2);
• : is a value assigned to each category v1,…,vk to provide a value in an interval;

• C: is a constant used to ensure that all values in the elements of vector are
greater than 0, to allow a posterior analysis of the Dirichlet distribution;

• αΔt is the aging factor, where α is a constant and Δt is the difference between the
time of a user’s request and the time of past interactions with S.

Consider the scenario in Table 1. In this case, the membership vectors for each
interaction i1 and i2 are: V1 = {0, 0, 0.2, 0.8, 0} and V2 = {0, 0, 0, 0.8, 0.2}; the
similarity distances are calculated as in (2), with d1 = 0.8 and d2 = 0.9; the aggregated
vector = {0, 0, 0.16, 1.36, 0.18}; and DUi(S) = 0.625.

In the model, the number of past interactions of a user with a service S interferes
with the calculation of DUi(S). In order to demonstrate this consider an evaluation of
the trust model in which there is an increase in the number of past interactions from a
user from 0 to 200 interactions. For this evaluation, suppose the same weights
associated with DUi(S) and FUi(S) (wd = wf = 0.5), and C=0.4 (see function (3)). For
each of these past interactions assume the ratings provided by the user as (a) 10.0, (b)

 A Framework for Trusted Services 333

6.0, and (c) 2.0. In all the cases (a) to (c), the evaluation assumes the same level of
importance for the service quality aspects (cost = availability = response time = 1).

Figure 2 shows the results of the experiments for the cases (a), (b), and (c)
executed in a prototype of the trust model that we have developed. As shown in the
figure, when there are no past interactions, the value of DUi(S) is 0.5, given that there
is a 50% of chance of trusting a non-previously used service. We also observed that
for rating values that are more distant than the medium rating value (5.0), it is
necessary to consider a larger number of past interactions to reach an associated score
for DUi(S) that is closer to the rating. For example, for a rating of 10.0 (case (a)),
DUi(S) =1 after approximately 50 interactions; while for a rating of 6.0 (case (b)),
DUi(S) =0.6 after approximately 15 interactions; and for a rating of 0.2 (case (c)),
DUi(S) =0.2 after approximately 30 interactions. This is expected since in practice a
higher level of trust is achieved with more opportunities of interactions (e.g., the level
of trust between individuals usually increases with time).

Fig. 2. Experiment results

Recommended Feedback. The score calculated based on recommended feedback
from other users (FUi(S)) uses an associated level of trust between a user Uj and user
Ui, and a score for service S calculated based on past interactions of Uj with S
(DUj(S)). User Uj is classified in one of the three groups (trusted, non-trusted, and
unknown) depending on the level of trust between Uj and Ui. The associated level of
trust for a user Uj is calculated based on the Beta distribution given below:

, 1 2

(4)

where

• Uj : is a user in one of the groups;
• : is the number of “valid” recommended feedback provided by Uj;
• : is the number of “invalid” recommended feedback provided by Uj.

The calculation of the score of recommended feedback from other users (FUi(S)) is
given by the function below. In this case, the approach considers users classified in
the trusted and unknown groups.

 ∑ ,∑ , (5)

334 I. da Silva and A. Zisman

where

• DUj(S): is the score for service S calculated based on past interactions of user Uj
with service S (see function (3))

• , : is the associated level of trust for a user Uj;
• n: is the total number of users in the trusted and unknown groups.

Table 2. Scenario for recommended feedback

User Group Previous Interactions Interaction Results , DUj

U2 TG 12 10V, 2I 0.79 0.82

U3 TG 20 16V, 4I 0.77 0.75

U4 UG 2 1V, 1I 0.5 0.88

U5 TG 0 0 0.78 0.65

U6 UG 0 0 0.5 0.31

In order to illustrate the computation of FUi(S), consider the scenario shown in

Table 2. In the table TG and UG represent trusted and unknown groups; V and I
represent valid and invalid feedbacks. In this case, the level of trust for users U4 and
U5 are calculated as the average of the level of trusts for the other users in their
respective groups. For this scenario, FUi(S) = 0.70. Considering the scenarios shown
in Tables 1 and 2, with wd = wf = 0.5, the trust value for service S is TUi(S) = 0.66.

In the model, the number of users in a certain group interferes with the calculation
of FUi(S). To demonstrate how the number of users in a group influences the value of
FUi(S), consider an evaluation of the trust model in which there is (a) an increment in
the number of users in the trusted group from 0 to 100 with a fixed number of five
users in the unknown group, and (b) an increment in the number of users in the
unknown group from 0 to 100 with a fixed number of five users in the trusted group.
For each above case we analysed the values of the calculated recommended feedback
with ratings provided by users as 10.0 and as 0.0. Suppose the same weights
associated with DUi(S) and FUi(S) (wd = wf = 0.5), and C=0.4 (see function (3)). Figure
3 shows the results of the evaluation for the cases (a) and (b) for ratings of value 10.0.
As shown in the figure, the users in the trusted group have a higher influence in the
recommended feedback value than the users in the unknown group (the line in the
graph for the trusted group is always above the one representing the unknown group).
A similar situation occurs when the rating is 0.0.

Fig. 3. Results of experiment

 A Framework for Trusted Services 335

We also analysed how the different service quality aspects used in the model may
influence the trust values computed by the model and, therefore, the selection of a
service that best matches the request of a user. In this analysis we considered cost,
response time, and availability service quality aspects. We executed an experiment in
a scenario for 60 units of time (time-steps) with one main user requesting a service
with a different importance for a quality aspect in each set of ten time-steps. Table 3
summarises the relevant quality aspects for the user in the different sets of time-steps.

We considered three services S1, S2, and S3 with similar functionalities, and 30
other users interacting with one of the three services and providing ratings
accordingly to their satisfaction with respect to a service and certain quality aspects.
Table 4 summarises the ratings provided by the various users for a service and the
respective quality aspect considered for each case in the experiment.

Table 3. Quality aspects with respect to the time-steps

Time-steps 1-10 11-20 21-30 31-40 41-50 51-60

Quality

aspects

cost resp. time,

availability

cost, resp. time,

availability

Cost resp. time,

availability

cost, resp. time,

availability

Table 4. Ratings provided by the various users

Experiments Users Service Rating Quality aspects
C.a u1, ... ,u10 S2 8.8 cost, response time, availability
C.b u11, ... , u20 S1 8.5 cost
C.c u21, ... , u30 S3 9.0 response time, availability

Fig. 4. Services selected in each time-step

Figure 4 shows the services that were selected in each time-step for the above
scenario. In this case the services were selected taking into consideration the quality
aspects of the services and the user requests, and not necessarily the service with the
highest rating provided by the users (S3 in this scenario).

4 Implementation Aspects and Evaluation

A prototype tool of the framework has been implemented. The trust manager and
group manager components were implemented in Java (J2SE), and the rating

336 I. da Silva and A. Zisman

repository was implemented in MySQL database. The service discovery component
was also implemented in Java and is exposed as a web service using Apache Axis2.
To simulate the different behaviours of the users in the evaluation, we implemented a
simulator in Java for requests and ratings provided by different users.

The work was evaluated in terms of Case (1): the time required by the trust model
to adjust trust values due to changes in user ratings; and Case (2): the robustness of
the trust model against unfair ratings, as described in the following.

Case (1): This case is concerned with the level of match that exists between the trust
value of a service S and user ratings given for this service. More specifically, we
measure the time that it takes the trust model to adjust itself with respect to changes in
the ratings provided by users, so that the trust value of S matches the rating values
received by users of S. The matching levels (ML) are in a scale of 0.0 to 1.0, where a
full match has a matching level of 1.0, and are calculated using the function below:

 1 | | (6)

where:

• µUr(S) is the expected value for the user ratings for service S, calculated based on
rating intervals;

• T(S) is the trust value for service S.

This type of evaluation is important to analyse how our model responds to changes in
the quality of the services (reflected in the user ratings). These changes in service
quality can be caused due to modifications in the services by service providers, in
order to satisfy new requirements and demands, or new rules and regulations. The
changes in the service quality can also be caused due to deviations in the expectations
of the users of a service. For example, users are always demanding faster responses
for their online requests, or expecting to pay less for a service.

The evaluation was executed in a scenario in which one main user requests the
trust value of a service S and 100 other users interact with S and provide ratings for S,
within a certain interval of values, for a certain moment of time. In the evaluation we
considered 90 units of time (time-steps). We also assumed that for each interval of 30
time-steps there is a change in the ratings provided by the users. We considered aging
factor of α=0.5 (see function (3)), and the times for the user requests and past
iterations as the values of the time-steps. We executed the experiments for four
different cases with respect to the interval of ratings provided by the users in each
time-step (C1.1, C1.2, C1.3, and C1.4). In each case, we started with the highest
rating interval (values [10.0, 8.0]) for the first set of 30 time-steps; dropped the ratings
for the second set of 30 time-steps to intervals of [0.0, 2.0[, [2.0, 4.0[, [4.0, 6.0[, and
[6.0, 8.0[, respectively; and raised the rating values within the interval of [10.0, 8.0]
again in the third set of 30 time-steps, to provide different values across the range of
possible ratings. The ratings within each of the intervals are randomly generated, by
using a module that we have implemented, based on uniform distribution.

Figure 5 shows graphs with the results of the experiments for the four cases above.
As shown in the figure, the matching level of the trust values with the ratings given by
the users in each case drops after each 30 time-steps (when there is change in the

 A Framework for Trusted Services 337

rating). The results also show that the approach takes between four and seven time-
steps for a full match between the interval of the trust value and the interval of the
ratings given by the users, depending on the variation level in the rating intervals. For
example, in the case of interval ratings between [0.0, 2.0[(case C1.1), the approach
takes seven time-steps to achieve a match between the trust value and the rating. In
the case of interval ratings between [6.0, 8.0[(case C1.4), the approach takes four
time-steps to achieve the match. Similarly, in the cases C1.2 and C1.3 the approach
takes five and six time-steps to achieve the match, respectively.

Fig. 5. Matching levels with respect to time-steps with aging factor

Fig. 6. Minimum Matching levels according to the rating variation

Figures 5 and 6 show the minimum values achieved for the match between the trust
and rating interval values. As shown in Figure 6, these values grow linearly with
respect to the reduction in the difference of the rating intervals (continuous line in the
figure). More specifically, the drops in the matching values are 0.60 in the case C1.1;
0.703 in the case C1.2; 0.802 in the case C1.3; and 0.898 in the case C1.4.

Based on the experiments, we also noticed that the use of an aging factor
influences the amount of time it takes for the trust value to reach a match with a given
rating interval. This was observed by executing the above experiments (C1.1, C1.2,

338 I. da Silva and A. Zisman

C1.3, C1.4) without taking into account the aging factor for past rating values and,
therefore, considering the same importance for all rating values throughout all time-
steps (Δt=0 in function (3)). Table 5 summarises the number of time-steps for each
case in the experiment when the trust values match the respective interval of the
rating values. The minimum values achieved for the match between the trust and
rating values are shown in Figure 6 (dashed line). These values are smaller when
compared to the situation in which an aging factor is used. However, they are still
linear with respect to the rating variation values.

The above results are expected given that when using an aging factor, older past
ratings have very little importance when compared to more recent past ratings for a
certain time-step. Contrary, in the case in which the aging factor is considered, the
older past ratings have the same level of importance than the most recent ones,
requiring more user iterations for the trust values to match the rating values.

Table 5. Number of time-steps needed to reach a full matching level without the aging factor

Cases C1.1 C1.2 C1.3 C1.4
Number of Time-steps 240 183 124 60

Case (2): This case is concerned with the robustness of the trust model with respect to
unfair ratings provided by malicious users. By robustness we mean the capacity of the
model to provide trust values that are not influenced by unfair ratings. In the
approach, this is achieved by identifying unfair ratings and not considering them in
the calculation of the trust values. Unfair ratings are a major challenge to approaches
based on users’ feedbacks since it is possible to have users providing ratings to either
promote or discredit a particular service according to their interests.

In our approach, the trust model deals with possible unfair ratings by considering
different trust levels among users and the non-trusted group of users. As described in
Section 2, the feedbacks provided by users are classified as valid or invalid. This
classification is used to update the trust level among users and to move users to the
non-trusted group, when applicable. Feedbacks from users in the non-trusted group
are ignored during the trust calculation process.

As in the Case (1), the evaluation was executed in a scenario in which one main
user requests a particular service S, and considering 90 units of time with 100 users
providing ratings for S in each time-step. We assumed service S with excellent quality
level; i.e.; fair feedback ratings for S are in the interval [10.0, 8.0]. We considered
unfair feedback ratings for S as values in the interval [0.0, 4.0]. We also considered
that the main user requesting service S provides a fair feedback rating for S. The 100
users in the experiments are divided into two sets with 50 users in each set. We
assumed users in the first set always providing fair feedback ratings, and users in the
second set giving unfair ratings (malicious users).

We executed the experiments for five different cases (C2.1 to C2.5) with respect to
the percentage of unfair ratings provided by the 50 users in the second set. In the case

 A Framework for Trusted Services 339

C2.1, 100% of the ratings provided by the 50 users in the second set were unfair
ratings (values between [0.0, 4.0]); while in the cases C2.2, C2.3, C2.4, and C2.5,
80%, 60%, 40%, and 20%, respectively, of the provided ratings by the users in the
second set were unfair. The rating values within each of the situations considered in
the experiments are randomly generated, for the interval of fair and unfair ratings.
In time-step 0 of the experiment, we considered that there has been no feedback
ratings provided for service S and assumed an initial default trust value for this
service as 0.5.

We analysed the robustness of the model by considering situations in which the
concept of the different groups are used and when the concept of groups are not used.
We considered that a user moves to the non-trusted group when the associated level
of trust between this user and the user requesting the service is less than 0.3 (see
Section 3); furthermore, we considered that a user in the non-trusted group moves out
of this group (becomes a trusted user) when the associated level of trust is greater or
equal to 0.7. The use of a high value for the associated level of trust to remove a user
from the non-trusted group is to reflect the fact that, in general, when an individual
looses trust with someone else, it is necessary to have more evidence of good attitude
to restore trust between the individuals.

Figure 7 shows the results of the experiments for the cases C2.1 to C2.5,
respectively, with and without the existence of the groups. As shown in Figure 7,
when using the concept of groups, for the case C2.1 the model reaches the trust value
of 0.9 for S faster than in the cases C2.2 and C2.3. In the case C2.1 this happens
because the approach quickly identifies malicious users and moves them to the non-
trusted group. For the cases C2.2, and C2.3, the same happens, although it takes the
model more time to identify the non-trusted users. In the cases C2.4 and C2.5, the
model never reaches the value of 0.9, given the low percentage of unfair ratings
provided by the users in the second set, not allowing the approach to move a large
number of users to the non-trusted group. Table 6 shows a summary of the number of
users that are moved to and from the non-trusted group for each case.

The results in Figure 7 also show that when the concept of groups are not used, the
approach takes a long time for reaching the trust value of 0.9 for S (case C2.1), or
never reaches this value (all the other cases in the experiments). In these situations,
the concepts of valid and invalid feedbacks are considered to calculate the trust value.
The graphs also show that in the cases C2.1 and C2.2, the differences in the trust
values for using and not using the concept of groups start bigger and are reduced with
time, while in the cases C2.3 and C2.4; these differences are more constant since the
beginning. This is because the reduction in the number of unfair ratings given by the
users in the second group (reflected in the various percentages) makes it more
difficult to distinguish between malicious and non-malicious users. For the case C2.5,
there is no difference when using or not the concept of groups. This is because the
low number of unfair rates (20%) yields on few users moving to the non-trusted group
and a high percentage of those users to leave the group (see Table 6).

340 I. da Silva and A. Zisman

Fig. 7. Trust scores according to unfair ratings with and without the non-trusted group

The above results demonstrate that the concept of groups provide better results
than when not using the groups for the majority of the cases, or the same result when
there is a low percentage of unfair ratings. Moreover, the approach supports the
identification of the majority of malicious users (all of them for the cases C2.1, C2.2,
and C2.3). The way the approach considers the notion of valid and invalid ratings also
contributes to the results achieved by the approach.

Table 6. Number of users moved from and to the non-trusted group

Cases C2.1 C2.2 C2.3 C2.4 C2.5
Users that moved to 50 50 50 28 9
Users that moved from 0 0 0 1 6

5 Related Work

Several approaches have been proposed to support service selection, trust, and
reputation management systems [5][10][15][16]. Some of these approaches propose
different ways to combine feedbacks from users of services in order to calculate
appropriate reputation scores [5][13][14][11][20]. Many of these approaches are
concerned with only reputation management aspects and do not consider QoS
attributes and different levels of trust between users, as in the case of our work.

 A Framework for Trusted Services 341

Existing trust models can be classified as (i) Bayesian models [5][13], when trust
values are calculated based on probabilistic distribution; (ii) belief models [4][24],
that associates degrees of belief to the possible output supported by the model; and
(iii) discrete models [1], that associate discrete categories to determine the level of
trust with other users or services. The reputation model in [5] is based on beta
distribution and considers direct experience as well as feedback from other users to
model the behavior of a system. The belief model in [4] uses metrics called opinion to
describe belief and disbelief about a proposition, as well as the degree of uncertainty
regarding probability of an event. The discrete model in [1] takes into account the
perception a user has from another user. The trust model described in this paper is
based on the combination of concepts from Bayesian and discrete models. More
specifically, we extend the approach in [5] to support the calculation of trust values
considering different levels of importance for quality aspects of a requested service
and different relationships between users (group concept). Similar to our model, in [5]
the model supports different levels of trust between users. However, our model
calculates these levels of trust based on a beta distribution, while in [5] this are
calculated based on opinion. The concepts of discrete model used in our approach are
represented by the notion of groups.

A large number of works have been proposed to support service selection in which
more than one feedback from users are considered [2][25][19][12][11][21][7].
However, the majority of these approaches fail to provide a good reputation
management system as they consider the available feedbacks in the same way when
calculating trust values [2][25][19][12][11]. This causes a significant drawback given
that these approaches are not able to distinguish between malicious users and do not
provide proper importance to users’ feedback with a good history of past interactions.
Furthermore, some of these approaches usually demand a large amount of information
from the service consumers [2][25][19][11][12]. In some cases these approaches even
demand non-intuitive information such as graphs curves to calculate the trust values,
or several parameters to be configured in order to achieve a good performance [21].

The work in [2] proposes a framework for quality of service management based on
user expectations. The users are responsible for providing ratings and expectation
values on QoS attributes. The approach described in [25] uses a reputation manager to
calculate reputation scores and assumes that service consumers will provide QoS
requirements, weights to be associated to the reputation score, QoS scores, and ratings
to assess the services. This approach considers the most recent rating of each user and
assumes that all users provide non-malicious and accurate ratings.

In [19] the authors describe an approach to service selection based on the user’s
perception of the QoS attributes rather than the actual attribute values. In order to
identify the most appropriate values for each QoS attribute, the approach requires
several interactions with the users. The proposal to mitigate this issue is based on the
presentation of non-intuitive curves. The work in [12] does not have any mechanism
to prevent malicious feedback and does not provide ways of checking whether the
same feedback in different websites is used more than once. The framework in [11]
uses an ontology-based approach to assist providers to advertise their services and
consumers to express their preferences and ratings.

342 I. da Silva and A. Zisman

The QoS-based service selection and ranking solution in [21] supports prediction
of future quality of web services. The authors introduce a mechanism to avoid unfair
ratings based on statistical analysis of the reports from users. The success of the
proposed methodology depends on the selection of an optimal configuration for the
design parameters. On another example, in [7] a method to calculate reputation based
on users’ ratings, service compliance, and verity is described. Compliance refers to
performance history with respect to delivering the agreed level of qualities. Verity
represents the success of a web service or service provider in meeting the agreed
quality levels and is calculated based on the variance of the compliance levels. No
mechanism to avoid malicious users and unfair feedbacks is provided.

The framework and trust model described in this paper complement existing
service selection reputation approaches. It differs from existing approaches by
providing a model to calculate trust values of services based on different trust levels
between users of the services, level of importance of service quality aspects, and
weighted recommended feedback. The approach also considers the notion of valid
and invalid feedbacks when calculating the trust values of the services.

6 Conclusion and Future Work

In this paper we presented a framework for trust-based service selection. It uses a trust
model to calculate the trust value of a service based on past experience of the user of
the service and feedback ratings about the service received from other users. The trust
model also considers the level of trust among users, and level of importance for
different quality aspects of the services. The users can be classified in three groups,
namely trusted, non-trusted, and unknown users. This classification is considered
when using feedback ratings from users to calculate trust values. The approach also
supports identification of malicious users based on the comparison of rating values.

We are currently extending the trust model to consider different types of more fine-
grained relationships between users, or group of users, and how these relationships
could influence the level of trust in the recommended feedback from other users. For
example, a user U can have different levels of trust with a friend or a relative,
although they can both be in the trusted group of U. We are also considering transitive
relationship between users. We are extending the model to provide more fine-tuned
values for the trust levels between a user requesting a service and users in the
unknown group, based on past interactions with common services between the users.
Other areas for future work are concerned with the development of mechanisms to
decompose feedback and rating of service compositions to specific services in the
composition, bootstrapping, and analysis of the impact of changes in the values of
constant C (see function 3) for the calculation of the trust values.

References

[1] Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: HCISS
(2000)

[2] Deora, V., Shao, J., Gray, W.A., Fiddian, N.J.: A Quality of Service Management
Framework Based on User Expectations. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 104–114.
Springer, Heidelberg (2003)

 A Framework for Trusted Services 343

[3] Hausmann, J., Heckel, R., Lohmann, M.: Model-based Discovery of Web Services. In:
Intl. Conference on Web Services (2004)

[4] Josang, A.: A Logic for Uncertain Probabilities. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 9(3), 279–311 (2001)

[5] Josang, A., Haller, J.: Dirichlet Reputation Systems. In: 2nd International Conference on
Availability, Reliability and Security (ARES 2007), Vienna (April 2007)

[6] Josang, A., Luo, X., Chen, X.: Continuous Ratings in Discrete Bayesian Reputation
Systems. In: Proceedings of the IFPIM 2008 (2008)

[7] Kalepu, S., Krishnaswamy, S., Loke, S.W.: Reputation = f(User Ranking, Compliance,
Verity). In: Proc. of the IEEE International Conference on Web Services (2004)

[8] Liu, Y., Ngu, A., Zheng, L.: QoS computation and policing in dynamic web service
selection. In: Proc. of World Wide Web Conference (2004)

[9] Malik, Z., Bouguettaya, A.: Reputation Bootstrapping for Trust Establishment among
Web Services. IEEE Internet Computing 13(1) (2009)

[10] Matsuo, Y., Yamamoto, H.: Community gravity: Measuring bidirectional effects by trust
and rating on online social networks. In: World Wide Web Conference (2009)

[11] Maximillen, E.M., Singh, M.P.: Multiagent System for Dynamic Web Services
Selection. In: Proc. 1st Workshop on Service-Oriented Computing and Agent-Based
Engineering (2005)

[12] Meng, L., Junfeng, Z., Lijie, W., Sibo, C., Bing, X.: CoWS: An Internet-Enriched and
Quality-Aware Web Services Search Engine. In: Intl. Conference on Web Services (2011)

[13] Mui, L., Mohtashemi, M., Halberstadt, A.: A computational Model of Trust and Reputation.
In: Proc. of the 35th Hawaii International Conference on System Science (2002)

[14] Nguyen, H.T., Zhao, W., Yang, J.: A Trust and Reputation Model Based on Bayesian
Network for Web Services. In: IEEE International Conference on Web-Services, Miami
(2010)

[15] Ruohomaa, S., Kutvonen, L.: Trust Management Survey. In: Herrmann, P., Issarny, V.,
Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 77–92. Springer, Heidelberg
(2005)

[16] Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering
Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive
Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

[17] Shen, Z., Su, J.: Web Service Discovery Based on Behavior Signature. In: IEEE SCC
(2005)

[18] Spanoudakis, G., Zisman, A.: Discovering Services during Service-based System
Design using UML. IEEE Transactions of Software Engineering 36(3), 371–389 (2010)

[19] Srivastava, A., Sorenson, P.G.: Service Selection based on customer Rating of Quality
of Service Attributes. In: IEEE International Conference on Web Services (2010)

[20] Tan, L., Chi, C., Deng, J.: Quantifying Trust Based on Service Level Agreement for
Software as a Service. In: Proc. of Intl. Computer Software and Applications Conf. (2008)

[21] Vu, L., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with Trust
and Reputation Management. In: Proc. of the Cooperative Information System Conf.
(2005)

[22] Wang, Y., Vassileva, J.: Towards Trust and Reputation Based Web Service Selection: A
Survey. International Transaction Systems Science and Applications 3(2) (2007)

[23] Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

[24] Wang, Y., Singh, M.P.: Evidence-Based Trust: A Mathematical Model Geared for
Multiagent Systems. ACM Transactions on Autonomous and Adaptive Systems (2010)

[25] Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based Web
Services Discovery. In: IEEE International Conference on Web Services (2007)

[26] Zisman, A., Spanoudakis, G., Dooley, J.: A Framework for Dynamic Service Discovery.
In: Int. Conf. on Automated Software Engineering (2008)

Configuring Private Data Management as Access

Restrictions: From Design to Enforcement

Aurélien Faravelon1, Stéphanie Chollet2, Christine Verdier1, and Agnès Front1

1 Laboratoire d’ Informatique de Grenoble,
220, rue de la chimie, BP 53 F-38041 Grenoble Cedex 9

{aurelien.faravelon,christine.verdier,agnes.front@imag.fr}@imag.fr
2 Laboratoire de Conception et d’Intégration des Systèmes

F-26902, Valence cedex 9, France
stephanie.chollet@lcis.grenoble-inp.fr

Abstract. Service-Oriented Computing (SOC) is a major trend in de-
signing and implementing distributed computer-based applications. Dy-
namic late biding makes SOC a very promising way to realize pervasive
computing, which promotes the integration of computerized artifacts into
the fabric of our daily lives. However, pervasive computing raises new
challenges which SOC has not addressed yet. Pervasive application re-
lies on highly dynamic and heterogeneous entities. They also necessitate
an important data collection to compute the context of users and pro-
cess sensitive data. Such data collection and processing raise well-known
concerns about data disclosure and use. They are a brake to the devel-
opment of widely accepted pervasive applications. SOC already permits
to impose constraints on the bindings of services. We propose to add
a new range of constraints to allow data privatization, i.e. the restric-
tion of their disclosure. We extend the traditional design and binding
phases of a Service-Oriented Architecture with the expression and the
enforcement of privatization constraints. We express and enforce these
constraints according to a two phases model-driven approach. Our work
is validated on real-world services.

Keywords: Access restriction, SOA, workflow, private data.

1 Introduction

Service-Oriented Computing (SOC) is a major trend in designing and imple-
menting distributed computer-based applications. Applications are implemented
by composing already existing functionalities called services which exposed over
networks such as the Internet. Services are loosely coupled and SOC thus pro-
motes the distinction between the design of the composition and its execution.
Indeed, the application is designed without knowing which services will actu-
ally be available. The application is then executed by invoking and binding the
necessary services among the set of available services.

Dynamic late biding makes SOC a very promising way to realize pervasive
computing, a new paradigm which promotes the integration of computerized

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 344–358, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Configuring Private Data Management as Access Restrictions 345

artifacts into the fabric of our daily lives. Pervasive computing relies on dis-
tributed and highly heterogeneous and dynamic entities. Sensors, softwares or
devices are such entities. Their composition is crucial to build efficient and in-
novative applications. Pervasive applications have to be flexible and adaptive.
Exposing functionalities as services, distinguishing the application’s design from
its execution and realizing the application by binding the actual services meet
these requirements.

However, pervasive computing raises new challenges which SOC has not ad-
dressed yet. Pervasive computing necessitates an important data collection. Col-
lecting the location of users who interact with the application, for instance, is
necessary to identify their contexts of use. Using pervasive computing thus means
sharing data which flow in the application - such as medical files or credit ap-
plication - and disclosing data about the users of the composition. As sensitive
data can be derived from seemingly inoffensive pieces of data, these two groups
of people can be modeled in details. Such a possibility raises well-known concerns
about data disclosure and use. They are a brake to the development of widely
accepted pervasive applications. As a result, there must exist a mechanism to
constraint data disclosure.

SOC already permits to impose constraints on the bindings of services. We
propose to add a new range of constraints to allow data privatization, i.e. the
restriction of their disclosure. Privatization constraints bear on what an observer
external to the composition can deduce from the binding of services, on what a
client can ask a service provider about and on what a service provider can ask
a client about.

We extend the traditional design and binding phases by allowing the expres-
sion and the enforcement of privatization constraints. We express and enforce
these constraints according to a two phases model-driven approach:

– At design level, we extend a composition language with a platform indepen-
dent privatization language to express privacy constraints which must be
enforced at binding time. Privacy designers can use this language to express
privatization constraints.

– At binding time, automatic model-to-text transformations inject the appro-
priate code to enforce privatization constraints in a Service-Oriented Archi-
tecture (SOA). We modify the SOA to store the information necessary to
enforce access restriction.

The paper is structured as it follows. In Section 2, we introduce a global overview
of our approach. We detail our design level in Section 3 and the execution level
in Section 4. Eventually, we validate our approach in Section 5 before discussing
the works related to ours in Section 6 and concluding in Section 7.

2 Global Approach

Our goal is to ease the design and implementation of privacy-aware pervasive
applications realized as compositions of heterogeneous and dynamic services.

346 A. Faravelon et al.

We propose a model-based approach where security properties related to private
data management as access restriction are specified at design time. These prop-
erties are realized through code generation at binding time depending on the
available services.

Because of the inherent heterogeneity and dynamism of services, access restric-
tion is a problem throughout the entire application’s life-cycle. Services that are
actually used at runtime are generally not known at design time. Their access
restrictions capabilities cannot be predicted or relied on. Furthermore, design
time involves non-technical stackeholders who cannot make sense of technical
minutes.

We have designed and connected two platform-independent views, a service
composition one and an access restriction one. From these views and their rela-
tionships, we automatically generate an executable privacy-aware service com-
position as shown on Figure 1.

Fig. 1. Background of our proposition

Composition and access restriction are specified at design time. We are driven
by two principles: abstraction and separation of concerns. Modeling allows us
to abstract away technical details and separation of concerns permits to accom-
modate different viewpoints of the same application. Privacy experts can design
the privacy policy.

At binding time, the application is realized as a service orchestration. Access
restriction features are injected through the generation of a proxy for each service
instance. We have also developed an identity manager which deals with users
privileges and a context manager which handles contextual information retrieval
and processing.

Configuring Private Data Management as Access Restrictions 347

3 Design Level

Figure 2 displays the service composition and the access restriction metamodels
and their relationships.

Fig. 2. Relations between Service Composition and Access Control Metamodels

3.1 Service Composition Metamodel

Our approach regarding service composition builds on the Abstract Process En-
gine Language (APEL) [5]. As visible at the top of Figure 2, APEL is a high
level process definition language. We chose APEL because it natively supports
any type of service when other process languages, such as WS-BPEL, are dedi-
cated to a specific technology. It contains a minimal set of concepts sufficient to
specify a process:

– An Activity is a step in the process that results in an action, realized by
a human or a computer. Activities can be made of sub-activities; they are
then said to be composite. An activity has Ports representing communication
interfaces. An Activity must be realized by a User.

348 A. Faravelon et al.

– A Product is an abstract object that flows between activities. Dataflows
connect output ports to input ports, specifying which product variables are
being transferred between activities.

– An Abstract Service can be attached to an activity. It represents a type of
service to be called in order to achieve the activity.

Specifically, an Abstract Service is a service specification retaining high level
information and ignoring as many implementation details as possible. Our model
defines an abstract service in the following terms:

– A signature defining the identifying name of the service, its inputs and out-
puts in terms of products.

– Possibly, technology-specific information. This part corresponds, for instance,
to WSDL extracts for Web Services or SCPD extracts for UPnP services. Ex-
tracts only contain implementation-independent information. For instance,
no address is provided, contrarily to complete WSDL descriptions.

Providing technology-specific information means that the service technology is
chosen before hand by designers, which is actually frequently the case. This
information is useful since it permits to generate a better and leaner code.

3.2 Privacy Metamodel

We hold that private data management can be efficiently modeled as access
restriction. As visible on the bottom of Figure 2, users design access restriction
rules.

Specifically, a rule gathers:

– A Subject i.e. a user or a software agent that acts in the application. Subject
are categorized in SubjectRoles according to their position in an organization.

– An Object i.e. any entity a Subject can affect. Objects can be categorized
according to their functionalities for instance according to ObjectRoles. Each
Object has an owner and a type. The owner is responsible for managing the
access to their data.

– An Action i.e. an access mode to an Object.

– A Right i.e. the modality of a Subject ’s relation to an Action. Rights are
divided into permissions, obligations and prohibitions, they apply to Subjec-
tRoles and ObjectRoles.

Several Access Control Rules may apply to the same set of Actions, ObjectRoles
and SubjectRoles. Access Control Rules are conditioned by:

– Context i.e. a situation defined by a constraint over the values of a set
of Objects. The Context entity captures the specificity of pervasive access
restriction. A Context indicates for which purpose the access restriction rule
is satisfied. A purpose is the reason why an Action is performed.

Configuring Private Data Management as Access Restrictions 349

– The satisfaction of a workflow security patterns. We accomodate two of them,
separation and binding of duties. Both of them restrict the number of Sub-
jects that can intervene in a group of Action and the number of Action each
Subject can perform. We gather these constraints under the name Workflow
Constraints. They are defined by the maximum amount of Actions a set of
Subjects can perform in a group of Actions.

Managing rules conflict is important to ensure the consistency of the privacy
policy. Each rule is associated with a priority level. The rules with the highest
priority win over the ones with lowest levels. When several Access Control Rules
apply to the same set of Actions, ObjectRoles and SubjectRoles, these rules can-
not share the same conditions. Eventually, when a permission or an obligation
and a prohibitions are conflicting, the prohibition always takes the precedence.

3.3 Logical Semantics

Having described the basis of our access restriction model, we now integrate
them in order to allow the computation of privatization policies.

We have focused on Compositionsas a temporally ordered flow of Activities,
i.e. the activation of Roles by Subjects. This can be seen as a model of Compu-
tational Tree Logic CTL, [6]. CTL relies on a tree-like structure suitable for work-
flows where a moment can lead to several others. For example, from an Activity,
another Activity, or an error can follow, leading to two different ends of the pro-
cess.

Quantifiers to express that an access restriction rule bears on a single moment
or on all of them are thus needed. We note A if all the moments are involved
and E if only one of them is. CTL relies on temporal operators to indicate that
a clause must be always (noted �), or sometime (noted ♦) true or that it must
be true until the next moment (noted ©) or until a moment in general (noted
u). Past CTL, PCTL [9], adds S, since, X−1, previous and N , from now on.

We have previously emphasised three modalities of Rights. We note the
Permission of doing something P and the Obligation O.

The syntax of our logical language in BNF, with φ and ψ, two access restriction
policies is as follows:

φ, ψ := ¬φ|p|φ ∧ ψ|(A|E)�φ|(A|E)♦φ|(A|E)© φ|(A|E)φuψ|Sφ|X−1φ|Nφ|
Pφ|Oφ

Computability. At binding time, evaluating the access restriction policy to
determine a user’s right, can be seen as a model-checking problem. We specify
access restriction rules and Flow Constraintswith logical propositions that are
built as Kripke structures [11]. We define a satisfaction relation |= between the
policies φ and ψ and a Composition C. A Composition can be run, i.e. a set
of Activities can be performed by a set of Subjects on a set of Resources
under a certain Context, if and only if C |= φ, ψ.

350 A. Faravelon et al.

Let C = (a0, a1, ..., an) where each ai is an action, i.e. a tuple of the form
<context, right, subject, object>. Then, C |= φ if and only if (C, |C|) |= φ, ψ. C
is defined by structural induction on φ and ψ as:

(C, i) |= p iff p ∈ ai
(C, i) |= ¬φ iff (C, i) �|= φ
(C, i) |= φ ∧ ψ iff (C, i) |= φ and (C, i) |= ψ
(C, i) |= E© φ iff (C, i + 1) |= φ
(C, i) |= Eφuψ iff there exists k ≥ 0 s.t. (C, i + k) |= φ

and (C, i + j) |= ψ for all k>i ≥ 0
(C, i) |= Aφuψ iff for all an there exists k ≥ 0 s.t. (C, i + k) |= φ

and (C, i + j) |= ψ for all k>i ≥ 0
(C, i) |= X−1φ iff n>0 and (C, i − 1) |= φ
(C, i) |= φSψ iff there exists k ≥ n s.t. (C, k) |= φ

and (C, i) |= ψ for all k<i ≤ 0 (C, i) |= Nφ iff an |= φ

3.4 Linking Service Composition and Access Control Views

When designing an application from multiple points of view, three problems
must be addressed [16]. First, the metamodels must be related in order to build
complete specifications. Then, views must be synchronized i.e. a mechanism
must be provided to preserve coherency between views at execution. Relation-
ships between the service composition and the access restriction metamodels are
displayed on Figure 2.

Two points are of foremost interest: the classes to link in each metamodel,
and the cardinalities of their relations. In the access restriction view, we define
an Action as an access mode to an Object. In the process view, we define an
Activity as an operation on a Product. In order to compose the two views, we
thus express that an Action is a specific type of Activity constrained by access
restriction rules. The Action class thus inherits from Activity. The same stands
for Objects in the process view, that are specific Products to which access is
restricted.

Views are designed in conformity with their metamodel. Views are then com-
posed according to the inheritance defined between the metamodels: each activ-
ity in the process specification is refined into several possible actions constrained
with access restriction rules defined in the access restriction view.

4 Execution Level

At runtime, available services cannot be trusted because they may not enforce
access restriction. We secure an heterogeneous and dynamic composition in two
steps:

– Before execution, orchestration code and access restriction insertion code are
generated from each view’s specifications. To synchronize the view, insertion
points of access restriction code in the orchestration are identified.

Configuring Private Data Management as Access Restrictions 351

– At execution time, the access restriction code is inserted between the orches-
trator and the available services.

Figure 3 displays the execution of a pervasive orchestration secured by access
restriction. When a new service is discovered by the execution machine, a se-
cured proxy is generated and registered in the registry. Thus, the registry only
contains secured Web-Services and the orchestrator cannot directly access unse-
cured services. Consequently, the composition cannot be executed without access
restriction enforcement.

Access restriction enforcement relies on three components. The Decision Point
evaluates the access restriction policy for a user and a given context. The Con-
text Manager stores the path to contextual information sources such as users’
smartphones or the composition’s log file. The Identity Manager stores the roles
of users and their identity.

When a secured proxy is invoked, it calls the access restriction Decision Point.
The proxy provides the Decision Point with the current user’s name and the cur-
rent Activity’s name. The Decision Point retrieves the user’s privileges from the
Identity Manager and the necessary contextual information from the Context
Manager. It then checks the access restriction policy according to the retrieved
information and provides the secured proxy with a decision. The access restric-
tion policy is composed of the global access restriction policy defined at the
level of the composition and the restriction imposed by the concerned data own-
ers. If the user is allowed to access the current activity, the secured proxy in-
vokes the available service it protects. Otherwise, it rejects the invocation. Each
communication between the proxy and the other components is secured with
authentication.

Generating an Executable Access Control Policy. The Decision Point
checks an executable access restriction policy derived from a process specifica-
tion and its associated access restriction requirements. We generate the access
restriction rules that apply to each Action and their temporal ordering from the
designer’s specifications. We gather all these information into an executable ac-
cess restriction policy represented as an XML file. The access restriction policy
is expressed according to the following grammar represented in Backus-Normal
form, where S is a Subject, SR a Subject Role defined by a set of Constraints
Cs. OR an Object Role defined by a set of Constraints Co and O an Object.
SRA refers to the activation of a Subject Role by S, and ORA, the activation
of an Object Role by O.

SR := Cs+

OR := Co+

SRA := (SasSR)+ ORA := (OasOR)+

An Action A, performed by a Subject S, playing the Role SR, on the Object O,
playing the Role OR, under the Context Ctx with the Right R is represented in
BNF as:

A := Ctx (R (SRAORA))

352 A. Faravelon et al.

Fig. 3. Execution of a Secured Composition of Services

A Process consists in a temporally ordered flow of Activities. A Process P is
represented in BNF as:

P := A+

One or several Workflow Constraint P , i.e. Separation of Duties and Binding of
Duties can be added to the composition. Such a constraint is represented by the
following boolean constraint where MaxS is the maximal amount of Subjects
allowed to perform MinA, a minimal number of Activities:

P →MaxS and MinA

We see a Process as a temporally ordered flow of Activities, i.e. the activation of
Roles by Principals. This can be seen as a model of Computational Tree Logic
CTL, [6], an executable logic which holds a tree-like structure of time. Each node
of the three is an action and we can specify the lifetime of its associated access
restriction rules according to five temporal operators, until the next activity,
until an activity in general, since an activity, since the previous activity and from
now on.

Identifying Insertion Points and Enforcing Access Control at Execu-
tion. At execution, each Activity is realized by a service. Each available service

Configuring Private Data Management as Access Restrictions 353

is secured as it registers to the service registry by a proxy. This step is compara-
ble to the compilation of the access restriction and the composition model for a
specific platform. The proxy is built at runtime according to the target service
through code generation from a template. Each template is parametrized by a
set of variables such as the endpoint to call or the service’s implementation. Each
variable is set with values from the actual service to protect. We rely on Java
Emitter Templates (JET) to perform code generation. Figure 4 shows a snippet
of a JET for a secured proxy implemented as a Web Service.

Fig. 4. Extract of the proxy.javajet file

The proxy is itself a Web-Service and is thus transparent for the composition.
As a consequence, our approach is independent from a specific platform or spe-
cific service type. The proxy acts as an access restriction enforcement point. To
do so, Figure 4 shows that the proxy intercepts the invocation and asks the De-
cision Point to check if the current user is allowed to access the current activity.
If and if only so, it invokes the service it protects.

We have adopted a centralized approach: the orchestrator is a centralized en-
tity. However, for scalability reasons, the identify manager, the context manager
and the decision point can be replicated.

5 Validation

In order to validate our approach, we have developed an environment to model
and execute a privacy-aware service composition secured by access restriction.
This tool is a significative extension of the FOCAS orchestrator [5]. In this
Section, we present its use and the results of our approach.

354 A. Faravelon et al.

5.1 Design Level: Modeling Environment

The first part of the tool is dedicated to modeling compositions from multi-
ple points of views. Functional experts can outline composition as processes by
drawing activities, the links between them and the products that flow from one
activity to another. The tool can also be used by privacy designers to visualize
the data flow in the composition and the context-sensitivity of each activity in
order to restrict data disclosure.

For each activity, access restriction rules can be defined. Figure 5 shows a
snapshot of our tool for the alert management process.

Fig. 5. Snapshot of our modeling environment

Each activity is associated to a set of property tabs which permit to edit its
functional properties and the access restriction properties. Our tool permits the
synthesis and the abstraction of process and access restriction views. Security
experts and data owners can thus restrict object flows. We represent the exe-
cution of access restriction as a composition of dedicated services. Data owners
can thus restrict the access to contextual data necessary to compute and access
restriction decision.

Our tool allows several stakeholders to work together at various points of
the composition’s lifecycle. Moreover, it has two major advantages. First, as
all models instantiate our domain specific modeling language and their links,
specifications are de facto valid and coherent. Then, the tool provides a global
view on the composition while allowing to define access restriction rules at service
level. Temporal logic is hard to handle, especially when users are not familiar
with such languages. Our tool presents time ordering of activity as a process,
an intuitive representation. Temporal operators are derived from the process
structure.

Configuring Private Data Management as Access Restrictions 355

5.2 Binding Time: Execution Environment

At runtime, we add computation time dedicated to proxy generation and access
restriction enforcement. We analyze this extra cost for four services in our service
composition.We have constrained four activities with privatization constraints
and we have secured a service for each activity. Services 1, 2 and 3 can only be
accessed if the user is in a specific location and possesses a specific role. Service
4 is constrained with the same properties to which we had a constraint on the
hours shifts it can be accessed. The client requesting the access to Service 4 must
be on duty. The client’s work schedule must thus be checked. Figure 6 displays,
for each service, the duration of the service call, of the proxy generation and of
access restriction enforcement.

Fig. 6. Overhead Entailed by our approach

The proxy generation time is stable. It is caused by the parsing of the de-
scription of the unsecured service (such as a WSDL file) and the generation of
the proxy with the JET template. The generation only happens once when the
service registers to the service registry.

This analysis shows that access restriction enforcement takes at least 1% and
at most 8% of the execution time of a service secured by our method. This
time encompasses the retrieval of contextual data and, the processing of an
access restriction decision and its enforcement. In formal terms, verifying a rule
entails a small cost of O(|C| ∗ |φ|) where |C| is the size of the current achieved
composition and |φ| the access restriction rule’s size, i.e. the number of literals

356 A. Faravelon et al.

and operators in a rule. As a result, we can expect access restriction enforcement
time to remain small throughout the execution of a secured composition.

6 Related Works

In [4] [14], the authors propose to specify security properties such as audit or
encryption at design time and enforce them at runtime. In comparison, we focus
on modeling and enforcing private data management as access restriction.

Privacy-oriented languages, such as the Enterprise Privacy Authorization Lan-
guage (EPAL) and the Platform for Privacy Preferences (P3P) use access control
concepts. Most access control models rely on the notions of Principals, Cate-
gories, Actions and Permissions [1]. Principals gather users, software agents
and resources. They may belong to several Categories, that can be composed to
refine them, and the Permissions are granted to these Categories for the perfor-
mance of a set of Actions. The Role-Based Access Control (RBAC) model [7], for
instance, categorizes Users according to Roles which express jobs or positions
in an organisation. Permissions are attributed to Roles, which are stable i.e.
organizational categories. The Attribute-Based Access Control model (ABAC)
is another promising way of modeling access control. In order to obtain Rights,
a User must exhibit a set of attributes with the correct values. This approach is
suitable for pervasive access control.

However, the ABAC policies are not as readable as the RBAC ones as roles
clearly architecture the policies. Moreover, EPAL is only a proposition and is
not widely supported. P3P has been abandoned due to a lack of support and
accessibility by non-technical users. A usable privacy-oriented language is thus
yet to come.

Languages, such as the eXtensible Access ControlMarkup Language (XACML)
or the WS-Policy permit to express access control. However, they are specific to a
type of service implementation, Web Services for application integration. Several
works use these languages to model access control at process level. [17] annotate
process specifications with access control constraints fromwhich they generate ac-
cess control code. However, [17] proposes to generate XACML access code without
addressing its execution when access control is known to influence the architecture
of an application [13]: XACML, for instance, relies on a dedicated architecture. In
contrast, we implement specific components to maintain the data related to access
restriction enforcement.

Many works which focus on securing an executable application or service com-
position [3] [15] [10] [2] are dedicated to a service implementation or make strong
assumptions on the access control capabilities or the availability of services. Het-
erogeneity is then still a brake to the development of service compositions secured
by access control. The UPnP standard, for instance, defines no access control
mechanism for UPnP aware devices. The dynamism of services is another chal-
lenge. Several works extend the Business Process Execution Language (BPEL)
with access control features [12] [8]. Thus, they suppose they already know the
service to invoke. It is not necessarily the case in a pervasive environment.

Configuring Private Data Management as Access Restrictions 357

In contrast, we promote a platform-independent specification of access control
and service composition. High level concepts can be easily grasped by non tech-
nical people. We automatically transform this specification into an executable
secured process at runtime, according to the available service. We also investi-
gate in depth the impact of access control on the composition’s architecture by
building components dedicated to access control enforcement.

7 Conclusion

In this paper, we have addressed the issue of designing and executing privacy-
aware service compositions for pervasive applications. We have introduced a
model-driven approach to the production of such compositions. We have under-
stood privacy-awareness as private data management throughout the composi-
tion. We have provided a high-level language to privatize data, i.e. to express this
management as access restriction. The validation on real world services shows
that access restriction can be captured at design time in an abstract way. At
runtime, the extra computation time entailed by access restriction enforcement
remains reasonable.

Late code generation addresses the heterogeneity and the dynamism of actual
services. Our experience shows that metamodeling is a demanding task. Iden-
tifying the necessary concepts to specify access restriction, for instance, is long
and cumbersome. The same can be said of the creation of templates for each
target service technology. However, the benefits of our approach overstep these
difficulties. Metamodeling and building up templates allow knowledge capital-
ization. It also permits to obtain generic specifications, what is important in a
highly heterogeneous envrionment. Focusing on non-technical concepts permits
to integrate a wide range of stakeholders to an application’s lifecycle and to build
up early a coherent and extensive access restriction policy.

Finally, our approach calls for several future works. First, in term of access
restriction, we have posited that a single designer designed the entire policy. For
legal reasons, we may need data subjects to express their privacy preferences.
As a result, we are currently exploring the distributed administration of the
privacy policy. Second, our work is going to be validated in the frame of the
INNOSERV project by the French research agency. Then, the spirit of our ap-
proach can be applied to other non-functional properties. When the metamodels
of non-functional properties do not overlap with the composition metamodel,
the adequacy of our proposition remains. Our future works will be dedicated to
adding extra non-functional properties to service compositions.

References

1. Barker, S.: The next 700 access control models or a unifying meta-model? In: Pro-
ceedings of the 14th ACM Symposium on Access Control Models and Technologies,
SACMAT 2009, pp. 187–196. ACM, New York (2009)

358 A. Faravelon et al.

2. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models
to Access Control Infrastructures. ACM Transactions on Software Engineering and
Methodology 15, 39–91 (2006)

3. Carminati, B., Ferrari, E., Hung, P.: Security Conscious Web Service Composi-
tion. In: International Conference on Web Services (ICWS), pp. 489–496. IEEE
Computer Society, Los Alamitos (2006)

4. Chollet, S., Lalanda, P.: Security specifcation at process level. In: SCC 2008: Pro-
ceedings of the 2008 IEEE International Conference on Services Computing, pp.
165–172. IEEE Computer Society, Washington, DC (2008)

5. Dami, S., Estublier, J., Amiour, M.: APEL: A Graphical Yet Executable Formalism
for Process Modeling. Automated Software Engg. 5(1), 61–96 (1998)

6. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)

7. Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. In: Proceedings of the
15th National Computer Security Conference, pp. 554–563 (1992)

8. Garcia, D.Z.G., de Toledo, M.B.F.: Ontology-based security policies for supporting
the management of web service business processes. In: ICSC, pp. 331–338 (2008)

9. Laroussinie, F., Schnoebelen, P.: Specification in ctl + past for verification in ctl.
Inf. Comput. 156, 236–263 (2000)

10. Orriëns, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition. In:
Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003.
LNCS, vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

11. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer So-
ciety, Washington, DC (1977)

12. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN Extension for the
Modeling of Security Requirements in Business Processes. IEICE - Transactions
on Information and Systems E90-D(4), 745–752 (2007)

13. Samarati, P., de Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171,
pp. 137–196. Springer, Heidelberg (2001)

14. Souza, A.R.R., Silva, B.L.B., Lins, F.A.A., Damasceno, J.C., Rosa, N.S., Ma-
ciel, P.R.M., Medeiros, R.W.A., Stephenson, B., Motahari-Nezhad, H.R., Li, J.,
Northfleet, C.: Incorporating Security Requirements into Service Composition:
From Modelling to Execution. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 373–388. Springer, Heidelberg (2009)

15. Srivatsa, M., Iyengar, A., Mikalsen, T.A., Rouvellou, I., Yin, J.: An Access Con-
trol System for Web Service Compositions. In: International Conference on Web
Services (ICWS), pp. 1–8. IEEE Computer Society, Los Alamitos (2007)

16. Vallecillo, A.: On the Combination of Domain Specific Modeling Languages. In:
Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS,
vol. 6138, pp. 305–320. Springer, Heidelberg (2010)

17. Wolter, C., Schaad, A., Meinel, C.: Deriving XACML Policies from Business Pro-
cess Models. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE Workshops 2007.
LNCS, vol. 4832, pp. 142–153. Springer, Heidelberg (2007)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 359–373, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modeling User’s Non-functional Preferences
for Personalized Service Ranking

Rozita Mirmotalebi1, Chen Ding1, and Chi-Hung Chi2,3

1 Department of Computer Science, Ryerson University, Toronto, Canada
{rozita.mirmotalebi,cding}@ryerson.ca

2 School of Software, Tsinghua University, Beijing, China
3 Intelligent Sensing and Systems Laboratory – CSIRO, Hobart, Australia

chihungchi@gmail.com

Abstract. Modeling users’ online behavior has great benefit for many e-
Commerce web sites and search engines. In the context of software service se-
lection, if we could understand users’ personal preferences, we could rank the
services in a more satisfactory way. Many users have some general preferences
on the desired values of non-functional properties (e.g. provider history, service
popularity, etc.) of services, even if they may not explicitly define them. In this
paper, we propose to build user profiles on these non-functional preferences,
and then use them to personalize the ranking results for individual users. Our
experiment showed that personalized ranking could promote the services
matching with the user preferred non-functional values to higher positions,
making it easier for users to identify their desired services. We also tested how
different factors impact the degree of improvement on the ranking accuracy.

Keywords: Service Ranking, Service Selection, Non-functional Preference,
User Modeling, Personalization.

1 Introduction

When more and more providers publish and host their software services in the cloud,
it becomes a challenge for users to find their desired services. Although cloud service
directories, or service search engines such as Seekda1 can provide the searching func-
tion over users’ functional requirements, they often lack the support for the further
selection among a list of functionally similar services. If this list is long, users are still
overwhelmed by the amount of information they need to process.

When multiple services implement a same function, users often select them based
on their non-functional properties, such as service cost, reputation of the provider,
reliability of the service, etc. Although users may have explicit requirements (e.g. cost
< $15/month) guiding the selection process, their implicit general preferences also
play a key role in this process. For instance, one user may always choose the service
from a provider with a good reputation, another user may normally choose the service

1 http://webservices.seekda.com

360 R. Mirmotalebi, C. Ding, and C.-H. Chi

with the highest reliability, and yet another user may balance between the cost and the
response time. Personalized search could provide personalized ranking results to indi-
vidual users based on their profiles, and it is a well accepted solution to deal with the
information overload problem on the web [8]. For software service selection, if we
could create users’ personal profiles based on their non-functional preferences, these
profiles can be used to build a personalized ranking list of candidate services. Here,
we use the term non-functional preferences to refer to properties users have concerns
on and the types of values they prefer (e.g. higher/lower values) on these properties.

There have been many research efforts on non-functional property based service
selection. In these studies, users are normally required to specify their non-functional
requirements for every single query. However, sometimes users may not want to
spend time on defining them, or don’t know how to define them, plus there are default
requirements which always apply (e.g. always prefer a service with lower cost). In
this paper, we propose to model users’ general non-functional preferences for service
selection. Since a personal profile is built for every user, there is no need to type in
the general non-functional requirement each time any more. If the user has a different
requirement for a query, he could always specify it explicitly, which would overwrite
the one in his profile. In the paper, we assume there are existing matchmaking algo-
rithms we can use so that we focus our study on the personalized ranking part. Also
we only focus on the selection system which interacts with a human user instead of a
software agent. This setting makes the profiling process feasible and meaningful.

People make their decisions based on various criteria. For service selection, there
are some common criteria which are important to almost everyone, and there are also
specific criteria which are only important to individual users or domains. It is definite-
ly impossible to include every single criterion in the user model. However, our algo-
rithm and the system design are generic enough so that we could always expand or
tailor our user model for a particular domain or a user group. In the paper, we choose
some common selection criteria whose values we could find in our dataset.

User preferences can be captured either explicitly or implicitly. We have carefully-
designed user interfaces to elicit users’ non-functional preferences explicitly. When
the explicit profile is missing, we have the implicit profile with user’s non-functional
preferences inferred by checking the values of the non-functional properties of the
services a user has invoked in the past. The profile could evolve over time by asking
users to update their profiles or by observing the changing invocation patterns.

There are two major contributions of the paper. First, to the best of our knowledge,
user modeling on their non-functional preferences for software service selection is a
very new idea. Standard recommender systems cannot accomplish this task without
major modifications. We also propose an approach which could implicitly infer user
preferences based on their invocation histories. Second, personalized ranking based
on users’ general interests and preferences has been successfully used for web search,
while it hasn’t been applied to software service selection yet. In many existing perso-
nalized service ranking algorithms, personalization is not achieved through the long-
term user profiles and not many properties are considered. Ours is unique in its focus
on users’ long-term preferences on multiple non-functional service properties.

Modeling User’s Non-functional Preferences for Personalized Service Ranking 361

The rest of the paper is organized as follows. We show a very simple motivating
example in Section 2. Then we discuss the user modeling process in Section 3. Our
personalized service ranking algorithm is explained in Section 4. In Section 5, we
explain how we design the experiment and build a proper dataset to validate the im-
portance of the personalized ranking. In Section 6, we review the related work. Final-
ly in Section 7 we conclude the paper and list the future work.

2 A Motivating Example

Assume that Bob and Dave have registered in our service selection system and used our
system for a while. When registration, Bob explicitly specified his non-functional prefe-
rences as: (provider name: P, service availability: high), which means he prefers
services from a provider named P, and also services with high availability. Dave didn’t
specify any personal preferences. But his invocation history shows that out of 20 servic-
es he invoked, 18 services have high ratings, and 15 services are from well-established
providers. So the system concludes his preferences as: (provider history: long, service
rating: high). We also assume that all preferences are equally important to users.

Now both of them are searching for a report generating service. 4 services are re-
turned and part of their non-functional property values are listed in Table 1.

Table 1. Non-functional property values of 4 services

 Provider Name Provider History Service Availability Service Rating
s1 P < 1 year 90% 4
s2 P < 1 year 95% 3
s3 Q 5 years 99% 4
s4 R 2 years 70% 5

By checking two users’ non-functional preferences, the system generates a differ-

ent personalized ranking list for Bob and Dave (the detailed steps are explained later).
The former is: s2, s1, s3, s4, and the latter is: s3, s4, s1, s2. With this personalized result,
both users could find their desired services easily. Although this is an over-simplified
example, it shows the benefit of the personalized ranking. In the real scenario when
there are more services returned, the benefit would be more obvious.

3 Modeling User’s Non-functional Preferences

3.1 Defining Non-functional Preferences

Non-functional property based software service selection is similar to the consumer
purchase decision process [4]. There are many factors affecting this process. In this
paper we are not aiming at identifying and defining them systematically. We just pick
a few common purchase criteria (e.g. preference on a certain provider because of the
brand loyalty) which we could find their values in our dataset and divide them into
two categories: provider related, and service related. For the latter, a significant group
is QoS (Quality of Service) properties [12]. Due to the restriction of our dataset,

362 R. Mirmotalebi, C. Ding, and C.-H. Chi

we only choose two of them (i.e. availability, response time) in this paper. Normally
when a user has a preference on a property, it is not one single fixed number, and
instead, it could be a range of values expressed using some fuzzy linguistic terms, e.g.
a service with a good reliability, a service with a low cost, or it could be a set of pre-
ferred values, e.g. a service from a few well-known providers A, B and C. Based on
this observation, all of the non-functional preferences defined below are either sets or
fuzzy values. The first four are provider related and the rest are service related.

• PN (Provider Names): the names of the user preferred providers (a set value). The
provider name is either a company’s legal name, or the top level domain name of
the hosting web site. Users could have multiple preferred providers.

• PL (Provider Locations): the preferred locations of the providers (a set value). The
location is the geographical location of either the company or the hosting web site.
It could be further categorized into two types: PCT (Provider Continent) and PCY
(Provider Country). Users could have preferences on one of them or both.

• PH (Provider History): the preferred history of the providers. The provider history
is defined as the number of years the provider has been established. Preference on
this property is usually defined as a fuzzy value such as short, medium and long.

• PP (Provider Popularity): the preferred level of popularity of the providers (a fuzzy
value). The provider popularity is measured by the ratio of the number of invoca-
tions of services from the provider over the total number of invocations.

• SL (Service Languages): preferred languages of the service outputs (a set value).
• SH (Service History): the preferred history of the services (a fuzzy value). The

service history is defined as the number of years the service has been offered.
• SF (Service Freshness): the preferred level of freshness of the services (a fuzzy

value). The service freshness is measured by its latest update time. If a service is
regularly maintained and updated, it is considered fresh.

• SP (Service Popularity): the preferred level of popularity of the services (a fuzzy
value). It is measured by the ratio of the number of invocations of the service over
the total number of invocations of all functionally equivalent services.

• SR (Service Rating): the preferred ratings of the services (a fuzzy value). The rat-
ing of a service is the average of all received ratings on the service.

• SC (Service Cost): the preferred cost level of the services (a fuzzy value). The cost
of a service is the fee a user needs to pay in order to use the service.

• SD (Service Documentation): the preferred level of documentation of the services
(a fuzzy value). It measures how much documentation a service provides to its us-
ers and its fuzzy values are none, partial and good.

• SA (Service Availability): the preferred availability of the services (a fuzzy value).
Service availability measures the probability a service is operating normally and
can be accessed by users successfully.

• SRT (Service Response Time): the preferred response time of the services (a fuzzy
value). The response time of a service is the time from the end of the service re-
quest to the beginning of the response.

This list is far from complete. However, we can always include more properties when
necessary because our framework is generic and extensible. Also right now we only

Modeling User’s Non-functional Preferences for Personalized Service Ranking 363

consider 2 types of preferences. It is possible to extend our system to include more
types, such as dislike preferences, composite preferences, as specified in [3].

3.2 Data Collection for User Modeling

To understand how our system collects the user data and generates the personalized
ranking result, we first explain its architecture model as shown in Figure 1. This ar-
chitecture model is an extension to our previous work [15]. We use the user-side
proxy to collect the service usage data for individual users. If a user fills the required
preference forms, the explicit user profiling component will generate the user model.
If the user does not fill the forms or leave some values undefined, the implicit user
profiling component will check the services the user invoked in the past on their non-
functional properties to see whether any general patterns can be observed, which will
then be saved in the user model. In the selection stage, the personalized ranking com-
ponent will rank the matching services based on the generated user profile.

Fig. 1. Architecture of our personalized service ranking system

3.3 Implicit User Modeling

Below we list the notations we use to represent providers, services and users.

• P: the set of all the providers in the repository.
• pi: the i-th software service provider in P. It has 4 properties – name, location, his-

tory, and popularity, and their values can be found in the provider repository. We
use pi.n, pi.l, pi.h, pi.p to represent these properties, and furthermore pi.ct and pi.cy
for its continent and country.

364 R. Mirmotalebi, C. Ding, and C.-H. Chi

• S: the set of all the services in the repository.
• si: the i-th software service in S. It has 9 properties – language, history, freshness,

popularity, rating, cost, documentation, availability, and response time, and their
values can be found in the service repository. We use si.l, si.h, si.f, si.p, si.r, si.c, si.d,
si.a, si.rt to represent these properties and si.pd to refer to its service provider.

• U: the set of all the users of the system.
• ui: the i-th user of our system. The user profile includes user’s login information

such as user id and password, user’s non-functional preferences on 4 provider-
related and 9 service-related properties, as well as the other useful information
such as services invoked by this user. To refer to his preferences, we use ui.PN,
ui.PL (ui.PCT, ui.PCY), ui.PH, ui.PP, ui.SL, ui.SH, ui.SF, ui.SP, ui.SR, ui.SC, ui.SD,
ui.SA, and ui.SRT respectively.

The non-functional preferences can be categorized into two groups based on their data
types. The first group includes PN, PL, SL, and their values are all sets, e.g. ui.PN =
{A, B} where A, B are provider names. The second group includes all of the rest, and
they all have fuzzy values, e.g. ui.PH = long. Each group has its own way of calculat-
ing the implicit preference values.

In the first group, we use PN as an example, and other preferences follow the same
calculation steps. Assume that the number of invoked services by ui is NIi, and among
them, the number of services from pj is NIij, we calculate the invocation frequency of
provider pj by user ui as:

 (1)

Then we compare the result with a predefined threshold TIF, and if it is above the
threshold, we consider pj as user preferred and add it into ui.PN. It is possible that we
may have an empty set for ui.PN. The threshold value could be chosen based on the
statistical summary of the invocation history (e.g. the cut-off value to get top k pro-
viders), or set as a fixed value, e.g. 50% (a majority percentage).

For PL, we consider PCT and PCY separately. To calculate its invocation frequen-
cy, we need to count the number of services from a provider of a certain continent or
country. For SL, we count the number of services in a certain language.

In the second group, we use PH as the example. There are 3 fuzzy values for the
provider history. In our system, their value ranges are defined as: short (≤ 1.5 years),
medium (>1.5 years and ≤ 3 years), and long (> 3 years). The choice of these values is
based on the dataset we have. It could be redefined for different datasets. Also the
number of fuzzy values can be redefined.

For all the services ui has invoked, we find their corresponding providers. Then for
each provider pj, if pj.h is in the range of short history (i.e. ≤ 1.5 years), the value of
NIi(s) will be incremented by 1. The invocation frequency of providers with a short
history by user ui is defined as:

 (2)

IFHi(m) and IFHi(l) for medium and long histories can be calculated similarly.
Among these three, we choose the one with the largest value and then compare it with

Modeling User’s Non-functional Preferences for Personalized Service Ranking 365

a threshold TIFH. If it is above the threshold, the corresponding history range (short,
medium, or long) is considered as user preferred. Otherwise, ui.PH will be “no prefe-
rence”. We could set the threshold as 50% to make sure this preference is considered
only when a dominating pattern exists.

For other preferences in this group, the basic calculation steps are the same. How-
ever, the number of fuzzy values and their ranges might be different. We define PH,
PP, SH, SF, SP, SC, SD to have 3 fuzzy values, and SR, SA, SRT to have 5.

After the implicit user modeling step, a user profile on his non-functional prefe-
rences is set up for every user.

4 Personalized Service Ranking

In our system, when a user submits a query, after the service discovery and mat-
chmaking step, the personalized ranking component ranks all the matching services
based on the user profile. The ranking step is essentially the similarity calculation
between user’s non-functional preferences and services’ non-functional property val-
ues. Services with higher matching scores with the user’s profile are ranked higher in
the result list. To calculate the overall similarity score for the complete profile, we
need to first define how to measure the similarity for individual properties. Again we
divide them into two groups based on their data types.

In the first group, to calculate the similarity between a matching service sk and a
user ui’s non-functional preference on provider names, we use the following formula:

, 1 . 1 . . .0 . . . (3)

When ui.PN is empty, it means the user has no preference on providers, any provider
is considered as a match, and thus the similarity score is 1. When ui.PN is not empty,
if sk.pd is in the user preferred list, the similarity score is 1, and otherwise, the score is
0. Similar steps are used for SL. In our current implementation, we only get Boolean
similarity values. Later, if want to get a numeric similarity score, we could consider
different degrees of preference on different providers.

To calculate the similarity on provider locations, because the location property has
two sub-properties: continent and country, there are different scenarios we need to
consider. When the service provider’s country is one of user preferred countries, it is
considered as a perfect match and the similarity score is 1. If only the continent
matches, it is a partial match and the score is 0.5. The formula is as below:

 , 1 . 1 . . .0.5 0 (4)

In the second group, if a user has no preference on the property, the similarity score is
always 1. Otherwise, the following steps are taken. First, the user preferred fuzzy

366 R. Mirmotalebi, C. Ding, and C.-H. Chi

value on the property is converted to a scale number. For instance, if the fuzzy values
are short, medium, long, their corresponding scale numbers are 0, 1, and 2. Then, each
matching service is assigned with a scale number on the property based on the range
definition of the scales. For instance, if a service provider has been established for just
one year, the provider history falls into the range for the fuzzy value “short”, and its
scale number is 0 (for short history). We adopt the method proposed in [14] to calcu-
late the similarity between two scale numbers. For 3-scale preferences, we use the
matrix below to get the similarity score. The left column represents user preferences
and the top row represents service property values.

 210
2 1 01 0.7 00.7 1 0.70 0.7 1 (5)

For 5-scale preferences, we use a different matrix.

 4 3 210

4 3 2 1 01 0.7 0.2 0 00.7 1 0.3 0 00.2 0.3 1 0.3 0.20 0 0.3 1 0.70 0 0.2 0.7 1
 (6)

After we get the similarity scores for all the properties, we could combine them to get
an overall score for the matching service using the formula as shown below:

 , ∑ , (7)

where n is the number of non-functional preferences, ah refers to the h-th preference,
αh is the coefficient on ah, which measures how important the similarity score on the
h-th property is to the overall score, the sum of the coefficients should be 1, and si-
mah(ui, sk) measures the similarity of user ui’s profile and service sk on the h-th proper-
ty. In our current implementation, we use equal weights for all properties. Finally all
the matching services can be ranked on their overall scores.

5 Experiments

5.1 Experiment Design

To the best of our knowledge, there is no publicly available dataset on service invoca-
tion histories. It is also difficult to collect an adequate amount of user data if we don’t
run a service selection system which is used by a lot of users. Due to these con-
straints, in our experiment, we didn’t test the implicit user modeling component, and
we only focused on the personalized ranking component. We developed a Windows-
based prototype system using Java 1.6 with Eclipse IDE. We used MySQL Work-
bench 5.2 to build the provider and service repositories as well as the user profiles.

Modeling User’s Non-functional Preferences for Personalized Service Ranking 367

We wanted to demonstrate that for a registered user who has entered his personal
preferences on non-functional service properties explicitly through the user interface,
our system could generate a personalized ranking result for him. We also ran a simu-
lator to generate user profiles with different combinations of preferences to test how
different factors would affect the ranking accuracy.

Seekda is a publicly available web service search engine. It contains a good num-
ber of web services published online. It also maintains useful information of each
service, such as its origin country, the provider information, a link to its WSDL file,
tags, its availability, a chart of its response time in the past, a user rating, its level of
documentation, etc. For most of the non-functional properties we consider in our sys-
tem, we could find their values from either Seekda or the original hosting sites, except
the provider popularity, the service popularity and the service cost. In the experiment,
we excluded them from the similarity calculation.

We built our dataset by collecting web service data from Seekda during a six-
month period (December, 2010 to May, 2011). There were 7739 providers and 28606
services stored in Seekda (as of August 2, 2011). Since some data were manually
collected, such as the established time of a provider or the average response time of a
service, we were not able to get all the services in Seekda. We followed a few differ-
ent ways to get services: 1) for each continent, find some representative countries, and
then for each country, find some representative providers, and get all the services
published by these providers; 2) based on the tag cloud, choose tags with a
large/medium/small number of matching services, and get all of these services; 3)
follow the links provided by Seekda, get the most used services and the recently
found services. After removing the services with expired URLs, we finally got 1208
services from 537 providers, and each provider contains at least one service. Since
Seekda started crawling and monitoring web services from 2006, the oldest service in
our dataset was published in 2006. We extracted the information we need and saved
them into the provider repository and the service repository.

There are 287 service tags saved in our dataset, of which we chose 30 of them to-
gether with their matching services for our experiment. These tags are categorized
into three groups based on the number of matching services. Group 1 has 10 tags and
each tag has less than 50 matching services, group 2 has 10 tags with the number of
services per tag between 50 and 100, and group 3 has 10 tags with more than 100
services per tag. In the experiment, each tag was used as a searching keyword to be
submitted to our selection system. After the functional matching step, the relevant
services were retrieved. Then the personalized ranking result could be generated
based on the user profile.

We simulated 60 users. They are divided into 6 groups. For users in each group,
they have preferences on a same number of properties (not necessarily same proper-
ties): 1, 2, 4, 6, 8, and 10 respectively, and for the rest of the properties, they have no
preference on their values. For instance, one group may have preferences on 2 non-
functional properties, and no preferences on the others. Users in this group could have
preferences on different non-functional properties. User A from this group has prefe-
rences on service rating and service languages, and user B from the same group has
preferences on provider names and provider history.

368 R. Mirmotalebi, C. D

5.2 User Preference Fo

In order to solicit user pref
to specify his preferences o
his profile later when nece
shows the first one. QoS r
form, which is not shown in

For properties with fuzzy
beside them. When a user
displayed. Table 2 lists va
handle multiple scales. But
and 5, which are the comm
we use 3 scales because mo
span is small. For other pro

After the user fills the fo
has the following profile: (P
query “Finance” to our sys
this profile. Table 3 shows
their related non-functional

Ding, and C.-H. Chi

orms and An Illustrating Example

ferences, after a user registers to our system, he is requi
on various non-functional properties. He could also upd
essary. There are two forms a user needs to fill. Figur
elated properties such as SA, SRT are included in anot
n the paper due to the page limitation.

Fig. 2. User Preference Form 1

y values (e.g. provider history), there are information ic
clicks on an icon, the value range of the property will

alue ranges for all of these properties. Our system co
t for the simplicity reason, we only use two scales here

mon choices for fuzzy values. For history related propert
ost services in our dataset are relatively new and the va
perties, we use 5 scales.
orms, his profile will be built. Assume a user named D
PH: long, SD: good, SA: excellent). When Dave submi
tem, the personalized ranking result is generated based
the top 10 results, together with their original rankings
 property values.

ired
date
re 2
ther

cons
l be
ould
e: 3
ties,
alue

Dave
its a
d on
and

Modeling User’s Non-functional Preferences for Personalized Service Ranking 369

Table 2. Properties and their value ranges

Property Ranges of its fuzzy values
PH (year) short: <=1.5, medium: >1.5 and <=3, long: >3
SH (year) short: <=1.5, medium: >1.5 and <=3, long: >3

SF (month) low: <=6, medium: >6 and <=12, high: >12

SR (0~5)
very bad: <=1, bad: >1 and <=2.5, medium: >2.5 and <=3.5,
good: >3.5 and <=4.5, excellent: >4.5

SA (%)
very bad: <=50, bad: >50 and <=70, medium: >70 and <=80,
good: >80 and <=95, excellent: >95

SRT (ms)
very bad: >=790, bad: <790 and >=770, medium: <770 and
>=750, good: <750 and >=700, excellent: <700

Table 3. Top 10 services with their original rankings and property values

Rank Service Name PH SD SA Original Rank
1 DelayedStockQuote 4.30 good 99.50 3
2 ForeignExchangeRates 4.10 good 99.70 4
3 XigniteQuotes 4.30 good 99.81 8
4 XigniteHelp 4.09 good 99.73 17
5 LeadStatusQuery 3.41 good 98.63 18
6 AffiliateServices 3.17 good 99.25 22
7 XigniteGlobalQuotes 2.83 good 99.67 6
8 XigniteMoneyMarkets 2.83 good 99.38 12
9 XigniteFundHoldings 2.83 good 99.38 15

10 FinanceService 2.41 good 97.26 23

By checking the results, we can see that services satisfying user preferred non-

functional values are promoted to higher positions. For instance, the original rankings
for the 3rd and 4th services are 8 and 17, but since they have a long provider history, a
good documentation and an excellent availability, their positions are promoted.

5.3 Factors Influencing the Result Accuracy

Since to the best of our knowledge, no similar work has been done before, in this
experiment, we focus on evaluating the degree of improvement from the personalized
ranking, as well as the impacts of different factors on this improvement. We mainly
tested two factors: the number of functionally matching services, and the number of
non-functional properties on which users have defined their preferences. According to
a study on web users’ searching behavior [7], the ranking order is really important
because users normally only check the top N results (a common value for N is 10).
So in this paper we use the ranking improvement to measure the system benefit. We
take the top 10 results from the personalized ranking list, check their non-functional
property values making sure they satisfy user preferred values (if not, remove them),
and then check the ranking positions of these services in the original ranking list. If
they are ranked very high in the original list, it means our algorithm does not improve
the ranking very much. If they are originally ranked very low, it means our algorithm
can promote these services to better positions, and therefore our personalized ranking

370 R. Mirmotalebi, C. Ding, and C.-H. Chi

is beneficial. Here we measure the benefit using the Mean Average Precision (MAP)
[7]. We take the personalized ranking results as the reference and check the precision
of the original results. A lower value means a bigger loss in accuracy and thus a high-
er benefit. The following formula is used for each query q:

∑ , (8)

where R is the number of functionally matching services, P(i) measures the precision
in the i-th position [7], rel(i) is 1 if the i-th result is one of the top 10 services in the
personalized result and 0 otherwise, min(.) is to get a lower value between R and 10.

For each of the 60 users we simulated, we also generated some random service re-
quests. Each user submitted 30 queries using 30 selected tags. Then we measured the
MAP value for each query. Here we chose 3 tags from each group to discuss the
results. The 9 selected tags are charter flight, telecommunication, traffic, travel, gov-
ernment, finance, bioinformatics, tourism, and university. Their corresponding num-
bers of services are 7, 21, 38, 70, 76, 97, 120, 140 and 169 respectively.

Figure 3 shows the average MAP values for these 9 keywords. The result is aver-
aged on all 60 users. Since we listed the keywords in the ascending order of their
numbers of matching services, from this figure, we can tell the relationship between
the number of services and the MAP value. Initially when there are only 7 services
(for charter flight), its MAP value is over 0.8, which shows the personalized ranking
gets similar results as the original one and the benefit is not very obvious. When the
number of services gets bigger, the benefit becomes higher. The slope is sharp when
the number of services is below 50, and becomes fairly even after 50. The average
MAP value when the number of services is above 50 is 0.11, which means that many
of the top results from the personalized ranking are not in the original top list. It clear-
ly shows the importance of the user modeling and the personalization, especially
when there are many functionally matching services.

Fig. 3. Average MAP for 9 queries

Figure 4 shows the average MAP values for users with different numbers of prefe-
rences. The result is averaged on 10 users in each group and on all the 9 queries. In
this figure, we could see that when users have preferences on more non-functional
properties, the MAP value is getting smaller. So the personalized ranking could help
more when users have more preferences. The curve here is not very sharp compared

Modeling User’s Non-functional Preferences for Personalized Service Ranking 371

to Figure 3. It shows that the impact from the number of preferences is less than that
from the number of services. When the number of preferences is above 4, there is no
big difference in the result.

Fig. 4. Average MAP for different number of preferences

In general, based on these experiment results, we could conclude that the persona-
lized ranking could benefit the service selection system to satisfy individual require-
ments, especially when there are a lot of functionally similar services and users have
preferences on more than one non-functional property.

6 Related Work

Personalized service ranking or service recommendation based on user preferences
has attracted research attention in recent years. In [11], previous interactions between
service providers and requestors were modeled as a social network, and then results
from the social network analysis were fed into a Bayesian classifier to rank services.
In [9], personal profiles were built using the collaborative filtering technique to find
similar users based on their invocation histories and the association rule mining to
identify service dependencies based on the past composition transactions of these
similar users. User similarity in [16] was measured by the similarity between the
rankings of their observed QoS values on commonly invoked services, and then the
personalization was implemented using the past experiences from similar users. The
work in [2] collected the service invocation data and used it for the later discovery.
However it only focused on the functional query part. In the above work, QoS data
was included in the ranking process in [11] [16], but not the other two. All of them
used the past usage data, mainly invocation histories to get the personalized results.

There are also systems relying on the explicit user ratings for the service ranking.
Item-based collaborative filtering was used in [6] to predict the user rating on a ser-
vice and the services were then ranked based on the predicted ratings. In [1], the score
of a service was calculated based on ratings on this service from similar users and
ratings on similar queries. In [14], service selection was based on both objective and
subjective QoS values. A fuzzy inference system can handle the objective QoS factors
(e.g. latency), and the collaborative filtering was used on subjective QoS factors (e.g.
user ratings). The approach proposed in [5] was based on user experiences on given
services, as well as their preferences, which provided contexts for the experiences and

372 R. Mirmotalebi, C. Ding, and C.-H. Chi

made the personalization more accurate. Personalization in [13] was achieved by
considering different user factors, such as user preferences on different QoS proper-
ties, user-defined comparisons on QoS values, and user’s confidence level on the
reputation mechanism used in the selection process.

Compared to these papers, our paper is unique because it emphasizes on building
user models to capture their long-term non-functional preferences. Some papers also
built user profiles. However, their profiles only considered users’ functional interests
[2], or the invocation frequencies on services [9]. The profile in [13] was a little simi-
lar to ours. But it puts too much workload on users by asking them to compare values
for each QoS property. In our work, users only need to pick a fuzzy value or choose
from a list of possible values, and we also have a more thorough definition on non-
functional preferences and an implicit user data collection mechanism.

Non-functional preferences have been used for service selection and ranking in
some work, e.g. [3] [10]. In [3], an expressive and user-friendly preference model was
proposed, which considers both qualitative and quantitative preferences, as well as
atomic and composite preferences. In [10], qualitative preferences can be defined
using the TCP network, which can handle the conditional preferences and relative
importance of various non-functional properties, and quantitative preferences can be
defined as utilities using the UCP network. Currently our paper only considers 2 types
of user preferences and does not consider the relative importance of different proper-
ties. In the future, we could extend our work based on [3] and [10].

7 Conclusions

In this paper, we proposed a user modeling approach to build user profiles on their
non-functional preferences. Then a personalized ranking algorithm could be applied
to the service selection process to identify user desired services. In the user modeling
stage, the system could collect the user data explicitly through user forms, or implicit-
ly by analyzing the past usage data. In the selection stage, after the functionally
matching services are identified for the user query, they are ranked based on how well
they could match with the user preferred values on the specified non-functional prop-
erties. Experiment results showed that the personalized ranking has largely improved
the result accuracy for individual users.

There are a few directions we would like to work on in the future. First, we could
set up a service community such as the one in [2] to collect the real usage data in
order to evaluate our implicit user modeling algorithm. We would also like to conduct
a user study to evaluate our system. Second, we would like to implement and test
other more complex profiling and similarity calculation algorithms to see whether we
could further improve the system performance.

Acknowledgements. This work is partially sponsored by Natural Science and Engi-
neering Research Council of Canada (grant 299021-2010).

Modeling User’s Non-functional Preferences for Personalized Service Ranking 373

References

1. Averbakh, A., Krause, D., Skoutas, D.: Recommend me a Service: Personalized Semantic
Web Service Matchmaking. In: Proceedings of the 17th Workshop on Adaptivity and User
Modeling in Interactive Systems (2009)

2. Birukou, A., Blanzieri, E., D’Andrea, V., Giorgini, P., Kokash, N.: Improving Web Ser-
vice Discovery with Usage Data. IEEE Software 24(6), 47–54 (2007)

3. García, J.M., Ruiz, D., Ruiz-Cortés, A.: A Model of User Preferences for Semantic Servic-
es Discovery and Ranking. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuck-
enschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp.
1–14. Springer, Heidelberg (2010)

4. Howard, J.A., Sheth, J.N.: The Theory of Buyer Behavior. John Wiley & Sons (1969)
5. Klan, F., König-Ries, B.: A Personalized Approach to Experience-Aware Service Ranking

and Selection. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291,
pp. 270–283. Springer, Heidelberg (2008)

6. Manikrao, U.S., Prabhakar, T.V.: Dynamic Selection of Web Services with Recommenda-
tion System. In: Proceedings of the International Conference on Next Generation Web
Services Practices, pp. 117–121 (2005)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cam-
bridge University Press (2008)

8. Qiu, F., Cho, J.: Automatic Identification of User Interest for Personalized Search. In: Pro-
ceedings of the 15th International Conference on World Wide Web, pp. 727–736 (2006)

9. Rong, W., Liu, K., Liang, L.: Personalized Web Service Ranking via User Group combin-
ing Association Rule. In: Proceedings of the 7th International Conference on Web Servic-
es, pp. 445–452 (2009)

10. Schröpfer, C., Binshtok, M., Shimony, S.E., Dayan, A., Brafman, R., Offermann, P.,
Holschke, O.: Introducing Preferences over NFPs into Service Selection in SOA. In: Di
Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp. 68–79. Springer, Heidel-
berg (2009)

11. Shafiq, M.O., Alhajj, R., Rokne, J.: On the Social Aspects of Personalized Ranking for
Web Services. In: Proceedings of the IEEE International Conference on High Performance
Computing and Communications, pp. 86–93 (2011)

12. Tran, V.X., Tsuji, H., Masuda, R.: A New QoS Ontology and its QoS-based Ranking Al-
gorithm for Web Services. Simulation Modeling Practice and Theory 17(8), 1378–1398
(2009)

13. Vu, L.H., Proto, F., Aberer, K., Hauswirth, M.: An Extensible and Personalzied Approach
to QoS-enabled Service Discovery. In: Proceedings of the 11th International Database En-
gineering and Applications Symposium, pp. 37–45 (2007)

14. Wang, H.C., Lee, C.S., Ho, T.H.: Combining Subjective and Objective QoS Factors for
Personalized Web Service Selection. Expert Systems with Applications 32(2), 571–584
(2007)

15. Zhang, Q., Ding, C., Chi, C.H.: Collaborative Filtering Based Service Ranking using Invo-
cation Histories. In: Proceedings of the IEEE Internation Conference on Web Services, pp.
195–202 (2011)

16. Zheng, Z., Zhang, Y., Lyu, M.R.: CloudRank: A QoS-Driven Component Ranking
Framework for Cloud Computing. In: Proceedings of the 29th IEEE International Sympo-
sium on Reliable Distributed Systems, pp. 184–193 (2010)

An Adaptive Mediation Framework

for Mobile P2P Social Content Sharing

Chii Chang1, Satish Narayana Srirama2, and Sea Ling1

1 Faculty of Information Technology, Monash University, Australia
{chii.chang;chris.ling}@monash.edu

2 Institute of Computer Science, University of Tartu, Estonia
srirama@ut.ee

Abstract. Mobile Social Network in Proximity (MSNP) represents a
new form of social network in which users are capable of interacting with
their surroundings via their mobile devices in public mobile peer-to-peer
(MP2P) environments. MSNP brings opportunity to people to meet new
friends, share device content, and perform various social activities. How-
ever, as the fundamental topology of MSNP is based on public MP2P
network, many challenges have arisen. Existing related works restrict
the MP2P social network to operate in specific platforms and protocols.
Enabling MSNP in a dynamic public MP2P requires a more flexible solu-
tion, which can adapt its behaviour to comply with environment. Hence,
we propose a mobile device-hosted service-oriented workflow-based medi-
ation framework for MSNP. The fundamental portion of the framework is
based on the Enterprise Service Bus architecture which supports changes
in runtime resources without the need to re-launch the application. In
order to adapt to different situations, our workflow tasks adjust the ex-
ecution behaviour at runtime. The workflow engine dynamically selects
the best approach to complete the mobile user’s request based on the
cost and performance, calculated by combining fuzzy set and cost per-
formance index. The developed prototype is discussed along with detailed
performance.

1 Introduction

The evolved mobile technologies provide users convenient ways to participate in
various virtual online social networks (OSN) such as Twitter [32], Facebook[13].
In the past few years, researchers [36,25,31,28,27,17] have tried to leverage OSN
with short range mobile communication technologies (e.g., Bluetooth [6], Wi-Fi
Direct [35]) to bring OSN activities into mobile peer-to-peer (MP2P) network.
These new breeds of mobile social network (MSN) applications encourage users
to socialise with people in proximity via their smart mobile devices, and po-
tentially bring opportunities to make new friends. We use the term — Mobile
Social Network in Proximity (MSNP) to illustrate such an environment in which
participants are capable of performing various generic OSN activities with prox-
imal users. A typical activity in MSNP is content (e.g., text, images, music, etc.)
sharing and mashup [19].

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 374–388, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 375

Mashup is a content-driven composition technique used to compose con-
tent derived from various sources into a single customisable presentation. In
MSNP, participants may generate various content from their smart mobile de-
vice and post/synchronise to different social websites (e.g., Twitter, Facebook,
etc.) or cloud storages (e.g., Dropbox [12]). Let us call these participants con-
tent providers. A content provider may intend to share his/her new content to
public proximal mobile users in order to bring more visitors/readers to his/her
own web pages or potentially establish connection with new friends. The content
provider’s MSNP application may generate a metadata and advertise it to other
MSNP participants’ devices based on their preference. Meanwhile, some MSNP
participants may also intend to perform a location-based content mashup from
proximal content providers to retrieve their interested information. MSNP is
useful for attendees to fast share information in the high population event such
as Comiket [9] without establishing a centralised system in the venue.

Considering the resource limitations of mobile devices and the dynamic na-
ture of MP2P environment, communication becomes a crucial challenge to both
content provider and content consumer. In order to enhance the overall perfor-
mance of MSNP communication, some tasks such as semantic service/content
matchmaking process may be distributed to remote Cloud services (e.g., Google
App Engine (GAE) [14], Amazon EC2 [2] etc.). However, distributing tasks to
Cloud is not always an efficient solution, because utilising Cloud service con-
sumes extra costs such as network latency, price of using the service etc. In
some cases, remaining the communication within local wireless network is more
efficient when both performance and cost are considered, especially when there
are only a few MSNP peers involved. On the other hand, when there are many
MSNP peers involved, it may be more efficient to distribute more tasks to more
powerful Cloud services. Hence, there is a need to design a framework which
is capable of dynamically change its approach at runtime to adapt to different
situations, while the MSNP peer is performing MP2P social network activities.

In this paper, we propose AMSNP: an Adaptive Mediation framework for
service-oriented mobile Social Network in Proximity. The contributions consist
of:

• A workflow-controlled Web service-oriented mediation framework for mobile
devices to easily leverage heterogeneous service resources automatically.
• An adaptation scheme, which can automatically decide what services should
be used to complete the workflow tasks. The decision making is based on a
cost-performance index scheme.
• A prototype implementation, evaluated on a real mobile device.

The remainder of this paper is structured as follows: In Section 2, we summarise
the foundation of MSNP, followed by our proposed framework, and the adap-
tiation strategy. Section 3 provides an example of how the MSNP activity can
be modelled using workflow. Section 4 describes the prototype implementation
and the evaluation results. In Section 5, we describe the difference between our
work and related works. Section 6 provides the conclusion and future research
direction.

376 C. Chang, S.N. Srirama, and S. Ling

2 System Design

2.1 Overview of MSNP

moved

moved

SNS

Cloud Storage Cloud Utilities

P1

P2

P3

P4

P2

P4

Fig. 1. MSNP architecture

In an MSNP environment, each mo-
bile device is a mobile Web service
consumer and also a provider [29].
When two peers join the same wire-
less network, they utilise standard
communication technologies such as
DPWS [22], or Zeroconf [15] to ex-
change their service description meta-
data (SDM). We expect each peer has
its own backend Cloud storage to syn-
chronise its IP address as a small text
file in its Cloud storage (or alterna-
tively utilising public DNS servers if
available). The URL of the text file is described in a peer’s SDM. Hence, when
a peer (e.g., Fig.1, P2 and P4) moves out from the current network, the other
peers (e.g., Fig.1, P1 and P3) in its previous network can still interact with it
via mobile Internet.

Since P1 and P3 have previously exchanged their SDM with P2 and P4, they
have cached the SDM of P2 and P4 in either their local memory or synchronised
to their Cloud storages. When P1 and P3 receive requests from other peers in the
same network that are performing service discovery, P1 and P3 can also provide
P2 and P4’s SDM to these peers. Instead of having the SDM directly send to
the peers by P1 and P3, P1 and P3 can synchronise the cached SDM to their
Cloud storages, and simply provide the URL link to the other peers. Similar
concept is applied to content sharing and mashup, say for example, P1 intends
to mashup the content provided by P2 and P3. When P1 invokes P2 and P3 for
the content, P2 and P3 will simply reply the corresponding metadata documents,
which contain the description about where the content can be retrieved from the
Internet.

Taking into account that mobile devices usually have limited processing power,
it is reasonable for a MSNP peer to delegate the processes to its backend Cloud
utility service (CloudUtil). In Fig. 1 for example, P1 utilises its backend CloudU-
til for semantic service discovery. Furthermore, CloudUtil can be used to directly
access the content uploaded by other MSNP peers in Social Network Services
(SNS) to discover useful content for P1’s mashup (if the content has been de-
scribed in Really Simple Syndication (RSS) feed format).

A content provider in MSNP can also actively push recommendation to other
participants based on the participant’s service preference. Due to privacy con-
cerns, MSNP peers may prefer not to share their private information. However,
when a list of available services (described semantically) is provided to the par-
ticipant, the participant can simply reply which service type it is interested in.

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 377

This process can be done automatically by applying context-aware prefetching
scheme, which has been described in our previous work [7].

2.2 AMSNP Framework

The framework design is based on the Enterprise Service Bus (ESB) architec-
ture [26]. ESB is a software infrastructure that can easily connect resources by
combining and assembling services to achieve a Service Oriented Architecture
(SOA). Fig. 2 illustrates the architecture and main components of AMSNP. The
architecture consists of four parts:

Normalised Message Routing Control

Proximal Mobile P2P Network General Internet Private Cloud

AMSNP Host

Local host services/components

Fig. 2. Architecture of AMSNP Framework

• Proximal Mobile P2P Network — It represents the other MSNP peers within
the same network. Depending on the developer’s preference, an AMSNP host
can support various network communication protocols such as XMPP [30],
UPnP [33], Bonjour [4], etc.
• General Internet — Basically, the content generated by the MSNP peers are
updated to their OSN services such as SNSs (e.g., Facebook, Twitter) or their
Cloud storages. In our design, the Cloud storage services play an important
role in MSNP. As mentioned previously, each MSNP peer synchronises its
current IP address to its Cloud storage in order to resolve the dynamic IP
issue of mobile P2P network.
• Private Cloud — MSNP peer can utilise a number of backend Cloud utility
services for distributing tasks in order to reduce the resource usage of the
device and also improve the overall performance. For example, the semantic
service discovery process requires the MSNP peers to process a number of
semantic metadata and matchmaking. Such a task can be distributed to its
Cloud utility services. Additionally, an MSNP peer can also synchronise some
data to its private Cloud, possibly in the form of cached service description
metadata documents.
• AMSNP Host — It represents an MSNP peer with embedded AMSNP frame-
work. An AMSNP host is built based on ESB architecture. Each component
of AMSNP is a service, and can be launched/terminated at runtime. A func-
tion can be performed by a local service within the AMSNP host, or it can
be performed by an external service such as a private Cloud utility service

378 C. Chang, S.N. Srirama, and S. Ling

depends on the definitions of corresponding workflow pattern. AMSNP sys-
tem is controlled by the WS-BPEL [21] workflow engine. When the user’s
application submits a request to AMSNP, the request will be handled by the
Request Handling component, and a corresponding workflow pattern will be
selected. The selected workflow pattern will then be passed to the work-
flow engine for execution via the message routing control component. Each
workflow task is managed by a Task Agent. The Task Agent will decide how
to perform the task after analysing the cost-performance scheme, which is
described in the next section.

The AMSNP host contains the following main components:

+ Resource State Management service is responsible for continually moni-
toring the resource usages such as CPU usage, network bandwidth usage,
Cloud utility service usage, etc. These resource usages are cost intensive,
and are the main elements influencing the decision making of the adap-
tation scheme in the next section.
+ Service Pool is responsible for managing information on internal services,
private Cloud services, and services provided by external MSNP peers.
It contains a collection of the service descriptions of external MSNP
peers, the service descriptions of each internal service and each accessible
private Cloud utility service.
+ Functional Components are miscellaneous utility components such as
semantic metadata matchmaking component, calculation component (for
calculating the CPI value in next section), message parsing, and so on.
+ Trust/QoS and Privacy/Security are additional components needed to
improve the quality of service and security requirements. They are not
within the scope of this paper. We will consider them in our future work.

2.3 Adaptive Approach Selection Based on CPI Model

As we mentioned in the previous section, each request received by the Re-
quest Handler, is to be processed by triggering a corresponding business pro-
cess workflow pattern. In a basic workflow pattern document (e.g., WS-BPEL),
the endpoint (either a single service or a composite service) for processing each
task/activity has been pre-defined in the document. Considering the dynamic
nature of mobile P2P environment, the pre-defined endpoint may not be the best
selection for the task. For example, a workflow is launched when the network has
only 10 or less peers in existence. The workflow defines that the task for service
discovery will be fully performed by a local host service of the device without
using external distributed services. However, once the workflow is launched, the
situation can change, there can be 50 more peers suddenly joining the network.
Such a change can make the pre-defined approach no longer feasible. On the
other hand, distributing tasks to external service (such as a service deployed
on GAE) is not always the best approach because in many cases, performing
tasks in local host is more efficient. This concern leads us to apply the dynamic
adaptation technique, which is capable of identifying the best approach for each
workflow task at runtime.

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 379

In this section, we propose an adaptation scheme that can decide which ap-
proach should be chosen for each workflow task at runtime based on the latency
(timespan) of the approach, and costs. In order to clarify the terminologies used
in this scheme, we first provide following definitions:

Definition 1: Approach — A. A = {aj ∈ A : 1 ≤ j ≤ N}. Each aj ∈ A
consists of a performance value (p), and a set of cost element values (E).
Where Eaj = {eaj

k ∈ Eaj : 1 ≤ k ≤ N}.
The approach for a task is selected at runtime after the workflow is launched,
and the decision is made based on the cost and performance.

Definition 2: Workflow pattern. A workflow pattern defines a goal and a set
of sequential or parallel abstract tasks — T , where T = {ti ∈ T : 1 ≤ i ≤ N}.
Each ti ∈ T can be completed by numerous pre-defined approaches.
For example, a set of services — S (S = {si ∈ S : 1 ≤ i ≤ N}) has been
discovered that can provide the content requested. The task of invoking
each si ∈ S to retrieve content, can be either performed by approach — a1:
using a localhost component to retrieve all content, or it can be performed by
approach— a2: distribute the process to a cloud service and then synchronise
the result to user’s mobile device.

Fig. 3. Workflow path selection based on timespan

Fig. 3 shows a sample workflow which has two tasks. For task T 1, there are three
selective approaches, and for task T 2, there are two selective approaches. Each
approach consumes different timespan. In order to achieve the goal effectively,
the system needs to identify the shortest path to reach the goal. Initially, the
shortest path can be obtained by (1).

pathx = min

⎧⎨
⎩ ∑

i∈T,j∈Ai

pij

⎫⎬
⎭ (1)

Where pij denotes the timespan of approach j of task i.
However, the shortest timespan may not mean the approach selection is the

most efficient when the cost is considered. Hence, we propose a cost-performance
index (CPI) scheme to enable our workflow system to analyse and select the most
efficient approach at runtime. The scheme combines fuzzy set [38] and the weight
of context [11]. The reason to choose fuzzy set approach is because the explicit
purpose is to compare the performance and cost between approaches instead of
static values. Hence, fuzzy set appeared to be a feasible solution.

380 C. Chang, S.N. Srirama, and S. Ling

Let Dtx be a set of timespan value for the selective approaches (Atx) of task
— tx, where D is a finite set, and D = {di ∈ D : 1 ≤ i ≤ |A|}, in which di
represents the timespan of ai, ai ∈ A. Let L be the longest timespan in D, where
L = max{di ∈ D}. The performance value of each approach — Ri is computed
by (2):

Ri =

{
1 iff di ≡ L
(L + 1)− di otherwise

(2)

Let Ã be the fuzzy set of A. Ã = {ãj ∈ Ã : 1 ≤ j ≤ |A|}. We need the normalised
fuzzy number of the ranking values. Hence, the fuzzy number of an approach’s
ranking value (denoted by ãx) will be: ãx = Rx/

∑
aj∈ARj . Where Rx is the

performance value of ax derived from (2), and ãx is the normalised fuzzy number
of the performance value of ax, in which 0 ≤ ãx ≤ 1.

At this stage, we assume there is a mechanism that can measure the timespan
for each approach at runtime based on our previous work [8]

Definition 3: Cost element — Eaj is a finite set, where Eaj = {ek ∈ Eaj :
1 ≤ k ≤ N}. An aj contains an Eaj , and the value of ek is denoted by vek .

The cost element set is comparable between different related approaches. If ap-
proach a1 for task t1 — Et1

a1
contains the value of “battery cost”, then the

approach a2 for task t1 — Et1
a2

must also contain such a value. Based on this
concept, the overall CPI between different approaches can be compared.

Since we are comparing the cost element between different approaches, the
normalised value of a cost element — ṽex can be computed from ṽex =

vex∑
ek∈E vek

,

and the average value of the total cost of aj — CV ti
aj

can be computed from

CV ti
aj

=

∑
ek∈Eaj

ṽek

|Eaj |
. By applying the basic CPI model, the cost-performance

value — δ of an approach — aj will be:

δtiaj
=

ãj

CV ti
aj

(3)

However, the importance of weight of an ek is different for different users. For
example, when the device battery-life remains 50%, the user may consider that
saving the battery life of his/her mobile device is more important than spending
money on using Cloud services for computational needs. In this case, the weight
of the battery life cost element will be higher than the weight of the bandwidth
cost of the Cloud service. Therefore, the normalised value of an ek needs be
refined as ṽek · wek , where wek denotes the weight of ek, and the cost will be
refined as follow:

Ĉti
aj

=

∑
ek∈E ṽek · wek∑

ek∈E wek

, wek ≥ 1 (4)

Finally, the cost-performance value of aj will be refined as:

δtiaj
=

ãj

Ĉti
aj

(5)

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 381

3 Example

In this section, we use an example to show how the workflow system can be
applied to an MSNP scenario. In the scenario, a MSNP peer (PeerX) intends to
advertise content recommendation metadata (CRM ; describing the URIs of the
recommended content/service) to other MSNP peers. Fig. 4(a) illustrates the
conceptual workflow of the content advertising process, and Fig. 4(b) describes
the workflow in Business Process Modelling Notation (BPMN) [34]. BPMN has
been chosen to describe the workflow process because it can be mapped to WS-
BPEL [23], and WS-BPEL has been used in our prototype to control the pro-
cesses. In this example, the workflow consists of two parallel tasks operated
asynchronously (see Fig. 4(b)):

Task: Discovery
In

Out
launch

(a) Conceptual workflow (b) Content advertising

Fig. 4. Content advertising workflow

• discovery (T1) — discovers peers which are interested in the content. T1 con-
sists of two sub-tasks: Peer Discovery and Preference Matchmaking. Peer
Discovery denotes the process of discovering physical peers in MSNP en-
vironment and retrieving the content/service preference metadata from the
peer. The result of Peer Discovery will be sent to Preference Matchmaking for
determining whether the peer is interested in the provider’s content/service
or not. The result of Preference Matchmaking will be represented as the
result of T1, and will be sent to T2.
• advertising (T2) — sends CRM to the matched peers.

Each task is managed by a task agent and the basic task handling workflow is
described in Fig. 5. When a task is launched, the first step (S1 in Fig. 5) defines
a feasible approach based on the CPI scheme described in the previous section.
In step 2 (S2), an event gateway is placed. The task agent will enter the standby

Fig. 5. Generic task

382 C. Chang, S.N. Srirama, and S. Ling

(a) Mobile-based discovery (b) Cloud-based discovery

Fig. 6. Approaches

mode to receive the incoming messages. There are two kinds of requests sent
to the task agent: (1) the general request for the task; or (2) the termination
request, which informs the task agent to terminate its task state. If the task
involves activating a localhost service, when the termination request is received,
the task agent will terminate the launched service, and inform the workflow
engine to release the task agent from memory.

If the task agent receives an incoming request, it will perform the selected
approach (S3). In this example, two approaches have been defined for task 1
(see T1 in Fig. 4), which are mobile-based discovery (Fig. 6(a)) and cloud-based
discovery (Fig. 6(b)). Each is a sub-workflow and consists of two parallel tasks.
For the approach in Fig. 6(a), the task agent will perform a sub-process (Fig.
6(a) — T1) to retrieve the service preference metadata from each MSNP peer in
the network. The response message received by Fig. 6(a) — T1 will be passed to
Fig. 6(a) — T2 for service matchmaking process. As for Fig. 6(b), which is the
cloud-based approach, the mobile host will send a request to its Cloud utility
service (CloudUtil) when an MSNP peer is found (see Fig. 6(b) — T1). The
request message contains the basic information about the peer (e.g, the URL
to retrieve its current IP address), the CloudUtil will retrieve and process the
service preference metadata from each MSNP peer to find out which peer is
interested in the content provided by the PeerX. The parallel task (Fig. 6(b) —
T2) is launched at the same time as Fig. 6(b) — T1 to receive result from the
CloudUtil.

The result of Fig. 6(a) — T2 or Fig. 6(b) — T2 will be sent to the original
workflow (see “incoming response” in Fig. 5). When the original workflow re-
ceives the response, it reaches the parallel gateway (see S4 in Fig. 5) in which
two activities will be performed. The first is to forward the response message to
the next task (S5). In this example, the result from service matchmaking will
be sent to the task agent which manages the advertisement task (Fig. 4 — T2).
The second activity is to check the status by interacting with the Resource State
Management component (see Section 2.2). The status check activity can result
three possible condition:

– If the current status has changed (e.g., a large number of peers have joined
the network, or the device battery life has reached a specific level), the task
agent will perform the “define approach” step again.

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 383

– If the task is completed (e.g., the task has been defined that the advertise-
ment will be only pushed to 50 peers and there are 50 peers which have been
discovered), the task will be terminated.

– if the previous two conditions were not met, the task state will remain, and
the task agent will continue to perform the same approach when it receives
the incoming request.

4 Prototype

A prototype has been implemented using Objective-C and has been installed and
tested in an iPod Touch 4th generation [3]. Currently, the prototype’s workflow
process component can process < sequence > and < flow > of WS-BPEL 2.0
documents. We simulate the other MSNP peers by deploying different number
of Web service provider peers in a Macbook (2008), and each peer is published
in a Bonjour network as a Web service provider. In this test case, each peer has
a back-end Cloud storage using Dropbox, and the peer’s current IP address is
continually synchronising to its Cloud storage, and is retrievable from a static
URL address using HTTP GET request. Moreover, since each peer is a Web
service provider, the communication does not rely on the common Web service
request/response process. Instead, when two peers initiate the communication,
they exchange their basic description metadata, which contains the information
of which URL provides the peer’s current IP address. By doing so, a requester
does not wait for the response when it send out the query, instead the request
query contains a specific ID. When the provider complete the request, it invokes
the requester node and sends the result (with the specific ID contained in the
requester’s query) to the requester.

4.1 Evaluation

The evaluation aims to show how the adaptation mechanism changes its ap-
proach at runtime based on the cost and performance. The test case was based
on the scenario described in Section 3 previously.

At the start of the test case, 10 MSNP peers have been found. After the
workflow is executed, more peers have joined the network. Hence, the system
needs to perform the calculation to identify whether the approach should change
or not, based on the CPI values of approaches.

In the experiment, three cost elements have been considered: CPU usage of
mobile device, network bandwidth cost of mobile device, network bandwidth
of the Cloud utility service. In a networked system, CPU usage and network
transaction costs are two of the main elements that consume the most battery-
life of a mobile device. The Cloud bandwidth cost has been considered because
it is one of the limitations of GAE. Note that the cost element of the Cloud
in this evaluation was only used to show how the system behaves based on the
proposed CPI scheme. In reality, the cost of a Cloud utility service such as the
application that has been deployed on GAE or Amazon EC2 can involve other

384 C. Chang, S.N. Srirama, and S. Ling

factors such as instance creating platform, hardware performance, time of usage,
etc.

Mobile devices have limited processing capacity. In the test, tasks were per-
formed asynchronously. Our experiment involved 250 MSNP peers and the total
cost of using GAE is within its free usage plan limitation. If there were more
than 250 MSNP peers involved, the device is unable to handle its tasks efficiently
within an acceptable timespan. Hence, we did not consider the pure cost elements
of Cloud like those in Amazon EC2. In the following discussion, Approach 1 rep-
resents a workflow consisting of T1A1, and T2; Approach 2 represents a workflow
consisting of T1A2, and T2. T1 and T2 are parallel tasks and their sessions will
remain until the workflow is terminated. For example, the entire process can be
set for a specific period, and it will terminate when the period expired.

(a) CPU usage (b) Bandwidth cost

Fig. 7. Cost records

Fig. 7(a) illustrates the recorded CPU usage of the two approaches. The figure
shows that while the application is running, it consumes around 11% of CPU
usage. This is because the device is running a Web server and has joined Bonjour
network, in which the device needs to continually communicate with the router
to update the Bonjour service list. At the 3 second mark, the workflow has been
triggered, so the CPU usage goes to 100%. For Approach 1, the CPU usage over
90% for 51 seconds. On the other hand, for Approach 2, the CPU usage over
90% was 27 seconds. The CPU usage cost element of our experiment was based
on how long the CPU usage stays at over 90%. In Fig. 7(a), Approach 1 costs 24
more seconds than Approach 2. Fig. 7(b) illustrates the bandwidth cost recorded
for both device-side and the Cloud utility service-side for different member of
MSNP peers in the network. ‘Device’ denotes the bandwidth cost of the MCP ’s
device. ‘Cloud’ denotes the bandwidth cost of the Cloud utility service. Since
Approach 1 does not use Cloud utility service, the cost value of ‘Approach 1
Cloud’ is always zero.

Fig. 8(a) illustrates the process timespan recorded for each approach influ-
enced by the number of MSNP peers. As the figure shows, with fewer the num-
ber of peers, Approach 2 (which distributes the matchmaking process to Cloud)
does not improve the performance much. Fig. 8(b) illustrates the CPI values of
both approaches influenced by the number of peers. In this case, the weight of
each cost element has been set equally to 1. As the number of peers increases,

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 385

(a) Timespan (lower is better) (b) CPI values with equal weight of cost
element (higher is better)

(c) Cloud bandwidth weight + 1 (higher is
better)

(d) Cloud bandwidth weight + 5 (higher is
better)

Fig. 8. Cost performance index testing result

the CPI value of Approach 1 is reduce. In the next case, we assume the system
intends to reduce the Cloud bandwidth usage because the available bandwidth
deserving the free-of-charge period is getting low. Hence, the weight of Cloud
bandwidth is increased by 1. The result (Fig. 8(c)) shows that when the number
of peers is 50, the CPI value of Approach 1 is higher than Approach 2. Hence,
the workflow remains in Approach 1. In the final case (Fig. 8(d)), we assume
that the available bandwidth of free-of-charge period is nearly reach the end.
Hence, the weight of the Cloud bandwidth is increased by 5. In this case, the
workflow engine only selects Approach 2 when there are 150 peers or more.

5 Related Works

In recent years, a number of works have been proposed to enable proximal-based
MP2P social network. However, existing decentralised MSNs are still in their
early stages. Works such as [37,25,36] were focused on how to enable the OSN
activities in mobile P2P networks. Within decentralised MSN, two works have fo-
cused on how content can be shared. The authors in [1] have modelled the user’s
interest profiles, and also introduced a formal mathematical scheme to decide
how the content can be proactively pushed to the friends/contacts with potential
interest in the content. The authors in [16] have proposed ontology-based formal
semantic models to enable content sharing using semantic content matchmaking

386 C. Chang, S.N. Srirama, and S. Ling

scheme. The approach enables the user-interests-based content routing in decen-
tralised MSN by analysing the similarity of user profiles. A common limitation in
existing decentralised MSN solutions is that they were tightly-coupled solutions
with limited flexibility and scalability. The AMSNP framework proposed in this
paper is a service-oriented solution based on ESB architecture design and stan-
dard technologies, which allows fundamental resources used in the participants’
interaction to be changed dynamically at runtime.

Workflow management systems (WfMS) enable autonomous processes, which
can highly reduce user’s interference in content mashup and content advertise-
ment scenarios. Researchers [18,20] in MP2P area usually apply WfMS in spe-
cialised purpose scenarios such as field-work, rescue operations or disaster events,
in which the involved mobile nodes are manageable, and collaborate for the same
goal. Workflow adaptation schemes in these works focused on failure recovery or
resource allocation. This is understandable because MP2P systems (in particular:
mobile ad hoc network — MANET) deal with special purpose scenarios rather
than general-purpose scenario [10] like in MSNP. Few works have been done on
proposing workflow systems for MP2P content mashup. In [24], the authors have
proposed a workflow system based on a Java API — AmbientTalk for mashup
in MP2P environment. The work mainly focused on how to implement workflow
tasks on-top of AmbientTalk. In [5], an adaptive workflow scheduling scheme
has been presented for mobile ad hoc network in disaster scenario. These works
have been designed for similar MP2P environments such as MSNP. However,
they did not address issues raised in this paper. In this paper, the adaptivity of
workflow mainly focuses on how to select the most feasible approach to complete
the task of content mashup process based on performance (e.g., timespan of the
approach) and costs (bandwidth, battery, transaction-load etc.).

6 Conclusion and Future Work

In this paper, we have proposed a workflow-based adaptive mediation framework
for service-oriented MSNP. The framework enables a MSNP participating device
to dynamically change its behaviour to adapt to different situations when it
receives a user’s request. The adaptation mechanism utilises the proposed CPI
scheme to support the device to automatically select a feasible approach for each
task within a request handling process by comparing the dynamically changed
cost and performance of the approaches.

Workflow systems provide flexibility and scalability of MSNP processes. The
adaptation scheme introduced in this paper enables the system to select a feasible
approach to complete the workflow task. It also potentially brings a new form
of MSNP communication. For example, an active peer in a MSNP environment
can provide a recommended routing approach (described in WS-BPEL) to a new
peer joining the network. The new peer can automatically execute the WS-BPEL
workflow process to perform service discovery or content retrieval without the
need for user’s manual control.

In the future, we will model different types of mobile P2P communication pro-
tocols in WS-BPEL and develop a more advanced MSNP environment

An Adaptive Mediation Framework for Mobile P2P Social Content Sharing 387

simulator to evaluate our framework. Moreover, we intend to distribute more
workflow tasks to different Cloud services to compare the cost and performance
of different MSNP approaches.

References

1. Allen, S.M., Colombo, G., Whitaker, R.M.: Uttering: social micro-blogging without
the internet. In: The 2nd Int. Workshop on Mobile Opportunistic Networking, pp.
58–64. ACM (2010)

2. Amazon: Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
3. Apple: iPod Touch, http://www.apple.com/ipodtouch/

4. Apple: Open Source: Bonjour, https://developer.apple.com/opensource/
5. Avanes, A., Freytag, J.C.: Adaptive workflow scheduling under resource allocation

constraints and network dynamics. Proc. VLDB Endow. 1(2), 1631–1637 (2008)
6. Bluetooth: Bluetooth, http://www.bluetooth.com/Pages/Bluetooth-Home.aspx

7. Chang, C., Ling, S., Krishnaswamy, S.: Promws: Proactive mobile web service
provision using context-awareness. In: PerCOM Workshops 2011, pp. 69–74 (2011)

8. Chang, C., Srirama, S.N., Krishnaswamy, S., Ling, S.: Proactive web service dis-
covery for mobile social network in proximity. MENERVA, JNIT (to be published,
2012), http://dl.dropbox.com/u/59860036/service_discovery.pdf

9. Comiket: Official Comic Market Site, http://www.comiket.co.jp/index_e.html
10. Conti, M., Giordano, S.: Multihop ad hoc networking: The reality. IEEE Commu-

nications Magazine 45(4), 88–95 (2007)
11. Delir Haghighi, P., Krishnaswamy, S., Zaslavsky, A., Gaber, M.M.: Reasoning

about Context in Uncertain Pervasive Computing Environments. In: Roggen, D.,
Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS,
vol. 5279, pp. 112–125. Springer, Heidelberg (2008)

12. Dropbox: Dropbox, http://www.dropbox.com/
13. Facebook: Facebook, http://www.facebook.com/

14. Google Inc.: Google App Engine, https://developers.google.com/appengine/
15. IETF: Zero Configuration Networking (Zeroconf), http://www.zeroconf.org/

16. Li, J., Wang, H., Khan, S.: A semantics-based approach to large-scale mobile social
networking. In: Mobile Networks and Applications, pp. 1–14 (2011)

17. Lubke, R., Schuster, D., Schill, A.: Mobilisgroups: Location-based group formation
in mobile social networks. In: 2011 IEEE Int. Conf. on Pervasive Computing and
Communications Workshops, pp. 502–507 (March 2011)

18. Mecella, M., Angelaccio, M., Krek, A., Catarci, T., Buttarazzi, B., Dustdar, S.:
Workpad: an adaptive peer-to-peer software infrastructure for supporting collabo-
rative work of human operators in emergency/disaster scenarios. In: Int. Sympo-
sium on Collaborative Technologies and Systems, pp. 173–180 (May 2006)

19. Merrill, D.: Mashups: The new breed of web app. IBM developerWorks (2006),
http://public.dhe.ibm.com/software/dw/xml/x-mashups-pdf.pdf

20. Neyem, A., Franco, D., Ochoa, S.F., Pino, J.A.: An Approach to Enable Workflow
in Mobile Work Scenarios. In: Shen, W., Yong, J., Yang, Y., Barthès, J.-P.A., Luo,
J. (eds.) CSCWD 2007. LNCS, vol. 5236, pp. 498–509. Springer, Heidelberg (2008)

21. OASIS: WS-BPEL 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

22. OASIS: DPWS (2009), http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

http://aws.amazon.com/ec2/
http://www.apple.com/ipodtouch/
https://developer.apple.com/opensource/
http://www.bluetooth.com/Pages/Bluetooth-Home.aspx
http://dl.dropbox.com/u/59860036/service_discovery.pdf
http://www.comiket.co.jp/index_e.html
http://www.dropbox.com/
http://www.facebook.com/
https://developers.google.com/appengine/
http://www.zeroconf.org/
http://public.dhe.ibm.com/software/dw/xml/x-mashups-pdf.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

388 C. Chang, S.N. Srirama, and S. Ling

23. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From bpmn
process models to bpel web services. In: ICWS 2006, pp. 285–292 (2006)

24. Philips, E., Carreton, A.L., Joncheere, N., De Meuter, W., Jonckers, V.: Orches-
trating nomadic mashups using workflows. In: The 3rd and 4th Int. Workshop on
Web APIs and Services Mashups, pp. 1:1–1:7. ACM (2010)

25. Pietiläinen, A.K., Oliver, E., LeBrun, J., Varghese, G., Diot, C.: Mobiclique: mid-
dleware for mobile social networking. In: The 2nd ACM Workshop on Online Social
Networks, pp. 49–54 (2009)

26. Robinson, R.: Understand Enterprise Service Bus scenarios and solutions in
Service-Oriented Architecture, Part 1,
http://www.ibm.com/developerworks/webservices/library/ws-esbscen/

27. Sapuppo, A.: Spiderweb: A social mobile network. In: The 2010 European Wireless
Conference, pp. 475–481. IEEE (2010)

28. Schuster, D., Springer, T., Schill, A.: Service-based development of mobile real-
time collaboration applications for social networks. In: The 8th IEEE Int. Conf. on
Pervasive Computing and Communications Workshops, pp. 232–237. IEEE (2010)

29. Srirama, S., Jarke, M., Prinz, W.: Mobile web service provisioning. In: Int. Conf.
on Internet and Web Applications and Services, pp. 120–125 (2006)

30. The XMPP Standards Foundation: XMPP, http://xmpp.org/
31. Tsai, F.S., Han, W., Xu, J., Chua, H.C.: Design and development of a mobile peer-

to-peer social networking application. Expert Syst. Appl. 36, 11077–11087 (2009)
32. twitter: twitter, http://www.twitter.com/
33. UPnP Forum: Universal Plug and Play, http://www.upnp.org/
34. White, S.A.: Introduction to BPMN,

http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf

35. Wi-Fi Alliance: Wi-Fi DirectTM,
http://www.wi-fi.org/discover-and-learn/wi-fi-direct%E2%84%A2

36. Xing, B., Seada, K., Venkatasubramanian, N.: Proximiter: Enabling mobile
proximity-based content sharing on portable devices. In: PerCOM 2009, pp. 1–
3. IEEE Computer Society (2009)

37. Yang, G., Liu, Z., Seada, K., Pang, H.Y., Joki, A., Yang, J., Rosner, D., Anand,
M., Boda, P.P.: Social proximity networks on cruise ships. In: MIRW, pp. 105–114.
ACM (2008)

38. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965),
http://www.sciencedirect.com/science/article/pii/S001999586590241X

http://www.ibm.com/developerworks/webservices/library/ws-esbscen/
http://xmpp.org/
http://www.twitter.com/
http://www.upnp.org/
http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
http://www.wi-fi.org/discover-and-learn/wi-fi-direct%E2%84%A2
http://www.sciencedirect.com/science/article/pii/S001999586590241X

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 389–403, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Socially-Enriched Semantic Mashup of Web APIs

Jooik Jung and Kyong-Ho Lee

Department of Computer Science
Yonsei University

Seoul, Republic of Korea
jijung@icl.yonsei.ac.kr, khlee@cs.yonsei.ac.kr

Abstract. As Web mashups are becoming one of the salient tools for providing
composite services that satisfy users’ requests, there have been many endeavors
to enhance the process of recommending the most adequate mashup to users.
However, previous approaches show numerous pitfalls such as the problem of
cold-start, and the lack of utilization of social information as well as functional
properties of Web APIs and mashups. All these factors undoubtedly hinder the
proliferation of mashup users as locating the most appropriate mashup becomes
a cumbersome task. In order to resolve the issues, we propose an efficient me-
thod of recommending mashups based on the functional and social features of
Web APIs. Specifically, the proposed method utilizes the social and functional
relationships among Web APIs to produce and recommend the chains of candi-
date mashups. Experimental results with a real world data set show a precision
of 86.9% and a recall of 75.2% on average, which validates that the proposed
method performs more efficiently for various kinds of user requests as com-
pared to a previous work.

Keywords: Web api, mashup recommendation, functional semantics, social
relationship.

1 Introduction

In the past few years, Web mashups have attracted tremendous interest from both
service developers and end-users. These applications exhibit the ability to combine
existing service functionalities with a minimal development effort and thus making
them a powerful tool for providing composite services that satisfy users’ requests [5].
However, the explosive growth of Web APIs (hereafter, when we use the term “API”,
it refers to a “Web API”) raises challenging problems of how to enforce the adequacy
of the mashups and the ways to accelerate the discovery of the component APIs.
Moreover, current mashup composition methods manually search and select the com-
ponent services and thus aggravating the overall mashup generation process [1].
Hence, many of the researches have tried to exploit various social or functional fea-
tures of APIs as a solution to the aforementioned issues. Despite the effort, most of
the contemporary approaches utilize these social and semantic features separately or
exhibit the problem of cold-start where APIs that have no history of being selected for
mashup composition are never selected in future compositions.

390 J. Jung and K.-H. Lee

In this paper, we propose a novel technique for recommending mashups from natu-
ral language requests as well as exploiting both functional and social features of Web
APIs and their corresponding ontologies in the process. To elaborate, we first present
a systematic approach for extracting functional semantic descriptors from a user re-
quest, which are required to facilitate the discovery and composition processes of
APIs. We then represent the functional and social features of candidate APIs with
graph-based network models. Finally, the assessments of the candidate mashup chains
are computed for the purpose of recommendation. As for the social features, we ex-
ploit the popularity, collaboration and ratings of APIs to augment the social richness
of the proposed method. Furthermore, the executability of a candidate mashup is
computed by exploiting the connectivity between the input/output parameters of the
participating APIs.

To evaluate the performance of the proposed approach, 20 different natural lan-
guage requests, each with varying complexity, were used. The experimental results
showed a precision of 86.9% and a recall of 75.2% on average. Particularly, it is
worth mentioning that as the complexity of a natural language query increased, the
precision of the proposed algorithm on that specific request also depicted an increase.

The remaining sections are organized as follows. In Section 2, we present a brief
survey of related work. Section 3 describes, in detail, the proposed hybrid method for
recommending Web API mashups. The results and analysis of our experimentation
are presented in Section 4. We conclude this paper and discuss our plans for future
work in Section 5.

2 Related Work

Given the proliferation of Web-based services like Web APIs, there have been many
researches on how to compose them efficiently and accurately. The following papers
discuss various approaches for discovering and composing APIs, and recommending
the resulting mashups.

In [2, 3] a keyword-based search approach which integrates social information is
proposed for the purpose of selecting mashup components. First, the authors build an
API functional taxonomy, which is used to locate the APIs that match the desired
functionalities, using the descriptions of APIs. The description-based technique is
enhanced by combining social ranking measures to rank each API. However, the me-
thod neglects the functional features of APIs such as their input/output parameters and
thus the executability of the resulting mashup is not guaranteed.

The authors in [4] propose a mechanism to specify the functional semantics of
Web services based on action and data ontologies. Composite Web services are
represented by a graph which describes the relations among the component services in
terms of input and output parameters and their functional semantics. We concur with
this approach of assigning each Web service, or API in our case, with its correspond-
ing functional semantics to accelerate the service discovery process. However, this
particular work lacks the utilization of social information which has the potential to
enhance the mashup formation process.

 Socially-Enriched Semantic Mashup of Web APIs 391

In [21] a method which combines semantics and collective knowledge to assign
component descriptors to each Web API is introduced. The author states that this
hybrid technique ultimately accelerates the speed of API selection process by manipu-
lating these component descriptors. Here, the technique does not exploit any of the
past historical information of APIs.

The majority of works in the area of mashup composition have utilized the tags of
mashups and APIs for the purpose of recommendation. In [6] the authors propose a
social technique to mine the tags of mashups and APIs for recommendation purposes.
However, there is a pitfall to this approach since API developers do not necessarily
reuse the same tags to describe APIs. In [7, 8] tag-based clustering approaches are pro-
posed for computing the similarity between tag clouds, where the services correspond-
ing to a specific tag are grouped together. In these researches, the usefulness of mining
tags in discovering candidate APIs cannot be judged due to insufficient experiments.

In [9] a faceted classification of Web APIs and an algorithm which ranks those
APIs are proposed. By using this approach, the authors argue that the API retrieval
process can be improved. Although the technique provides a coarse-grain mechanism
for API discovery, the semantic descriptions of APIs are not taken into consideration.

Some of the works [10, 11, 12, 13] are launched to exploit the social networks of
mashup developers for constructing mashups. To improve the composition process,
the authors in [10] suggest that developers should consider the social networks or
collaborative environments of users. Some of the information extractable from social
networks are users’ past experiences [11, 13] related to the services that they have
used. By exploiting the social networks and this “extra” information, the authors in
[12] propose that the recommendation of component services is possible from the
perspectives of mashup developers.

We strongly believe that the exploitation of social networks has the potential to
impact the discovery and composition process of Web APIs and thus we aim to inte-
grate this feature with our approach. ProgrammableWeb1 is a popular online reposito-
ry of APIs and mashups [14, 15]. In our work, we utilize this repository for building
our data set, which are to be exploited for discovering APIs and constructing their
corresponding social and connectivity graphs.

3 The Proposed Mashup Recommendation Algorithm

In this section, we present the proposed mechanism to combine the Web API discov-
ery via functional semantics and the corresponding mashup chain composition based
on the social elements and input/output connectivity of candidate APIs. The mechan-
ism consists of the following four major phases: (3.1) extraction phase, (3.2) discov-
ery phase, (3.3) chaining phase, and (3.4) selection phase. Furthermore, the chaining
phase is divided into two sub-phases: chaining based on input/output connectivity
graph and chaining based on social graph, and the selection phase is also composed of
two sub-phases: connectivity analysis and social analysis. The general overview of
our approach is illustrated in Figure 1.

1 http://www.programmableweb.com/

392 J. Jung and K.-H. Le

Fig.

3.1 Extraction Phase

In the extraction phase, we
semantics and user inputs
which are to be utilized in
begin by extracting the fun
request as shown in Figure
in the form of a natural lan
be sufficient for ontology m

Before digging into the
functional semantics and us
action and object. These tw
particular mashup service of
movie}, rent and movie cor
User inputs represent variou
shup service. Unlike the W
provide their functional sem
input/output parameters do
noting that our dataset of W
by our team through analysi

ee

. 1. Overview of the proposed approach

e gather the necessary information, namely the functio
of the requested mashup operations from a user requ

n the next phase. In order to demonstrate this process,
nctional semantics and user inputs from a natural langu
2. We have particularly selected our input language to

nguage request from all other possible choices, as it wo
mapping.

details of the proposed method, we first define the ter
ser inputs. Functional semantics consist of two compone
wo elements combined describe the kinds of services th
ffers. As an example, for a functional semantic pair {r
rrespond to the action and object components respectiv
us input parameters exploitable by the operations of the m

Web services discussed in [4], the current Web APIs do
mantics explicitly, and the descriptions of their operations

not follow any form of a rigid guideline. Thus, it is wo
Web APIs and proposed ontologies are constructed manu
is of APIs available from the ProgrammableWeb directory

onal
uest,

we
uage
o be
ould

rms:
ents,
at a

rent,
vely.
ma-
not
and
orth
ally
y.

Fig. 2. An example of a n

To initiate the extraction
request into sentence block
sentence blocks are then p
RASP system [17]. Specifi
which may represent the
tracted, and nouns, which
mantic and possibly user in
the result from applying a n
tion illustrated on the top l
nents of the functional sema
are depicted by bolded texts

In order to finalize the
tracted and categorized int
nouns are classified as fun
are categorized as user inpu
in the bottom left hand side

3.2 Discovery Phase

Once functional semantic p
tained, the discovery phase
whose functional semantic

Socially-Enriched Semantic Mashup of Web APIs

natural language request and the proposed extraction method

n phase, the proposed method divides a natural langu
ks similar to the work of Lim and Lee [16]. Each of th
processed by a natural language processor known as
ically, a natural language query is checked for main ver
action component of the functional semantics to be
may describe the object component of the functional

nputs. The diagram on the right hand side of Figure 2 sho
natural language processor to the natural language desc
left hand side of the figure. The action and object com
antics are indicated by underlined texts, and the user inp
s.
extraction process, the identified verbs and nouns are
to functional semantics and user inputs. Main verbs

nctional semantic pairs whereas auxiliary verbs and no
uts. The final outcome of the extraction phase is illustra
e of Figure 2.

pairs have been extracted and user inputs have been
e initiates. The purpose of this phase is to locate all A
s conform to the functional semantics of a user’s natu

393

uage
hese

the
rbs,
ex-
se-

ows
rip-

mpo-
puts

ex-
and

ouns
ated

ob-
APIs
ural

394 J. Jung and K.-H. Lee

language request. It is worth mentioning that previous researches have assigned a
single pair of functional semantics to each Web API. This may yield inaccurate data
due to the imperfection of the object and action ontologies and the functional seman-
tic pair selection algorithm. Thus, we have assigned a functional semantic pair to each
service operation of a Web API and allocated the union of those pairs to the corres-
ponding API to discover additional APIs that may have been ignored otherwise. Once
this preparation ends, we commence the API discovery process by searching the repo-
sitory of APIs where the functional semantics of APIs are advertised along with the
ontologies that our team has constructed and reorganized. By doing so, we accelerate
the API discovery process tremendously as we mitigate the need for an entire API
database search for selecting candidate APIs.

To elaborate, we first scan the API repository using the functional semantic pairs
that we have acquired from the extraction phase. If there is a match between APIs’
advertised functional semantics and the functional semantic pairs from a user’s natural
language query, the corresponding API gets flagged as a candidate API. Here, we pro-
pose two types of matches: exact match and partial match. An exact match is where
any two functional semantic pairs have the same action and object components. For
this particular case, we can save much of the database access time as the inference via
object and action ontologies are not necessary for selecting candidate APIs. On the
other hand, if two concepts are not an exact match, their relationship must be inferred.
In this case, therefore, the action or object ontologies must be accessed for further veri-
fication.

For the partial match cases, (1) is revised from the work of Li et al. [18] to compute
a similarity value between two ontology concepts. The equation involves two key ele-
ments, the height of the matching parent, denoted as parHeight and distance to the
parent, denoted as d, which determine the similarity between two different ontology
concepts. The rationale behind this equation is that the similarity between two ontology
concepts must increase as the height of their intersecting parent concept increases and
as the distance to that parent from two concepts decreases. , , 2⁄ 1

where parHeight(C1,C2) = height of matching parent concept of concept C1 and C2 ,

d(Cn) = concept Cn’s distance to the matching parent concept

Here, we describe the process of mapping the concepts from object and action ontolo-
gies to the object and action components of the functional semantic pairs extracted
from the previous phase. This process is a revised version of the work of Klusch et al.
[19]. As mentioned earlier, this mapping process is targeted for the candidates which
fall into the partial match category as these APIs may still be selected if their values
from (1) are above a threshold. Continuing with our example of the natural language
request described previously, we have picked {reserve, hotel} for a demonstration.
Figure 3 illustrates the action and object ontologies for a Web API named TourCMS2

2 http://www.tourcms.com/

Fig. 3. An exampl

and how the functional sem
ponding ontology concepts
the threshold is adjustable b

3.3 Chaining Phase

The next step involves the
vious phase to yield mash
depends on the proposed I/
user inputs and the function
further pruning.

Chaining Based on Conne
Here, we exploit the user i
extraction phase to constru
a graph depicting the colla
tion level. In other words,
by the connectivity of their
mappings of the candidate
Moreover, Figure 4 shows
ing arbitrarily generated A
nodes and the enclosed no
Also, the direction of the e
That is, the operation wher

Socially-Enriched Semantic Mashup of Web APIs

le of mapping concepts using action/object ontologies

mantic pair, {reserve, hotel}, gets mapped to the corr
 in the case of a partial match. It is also worth noting t

by the users of this system.

composition of the candidate APIs obtained from the p
hup chains [20]. This mashup chain construction proc
/O connectivity graphs and social graphs. In addition,
nal semantic pairs from the extraction phase are utilized

ectivity Graph
nputs and the functional semantic pairs obtained from
ct an I/O connectivity graph. An I/O connectivity graph

aboration relationships between various APIs at the ope
this graph takes into account that APIs are in fact brid
r operations. The construction of the graph is based on
e APIs’ input/output parameters within the I/O ontolo
a simplified version of the I/O connectivity graph conta

APIs for illustration purposes. In this figure, the enclos
odes represent the APIs and their operations respectiv
edges between two enclosed nodes dictates the datafl
re the arrow points to can at least take one output of

395

res-
that

pre-
cess
the

d for

the
h is
era-

dged
the

ogy.
ain-
sing
ely.
ow.
the

396 J. Jung and K.-H. Le

Fig. 4. A simplif

Fig. 5. A

preceding operation as its i
tivity, denoted as degConn,

where degConn

|ExactM

|PartialM

This equation is essentially
tion that are provided by th
target operation. Furthermo

ee

fied version of the proposed I/O connectivity graph

A simplified social graph version of Figure 4

input. The edge weight representing the degree of conn
 then becomes the following: | | · | |

n(u→v) = degree of connectivity from operation u to v,

Match| = number of concepts matching exactly,

Match| = number of concepts matching partially,�
� = weight for partial match,

0 ≤ degConn(u→v) ≤ 1

y the ratio of the total number of inputs of the target ope
he preceding operation to the total number of inputs of
ore, it is worth mentioning that the value of the weight

nec-

2

era-
the
for

 Socially-Enriched Semantic Mashup of Web APIs 397

partial match can be selected by the users to alter the degree of emphasis on partial
match cases.

Once the I/O connectivity graph illustrating the candidate mashup chains is ob-
tained, we then try to reduce the search space even further. For this purpose, we dep-
loy two pruning methods which facilitate the successive reduction of the search space:
pruning via functional semantics and pruning via user inputs. First, we reduce the
search space by pruning the mashup chains whose combined functional semantics do
not contain all of the functional semantics extracted from a natural language descrip-
tion. This is due to the fact that any of the candidate chains may be connected simply
by their input/output parameters. If so, the resulting candidate mashup chains may be
inadequate for satisfying the user request and are removed as a consequence. After
that, we execute another pruning method which exploits the user inputs. That is, we
reduce the search space further by pruning the mashup chains whose APIs’ operations
do not utilize all of the user inputs as their operation parameters. In other words, the
operations of the APIs composing the mashup chains must take all of the user inputs
as their input parameters.

Chaining Based on Social Graph
Once an I/O connectivity graph has been revised to yield various mashup chains satis-
fying a user request, a social graph for these finalized candidate mashup chains is
constructed. A social graph is a graph portraying the relationships between APIs by
capturing various social elements such as the rating and popularity of an API, and the
collaboration of two APIs. Figure 5 illustrates a simplified version of the social graph
for the APIs contained in the I/O graph generated from the previous section. This
graph is similar to the API collaboration network proposed in the work of Tapia et al.
[2], with the addition of API ratings to enhance the social richness of our approach. In
this figure, nodes and edges represent APIs and their collaborations in existing ma-
shups respectively. In addition, the popularity, denoted as pop, is the number of times
that a particular API is used in the formation of mashups. It is important to note that
the size of a node is dependent on its popularity value. The collaboration, denoted as
col, describes the number of times that two adjacent APIs are used concurrently in the
composition of mashups. This factor also indicates how thick the edges should be in a
social graph. Lastly, the rating, denoted as rate, is the averaged user rating value of a
particular API.

3.4 Selection Phase

In this section, we describe how an I/O connectivity graph and a social graph are ex-
ploited in recommending the finalized candidate mashup chains satisfying a user request.

Connectivity Analysis
For every I/O connectivity sub-graph corresponding to each of the finalized candidate
mashups, we calculate the connectivity rank using the degree of connectivity values.
Recall that the degree of connectivity, denoted as degConn, represents the ratio of how
many of the required inputs of a particular operation are satisfied by its preceding

398 J. Jung and K.-H. Lee

operation in their collaboration. To elaborate, the total degree of connectivity for a par-
ticular mashup signifies the executability of that mashup. By taking advantage of I/O
connectivity of APIs, the newly created APIs are given an opportunity to be utilized and
hence alleviating the cold-start problem. The following formula describes the connectiv-
ity rank calculation for a candidate mashup chain: ∑ , 3

where ConRank(I) = connectivity rank for mashup chain I,

degConn(u→v) = degree of connectivity from operation u to v,

q = total number of connectivity relationships in the mashup chain,

0 ≤ ConRank(I) ≤ 1

Social Analysis
Once all of the candidate mashup chains have been assigned with their corresponding
connectivity rank values, we then evaluate the social ranks of those chains. As men-
tioned above, we have three social factors in our social graph namely the popularity,
collaboration, and user rating, denoted as pop, col and rate respectively. To calculate
the social rank values of a candidate mashup, we use (4), which is based on the fact
that the popularity of a single Web API is greater than or equal to the total collabora-
tion of that API. Thus, the first segment of the equation computes how many of the
existing collaboration relationships are remaining in the newly constructed social
graph. As this number increases, the candidate mashup chain is assigned a higher
social rank value. Moreover, the second segment of (4) is simply normalizing the
ratings of the participating APIs. ∑∑ · ∑ · | | 4

where SocRank(I) = social rank for mashup chain I,

col(i) = collaboration for API i,

pop(i) = popularity for API i,

rate(i) = rating for API i,

MaxRating = 5,

0 ≤ SocRank(I) ≤ 1.

Once the connectivity and social ranks for every candidate mashup chain have been
obtained, we then determine the final assessment values of those chains. Here, we
refer to the final assessment as the recommendation assessment, denoted by recAs-
sess. The computation of recAssess value utilizes both the social rank and connectivi-
ty rank as described in (5). · 1 · 5

where recAssess(I) = recommendation assessment of mashup chain I,

 = weight,

0 ≤ recAssess(I) ≤ 1

 Socially-Enriched Semantic Mashup of Web APIs 399

Table 1. A Portion of the Natural Language Queries along with their Extracted Functional
Semantics and User Inputs

 Request17 Request10 Request8 Request3
 {reserve,flight ticket} {show,house} {search,menu} {search,car}

Extracted {rent,car} {search,person} {search,price} {rent,car}
functional {reserve,hotel} {inform,time} {inform,friend} {show,map}
semantics {search,restaurant}

{search,weather}
{compute,radius} {view,photo}

 departFrom(England) city(Vancouver) foodType(Japanese) minPrice(0)
 arriveAt(France) firstName(Sam) restaurantName(Guu) maxPrice(8500)

Extracted departDate(9/15) lastName(Lee) city(London) carType(SUV)
user arriveDate(9/18) longitude(123,06)

inputs madeBy(Honda) latitude(49,13)
 foodType(French)
 location(Paris)

4 Experimental Results

In order to evaluate the performance of our approach, we have manually built a Web
API repository based on a well-known real world API database, Programmable-
Web.com. To elaborate, we have extracted and parsed 614 APIs along with their data
such as name, popularity, rating, description, and category. Then, we have analyzed
APIs’ description manuals available on the Web to obtain all of their operations and
input/output parameters. As a result, we ended up with 777 operations and 7128 in-
put/output parameters. Thereafter, we have extracted the functional semantics from
each operation and also constructed action/object/input/output ontologies for those
APIs using Protege3, an open-source ontology editor.

Once our API database was established, 20 different natural language requests with
varying complexity were manually created for test purposes. Table 1 illustrates a
small portion of the natural language queries and the outcomes obtained from the
extraction phase. Moreover, a connectivity graph and a social graph were constructed
for each request, and various factors required for the computation of recommendation
assessment values were also calculated. Finally, the candidate mashup chains with
higher recommendation assessment values than the optimal threshold were selected
for recommendation.

To verify whether a candidate mashup chain is a valid one or not, we had our
teams of mashup experts compose mashup services for a comparison with the auto-
matically generated candidate mashup chains. If a particular mashup service executes
successfully and produces a sound outcome as expected by a given request, then that
mashup chain is considered to be valid.

As for the precisions of the resulting mashups from all 20 requests, the outcome
ranged from minimum of 77.8% precision to maximum of 93.6% precision. In addi-
tion, the values of recall ranged from 72.5% to 87.5%. Figure 6 illustrates the preci-
sion and recall values of final mashups recommended from all of the natural language
requests. Particularly, the natural language query described earlier in the paper,

3 http://protege.stanford.edu/

400 J. Jung and K.-H. Le

Fig. 6. A precision vs. recall
proposed approach

request17 from Table 1, yie
the experimental results dep
of 75.2%.

In addition, Figure 7 de
shups obtained using differ
the bottom represents the pr
ation (5), was set to be 1. B
social features of APIs and
ty of API operations. This
average precision of 53.1%
which exploited both the so

On the other hand, the m
ommended mashups, wher
graph represents the version
al features of APIs. For th
average. This value was stil
integrates both the functio
cluded, at the top, the preci
ure 6 in Figure 7 to facilit
particular graph line, we ha
precision after several expe

In comparison with the e
our algorithm exhibited a
experimental setup, Gomad
grammableWeb.com and te
age precision was found to
70%. These numbers indica
ments in the precision and r

Nevertheless, the propos
age for those 20 natural la

ee

graph of the Fig. 7. A precision graph for three differ
 versions of the proposed method

elded a precision of 86.7% and a recall of 68.4%. Over
picted an average precision of 86.9% and an average re

epicts three different precision graphs of the resulting m
rent versions of our proposed method. The first line fr
recision of the recommended mashups where , from E
By assigning so, the proposed method only considered
ignored the functional features such as the I/O connect

s particular version of the proposed method exhibited
% which was significantly lower than the proposed meth
ocial and functional features of APIs.
middle line in Figure 7 illustrates the precision of the r
re , from Equation (5), was set to be 0. This particu
n of our proposed method which only utilizes the functi
his approach, the precision was observed to be 70.7%
ll lower than the precision of the proposed approach wh

onal and social features of Web APIs. Also, we have
ision graph of the original version of our method from F
tate easy comparison. It is worth mentioning that for
ave used 0.41, which was found to exhibit relatively h

eriments, for the value of .
experimental results from the work of Gomadam et al.
a significant improvement in performance. As for
dam et al. have also exploited the Web APIs from P
ested with 5 different user queries. In their work, the av
 be around 77% and the average recall was approximat
ate that our approach has shown 9.9% and 5.2% impro
recall respectively.
sed algorithm yielded 13.1% of erroneous results on av
nguage queries. From all of the recommended mashu

rent

rall,
ecall

ma-
rom

Equ-
the

tivi-
d an
hod

rec-
ular
ion-

% on
hich

in-
Fig-
this

high

[9],
the

Pro-
ver-
tely

ove-

ver-
ups,

 Socially-Enriched Semantic Mashup of Web APIs 401

13.1% of them were either not executable or did not satisfy the user requests due to
the following reasons. First, due to the fact that ontologies are human-constructed,
they may contain insufficient information required for concept mapping and inference
engines. For example, a functional semantic pair, {rent, Mustang}, extracted from a
user request may not be able to infer that Mustang is a car after ontology concept
mapping. Consequently, an incorrect service was discovered and regarded as a candi-
date API service.

Second, an error in the extraction of functional semantic pairs and user inputs from
the test queries was unavoidable. To elaborate, the proposed algorithm accepts a user
query that is composed in natural language. By forming the queries in natural language,
mashup users are able to diminish the formality of query generation compared to other
querying techniques. However, as these users gain more expressive power when con-
structing queries, it becomes harder for a natural language processor to capture all of
their intentions. As a consequence, the extracted functional semantic pairs and user
inputs may vary from what the users expect. In this case, the proposed approach se-
lected an incorrect service which is not consistent with the intention of our test queries.

5 Conclusions and Future Work

In this paper, we have presented a hybrid approach which combines both the social
and functional features of APIs to enhance the API discovery and composition
processes. Moreover, we have introduced new algorithms for computing the rankings
of the resulting candidate mashup chains to assist mashup users. We have first ex-
tracted the functional semantic pairs and user inputs from a natural language request.
Then, we have selected the corresponding Web APIs that match the extracted func-
tional semantic pairs. After that, a connectivity graph and a social graph between the
candidate APIs have been constructed based on ontology mapping. Finally, the candi-
date mashup chains have been examined in order to recommend the ones that are
adequate for satisfying a user’s request.

Overall, the proposed algorithm performed efficiently for a number of different
natural language queries, each with varying complexity. The experimental results
showed an average precision of 86.9% and an average recall of 75.2%, which implies
a significant improvement from a previous work. In addition, our experimental results
demonstrated that the combination of social and functional features exhibited a signif-
icantly better precision than these exploited separately.

Although our current database of Web APIs contains a sufficient amount of data to
conduct valid experiments, we believe that there is a necessity for an exhaustive expe-
riment with a more large volume of APIs. In addition, we are looking to adjust or
possibly move away from formatting our input in natural language form as this par-
ticular technique exhibits a fair amount of noise compared to other query techniques.
So, we will be researching on other various query techniques to enhance the quality of
our work. Furthermore, we strongly believe that the exploitation of wisdom of crowds
through crowdsourcing techniques is an area that has the potential to enhance the API
composition process as stated in Section 2. Therefore, we will also be investigating
different ways to leverage on this aspect for its integration with our approach.

402 J. Jung and K.-H. Lee

Acknowledgment. The research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2011-0026423).

References

1. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: Mashup advisor: a recommendation
tool for Mashup development. In: IEEE International Conference on Web Services, ICWS,
pp. 337–344 (2008)

2. Tapia, B., Torres, R., Astudillo, H.: Simplifying mahsup component selection with a com-
bined similarity- and social-based technique. In: 5th International Workshop on Web APIs
and Service Mashups, MASHUPS (2011)

3. Torres, R., Tapia, B., Astudillo, H.: Improving Web API Discovery by leveraging social
information. In: IEEE International Conference on Web Services, ICWS, pp. 744–745
(2011)

4. Shin, D.H., Lee, K.-H., Suda, T.: Automated generation of composite web services based
on functional semantics. Journal of Web Semantics 7(4), 332–343 (2009)

5. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language for
Web APIs and Services Mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

6. Goarany, K., Kulczycki, G., Blake, M.B.: Mining social tags to predict mashup patterns.
In: 2nd International Workshop on Search and Mining User-Generated Contents, SMUC,
pp. 71–78 (2010)

7. Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A folksono-
my-based model of web services for discovery and automatic composition. In: IEEE Inter-
national Conference on Services Computing, SCC, pp. 389–396 (2008)

8. Fernandez, A., Hayes, C., Loutas, N., Peristeras, V., Polleres, A., Tarabanis, K.: Closing
the Service Discovery Gap by Collaborative Tagging and Clustering Techniques. In: 7th
International Semantic Web Conference, ISWC, pp. 115–128 (2008)

9. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted classifica-
tion based approach to search and rank web apis. In: IEEE International Conference on
Web Services, ICWS, pp. 177–184 (2008)

10. Schall, D., Truong, H.L., Dustdar, S.: Unifying Human and Software Serivces in Web-
Scale Collaborations. IEEE Internet Computing 12(3), 62–68 (2008)

11. Maaradji, A., Hacid, H., Daigremont, J.: Towards a Social Network Based Approach for
Services Composition. In: IEEE International Conference on Communications, ICC, pp.
1–5 (2010)

12. Maaradji, A., Hacid, H., Skraba, R.: Social Web Mashups Full Completion via Frequent
Sequence Mining. In: IEEE World Congress on Services, SERVICES, pp. 9–16 (2011)

13. Maaradji, A., Hacid, H., Skraba, R., Lateef, A., Daigremont, J., Crespi, N.: Social-based
Web services discovery and composition for step-by-step mashup completion. In: IEEE In-
ternational Conference on Web Services, ICWS, pp. 700–701 (2011)

14. Yu, S., Woodard, C.J.: Innovation in the Programmable Web: Characterizing the Mashup
Ecosystem. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp.
136–147. Springer, Heidelberg (2009)

15. Wang, J., Chen, H., Zhang, Y.: Mining user behavior pattern in mashup community. In:
10th IEEE International Conference on Information Reuse & Integration, IRI, pp. 126–131
(2009)

 Socially-Enriched Semantic Mashup of Web APIs 403

16. Lim, J.H., Lee, K.-H.: Constructing composite web services from natural language re-
quests. Journal of Web Semantics 8(1), 1–13 (2010)

17. Briscoe, T., Carroll, J., Watson, R.: The second release of the RASP system. In: Proc. of
the COLING/ACL Conference, pp. 77–80 (2006)

18. Li, Y., Bandar, Z.A., McLean, D.: An Approach for Measuring Semantic Similarity be-
tween Words Using Multiple Information Sources. IEEE Transactions on Knowledge and
Data Engineering 15(4), 871–882 (2003)

19. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service mat-
chmaker for OWL-S services. Journal of Web Semantics 7(2), 121–133 (2009)

20. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, Interactive Recommendation of Ma-
shup Composition Knowledge. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
ICSOC 2011. LNCS, vol. 7084, pp. 374–388. Springer, Heidelberg (2011)

21. Melchiori, M.: Hybrid Techniques for Web APIs Recommendation. In: 1st International
Workshop on Linked Web Data Management, LWDM, pp. 17–23 (2011)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 404–419, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Application of Business-Driven Decision Making
to RESTful Business Processes

Qinghua Lu2,1, Xiwei Xu1,2, Vladimir Tosic1,2, and Liming Zhu1,2

1 NICTA, Australian Technology Park, Sydney, NSW, Australia
2 University of New South Wales, Sydney, NSW, Australia

{Qinghua.Lu,Xiwei.Xu,Vladimir.Tosic,Liming.Zhu}@nicta.com.au

Abstract. Runtime adaptability is a desired quality attribute in business
processes, particularly cross-organizational ones. Past work showed that design-
ing and implementing business processes following the REpresentational State
Transfer (REST) principles increases runtime adaptability. However, the past
solutions for RESTful business processes (RESTfulBP) were limited to manual
selection of process fragments to be composed at runtime. Therefore, we have
now integrated into the RESTfulBP system an extended version of our Mi-
niZnMASC middleware to enable concurrent selection of different RESTfulBP
process fragments for different classes of user at runtime. This selection max-
imizes overall business value, while satisfying all given constraints. We also ex-
tended the RESTfulBP runtime engine with a process fragment processor, a
constraint processor, a process fragment repository, and several types of moni-
toring resources. Experiments with prototype implementations showed that our
solutions are feasible, functionally correct, business beneficial, with relatively
low performance overhead, and with satisfactory scalability.

Keywords: REST, business-driven IT management, middleware, Web service
composition management, decision support, middleware, autonomic computing.

1 Introduction

To improve adaptability of business processes, we previously designed an architecture
style “RESTful business processes (RESTfulBP)” [1] that adapts the REpresentational
State Transfer (REST) principles [2] to business process design, implementation and
execution. Compared with the traditional business process using flow-based lan-
guages (e.g., BPEL), RESTfulBP has two significant characteristics: 1) at the process
level, RESTfulBP models business processes in a declarative style at design time and
allows reusable process fragments to be bundled, unbundled and re-bundled flexibly
and rapidly at runtime; 2) RESTfulBP can fully utilize the mechanisms of the HTTP
protocol to provide a lightweight adaptable infrastructure supporting business process
execution and adaptation. In RESTfulBP, decision making points are where process
fragments can be bundled, unbundled, and re-bundled. When several process frag-
ments can be used at a decision making point, it is necessary to determine which one
to use. Since the affected RESTfulBP users can have different characteristics, one

 Application of Business-Driven Decision Making to RESTful Business Processes 405

single selection of a process fragment for all users can rarely achieve best business
value for the RESTfulBP owner organization. It is often necessary to concurrently
examine selection of process fragments for all affected users. In past work [1], this
decision is made manually by a “knowledge worker”, who is authorized to manage
business process instances. However, it is hard for humans to have entire knowledge
about the runtime RESTfulBP states and understand multifaceted interdependencies
between diverse components and metrics at various levels of abstraction. It is also
difficult for knowledge workers to manually calculate business value that each proc-
ess fragment leads to and decide which process fragment to execute taking into
account business strategies of the RESTfulBP owner organisation. Therefore, a busi-
ness-driven decision making support tool is needed to assist knowledge workers in the
process fragment selections at runtime.

Based on the past studies on autonomic business-driven IT management [3, 4], we
previously designed MiniZnMASC [5, 6] that is an autonomic business-driven deci-
sion making middleware for adaptation of Web service compositions. In this paper,
we extend MiniZnMASC with new algorithms and build it into RESTfulBP to pro-
vide runtime decision making support in the process fragment selections at each deci-
sion making point of RESTfulBP. The adapted version of MiniZnMASC first
examines all available process fragments at each decision making point and selects
different groups of process fragments for different classes of users, in ways that satis-
fy the business value constraints and other constraints (e.g., resource limitations). The
use of MiniZnMASC can be fully automatic, when it selects and invokes the combi-
nation of process fragments (one process fragment per class of user) that maximizes
business value. However, a more realistic use scenario is semi-automatic, when a
knowledge worker examines MiniZnMASC advices and selects the final combination
of process fragments based on own knowledge and experience. The new architecture
of RESTfulBP with built-in MiniZnMASC introduces a process fragment processor, a
constraint processor, a process fragment repository, and several kinds of monitoring
resources for process fragment processing. The recorded monitored data are sent to
MiniZnMASC in an XML file and are used in adaptation decision making. The adap-
tation actions decided by MiniZnMASC are invoked by sending a HTTP request.

The remainder of this paper is organized as follows. Section 2 introduces a moti-
vating example for this work. Section 3 examines related work and summarizes our
past work on RESTfulBP and MiniZnMASC. Section 4 discusses in detail how we
integrated the extended MiniZnMASC into RESTfulBP. Section 5 evaluates the pro-
posed solutions. The last section concludes the paper.

2 Motivating Example

The motivating example illustrating the usefulness of our solutions is the loan ap-
proval process from the Lending Industry XML Initiative (LIXI) [7]. It is a human-
intensive process that largely depends on the knowledgeable human for guidance.
Thus, the software is used to assist the human to direct the process rather than com-
pletely automate the process execution. As outlined in the upper part of Fig. 1, this is

406 Q. Lu et al.

a complicated business process, where entities are from different businesses and enti-
ties of the same type can differ. Thus, the lending institution classifies its users into
three classes according to their credit history and previous loan records: gold, silver,
and bronze. It also offers different service levels, which have different guaranteed
technical QoS, prices per invocation, and penalties if the guarantees are not met.

V
al

ue
r

A
dm

in

S
ta

ff

Le
nd

in
g

in
st

itu
tio

n
B

or
ro

w
er

O
pt

io
n

1
O

pt
io

n
2

O
pt

io
n

3
O

pt
io

n
4

O
pt

io
n

5
O

pt
io

n
6

O
pt

io
n

1
O

pt
io

n
2

O
pt

io
n

3

Fig. 1. A loan approval process with possible process fragments

There are many decision making points in the loan approval process where ad-
vanced decision making is necessary. Due to space limitations, we only discuss the
decision making of the “Inspect” sub-process, for which the lower-right part of Fig. 1
outlines possible process fragments and corresponding time/resource constraints. (The
lower-left part of Fig. 1 shows another sub-process, “Check credit history”, as an
illustration that there are many decision making points, but we do not have space to
describe this sub-process here.) There are three types of property inspection: desk-top,
curbside, and full. Desk-top inspection estimates the property value based on the ex-
isting data repository – it has a negligible cost and can be completed by 1 valuer with-
in 2 hours. Curbside inspection includes the outside inspection (without entering the
property) and requires 0.5 day for 1 valuer to complete. Full inspection includes both
inside and outside inspections and may take 3 days or more to be completed, because

 Application of Business-Driven Decision Making to RESTful Business Processes 407

the valuer has to make an appointment with the property owner. The possible process
fragments at the “Inspect” decision making point are shown in the expanded “Inspect”
sub-process. The initiation of the inspection is very flexible in terms of the number of
the inspections and the sequence of the chosen inspections. MiniZnMASC filters the
process fragments depending on the constraints and monitored data and sorts them
based on business value. However, there are some knowledge and runtime situations
that are hard to capture in predefined policies, so a knowledge worker might be re-
quired to make the final decision among the filtered process fragments.

For one example runtime situation at the “Inspect” sub-process, the Table 1 shows
the number of currently running loan approval process instances in each class of user
and the calculated business value and cost of each adaptation option per instance.
Further, the lending institution has 6 valuers and the completion time limit for the
“Inspection sub-process” is 4 days. Two other constraints limit the overall business
value to at least $6000 and the overall cost to at most $2000. Domain experts provide
information that helps determine business values, costs, and various constraints for
decision making. The advices produced by MiniZnMASC are in the last line of
Table 1.

Table 1. Business value (V) and cost (C) (AU$) of different adaptation alternatives for
different classes of user at the “Inspect” decision making point

Class of user Gold Silver Bronze

Number of instances 2 3 5

Option 1 V: 500; C:50 V: 300; C: 50 V: 100; C: 50

Option 2 V: 400; C: 100 V: 600; C: 100 V: 200; C: 100

Option 3 V: 400; C: 150 V: 400; C: 150 V: 200; C: 150

Option 4 V: 300; C: 200 V: 400; C: 200 V: 600; C: 200

Option 5 V: 1000; C: 100 V: 400; C: 100 V: 200; C: 100

Option 6 V: 800; C: 150 V: 400; C: 150 V: 200; C: 150

Selected adaptation Option 5 or Option 6 Option 2 Option 4

Section 4 explains how our extended MiniZnMASC middleware makes such deci-
sions based on policies specified in the WS-Policy4MASC language. We have used
the described example for evaluation of our solution (cf. Section 5).

3 Related Work and Background

3.1 Related Work

Process fragment is not a new concept and it has been shown previously that that
dividing business process into process fragments can improve the flexibility and dy-
namic evolution [1, 8]. For example, the process fragment concept in our work is
similar to a worklet from [8] – a small, self-contained, complete workflow process
that handles one task in a larger, composite process. It can be also regarded as a

408 Q. Lu et al.

process-level continuation in distributed business processes. A similar concept has
been used in [9], but this approach is aimed to overcome the bottleneck of centralized
process and improve the performance, while our work has significantly broader scope.
A novelty of RESTfulBP is that it utilizes the existing Web infrastructure to provide a
light-weight architecture for the execution of process fragments. RESTfulBP also
inherits good characteristics of REST, such as loose coupling and interoperabili-
ty. Although REST [2] and Resource-Oriented Architecture [10] principles are well
established, their application to Web-based business process systems has not been
well understood. Several proposals to bring REST to business processes have
emerged from the industry and research community. Most of them extend SOA stan-
dards with RESTful interfaces [10, 11] or impose selected REST constraints on busi-
ness process implementation [12-15]. However, these have several limitations, which
RESTfulBP overcomes. Firstly, the methods for introducing additional constraints
focus only on two constraints: uniform interfaces and “hypermedia as the engine of
application state”. They ignore other useful mechanisms of the Web infrastructure:
content negotiation, rich metadata, and transfer of process fragments to enable truly
distributed and localized process execution. There are very few style implementation
guidelines and associated methodologies. Secondly, there is a lack of full support for
workflow patterns. Finally, confusion arises when different and sometimes conflicting
additional constraints are proposed without a clear definition of the new style and
associated methodology for implementing it.

On the other hand, there are many publications on particular types of adaptation of
business processes. We provided a classification and a relatively detailed analysis of
many additional related works in [16]. While in industry practice adaptation decision
making is still mainly done by human administrators, the vast majority of research
focuses on adaptation with minimal help from humans. However, the past adaptation
decision making algorithms predominantly choose adaptation that maximizes technic-
al metrics (e.g., [17, 18]), while maximization of business metrics is still an open
research area [4, 16]. While [19] is not directly on adaptation of business processes,
some of its solutions could be reused in our context. It presented a system for max-
imization of business metrics that schedules the triggered management policies by
minimizing the penalty specified in service level agreements (SLAs), but it did not
examine resolution for conflicting policies, which is a critical problem in policy-based
management. Different adaptation triggers often require different monitoring, deci-
sion making, and adaptation execution. For example, if a management system does
not monitor business-related events, it will not be able to recognize the adaptation
needs they cause, so it will not be able to react and adapt appropriately. However, the
vast majority of past works (e.g., [17, 20]) researching adaptation of business
processes focused on adaptations triggered by technical reasons, while only a few
research projects (e.g., [21, 22]) examined the impact of business causes (but without
addressing them completely). In particular, [21] identified three types of adaptation
causes: exceptions, business policy changes, and business model changes. There are
many other additional causes that were not addressed, such as infrastructure updates,
business strategy changes, and business customer changes. Adaptation of a business
process instance could change various aspects of system configuration and execution:

 Application of Business-Driven Decision Making to RESTful Business Processes 409

structure of the implemented business process type (e.g., replacing one block of activ-
ities with another for all instances) [17], Web services used for the implementation
(e.g., replacing a faulty service) [23], execution of the instance (e.g., rolling back to a
checkpoint) [24], or contracts with customers (e.g., changing SLAs) [25]. There is a
lot of research literature presenting support for individual types of change, but a com-
prehensive support for all these types of change was first provided in the WS-
Policy4MASC language and the MASC middleware [23], which is the predecessor of
the research presented in this paper. Our work is different from traditional solutions of
optimization problems in business processes. We focus on the runtime decision mak-
ing support for concurrent adaptation of multiple RESTful business process instances
with consideration of business value for the process owner.

3.2 Background

3.2.1 The RESTfulBP Architecture Style
The RESTfulBP architectural style is a set of architectural constraints [1] that aims to
establish communication and coordination mechanisms among participants in a busi-
ness process from a peer-to-peer and distributed point of view. Small pieces of
workflow logic, called “process fragments”, are defined within each endpoint and can
be transferred to other endpoints at runtime. RESTfulBP models four types of busi-
ness process entities (process, instance, task, and state) as resources identified by
declarative URIs [10]. The entity resources are manipulated through a set of uniform
methods, resembling the standard HTTP methods (GET, PUT, POST, and DELETE).
The process entity resources are connected through a Microformat [21]. The Micro-
format-based messages are used to communicate routing information at runtime.
RESTfulBP uses content negotiation and authentication mechanisms provided by the
Web infrastructure to choose an appropriate representation of an entity resource for
the role-based requester. A server can estimate the desired representation format ac-
cording to the ACCEPT request header, which indicates the preferred media type. The
current media type is extended to indicate the role of the requesting participant.
RESTfulBP communicates exception information in the message header. The HTTP
protocol is extended with an optional header field “Exception” to denote the type of
exception, so that the requestor can get sufficient information from the message head-
er only. The tool support for RESTfulBP includes: an annotation tool based on the
Eclipse project BPMN Modeler [22], a programming API that facilitates implementa-
tion of RESTful process-aware systems, and a runtime engine that powers the pro-
gramming API.

3.2.2 The MiniZnMASC Middleware
In complex long-running business processes, changes happen often (e.g., business
goal changes, service performance changes). When such changes occur during run-
time, the affected Web service compositions should be adapted. This adaptation can
be usually done in several ways and advanced decision making is needed to determine
how to proceed. MiniZnMASC [5] is a runtime autonomic decision making
middleware for adaptation of Web service compositions. It implements novel

410 Q. Lu et al.

decision-making algorithms that can concurrently make different adaptation decisions
for different classes of instance in a way that achieves maximum overall business
value while satisfying all given constraints. A “class of instance” is a group of Web
service composition instances that share a combination of characteristics that warrants
adaptation in the same way. The most important characteristics are: the implemented
business process type, the executed Web service composition, the current posi-
tion/state within the running Web service composition, and the class of consumer.
The decision-making algorithms in MiniZnMASC use information specified as policy
assertions in WS-Policy4MASC. WS-Policy4MASC [4, 23] is a policy language that
can describe various adaptations and all information necessary for decision making.
WSPolicy4MASC extends the WS-Policy industry standard and defines five new
types of policy assertions: 1) goal policy assertions (GPA) prescribe conditions to be
met (e.g., desired response time), 2) action policy assertions (APA) list adaptation
actions to be performed in particular situations, 3) utility policy assertions (UPA)
specify business values for particular situations, 4) probability policy assertions (PPA)
specify probabilities of occurrence, and 5) meta policy assertions (MPA) describe
how to select among alternative adaptation decisions to maximize business value.

4 Extending MiniZnMASC and Integrating It into RESTfulBP

To provide business-driven decision making support for the runtime RESTfulBP
process fragment selection, we extend the MiniZnMASC middleware with new deci-
sion making algorithms. The new decision making algorithms concurrently select
different combinations of process fragments (addressing all classes of user) at a deci-
sion making point. The selections found by MiniZnMASC satisfy all given business
value (e.g., cost) constraints and other constraints (e.g., resource limitations) and de-
pend on business metrics and business strategies, plus operational conditions (e.g.,
current number of users in each class). The selected combinations of process frag-
ments can be provided as an advice for knowledge workers who make final decisions.
Alternatively, when knowledge workers completely trust the specified WS-
Policy4MASC policies, MiniZnMASC can automatically select and invoke the com-
binations that it determines optimal from the business viewpoint, similarly to [4, 5].

While these algorithms are based on the autonomic MiniZnMASC algorithms de-
scribed in [4, 5], the main differences are in the constraint programming model: 1) the
new model can select more than one process fragments for each class of RESTfulBP
user while the original model can only select one adaptation action for each class of
Web service composition instance; 2) the new model handles various constraints in-
cluding business value constraints (e.g., discarding a process fragment that leads to
business value smaller than the minimal acceptable one), time constraints, and re-
source constraints, while the original model had a business value optimisation objec-
tive and primarily worked with cost constraints. The new constraint programming
model makes MiniZnMASC more suitable for integration into RESTfulBP as a deci-
sion making support tool. The novel integration of MiniZnMASC with RESTfulBP
enables semi-automatic business-driven adaptations in complex, multi-user REST-
fulBP with minimal help from human knowledge workers.

 Application of Business-Driven Decision Making to RESTful Business Processes 411

There were four challenges to integrate MiniZnMASC into RESTfulBP: 1) tailor
the previous automatic decision making algorithms to semi-automatic decision mak-
ing algorithm and tailor the previous modelling in MiniZnMASC to describe the se-
lection of process fragments in RESTfulBP; 2) design external monitoring mechanism
in RESTfulBP that can send real-time data to MiniZnMASC; 3) externally execute
the adaptation actions; 4) design the overall architecture of the integrated system.

4.1 The Constraint Programming Model for Decision Making Algorithms

In this subsection, we describe our solution to the first challenge identified above,
while our solutions to the other three challenges are presented in the next subsection.
We represent our decision making model in constraint programming and code it in the
constraint programming language MiniZinc [25]. The Policy Conflict Resolution
module (cf. Fig. 2) of MiniZnMASC contains the MiniZinc solver, which instantiates
the model with values from WS-Policy4MASC files and runtime monitoring data and
solves this instantiated model for the new MiniZnMASC optimization algorithm.

We use the following notation. Unless noted otherwise, the listed variables are spe-
cified in WS-Policy4MASC files. N is the number of classes of user. (n=1,…, N)
is the current number of instances in class n and it is determined from runtime moni-
toring data. (n=1,…, N) is the number of process fragment options (at the ex-
amined decision point) for a user in class n. , (n=1,…, N; i=1,…,) is the i-th
process fragment option for class n. K is the number of business value types [4] that
can be reasoned about. , , (k=1,…, K; n=1,…, N; i=1,…,) is the summary
business value of type k for process fragment option , . It is calculated by our algo-
rithm, summarized in [4], for calculation of summary business metrics from the val-
ues in WS-Policy4MASC utility and probability policy assertions. (The probabilities
specify uncertainties and risks.) The algorithm is implemented in MiniZnMASC as
Java code, so in this constraint programming model we just use its result , , . We
also derived a precise mathematical formula showing how , , is calculated, but this
is not crucial for this paper. (k=1,…, K) is the weight of business value type k.
These weights are specified in WS-Policy4MASC meta policy assertions and are
usually in the interval [-1,1] (negative values are for costs).

The summary business value of all used business value types for a process frag-
ment option , is calculated as: , , ∑ , , (k=1,…, K;

n=1,…, N; i=1,…,). The set UsedBVTs contains all business value types deemed
relevant (as specified in the used WS-Policy4MASC meta policy assertion) for com-
paring business worth of process fragment options. This feature addresses the fact that
in different business situations different sets of business value types are relevant.

The problem of finding the globally optimal set of process fragments can be
represented in constraint programming as the task to find the set of N process frag-
ments , , … , , (n=1,…, N) that satisfy all given constraints and have the
highest summary business value. We use to denote of the chosen , , that is , . The most important are business value constraints describing
business situations when a process fragment option should be discarded because it

412 Q. Lu et al.

Fig. 2. Architecture of RESTfulBP with integrated MiniZnMASC

leads to business value that is smaller than the acceptable minimum. These constraints
are modeled as: ∑ , . Cost constraints describe
common business situations when a process fragment option should be discarded because
its short-term costs are higher than available funds. They are modeled similarly to: ∑ ∑ , , . Here, the set CostBVTs contains
all business value types representing relevant costs (as specified in the used WS-
Policy4MASC meta policy assertion). Resource constrains are another constraint type
important in practice. Resources (e.g., memory, processor time, bandwidth, energy, etc.)
are often limited and this is one of the main reasons why decisions of concurrent in-
stances should be considered together instead of separately. WS-Policy4MASC enables
definition of non-financial business value types that represent resource usage and use
appropriate units. For example, it is possible to define that all non-financial costs with
attribute Cause=“Memory” represent memory usage and have unit “GB”. Then, a
memory limit can be modelled similarly to: ∑ ∑, , , where the set MemoryBVTs contains all business value types
that represent memory usage. Time constraints are yet another important constraint type,
because time (both calendar time for completion of a task/sub-process and time that can
be spent actively working on a task/sub-process) is often limited in business processes.
Time constraints often depend on characteristics of a business process instance (e.g., gold
class usually has lower time limits than bronze class). , (n=1,…, N; i=1,…,) is
the number of tasks/sub-processes in , and , , (n=1,…, N; i=1,…,
 ; p=1,…, ,) is a particular task/sub-process in , . Thus, time constraints

 Application of Business-Driven Decision Making to RESTful Business Processes 413

can be modeled similarly to: , , , , and , , , , . WS-Policy4MASC and Mi-
niZnMASC can also support additional constraint types, but they are not very common in
practice.

4.2 Architecture of RESTfulBP That Adds the Extended MiniZnMASC

Fig. 2 shows the architecture of RESTfulBP with integrated MiniZnMASC middle-
ware. The dash line in the middle separates the components at design time and run-
time in perspective of the produced business process. At design time, the business
process is defined by business analysts using BPMN with RESTfulBP annotations.
The purpose of modeling is to identify the tasks in the business process at different
levels of abstraction, the roles of the process participants, the control dependencies
between the tasks (e.g., sequencing, parallel), and various constraints. Besides, the
constraint programming models and management policies which provide the basis for
MiniZnMASC are also defined by the business analyst according to all relevant
RESTfulBP models and other business information, e.g., process fragments, con-
straints, business strategies, and operational conditions. At runtime, the RESTfulBP
engine is used to execute the produced processes. RESTfulBP is designed for the
human-intensive processes. Thus, a knowledge worker is usually required to drive the
process execution, and MiniZnMASC is used to assist the knowledge worker in mak-
ing more suitable decisions from a group of available process fragments. (As men-
tioned above, MiniZnMASC can make decisions without human involvement, but
humans have to fully trust them and this might not be realistic in complex situations.)

4.2.1 Process Design Time
The RESTfulBP modeling tool is built on the basis of the Eclipse platform and several
existing Eclipse projects. BPMN modeler is an Eclipse-based business process
diagram editor. It realizes Business Process Modeling Notation (BPMN) [24] specifi-
cation. The Annotation plug-in is implemented on top of the BPMN modeler by utiliz-
ing the extension mechanisms of Eclipse. It builds upon several extension points pro-
vided by the BPMN modeler and the Eclipse platform. The Annotation plug-in allows
the developers to annotate various elements of BPMN diagrams with RESTfulBP
information, which is essential for the Code Generation Engine to generate code. The
Code Generation Engine can extract useful information from the diagram and gener-
ate process skeletons and constraints for certain tasks or sub-process. It consists of
four modules: workflow pattern detector, constraints detector, code generation wi-
zard, and code generation template. The workflow pattern detector can recognize
which workflow pattern a certain task belongs to, by referring to its pre-and-post
tasks. The identified workflow pattern is used by the code generation template to
create tasks and process fragments. Developers can configure the generated project
using the code generation wizard, e.g. by choosing the path of the dependent library.
Then, the code generation engine combines the information from both the template
and the wizard forms to create an executable process. The process fragments extracted
from the normal process are the normal process fragments, while the process frag-
ments extracted from the compensation process are the compensate process fragments
used for exception handling. The information is stored in an XML file as an input of
the Process Fragment Processor. The Process Fragment Processor extracts the iden-
tification number of each process fragment and stores it for different decision making

414 Q. Lu et al.

points and possible exception points. The output of the process fragment processor
includes some of the information required by MiniZinc models, e.g. the number of
available process fragments. The constraints detector can extract the constraints for
the tasks. The information is stored in an XML file as an input of the Constraint Pro-
cessor. The Constraint Processor treats all received constraints and stores them for
different constraint types. The Tree Viewer organizes the tasks and corresponding
process fragments into a tree construct. All tasks are children of the root node. A task
can contain an arbitrary number of process fragments as its children.

4.2.2 Process Runtime
During process execution, RESTfulBP provides a runtime environment that allows
process fragments to be exchanged between process participants. The process is
driven by a knowledge worker, who is responsible for selecting (based on own know-
ledge) the most suitable process fragment to execute from a group of process frag-
ments. MiniZnMASC can assist the knowledge worker by selecting for different
classes of user smaller groups of process suitable fragments that satisfy given con-
straints. The selections made by MiniZnMASC are based on monitored data from the
runtime execution and according to policies in WSPolicy4MASC [4, 23]. If changes
happen in the operational environment, IT managers may update the constraints and
relevant policies in the Policy Repository at runtime. MiniZnMASC is used not only
to assist the knowledge worker to make decisions in normal process execution, but
also to provide an exception handling mechanism (e.g., when a server is down).

For process monitoring, the Monitor module of RESTfulBP uses a set of monitor-
ing resources to provide monitoring functionality. The monitoring resource on the
top-level is addressed by a URI, e.g. “{processURI}/monitoring/”. It has a set of sub-
resources, each of which represents a type of runtime data to be monitored. For
example, “{processURI}/monitoring /responsetime” represents the response time
metric, while “{processURI}/monitoring/availability” represents the availability me-
tric. These QoS metrics can be used to measure different service levels of process
entities, which are also represented by sub-resources of QoS metric resources. For
example, response time of a certain process instance can be accessed trough the re-
source “{processURI}/monitoring/responsetime/{instanceId}”. Similarly, response
time of a certain task of the same process instance is represented by “{processU-
RI}/monitoring/responsetime/{instanceId}/{taskId}”. The monitoring resources
record all relevant runtime data automatically at runtime. The monitored data is stored
in the Database of Monitored Data, which includes both technical metric data (e.g.,
measured response time) and business metric data (e.g., paid prices and penalties).

5 Evaluation

5.1 Feasibility, Functional Correctness, and Business Benefits

We implemented prototypes of the extended MiniZnMASC middleware and the new
RESTfulBP system containing MiniZnMASC and performed with it a number of
diverse tests, using the motivating example from Section 2 and other examples.
The new MiniZnMASC prototype was built by extending the prototype discussed in
[5], so it was also implemented in Java and uses the PostgreSQL database. The new
prototypes show that implementation of our solutions is feasible.

 Application of Business-Driven Decision Making to RESTful Business Processes 415

We first tested functional correctness of the MiniZnMASC by comparing results
calculated by the prototypes and by hand, in various scenarios. Since we found no
differences, these results indicate that the new algorithms do not have functional er-
rors. We then comprehensively tested the new overall RESTfulBP system that
includes the extended MiniZnMASC. After debugging minor errors, we found no
further problems with the prototype implementation of our core solutions.

For the motivating example we also calculated summary business value (incl. poss-
ible revenue and relevant costs) for different possible decisions, some of which are
shown in Table 2. These results confirm that using the new MiniZnMASC algorithms
for automatic selection of process fragments to be executed leads to business benefits.
The combination of these tests of functional correctness and business benefit shows
that the developed algorithms and middleware will select process fragments best from
the business viewpoint, according to the information specified in policies.

Table 2. Total business value (V) and cost (C) is AU$ of different decisions

Decision Business benefits

Single Selection of Option 1 V: 2400; C:500
Single Selection of Option 2 V: 3600; C: 1000
Single Selection of Option 3 V: 3000; C: 1500
Single Selection of Option 4 V: 4800; C: 2000
Single Selection of Option 5 V: 4200; C: 1000
Single Selection of Option 6 V: 3800; C: 1500
Selections by MiniZnMASC V: 6400~6800; C: 1500~1600

5.2 Performance and Scalability

For the evaluation of performance and scalability, we used a Hewlett-Packard laptop
model HP EliteBook6930p with Intel Core 2 Duo CPU T900 2.53GHz processor and
4.00 GB of RAM memory, running 32-bit Windows Vista operating system. This
configuration is near the lower end of environments in which the RESTfulBP system
with MiniZnMASC might be run in practice. The fact that we found performance
satisfactory in this low-end environment gives us confidence that performance will
not be a problem in practical use of our solutions. To minimize the impact of noise
(e.g., background operating system processes that we were not able to switch off), we
repeated tests hundreds of times at different times of day and averaged their results.

Table 3. Performance of decision making (DM) and conflict resolution algorithm (CRA), with
increasing number of conflicting action policy assertions (APAs) and utility policy assertions
(UPAs)

Test case Execution time of DM Execution time of CRA
3 APAs, each with 2 UPAs Average: 250 ms

Range: 234-266 ms
Average: 16 ms
Range: 15-32 ms

10 APAs, each with 32 UPAs Average: 905 ms
Range: 889-936 ms

Average: 31 ms
Range: 16-32 ms

100 APAs, each with 64 UPAs Average: 12309 ms
Range: 12262-12449 ms

Average: 140 ms
Range: 140-156 ms

416 Q. Lu et al.

In one set of performance and scalability tests, we increased the complexity of de-
cision making in a decision point. We simultaneously increased two aspects of this
complexity: 1) the number of available process fragments (represented through con-
flicting WS-Policy4MASC action policy assertions - APAs); 2) the complexity of
calculating summary business value for each process fragment (represented through
the number of WS-Policy4MASC utility policy assertions - UPAs). Using the Java
“System.currentTimeMillis()” call, we measured the execution time of whole Mi-
niZnMASC business-driven decision making (DM) and the execution time of only the
Confliction Resolution Algorithm (CRA) that is core to this decision making. Table 3
shows the measured results of the range and average of the execution time for some
test scenarios. The overall execution time of decision making in MiniZnMASC rises
because the execution time of the summation of business values for each conflicting
action policy assertion increases with increasing number of conflicting action policy
assertions and utility policy assertions. The last test case (100 conflicting action poli-
cy assertions, 64 utility policy assertions) is much more complicated than realistic
scenarios in practice, so 12.3 sec is not an issue. It is important to note that in realistic
application scenarios of MiniZnMASC to RESTfulBP the number of conflicting ac-
tion policy assertions will be low, while the overall number of action policy assertions
can be huge. We also checked that the number of additional non-conflicting action
policy assertions in the MiniZnMASC Policy Repository has no significant effect on
performance, even when there are hundreds of action policy assertions.

Fig. 3. Performance results with increasing number of conflicting action policy assertions
(APAs), each with 2 utility policy assertions (UPAs)

Fig. 4. Performance results with increasing number of classes of instance

 Application of Business-Driven Decision Making to RESTful Business Processes 417

Fig. 3 shows the performance measurement results when we increased the number
of action policy assertions, while Fig. 4 shows the performance measurement results
when we increased the number of classes of user. In both figures, the upper line is for
the execution time of the overall MiniZnMASC business-driven decision making,
while the lower line is for the execution time of the Conflict Resolution Algorithm.
Both lines show linearity, which is good. In our application of MiniZnMASC to
RESTfulBP, the decision making component first decides the action policy assertions
triggered by events received from the external monitoring modules and finds utility
policy assertions and probability policy assertions for the relevant action policy asser-
tions. Then, if the number of action policy assertions is more than one, the new
MiniZnMASC integrated into RESTfulBP runs the Conflict Resolution Algorithm to
select among the conflicting action policy assertions. The results in Fig. 4 show that
the majority of the execution time of the overall decision making is spent on deciding
triggered action policy assertions and setting utility policy assertions and probability
policy assertions, and not on the Conflict Resolution Algorithm.

6 Conclusion

The past solution for RESTfulBP was limited to manual selection of process frag-
ments to be composed at runtime. Therefore, in this paper, we extended our MiniZn-
MASC middleware with new decision making algorithms to enable semi-automatic
concurrent selection of different RESTfulBP process fragments for different classes
of user at runtime. The selections suggested by MiniZnMASC take into consideration
business metrics, business strategies, and operational conditions (e.g., the current
number of users in each class). These selections maximize overall business value
while satisfying all given constraints. The new algorithms required several extensions
of the constraint programming models and the MiniZnMASC middleware.

We also proposed new architecture of RESTfulBP that integrates MiniZnMASC
middleware. In particular, we introduced a process fragment processor, a constraint
processor, a process fragment repository, and several types of monitoring resources
into the RESTfulBP runtime engine to automatically record values of different tech-
nical and business metrics. The monitored runtime data is passed to MiniZnMASC in
an XML file, which is used in the decision making. MiniZnMASC results are usually
provided as a decision making advice for knowledge workers who make final deci-
sions (although it is also possible for MiniZnMASC to select and invoke process
fragments without human intervention). New prototypes were implemented using
Java, PostgreSQL database, and the MiniZinc solver. Experiments with the prototypes
showed that our solutions are feasible, functionally correct, business beneficial, with
relatively low performance overhead, and with satisfactory scalability.

Acknowledgments. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

418 Q. Lu et al.

References

1. Xu, X., Zhu, L., Kannengiesser, U., Liu, Y.: An Architectural Style for Process-Intensive
Web Information Systems. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 534–547. Springer, Heidelberg (2010)

2. Fielding, R.: Architectural Styles and the Design of Network-based Software Architec-
tures. Universityof California, Irvine (2000)

3. Bartolini, C., Sahai, A., Sauve, J.P.: Proceedings of the Second IEEE/IFIP Workshop on
Business-Driven IT Management. IEEE (2007)

4. Tosic, V.: Autonomic Business-Driven Dynamic Adaptation of Service-Oriented Systems
and the WS-Policy4MASC Support for Such Adaptation. Intl. J. of Systems and Service-
Oriented Eng. (IJSSOE) 1, 79–95 (2010)

5. Lu, Q., Tosic, V.: Support for Concurrent Adaptation of Multiple Web Service Composi-
tions to Maximize Business Metrics. In: Proc. of IM 2011, pp. 241–248. IEEE (2011)

6. Lu, Q., Tosic, V., Bannerman, P.L.: Support for the Business Motivation Model in the
WS-Policy4MASC Language and MiniZnMASC Middleware. In: Kappel, G., Maamar, Z.,
Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 265–279. Springer,
Heidelberg (2011)

7. LIXI (Lending Industry XML Initiative). Web resource, http://www.lixi.org.au/
8. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A Ser-

vice-Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

9. Yu, W.: Consistent and Decentralized Orchestration of BPEL Processes. In: Proc. of SAC
2009, pp. 1583–1584. ACM (2009)

10. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)
11. Overdick, H.: Towards Resource-Oriented BPEL. In: Emerging Web Services Technolo-

gy, vol. II, pp. 129–140. Springer (2008)
12. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM

2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)
13. Webber, J., Parastatidis, S., Robinson, I.: How to GET a Cup of Coffee. Web resource,

http://www.infoq.com/articles/webber-rest-workflow
14. zur Muehlen, M., Nickerson, J., Swenson, K.: Developing Web Services Choreography

Standards–The case of REST vs. SOAP. Decision Support Systems 40, 9–29 (2005)
15. Rest-client. Web resource, http://github.com/caelum/rest-client
16. Baker, M.: Hypermedia Workflow. Web resource,

http://www.markbaker.ca/2002/12/HypermediaWorkflow/
17. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service

Composition and Execution. In: Proc. ICWS 2006, pp. 549–557. IEEE (2006)
18. Tong, H., Zhang, S.: A Fuzzy Multi-attribute Decision making Algorithm for Web Servic-

es Selection Based on QoS. In: Proce. of APSCC 2006, pp. 51–57. IEEE (2006)
19. Lu, Q., Tosic, V.: MiniMASC: A Framework for Diverse Autonomic Adaptations of Web

Service Compositions. In: Proc. of UIC/ATC (Worksh. ANS) 2010, pp. 460–468. IEEE
(2010)

20. Aib, I., Boutaba, R.: Business-Driven Optimization of Policy-Based Management Solu-
tions. In: Proc. of IM 2007, pp. 254–263. IEEE (2007)

21. Microformat. Web resource, http://microformats.org/
22. BPMN Modeler. Web resource, http://www.eclipse.org/bpmn/

 Application of Business-Driven Decision Making to RESTful Business Processes 419

23. Tosic, V., Erradi, A., Maheshwari, P.: WS-Policy4MASC - A WS-Policy Extension Used
in the Manageable and Adaptable Service Compositions (MASC) Middleware. In: Proc. of
ICWS 2007, pp. 458–465. IEEE (2007)

24. Business Process Model and Notation (BPMN) 1.1. Web resource,
http://www.omg.org/spec/BPMN/1.1/

25. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: To-
wards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

Declarative Choreographies for Artifacts�

Yutian Sun1, Wei Xu2,��, and Jianwen Su1

1 Department of Computer Science, UC Santa Barbara, USA
2 School of Computer Science, Fudan University, China

Abstract. A choreography models a collaboration among multiple participants.
Existing choreography specification languages focus mostly on message se-
quences and are weak in modeling data shared by participants and used in se-
quence constraints. They also assume a fixed number of participants and make
no distinction between participant type and participant instances. Artifact-centric
business process models give equal considerations on modeling both data and
control flow of activities. These models provide a solid foundation for chore-
ography specification. This paper makes two contributions. First, we develop a
choreography language with four new features: (1) Each participant type is an
artifact schema with (a part of) its information model visible to choreography
specification. (2) Participant instance level correlations are supported and cardi-
nality constraints on such correlations can be explicitly defined. (3) Messages
have data models, both message data and artifact data can be used in specify-
ing choreography constraints. (4) The language is declarative based on a mixture
of first order logic and a set of binary operators from DecSerFlow. Second, we
develop a realization mechanism and show that a subclass of the choreography
specified in our language can always be realized. The mechanism consists of a
coordinator running with each artifact instance and a message protocol among
participants.

1 Introduction

Collaborative business processes (CBPs) are a necessity for businesses to stay com-
petitive [8,11]. A recent study reports that an overwhelming majority of eCommerce
volume is associated with B2B collaboration [13]. CBPs involve multiple participants,
and multiple resources spread over multiple administrative domains. Typically CBPs
are complex in terms of process logic, relationships among participants and resources,
distributed execution, and semantic mismatches between participant data, ontologies,
and behaviors. Such complexity is the source of many technical difficulties in design,
analysis, realization, execution, and management of CBPs. Tools and support for CBPs
continue to be a major challenge in current and future enterprise [13].

CBPs can be divided into two classes. An orchestrated CBP uses a designated “me-
diator” to communicate and coordinate with all participating BPs (business processes).
Although this approach is widely used in practice (e.g., for cross-organizational work-
flows), it loses autonomy of participating BPs and does not scale well. The choreogra-
phy approach specifies global behaviors among participating BPs but otherwise leaves

� Supported in part by NSF grant IIS-0812578 and grants from IBM and Bosch.
�� Part of work done while visiting UCSB.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 420–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Declarative Choreographies for Artifacts 421

the BPs to operate autonomously and communicate in the peer-to-peer fashion. Techni-
cal difficulties for this approach include the lack of suitable choreography specification
language(s) and mechanisms to coordinate among participating BPs in absence of a cen-
tral control point. This paper develops a language for CBP choreography specification
and addresses the coordination issue.

A choreography models a collaboration among multiple participants. A choreogra-
phy may be specified as a state machine representing message exchanges between two
parties [9] or permissible messages sequences among two or more parties with FIFO
queues [2], or as a process algebra expression with sequence, parallel, conditional, and
loop constructs [3,4]. It may be specified in individual pieces using patterns [24], as a
composition of message interactions [19], or implicitly through participants behaviors
[6]. WS-CDL proposes an XML-based package for specifying choreography through
a conventional set of control flow constructs over messaging activities. Existing chore-
ography languages focus mostly on specifying message sequences and are weak in
modeling data shared by participants and used in choreography constraints. WS-CDL
models data through variables that only implicitly associated with participants that pro-
duce data. A tightly integrated data model with message sequence constraints would
allow a choreography to accurately constrain execution. Also, these languages assume
a fixed number of participants and makes no distinction between a participant type and
a participant instance. For example, an Order process instance may communicate with
many Vendor process instances; this cannot be effectively captured without the type
vs. instance distinction. Therefore, a choreography language should be able to model
correlations between process instances. Existing languages either do not support such
correlations, or lack the ability to reference instance correlations in a choreography.

In recent BPM research, artifact-centric BP models [17] have attracted increasing
attention. An artifact-centric BP model includes (i) an information model for business
data, (ii) a specification of lifecycle that defines permitted sequences of activities, and
(iii) a data model for keeping track of runtime status and dependencies. Artifact-centric
BP models provide a technical foundation for choreography specification.

This paper focuses on choreography specification and realization, and makes the fol-
lowing two technical contributions. First, we develop a choreography language with
four distinct and new features: (1) Each participant type is an artifact schema (BP
model) with a selected sub-part of its information model visible to choreography specifi-
cation. (2) Correlations between participant types and instances are explicitly specified,
along with cardinality constraints on correlated instances (e.g., each Order instance
may correlate with exactly one Payment instance and multiple vendor instances). In
particular, Skolem notations are used to reference correlated participant instances. (3)
Messages can include data; both message data and artifact data can be used in specify-
ing choreography constraints. Also, Skolem notations are used to manipulate dependen-
cies among messages and participant instance created by messages. (4) Our language
is declarative and uses logic rules based on a mix of first-order logic and a set of binary
operators from DecSerFlow [22]. Second, we formulate a distributed algorithm that
realizes a subclass of the choreography in our language. This subclass contains chore-
ographies allowed by most existing languages including conversation protocols [21].
Specifically, a choreography is translated to an equivalent finite state machine. Based

422 Y. Sun, W. Xu, and J. Su

on this global state machine, our distributed algorithm coordinates participant instances
using a simple protocol. We show that the set of global behaviors of coordinated ex-
ecution of participant instances by our algorithm coincides with the set of behaviors
permitted by the choreography. Furthermore, the total number of messages in each suc-
cessful run is at most twice the number of messages needed for the collaborative process
execution plus the number of participants.

This paper is organized as follows. A motivating example is provided Section 2. The
choreography language and the realization results are presented in Sections 3 and 4
(resp.). Related work is discussed in Section 5. Conclusions are in Section 6.

2 Motivating Example

This section illustrates with an example concepts including artifact-centric BPs and
motivates the need for specification of correlations among process instances and chore-
ographies with data contents.

Consider an online store where items are available at vendors. A vendor may use
several warehouses to store and manage its inventory. Once the customer completes
shopping, she initiates a payment process in her bank that will send a check to the store
on her behalf. Meanwhile, the store groups (1) the items in her cart by warehouses
and sends to each warehouse for fulfillment, and (2) the items by vendors and requests
each vendor to complete the purchase. The vendors inform warehouses upon comple-
tion of the purchases. After the store receives the payment and vendors’ completion of
purchases, the store asks warehouses to proceed with shipments.

In this example, four types of participants (store, vendor, warehouses, and bank)
are involved and each type has its own BP. Although store and bank have only one
process instance each for a single shopping session, there may be multiple instances
of vendor and of warehouse. In artifact-centric modeling, an artifact instance encap-
sulates a running process. For example, store initiates an “Order” (artifact) instance.
Fig. 1 shows a part of the structured data in an Order instance. The structure contains
attributes ID, (shopping) Cart, etc., where Cart is a relation-typed attribute (denoted
by “∗”) that may include 0 or more tuples with four nested attributes: Inv(entory) ID,
(item) Name, Quan(tity), and Price. Similarly, other participant BPs are also artifact
instances: Purchase instances represent order processing at vendors, Fulfillment
instances are packing and delivery processes at warehouses, and a Payment instance is
initiated upon a customer request to make a payment to the online store.

Consider specifying a choreography for the CBP in this example, there are two ma-
jor difficulties. First, existing languages do not support multiple participant instances,
and thus the fact that multiple vendor/warehouse instances cannot be easily represented
and included in specifying behaviors. Some process algebra based languages allow in-
stantiation of new instances from sub-expressions in a choreography [3,4], but it is not
clear how it is related to multiple participant instances. Second, behaviors often depend
on data contents. For example, when an order request is received with total amount
�10, the order processing should proceed as described in the above; for orders with
amount <10, the processing may be optional. Such conditions on data cannot be easily
expressed in most languages. WS-CDL may express this through copying messages to
variables, but copying adds unnecessary data manipulations.

Declarative Choreographies for Artifacts 423

Order

ID Cart * • • •

Inv_ID Name Quan Price

Fig. 1. Data structure

Order

Purchase

1

m

Fulfillment

1

m

Payment1 1

Fig. 2. Correlation diagram

Order

Purchase Fulfillment

Payment

OR

CP

PR

CH

CF

PC

RS

SC

OC IV

Fig. 3. Message diagram

3 A Declarative Choreography Language

This section introduces a declarative language for defining choreographies. In this lan-
guage, a choreography assumes participant BPs are modeled as artifacts and consists of
correlations between artifacts and instances, messages, and a set of choreography con-
straints based on first-order linear temporal logic. §3.1 defines “collaborative schemas”
containing correlations and messages, and choreography constraints are defined in §3.2.

3.1 Correlations of Artifacts, Messages, and Collaborative Schemas

Artifacts represent participant BPs, the notion of an “artifact interface” captures an
artifact with “visible” data contents for choreography specification.

Definition: An artifact (interface) is a pair (ν,Att), where ν is a (distinct) name and Att
a set of attribute names (or attributes) whose values may be hierarchically structured.

The attributes in an artifact interface can be accessed in choreography. Each artifact
interface always contains the attribute “ID” to hold a unique identifier for each artifact
“instance”. The data type of an attribute can be hierarchical or another artifact interface;
in the latter case, values of the attribute are identifiers of the referenced instance.

Given an artifact interface α = (ν,Att), an artifact instance I of α is a partial mapping
from Att to the corresponding domains such that I.ID is defined and unique.

We now define an important notion of a “correlation graph”. Intuitively, such a graph
specified whether instances of two BPs are correlated and whether the correlation is one
instance of a BP correlating to one or many instances of the other BP. Similar to WS-
CDL, only a pair of correlated instances may exchange messages in our model.

Definition: A correlation graph G is a tuple (V, ρ, E,C, λ), where
– V is a nonempty set of artifact interfaces closed under references (through at-

tributes). We may call artifact interfaces in V “nodes” (of the graph),
– ρ ∈ V is the primary artifact interface (the root),
– E ⊆ V × V is symmetric denoting correlations (undirected edges) among artifact

interfaces such that (V, E) is connected and contains no self-loops,
– C ⊆ E is asymmetric denoting creation relationships among artifact interfaces such

that (i) for each v ∈ V there exists at most one pair (u, v) ∈ C (can only be created
once), (ii) (V,C) is acyclic (no cyclic creations), (iii) there is no v ∈ V such that
(v, ρ) ∈ C (primary instances can only be created by external messages), and

– λ is a partial mapping from E × V to {1,m} (cardinality of correlations) such that
• λ((u, v), v′) ∈ {1,m} iff v′ is an end node of (u, v) ∈ E,
• for each (ρ, v) ∈ E, λ((ρ, v), ρ) = 1 (single primary instance),

424 Y. Sun, W. Xu, and J. Su

• for each (u, v) ∈ C, then λ((u, v), u) is 1 (no multiple creation), and
• for each (u, v) ∈ (E−C) where (v, u) � C, λ((u, v), u) = λ((v, u), u) (consistency

for undirected edges).

Intuitively, a correlation graph models correlations among artifacts and artifact instances.
More precisely, if two artifact interfaces are correlated (connected by an edge), it indi-
cates that some instances of these two artifact interfaces are correlated. The mapping λ
indicates the type of cardinality of instances (1-to-1, 1-to-many, m-to-1, m-to-m). Fig. 2
shows a correlation graph for the example in Section 2 with 4 nodes and 3 edges (2
directed and 1 undirected) with cardinality constraints. The artifact interface Order

is primary. The directed edges indicate creation of instances, e.g., an Order instance
would create multiple Purchase instances and multiple Fulfillment instances.

If there is an edge (α1, α2) in a correlation graph for two artifact interfaces α1 and α2,
correlations of their instances can be represented by a binary relation Corr. Corr may
change at runtime, but it must always satisfy cardinality constraints in a correlation
graph. Given an identifier (ID) y of an artifact instance of α2, the notation α1〈y〉 denotes
the set {x | ∃yCorr(x, y)} in the current “system state” (details provided in §3.2).

Example 31. Consider the example in Fig. 2, if o is the ID of a Purchase instance, the
expression “Order〈o〉” is the ID of the correlated Order instance.

The relation Corr changes when one instance creates another (a directed edge in a cor-
relation graph). In Fig. 2, the instance level correlations between Order and Purchase
(Fulfillment) are created at runtime. If two artifacts are connected by an undirected
edge, their correlated identifier pairs are assumed to exist in Corr. In our running ex-
ample, the instance level correlation between Order and Payment may be specified by
the customer using, e.g., the Order ID submitted to the bank.

In addition to correlations specified in a correlation graph, there may be correlations
that are “derived” from existing correlations. For example, a Purchase instance is cor-
related with a Fulfillment instance if they have a common item in their correlated
Order instance. Derived correlations will be defined with rules that use “path expres-
sions” and the “intersection” predicate.

Path expressions (with the “dot” operator) are used to access hierarchical data [5].
Technically, given an artifact interface α = (ν,Att), a path expression of α is of form
“ν.A1.A2.···.An”, where A1∈Att and each Ai+1 (i ∈ [1..(n−1)]) is an attribute nested in Ai.

Example 32. Continue with the example in Section 2, a path expression could be
“Order.Cart.Inv ID”, which corresponds to the structure shown in Fig. 1.

If a path expression e returns an identifier of an instance, e.A will return the value of
attribute A in the instance. In general a path expression may return a set of values,
similar to XPATH expressions.

We use a (binary) intersection predicate “	” to check if two input sets have nonempty
overlap. We also apply the predicate on individual values treating a value as a singleton
set. The predicate is conveniently generalized to more than 2 inputs.

Example 33. If a Purchase instance IP (identifier) and a Fulfillment instance IF

correlate to the same Order instance, “Order〈IP〉 	 Order〈IF〉” is true.

Declarative Choreographies for Artifacts 425

An atomic condition is an intersection condition applied to path expressions. Here we
use interface name to denote the identifier of an arbitrary instance of the interface. A
correlation condition is a set (conjunction) of atomic conditions.

Definition: Given a correlation graph G = (V, ρ, E,C, λ), and two artifact interfaces
α1, α2 ∈ V where (α1, α2) � E, a correlation rule of α1 and α2 is of form “COR(α1, α2) :
c”, where c is a correlation condition.

Given artifact interfaces α1 and α2, a correlation rule COR(α1, α2) : c, and two instance
IDs I1 of α1 and I2 of α2, I1 is correlated with I2 if c is true on I1 and I2.
Example 34. The rule below defines correlation between Fulfillment and Purchase:

COR(Purchase, Fulfillment): (Order〈Purchase〉 	 Order〈Fulfillment〉) ∧
(Purchase.item.inventory ID 	 Fulfillment.item.inventory ID)

Note that Purchase (Fulfillment) in the above represents an arbitrary instance.

Once a rule COR(α1, α2) : c is defined, the notationα1〈α2〉 (or α2〈α1〉) can be used in the
same way as other correlations. Derived correlations do not have cardinality constraints
specified.

A rule COR(α1, α2) : c depends on another rule COR(α3, α4) : c′, if the condition c
contains α3〈α4〉 or α4〈α3〉.

We now define the messages among the artifacts, using “ext” to denote the external
environment (as the sender or receiver).

Definition: Given a correlation graph G = (V, ρ, E,C, λ) and a correlation rule set Γ, a
message type m wrt G, Γ is a tuple (M, νs, νr, π, φ), where

– M is a name;
– νs and νr are distinct artifact interfaces denoting the sender and receiver (resp.) such

that at most one of them can be “ext”, and if both are in V , they must be correlated
(via an edge in G or by a correlation rule in Γ);

– π is a set of attributes (holding a payload);
– φ is “+” (the sending instance creates an instance of the receiving artifact upon

arrival of each message instance) or “−” (no creation).

Fig. 3 shows a message diagram, each edge represents a message type with the edge
direction indicates the message flow.
Example 35. Continue with the example in Section 2, “CP(Order, +Purchase) [Or-
derID, Amount,...]” defines a message type from Order to Purchase. (We use a slightly
modified syntax for readability.) The “+” symbol indicates that a new receiving instance
will be created by each arriving message. The attributes inside “[...]” denote message
contents. “PR(ext, +Payment) [OrderID, Amount...]” is a message type whose messages
are from the external environment.

A message instance of a message type (M, νs, νr, π, φ) is of form M(idm, ids, idr, μ),
where idm is a unique message ID, μ is a mapping from π to the corresponding do-
mains, and ids and idr are the IDs of instances of αs and αr (resp.) such that if νs (νr) is
“ext” ids (resp. idr) is also “ext”.

Definition: A collaboration schema is a tuple (G, Γ,Msg), where G is a correlation
graph; Γ is a set of correlation rule of G whose rule dependencies are acyclic, and Msg
is a set of message types wrt G, Γ.

426 Y. Sun, W. Xu, and J. Su

Roughly, a collaboration schema defines the correlations among artifact interfaces (par-
ticipant types) and among instances (participants), and the message types.

3.2 Choreography Constraints

Roughly, a specification consists of “choreography constraints”, each stating a temporal
property on message occurrences and may also contain conditions on data in related
artifact instances and the messages.

In the technical discussions, we make the following assumptions concerning iden-
tifiers. For each artifact interface or message type (name), there is a countably infinite
set of artifact or message (resp.) instance IDs; furthermore, these ID sets are pairwise
disjoint. Let IDA (IDM) be the union of all artifact (resp., message) instance ID sets.
We further assume the existence of three countably infinite sets: an irreflexive artifact
correlation set CORR ⊆ ID2

A, a message-artifact dependency set MA ⊆ IDM × IDA, and
an irreflexive message-message dependency set MM ⊆ ID2

M.
The correlation set CORR captures correlations among artifact instances. The message-

artifact dependency set MA holds dependencies of an arriving message ID that causes
creation of an artifact ID. The message dependency set MM represents the relationships
between messages, e.g., one message may depend another based on contents, or simply
request-response. For example, an invoice message may respond to an order request.

For executable languages, it is necessary to define how the sets CORR,MA,MM are
created and maintained at runtime. However, a choreography language provides only
a specification, i.e., conditions that must be satisfied by every execution. Due to this
reason we do not specify how these sets are created and maintained, instead, we assume
that they are predetermined and fixed. Conditions will be provided to ensure consistency
of the sets and runtime correlations/dependencies among artifact/message instances.

We now define “system states” that represent snapshots at time instants. Note that we
require all artifact instances in a system state must be correlated directly or indirectly.
This restriction allows us to focus on a single collaboration instance.

Definition: For a collaboration schema C = (G, Γ,Msg), a system (s-)state of C is a
triple (S ,M,m), where S is a set of artifact instances for G, M a finite set of message
IDs, m a message instance of a message type M in Msg such that (1) the ID of m is in
M, (2) if m’s sender is not “ext”, the sender instance is in S , (3) if M is artifact creation,
m’s receiver ID is not in S and the message and receiver IDs are in MA, (4) if M is not
creation, either m’s receiver is “ext” or has ID in S , (5) if neither sender or receiver is
“ext”, they are correlated according to CORR, (6) for each correlation rule in Γ and each
pair of artifact instance IDs in S , if the IDs satisfy the rule condition, they are correlated
in CORR, letting S ′ be the set of all artifact IDs in S or m, (7) the graph (S ′,CORR) is
connected and satisfies all cardinality conditions in G, and (8) the graphs (M ∪ S ′,MA)
and (M,MM) encode functions (each node has �1 outgoing edge).

An s-state is initial if S is empty, M a singleton set, m is from “ext” to the primary
artifact interface.

An s-state is a snapshot of artifact instances, past message IDs, the current message sent.
Conditions (2)(4) demand that the sender and receiver are existing artifact instances if
not external for non-creation message types. Conditions (3)(5)(6) concern correlations

Declarative Choreographies for Artifacts 427

and dependencies. The connectivity and cardinality condition (7) requires that each pair
of artifact instance IDs is correlated via one or more correlations and all cardinality con-
straints in the correlation graph hold. Finally condition (8) ensures that each message
creates at most one artifact and/or depends on at most one message.

Let (S ,M,m) be an s-state and S ′ all artifact IDs in S or m. If an artifact instance I
in S ′ is correlated to instances I1, ..., In in S ′ of artifact interface α according to CORR,
the notation α〈I〉 denotes the set {I1, ..., In} in the s-state. For each message ID μ in
M if (μ, I1) ∈ MA where I1 is the ID of an instance of artifact interface α and in S ′,
the notation α[μ] denotes I1 in the s-state. And if (μ, μ′) ∈ MM for μ, μ′ ∈ M and the
message type of μ is M, M[μ′] has the value μ (a reply to μ′) in the s-state.

For a collaboration schema C = (G, Γ,Msg), a system (s-)behavior of C is a finite
sequenceσ1σ2···σn of s-states of C such that σ1 is initial, messages in σi’s have distinct
IDs, and for each i ∈ [1..(n−1)], the following conditions all hold forσi=(S i,Mi,mi) and
σi+1=(S i+1,Mi+1,mi+1): every artifact ID in S i is in S i+1 and every artifact ID in S i+1 is
either in S i or the receiving ID of mi, and Mi+1 = Mi ∪ {mi+1} (mi+1 denotes its ID).

Intuitively, an s-state advances by consuming the current message (instance) and pro-
ducing the next message. If the receiving ID does not correspond to an artifact instance,
a new instance is created. The changes of data contents of artifact instances are the re-
sponsibility of participant processes and thus not captured in s-state transitions. Also,
message-message dependency is not required, creating such dependencies is also done
by individual participant BPs.

We now focus on “choreography constraints”. Roughly, we apply (non-temporal) “mes-
sage formulas” to s-states which examines message type and contents as well as the
contents of sending/receiving artifact instances. Each constraint then uses a temporal
operator to connect two message formulas. Individual LTL operators are not expressive
enough, therefore we use binary operators from DecSerFlow [22].

Let C be a collaboration schema. Each message type (name) is a ternary message
predicate. For each s-state σ, and a message type M, M(μ, a, b) is satisfied in σ if μ, a, b
are the IDs of the message instance, its sending and receiving artifact (resp.) in σ. Note
that Skolem notations can be used to indicate dependencies. For example, M(M[μ], a, b)
is true in s-state σ the response message of type M to the message μ is sent from a to b.
For notational convenience, we will abbreviate “M(M[μ], a, b)” as “M[μ](a, b)”.

Starting from artifact/message IDs, path expressions can be used to access attribute
values, hierarchically organized values, and other artifacts whose IDs are stored as at-
tribute values. Built-in relational comparisons can be used to test results of path expres-
sions. Given an s-state, satisfaction of data conditions with path expressions is defined
in the standard manner. If an attribute value is not defined, a guarded approach such as
in [10] can be used. Data conditions are used in conjunction with message predicates.

Example 36. The formula “CP(μ, IO, IP)∧ μ.cart.price > 100” checks if the message μ
from Order instance IO to Purchase instance IP has an item with price > 100.

Our logic language includes variables ranging over IDA and IDM and message predi-
cates, data conditions with variables. Given a collaboration schema C, a message for-
mula of C is of form Φ ∧ (

∧n
i=1 ϕi), where Φ is a message predicate and for each ϕi is a

data condition with path expressions and Skolem notions built from variables in Φ.

428 Y. Sun, W. Xu, and J. Su

Let C be a collaboration schema. a choreography constraint of C is an expression of
form Ψ1ΘΨ2 where Ψi’s are message formulas and Θ is one of the following temporal
operators from DecSerFlow [22]: exist, co-exist, normal response, normal precedence,
normal succession, alternative response, alternative precedence, alternative succession,
immediate response, immediate precedence, and immediate succession.

Variables in a choreography constraint are universally quantified and range restricted
to the types and the current s-state. We use examples to illustrate the constraints in the
remainder of the section. Operators in DecSerFlow can be translated into LTL [22]. The
semantics for choreography constraints are rather technical and omitted here. Roughly,
choreography constraints can be expressed in first order logic with LTL.

Example 37. Consider the restriction on message sequences for the example in Section
2: For each order-request (OR), with amount greater than 10, sent to a (new) Order
instance, there is a corresponding create-purchase (CP) message in the future sent by the
order instance to all correlated Purchase instances, and vice versa. The choreography
constraint defining the restriction is

∀x∈Order OR(μ, ext, x) ∧ μ.amount>10 (succ)→ CP[μ](x, Purchase[μ])

Here CP[μ] and Purchase[μ] denote the CP message instance and the Purchase arti-
fact instance caused by μ. The operator “p (succ)→ q” is normal succession that means:
each p is followed by a q (possibly not immediate) and each q is preceded by a p
(possibly not immediate).

Example 38. Consider the restriction that for each order, if there is an item with price
is >100, then no ready-to-ship (RS) message is sent until all purchase-complete (PC)
messages have been sent. This can also be expressed using normal succession:

∀x∈Fulfillment∀y∈Purchase〈x〉PC(μ, y, x) ∧ y.cart.price>100(succ)→ RS[μ](Order〈x〉, x)

Here Order〈x〉 denotes the correlated Order artifact instance of x. Similarly, RS[μ]
denotes an RS message depending on μ.

Definition: A choreography (specification) is a pair (C, κ) where C is a collaboration
schema and κ a set of choreography constraints over C.

“Satisfaction” of a choreography S = (C, κ) by an s-behavior of C is defined based
on the above discussions. The semantics of of S is the set of all s-behaviors of C that
satisfy all constraints in κ.

4 Realizability

In this section, we show that a subclass of choreographies defined in Section 3.2 can
be realized. This is accomplished in two stages, we first translate a choreography into
a “guarded conversation protocol” that is a conversation protocol of [1] extended with
data contents and conditions. We then present a distributed algorithm that runs along
with execution of each artifact, and show that an s-behavior is a possible execution with
the algorithm iff it satisfies the choreography.

Declarative Choreographies for Artifacts 429

4.1 Guarded Conversation Protocols

A choreographyS = (C, κ) is one-to-one (or 1-1) if the correlation graph in C only has
1-1 correlations. The class of 1-1 choreographies roughly corresponds to choreogra-
phies definable in most existing languages, with a possible exception of BPEL4Chor
[6,12]. We focus on 1-1 choreographies in this section.

Definition: A guarded (conversation) protocol is a tuple (T, s, F,M,C, δ), where (i)
T is a finite set of states, s ∈ T is the initial state, F ⊆ T is a set of final states; (ii)
M is a finite set of messages type names, (iii) C is a set of data conditions, and (iv)
δ ⊆ T × M ×C × T is a set of transitions.

A guarded protocol extends conversation protocol of [7] with data conditions on
messages (and associated artifacts). The semantics of a guarded protocol is standard
except that the data condition must be satisfied when making a transition.

Example 41. Fig. 4 shows an example guarded protocol with four states: t2 is initial
and t2, t4 are the final states. Two message types are involved, X and Y. CX and CY are
data conditions. The transition from t2 to t3 can be made if the condition CX is true
and message X is sent. An edge labeled with “else” stands for a collection of transi-
tions other than the specified one(s) leaving the same state. An edge labeled with “*”
represents all possible transitions leaving the state.

CY : Y

elseelse* else

t4t2 t3t1
CX : X

CY : Y

CX : X

Fig. 4. A guarded conversation protocol example

Given an s-behavior B (of a correla-
tion schema), and a guarded protocol
τ, the notion of τ accepting B is de-
fined in the standard way.

Theorem 42. Let S be a 1-1 choreography. One can effectively construct a guarded
conversation protocol τ such that each s-behavior B satisfies S iff it is accepted by τ.

Since temporal operators in choreography constraints are operators in DecSerFlow that
is contained in LTL [22], one can use a general technique to obtain Büchi automaton
[23]. Guarded protocols can then be constructed. However, we use a simpler approach:
translating each choreography constraint to a guarded protocol and then construct a
product state machine for all constraints. Fig. 4 shows a guarded protocol for constraint
“X∧CX(succ)→ Y∧CX”, where X, Y are message predicates and CX ,CY data conditions.

Example 43. Fig. 5(a) shows a part of the guarded protocol translated from Example
38, where c1 is “Payment.balance > CH.amount” and c2 is “CP.items � null”. Since
each participant can have at most one instance (1-1 choreography) type level notation
is used here. The initial state is t1, the final states are t4 and t6 (in the original guarded
protocol, they are not final states but we make them final to show a complete example).
Only two sequences of messages can be accepted in this example: either (1) CP CH PC,
or (2) CH CP. Note that this is not realizable in [7].

The only-if direction of Theorem 42 fails if 1-1 condition on choreography is removed.
This is because different instances of the same interface may progress in different paces
and a guarded protocol cannot capture such situations.

430 Y. Sun, W. Xu, and J. Su

c1 :
CH

true:
PC

t1

t4

t6 t3

t5 t2

c2 :
CP

c2 :
CP

c1 :
CH

(a) Model

ε

t1

t4

t6 t3

t5 t2
?CH

c2 :
!CP?CH

c2 :
!CP

(b) Order

c1 :
!CH

ε

t1

t4

t6 t3

t5 t2
c1 :
!CHε

ε

(c) Payment

true:
!PC

t1

t4

t6 t3

t5 t2

?CP

?CP

ε

ε

(d) Purchase

?PC

t1

t4

t6 t3

t5 t2

ε

ε

ε

ε

(e) Fulfillment

Fig. 5. A translated guarded protocol and project to artifacts

4.2 Guarded Peers

Guarded automaton was introduced in [7] to represent a state machine for a participant.
We modify the notion to allow message predicates and data conditions. The following
defines a projection of a guarded protocol to a participant.

Definition: Given a guarded conversation protocol τ = (T, s, F,M,C, δ) and an artifact
type α, a guarded peer for αwrt τ is a tuple (T, s, F,M′,C′, δs, δr, δε), where (1) M′ ⊆ M
such that each message in M′ has α as a sender or receiver, (2) C′ ∈ C contains a
condition c if there exists t, t′ ∈ T and a message m in M′, where m is sent by α and
(t, c,m, t′) ∈ δ, (3) δs ⊆ T×C′×M′×T (sending transitions) contains elements (t, c,m, t′)
if (t, c,m, t′) ∈ δ and m is sent by α, (4) δr ⊆ T×M′×T (receiving transitions) contains
elements (t,m, t′) if there exists c ∈ C, (t, c,m, t′) ∈ δ and the receiver of m is α, and
(5) δε ⊆ T × {ε} × T (empty transitions) contains elements (t, ε, t′) if there exists c ∈ C,
m ∈ M, (t, c,m, t′) ∈ δ and α is neither the receiver or sender of m.

Example 44. Fig. 5(b)–(e) show four guarded peers (Order, Payment, Purchase,
and Fulfillment) projected from Fig. 5(a). The “?” mark denotes receiving a mes-
sage, the “!” mark denotes sending a message.

An artifact (instance) sends or receives messages according to its guarded peer, i.e.,
each guarded peer is autonomous. If all guarded peers start from their initial states,
make their transitions autonomously, the composition terminates when every guarded
peer reaches a final state. Our composition model is basically the same as [7], except
that FIFO queues are not used.

Example 45. Consider the sequence of messages “CH CP” that is accepted by the
guarded protocol in Fig. 5(a) (Example 43). The projected peers are shown in Fig. 5(b)–
(e). Payment can send a CH to Order. Then Payment follows an empty transition into
its final state t6 and Payment is now in t5. Later on, Order sends a CP to Purchase

and both of them can reach their final states (t6). While for Fulfillment, it sends or
receives nothing and follows two empty transitions to t6.

Naturally, given a guarded protocol τ, if a sequence of transitions is accepted by τ, the
sequence is also accepted by all guarded peers of τ. In general, the other direction may
not necessarily hold [2].

Declarative Choreographies for Artifacts 431

Example 46. Continue with Examples 43 and 44. Suppose Payment sends a CH through
edge (t1, t5) and ends at final state t6. Then Order sends a CP, receives the CH sent by
Payment, and reaches final state t4. Correspondingly, Purchase receives the CP from
Order and reaches final state t4 by sending Fulfillment a PC. Finally, Fulfillment
receives the PC and ends at t4 as well.

Clearly, the above sequence of messages “CH CP PC” allows all guarded peers to
reach their final states but cannot be accepted by the original guarded protocol.

The realizability problem is to ensure that the collective transitions for all guarded peers
are equivalent to transitions for the original guarded protocol. While this problem has
not been investigated, a closely related problem of “realizability checking problem” [2]
which tests if a conversation protocol can be restored from the product of its projected
peers has been studied extensively (see [21]).

4.3 A Realization Mechanism

Instead of checking if a guarded protocol is the product of its guarded peers, we take
a different approach. We develop a protocol (algorithm) that in addition to the original
messages, it also adds a small number of “synchronization” messages to aid participants
(peers) in their autonomous execution. We show that the synchronized execution gener-
ates equivalent behaviors as the original guarded protocol and that in every successful
execution, the total number of synchronization messages is bounded by the sum of the
number of messages in the guarded protocol and the number of guarded peers.

A naı̈ve protocol simply broadcasts every message to all. However, this approach
requires as many as N∗ × (k−1) messages during the process, where N∗ is the number
of message instances (needed for the collaboration), and k is the number of peers.

To reduce synchronization messages, an improvement is developed that employs a
“token passing” method: only the participant who owns a “token” can make a transition.
Once a transition is conducted (or equivalently, a message is sent), the “token” will be
passed to the next sender and this process repeats.

Given a guarded protocol τ = (T, s, F,M,C, δ), we augment τ with a new mes-
sage type named sync without any data attributes. We also introduce two functions,
Flag and State. The function Flag maps message (including sync) instances to the set
{SND,RCV, FIN} such that if μ is an instance of sync, Flag(μ) ∈ {SND, FIN}. Intu-
itively, SND is the token, RCV means the message that is regular, FIN instructs the
receiver to terminate. The function State maps each message instance to T to indicate
the current (global) state. Each message is sent along with its Flag and State values.

To implement the framework, a coordinator is used for each peer (instance) to help
on transition decisions. Once a coordinator receives the token carried by a message,
it makes a transition for its peer by sending a message with an appropriate Flag, and
possibly passes the token to the next sender if different (via a flagged sync message).

As mentioned at the beginning of this section, once (the coordinator of) a sender
sends a message with the flag RCV, it passes the token to (the coordinator of) the next
sender through a message with the flag SND. In order to know who will be the possible
sender, a concept “sender set” is defined first.

432 Y. Sun, W. Xu, and J. Su

Algorithm 1. Coordinator for Peer p
Input: sdr, p = (T, s, F,M,C, δs, δr, δε)
1: loop
2: Wait for the next message m
3: if Flag(m) = SND then
4: if ∃c ∈ C,∃m′ ∈ M,∃t ∈ T ,

(State(m), c,m′, t) ∈ δs then
5: Send m′ (flag: RCV, state: t);
6: randomly select s from sdr(t);
7: Send to s a sync message

(flag: SND, state: t);
8: end if
9: else if Flag = RCV then

10: if State(m) ∈ F then
11: Boardcast sync message

(flag: FIN, state: State(m))
12: Terminate
13: end if
14: else
15: Terminate {“FIN” case}
16: end if
17: end loop

Given a guarded protocol τ = (T, s, F,M,
C, δ), the sender set of a state t ∈ T , de-
noted as sdr(t), is a set containing all artifact
interfaces α that is the sender of m where
(t, c,m, t′) ∈ δ for some t′ ∈ T , c ∈ C,
and m ∈ M. In Fig. 5(a), the sender sets for
t1 to t6 are {Order, Payment}, {Payment},
{Purchase}, ∅, {Order}, and ∅, resp.

Sender sets are known at design time, the
current sender can choose the next sender
from the corresponding sender set of the
current state at runtime. The initial sender
should be delegated externally by, e.g., the
environment. These steps are repeated un-
til a peer (with the token) reaches a final
state. This peer then informs all other peers
to end the execution by sending messages of
flag FIN. Alg. 1 accomplishes the coordina-
tor that runs on individual peers.

Example 47. The following describes a possible execution. The user chooses and sends
to Order (in the sender set for t1). Order sends a CP (flag: RCV) to Purchase and
inform Payment to be the next sender (through a sync message with flag SND) since
sdr(t2) = {Payment}. After Payment sends a CH to Order, it will pick Purchase

from sdr(t3). Finally, Purchase sends a PC to Fulfillment. Once the Fulfillment
reaches its final state t4, FIN messages will be broadcast.

Theorem 48. Given a guarded conversation protocol τ, each sequence of ground mes-
sages, is accepted by τ iff it is generated by Alg. 1 running for guarded peers of τ.

Remark 49. Denote by N∗ the number of regular messages that should be sent, and N̂
as the number of regular and synchronization messages sent according to Alg. 1. It is
easy to see that N̂ < 2N∗ + (k − 1), where k is the number of peers. Furthermore, if FIN
messages are not needed, the bound is reduced to N̂/N∗ < 2.

5 Related Work

The choreography approach to modeling and analysis BP or service interactions has
been studied for a decade. A survey for formal models and results is provided in [21].

A WS-CDL choreography constrains message exchanges based on conditions that
may involve information types, variables and tokens. Message contents need be copied
to variables to be used in conditions. There is no data model for participants in a col-
laboration, nor direct support for multi-instances of a participant (type).

Let’s Dance [24] provides a set of sequencing constraint primitives to allow a chore-
ography to be specified in a graphical language. It lacks a clearly support for data or

Declarative Choreographies for Artifacts 433

information models. Earlier work on conversations was reported in [9]. In the conversa-
tion model, BP systems collaborate with each other via generic asynchronous message
exchanging. The information model in the conversation is limited.

BSPL [19] models messages with input and output parameters and compose the mes-
sages into protocols where constraints on message sequences are derived from the in-
put/out parameters such that each parameter is defined exactly once in execution. A
realization mechanism is reported in [20].

Recent work in [6,12] extend BPEL to support choreographies with a bottom-up
approach to build a choreography from specified participant behaviors. BPEL4chor
supports service interaction patterns, e.g., one-to-many send, one-from-many receive,
one-to-many send/receive patterns through aggregation. Similar work on BPMN was
reported in [18]. However, neither BPEL nor BPMN’s extensions directly include data
in their conceptual models and instance level correlation support is much weaker.

Artifact-centric choreography [14] extends existing artifact-centric BP models with
agents and locations. BPs can access artifacts from their locations with the help of
agents. Petri-Net is used to specify artifact internal behaviors and external interactions.
The model has no artifact data attributes.

There have been work done on testing if a choreography is realizable. In [15,16], a
choreography is defined wrt a set of peers forming a collaboration. The notions of com-
pleted, partial and distributed realizability of choreography were defined and studied.
It was shows that partial realizability is undecidable whereas distributed and complete
realizability are decidable. [2,1] focused on the realizability problem of global behavior
of interaction services. Sufficient conditions are given for realizability.

6 Conclusions

This paper proposes a declarative choreography language that can express correlations
and choreographies for artifact-centric BPs in both type and instance levels. It also in-
corporate data contents and cardinality on participant instances into choreography con-
straints. Furthermore, a subclass of the rule-based choreography is shown to be equiva-
lent to a state-machine-based choreography.

References

1. Conversation protocols: a formalism for specification and verification of reactive electronic
services. Theo. Comp. Sci. 328(1-2), 19–37 (2004)

2. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: Proc. Int. Conf. on World Wide Web, WWW (2003)

3. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and Orchestration
Conformance for System Design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION
2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

4. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A theoretical
basis of communication-centred concurrent programming (2006)

5. Cattell, R., Barry, D.: The Object Data Standard: ODMG 3.0. Morgan Kaufmann (2000)
6. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for Modeling

Choreographies. In: Proc. 5th Int. Conf. on Web Services, ICWS (2007)

434 Y. Sun, W. Xu, and J. Su

7. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc. Int. Conf. on
World Wide Web, WWW (2004)

8. Hammer, M., Champy, J.: Reengineering the Corporation: A Menifesto for Business Revo-
lution. Harper Business Press, New York (1993)

9. Hanson, J., Nandi, P., Kumaran, S.: Conversation support for business process integration.
In: Proc. Int. Conf. on Enterprise Distributed Object Computing, EDOC (2002)

10. Hull, R., Llirbat, F., Simon, E., Su, J., Dong, G., Kumar, B., Zhou, G.: Declarative Workflows
that Support Easy Modification and Dynamic Browsing. In: Proc. Int. Joint Conf. on Work
Activities Coordination and Collaboration, WACC (1999)

11. Katila, R., Mang, P.Y.: Exploiting technological oppurtonities: The timing of collaborations.
Research Policy 32(2), 317–332 (2003)

12. Kopp, O., Engler, L., van Lessen, T., Leymann, F., Nitzsche, J.: Interaction Choreogra-
phy Models in BPEL: Choreographies on the Enterprise Service Bus. In: Fleischmann, A.,
Schmidt, W., Singer, R., Seese, D. (eds.) S-BPM ONE 2010. CCIS, vol. 138, pp. 36–53.
Springer, Heidelberg (2011)

13. Liu, C., Li, Q., Zhao, X.: Challenges and opportunities in collaborative business process
management: Overview of recent advances and introduction to the special issue. Information
Systems Frontiers 11(3), 201–209 (2009)

14. Lohmann, N., Wolf, K.: Artifact-Centric Choreographies. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 32–46. Springer, Heidelberg
(2010)

15. Lohmann, N., Wolf, K.: Realizability Is Controllability. In: Laneve, C., Su, J. (eds.) WS-FM
2009. LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010)

16. Lohmann, N., Wolf, K.: Decidability Results for Choreography Realization. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 92–107.
Springer, Heidelberg (2011)

17. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

18. Pfitzner, K., Decker, G., Kopp, O., Leymann, F.: Web Service Choreography Configurations
for BPMN. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp. 401–412.
Springer, Heidelberg (2009)

19. Singh, M.: Information-driven interaction-oriented programming: BSPL, the blindingly sim-
ple protocol language. In: Proc. Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 491–498 (2011)

20. Singh, M.: LoST: Local state transfer. In: Proc. Int. Conf. on Web Services, ICWS (2011)
21. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a Theory of Web Service Choreographies. In:

Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer, Heidel-
berg (2008)

22. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 1–23. Springer, Heidelberg (2006)

23. Vardi, M., Wolper, P.: Reasoning About Infinite Computations. Inf. Comput. 115(1) (1994)
24. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for Service

Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 145–
162. Springer, Heidelberg (2006)

Managing Resource Contention

in Embedded Service-Oriented Systems
with Dynamic Orchestration

Peter Newman and Gerald Kotonya

Computing Department, Lancaster University
Lancaster LA1 4WA, UK

{p.newman,gerald}comp.lancs.ac.uk

Abstract. As embedded systems become increasingly complex, not only
are dependability and timeliness indicators of success, but also the ability
to dynamically adapt to changes in the runtime environment. Typically,
they operate in resource-constrained environments and often find appli-
cation in isolated locations, making them expensive to manage with small
resource changes in their operating environment having a significant im-
pact on system quality. The service-oriented model of deployment offers
a possible solution to these challenges; however, resource contention be-
tween services and resource saturation can result in significant Quality
of Service (QoS) degradation. This emergent QoS is difficult to antic-
ipate before deployment as changes in QoS are often dynamic. This
paper presents EQoSystem, a runtime, resource-aware framework that
combines monitoring with dynamic workflow orchestration to mediate
resource contention within the orchestration environment. The results
from a medium-sized case study demonstrate the efficacy of EQoSystem.

Keywords: Emergent Service Properties, Runtime Architecture, Qual-
ity Assurance, Service-oriented Systems, Embedded.

1 Introduction

The prevalence of embedded systems has seen them deployed in a number of
domains, including consumer devices, robotics, sensor networks, and commu-
nication systems [1].They are typically long lived, have stringent space, power
and weight requirements, and commonly find application in difficult to access
locations, resulting in most operating on resource-constrained platforms [2][3].
As such, they are expensive to manage and even small resource changes in their
operating environment can have a significant impact on system quality [4]. Fur-
thermore, as they are commonly deployed in safety and mission critical domains,
it is essential that modifications are performed without stopping the system.

The Service-oriented Architecture (SOA) paradigm offers a potential solu-
tion to these challenges as it allows software systems to be dynamically com-
posed and reconfigured using services discoverable on a network [5]. However,
resource contention between services and resource saturation in the orchestration
platform can result in significant performance degradation and service outages.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 435–449, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 P. Newman and G. Kotonya

As this is a dynamic problem, such contentions are difficult to anticipate before
deployment, making it challenging to specify the correct system environment in
advance.

A number of research initiatives are investigating effective ways to manage the
quality of embedded service-oriented systems at runtime, with many proposing
resource management through the use of pre-determined degraded Quality of
Service (QoS) policies; they are however, generally based on static quality prop-
erties [6]. Current quality management schemes for service-oriented systems are
inadequate for addressing quality challenges posed by embedded systems for the
following reasons:

– Poor support for monitoring system resources. Current service monitoring
initiatives focus largely on static service properties and lack the ability to
recover from problems caused by changes in system resources [7].

– Static service orchestration. Existing quality assurance approaches for service-
oriented systems are based on static service orchestration which does not take
into account the status of the service and changes in system resources [8]. This
can result in an application that is inefficient and performs poorly.

– Poor support for mitigating resource contention. Ensuring quality is par-
ticularly problematic for service-oriented systems that operate in resource-
constrained environments [3]. Not only must a service provide an acceptable
QoS, but it must also be compatible with the resource constraints of the
service consumer.

Building upon our previous work [9], we propose a runtime resource-aware frame-
work that combines resource monitoring with dynamic workflow orchestration
to mediate resource contention between services deployed within the orchestra-
tion environment. Our primary aim is to improve system performance through
efficient resource utilisation, and to lower power consumption as a side-effect of
this. We use a medium-sized case study deployed on an embedded system to
demonstrate the efficacy of our framework.

2 Related Work

Current initiatives explore a number of resource monitoring and quality man-
agement strategies within the service-oriented and embedded domains. Our dis-
cussion is representative rather than exhaustive.

Robinson and Kotonya review a number of quality management initiatives for
service-oriented systems and propose a self-managing architecture that combines
service monitoring, negotiation, and vendor reputation as a way to manage run-
time quality [8]. The quality management framework supports different SOAs
such as Apache River1 and web services. However, it is not concerned with re-
source contentions in the orchestration environment, and is aimed at desktop
computers rather than embedded systems.

1 Previously known as Jini (http://river.apache.org/)

Managing Resource Contention in Embedded Service-Oriented Systems 437

Moser et al. focus on the monitoring and runtime configuration of services [10].
The authors describe a system named VieDAME that allows BPEL processing to
be monitored according to a specified QoS profile. It also allows existing services
to be replaced with semantically similar services using a specified replacement
policy. However, as VieDAME is designed to support web services and web
service protocols, it is inappropriate for SOAs designed to support resource-
constrained systems.

Wolff et al. propose μSOA, a connector concept designed to handle heteroge-
neous communication channels while reducing the processing demands for pars-
ing XML messages [11]. This approach reduces the message size and parsing
overhead of intercepted SOAP messages bound to the embedded system and
translating them into μSOA messages. Although it presents a way to reduce the
overhead of SOAP messages within the embedded domain, it does not address
the contention of resources between services encountered during runtime.

Workflow orchestration is a central concept to service orientation, and in re-
source constrained systems, this scheduling of tasks takes on added importance.
Reichert and Dadam propose a framework called ADEPT for the support of ad
hoc structural changes to workflows [12]. Central to their framework is a formal
graph-based model which supports a number of flow elements and control struc-
tures including: branch statements, task elements, and loop structures. Various
operations to this model are achievable through the framework, including the
addition and removal of tasks within the workflow. However, these operations
are not automated and must be manually applied.

Sharma et al. discuss the implementation of Smartware, a differentiated QoS
framework [13] capable of both static and dynamic prioritisation of service re-
quests. In their approach, web service requests are queued by the framework
based on their priority and the current scheduling policy. The scheduling poli-
cies are based on a number of classes which determine request priority; these
classes include Application, Device, and Client Level priority. Each request is
scored against a combination of the priority class values to calculate the over-
all priority level of the request. Although the work presented is limited to web
services, potentially the approach could be applied to other SOA protocols.

3 Framework - EQoSystem

EQoSystem (Emergent QoS System) is comprised of two components; a client
that is deployed on the embedded platform and a service that is deployed on a
remote server. The client is responsible for monitoring resources and effecting
changes to the orchestration of services while the service is responsible for se-
lecting and executing resource management policies based on periodic readings
from the client. EQoSystem is implemented in Java and uses Apache River for
the discovery and acquisition of services, although its architecture is not tied
to a particular SOA implementation. Services obtained using Apache River can
be acquired either as a proxy of the service object or the service object itself,
which provides greater flexibility in service implementation as it allows services
to maintain state locally.

438 P. Newman and G. Kotonya

Dynamic workflow orchestration is achieved through a selection of pluggable,
runtime resource management policies, which determine if (and what) changes
need to be made to the orchestration. These resource management policies are
selected by comparing current resource usage patterns against pre-defined re-
source usage signatures (i.e. Activation Patterns) at runtime. Figure 1 shows a
high-level architectural view of our framework and how it fits within the publish-
find-bind model [14].

Fig. 1. Framework software architecture

EQoSystem is composed of a number of software components which are de-
scribed below.

– The Configuration manager is responsible for the configuration of both the
EQoS client and EQoS service and specifies configuration information such
as the level of resources required for policy matching to start.

– The Resource monitor monitors the resources of the embedded platform
and uses the builder pattern to insulate it against platform-specific resource
access APIs.

– The Script manager performs the execution of resource policy scripts.Any
workflow and service changes made by the scripts are conferred to both the
EQoS client and EQoS service so that future changes can be made based
on the current status of the Consumer application.

– The Policy Matcher matches resource usage levels against activation patterns
specified in the framework configuration file. The decision is based on a
minimum match percentage and a number of pattern annotations (including
the consequence of invoking the policy). Once matched, the Script manager
invokes the associated resource policy script.

Managing Resource Contention in Embedded Service-Oriented Systems 439

– The Service manager is an extensible component which is responsible for
the acquisition, invocation and orchestration of services. Services are ac-
quired when the Consumer application attempts to bind to a service via
the EQoSystem framework and are maintained and invoked on behalf of the
Consumer application. Should a resource management policy require changes
to be made to the orchestration of services, these are also effected by the
Service manager.

– The Workflow manager maintains a list of all sequences available for execu-
tion within the framework and is responsible for the alteration and removal of
these sequences at runtime. Workflow changes will only affect the sequences
that require changes and will be executed only when a sequence is inactive.

– The EQoS proxy is a lightweight object proxy and is responsible for providing
an interface to services bound by the Consumer application, with service
calls being intercepted by an associated invocation handler. The service call
is then passed to the Workflow manager, with any matching sequence being
invoked by the framework and the returned value from that sequence passed
to the caller. Otherwise, the original service call is invoked normally.

4 Resource Management

A resource management policy defines a strategy for resolving or managing sys-
tem resource contention. Pluggable resource management is supported, allowing
for different resource management policies to be used. The framework’s current
resource policies have been informed by the work of Kircher and Jain, who pro-
posed a number of resource policy patterns [15].

4.1 Resource Policies

Our approach for resource management focus on addressing resource contention
through workflow management and service orchestration. The strategies cur-
rently implemented are briefly discussed below.

– Service Unbinding removes a service currently bound within the framework
and is based on the evictor pattern. Over time, services may continue to be
bound despite not being called by the application. Preemptively unbinding
these services can reduce the memory load of the service consumer platform.
Services are rebound when required by the application.

– Service call Removal removes a task from the workflow. This strategy relies
on the scenario where performing the task is less important than the un-
interupted operation of the application. The removal of a task requires the
ability to reflect on the requirements of the application [16].

– Service call Replacement swaps a task within a workflow for another pre-
determined one. In the case of selecting a task with lesser computational
complexity, this strategy assumes that in some circumstances, the require-
ment to perform the task is weaker when compared with maintaining the
operation of the application. Swapping a computationally expensive task for

440 P. Newman and G. Kotonya

one that consumes less CPU time might still satisfy the initial requirements
albeit at a lower QoS [16].

These resource policy strategies have been implemented in the Lua2 scripting
language, allowing them to be pluggable at runtime. Lua was chosen primarily
for its relatively fast execution time.

4.2 Policy Activation and Invocation

Each resource management policy has a trigger defined by a pattern of resource
usage (i.e. activation pattern) that the platform must exhibit before the resource
policy script is executed. When any of the trigger values are reached, the policy
matcher determines the resource management policy that best fits the resource
usage pattern. Listing 1.1 shows a simple example of an activation pattern.

Listing 1.1. Resource policy activation pattern.

1 <xsi:preference_set>
2 <xsi:preference_set_name>
3 cpu-load_management.lua
4 </xsi:preference_set_name>
5 <xsi:preference>
6 <xsi:type >pattern </xsi:type >
7 <xsi:name >cpu_load </xsi:name >
8 <xsi:value>upper:80 </xsi:value>
9 </xsi:preference>

10 <xsi:preference>
11 <xsi:type >annotation</xsi:type >
12 <xsi:name >consequence</xsi:name >
13 <xsi:value>qos_downgrade:cpu_load_decrease</xsi:value>
14 </xsi:preference>
15 </xsi:preference_set>

The execution of resource management policies can often result in resource
trade-offs. For example, unbinding a service that caches data will release physi-
cal memory, however CPU load and network bandwidth are likely to increase in
order to re-acquire the previously cached data. To allow for automated distinc-
tion between similar resource management policies, policy descriptions include
system quality and resource trade-off information.

5 Workflow Management

As defined by Sommerville, a workflow shows the sequence of tasks in a process
along with their inputs, outputs and dependencies [14]. The EQoS client parses
and modifies workflows as a method of resource management. Before any changes
are made, they are validated to ensure that the return type of a branch is correct
and that data and flow dependencies are not violated. A simple XML-based
workflow language has been developed to aid in the evaluation of the framework.
The workflow document is parsed by the EQoS Service, with workflow elements
being created and transmitted to the EQoS Client for processing.

2 Lua scripting language homepage http://www.lua.org/

http://www.lua.org/

Managing Resource Contention in Embedded Service-Oriented Systems 441

5.1 Workflow Composition and Specification

The XML workflow language supports a number of flow elements and con-
trol structures including: branch statements, task elements, and loop structures,
which can be annotated to provide contextual information for the resource man-
agement decisions made by the EQoSystem framework. Each element within a
workflow has a number of associated dependencies, representing the elements to
follow the execution of the current element. Once loaded, the workflow manager
interprets the XML document as a control-data flow graph. Briefly, the elements
supported by the EQoSystem framework include:

– Sequence elements, which specify a number of task and conditional elements
sequencially.

– Task elements, which contain information regarding the service to be called
and what parameters are required. Within the mark-up of the XML docu-
ment, it is also possible to annotate a task with additional meta-data and
whether the task requires semantic adaptation.

– Variable Task elements, which contain a primary task as well as a number
of replacement task elements and a list of elements it depends on. It acts
as a task within the workflow but allows for any of the contained tasks to
replace it during workflow management.

– Conditional elements, which allow for different branches of a sequence to be
performed based on a condition.

– Loop elements, which allow for sections of a sequence to be performed mul-
tiple times based on a condition.

In addition to conditional branching, parallel branching is also supported; this
is where the workflow branches unconditionally between two or more sequences.
Separate workflow agents handle sequences in parallel branches, allowing for the
tasks to be processed concurrently.

The EQoSystem workflow specification also supports semantic adaptation,
which may include: the conversion of parameter types, the number of parameters
passed to the service call or filtering of the parameter values. Adapters are
generated with the workflow and loaded into the Java classloader on system
initialisation. Should the workflow indicate that semantic adaptation for a task
is required, the invocation of that task is preempted by the invocation of the
assocated adapter. Once the adapter has been invoked and the new parameters
have been returned, execution continues as normal.

6 Case Study - Asset Tracker

We have developed a case study to visualise framework processes and to evaluate
system quality at runtime. The system consists of a wireless asset tracker de-
ployed on a pocket-sized Single Board Computer (SBC) developed by Phidgets3.
A visualisation interface is deployed on the EQoS Service platform to monitor
system resources in realtime. Figure 2 the shows the system in operation.

3 Powered by a 400MHz ARM920T processor, 64MB of RAM and a number of digital
and analog IO ports. http://www.phidgets.com/

http://www.phidgets.com/

442 P. Newman and G. Kotonya

Fig. 2. Framework deployed on Phidgets 1072 SBC

The asset tracker is a device designed to aid the computer-system engineers in
maintaining assets distributed around Lancaster University campus. Examples
of assets include computers, printers, scanners, networking hardware, and other
such devices. The application guides the engineers around campus, notifying
them in real-time of the location of pending maintenance work and the shortest
path to the asset. The device also provides a short description of the asset and
the reported fault and utilises the wireless network to access this information.
Because of their sensitive nature and cost, it is preferable that data regarding
asset location is encrypted. The asset tracker is composed of eight services (which
have various computational and memory requirements) that are deployed on a
number of remote, virtual machines. These services are:

– The XML parsing service, which is used to read XML-based map data related
to the environment the application is running.

– The tree-based traversal service, which provides search and manipulation
utilities for tree-based data received from the XML parsing service.

– The map generation service, which allows for structural objects of the map-
data to be added and composed into a digraph. Once generated, it is then
divided into map-blocks containing a set number of connected vertices (in-
teresections), their edges (roads, and the location of buildings distributed
around campus.

– The map caching service, which is used for caching map-blocks recently re-
ceived from the map generation service.

– The navigation service, which provides location based services, such as find-
ing a route from the current location to a requested destination.

– The asset database service, which provides access to the database that stores
data regarding assets such as their location and maintenance reports.

– The asset caching service, which is used for caching data recently received
from the asset database service. Asset data is stored in a directory structure,
allowing for both child and parent data to be annotated.

– The encryption service, which is used for encrypting data sent and received
from the asset database service. The currently supported encryption algo-
rithms are RSA, AES, and DES.

Managing Resource Contention in Embedded Service-Oriented Systems 443

6.1 Methodology

We employed a number of resource-doping mechanisms to artificially constrain
system resources to ensure that the orchestration platform operated closer to its
maximum resource load. Physical memory was constrained by allocating memory
to a different process operating on the device whilst CPU usage was doped by a
utility we developed to maintain CPU usage at specific levels of load.

The memory usage of the services was monitored using a Java instrumentation
agent called Classmexer4, capable of performing deep memory inspection on
objects during runtime. When system resources were polled, the memory usage
of each service was measured and the aggregate was then used to calculate
the overall memory-load of the platform. A number of operation scenarios were
devised, representing situations that the framework might have to deal with
during normal operation. These are captured in five simulation scripts designed
to reflect both normal and extreme usage patterns and are briefly descripted
below.

– Short patrol is a small list of 7 randomly chosen destinations located within
the east-end of campus.

– Perimeter patrol comprises of a list of 11 destinations located around the
periphery of the university campus. They are ordered by proximity.

– Backtrack patrol is similar to the perimeter patrol, however only contains
half of the destinations and these destinations are revisited in reverse order.

– Scatter patrol is a list of 17 locations that work from one end of the campus
to the other. They are ordered by proximity.

– Complete patrol visits all 51 locations around campus randomly.

Locations and assets are unevenly distributed across the university campus and
as such some map blocks are likely to contain more assets and locations.

6.2 Resource Benchmarking

To best inform the activation patterns used during the case study, it was impor-
tant to understand the performance of the application and its relationship with
the underlying system resources [17]. As such, we performed resource bench-
marking experiments on the Phidget SBC to determine the effect constrained
resources can have on the execution of tasks.

Figure 3 shows the response-time delay of the CPU when performing the
benchmark test at certain CPU loads. The level of each CPU load interval is
averaged over 20 samples. As shown on the chart, the critical threshold is roughly
at 90% of CPU load; this is where the delay from process context switching starts
to have serious implications for performance. The performance impact of physical
memory contention can vary depending on the configuration of the platform. If
swap space has been allocated, there is likely to be a significant response-time
delay when memory usage approaches 100% as processes are moved from physical

4 Java instrumentation agent homepage http://www.javamex.com/classmexer

http://www.javamex.com/classmexer

444 P. Newman and G. Kotonya

Fig. 3. Mean response time vs. CPU load

memory to swap space and vice versa. Because our platform does not have swap
partition, reaching 100% of physical memory load is likely to cause unexpected
behaviour, such as the application to ceasing to function (i.e. hang). As such, it
is desirable to maintain memory load significantly below 100%.

7 Results

We evaluated our framework on the asset tracker using different operation sce-
narios, running in different resource priority configurations. Where used, the
activation pattern for CPU resource management was set to activate at 85%
of CPU load (i.e. slightly below the critical threshold). Similarly, memory pol-
icy management was set to activate at 85% of physical memory load to ensure
physical memory usage never reaches 100% load.

7.1 Normal Operational Scenarios

Table 1 shows the average and peak CPU load, and execution time (i.e. perfor-
mance) for the normal operation scenarios.

The results show a marked decrease in overall CPU load when the applica-
tion is running in the CPU management configuration as compared with the No
management configuration. The graph in Figure 4 shows a sample of the CPU
usage exhibited by the Asset Tracker during the operation of the Complete Pa-
trol simulation with different policy management configurations. As expected,
the Mixed Management and CPU Management configurations demonstrate the
best load reduction and performance. When CPU load surpasses the specified
resource threshold (85%) after roughly 18 seconds, both configurations demon-
strate a significant drop in CPU load thereafter. This decrease can be attributed
to cryptography-based tasks being swapped for less computationally intensive
cryptographic methods.

Managing Resource Contention in Embedded Service-Oriented Systems 445

Table 1. CPU load of normal operation scenarios (%)

Policy Type CPU Load (%)
Configuration CPU Mem Scenario Average Peak Execution

Time (sec)

No management x x

Short 79.08 100 113
Perimeter 65.21 100 265
Backtrack 46.07 100 362
Scatter 46.27 100 444

Complete 24.73 100 1007

Memory management x �

Short 78.00 94 114
Perimeter 66.59 100 259
Backtrack 47.39 100 349
Scatter 58.16 100 549

Complete 53.33 100 1446

CPU management � x

Short 69.03 90 107
Perimeter 47.28 92 210
Backtrack 33.01 92 310
Scatter 30.75 93 377

Complete 16.33 100 880

Mixed management � �

Short 70.80 96 96
Perimeter 49.03 96 227
Backtrack 33.45 97 289
Scatter 37.50 100 429

Complete 24.62 100 921

Key : x Disabled �Enabled

Fig. 4. CPU load of Complete patrol

Figure 5 shows the memory consumption of services for the Asset Tracker
in the Complete Patrol and Scatter Patrol scenarios for all configurations. It is
important to note that the memory usage of the overall system differed slightly
between each test iteration because the resolution of the memory doping tool was
only accurate to 100Kb. As illustrated, both CPU management and No manage-
ment configurations show the unaltered memory consumption of the application
whereas the Memory management and Mixed management configurations show
a marked reduction. This reduction is attributed to the unbinding of services
until they are needed.

446 P. Newman and G. Kotonya

Fig. 5. Service memory consumption of simulations

When the application is running solely in theMemory management configura-
tion, the average CPU load, peak CPU load and execution time are higher than
that of any of the other management configurations. This is due to the nature
of the services being unbound by the resource policy script. The two highest
memory consuming services within the case study are caching services and as
such when they are unbound and then later rebound, the consumer application
needs to reacquire previously obtained map blocks.

As can be seen, a number of resource management changes are invoked to
maintain physical memory below the level specified in the activation patterns.
This demonstrates the framework’s ability to continually make adjustments dur-
ing runtime.

7.2 Power Management Scenario

The aim of this scenario was to establish whether our framework using workflow
orchestration could affect the consumption of power in a deployment environ-
ment powered by battery. To this end, analog current and voltage sensors were
attached to the Phidget to measure power consumption at real-time, while the
Complete patrol was executed and repeated to put the system under continuous
load. For the purpose of the test, another activation pattern was added to the
framework configuration that would trigger a power consumption strategy when
the supplied voltage was lower than 10; more specifically, the strategy would
invoke workflow elements responsible for turning off the backlight of the LCD
display. Early results of the power consumption experiment are illustrated in
Figure 6.

The results of using the Power consumption configuration demonstrate that
the battery life is significantly greater (roughly 30 minutes) than the scenario
using the No management configuration.

Managing Resource Contention in Embedded Service-Oriented Systems 447

Fig. 6. Battery-life/Power consumption of Phidget

7.3 Resource Instability Scenario

The aim of this scenario was to establish whether our framework could support
a platform where resource usage was highly variable with a number of resource
policies conflicting to maintain a resource equilibrium. An additional activation
pattern was added to the framework configuration, which would trigger a service
call replacement strategy once CPU load was below 30%; this level was chosen
as average CPU load settles below it once a task had been replaced with a less
CPU intensive one. Once invoked, this service call replacement strategy would
attempt to upgrade the QoS of the application by replacing existing service calls
for higher fidelity tasks.

Fig. 7. Thrashing of CPU management policy

Figure 7 illustrates that the application continues to execute as multiple, re-
peated resource management changes occur. This shows that the number of re-
source management changes made does not affect the uninterrupted execution of

448 P. Newman and G. Kotonya

the framework or the underlying application. However, the execution time of the
complete patrol in this scenario was 24 seconds greater than the closest normal
scenario, suggesting that rapid resource management impacts performance.

8 Conclusions

This paper has presented a runtime framework that combines resource monitor-
ing with dynamic workflow orchestration to mediate resource contention through
swappable resource management policies, allowing them to be matched at run-
time to changing resource conditions. Outside the orchestration environment,
our approach assumes the availability of a service monitoring and negotiation
approach such as the work of Robinson and Kotonya [8] to ensure the provision is
in accordance with the SLA. We have recently started to investigate the impact
of the EQoSystem framework on the power consumption of the Phidgets SBC
running the Asset Tracker using Phidgets current and voltage sensors. Initial
results show a significant drop in the rate of power consumption for the SBC
when the system is configured for Power consumption management.

Our solution has gone a considerable way towards addressing the three key
limitations identified in Section 1. By providing support to monitor dynamic
service properties (i.e. systems resources) and adapting to them at runtime, we
address the poor support for monitoring system resources. Through our resource
strategies, we are able to achieve service management and workflow orchestra-
tion based on resource utilisation at runtime, thus achieving dynamic service
orchestration rather than static service orchestration. Finally, we provide a vi-
able option to mitigate resource contention by managing services bound to the
orchestration environment, addressing the poor support for mitigating resource
contention limitation.

Although the framework addresses a number of resource management chal-
lenges in embedded service-oriented systems, several improvements are required
if it is to be deployed in large-scale systems. As such, we are exploring ways to
improve the performance of our framework to better suit a wider class of em-
bedded system. Finally, it was found that multiple resource management policies
can intersect, compete, and conflict with each other, necessitating more intelli-
gent ways of combining resource management with context-awareness to provide
better trade-off analysis and decision support.

References

1. Rellermeyer, J.S., Alonso, G.: Concierge: A Service Platform for Resource-
constrained Devices. SIGOPS Oper. Syst. Rev. (3), 245–258 (2007)

2. Crnkovic, I.: Component-based Software Engineering for Embedded Systems. In:
Proceedings of the 27th International Conference on Software Engineering, ICSE
2005, pp. 712–713 (May 2005)

3. Milanovic, N., Richling, J., Malek, M.: Lightweight Services for Embedded Systems.
In: WSTFEUS 2004, pp. 40–44 (2004)

Managing Resource Contention in Embedded Service-Oriented Systems 449

4. Seceleanu, C., Vulgarakis, A., Pettersson, P.: REMES: A Resource Model for Em-
bedded Systems. In: 2009 14th IEEE International Conference on Engineering of
Complex Computer Systems, pp. 84–94 (June 2009)

5. Chen, Y., Bai, X.: On Robotics Applications in Service-Oriented Architecture.
In: 28th International Conference on Distributed Computing Systems Workshops,
ICDCS 2008, pp. 551–556 (June 2008)

6. Menascé, D.A., Ruan, H., Gomaa, H.: QoS Management in Service-oriented Archi-
tectures. Perform. Eval. 64(7-8), 646–663 (2007)

7. Gross, H.-G., Mayer, N., Riano, J.P.: Assessing Real-Time Component Contracts
Through Built-in Evolutionary Testing. In: Atkinson, C., Bunse, C., Gross, H.-G.,
Peper, C. (eds.) Component-Based Software Development. LNCS, vol. 3778, pp.
107–122. Springer, Heidelberg (2005)

8. Robinson, D., Kotonya, G.: A Runtime Quality Architecture for Service-Oriented
Systems. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 468–482. Springer, Heidelberg (2008)

9. Newman, P., Kotonya, G.: A Runtime Resource-Management Framework for Em-
bedded Service-Oriented Systems. In: Proceedings of the 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture, WICSA 2011, pp. 123–126. IEEE
Computer Society, Washington, DC (2011)

10. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proceedings of the 17th International Conference on
World Wide Web, WWW 2008, pp. 815–824. ACM, New York (2008)

11. Wolff, A., Michaelis, S., Schmutzler, J., Wietfeld, C.: Network-centric Middleware
for Service Oriented Architectures across Heterogeneous Embedded Systems. In:
EDOC Conference Workshop, EDOC 2007, pp. 105–108 (2007)

12. Reichert, M., Dadam, P.: A Framework for Dynamic Changes in Workflow Man-
agement Systems. In: Proceedings, 8th Int’l Conference on Database and Expert
Systems Applications (DEXA 1997), pp. 42–48. IEEE Computer Society Press
(1997)

13. Sharma, A., Adarkar, H., Sengupta, S.: Managing QoS Through Prioritization
in Web Services. In: Proceedings of the Fourth International Conference on Web
Information Systems Engineering Workshops, pp. 140–148 (2003)

14. Sommerville, I.: Software Engineering, 9th edn. International computer science
series. Addison-Wesley, Harlow (2010)

15. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture. Patterns for Re-
source Management, vol. 3. Wiley (June 2004)

16. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements
Reflection: Requirements as Runtime Entities. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE 2010, vol. 2,
pp. 199–202. ACM, New York (2010)

17. Heo, J., Zhu, X., Padala, P., Wang, Z.: Memory Overbooking and Dynamic Control
of Xen Virtual Machines in Consolidated Environments. In: Integrated Network
Management, IM 2009, pp. 630–637 (June 2009)

Semantic Service Composition Framework

for Multidomain Ubiquitous Computing
Applications

Mohamed Hilia, Abdelghani Chibani, Karim Djouani, and Yacine Amirat

Paris-Est Créteil University (UPEC)
Signals Images & Intelligent Systems Laboratory

mohamed.hilia@evidian.com,

{chibani,djouani,amirat}@upec.fr
http://www.lissi.fr

Abstract. In this paper we propose a semantic framework based on
constructive description logic. The main innovative aspect of our work
consists in the formalization of a composition in the form of e-contract
semantic statements where the semantic and logic correctness/soundness
are formally checked. The e-contract model is based on cooperation on-
tology and includes control rules. This model improves on the one hand
the common understanding between heterogeneous domains, and on the
other hand, it ensures an efficient control of each service from remote
requester and preserves the confidentiality of the know-how and the pri-
vacy of the local domains. In the conclusion of this paper we present a
health care scenario that demonstrates the feasibility of our framework
and the demonstration statements of the e-contract in BCDL0.

Keywords: Collaborative Provisioning Process, Service Composition,
Constructive Description Logics, Theorem Proving.

1 Introduction

Several frameworks and middleware have been proposed for performing service
composition in pervasive computing in order to comply with the evolving needs
of users and organizations, and to take into account the changes of the execution
environment. Most of these approaches facilitate the composition task by offering
high level abstractions by using web services and semantic web technologies.
However, the composed services can involve the cooperation of services belonging
to different domains. Enabling this cooperation poses several heterogeneity issues
that concerns the semantics of the operations and their control policies.

Leveraging such issues requires semantic framework that provides composition
tools along the formal verification of the semantic soundness and the correctness
of the composed service regarding what is requested [16].

During the recent years, several approaches were proposed in the state of the
art to provide semantic management tools for using description logics and se-
mantic web ontologies such as WSDL-S, DAML-S, WSMO, SWSL, SAWSDL

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 450–467, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.lissi.fr

Semantic Service Composition Framework 451

[19]. The most adopted language for building semantic description of web ser-
vices is OWL-S [10], the successor of DAML-S. In fact, OWL-S is a high-level
ontology that allows the description of semantic web services behavior charac-
teristics using business processes and workflow, and the grounding using web
service technical specification language such as WSDL. Services described using
OWL-S ontology can be even simple or complex service that corresponds to the
composition of a set of simple services. The semantic description of services us-
ing OWL-S can be published in a declaratory way, on top of standard directory
such as UDDI, to facilitate their discovery by software agents running Descrip-
tion Logics based ontology matchmaker algorithms. Describing complex services
capabilities and effects using ontologies and composition languages (e.g. BPEL,
OWL-S) to build any cooperative provisioning systems implies the existence of a
common understanding on the semantics of provisioning services capabilities of
each domain, their associated messaging dialogs and their usage control policies.
Description Logics is considered as a powerful tool offering a high expressiveness
to formalize semantics, and is associated with decidable inference procedures for
reasoning on them.

Beyond representation and expressiveness concerns using DL to describe the
composition of multi domain heterogeneous services, an important issue that
should be treated is how we can prove the correctness of the resulting composi-
tion according to the model theory and the objective of the cooperation. Bozzato
et al. proposed a formal framework of service composition calculus that assures
that any composite service specification (i.e. the service profile) can be verified
according to its semantic and logic correctness/soundness by verifying the ap-
plicability conditions of the flow control rules used in the composition using the
basic constructive description logic, called BCDL0 [4]. In this paper, we present a
formal framework that deals with main issues of services composition formaliza-
tion for multi domain environments. Concretely our framework reuses BCDL0
logics and extends the work initiated in [8] with additional control flows and
methodology for service composition. The main innovative aspect in our work
consists in the formalization of a composition according to formal cooperation
e-contract statements that can be proved. The e-contract is specified using the
instantiation and extension of the cooperation ontology. The latter describes the
cooperation of both business and provisioning operations of the services of each
domain and their corresponding control rules. The combination of the cooper-
ation ontology with e-contract statements improves on one hand the common
understanding between heterogeneous domains. On the other hand it insures
an efficient control of services execution by remote requester and preserves the
confidentiality of the know-how and the privacy of the local domains.

The rest of this paper is organized as follows. Section 2 describes the semantic
framework architecture. Section 3 overviews the constructive logic BCDL and its
subsystem BCDL0. Section 4 details the BCDL0-based multi-domain cooperation
ontology specification. Section 5 presents the proposed integrated model. A use
case of the proposed model is studied in section 6 and section 7 presents the
related work. Section 8 gives the conclusion and the ongoing work.

452 M. Hilia et al.

2 Semantic Cooperation Framework

2.1 Framework Overview

Our framework is built using the following specification components : e-contract,
cooperation ontology and the abstraction views (see Figure.1). The abstraction
views provide high-level definition of the interfaces required to invoke local ser-
vices of each domain involved in the cooperation. Each view is defined according
to the following formula : SV (Si) :: Pcond(I) =⇒ Post(O), where SV is the
service view label, Si service interface, Pcond are the preconditions over the
input parameters I, and Post are the postcondition over the output parameters
O. Note that the effects are defined with postconditions. Our approach is not
intrusive and does not imply the modification of local services. So local services
can be invoked in the same manner and under the same constraints by local
or remote applications. Each interface is formalized as set of preconditions and
their corresponding effects. For each service we consider two views: view on the
provisioning operations and a view on the business operations. The provisioning
operations concerns the configuration of any nonfunctional parameters needed
for the execution of the business service. For instance, the provisioning of QoS
parameters that should be done before, during and after the use of a business
service such as a camera based monitoring service that requires the provisioning
of the following QoS parameters: codec, data transfer rate and security creden-
tials. Many efforts have been undertaken to define ontologies of quality of service
concepts. In our work we define upper concepts that can be mapped into these
ontologies.

The e-contract defines the workflow for orchestrating the invocation of services
and the rules for controlling their invocation. We consider two types of rules:
flow control rules and usage control rules (including QoS conrtol). Each service
invocation is formalized as a message exchanged between two domains. This
message is represented in BCDL according to the following semantic quadruple
(Speech act, service view, source domain, destination domain). The content of
each message is specified according to the concepts of the cooperation ontology.
The latter is composed of three blocks. The first block provides an upper ontology
that describes the concepts used to describe the workflow messages templates,
and imports the external QoS ontologies to deal with QoS consideration [21]. For
instance, an action execution message is different from notification message. The
second block provides common sense ontology the application domain concepts
that are used within speech acts, and describes the concepts used to define
control rules. The third block describes the concepts used to define global QoS
and usage rules regarding the execution of the multi domain composition such
as execution time, cost, energy, etc. The cooperation ontology and e-contract
formalization are respectively detailed in sections 4, and 5.

Until today, two main approaches have been adopted to build cross-
organizational (i.e. multi domain) cooperative systems, namely : bottom-up and
top-down approaches. In the bottom-up approache [9,20] we start by enumerat-
ing the existing services as a starting point to define the cooperation possibilities

Semantic Service Composition Framework 453

in order to get at the final stage a composite service (i.e. collaborative workflow)
that satisfies a set of mutual agreement rules. Conversely, the top-down ap-
proaches [6,1] start by specifying a set of common objectives that correspond to
a global workflow. According to these objectives, each partner implements local
processes that represent a part of the global workflow. Unfortunately, these ap-
proaches do not deal with cooperation and control of provisioning management
processes. On the one hand, the bottom-up approaches listed above offer no con-
trol for the interactions model, and the specification lacks of semantic aspects
to ensure the workflows interoperability, and on the other hand, top-down ap-
proaches respect neither, the existing workflow nor the design flexibility of the
control and the cooperation.

In our framework we propose a hybrid approach that allows domain man-
agers to define the composition according to the steps methodology, depicted in
(Figure 1).

1. Abstraction: Each domain manager defines local abstract views on the ser-
vices that are used to build the multi domain composite service. Concretely,
this leads to create view on local workflow. The abstraction of the inputs and
outputs of this workflow view corresponds to the definition of an atomic ser-
vice profile. The view is described using interfaces and execution point that
allow to invoke a specific process in an internal workflow. The advantage of
using abstract views is preserving the confidentiality.

2. Consistency Checking: In this step, the managers check the consistency of
the cooperation ontology after the refinement of the upper ontology concepts
with the specific concepts needed for the cooperation. This is performed by
using an automatic consistency checker of ontology such as Pellet.

3. E-Contract : The domain managers of the participating domains define the
cooperation process which defines the cooperation goals. Afterward, they
define the atomic processes involved, and they define the flow control be-
tween them. The cooperation process is defined by using abstraction views
formalized in Section 5.1. Based on the cooperation process definition with
semantic concept, the managers set the list of the obligations, authorizations,
and prohibitions, and also temporal constraints.ie deadlines. The coopera-
tion ontology model is detailed in Section 4

4. Formal Verification: After the definition of the flow control, and usage con-
trol rules in BCDL0 formalism, we use an interactive theorem prover to prove
the soundness of the composite service.

5. Views Creation: We generate services invocation interfaces. These interfaces
represent atomic provisional tasks that should be handled by the partici-
pating domains. A provisional task is any process that can change the envi-
ronment or effect the running way of business services, such as request for
an account creation, task approval, permission assignment, role delegation,
notification, etc. The behavioral flow control of the cooperation is also man-
aged through interfaces that must be implemented or mapped with internal
process interfaces.

454 M. Hilia et al.

6. Mapping: This step consists of creating the mapping between tasks of inter-
nal processes view and those generated in the previous step. In this step, we
must check the compliancy of the internal security policy with the coopera-
tion defined rules. This step make reuse of the existing processes.

Cooperation Ontology

Usage and
Control

Ontology

Domain
Specific

Knowledge

Provisioning
Ontology

(2) Consistency Checking

(3) E-Contract (BCDL0)

Usage
Control
Rules

Flow Control
Rules

Provisioning
Service

templates

Domain A Domain B

Local
Services

Provisioning view

(4) Formal verification

 (5) Views Creation

Provisioning View

Business View Local Service
Provisioning operations

Business operations

(1) Abstraction

Business view

(6) Mapping

QoS Ontology
imports

Fig. 1. Global architecture schema of the semantic composition framework

3 Basic Constructive Description Logic (BCDL)

3.1 Towards Constructive Description Logics

Building successfully a cooperative provisioning framework requires the repre-
sentation of the shared resources (i.e. services, exchanged data) by ensuring the
common interpretation and semantic interoperability between the participating
domains. Description logics [2] are a family of knowledge representation languages
which can be used to represent knowledge of an application domain in a structured
and formal way. However, their semantics are restricted to classical reading of de-
scription for concepts and individuals [3]. Furthermore, Constructive Description
Logics (CDL) has emerged to give new interpretations of DL formulas. CDL aim
at modeling knowledge domain and problems that can hardly be treated in the
context of classical semantics. This is deeply discussed in [18]. Recently, Ferrari
et al. in [5] have proposed BCDL, a constructive description logic based on infor-
mation terms semantics. This logic allows a constructive interpretation of ALC
formulas. A constructive analysis allows us to exploit the computational proper-
ties of its formulas and proofs. BCDL0 is a subsystem of BCDL [4].

Semantic Service Composition Framework 455

The constructive interpretation of BCDL0 is based on the notion of informa-
tion term [5]. Intuitively, an information term α for a closed formula K is a
structured object that provides a justification for the validity of K in a classical
model.

3.2 BCDL0 : Syntax and Semantics

Let define the language L for ALC based on the following sets : NC a set of
Concepts names, NR set of Roles names, NI a set of Individual names, and
Var a set of Individual Variables names. BCDL0 grammar is defined as follows
: C,D := A |¬ C |C (D |C ' D |∃ R. C |∀ R. C . Where C, D ∈ NC,
R ∈ NR, and A an atomic concept. The BCDL0 grammar is the same as ALC.
The generated concepts by the latter, enable the construction of the following
BCDL0 formulas K, such that : K := ⊥ | t : C | A , C | (s, t) : R,where
s,t ∈ NI ∪ Var.

Let N ⊆ NI,LN be the list of formulas generated by the finit subset N .
An Interpretation (Model) M for LN is the pair

(
DM , .M

)
. DM defines the

domain, corresponding to an not empty set, and .M is a valuation function
such that : for every c ∈ N , cM ∈ DM , for every A ∈ NC, AM ⊆ DM, and
for every R ∈ NR, RM ⊆ DM ×DM.

3.3 BCDL0 Computational Interpretation

The constructive interpretation of BCDL0 is based on information terms. For-
mally, given N ⊆ NI and a closed formula K of LN , the set of information
terms ITN (K) can be defined by induction on K :

ITN (K) = {tt} , iff K is a closed formula
ITN (c : C1 ' C2) = {(α, β)|α ∈ ITN (c : C1) and β ∈ ITN (c : C2)}
ITN (c : C1 (C2) = {(k, α)|k ∈ 1, 2 and α ∈ ITN (c : Ck)}
ITN (c : ∃ R.C) = {(d, α)|d ∈ N and α ∈ ITN (d : C)}
ITN (c : ∀ R.C) =

{
φ : N →

⋃
d∈N ITN (d : C)| φ(d) ∈ ITN (d : C)

}
ITN (A , C) =

{
φ : N →

⋃
d∈N ITN (d : C)| φ(d) ∈ ITN (d : C)

}
BCDL reasoning technique is compatible with the realizability relation of K
formula by a given information term. The realizability relation is defined as
follows:

Realizability: LetM be a Model for LN , K a closed formula and η ∈ ITN (K).
The realizability relation is defined as M � 〈η〉K by induction on the structure
of K.

M � 〈tt〉K iff M � K

M � 〈(α, β)〉 c : C1 � C2 iff M � 〈α〉 c : C1 and M � 〈β〉 c : C2

M � 〈(k, α)〉 c : C1 � C2 iff M � 〈α〉 c : Ck

M � 〈(d, α)〉 c : ∃ R.C iff M � (c : d) : R and M � 〈α〉 d : C

M � 〈φ〉 c : ∀ R.C iff M � c : ∀ R.C, and, for every d ∈ N ,M � (c, d) : R implies M � 〈φ(d)〉 d :C

M � 〈φ〉A
 C iff M � A
 C, and, for every d ∈ N if M � 〈tt〉 d : A then M � 〈φ(d)〉 d : C

456 M. Hilia et al.

Fig. 2. Semantic model for multi-domain service composition

Definition (Theory) : A theory T consists of TBox and ABox. A TBox is a
finit set of formulas of the form A , C. An ABox is a set of role assertions
and concept assertions :

– Role assertion is a formula of the kind (c, d):R , with c, d ∈ NI and R ∈ NR
– Concept assertion is a formula of the kind t : C, with t ∈ NI and C ∈ NC

The theories defined by BCDL0 are sound with the respect of information term
semantics. In [4], the authors have shown the natural deduction calculus ND
as the proof calculus for BCDL0, and gives the soundness theorem according to
realizability relation and the natural deduction proofs of ALC formulas.

Theorem 1 (Soundness) : Let N be a finit subset of NI and let π :: Γ � K be a
proof of ND over LN such that the formulas K in Γ are closed. Then :

– Γ � K
– For every modelM and γ ∈ IT (Γ),M� 〈φ〉Γ impliesM � 〈φπ

N (γ)〉K

4 Cooperation Ontology Specification

In this section, we specify the main components of the multi-domain cooperation
ontology (see Figure 2). This ontology is divided into three ontologies, which are
respectively, provisioning ontology, usage and control ontology, and the domain
specific ontology . Each ontology is specified by using constructive description
logics formulas.

4.1 Provisioning Ontology Specification

This ontology described by its TBox (see Table 1) expresses the provisioning
part of the multi-domain cooperation ontology. The main concept in this theory,
is the ProvisioningTask. It represents the atomic unit of work in a provisioning
process. This concept is generalized by the concept Task which is related to three
concepts, namely, the target runtime domain, Domain, a Hook to be plugged-in
into a specific abstract view interface, and a list of states represented by the
concept, TaskState.

Semantic Service Composition Framework 457

Table 1. Provisioning Ontology

Add � ProvisioningMessage AutomaticTask � ProvisioningTask
AutomaticTask � ¬ ManualTask Delete � ProvisioningMessage
Lookup � ProvisioningMessage ManualTask � ProvisioningTask
ManualTask � ¬ AutomaticTask Modify � ProvisioningMessage
ProvisioningAction � Action ProvisioningTask � Task
ProvisioningTask � ∃ executedBy Domain � ∃ hasHook Hook � ∃ hasState TaskState
Search � ProvisioningMessage ∃ assignedTo Thing � Action
∃ executedBy Thing � Task � � ∀ executedBy Domain
∃ hasProvisioningMessage Thing � ProvisioningAction ∃ hasPerformer Thing � ManualTask
� � ∀ hasPerformer Role ∃ hasState Thing � Task
� � ∀ hasProvisioningMessage ProvisioningMessage ∃ hasHook Thing � Task
� � ∀ hasState TaskState ∃ hasTargetObject Thing � ProvisioningAction

We note that, each task is performed by a physical atomic action represented
by the concept Action. An Action is the physical operation assigned to a Task.
The ProvisioningTask is managed by executing the provisioning message de-
scribed by the concept ProvisioningMessage on a specific object (e.g Service,
Resource). This provisioning action can be classified as AcceptedAction if the
domain validates the request, otherwise as RefusedAction. For example : adding
an access account Object for the subject Cardiology Doctor on the monitor-
ing service Policy. A provisioning task can be either automatically triggered by
provisioning management system, or manually performed by a user with the
requested role Role.

4.2 Control Access and Usage Rules Ontology Specification

Table 2 gives the control rules to access the shared resources. These rules, in-
spired from XACML standard, are based on deontic logic formalization of the
Prohibition, Obligation and Permission.

The Policy concept has an access effect which is an authorization (Permit
concept -) or a prohibition (Deny concept ⊥) . It is applicable on a Target. The
policy is a set of rules Rule and propositional formula specified as a Condition.
Each rule is defined by a domain on a target Target. A target is a set of simplified
conditions for the provisioning action.

4.3 Domain Specific Ontology Specification

In this ontology, we express the domain specific concepts and their relations to
model the knowledge of this domain. This ontology is used to add additional
concepts to the cooperation ontology that are used for the data conversion from
a domain to another during the cooperation execution. For instance, the con-
cept Account as a specific Object in a domain. We note the following formula,
Account , Object. This refinement permit to specify the local concepts such
as security concepts without disclosing any information neither about their in-
ternal structures nor their content. In such way, we preserve the privacy and
the confidentiality of the shared information which is an important issues in
multi-domain applications.

458 M. Hilia et al.

Table 2. Usage and Control Rules Ontology [13]

ABACPolicy � AccessControlPolicy Access � Action
AccessControlPolicy � SecurityPolicy Action � Event
Agent � Resource Agent � ¬ Object
Attribute � Descriptor Attribute � ¬ T ime
Attribute � ¬ Location Location � Descriptor
Location � ¬ T ime Location � ¬ Attribute
Object � Resource Object � ¬ Agent
Parameter � Attribute Person � Agent
PersonalData � Object T ime � Descriptor
T ime � ¬ Location T ime � ¬ Attribute
∃ assignedTo Thing � Permission � � ∀ assignedTo SecurityAttribute
∃ controledBy Thing � Action � � ∀ controledBy SecurityPolicy
∃ hasAttribute Thing � ABACPolicy ∃ grants Thing � Permission
∃ hasDescriptor Thing � Condition ∃ describedBy Thing � Resource
∃ hasParameter Thing � Action � � ∀ describedBy Descriptor
∃ hasV alidity Thing � SecurityAttribute � � ∀ controls Action
∃ identifies Thing � PersonalData ∃ controls Thing � SecurityPolicy
∃ isAssignedTo Thing � SecurityAttribute � � ∀ grants Action
∃ managesBy Thing � SecurityPolicy ∃ has Thing � SecurityPolicy
∃ on Thing � Access ∃ specifies Thing � SecurityPolicy
∃ performedBy Thing � Event

5 E-Contract Modeling

5.1 Service Specification

A service specification is an expression of the form p (x) :: P =⇒ Q where: p
is a label that identifies the service; x is the input parameter of the service (to
be instantiated with an individual name from N); P and Q are concepts over
LN . P is called the service precondition, denoted by Pre(p), and Q the service
postcondition, denoted by Post(p). The service implementation is modeled as
a function : Φp :

⋃
t∈N ITN (t : P) →

⋃
t∈N ITN (t : Q). We denote by the pair

(p(x) :: P =⇒ Q,Φp) (or with (p, Φp)) a service definition over LN . The service
specification provides the formal description of the behavior of the service in
terms of pre- and post- conditions. The function p represents a formal description
of service implementation (i.e. of the input/output function). Note that the
service definition is based on multi-domain cooperation ontology.

5.2 Provisioning Service Modeling

In this section, we provide an example of atomic service specification that con-
stitutes the atomic provisioning action.

Request : The request provisioning service is a query for action execution. It
is an action with a destination domain Domain, and it requests for an action
execution represented by RequestAction concept. The postconditions or effects

Semantic Service Composition Framework 459

of this action are answers from the target domain. The latter, can accept the
requested action, AcceptedAction, or refuse it,RefusedAction, with the associ-
ated explanation message, Message. This provisioning service is formalized in
Table 3.

Table 3. Request action specification

Request(action) ::

RequestAction � ∃ hasTargetDomain.Domain �
=⇒ AcceptedAction � (RefusedAction � ∃ hasMessage.Message)

The notion of correctness of implementation with respect to the process spec-
ification is modeled as follows :

Uniform Resolvability Let define LN as language over N , a service definition
(p(x) :: P =⇒ Q,Φp) over LN and a model M for Ln. Φp uniformly solves
p(x) :: P =⇒ Q iff , for every individual name t ∈ N , and every α ∈ ITN (t : P)
such thatM � 〈α〉 t : P ,M � 〈Φp(α)〉 t : Q

In the rest of this section, we propose a list of provisioning services for the
provisioning management in multi-domain environment. As we have mentioned,
each functionality is specified by using a single speech act, which represent an
atomic service. In our framework we establish a list of predefined actions. As
example of these actions : request for action execution, approval of requested
action, delegate an action, assign an action to a domain.

Uniform Resolvability Definition. Let action be an individual name which
represent the input ofRequest speech act. In our setting, the service implementa-
tion correspond to function mapping information terms for the precondition into
information terms for the postcondition. This function formalizes the behavior
of the effective implementation of the web services. In particular let us consider
the implementation ΦRequest of the request service. Let action be the individual
name representing an RequestAction. The input of request is any information
term for α ∈ ITN (action : Pre(Request)). action can be seen as a reference to a
database record providing the information required by the service pre-condition
and can be seen as a structured representation of such information. Let assume
that α has the following form : α = (tt, (domainA, tt)); this information term
means that action is a request action with the target domain domainA. Now, let
β = ΦRequest(α) ∈ IT (action : Post(Request)). If β= (1, tt), this classify action
as accepted. Otherwise β could be (2, (tt, (refusal message, tt))) which classifies
action as refused and specifies that there is a message message to comment this
refusal. To conclude, we remark that the intended modelM we use to evaluate
the correctness of the system is implicitly defined by the knowledge base of the
system. Indeed, action : Pre(Request) is valid inM if and only if in our system
action effectively codify a request and domainA is classified as a target Domain.

460 M. Hilia et al.

In this case, since ΦRequest uniformly solves the service specification, we know
that action : Post(Request) is valid inM, this trivially corresponds to the fact
that, looking at its knowledge base, the domain can generate its acceptance.

5.3 Service Composition Calculus PC
A service composition is the process that combines the existing services to build a
new process called the composite process. A composite service in an environment
E = {LN , T, η, (p1, Φ1), ..., (pn, Φn)} is defined as follows :

p (x) :: P =⇒ Q

Π1 : p1 (x) :: P1 =⇒ Q1

Π2 : p2 (x) :: P2 =⇒ Q2

. . .
Πn : pn (x) :: Pn =⇒ Qn

rule

Where

– p (x) : P =⇒ Q is a service specification over E
– rule is one of the rules of the service composition calculus PC
– For every i ∈ {1, . . . , n} , Πi : pi(x) :: Pi =⇒ Qi is a service composition over

E that meets the applicability conditions of rule

5.4 Control Flow Rules and Composition Process

The atomic provisioning management processes presented above can be com-
bined to express the cooperative provisioning process by using the flow control
rules expressed in constructive description logic. These rules are inspired from
the basic control flow pattern [15]. They define the basic modeling patterns of
business processes behavior. Furthermore, They have been widely used to eval-
uate the features of existing workflows systems [14].

The control flow rules are detailed below as well as the applicability conditions
(AC). The proof of these applicability conditions implies the correctness of the
composition.

Sequence: It expresses the fact that a task is performed after the completion
of another one in the same process.

Parallel Split: It expresses the splitting of a task into multiple parallel tasks

Synchronization: It represents the convergence of two or more tasks into a
single synchronization point. The outgoing task is enabled after the execution of
all the incoming tasks.

Exclusive Choice: Based on the truth of fulfilled condition, the flow selects a
single ongoing task.

Simple Merge: It consists of the convergence of two or more tasks into a single
task. The outgoing tasks are performed when an incoming task is triggered.

Semantic Service Composition Framework 461

Table 4. Flow control rules

p (x) :: P ⇒ Q

Π1 : p1 (x) :: P1 =⇒ Q1

Π2 : p2 (x) :: P2 =⇒ Q2

...
Πn : pn (x) :: Pn =⇒ Qn

Sequence

AC =

⎧⎪⎨
⎪⎩

T, x : P BCDL0
x : P1

T, x : Qk−1 BCDL0
x : Pk, for k ∈ {2, . . . , n}

T, x : Qn BCDL0
x : Q

p (x) :: P ⇒ Q

Π1 : p1 (x) :: P1 =⇒ Q1

Π2 : p2 (x) :: P2 =⇒ Q2

...
Πn : pn (x) :: Pn =⇒ Qn

Parallel Split

AC =

{
T, x : P BCDL0

x : Pk, for k ∈ {1, . . . , n}
T, x : Q1 � . . . � Qn BCDL0

x : Q

p (x) :: P =⇒ Q

Π1 : p1 (x) :: P1 =⇒ Q1

Π2 : p2 (x) :: P2 =⇒ Q2

...
Πn : pn (x) :: Pn =⇒ Qn

Synchronization

AC =

{
T, x : P1 � . . . � Pn BCDL0

x : P

T, x : Qk BCDL0
x : Q, for k ∈ {1, . . . , n}

p (x) :: P =⇒ Q

Π1 : p1 (x) :: P1 =⇒ Q1

Π2 : p2 (x) :: P2 =⇒ Q2

...
Πn : pn (x) :: Pn =⇒ Qn

Exclusive Choice

AC =

{
T, x : P BCDL0

x : P1 � . . . � Pn

T, x : Qk BCDL0
x : Q, for k ∈ {1, . . . , n}

p (x) :: P =⇒ Q

Π1 : p1 (x) :: P1 =⇒ Q1

Π2 : p2 (x) :: P2 =⇒ Q2

...
Πn : pn (x) :: Pn =⇒ Qn

Simple Merge

AC =

{
T, x : P BCDL0

x : Pk, for k ∈ {1, . . . , n}
T, x : Q1 � . . . � Qn BCDL0

x : Q

6 Scenario : Healthcare Monitoring

In this section, we present a scenario under implementation of platform for the
tele-rehabilitation of patients at home. This complex platform is defined ac-
cording to the requirements and discussions with clinical physicians at UPEC
university hospital. The platform is specified as a service composition using sev-
eral atomic services involving three main domains: the hospital (domainA), the
patient home (Domain B) and the emergency agency (Domain C), see Figure 3.
The tele-rehabilitation coaching platform allows physicians to order and monitor
any rehabilitation program. The latter is composed as a plan of physical activi-
ties along with medications that should be undertaken by the patient under the
control of the system and the physician. The home is equipped with set of smart
devices such as mobile robot equipped with smart display, ip camera, and wear-
able sensors such as accelerometers and vital sensors that allows on one hand,
to monitor the progress of the rehabilitation, and on the other hand, triggering
alarms to prevent any damages when an incident happens. Putting such criti-
cal service partly under the control of a system requires that the rehabilitation
program and its corresponding provisioning tasks requires the verification of the

462 M. Hilia et al.

consistency and the correctness of the composite service. The figure 3 depicts the
main services that are used to define the composite service. We denote two pro-
visioning tasks. The first one concerns the creation of an account for a physician
to monitor the rehabilitation devices and sensors at the patient’s home and the
second task concerns the provisioning of the rehabilitation program inside the
memory of the robot, which will schedule the program according to the approval
of the patient. If the patient refuses the program the coach is notified and can in
this case postpone the program or communicate with patient through the robot
smart display. If an incident happens during the execution of the rehabilitation
program a notification is sent to the emergency agency (domain C) that will
check the notification and order the intervention of an ambulance first aid officer
at the patient home

Note that to allow the emergency agency checking the situation, temporal
credentials are given in the notification message that allow an officer to control
remotely the robot and its camera.

Request (Provisioning Task)

Notify (Refusal)

[Refusal]
[Approval]

Domain A Domain B

Approval by the patient

Propose(Program :pgm)

Notify
(Emergency) Planning supervising action

Get sensors
data

Video
Recording Verify the alert

notification

Domain c

Move(Position:pos)

Localize(Patient :p)

Fig. 3. Service access provisioning process

Let define the required services to successfully build this cooperation, Let’s
follow the methodology of our framework described in section 2.1. The fist step
consists of adding the concepts to the upper ontology to meet the required view
definition concepts. We have implemented the ontology by using the ontology
editor protégé, and we have used its embedded pellet consistency checker. The
workflow of the multidomain service composition is defined as follows :

1. The Request corresponds to the provisioning operation of uploading the reha-
bilitation plan in the robot memory. This request describes the environment
criteria and the ambient conditions in which the request will be performed

Semantic Service Composition Framework 463

2. The Robot receives the request and updates the list of the patient daily
activities by adding the requested program. When the program time arrives,
the robot starts the execution of these task :

(a) Use localization service to localize the patient in the house by using the
RFID identification

(b) Move to the patient

(c) Propose the Provisioned Task for performing the activity with the dif-
ferent information

(d) If the patient refuse, we notify the Coach. Otherwise, the robot must
plan for the exercise supervising

(e) When the patient finishes his activities, the recorded data about These
activities are serialized, afterwards, these data are sent to the coach to
analyze them and propose other activities

For the lack of space, the steps concerning the e-contract formalization, the
creation of services views and the formal validation are detailed in the appendix.

The next step corresponding to the service invocation. According to the ap-
proach we defined above the provisioning messages that are grounded using
Service Provisioning Markup Language (SPML). SPML is dedicated to service
provisioning and combined with web services. It allows to define provisioning
operations such as Add, Delete, modify in both synchronous and asynchronous
manner. The objects of the provisioning are generated using the mapping with
cooperation ontology to XML data structures defined according DSML. For ex-
ample, the SPML operation with the DSML profile for adding an account is as
follows :

Example of SPML Add User Request

<spml:addRequest requestID="0123456789">

<spml:data>

<dsml:attrname="objectclass">

<dsml:value>User</dsml:value>

</dsml:attr>

<dsml:attrname="ID">

<dsml:value>Hubert Staub</dsml:value>

</dsml:attr>

<dsml:attrname="Organization">

<dsml:value>DomainB</dsml:value>

</dsml:attr>

</spml:data>

</spml:addRequest>

The last step of our work consists of service specification that is grounded as
web service specification. For instance, interfaces defined in service views are
grounded according to the SPML web service standard in the case of provisioning
operations, while business operation are grounded into SOAP web services.

464 M. Hilia et al.

7 Related Work

In the recent years, services composition is a hot research topic especially in
ubiquitous computing and ambient intelligence. Most of the proposed approaches
have tackled services composition from two view point: (i) composition or assem-
bly of new application functionalities using planning or workflow approaches and
(ii) modeling and matchmaking users and services specifications using descrip-
tion logics and semantic web ontologies such as SA-WSDL, DAML-S/OWL-S,
WSMO, SWSL, etc. These ontologies provides composition applications with
the capability of discovering and invoking services automatically. These works
are discussed in several surveys [19,17]. Unfortunately, most of these approaches
is based on semantic representation that give no way to verify correctness of the
composition. Theorem proving based techniques are used to prove soundness and
correctness. [12] introduces a method for automatic composition of semantic Web
services using Linear Logic theorem proving for DAML-S services description.
In this approach, services are expressed by extra-logical axioms. Linear Logic,
as a resource conscious logic, enables people to define attributes of Web ser-
vices formally (including qualitative and quantitative values of non-functional
attributes). In addition, Linear Logic has close relationship with π-calculus,
which is the formal foundation of many Web service composition languages.
This idea of this work has motivated the work recently presented in[11]. This
approach is based on the proofs-as-processes paradigm originally introduced by
Abramsky, Bellin and Scott. In comparison to the work of [12], they preserved
the original theory of Bellin and Scott by using CLL in conjunction with the
standard polyadic π-calculus syntax. With respect to the application of BCDL
in service composition, [4] proposed BCDL0 formalization to proof the correct-
ness of the composition with regards to the service request. The Correctness can
be checked directly by verifying the applicability conditions of the composition
rules. However, using only the rules proposed in this work is insufficient in the
case of multi domain service composition. For instance, the lack of flow control
operators such as synchronization or simple merge makes impossible to formal-
ize most of the provisioning services. In our work we have extended their model
theory by adding the missing rules.

8 Conclusion and Future Work

In this paper, we proposed semantic framework for the multi-domain cooperative
provisioning services. This framework offers an integrated formalization model
that allows to specify services composition semantics and their corresponding
cooperation policy for multi domain environment. The model is built using the
basic constructive description logic BCDL. This logic is characterized by its cor-
rectness and soundness properties. In this paper, we exploit their computational
properties to proof the correctness of the cooperative provisioning services with
the regards to the established e-contact. The ongoing work, we are implement-
ing the proposed model by using ISABELLE theorem prover to automate the
verification of cooperation e-contract.

Semantic Service Composition Framework 465

References

1. Ayed, S., Boulahia, N.C., Cuppens, F.: Deploying access control in distributed
workflow. In: Proceedings of the Sixth Australasian Conference on Information
Security, AISC 2008, vol. 81, pp. 9–17 (2008)

2. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press (2003)

3. Bozzato, L.: Kripke Semantics and Tableau Procedures for Constructive Descrip-
tion Logics. PhD thesis, Università Degli Studi Dell’inubria (2009)

4. Bozzato, L., Ferrari, M.: A note on semantic web services specification and compo-
sition in constructive description logics. Journal of Syntax and Semantics (2010)

5. Ferrari, M., Fiorentini, C., Fiorino, G.: BCDL: Basic constructive description logic.
Journal of Automated Reasoning 44(4), 371–399 (2010)

6. Hafner, M., Breur, M., Breu, R., Nowak, A.: Modelling inter-organizational work-
flow security in a peer-to-peer environment. In: IEEE International Conference on
Web Services, pp. 533–540 (2005)

7. Hilia, M.: Methodology steps (2012),
https://dl.dropbox.com/u/12278812/icsoc/appendix/scenario_proof.pdf

(accessed July 30, 2012)
8. Hilia, M., Chibani, A., Amirat, Y., Djouani, K.: Cross-organizational cooperation

framework for security management in ubiquitous computing environment. In: Pro-
ceedings of the 23rd International Conference on Tools with Artificial Intelligence,
pp. 464–471 (2011)

9. Lin, D., Ishida, T.: Interorganizational workflow collaboration based on local pro-
cess views. In: Asia-Pacific Services Computing Conference, pp. 789–794. IEEE
Computer Society, Los Alamitos (2008)

10. Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K.,
Mcguinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
owl-s. Journal of World Wide Web Internet and Web Information Systems 10(3),
243–277 (2007)

11. Papapanagiotou, P., Fleuriot, J.: A theorem proving framework for the formal
verification of web services composition. In: Proceedings of the 7th International
Workshop on Automated Specification and Verification of Web Systems, pp. 1–16
(2011)

12. Rao, J., Küngas, P.: Logic-based web services composition: From service description
to process model. In: Proceedings of the International Conference on Web Services
(ICWS), pp. 446–453 (2004)

13. Reul, Q., Zhao, G., Meersman, R.: Ontology-based access control policy interop-
erability. In: Proc. 1st Conference on Mobility, Individualisation, Socialisation and
Connectivity, MISC (2010)

14. Roman, D., Toma, I.: A CTR-based approach to service composition patterns.
In: Third International Conference on Next Generation Web Services Practices,
NWeSP, pp. 13–18 (October 2007)

15. Russell, N., Ter Hofstede, A., Mulyar, N.: Workflow controlflow patterns: A revised
view (2006)

16. Sheng, Q., Benatallah, B., Maamar, Z., Ngu, A.: Configurable composition and
adaptive provisioning of web services. Journal of IEEE Transactions on Services
Computing 2, 34–49 (2009)

17. Stavropoulos, T., Vrakas, D., Vlahavas, I.: A survey of service composition in ambi-
ent intelligence environments. Journal of Artificial Intelligence Review, 1–24 (2011)

https://dl.dropbox.com/u/12278812/icsoc/appendix/scenario_proof.pdf

466 M. Hilia et al.

18. Troelstra, A.: Aspects of constructive mathematics. Journal of Studies in Logic
and the Foundations of Mathematics 90, 973–1052 (1977)

19. Urbieta, A., Barrutieta, G., Parra, J., Uribarren, A.: A survey of dynamic service
composition approaches for ambient systems. In: Proceedings of the First Interna-
tional Conference on Ambient Media and Systems, pp. 1–8 (2008)

20. Weigand, H., van den Heuvel, W.J.: Cross-organizational workflow integration us-
ing contracts. Decision Support Systems 33(3), 247–265 (2002)

21. Zhou, C., Tien Chia, L., Sung Lee, B.: DAML-QOS ontology for web services. In:
Proceedings of the IEEE International Conference on Web Services, ICWS 2004,
pp. 472–479 (2004)

Appendix: Methodology Steps

Given the cooperation environment ECooperation defined by the services, and the
flow control rules of PC. We define the new process CoachingAndMonitoring
as the composition Π of the states specifications. The behavior of this process is
defined as follows: The coaching platform domain uses the Request service (Ser-
vice Composition Π1), to query the provisioning target (The Robot) to localize
the patient and then to move until his position. It first invokes the Request
service, then he proceeds for localizing the patient by using Localise service,
Afterwards, he moves into the patient by calling Move service. The service
ProposeActivity proposes to the patient to requested Request. The answer of
the sequence composition of these services is then combined by ProposeActivity
service (Service Composition Π4) which propose the activity to the patient.
Then ProcessActivity (Π5) by means of an Exclusive Choice rule of two ser-
vices. The proposed action is then refused, or it is accepted. In the last case,
an accepted proposal action is generated and the rehabilitation program is
added to the patient daily activities. The program is then processed by the
ProcessP lanningSupervision (Π7) service. This service triggers the parallel
execution of the V ideoRecording service and the SensorsDataRetreival ser-
vice. The latter produces a recording data of the specified target. These services
must be synchronized before doing the rest of the composite service. Thus, the
DoActivitySynthesis (Π8) is specified by using synchronization flow control
rule. This service serializes and protects these data and notifies the coach with
the successful end of the request process. Then this data is notified to the coach
by using the service ProcessRecordingData (Π9).

Now let discuss how the composite process computes information terms by
explaining a sample execution. Let action be a coach request represented by the
concept CoachRequest with the associated provisioning action prvg action.

Π :: CoachingAndMonitoring Service Then, a call to the
CoachingAndMonitoring service over action has as input information
term :

α1 = (tt, (prvg action, tt)) ∈ ITN (x : Pre(CoachingAndMonitoring))

Following the composition Π , the execution of CoachingAndMonitoring service
starts with the sequence rule, and the first invoked service is :

Semantic Service Composition Framework 467

Π1 : Request (ProvisioningAction : action) ::
CoachRequest � ∃ hasProvisioningAction.ProvisioningAction
=⇒ (AcceptedProvisioningAction � ∃ hasProgram.Program)� RefusedAction

Π1 : Request Service This service process the information term α1. Let suppose
that the domainB accepts the provisioning request and produces the program
program for the patient patient1. The provisioning action is codified in the
information term :

β1 = ΦRequest(tt, (prvg action, tt)) ∈ ITN (x : Post(Request)). Let us assume
that β1 has the following form : β1 = (2, (tt, (program1, (tt, (program person1,
tt))))). Where program person1 represents the concerned person or (Target) by
the program. The execution of the Request service is forwarded by the Localize
service execution.

Π2 : Localize(Object) ::
LocalizationAction � ∃ isLocalizable.Object=⇒Target� ∀ hasLocation.Position

This service performs a localization action, it needs a target to be localized.
As result, it generates the objects target with its associated position.

Π2 : Localize Service. According to the applicability conditions of the Se-
quence rule, we have the proof : π1 :: TCooperation, x : Post(Request) BCDL0

x : Pre(Localize). The corresponding operator φπ1

N allows us to extract from β1
the information term α2 such that :

α2 = (tt, (program person1, tt)) ∈ ITN (x : Pre(Localize)). The Localize
service consists of generating the position of the specified target, In this case, the
target is the patient. The position of this target is codified in the information
term : β2 = ΦLocalize((tt, (program person1, tt)) ∈ ITN (x : Post(Localize)).
Let assume that β2 has the following form : β2 = (tt, (position program person1,
tt)).

Now, let consider the applicability condition of the sequence rule, in particular :
π2 :: TCooperation, x : Post(Localize) BCDL0

x : Pre(Move). The correspond-
ing operator φπ2

N allow us to extract from β2 the information term α3 such that:
α3 = (tt, (position program person1, tt)) ∈ ITN (x : Pre(Move)). After

that, the execution of the Move service is occurred. For the lack of space, the
rest the formal validation is detailed in [7].

Sparse Functional Representation
for Large-Scale Service Clustering

Qi Yu

College of Computing and Information Science,
Rochester Institute of Technology

qi.yu@rit.edu

Abstract. Service clustering provides an effective means to discover
hidden service communities that group services with relevant function-
alities. However, the ever increasing number of Web services poses key
challenges for building large-scale service communities. In this paper,
we address the scalability issue in service clustering, aiming to discover
service communities over very large-scale services. A key observation is
that service descriptions are usually represented by long but very sparse
term vectors as each service is only described by a limited number of
terms. This inspires us to seek a new service representation that is eco-
nomical to store, efficient to process, and intuitive to interpret. This new
representation enables service clustering to scale to massive number of
services. More specifically, a set of anchor services are identified that al-
low to represent each service as a linear combination of a small number
of anchor services. In this way, the large number of services are encoded
with a much more compact anchor service space. We conduct extensive
experiments on real-world service data to assess both the effectiveness
and efficiency of the proposed approach. Results on a dataset with over
3,700 Web services clearly demonstrate the good scalability of sparse
functional representation.

1 Introduction

Service oriented computing holds tremendous promise by exploiting Web services
as an efficient vehicle to deliver and access various functionalities over the Web.
The past few years have witnessed a fast boost of Web services due to the
wide adoption of service-oriented computing in both industry and government.
The proliferating services have formed a functionality-centric repository, through
which key computing resources can be conveniently accessed via the standard
Web service interface. However, the ever increasing number of Web service poses
key challenges to discover services with user required functionalities. A rigorous
and systematic methodology is in demand for efficiently and accurately searching
user desired services from a large and diverse service repository.

Universal Description Discovery and Integration (UDDI) provides a standard
registry service to publish and discover Web services. To make a service search-
able, the service provider needs to first publish its service in the UDDI registry.
Nonetheless, as service providers are autonomous in nature, it is infeasible to en-
force them to publish their services in the registry. In fact, most service vendors

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 468–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sparse Functional Representation for Large-Scale Service Clustering 469

choose to directly advertise their services via their own web sites. Furthermore,
when change occurs to a published service, the service entry in the UDDI may
need to be updated to ensure consistency. This gives rise to additional main-
tenance cost for service providers. Recent statistics show that more than 50%
services in the public UDDI registries are invalid.

Service search engines have gained increasing popularity by automatically col-
lecting service descriptions using crawlers. Service descriptions are then indexed
and matched against user’s searching keywords. One key impediment towards
the wide adoption of service search engines has been the poor search quality
resulted from simple keyword matching. While keyword matching may perform
reasonably well on regular Web pages, it suffers from service descriptions, which
are usually generated from application programs using Web service deployment
tools. Many service descriptions are comprised of very limited number of terms,
most of which are not proper words. Therefore, there is a low chance for a service
description to match a searching keyword even though the service may provide
the exact user-desired functionality.

Clustering techniques have been adopted to improve the quality of service
discovery [5,16,3]. Service clustering computes the similarity among services to
group together relevant services into homogeneous service communities. Clus-
tering enables services to be discovered by exploiting the proximity to other
services. Consider two similar services, S1 and S2, where S1 contains the search-
ing keyword while S2 does not. Through service clustering, both S1 and S2 will
be returned as they are deemed to provide similar functionality desired by the
user. In this way, the search quality can be dramatically improved. Furthermore,
service discovery can be directed to only relevant service communities so that
more efficient performance is achieved.

As the number of services keeps increasing, building service communities over
large-scale Web services arises as a central challenge. Following traditional docu-
ment clustering, each service description si is denoted by a term vector, in which
si(j) is set to the normalized frequency (or other metrics such as TF/IDF) of tj if
tj ∈ si and 0 otherwise. The length of si is equal to the size of the term dictionary,
which consists of the distinct terms over all service descriptions. Most service
descriptions are generated from program source codes, where various naming
conventions may be used by different developers. This results in a large number
of distinct terms especially when scaling to a massive number of services. For ex-
ample, in one of the real service dataset used in our experiments [18], we extract
around 17,000 distinct terms from over 3,700 service descriptions. However, each
service description only consists of 20 distinct terms on average. Therefore, the
term vector si will be very large and extremely sparse (density is around 0.1%
in our dataset) when dealing with large-scale services.

Simple clustering algorithms, such as K-means, scales well with the number
of services. The similarity between two term vectors is usually computed based
on the number of terms that co-occur in these two vectors. However, directly
applying these algorithms to large-scale service clustering usually leads to poor
clustering quality because the term vectors for service descriptions are extremely

470 Q. Yu

sparse and hence less likely to share common terms. Advanced algorithms, such
as matrix factorization based ones (e.g., SVD co-clustering [17] and NMTF [4]),
have been demonstrated to be more effective in dealing with limitations of service
descriptions and generate high-quality service communities. However, it remains
unclear how these algorithms can handle extremely large and sparse term vectors.
In addition, the high computational cost also prohibits them from scaling to a
massive number of services.

In this paper, we address the scalability issue in service clustering, aiming
to discover service communities over very large-scale services. The central idea
is that instead of using a large and highly diverse dictionary of terms, we seek
a much more succinct representation of service descriptions. Inspired by recent
works on sparse coding [8,19], we devise a novel strategy to learn a set of “anchor”
services, which form a new dictionary to encode the service descriptions. This
allows each service to be represented as a linear combination of a small num-
ber of anchor services. In general, the number of anchor services is smaller than
the number of distinct terms with several orders of magnitude. Hence, the large
number of services are encoded with a much more compact dictionary of an-
chor services. The new representation is essentially a projection onto the anchor
service space. Similarity between services is determined based on how they are
related to a small number of anchor services. Simple clustering algorithms, like
K-means, can then be applied to this compact representation to efficiently and
accurately cluster large-scale services. We demonstrate the effectiveness of the
proposed algorithm via extensive experiments on two real-world service datasets.

The remainder of the paper is organized as follows. We discuss some related
works in Section 2, which provide a background overview of the proposed ap-
proach. We present the details of sparse functional representation in Section 3.
We use a concrete example to explain how sparse functional representation works
and provide intuitive justifications of its effectiveness. We also propose a novel
clustering scheme that integrates information from both the anchor service space
and the term vector space. We apply sparse functional representation to two real-
world service datasets and assess its effectiveness in Section 4. We conclude the
paper and provide some future directions in Section 5.

2 Related Work

Service clustering and related technologies have been increasingly adopted to
facilitate service discovery [5] or other key tasks in service computing, such as
service composition [10] and service ontology construction [13].

Clustering has been a central technique to improve the accuracy of service
search engines. Woogle, a Web service search engine, performs term clustering
to generate a set of high-level concepts, which are then used to facilitate the
matching between users’ queries and the service operations [5]. Similarly, term
clustering is also used in [10] to facilitate service discovery and composition.
Basic K-means algorithms are usually used and the similarity between terms
are evaluated based on their co-occurrence in the service descriptions. Quality

Sparse Functional Representation for Large-Scale Service Clustering 471

Threshold (QT) clustering is employed to cluster Web services in [6] to boot-
strap the discovery of Web services. WSDL descriptions are carefully parsed and
important components are extracted, which include content, types, messages,
ports, and name of the Web service. Weights are assigned to each component
when similarity between two services is evaluated. More complicated algorithms,
such as Probabilistic Latent Semantic Analysis (PLSA), have also been applied
to service clustering and discovery [12]. A SVD based algorithm is adopted to
achieve the co-clustering of services and operations in [17]. Co-clustering ex-
ploits the duality relationship between services and operations to achieve better
clustering quality than one-side clustering.

Given the limitations of the WSDL service descriptions, some recent propos-
als seek to explore external information sources, such as Wordnet 1 and Google,
to improve service clustering and discovery [9,1]. In [16], matrix factorization
and the semantic extensions of service descriptions have been integrated for ser-
vice community discovery. The integration has the effect of placing the extended
semantics into the context of the service, which more effectively leverages the
extended semantics to benefit community discovery. As Web services usually
consist of both WSDL and free text descriptors, novel approaches have been de-
veloped in [13] to integrate both types of descriptors for effective bootstrapping
of service ontologies. Another important piece of information that is complemen-
tary to service descriptions is the service tags that users use to annotate services.
A novel approach, referred to as WTCluster, is developed in [3] that exploits
both WSDL documents and service tags for Web service clustering.

3 Sparse Functional Representation for Service
Clustering

Sparse functional representation aims to seek a compact dictionary of anchor
services to succinctly represent large-scale services. Consider a set of services
S = {s1, ..., sm}, where each si ∈ Rn is denoted as a term vector and n is the
size of the term dictionary that is comprised of all distinct terms extracted from
the services in S. By mapping terms into rows and services into columns, S is
conveniently represented by a two dimensional service matrix X ∈ Rn×m. Each
entry Xij ∈ X is set to the normalized frequency of term ti in service sj and
zero if ti /∈ sj. Table 1 provides a quick reference to a set of symbols that are
commonly used in the paper.

As discussed in Section 1, due to the diverse naming conventions used in ser-
vice descriptions, the size of the term dictionary increases dramatically with the
number of services in S. This will result in a huge and extremely sparse matrix X.
For example, in our experiments, a 16, 884 × 3, 738 matrix is constructed from
a real-world service dataset with 3, 738 services. X consists of approximately
6.3×108 entries, among which only 0.1% are nonzero, implying a 99.9% sparsity
ratio. This poses a set of key challenges for clustering large-scale services. First,

1 http://wordnet.princeton.edu/

472 Q. Yu

Table 1. Symbols and Descriptions

Symbol Description
S set of services
sj , ti the jth service and ith term
X,A,W, Z matrices
X′ the transpose of matrix X

Xij the element at the ith row and jth column of matrix X

xj the j-th column vector of matrix X

xj(i) the i-th element of xj

xT
i the i-th row vector of matrix X

scalability arises as a significant challenge for storing and processing a large ser-
vice matrix whose size grows quickly with the number of services. Second, the
highly sparse term vectors are a key impediment for applying many clustering
algorithms to generate high-quality clusters as sparse vectors are less likely to
share common terms.

3.1 Sparse Functional Representation

The above observation implies that a large and diverse term dictionary does
not provide a suitable representation for large-scale service clustering. Instead,
concepts with coarser granularity may be more instrumental to produce a com-
pact and cohesive service representation. Hence, we aim to seek a new service
representation that is economical to store, efficient to process, and intuitive to
interpret. This new representation will enable service clustering to scale to mas-
sive number of services. Inspired by recent advances in sparse coding [8,19], we
devise a novel sparse functional representation (SFR) strategy to discover a set
of so called “anchor services”. The anchor services are expected to capture the
high-level functionalities of services while significantly compressing the original
term vector space. More specifically, SFR seeks a matrix A = {a1, ...,ak}, where
each ai ∈ Rn denotes an anchor service and is a linear combination of a set of
term vectors (or columns of X):

A = {a1, ...,ak} = XW (1)

ai = Xwi =
m∑

j=1

Wijxj , ∀i = 1, ..., k (2)

where W = {w1, ...,wk} ∈ Rm×k is a weight matrix. Each entry Wij denotes
how much service sj contributes to anchor service ai. It is worth to note that Wij

may take a negative value, meaning that sj related information is removed from
ai. Hence, a negative entry in W serves as the “de-noise” purpose to generate
an anchor service with purer functionality or concept.

In practice, we have k � n. Hence, the anchor services provide a compact
way to represent large-scale services. The desired anchor services are expected

Sparse Functional Representation for Large-Scale Service Clustering 473

to capture high-level concepts or functionalities of the service space. Thus, we
should be able to recover the original services by using the anchor services.
Meanwhile, as most services are designed with specific purposes, it is common for
a single service to provide focused and limited functionalities. In another word,
a service is expected to be only related to a small subset of anchor services that
cover its functionalities. Therefore, a desired anchor service set should optimize
the following objection function:

min
A,zi≥0

J0 =
m∑

i=1

‖xi − Azi‖2 + λ||zi||0 (3)

subject to ||aj ||2 ≤ c, ∀j = 1, ..., k

where zi ∈ Rk
+ is the coefficient vector with zi(j) signifying the correlation

between xi and anchor service aj . ||zi||0 is the L0 norm of zi that counts the
number of nonzero elements in si. Since each service is expected to correlate with
only a small subset of anchor services, zi with many nonzero elements will be
penalized and λ is the penalty parameter. Therefore, the second term of Eq. (3)
corresponds to a sparsity constraint on zi. The norm constraint on the size of
the anchor service, i.e., ||aj ||2 ≤ c, avoids arbitrarily large anchor services that
keep Azi unchanged while making zi arbitrarily close to zero.

It is worth to note that zi is non-negative, which allows more intuitive in-
terpretation of the proposed sparse functional representation. More specifically,
the functionality of each service is represented as an additive combination of
functionalities encoded by a small number of anchor services.

3.2 Relaxation of the Objective Function

It has been proved that finding A and si that optimize objective function in
Eq. (3) is NP-hard [19]. Therefore, instead of directly solving Eq. (3), we tackle
the following optimization problem with a relaxed constraint:

min
W,S≥0

J1 = ‖X− XWZ‖2
F + λ

m∑
i=1

||zi||1 (4)

subject to ||Xwj ||2 ≤ c, ∀j = 1, ..., k

where ||Y||F =
∑

ij

√
Yij stands for Frobenius norm; zi is the i-th column of

Z ∈ Rk×m; ||zi||1 =
∑k

j=1 |Zji| is the L1 norm of zi. We replace A and aj by
XW and Xwj , respectively, due to Equations (1) and (2).

The first term of J1 is equivalent to the first term of J0 reformulated in the
matrix form. The key difference between J0 and J1 is the change from the L0

norm of zi to the L1 norm. The relaxed optimization is in essence to minimize
a quadratic function with a L1 norm constraint on zi and a L2 norm constraint
on aj . The optimization problem in the form of Eq.(4) is commonly known as
basis pursuit, which has been demonstrated to be effective in finding sparse co-
efficient vectors (i.e., zi’s). Therefore, the solution of J1 is expected to provide a

474 Q. Yu

good approximation to the optimal solution of J0. Furthermore, the relaxed op-
timization problem is computational attractive, which can be efficiently tackled
by iteratively solving a L1 regularized least squares problem and L2 regularized
least square problem to obtain Z and W, respectively [8].

3.3 An Illustrating Example

In what follows, we use a simple example to further illustrate the key ideas of
SFR as presented above. We randomly choose six services from a real-world
service dataset, in which three services are from the travel domain and the
other three are from the medical domain. Processing the service descriptions
results in 12 distinct terms. Hence, a 12×6 service matrix X is constructed. The
transpose of X is given in Eq. (5) for the convenience of presentation, in which
each row denotes a service and each column denotes a distinct term. Each entry
corresponds to a term frequency and each row vector is further normalized to
have L2 norm equal to 1.

X′ =

⎛
⎜⎜⎜⎜⎜⎝

0.29 0.29 0.86 0.29 0.096 0 0 0 0 0 0 0
0.26 0.26 0.61 0.26 0.088 0.61 0.18 0 0 0 0 0
0.33 0.33 0.33 0.33 0.11 0 0 0.33 0.66 0 0 0
0 0 0 0 0.092 0 0 0 0 0.55 0.83 0
0 0 0 0 0.092 0 0 0 0 0.55 0 0.83
0 0 0 0 0.092 0 0 0 0 0.55 0 0.83

⎞
⎟⎟⎟⎟⎟⎠ (5)

It is clear from Eq. (5) that even for a small service set with just six services, the
service matrix X is already very sparse. There are around 60% (42 out of 72)
zero entries. The sparsity ratio will increase dramatically when the set scales to
a large number of services.

We set the number of anchor services as 4 (i.e., k = 4) and solve the relaxed
optimization problem in Eq. (4), which leads to:

W =

⎛
⎜⎜⎜⎜⎜⎝

−0.12 0.4 0.37 0.14
−0.13 0.39 0.35 0.15
−0.14 0.31 0.34 0.17
0.55 −0.17 0.26 0.098
0.32 −0.12 −0.19 0.44
0.3 −0.12 −0.2 0.44

⎞
⎟⎟⎟⎟⎟⎠ , Z =

⎛
⎜⎝

0 0 0 0.24 0.22 0.21
0.23 0.23 0.2 0 0 0
0.27 0.26 0.24 0.13 0.0087 0.0054
0.26 0.26 0.26 0.26 0.42 0.42

⎞
⎟⎠
(6)

The i-th column of Z (i.e., zi) corresponds to the new representation of the i-th
service (i.e., i-th row of X′ in Eq. (5)) in the anchor service space. As expected, Z
has a sparse structure, which justifies the effectiveness of L1 norm approximation
of the original optimization problem. The first three columns of Z imply that
the first three services are only relevant to the last three anchor services. In
contrast, the other three services, which correspond to the last three columns of
Z, are tightly coupled with the first and last anchor services (the third entries of
these three columns are close to zero). All entries in Z are non-negative, which

Sparse Functional Representation for Large-Scale Service Clustering 475

allows functionality of each service to be represented as an additive combination
of functionalities encoded by a small number of relevant anchor services.

Some interesting observations are also revealed from the weight matrix W.
These observations demonstrate that the interplay between the weight matrix W
and the coefficient matrix Z helps achieve the effectiveness of SFR. For example,
the first three entries of w1 (i.e., the first column of W) take negative values.
These negative entries imply that information related to the first three services
are removed from the first anchor service a1. Therefore, a negative entry Wij has
the effect of “decoupling” the i-th service from j-th anchor service. In contrast,
a positive entry Wij signifies the “addition” of the i-th service’s functionality to
the j-th anchor service. The decoupling and addition mechanism helps discover
cohesive concepts or service functionalities that are captured by the anchor ser-
vices. It also leads to unambiguous service-to-anchor service relationships. For
example, zT

1 , the first row of the coefficient matrix Z, consists of three zero and
three nonzero entries. This implies that the first three services are completely
irrelevant to anchor service a1 whereas the last three are tightly coupled with
a1. In fact, the three zero entries are resulted from the first three entries in w1,
which decouple the first three services from a1. The three nonzero entries are
due to the last three entries of w1 that add the functionalities of the last three
service into a1. Similarly, the second row of Z shows that the first three services
are relevant to anchor service a2 while the last three service are irrelevant to it.

3.4 Clustering in Anchor Service Space

By optimizing objection function J0 or its relaxed version J1, we aim to find an
anchor service set A and a new sparse representation zi to best approximate xi:

xi ≈ Azi =
k∑

j=1

ajZji (7)

Therefore, the new representation zi can be regarded as the projection of xi

onto the anchor service space A = {a1, ...,ak}. The coefficient vector zi cap-
tures the relevance between the i-th service and all the k anchor services. The
sparsity constraint on zi leads to clear-cut relationships between a service and
anchor services. Hence, services can be easily separated based on their distinct
relationships with the anchor services using sparse functional representation.

Figure 1 provides a schematic view of service clustering in the anchor service
space. Since each service is only related to a small subset of anchor services, the
similarity between two services can be easily computed based on how they are
related to the anchor services. More specifically, two services are similar if they
are related to a similar set of anchor services. Therefore, the anchor services serve
as a bridge to relate different services. Since the anchor services capture the high-
level concepts of the services, projection onto the anchor service space provides
a better way to assess the similarity between services than using terms. The
sparsity constraint on the coefficient vectors provides a clear separation between
services, which significantly facilitates service clustering. Any simple clustering

476 Q. Yu

a1 a2

s1

s2

s3

ak-1 ak

sm-2

Z11

Z 1
2

Anchor Service Space

Z21

Z
23

Z 22

Z
13

sm-1

sm

Z (
k-

1)
(m

-2
)

Z
(k-1)(m

-1)

Z
k(m

-1)

Z
km

Cluster Cluster

Fig. 1. Clustering in Anchor Service Space

algorithms, such as K-means, may be directly applied to the coefficient matrix
Z to generate service clusters. Meanwhile, the anchor service space has a much
low dimensionality than the term vector space (i.e., k � n), clustering in the
anchor service space can easily scale to a massive number of services.

3.5 Term Vector and Anchor Service Integration
Sparse functional representation is formed by projecting term vectors xi’s onto
an anchor service space. Service clustering is then performed on the projected
representation, which is independent on the original term vector space. In this
section, we present a new clustering scheme that integrates information from
both the anchor service space and the term vector space.

One piece of information in the term vector space that can be leveraged is the
term vectors that share a decent number of distinct terms. If two term vectors
have a reasonable number of common terms, it means that they share similar
high-level concept and hence should be clustered together. This useful infor-
mation can be incorporated into anchor space clustering in a semi-supervisory
manner to improve the overall clustering quality. More specifically, we construct
a neighborhood graph G, in which each vertex corresponds to a term vector
xi ∈ X. Two vertices xi and xj are connected in G if the similarity between xi

and xj is no less than a threshold value. The similarity can be simply computed
by using cosine similarity. Assume that B is the incidence matrix of G. There-
fore, Bij = 1 if xi and xj are connected in G (i.e., similar to each other) and 0
otherwise. We expect B to be sparse as it is less likely for most term vectors to
share many common terms.

Consider any pair of term vectors xi and xj and their corresponding sparse
functional representations zi and zj . If xi and xj are similar, we expect zi and
zj to be similar as well. In contrast, if zi and zj significantly deviate from each
other, ||zi − zj ||2Bij will be large as Bij = 1 when xi and xj are close in the
term vector space. Therefore, we can use ||zi − zj ||2Bij as a penalty term and
incorporate it into objection function J1, which leads to

min
W,S≥0

J2 = ‖X − XWZ‖2
F + λ

m∑
i=1

||zi||1 + γ

m∑
i=1

m∑
j=1

||zi − zj ||2Bij (8)

subject to ||Xwj ||2 ≤ c, ∀j = 1, ..., k

Sparse Functional Representation for Large-Scale Service Clustering 477

where γ is the penalty parameter. It is worth to note that if xi and xj are not
evaluated to be similar, we have Bij = 0. In this case, the term ||zi − zj ||2Bij is
set to 0 and will not affect the objective function J2.

4 Experimental Study

We apply the proposed SFR to two real-world service datasets. To evaluate its
effectiveness in service clustering, we will compare our approach with a set com-
petitive service clustering algorithms. As both clustering quality and efficiency
are important evaluation metrics, we will report both clustering accuracy and
CPU times in our experimental results.

4.1 Service Dataset Description

We include two real-world service datasets: one middle scale dataset with 452
services [7] and one large-scale dataset with 3,738 services [18]. We describe the
properties of each dataset in what follows:

– Dataset_1: The first service dataset consists of 452 WSDL descriptions of
services from 7 different application domains. More specifically, the services
are distributed as follows: communication (42), education (139), economy
(83), food (23), medical (45), travel (90), and weapon (30). The domain
information provides labels of the service clusters, which will be used to
evaluate the accuracy of the clustering algorithms in our experiments.

– Dataset_2: The second service dataset consists of WSDL descriptions of
3,738 services located in more than 20 countries. The services are more di-
verse and complicated, coming from a large number of domains varying from
government to academia and industry. Unlike Dataset_1, no cluster labels
are available in this dataset.

4.2 Metrics for Clustering Quality

For Dataset_1, the service domains will serve as the ground truth to evaluate
the clustering quality. More specifically, we adopt two metrics to measure the
service clustering quality: ACcuracy (i.e., AC) and Mutual Information (i.e.,
MI). Both AC and MI are widely used metrics to assess the performance of
clustering algorithms [15,2]. For Dataset_2, since no true service cluster labels
are available, we cannot use the above two metrics to evaluate clustering quality.
Instead, we choose to use the Silhouette Value (i.e., SV), which is a commonly
used metric for clustering quality evaluation when no ground truth is available.

– Accuracy: For a given service si, assume that its cluster label is ci and
its domain label is di based on the domain information. The AC metric is
defined as follows:

AC =
∑m

i=1 δ(di, map(ci))
m

(9)

478 Q. Yu

where m is the total number of Web services in the service dataset. δ(x, y)
is the delta function that equals to one if x = y and equals to zero if other-
wise. map(ci) is the permutation mapping function that maps each assigned
cluster label to the equivalent domain label. The best mapping between the
two sets of labels is achieved by the Kuhn-Munkres algorithm [11].

– Mutual Information: Let D be the set of application domains obtained
from the service dataset and C be the service clusters obtained a service
clustering algorithm. The mutual information metric MI(D, C) is defined as
follows:

MI(D, C) =
∑

di∈D,cj∈C
p(di, cj) log2

p(di, cj)
p(di)p(cj)

(10)

where p(di) and p(cj) are the probabilities that a randomly selected service
from the service set belongs to domain di and cluster cj , respectively. p(di, cj)
is the joint probability that the randomly selected service belongs to both
domain di and cluster cj .

– Silhouette Value: The silhouette value for service si measures how similar
that si is to the services in its own cluster compared to services in other
clusters, and ranges from -1 to +1. More specifically, SV is defined as the
average over the silhouette values of all services:

SV =
∑m

i=1 SVi

m
(11)

SVi =
(bi − ai)

max(ai, bi)
(12)

where SVi is the silhouette value for the i-th service si; ai is the average
distance from si to the other services in the same cluster as si, and bi is the
minimum average distance from si to services in a different cluster, mini-
mized over clusters. Therefore, SV essentially measures the “cohesiveness”
of the clusters.

4.3 Clustering on Dataset_1

Before running any service clustering algorithms, we need to preprocess the ser-
vice descriptions in Dataset_1. We apply a standard text processing procedure
that includes tokenization, stopword removal, and stemming to extract distinct
terms from the service descriptions. As a result, 803 distinct terms are extracted.
Thus, a 803 × 452 service matrix X is constructed. We compare the proposed
SFR based clustering with the following service clustering algorithms:

– NMTF: Non-negative matrix tri-factorization based approach to simulta-
neously cluster services and operations offered by the services [4].

– NMTFS: Extending service descriptions by including semantically similar
terms to address the sparsity issue and then applying NMTF to the extended
service descriptions [16].

Sparse Functional Representation for Large-Scale Service Clustering 479

Table 2. Clustering Results on Dataset_1

Algorithms Quality Performance
Accuracy (%) Mutual Information (%) Silhouette Value CPU time (s)

NMTF 51.1 48.0 0.28 17.9
NMTFS 56.6 46.5 0.28 19.0
KmeanS 42.7 21.2 -0.1 33.0
SVDC 45.3 36.3 0.22 0.9
SFR 60.4 56.6 0.7 19.1

– KmeanS: Applying K-means clustering to the semantically extended service
descriptions.

– SVDC: Applying Singular Value Decomposition (SVD) to co-cluster ser-
vices and operations they offers [17].

We set the number of anchor services as 30, i.e., k = 30. The two penalty
parameters λ and γ in objection function J2 are set to 1 and 0.1, respectively.
These will be used as default parameter values in our experiments unless specified
otherwise. It is worth to note that a wide range of values work reasonably well
for these parameters. We will investigate the impact of different parameters in
Section 4.5.

Table 2 reports both clustering quality and CPU times from all the algo-
rithms under comparison. The clustering quality is evaluated using all the three
evaluation metrics described in Section 4.2. SFR clearly outperforms all other
competitors in terms of clustering quality. It achieves 60.4% in clustering accu-
racy, which is 7% better than the second highest accuracy achieved by NMTFS.
In terms of mutual information, it is 17.9% better than second best, NMTF.
The results on silhouette value are pretty much consistent with those on accu-
racy and mutual information. SFR achieves a silhouette value at 0.7, which is
much higher than all other algorithms. This demonstrates that sparse functional
representation provides good separation between similar services and dissimi-
lar ones, which makes service clustering much easier. A higher silhouette value
signifies that the generated clusters are more cohesive.

In terms of performance, the CPU time used by SFR is similar to other matrix
factorization based clustering algorithms, including NMTF and NMTFS. This
is reasonable for a middle scale service dataset especially when the number of
distinct terms are relatively small. It is worth to note that the time for SFR
includes both finding the anchor service set and performing clustering in the
anchor service space. In fact, most time is spent on former as clustering in
SFR is just applying K-means to a compact sparse functional representation of
the service space. SVDC achieves a very fast response time, which is only 0.9
second. This is because it computes a service-operation correlation matrix in
order to perform co-clustering. Since the number of operations is much less than
the number of terms, SVDC actually works on a much smaller matrix, which
justifies its fast performance. Nonetheless, the poor clustering quality of SVDC
implies that the service-operation correlation matrix does not provides a good
representation for service clustering.

480 Q. Yu

Table 3. Clustering Results on Dataset_2

Algorithms Quality CPU time (s)
Silhouette Value Construction Clustering

NMTF 0.05 - 359.9
PKmeans 0.31 - 3.97
Kmeans 0.21 - 3.23
SVDC NaN - 1131.3
SFR 0.38 367.3 2.7

4.4 Clustering on Dataset_2

We adopt the same standard text processing procedure to process the 3, 738 ser-
vice descriptions in Dataset_2, which results in 16, 884 distinct terms. There-
fore, a 16, 884 × 3, 738 service matrix X is constructed. Each term vector has
a dimensionality of 16, 884. Before applying any clustering algorithms on such
high dimensional data, a common practice is to first reduce the dimensionality.
Thus, we employ Principle Component Analysis (PCA) to reduce the dimen-
sionality to 64. It is also worth to note that algorithms, such as NMTFS and
KmeanS, require to perform semantic extensions on each distinct term. This will
lead to a huge term dictionary for a large service set, like Dataset_2. The re-
sultant service matrix will be several orders larger than X. To avoid prohibitive
computational cost, we are not including NMTFS and KmeanS for comparison.
Instead, we add another two algorithms into the mix:

– Kmeans: Directly applying Kmeans clustering to the terms vectors in X.
– PKmeans: Applying Kmeans after PCA dimensionality reduction.

Since there are no cluster labels for Dataset_2, we only use silhouette value to
evaluate clustering quality. We set the number of clusters to 30. The number of
anchor services is set to 128 and all other parameters take their default values
for SFR.

Table 3 reports the clustering result on Dataset_2. In terms of clustering
quality, SFR achieves the highest silhouette value among all the algorithms.
This is consistent with the results from Dataset_1. It is also worth to note
that SVDC fails to converge after spending over 1, 000 seconds, so no silhouette
value is computed. For the CPU times, we record both the construction time
that is used to discover the anchor services and the clustering time for SFR.
Even though SFR uses relatively long time (which is similar to the clustering
time used by NMTF) for anchor service discovery, it achieves the best clustering
time. The fast clustering performance of SFR further justifies that sparse func-
tional representation indeed makes clustering easier. Once the anchor space is
discovered, it can be stored and reused. Therefore, for large-scale service clus-
tering, anchor services can be first discovered offline and then service clustering
can be performed in realtime to meet different user requirements on number of
clusters, distance metrics, clustering algorithms, and so on.

Sparse Functional Representation for Large-Scale Service Clustering 481

10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

k

C
lu

st
er

in
g

 q
u

al
it

y

Effect of k

MI
AC
SV

0 0.02 0.04 0.06 0.08 0.1 0.12
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

λ

C
lu

st
er

in
g

 q
u

al
it

y

Effect of λ

MI
AC
SV

10
−2

10
−1

10
0

10
1

10
2

10
3

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

γ

C
lu

st
er

in
g

 q
u

al
it

y

Effect of γ

MI
AC
SV

Fig. 2. Impact of Parameters

4.5 Impact of Parameters

We investigate the impact of different parameters in this section, including the
number of anchor services (i.e., k), and the two penalty parameters (i.e., λ and
γ). We vary one of these three parameters while keeping the other two fixed at
their default values. Figure 2 shows how different parameters affect the clustering
quality in Dataset_1.

Accuracy and mutual information always vary in a similar way with the
changes of parameters. Both accuracy and mutual information reach their re-
spective highest values when k = 40, λ = 0.1, and γ = 1, respectively. The
silhouette value, on the other hand, varies differently with accuracy and mutual
information. First, the SV value decreases as k increases. Recall that in SFR,
services are clustered based on their relationships with the anchor services. The
sparsity constraint forces services to be only related to a small subset of the
anchor services. Therefore, when k is small, the sparse representation of a ser-
vice will “concentrate” on a small number of anchor services. This will lead to
very compact and cohesive clusters. Therefore, SV will decrease as k increases.
Similar explanation is applied to the impact of λ, which enforces the sparsity
constraint. Increasing λ will make zi’s more sparse, which has the effect of mov-
ing services closer to the relevant anchor services and further away from less
relevant ones. This will also produce more cohesive clusters. Therefore, SV in-
creases as λ increases. Instead of monotonically decreasing or increasing as with
the increase of k and λ, the SV value reaches it peak value when γ is 100 and
then decreases when γ increases further. In contrast, accuracy and mutual infor-
mation reach their peak values when γ = 1. The discrepancy may be due to that
the domain definition of the service set is not in line with the cohesiveness of the
service clusters. For example, some services may be cross-domain in nature but
assigned to a domain that is inconsistent with the clustering result.

The results on Dataset_2 show very similar patterns as those of Dataset_1
(in term of SV values because only SV values are reported for Dataset_2).
Therefore, we skip the presentation of the results to avoid repetition.

5 Conclusion and Future Directions

We present Sparse Functional Representation (SFR), a novel service represen-
tation scheme, which is economical to store, efficient to process, and intuitive

482 Q. Yu

to interpret. SFR projects long and sparse term vectors onto an anchor service
space, which consists of a small number of anchor services. The similarity be-
tween services is encoded by their proximity to the anchor services. The sparsity
constraints enforce that each service is only related to a small subset of anchor
services. This has the effect of moving services closer to the relevant anchor
services and further away from irrelevant ones. These key features significantly
facilitate large-scale service clustering. Comprehensive experiments on two real-
world service datasets clearly demonstrate the effectiveness of SFR and its ability
to scale to a large number of services. An interesting future direction is to further
improve the construction performance of SFR. We plan to apply the recently de-
veloped low-rank approximation techniques, such as Colibri [14], to filter nearly
duplicate or linearly dependent term vectors from the service matrix X. Low-
rank approximation allows SFR to work on a much smaller service matrix, from
which anchor services are expected to be discovered more efficiently.

References

1. Bose, A., Nayak, R., Bruza, P.: Improving Web Service Discovery by Using Se-
mantic Models. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S.
(eds.) WISE 2008. LNCS, vol. 5175, pp. 366–380. Springer, Heidelberg (2008)

2. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing.
IEEE Trans. Knowl. Data Eng. 17(12), 1624–1637 (2005)

3. Chen, L., Hu, L., Zheng, Z., Wu, J., Yin, J., Li, Y., Deng, S.: WTCluster: Utilizing
Tags for Web Services Clustering. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 204–218. Springer, Heidelberg (2011)

4. Ding, C.H.Q., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: KDD, pp. 126–135 (2006)

5. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web
services. In: VLDB 2004: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, pp. 372–383. VLDB Endowment (2004)

6. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap
the discovery of web services. In: ICWS, pp. 147–154 (2010)

7. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
owls-mx. In: AAMAS, pp. 915–922. ACM, New York (2006)

8. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In:
NIPS, pp. 801–808 (2006)

9. Liu, F., Shi, Y., Yu, J., Wang, T., Wu, J.: Measuring similarity of web services
based on WSDL. In: ICWS, pp. 155–162 (2010)

10. Liu, X., Huang, G., Mei, H.: Discovering homogeneous web service community
in the user-centric web environment. IEEE T. Services Computing 2(2), 167–181
(2009)

11. Lovasz, L.: Matching Theory (North-Holland mathematics studies). Elsevier Sci-
ence Ltd. (1986)

12. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic
approach. In: CSSSIA 2008: Proceedings of the 2008 International Workshop on
Context Enabled Source and Service Selection, Integration and Adaptation, pp.
1–8. ACM, New York (2008)

13. Segev, A., Sheng, Q.Z.: Bootstrapping ontologies for web services. IEEE Transac-
tions on Services Computing 5, 33–44 (2012)

Sparse Functional Representation for Large-Scale Service Clustering 483

14. Tong, H., Papadimitriou, S., Sun, J., Yu, P.S., Faloutsos, C.: Colibri: fast mining
of large static and dynamic graphs. In: KDD, pp. 686–694 (2008)

15. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: Proceedings of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Informaion Retrieval, SIGIR 2003, pp.
267–273. ACM, New York (2003)

16. Yu, Q.: Place Semantics into Context: Service Community Discovery from the
WSDL Corpus. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 188–203. Springer, Heidelberg (2011)

17. Yu, Q., Rege, M.: On service community learning: A co-clustering approach. In:
ICWS, pp. 283–290 (2010)

18. Zhang, Y., Zheng, Z., Lyu, M.R.: Wsexpress: A qos-aware search engine for web
services. In: ICWS, pp. 91–98 (2010)

19. Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regu-
larized sparse coding for image representation. IEEE Transactions on Image Pro-
cessing 20(5), 1327–1336 (2011)

Updatable Process Views for User-Centered

Adaption of Large Process Models

Jens Kolb, Klaus Kammerer, and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{jens.kolb,klaus.kammerer,manfred.reichert}@uni-ulm.de
http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in large process model collections. To support
users having different perspectives on these processes and related data,
a PAIS should provide personalized views on process models. Existing
PAISs, however, do not provide mechanisms for creating or even chang-
ing such process views. Especially, changing process models is a frequent
use case in PAISs due to changing needs or unplanned situations. While
process views have been used as abstractions for visualizing large process
models, no work exists on how to change process models based on respec-
tive views. This paper presents an approach for changing large process
models through updates of corresponding process views, while ensuring
up-to-dateness and consistency of all other process views on the pro-
cess model changed. Respective update operations can be applied to a
process view and corresponding changes be correctly propagated to the
underlying process model. Furthermore, all other views related to this
process model are then migrated to the new version of the process model
as well. Overall, our view framework enables domain experts to evolve
large process models over time based on appropriate model abstractions.

1 Introduction

Process-aware information systems (PAISs) provide support for business pro-
cesses at the operational level. A PAIS strictly separates process logic from
application code, relying on explicit process models. This enables a separation
of concerns, which is a well established principle in computer science to increase
maintainability and to reduce costs of change [1]. The increasing adoption of
PAISs has resulted in large process model collections. In turn, each process
model may refer to different domains, organizational units and user groups, and
comprise dozens or even hundreds of activities [2]. Usually, the different user
groups need customized views on the process models relevant for them, enabling
a personalized process abstraction and visualization [3]. For example, managers
rather prefer an abstract process overview, whereas process participants need a
detailed view of the process parts they are involved in. Hence, providing per-
sonalized process views is a much needed PAIS feature. Several approaches for

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 484–498, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.uni-ulm.de/dbis

Updatable Process Views 485

creating process model abstractions based on process views have been proposed
[4,5,6]. However, these proposals focus on creating and visualizing views, but
do not consider another fundamental aspect of modern PAISs: change and evo-
lution [1,7]. More precisely, it is not possible to change a large process model
through editing or updating one of its view-based abstractions. Hence, process
changes must be directly applied to the core process model, which constitutes
a complex as well as error-prone task for domain experts, particularly in con-
nection with large process models. To overcome this limitation, in addition to
view-based process abstractions, users should be allowed to change large process
models through updating related process views.

In the proView1 project, we address these challenges by not only supporting
the creation and visualization of process views, but additionally providing change
operations enabling users to modify a process model through updating a related
process view. In this context, all other views associated with the changed process
model are migrated to its new version as well. Besides view-based abstractions
and changes, proView allows for alternative process model representations (e.g.,
tree-based, form-based, and diagram-based) as well as interaction techniques
(e.g., gesture- vs. menu-based) [8,9,10]. Overall goal is to enable domain experts
to “interact” with the (executable) process models they are involved in.

Visualization Engine

Change Engine

CS2CS1 CS3

Migrate Views

Create Appearance

Refactor Update CPM

Create Schema Refactor

CPM
Business Process 1

View3

View2

View12
134

nene
5 6

ee
7

PAIS1

PAIS2

E
xe

cu
tio

n
&

M
on

ito
rin

g
E

ng
in

e

ex
ec

ut
e

visualize

change

Fig. 1. The proView Framework

Fig. 1 gives an overview of the proView framework: A business process is
captured and represented through a Central Process Model (CPM). In addition,
for a particular CPM, so-called creation sets (CS) are defined. Each creation set
specifies the schema and appearance of a particular process view. For defining,
visualizing, and updating process views, the proView framework provides engines
for visualization, change, and execution & monitoring.

The visualization engine generates a process view based on a given CPM
and the information maintained in a creation set CS, i.e., the CPM schema is
transformed to the view schema by applying the corresponding view creation
operations specified in CS (Step 5©). Afterwards, the resulting view schema is
simplified by applying well-defined refactoring operations (Step 6©). Finally, Step

7© customizes the visual appearance of the view (e.g., creating a tree-, form-, or
activity-based visualization [5,8]). Section 2 provides insights into these steps.

1 http://www.dbis.info/proView

486 J. Kolb, K. Kammerer, and M. Reichert

When a user updates a view schema, the change engine is triggered (Step

1©). First, the view-based model change is propagated to the related CPM using
well-defined change propagation algorithms (Step 2©). Next, the schema of the
CPM is simplified (Step 3©), i.e., behaviour-preserving refactorings are applied
to foster model comprehensibility (e.g., by removing surrounding gateways not
needed anymore). Afterwards, the creation sets of all other views associated with
the CPM are migrated to the new CPM schema version (Step 4©). This becomes
necessary since a creation set may be contradicting with the changed CPM
schema. Finally, all views are recreated (Steps 5©- 7©) and presented to users.
Section 3 presents the view update operations and migration rules required to
change business processes through editing and updating process views. Section
4 then discusses related work and Section 5 summarizes the paper.

2 Fundamentals on Process View Creation

Section 2.1 defines the notion of process model and useful functions. Section
2.2 then discusses how process views can be created and formally represented
in proView (i.e., Step 5©, Fig. 1). Section 2.3 introduces behaviour-preserving
process model refactorings enabling lean and comprehensible process views.

2.1 Process Model

A process model is represented by a process schema consisting of process nodes
and the control flow between them (cf. Fig. 2). For control flow modeling, gate-
ways and control flow edges are used (cf. Definition 1).

A

B

C F G

D

E

StartFlow Activity

ANDsplit ET_SoftSync

EndFlow

LOOPsplitLOOPjoin XORsplit XORjoin

ANDjoin

SESE block
(Single Entry Single Exit)

Fig. 2. Example of a Process Model

Definition 1 (Process Model). A process model is defined as a tuple P =
(N,E,EC,NT,ET) where

– N is a set of nodes (i.e., activities and gateways),
– E ⊂ N×N is a precedence relation (e = (nsrc, ndest) ∈ E with nsrc �= ndest),
– EC : E → Conds ∪ {True} assigns transition conditions to control edges,
– NT : N → {StartF low,EndF low,Activity,ANDsplit, ANDjoin, XORsplit,

XORjoin, LOOPsplit, LOOPjoin} assigns a node type NT (n) to each node n ∈
N ; N is divided into disjoint sets of activity nodes A (NT = Activity) and gate-
ways S (NT �= Activity), i.e., N = A ∪ S, and

– ET : E → {ET Control, ET SoftSync, ET Loop} assigns a type ET (e) to each
edge e ∈ E.

Updatable Process Views 487

Definition 1 can be used for representing the schemas of both the Central Process
Model (CPM) and its associated process views. Note that this definition focuses
on control flow. In particular, it can be applied to existing activity-oriented
modeling languages, but is not restricted to a specific one. This paper uses
BPMN as notation due to its widespread use. We further assume that a process
schema is well-structured, i.e., sequences, branchings (of different semantics), and
loops are specified as blocks with well-defined start and end nodes having the
same gateway type. These blocks—also known as SESE blocks (cf. Definition
2)—may be arbitrarily nested, but must not overlap (like, e.g., blocks in BPEL).
To increase expressiveness, sync edges are supported, which allow for a cross-
block synchronization of parallel activities (as BPEL links do). For example, in
Fig. 2, activity E must not be enabled before G is completed.

Definition 2 (SESE). Let P = (N,E,EC,NT,ET) be a process model and
X ⊆ N be a subset of activity nodes (i.e., NT (n) = Activity, ∀n ∈ X). Then:
Subgraph P ′ induced by X is called SESE (Single Entry Single Exit) block iff P ′

is connected and has exactly one incoming and one outgoing edge connecting it
with P. Further, let (ns, ne) ≡ MinimalSESE(P,X) denote the start and end
node of the minimum SESE comprising all activities from X ⊆ N .

How to determine SESE blocks is described in [11]. Since we presume a well-
structured process schema, a minimum SESE can be always determined.
To determine the predecessor and successor of a single node or SESE block
within a process model P = (N,E,EC,NT,ET), operations np = pred(P,N

′
)

and ns = succ(P,N
′
) with N

′ ⊆ N are provided. Thereby np is the only node

having exactly one outgoing edge ep = (np, n) ∈ E, n ∈ N
′
. In turn, since N

′

represents a SESE, ep is the only incoming edge of any node in N
′
connecting

it with P . Similarly, succ(P,N
′
) returns the node directly succeeding set N

′
.

2.2 Process View Creation

To create a process view on a process model, the latter has to be abstracted.
For this, proView provides elementary view creation operations. In turn, these
may be combined to realize high-level view creation operations (e.g., show all
my activities and their precedence relation) in order to support users in creating
process views easily [12]. At the elementary level, two categories of operations are
required: reduction and aggregation. An elementary reduction operation hides an
activity of the original process model in the process view created. For example,
operation RedActivity(V, n) removes node n together with its incoming and
outgoing edges, and inserts a new edge linking the predecessor of n with its
successor in view V (cf. Fig. 3a). A formal definition can be found in [12,13].

An aggregation operation, in turn, takes a set of activities as input and com-
bines them into an abstracted node in the process view. For example, operation
AggrSESE(V,N

′
) removes all nodes of the SESE block, containing activities

from set N
′
(including their edges), and inserts an abstract activity in the re-

sulting process view instead (cf. Fig. 3b). Furthermore, elementary operation

488 J. Kolb, K. Kammerer, and M. Reichert

a) RedActivity(V,B)

A B C

A C

b) AggrSESE(V,{B,C})

A B C D

A BC D

A

B C

D

c) AggrComplBranches(V,{A,B,C})

ABC

D

Fig. 3. Examples of Process View Creation Operations

AggrComplBranches(V,N
′
) aggregates complete branches of an XOR/AND

block to a branch with one abstracted node. N
′
must contain the activities of

these branches (i.e., activities between split and corresponding join gateway)
that shall be replaced by a single branch with one aggregated node (cf. Fig. 3c).
Generally, a process view can be created through the consecutive application of
elementary operations on a process model. Remember that this process model
represents a particular business process and is denoted as Central Process Model
(CPM). A particular CPM may have several associated views. Note that the pre-
sented view operations consider other process perspectives (e.g., data elements
and data flow) as well; due to lack of space we omit further details.

Definition 3 (Process View). Let CPM be a process model. A process view
V(CPM) is described through a creation set CSV = (CPM,Op, PS) with:

– CPM = (N,E,EC,NT,ET) is the process model underlying the view and
denoted as Central Process Model,

– Op = 〈Op1, . . . , Opn〉 is the sequence of elementary view creation operations
applied to CPM: Opi ∈ {RedActivity, AggrSESE,AggrComplBranches},

– PS = (PS1, . . . , PSm) is a tuple of parameters and corresponding parameter
values defined for a specific view.

Definition 3 expresses that a process view can be created through the consecutive
application of the operations contained in the corresponding creation set. In this
context, configuration parameters (shortly: parameter) are required to describe
how high-level operations shall be mapped to elementary view creation opera-
tions depending on the selected nodes in the CPM (see [12] for details). Section
3 will show that these parameters are required to enable automatic change prop-
agation from a view to its underlying CPM.
A view node n either directly corresponds to node n of the CPM or it abstracts
a set of CPM nodes. CPMNode(V, n) reflects this by returning either node n or
a node set Nn of CPM = (N,E,EC,NT,ET), depending on the creation set
CSV = (CPM,Op, PS) with Op = 〈Op1, . . . , Opk〉.

CPMNode(V, n) =

{
n n ∈ N

Nn ∃Opi ∈ Op : Nn
Opi−→ n

2.3 Refactoring Operations

When creating process views, unnecessary control flow structures might result
due to the generic nature of the view creation operations applied, e.g., single
branches of a parallel branching might be empty or a parallel branching only

Updatable Process Views 489

A D
C

A DC

a)
A

B

F

D

A B

F

D

b)

A C

D

A CD

c)

A D
C

RedActivity(V,B)

B A C

D

B

RedActivity(V,B)

Fig. 4. Examples of View Refactoring Operations

have one remaining branch. In such cases, gateways can be removed in order to
obtain a more comprehensible schema of the process view. For example, the view
in Fig. 4a is created by reducing activity B. Afterwards, an AND block only
surrounding activity C remains. In this case, the surrounding AND gateways
can be removed without losing the predecessor/successor relations of the view
activities (i.e., behaviour is preserved). Fig. 4b shows another example reducing
activityB within a sequence. Afterwards, the synchronizing relationships become
obsolete and hence can be removed. Fig. 4c shows an example of nested AND
gateways which may be combined to simplify the model.

The proView framework offers a set of operations for refactoring the schema
of process views, without affecting the dependencies of activities within the view
and hence without changing behavioural semantics [13].

3 Changing Processes through Updatable Process Views

Process views are not only required for enabling personalized process visualiza-
tion through abstracting the underlying CPM. They also shall provide the basis
for changing large process models based on appropriate abstractions. Section 3.1
describes how updates of a process view can be accomplished and then propa-
gated to the underlying CPM. Section 3.2 presents migration rules for updating
all other process views associated with the changed CPM as well.

3.1 Updating Process Views

When allowing users to change a business process model based on a personal-
ized process view, it has to be ensured that this change can be automatically
propagated to the underlying CPM without causing syntactical or semantical
errors. Hence, well-defined view update operations are required guaranteeing for
a proper propagation of view updates to the corresponding CPM. Table 1 gives
an overview of the view update operations supported by proView.
Propagating view changes to the underlying CPM is not straightforward. In
certain cases, there might be ambiguities regarding the propagation of the view
change to the underlying CPM. For example, it might not be possible to deter-
mine a unique position for inserting an activity in the CPM due to the abstrac-
tions applied when creating the view (cf. Fig. 5).

Consider the example from Fig. 5. Inserting activity Y in view V 1 and propa-
gating this change to the underlying CPM results in a unique insert position, i.e.,

490 J. Kolb, K. Kammerer, and M. Reichert

Table 1. Update Operations for Process Views

Operation Parameter & Value Description
InsertSerial(V, n1, n2, nnew) InsertSerialMode = {

EARLY,
LATE,
PARALLEL}

Inserts activity nnew between n1 and n2

in view V . The parameter describes the
propagation behaviour of this insertion.

InsertParallel(V, n1, n2, nnew)
InsertCond(V,n1, n2, nnew, c)
InsertLoop(V,n1, n2, nnew, c)

InsertBlockMode = {
EARLY EARLY,
EARLY LATE,
LATE EARLY,
LATE EARLY}

Inserts activity nnew as well as an AND/
XOR/Loop block surrounding the SESE
block defined by n1 and n2 in view V .
The first (last) part of the parameter
value before (after) the underline spec-
ifies the propagation behaviour of the
split (join) gateway.

InsertBranch(V, g1, g2, c) InsertBranchMode = {
EARLY,
LATE}

Inserts an empty branch between split
gateway g1 and join gateway g2 in view
V . In case of conditional branchings or
loops, a condition c is required.

InsertSyncEdge(V, n1, n2) - Inserts a sync edge from n1 to n2 in V ,
where n1 and n2 belonging to different
branches of a parallel branching.

DeleteActivity(V, n1) DeleteActivityMode = {
LOCAL,
GLOBAL}

Deletes activity n1 in view V . The pa-
rameter decides whether the activity is
deleted locally (i.e., reduced in the view)
or removed from the CPM (i.e., global).

DeleteBranch(V, g1, g2) - Deletes an empty branch between gate-
ways g1 and g2 in view V .

DeleteSyncEdge(V, n1, n2) - Deletes a sync edge between activities
n1 and n2 in view V .

DeleteBlock(V, g1, g2) DeleteBlockMode={
INLINE,
DELETE}

Deletes an AND/XOR/Loop block en-
closed by gateways g1 and g2 in view
V . The parameter describes whether el-
ements remaining in the block shall be
inlined or deleted.

this view update can be automatically propagated to the CPM without need for
resolving any ambiguity. By contrast, inserting activity X in view V 1 allows for
several insert positions in the related CPM. More precisely, there are ambiguities
in how to transform the view change into a corresponding CPM change, i.e., X
may be inserted directly after activity A or directly before activity C. Note that
this ambiguity is a consequence of the reduction (i.e., deletion of B) applied
when creating the view. However, when propagating view updates to a CPM,
users should not be burdened with resolving such ambiguities. Hence, to enable
automated propagation of view updates to a CPM, proView supports param-
eterizable propagation policies. Hereafter, we introduce parameterizable view
update operations that can be configured differently to automatically propagate
view updates to a CPM resolving ambiguities if required (cf. Table 1).

For example, consider view update operation InsertSerial in Fig. 5. Here, pa-
rameter InsertSerialMode defines whether X is inserted directly after A (i.e., In-
sertSerialMode=EARLY) or directly before C (i.e., InsertSerialMode=LATE).
Each configuration parameter has a default value (printed in bold in Table 1),
but can be set specifically for any view and stored in parameter set PS of creation
set CS (cf. Section 2.2). We exemplarily provide algorithms for operations In-
sertSerial and InsertParallel to indicate how a view change can be transformed
into a corresponding CPM change taking such parameterizations into account.

Updatable Process Views 491

Table 2. View Update Operation: InsertSerial

Algorithm 1: InsertSerial(V,n1,n2,nnew)

Pre n
′
1 = last(CPMNode(V, n1)), n

′
2 = first(CPMNode(V, n2))

Post if(succ(CPM,n
′
1) == n

′
2)

InsertNode(CPM,n
′
1, n

′
2, nnew, Activity)

else switch(InsertSerialMode) :

EARLY : InsertNode(CPM,n
′
1, succ(CPM, {n

′
1}), nnew, Activity)

LATE : InsertNode(CPM, pred(CPM, {n
′
2}), n

′
2, nnew, Activity)

PARALLEL : (ns, nj) = MinimalSESE(CPM, {n
′
1, n

′
2})

InsertNode(CPM, pred(CPM, {ns}), ns, gs, ANDsplit)
InsertNode(CPM,nj , succ(CPM, {nj}), gj , ANDjoin)
InsertEdge(CPM, gs, gj , ET Control)
InsertNode(CPM, gs, gj , nnew, Activity)

InsertEdge(CPM, n
′
1, nnew, ET SoftSync)

InsertEdge(CPM, nnew, n
′
2, ET SoftSync)

A X C YB D E

A B C YX D E

InsertNode(CPM,C,D,Y)

InsertNode(CPM,A,B,X)

InsertNode(CPM,B,C,X)

CPM‘:

?

AggrSESE(V1,{D,E})
RedActivity(V1,B)

InsertSerialMode
EARL

Y

LATE

X

View V1:

A C DE

Y
InsertSerial(V1,C,DE,Y)

InsertSerial(V1,A,C,X)

?
CPM‘‘:

Fig. 5. Ambiguity when Propagating View Changes to the CPM

InsertSerial. As shown in Fig. 5, InsertSerial(V, n1, n2, nnew) adds an activity
to the schema of process view V . Activity n1 describes the node directly preceding
and n2 the node directly succeeding the activity nnew to be added to process view
V . Algorithm 1 (cf. Table 2) shows how a view change described by operation
InsertSerial can be transformed into a schema change of the related CPM. First
of all, the nodes of the CPM corresponding to n1 and n2 are determined. If
one of these nodes is an aggregated one, CPMNode returns a set of nodes. In
this case, first/last returns the first/last node within this set (regarding control
flow). When applying this change, it is checked whether nodes n

′
1 and n

′
2 (i.e.,

corresponding CPM nodes of n1 and n2) are direct neighbours. In this case,
nnew can be directly inserted between these two nodes by applying the basic
change operations InsertNode and InsertEdge to the CPM (cf. Table 3). In turn,
if n

′
1 and n

′
2 are no direct neighbours in the CPM2, it must be decided where to

insert the activity, taking the value of parameter InsertSerialMode into account.
As shown in Table 2, when setting this parameter to EARLY, the activity is
directly inserted after n

′
1 (cf. Table 3). In turn, when choosing value LATE, it

is inserted directly before n
′
2. Finally, parameter value PARALLEL determines

the minimum SESE block containing activities n
′
1 and n

′
2. This is followed by

adding an AND block surrounding the SESE block. The latter is accomplished by
adding an ANDsplit and ANDjoin gateway as well as an empty branch between
them. Finally, nnew is added to this empty branch. To ensure that the same

2 e.g., when creating the view, the CPM might have been reduced by deleting activities
or gateways due to refactorings of the view schema.

492 J. Kolb, K. Kammerer, and M. Reichert

Table 3. Basic Process Model Change Operations

Algorithm 2: InsertNode(P,n1,n2,nnew,node type)
Pre succ(P, n1) = n2, {n1, n2} ⊆ N , P = (N,E,EC,NT, ET)
Post NT (nnew) = node type

N
′
= N ∪ {nnew}

e1 = (n1, nnew), e2 = (nnew, n2) with ET (e1) = ET (e2) = ET Control

E
′
= E \ {(n1, n2)} ∪ {e1, e2}

Algorithm 3: InsertEdge(P,n1,n2, edge type)
Pre {n1, n2} ⊆ N , P = (N,E,EC,NT,ET)
Post enew = (n1, n2), ET (enew) = edge type

E
′
= E ∪ {enew}

precedence relations as for the process view are obeyed, sync edges from n
′
1 to

nnew and from nnew to n
′
2 are inserted as well.

We now show that the transformation of a view update (as defined by In-
sertSerial) to a corresponding change of the underlying CPM, followed by the
recreation of this view, results in the same view schema as one obtains when
directly inserting this activity in the view. We consider this as a fundamental
quality property of our view update propagation approach. For this purpose, we
introduce the notion of dependency set (cf. Definition 4).

Definition 4 (Dependency Set). Let P = (N,E,EC,NT,ET) be a process
model. Then: DP = {(n1, n2) ∈ N ×N |n1 � n2, NT (n1) = NT (n2) = Activity}
is denoted as dependency set. It reflects all direct control flow dependencies be-
tween two activities.

For example, the dependency set of the CPM depicted in Fig. 5 is DCPM ′ =
{(A,X), (X,B), (B,C), (C, Y), (Y,D), (D,E)}.

Theorem (InsertSerial Equivalence) Let CPM be a central process model and
DCPM be the corresponding dependency set. Further, let V be a view on CPM
with creation set CSV = (CPM,Op, PS) and corresponding dependency set DV .
Then: Inserting nnew in V can be realized by applying InsertSerial(V, n1, n3,
nnew). Concerning the dependency set, propagating this change operation to the
CPM results in the same view schema than one obtains when inserting nnew

directly in V .

As shown, RedActivity and related refactorings may cause ambiguities. Hence,
their influence on the dependency set has to be discussed. Applying RedActivity
(V, n2) with (n

′
, n2), (n2, n

′′
) ∈ E to a process schema with dependency set D

results in D
′
= D \ {(n′

, n2), (n2, n
′′
)} ∪ {(n′

, n
′′
)}, n′

, n
′′ ∈ N .

Proof: Inserting nnew directly in view V results in dependency set D
′
V = DV ∪

{(n1, nnew), (nnew , n3)} \ {(n1, n3)}. When inserting nnew in the CPM, we have to
distinguish four cases:

Case 1 : No activity is reduced between n1 and n3, i.e., no parameter is required and
D

′
CPM = DCPM ∪ {(n1, nnew), (nnew , n3)} \ {(n1, n3)} = D

′
V .

Updatable Process Views 493

Case 2-4: An activity (activity set) is reduced between n1 and n3, i.e., ambiguities
occur and parameter InsertSerialMode becomes relevant.

Case 2: InsertSerialMode=EARLY results in D
′
CPM = DCPM ∪

{(n1, nnew), (nnew , n2)} \ {(n1, n2)} and RedActivity(n2) ∈ Op with
{(n1, n2), (n2, n3)} ⊂ DCPM . Without loss of generality, we may assume that
just one activity is reduced between n1 and n3. Next, view V is recreated with
RedActivity(n2); this results in D

′′
V = D

′
CPM \ {(nnew , n2), (n2, n3)} ∪ {(nnew , n3)} =

DCPM∪{(n1, nnew), (nnew, n2)}\{(n1, n2)}\{(nnew , n2), (n2, n3)}∪{(nnew , n3)} = D
′
V .

Case 3: InsertSerialMode=LATE: similar to EARLY, whereby nnew is inserted directly
before n3.

Case 4: InsertSerialMode=PARALLEL: results in D
′
CPM = DCPM ∪

{(n1, nnew), (nnew , n3)} and RedActivity(n2) ∈ Op with {(n1, n2), (n2, n3)} ⊂ DCPM .

Next, V is recreated with RedActivity(n2); this results in D
′′
V = D

′
CPM \

{(n1, n2), (n2, n3)} ∪ {(n1, n3)}. At this point, the parallel branching is still remaining

in the graph, i.e., one branch containing nnew and an empty branch due to reductions.

Finally, refactorings remove unnecessary branchings: D
′′′
V = D

′′
V \ {(n1, n3)} = D

′
V .

InsertParallel. When inserting an activity in parallel to existing activities by
applying InsertParallel to a view, again the transformation of this change to
a corresponding CPM change might raise ambiguities regarding the positions
the ANDsplit and ANDjoin gateways shall be inserted. Fig. 6a illustrates this.
To deal with this ambiguity, parameter InsertBlockMode must be set. It allows
configuring the positions at which the ANDsplit (i.e., EARLY ∗, LATE ∗) and
ANDjoin respectively (i.e., ∗ EARLY , ∗ LATE) shall be inserted.

Table 4 provides a detailed view of the InsertParallel operation: n1/n2 de-
notes the start/end of the SESE block to which activity nnew shall be added in
parallel. When transforming this view update to a corresponding CPM change,
it must be decided where to add the ANDsplit and the ANDjoin gateways in

Table 4. View Update Operation: InsertParallel

Algorithm 4: InsertParallel(V,n1,n2,nnew)
Pre (n1, n2) is SESE in view V

n
′
1 = last(CPMNode(V, n1)), n

′
2 = first(CPMNode(V, n2))

Post if(pred(V, last(CPMNode(V, n1)))! = last(CPMNode(V, pred(V, n1))))
switch(InsertBlockMode)

EARLY ∗ : n
′
1 = succ(CPM,CPMNode(V, pred(n1)))

LATE ∗ : n
′
1 = last(CPMNode(V, n1))

if(pred(V, last(CPMNode(V, n2)))! = last(CPMNode(V, pred(V, n2))))
switch(InsertBlockMode)

∗ EARLY : n
′
2 = first(CPMNode(V, n2))

∗ LATE : n
′
2 = succ(CPM,CPMNode(V, pred(V, n2)))

(ns, nj) = MinimalSESE(CPM, {n
′
1, n

′
2})

InsertNode(CPM, pred(CPM, {ns}), ns, gs, ANDsplit)
InsertNode(CPM,nj , succ(CPM, {nj}), gj , ANDjoin)
InsertEdge(CPM, gs, gj , ET Control)
InsertNode(CPM, gs, gj , nnew, Activity)

494 J. Kolb, K. Kammerer, and M. Reichert

A B C D E

F

{LATE_EARLY}

X
{LATE_LATE} X

EARLY_* LATE_* *_EARLY *_LATE

{EARLY_LATE,EARLY_EARLY} X

X

OpV1={
RedActivity(V1,B),
RedActivity(V1,E),
RedActivity(V1,F)}

View V1: View V2:

CPM:

A B CDEA C D

OpV2={
RedActivity(V2,F),
AggrSESE(V2,{C,D,E})}

Propagate Change
InsertParallel
(V1,C,D,X)

1

a) Initial Situation

2 Determining Insert
Position in CPM
(depends on Parameter
InsertBlockMode)

3 Migrating Views
Results b)+c)
InsertBlockMode=
LATE_EARLY

A B CDEX

X

A B C D E

b) Migrated View V2

AggrPartlyMode=AGGR AggrPartlyMode=SHOW

c) Migrated View V2

Fig. 6. Updating the CPM after a View Change

case of ambiguities. Regarding the ANDsplit, for example, it is checked whether
the direct predecessor of n1 in the CPM is the same as in view schema V . If
this is not the case, parameter InsertBlockMode is used to decide whether to
position the ANDsplit at the earliest or latest possible location in the CPM. The
same procedure is applied in respect to the ANDjoin. After determining the cor-
responding insert positions in the CPM, a minimum SESE block is determined
to properly insert the surrounding AND block with a branch containing nnew.
Fig. 6a shows an example illustrating how different insert positions depending
on the parameter value are chosen. Note that, independent of the concrete pa-
rameter value and insert position respectively, the user of view V always gets
the same model when re-applying the view creation and refactoring operations
on the CPM. Similar to InsertParallel, the propagation of a change expressed
in terms of operations InsertConditional or InsertLoop can be accomplished. In
addition to insert join/split gateways, branching condition c has to be set to
guarantee proper process execution (cf. Table 1).

3.2 Migrating Process Views to a New CPM Version

When changing a CPM through updating one of its associated views, all other
views defined on this CPM must be updated as well. More precisely, it must be
guaranteed that all process views are up-to-date and hence users always interact
with the current version of a process model and related views respectively. To
ensure this, after propagating a view change to a CPM, the creation sets of all
other process views must be migrated to the new CPM version (cf. Definition
3). Note that in certain cases this creation set will contradict to the CPM,
e.g., an activity might be inserted in a branch, which is aggregated through an
AggrComplBranches operation. In this case, the operation has to be adapted
including the new activity. Table 5 provides migration rules required to migrate
creation sets of associated views after updating the CPM.

Updatable Process Views 495

Table 5. Process View Migration Rules

Migration Rule M1:
∃AggrSESE/AggrComplBranches(V,Na) = Op1 : Na ⊃ {pred(V,Nc), succ(V,Nc)}, Op1 ∈ Op
⇒ AggrComplMode=SHOW: Op′ = Op \ Op1

AggrComplMode=AGGR: Op′ = Op \ Op1 ∪ {AggrSESE/AggrComplBranches(V, Na ∪ Nc)}
Migration Rule M2:
∃AggrSESE/AggrComplBranches(V,Na) = Op1 : pred(V,Nc) ∈ Na ⊕ succ(V,Nc) ∈ Na

⇒ AggrPartlyMode=SHOW: Op′ = Op \ Op1

AggrPartlyMode=AGGR: Op′ = Op \ Op1 ∪ {AggrSESE/AggrComplBranches(V, Na ∪ Nc)}
Migration Rule M3:
∃RedActivity(V, pred(V,Nc))) = Op1 ∧ RedActivity(V, succ(V,Nc)) = Op2, Op ⊃ {Op1, Op2}
⇒RedComplMode=SHOW: no action required

RedComplMode=RED: Op′ = Op ∪ OpN , OpN = {n ∈ Nc|RedActivity(V, n)}
Migration Rule M4:
∃RedActivity(V, pred(V,Nc))) = Op1 ⊕ RedActivity(V, succ(V,Nc)) = Op2, Op ⊃ {Op1, Op2}
⇒RedPartlyMode=SHOW: no action required

RedPartlyMode=RED: Op′ = Op ∪ OpN , OpN = {n ∈ Nc|RedActivity(V, n)}

Regarding migration rule M1, Nc denotes the set of nodes added to the CPM.
If the direct predecessor and successor of this node set are both aggregated to
the same abstract node (i.e., both are element of set Na, which is aggregated
through AggrSESE or AggrComplBranches), the migration rule will be applied.
In this case, there exist two options: either node set Nc is included in the aggre-
gation or this aggregation is removed and the change is shown to the user. This
can be expressed by parameter AggrComplMode for each view: parameter value
SHOW suggests removing the aggregation operations in the creation set, while
value AGGR (default) extends the aggregated node set by the new nodes in Nc.
If only one of the nodes (i.e., the predecessor or successor of Nc) is included in
an aggregation, migration rule M2 is applied. In this case, parameter AggrPart-
lyMode expresses whether the aggregation shall be expanded (i.e., AGGR) or
resolved (i.e., SHOW). Fig. 6bc present examples of this operation.

Migration rules M3 and M4 handle changes within reduced node sets. Anal-
ogous to the handling of aggregation operations, migration rule M3 is applied if
both the predecessor and successor of node setNc are removed due to a reduction.
In turn, M4 is applied if exactly only one of these two nodes is reduced. In this
case, parameter RedComplMode (or RedPartlyMode) and its values (SHOW or
RED (default)) determine whether node set Nc is visible or reduced in the view.

After migrating all creation sets belonging to a CPM, the corresponding views
are recreated (cf. Fig. 1). Applying a change to the CPM and recreating the
process views afterwards allows us to guarantee that all views are up-to-date.

Since the recreation of a process view is expensive, several optimization tech-
niques are applied. First, instead of recreating all process views, this is only
accomplished for those views affected by the change. Second, when changing the
creation set, the visualization engine exactly knows which parts of the process
view have changed and respective parts are then recreated.

4 Related Work

In the context of cross-organizational processes, views have been applied for cre-
ating abstractions of partner processes hiding private process parts [6,14,15,16].

496 J. Kolb, K. Kammerer, and M. Reichert

However, process views are manually specified by the process designer, but do
not serve as abstractions for changing large process models as in proView.

An approach providing predefined process view types (i.e., human tasks, col-
laboration views) is presented in [4]. As opposed to proView, this approach is
limited to these pre-specified process view types. In particular, these views are
not used as abstractions enabling process change. In turn, [17] applies graph
reduction techniques to verify structural properties of process schemas. The
proView project accomplishes this by enabling aggregations that use high-level
operations. In [18] SPQR-tree decomposition is applied when abstracting process
models. This approach neither takes other process perspectives (e.g., data flow)
nor process changes into account.

The approach presented in [19] determines semantic similarity between activ-
ities by analyzing the schema of a process model. The similarity discovered is
used to abstract the process model. However, this approach neither distinguishes
between different user perspectives on a process model nor provides concepts for
manually creating process views.

An approach for creating aggregated process views is described in [20]. It
proposes a two-phase procedure for aggregating parts of a process model not
to be exposed to the public. However, process view updates to evolve or adapt
processes are not considered.

View models serving monitoring purpose are presented in [21,22]. Focus is on
the run-time mapping between process instances and views. Further, the views
have to be pre-specified manually by the designer.

In turn, [23] aligns technical workflows with business processes. It allows de-
tecting changes through behavioural profiles and propagating them to change
regions of the corresponding technical model. These regions indicate the schema
region to which the change belongs. Automatic propagation is not supported.
Similarly, [24] describes a mapping model between a technical workflow and a
business process. An automatic propagation of changes is not supported.

For defining and changing process models, various approaches exist. [25]
presents an overview of frequently used patterns for changing process models.
Further, [7] summarizes approaches enabling flexibility in PAISs. In particular,
[26] presents an approach for adapting well-structured process models without af-
fecting their correctness properties. Based on this, [27] presents concepts for op-
timizing process models over time and migrating running processes to new model
versions properly. None of these approaches takes usability issues into account,
i.e., no support for user-centered changes of business processes is provided.

The proView framework provides a holistic framework for personalized view
creation. Further, it enables users to change business processes based on their
views and guarantees that other views of the process model are adapted accord-
ingly. None of the existing approaches covers all these aspects and is based on
rigid constraints not taking practical requirements into account.

Updatable Process Views 497

5 Conclusion

We introduced the proView framework and its formal foundation; proView sup-
ports the creation of personalized process views and the view-based change of
business processes, i.e., process abstractions not only serve visualization purpose,
but also lift process changes up to a higher semantical level. A set of update oper-
ations enables users to update their view and to propagate the respective schema
change to the underlying process model representing the holistic view on the
business process. Parameterization of these operations allows for automatically
resolving ambiguities when propagating view changes; i.e., the change propaga-
tion behaviour can be customized for each view. Finally, we provide migration
rules to update all other process views associated with a changed process model.
Similar to the propagation, per view it can be decided how much information
about the change should be displayed to the user.

The proView framework described in this paper is implemented as a client-
server application to simultaneously edit process models based on views [28]. The
implementation proves the applicability of our framework. Furthermore, user ex-
periments based on the implementation are planned to test the hypothesis that
view-based process changes improve the handling and evolution of large process
models. Overall, we believe such view-based process updates offer promising per-
spectives to better involve process participants and domain experts in evolving
their business processes.

References

1. Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity - Dynamic Process Lifecycle
Support: A Survey on Dynamic Changes in Process-Aware Information Systems.
Computer Science - Research and Development 23(2), 47–65 (2009)

2. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5), 467–486 (2011)

3. Streit, A., Pham, B., Brown, R.: Visualization Support for Managing Large Business
ProcessSpecifications. In: vanderAalst,W.M.P.,Benatallah,B.,Casati, F.,Curbera,
F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 205–219. Springer, Heidelberg (2005)

4. Tran, H.: View-Based and Model-Driven Approach for Process-Driven, Service-
Oriented Architectures. TU Wien, Dissertation (2009)

5. Bobrik, R., Bauer, T., Reichert, M.: Proviado – Personalized and Configurable
Visualizations of Business Processes. In: Bauknecht, K., Pröll, B., Werthner, H.
(eds.) EC-Web 2006. LNCS, vol. 4082, pp. 61–71. Springer, Heidelberg (2006)

6. Chiu, D.K., Cheung, S., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment.
Information Technology and Management 5(3/4), 221–250 (2004)

7. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

8. Kolb, J., Reichert, M., Weber, B.: Using Concurrent Task Trees for Stakeholder-
centeredModelingandVisualizationofBusinessProcesses. In:Oppl,S.,Fleischmann,
A. (eds.) S-BPMONE2012. CCIS, vol. 284, pp. 237–251. Springer, Heidelberg (2012)

9. Kolb, J., Rudner, B., Reichert, M.: Towards Gesture-based Process Modeling on
Multi-Touch Devices. In: Proc. 1st Int’l Workshop on Human-Centric Process-
Aware Information Systems (HC-PAIS 2012), Gdansk, Poland, pp. 280–293 (2012)

498 J. Kolb, K. Kammerer, and M. Reichert

10. Kolb, J., Hübner, P., Reichert, M.: Automatically Generating and Updating User
Interface Components in Process-Aware Information Systems. In: Proc. 10th Int’l
Conf. on Cooperative Information Systems (CoopIS 2012) (to appear, 2012)

11. Johnson, R., Pearson, D., Pingali, K.: Finding Regions Fast: Single Entry Sin-
gle Exit and Control Regions in Linear Time. In: Proc. Conf. on Programming
Language Design and Implementation (ACM SIGPLAN 1994) (1993)

12. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization of
Large Business Processes throughParameterizable Views. In: Proc. 26th Symposium
on Applied Computing (SAC 2012), Riva del Garda (Trento), Italy (2012)

13. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

14. Chebbi, I., Dustdar, S., Tata, S.: The View-based Approach to Dynamic Inter-
Organizational Workflow Cooperation. Data & Know. Eng. 56(2), 139–173 (2006)

15. Kafeza, E., Chiu, D.K.W., Kafeza, I.: View-Based Contracts in an E-Service Cross-
Organizational Workflow Environment. In: Casati, F., Georgakopoulos, D., Shan,
M.-C. (eds.) TES 2001. LNCS, vol. 2193, pp. 74–88. Springer, Heidelberg (2001)

16. Schulz, K.A., Orlowska, M.E.: Facilitating Cross-Organisational Workflows with a
Workflow View Approach. Data & Knowledge Engineering 51(1), 109–147 (2004)

17. Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction
Techniques. Information Systems 25(2), 117–134 (2000)

18. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

19. Smirnov, S., Reijers, H.A., Weske, M.: A Semantic Approach for Business Process
Model Abstraction. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 497–511. Springer, Heidelberg (2011)

20. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data & Knowledge
Engineering 64(2) (2008)

21. Shan, Z., Yang, Y., Li, Q., Luo, Y., Peng, Z.: A Light-Weighted Approach to
Workflow View Implementation. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa,
M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 1059–1070. Springer,
Heidelberg (2006)

22. Schumm, D., Latuske, G., Leymann, F., Mietzner, R., Scheibler, T.: State Prop-
agation for Business Process Monitoring on Different Levels of Abstraction. In:
Proc. 19th ECIS, Number Ecis, Helsinki, Finland (2011)

23. Weidlich, M., Weske, M., Mendling, J.: Change Propagation in Process Models
using Behavioural Profiles. In: Proc. 6th IEEE Int’l Conf. Services Comp., pp.
33–40 (2009)

24. Buchwald, S., Bauer, T., Reichert, M.: Bridging the Gap Between Business Process
Models and Service Composition Specifications. In: Service Life Cycle Tools and
Technologies: Methods, Trends and Advances, pp. 124–153. IGI Global (2011)

25. Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data &
Knowledge Engineering 66(3), 438–466 (2008)

26. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Inf. Sys. 10(2), 93–129 (1998)

27. Rinderle, S., Reichert, M., Dadam, P.: Flexible Support of Team Processes by
Adaptive Workflow Systems. Distributed and Par. Databases 16(1), 91–116 (2004)

28. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for Adapting Large
Process Models: The proView Demonstrator. In: Proc. of the Business Process
Management 2012 Demonstration Track, Tallinn, Estonia (to appear, 2012)

Management-Based License Discovery for the Cloud

Minkyong Kim, Han Chen, Jonathan Munson, and Hui Lei

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
{minkyong,chenhan,jpmunson,hlei}@us.ibm.com

Abstract. Enterprise software is typically licensed through contracts that require
organizations to monitor their own usage of the software and purchase the number
or amount of licenses required by the vendor’s terms and conditions for that soft-
ware. Vendors reserve the right to audit an organization’s use of their software,
and if an organization is under-licensed, costly back-payments may be required.
For this reason, organizations go to great expense to maintain a complete and
accurate inventory of their software so that they know their license obligations.
The cloud, as an environment offering both greater flexibility in, and a higher de-
gree of control over, an enterprise’s computing infrastructure, presents both new
challenges for license compliance as well as new opportunities. In this paper, we
introduce a new approach to producing accurate software inventories based on
capturing the knowledge that is present in cloud management systems at the time
of software provisioning and installation. We also demonstrate new capabilities
for rule-based alerting and enforcement that are made possible by our approach.

1 Introduction

Enterprise software is typically licensed through contracts that require organizations to
monitor their own usage of the software and purchase the number of licenses required
by the vendor’s terms and conditions for that software. Vendors reserve the right to audit
an organization’s use of their software, and if an organization is under-licensed, costly
back-payments may be required, in addition to civil fines and legal fees. Recently, one
software vendor demanded $9 million in back payments [6]. In addition to the vendors
themselves, organizations such as the Business Software Alliance police this space,
with many lawsuits resulting in $11 and $13 million settlements [10].

To protect themselves from such incidents, organizations may employ a variety of
tools, including license management tools that enable them to keep track of the licenses
they have purchased, as well as scanning tools that scan the computers on their network
for software and generate reports describing what software is installed. These reports
are then used to determine what licenses are required. This technology has inherent
limitations, which we describe below, and as a result, much manual effort is required to
ensure the organization is compliant.

The cloud, as an environment offering both greater flexibility in, and a higher degree
of control over, an enterprise’s computing infrastructure, presents both new challenges
for license compliance as well as new opportunities. The level of automation that clouds
provide enables application deployers to provision and deprovision virtual machines
(VMs) quickly, and stop them and start them even more quickly. These dynamics are

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 499–506, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

500 M. Kim et al.

not well-matched with current scanning technology, which relies on machines being
idle and available on a regular schedule.

However, the same automated management of infrastructure that presents challenges
also provides an opportunity to dramatically change the way software discovery is per-
formed. Software instances are created through machine provisioning and software
installation, which, in a modern cloud environment, can be performed under auto-
mated control. During such operations, the information needed to determine required
licensing—precise software identifiers, characteristics of the VMs, on which the soft-
ware will run, even the purposes to which the software is being put—are knowable.

In this paper, we describe a new approach to license management for cloud environ-
ments, based on our experience with both public clouds and enterprise license manage-
ment. We present a Management-based License Discovery (MLD) system that taps into
a cloud’s infrastructure management processes to automatically discover license us-
age and support the license compliance process. We also demonstrate new capabilities
for rule-based alerting and enforcement that are made possible by our approach. We
present the architecture of MLD and its interaction with other components in the cloud.
We describe the implementation of the prototype of the system briefly. We will then
discuss the user interface (at the web font-end) in detail; this provides visualization of
our system’s capabilities.

2 Background

The problem of determining what an enterprise’s license obligations are is surprisingly
complex. A large enterprise may have hundreds of thousands of software instances to
account for, and the license required for any given instance may be determined by many
factors, including not only the characteristics of the machine on which the software is
installed, but also what other software it may be a component of, what contract this
particular instance was purchased under, and what purpose this instance is used for
(e.g., production or test).

The first part of this license compliance process is to generate a complete and ac-
curate software inventory, annotated with the various factors above. This is called soft-
ware discovery. In conventional infrastructures this is normally performed by agent-
based computer scanning tools that are guided by a catalog of software “signatures”—
fingerprints, as it were, that indicate if a particular software is installed. Signatures may
be based on what files are present, or may be based on what processes are running.

The discovery process reports the precise software version installed as well as the
characteristics of the machine it is installed on (number of cores, clock speed, RAM,
etc.). It may also attempt to make certain judgments that are designed to avoid over-
counting. One of these is that, when multiple instances of a single software “family”
(e.g. Adobe Acrobat; Reader and Pro) are identified, only one will be reported. The
definition of a family is determined by the software catalog guiding the discovery.

The discovery technology may also attempt to determine (if the discovery catalog
is sufficiently rich) whether a software instance is part of a larger software installation.
Many IBM products contain within them middleware products such as an application
server and a database server. Normally, these products are licensed separately, but when

Management-Based License Discovery for the Cloud 501

bundled as components, they do not require separate licenses. Because bundle relation-
ships cannot be known simply based on knowledge of disk or process-table contents,
scanning tools will only suggest them.

In the last phase of the discovery step, the software inventory is checked and addi-
tional information is added to it (e.g., whether an instance is used for production or test).
This phase is typically labor-intensive and depends on knowledge and data held by the
IT staff responsible for software asset management. It typically consists of: identifying
any software instances that were reported but for which there is no corresponding ma-
chine (software orphans); identifying machine instances for which there is no reported
software (machine orphans); removing software instances that are the result of known
identification problems; confirming probable bundles identified by the scanning tools;
identifying known bundles that the scanning tools cannot detect; applying the results
of software-specific tools or scripts that identify instances that were missed or correct
identifications that were incomplete.

3 Motivation

Scanning-based discovery has several drawbacks, especially when it is used in a self-
service, rapid provisioning Infrastructure-as-a-Service (IaaS) cloud environment. One
is that it puts a high burden on the host computer. The time it takes to finish the scanning
process is directly proportional to the storage volume size, unless we make the assump-
tion about standard software installation locations, but this assumption increases the risk
of missed discovery. Although CPU resource consumption may be limited in modern
multicore computers, the impact on disk I/O bandwidth can be significant, which could
lead to potentially adverse performance impact on the actual workload. This is espe-
cially true in a cloud computing environment, where disks are virtualized and multiple
virtual machines share a limited number of physical disk spindles on the hypervisor.

Due to the high overhead mentioned above, the scanning can typically only be sched-
uled at a relatively low frequency, for example, once a week or even once a month. The
rapid provisioning nature of cloud means that many workloads can be relatively short
lived and thus may be missed entirely by the periodic scans.

Scanning technology is only as accurate as the discovery catalog is complete and up-
to-date. New software products or versions can be missed if they are not first cataloged.
Complex software products such as databases have many editions and optional features,
and it is difficult for scanning technology to identify which editions are installed and
which features are in use. These, however, may strongly affect licensing.

Once the list of software products has been discovered, the inventory needs to go
through a manual process to be ready for the next step, reconciliation. License recon-
ciliation is the process of matching each software instance that requires a license with
a license owned by the enterprise, and ensuring that there are a sufficient number of
licenses, or license units, owned. Although this manual step is necessitated in part by
the accuracy problems inherent in scanning technology, it is also used to add licensing-
relevant information beyond what scanning can provide, such as what contract software
was purchased under; whether it is used in production, or test, or development; whether
it is used as on a primary node or only in backup capacity; or whether it is used in a
client or a server capacity.

502 M. Kim et al.

4 Management-Based License Discovery

As discussed in Section 2, in the last phase of software discovery, the enterprise applies,
in a labor-intensive process, its knowledge of the context of the software in its inven-
tory, such as bundle relationships, contracts, and the kind of workloads served by the
software. In this section, we describe Management-based License Discovery (MLD)
wherein this kind of knowledge is encoded in structures that are accessed in the man-
agement system workflows that are used to provision VM images and install software
bundles. In this way, an accurate software inventory may be maintained at all times.
MLD also maintains data on the licenses an enterprise owns, and is thus able to offer
services such as warning when an under-licensing situation may exist. Because the sys-
tem is integrated with the cloud management system, it has access to not only the image
and bundle catalogs, telling it what software is included in each image and bundle, but
also has the knowledge of the characteristics of each virtual machine, and so can gen-
erate the software inventory records completely and accurately using this information.
It therefore avoids all the issues that scanning technology has in a cloud deployment.

4.1 Design

Intercept cloud service
request event

Rule actions
allowed to proceed?

Perform requested service

Compute license usage

Update software
inventory / license DB

END

Apply pre-action rules

Apply post-action rules

Yes

No
END

Fig. 1. MLD main flow

To tack the license usage, users need to provide
the information on the licenses that they own. This
information typically includes software name,
software version, license types, license dates, etc.
Users also need to specify whether the licenses
can be applied at the general software level or at
the specific version level.

Through the license management web front-
end, users can specify a set of rules. There are
pre-action rules that are applied before the service
action is executed and the post-action rules that
are applied after the action has been taken. One
of the important pre-action rules is whether to en-
force the license compliance or to inform the sta-
tus of the license usage. If a user chooses the en-
forcement option, the user must own the required
licenses in order for the action (such as provision-
ing or installation) to succeed.

The post-action rules include those related to
alerts. Users can specify under what condition
they want to receive an alert message. For exam-
ple, a rule can be if the current usage reaches 90%
or above of the licenses that a user owns, send an
alert message to a specific e-mail account.

In addition to pre-action and post-action rules, there are other rules associated with
the events that are not triggered by individual service request. For example, report gen-
eration is triggered periodically by a timer. Users can specify the period at which the
reports should be generated and the level of details that reports should include.

Management-Based License Discovery for the Cloud 503

Once the rules are defined, the license manager is ready to update license usage upon
the arrival of cloud service requests. As the cloud service requests arrive through the
web-based front-end, our license management engine taps into these events and com-
putes the license usage. Our license manager can either enforce the license compliance
or only detect the potential problems and generate warnings. In case of enforcement,
the license manager will see whether the user owns appropriate licenses to proceed
with the action. If the user indeed has the required license, the cloud management layer
will execute the action. Once the action completes successfully, our license manager
updates the software inventory and the license DB. The last step is to check whether
there are post-action rules such as sending the alerts based on the current license usage.
Figure 1 shows the main flow of the license manager as the individual cloud service
request arrives at the system.

4.2 Persisted Data

There are three main sets of data that need to be persisted for license management: in-
formation on available licenses, rules and license usage. In our prototype system, we
use IBM DB2 to persist our data. Here are the three data sets: First, MLD keeps track of
the licenses that users own. The information on each license includes the details on the
software, effective dates, and license type. Second, MLD persists the rules that users en-
ter through the web front-end. A rule is typically associated with an account (user) and
has the start and end dates, during which it is affective. The rules include those describ-
ing the condition for alerts and the period for generating reports. Third, MLD persists
license usage information by tracking the software instances that are running. Informa-
tion for each software instance includes the start and end time of the software instance,
ID of VM instance that contains this software instance and license type. Whenever a
cloud service event changes the number of running software instances, MLD updates
the number of required licenses and generates alerts based on the alert rules. Beside
these three main sets of data, MLD also persists alert messages in database and gener-
ated reports in the file system, with the link to the file system location in database.

4.3 Interaction with the Other Components in Cloud

MLD assumes that certain information can be retrieved from the existing cloud com-
ponents. When a provisioning request arrives at the cloud, it typically contains VM
image ID, but does not contain the list of software components that come with the VM
image. We assume that the cloud has the meta-data that describes the list of software
components in VM images. Our current prototype has been tested for IBM SmartCloud
Enterprise (SCE) [5] environment, in which a meta-data file (called topology file) in the
XML format lists the software components in VM images.

After a VM instance has been started, users can install additional software. We as-
sume that users go through the management process to do so. When software compo-
nents are installed in the form of software bundle, which consists of multiple software
components, the list of software components again can be retrieved from the exiting
cloud components. We assume that given the software bundle ID, MLD can easily re-
trieve this information.

504 M. Kim et al.

5 Prototype

We have implemented a prototype system of MLD on IBM’s SCE [5], an IaaS cloud
offering. MLD receives the events from the cloud management layer that are relevant
to software license management, including VM provisioning, VM deprovisioning, soft-
ware bundle installation and uninstallation. In addition to license discovery, the system
also implements additional value-added services, such as visualization, usage alerts and
reports. The account administrator accesses the system via a Web-based user interface.
Once logged in, the administrator has access to three main sections of the application:
Dashboard, Limits and Reports.

Dashboard. The dashboard page provides a high level overview of software license
usage. After the administrator enters a query date range in the query section and clicks
the “Go” button, the section below is refreshed to show an overview table. Each row
represents a single software product, the type (e.g., PVU, Cores, MIPs) of license that
is applied to it, the entitlement value and the peak usage value during the query range.

From the overview table, the administrator can click on a particular product and ob-
tain a detailed view of all VM instances that are alive during the query range (Figure 2),
which explains the license usage value that is presented in the overview table. At the
bottom of this detailed view page, we also present a graphic visualization of the license
consumption, with time as x-axis and licenses as y-axis (Figure 3). The administrator
also has the ability to save the query result as a report, which will be described later.

Fig. 2. Prototype: Per-software Detailed View Fig. 3. License Usage

Limits. The second main section of the application is the Limits and Alerts page. Each
row in the table represents a single software product. By clicking on the hot links in the
license type and entitlement columns, an administrator can configure the license type
and entitlement value for the selected software product. The entitlement values are used
by an alert rule engine that can generate notification e-mails based on current license
consumption situation with respect to its configured limit.

By clicking on the “Edit alert rules” link from the page, the administrator can manage
the alert rules for his account. An alert rule consists of condition (above, below, equal),
threshold (expressed as a percentage of the entitlement value), message severity, notifi-
cation e-mail address, and the set of software products to which it is applied. After an
alert rule is applied to a software product, its license consumption value is monitored
by the system. When the test condition is met, for example, usage is over 95% of the
entitlement value, a notification e-mail is sent to the pre-configured e-mail address in
the alert rule, so that the responsible stakeholder can take appropriate actions.

Management-Based License Discovery for the Cloud 505

Reports. The third main section of the application contains a list of all archived reports
for the account. There are two ways to generate reports. First, an administrator can
manually create a report based on the query result obtained from the dashboard page.
Second, reports can be generated automatically according to rules. The administrator
can manage the report generation rules in a separate page accessible from the main
report page. A report generation rule specifies the frequency of the generation (daily,
monthly, quarterly), start date, and time of date at which the report is to be created.

Users can choose the level of details that the report should include. A typical report
contains the maximum number of software instances that were running for each soft-
ware product during the period that the report includes and the number of licenses that
the user owns for each product. It may also include alert messages that are generated
during the corresponding reporting period.

Once a report is created, it is listed in the main report list. The administrator can
download the report as an XML format for further downstream process or as a PDF
format for human viewing. After reviewing the report content, the administrator has the
option to sign the report with additional comments for audit and compliance purposes.

6 Related Work

There has been a limited amount of work on license management within the research
community. To best of our knowledge, our work is the first to address how automation
of license discovery can be achieved in a managed cloud environment.

One approach for automating license management is to develop a model to capture
the business process and license requirements. Giblin et al. [3] developed a meta-model
that can capture free-form passages describing the license requirements and regulations.
Liu et al. [8] presented a modeling method for both business process and compliance
rules. Once both are presented as models, process models can be verified against com-
pliance rules by means of model-checking technology, which is automated. This thread
of work is orthogonal to our work in management-based discovery but can complement
it by providing information in a semantic-rich, machine-friendly manner. However, our
approach does not require a model, as we implicitly collect semantically-rich informa-
tion by tapping into the management process.

There have been some efforts on managing license compliance for free and open
source software development. Gangadharan et al. [2] presents a way to implement
clauses of open source software license in a machine interpretable way and describes a
novel algorithm that analyzes compatibility between multiple free and open source li-
censes. Another example that shows developers’ interest in license terms of open source
software is Google’s Advanced Search [4], which provides an option of filtering out
search according to the different degrees of license obligations (e.g., “free to use or
share,” “free to use, share, or modify”).

There are some less relevant efforts, but still consider licenses. LASS [1] presents a
service selection problem with the license specification as one of the factors during the
selection process. There have been other papers [7,9] on service selection, but these do
not consider the license specification. While these papers focus on the service selection,
the focus of our paper is license management.

506 M. Kim et al.

7 Conclusion and Future Work

License management is an important problem in the enterprise world, as the costs of
non-compliance are severely high. Avoiding these penalties has been a costly process
for enterprises. The scanning-based approach has well known drawbacks, and the labor
necessary to prepare software inventories for license reconciliation is extensive.

In this paper, we presented management-based license discovery (MLD), which
takes advantage of a cloud’s managed environment. MLD taps into a cloud’s infras-
tructure management processes to automatically discover license usage and support the
license compliance process. We also demonstrated new capabilities for rule-based alert-
ing and enforcement that are made possible by our approach. We presented our initial
prototype that has been intended for IBM’s SCE. We believe that our automated system
can significantly reduce the cost of license management.

While we believe that our prototype system demonstrates the value of our
management-based discovery approach, we are aware that it does not fully address all
the requirements an enterprise may have for preparing an inventory for license recon-
ciliation. There is a need to capture the usage context of software, such as whether an
instance is used in development or production. However, the precise context that mat-
ters may differ from enterprise to enterprise. We need to be able to allow the enterprise
to indicate which context attributes should be captured when software is installed, and
to extend the standard software inventory with those attributes. We are now extending
our system in order to do that.

References

1. Gangadharan, G.R., Comerio, M., Truong, H.-L., D’Andrea, V., De Paoli, F., Dustdar, S.:
LASS – License Aware Service Selection: Methodology and Framework. In: Bouguettaya,
A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 607–613. Springer,
Heidelberg (2008)

2. Gangadharan, G., D’Andrea, V., Paoli, S., Weiss, M.: Managing license compliance in free
and open source software development. Information Systems Frontiers 14, 143–154 (2012)

3. Giblin, C., Muller, S., Pfitzmann, B.: From regulatory policies to event monitoring rules:
Towards model driven compliance automation. Technical report

4. Google. Advanced Search, http://www.google.com/advanced_search?hl=en
5. IBM. IBM Smart Cloud, http://www.ibm.com/cloud-computing/us/en/
6. Kanaracus, C.: SAP, Rent-a-Center in Battle Over Millions in Fees. CIO (2011),

http://www.cio.com/article/686832/
SAP_Rent_a_Center_in_Battle_Over_Millions_in_Fees

7. Lamparter, S., Ankolekar, A., Studer, R.: Preference-based selection of highly configurable
web services. In: Proc. of the 16th Int. World Wide Web Conference, pp. 1013–1022. ACM
Press (2007)

8. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Systems Journal 46(2), 335–361 (2007)

9. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service Selection Based on Non-functional Prop-
erties. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp. 128–138.
Springer, Heidelberg (2009)

10. Rosenberg, S.D.: Software License Compliance: Myth vs. Reality. E-Commerce Times
(2008), http://www.ecommercetimes.com/story/64465.html

http://www.google.com/advanced_search?hl=en
http://www.ibm.com/cloud-computing/us/en/
http://www.cio.com/article/686832/SAP_Rent_a_Center_in_Battle_Over_Millions_in_Fees
http://www.cio.com/article/686832/SAP_Rent_a_Center_in_Battle_Over_Millions_in_Fees
http://www.ecommercetimes.com/story/64465.html

Ensuring Well-Formed Conversations

between Control and Operational Behaviors
of Web Services

Scott Bourne, Claudia Szabo, and Quan Z. Sheng

School of Computer Science
The University of Adelaide, SA 5005, Australia

{scott.bourne,claudia.szabo,michael.sheng}@adelaide.edu.au

Abstract. Despite a decade’s active research and development, Web
services still remain undependable. Designing effective approaches for
highly dependable Web service provisioning has therefore become of
paramount importance. Our previous work proposes a novel model that
separates the service behavior into operational and control behaviors for
flexible design, development, and verification of complex Web services.
In this paper, we further this research with a set of conversation rules
to facilitate the verification of rich conversations between control and
operational behaviors. The rules are specified as temporal logic formu-
las to formally check rich conversation patterns. The proposed approach
is realized using state-of-the-art technologies and experiments show its
feasibility and benefits.

1 Introduction

Web services have been the focus of active research in the past decade [1–4].
Unfortunately, techniques on Web services design and deployment have not
fully matured yet. Recent statistics show that only 28,600 Web services exist
on the Web1, and many have serious issues such as timeout, dependability and
unexpected behavior, due to market pressures that require ad-hoc deployment
without proper quality assurance. An important challenge remains verifying the
soundness and completeness of a Web service at design time. This permits devel-
opers to identify major design flaws before costly development and will further
the quality of the developed Web service [3, 5, 6].

Towards the verification of Web services at design time, our earlier work has
proposed a novel model that separates the service behavior into control and op-
erational behaviors, allowing for flexible design, development, and verification of
complex Web services [3]. The control behavior guides the execution of the sys-
tem and maintains a transactional state, while the operational behavior defines
the underlying business logic. The conversation between control and operational
behavior is formed by messages that direct the operational behavior and re-
port events to the control behavior. The verification of the Web service can be

1 http://webservices.seekda.com

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 507–515, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

508 S. Bourne, C. Szabo, and Q.Z. Sheng

thus translated into verifying that the control and operational behavior contain
conversations that are well-formed.

In this paper, we define well-formed conversations between our proposed op-
erational and control behaviors as conversations that start and end properly and
for which several syntactic and semantic properties are met. This provides high
flexibility and facilitates the definition and validation of rich conversations be-
tween operational and control behavior, at design time, before the Web service
is developed. In particular, we propose to ensure well-formed conversations be-
tween control and operational behavior by defining a set of conversation rules,
which ensure that (i) a conversation starts and ends correctly, and (ii) sequences
of message exchange that may lead to deadlock and other undesired properties
are not permitted. The main contributions of our work are as follows:

– A set of conversation rules to facilitate the verification of complex Web
services.

– A service verification approach based on model checking that extracts tem-
poral logic properties from a set of pre-defined rules.

– A prototype implementation that extends our existing set of tools with a
conversation verifier to facilitate the automated verification of Web service
design.

The remainder of this paper is organized as follows. Section 2 presents an
overview of our Web service model for separating operational and control be-
haviors. Section 3 presents the conversation rules. We show how these rules are
transformed to LTL properties in Section 4 and present an example in Section
5. Finally, we discuss related work and conlude in Section 6.

2 Background

In this section, we briefly overview our Web service behavior model presented
in [3]. Our model enables a richer description of Web services by abstracting
and separating a Web service’s behavior into control and operational behaviors.
The control behavior is an application-independent model of the state of the
Web service from a transactional point of view, while the operational behavior
represents the business logic that underpins the functionalities of the service. The
execution of the operational behavior is guided by the control behavior, while
events in the operational behavior influence the actions taken by the control
behavior. Interested readers are referred to [3] for more details of this model.

We model the service behaviors using statecharts [7]. Figure 1(a) and (b)
show the control and operational behavior models of WeatherWS, a weather in-
formation retrieval service. The operational behavior states are given meaningful
names to reflect the underlying operations.

To enable inter-behavior communication, we propose a set of message types.
These message types are classified as initiation messages and outcome messages.
Initiation messages are sent from the control behavior for the purpose of directing
the operational behavior, while outcome messages are replies that indicate the

Well-Formed Conversations between Control and Operational Behaviors 509

Not
Activated Activated

Compensated

Suspended

Done

Aborted

End

Syncreq or
Ping timeout

retrial

cannot retry

Success
received

Fail
received

cannot retry

Input
Collected

Zipcode
Checked

City
Checked

Longitude/Latitude
Conversion Checked

Weather
Collection

Report
Delivered

Access
Failed Cancelled

Fail
received Sync

received

(a) (b) (c)

Suspended

Activated

Zipcode
Checked

City
Checked

Weather
Collection

Input
Collected

Sync

Sync

Delay

Delay

Delay Activated

Report
Delivered

Cancelled

Inactive

Ack

Success

Fail

Syncreq

Syncreq

exception

exception

Ping

Fig. 1. Control (a) and operational behavior (b) of WeatherWS, with interactions
(c).

current state of the operational behavior. The set of initiation messages include
Sync, Delay, and Ping. Sync is used to trigger the execution of the operational
behavior, Delay forces a response following an unacceptable delay, and Ping tests
the liveness of an operational behavior state, triggering a timeout situation when
no acknowledgement is received. Our outcome messages include Success, Fail,
Syncreq, and Ack. Success and Fail indicate the commitment or abortion of the
service. Syncreq requests another Sync to attempt forward recovery following
an internal failure. Ack is used to respond to Ping and confirm the liveness of a
state. The intra-behavior transition labels in Figure 1(c) shows the inter-behavior
messages required for WeatherWS, while their effect is shown in (a) and (b).

However, guidance is still needed to produce a set of messages that ensure
reliable and semantically correct conversations. We propose a set of rules to
apply to behavior conversations to serve this purpose, as detailed in the following
sections.

3 Conversation Rules

Our message types form conversations describing the execution of a Web ser-
vice. However, there is a potential for invalid sequences, deadlocking situations,
or incomplete sessions. We propose a list of conversation rules to ensure that
behavior conversations are well-formed. We define well-formed conversations as
sequences of messages that are correct, free of deadlock, and express the behav-
ior of a service from invocation to termination. Our conversation rules specify
correct sequences of message types, and ensure that a service is invoked and
terminated correctly.

3.1 Conversation Sessions

Our proposed conversation rules apply to sequences of inter-behavior messages
called conversation sessions. A conversation session is the ordered sequence of
inter-behavior messages sent from the invocation of a service until both behav-
iors reach a termination state, i.e. the End or Compensated state in the control
behavior.

A conversation session can be defined as a sequence of message types of length
n. Each message is expressed as m(t) where m ∈ [Sync, Success, Fail, Syncreq,
Delay, P ing,Ack] and t denotes the order such that t ∈ [1, ..., n]. For example:

510 S. Bourne, C. Szabo, and Q.Z. Sheng

Table 1. Conversation Rules

Name Purpose Conversation Rule

CR1 Initial Message ∃m ∈ [Sync], m(1)

CR2 Final Messages ∃m ∈ [Success, Fail, P ing, Syncreq], m(n− 1)

CR3 Message Sequence
∀mi ∈ [Sync, Ack],
∃mj ∈ [Success, Fail,Delay, Syncreq, P ing],
∀t ∈ [0, ..., n− 1], mi(t) ⇒ mj(t+ 1)

CR4 Message Sequence
∀t ∈ [0, ..., n− 1],
∃m ∈ [Sync, Syncreq,Delay,P ing,Ack],m(t)

CR5 Message Sequence ∀t ∈ [0, ..., n− 2], Syncreq(t) ⇒ Sync(t+ 1)

CR6 Message Sequence
∃mj ∈ [Success, Fail, Syncreq],
∀t ∈ [0, ..., n− 1], Delay(t) ⇒ mj(t+ 1)

CR7 Message Sequence ∃mj ∈ [Sync,Ack], ∀t ∈ [0, ..., n− 1], P ing(t) ⇒ mj(t+ 1)

CR8 Message Sequence
∀mi ∈ [Sync, Success, Fail, Ack,Delay, Syncreq],
∃mj ∈ [Sync, Success, Fail, Syncreq,Delay, P ing],
∀t ∈ [0, ..., n− 1], mi(t) ⇒ mj(t+ 1)

– Sync(1).Syncreq(2).Sync(3).Fail(4) is a well-formed conversation ses-
sion. It expresses a complete and deadlock-free execution of the service where
each message logically follows the previous.

However, a lack of rules to ensure well-formed conversation sessions can lead to
deadlocking states or incomplete sessions.

– Sync(1).Syncreq(2).Delay(3) is a deadlocking conversation session. The
operational behavior is waiting for a Sync message before if can continue,
while the control behavior is suspended until it receives a reply to Delay.

– Sync(1).Ping(2).Ack(3).Ping(4).Ack(5) is an incomplete conversation
session, as the execution of the service has not fully terminated.

3.2 Conversation Rule Formalisms

We propose a set of conversation rules to enforce completeness of conversation
sessions and logical message sequences, as shown in Table 1. The message se-
quence rules can be expressed as a series of if-then conditions as follows:

∀mi ∈ I, ∃mj ∈ J , ∀t ∈ T ,mi(t)⇒ mj(t+ 1)

where I,J ⊆ [Sync, Success, Fail, Syncreq,Delay, P ing,Ack] and T ⊆ [1, ...,
n− 1]. The set I identifies a set of message types, and J defines those that can
immediately follow. This revises the formula presented in [3] by allowing rules
to apply to several message types.

Rule CR1 specifies that all conversation sessions must begin with Sync, and
CR2 defines the valid final messages for conversation sessions, ensuring that
the control behavior does not enter a termination state before the operational
behavior has completed. Ping can be the final message of a conversation session

Well-Formed Conversations between Control and Operational Behaviors 511

following an unrecoverable time-out, while Syncreq can be the final message
when another Sync message cannot be sent (such as once a retrial limit has been
exceeded).

Rule CR3 defines the set of valid messages to follow a Sync or Ack message.
Once either of these message types are received, the operational behavior begins
or resumes execution until completion or encountering a problem. This rule
ensures that the control behavior does not send additional Sync messages while
the operational behavior is executing.

Rule CR4 prevents the incorrect use of Success and Fail by specifying they
cannot be used before the final message of the conversation session.

Rules CR5 and CR6 refer to messages that follow Syncreq and Delay mes-
sages respectively. A Syncreqmessage must only be replied with a Syncmessage
(therefore it is impossible for Syncreq to be sent at n − 1, as a session cannot
end with Sync). Similarly, a Delay message must be immediately followed by a
Success, Fail or Syncreq message.

Rule CR7 indicates that only a Sync or Ack message may follow a Ping

message. We recall that when a Ping message is sent, either an Ack message is
returned to confirm the liveness of an operational state, or a time-out situation
occurs. In the case of a time-out, a Sync message can be sent to retry the
process. This rule prevents sequences such as Ping(t).Success(t+1), where
the operational behavior has completed successfully, but the control behavior
is still waiting for an acknowledgement and cannot proceed. Rule CR8 is also
needed to ensure that Ack can only follow Ping.

The conversation rules also imply other desirable properties, such as prevent-
ing the same message type to be sent consecutively, and ensuring every Sync

message eventually receives an outcome message (Success, Fail or Syncreq),
excepting a time-out. By defining initial messages, final messages, and valid
message sequences, our proposed rules set can ensure complete and correct con-
versation sessions.

4 From Conversation Rules to Temporal Logic

To formally verify a service design against our conversation rules, we explore the
use of model checking [8] to ensure conformance to pre-defined temporal prop-
erties describing our proposed rules. We use Linear Temporal Logic (LTL) [9]
for this purpose. LTL expresses properties of a system model over a linear and
discrete timeline by using temporal operators over model variables.

While our conversation rules can be applied to a simple sequence of message
types, the LTL properties must apply to a complete service model. This poses
two challenges when producing LTL transformations. Firstly, the complexity of
the service model can cause state delays between certain inter-behavior mes-
sages. Secondly, there is a need to extract the state of the conversation session
from the service model. To address these issues, the LTL properties consider po-
tential message delays where appropriate and use a set of proposed conversation
variables.

512 S. Bourne, C. Szabo, and Q.Z. Sheng

Table 2. Conditions for Message Processing

Message Processed Condition

Sync The operational behavior begins or resumes execution.

Success, Fail The control state transitions from the Activated state.

Syncreq A Sync message is sent in reply or a termination state is entered.

Delay A Success, Fail or Delay message is sent in reply.

Ping An Ack message is sent in reply.

Ack Automatically processed in the following state.

Table 3. LTL Transformations of Conversation Rules

CR1 (IM = nil ∧OM = nil) ∪ (IM = Sync ∧ IP = FALSE ∧ OM = nil)

CR2
�((((IM = Sync ∨ IM = Delay) ∧ IP = FALSE) ∨ (OM = Ack ∧ OP = FALSE))

→ �((OM �= Ack ∧ OP = FALSE) ∨ (IM �= Sync ∧ IM �= Delay ∧ IP = FALSE)))

CR3

�(((IM = Sync ∧ IP = FALSE) ∨ (OM = Ack ∧ OP = FALSE))

→ © ((IP = TRUE ∧OP = TRUE) ∨
((IP = FALSE ∧ (IM = Ping ∨ IM = Delay)) ∨
(OP = FALSE ∧ (OM = Success ∨ OM = Fail ∨ OM = Syncreq)))))

CR4
�((OM = Success) → © (OM = Success ∧ OP = TRUE ∧ IP = TRUE))

�((OM = Fail) → © (OM = Fail ∧ OP = TRUE ∧ IP = TRUE))

CR5
�((OM = Syncreq → ©(OM = Syncreq ∧ OP = TRUE ∧ IP = TRUE)) ∨
((OM = Syncreq ∧ OP = FALSE) → ©((OM = Syncreq ∧ OP = FALSE) ∨

(OP = TRUE ∧ IM = Sync ∧ IP = FALSE))))

CR6
�((IM = Delay ∧ IP = FALSE) → ©((IP = Delay ∧ IP = FALSE ∧ OP = TRUE) ∨
(IP = TRUE ∧ OP = FALSE ∧ (OM = Fail ∨OM = Success ∨ OM = Syncreq))))

CR7
�((IM = Ping ∧ IP = FALSE)

→ © ((IP = FALSE ∧ OP = TRUE ∧ (IM = Sync ∨ IM = Ping)) ∨
(OM = Ack ∧ OP = FALSE ∧ IP = TRUE)))

CR8
�((OM = Ack ∧OP = FALSE) → (IM = Ping ∧ IP = TRUE))

�((OP = FALSE) → ©¬(OM = Ack ∧ OP = FALSE))

The LTL transformations of our conversation rules utilize temporal operators
over four proposed variables to express the conversational state. Initiation and
outcome message are denoted by the variables IM and OM respectively. Both
variables are initialized at nil. We also propose two boolean variables, IP and
OP to indicate when their corresponding message is active or processed. Their
values are set to FALSE upon sending and TRUE after processing. The processing
conditions for each message type is shown in Table 2. We employ the following
operators over these conversation variables: © for the next state, � for at least
one future state, � for all states, and ∪ for one property to hold until another
is met.

Table 3 shows the LTL transformations of the conversation rules. The trans-
formations of some rules, CR1 and CR4, are straightforward. We enforce CR2
by ensuring at least one valid final message always follows a non-final message.

Well-Formed Conversations between Control and Operational Behaviors 513

Delays of several states can potentially occur following Sync, Ping, Syncreq,
and Ack. Therefore, the transformations of rules CR3, CR5, CR6 and CR7 allow
unchanged conversational states as one valid next state. Rule CR8 requires two
LTL properties to express; one to ensure that Ping is the initiation message to
precede Ack, and another to prevent outcome messages between Ping and Ack.

These LTL properties can be used to verify a complex service designed as
control and operational behaviors, by ensuring it only produces well-formed con-
versation sessions. A service design can be checked against the rules by creating
a model that contains our message variables and using a model checking tool to
verify that none of the rules are violated.

5 System Implementation and Validation

We implemented the approach proposed in this paper by extending our existing
prototype system for the design and verification of Web services. Our system
is implemented in Java and uses state-of the art technologies such as XML,
SOAP, WSDL, and model checking. Users can access the system via the user
interface shown in Figure 2, to compose, verify and execute complex services as
interacting control and operational behaviors. The NuSMV model checker [10]
is used to verify service designs within this system. The prototype enables a
service design to be transformed into the input language of NuSMV, and then
verified for conformance to the LTL transformations of our conversation rules.
The prototype is an extension of the system in [3].

To evaluate our proposed approach, we conducted experiments using the
implemented prototype and the WeatherWS example shown in Figure 1. The
control behavior, operational behavior, and inter-behavior conversations were
modeled in SMV, the input language of NuSMV. We applied the NuSMV model

Fig. 2. Specifying Service Behaviors

514 S. Bourne, C. Szabo, and Q.Z. Sheng

checker to verify that the conversational behavior of this model does not vio-
late any of the LTL properties produced in Section 4. We verified ten testcases
with artificially introduced errors. If any of the properties are violated by the
model, NuSMV produces a state sequence that leads to the contradiction. Our
SMV transformation of WeatherWS as it appears in Figure 1 satisfied the set of
conversation rules.

6 Discussion and Conclusion

The verification of Web service behavior remains an important challenge despite
active research and development over the last decade. Our work facilitates the
flexible verification of Web services at design time by modeling Web service
behavior as a conversation between an operational behavior that defines the
underlying business logic of the system, and an application-independent control
behavior that guides the execution of the operational behavior. We propose a set
of conversation rules that are specified as temporal properties and verify using
a model checker.

Most existing work on Web service conversation modeling has focused on the
interactions between a deployed service and a client. Technical specifications
have been proposed to express the conversational requirements of a complex
service as part of an interface [4, 11]. In contrast, we apply temporal logic and
model checking to ensure that all possible conversations follow a set of rules
for correctness and completeness. In a similar effort, Kova et al. [12] study the
mapping between the control and operational behaviors and also propose to
verify the conversations using LTL properties and the NuSMV model checker.
In their approach, the behaviors are merged into a single model that express
the possible flow of control states. Model checking is used to verify that the
transitions between operational states do not violate transitions defined in the
control behavior model. Our work differs by defining message types and rules
for the communication between the two behavior models. By using messages
that can dictate the transitions between states in both models, we are able to
model a wider range of transactional behavior (such as pinging operations and
responding to delays).

Future work includes expanding the applicability of the control and opera-
tional behaviors by including handling for more sophisticated workflow patterns
such as iteration and parallel execution. We will also consider to include context
information in conversation rules, such as considering the temporal properties
of failed operations when attempting corrective action via the control behavior.

References

1. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and Managing Web Ser-
vices: Issues, Solutions, and Directions. The VLDB Journal 17(3), 537–572 (2008)

2. Vieria, M., Laranjeiro, N., Madeira, H.: Benchmarking the Robustness of Web
Services. In: Proceedings of the 13th International Symposium on Pacific Rim
Dependable Computing (2007)

Well-Formed Conversations between Control and Operational Behaviors 515

3. Sheng, Q., Maamar, Z., Yahyaoui, H., Bentahar, J., Boukadi, K.: Separating Oper-
ational and Control Behaviors: A New Approach to Web Services Modeling. IEEE
Internet Computing 14(3), 68–76 (2010)

4. Benatallah, B., Casati, F., Toumani, F.: Web Service Conversation Modeling: A
Cornerstone for E-Business Automation. IEEE Internet Computing 8(1) (2004)

5. Bhiri, S., Perrin, O., Godart, C.: Ensuring Required Failure Atomicity of Com-
posite Web Services. In: Proceedings of the 14th International World Wide Web
Conference, pp. 138–147. ACM (2005)

6. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A Framework for Fault-tolerant
Composition of Transactional Web Services. IEEE Transactions on Services Com-
puting 3(1), 46–59 (2010)

7. Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology 5(4), 293–333 (1996)

8. Clarke, E.M.: Model Checking. In: Ramesh, S., Sivakumar, G. (eds.) FST TCS
1997. LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997)

9. Emerson, E.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, vol. 2, pp. 995–1072 (1990)

10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

11. Ardissono, L., Goy, A., Petrone, G.: Enabling Conversations with Web Services. In:
Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 819–826. ACM (2003)

12. Kova, M., Bentahar, J., Maamar, Z., Yahyaoui, H.: A Formal Verification Approach
of Conversations in Composite Web Services using NuSMV. In: Proceedings of the
Conference on New Trends in Software Methodologies, Tools and Techniques, pp.
245–261. IOS Press (2009)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 516–524, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Variability in Service-Oriented Systems:
An Analysis of Existing Approaches

Holger Eichelberger, Christian Kröher, and Klaus Schmid

Software Systems Engineering, University of Hildesheim
Marienburger Platz 22, 31141 Hildesheim, Germany

{eichelberger,kroeher,schmid}@sse.uni-hildesheim.de

Abstract. In service-oriented systems services can be easily reused and shared
without modification. However, there are business situations where a variation
of services is needed to meet the requirements of a specific customer or context.
Variation of software systems has been well researched in product line engi-
neering in terms of Variability Implementation Techniques (VITs). While most
VITs focus on the customization of traditional software systems, several VITs
have been developed for service-oriented systems. In this paper, we discuss the
problem of service customization and provide an overview of different VITs for
service variability. For this purpose, we will define four dimensions to describe,
characterize and analyze existing VITs: the technical core idea, the object of
variation, the forms of variation, and the binding time.

1 Introduction

Customization of software systems is current practice in industry to meet the require-
ments of customers in a qualitative and timely manner. The most frequent reasons for
customization are: novel functionality [10], optimization for quality of service aspects
[8], and seamless integration into existing infrastructures [5]. Companies face ever-
increasing demands on customization due to growing numbers of requirements and
rising complexity of software systems.

In Service-oriented Computing (SoC) a typical approach to satisfy varying re-
quirements is to add, remove, or replace services. However, there are situations where
the customization of existing services is needed. This could be realized by implement-
ing a completely new variant of a service, but it is more appropriate from a business
point of view to customize the service implementation as needed. This will lower the
development effort and increase reusability. However, SoC does not provide for the
customization of services in terms of tailoring individual aspects of a single service.

An industry best practice to achieve tailor-made systems with low effort and high
quality are Software Product Line Engineering (SPLE) methods [9]. The key idea of
SPLE with respect to customization is to focus on the differences (called variabilities)
among similar systems instead of repeating the development. A variability model
represents all variabilities on an abstract level (including constraints among them) and
is used to derive a valid product configuration for instantiation. A Variability Imple-
mentation Technique (VIT) is an approach to realize variability according to a

 Variability in Service-Oriented Systems: An Analysis of Existing Approaches 517

Fig. 1. The role of variability in services

configuration. As the problem of customization is also relevant for SoC, there is a
need for approaches that integrate VITs with service-oriented technologies.

In this paper, we will provide a classification of VITs for SoC. The scope of this
paper is on service variability including variability of interfaces and implementations.
Other forms, like variabilities in business processes, service compositions, or service
platforms are out of scope due to space restrictions.

The paper is organized as follows: in the next section, we detail the dimensions to
analyze and characterize VITs. Section 3 will describe the approach of the literature
study we carried out to identify VITs. The results of the analysis will be presented in
Section 4. In Section 5, we will draw conclusions and point out future challenges.

2 Characterizing Variability Implementation

The combination of services with VITs forms the problem space of this work. In this
section, we identify dimensions for analyzing and characterizing VITs for SoC. We
will use these dimensions to classify the results of our analysis in Section 4 as they
provide a good basis for selecting a specific variability technique in practice.

D1. Technical core idea: The VITs described in literature are at the heart of our anal-
ysis. For each VIT we will discuss the technical core idea, the individual prere-
quisites, and the provided capabilities.

D2. Variability object: We differentiate between service interface and service implemen-
tation variability as shown in Fig. 1 due to the scope of this paper. Service interface
variability allows customizing the interface of a service. Typically, this also requires
service implementation variability. Service implementation variability enables the
customization of the implementation of a service (and thus its behavior).

D3. Form of the variation: Optional, alternative, and multiple selection are well
known forms of variation in SPLE [9]. Extension as a form of variation is particu-
larly relevant to SoC as it supports variability without a predefined range of poss-
ible variations. Further functionality may extend an existing service (without
creating a new service). Extensions are unknown at development time but may be
introduced later (this is a typical open-world scenario). Further forms are
mentioned in SPLE literature, but as we could not identify these as part of our
analysis, we will not list these here.

D4. Binding time: The binding time determines when a decision is made about a va-
riability. This may be either made once and cannot be altered afterwards (perma-
nent) or rebinding for a new variation is possible (volatile). Different binding

Service Interface
Service

Implementation

UI/Application
use service(s)

Service
Interface
Variability

Service
Implementation
Variability

Service Interface
Service

Implementation

Service Interface
Service

Implementation

Service Platform

deploy

518 H. Eichelberger, C. Kröher, and K. Schmid

times are discussed in literature [14]. However, we will focus on a representative
set for SoC. At compile time, variability binding is performed during the build
process by mechanisms such as pre-processors. At initialization time, variability
binding happens during the startup phase, e.g., based on a configuration file. Run-
time binding subsumes all cases of binding variability during the execution of a
service.

3 Literature Study

We performed a literature study in order to systematically survey existing VITs and to
classify them according to the dimensions introduced in Section 2. We defined a
strategy based on the guidelines for systematic reviews by Kitchenham and Charters
[7] in order to structure our survey. However, our goal is not an evidence-based anal-
ysis, but to ensure completeness and correctness of the identified literature. In this
section, we will briefly describe our strategy.

We performed our literature search using the most prominent search engines as
publication sources1. For the search queries, we used six different search strings
(combinations of service or SOA and variability, product-line, or SPLE) to cover the
entire range of available literature on that topic. We used these search strings with
each search engine. The individual searches yielded more than two thousand papers
from which we selected about two hundred to be relevant, that discuss variability in
SoC (based on reading the title and the abstract). After eliminating duplicates, we
applied a set of inclusion and exclusion criteria (topicality and maturity of the ap-
proach, focus of the approach, etc.) yielding the final set of relevant papers.

As a result, the literature study revealed 20 VITs in total, which are in principle re-
levant to service-oriented computing. However, due to space restrictions we decided
to focus in this paper exclusively on service variability as discussed in Section 2.

4 Analysis of Variability Implementation Techniques

In this section, we will present the results of our analysis. Please note, that we intro-
duce descriptive names for the VITs for clear identification and ease of reading. The
next sections below follow the sequence of dimensions defined in Section 2.

4.1 Technical Core Ideas

A VIT describes a specific way of realizing variability. In this section, we introduce
the identified VITs, their technical core idea, and the addressed service technologies.
These are summarized in Table 12.

1 ACM Digital Library: http://dl.acm.org/, IEEE Computer Society:
http://www.computer.org, Google Scholar: http://scholar.google.com/,
and Citeseer: http://citeseerx.ist.psu.edu/

2 Realization approaches and SOAP/WSDL are derived from the VITs; OSGi and REST are repre-
sentative examples of service technologies (marked as optional if concluded to be applicable).

 Variability in Service-Oriented Systems: An Analysis of Existing Approaches 519

Table 1. Realization approaches and service technologies required by VITs

m: mandatory, o: optional PP CbSi FOPbR CW ASW

Realization
Approach

Component-based - m - - -
Aspect-oriented - o - - m
Interception - - - - m
Feature-oriented - o m m -
Generative m - - - -

Service
Technology

OSGi o o o o -
SOAP / WSDL o o m o m
REST o o o o -

The Pattern Plugin (PP) approach [12] is a generative approach, i.e. service va-

riants are generated from a variant-enabled design model. The design model is an
extension of UML, and includes common and variable parts (as variation points) of a
Service-Oriented Architecture (SOA). A variant is expressed as a stereotyped model
element (variation model) which holds the information on the actual variation. A SOA
variant is defined by selecting appropriate variants. The variation models of the va-
riants are composed into the primary design model via pattern plugins. A pattern plu-
gin describes an individual variant. The composed model can finally be transformed
into code artifacts. The encapsulation of variability in variation models and related
plugins allows to arbitrarily selecting the service technology (marked as optional in
Table 1).

Component-based Service Implementation (CbSI) [10] adds a component layer as a
refinement of services and realizes variability on the component level. The approach
is rather generic and more a conceptual framework than a single approach. For exam-
ple, a service can be implemented as an optional component (service implementation).
Other VITs like aspects, features, etc. are possible (optional in Table 1). CbSI pro-
vides variability of the implementation, while the service layer is variation-free (with
respect to service implementation variability). Thus, this VIT does not require a spe-
cific service technology (optional in Table 1).

The FOP-based Refinement (FOPbR) approach [1] relies on Feature-Oriented Pro-
gramming (FOP). A feature represents an increment in functionality, which affects
one or multiple services simultaneously. FOPbR encapsulates the code of a feature
into a feature module. A feature module consists of a set of refinements for a service’s
base code which are enacted by joining the base and the feature code. As a prerequi-
site, FOP needs to be available for the implementation language, such as for Java [4]
or WSDL [2] (mandatory in Table 1). The use of other service technologies is un-
clear, but we expect this to be optional.

The Class Wrapper (CW) approach [13] also applies FOP techniques to SoC. In
contrast, CW uses Java HotSwap to update bytecode in place using the same class
identity. HotSwap is required to add features in terms of base classes and wrappers to
the service implementation (plain Java code). Base class code updates only internal
algorithms without affecting the class schema. Wrappers are used to introduce new
elements such as additional methods. In order to invoke the functionality provided by
the wrapper, HotSwap is used to update all object references of the changed class.

520 H. Eichelberger, C. Kröher, and K. Schmid

Table 2. Variability objects addressed by VITs

 x: supported PP CbSI FOPbR CW ASW
Variability

Objects
Service Interface x - x - -
Service Implementation x x x x x

While CW is conceptually similar to FOPbR, however, it would also allow the vola-
tile rebinding at runtime as we will discuss in Section 4.4. The customization of arbi-
trary Java code yields service technology-independence (optional in Table 1).

The Aspect Service Weaver (ASW) approach [11] relies on Aspect-Oriented Pro-
gramming (AOP) and message interception. ASW intercepts existing service message
chains (based on SOAP) between service consumer and provider. If a message in-
cludes a request for a method that the service does not support, advice services are
required. An advice service implements additional code (the variability) that can be
woven into existing services. The ASW tool [3] supports this for SOAP and Web ser-
vices (marked as mandatory in Table 1).

4.2 Variability Objects

A variability object is an element of a SoC that is supposed to vary. As discussed in
Section 1 we restrict our scope to services, i.e. services interface variability and ser-
vice implementation variability. In this section, we describe which variability objects
can be supported by which VIT (cf. Table 2) and how variation is realized.

The PP approach supports interface and implementation variability. The basic ser-
vice, which is supposed to vary, is described by a service operation description and
it’s in- and outputs. Each variant is given as a variation model. In case of an interface
variant, the model specifies the modified interface, the affected in- and outputs as well
as a variant description. For an implementation variant, the model lists the affected
operations, in- and outputs. The variation models are associated with the basic service
model. Given a specific selection of the variants for a basic service, a code generator
produces the service interfaces and the related service implementation variants.

In CbSI, implementation variability is enabled by the component layer. Each ser-
vice implementation is realized by at least on component. The selection of the com-
ponents for the implementation makes up the variability. Thus, the same service may
provide different functionality based on the selected components. However, there is
no mechanism that ensures that the in- and outputs of the service interface (service
layer) and the service implementation (component layer) match. This must be done on
a more abstract level, e.g. in the variability model which controls the customization.

FOPbR supports both, interface and implementation variability. An interface va-
riant is a refinement of a WSDL interface definition [2] that includes the affected
service methods. An implementation variant is realized as a class refinement introduc-
ing new and/or modified functionality. The set of related interface and class refine-
ments represents a feature, which can be applied to the service’s base implementation.

The CW approach only supports implementation variability. The base program is
given as plain Java. Each feature consists of a set of classes and wrappers. A class

 Variability in Service-Oriented Systems: An Analysis of Existing Approaches 521

Table 3. Forms of variation supported by VITs

x: supported PP CbSI FOPbR CW ASW

Form of

Variation

Optional x x x x x
Alternative x x x x x
Multiple Selection - x (x) (x) (x)
Extension - - (x) (x) (x)

may introduce new functionality, while a wrapper refines one of the base classes in
terms of altered methods. The wrapper class therefore holds an object of the wrappee
class, which enables the wrapper to call the basic methods of the base class first and
then manipulate the results by calling additional methods introduced by the wrapper.

The ASW only supports implementation variability. A functional variant, e.g. a
specific method, is encapsulated as an advice service. If this functionality is requested
by a service call, the ASW weaves the code of the advice service into the base service.
Joinpoints identify the functionality which should be modified in the service base
code [6]. The advice service can then be woven before, after or around this joinpoint.

4.3 Forms of Variation

Form of variation describes how specific variants can be selected. In this section, we
discuss the support of the VITs for the forms of variation (cf. Table 3).

The PP approach supports optional and alternative forms of variation. Typically,
each variant provides functionality describing a service implementation or a service
interface variant. Thus, the selection is either optional or an alternative, but there is no
support for selecting multiple variants or the explicit modeling of extensions.

In CbSI a component may be optional, an alternative, or combined with other com-
ponents (multiple selection) to implement a service. However, components cannot be
added after development time (extension) as the components are linked to specific
services in the service layer and later (re-)linking of components is not supported.

The other VITs support optional, alternative, and multiple selection as well as ex-
tension in principle. In FOPbR and CW the use of refinements or wrappers is option-
al. Multiple refinements or wrappers which affect the same functionality of a service
will override previously applied variants. Extensions to the base implementation after
development time can be applied by refinements and wrappers. As both VITs need
access to the service code, we put extension in Table 3 in brackets. Similar for mul-
tiple selection as it is not directly supported by the technique, but can be simulated.

In ASW an advice service may or may not be woven into an existing service (op-
tional). It may also be possible to select one or multiple advice services as long as the
advice services will not affect the same joinpoint (cf. Section 4.2). This will also re-
sult in overriding previously applied variants as in FOPbR and CW. Introducing new
functionality, which was unknown at development time, requires the joinpoints of a
service to be accessible. As again some support for extension is given, but no full
support we put this in brackets in Table 3. Similar for multiple selection.

522 H. Eichelberger, C. Kröher, and K. Schmid

Table 4. Binding times supported by VITs

p: permanent, v: volatile PP CbSI FOPbR CW ASW

Binding

Time

Compile Time p p p - (v)
Initialization Time - - - (v) (v)
Runtime - - - v v

4.4 Binding Times

The binding time defines when a decision for a specific variant must be made. In this
section, we describe the binding times supported by the individual VITs (cf. Table 4).

PP, CbSI, and FOPbR only support permanent compile time binding. In PP, cus-
tomization is realized by replacing existing or adding additional variants. This must
be done before the generation process and, thus, at the latest at compile time. Replac-
ing variants in the design model after the generation will not affect the generated code
(permanent binding). In CbSI, the components of a service implementation are instan-
tiated and composed at compilation time. In FOPbR the features are handled by the
compiler which applies them to the corresponding base code. Thus, the selection of
variants must be done at compile time and cannot be changed afterwards.

CW supports volatile runtime binding via Java HotSwap which enables class (re-)
binding. While the authors do not explicitly propose to use this approach at initializa-
tion time, this is, however, also possible (marked with brackets in Table 4).

Typically, AOP approaches are capable of compile time binding through static
weaving and (some form of) runtime binding by dynamic weaving [6]. ASW explicitly
supports volatile binding at runtime but may also be applied at initialization or compi-
lation time (again marked with brackets in Table 4). Further, ASW allows reweaving
code of advice services (volatile binding).

5 Conclusion

Customization of SoC is typically done by adding, removing or exchanging services.
However, there are situations where variations of the characteristics of services are
needed. We presented an overview of existing VITs for services and characterized
them with respect to core idea, variability object, form of variation, and binding time.

In our analysis, we also identified gaps and challenges. The characterized VITs
support only WSDL-based web services explicitly. There is no explicit proof-of-
concept for other service technologies like OSGi or REST. While the variability
objects are well supported, none of the VITs provides guidance to ensure that modifi-
cations to service interfaces also match the related implementation. As the modifica-
tions are also local to a service, there is no guarantee that the interfaces on caller as
well as on callee side are customized. Regarding the form of variation, the VITs do
not support the open-world scenario, i.e. extension of existing services with functio-
nality which was unknown at development time (unless the code is accessible). Fur-
ther, all binding times are (partially) supported but only one VIT supports all binding
times. Ideally, customization should be possible to perform at all binding times.

 Variability in Service-Oriented Systems: An Analysis of Existing Approaches 523

The most obvious result of our analysis is that no VIT supports all dimensions in a
comprehensive manner. Each approach focuses on a subset of elements of the dimen-
sions and, thus, provides specific mechanisms for these elements. However, in SoC,
we need integrated solutions that support all aspects of service variability appropriate-
ly. An integrated solution will enable the customization of service (and SoC in gener-
al) across technology and business boundaries with low effort and high quality.

In future work, we will focus on such an integrated VIT for SoC. For this purpose,
we will consider already analyzed VITs for variability objects such as service plat-
forms, service deployment, service composition, and business processes.

Acknowledgments. This work is partially supported by the INDENICA project,
funded by the European Commission grant 257483, area Internet of Services, Soft-
ware & Virtualisation (ICT-2009.1.2) in the 7th framework programme.

References

1. Apel, S., Kaestner, C., Lengauer, C.: Research Challenges in the Tension Between Fea-
tures and Services. In: 2nd Intern. Workshop on System Development in SOA Environ-
ments, pp. 53–58 (2008)

2. Apel, S., Lengauer, C.: Superimposition: A Language-Independent Approach to Software
Composition. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 20–35.
Springer, Heidelberg (2008)

3. Baligand, F., Monfort, V.: A Concrete Solution for Web Services Adaptability Using Poli-
cies and Aspects. In: 2nd Intern. Conference on Service Oriented Computing, pp. 134–142
(2004)

4. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In: 25th In-
tern. Conference on Software Engineering, pp. 187–197 (2003)

5. Istoan, P., Nain, G., Perrouin, G., Jézéquel, J.-M.: Dynamic Software Product Lines for
Service-Based Systems. In: 9th Intern. Conference on Computer and Information Technol-
ogy, vol. 2, pp. 193–198 (2009)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

7. Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in
Software Engineering. Technical Report EBSE-2007-01, School of Computer Science and
Mathematics Keele University, Staffs ST5 5BG, UK (2007)

8. Li, Y., Zhang, X., Yin, Y., Wu, J.: QoS-Driven Dynamic Reconfiguration of the SOA-
Based Software. In: Intern. Conference on Service Sciences, pp. 99–104 (2010)

9. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action - The Best
Industrial Practice in Product Line Engineering. Springer (2007)

10. Medeiros, F.M., de Almeida, E.S., Meira, S.R.L.: Towards an Approach for Service-
Oriented Product Line Architectures. In: 3rd Workshop on Service-Oriented Architectures
and Software Product Lines (2009)

11. Monfort, V., Hammoudi, S.: Towards Adaptable SOA: Model Driven Development, Con-
text and Aspect. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009.
LNCS, vol. 5900, pp. 175–189. Springer, Heidelberg (2009)

524 H. Eichelberger, C. Kröher, and K. Schmid

12. Narendra, N.C., Ponnalagu, K., Srivastava, B., Banavar, G.S.: Variation-Oriented Engi-
neering (VOE): Enhancing Reusability of SOA-Based Solutions. In: 5th IEEE Intern. Con-
ference on Services Computing, pp. 257–264 (2008)

13. Siegmund, N., Pukall, M., Soffner, M., Köppen, V., Saake, G.: Using Software Product
Lines for Runtime Interoperability. In: Workshop on Reflection, AOP and Meta-Data for
Software Evolution, pp. 1–7 (2009)

14. Svahnberg, M., van Gurp, J., Bosch, J.: A Taxonomy of Variability Realization Tech-
niques. Software – Practice and Experience 35(8), 705–754 (2005)

A Symbolic Framework for the Conformance

Checking of Value-Passing Choreographies�

Huu Nghia Nguyen1, Pascal Poizat1,2, and Fatiha Zäıdi1

1 LRI; Univ. Paris-Sud, CNRS, Orsay, France
2 Univ. Évry Val d’Essonne, Evry, France

{huu-nghia.nguyen,pascal.poizat,fatiha.zaidi}@lri.fr

Abstract. Checking choreography conformance aims at verifying
whether a set of distributed peers or local role specifications match a
global specification. This activity is central in both top-down and bottom-
up development processes for distributed systems. Such systems usually
collaborate through information exchange, thus requiring value-passing
choreography languages and models. However, most of the conformance
checking techniques abstract value-passing or bound the domains for
the exchanged data. As an alternative, we propose to rely on symbolic
models and an extension of the symbolic bisimulation equivalence. This
enables one to take into account value passing while avoiding state space
explosion issues. Our framework is fully tool supported.

Keywords: choreography, specification, conformance, symbolic transi-
tion systems, symbolic branching bisimulation, tools.

1 Introduction

Context and Issues. A choreography is the description with a global perspec-
tive of interactions between roles played by peers (services, organizations, hu-
mans) in some collaboration. One key issue in choreography-based development
is checking the conformance of a set of local descriptions wrt. the choreogra-
phy global specification. This issue naturally arises both in bottom-up and in
top-down development processes [1], and is also a cornerstone for realizability
checking. The definition of conformance should not be too strict. It should sup-
port choreography refinement, e.g., with peers and interactions being added in
the implementation by the service architect in order to enforce the specification.
Finally, entities in a distributed system usually exchange information, i.e., data,
while interacting. Consequently, data should be supported in choreography specifi-
cations, in the descriptions of the local entities, and in the conformance relation.

Related Work. In Table 1, we compare related conformance checking ap-
proaches. Columns 2 and 3 focus on data support. Some approaches [2–4] ab-
stract data away. This is known to yield over-approximation issues, e.g., false

� This work is supported by the PIMI project (ANR-2010-VERS-0014-03) of the
French National Agency for Research.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 525–532, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

526 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

Table 1. Choreography conformance approaches

Data & Value-Passing Expressiveness Conformance
supported treatment loops assignment global relation (based on)

[2]

no -

yes no yes Trace equivalence
[3] yes no yes Weak bisimulation
[4] yes no yes Strong bisimulation

[5]

yes

closure yes yes no Weak bisimulation
[6] closure no yes yes Branching bisimulation
[7] bound data yes no yes Branching bisimulation
this paper symbolic yes limited yes Branching bisimulation

negatives in the verification process. Data can be supported by working on
closed implementation-level systems where sent messages contain only ground
data [5, 6]. In such a case, the state space explosion of the system model is
limited. However, this is not adequate when working on abstract specifications
where there are no such ground sent messages but only free variables and con-
straints on their values. Another solution is to bound data domains. The issue is
that conformance may not yield outside the bounds. Defining bounds in order to
avoid false positives in the verification process can be difficult. In our framework,
data is supported using a symbolic approach and conformance may be checked
for whole data domains.

Columns 4 and 5 are relative to choreography expressiveness. Having both
loops and assignments may yield state space explosion if one does not close the
system or bound data domains. In this work, we do support loops and a limited
form of assignment through message reception.

The last two columns are relative to the kind of conformance being supported
and the behavioural equivalence being used. Global conformance is important in
conformance checking since one wants not only to know if each peer is conform to
its role, i.e., local conformance, but also if the peers altogether have a behaviour
that is conform to the choreography. Local conformance does not implies global
conformance. Weak and branching bisimulations are able to support internal
actions and hiding (formally, τ actions). This is important, e.g., if one has to
deal with messages added to make some choreography realizable. Branching
bisimulation [8] has been preferred over weak bisimulation in the last years since
it is a congruence, hence supports compositional reasoning.

Symbolic bisimulations, defined on Symbolic Transition Graphs (STGs), have
been introduced in [9] with both early and late semantics. In this work, we
use a late semantics. STGs have then been extended to STGs with assignments
(STGAs) in [10, 11]. These works mostly concentrate on strong and weak bisim-
ulation. Symbolic branching bisimulation has not yet received much attention.
As a consequence, there is tool support for symbolic strong bisimulation [12] but
not for symbolic branching bisimulation.

Contributions. Our contributions are the following. Based on process alge-
bras for choreography [2, 13], we propose a specification and description lan-
guage addressing both the global (choreography) and the local (peers description,
role requirements) perspective over distributed systems. Our language supports

Conformance Checking of Value-Passing Choreographies 527

Choreography
roles 1 . . .m (m ≤ n)

Model trans.

Local descr.1
. . .

Local descr.n

Model trans.
. . .

Model trans.

STG1

. . .

STGn

STG product STGI

STGC

Conformance

boolean formula ρ

Formula Checker

Z3 SMT Solver Verdict
(true, false, ρ, inconclusive)

Fig. 1. Architecture of our framework

information exchange and data-related constructs (conditional and loop con-
structs). We give a fully symbolic semantics to this language using a model trans-
formation into STGs, thus avoiding data abstraction and over-approximation,
restriction to manually bound data domains, and limitation to implementation-
level closed descriptions. Accordingly, we build on branching bisimulation [8] and
on a symbolic extension of weak bisimulation [11] to develop a specific symbolic
version of branching bisimulation dedicated at checking the conformance of a set
of local entities wrt. a choreography specification. Our equivalence enables one
to check conformance in presence of choreography refinement, i.e., where new
peers and/or interactions may be added wrt. the specification. Going further
than a true vs. false result for conformance, our approach supports the genera-
tion of the most general constraint over exchanged information in order to have
conformance. Finally, our framework is fully tool supported1.

In the sequel, we present the principles of our approach (technical detail can
be found in [14]) and we end with conclusions and perspectives of our work.

2 Architecture of the Framework

In this section, we introduce our framework for choreography conformance check-
ing. We also present some of the experiments we have made to evaluate it. The
architecture of our framework is given in Figure 1. We take as input a choreogra-
phy global specification C, withm roles. We also take an implementation descrip-
tion I, given as n≥m entity local descriptions. These may correspond either to
peer descriptions or to role requirements. The case when n>m denotes, e.g., an
implementation where some peers have been added to make a choreography real-
izable. All inputs are first transformed into STGs. The product of STGs and the
restriction to actions in C are used to retrieve a unique STG for I, thus yielding
two STGs to compare: one forC (C) and one for I (I). We then check if I conforms
to C, which generates the largest boolean formula ρ such that the initial states of I
and C are conformance related. Finally, this formula is analysed using the Z3 SMT
solver2 in order to reach a conformance verdict. This can be “always true” or “al-
ways false”, “always” meaning whatever the data values exchanged between peers
are. However, sometimes we can have conformance only for a subset of these val-
ues. Going further than pure true/false conformance, our framework thus allows

1 Our tool is freely available at http://www.lri.fr/~nhnghia/sbbc/
2 http://research.microsoft.com/en-us/um/redmond/projects/z3/

528 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

to compute the largest constraint on data values, ρ, that would yield conformance.
Complex constraints may cause the solver to return a timeout. In such a case, we
emit inconclusiveness as a verdict.

A Language for Choreographies, Roles, and Peers. Since we are inter-
ested in an abstract, i.e., implementation independent, formal choreography lan-
guage, we choose an interaction-based model [15] and the usual τ actions can
be ignored [16]. Our specification language, inspired by [2, 13], is used to specify
distributed systems with a global perspective, i.e., choreographies, to define local
requirements, i.e., roles, and to describe the pieces of a distributed implemen-
tation, i.e., peers. Due to this multi-purpose objective, it is first presented in
terms of an abstract alphabet, A. We then explain how A can be realized for the
different purposes. The syntax of our specification language, L(A), is given by:

L ::= 1 | α | L;L | L+ L | L|L | L[>L | [φ] � L | [φ] ∗ L

A basic activity is either termination (1) or a regular activity α ∈ A. Structuring
is achieved using sequencing (;), non deterministic choice (+), parallelism (|),
and interruption ([>). Furthermore, we have data-based conditional constructs,
namely guards (�) and loops (∗), where φ is a boolean expression.

The basis of an interaction-model choreography description is the interaction.
Let us denote an interaction c from role a to role b by c[a,b].x, where x is a variable
that represents the information exchanged during interaction (x is omitted when
there is none). We stress out that x can be structured, e.g., to denote a multiple
data exchange as done in Web services with XML message types. A choreography
specification for a set of roles R, a set of interactions Ch, and a set of variables V ,
is an element of L(A) with A = {c[a,b].x | c ∈ Ch∧a ∈ R∧b ∈ R∧a �= b∧x ∈ V }.

The events of a local entity a (peer or role) can be abstracted as sending
and reception events, denoted respectively with c[a,b]!x and c[b,a]?x, where b is
another entity, i.e., a �= b, and x is the information exchanged during interaction
(x is omitted when there is none). An entity description for an entity a, a set
of roles R with a ∈ R, a set of interactions Ch, and a set of variables V , is an
element of L(A) with A = {c[a,b]!x, c[b,a]?x | c ∈ Ch ∧ b ∈ R ∧ a �= b ∧ x ∈ V }.

Example 1. Let us suppose a shipping choreography between two roles: c (client)
and s (shipper). The client first requests shipping by providing the weight of
goods to be sent. If this is less than 5 kgs then the goods will be sent for free.
Otherwise, the shipping has to be paid. This can be described as follows:

Shipping ::= Request[c,s].x1; ([x1 < 5] � FreeShip[s,c] + [x1 ≥ 5] �PayShip[s,c])

A tentative to implement the shipping choreography is that the client sends the
weight to the shipper and then waits for either free or paid shipping, while it is
the shipper that checks the weight in order to decide which shipping is used:

Client c ::= Request[c,s]!y1; (FreeShip
[s,c]? +PayShip[s,c]?)

Shipper s ::= Request[c,s]?z1; ([z1 < 5] � FreeShip[s,c]! + [z1 ≥ 5] �PayShip[s,c]!)

Symbolic Transition Graph. An STG [9] is a transition system where a set of
variables, possibly empty, is associated to each state and where each transition

Conformance Checking of Value-Passing Choreographies 529

1

{}
2

{x1}
3

{}
4

{}

Request[c,s].x1

[x1<5]FreeShip[s,c]

[x1≥5]PayShip[s,c]

�

(a) Shipping choreography

1

{y1}
2

{}
3

{}
4

{}

Request[c,s]!y1
FreeShip[s,c]?

PayShip[s,c]?

�

(b) Implementation of Client

1

{}
2

{z1}
3

{}
4

{}

Request[c,s]?z1
[z1 < 5]FreeShip[s,c]!

[z1 ≥ 5]PayShip[s,c]!

�

(c) Implementation of Shipper

1,1

{}
2,2

{y1}
3,3

{}
4,4

{}

Request[c,s].y1
[y1<5]FreeShip[s,c]

[y1≥5]PayShip[s,c]

�

(d) Composition of (b) and (c)

Fig. 2. STGs for Example 1

may be guarded by a boolean expression φ that determines if the transition can
be fired or not. Actions labelling transitions will correspond in our work to the
elements of the alphabets we have seen earlier on. We also add a specific event,�,
to denote activity termination. A transition from state s to s′ with a guard φ

and labeled by an action α takes the form s
[φ] α−−−→ s′. We use STGs as a formal

model to give semantics to our language. The product of STGs is used to give a
semantics to a set of interacting local entities. We assume that the STGs use
disjoint sets of variables which can be achieved using, e.g., indexing by the name
of the entity. The rule-based of model transformations and our algorithm for the
product of STGs can be found in a technical report extension of this paper [14].

Example 2. The STGs for the choreography, the client and shipper in Example 1
are shown in Figure 2(a-c). Figure 2(d) presents the product of the STGs in
Figure 2(b) and Figure 2(c). The free variables of the states are given below
them, e.g., {x1} for state 2 in the choreography STG.

Choreography Conformance. Since our semantic models are STGs, we de-
fine conformance over two STGs, I (implementation) and C (choreography). We
choose branching bisimulation [8] as a basis since it supports equivalence in
presence of τ actions that result from the hiding of interactions added in imple-
mentations wrt. specifications, i.e., refinement. However, branching bisimulation
is defined over ground terms (no variables), while STGs may contain free vari-
ables. In [6, 7], this issue is considered by introducing at each state an evaluation
function that maps variables to values, thus reducing open terms to ground ones.
This may lead to state space explosion when domains of the variables are big.
Alternatively, we base our work on (late) symbolic extensions of bisimulations,
introduced in [9–11], that directly support open terms.

To make implementation and specification comparable, we remind the reader
that we assume the two STGs have disjoint sets of variables which can be
achieved using, e.g., indexing. We also assume that a local entity has the same
identifier than the corresponding role in the choreography. This constraint could
be lifted using a mapping function. Additional interactions may have been in-
troduced in the implementation wrt. the specification during refinement, e.g.,
to make it realizable. In order to compare the STGs, we have to hide these
interactions.

530 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

1

{}
2

{y1}
4

{}
5

{}

3

{y}

Request[c,s].y1

[y1<5]FreeShip[s,c]

[y1≥5]Tel[c,s].y [y≥10]PayShip
[s,c]

[y<10]�

�

(a)

1

{y}
2

{y, y1}
4

{}
5

{}

3

{y}

Request[c,s].y1

[y1 < 5]FreeShip[s,c]

[y1 ≥ 5]τ [y ≥ 10]PayShip
[s,c]

[y < 10]�

�

(b)

Fig. 3. A refinement (a) for the STG in Figure 2(d) and its restriction (b)

Example 3. We give a refinement example in Figure 3(a) where the client spec-
ifies the maximum (s)he agrees to pay for the shipping (y). This influences the
sequel of the implementation since the non-free shipping costs $10: if the user re-
quires to pay less, no shipping is done. The restriction of this STG to the set of ac-
tions used in the choreography specification, {Request[c,s], F reeShip[s,c], PayShip[s,c]},
yields the STG in Figure 3(b) where Tel has been hidden.

Conformance Computation. Our algorithm for the computation of the con-
formance relation between two STGs [14] is a modification and simplification
of the one proposed in [11] that computes symbolic weak bisimulation. Simpli-
fication was made possible since there may be τs in I (after hiding) but not
in C. The algorithm outputs a set of boolean formulas ρs1,s2 relative to pairs
of states (s1, s2), s1 being in I and s2 in C. ρs1,s2 denotes the conditions un-
der which s1 and s2 are conformance related. In the algorithm, these boolean
formulas are encoded as a Predicate Equation Systems (PES) [10], i.e., a set of
functions each of which contains a boolean expression, e.g., R(x) ::= (x ≥ 0).

Example 4. Applying the algorithm on the STGs in Figure 3(b) (implementa-
tion) and in Figure 2(a) (specification), we retrieve the following PES:
R1,1() ::= ∀Z0 R2,2(Z0, Z0)
R2,2(y1, x1) ::= (((x1≥5 ⇒ y1≥5 ∧R3,2(y1, x1)) ∧ (y1≥5 ⇒ x1≥5 ∧R3,2(y1, x1)))

∧((x1<5 ⇒ y1<5 ∧ R4,3) ∧ (y1<5 ⇒ x1<5 ∧R4,3))) ∧ (¬(y<10))
R3,2(y1, x1) ::= ((x1≥5 ⇒ y≥10 ∧R4,3) ∧ (y ≥ 10 ⇒ x1 ≥ 5 ∧R4,3))

∧((¬(y<10)) ∧ (¬(x1<5)))
R4,3() ::= true

Indeed, it can be simplified into {R1,1 ::= y ≥ 10, R2,2 ::= y ≥ 10, R3,2 ::= y ≥
10∧Z0≥5, R4,3 ::= true} but this demonstrates the need for an automatic PES
satisfiability checking procedure as defined below.

PES Satisfiability and Conformance Verdict. The PES resulting from the
conformance computation algorithm has to be analyzed in order to reach a con-
formance verdict. We realize this step with the Z3 SMT Solver by translating
the PES into the Z3 input language as demonstrated in Listing 1.1 for the PES
in Example 4. Each predicate equation in the PES is translated as a boolean
function (using define-fun) and each free variable is translated as an integer
function (using declare-fun). We then check R1 1 in order to conclude on confor-
mance. For this, the check-sat Z3 command is run as following. If R1 1 asserted
false (as in Listing 1.1) yields an unsat response then there is no interpretation
such that R1,1 is false, hence we can conclude directly that conformance is true.
Otherwise, we have to retry with R1 1 asserted to true to reach a verdict. The
result may then be unsat, sat, or timeout corresponding respectively to the con-
formance being false, may be (ρ), or inconclusive.

Conformance Checking of Value-Passing Choreographies 531

Listing 1.1. Translation into the Z3 language of the PES in Example 4

1 (set -option :print-warning false)
2 (declare-fun y () Int)
3 (define -fun R4_3 () Bool true)
4 (define -fun R3_2 ((y_1 Int)(x_1 Int)) Bool (and (and (implies (>= x_1 5)

(and (>= y 10) R4_3)) (implies (>= y 10) (and (>= x_1 5) R4_3))) (and (
not (< y 10)) (not (< x_1 5)))))

5 (define -fun R2_2 ((y_1 Int)(x_1 Int)) Bool (and (and (and (implies (>=
x_1 5) (and (>= y_1 5) (R3_2 y_1 x_1))) (implies (>= y_1 5) (and (>=
x_1 5) (R3_2 y_1 x_1)))) (and (implies (< x_1 5) (and (< y_1 5) R4_3))
(implies (< y_1 5) (and (< x_1 5) R4_3)))) (not (< y 10))))

6 (define -fun R1_1 () Bool (forall ((Z_0 Int)) (R2_2 Z_0 Z_0)))
7 (assert (= R1_1 false)) ; uncomment for step 1, comment for step 2
8 ; (assert (= R1_1 true)) ; comment for step 1, uncomment for step 2
9 (check-sat)

Table 2. Experimental results

Id Name [Reference] #Peers/Roles
Implementation Specification Verdict Duration

#Int. #Trans./States #Int. #Trans./States Orig./Ours (seconds)

01 Shipping [n/a] 2/2 3 4/4 3 4/4 -/YES 0.069
2/2 4 5/5 3 4/4 -/YES 0.084

Example 4 → 2/2 4 6/5 3 4/4 -/ρ 0.102

04 Market [6] 4/4 8 9/10 8 10/10 YES/NO 0.118
8/4 16 27/26 8 10/10 YES/NO 0.201

06 RFQ [7] 3/3 6 8/7 6 8/8 NO/NO 0.078

07 Booking [4] 4/4 8 12/11 8 12/11 YES/YES 0.096

Experiments. We have experimented our framework, including on examples
from the literature (Tab. 2). For the implementations and the specifications, we
respectively give the numbers of peers, roles, interactions, and transitions and
states in the corresponding STGs. We also give the conformance verdicts in the
paper the example is taken from and with our approach. Finally, we give the
execution time (Mac Book Air with OS 10.7, 4 GB RAM, core i5 1.7 GHz)
for the process described in Figure 1 (but for the time to parse the input files).
Rows 1 to 3 correspond to the specification STG in Figure 2(a) and, respectively,
to the implementations STGs in Figures 2(d) (row 1), 3(a) (row 2), and 3(b)
(row 3). Rows 4 and 5 correspond to the example and mutation in [6]. The
difference in the verdict comes from the fact the we distinguish between an
STG ending with � (successful termination) or not, hence an implementation
deadlocking after achieving all interactions of a specification will not conform
to it: the specification may do � while the implementation may not. Row 6
corresponds to a negative example in [7] and row 7 to a positive one in [4].

3 Conclusion

In this paper, we have proposed a formal framework for checking the conformance
of a set of role requirements or peer descriptions with reference to a choreography
specification. Symbolic models and equivalences enable us to check conformance
in presence of data without suffering from state space explosion and without
bounding data domains. Going further than strict conformance, we are able to
give the most general constraint over data exchanged between peers in order to
achieve conformance. Our approach is fully tool supported1.

532 H. Nghia Nguyen, P. Poizat, and F. Zäıdi

We advocate that once a choreography projection function supporting data
is defined, then our framework could be used not only for conformance checking
but also for realizability checking. This is our first perspective. A second perspec-
tive is to extend our framework with non-limited assignment and asynchronous
communication. Our last perspective is to integrate the extensions of our tools
as a verification plugin for the BPMN 2.0 Eclipse editor. A BPMN 2.0 to STG
model transformation is ongoing, based on our BPMN to LTS (no data) one [17].

References

1. Poizat, P.: Formal Model-Based Approaches for the Development of Com-
posite Systems. Habilitation thesis, Université Paris Sud (November 2011),
http://www.lri.fr/~poizat/documents/hdr.pdf

2. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the Theoretical Foundation of Chore-
ography. In: Proc. of WWW 2007 (2007)

3. Basu, S., Bultan, T.: Choreography Conformance via Synchronizability. In: Proc.
of WWW 2011 (2011)

4. Salaün, G., Bultan, T.: Realizability of Choreographies Using Process Algebra
Encodings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
167–182. Springer, Heidelberg (2009)

5. Li, J., Zhu, H., Pu, G.: Conformance Validation between Choreography and Or-
chestration. In: Proc. of TASE 2007 (2007)

6. Busi, N.,Gorrieri, R.,Guidi, C., Lucchi, R., Zavattaro,G.: Choreography andOrches-
trationConformance forSystemDesign. In:Ciancarini,P.,Wiklicky,H. (eds.)COOR-
DINATION2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

7. Kazhamiakin, R., Pistore, M.: Choreography Conformance Analysis: Asynchronous
Communications and InformationAlignment. In:Bravetti,M.,Núñez,M., Zavattaro,
G. (eds.)WS-FM2006. LNCS, vol. 4184, pp. 227–241. Springer, Heidelberg (2006)

8. Van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3) (1996)

9. Hennessy, M., Lin, H.: Symbolic Bisimulations. Theoretical Computer Sci-
ence 138(2), 353–389 (1995)

10. Lin, H.: Symbolic Transition Graph with Assignment. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50–65. Springer, Heidelberg (1996)

11. Li, Z., Chen, H.: Computing Strong/Weak Bisimulation Equivalences and Observa-
tion Congruence for Value-Passing Processes. In: Cleaveland, W.R. (ed.) TACAS
1999. LNCS, vol. 1579, pp. 300–314. Springer, Heidelberg (1999)

12. Basu,S.,Mukund,M.,Ramakrishnan,C.R.,Ramakrishnan,I.V.,Verma,R.:Localand
SymbolicBisimulationUsingTabledConstraintLogicProgramming. In:Codognet,P.
(ed.) ICLP 2001. LNCS, vol. 2237, pp. 166–180. Springer, Heidelberg (2001)

13. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-
formance and Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

14. Nguyen, H.N., Poizat, P., Zäıdi, F.: A Symbolic Framework for the Conformance
Checking of Value-Passing Choreographies. Long version, in P. Poizat Webpage

15. Decker, G., Kopp, O., Barros, A.P.: An Introduction to Service Choreographies.
Information Technology 50(2), 122–127 (2008)

16. Kopp, O., Leymann, F.: Do We Need Internal Behavior in Choreography Models?
In: Proc. of ZEUS 2009 (2009)

17. Poizat, P., Salaün, G.: Checking the Realizability of BPMN 2.0 Choreographies.
In: Proc of SAC 2012 (2012)

http://www.lri.fr/~poizat/documents/hdr.pdf

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 533–540, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Service Composition Management
Using Risk Analysis and Tracking

Shang-Pin Ma and Ching-Lung Yeh

Department of Computer Science and Engineering, National Taiwan Ocean University,
Keelung, Taiwan

{albert,19957009}@ntou.edu.tw

Abstract. How to effectively and efficiently monitor, manage, and adapt web
services is becoming a significant issue to address. In this paper, we argue that
only solving emerging service faults at deployment time or runtime is not
enough; on the contrary, we believe that prediction of service faults is equiva-
lently important. We propose a risk-driven service composition management
process including four main phases: preparation, planning, monitoring and reac-
tion, and analysis. By applying the proposed approach, risky component servic-
es can be removed earlier, and the fault source can be tracked and identified
more easily when any failure occurs. We believe the proposed risk-driven ap-
proach can effectively and efficiently ensure the robustness of an SOA-based
system.

Keywords: service management, risk management, service composition.

1 Introduction

Service-Oriented Architecture (SOA) has become an important trend in software en-
gineering for developing loosely-coupled applications and integrating legacy and
modern systems. Accordingly, how to effectively and efficiently monitor, manage,
and adapt web services is also becoming a significant issue to address. Today, many
mechanisms [1, 2, 4, 5, 10, 12] are available to perform service monitoring and man-
agement for improving various types of QoS (Quality of Service), such as availability
and reliability.

In this paper, we argue that only solving emerging service faults at deployment
time or runtime is not enough; on the contrary, we believe that prediction of service
faults is equivalently important. Risk analysis is an approach which is commonly used
in project management domain [9]. The potential problems which may hinder the
development of project are called risk. If the problems occur, the project will to be
mired in difficulties. Therefore, the risk should be reduced before the project execut-
ing. At present, the risk management techniques are used in a variety of domains,
such as electricity [7] and wireless security [6]. The risk concept is also applied to
enhance the service-oriented design process to select appropriate business partners
[8]. In this study, we bring the risk notion into the web service management mechan-
ism to foresee possible problems or weak points in an SOA-based system.

534 S.-P. Ma and C.-L. Yeh

Our proposed risk-driven service composition management process includes four
main phases: preparation, planning, monitoring and reaction, as well as analysis. In
preparation phase, the risk probability and the risk impact of each component service
in a composite service are calculated based on historical QoS data. If any component
service is too risky, another interface-compatible service will take over the risky one.
Besides, a service dependency graph is also produced in this phase for tracking the
fault source at runtime. In planning phase, a monitoring plan is generated based on the
service dependency graph and the risk analysis result. In the monitoring and reaction
phase, the composite service is monitored according to the monitoring plan. If any
service failure occurs or a component service becomes too risky (i.e. risk exposure is
larger than a given threshold), a fault tracking path is built immediately and automati-
cally based on the service dependency graph, and appropriate reaction actions, such as
re-invocation or service substitution, are chosen and performed in the light of the
monitoring plan. Finally, in the analysis phase, all service execution logs are cumu-
lated and analyzed to update the historical QoS database for further processing. By
applying the proposed approach, risky component services can be removed earlier,
and the fault source can be tracked and identified more easily when any failure oc-
curs. We believe the proposed risk-driven approach can effectively and efficiently
ensure the robustness of an SOA-based system.

The structure of the paper is as follows. Section 2 describes the details of the pro-
posed service composition management approach, including core concepts and the
proposed management process. Final section concludes this study.

2 Approach Descriptions

This section describes the proposed approach in detail, including the core concepts
and the process of risk-driven service composition management.

2.1 Core Concepts for the Proposed Approach

For establishing the proposed service composition management mechanism, we intro-
duce the significant concepts first by utilizing the UML class diagram and
representing each concept as a class (shown in Figure 1). Composite service is the
aggregation of multiple component services which are described by service profiles.
The service profile is to obtain and store significant attributes of a component servic-
es, including service name, service interface, service type, service input, service out-
put, and service provider. A Service Dependency Graph (SDG) can be produced
based on the flow of a composite service to ease service fault tracking. The compo-
nent service risk is consisting of risk impact and risk probability, which are calculated
according to the composite service flow structure and the historical QoS (Quality of
Service) data. Component service risk can be mitigated by performing replication or
substitution actions for component services. The composite service risk is estimated
by cumulating values of all component service risks.

 Service Composition Management Using Risk Analysis and Tracking 535

A service flow instance is instantiated when the service requester utilizes a com-
posite service. When any service failure occurs during execution of the service flow
instance, we can track the Fault Tracking Path (FTP), which is consisting of a service
fault source, intermediate nodes, and a service failure occurrence point, to find the
cause of faults and to perform appropriate reaction actions. FTP is automatically gen-
erated based on the built SDG. Four reaction strategies are included in this study:
Substitution, Compensation, Re-invoke, and Re-start. Substitution is a strategy that
tries to select another service with the same service interface as the faulty one. The
corresponding service interface of a service component is recorded in the service
profile. Compensation is used to restore correct object states which were correct, in
case these were affected by a fault. Re-invoke is re-executing the same service invo-
cation with exactly the same parameters and contracts. Re-start is stopping and start-
ing the web service server so that service may become available.

Fig. 1. Conceptual Model

Service Risk. Risk is the potential that may lead to damage. In our proposed ap-
proach, we bring the notion of risk to predict possibility faults or QoS decline by cal-
culating risk exposure by equation (1).

 Risk Probability Impact= × (1)

At preparation phase, difference mitigation actions, such as service replication or
service substitution, will be executed according to the risk exposure level. At runtime,
the risk exposure level is also an important indicator to carry out reaction strategies.
Two elements of risk, risk probability and risk impact, are described as following.

composite service (service flow)

service flow instancecomposite service risk

component service risk

compensation

substitution

service profile

quality of web service
reaction strategy

service fault

service fault source

service failure occurrence point

component servicerisk impact

risk probability

re-invoke (retry) re-start

intermediate node

fault tracking path

service dependency graph

instantiatecalculate

mitigated by

described by
occur

tracked by

produce

performed along

calculate

is a property of

is a property of

536 S.-P. Ma and C.-L. Yeh

Table 1. The Rating of Availability & Reliability

Rating Detail
0.2 Both Availability and Reliability are more than 99.999%
0.4 Availability or Reliability is between 99.999% and 99.9%
0.6 Availability or Reliability is between 99.9% and 99%
0.8 Availability or Reliability is between 99% and 90%
1.0 Availability or Reliability is between 90% and 0%

Risk probability. Risk probability is a value to estimate the stability of a component
service. We adopt the QoS value of the component service in historical data to calcu-
late by equation (2):

p(1) pP w T w AR = − × + × (2)

Where wp is a weight value to represent the importance of AR value, AR is the rating
of Availability & Reliability as showing in Table 1, and T is a value calculating by
equation (3) for evaluating the stability of service response time.

 Standard Deviation
T

Arithmetic Mean
= (3)

Risk impact. Risk impact is a value to indicate the possible damage when a compo-
nent service in composite service becomes malfunctional. In this study, risk impact is
calculated by extending the method proposed in [11] since if a component service is
more important, the damage is larger if this service cannot operate correctly. In this
study, risk impact value is aggregating by the importance score assigned by the user
and analysis results of execution path analysis by equation (4).

 i

max

(1-)i e uw I w I
I

I

× + ×= (4)

Where Iu is the score assigned by users (i.e. Wu value in [11]), Ie is the score calculated
by execution path analysis (i.e. Wp value in [11]), wi is the weight to represent impor-
tance of Iu in this equation, and Imax is the maximum of I values for all component
services. Notably, through execution path analysis, we can assert that some of the
component services play more important roles than others since these services
emerged in more execution paths.

2.2 Risk-Driven Service Composition Management Process

Based on above concepts, we devise a management process, called Risk-Driven Ser-
vice Composition Management (RDSCM), including four sub-processes: Preparation,
Planning, Monitoring & Reaction, and Analysis. Differ from [2], we additionally
define the preparation phase to prepare artifacts that can be leveraged when faults
occur in following phases.

 Service Composition Management Using Risk Analysis and Tracking 537

Fig. 2. Risk-Driven Service Composition Management Process

As shown in Figure 2, in preparation phase, RDSCM calculates the risk impact of
each component service based on the service flow, and computes the risk probability of
each component service according to historical QoS data. The risk exposure values can
be determined by aggregating impact and probability data. Besides, RDSCM also ana-
lyzes the service flow and service profiles of all component services in the flow to gen-
erate the SDG (service dependency graph). In the planning phase, RDSCM produces a
monitoring plan based on SDG and process risk analysis data. In the monitoring & reac-
tion phase, RDSCM monitors the composite service according to the monitoring plan. If
any fault occurs, RDSCM selects appropriate reaction actions specified in the monitor-
ing plan. Finally, in the analysis phase, RDSCM analyzes all execution records and
update the historical QoS data, which will influence risk analysis results of other in-
stances of the same composite service or other composite services.

Preparation Process. As afore-mentioned, in the preparation phase, the risk of the
component services which in the composite service are analyzed. If the risk of a com-
ponent service is higher than a given threshold, RDSCM will try to select another
service with the same service interface to replace the faulty one. The substitute strate-
gy, such as selecting the service with best QoS or selecting the service used most
frequently, can be decided in advance. If the risk of the substitute service is still too
high, RDSCM will stop the process and show alert message.

In the preparation phase, SDG will be built. In opposite to the service flow show-
ing the execution sequence, the SDG represents the dependency relationship among
component services for a composite service. For constructing the dependency graph,
we extract the data flow among component services, i.e. the source and the target of
service data, and invert the service flow. For example, a process which has input and
output data is shown in the left-hand side of Figure 3, and the dependency graph of
this process is shown in the right-hand side. Due to the service S2 accepts the input
data o1 from service S1, we can assert S2 depends on S1, and the edge representing this
dependency relationship in SDG is connected from source S2 to target S1. Following
above graph construction rules, an SDG can be generated automatically.

538 S.-P. Ma and C.-L. Yeh

Fig. 2. Example: Building the Service Dependency Graph

Planning Process. In this phase, RDSCM automatically produces a monitoring plan
in XML format, which can be modified by the manager. The plan includes four parts
(1) Monitoring Attribute: to specify the QoS attributes which the manager plans to
monitor; (2) Monitoring Threshold: to set the threshold of the high risk. (3) Monitor-
ing Frequency: to arrange the monitoring frequency, i.e. the cycle time of QoS prob-
ing, for services with medium and low risk; and (4) Substitution Policy: to determine
the procedure to swap the faulty or risky service. Available substitution policies in-
clude choosing the most used services, choosing the service with best QoS, and
choosing the service with lowest risk.

Monitoring and Reaction Process. In this phase, RDSCM monitors the execution of
the composite service based on the monitoring plan. This phase has two main tasks:
first is collecting execution data with all service instances or additional service prob-
ing records according to the monitoring frequency setting; and second is detecting and
recovering service faults.

If an instance reveals faults, RDSCM bases the SDG to produce a FTP (fault
tracking path), and selects reaction strategies as well as performs recovery actions for
component services which are in the fault tracking path. Following the error chain
paradigm, a FTP includes the failure occurrence point, the fault source, zero or more
intermediate services. Besides, zero or more non-failure services are preceding the
fault source in the service flow. For example, as shown in Figure 3, if service S4 is the
failure occurrence point which reveals the fault, the possible longest FTP {S4S2S1} is
established first due to any of these three services may be the fault source. If the ser-
vice S1 is confirmed as the fault source, the final FTP is also {S4S2S1} and service S2 is
assigned as an intermediate service since S2 is either the failure occurrence point nor
the fault source. If the service S2 is determined as the fault source, the FTP is {S2S1}
without intermediate service.

When the FTP is produced, RDSCM can carry out the service recovery process
to fix the process instance. RDSCM increases the risk of the fault source (and updates
the value into database) first, and derives the service type of all services in the FTP
for further processing. In this study, the service type can be identified from two

 Service Composition Management Using Risk Analysis and Tracking 539

view-points: Retriable and Compensable (this notion is borrowed from [3]). If a com-
ponent service guarantees a successfully termination after a finite number of invoca-
tions, it is Retriable (R); otherwise it is not retriable. If the component service which
supports compensable transactions, it is Compensable (C); on the other hand, if this
component service execution does not affect the state of the service, it is Non-
compensatory (N). Depending on the type, RDSCM can fulfill appropriate reaction
actions to recover the all services in the FTP. In the proposed recovery process, the
fault source needs to recover first. For example, if the service type of the fault source
is CR, RDSCM compensates this service at first, and then re-invokes it and tests if the
service is workable. If the service is still malfunctioned, RDSCM selects another in-
terface-compatible service according to the substitution policy to take over the faulty
service. Next, RDSCM may compensate intermediate services or the failure occur-
rence point first (if the service is compensable) since the incorrect data may affect the
business state of these services, and then re-invokes the service (if the service is retri-
able). Notably the reaction strategy of service substitution is unnecessary for non-
fault-source services since these services are not malfunctional. Following above
steps, all services in the FTP are recovered along the inverse sequence of the FTP and
then the faulty composite service is recovered accordingly.

3 Conclusions

This paper presents a risk-driven approach to manage composite web services. The
goal of this study is reduce the probability and damage of service faults occurring and
further ensure the robustness of the SOA-based system, with the following key con-
tributions:

 Bring the notion of risk management into web service management.
 Devise a method to calculate the service risk exposure for estimating the

possible faults which reside in a service composition.
 Devise a method to construct the service dependency graph (SDG) and the

fault tracking path (FTP) to efficiently track service faults and recover the
faulty composite service.

Acknowledgements. This research was sponsored by National Science Council in
Taiwan under the grant NSC 100-2221-E-019-037.

References

[1] Baresi, L., Guinea, S., Nano, O., Spanoudakis, G.: Comprehensive Monitoring of BPEL
Processes. IEEE Internet Computing 14(3), 50–57 (2010)

[2] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic
QoS Management and Optimization in Service-Based Systems. IEEE Transactions on
Software Engineering 37(3), 387–409 (2011)

540 S.-P. Ma and C.-L. Yeh

[3] El Haddad, J., Manouvrier, M., Ramirez, G., Rukoz, M.: QoS-Driven Selection of Web
Services for Transactional Composition. In: 2008 IEEE International Conference on Web
Services, ICWS 2008 (2008)

[4] Erradi, A., Maheshwari, P., Tosic, V.: WS-Policy based Monitoring of Composite Web
Services. In: The Fifth European Conference on Web Services, pp. 99–108. IEEE Com-
puter Society (2007)

[5] Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception Handling for Re-
pair in Service-Based Processes. IEEE Transactions on Software Engineering 36(2), 198–
215 (2010)

[6] Hsin-Yi, T., Yu-Lun, H.: An Analytic Hierarchy Process-Based Risk Assessment Method
for Wireless Networks. IEEE Transactions on Reliability 60(4), 801–816 (2011)

[7] Kettunen, J., Salo, A., Bunn, D.W.: Optimization of Electricity Retailer’s Contract Port-
folio Subject to Risk Preferences. IEEE Transactions on Power Systems 25(1), 117–128
(2010)

[8] Kokash, N.: Risk Management for Service-Oriented Systems. In: Baresi, L., Fraternali,
P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 563–568. Springer, Heidel-
berg (2007)

[9] Kwan, T.W., Leung, H.K.N.: A Risk Management Methodology for Project Risk Depen-
dencies. IEEE Transactions on Software Engineering 37(5), 635–648 (2011)

[10] Lee, J., Ma, S.-P., Lee, S.-J., Wu, C.-L., Lee, C.-H.L.: Towards a High-Availability-
Driven Service Composition Framework. In: Service Life Cycle Tools and Technologies:
Methods, Trends and Advances, pp. 221–243. IGI Global (2012)

[11] Ma, S.-P., Kuo, J.-Y., Fanjiang, Y.-Y., Tung, C.-P., Huang, C.-Y.: Optimal service selec-
tion for composition based on weighted service flow and Genetic Algorithm. In: 2010 In-
ternational Conference on Machine Learning and Cybernetics, ICMLC (2012)

[12] Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation
for WS-BPEL. In: The 17th International Conference on World Wide Web, pp. 815–824.
ACM, Beijing (2008)

Assisting Business Process Design

by Activity Neighborhood Context Matching

Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata

Information Department, TELECOM SudParis
UMR 5157 CNRS Samovar, France

Abstract. Speeding up the business process design phase is a crucial
challenge in recent years. Some solutions, such as defining and using ref-
erence process models or searching similar processes to a working one,
can facilitate the designer’s work. However, recommending the whole
process can make the designer confused, especially in case of large-size
business processes. In this paper, we introduce the concept of activity
neighborhood context in order to propose an approach that fasten the
design phase regardless the size of business process. Concretely, we rec-
ommend the designer the activities that are close to the designing process
from existing business processes. We evaluate our approach on a large
collection of public business processes. Experimental results show that
our approach is feasible and efficient.

1 Introduction

The advantages of business process design have involved many industrial and
research contributions on facilitating the business process design, which is the
initial and key step that impacts the completeness and success of a business
process. In this paper, we present an original approach to help to facilitate
the design phase by recommending business process designers a list of relevant
activities to the ongoing designed process. Consider a scenario where a business
process designer is designing a “train-reservation” process to provide a booking
service (Fig. 1): whenever the train operating company receives a reservation
request, it searches trains according to the request details, presents possible
alternatives to the customer and waits for a response. If it receives a cancel
request, the process will be terminated; otherwise, it will ask the customer for the
credit card information, then process the payment and send back the customer
the reservation confirmation with the payment details.

The “train-reservation” process in Fig. 1 can achieve the required business
goal. However, the process design could not stop at that point as the preliminary
design requirements could evolve. He might want to: (i) add new functionalities
in the preliminary process, (ii) design a new variant of the preliminary process
respecting new business constraints or contexts, or (iii) find alternative activities
in order to better handle activity failure or exception.

To help the designer achieve his goals, instead of recommending business pro-
cesses, we propose to recommend activities that have similar neighborhood con-
text with a selected one. This context is defined as a business process fragment

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 541–549, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

542 N.N. Chan, W. Gaaloul, and S. Tata

Fig. 1. Train reservation process

around an activity, including the associated activity and connection flows con-
necting it and its neighbors. For a selected activity, we match its neighborhood
context with the neighborhood contexts of other activities. A matching between
two neighborhood contexts is scored by a similarity value. Then, base on the
similarity values, we present for the business designer N activities that have
highest similarity values.

For example, if the designer selects activities: “Search trains”, “Request credit
card Info.” and “Process payment” for recommendations, our approach recom-
mends him relevant activities as given in Fig. 2.

Fig. 2. Recommendations for the train reservation process

The recommendations given by our approach do not make the designer con-
fused since they do not recommend the whole business structure. In contrast,
short lists of recommended activities can help the designer easily open his view
to improve the working process. For example, those recommendations, the de-
signer is supposed to have ideas to improve the “train-reservation” process by
such ways that: he can either add the “Request customer basic Info.” activity for
future customer services or improve the current process to achieve a traveling ser-
vice, which combines activities in the “train-reservation” and “hotel-reservation”
processes (Fig. 3).

Fig. 3. New traveling process improved from the train reservation process

Assisting Business Process Design 543

This paper is organized as following: the next section presents the related
work. Details of the approach are elaborated in section 3. Section 4 shows our
implementation and experiments. Finally, we conclude our work in section 5.

2 Related Work

Some existing approaches [1,2,3] target to fasten the design phase by retrieving
similar process to the current designed process from repositories. They proposed
either to rank existing business process models for similarity search [1,4], or to
measure the similarity between them [2,3,5] for creating new process models. In
our approach, we focus partially on the business process and take into account
only the activity neighborhood context for recommendations instead of matching
the whole business process.

R. Dijkman et. al. [6] used Levenshtein distance to compare the activity la-
bels; graph edit distance and vector space model to determine the similarity be-
tween business process structures. They also proposed the ICoP framework [7]
to identify the match between parts of process models using these metrics. Dif-
ferent from them, we focused on activity neighborhood contexts with layers and
zones. We compute the similarity between neighborhood contexts based on the
matching of connection flows in zones with zone weight consideration instead of
matching activity labels or matching virtual documents.

S. Sakr et. al. [8] proposed a query language which takes into account the
partial process models to manage business process variants. They, however, re-
trieve parts of processes based on strictly mapping to a structured input without
considering the activity similarity. In our work, we retrieve the relevant activi-
ties based on the similarity values which are computed based on a tree structure
mapping (section 3.2).

A search framework that aims at retrieving process segments was proposed
by M. Lincoln et. al. [9]. In their work, they defined the object grouping model
(OGM) which includes the relationship between a primary object and others
in a process segment. Different from them, we take into account the sequence
of connection flow elements instead of the repetition of edges and we match
connection flows in zones to infer the similarity instead of using TF-IDF for the
OGM-segment matching.

3 Activities Neighborhood Context Matching

This section elaborates our proposal to recommend activities for a business pro-
cess. To achieve recommendations, we firstly present activities’ contexts using
graph theory (section 3.1). Secondly, we compute the similarities between ac-
tivity neighborhood contexts (section 3.2). Finally, for a chosen activity, we
recommend a list of activities and their involved neighborhood contexts based
on the computed similarity values (section 3.3). To demonstrate our approach,
we assume that there exists a ‘flight-reservation’ process (Fig. 4) and we are go-
ing to compute the similarity between the “Search trains” (Fig. 1) and “Search
flights” (Fig. 4) activities based on their neighborhood contexts.

544 N.N. Chan, W. Gaaloul, and S. Tata

Fig. 4. Flight & hotel reservation processes

3.1 Graph-Based Activity Neighborhood Context

We choose graph theory to present a business process and an activity neighbor-
hood context because the structure of a business process can be mapped to a
graph. Without loss of generality, we select and use BPMN in our approach as it
is one of the most popular business process modeling language. In our work, we
define an activity or a start event or an end event as a vertex, and the sequence
of connection elements (gateways, messages, transitions, events) that connect
two vertexes as an edge (or a connection flow).

Definition 1 (kth-layer neighbor). A kth-layer neighbor of an activity ax is
an activity connected from/to ax via k connection flows (k ≥ 0). The set of kth-
layer neighbors of an activity ax in a business process P is denoted by Nk

P(ax).
N0

P(ax) = {ax};

Definition 2 (kth-zone flow). A kth-zone flow of an activity ax ∈ P is a con-
nection flow which connects an activity in Nk−1

P (ax) and an activity in Nk
P(ax).

Set of all kth-zone flows of an activity ax ∈ P is denoted by Zk
P(ax). Z

0
P(ax) = ∅

and |Zk
P(ax)| is the number of connection flows in the kth connection zone of ax.

A path in a business process graph is called as a connection path. A connec-
tion path from ai to aj in a business process P is indirected and denoted
by CPP(ai, aj). The length of a connection path CPP(ai, aj) is denoted by
Len(CPP(ai, aj)) and the shortest connection path between ai and aj is de-
noted by SPP(ai, aj).

Definition 3 (Activity neighborhood context graph). Let VP is the set of
vertexes, LP is the set of connection element names, and EP ⊆ VP × VP × LP
is the set of edges (connection flows) in the process P. An edge e =< ax, ay,
PP(ax, ay) >∈ EP is considered to be directed from ax to ay. PP(ax, ay) is the
string of the connection flow from ax to ay in P.

The neighborhood context graph of an activity ax ∈ P is a labeled directed
graph GP(ax) = (VP (ax), LP(ax), EP(ax)) where:

1. VP(ax) = VP
2. LP(ax) = LP
3. EP(ax) ⊆ EP ×N ,

EP(ax) = {ext , ext = (et, zt(ax)) : et =< ai, aj , PP(ai, aj) >∈ EP , zt(ax) =
Min(Len(SPP(ai, ax)), Len(SPP(aj , ax))) + 1, ai, aj ∈ VP}

Assisting Business Process Design 545

Fig. 5. Example: activity neighborhood context graph

For example, an excerpt of the “Search trains” neighborhood context graph
created from “train-reservation” process (Fig. 1) and an excerpt of the “Search
flights” neighborhood context graph created from “flight-reservation” process
(Fig. 4) are represented in Fig. 5.

3.2 Neighborhood Context Matching

In our work, we aim at exploiting the relation between activities to find activities
that have similar neighborhood contexts with the context of a selected activity.
We propose to match all connection flows that belong to the same connection
zone and have the similar ending activities.

Connection Flow Matching. To compute the similarity between activity
neighborhood contexts, we propose to match all the connection flows connect
them to/from their neighbors. Since each connection flow is a sequence of con-
nection elements which can easily be mapped to a sequence of characters, we
propose to use the Levenshtein distance [10] to compute the matching between
two connection flows. Concretely, given two connection flows P (ai, aj) = p1p2
. . . pn and P ′(ai′ , aj′) = p′1p

′
2 . . . p

′
m, their pattern matching is given by Eq. (1).

Mp(P, P
′) = 1− LevenshteinDistance(P, P ′)

Max(n,m)
(1)

In our example,Mp(P1, P6) = Mp(‘flow-transition’, ‘flow-transition’) =1;Mp(P4,
P9) = Mp(‘event-based-gateway’‘message-caching’, ‘event-based-gateway’
‘message-caching’‘parallel’) = 0.67 and so on.

546 N.N. Chan, W. Gaaloul, and S. Tata

Activity Neighborhood Context Matching. The neighborhood context
matching between two activities is synthesized from the matchings of associ-
ated connection flows. Besides, the behavior of an activity is stronger reflected
by the connection flows to its closer neighbors. Therefore, we propose to assign
a weight (wk) for each kth connection zone, so called zone-weight and inject

this weight into the similarity computation: wz =
k + 1− z

k
, where z is the zone

number (1 ≤ z ≤ k) and k is the number of considered zones around the activity.
Consequently, suppose that e = (< ax, ay, PPm(ax, ay) >, z) is the edge

connecting ax and ay by the connection flow PPm(ax, ay) belongs to zone z
in the activity neighborhood context graph GPm(ai), e ∈ VPm(ai). Similarly,
e′ = (< ax′ , ay′ , PPn(ax′ , ay′) >, z′) ∈ VPn(aj). The activity neighborhood con-
text matching of ai and aj within k connection zones with the direction consid-
eration is given by Eq. 2.

M k
Pm,Pn(ai, aj) =

2

k + 1
×

k∑
z=1

∑
e.z=e′.z′=z

k + 1− z

k
×M∗(e, e′)

|Zz
Pm(ai)| − |Zz−1

Pm (ai)|
(2)

where:

– M∗(e, e′) = Mp(PPm(ax, ay), PPn(ax′ , ay′)) if :
① (z = z′ = 1) ∧ ((ax = ai ∧ ax′ = aj ∧ ay = ay′) ∨ (ax = ax′ ∧ ay =

ai ∧ ay′ = aj))
② (1 < z = z′ ≤ k) ∧ (ax = ax′) ∧ (ay = ay′))

– M∗(e, e′) = 0 in other cases.
– |Zz

Pm(ai)|−|Zz−1
Pm (ai)| is the number of connection flows in the zth connection

zone of GPm(ai) (see Definition 2).

Return to the illustrated example, neighborhood context matching computed
within three zones1 between a1 and a6 (Fig. 5) is: M 1

P1,P2(a1, a6) = 2
3+1 ×

(
3
3×Mp(P1,P6)+

3
3×Mp(P2,P7)

2 +
2
3×Mp(P3,P8)+

2
3×Mp(P4,P9)

2 +
1
3×Mp(P5,P10)

1) = 0.78.

3.3 Activity Recommendation

The activity neighborhood context graph presents the interactions between the
associated activity and its neighbors in layers. It infers the associated activity’s
behavior. Therefore, the matching between their neighborhood context graphs
exposes the similarity between associated activities in terms of their behaviors.
In our approach, the higher the matching values are, the more similar the corre-
sponding neighborhood contexts are. For each activity in a business process, we
compute its neighborhood context graph matching with others. Then, we sort
the computed matching values in descending order and pick up top-N activities
which have the highest matching values for the recommendation. For instance,
the recommendations for the selected activities are shown in Fig. 2.

1 The zone number can be tuned by the process designer, the more details he wants,
the greater zone number is.

Assisting Business Process Design 547

4 Experiments

In our experiments, we aim at assessing the number of activities that have similar
neighborhood contexts retrieved from a large collection of real business processes.
Our goal is to two fold: (i) to show that we can find similar activity neighborhood
contexts based on our proposed matching solution to prove that our approach
is feasible in real use-cases and (ii) to analyze the parameters that impact the
context matching computation and show the usefulness of our approach. Details
of the dataset and experiments are given as following.

4.1 Dataset

The dataset used for validating our approach is a shared collection of business
process models which has been used for the experiments reported in [11]. In
statistics, the collected dataset consists of 850 BPMN processes with 2203 start
events, 2727 end events, 4466 activities (including 406 subprocesses), 13498 gates
and 33885 sequence flows. On average, there are 8.2 activities, 2.6 start events,
3.21 end events, 39.87 interactions per process, and 5.24 gates per one connection
flow. Among 4466 activities, there are 1561 activities’ names existing in more
than one BPMN process.

4.2 Experiments

In the first case, we set kth-zone = 1 and match the activity neighborhood
context graphs of all activities in the repository using the proposed computation.
In results, 4373/4466 activities in the repository (97.92%) have matching values
with others greater than 0, in which 1889 activities (43.20%) have matching
values greater than 0.5 and 168 activities (3.84%) have matching values belonging
to [0.9,1.0].

(a) Average number of recommended
activities with different thresholds

(b) Number of activities having simi-
larity >= 0.5 within 5 zones

Fig. 6. Experiments on activities recommendation

In another experiment we compute, for each activity, within three zones the
average number of recommended activities that have similarity values greater
than a given threshold. With 0.8 as threshold, for each activity, our approach
recommends on average 6.05 activities that have similar neighborhood contexts.

548 N.N. Chan, W. Gaaloul, and S. Tata

We can notice that this average number of recommended activities decreases
when the threshold increases as showing Fig. 6a. We noticed also the same
behavior if we fix the threshold and tune the the zone number, i.e. the average
number of recommended activities decreases when the zone number increases.

In the second case, we increase the kth-zone value to extend our evaluation
to the further layers. We get experiments with k = 1..5. We retrieved 4446
activities in the second zone, 4372 activities in the third zone, 4254 activities in
the forth zone and 4072 activities in the fifth zone that have similarity values
greater than 0. Fig. 6b shows only cropped data with the accumulated numbers of
activities having similarity values greater than 0.5. These numbers decrease when
k increases because our algorithm matches only the connection flows connecting
two similar activities in the greater zone numbers. When k increases, the number
of unmatched neighbors generally increases faster than the matched neighbors.
This yields the number of unmatched connection flows increases fast and causes
the reduction of similarity values in further zones.

In general, the experiments show that our approach is feasible in retrieving
activities that have the similar neighborhood context in real use-cases. Based on
the computed similarity, business process recommendation strategies can be run
to assist the business process designer to facilitate his (re)design.

5 Conclusion

In this paper, we propose an original approach that captures the activity neigh-
borhood context to assist business process designers with recommendations.
Based on the recommended activities, the designer can easily improve or ex-
pand the process to achieve more business goals. In addition, our solution can
help to create more business process variants.

In our future work, we intend to investigate the co-existence of connection
flows in business processes, as well as the number of time that an activity is
used in oder to refine our matching algorithm. We also aim at extending our
approach to use event logs to infer the business processes for the approach’s
input.

References

1. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)

2. van der Aalst, W.M.P., Alves de Medeiros, A.K., Weijters, A.J.M.M.: Process
Equivalence: Comparing Two Process Models Based on Observed Behavior. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
129–144. Springer, Heidelberg (2006)

3. Li, C., Reichert, M., Wombacher, A.: On Measuring Process Model Similarity
Based on High-Level Change Operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé,
A. (eds.) ER 2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008)

Assisting Business Process Design 549

4. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

5. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: APCCM 2007, pp. 71–80 (2007)

6. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

7. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of
Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

8. Sakr, S., Pascalau, E., Awad, A., Weske, M.: Partial process models to manage
business process variants. IJBPIM 6(2), 20 (2011)

9. Lincoln, M., Gal, A.: Searching Business Process Repositories Using Operational
Similarity. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M.,
Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler,
P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 2–19. Springer,
Heidelberg (2011)

10. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

11. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 278–293. Springer, Heidelberg (2009)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 550–557, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Adaptive Case Management in the Social Enterprise

Hamid Reza Motahari Nezhad, Claudio Bartolini, Sven Graupner, and Susan Spence

Services Research Lab, Hewlett Packard Laboratories
Palo Alto, California, USA

{hamid.motahari,claudio.bartolini,sven.graupner,
susan.spence}@hp.com

Abstract. In this paper, we introduce SoCaM, a framework for supporting case
management in social networking environments. SoCaM makes case entities
(cases, processes, artifacts, etc.) first class, active elements in the social network
and connects them to people. It enables social, collaborative and flexible
definition, adaptation and enactment of case processes among people. It also
offers mechanisms for capturing and formalizing feedback, from interactions in
the social network, into the case, process and artifact definitions. We report on
the implementation and a case management scenario for sales processes in the
enterprise.

Keywords: Case Management, Ad-hoc Processes, Enterprise Social Networks.

1 Introduction

Case management accounts for a large proportion (>90%) of process-centric activities
in the enterprise, where knowledge workers are involved in domains such as customer
relationship management, IT service management, health, legal, financial, government
and telecommunications [4]. A case consists of a set of artifacts, actors (human or
systems), tasks – planned and unplanned - and the coordination of the tasks to achieve a
certain goal [5]. Adaptive case management (ACM) refers to managing all of the work
needed to handle a specific case in a flexible manner by adhering to the principles of
planning-by-doing and accommodating changes in the environment [3, 4]. Managing
cases often involves a mix of automated work (emails, communication, document and
partly workflow management applications) and human work. The main inefficiency in
today’s case management comes from the fact that the people, information systems,
process definitions and enactment tools are isolated and disconnected.

Social media and in particular social networks are emerging as the main
communication and interaction platforms for people. Social networks have been
deployed in the enterprise (e.g., platforms such as Yammer, Jive Engage, SocialText,
Salesforce Chatter, and HP WaterCooler1). However, their use is limited to
information sharing among employees and they have not been linked to and used as

1 WaterCooler is an internal HP social networking platform [6].

 Adaptive Case Management in the Social Enterprise 551

productivity tools in the enterprise. This is reflected in their low adoption in the
enterprise. For example, less than 5% of employees are active users of HP
WaterCooler [6, 14] even though it has been deployed in HP for more than five years.

In this paper, we present SoCaM, a framework for flexible case management
centered on an extended notion of an enterprise social network that consists of people
and things. The main contributions are as follows:

• We define process, task and artifact as first class entities in the social
network of people and things.

• We define a case as a first class entity in the social network. A case may
include one or more processes as the basis for the enactment of the case.

• We support the adaptive enactment of best practice processes for case
management applications by offering a wide range of flexibility features
including adaptive tasks, adaptive case templates and partially fulfilled
tasks, and the addition of at-will ECA (event-condition-action) rules.

• We enable process, task and artifact to become active entities to subscribe
to a case that uses them, so they are informed about and can identify the
changes made to their definitions during case enactment.

• We report on a use case of this technology in the domain of sales
processes in the HP Enterprise Services organization.

The paper is structured as follows. In Section 2, we present the requirements for
adaptive case management in a social context. In Section 3, we present SoCaM, the
proposed framework for social case management. Section 4 presents the architecture,
the implementation of a prototype SoCaM framework and the case study. We discuss
related work in Section 5 and conclude with future work in Section 6.

2 Requirements of ACM in the Social Enterprise

We conducted a case study on sales case management within the HP Enterprise
Services business. We focused on how people in a sales team collaborate within and
across teams, and how they define, enact and coordinate their activities for a sales
case. We found that there are best-practice process definitions that provide guidelines
on the sales process. Sales teams decide on the actual activities that they perform in a
specific sales case. A key observation is that the work is defined around artifacts of
the case. Tasks define work stages on the artifacts, what input(s) are needed and what
output(s) are generated. The case may use one or more process templates, and tasks in
the case either belong to a process template or are added in an ad-hoc manner. There
is a need for flexibility in task execution order. Many of the tasks are optional by
definition. Many of the tasks may be completed after several rounds of execution (so
there is a need for support for partial fulfillment) where, in each round, the tasks work
on the same set of artifacts as input/output. Finally, process definition configurability
is important for tasks and templates to enable the process to be adapted for the case as
more contextual information on the case becomes available.

Adding the perspective of an enterprise social network, we see the need for
making process, artifact and task active in the social network so that, like other

552 H.R. Motahari Nezhad et al.

entities in the network (such as people), they should also be capable of emitting and
consuming events. Beyond representation, the ability for these entities to subscribe to
information about their usage and to analyze feedback is also important. Entities can
use such information to enhance their representation and to adjust their behavior in
the network (in terms of the events that they emit).

3 SoCaM: The Social Case Management Framework

The Social Case Management (SoCaM) framework is designed for the definition and
enactment of best practice processes in an enterprise social network environment.
SoCaM represents process, task, artifact and case as first class entities in the social
network. In this approach, each best practice process is registered in the network
environment. Each individual task of a process may be also registered as a first class
entity. This enables the sharing of reusable tasks across several processes, and also the
receiving of finer granularity feedback from the network at the task level. The profile
of the task includes a description of how the task needs to be performed, the roles that
are involved in the task, input and output artifacts, task variances (based on
configurable parameters such as deal type, size, geography and sales region), and the
list of supporting resources. The process (template) profile then includes a
description, a list of tasks and the precedence of tasks which can be represented as a
dependency graph or a list view.

When a new case is created in the SoCaM environment, the case manager may
choose a number of configuration parameters. In the context of the Services Sales
domain, the configurable parameters are: region, industry, size of the deal, and deal
type. SoCaM prepares the list of compatible processes and a recommended set of
process templates are presented to the user. The user may choose to include one or
more of the process templates in the case. Examples of process templates are pursuit
management, solution management, customer management, etc. These will be added
to the task space of the cases, using each process as a way to group tasks. Note that
tasks in the added process templates may have dependencies (based on their
input/output). These dependencies will be automatically established by the SoCaM
engine. The user may define additional precedence constraints on the tasks across
templates.

3.1 The SoCaM Data Model

The SoCaM data model is depicted in Fig. 1. A case consists of a set of tasks and a set
of artifacts. A case may be associated with one or more process definition templates.
A process (template) represents the definition of a best practice in the organization. A
process consists of a set of inter-related tasks. The task relationships capture their
recommended precedence. Artifacts are documents and they are first class entities in
case management. We define an artifact template such that an artifact is an instance of
a template. An artifact template is independent of any case, while an artifact, on the
other hand, is an instantiation of a template for a specific case.

 Adaptive Case Management in the Social Enterprise 553

Process

Case

Task Template
Profile

SN-User

Role

Owner

Actor

Task

1

1

1 1

1

1

1

1

ECA Rule

-Process
Task Precedence

Artifact Template Artifact

1

1

1

1

Process Template1

1

Fig. 1. The conceptual data model for representing case entities in a social network
environment.

Task. A task has a profile, an owner, a set of attributes, including state, and a set of
roles associated with it. Having a profile means that the task can be followed by the
social network users. We represent a task template as a tuple tt=<name, state, roles,
artifacts-templates, permission, owner, followers>. The state=<Ready, Assigned,
Pending, Completed>, and this list can be updated by the task owner. The possible set
of roles=<Accountable/Approver, Responsible, Follower>. An actor may be assigned
as Accountable/Approver (as somebody who is eventually accountable, and
optionally can be mandated to approve the task before it is declared as completed),
Responsible (the person who performs the task), or Follower (somebody, assigned at
execution time, who is interested in being informed of the status of the task during
execution in a case). The followers list, on the other hand, refers to network users who
follow updates to the definition of this task. The owner is a user in the social network
who has edit authority on the task. The permission specifies the view and edit access
permissions on the task. By default, the view access is set to case actors, and the edit
access is set to responsible/accountable actors. These permission settings and those
for comments/updates on the task can be expanded to include followers, all social
network users or specific external users (through their email). We use the term task to
refer to the instantiation of a template. A task has a set of actors associated with it.

Process. A process is composed of a set of tasks that are inter-related. We define a
process template as pt=<name, tasks, tpgraph, artifact-templates, owner, permission,
followers>.The variable tpgraph refers to the task precedence graph, which is a graph
that shows the recommended relationships among tasks, based on the dependencies
among their input/outputs. The tpgraph may represent a multi-level graph for a
process in which some tasks may include a tpgraph for the set of their subtasks. We
use term process to refer to the instantiation of a template for a specific case.

554 H.R. Motahari Nezhad et al.

Case. A case is a container for a collection of adaptive tasks performed on a set of
artifacts to achieve a certain goal, e.g., to handle a specific service engagement. A
case is defined as c=<name, processes, tasks, artifacts, actors, permission,
followers>. A case contains one or more processes (and references to associated
process template references) which are enacted during the course of case handling.
The social network users that are involved in the case are called actors, and may be
assigned to one of an extensible list of roles in the case. The default role is the case-
manager who is ultimately accountable for the case. A case may have a number of
followers, who receive public updates from the case. An actor is a social network
user who takes a role in a case or in a specific task. An actor (and also an owner, as a
social network user) may define a number of ad-hoc (Event-Condition-Action) rules
on events related to cases, tasks, processes and artifacts.

3.2 Flexible Process Enactment for Case Management

The SoCaM case management engine adopts the WS-HumanTask framework [12] for
the definition of human tasks. The relationships between tasks in the context of a case
are modeled using a dependency graph that maintains the relationships between cases,
actors, tasks, artifacts and processes. This graph can dynamically change during the
course of case handling. In addition to the flexibility features such as adding a task,
skipping a task, and removing a task, we also support:

Adaptive tasks: tasks that adapt to the context of the case. The model allows
parametric modeling and configuration of tasks, that enables them to be enacted
differently in different contexts; for example, Service deals may be characterized by
parameters such as the size of the deal, the solution complexity, and different
geographical regions.

Adaptive process templates: The system adapts the order and number of tasks in a
case process template based on changes in the contextual parameters of the case.

Partially fulfilled tasks: identifying tasks that can be partially fulfilled and completed
during several rounds of execution, often based on the acceptance/review conditions.
The important aspect is that, in each iteration, the task will act on the same artifacts.

Social tasks: tasks that are open to all social network users or selected external users
through permission settings and get completed based on some conditions such as
minimum number of contributions, etc. This enables the soliciting of contributions to
the case through crowdsourcing practices, by engaging all enterprise employees, or
from external users such as customers.

3.3 Supporting Cases in a Social Network

The case profile names it, describes its purpose, presents its current status and
provides pointers to related entities including people and tasks. A case profile is a
container and aggregator of activities around the case, and these activities are posted
to the activity pages of actors and followers of the case. Fig. 2 shows a sample case

 Adaptive Case Management in the Social Enterprise 555

Fig. 2. The case elements in a social network environment

profile in HP WaterCooler. A social network user can explore the description and
composition of the case to see what best practice guidelines it enacts, and which
process templates it uses, and view the current status of the case and choose to follow
the case.

A social network user who is a case actor can also view a list of past and current
activities on the case, tailored to their role, participate in discussions by commenting
e.g. associated with a process or task, to justify an action such as skipping a task,
which will both form a part of the record for this case history and be reflected back to
the process usage history in the process template. Each case has an email address.
Users can include the case in the email exchanges. The emails are posted to the case
profile on behalf of the sender. This feature addresses information lock-in among
enterprise employees since, today, a lot of information related to the case or
individual tasks are locked in emails, or spread across multiple communication
channels such as email and IM.

3.4 Implementation and Case Study

We have developed SoCaM on top of HP WaterCooler (see [14]). We extended the
data model of WaterCooler by creating nodes for entities (process, task, case and
artifact) and related information in a graph database. For the data model, we have
extended Neo4J (neo4j.org/), a scalable graph database, to represent and store
information about cases, and to relate cases to people and other entities in
WaterCooler. The template manager module supports the definition of process, task

556 H.R. Motahari Nezhad et al.

and artifact templates and maps them into the graph node representation. The task
definitions are based on the WS-HumanTask framework implementation from jBoss
(jbpm.org). The rule definitions are mapped into the jBPM Drools framework. We
plan to use a distributed publish/subscribe model such as PADRES [13]
(padres.msrg.org) that suits the social network environment.

As a case study, we have used SoCaM in the context of case management for sales
cases. We modeled the sales processes which include hierarchical, multi-level process
definitions as process templates in SoCaM, and their tasks as task templates. Many
sales people were already familiar with WaterCooler but their use of it was limited to
sharing information. We received very supportive and encouraging feedback on how
this framework facilitates the job of sales people, and addresses the major issues
related to information silos, broken and fragmented communications, and the need for
transparent and flexible case management in social network environments.

4 Related Work

We study related work in three categories: adaptive case management, artifact-centric
process management, and business process management in social networks.

Adaptive case management. Case management is a hot topic in research and practice
today [1, 2], and in academia it has been studied in various contexts including health
[3, 4, 5]. In SoCaM, we adopt the same basic principles as in [3] and could use a
similar formal framework to formally describe our model. The main advances include
that our framework supports extra flexibility features such adaptive tasks, adaptive
templates and social tasks for opening up tasks to actors outside the system, and also
enables actors to define ad-hoc personal rules to manage the case.

Artifact-centric business processes. The artifact-centric approach for business
processes represents a class of approaches [9, 10] in which the state changes and
evolution of business artifacts are considered as the main driver of the business
process. While we share the same observation that business artifacts are the center of
attention in case management applications, we take a hybrid approach in SoCaM
where object lifecycle (as input or outcome of tasks or cases) is important, but the
model contains tasks that define activities over artifacts and some control flow level
actions to take the case forward.

Social BPM. Recently the topic of social BPM has received a lot of interest in
academia and practice [7, 8]. Most approaches by BPM vendors or research offer
extensions for business process models to represent tasks that can be exposed in social
networks (e.g., for voting, ranking, etc). [7] offers a model driven approach for
generating code for tasks in popular social networks such as Facebook and LinkedIn
and also an extended business process management engine. Current effort focuses on
supporting traditional workflow applications in the social network environment. We
go beyond and support the enactment of ad-hoc processes in the context of adaptive
case management in enterprise social networks.

5 Conclusions and Future Work

We have presented SoCaM, a framework for social case management. We provide a
technology solution for flexible case management in the social network environment

 Adaptive Case Management in the Social Enterprise 557

that represents case elements as first class entities in the social network, and includes
provision for collecting and analyzing feedback about the usage of process, task and
artifact entities. The benefits of case management using SoCaM include the ease of
capturing and enabling the exploration of relationships between people and entities,
offering a context for sharing and keeping a record of knowledge about cases,
processes, tasks and artifacts and also the ability to use notifications, based on a
publish/subscribe model, to communicate changes and updates. Research to support
case management applications in a social network environment is in its early stages.
We plan to make our research prototype more scalable in a production environment,
specifically w.r.t. distributing and propagating changes and subscribing to events.

References

1. Singularity, Case Management: Combining Knowledge with Process (July 2009),
http://www.bptrends.com/publicationfiles/07-09-WP-CaseMgt-
CombiningKnowledgeProcess-White.doc-final.pdf

2. de Man, H.: Case Management: A Review of Modeling Approaches (January 2009),
http://www.bptrends.com/publicationfiles/01-09-ART-
%20Case%20Management-1-DeMan.%20doc-final.pdf

3. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

4. Burns, E.V.: Case Management 101. In: Swenson, K.D., Palmer, N., Silver, B., Fischer, L.
(eds.) Taming the Unpredictable. Future Strategies Inc. (2011)

5. Palmer, N.: BPM and ACM (Adaptive Case Management). In: Swenson, K.D., Palmer, N.,
Silver, B., Fischer, L. (eds.) Taming the Unpredictable. Future Strategies Inc. (August
2011)

6. Brzozowski, M.: WaterCooler: Exploring an Organization Through Enterprise Social
Media. In: Proc. the ACM International Conference on Supporting Group Work, pp. 219–
228 (2009)

7. Fraternali, P., Brambilla, M., Vaca, C.: A Model-driven Approach to Social BPM
Applications. In: Fischer, L. (ed.) Social BPM. Future Strategies Inc. (May 2011)

8. Fischer, L.: Social BPM. Future Strategies Inc. (May 2011)
9. Kumaran, S., Liu, R., Wu, F.Y.: On the Duality of Information-Centric and Activity-

Centric Models of Business Processes. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

10. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of
Artifact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

11. Salesforce, Sales process management and workflow (2012),
http://www.salesforce.com/crm/sales-force-automation/workflow/

12. OASIS, Web Services – Human Task (WS-HumanTask) Specification Version 1.1
(November 2009), http://docs.oasis-open.org/bpel4people/
ws-humantask-1.1-spec-cd-06.pdf

13. Wun, A., Jacobsen, H.-A.: Modelling performance optimizations for content-based
publish/subscribe. In: Proceedings of the 2007 Inaugural International Conference on
Distributed Event-Based Systems (DEBS 2007), pp. 171–179. ACM, USA (2007)

14. Graupner, S., Bartolini, C., Motahari-Nezhad, H., Mirylenka, D.: Social Media Meet the
Enterprise – Analysis, Conclusions and Advancing to the Next Level. In: The Proceedings
of EDOC 2012, China (September 2012)

Automating Form-Based Processes

through Annotation�

Sung Wook Kim1, Hye-Young Paik1, and Ingo Weber1,2,��

1 School of Computer Science & Engineering, University of New South Wales
2 Software Systems Research Group, NICTA, Sydney, Australia

{skim,hpaik,ingo.weber}@cse.unsw.edu.au

Abstract. Despite all efforts to support processes through IT, processes
based on paper forms are still prevalent. In this paper, we propose a cost-
effective and non-technical approach to automate form-based processes.
The approach builds on several types of annotations: to help collect and
distribute information for form fields; to choose appropriate process ex-
ecution paths; and to support email distribution or approval for filled
forms. We implemented the approach in a prototype, called EzyForms.
We conducted a user study with 15 participants, showing that people
with little technical background were able to automate the existing form-
based processes efficiently.

1 Introduction

Business Process Management Systems (BPMS) enable organisations to auto-
mate and continuously improve business processes in order to achieve better
performance. Although the benefits of BPMS have been widely recognised, there
is still a large portion of business processes that are not adequately addressed
by these systems. These types of processes make up the so-called long tail of
processes, i.e. highly customised processes that are unique to individual organi-
sations, or concern a small number of workers.

In this paper, we particularly focus on the long tail of processes that consists
of form documents. Forms provide a low-tech, quick and flexible way to manage
processes. However, they impose a good deal of manual labour on the end users,
such as searching/downloading required forms, entering the same information
repeatedly, printing/faxing forms and so on.

A typical form-based processes exhibit the following characteristics. First, a
form-based process consists of one or more paper-based forms which are eventu-
ally to be submitted to an administration unit to trigger an organisational pro-
cess (e.g., a trip request). Second, a form-based process is initiated and executed
by a single user (e.g., a trip requestor), and the user is normally responsible for
finding information about the process (e.g., reading instructions on a web page,
searching/downloading forms). Third, a form-based process involves obtaining

� This work is supported by SDA Project, Smart Services CRC, Australia
�� NICTA, http://www.nicta.com.au/about/

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 558–565, 2012.
� Springer-Verlag Berlin Heidelberg 2012

http://www.nicta.com.au/about/

EzyForms 559

zero or more approvals on completed forms, which could mean the user having to
write multiple email requests and coordinating the chain of approval manually.
Although there are other types of form-based processes (e.g., a process involving
more than one user), our current work focuses on this model initially.

Our approach is to enable the form users to model and deploy their existing
form-based processes into a service-enabled framework without requiring tech-
nical knowledge or the cost of re-engineering. The key concept of our proposal
is in various types of annotations on forms and effective applications of such
information during the modelling and execution phases of form-based processes.
Our contributions in this paper are:

– a prototype named EzyForms, a framework that supports the whole life-cycle
of form-based process management. It includes the following novel aspects:
– identification of different types of annotation for simple, implicit mod-
elling and execution of form-based processes,

– smart applications of the annotations to support basic data flows and
execution patterns in form-based processes,

– a WYSIWYG-fashion integration of forms in every stage of the process
life-cycle, from form service creation through to modelling and execution.

– evaluation of such a framework through user studies.

Note that a full version of the paper is available at [1].

2 Proposed Approach

We aim to enable form owners to automate the form-based processes themselves,
and allow end users to execute the process efficiently. This approach consists
of four steps: form upload, form annotation, process modelling, and process
execution.

2.1 Form Upload

In order to fill-in the forms electronically, we convert a form into a Web ser-
vice. This is done by our previous work, FormSys [2], through which PDF
forms1 are uploaded to the central FormSys repository. Formally, we define
F := {F1, F2, . . .} as the set of all forms in the system, where each form has a
set of fields G(Fi) := {f1, f2, . . . , fn}.

2.2 Form Annotation

We recognise the fact that, to remove the need of BPM/IT professionals’ in-
volvement, the system must ascertain necessary information by itself as much
as possible (e.g., which form is relevant for process X, which fields in form A
are duplicated in form B). This is, of course, not always feasible or accurate. To
bridge the gap, we introduce the form annotation step which is an act of adding
metadata to the form. Due to its informality and flexibility in use, annotation

1 We use AcroForm, a PDF sub-standard, which contains interactive form elements.

560 S.W. Kim, H.-Y. Paik, and I. Weber

has been widely accepted by users for assisting Web browsing or searching, and
utilised in many systems like Flickr, Delicious, and Youtube [3,4]

There are two types of annotations, each assisting different aspects of process
automation: annotation for process modelling and for process execution. Also,
the annotation is defined on two levels: the form-library level (i.e., the annotation
is defined on the form generically, without regards to the processes in which the
form is involved) and the process level (starting from the form-library level, the
annotation can be refined within the context of a process – see Sect. 2.3).

Annotation for Modelling. This annotation is used to help form owners when
modelling a new process.

– Form description tag: these are descriptive or representative tags that can
describe the form. For example, the travel reimbursement form in our us-
age scenario may have form descriptions tags like travel, reimbursement,
travelcost. We formalize the system-wide set of form description tags as
T := {t1, t2, . . .}, and the annotation function T : F �→ 2T as a mapping
from the forms to the description tags which apply to this form: T (Fi) = ∅ or
T (Fi) = {ti1 , . . . , tik} for Fi ∈ F and ti1 , . . . , tik ∈ T where k corresponds to
the number of form description tags added to the form. These tags contribute
to the search and discovery of forms.

– Input field tag : these are synonyms, alias or any descriptive tags for an
input field in a form. For example, name field in the travel reimbursement
form may have tags such as name, staffname, fullname. Formally, we write
I := {i1, i2, . . .} for the set of input field tags available in the system. The
respective annotation function I : G �→ 2I is defined as a mapping from the
form fields to the field tags: I(fj) = ∅ or I(fj) = {ij1 , . . . , ijk} for fj ∈ G
and ij1 , . . . , ijk ∈ I where k corresponds to the number of tags added to
the input field. These tags contribute to ascertain simple data flow between
forms. That is, by comparing the tags associated with input fields from each
form, as well as their respective text labels, we can postulate if any given
two input fields share the same input data.

Annotation for Execution

– Condition: This type of annotation specifies conditions under which the
form should be used. We define the system-wide set of conditions as C :=
{c1, c2, . . .}, and the condition annotation function C : F �→ 2C as a map-
ping from the forms to the conditions which apply to this form: C(Fi) = ∅ or
C(Fi) = {ci1 , . . . , cik} for Fi ∈ F and ci1 , . . . , cik ∈ C where k corresponds
to the number of conditions associated with the form. The conditions on
a form are a template for conditions in a process. Process-level conditions
determine if the form should be filled by a particular end user at process
execution stage. Details on all execution aspects are given below.

– Approver : This annotation type describes the names and email addresses of
people who are responsible for approving some form (e.g., travel requests
may need approval from the Head of School), and used when dispatching
approval request emails. Formally, we write A := {a1, a2, . . .} for the set

EzyForms 561

of approvers stored in the system, and A : F �→ 2A is a function mapping
from the forms to the approvers which apply to this form: A(Fi) = ∅ or
A(Fi) = {ai1 , . . . , aik} for Fi ∈ F and ai1 , . . . , aik ∈ A where k corresponds
to the number of approvers associated with the form.

– Email Template: This annotation type specifies email templates for creating
email content to be sent to approvers, where the filled-in form gets attached.
The email templates available in the system are formally referred to as E :=
{e1, e2, . . .}, and the email annotation function as E : F×A �→ E , a mapping
from the forms and their respective approvers to the email template which
should be sent to this approver for this form: E(Fi, aj) = ek iff aj ∈ A(Fi),
else undefined.

Note that the collected annotations on different forms by different form owners
are centrally managed and shared via EzyForms Knowledge Base (KB). Also,
adding annotations is an activity separate from process modelling tasks and it
is possible that annotation and modelling are done by different people.

2.3 Process Model

The process model is designed based on the following characteristics of form-
based processes:

– they are purely form-to-form processes, that is, it is possible to describe the
processes as multiple steps of fill-form activities

– they are a single sequential flow where conditions are used to determine
optional part of the flow (i.e., which form is relevant for the current user).

In this section, we describe the the formal model for the association between
form annotation and the process model.

Process Definition. The annotations associated with the form documents in
a process are translated into the process model.A process model is defined as a
6-tuple p := (F|p, C|p, A|p, E|p, I|p, O), such that:

– F|p ⊆ F is a projection from the set of all forms to its subset used in p.
– C|p : F|p �→ 2C is a function mapping from the forms in p to the conditions

which apply to this form: C|p(Fi) = ∅ or C|p(Fi) = {ci1 , . . . , cik} for Fi ∈ F|p
and ci1 , . . . , cik ∈ C.

– A|p : F|p �→ 2A is a function mapping from the forms in p to the approvers
which apply to this form: A|p(Fi) = ∅ or A|p(Fi) = {ai1 , . . . , aik} for Fi ∈
F|p and ai1 , . . . , aik ∈ A.

– E|p : F|p × A �→ E is a function mapping from the forms in p and their
respective approvers to the email template which should be sent to this
approver for this form: E|p(Fi, aj) = ek iff aj ∈ A(Fi), else undefined.

– I|p : G(Fk) �→ {I,⊥} is defined as a mapping from a form field to zero or
one field tag: I|p(fj) = ⊥ (no field tag) or I|p(fj) = ij , where fj ∈ G(Fk),
the form belongs to p: Fk ∈ F|p, and ij ∈ I.

562 S.W. Kim, H.-Y. Paik, and I. Weber

– O specifies the order of the forms in p, and thus is an ordered permutation
of F|p : O = (Fi1 , . . . , Fik) where k corresponds to the number of elements
in F|p, and ij �= il for any j, l ∈ {1, . . . , k}.

Almost all process-specific annotations are projections of their respective forms-
library level counterparts. The exception is the field tags: where on the form
library level sets of field tags can be annotated, on the process-specific level at
most one field tag can be assigned to each field. Note that we do not require the
annotations on the process level to be subsets of the library level.

2.4 Process Execution

We now explain how a process model in our approach is executed. When an end
user starts an instance of some process model p = (F|p, C|p, A|p, E|p, I|p, O),
the approach first asks the user to determine the truth of all conditions used in
the process (if any), as a set union:

⋃
Fi∈F|p C|p(Fi). This means that conditions

which are shared between forms are only evaluated once. The user selects whether
the condition applies to her case, i.e., is true for this instance, or not.

Next, the forms without conditions, or whose conditions all were marked to
be true, are executed. That is, a form Fi is only shown to the user if C|p(Fi) = ∅
or cj is true for all cj ∈ C|p(Fi). The execution takes place in the order specified
by O. Form execution here means that each form is shown to the user, who can
enter values for the fields. The user can go back and forth between the forms.

The process-level field tags (zero or one per field) are hereby interpreted as
data mapping: all fields tagged with the same tag are set to the same value. For
a fixed but arbitrary i ∈ I, this set of fields is {f ∈ G(F) | F ∈ F|p, I|p(f) = i}.
This value equality is applied whenever the value for a field in this set is changed.

After filling all desired values into the forms, the user can trigger the next step
in the process, where all filled forms can be downloaded in their original format.
Finally, all approval emails are sent out for each form Fi without annotated
conditions (C|p(Fi) = ∅) or where all conditions C|p(Fi) are true.

3 EzyForms Implementation

A prototype (Fig. 1) has been implemented and its screencast is available at
http://www.cse.unsw.edu.au/~hpaik/ezyforms/.

Form Upload and Annotation. The forms and their matching Web services
are stored in the repository in FormSys Core Component. Matcher and Form

Annotation Manager components are responsible for managing tag library and
tag recommendations. We use Apache Lucene2 to create indices on the form’s
title text, file name, text content as well as the annotation tags.

Process Modelling and Execution. Input Field Mapper generates map-
ping candidates for any selected input fields amongst forms during the modelling

2 http://lucene.apache.org/

http://www.cse.unsw.edu.au/~hpaik/ezyforms/
http://lucene.apache.org/

EzyForms 563

Form
Annotation
Manager

FormSys Web Front-End

Form
Repository

soap2pdf 1

soap2pdf n
...

Annotations
Repository

Form Upload

Tag Library

Form Annotation

FormSys Core
Component

Process Manager

Form upload and
service deployment

Form annotation Process modeller

Input Field
Mapper

Process Modelling

Execution
Engine

Organisation
Public

Process Execution

Text
Extractor

Tag Library
Manager

Matcher

tags
input fields
mappings

Email
Dispatcher

Process Model

Form Owners ApproversEnd Users

Automatically
generated

Document flow

Form
Document

Form specific
annotation

Process specific
annotation

Fig. 1. EzyForms Architecture

process. Process Manager stores and manages all processes created by the form
owners. When an end user instantiates a process, Execution Engine first, in-
teracts with the end user to evaluate any conditions in the process, determines
forms to be filled-in, presents the forms for input and executes the form services.
Finally, it interacts with Email Dispatcher to send the forms according to the
approval chain generated.

Approval Chains. From the approver annotations, we auto-generate an ap-
proval chain model that supports a multi-level hierarchy (e.g., supervisor, then
Head of School, then the Dean) as well as “parallel-splits” (e.g., signed by two
supervisors). From the approval chain model, EzyForms dispatches approval re-
quest emails to appropriate approvers and collate the responses.

Recommendation for Adding Tags. For form owners, manually creating
tags for a form (e.g., for input fields) can be time-consuming and tedious. To
assist, our system includes recommendation algorithms for suggesting tags. For
example, the algorithm for recommending form description tags will consider el-
ements such as title text of the form, or free text appearing after the title (which
is normally a description/instruction about the form) to derive potentially rel-
evant terms. The details of the tag recommendation algorithms and evaluation
results are explained in [5].

Candidate Generation for Mappings. For form owners, the mapping task
in form-based process modelling involves identifying input fields that share the
same value across forms. To assist, we automatically generate a suggested list for
mapping candidates in the chosen forms. We take the tags in an input field with
those appearing in other input fields. We then calculate the number of common

564 S.W. Kim, H.-Y. Paik, and I. Weber

tags between any two input fields. Based on the common tags, we generate a
ranked list of mapping candidates.

4 User Study

In this section, we present a summarised version of our user study results. A
full version is available at [1]. The study included 15 participants. The main
goals of the study were to evaluate whether: i) our form annotation approach
can be applied to people with little technical background (especially in BPM)
to automate processes and ii) end users find the automated execution of a
form-based process convenient.

The task scenario was based on a university student activity grant application
process. The participants were given two paper forms3 and asked to observe the
forms and the process instructions. Then, using our tool, the participants were
asked to execute form annotation and process modelling tasks as if they were the
form owners. For the form annotation task, they first identified the form fields
that they thought would frequently appear across other forms, and annotated
those fields with descriptive tag names. For the process modelling task, the
participants used the two form services to create an application process.

We categorised 7 participants into ‘experienced users’ and 8 participants into
‘novice users’. All fifteen participants were able to use the tool and complete the
given set of tasks designed for the form owner’s role – without any extra help,
regardless of their respective category. The questionnaire results on the tasks
showed the tool was easy to use and intuitive (scoring well over 4 in a 5-point
scale in all questions). Overall, we believe our proposed approach to automating
the form-based process (and its implementation in EzyForms) is applicable to
both groups and not bound to any process modelling experience.

All participants were able to complete the tasks given for the second role,
form end user. Figure 2(a) shows the scores on the questionnaires which asked
to rate the amount of improvement they saw at each steps of the form-based
process, compared to the manual ones. All participants commented that Ezy-
Forms allowed them to conduct the process in more efficient manner. This is
largely due to the fact that most manual work was either completely removed or
significantly reduced (e.g., identifying which forms to fill-in, downloading forms
to fill-in). Finally, each participant selected three favourite features from our
approach without specific order. It shows that the most popular point was that
they no longer had to fill-in same information repeatedly, closely followed by
the point that they did not have to identify required forms by themselves (the
conditions annotation in our tool automates that aspect) (Fig. 2(b)).

5 Conclusion and Future Work

In this paper, we have presented a pragmatic approach for automating form-
based processes. In our approach, the form-based process model and execution

3 www.arc.unsw.edu.au/get-involved/clubs-and-societies/

club-forms-and-policy

EzyForms 565

1
1.5

2
2.5

3
3.5

4
4.5

5

Dow
nlo

ad
 Fo

rm

Fo
rm

 Id
en

tifi
ca

tio
n

Fo
rm

 Fi
ll-

in

W
rit

e E
mail

App
rov

al
Req

ue
st

Pr
oc

es
s I

de
nti
fic

ati
on

A
ve

ra
ge

 S
co

re

Form-based Process Steps

(a) Process execution steps (end user ex-
perience)

Process Identification
6%

Form
Identification

23%

Download
Form
18%

Form Fill-in
29%

Write
Emails
12%

Approval
Request

12%

(b) Favourite features

Fig. 2. Form annotation user study evaluation

are deliberately kept plain so that deriving their definitions for automation is at-
tainable through tags and other simple form of annotations by the form owners.
So far in this work, we have identified the types of annotations that can be used
to support the end-to-end life-cycle of form-based processes. We have developed
a fully working prototype named EzyForms as proof of concept. Our preliminary
evaluation revealed that form annotation approach for automating form-based
processes are applicable to people with little or no technical background, and
that automated form-based processes significantly improved the overall user ex-
perience especially for form fill-in, form identification and form download tasks.

In future work, we plan to explore the process data management issue so that
EzyForms can deal with process specific data (e.g., id number of the project that
will fund the travel) and sharing of such data between users. We will improve
the tooling features including more complex input fields mapping (e.g., concate-
nating two strings or manipulating dates) and attaching files to the forms.

References

1. Kim, S.W., Paik, H.Y., Weber, I.: Automating Form-based Processes through An-
notation. Technical Report 201221, School of Computer Science and Engineering,
The University of New South Wales (2012),
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201221.pdf

2. Weber, I., Paik, H.Y., Benatallah, B., Gong, Z., Zheng, L., Vorwerk, C.: FormSys:
Form-processing Web Services. In: WWW 2010, pp. 1313–1316 (2010)

3. Cattuto, C., Loreto, V., Pietronero, L.: Semiotic Dynamics and Collaborative Tag-
ging. Proceedings of the National Academy of Sciences 104, 1461–1464 (2007)

4. Golder, S.A.: Usage Patterns of Collaborative Tagging Systems. Journal of Infor-
mation Science 32, 198–208 (2006)

5. Kim, S.W.: Form annotation framework for long tail process automation. In: Work-
shop on User-Focused Service Engineering, Consumption and Aggregation (to be
published in 2012) (2011)

ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201221.pdf

PASOAC-Net: A Petri-Net Model to Manage

Authorization in Service-Based Business Process

Haiyang Sun1, Weiliang Zhao2, and Surya Nepal3

1 Department of Computing, Macquarie University, Sydney, Australia
2 Faculty of Engineering, University of Wollongong, Wollongong, Australia

3 CSIRO ICT Centre, Sydney, Australia
haiyang.sun@mq.edu.au, wzhao@uow.edu.au, Surya.Nepal@csiro.au

Abstract. A successful execution of a Business Process (BP) is possible
only if the proper coordination exists between (1) BP’s execution policy,
(2) BP’s authorization policy, and (3) the authorization policies of BP’s
resources. Hence, there is a need of an effective authorization model that
brings all types of policies together for a BP executing successfully with-
out breaking any authorization and business rules. This paper proposes a
Petri-Net process model, Process-Aware Service-Oriented Authorization
Control Net (PASOAC-Net). PASOAC-Net is developed based on the
conceptual model PASOAC, an extension of Role Based Access Control
(RBAC), which takes both resources and users into account. A set of
authorization constraints is designed in PASOAC to coordinate the user
access and the resource support in a process environment.

1 Introduction

For a successful execution, a Business Process (BP) must be able to satisfy
authorization policies of resources to receive their supports. The interactions
between the BP and its users are also imperative. Users need to satisfy the
process authorization policies before accessing to the specific process functions.
Execution policies are used to manage the sequence of task invocations within a
BP, i.e., business logic. Without an appropriate coordination on these policies,
a BP may not be able to perform properly. Therefore, how to manage the user
accesses and the resource supports in a BP in a distributed environment, e.g., web
service domain, becomes a challenging task. We will discuss this point further
through a motivating example.

1.1 Motivating Example

In Fig. 1, we illustrate an execution sequence of Financial Lease BP. Each op-
eration (also known as task) of BP is depicted as a rectangle in the process. A
User table is used to illustrate three types of users, and their associated access
policies on operations. Four types of resources are illustrated in Resource table
in Fig. 1. The sequence of interactions among users, resources, and operations
of BP is numbered in Fig. 1. The requirements for accessing and supporting
Financial Lease are stated below,

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 566–573, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

PASOAC-Net: A Petri-Net Model to Manage Authorization 567

Fig. 1. Execution Sequence of Financial Lease

– User: (1) Customer should be able to access all operations. (2) The operation
Guarantor Confirmation can only be made by Guarantor. Guarantor can
start the lease on behalf of the Customer and help to repay the rental.
(3) Lawyer after lease finalization stage can deal with any rest activities on
behalf of its client. Furthermore, Lawyer is necessary to involve in operations
of Lease Confirmation and Lease Finalization with Customer.

– Resource: (1) Funder is used to provide financial support. (2) Supplier

is the product provider. (3) Lease Agent can provide both product and
fund to Financial Lease, since the Lease Agent will seek its own Funder

and Supplier. (4) Credit Assessor can evaluate the credit histories of
Guarantor and Customer.

We can observe from the above example that the user accesses and the resource
supports are not only regulated by their specific authorization policies, but also
need to be restricted by the business constraints enacted during the execution
of BP. Otherwise, authorization issues can be raised to cease process execution.
These business constraints can be categorized as follows,

– Synchronization: The sequence of the user accesses and resource supports
should be synchronized with the execution sequence of the operations in BP.
When an operation is ready to execute in a process instance, the relevant
users and resources that can access and support the operation should be
invoked. Once the operation finishes, the permissions assigned to the user
and resource to access and support the operation should be revoked imme-
diately. For example, when the operation Guarantor Confirmation starts,

568 H. Sun, W. Zhao, and S. Nepal

the authorization to access the operation should be granted to Guarantor.
When the operation finishes, the authorization of Guarantor access to the
operation should be revoked immediately to avoid repeated submissions of
guarantor information.

– Dependency: A user access of (or a resource support on) a specific oper-
ation in a BP may depend on another user access (or resource support). In
the above example, operation Monthly Bill can be supported by Funder or
Lease Agent and accessed by Customer or Guarantor. To avoid fraudulent
activity, a Guarantor can pay the rental on behalf of the Customer to access
the operation Monthly Bill only if a Funder issues the bill. This constraint
is used when an entity can play as both Lease Agent and Guarantor. Ob-
viously, if the entity pays the bill issued by itself, it may eventually do harm
to Customer’s interest.

Therefore, an effective authorization model is highly desirable to support the
coordination of the user accesses and resource supports in a BP. In this work, a
conceptual model named Process-Aware Service-Oriented Authorization Control
(PASOAC) is proposed to manage authorization of business process by consider-
ing both user access and resource support. Two types of authorization policies,
(1) Authorization Synchronization Policies and (2) Authorization Dependence
Policies, are included in the conceptual model to deal with the above business
security requirements. Authorization flow (i.e, sequences of user accesses and
resources supports with associated authorization policies) is modeled by a Petri-
Net based process model PASOAC-Net.

The rest of paper is organized as follows. Section 2 describes the conceptual
model PASOAC. Authorization policies are also defined in this section. The
specification of PASOAC-Net is described in Section 3. Section 4 overviews some
related work. Concluding remarks are provided in Section 5.

2 Conceptual Model-PASOAC

In this section, we specify the PASOAC conceptual model by using the notation
of Entity-Relationship (E-R) Diagram. In Fig. 2, rectangles represent ele-
ments and diamonds represent relationships. We define Role (R) as a type of
user that requires to access the operations (Op) of BP. Resource type (ReT) is
defined as a type of resource that can provide support on the operation (Op).
Their associated relationships, access and support, are all many-to-many.

In Fig. 2, there are two types of authorization policies, Synchronization and
Dependency. A sequence of role accesses on operations of BP can be called as
role-flow ; while a sequence of resource type support on operations of BP can
be called as resource type-flow. An authorization flow consists of role-flow and
resource type-flow, and must be executed consistently with the control flow of
BP. In Fig. 2, three red arrows are used to represent the sequence of role access
(role-flow), business logic of BP (control-flow), and the sequence of resource type
support (resource type-flow) respectively. Authorization Synchronization Policy

PASOAC-Net: A Petri-Net Model to Manage Authorization 569

Fig. 2. Process-Aware Service-Oriented Authorization Control

is therefore divided into two types, (1) Role Synchronization Policy and (2) Re-
source Type Synchronization Policy. Authorization Dependency Policies restrict
that a role or a resource type is not able to access or support the operations,
until the other role or the other resource type has already accessed or supported
specific operations. Authorization Dependency Policies are separated into 5 cat-
egories, (1) between roles, (2) between resource types, (3) between roles and
resource types, (4) between resource types and roles, and (5) between groups of
role and resource type (See Fig. 2).

3 Specification of PASOAC-Net

PASOAC-Net is a Petri-Net process model divided into three parts, role-net,
resource type-net, and constraint-net, respectively.

3.1 Structure of PASOAC-Net

Role-Net is used to model role-flow and enforce the Role Synchronization
Policy. In role-net, we use each transition (the black rectangle) to represent a
role access on specific operation. We use token that flows between the transitions
in role-net to represent the operations. When the transition consumes one token,
it means that the operation (token) has been accessed by the role (the transition).
The new generated tokens by this transition will represent the next operation
that need to be accessed according to the business logic of BP. Role-Net is
formally defined as follows,

Definition 1 Role-Net is a tuple H = (P r, T r, F r, ir, or)

570 H. Sun, W. Zhao, and S. Nepal

• P r is a set of places, graphically represented as circles,
• T r is a set of transitions, graphically represented as black bars to represent

role accesses on specific operations in role-net. T e⊂T r is a set of empty
transitions as or-split, or-join, and-split, or and-join,

• F r=(P r×T r)∪(T r×P r),
• ir and or are input place and output place respectively, to initially deposit

token and finally collect token in role-net.

Resource Type-Net is used to model resource type-flow and enforce the Re-
source Type Synchronization Policy. It bears the similar semantics as Role-
Net. The formal definition of resource type-net is defined as follows,

Definition 2 Resource Type-Net is a tuple G = (P ret, T ret, F ret, iret, oret),

• P ret is a set of places graphically represented as circles,
• T ret is a set of transitions, graphically represented as black bars to repre-

sent resource type supports in resource type-net. T e⊂T ret is a set of empty
transitions as or-split, or-join, and-split, or and-join,

• F ret=(P ret×T ret)∪(T ret×P ret),
• iret and oret are input place and output place respectively, to initially deposit

token and finally collect token in resource type-net.

Constraints-Net is used to enforce the five Authorization Dependency Poli-
cies. Each transition in constraint-net is linked from one transition in role-net or
resource type-net and points to another transition in role-net or resource type-
net. Hence, without token movement through the transition in constraints-net,
the relevant role-net or resource type-net which is pointed by the transition in
constraints-net can not accumulate enough tokens to fire, according to the basic
execution policy of Petri-Net. We can use this method to realize the dependency
between roles, between resource types, even between role and resource type. The
group dependency policy is different from the other dependency polices, in that
the depending role and resource types can be executed individually, but can not
be both executed if the depended role and resource type are not both executed.
The formal definition of constraint-net is defined as follows,

Definition 3 Constraints-Net is a tuple C = (P c, T c, F c, W, Count), Where:

• P c is a set of places graphically represented as circles,
• T c is a set of transitions, graphically represented as black bars to represent

constraints in between roles, between resource types, and between role and
resource type. For group dependency policy, transitions are separated as fol-
lows,
− T e⊂T c is a set of empty transitions as and-split to simultaneously split

the token movement pathes to Tx⊂T c and Ty⊂T c.
− Tx⊂T c represents an indictor to show, when Group B depends Group A,

if a role or a resource type in group B has already been used to deal with
specific operation.

− Ty⊂T c represents an indictor to show if both role and resource type in
group A have been executed.

PASOAC-Net: A Petri-Net Model to Manage Authorization 571

• F c=(P c×T c)∪(T c×P c)∪(T ret×P c)∪(P c×T ret)∪(T r×P c)∪(P c×T r), where,
Tx•×T r and Tx•×T ret (Tx•={p∈P c| (Tx×p)∈F c}) can be weak relation
or normal relation depending on the amount of tokens in Tx•. (1) If no
token is deposited in Tx•, then the relation between Tx• and the transition
in role-net or resource type-net becomes a weak relation that will not affect
the execution of the linked transition. (2) When at least one token is de-
posited in Tx•, the relation between Tx• and the transition in role-net or
resource type-net becomes normal relation that affects the execution of the
linked transition.

• W:F c→IN is a weight function on the relation between place and transition.
It reflects how many tokens are needed to pass the relation (IN represents In-
teger). For example, W:(•Ty, Ty)→2 (•Ty={p∈P c| (p, Ty)∈ F c}), W:(Tx•,
Tr)→2 and W:(Tx•, Tret)→2.The weights of all other relations are 1.

• Count:P c→ IN is a function to calculate the amount of tokens at each
place. The result of this function on specific place can be used to decide
if the relation between transition and this place is weak relation or normal
relation.

Fig. 3. PASOAC-Net

In Fig. 3, a comprehensive view of PASOAC-Net based on the motivating
example is presented, where both role-net and resource type-net are illustrated
as well as each category of constraint-net.

572 H. Sun, W. Zhao, and S. Nepal

3.2 Execution of PASOAC-Net

The token movement in PASOAC-Net is regulated by its execution mechanism.
The PASOAC-Net execution complies with the general execution policy of Petri-
Net. At beginning, two tokens are deposited at each initial place of role-net and
resource type-net. Once the tokens reach the final place of each net, we believe
that the BP is successfully executed by complying with all authorization policies.

Fig. 4. Execution Mechanism of Constraint-Net for Group Dependency Policy

However, the execution mechanism designed for group dependency policy is
complicated that introduces in details here. For example, in Fig. 4, the group of
Lease Agent support and Lawyer access on the operation Return depends on
the group of Lease Agent support and Customer access on the operation Lease
Application. Initially, only the transition (Lease Agent support on Return) in
resource type-net is enabled by a token arrival in its pre-place. There is no token
deposited in Tx• in constraint-net. The relation between Tx• and the transition
(Lease Agent support on Return) is weak relation, that will not affect the fire of
this transition (See Step 1 in Fig. 4). After firing, one token is passed to Te in
constraint-net and the other one is moved into the post-place of this transition
in resource type-net (See Step 2 in Fig. 4). The token in pre-place of Te in
constraint-net is split into •Ty and •Tx after Te firing (See Step 3 in Fig. 4).
At this time, Tx can be enabled and fired to deposit one token from •Tx to
Tx•. When Count(Tx•)=1, the relation between Tx• and the transition (Lawyer
access on Return) in role-net becomes normal relation that affects the fire of the
transition. Since W:Tx•×Tr=2 and W:Tx•×Tret=2, one token in Tx• now is not
enough to enable the normal relation with weight 2. Therefore, even if the pre-
place of the transition (Lawyer access on Return) in role-net has accumulated

PASOAC-Net: A Petri-Net Model to Manage Authorization 573

enough token, the transition still can not be fired, since its pre-place (Tx•) in
constraints-net has not accumulated enough tokens to pass the relation with
weight 2. The group dependency policy is enforced to restrict the Lawyer access
on Return before the group of Lease Agent support and Customer access on the
operation Lease Application have both been executed (See Step 4 in Fig. 4).

4 Related Work

Role based access control (RBAC) [1, 2, 3] is a widely accepted approach on
BP authorization. In [4], the authors proposed a workflow authorization model
(WAM) and an authorization template (AT) to realize the synchronization of
role-flow with workflow. In [5], the authors propose a constrained workflow sys-
tem where local and global cardinality constraints as well as SoD and BoD are
enforced. However, all above authorization models in workflow environment, that
deal with resources within the same security domain as workflow, can not be used
directly as ready solutions for authorization of service based BP, since resources
in web service domain spread across organizational boundary. The authorization
dependency policies are also missing in the existing models.

5 Conclusion and Future Work

In this paper, we propose an authorization conceptual model PASOAC for
managing user access and resource support in business processes. Two types
of authorization constraints, Synchronization and Dependency, are considered
in PASOAC. A Petri-Net based process model PASOAC-Net is developed based
on PASOAC as a formal infrastructure to ensure the successful execution of BP
by enforcing various types of synchronization and dependency policies.

References

[1] Sandhu, R.S., Coyne, E., Feinstein, H., Youman, C.: Role-based Access Control
Models. IEEE Computer 29(2), 38–47 (1996)

[2] Ahn, G., Sandhu, R.: Role-Based Authorization Constraints Specification. ACM
Transactions on Information and System Security (TISSEC) 3(4), 207–226 (2000)

[3] Ferraiolo, D., Sandhu, R., et al.: Proposed NIST Standard for Role-Based Access
Control. TISSEC 4(3), 224–274 (2001)

[4] Atluri, V., Huang, W.-K.: An Authorization Model for Workflows. In: Martella,
G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146,
pp. 44–64. Springer, Heidelberg (1996)

[5] Tan, K., Crampton, J., Gunter, C.A.: The consistency of task-based authorization
constraints in workflow. In: IEEE Workshop of Comp. Security Foundations (2004)

[6] Wonohoesodo, R., Tari, Z.: A Role Based Access Control for Web Services. In:
Proceedings of SCC, pp. 49–56 (2004)

[7] Fischer, J., Majumdar, R.: A Theorey of Role Composition. In: Proceedings of
ICWS, pp. 49–56 (2008)

WSTRank: Ranking Tags

to Facilitate Web Service Mining

Liang Chen1, Zibin Zheng2, Yipeng Feng1, Jian Wu1, and Michael R. Lyu2

1 Zhejiang University, China
2 The Chinese University of Hong Kong, China

Abstract. Web service tags, terms annotated by users to describe the
functionality or other aspects of Web services, are being treated as col-
lective user knowledge for Web service mining. However, the tags as-
sociated with a Web service generally are listed in a random order or
chronological order without considering the relevance information, which
limits the effectiveness of tagging data. In this paper, we propose a
novel tag ranking approach to automatically rank tags according to their
relevance to the target Web service. In particular, service-tag network
information is utilized to compute the relevance scores of tags by em-
ploying HITS model. Furthermore, we apply tag ranking approach in
Web service clustering. Comprehensive experiments based on 15,968 real
Web services demonstrate the effectiveness of the proposed tag ranking
approach.

1 Introduction

Web service1 has become an important paradigm for developing Web applica-
tions. Especially the emergence of cloud infrastructure offers a powerful and
economical platform to greatly facilitate the development and deployment of a
large number of Web services [13]. Based on the most recent statistics2, there are
28,593 Web services being provided by 7,728 distinct providers over the world
and these numbers keep increasing in a fast rate.

WSDL (Web Service Description Language) document and extra description
given by service providers are two major kinds of data to be utilized for Web
services mining [8]. Despite the abundance of extra service description for most
current Web services, limited semantic information can be obtained from the
XML-based description document, i.e., WSDL document. The fast growing num-
ber and limited semantic information of Web services pose significant challenges
to Web service mining, e.g., Web service clustering, Web service searching, etc.

1 In this paper, we focus on non-semantic Web services. Non-semantic Web services
are described by WSDL documents while semantic Web services use Web ontology
languages (OWL-S) or Web Service Modeling Ontology (WSMO) as a description
language. Non-semantic Web services are widely supported by both the industry and
development tools.

2 http://webservices.seekda.com

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 574–581, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://webservices.seekda.com

WSTRank: Ranking Tags to Facilitate Web Service Mining 575

In recent years, tagging, the act of adding keywords (tags) to objects, has
become a popular mean to annotate various Web resources, e.g., Web page
bookmarks, online documents, and multimedia objects. Tags provide meaning-
ful descriptions of objects, and allow users to organize and index their contents.
Tagging data was proved to be very useful in many domains such as multimedia,
information retrieval, data mining, and so on [1][12]. In Web service domain,
some Web service search engines, such as SeekDa!, also allow users to annotate
tags to Web services. Recently, Web service tags are being treated as collective
user knowledge for Web service mining, and attract a lot of attention. Some
research work have been conducted to employ tagging data for Web service
clustering[6], Web service discovery[3][9], Web service composition [5], etc.

Fig. 1. Two exemplary Web services from SeekDa!

However, existing studies reveal that many tags provided by SNS (Social
Network System) users are imprecise and there are only around 50% tags actually
related to the target object [10]. Furthermore, the relevance levels of tags can’t be
distinguished from current tag list, where tags are just listed in a random order
or chronological order without considering the relevance information. Figure 1
shows two exemplary Web services3 from SeekDa! and their tags annotated by
users. Take the USWeather Web service as an example, its most relevant tag, i.e.,
“weather”, can not be discovered from the order of tag list directly. Similarly,
the most relevant tag to XigniteQuotes Web service is “stock quote”, while its
position in the tag list is the 7th. Furthermore, there are some imprecise tags
annotated to Web services, such as “unknown”,“format”, etc.

Relevance-independent tag list and imprecise tags limit the effectiveness of
tags in Web service mining, or even produce negative effects. In this paper,
we propose a novel tag ranking approach named WSTRank, to automatically
rank tags according to their relevance to the target Web service. In WSTRank,

3 http://webservices.seekda.com/providers/webservicex.net/USWeather

http://webservices.seekda.com/providers/xignite.com/XigniteQuotes

576 L. Chen et al.

we employ HITS [11] model to obtain the relevance score of tag based on a
service-tag network.

To demonstrate the effectiveness of tag ranking approach for Web service min-
ing, we apply WSTRank into one classical application, i.e., Web service cluster-
ing, which is usually used to cluster the Web services with the same or similar
functionality to handle the low recall of Web services search.

In particular, the main contribution of this paper can be summarized as
follows:

1. This paper identifies the critical problem of tag ranking for Web service
mining and proposes a hybrid approach named WSTRank to rank tags of
Web services. To the best of our knowledge,WSTRank is the first tag ranking
approach for Web services.

2. Extensive real-world experiments are conducted to study the tag ranking
performance of WSTRank. The experimental results demonstrate the effec-
tiveness of WSTRank. Further, we evaluate the impact of tag ranking to
Web service clustering.

3. We publicly release our Web service tag dataset to promote future research,
which includes 15,968 real-world Web services and their tags. The released
dataset makes our experiment reproducible.

2 Web Service Tag Ranking

In this section, we introduce the computation of HITS based tag authority, which
is treated as the relevance score of tag. Hyperlink-Induced Topic Search (HITS)
(also known as hubs and authorities) is a link analysis algorithm that rates
Web pages, developed by Jon Kleinberg. It is a precursor to PageRank. The
idea behind Hubs and Authorities stemmed from a particular insight into the
creation of Web pages when the Internet was originally forming. In this section,
we propose to obtain the authority of tag in the service-tag network, which could
reflect the importance of tag. In the following, we first introduce how to build the
service-tag network, and then present a HITS-based algorithm for tag authority
computation.

2.1 Service-Tag Network Building

Service-tag network can be modeled as a weighted directed graph G, where node
si means a service and node ti means a tag. For each node in G, it has two values,
i.e., hub and authority. There are three kinds of directed edges in G:

1. Edge from service node to tag node. Given a service s1 annotated with three
tags t1, t2, and t3, then there is a directed edge from s1 to t1, t2, and t3,
respectively. In particular, the weight of this kind of edge is 1.

2. Edge from service node to service node. Given two services s1 and s2, if there
is one or more than one common tags annotated to these two services, we
create one directed edge from s1 to s2 and one directed edge from s2 to s1.

WSTRank: Ranking Tags to Facilitate Web Service Mining 577

These two edges have the same weight, which is depended on the common

tags, i.e., weight =
ts1

⋂
ts2

ts1
⋃

ts2
, where ts1 and ts2 mean the set of tags annotated

to s1 and s2, respectively.
3. Edge from tag node to tag node. Given two tags t1 and t2, and these two

tags are annotated to one or more than one services. Similarly, we create one
directed edge from t1 to t2 and one directed edge from t2 to t1. The weight

of edge is also depended on the common services, i.e., weight =
st1

⋂
st2

st1
⋃

st2
,

where st1 and st2 mean the set of services contain t1 and t2, respectively.

In this way, we obtain the service-tag network by building a weighted directed
graph.

2.2 Tag Authority Computation

HITS based algorithm is a kind of iterative algorithm. We consider two types of
updates as follows:

– Authority Update. For each node p in G, we update the authority of node
p to be:

Auth(p) =

n∑
i=1

Hub(pi)× w(pi, p), (1)

where pi(i = 1, . . . , n) means the node that points to p, and w(pi, p) is the
weight of edge from pi to p. That is, the authority of node p is the sum of
all the weighted hub values of nodes that point to p.

– Hub Update. For each node p in G, we update the hub value of p to be:

Hub(p) =

n∑
i=1

Auth(pi)× w(p, pi), (2)

where pi(i = 1, . . . , n) means the node that p points to, and w(p, pi) means
the weight of edge from p to pi.

Algorithm 1 shows the detailed HITS based computation process. As the initial-
ization, we set the authority value and hub value of each node in G as 1 (line
1-3). K in line 4 means the number of iterations. Empirically, we set K = 50
in the experiments. The parameter norm is used for normalization, and is ini-
tialized as 0 (line 5). According to the Authority Update rule, we compute the
authorities of all nodes in G, and then normalize them by using parameter norm
(line 6-16). Similarly, hub values of nodes can be computed by employing Hub
Authority rule (line 18-29). After K iterations, we return the authorities of all
tag nodes (line 30-32).

3 Experiment

In this section, we first give a brief description of dataset and experiment setup,
and then compare the performance of different tag ranking approaches in terms
of NDCG.

578 L. Chen et al.

Algorithm 1. Tag Authority Computation Algorithm

Input: G:service-tag network; K: number of iterations
Output: Auth(t): authority of tag node

1: for all node p in G do
2: Auth(p)=1,Hub(p)=1
3: end for
4: for iteration from 1 to K do do
5: norm=0
6: for all node p in G do
7: Auth(p)=0
8: for all node pi which points to p do
9: Auth(p)+=Hub(pi) ×weight(pi, p)
10: end for
11: norm+=square(Auth(p))
12: end for
13: norm=sqrt(norm)
14: for all node p in G do
15: Auth(p)=Auth(p)/norm
16: end for
17: norm=0
18: for all node p in G do
19: Hub(p)=0
20: for all node pi that p points to do
21: Hub(p)+=Auth(pi) ×weight(p, pi)
22: end for
23: norm+=square(Hub(p))
24: end for
25: norm=sqrt(norm)
26: for all node p in G do
27: Hub(p)=Hub(p)/norm
28: end for
29: end for
30: for all tag node t in G do
31: return Auth(t)
32: end for

3.1 Dataset Description and Experiment Setup

To evaluate the performance of WSTRank, we employ the dataset consists of
15,968 real Web services crawled form the Web service search engine Seekda!.
For each Web service, we can obtain the information of service name, WSDL
document, tags, availability, and the name of service provider.

For each service, each of its tags is labeled as one of the five levels: Most Rele-
vant (score 5), Relevant (score 4), Partially Relevant (score 3), Weakly Relevant
(score 2), and Irrelevant (score 1). As the manual creation of ground truth costs
a lot of work, we select 98 Web services from the dataset and distinguish the
following categories: “Email”, “Stock”, “Tourism”, “Weather”, “Calculation”,
and “Linguistics”. Specifically, There are 11 Web services in “Email”category,

WSTRank: Ranking Tags to Facilitate Web Service Mining 579

18 Web services in “Stock”category, 20 Web services in “Tourism”category, 14
Web services in “Weather”category, 18 Web services in “Calculation”category,
and 17 Web services in “Linguistics”category. Due to the space limitation, we
don’t shows the detailed information of these Web services.

It should be noted that all experiments are implemented with JDK 1.6.0-21,
Eclipse 3.6.0. They are conducted on a Dell Inspire R13 machine with an 2.27
GHZ Intel Core I5 CPU and 6GB RAM, running Windows7 OS.

3.2 Performance Evaluation of Tag Ranking

To study the performance of tag ranking, we first compute the NDCG vaule
of Baseline (i.e., original tag lists), and then compare the performance of the
following approache:

– WSTRank. In this approach, linking relationship in the service-tag network
is employed to rank tags. In this experiment, we choose HITS model to
represent the linking relationship.

To evaluate the performance of Web service tag ranking, we employ the Normal-
ized Discounted Cumulative Gain (NDCG) [2] metric, which is widely accepted
as the metric for ranking evaluation in information retrieval. Table 1 and Table
2 show the ranking performance of above 4 approaches, respectively employing
NDCG@3 and NDCG@5 as the evaluation metric. NDCG@k indicates that only
the ranking accuracy of the top-k tags is investigated. Given one category of
Web services, we compute the NDCG@k value of each Web service, and set the
average value as the NDCG@k value of this category. For each column in the
Tables, we have highlighted the best performer among all approaches. The val-
ues shown in the bottom row are the performance improvements achieved by the
best methods over the Baseline.

Table 1. NDCG@3 performance of tag ranking

Method Tourism Weather Calcu Lingu Stock Email Average

Baseline 0.756 0.862 0.602 0.621 0.806 0.869 0.753

WSTRank 0.797 0.917 0.962 0.771 0.935 0.911 0.882

5.42% 6.38% 59.8% 24.15% 16.00% 4.83% 17.1%

Table 2. NDCG@5 performance of tag ranking

Method Tourism Weather Calcu Lingu Stock Email Average

Baseline 0.714 0.892 0.709 0.787 0.877 0.901 0.813

WSTRank 0.781 0.855 0.917 0.788 0.862 0.874 0.846

9.38% -4.32% 29.34% 0.13% -1.74% -3.09% 4.06%

580 L. Chen et al.

From above two Tables, it can be observed that our proposed WSTRank ap-
proach largely improves the accuracy of tag ranking. Compared with the Base-
line, the improvement brought byWSTRank achieves 59.8% at the highest point,
and achieves -4.32% in the worst case. In addition, we can also find that the im-
provement caused by WSTRank always decreases when the value of k increases
from 3 to 5.

4 Related Work

With the popularity of SNS, tagging data, which is annotated by users and
provides meaningful descriptions, is widely employed in many research domains
such as mutlimedia, information retrieval, data mining, etc [1]. Recently, tag-
ging data oriented technologies are also employed in service oriented computing.
Eric et al. propose a folksonomy-based model for Web service discovery and
automatic composition, in which tags are utilized as semantic information [5].
In our premise work, we utilize both WSDL documents and tags to cluster
Web services, based on the notion that combining users’ knowledge and service
providers’ knowledge [6]. Tagging data is also employed in Web service discovery
[7]. To handle the problem of limited tags, Zeina et al. propose to employ machine
learning technology and WordNet synsets to automatically annotate tags to Web
services [4].

5 Conclusion

In this paper, we propose to rank Web service tags to facilitate Web service
mining. In our proposed WSTRank approach, we utilize the linking relationships
in service-tag network to obtain the relevance scores of tags. In particular, HITS
model is employed to compute the authority of tag in service-tag network. The
experimental results based on real Web services demonstrate the effectiveness of
WSTRank approach.

In our future work, we plan to expand the scale of tag dataset by inviting
volunteers and employing automated tagging approaches. Moreover, WSTRank
will be applied in applications of Web service mining, e.g., Web service clustering,
Web service search and Web service recommendation, to verify the effectiveness
of tag ranking in Web service mining.

Acknowledgements. This research was partially supported by the National
Technology Support Program under grant of 2011BAH15B05, the National
Natural Science Foundation of China under grant of 61173176, Science and Tech-
nology Program of Zhejiang Province under grant of 2008C03007, National High-
Tech Research and Development Plan of China under Grant No. 2009AA110302,
National Key Science and Technology Research Program of China (2009ZX01043-
003-003).

WSTRank: Ranking Tags to Facilitate Web Service Mining 581

References

1. Ames, M., Naaman, M.: Why we tag: Motivations for annotation in mobile and
online media. In: Proc. of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), pp. 971–980 (2007)

2. Arvelin, K.J., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems 20(4), 422–446 (2002)

3. Averbakh, A., Krause, D., Skoutas, D.: Exploiting User Feedback to Improve Se-
mantic Web Service Discovery. In: Bernstein, A., Karger, D.R., Heath, T., Feigen-
baum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 33–48. Springer, Heidelberg (2009)

4. Azmeh, Z., Falleri, J.-R., Huchard, M., Tibermacine, C.: Automatic Web Service
Tagging Using Machine Learning and WordNet Synsets. In: Filipe, J., Cordeiro, J.
(eds.) WEBIST 2010. LNBIP, vol. 75, pp. 46–59. Springer, Heidelberg (2011)

5. Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A
folksonomy-based model of web services for discovery and automatic composition.
In: IEEE International Conference on Services Computing, pp. 389–396 (2008)

6. Chen, L., Hu, L., Zheng, Z., Wu, J., Yin, J., Li, Y., Deng, S.: WTCluster: Utilizing
Tags for Web Services Clustering. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 204–218. Springer, Heidelberg (2011)

7. Ding, Z., Lei, D., Yan, J., Bin, Z., Lun, A.: A web service discovery method based
on tag. In: International Conference on Complex, Intelligent and Software Intensive
Systems, pp. 404–408 (2010)

8. George, Z., Athman, B.: Web service mining. Springer (2010)
9. Hou, J., Zhang, J., Nayak, R., Bose, A.: Semantics-Based Web Service Discovery

Using Information Retrieval Techniques. In: Geva, S., Kamps, J., Schenkel, R.,
Trotman, A. (eds.) INEX 2010. LNCS, vol. 6932, pp. 336–346. Springer, Heidelberg
(2011)

10. Kennedy, L.S., Chang, S.F., Kozintsev, I.V.: To search or to label?: predicting the
performance of search-based automatic image classifiers. In: Proc. of the 8th ACM
International Workshop on Multimedia Information Retrieval, pp. 249–258 (2006)

11. Li, L., Shang, Y., Zhang, W.: Improvement of hits-based algorithms on web docu-
ments. In: Proc. of the 11th International World Wide Web Conference, pp. 527–
535 (2002)

12. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proc. of the 17th International Conference on World Wide Web
(WWW), pp. 327–336 (2008)

13. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: A collaborative filtering based web
service recommender system. In: Proc. of the 7th International Conference on Web
Services (ICWS), pp. 437–444 (2009)

Maintaining Motivation Models (in BMM)

in the Context of a (WSDL-S) Service Landscape

Konstantin Hoesch-Klohe, Aditya K. Ghose, and Hoa Khanh Dam

Decision Systems Lab (DSL),
School of Computer Science and Software Engineering,

University of Wollongong.
{khk789,aditya,hoa}@uow.edu.au

Abstract. The ever-changing business context requires organisations
to constantly adapt their motivation and service representations. While
there has been work focusing on the relation between the motivation- and
service level, very little work has been done in providing machinery for
handling (propagating) changes at the motivation level and identifying
the resulting impact on the service landscape. In this paper, we propose
a novel framework which addresses this problem.

1 Introduction

A motivation model (e.g. represented as a Business Motivation Model[1]) is an
important artefact in an organizational context, as it encodes organizational
intent and guides the maintenance of its service capabilities and ultimately all
service capabilities of an organisation should be traceable back to (and justified
by) elements in the motivation model.

The ever-changing business context requires organisations to constantly adapt
their motivation and service representations. For example, an organisation may
change its vision in terms of modifying its goals (which may render existing ser-
vice capabilities superfluous) or may have to give up (or adopt) services, e.g. to
remain compliant with changing regulations (which may result in unrealized or-
ganisation motivation). A manual adaption can be a time-consuming and error-
prone exercise. For example, we might overlook inconsistencies or commit to
sub-optimal modifications (often simply because of human cognitive limits on the
space of alternative modifications we can explore). Formally (semi-)automated
machinery is therefore desirable.

Existing work however focuses on identifying and verifying the functional rela-
tionship between the motivation- and service level (e.g. [2], [3], [4]), or techniques
for handling changes at the service level (e.g. [5], [6]). Little work has been done
in providing means to identify the consequent impact of changes made at the
motivation level to the service level. Previous work (e.g. [7], [8]) has been done in
providing formal machinery for dealing with changes at the motivation level. For-
mal requirement engineering approaches such as KAOS [9] and FormalTropos[10]
focus on verification. Zowghi et al. [7] provides an operator which maps one
goal model (represented by a default theory) to another, but does not consider

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 582–590, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Maintaining Motivation Models (in BMM) in the Context 583

hierarchical relationships among goals nor their relation to services. Ernst et al.
[8] address the above, but in their formalization goals are required to be atomic
statements (as opposed to formulas in an arbitrary language, as is the case in
our work1). which does not permit the kind of analysis we provide.

In this paper, we propose a novel framework for handling changes at the motiva-
tion level and highlighting consequent impacts to the service level. Section 2 covers
preliminaries and introduces a running example. Section 3 introduces amotivation-
service (F-hyper-) graph and introduces a hierarchical entailment relationwith the
graph. Section 4 formalize a change operator which is recommended for (but is not
restricted to) changes driven by compliance, i.e. where amotivationmodel needs to
be adapted to meet compliance obligations. This is important in the service con-
text, since non-compliant motivation models give rise to non-compliance at the
service level. Finally, we conclude and outline future work in section 5.

2 Preliminaries

Business Motivation Model: A Business Motivation Model (BMM)[1], as
standardized by OMG, is a hierarchical representation of organisational moti-
vation. In a BMM model the vision is the most abstract element and attained
via a set of goals. A goal is a statement about a state or motivation the or-
ganisation seeks to maintain or bring about. A strategy represents an accepted
course of action to achieve the ends (i.e. the goals and vision). Strategies, are
implemented via tactics, which are narrower in scope. Figure 1 (left side) shows
some examples of a vision, strategy, goal and tactic and their hierarchical rep-
resentation in a BMM (right side). In the BMM of Figure 1 (right side), the

Fig. 1. A Business Motivation Model (right) and its description (left)

“AND” connection between goals “G1” and “G2” relating them to parent vision
“V” indicates that both goals need to be realized to bring about the vision; the
“OR” connection between tactics“T1” and “T2”, and strategy“S1” denotes that
either of the tactics can be pursued to implement the strategy.

Service Representation: Semantic service description standards like WSDL-S
and OWL-S enforce a degree of rigour and detail in how services are modelled,

1 We only require a finitely generated formal language with an associated entailment
relation (�) relating sentences in the language.

584 K. Hoesch-Klohe, A.K. Ghose, and H.K. Dam

which in turn supports more sophisticated analysis. Most of these standards
support the specification of pre- and post-conditions, which we leverage in our
framework. Our current work leverages WSDL-S, but, as noted above, other
semantic service standards could equally well be used. For simplicity of exposi-
tion, we use the syntax of classical logic in representing pre- and post-conditions
(effects) in the following. Service descriptions are maintained in a service cat-
alogue. In our running example will refer to the following services in the ser-
vice catalogue of a hypothetical organisation (for brevity we only provide their
name and effect): Simplified Property Valuation (Se1): PropertyValued ∧ Sim-
plifiedPropertyValuation; Small Loan Service (Se2): LoanApplicationHandled ∧
LowDocumentation; Premium Loan Service (Se3): IncomeStatementReceived ∧
LoanApplicationHandled ∧ GoalStandardDiscount.

3 Formal Representation

We now describe a formal representation of BMM models and service cata-
logues that permits the application of (semi-) automated machinery for manag-
ing change of various kinds. The formal representation is based on a motivation
library and Motivation-Service graph, which are described in detail as follows.

Motivation Library: A motivation library is a domain specific collection of
feasible motivations, i.e., motivational elements which are feasible to realize2.
All elements of an organisation’s BMM are part of the library, but the library
may contain additional elements. We require each motivational element to be
represented by a formal assertion of the language L. In other words, the library
is simply a set LIB of assertions, such that LIB ⊆ L. The assertions provide
a (machine understandable) description of the respective motivation element.
Within the motivation library, we refer to the motivational elements that an
organisation desires to (i.e. would like to) adopt to its BMM as LIBdes ⊆ LIB.
The motivational elements the organisation is actually committed to, is given by
the elements (denoted by their formal assertion) of the BMM model. Naturally,
an organisation should be committed to all desired motivations. However, this
may not always be possible. An organisation may not commit to bring about a
desired motivation m, because m may be inconsistent with other (desired) mo-
tivations, which have been accorded higher preference, or m may be infeasible to
pursue with other desired motivations (e.g. doing so would cause a compliance
violation). Maintaining a motivation library has several advantages: it supports
reuse and avoids unnecessary loss of information (this has also been pointed
out by e.g. [7]). In other words, motivations which are currently infeasible, in-
consistent, not desired or justified (by a desired element), are retained in the
library in anticipation of future situations where these might be adopted (e.g.
when they become feasible again, or the source of inconsistency goes away due
to other changes).The list below provides the assertions for the respective BMM

2 Note that some states of affairs might be highly desirable for an organization, but
not feasible to achieve.

Maintaining Motivation Models (in BMM) in the Context 585

elements of Figure 1, as well as the strategy S3 and the tactic T4 (which do not
appear in the current BMM, but might have appeared in a previous one), as
part of the library. Note that the assertions may be arbitrarily detailed, but are
kept simple for ease of exposition.

V: Competitive ∧ CustomerFocused G1:HighCustomerSatisfaction
G2:LowCreditLoss S1: SimplifiedLoanProcessing
S2: HighNumberOfHighNetWorthClients T1: SimplifiedPropertyValuation
T2: LowDocumentation T3: GoldStandardDiscount
S3: StrictCreditAssessment T4: IncomeStatementRecevied

Motivation-Service Graph: We use an acyclic F-hypergraph to represent an
Motivation-Service Graph. An F-hypergraph (given by a set of vertices V and
edges E) is a generalization of a simple (directed) graph, which allows edges
with a single source vertex but (potentially) more than one target vertices. An
F-hypergraph is acyclic, iff there does not exist a path in the graph for which the
“start”- and “end-” vertex are the same. A formal definition can be found in [11].
A Motivation-Service-graph (MS-graph) is a labelled acyclic and F-hypergraph
representation of the BMM elements, services (from a service catalogue) and
their hierarchical relationships. In an MS-graph, each vertex is either associated
with an element of the motivation library or the service catalogue. Hereafter, we
will also assume the ability to refer to the type of each element of the motiva-
tion library (via the type of associated vertex). Vertices associated with services
will refer to the service post-conditions. We use edges e = (x, Y) to denote an
AND-relation between a vertex x and a set of sub-vertices Y (note that edges
represent refinement relationships between BMM elements or realization rela-
tionships between BMM tactics and services). For example, the edge “e1” of the
MS-graph in Figure 2 (left hand side) is an AND-relation. In an OR-relation
we use edges e = (x, Y) and e′ = (x, Y ′) to denote that the sets of vertices
Y ⊂ V and Y ′ ⊂ V are distinct refinements or realizations of x. For example,
the edge “e4” and “e5” of the MS-graph in Figure 2 (left hand side) are two
distinct relations. Note that, if we had defined the relationship between a goal
and each of its refinements (realizations) individually (as we would be obliged to
do in a simple graph), we would not have been able to distinguish between goals
belonging to alternative refinements (realizations). We believe that our formal-
ization addresses many of the deficiencies in the way AND/OR (goal) graphs are
formalized (most ignore the fact that such graphs are in fact hypergraphs and
that AND edges are in fact F-hyperedges).

In addition, a background knowledge base KB ⊆ L is used as an encoding of
domain and organisation specific knowledge (which for example could be repre-
sented in RuleML). TheKBmay contain the knowledge that a low loan processing
time results in high customer satisfaction (e.g LowLoanProcessingTime→ High-
CustomerSatisfaction), or that accepting credit applications with low documen-
tation (i.e. without an income statement, etc.) is considered not to be a strict
credit assessment (e.g. LowDocumentation → ¬ StrictCreditAssessment). The
following rules are also considered in our example: HighCustomerSatisfaction

586 K. Hoesch-Klohe, A.K. Ghose, and H.K. Dam

→ CustomerFocused, StrictCreditAssessment → LowCreditLoss, LowCreditLoss →
Competitive, LowDocumentation → SimplifiedLoanProcessing, SimplifiedPropertyVal-

uation→ SimplifiedLoanProcessing, HighNumberOfHighNetWorthClients→LowCred-

itLoss, GoldStandardDiscount → HighNumberOfHighNetWorthClients, IncomeState-

mentReceived → StrictCreditAssessment.

Although we acknowledge that maintaining a formal representation of domain
knowledge can be laborious, it should be emphasized that such an exercise has
advantages beyond this paper (e.g. it forces stakeholders to make precise their
knowledge, assumptions and terminology and thereby helps to highlight potential
inconsistencies and their resolution by coming to a shared understanding).

Wellformed Motivation-Service Graph: We refer to an MS-graph that does
not contain alternative refinements (or decompositions) as an AND-MS-graph.
Any general MS-graph (which may contain alternative refinements), can be rep-
resented as a set of distinct AND-MS-graphs. We use the function ΔAND(G) to
denote all maximal AND-MS-graphs that are sub-graphs of a given MS-graph
G. For example, the MS-graph of Figure 2 (left hand side) has two AND-MS-
(sub) graphs (one includes T1 and Se1, the other includes T2 and Se2). In the
following, we refer to a vertex v as a root vertex, iff there does not exist a
(hyper-) edge e in the MS-graph, such that v is an element of the targets of e.
An AND-MS-graph as wellformed if it satisfies the following properties.

Fig. 2. The original MS-graph (left side) and its modification (right side)

(1) All root vertices are desired, of type “vision” and can only point to vertices
of type “goal”, which can only point to vertices of type “goal” or “strategy”.
A vertex of type “strategy” can only point to vertices of types “strategy” and
“tactic”, which can only point to vertices of types “tactic” and “service”.

(2) The conjunction of the assertions associated with all vertices must be
consistent with the domain knowledge base, since the organisation intends to
concurrently realize all of them (i.e. there is no sequencing knowledge encoded
that might suggest that one should be achieved before another).

Maintaining Motivation Models (in BMM) in the Context 587

(3) All target vertices of any edge must minimally entail the source vertex
of the respective edge. We have adapted this property from [9]. Observe that in
our running example the effects of service Se1, Se1 and Se3 respectively entail
the tactics T1, T2 and T3 and are hence part of the MS-graph.

A general MS-graph is well-formed iff all G ∈ ΔAND(G) are well-formed. In
our example, the strategy S3 and tactic T4 (part of the motivation library) do
not participate in the MS-graph of Figure 2 (left hand side), as doing so would
result in a derivable AND-MS-graph which is not wellformed (i.e. inconsistent)
and the organisation has given precedence to the other elements.

k-Level Entailment: We now define a hierarchical entailment relation for MS-
graphs, called k-level entailment. k-level entailment permits us to answer whether
a particular assertion is derivable (or not derivable) from a particular level on-
wards in the MS-graph. We define k-level vertices as a subset of MS-graph ver-
tices, such that for each element v, there exists a path of length k from a root
vertex to v, or v is a leaf vertex and there exists a path from a root vertex to v
with a length less than k. The root vertices themselves are 0-level vertices. For
example, Figure 2 indicates the level of each vertex.

For an AND-MS-graph G , an assertion α is k-entailed, iff all k-level vertices
together with the KB entail the assertion and there does not exist a lower level
(lower in terms of the value of k) in the MS-graph for which this is the case,
i.e. k is the “earliest” (i.e. lowest) level at which the assertion is entailed. We
use G �k α to say that G k-entails an assertion α. For example the assertion
LowDocumentation is entailed at level 3. From the definition of a wellformed
MS-graph if follows that, if an assertion α is k-level entailed, than α is entailed
in all levels i that follow after k. We refer to to this as α being i-consequence.
For a general MS-graph G an an assertion α is strongly k-entailed (denoted by
G �str

k α) iff all AND-MS-graphs derivable from G have α as an i-consequence
and k ≤ i. Conversely, we say that a general MS-graph G does not entail an
assertion α (denoted by G ��str α) iff there does not exist an AND-MS-graph
derivable from G that entails α at any k.

4 Maintaining Motivation-Service Graphs

In this section, we show how to maintain an organisation’s motivation model (i.e.
the BMM) and service capabilities (i.e. the catalogue) in their conjoint MS-graph
representation. There can be many change drivers. Organizations change their
motivations to respond to dynamic business contexts, e.g., by the addition of
motivation elements (via an add-vertex operator) or the removal of motivations
(via a remove-vertex operator3) . An MS-graph may have to be modified to
meet compliance obligations, e.g., to ensure that an assertion is entailed by
the graph (via an entail-assertion operator) or isn’t (via a not-entail-assertion
operator). Due to space constraints, we only describe the “not-entail-assertion”

3 The modification of a motivation can be viewed as a removal of the prior version
followed by the addition of its modified version.

588 K. Hoesch-Klohe, A.K. Ghose, and H.K. Dam

operator, which is also the most complex of the four types mentioned above).
The properties of the not-entail-assertion operator are inspired by the AGM
logic of theory change [12] and belief contraction postulates. A key insight from
this framework is the need to minimize change to a body of knowledge encoded
in an artefact such as an MS-graph We therefore require means to assess the
extent of change, which might be encoded in a notion of proximity between two
MS-graphs.

Motivation-Service Graph Proximity: Given MS-graphs G, G′ and G′′ we
say that G′ <G G′′ if G′ is “closer” to G than G′′. There relation <G may be
defined in various ways. From a graph theoretic perspective, we may view G′

to be closer to G if it has more vertices and edges in common with G. This
intuition places an equal weighting on all elements of the graph. However, this is
not sensible for MS-graphs, since some vertices justify others and hence should be
given precedence (e.g., a strategy is justified by the goal it aims to bring about).
We prefer an MS-graph that preserves the original graph up to level k + 1 over
one that preserves the original graph up to level k. On the basis of this argument,
one possible intuition for defining <G could be k level set intersection cardinality.
MS-graph G′ is preferred over G′′ if G′ shares more vertices with the original
MS-graph G at level 0. In case of a tie, G′ is preferred over G′′ if it shares more
vertices with G at level k + 1, and so on.

“Not Entail Assertion” Operator: The “not entail assertion” operator
(denoted by.) minimally modifies an MS-graph to obtain one where an assertion
is strongly not derivable. A key application is in compliance management. In the
running example, if new regulations require that each loan must be backed up
by sufficient documentation, the organisation must ensure that the assertion
α = LowDocumentation is not derivable from the MS-graph (in the example α
corresponds to a single assertion but may in general be a consequence of a set of
assertions). Our formalization can handle this. We offer the following normative
properties for the “not entail assertion” operator.

1. Wellformedness: For a wellformed MS-graph G, G. α is wellformed.
2. Success: For a wellformed MS-graph G where G. α = G′, G′ ��str α.
3. Vacuity: For a wellformed MS-graph G where G ��str α, G. α = G.
4. Desire-inclusion: For a wellformed MS-graph G where G ��str α, there does

not exist a desired goal in the library, such that if it were to be added to
G the resulting MS-graph would satisfy the properties 1-3 (i.e. the resulting
MS-graph should include as many desired goals as possible)

5. Minimal-change: For a wellformed MS-graph G where G . α = G′, there
does not exist a G′′ which satisfies the 4 properties above and G′′ <G G′. In
other words, the operation should return the MS-graph which satisfies the
above conditions and is closest to the original graph.

Definition 1. Given a wellformed MS-graph G and an assertion α, let the op-
eration G − α return a set, such that each G′ ∈ (G − α) satisfies the properties
(1)-(5). We define G . α = s(G − α), where s is a selection function which
returns an element in G− α.

Maintaining Motivation Models (in BMM) in the Context 589

. represents a class of operators, parameterized by the proximity relation <G

and the selection function s. The removal of a element from G might permit the
addition of previously inconsistent desired motivations from the library to G. In
our example, the vertices T2 and Se2 of the MS-graph make α derivable, which
might lead to their removal. This may permit the inclusion of the previously
inconsistent library elements S3 and T4 to the MS-graph.

The MS-graph in Figure 2 (right side) denotes the outcome of the “not entail
assertion” (with α = LowDocumentation) operator (instantiated by k-level in-
tersection cardinality) with respect to the original MS-graph (right side)4. Tactic
T4 can be included in the MS-graph but it is not realized by a service (or com-
bination of services). This would have to be flagged to the user, who could then
decide to adopt the required functionality, drop the unrealized options from MS-
graph, or leave the model unchanged. Furthermore, the service Se2 is not part of
the MS-graph any more (and flagged as such to the user) since it is part of the
service catalogue, but does not contribute to bringing about any organisational
motivation.

5 Conclusion and Future Work

In this paper, we have proposed a formal framework to deal with changes at the
motivation level and assessing their impact to the service landscape. An oper-
ator class (the “not entail assertion” operator) for compliance driven changes
was introduced. We have developed a prototype implementation of the operator
(using A* search technology) for propositional logic, which suggests the feasibil-
ity of our approach. Future work would involve investigating the scalability of
our approach and the deployment of local search versus global search techniques
in real world scenarios. Formalizing additional operator classes which capture
other situations of change is also part of our future work.

References

1. OMG: Bmm, http://www.omg.org/spec/BMM/1.1/PDF (2010)
2. Jokhio, M.S.: Goal-based testing of semantic web services. In: ASE, pp. 707–711

(2009)
3. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Modeling and Reasoning

about Service-Oriented Applications via Goals and Commitments. In: Pernici, B.
(ed.) CAiSE 2010. LNCS, vol. 6051, pp. 113–128. Springer, Heidelberg (2010)

4. Lu, Q., Tosic, V., Bannerman, P.L.: Support for the Business Motivation Model
in the WS-Policy4MASC Language and MiniZnMASC Middleware. In: Kappel,
G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp.
265–279. Springer, Heidelberg (2011)

5. Andrikopoulos, V., Benbernou, S., Papazoglou, M.: On the evolution of services.
IEEE Transactions on Software Engineering (2011)

4 In our example all elements in the motivation library are desired, and recall that the
desire inclusion property has primacy over the minimal change property.

http://www.omg.org/spec/BMM/1.1/PDF

590 K. Hoesch-Klohe, A.K. Ghose, and H.K. Dam

6. Hibner, A., Zielinski, K.: Semantic-based dynamic service composition and adap-
tation. In: 2007 IEEE Congress on Services, pp. 213–220 (2007)

7. Zowghi, D., Ghose, A.K., Peppas, P.: A Framework for Reasoning About Require-
ments Evolution. In: Foo, N.Y., Göbel, R. (eds.) PRICAI 1996. LNCS, vol. 1114,
pp. 157–168. Springer, Heidelberg (1996)

8. Ernst, N., Borgida, A., Jureta, I.: Finding incremental solutions for evolving re-
quirements. In: RE (2011)

9. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven re-
quirements elaboration. ACM SIGSOFT Software Engineering Notes 21(6) (1996)

10. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Speci-
fying and analyzing early requirements in Tropos. Requirements Engineering 9(2)
(2004)

11. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Applied Mathematics 42(2-3), 177–201 (1993)

12. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Par-
tial meet contraction and revision functions. The Journal of Symbolic Logic 50(2)
(1985)

Ontology-Learning-Based Focused Crawling

for Online Service Advertising Information
Discovery and Classification

Hai Dong1, Farookh Khadeer Hussain2, and Elizabeth Chang1

1 School of Information Systems, Curtin University of Technology, Australia
2 School of Software, University of Technology, Sydney, Australia

Abstract. Online advertising has become increasingly popular among
SMEs in service industries, and thousands of service advertisements
are published on the Internet every day. However, there is a huge bar-
rier between service-provider-oriented service information publishing and
service-customer-oriented service information discovery, which causes that
service consumers hardly retrieve the published service advertising in-
formation from the Internet. This issue is partly resulted from the ubiq-
uitous, heterogeneous, and ambiguous service advertising information
and the open and shoreless Web environment. The existing research,
nevertheless, rarely focuses on this research problem. In this paper, we
propose an ontology-learning-based focused crawling approach, enabling
Web-crawler-based online service advertising information discovery and
classification in the Web environment, by taking into account the char-
acteristics of service advertising information. This approach integrates
an ontology-based focused crawling framework, a vocabulary-based on-
tology learning framework, and a hybrid mathematical model for service
advertising information similarity computation.

1 Introduction

It is well recognized that the information technology has a profound effect on the
conduct of the business, and the Internet has become the largest marketplace in
the world. Innovative business professionals have realized the commercial appli-
cations of the Internet for their customers and strategic partners. They therefore
turn the Internet into an enormous shopping mall and a huge catalogue [1]. In the
service industry, Internet advertising is also popular among small and medium
enterprises, due to the advantages of low cost, high flexibility, and ease of pub-
lishing. Nevertheless, many service consumers find it difficult to quickly and pre-
cisely retrieve service advertising information from the Internet, not only owing
to the lack of specialized service information registration and retrieval platforms,
but also because of the following features of service advertising information.

Ubiquity. Service advertisements can be registered by service providers through
various business information registries [2]. These business information registries
are geographically distributed over the Internet, yet there is no particular ap-
proach or application being designed to quickly and precisely locate the service
information from these registries.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 591–598, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

592 H. Dong, F.K. Hussain, and E. Chang

Heterogeneity. Given the diversity of services in the real world, many schemes
have been proposed to classify services from various perspectives. Nevertheless,
there is not a publicly agreed scheme available for classifying service advertising
information over the Internet.

Ambiguity. Most of service advertising information does not retain a consistent
format or standard. They are described by natural languages and embedded in
vast Web information, the content of which is sometimes ambiguous for service
consumers to understand.

Service (information) discovery is not a fresh topic in the academia. Many
theories and applications have been developed so far. Nevertheless, at present
few studies have been carried out in the research area of service advertising infor-
mation discovery, by taking into account the above features of service advertising
information.

In order to address this research issue, in this paper, we propose a novel
ontology-learning-based focused crawling approach for service advertising infor-
mation discovery and classification. The proposed approach is the integration of
a semantic focused crawling framework, an ontology-learning framework, and a
hybrid service advertising information similarity model. The semantic focused
crawling framework is to address the issues of service advertising information
for service information discovery; the ontology learning framework is to solve
the limitations of ontology-based focused crawling; and the hybrid model is to
measure the relatedness of service advertising information from the perspectives
of text similarity and statistics.

2 Related Work

A semantic focused crawler is a software agent that is able to traverse the Web,
and retrieve as well as download related Web information for specific topics,
by means of semantic Web technologies [3], [4]. The goal of semantic focused
crawlers is to precisely and efficiently retrieve and download relevant Web in-
formation by understanding the semantics underlying the Web information and
the semantics underlying the predefined topics. According to a survey conducted
by Dong et al. [5], the limitation of the semantic focused crawlers is that their
crawling performance crucially depends on the quality of ontologies. This even-
tual consequence of this problem could be reflected in the gradually descending
curves in the performance of semantic focused crawlers.

In order to solve the above issue, researchers start to pay their attention to en-
hancing semantic focused crawling technologies by integrating them with ontol-
ogy learning technologies. The goal of ontology leaning is to semi-automatically
extract facts or patterns from corpus or data and turn facts and patterns into
machine-readable ontologies [6]. A few studies have been conducted in this field
as follows:

Zheng et al. [7] proposed a supervised ontology-learning-based focused crawler
that aims to maintain the harvest rate of the crawler in the crawling process.

Ontology-Learning-Based Focused Crawling 593

The main idea of this crawler is to construct an artificial neural network (ANN)
model to determine the relatedness between a Web page and an ontology.

Su et al. [8] proposed an unsupervised ontology-learning-based focused crawler
in order to compute the relevance scores between topics and Web pages. Given a
specific domain ontology and a topic represented by a concept in this ontology,
the relevance score between a Web page and the topic is the weighted sum of the
occurrence frequencies of all the concepts of the ontology in the Web page. This
crawler makes use of reinforcement learning, which is a probabilistic framework
for learning optimal decision making from rewards or punishments [9], in order
to train the weight of each concept. The learning step follows an unsupervised
paradigm which uses the crawler to download a number of Web pages and learn
statistics based on these Web pages.

From the above survey, we found that none of the two crawlers is able to
really evolve ontologies by enriching their contents, namely their vocabularies.
When numerous unpredictable new terms outside the scope of the vocabulary
of an ontology emerge in Web pages, these approaches cannot determine the
relatedness between the new terms and the topic, and cannot make use of the
new terms for the relatedness determination, which could result in the decline
in their performance.

3 System Functions and Framework

The proposed ontology-learning-based focused crawler primarily consists of three
components based on the functionalities, i.e., a storage component - the service
knowledge base, a processing component - the crawling and processing module,
and a computing component - the service advertising information classification
and ontology learning module (Fig. 1).

Fig. 1. Framework of the proposed ontology-learning-based focused crawler

594 H. Dong, F.K. Hussain, and E. Chang

3.1 Service Knowledge Base

The service knowledge base consists of a service ontology base and a service
metadata base. The former is designed with the purpose of storing the machine-
readable representation of domain-specific service knowledge, i.e., service on-
tologies. The latter is used to store semantically annotated service advertising
information, i.e., service metadata.

For the service ontologies stored in the service ontology base, it is reasonable to
make use of hierarchical ontologies for service advertising information discovery
and classification, in which service concepts are linked by the class/subclass rela-
tionship. We define that each service concept contains the following elementary
properties:

– A conceptDescription property is used to store the textual descriptions of
a service concept, which consists of one or more phrases or sentences. Each
phrase or sentence is a description or definition of a service concept, which
is defined by domain experts. This property will be used in the process of
service metadata classification (Section 3.2).

– A learnedConceptDescription property has a similar purpose to the concept-
Description property, which is automatically learned from service advertising
information through the proposed crawler (Section 3.2).

– A linkedMetadata property is used to associate a service concept and a rel-
evant service metadata. This property is used to classify and filter the gen-
erated service metadata by means of the concepts in a service ontology.

A service metadata is the semantic descriptions of a service entity, which consists
of the following elementary properties:

– A serviceDescription property stores the textual description, e.g., a phrase
or a sentence, regarding a service entity. The content of this property is
automatically extracted from the crawled service advertising information by
the proposed crawler (Section 3.2).

– A linkedConcept property is the inverse property of the linkedMetadata prop-
erty. This property stores the URIs of the relevant service concepts of the
service metadata. The service metadata and the service concepts can have a
many-to-many relationship.

3.2 System Workflow of the Modules

In this section, we introduce the functionalities of the crawling and process-
ing module and the service advertising information classification and ontology
learning module in Fig. 1.

The crawling and processing module is designed for crawling service advertis-
ing information and processing the contents of the downloaded information and
service ontologies for forthcoming computation. The first process in this module
is preprocessing, which processes the contents of the conceptDescription property
of each concept in a service ontology, before the crawler starts crawling. This
process is realized by using Java WordNet Library1 to implement tokenization,

1 http://sourceforge.net/projects/jwordnet/

Ontology-Learning-Based Focused Crawling 595

part-of-speech tagging, nonsense word filtering, stemming, synonym searching,
and term weighting. The term weighting is to measure the particularity of each
term in the service ontology. Here we make use of the inverse document frequency
(IDF) model for the weight calculation. For a term (t) in a concept description
(CDj,h) of a service ontology (O), the weight of the term is

W (t) = log
{|C||∀C ∈ O}

{|Cα||[t ∈ δ(CDβ)]
⋂
(∃CDβ ∈ Cα)

⋂
(∀Cα ∈ O)} (1)

where |C| is the number of concepts in the ontology, |Cα| is the number of the
concepts that contain the term, and δ(CDβ) is the set of sysnoyms of the terms
in a concept description.

The missions of the crawling and term extraction processes are to download a
service advertisement from the Internet at one time, and to extract the required
service advertising information from the downloaded advertisement, according
to the service metadata schema defined in Section 3.1, in order to prepare the
properties to generate service metadata and service provider metadata. These
two processes are realized by the semantic focused crawlers designed in our
previous work [3], [4], in which the extraction rules and templates are defined
by observing common patterns in HTML codes.

The term processing process is to process the contents of the serviceDescrip-
tion property of the service metadata, which is similar to the preprocessing pro-
cess. The major difference is that the former does not need the function of
synonym searching. Similarly, the terms in the serviceDescription property also
need a weight to indicate their particularity. Here, a term matching function is
designed for passing the weights of ontological terms obtained in the preprocess-
ing process, in order to reduce the computing cost in this real-time process. If
no term in a service ontology matches a term in the serviceDescription property,
the term will be regarded as a new term and assigned the maximum valid weight
for its particularity, i.e., log (number of concepts in the ontology).

The procedure of the service advertising information classification and on-
tology learning module is described as follows: first, the direct string matching
process examines whether or not the content of the serviceDescription property
of a service metadata is included in the conceptDescription and learnedCon-
ceptDescription properties of a service concept. If the answer is yes, then the
concept and the metadata are considered as relevant. By means of the etadata
generation and association process, the metadata can then be generated and
stored in the service metadata base as well as associated to the concept. If the
answer is no, a hybrid concept-metadata matching process will be invoked to
check the relatedness between the metadata and the concept (Section 4). If the
serviceDescription property of the metadata is related to any phrases in the
conceptDescription property of the concept, the metadata and the concept are
considered as relevant, and the contents of the serviceDescription property of
the metadata can be regarded as a new phrase for the learnedConceptDescription
property of the concept; otherwise the metadata is deemed as non-relevant to
the concept. The above process is repeated until all the concepts in the service

596 H. Dong, F.K. Hussain, and E. Chang

ontology are compared to the metadata. If none of the concepts is relevant to the
metadata, this metadata is then regarded as non-relevant to the service domain
represented by the ontology and will be filtered.

4 Hybrid Concept-Metadata Matching Models

In this hybrid concept-metadata matching process, the extents of relatedness
between the service description and the concept descriptions are assessed by a
text-based concept-metadata matching (TCM) model and a probability-based
concept-metadata matching (PCM) model. The results of the two models are
then aggregated by a trained support vector machine (SVM) model. The eventual
output of the hybrid model is the binary relatedness (relevant/non-relevant)
between the service description and the concept descriptions.

The key idea of the TCM model is to measure the text similarity between
a concept description of a service concept (CDj,h) and a service description
(SDi) of a service metadata, by means of a weighted Dice’s coefficient model
andWordNet. The weighted Dice’s coefficient model is mathematically expressed
as follows:

simT (CDj,h, SDi) =

∑
∀u∈SDi:u∈δ(CDj,h)

w(u) +
∑

∀v∈CDj,h:∃δ(v)∈SDi
w(v)∑

∀s∈SDi
w(s) +

∑
∀t∈CDj,h

w(t)

(2)
where δ(CDj,h)is the set of synonyms of the terms in the concept description,
and δ(v) is the set of synonyms of a single term in the concept description.

The PCM model is a complementary solution for measuring the relevance be-
tween a concept description (CDj,h) and a service description (SDi) by measur-
ing their co-occurrence frequencies in the crawled service advertisements, based
on a probabilistic model. The PCM model is mathematically expressed as fol-
lows:

maxSimP (CDj,h, SDi) = maxCDj,θ∈Cj [P (CDj,θ|CDj,h) · P (CDj,θ|SDi)]

= maxCDj,θ∈Cj [
nj,θ
j,h

nj,h
· n

j,θ
i

ni
]

(3)

where CDj,θ is a concept description of Cj , n
j,θ
j,h is the number of service ad-

vertisements that contain both CDj,θ and CDj,h, nj,h is the number of service

advertisements that contain CDj,h, n
j,θ
i is the number of service advertisements

that contain both CDj,θ and SDi, and ni is the number of service advertisements
that contain SDi.

The SVM classifier for each concept is designed to best aggregate the re-
sults of TCM model and the PCM model in order to decide on the semantic
relatedness between a concept description and a service description, through
a supervised training paradigm. This classifier provides a binary classification
function (relevant/non-relevant), which is characterized by a hyperplane in a
given feature space. For more details on SVM, we refer interested readers to the
examples in [10].

Ontology-Learning-Based Focused Crawling 597

5 System Implementation and Evaluation

We implement a prototype of the proposed ontology-learning-based focused
crawler, and compare the performance of this crawler with the existing work
reviewed in Section 2, i.e., Zheng et al.’s and Su et al.’s crawler, in the context
of service advertising information discovery and classification, based on harvest
rate, precision, and recall.

The overall framework of this crawler is built in Java within the platform of
Eclipse 3.7.12. The libSVM3 Java library is utilized for the implementation of
the SVM classifiers. For the purpose of comparatively analyzing our work and
the two crawlers, we implement a prototype for each crawler in Java, in which
the ANN model used by Zheng et al.’s crawler is built in Encog4. Next, we use
a previously designed transport service ontology, which represents the domain
knowledge in the transport service domain. The details of the transport service
ontology can be referenced from [3].

In order to evaluate our crawler and the two crawlers in an open and het-
erogeneous Web environment, we choose two mainstream transport service ad-
vertising websites - Australian Yellowpages5 (abbreviated as Yellowpages below)
and Australian Kompass6 (abbreviated as Kompass below), as the experimental
data source. There are around 4400 downloadable transport-related service or
product advertisements registered in Yellowpages, and around 10000 similar ad-
vertisements registered in Kompass, all of which are published in English. Since
Zheng et al.’s crawler and the proposed crawler both need a supervised train-
ing process, and Su et al.’s crawler needs an unsupervised training process, we
label the advertisements from Yellowpages, and use these advertisements as the
training data set for all of these crawlers. Subsequently, we use the unlabeled
advertisements from Kompass as the test data source.

The performance of the proposed crawler, Su et al.’s crawler, Zheng et al.’s
crawler on the metrics of harvest rate, precision, and recall is shown in Table 1.
Since Zheng et al.’s crawler does not have the function of classification, we only
obtain its performance data on harvest rate.

Table 1. Overall performance of the ontology-learning-based focused crawlers

Proposed crawler Su et al.’s crawler Zheng et al.’s crawler

Harvest rate 18.00% 6.80% 40.80%
Precision 88.03% 50.51% N/A
Recall 55.55% 23.72% N/A

It can be seen that the proposed crawler outperforms Su et al.’s crawler on all
of the three parameters, only falling behind Zheng et al.’s crawler on the harvest

2 http://www.eclipse.org/
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
4 http://code.google.com/p/encog-java/
5 http://www.yellowpages.com.au/
6 http://au.kompass.com/

598 H. Dong, F.K. Hussain, and E. Chang

rate. However, harvest rate only concerns the capability of crawling Web pages
but not the capability of crawling right Web pages. It is found that only around
25% of advertisements (Web pages) in the test data source are real transport-
service-related advertisements. The harvest rate of the proposed crawler is closer
to this ratio than the other two crawlers, which can partly prove the capability
of the proposed crawler on crawling right service advertising information in a
heterogeneous environment.

6 Conlusion

In conclusion, in the above experiments the proposed ontology-learning-based
focused crawler shows the competitive performance, in comparison with the ex-
isting research work, in a simulated heterogeneous Web environment. This test
primarily proves the feasibility of the proposed crawling framework for service
advertising information discovery and classification.

References

1. Wang, H., Lee, M.K.O., Wang, C.: Consumer privacy concerns about Internet
marketing. Commun. ACM 41, 63–70 (1998)

2. Dong, H., Hussain, F.K., Chang, E.: A service search engine for the industrial
digital ecosystems. IEEE Trans. Ind. Electron. 58, 2183–2196 (2011)

3. Dong, H., Hussain, F.K.: Focused crawling for automatic service discovery, anno-
tation, and classification in industrial digital ecosystems. IEEE Trans. Ind. Elec-
tron. 58, 2106–2116 (2011)

4. Dong, H., Hussain, F.K., Chang, E.: A framework for discovering and classifying
ubiquitous services in digital health ecosystems. J. of Comput. and Syst. Sci. 77,
687–704 (2011)

5. Dong, H., Hussain, F.K., Chang, E.: State of the Art in Semantic Focused Crawlers.
In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L.
(eds.) ICCSA 2009, Part II. LNCS, vol. 5593, pp. 910–924. Springer, Heidelberg
(2009)

6. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: A look back
and into the future. ACM Computing Surveys X (2011) (to appear)

7. Zheng, H.-T., Kang, B.-Y., Kim, H.-G.: An ontology-based approach to learnable
focused crawling. Inform. Sciences 178, 4512–4522 (2008)

8. Su, C., Gao, Y., Yang, J., Luo, B.: An efficient adaptive focused crawler based
on ontology learning. In: Proceedings of the Fifth Int. Conf. on Hybrid Intelligent
Syst. (HIS 2005), pp. 73–78. IEEE Computer Society, Rio de Janeiro (2005)

9. Rennie, J., McCallum, A.: Using reinforcement learning to spider the Web effi-
ciently. In: Bratko, I., Dzeroski, S. (eds.) Proceedings of the Sixteenth Int. Conf.
on Mach. Learning (ICML 1999), pp. 335–343. Morgan Kaufmann Publishers Inc.,
Bled (1999)

10. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 144–152. ACM, Pittsburgh (1992)

A Learning Method for Improving Quality

of Service Infrastructure Management
in New Technical Support Groups

David Loewenstern1, Florian Pinel1, Larisa Shwartz1, Máıra Gatti2,
and Ricardo Herrmann2

1 IBM TJ Watson Research Center
Hawthorne, NY 10532 USA

{davidloe,pinel,lshwart}@us.ibm.com
2 IBM Research - Brazil

São Paulo, SP, 04007-900 Brazil
{mairacg,rhermann}@br.ibm.com

Abstract. Service infrastructure management requires the matching of
tasks to technicians with a variety of expert knowledge in different ar-
eas. Most Service Delivery organizations do not have a consistent view of
the evolution of the technician skills because in a dynamic environment
the creation and maintenance of a skill model is a difficult task, espe-
cially in light of privacy regulations, changing service catalogs and worker
turnover. In addition, as services expand, new technical support groups
for the same type of services are created and also new technicians may
be added, either into a new group or into existing groups. To tackle this
problem we evolve a method for ranking technicians on their expected
performance according to their suitability for receiving the assignment
of a service request. This method makes use of similarities between the
technicians and previous tasks performed by them. We propose a strat-
egy for incorporating new technicians and delivery team reorganizations
into the method and we present experimental results demonstrating the
efficacy of the strategy. Applying this strategy to new teams yields on
average acceptable accuracy within 4 hours, though with a wide variation
across teams for the first 12 hours. Accuracy and its variability approach
the quality of accuracy on older teams over 24 hours.

Keywords: service management, service quality, machine learning, ticket
dispatching, request fulfillment

1 Introduction

Composition of atomic services for building more complex and useful services
has in recent years become a popular approach to delivering customer defined
services. The paradigm of composing and arranging atomic services into com-
plex services is generally a bottom-up approach. From a providers perspective,
bottom-up composition of atomic services into complex services is important,

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 599–606, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

600 D. Loewenstern et al.

particularly with regards to cost-effectiveness. Overall process costs can be re-
duced by late binding to a service supplier depending on the performance of the
service suppliers preceding this step. Cost of staff significantly outweighs infras-
tructure cost, and the difference is increasing. A large portion of service delivery
costs is associated with human effort. It is no longer common to have dedicated
technical support groups for a particular type of service or even a customer.
To minimize overhead and benefit from economy of scale, service providers use
cross-account support groups with skills in a specific technical area or layer.

In this paper these technical support groups are known as pools. A typical
pool could support for example UNIX platforms, database services or applica-
tion services. Customers requests are managed as tickets. Tickets are routed to
pools through an initial evaluation outside the scope of this paper. Each pool
contains a dispatcher who routes tasks (tickets or work orders) to appropriate
technicians within the pool.As the number of industries that utilize computing
services grows, the volume of information needed by supporting staff has become
great and will continue to increase. Although information technology tools have
become indispensable, we continue to rely heavily on human experts for problem
resolution requiring deep understanding of existing services and their underlying
technology. In a sample study it was found that the most qualified technician
resolved an issue better (with respect to SLA metrics) than other people in 75%
of cases. Dispatching service requests to the best technician takes a significant
fraction of the time required to process the request [1].

Because of these factors, dispatching within service delivery is a good candi-
date for software to assist the manual process or automate it completely. Skills
and availability of these resources are an important property of the service, and
ideally they need to be included in the service definition or the service delivery
system. In actual practice, however, most organizations do not have a consistent
view of this information, due to privacy concerns and volatile nature of this in-
formation. Some existing work [2] describes a method for finding an appropriate
technician to work on tasks by making use of similarities between the techni-
cians and previous tasks performed by them. As services expand, new pools for
the same type of services are created. This means that there are pools with no
historical data on pool performance, even though some of the technicians could
have some history from their assignments in pools they were part of previously.
In addition, new technicians may be added, either into a new pool or into exist-
ing pools. The central problem to be addressed by this paper is therefore how
to rank a set of new technicians in a new pool according to their suitability for
receiving the assignment of a request.

This paper focuses on quickly making use of historical data as it becomes
available. Our approach starts by examining what the method in [2] builds in
lieu of an explicit skill model. The method builds a model composed of a weighted
set of features in which neither the features nor the weights encode any informa-
tion about individual technicians or their skills. Instead, the weights model the
judgment of a dispatcher or group of dispatchers (in a service line) about what
features of any technician history and of a request are relevant to determining

A Learning Method for Improving Service of New Support Groups 601

how to assign each request in that pool to a technician. Because the features are
not specific to a particular pool, but only to the technician history, reassigning
existing technicians to existing pools is not an issue. The problem of handling
new pools can then be reduced to two smaller problems: how to make use of
existing weights from the new pool service line until there is enough data from
the new pool to calculate weights normally, and how to determine features for
technicians with no history in any pool.

Our results show that for mature pools, with a lookback of 1 day, the tech-
nician chosen by the dispatcher was in the top quarter of the predicted ranked
list 90% of the time. For new pools the results show that most pools processing
smaller numbers of requests show greater variation for the first 12 hours, but
this narrows after 12 hours. Average differences are good by the fourth hour,
and converge toward zero over the course of the run.

The remainder of this paper has this structure: Section 2 presents related
work. Section 3 discusses our method in some detail. Section 4 describes the
experiments used to validate the method and presents the results of the experi-
ments. Finally, Section 5 discusses conclusions and future work.

2 Related Work

Related to the work presented in this paper, [3] reviews staff scheduling and ros-
tering problems, and the methods reported in the literature for their solution.
More recently, the workflow community has been emphasizing the use of ma-
chine learning mechanisms. [4] presents an approach to automatically suggest
staff assignment for activities in a workflow. Using assignments of previously
completed activities as features, a number of supervised machine learning algo-
rithms are applied to the workflow event log and compared to achieve the best
accuracy. [5] is a complementary work proposed as a solution to allocate the
most proficient set of employees for a whole business process based on work-
flow event logs. Furthermore, in [6], a staff assignment decision tree is built for
a given workflow activity using a skill data model; assignment rules are then
derived from the trees. By contrast, the service requests we work with are indi-
vidual tasks, and we cannot rely on previously completed workflow activities to
build feature vectors. As explained in Section 1, maintaining a skill model is also
impossible.

In the IT Service Management domain, [7] examines problem tickets that need
to be routed among various expert groups. The authors analyze the contents of
incoming tickets to identify a set of semantically relevant past tickets, and then
create a weighted Markov model from the resolution sequences of these tickets
to generate routing sequence recommendations. This is different from our work,
as we want to assign a single resolver to each problem.

In [2], the authors present a solution for the problem of assigning an individual
technician in the absence of an explicit skill model. Suitability for assignment
of a new work order to a technician is inferred by taking into account the simi-
larity of the work order to previous assignments and the outcomes of the previous

602 D. Loewenstern et al.

assignments (such as whether the work order had to be reassigned). The measure
itself is composed of dynamic work order features calculated from a work order
and a continually updating history, and weights computed from historical data
using Support Vector Machine (SVM)rank [8].When applied to the steady state
problem of existing pools of technicians with sufficiently long histories of prior
assignments, the technician that has actually been assigned to the work order
by the human dispatcher is ranked among the top quarter of candidate techni-
cians by the algorithm, the Top-Quarter Percentage (TQP), 90% of the time.
The following section details methods for modifying the solution for non-steady
state cases, with new technicians with no history of prior assignments for calcu-
lating feature vectors, or new pools with no training set for inferring the feature
weights.

3 Method

Let us call the algorithm presented in [2] as described in Section 2 the base
algorithm. In a linear ranking SVM such as base, ranking is performed by eval-
uating the target function F (x) = ω · x − b where ω is a weight vector, x is
a feature vector, and b is a bias. In the technician assignment problem, x(u, r)
represents the features of a technician wu with respect to a request r and is de-
fined by fi,j,k(wu, r), for all i, j, k, and F (x(u)) is a real-valued score such that
F (x(u, r)) > F (x(v, r)) when technician wu should be ranked better than wv

for handling request r. Because the target functions are only meaningful when
compared with each other, we can ignore the bias and normalize the weights so
that ω · ω = 1. Doing this allows us to mix target functions so long as they are
defined on the same set of features.

In the case of a new pool, we cannot calculate F (x) initially since there is
no training data. However, we can substitute another target function, F ′(x) =
ω′ · x − b′ that had been calculated from some data we do have. Reasonable
sources of data for calculating F ′ include all of the other pools in the same
service line as the new pool, or even all other pools processing the same types
of service requests. One would expect using F ′ in place of F would reduce the
accuracy of the proposed technician assignments to a degree depending on how
similar the new pool is to the pools used to calculate F ′. Once the new pool
has processed a sufficient number of service requests, it will become possible to
calculate F for the new pool.

We would like a smooth transition from F ′ to F as the new pool processes
requests and so generates training data. We propose a mixture algorithm, mix-
ing F ′ and F over a “breaking-in” period. During this period, we use for the
new pool a mixed target function Fmix(x) = (Δω′ + (1 − Δ)ω) · x, where
Δ = (t − t0)/(tB − t0), t is the time the request is assigned, t0 is the time the
new pool commenced operations, and tB is the time the new pool is considered
to have finished its breaking-in period. In practice, it is not necessary to recal-
culate Fmix for every request if the pools used to train F ′ are similar to the new
pool.

A Learning Method for Improving Service of New Support Groups 603

We define the hourly and daily methods as implementations of the mix-
ture algorithm, with Fmix(x) recalculated in one hour segments. The alterna-
tive weights ω′ are calculated over all other pools in the same service line as
the new pool. In daily the ω′ are calculated once, from the 24 hours before the
start of the experiment, while in hourly they are recalculated at the beginning
of each one hour segment from the previous 24 hours.

New technicians pose a more difficult problem than new pools do. The features
of base are calculated from requests previously handled by a given technician; in
effect, the feature vector x(u, r) represents the recent work history of technician
wu with respect to a new request r. If wu is a new technician then x(u, r) cannot
be calculated at all. If we could match wu to some existing technician wv based
on static information about their capabilities, we could use a mixture method
similar to the one discussed in the previous section, creating a xmix(u, r) from
x(u, r) and the recent work history x(v, r) of wv. However, the motivation for
base is to avoid creating and maintaining such information, so there is no way
to match wu to wv. In recognition of this, the mixture algorithm, like the base
algorithm, does not recommend technicians without histories. Requests must be
assigned to new technicians through some policy outside the scope of this paper,
for example according to a mentoring or cross-training policy or on a round-robin
basis, until all technicians in the pool have sufficient history. Instead, Section 4
will explore how much history is sufficient.

Another method, flat, which extends base, is evaluated to gauge the value of
using the mixture algorithm against a non-mixture alternative. Instead of using
a mixture, flat uses a flat distribution across all features (ω′ = 1) for the first
segment and subsequently the unmixed weight vector ω calculated each segment
from whatever data is available in the “new” pool.

It is also common for dispatchers to group together similar requests and as-
sign them to a single technician, a process known as batching. For these cases,
we devised batch, which draws requests from the fifteen minutes prior to the
new request, since batched requests appear as a set of individual requests with
very similar features (including technician assignment) in a short time span. It’s
expected that the method works very well with very little history for new tech-
nicians: indeed, the ideal amount of history for determining whether to add a
given request to a batch is just the time from when its first element was assigned
until the time the current element is processed by the dispatcher. Batches are
identified by matching all the values from their pool, priority, classification, ac-
count and work type features. Technicians are then ranked by the higher number
of requests that were assigned to them in the period, if any.

4 Experimental Results

The methods from Section 3 were tested using the data from [2]. To simulate the
effect of creating a new pool with new technicians, features and SVM weights
were calculated for each pool separately using a fixed protocol:

– Each test ran over the course of 24 hours, divided into 24 hourly segments,
with data collected at the end of each segment.

604 D. Loewenstern et al.

– SVM weights were calculated for each segment using only data dating from
the beginning of the day until just prior to the beginning of the segment.

– Features were calculated for each work order using only data dating from
the beginning of the day until just prior to the assignment of the work order.

The 24 hour test run was chosen based on the results reported in [2]: although
longer look-back windows improved performance, a one day look-back window
performed adequately and was used as the baseline for most tests. The data
was collected once per hour as a reasonable compromise: more frequent, shorter
segments marginally improved accuracy but greatly increased computation time,
while less frequent, longer segments obscured differences in accuracy among the
methods. Each method was run on seven consecutive days, with the results
averaged to smooth out weekly variation in workload.

Fig. 1. Average differences in Top-Quarter Percentage (TQP) between several meth-
ods applied to “new” pools and reference, the reference algorithm applied to the
corresponding established pools. See text for details.

Figure 1 presents the results of four separate methods using the same data
set as described in the previous section and averaged over 7 one-day runs. Their
performance is measured by subtracting their TQP from that of the reference
method, defined as the base algorithm using a 24 hour lookback window ending
just prior to the beginning of the run for SVM training and a 24 hour lookback
window ending just before each individual work order for feature calculation,
thereby treating the same pool as an established pool. The results for each
segment then are grouped into 4-hour blocks to simplify the graph.

The flat, hourly and daily methods all start off with lower accuracy than
reference and asymptotically approach it over the course of each run, with
flat starting out substantially worse but also converging, indicating both the
value of using the mixture algorithm and the resilience of the underlying base
algorithm. Even over the first hours of each run, all three methods perform

A Learning Method for Improving Service of New Support Groups 605

fairly well. The relatively good performance of flat led to the hypothesis that it
and therefore all of the methods exploit batches as described in Section 3. The
batch method directly tests this hypothesis, demonstrating TQP better than
chance but worse than the other methods, indicating the exploitability of batch
information but also indicating that batching alone does not explain the success
of the other methods.

Fig. 2. Average difference in TQP between the daily and reference methods, broken
out per pool. See text for details.

Figure 2 plots the difference between the TQP per pool for the daily experi-
ment and the results from the reference method averaged across all runs for pools
processing at least 300 requests over the seven days of the experiment (meaning
less than two requests per hour). As expected considering the results shown by
figure 1, the trend is from lower TQP to higher, with the difference converging
on zero over the run. In the first twelve hours, some pools showed wide swings in
TQP relative to the reference method; this can be traced to the effect of one or
two requests in each pool per run. The number of requests varies over the course
of each run, peaking in mid-afternoon (segments 16-20) and falling off at night
(segments 0-4 and 20-24); this tends to increase the effect of outlying requests.

5 Discussion

This paper provides a method for ranking technicians on their expected perfor-
mance by making use of similarities between the assignees and previous tasks
performed by them. The central problem that we addressed is how to rank a

606 D. Loewenstern et al.

set of technicians according to their suitability for receiving the assignment of a
request without maintaining an explicit skill model describing which skills are
possessed by each technician, in particular for a new pool containing either new
technicians or technicians from other pools. Our method builds a model com-
posed of a weighted set of features in which neither the features nor the weights
encode any information about individual technicians or their skills. Instead, the
weights model the judgment of a dispatcher or group of dispatchers (in a service
line) about what features of any technicians history and of a request are rele-
vant to determining proper assignments. Because the features are not specific
to a particular pool, but only to the technicians history, reassigning existing
technicians to existing pools is not an issue. For mature pools, with a lookback
of 1 day, the technician chosen by the dispatcher was in the top quarter of the
predicted ranked list 90% of the time. For new pools the results show that most
pools processing smaller numbers of requests show greater variation for the first
12 hours, but this narrows after 12 hours. Average differences are good by the
4th hour, and converge toward zero over the course of the run.

In future work we will explore using the amount of available history to adjust
the length of the breaking-in period to allow faster convergence where the data
permits. We will also look for alternatives to service lines as a method for finding
similar pools.

References

1. dos Santos, C.R.P., Granville, L.Z., Cheng, W., Loewenstern, D., Shwartz, L., Aner-
ousis, N.: Performance management and quantitative modeling of IT service pro-
cesses using mashup patterns. In: Proceedings of the 7th International Conference
on Network and Service Management, CNSM 2011 (2011)

2. Loewenstern, D., Pinel, F., Shwartz, L., Gatti, M., Herrmann, R., Cavalcante, V.:
A learning feature engineering method for task assignment. In: Proceedings of the
IEEE/IFIP Network Operations and Management Symposium, NOMS 2012 (2012)

3. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:
A review of applications, methods and models. European Journal of Operational
Research 153, 3–27 (2004)

4. Liu, Y., Wang, J., Yang, Y., Sun, J.: A semi-automatic approach for workflow staff
assignment. Comput. Ind. 59, 463–476 (2008)

5. Yang, H., Wang, C., Liu, Y., Wang, J.: An Optimal Approach for Workflow Staff
Assignment Based on Hidden Markov Models. In: Meersman, R., Tari, Z., Herrero,
P. (eds.) OTM 2008 Workshops. LNCS, vol. 5333, pp. 24–26. Springer, Heidelberg
(2008)

6. Ly, L.T., Rinderle, S., Dadam, P., Reichert, M.: Mining Staff Assignment Rules from
Event-Based Data. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 177–190. Springer, Heidelberg (2006)

7. Sun, P., Tao, S., Yan, X., Anerousis, N., Chen, Y.: Content-Aware Resolution Se-
quence Mining for Ticket Routing. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM
2010. LNCS, vol. 6336, pp. 243–259. Springer, Heidelberg (2010)

8. Joachims, T.: Training linear svms in linear time. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2006, p. 217 (2006)

Adaptive Service-Oriented Mobile Applications:

A Declarative Approach�

Gianpaolo Cugola, Carlo Ghezzi, Leandro Sales Pinto,
and Giordano Tamburrelli

DeepSE Group @ DEI - Politecnico di Milano, Italy
{cugola,ghezzi,pinto,tamburrelli}@elet.polimi.it

Abstract. Modern society increasingly relies on mobile devices and on
distributed applications that use them. To increase development effi-
ciency and shorten time-to-market, mobile applications are typically de-
veloped by composing together ad-hoc developed components, services
available on-line, and other third-party mobile applications. To cope with
unpredictable changes and failures, but also with the various settings of-
fered by the plethora of devices, mobile applications need to be adaptive.
We address this issue by proposing a declarative approach. The advan-
tages of the proposed solution are demonstrated through an example
inspired by an existing worldwide distributed mobile application.

1 Introduction

Mobile applications, commonly referred to as apps, are small-sized, efficient,
modular and loosely coupled aggregates of software components developed with
specific programming frameworks that depend on the target mobile platform.
Their development imposes several challenges to modern software engineering. In
particular, to achieve the desired efficiency in terms of development time and to
exploit existing well established software solutions, apps are typically developed
by composing together: (1) ad-hoc developed components, (2) existing services
available on-line, (3) third-party apps, and (4) platform-dependent components
to access device-specific hardware (e.g., camera, GPS, etc.).

The typical approach to develop such heterogeneous software artifacts follows
a three step approach. Developers first start by conceiving the list of needed func-
tionalities and they organize them in a suitable workflow of execution. Secondly,
they evaluate the trade-offs between implementing such functionalities directly
or resorting to existing services or third-party apps. Finally, they implement the
app by integrating all the components together. Building apps as orchestrations
of components, services and/or other third-party applications, however, intro-
duces a direct dependency of the system with respect to external software arti-
facts which may evolve over time, fail, or even disappear, thereby compromising
the application’s functionality. Moreover, differently from traditional software

� This research has been funded by the EU, Programme IDEAS-ERC, Project 227977-
SMScom and FP7-PEOPLE-2011-IEF, Project 302648-RunMore.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 607–614, 2012.
� Springer-Verlag Berlin Heidelberg 2012

608 G. Cugola et al.

systems, the development of mobile apps is characterized by an increased explicit
dependency with respect to hardware and software settings of the deployment
environment. Indeed, even if developed for a specific platform (e.g., Android,
iPhone, etc.), apps may be deployed on a plethora of different mobile devices
characterized by heterogeneous hardware and software configurations (e.g., avail-
able sensors, firmware version, etc.). To cope with these peculiarities apps need to
be adaptive [8] with respect to the heterogeneous deployment environments and
with respect to the services and external apps they rely upon. The traditional
way to achieve this goal is by explicitly programming the needed adaptations
by heavily using exception handling techniques to manage unexpected scenarios
when they occur. This is quite hard per-se and cannot be done by inexperienced
users. This paper precisely address this issue by proposing a different approach.
We abandon the mainstream path in favor of a strongly declarative alternative,
called SelfMotion1, which allows apps to be modeled in terms of the abstract
functionalities they provide and the overall goal they have to met. SelfMotion
apps are then executed by a middleware that leverages automatic planning tech-
niques to elaborate, at run-time, the best sequence of activities to achieve the
goal. Whenever a change happens in the external environment (e.g., a service
becomes unavailable), which prevents successful completion of the execution,
the middleware tries to find an alternative path toward the goal and continues
executing the app, which results in a nice and effective self-healing behavior.

2 A Motivating Example: The ShopReview App

Let us now introduce ShopReview (SR), the mobile app we will use throughout
the paper to explain our approach. SR is inspired by an existing application (i.e.,
ShopSavvy2). It allows users to share data concerning a commercial product or
query for data shared by others. Users may use SR to publish the price of a
product they have found in a certain shop (chosen among those close to their
current location). In response, the app provides the users with alternative, nearby
places where the same product is sold at a more convenient price. The unique
mapping between the price signaled by the user and the product is obtained
by exploiting the product barcode. In addition, users may share their opinion
concerning the shop and its prices on a social network such as Twitter.

As introduced in the previous section, the development process for an app like
SR starts by listing the needed functionalities and by deciding which of them will
be implemented through an ad-hoc component and which will be implemented by
re-using existing solutions. For example, the communication with social networks
may be delegated to a third party app, while geo-localization of the user may be
performed by a ad-hoc component which exploits the GPS sensor on the device.

Table 2 illustrates the abstract components uses as the main building blocks
for the SR app. For the BarcodeReader, consider we decide to implement its code
as for the original ShopSavvy app, which runs an ad-hoc developed component in

1 Self-Adaptive Mobile Application.
2 http://shopsavvy.mobi/

http://shopsavvy.mobi/

Adaptive Service-Oriented Mobile Applications: A Declarative Approach 609

Table 1. ShopReview Components

Name Description
BarcodeReader Allows the user to insert the barcode of the product

GetProductName Translates the barcode into the product name
GetPosition Retrieves the current user location
LocalSearch Retrieves other shops in the neighborhood which offer the

product at a more convenient price
SharePrice Shares the price of a product on a given shop on Twitter
InputPrice This component collects from the user the product’s price

i f (manager . hasSystemFeature (PackageManager .FEATURE CAMERA AUTOFOCUS){
//Run l o c a l barcode r e c o g n i t i o n

}e l s e{ // In vok e remote s e r v i c e wi th b l u r r y decode r a l go r i t hm }
//
Loc a t i on l o c a t i o n = n u l l ;
i f (manager . hasSystemFeature (PackageManager . FEATURE LOCATION GPS){

L o c a t i o nP r o v i d e r p r o v i d e r = Locat i onManage r . GPS PROVIDER ;
t r y{

// Return n u l l i f the GPS s i g n a l i s c u r r e n t l y not a v a i l a b l e
l o c a t i o n = l oc a t i onManage r . ge tLastKnownLocat i on (p r o v i d e r) ;

}catch (Exc ep t i on e){ l o c a t i o n = n u l l ; }
}
i f (l o c a t i o n==nu l l){

//Devi ce wh i t ou t GPS or an e xc p e t i on was r a i s e d i n v o k i n g i t . We show up a map
// to a l l ow the u s e r to i n d i c a t e i t s l o c a t i o n manual l y
showMap () ;

}

Listing 1.1. Adaptive Code Example

charge of acquiring a picture of the barcode from the mobile camera. Since such
component may execute correctly only on devices with an autofocus camera and
does not work properly on other devices, our choice would limit the usability of
our app. To overcome this limitation and allow a correct barcode recognition also
on devices with fixed focus cameras, SR needs to provide a form of adaptivity.
Indeed, it has to detect if the camera on the current device is autofocus and,
if not, it has to invoke an external service to process the acquired image with
a special blurry decoder algorithm. A similar approach can be used to get the
user location (i.e., GetPosition component), which requires a GPS sensor3. To
execute SR on devices without GPS we may offer a different implementation,
which shows a map to the user for a manual indication of the current location.

The code snippet reported in Listing 1.1 describes a possible implementation
of the described adaptive behavior for the Android platform. Although this is
just a small fragment of the SR app, which is by itself quite a simple example, it
is easy to see how convoluted and error prone the process of defining all possible
alternative paths may turn out to be. Things become even more complex con-
sidering run-time exceptions, like an error while accessing the GPS or invoking
an external service, which have to be explicitly managed through ad-hoc code.
We argue that the main reason behind these problems is that the mainstream
platforms for developing mobile applications are based on traditional impera-
tive languages in which the flow of execution must be explicitly programmed.
In this setting, the adaptive code—represented in our code fragment by all the
if-else branches—is intertwined with the application logic, reducing the overall
readability and maintainability of the resulting solution, and hampering its fu-

3 Network Positioning System is not precise enough for our needs.

610 G. Cugola et al.

ture evolution in terms of supporting new or alternative features, which requires
additional branches to be added to the implementation.

3 The SelfMotion Approach

The SelfMotion approach comprises activities at design-time as well as at run-
time. Initially, at design time, it requires the intervention of domain experts
and software engineers, while at run-time it executes autonomously. Design-time
activities are supported by a declarative language, while at run-time activities are
supported by a middleware. At design time, domain experts and engineers must
declare the following elements: (1) the app’s Goal, expressed as a set of facts that
are required to be true at the end of the app’s execution; (2) the Initial State,
which models the set of facts one can assume to be true at app invocation time;
(3) a set of Abstract Actions, which models the primitive operations that can
be executed to achieve the goal; (4) A set of Concrete Actions, one or more for
each abstract action. Concrete actions map abstract ones to executable snippets
that define the actual steps required for realizing them, e.g., by invoking an
external service. At run-time, the SelfMotion middleware comes into play to
actually execute the app. It comprises two distinct components: a Planner and
an Interpreter. The Planner analyzes the goal, the initial state, and the abstract
actions to build an Abstract Execution Plan, which lists the logical steps to reach
the goal. The Interpreter is in charge of enacting this plan by associating each
step (i.e., each abstract action) with the concrete action to execute, possibly
invoking external components where specified. If something goes wrong (e.g.,
an external service returns an exception), the Interpreter first tries a different
concrete action for the abstract action that failed. If no alternative action can be
found or all alternatives have been tried unsuccessfully, it invokes the Planner
again to build an alternative plan. From a deployment viewpoint the Interpreter
is installed on the mobile device, since it is in charge of actually executing the
app. The Planner, instead, may be deployed either locally or remotely.

3.1 The SelfMotion Declarative Language

Abstract Actions. Abstract actions are high-level descriptions of the primi-
tive actions used to accomplish the app’s goal. They represent the main building
blocks of the app. Listing 1.2 illustrates the abstract actions for the SR refer-
ence example: they correspond to the high level components listed in Table 2.
In some cases, the same functional component may correspond to several ab-
stract actions, depending on some contextual information (e.g., if the device has
a camera with autofocus or not). For example, we split the GetPosition func-
tionality into two abstract actions getPosWithGPS and getPosManually. We
also introduced an enableGPS abstract action, which encapsulates the logic to
activate the sensor. Similarly, the blurryDecoder abstract action represents a
remote component in charge of recognizing barcodes from pictures taken with
fixed focus cameras. Together with the blurryBarcodeReader action it can read
the barcode when an autofocus camera is not available.

Adaptive Service-Oriented Mobile Applications: A Declarative Approach 611

ac t i on barcodeReader ac t i on b l u r r yBa r c od eReade r ac t i on enableGPS ac t i on i n pu t P r i c e (Name)
pre : hasAutoFocusCamera pre : hasFi xedFocusCamera pre : ˜ i sGPSEnab l ed pre : prodName (Name)
post : barcode (prodBarcode) post : image (b l u r r y Image) post : i sGPSEnab l ed post : p r i c e (p r odPr i c e)

ac t i on b l u r r yDe cod e r (Image) ac t i on getProdName (Barcode) ac t i on l o c a l S e a r c h (Barcode , Pos)
pre : image (Image) pre : barcode (Barcode) pre : barcode (Barcode) , p o s i t i o n (Pos)
post : barcode (prodBarcode) post : prodName (name) post : l i s t O f L o c a l P r i c e s

ac t i on getPosWithGPS ac t i on getPosManual l y ac t i on s h a r eP r i c e (Name , P r i c e)
pre : hasGPS , i sGPSEnab l ed pre : t r u e pre : prodName (Name) , p r i c e (P r i c e)
post : p o s i t i o n (gpsPos) post : p o s i t i o n (manualPos) post : s h a r e dP r i c e

Listing 1.2. SR Abstract Actions

goa l (l i s t O f L o c a l P r i c e s and s h a r e dP r i c e and p o s i t i o n (gpsPos)) or
(l i s t O f L o c a l P r i c e s and s h a r e dP r i c e and p o s i t i o n (u s e rDe f i n e dPos))

s t a r t (hasFi xedFocusCamera and hasGPS and ˜ i sGPSEnab l ed)

Listing 1.3. SR Goal and Initial State

Abstract actions are modeled with an easy-to-use, logic-like language, in terms
of: (1) signature, (2) precondition, and (3) postcondition. Signatures include a name
and a list of arguments. For instance, the localSearch action has the following
signature: localSearch(Barcode, Pos). The precondition is expressed as a list
of facts that must be true in the current state for the action to be enabled. For
localSearch we use the expression barcode(Barcode), position(Pos) to de-
note the fact that the Barcode parameter is a product barcode, while the Pos pa-
rameter represents the user’s position. The postcondition models the effects of the
action on the current state of execution by listing the facts to be added to and
the ones to be removed from the state. In our example, when inputPrice is exe-
cuted the fact price(prodPrice) is added to the state, while no facts are deleted
(deleted facts, when present, are designed by using the “�” symbol). Facts are ex-
pressed as propositions, characterized by a name and parameters, which represent
relevant objects of the domain. Parameters that start with an uppercase letter de-
note unbound objects, which must be bound to instances, whose name starts with
a lowercase letter, to generate an execution plan. For instance, if at any point the
fact position(gpsPos) is added to the state, the object gpsPosbecomes available
to be bound to the Pos parameter in the localSearch action.

Goal and Initial State. Besides abstract actions, the goal and initial state
are also needed to build and execute apps. The goal specifies the desired state
after executing the app. It may actually include a set of states, which reflect
all the alternatives to accomplish the app’s goal, listed in order of preference.
As an example, in the SR app (see Listing 1.3) we have two alternative goals.
The first one requires the GPS sensor and the second relies on the user input
to retrieve the location. The initial state complements the goal by asserting
the facts that are true at app invocation time. It is partially generated at run
time by the SelfMotion Middleware, which detects the features of the mobile
device in which it has been installed. In our example, assuming the device has
a fixed-focus camera and a disabled GPS, it generates the initial state shown in
Listing 1.3. Developers may add application specific facts to this auto-generated
initial state, if needed. By relying on abstract actions, goal, and initial state,
the Planner can build an Abstract Execution Plan. The Planner starts trying to
build an Abstract Execution Plan to satisfy the first goal; if it does not succeed

612 G. Cugola et al.

1 : b l u r r yBa r c od eReade r 5 : getProdName (prodBarcode)
2 : enableGPS 6 : i n p u t P r i c e (name)
3 : b l u r r yDe cod e r (b l u r r yBa r c od e Image) 7 : l o c a l S e a r c h (prodBarcode , gpsPos)
4 : getPosWithGPS 8 : s h a r e P r i c e (name , p r i c e)

Listing 1.4. A Possible Abstract Execution Plan

@Action (name=”getProdName ” , p r i o r i t y =1) @Action (name=”getProdName ” , p r i o r i t y =2)
pub l i c S t r i n g getProdNameViaSe rv i ce (Barcode barcode){ pub l i c S t r i n g getProdNameFromUser(Barcode barcode){

S t r i n g barcodeValue = barcode . g e tVa l u e () ; S t r i n g barcodeValue = barcode . g e tVa l u e () ;
//Use remote Web s e r v i c e (e . g . , s e a r c hup c . com) //Ask the u s e r f o r the p rodu c t name
S t r i n g productName = . . . ; S t r i n g productName = . . . ;
r e t u rn productName; r e t u rn productName;

} }

Listing 1.5. getProdName Concrete Actions

it tries to satisfy the second goal, and so on. Listing 1.4 reports a possible plan
of the SR example for a device without autofocus (i.e., hasFixedFocusCamera
is set to true) and with a GPS sensors available but not enabled (i.e., hasGPS
set to true, isGPSEnabled set to false). This Abstract Execution Plan is a list of
abstract actions that lead from the initial state to a state that satisfies the goal.
Notice that: (1) when several sequences of actions could satisfy the goal, the
Planner chooses one non-deterministically; (2) although the plan is described as
a sequence of actions, the middleware is free to execute them in parallel, as soon
as the respective precondition becomes true.

Concrete Actions. Concrete actions are the executable counterpart of abstract
actions. Currently, concrete actions are implemented through Java methods. We
use the annotation @Action to refer to the abstract actions they implement. In
general, several concrete actions may be bound to the same abstract action. This
way, if the currently bound concrete action fails (i.e., it returns an exception) the
SelfMotion middleware has other options to accomplish the app’s step specified
by the failed abstract action. For example, the getProdName abstract action may
have two concrete actions: one which exploits aWeb service (e.g., searchupc.com)
to map the barcode value to the product name, and another which asks it to the
user. Listing 1.5 reports the code used to define the concrete actions. Notice that,
in presence of multiple concrete actions for the same abstract action, it is possible
to specify a preferred ordering through the priority attribute.

3.2 Advantages of the SelfMotion Approach

Decoupled Design. SelfMotion achieves a clear separation among different
aspects of the app: from the more abstract ones, captured by goals, initial state,
and abstract actions, to those closer to the implementation, captured by concrete
actions. In defining abstract actions developers may focus on the features they
want to introduce in the app, ignoring how they are implemented (e.g., ad-hoc
developed components, services, or third party apps). This choice is delayed until
run-time binding. Consider the GetProductName component of the SR app. In
the inception phase of the app, developers only focus on the features it requires
– the preconditions – and the features it provides – the postconditions. Later on,
they can implement a first prototype that leverages an ad-hoc component (i.e.,

searchupc.com

Adaptive Service-Oriented Mobile Applications: A Declarative Approach 613

manual input of the product name). This solution may gradually evolved, by
adding other alternative concrete actions.

Enable Transparent Adaptation. By separating abstract and concrete ac-
tions and supporting one-to-many mappings we solve two typical problems of
mobile apps: (1) how to adapt to the plethora of devices available, and (2) how to
cope with failures happening at run-time. As an example of problem (1), consider
the implementation of component GetPosition of Listing 1.1 with its SelfMo-
tion counterpart, which relies on several abstract actions with different precon-
ditions (see Listing 1.2). The former requires to explicitly hard-code the various
alternatives (e.g., to handle the potentially missing GPS), and any new op-
tion introduced by new devices would increase the number of possible branches.
Conversely, SelfMotion just requires a separate abstract (or concrete) action for
each option, leaving to the middleware the duty of selecting the most appropri-
ate ones, considering the current device capabilities and the order of preference
provided by the app’s designer. As for problem (2), consider the example of
GetProductName, which is implemented in SelfMotion by a single abstract ac-
tion mapped to two different concrete actions (Listing 1.5). The middleware
initially tries the first concrete action that invokes an external service: if this
returns an exception, the second concrete action is automatically tried. Further-
more, if none of the available concrete actions succeeds, SelfMotion may rely on
its re-planning mechanism to build an alternative plan at run-time. As an ex-
ample, consider the case in which the middleware is executing the plan reported
in Listing 1.4 and assume that the GPS sensor fails to retrieve the user location,
throwing an exception. The middleware automatically catches the exception and
recognizes the getPosWithGPS as faulty, which has no alternative concrete ac-
tions. Thus, the Planner is invoked to generate a new plan that avoids the faulty
step. The new plan would include the getPosManually abstract action.

Improve Code Quality. SelfMotion promotes a clean modularization of the
app’s functionality into a set of abstract actions and their concrete counterparts
and avoids contorted code through cascaded if-elses and exception handling con-
structs. As a result, code is easy to read, maintain, and evolve. By encapsulating
all the features in independent actions and by letting the actual flow of execution
to be automatically built at run-time by the middleware, SelfMotion increases
reusability, since the same actions can be reused across different apps.

4 Related Work

Many existing works focus on the effective and efficient development of mobile
applications, as summarized in [5,11]. They cover a wide range of approaches:
from how to achieve context-aware behavior (e.g., [6]) to how to apply agile
methods in the mobile domain (e.g., [1]).

Context-aware frameworks aim at supporting the development of mobile ap-
plications that are sensitive to their deployment context (e.g., the specific hard-
ware platform) and their execution context (e.g., user location). For example,
the EgoSpaces middleware [6] can be used to provide context information ex-
tracted from data-rich environments to applications. Another approach to mo-

614 G. Cugola et al.

bile computing middleware is presented in [3], which exploits the principle of
reflection to support adaptive and context-aware mobile capabilities. In general
these approaches provide developers with abstractions to query the current con-
text and detect context changes; i.e., they directly support context-dependent
behavior as first-class concept. In the same direction, approaches like [2,10] pro-
vide specific context-aware extensions to the Android platform. The aforemen-
tioned approaches do not directly compete with ours, but rather they can be
viewed as orthogonal. SelfMotion may benefit from their ability to detect con-
text information, for example, to generate plans whose initial state depends on
the surrounding context. The added value of SelfMotion is instead its ability to
automatically build an execution flow based on the context and the overall de-
sign approach it promotes. Last, we would like to mention the foundational work
on a three-layer architecture for software adaptation, described in [7,9], which
shares with our work the motivation to provide sound architectural principles to
the development of adaptive systems.

5 Conclusions and Future Work

SelfMotion is part of a long running research stream on declarative languages [4].
Future work includes building an IDE, possibly integrated in a widely adopted
tool such as Eclipse, to further simplify the definition of abstract/concrete ac-
tions and goals. As for the SelfMotion middleware, while the current prototype
is operational and publicly available, there is still space to further improve per-
formance and robustness.

References

1. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala,
M., Koskela, J., Kyllönen, P., Salo, O.: Mobile-D: An Agile Approach for Mobile
Application Development. In: OOPSLA 2004 (2004)

2. Appeltauer, M., Hirschfeld, R., Rho, T.: Dedicated Programming Support for
Context-Aware Ubiquitous Applications. In: UBICOMM 2008 (2008)

3. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective mId-
dleware System for Mobile Applications. IEEE Trans. Software Eng. (2003)

4. Cugola, G., Ghezzi, C., Sales Pinto, L.: DSOL: a declarative approach to self-
adaptive service orchestrations. Computing (2012)

5. Dehlinger, J., Dixon, J.: Mobile application software engineering: Challenges and
research directions. In: Workshop on Mobile Software Engineering (2011)

6. Julien, C., Roman, G.C.: Egospaces: Facilitating rapid development of context-
aware mobile applications. IEEE Trans. Software Eng. (2006)

7. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007 (2007)

8. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. Computer (2004)

9. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a com-
bined approach to self-management. In: SEAMS 2008 (2008)

10. van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: Contextdroid: an
expression-based context framework for android. In: PhoneSense 2010 (2010)

11. Wasserman, T.: Software engineering issues for mobile application development.
In: FoSER 2010 (2010)

Algorithmic Aspects of Planning under

Uncertainty for Service Delivery Organizations

Sreyash Kenkre1, Ranganath Kondapally2,�, and Vinayaka Pandit1

1 IBM India Research Laboratory
{srekenkr,pvinayak}@in.ibm.com

2 Computer Science Dept., Dartmouth College, Hanover, USA
rangak@cs.dartmouth.edu

Abstract. Remote delivery of services using geographically distributed
service delivery locations has emerged as a popular and viable business
model. Examples of services delivered in this manner are software ser-
vices, business process outsourcing services, customer support centers,
etc. The very nature of services and the fragile nature of the business
environments in global delivery locations accentuates the role of uncer-
tainty in planning for business continuity. We model the problem of crit-
ical service contingency planning based on recourse actions. We present
an O(log n)-approximation algorithm, generalizations to other planning
problems under uncertainty, and present preliminary empirical results.

1 Introduction

Business continuity is an important aspect of service delivery. This entails service
provider’s commitment of continuity of business operations to the service seeker.
The service provider could be IT enabled service provider, governance body
delivering services to its citizens, public utility serving the citizens, etc. In this
paper, we present examples from IT-enabled service delivery. But, the concepts
are applicable much more broadly.

Recently, countries like India, China, Brazil, etc. have emerged as popular des-
tinations to deliver software services, back-office services, remote infrastructure
management, etc. due to the investor friendly policies and access to talent. Typ-
ically, the delivery centers and the consumers of the delivery are geographically
separated. Such service delivery is enabled by setting up of large-scale, geo-
graphically distributed IT infrastructures consisting of heterogenous resources.
Although this model is attractive, it also faces the challenges of heightened un-
certainties in the operating environments of these geographies. We review the
relevant issues taking example of a hypothetical organization X .

Operational Setting: Let us say X is an organization that delivers software
services (ex: support, maintenance, testing, feature developments, etc.) to a large
number of customers worldwide. X delivers its services from multiple countries,
with multiple campuses in each country which allows it to tap into appropriate

� The work was done when the author was visiting IBM Research - India

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 615–622, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

616 S. Kenkre, R. Kondapally, and V. Pandit

workforce with required skills. Furthermore, it deploys a complex infrastructure
of servers, communication networks, buildings, utilities, transportation logistics,
etc. Each customer is treated as a customer account (or project) and is char-
acterized by the combination of resources it requires. For instance, a customer
account could be characterized by the physical security feature of the workplace
it requires (ex: seats with secure badge access), the cyber security features of the
WANs and LANs it uses, power requirements, and access features to the client
environment. Therefore, enabling the service delivery for a customer account es-
sentially involves making available the right combination of the resources. One
of the reasons for the feasibility and profitability of X is the fact that there is lot
of similarity in the services it delivers to different accounts. Hence, it can achieve
economies of scale for resources that are commonly used across accounts (one
example of such an infrastructure element is ”Wide Area Network”). See [4] to
understand why service providers prefer this model.

Motivation for Contingency Planning: Customers sourcing such global ser-
vice deliverywould naturally beworried about the uncertain business environment
of the emerging geographies. Therefore, they put in place stringent SLAs on the
continuity of service delivery. Typically, the customer identifies a subset of the pro-
cured services as “critical” and demands that the service provider provide round
the clock continuity for at least the critical services. Examples of critical services
in case ofX could be “fix all high priority bugs”, “fix bugs reported on security fea-
tures of the product”, and so on. See [7] for a client perspective of global sourcing
of services. Even for the service provider, a strong commitment to business con-
tinuity not only helps meet the SLAs, but also build brand reputation for future
business. Therefore, service delivery organizations are increasinglymaking contin-
gency planning an integral part of overall operations.

Disruptions and Rerouting: Majority of the disruptions that arise in emerg-
ing geographies are local to a city, suburban area, etc. Examples of such dis-
ruptions are strikes, societal unrest, urban flooding, natural disasters, below par
supply of utilities, etc. When a disruption happens at a location, the part of the
organization’s infrastructure located there is unavailable. Therefore, one of the
most popular techniques that companies like X use is to deliver the services out
of multiple locations in the geography [3,10,4]. Moreover, at each location, X
ensures that there is sufficient residual capacities of different resource types, so
that, during a crisis, some of the service delivered from the affected locations can
be rerouted to unaffected locations. When X reroutes the services for a customer
account from one location to another, it has to ensure that the right combination
of the resources are available in the rerouted location. Such a reroute action is
called “recourse”. See [5,6] for elaboration on the importance and implications
of “recourse aware” decision making in business operations resiliency.

Critical Services Contingency Planning Problem: As explained, for each
customer account, X has to allocate an appropriate combination of resources,
all co-located to enable service delivery. We consider the problem of contingency
management plans for the critical services being delivered by the service provider.
We assume that the organization has identified a set of challenging scenarios

Algorithmic Aspects of Planning under Uncertainty 617

(each scenario is defined by a set of unavailable locations) and a probability
distribution on their likelihood. For each critical service, we are given a set
of locations from where it can be delivered (based on the availability of the
right combination of services). The contingency management of critical services
has to : (i) compute a default assignment of the services to the locations for
delivery during normal conditions and (ii) compute a scenario specific assignment
of the services to the locations under each scenario. The goal is to compute
the assignments in such a way that the expected total cost of the normal and
contingency operations.

Broader Applicability: The concept of recourse based handling of contin-
gency, as described here, can be applied in other settings like city governance,
network design for internet service providers, utilities in the power sector, etc.
In our setting, the effect of an incident is local; for example, flooding in an office
building only affects the infrastructure situated in the building. In contrast, the
effect of an incident could be global. A classic example of this phenomena is the
way cascades spread in power grids. The contingency analysis in such networks
need more global formulations than ours and can be seen in [1,8].

2 Critical Service Contingency Planning (CSCP)

Location Mapping: As mentioned in the introduction, each project has a
requirement in terms of the resource types it requires. Each location in the service
delivery infrastructure has a set of available resources. One way to formulate the
problem would be to capture all the details of the resources in the problem
definition itself, as done in [5,6]. Note that the resource requirements of the
critical services and resource availability results in the mapping of each critical
service to a possible set of locations that it can be assigned to (as done in [5,6]).
But, for simplicity of presentation, we assume that the mapping is itself part of
the input. Therefore, in our setting, there is a set of locations, a set of critical
tasks, and associated with each critical service is a set of locations to which it
can possibly be assigned.

No Capacity Constraints: Capacity constraints are an important considera-
tion and have been modeled in [5,6]. However, it is a well known fact that the
critical services form a small fraction of the overall services delivered by the
organization. Often, it is in the range 5-10% of the overall work. But, from the
point of view credibility of the business operations and client satisfaction it is
the most important part of the work and always gets highest priority. Therefore,
even when there are capacity constraints, non-critical services are de-prioritized
and capacity is made available to the critical tasks. Therefore, we assume that
there are no capacity limits at the locations for assigning the critical tasks.

Cost Considerations: When a location is assigned a set of critical services for
normal operational setting, it incurs set up cost. The set up cost could cover spe-
cial requirements of critical services, transportation of people, and other procure-
ments. However, suppose a locations has not been assigned any critical service
during normal operations and has to suddenly make arrangements for critical

618 S. Kenkre, R. Kondapally, and V. Pandit

services during a disruption, it incurs recourse cost. Typically, recourse cost is
much higher than the set up cost as the required arrangements (and the implied
procurements) have to be carried out at a short notice.

Scenarios: The uncertainty in the service delivery manifests in the form of
disruptions in normal operations. We model disruption (also called scenario) as
an event which disables the delivery of services from a set of affected locations.
In most service delivery organizations, there are domain experts who can model
the relevant set of scenarios for the organization. They could take into account
aspects like bottlenecks in the infrastructure (example: suppose there is just
one mail server for the entire organization, one must consider the disruption
which disables the location of the mail server) or external parameters of the
locations (example: if some locations are vulnerable to flooding, then, one must
consider a scenario which affects such locations). We assume that a domain
expert provides the set of scenarios for contingency planning. We further assume
that a probability distribution on the likelihood of the scenarios is given.

Problem Formulation: Let the set of locations be specified by the set L =
{S1, S2, . . . , Sm}. Let the set of projects in the service delivery organization be
given by P = {P1, P2, . . . , Pt}. Let the set of critical tasks across the different
projects be given by the set T = {v1, v2, . . . vn}. Associated with a critical task vi
is a subset of locations, Γ (vi) ⊆ L, which denotes the set of locations to which vi
can potentially be assigned. Given this, one can also define the set of services that
can be defined from a location Si as CT (Si) = {vi|Si ∈ Γ (vi)}. The set of scenar-
ios modeled by the domain expert is given by S = {E1, E2, . . . Ek} where Ei ⊆ L
is the set of locations affected in the ith scenario. The probability distribution on
the likelihood of the scenarios is given by the mapping μ : S → [0, 1] such that∑

Ei∈S μ(Ei) = 1. The set up cost and recourse cost of Si ∈ L is given by c(Si

and r(Si) respectively. The CSCP problem requires us to compute an assign-
ment R of critical services to the locations that is to be followed during normal
operations and a set of recourse assignments FEj for each Ej ∈ S. Let Sites(R)
denote the set of locations that are used in the assignment R and Sites(FEj)
denote the set of locations that are used in the assignment FEj . The goal is
to minimize the expected cost of the normal and contingency operations, i.e,

minimize
((∑

Si∈Sites(R) c(Si)
)
+
(∑

Ej∈S μ(Ej) ·
(∑

Si∈Sites(FEj
) r(Si)

)))
.

3 Algorithm, Proof, and Generalization

We now present an algorithm for the CSCP problem with a provable approxi-
mation ratio. In other words, our algorithm always returns a solution whose cost
with respect to the optimal solution is bounded by the approximation ratio.

We first begin by showing the equivalence of our problem to the Stochastic Set
Cover problem. Set Cover is one of the fundamental problems in combinatorial
optimization and approximation algorithms [9] and is the following: given a
universe U and a family of sets, X = {X1, . . . , Xq} where all the Xis are subsets
of U , and a weight function w : X → R, the goal to pick a subset R ⊆ X

Algorithmic Aspects of Planning under Uncertainty 619

such that ∪Xi∈RXi = U and the weight
∑

Xi∈R w(Xi) is minimized. Let us
consider the problem of just assigning all the critical tasks to one of the sites.
The universe is the set of all the critical tasks. Each site is a set which contains
the critical tasks that can be assigned to it. The weight function associated
with the sites is their set up cost. The task of computing an assignment is now
equivalent to the minimum cost set cover of the universe of critical tasks by
the sets corresponding to the sites weighted by their set up cost. Let us now
consider the CSCP problem. Essentially, it is a two stage stochastic problem.
We first want to pick an assignment which acts as the set cover during normal
operations. At the second stage, one of the scenarios is revealed by the nature
according to the probability distribution on S. At that stage, we have to pick
new sites for the critical services that were assigned to the affected locations. In
the second stage, we have to incur the recourse cost at the new sites. Essentially,
we want to pick a two stage set cover which minimizes the expected cost.

Minimize
∑
Sj∈L

c(Sj)ySj +
∑
El∈S

μ(El) ·

⎛
⎝∑

Sj∈L

r(Sj) · ylSj

⎞
⎠

∑
Sj∈Γ (vi)

ySj ≥ 1 ∀vi ∈ V (Normal Covering)

∑
j∈L\El

ySj + ylSj
≥ 1 ∀El ∈ S (Cover El)

ySj ∈ {0, 1} ∀Sj ∈ L

ylSj
∈ {0, 1} ∀Sj ∈ L and El ∈ S (LP)

We present the integer linear programming formulation for the CSCP (See (LP)).
Here, ySis are decision variables that indicate whether set up cost is incurred
in the first stage at Sis and ylSi

are decision variables that indicate whether
recourse cost is incurred in the second stage at Si in the scenario El. The integer
linear program is self-explanatory. We present it because it helps us to present
generalizations of our result.

Our algorithm is as shown in Algorithm 1. The main idea is to not take any
anticipatory decisions in the first stage and use any approximation algorithm for
the set cover at both first and second stage. In the second stage, an appropriate
set cover instance is created depending on the set of “failed” critical services
corresponding to the scenario. Details are presented in the algorithm itself. The
main result is the following theorem.

Theorem 1. Suppose the deterministic algorithm A in Algorithm 1 has an ap-
proximation ratio of α for the Set Cover problem, then, the approximation ratio

of the Algorithm 1 is
(
1 + maxSi∈L

r(Si)
c(Si)

)
α for the CSCP problem.

Proof. Due to space considerations, we present just the overview of the proof. Let
(R,FE1 , . . . , FEk

) denote the solution computed by the algorithm. Let (R∗, F ∗
E1
,

. . . F ∗
Ek

) denote the optimal solution of cost:

620 S. Kenkre, R. Kondapally, and V. Pandit

input : Critical Tasks T , Locations L, Critical Task Mapping Γ (), set up costs
c(Si)s, recourse costs r(Si)s, and scenarios S

output: First stage assignment R and second stage assignments FEis
1 Employ a deterministic algorithm A for the set cover problem with T as the

universe, CT (Si)s as the sets, and c(Si)s as the weights. Assign tasks to any of
the selected sites to which they can be mapped. This gives R and Sites(R). ;

2 for Ej ∈ S do
3 Let affected = {vi ∈ T |R(vi) ∈ Ej}, i.e, tasks which are assigned by R to

an affected location in the scenario Ej ;
4 If any of affected nodes can be assigned to R \ Ej , then, assign them. Let

failed be the set of remaining nodes ;
5 Employ A on failed as the universe, CT (Si) for Si �∈ Ej as the sets, and

r(Si) for Ej �∈ Ej as the costs. Assign tasks as in Step 1 to get FEj and
Sites(FEj).

6 end
7 Output R,FE1 , . . . , FEk .

Algorithm 1. The Main Algorithm

OPT = (
∑

Si∈Sites(R∗)

c(Si) +
∑
Ej∈S

μ(Ej) · (
∑

Si∈Sites(F∗
Ej

)

r(Si)))

Clearly,
∑

Si∈Sites(R) c(Si) ≤ α
∑

Si∈Sites(R∗) c(Si) (due to the approximation

property of A). Now consider a scenario Ej . Let R
∗
1,j be the sites from R∗ that

are used by the optimal solution and R∗
2,j be the sites with recourse cost used

in the second stage. Note that
∑

Si∈R∗
1,j

c(Si) + μ(Ej)
∑

Si∈R∗
2,j

r(Si) ≤ OPT .

Clearly, R∗
1,j∪R∗

2,j is candidate for FEj at step 5 of the algorithm and its recourse

cost is at most maxSi∈R∗
1,j∪R∗

2,j

r(Si)
c(Si)

·OPT . Therefore, the algorithm A at step

5 picks a solution FEj of cost at most (αmaxSi∈R∗
1,j∪R∗

2,j

r(Si)
c(Si)

· OPT) – this is

due to the approximation property of A. Since this applies for every Ej ∈ calS,
we get the approximation ratio claimed in the theorem.

The greedy heuristic of picking the set with best coverage (least cost per ele-
ment covered) at every step is an O(log n) approximation where n is the size of
the universe and is asymptotically tight under the assumption of P �= NP [9].

Therefore, we get an approximation ratio of (1 +maxSi∈L
r(Si)
c(Si)

) log |T | and it is

asymptotically the best possible.

3.1 Generalization

We present a generalization of our result to a family of stochastic planning
problems (applicable to service delivery). The proofs will be included in longer
version. Consider any planning problem which has to meet a fixed demand set T .
The demand has to be met by setting up a required structure R by choosing from
a universe options U . There is a set of scenarios S with a probability distribution

Algorithmic Aspects of Planning under Uncertainty 621

on them and each scenario mentions a subset of U that is not available. We want
to build a stochastic solution for the structure R which minimizes the expected
cost of building the structure. For example, an internet service provider might
want to build Steiner Tree [9] on a set of demand points and the universe consists
of the different edges (pairs of end-points) that can be included in the tree.
Scenarios are sets of edges that can fail. We can prove the following. Suppose
we can write an integer linear program for the problem of computing R and if
there is an α approximation for the non-stochastic version of the problem, our
algorithmic framework gives an approximation ratio of (1 + β)α where β is the
worst ratio of the recourse cost to the set up cost of the elements in U .

Finally, we end with a comment on the complexity added by the stochastic
part. Consider the problem of constructing Minimum Spanning Tree (MST) of
a graph. This is solvable in polynomial time. But, the problem of computing
the optimal two stage MST solution to the stochastic version as considered in
this paper becomes NP-Complete via a reduction from the Hamiltonian Cycle
Problem [2].

4 Experimental Evaluation

The insights obtained from this work have been used in contingency planning
problems in service delivery organizations within IBM. However, data from
real-life service delivery scenarios are sensitive and difficult to share in pub-
lic.Therefore, we conduct our experiments on randomly generated instances of
the CSCP problem. The random instances were generated by varying the num-
ber of sites, number of critical services, relative costs of c(Si) and r(Si). We
generated up to 50 sites and 1000 services. These are realistic numbers as orga-
nizations typically have only tens of sites and hundreds of projects.

We consider following heuristics. P refers to the organizational procedure
which the organization may follow for allocation of the critical service to vari-
ous sites using business rules (state of the art today). We modeled P by simple
business rules such as assign to the nearest site, load balance the allocations,
etc. P is important because it can capture certain rules that are hard to encode
into the CSCP formulation. Heuristic P+P refers to the case when the organi-
zations procedure is used both for the initial allocation as well as drawing up
the contingency plan. A refers to the greedy set cover heuristic, which provides
α approximation where α = log |T |. Heuristic A+A refers to the case where the
procedure A is used both for the initial allocation as well as the drawing up of
the contingency plan. In heuristic P+A, we make the initial allocation using P
and do the contingency planning using procedure A.

Due to space considerations, we present just a sample of the experimental
results in Table 1. We experimented with different probability distributions.
Since our theoretical results hold irrespective of the distribution, we present
the results on the uniform distribution on scenarios, i.e, no special knowledge
other than the list of scenarios is known. The (A+A) solution is consistently the
solution of least cost. But, there could be a practical problem in using it since

622 S. Kenkre, R. Kondapally, and V. Pandit

Sites Services P+P A+A P+A

20 100 385 120 300

20 200 430 190 370

40 300 613.33 466.66 526.66

40 500 906.66 520 673.33

50 1000 1356.66 780 1326.66

Fig. 1. Comparison Of Heuristics

both the stage solutions are computed without contextual business knowledge.
The (P+A) solution is much lower than the (P+P) solution and it may be easier
to use effectively. This is because the first stage solution, which is used during
normal operations is computed taking organizational constraints into account.
The second stage solution computed using the greedy heurisitc can be easily
adapted to fit into organizational constraints as the number of affected critical
services is much lower than the total number of critical services.

References

1. Choi, J., Mount, T., Thomas, R.: Transmission expansion planning using contin-
gency criteria. IEEE Transactions on Power Systems 22(4), 2249–2261 (2007)

2. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman (1979)

3. Graham, J., Kaye, D.: A Risk Management Approach to Business Continuity. Roth-
stein Associates Inc. (2006)

4. Jalona, S., Chandrakar, A.: Evolution of IT services delivery model (2008) Infosys
White Paper available at
http://www.infosys.com/global-sourcing/white-papers/pages/index.aspx

5. Karthik, S., Kenkre, S., Narayanam, K., Pandit, V.: Recourse aware resource allo-
cation for contingency planning in distributed service delivery. In: IEEE Conference
on Services Operations, Logistics, and Information, SOLI (2012)

6. Karthik, S., Kenkre, S., Narayanam, K., Pandit, V.: Resiliency analytics framework
for service delivery organizations. In: Proc. of the Global Conference of Service
Research Innovation Institute, SRII (2012)

7. Keane White Paper. Going global with application outsourcing (2011), Report is
available at http://www.keane.com/resources/pdf/WhitePapers/WP-GGAO.pdf

8. Street, A., Oliveira, F., Arroyo, J.M.: Contingency-constrained unit commitment
with n-k security criterion: A robust optimization approach. IEEE Transactions on
Power Systems 26(3), 1581–1590 (2011)

9. Vazirani, V.: Approximation Algorithms. Springer (2001)
10. Wipro Report. Wipro Business Continuity - “Plan B”, Report is available

http://www.wipro.com/documents/Wipro_Business_Continuity.pdf

http://www.infosys.com/global-sourcing/white-papers/pages/index.aspx
http://www.keane.com/resources/pdf/WhitePapers/WP-GGAO.pdf
http://www.wipro.com/documents/Wipro_Business_Continuity.pdf

A Dynamic QoS-Aware Semantic Web Service

Composition Algorithm

Pablo Rodriguez-Mier, Manuel Mucientes, and Manuel Lama

Centro de Investigación en Tecnolox́ıas da Información (CITIUS)
Universidade de Santiago de Compostela, Spain

{pablo.rodriguez.mier,manuel.mucientes,manuel.lama}@usc.es

Abstract. The aim of this work is to present a dynamic QoS-aware
semantic web service composition algorithm that finds the minimal so-
lution graph that satisfies the composition request considering multiple
QoS criteria and semantic input-output message structure matching re-
strictions. Our proposal starts computing an initial solution by selecting
only those services from the dataset that are relevant to the user request
and meet the semantic restrictions. Then, an optimal QoS-aware com-
position is calculated using Dijkstra shortest path algorithm. Once the
solution is obtained, the number of services is minimized using the opti-
mal aggregated QoS value calculated in the previous step as a bound to
prune the state space search. Moreover, a set of extensive experiments
with five different datasets from the Web Service Challenge 2009-2010 is
presented to prove the efficiency of our proposal.

Keywords: Automatic composition, Shortest Path, QoS optimization,
Semantic Web Services.

1 Introduction

QoS-Aware web service composition has attracted a lot of attention from dif-
ferent fields in recent years. In [6], the authors distinguish two different types
of composition algorithms: static and dynamic algorithms. Static algorithms re-
quire a predefined workflow with abstract processes. Each abstract process can
be implemented by a wide variety of web services with different QoS measures
that meet the functionality requirements of the process. The goal is to select
the best services for each abstract process that fulfills the QoS constraints im-
posed by the user. Thus, these algorithms are only focused on service selection
based on QoS and therefore are more related to the service discovery field. Rel-
evant examples of this category are [10,9,2]. None of these approaches generate
composite web services by combining different atomic services automatically.
Dynamic algorithms, on the other hand, are more focused on calculating the
overall composition structure, satisfying the global QoS. Within this category,
the most interesting proposals are [5,8,1,3]. However, most of them can maxi-
mize only one QoS attribute and do not consider service minimization, leading
to huge solutions with redundant services.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 623–630, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

624 P. Rodriguez-Mier, M. Mucientes, and M. Lama

This paper addresses the problem of the dynamic QoS-Aware semantic web
service composition considering multiple QoS attributes and minimizing the total
number of services from the composition result. The novelties of our proposal
are: 1) A multi-objective Dijkstra-based label setting algorithm that finds the
optimal QoS composition (minimizing the total response time and maximizing
the throughput) and 2) a combinatorial search algorithm that minimizes the
number of services from a solution, keeping the optimal QoS. The algorithm
uses the optimal values calculated in the previous phase to effectively reduce the
search space size.

The rest of the paper is organized as follows: Sec. 2 introduces the basis
of the semantic web service composition and explains the QoS model used to
compute the global QoS. Sec. 3 illustrates the proposed algorithm for web service
composition. Sec. 4 analyzes the algorithm with five different repositories and
section 5 concludes the paper.

2 QoS-Based Semantic Composition Model

We define a web service by a 3-Tuple S = {IS , OS , QS} where IS = {I1S , I2S , ...}
is the set of inputs consumed by the service, OS = {O1

S , O
2
S , ...} is the set of

outputs retrieved when the service is invoked and QS = {Q1
S, Q

2
S , ..., Q

n
S} is

the set of quality attributes of the service. Inputs and outputs of a service are
semantically annotated by concepts that are defined in an ontology. Although
concepts from an ontology can be related to each other by different types of
relations in our approach we only use the subclass/superclass relationship, so we
consider that an output of a service oS1 matches the input of other service iS2

when oS1 is equal or a subclass of iS2 (oS1 ⊆ iS2).
A web service can be invoked only if all their inputs are matched. Given a

request R = {IR, OR}, and given a web service S = {IS , OS , QS}, the web
service S can be invoked only if IR ⊆ IS (all inputs matched), i.e., for each
input is ∈ IS there exists an input ir ∈ IR such that ir ⊆ is. Also, OR will be
satisfied only if OS ⊆ OR, i.e., for each output or ∈ OR there exists an output
os ∈ OS such that os is equal or subclass of or (os ⊆ or).

2.1 QoS Computation Model for DAG Compositions

Considering the previous description, the QoS-aware composition problem tack-
led in this paper can be formulated as the automatic construction of a directed
acyclic graph (DAG) that models the dependencies among the different web
services involved in the composition with a global optimal value of QoS. The
DAG contains two special nodes, Source (without incoming edges) and Sink
(without outgoing edges), which provides the requested inputs and consumes
the requested outputs respectively. Each directed edge is an ordered pair of
two connected vertex (services) (Si, Sj) of the graph and represents a semantic
matching between Si and Sj (i.e., one or many outputs from Si match one or
many inputs from Sj).

A Dynamic QoS-Aware Semantic Web Service Composition Algorithm 625

The calculation of the global value of QoS for a composite web service depends
directly on the DAG structure. We consider the two quality QoS attributes
defined in the Web Service Challenge 2009-2010: response time, which should be
minimized, and throughput, which should be maximized. The total QoS value of
a composite service corresponds with the aggregated QoS of the Sink node of the
composition DAG. To compute the best QoS of a composite service, we define
a recursive function for each QoS attribute over the service domain (QNR(S),
QNT (S)):

– Resp. time: QNR(Si, {S1
i , ..., S

n
i }) = Max{QNR(S

1
i), ..., QNR(S

n
i)}+R(Si)

– Throughput: QNT (Si, {S1
i , ..., S

n
i }) = Min{QNT (S

1
i), ..., QNT (S

n
i), T (Si)}

Where {S1
i , ..., S

n
i } are the direct predecessors from the service node Si and

R(Si), T (Si) are the functions that returns the response time and the throughput
respectively associated to the service Si. QNR(Sink) returns the total QoS of a
composite service. Note thatR(Source), R(Sink) = 0 and T (Source), T (Sink) =
∞ since Source and Sink are not real services.

3 Algorithm Description

The problem tackled in this paper consists of generating the best composition
from the point of view of the QoS and cost (number of services) given a semantic
request provided by an user. The steps followed by our proposal are: 1) Discover
relevant services for the query; 2) Construct a matching digraph representing
all possible matchings between these services; 3) Find the composition DAG
with the optimal QoS value using a Dijkstra-shortest path algorithm over the
matching digraph and 4) minimize the number of services of the solution using
a backward search.

Finding the web service composition with the minimal cost has been proved
to be NP-Complete [4]. However, in most cases the optimal QoS can be used as
a bound to prune effectively the search space, discarding all those states that
worsen the optimal value. In these section, we explain these steps in detail.

3.1 Service Filtering

The first step before calculating the composition is to filter all those services from
the repository that are relevant to the request, discarding the rest. The filtering
technique is explained in detail in [7]. Given a user request Ruser = {IR, OR,WR}
a matching digraph with the relevant services and all the matching relations
among their inputs and outputs is generated layer by layer. Each layer contains
those services whose required inputs are generated in previous layers. First and
last layers contain the virtual services Source = {∅, IR, {0,∞}} and Sink =
{OR, ∅, {0,∞}}, respectively, where Source provides the inputs of the request
and Sink receives the outputs specified in the request. The calculation of the
layers stops when there are no more services to add. When the process completes,
the resultant graph contains all relevant services with their input/output concept
matching relationships. The services contained in each layer are:

626 P. Rodriguez-Mier, M. Mucientes, and M. Lama

Fig. 1. A matching digraph representing the relations between the filtered (relevant)
services for a request. Circles are services and diamonds are concepts (inputs and out-
puts). A directed edge between two concepts (c1, c2) represents a c1 ⊆ c2 relationship.
Note that services from subsequent layers can provide inputs to services from previous
layers, and therefore cycles are allowed.

– L0 = {Source}, LN = {Sink}
– Li = {Si : Si /∈ Lj(j < i) ∧ ISi ∩Oi−1 �= ∅ ∧ ISi ⊆ IR ∪O0 ∪ . . . ∪Oi−1}

3.2 Optimal QoS-Aware Composition

The matching digraph represented in Fig. 1 has two type of nodes: services and
concepts. Concepts are the traditional OR-nodes in a directed graph. Each in-
coming edge to a concept node represents a different path to obtain that concept.
Thus, the optimal cost of a concept is determined by the best value among all
their incoming paths. Conversely, services are a special type of nodes (AND-
nodes) as they are unreachable until all their inputs are matched. The cost to
reach a service node is calculated using the worst value among all their concepts.
If a concept of a service has not been resolved (has a cost of ∞) then the cost
to reach the service (and hence the cost of their outputs) is ∞ too. As our algo-
rithm is multi-objective (minimizes response time and maximizes throughput)
both QoS attributes have to be scaled and combined properly using the weights
assigned to the request. The normalization of the QoS attributes is described in
detail in [10] so is omitted here.

To find the optimal providers for each concept, we define a Dijkstra-based
label setting algorithm that minimizes the objective function by exploring the
service graph from the Source to the Sink node. The objective function of a
composition is defined as GlobalQoS(R, T) = w1 ∗R+w2 ∗ (1−T), where R and
T are the total response time and total throughput (scaled between [0,1]) of the
composition and w1, w2 ∈ [0, 1] ∧w1 + w2 = 1.

The pseudocode of the Dijkstra algorithm is shown in Alg. 1. The algorithm
starts adding the Source service to the queue. Then, services in the queue
are analyzed in order of increasing cost. The cost of each service Si is their
aggregated value of QoS. This value is calculated as aggregatedQoS(Si) =
GlobalQoS(QNR(Si, P red), QNT (Si, P red)). Pred = {S1

i , ..., S
n
i } is the set of

the optimal predecessors for each input of Si, i.e., Pred = {i1.op, ..., ij .op} (i.op

A Dynamic QoS-Aware Semantic Web Service Composition Algorithm 627

Algorithm 1. Optimal QoS-Aware Service Composition

1: #Services are ordered in queue by their aggregatedQoS(Service) value
2: queue ← (0, Source) #0 = best cost, 1 = worst cost
3: while queue �= ∅ do
4: SA ← queue #Extract lower cost service
5: newAggregatedQoS = aggregatedQoS(SA)
6: for all SB matched by SA do
7: inputsMatched = {im : im ∈ (OSA ∩ ISB) ∧ im ∈ ISB)}
8: for all im ∈ inputsMatched do
9: if newAggregatedQoS < im.aggregatedQoS then
10: im.aggregatedQoS = newAggregatedQoS
11: im.op = SA #op means optimalPredecessor
12: end if
13: end for
14: newCost = aggregatedQoS(SB)
15: queue ← (newCost, SB) #(Re)order the neighbor in queue
16: end for
17: end while

is the optimal predecessor that provides the input i) where {i1, ..., ij} ∈ ISi . If op-
timal predecessors have not been determined yet, then aggreatedQoS(Si) =∞.

3.3 Service Minimization

The reconstruction of the optimal QoS-Aware service composition using the
optimal providers leads, in most cases, to inefficient compositions with redundant
services, which increases the cost of the final composition. For example, following
Alg. 1, we obtain that the best compositions contains the services {S2, S3, S4} as
they are the best providers for each input. However, as the best aggregatedQoS
for S4 is determined by the worst cost (input i4), S3 can be removed without
affecting the global value of QoS (input i5 can be provided by S2 with a cost of 80
ms). Thus, we develop a state space search algorithm that finds the composition
with the minimum number of services using Dijkstra backwards (from Sink to
Source), keeping the optimal QoS value calculated previously. The algorithm
navigates state by state, selecting in each transition the best combination of
services that provides the required inputs for each state, using the optimal QoS
as a bound to discard all those actions that worsen the optimal value of QoS.

The search space is the set of all reachable states from the initial state by any
sequence of actions. We define the minimization problem as a backward search
over the state space. The elements that conform the search space problem are:

– State: is defined as a 2-tuple {I, O} where I = {i1, ..., in} is the set of required
inputs and O = {o1, ..., on} is the set of the provided outputs.

– Initial state: {ISink, ∅} where ISink are the required inputs by the Sink node.
– Goal state: {∅, OSource} where OSource are the outputs provided by the
Source service.

628 P. Rodriguez-Mier, M. Mucientes, and M. Lama

– Action: A = {S1, ..., Sn} is the set of services that provides the required
outputs.

– φ(A): operator function that collects all outputs generated by an Action.
– γ(A): operator function that collects all inputs required by an Action.
– Transition function: f : StateA × Action → StateB. The resulting state is

defined as StateB = {γ(Action), φ(Action)}.
– Path cost function δ(S): function that returns the size of the path P =
A1 ∪ A2, ...,∪AN where P is the union set of all actions from initial state
to S. Note that P contains all the different services selected from the initial
state to S. The problem is to reach the goal state with the minimum cost.

Given a state S = {I, O}, the possible actions that can be applied to S are all
those combinations of services from the matching digraph that covers the inputs
I ∈ S, i.e., φ(A) ⊆ I. Since we know the best aggregated QoS value of the
composition, we can filter all those actions that exceed the bound. Consider the
example in Fig. 1 and suppose that Alg. 1 determined that the best providers
for all inputs are (Source, S2, S3, S4, Sink). The global QoS of the composite
service using these services is QNR(Sink) = Max(80, 90) = 90. The initial
state can be defined as SI = {{i6, i7}, ∅}. The possible actions that can be
applied to this state are A1 = {S1, S4} and A2 = {S2, S4}. Although S1 is
not considered by the algorithm as the best provider for i6, S1 can replace S2
without affecting the global QoS. The resulting states after applying actions A1

and A2 are SA1 = {{i1, i5}, {o1, o4}} and SA2 = {{i2}, {o2, o4}} Note that in
the next iteration, SA2 reach the solution with the minimum path cost, so the
optimal solution consists only of services S2 and S4. Using Dijkstra to traverse
the graph, we can guarantee the optimality of the solutions found.

4 Experiments

In order to prove the validity and efficiency of our algorithm in different situ-
ations, we carried out some experiments using five datasets from Web Service
Challenge 2009-2010. Table 1 shows the results obtained for each dataset using
different weights for response time (w1) and throughput (w2).

The minimization of the services for each solution can be done by searching
over the entire service graph (global minimization, GM) or considering only
the optimal providers obtained for each input (local minimization, LM). When
the LM is performed, instead of considering all alternatives for each input, the
algorithm prunes all those optimal redundant services from the original result
that are not necessary to obtain the best aggregated value of QoS.

Column #I. Serv shows the initial services obtained before applying the min-
imization. These services are the optimal providers for each input found with the
Alg.1. Column #S. (LM/GM) shows the minimum number of services obtained
using local or global minimization. Columns#Rt.(LM/GM) and#Th.(LM/GM)
present the results for the response time and the throughput of the composite
service. Note that results obtained for response time when w1 = 0 and for the

A Dynamic QoS-Aware Semantic Web Service Composition Algorithm 629

throughput when w2 = 0 are not relevant, as the algorithm does not mini-
mize/maximize the attributes weighted with 0. The last column shows the time
elapsed (in milliseconds) between the initial user request and the delivery of the
composition result (results are not translated to BPEL, they are provided as
DAGs).

4.1 Results Discussion

Table 1 shows the results of the algorithm describing all the characteristics de-
fined in the Web Service Challenge 2009-2010. All tests were executed in a Intel
Core 2 Quad Q9550 2.83 GHz with 8 GB RAM, under Ubuntu 10.04 64-bit, with
a time limit of 30 seconds for each test (results marked with a dash are those
that took more than 30 seconds). The quality of the results is evaluated mea-
suring the best response time, the best throughput and the number of services.
Since we do not generate BPEL code, we cannot measure the total composition
length.

An important difference between the solutions of the participants from the
Web Service Challenge 2009-2010 and our solutions is that they do not mini-
mize both quality attributes (they use the same algorithm to minimize each QoS
attribute independently). Thus, their results should be compared with our solu-
tions when w1 = 0, w2 = 1 or w1 = 1, w2 = 0, as they cannot provide interme-
diate solutions. In all cases we obtained the same best solutions as the winners,
with less number of services for datasets 4 and 5. Note that the performance
of our algorithm is slightly worse due to the minimization process. Solutions
for the dataset 4 with the global service minimization cannot be obtained in
a reasonable period of time due to the combinatorial explosion. However, local
minimization can be used efficiently when the priority is to obtain good quality
solutions in a short time.

Table 1. Results obtained by our algorithm

Dataset Optimal QoS solution
WSC-2009’01 w1/w2 #I. Serv. #S. (LM/GM) Rt.(LM/GM) Th.(LM/GM) Time (ms) (LM/GM)

1.0/0.0 13 5/5 500/500 3000/3000 274/389
0.5/0.5 7 5/5 760/760 15000/15000 277/291
0.0/1.0 7 5/5 930/930 15000/15000 270/298

WSC-2009’02 1.0/0.0 25 20/20 1690/1690 3000/2000 868/1988
0.5/0.5 24 20/20 1800/1770 6000/6000 860/3103
0.0/1.0 24 20/20 1970/2000 6000/6000 117/7530

WSC-2009’03 1.0/0.0 11 10/10 760/760 2000/4000 1071/1545
0.5/0.5 33 10/10 840/760 4000/4000 1069/1533
0.0/1.0 31 18/11 1780/1110 4000/4000 1101/5249

WSC-2009’04 1.0/0.0 50 40/- 1470/- 2000/- 4399/-
0.5/0.5 73 64/- 3540/- 4000/- 4586/-
0.0/1.0 72 62/- 3840/- 4000/- 4506/-

WSC-2009’05 1.0/0.0 41 32/32 4070/4070 1000/1000 2646/2801
0.5/0.5 41 32/32 4280/4200 4000/4000 2667/2680
0.0/1.0 41 32/30 5470/4750 4000/4000 2657/10953

630 P. Rodriguez-Mier, M. Mucientes, and M. Lama

5 Conclusions

In this paper we have presented a dynamic QoS-Aware semantic web service com-
position that finds optimal compositions minimizing the total response time and
maximizing the throughput. We also presented a method to effectively reduce the
total number of services from a composition without affecting the global value of
QoS. This technique can also perform a local or a global search to minimize the
total services depending on time requirements. Moreover, a full validation has
been done using five different datasets from the Web Service Challenge 2009-
2010, showing a good performance as in all cases the best solutions with the
best values of QoS and the minimum number of services were found.

Acknowledgement. This work was supported by the Spanish Ministry of
Economy and Competitiveness (MEC) under grant TIN2011-22935. Pablo
Rodŕıguez-Mier is supported by the Spanish Ministry of Education, under the
FPU national plan. Manuel Mucientes is supported by the Ramón y Cajal pro-
gram of the MEC.

References

1. Aiello, M., Khoury, E.E., Lazovik, A., Ratelband, P.: Optimal QoS-Aware Web
Service Composition. In: IEEE CEC 2009, pp. 491–494 (2009)

2. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
IEEE Trans. on Soft. Eng. 33(6), 369–384 (2007)

3. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: QSynth: A Tool for
QoS-aware Automatic Service Composition. In: IEEE ICWS 2010, pp. 42–49 (2010)

4. Oh, S.C., Lee, D., Kumara, S.R.T.: Effective Web Service Composition in Diverse
and Large-Scale Service Networks. IEEE Trans. on Soft. Eng. 1(1), 15–32 (2008)

5. Oh, S.C., Lee, J.Y., Cheong, S.H., Lim, S.M., Kim, M.W., Lee, S.S., Park, J.B.,
Noh, S.D., Sohn, M.M.: WSPR*: Web-Service Planner Augmented with A* Algo-
rithm. In: IEEE CEC 2009, pp. 515–518 (2008)

6. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

7. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition
with a heuristic-based search algorithm. In: IEEE ICWS 2011, pp. 81–88 (2011)

8. Yan, Y., Xu, B., Gu, Z., Luo, S.: A QoS-Driven Approach for Semantic Service
Composition. In: IEEE CEC 2009, pp. 523–526 (2009)

9. Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services
with Multiple QoS Constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

10. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-Aware Middleware for Web Services Composition. IEEE Trans. on Soft.
Eng. 30(5), 311–327 (2004)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 631–638, 2012.
© Springer-Verlag Berlin Heidelberg 2012

IT Incident Management by Analyzing Incident Relations

Rong Liu and Juhnyoung Lee

IBM Research
19 Skyline Drive, Hawthorne, NY 10532, USA

{rliu,jyl}@us.ibm.com

Abstract. IT incident management aims to maintain high levels of service quali-
ty and availability by restoring normal service operations as quickly as possible
and minimizing business impact. Enterprises often maintain many applications to
support their business. It is a significant challenge to diagnose incidents at appli-
cation level due to complicated causes often aggregated from the shared IT envi-
ronment, network, hardware, software, and changes. In this paper, we present a
new approach to diagnosing application incidents by effectively searching for re-
levant co-occurring and reoccurring incidents. These relevant incidents reveal
patterns of application failures and provide insights into incident resolution and
prevention. This paper also provides a case study where we implement this ap-
proach and evaluate its performance in terms of search accuracy.

Keywords. Incident management, IT service management, incident relation,
co-occurrence, reoccurrence, text analytics.

1 Introduction

The objective of the IT Incident Management is to restore normal service operations
quickly to minimize business impact, thus ensuring high levels of service quality and
availability [4]. An incident is any event which is not part of the standard operation of
a service and which causes, or may cause, an interruption to or a reduction in the
quality of that service. Incidents are the result of failures or errors in IT infrastructure.
Incident management becomes more important as IT’s contribution to business is ever
growing. It also faces increasing challenges because an enterprise often maintains
many applications in a shared IT environment composed of thousands of interdepen-
dent IT components, e.g. network, hardware, software etc. Incident diagnosis often
requires investigation on complicated causes aggregated from this environment. Thus
a sophisticated analytical platform is needed to aggregate events from multiple
sources, detect suspected causes, suggest resolution, and predict potential failures.

In this paper, we present a new IT incident management approach to diagnosing
incidents by effectively searching for relevant co-occurring and reoccurring inci-
dents. Co-occurring incidents happen at different IT components concurrently and are
possibly caused by the same root causes. Reoccurring incidents repeat over time with
similar symptoms or features. These relevant incidents together can reveal patterns
of application incidents, helping subject matter experts (SMEs) to reason about root

632 R. Liu and J. Lee

causes of incidents and accelerate incident resolution. This paper also presents a case
study where we implemented and tested this approach. Since our approach is devel-
oped based on a generic incident data structure, it can be applied in similar scenarios
in incident management, for example, IT help desk support. The rest of this paper is
structured as follows. Section 2 describes a motivating real-world case. In Section 3,
we discuss the technical details of the proposed approach. Section 4 describes the
implementation and reports evaluation results. Section 5 compares this approach with
related work. Finally, Section 6 concludes this paper with future work outlined.

2 Case Study

A large corporation in the IT industry has over a thousand applications to support its
business ranging from large-scale packaged applications (e.g. SAP) to small proprie-
tary systems, which run in a shared, dynamic IT infrastructure. A critical objective is
to maintain high-level application availability and reduce outages. It is challenging to
diagnose incidents at the application level, because those incidents are often aggre-
gated effects from problems in other lower layers. For example, the enterprise had a
recent incident that blocked online orders for software. Meanwhile, another applica-
tion supporting software downloading also failed. An exhaustive investigation led to a
highly suspected cause that a dependent application for authenticating customers
failed because of a storage area network outage happened in another geographic area.

Although this company has an integrated system for reporting and managing all IT
incidents, relevant incidents could not be easily discovered for a few reasons. First, IT
components are often managed by workgroups organized by expertise and by geogra-
phy in a matrix structure. Due to this separation, relevant incidents may not be well
communicated across workgroups. Second, the entire IT platform involves extreme
complicated dependencies among IT components. Without deep knowledge about
such dependencies, it would be impossible to scope relevant ones out of a huge num-
ber of incidents. Moreover, such dependencies are under constant evolution as the
platform changes (e.g., provisioning new servers). Finally, useful information about
an incident, such as affected IT components, symptoms, diagnosis results, is often
recorded as free-form text. A typical incident is shown in Table 1. Another phenome-
non is the frequent use of ambiguous acronyms. For example, depending on the con-
text, “HRS” may mean “Hostname Resolution System” (an application name) or
“Hours”. Searching incidents only by keywords without considering their context is
often deficient. Next, we propose a new search method to overcome these challenges.

3 Search for Relevant Incidents

As illustrated by the case study, an incident is often not an isolated event. It can be
diagnosed by finding relevant co-occurring and reoccurring incidents and consolidat-
ing them to discover insights regarding how it happened and how it can be fixed. Our
search algorithm consists of three steps: classifying incidents, searching incident by
keywords, and calculating relevancy score and ranking search results.

 IT Incident Management by Analyzing Incident Relations 633

3.1 Incident Classification

A common practice in IT Incident Management is to classify incidents by proper cat-
egories [4,8]. For example, we classify the incidents in the case study by keywords
from these facets [6]: application, server, middleware, infrastructure, and symptom. It
is often feasible to obtain decent vocabulary for these facets. For instance, companies
usually maintain lists of applications, servers and middleware as part of their asset
portfolio. Such lists become good dictionaries. One can also gather a list of frequently
used terms as a dictionary, for instance, for symptom facet. With these dictionaries,
keywords can be extracted from incident text by using text analysis software, for in-
stance, IBM Context Analytics (ICA) [3]. Synonyms and annotation patterns are used
to improve the accuracy of extraction. For example, MQ is a synonym of MQSeries.
After classification, an incident can be represented by a bag of keywords. For in-
stance, incident IN1 in Table 1 is classified by keywords as shown in Figure 1. These
keywords are referred to as classification keywords in this paper.

Table 1. An Example of Application Incidents

Attributes Value

Incident ID IN1

Problem Abstract ServerXYZ Issue: MQ connectivity has been reported lost.

Problem

Description

Ticket#: Sev1; Application: SomeApp; Server/URL: ServerXYZ

Issue: MQ connectivity has been reported lost. ITD (InternetService) team should

verify and "run mustGather and recycle SomeApp (on ServerXYZ and ServerXYZ

2 as needed; Duty manager needed or not (not at this time); if so, impact: No reve-

nue impact. Business impact is to some of the SomeApp (software service) orders

(but not all); Team to be engaged: InternetService

Problem Result SomeApp recycled

Occurred Time 2011-12-25 08:28:00

Solved Time 2011-12-25 09:25:40

Account ID SomeAccount

Resolver Group SomeGroup

After classification, a critical step is to validate the accuracy of each extracted

keyword and assign an appropriate accuracy weight that can be used for discovering
relevant incidents later. This validation is to ensure (1) an acronym is semantically
correct, and (2) the combination of extracted keywords for an incident is valid against
proper domain knowledge. For example, we need to check if acronym “HRS” indeed
means “Hostname Resolution System”. We first check if its full name can be found in
the incident text. If it cannot be found, we rely on other extracted keywords or
attributes to infer the meaning as in (2). For the example shown in Figure 2, we have
learned that “SomeApp” is hosted in server “ServerXYZ” and requires middleware
“MQSeries”. With this application architecture information, we can confirm that the
combination of keywords {SomeApp, ServerXYZ, mqseries} is correct. In case
domain knowledge is not available, we can learn it dynamically by checking
co-occurrence of keywords [1]. For example, if the joint probability of keyword

634 R. Liu and J. Lee

“SomeApp” and “ServerXYZ2” is higher than a certain level, we can infer that “Ser-
verXYZ2” may be a hosting server of “SomeApp”. After validation, we assign an
accuracy weight w1 to each extracted keyword to indicate the level of confidence on
its validity.

Fig. 1. Classification of Example 1

3.2 Relevant Incident Search

After classification, we structure incident information out of the free-form text. Then
we design a hybrid search engine integrating both faceted search and free text search
to discover co-occurring and re-occurring incidents. To simplify its use, the search
engine requires only an incident ID as an input, and automatically decides appropriate
search keywords and ranks returned results by relevancy from high to low.

To find reoccurring incidents, the search engine uses classification keywords as
search terms. For example, Figure 1 shows all search keywords for finding reoccur-
ring incidents of IN1 (see Table 1). It takes additional consideration to find co-
occurring incidents. First, co-occurring incidents happen about the same time. Hence,
a mandatory time constraint is placed to limit the search scope to recent incidents.
Second, co-occurring incidents may be reoccurring events. Therefore, classification
keywords are also taken. Moreover, co-occurring incidents may indicate dependencies
among involved IT components. Hence, we also add keywords representing depen-
dent components as search terms. We refer to these keywords as dependency
keywords. Taking the same example of IN1, to find co-occurring incidents, two de-
pendent applications, “DepApp1” and “DepApp2”, are added. A boosting weight (w2)
can be assigned to each search keyword based on its impact. Our search engine as-
signs a default weight for each dependency keyword, for instance, w2 = 2.

With search keywords defined, incidents that satisfy any of the search keywords
and mandatory time constraints are returned to achieve a high recall rate. For instance,
to search for co-occurring incidents for IN1, its search keywords and time constraints
are represented as a query shown in Figure 2. This query consists of both structured
and unstructured portions. The structured query searches for incidents by using the
incident classification keywords and structured fields in database tables. The unstruc-
tured part handles the need for free text search, for example, incident symptoms. The
final search result is the union of those returned from the two queries.

Fig. 2. Formulate Search Keywords as Queries

Structured:
(application in (“SomeApp”, “DepApp1”, “DepApp2”) or server in (“ServerXYZ”, “ServerXYZ2”) or
middleware in (“mqseries”)) and occurred_time between (“12/22/2011”, “12/25/2011”))

Unstructured:
+mq +connectivity date>="2011-12-22" date<="2011-12-25"

Application: SomeApp
Server: serverXYZ, ServerXYZ2
Middleware: mqseries
Symptom: mqseries connectivity

 IT Incident Management by Analyzing Incident Relations 635

With a large number of results returned from search, we adapt vector-space model
[7] slightly to calculate the similarity score for returned incidents. Based on this mod-
el, a document is represented as a vector of keywords , , … , in a n-
dimensional vector space, where is the weight of keyword i. | | ∑ is the
length of the vector. The similarity between (, is the cosine of the angle θ be-
tween them, i.e., s cos · | | | | , where · ∑ . The vector space

in our case contains the classification keywords of incidents. The vector of an incident
contains all of its classification keywords, and conditionally the dependency key-
words. When a dependency keyword is found in a returned incident, it is added to the
vector to boost the similarity score. The weight of a keyword is , where
is the accuracy weight and is the boosting weight. Note that in a regular vector-
space model, keyword frequency is often an important factor for weight. However,
here incident text is often dominated by technique specification or message logs. For
instance, a server name appears many times in a log. Frequency-based weights may
favor incidents with lengthy messages and have negative impact on search precision.

To illustrate, consider two relevant incidents IN2 (v2) and IN3 (v3) for incident IN1
(v1) as shown in Table 2. v1 has five classification keywords (w1=1) and two depen-
dency keywords (w2 = 2). v2 matches three of the classification keyword (i.e., ·3). The similarity score between v1 and v2 is √ √ 0.77. v3 matches one clas-

sification keyword and one dependency keyword. Thus, · = 1*1+2*2=5 and the

length of v1 is 5 2 9. The similarity score between v1 and v3 is √ √ 0.75.

The similarity score considers whether two incidents are similar to each other in
terms of classification keywords, but it may not be sufficient for finding truly relevant
incidents. Take a query with two keywords {“db2”, “SomeApp”} as an example. This
query may return a large number of incidents because db2 is a widely used compo-
nent. Among them, many incidents are about general DB2 issues irrelevant to specific
applications. However, since these incidents are classified by only “DB2” keyword,

their similarity score √ 71% is actually pretty high.

Table 2. Calculating Similarity Score

Incident
Keyword Vector ·

(or v3)
|v1|*|v2|
(or |v3|)

Similarity
SomeApp ServerXYZ ServerXYZ2 mq

mq
conn.

dependent app

DepApp1 DepApp2

v1 IN1 1 1 1 1 1 2
v2 IN2 1 1 1 3 √5 √3 0.77

v3 IN3 1 2 5 √9 √5 0.75

In order to filter irrelevant results, we use attributes other than the classification

keywords to infer a broad context. In the IT incident management domain, an account
is a well-accepted concept representing an organization unit responsible for the reso-
lution of incidents in a particular business area. In general, each account involves
general-purpose support workgroups, such as Network Support team, and specialized
support team, e.g. Internet Service support team. The technology configuration of an
account thus can be inferred from the specialized workgroups. We plot a diagram

636 R. Liu and J. Lee

among accounts and specia
or an account and the lin
workgroup is called for the
This diagram illustrates the
by technology configuratio
while A2 involves workgro
similarity between A1 and
use this similarity to estima
cate technology dependenc
dent returned from a search
ple function we use is r = α
in Table 2 belong to accoun
final relevancy score for v2

3.3 Root Cause Analys

Continuous analysis on a gr
to diagnose root causes and
we can summarize commo
SMEs to pinpoint exact pro
incident IN1 and its reocc
and “mqseries”, suggesting
server. As another example
frastructure component, thi
common keywords from the
can provide useful insights
incidents may disclose a ca
currence times may disclos
ysis can be conducted to c
example, maintenance sche
fix, upgrade). With the cor
tential problems. For examp
root cause. A finding is th
with messages alerting lost
maintenance. With this dis
maintenance event is schedu

Fig.

G1 G2 G3 G4 G5 G6

A1 A2 A3

alized workgroups, where each node is either a workgro
nk between an account and a workgroup indicates
e account’s incidents. An example is shown in Figure 3
e technology configuration and similarity among accou
on. For example, account A1 engages workgroup G1
oups G3-5 and G7. Using the same vector-space model,

A2 is estimated to be 67%, as shown in Figure 3(b).
ate context relevancy (w3) because shared workgroups in
cies and compatibility between each other. For each in
h, the final relevancy score r = f(s, w3). For instance, a s
α*w3 + (1- α)*s, where 0< α<1. Given that three incide
nt A1, A2, and A3 respectively, with α=0.5, we can get
and v3 are 0.72 and 0.48 respectively.

is Using Relevant Incidents

roup of relevant incidents often provides insights for SM
d define proactive actions to prevent similar incidents. Fi
onalities of relevant incidents. These commonalities all
oblems and exclude other suspected causes. For examp

curring incidents share common keywords: “ServerXY
g SMEs to focus on MQSeries installed on ServerX
e, if a group of re-occurring incidents all depend on an
is component is a highly suspected cause. Also, extract
e resolution description of a group of reoccurring incide
into resolution strategies. Second, a group of co-occurr

ausal event chain. Chaining these incidents along their
e potential application dependencies. More advanced an

correlate a group of relevant incidents with other data,
edule, resource usage, and change events (i.e., applicat
rrelation, prediction rules can be configured to predict
ple, incident IN1 has been diagnosed in this way to find

hat IN1 and its reoccurring incidents are highly correla
t MQSeries connections after a server rebooted for regu
scovery, a rule is configured to alert SMEs when a ser
uled.

 A1 A2 A3

A1 67% 20%

A2 67% 45%

A3 20% 45%

(a) (b)

 3. Account Configuration & Similarity

6 G9G8G7

3
Workgroup

Account

oup
the

3(a).
unts
1-5,
the
We
ndi-
nci-
sim-
ents
the

MEs
irst,
low
ple,

YZ”
XYZ
n in-
ting
ents
ring
oc-

nal-
for

tion
po-

d its
ated
ular
rver

%

%

 IT

4 Search Engine I

Figure 4 shows the implem
two types of flows: front-e
incidents data are extracted
tion keywords are extracted
dent data. At the front-end,
engine transforms this que
database and the other to IC
ranked. Since a large portio
efficient. Our pilot test sho
search for co-occurring/reoc

 Fig. 4. System Archit

This new search engine i
23 incidents as testing case
recall and precision rates. F
returned. SMEs rated each
A testing case was rated suc
ly less than 20) were return
firmed. Table 4 summarize
success rate). Those testing
caused by ambiguous acron

5 Related Work

In the area of IT Service M
Library (ITIL) provides a se
needs of business [4,8]. Th
investigation and diagnosi
methods. Recently, there is
and managing incidents. In
models is provided to cor
service Delivery Portal intr
administrators (SA) to dia
various incident data sourc
keywords or incident attribu
dering domain knowledge

T Incident Management by Analyzing Incident Relations

Implementation and Evaluation

mented architecture of our search engine. This engine
end (solid line) and backend (dotted line). At the backe
 and fed into the IBM Context Analytics (ICA). Classifi
d, validated, and stored in a database as consolidated in
, a user issues a query to the search engine and the sea

ery into two sub-queries, one for structured search to
CA for free text search. Search results are consolidated
on of the query is handled as a database query, the searc
ows on average it takes less than a minute to complet
ccurring incidents from about 140,000 incident records.

tecture

Table 3. Evaluation Result

Testing Cases
Result

Success
Partial
Success

Failure Unkno

Reoccurring 15 1

Non-reoccurring 3 1 1 2

Total 18 2 1 2

is evaluated by SMEs in a pilot test. SMEs carefully ch
es. We designed a new evaluation metric combining b

For each testing case, at maximum 20 relevant incidents
testing case: success, partial success, failure, or unkno
ccess only if all SME-recognized relevant incidents (usu
ned. A result was rated as “unknown” if it cannot be c

es the result. The testing result is reasonably positive (7
g cases rated “partial success” and “failure” are prima
nyms or insufficient information disclosed in incidents.

anagement (ITSM), Information Technology Infrastruct
et of practices that focuses on aligning IT services with

he work presented in this paper concerns mostly about
s of incidents in ITSM using text mining and statist

s growing interest in using statistical analytics to analyz
n [9], an ensemble of Tree-Augmented Bayesian Netw
rrelate workload metrics with service level objectives
oduced in [5] provides a set of technologies to help syst
agnose and manage incidents. This platform aggrega
ces and allows SA to search for relevant events based
utes. Our approach improves the search accuracy by con
e and incident context during search. Another br

637

has
end,
fica-
nci-
arch

the
and

ch is
te a

own

2

2

hose
both

are
wn.
ual-

con-
78%
arily

ture
the
the

tical
zing

work
. A
tem
ates

d on
nsi-

road

638 R. Liu and J. Lee

domain related to this work is text mining [1,6] and machine learning [2]. A compre-
hensive survey of techniques in this domain is provided by [1]. In our work, we
adapted Vector Space Model to calculate relevancy score between incidents. Another
technique used by our work is co-occurrence networks, which represent the collective
interconnection of terms based on their paired presence within a specified unit of text
[1]. We apply this concept to automatically learn keyword dependency as domain
knowledge.

6 Concluding Remarks and Future Work

IT incident management, which ensure high levels of service quality and availability,
is a significant challenge primarily because enterprises often maintain many applica-
tions in shared dynamic IT environments. In this paper, we present a new approach to
diagnosing application incidents by effectively searching for relevant co-occurring
and reoccurring incidents. We designed a hybrid search engine that finds relevant
incidents in both structured and unstructured formats. These relevant incidents togeth-
er reveal underlying patterns of incidents and then provide SMEs insights into inci-
dent causes and resolution. We implemented this approach and evaluated its
performance in terms of search accuracy. The pilot test shows that this approach is
reasonably effective in discovering relevant incidents. Our future work is to develop
predictive modeling capability based on relevant incidents discovered. We also plan
to enhance its root cause analysis capability with a richer set of test data and test
cases.

References

1. Berry, M.W., Castellanos, M.: Survey of Text Mining I: Clustering, Classification, and Re-
trieval, 2nd edn. Springer (2007)

2. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
3. IBM Content Analytics with Enterprise Search, http://www-

01.ibm.com/software/ecm/content-analytics/bundle.html
4. ITIL Incident Management - The ITIL Open Guide,

http://www.itlibrary.org/index.php?page=Incident_Management
5. Lenchner, J., Rosu, D., Velasquez, N.F., Guo, S., Christiance, K., DeFelice, D., Deshpande,

P.M., Kummamuru, K., Kraus, N., Luan, L.Z., Majumdar, D., McLaughlin, M., Ofek-
Koifman, S., Deepak, P., Perng, C.-S., Roitman, H., Ward, C., Young, J.: A service delivery
platform for server management services. IBM Journal of Research and Development 53(6),
792–808 (2009)

6. Rodriguez-Castro, B., Glaser, H., Carr, L.: How to Reuse a Faceted Classification and Put It
on the Semantic Web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 663–678.
Springer, Heidelberg (2010)

7. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Commu-
nications of the ACM 18(11), 613–620 (1975)

8. Van Bon, J., Verheijen, T.: Frameworks for IT Management. Van Haren Publishing (2006)
ISBN 9789077212905

9. Zhang, S., Cohen, I., Goldszmidt, M., Symons, J., Fox, A.: Ensembles of models for auto-
mated diagnosis of system performance problems. In: DSN 2005, Yokohama, Japan (2005)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 639–647, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Association Probability Based Noise Generation
Strategy for Privacy Protection in Cloud Computing

Gaofeng Zhang1, Xuyun Zhang2, Yun Yang3,1,∗, Chang Liu2, and Jinjun Chen2

1 Faculty of Information and Communication Technologies
Swinburne University of Technology, Hawthorn, Melbourne, Australia 3122

{gzhang,yyang}@swin.edu.au
2 Faculty of Engineering and Information Technology

University of Technology, Sydney, Broadway, NSW, Australia 2007
(Xuyun.Zhang,Chang.Liu,Jinjun.Chen)@uts.edu.au

3 School of Computer Science and Technology, Anhui University, Hefei 230039, China

Abstract. Cloud computing allows customers to utilise IT services in a pay-as-
you-go fashion to save huge cost on IT infrastructure. In open cloud, ‘malicious’
service providers could record service data from a cloud customer and collectively
deduce the customer’s privacy without the customer’s permission. Accordingly,
customers need to take certain actions to protect their privacy automatically at
client sides, such as noise obfuscation. For instance, it can generate and inject
noise service requests into real ones so that service providers are hard to
distinguish which ones are real. Existing noise obfuscations focus on concealing
occurrence probabilities of service requests. But in reality, association
probabilities of service requests can also reveal customer privacy. So, we present
a novel association probability based noise generation strategy by concealing
these association probabilities. The simulation comparison demonstrates that this
strategy can improve the effectiveness of privacy protection significantly from the
perspective of association probability.

Keywords: Cloud service, Privacy protection, Noise generation, Association
probability.

1 Introduction

Cloud computing is positioning itself as a promising and market-oriented service
platform for delivering information infrastructures and resources [1]. Customers can
use these services in a pay-as-you-go fashion while saving huge capital investments
on their own IT infrastructures. However, cloud customers may concern about their
privacy since they do not have much direct control inside the cloud [2]. So, privacy
protection about service is critical as one of the most important research issues in
cloud computing.

In cloud environments, there are many organisations which operate under various
regulations to protect their customers’ privacy. Meanwhile, many ‘malicious’ and

∗ Corresponding author.

640 G. Zhang et al.

unknown service providers could exist in these open and virtualised environments.
Such service providers may collect service data from customers, and then deduce
customers’ privacy for unauthorised utilisation. And openness and virtualised features
make it hard to distinguish them from these complex processes, especially in
automated service compositions [3].

Therefore, cloud customers have to take certain technical actions to protect their
privacy automatically at client sides without involving service providers. Compared to
existing service-side privacy protection approaches [4, 5], noise obfuscation can match
the scenario in this paper. It can inject noise service data into real service data
automatically to conceal real data on customers’ own, such as service requests,
communication logs and so on. A historical probability based noise generation
strategy (HPNGS) can improve the efficiency of noise obfuscation by past occurrence
probabilities [6]. And time-series patterns [7] can improve the effectiveness of
privacy protection based on HPNGS. In general, current noise obfuscation primarily
focuses on concealing occurrence probabilities, and the goal of existing noise
obfuscation is that the variance of all occurrence probabilities is as small as possible.

But in reality, privacy is of different varieties. In cloud, there could be various
kinds of sensitive data which can be deduced from service data as customer privacy,
for example, not only ‘real’ service requests in noise injected service request queues,
but also association rules among ‘real’ service requests. If two requests are associated
by association rules: after one request sent by one customer, then the other has a high
probability to be sent sequentially. It could be a distinctive behaviour pattern of this
customer, and customers’ behaviour patterns or their identities could be revealed
accordingly. Hence, it is a serious privacy risk.

In this paper, the main goal of noise obfuscation is that the variance of all
association probabilities among service requests is as small as possible. So, we need
to analyse association probabilities of past real service requests, and generate noise
service requests which can conceal association rules by making association
probabilities about the same, and these ‘novel’ noise service requests can protect
customers’ privacy as an improvement of privacy protection. Based on this, we
present a novel association probability based noise generation strategy (APNGS).

The remainder of the paper is organised as follows. In Section 2, we present the
association probability based noise generation strategy (APNGS). Then, in Section 3,
we perform a simulation to demonstrate that APNGS can improve the effectiveness of
privacy protection significantly. Finally in Section 4, we conclude our contributions
and point out future work.

2 Novel Association Probability Based Noise Generation
Strategy

Concealing association probabilities is the goal of privacy protection in this paper,
and APNGS focuses on how to model, analyse and conceal these association
probabilities. In this section, we firstly discuss association probability based noise
injection model to support APNGS. Then, we present association probability model
for noise generation. After that, we discuss two key issues of noise generation—noise
generation probabilities and noise injection intensity. Lastly, we propose APNGS.

 An Association Probability Based Noise Generation Strategy 641

2.1 Association Probability Based Noise Injection Model

The noise injection model is based on other existing representative noise injection
models [6-8] with some modifications to support APNGS as depicted in 47HFig. 1.

QR: queue of customer’s real service requests to be protected.
QN: queue of ‘noise’ service requests to be injected in QR.
QS: queue of final service requests composing of QR and QN.
Q : a common set of QR, QS and QN. And Q={q1,q2,…,qi,…,qn}.
ε: probability for injecting QN

into QR,]1,0[∈ε . It is the noise injection intensity.

ε

Fig. 1. Association probability based noise injection model

‘Association probabilities’: they are the basis of this strategy and guide noise
generations. ‘Noise generation’: its function is to generate QN. We use ‘Association
probabilities’ and ‘Counter’ to get noise generation probabilities in APNGS.

The overall working process of the model is to inject QN
into QR based onε , and

QS
is the result. The model can be described as follows: the customer generates a real

service request queue QR to be sent. The noise service request queue QN
is generated

by APNGS. To obtain QS, a switch function is: the next service request in QS
comes

from QN on the probability of ε, and from QR on the probability of 1-ε. Suppose qi is
an item of Q and P(QR=qi)(t), P(QN=qi)(t)

and P(QS=qi)(t)
are occurrence

probabilities of qi
in QR, QN

and QS at time t, respectively.

2.2 Association Probability Model for Noise Generation

In this part, we investigate how to obtain association probabilities from service
request queues in this association probability model for noise generation.

To define these association probabilities, we have:
)(RAP QfAP = (1)

In equation (1), AP denotes association probabilities, and it is an n×n matrix. Each
item in this matrix AP[i,j] is association probability between qi

and qj.
Sliding window is the key and widely used approach to analyse information in a

data stream or queue [9]. In this paper, we use a minimised and fixed sliding window
to generate association probabilities. As a basic form of sliding windows, a minimised
and fixed sliding window can aid to analyse data streams in terms of basic features.
So, we obtain the association probability model for noise generation:

1
)(

],[
,

−
=

t

QCon
jiAP R

ji
 (2)

642 G. Zhang et al.

In equation (2), Coni,j(QR) is the number of events that qi
and qj are sent together in

QR. Under minimised and fixed sliding windows, this event is that qj
is immediately

next to qi as a consequential relation in QR. And we use time length t-1 as the
denominator to normalise the equation. In some specific privacy protection situations,
sliding window can be dynamic to withstand some specific privacy risks, such as side
channel knowledge on it, or particular timestamps in request queues. In other words,
sliding window is the changing key in noise obfuscation to protect privacy in cloud
environments. And as a basic form, minimised and fixed sliding windows adopted in
this paper can be easily modified to match specific noise obfuscations.

2.3 Association Probability Based Noise Generation

In this part, we discuss two key issues in noise generation—noise generation
probabilities and noise injection intensity. Suppose noise generation probabilities are

],1[),)((nitqQP iN ∈∀= which means that for Qqi ∈∀ , probabilities of QN being qi
at time t, respectively. Noise injection intensity is ε which is introduced earlier.

1) Noise generation probabilities

In HPNGS [6], noise generation probabilities are:

1

)(
)(,

−×
=−

==∀
Mn

qQPM
qQPi iR

iN
 (3)

From equation (3), in)(, iR qQPi =∀ , the highest one is }),({ iqQPMAXM iR ∀== ,

which is historical and accumulative data from past QR in practice as depicted in Fig.
1, just like P(QR=qi). And n is the number of qi.

Besides, from Section 1 and [6], existing strategies have the same noise generation
goal: nqQPi iS 1)(, ==∀ . So, on the basis of equation (2), we get the noise

generation goal in APNGS:

ntqQtqQPjitQPtji jSiSS 1)])((|)1)([(),,1,(,,, ==+==+∀

(4)

In equation (4), the noise generation goal is a family of conditional probabilities to
express the probability of QS

being qi
at time t+1, on the precondition of QS

being qj at previous time t. Besides, we have],1[, nji ∈ and],1[Tt ∈ , and T is the time length

of the overall process.
To realise equation (4), we can utilise new noise generation probabilities in equation
(5) on the basis of equation (3):

1),(

),,,(),(
)])((|)1)([(

−×
−

==+=
jtMn

jitQPjtM
tqQtqQP R

jSiN

(5)

In equation (5), we have two components: equation (6) and equation (7):

)])((|)1)([(),,1,(tqQtqQPjitQP jSiRR =+==+ (6)

 An Association Probability Based Noise Generation Strategy 643

})],)((|)1)([({),1(itqQtqQPMAXjtM jSiR ∀=+==+

(7)

In equation (6), P(QR,t+1,i,j) is a family of conditional probabilities to express the
probability of QR being qi

at time t+1, on the precondition of QS
being qj

at time t.
In equation (7), M(t+1,j) is the highest value, for every i, in a family of conditional

probabilities to express the probability of QR being qi
at time t+1, on the precondition

of QS
being qj

at previous time t.
It is clear that equation (6) is the basis of equation (7). So, we only need to focus on

equation (6) for association probabilities among service requests introduced before.
To obtain equation (6), we design a process on the basis of equation (2): this is an

accumulative process. 3-dimension matrix Matrix(i,j,t) has three parameters: t is time
parameter, i is from (QR=qi)(t+1)

which means an event that the ith request in the set

Q will appear in QR at time t+1, j is from (QS=qj)(t) which means an event that the jth
request in Q appears in QS

at time t. So, Matrix(i,j,t) means all past association
relations among service requests qi

and qj at time t. At a specific time, 2-dimension
array C[i][j] can replace Matrix(i,j,t). We should collect all requests from time 1 to
time t, and get accumulative C[i][j]. So, P(QR,t,i,j)=Matrix(i,j,t)/SUM, Where SUM is
the number of all association relations among past requests. This presents the
implementation of association probability model.

2) Noise injection intensity

According to the association probability based noise injection model defined earlier,
to operate noise injection processes, ε is a necessary parameter.

From noise injection model and [6], we can get the relation among QS, QN
and QR:

)j,i,t,Q(P)j,i,t,Q(P)1()j,i,t,Q(P NRS ×+×−= εε

 (8)

There are two components in equation (8): P(QN,t,i,j) and P(QR,t,i,j). So, we have
equation (9) based on equations (6) and (4):

)])((|)1)([(),,1,(,,, tqQtqQPjitQPtji jSiNN =+==+∀

(9)

In equation (9), it is clear that the conditional probability of QS

being qi
at time t+1 on

the precondition of QS
being

qj

at previous time t is decided by the conditional
probability of QR being qi at time t+1 on the precondition of QS

being

qj

at previous
time t , the conditional probability of QN

being qi at time t+1 on the precondition of
QS

being

qj

at previous time t, and ε. So, we get ε by equations (8) and (4):

)j,1t(Mn

1
1

)j,i,1t,Q(P
1)j,1t(Mn

)j,i,1t,Q(P)j,1t(M

)j,i,1t,Q(P
n

1

)1t(

R
R

R

+×
−=

+−
−+×
+−+

+−
=+ε

10)

It is obvious that equation (5) and equation (10) can make the whole strategy to

reach its goal—equation (4). It can address the serious risk identified in Section 1.

644 G. Zhang et al.

2.4 Association Probability Based Noise Generation Strategy

RQ

SQ

)}1()],)((|)1)([({ +=+= ttqQtqQPQ jSiNN ε

ε SQ

RQ

S

jiC
tqQtqQPjitQP jSiRR

]][[
)])((|)1)([(),,1,(==+==+

1),(

),,,(),(
)])((|)1)([(

−×
−==+=

jtMn

jitQPjtM
tqQtqQP R

jSiN

),,,(jitQP R }),,,,({),(ijitQPMAXjtM R ∀=

),(

1
1)1(

jtMn
t

×
−=+ε

)}1()],)((|)1)([({ +=+= ttqQtqQPQ jSiNN ε

),,,(jitQP R

RQ

Algorithm 1. APNGS: Association probability based noise generation strategy

In this part, we present APNGS. In Algorithm 1, we utilise n×n+1 counters to
record the matrix and the sum of association relations among requests in Step 1. From
equation (5), we can generate noise generation probabilities in Step 2. About noise
injection intensity, equation (10) can obtain it in Step 3. At last, we can execute the
noise injection processes in Step 4.

In summary, we can find out that the major improvement between APNGS’s noise
generation goal updating: replacing nqQPi iS 1)(, ==∀ by njitQPtji S 1),,,(,,, =∀ .

Hence, APNGS can perform better in privacy protection situations considering
association probabilities than existing noise generation strategies.

3 Evaluation

In this section, we perform an experimental simulation in our cloud simulation system
called SwinCloud [10]. The simulation process is primarily to compute and compare
the effectiveness of privacy protection between APNGS and HPNGS directly, and we
discuss comparisons about other existing strategies: TPNGS [7] and random generation
[8], too. Before the simulation, we generate a service queue as the real service queue
from a set with a size of 10 randomly to operate two strategies.

We use a function: Var_Ass(Strategy, t) to express the main effectiveness of
privacy protection on noise obfuscation to compare two strategies. And
Var_Ass(Strategy, t) means that the variance of association probabilities in QS under
Strategy protected at time t. In other words, time t can express the size of QR. Besides,
we also use Var(Strategy, t) to denote the variance of occurrence probabilities in QS

 An Association Probability Based Noise Generation Strategy 645

Fig. 2. Effectiveness comparison on association
probability between HPNGS and APNGS

Fig. 3. Effectiveness comparison on occurrence
probability between HPNGS and APNGS

Fig. 4. Comparison on noise injection intensity between HPNGS and APNGS

with Strategy operating at time t. It denotes another aspect of the effectiveness of
privacy protection.

HIn 49HFig. 2, the horizontal coordinate is time t, and t has a range of [1, 6001]; the
vertical coordinate is Var_Ass. And if Var_Ass is lower, the effectiveness of privacy
protection is better, so customer privacy is better kept. We can find out the overall
trend being: with time passing, both of them keep on decreasing. Obviously,
Var_Ass(APNGS,t)is about ¼ to ½ of Var_Ass(HPNGS,t). So, APNGS achieves a
significant improvement on the effectiveness of privacy protection on noise
obfuscation over HPNGS, in terms of association probability.

In Fig. 351H, we find out that Var(APNGS,t) can keep within a low level of about
2.00e-05, and is lower than Var(HPNGS,t) which is about 3.00e-05. So, APNGS has
better effectiveness of privacy protection on noise obfuscation in terms of occurrence
probability than HPNGS. That is because association probabilities can consider more
details of data queues than occurrence probabilities to keep service requests balance.

At last, the cost of noise obfuscation should also be considered by the noise
injection intensity. In 52HFig. 4, ε of APNGS is about 1.5 to 1 times more than ε of
HPNGS with time passing. It means that APNGS costs more than HPNGS. So, to
obtain better effectiveness of privacy protection, customers have to pay more. It is a
trade-off depending on customers’ demands.

About other typical noise generation strategies, such as random generation [8] and
TPNGS [7], APNGS also performs well: HPNGS has already improved efficiency of

646 G. Zhang et al.

privacy protection from random generation with similar effectiveness. TPNGS still
focuses on fluctuations of occurrence probabilities, and association probabilities are
not incorporated.

In summary, APNGS can significantly improve the effectiveness of privacy
protection on noise obfuscation in terms of association probability over existing
representative strategies, with good effectiveness of privacy protection on noise
obfuscation in terms of occurrence probability, at a reasonable extra cost.

4 Conclusions and Future Work

In this paper, we focused on privacy protection and noise obfuscation in cloud
computing. To withstand some malicious service providers which are interested in
association information among service requests, we analysed association probabilities
in request queues and concealed them by noise obfuscation. Hence, we proposed a
novel association probability based noise generation strategy (APNGS). The
evaluation demonstrated that APNGS could significantly improve the effectiveness of
privacy protection on noise obfuscation in terms of association probabilities, at a
reasonable extra cost, in comparison to existing representative strategies.

Based on our current work, we plan to further investigate how to protect privacy in
multiple malicious providers.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th
Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

2. Ryan, M.D.: Cloud Computing Privacy Concerns on Our Doorstep. Communications of
the ACM 54(1), 36–38 (2011)

3. Ren, K., Liu, X., Chen, J., Xiao, N., Song, J., Zhang, W.: A QSQL-based Efficient
Planning Algorithm for Fully-automated Service Composition in Dynamic Service
Environments. In: 2008 IEEE International Conference on Service Computing (SCC
2008), pp. 301–308. IEEE Press (2008)

4. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting Privacy Breaches in Privacy Preserving
Data Mining. In: 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2003), pp. 211–222. ACM, Madison (2003)

5. Bu, Y., Fu, A., Wong, R., Chen, L., Li, J.: Privacy Preserving Serial Data Publishing by
Role Composition. In: 34th Internationasl Conference on Very Large Data Bases (VLDB
2008), pp. 845–856 (2008)

6. Zhang, G., Yang, Y., Chen, J.: A Histrotical Probability based Noise Generation Strategy
for Privacy Protection in Cloud Computing. Journal of Computer and System
Sciences 78(5), 1374–1381 (2012)

7. Zhang, G., Yang, Y., Liu, X., Chen, J.: A Time-Series Pattern based Noise Generation
Strategy for Privacy Protection in Cloud Computing. In: 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), pp. 458–465. IEEE
Press, New York (2012)

 An Association Probability Based Noise Generation Strategy 647

8. Ye, S., Wu, F., Pandey, R., Chen, H.: Noise Injection for Search Privacy Protection. In:
2009 International Conference on Computational Science and Engineering (CSE 2009),
pp. 1–8. IEEE Press, New York (2009)

9. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data
Stream Systems. In: 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2002), pp. 1–16. ACM, Madison (2002)

10. Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., Yang, Y.: A Compromised-time-cost
Scheduling Algorithm in SwinDeW-C for Instance-intensive Cost-constrained Workflows
on a Cloud Computing Platform. International Journal of High Performance Computing
Applications 24(4), 445–456 (2010)

ARIMA Model-Based Web Services

Trustworthiness Evaluation and Prediction

Meng Li1,2, Zhebang Hua1,2, Junfeng Zhao1,2,�,
Yanzhen Zou1,2, and and Bing Xie1,2

1 Software Institute, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

2 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, China

{limeng09,huazb12,zhaojf,zouyz,xiebing}@sei.pku.edu.cn

Abstract. As most Web services are delivered by third parties over
unreliable Internet and are late bound at run-time, it is reasonable and
useful to evaluate and predict the trustworthiness of Web services. In
this paper, we propose an ARIMA model-based approach to evaluate
and predict Web services trustworthiness. First, we evaluate Web services
trustworthiness with comprehensive trustworthy evidences collected from
the Internet on a regular basis. Then, the cumulative trustworthiness
evaluation records are modeled as time series. Finally, we propose an
ARIMA model-based multi-step Web services trustworthiness prediction
process, which can automatically and iteratively identify and optimize
the model to fit the trustworthiness series data. Experiments conducted
on a large-scale real-world data set show that our method can effectively
evaluate and predict the trustworthiness of Web services, which helps
users to reuse Web services.

1 Introduction

There are more and more reusable Web services available on the Internet. How-
ever, as most Web services are provided and/or hosted by third parties over
unreliable Internet, it is useful to evaluate and predict the trustworthiness of
Web services [1]. Many approaches have been proposed to evaluate the trust-
worthiness of Web services.

There are several problems with previous approaches. First, there are two
kinds of trustworthy evidences: namely objective trustworthy evidences (e.g.
QoS attributes) and subjective trustworthy evidences (e.g. reputation) [2, 3].
Most of previous approaches rely on only one kind of evidences, while it is
more reasonable to take both kinds into consideration [3–5]. Second, while most
previous approaches focus on the current or past trustworthiness of a service,
it is reasonable and useful to evaluate and predict the trustworthiness of Web
services in the (near) future [6, 7]. Third, previous prediction approaches like [8,

� Corresponding Author

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 648–655, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ARIMA Model-Based Web Services Trustworthiness 649

9] adopt collaborative filtering methods to make prediction, which are based on
centralized portals to collect users’ usage information. However, without proper
incentive schemes, users are not motivated to provide feedbacks, and centralized
portals like UDDI repositories are shut down or seldom updated [5].

In this paper, basing on classic time series theory, we propose an ARIMA
model-based approach to evaluate and predict the trustworthiness of Web ser-
vices. First, we evaluate Web services trustworthiness with comprehensive trust-
worthy evidences collected from the Internet on a regular basis. Then, the cumu-
lative trustworthiness evaluation records are modeled as time series. Finally, we
propose an ARIMA model-based multi-step Web services trustworthiness pre-
diction process, which can automatically and iteratively identify and optimize
the model to fit the trustworthiness series data. Experiments conducted on a
large-scale real-world data set show that our method can effectively evaluate
and predict the trustworthiness of Web services, which helps users to reuse Web
services.

The contributions of this paper are as follows:

– We propose a novel and practical method to evaluate and predict Web ser-
vices trustworthiness, which is based on classic time series analysis theories.

– The effectiveness of our approach has been validated with experiments con-
ducted on a large-scale real-world data set. The results of our approach has
been used in real systems, including CoWS1 and TSR2.

– The data set, including 17,832 Web services and millions of trustworthy evi-
dences, is publicly available. This is the largest Web service trustworthiness
evaluation and prediction data set to the best of our knowledge.

2 Related Work

2.1 Trustworthiness Evaluation and Prediction Methods

Many approaches have been proposed to evaluate Web services trustworthiness.
E.M. Maximilien et al.[10] propose an decision theory-based approach. Z. Malik
and A. Bouguettaya [11] propose a set of decentralized techniques to evaluate
trustworthiness with users feedbacks. As most Web services are delivered by
third parties over unreliable Internet, it is reasonable and useful to predict the
trustworthiness of Web services in the future. Collaborative filtering-based pre-
diction, e.g. [9] and [8], is a widely used prediction method. Another important
category of prediction methods is based on time series analysis theories, which
include [7] and [6], etc. There are several problems with previous approaches,
which has been discussed in Sect. 1.

2.2 Time Series Analysis

Time series analysis have been widely applied in diverse fields including econo-
metrics, mathematical finance, signal processing, etc. A time series can be defined

1 http://www.cowebservices.com
2 http://tsr.trustie.net

650 M. Li et al.

as a sequence of random variables indexed according to the order they are ob-
tained in time [12]. Generally, the time series can be classified into two groups:
stationary time series and non-stationary time series [12].

Time series prediction, also named as time series forecasting, is one of the
most important parts of time series analysis. Different prediction strategies may
be applied. Autoregressive moving average (ARMA) model and autoregressive
integrated moving average (ARIMA) model are used to fit and forecast station-
ary and non-stationary time series respectively. ARIMA model can be converted
to ARMA model by differencing.

3 Approach

There are three main steps in our approach: Internet-based trustworthy evi-
dences collection, trustworthiness evaluation, and trustworthiness prediction.

3.1 Internet-Based Trustworthy Evidences Collection

We apply different strategies to collect comprehensive trustworthy evidences
from the Internet. Both objective evidences (e.g. QoS attributes) and subjective
(e.g. reputation) evidences are collected. We implement a third-party QoS mon-
itor to collect objective evidences on a regular basis. To collect subjective trust-
worthy evidences, we apply both focused crawl and open search-based approach
to collect users feedbacks including ratings, comments and relevant comment
segments (RCS) [2]. These feedbacks are used to calculate a services reputation
separately. For more details about trustworthiness evidences collection, we refer
readers to our previous work [2, 13].

3.2 Trustworthiness Evaluation

We use a light-weight mathematical model to represent the collected evidences.
All the trustworthy evidences of a service are represented as a vector. Then the
trustworthy evidences of all Web services can be represented as a trustworthy
evidence matrix (E):

E =

⎛
⎜⎜⎜⎝
e1,1 e1,2 . . . e1,t
e2,1 e2,2 . . . e2,t
...

...
. . .

...
es,1 es,2 . . . es,t

⎞
⎟⎟⎟⎠ (1)

where each row of matrix E is a services trustworthy evidences, and each column
is a kind of evidence.

The preferences of trustworthy evidences are represented as a weight vector
W = 〈w1, w2, . . . , wt〉,

∑t
1 wt = 1. After normalization, the trustworthiness of

each Web service can be evaluated as follows:

T = WT ∗ E∗ (2)

where E∗ is the normalized trustworthy evidence matrix; WT is the transforma-
tion of the weight vector; ti is the i-th services trustworthiness within [0, 1].

ARIMA Model-Based Web Services Trustworthiness 651

3.3 Trustworthiness Prediction

A service’s cumulative history trustworthiness records are represented as a time
series ti. Then we propose an ARIMA model-based multi-step Web services
trustworthiness prediction process which includes four main steps (Fig. 1).

Fig. 1. Relationships of the steps of trustworthiness prediction

In model identification, we identify an appropriate time series model for
a given trustworthiness series in the following sub steps: (1) Stationarity Test:
Our method use sample Autocovariance Function (ACF) [12] to test whether a
times series is a stationary series. (2) Differencing: If the series is identified as
non-stationary in stationary test, it can be converted to a stationary series by
differencing. (3) White Noise Test: We have to test whether the series is a white
noise series, which is not worth any further analysis. The test is carried out using
ACF. If the series is a white noise series, the ACF for any lag is always zero.
(4) Pattern Identification: There are several specific patterns for ARMA model
(shown in Table 1). By computing and comparing the ACF and PACF (Partial
Autocorrelation Function) [12], it is possible to identify the exact pattern for the
time series that passes the white noise test.

Table 1. Patterns for ARMA

ACF PACF

AR(p) Tails off Cuts off after lag p
MA(q) Cuts off after lag q Tails off
ARMA(p, q) Tails off Tails off

In model fitting, we try to find possible estimates of the unknown param-
eters within the identified model. For ARIMA(p, d, q) model, there are three
parameters to be determined: d is the number of differences to convert a non-
stationary series into a stationary one; p and q can be determined by detecting
the behaviors of ACF and PACF. For ARMA(p, q) model, p and q are deter-
mined same as in ARIMA(p, d, q) model.

In model diagnostics, we try to determine the best estimates of the pa-
rameters. First, the successive satisfying lags (10 at most) are used to construct

652 M. Li et al.

different ARMA or ARIMA models. Second, these models are applied back to
the data itself. Third, residual test [12] is carried out to check whether a model is
significant. If the residual series is a white noise series, the model is significant;
otherwise, it is not. If all the models are not significant, we return to the model
identification step. Finally, we use minimized sum of squares of errors to auto-
matically determine the best estimates of the parameters from the remaining
significant models.

In trustworthiness prediction, we use the finally accepted model to predict
the trustworthiness in the near future for a given Web service. In this research,
the trustworthiness values (with plus and minus one standard error) in next five
days are predicted, which will be demonstrated in Sect. 4.

4 Evaluation

By applying the Internet-based trustworthy evidences collection method, we
managed to collect trustworthy evidences for 17,832 public Web services. The ev-
idences included over 2 million objective trustworthy evidences, and over 33,000
subjective trustworthy evidences, which is the largest Web services trustworthi-
ness data set to the best of our knowledge. We conducted several experiments
on this data set to validate the effectiveness of our approach.

4.1 Case Study

First, we use a real case to demonstrate the approach proposed and its effective-
ness. CDYNE IP2Geo3 Web Service is a Web service that resolves IP address to
geographic information including Network Owner Name, City, State/Province,
and Country. The result of trustworthiness evaluation and prediction is shown in
Fig. 2. We can see that most of the history values fall in two standard errors and
are very close to the predicted values, which demonstrates that our method can
effectively model the Web services trustworthiness data and predict the trust-
worthiness values. Due to the length limitation of the paper, more details of the
case study are available at CoWS4.

4.2 Trustworthiness Prediction Validation

In this subsection, we further studied the effectiveness of the method. We ran-
domly selected 500 Web services from the total 17,832 collected Web services.
Then we applied the prediction process on these Web services. The results
showed that about 87.95% of the 500 sample Web services trustworthiness se-
ries were identified as non-stationary time series and ARIMA models were ap-
plied; the remaining 12.05% were stationary time series and ARMA models
were applied. And most (about 99%) of the non-stationary trustworthiness series
were converted to stationary ones by conducting differencing on the data once.

3 http://ws.cdyne.com/ip2geo/ip2geo.asmx?wsdl
4 http://www.cowebservices.com/CoWS/trust/trustIndex.jsp

ARIMA Model-Based Web Services Trustworthiness 653

Fig. 2. Case of Web service trustworthiness evaluation and prediction: abscissa axis
represents the sequence of date; vertical axis represents the trustworthiness value; *
marks real values; the solid (middle) line marks the predicted vales; the dashed (up
and low) lines mark two standard errors.

About 96.5% of the determined prediction models were significant, and the values
predicted with these models were acceptable.

4.3 Trustworthiness Application Validation

In this subsection, we validated whether the trustworthiness evaluation and pre-
diction results were useful to help developers to reuse Web services. The latest
predicted trustworthiness values were applied in CoWS to refine and rank the
service candidates as follows:

Scorei = γ ∗ simi + (1 − γ) ∗ ti (3)

where simi is a Web services functional similarity to the users query [2]; ti is the
predicted trustworthiness value of the service candidate; γ ∈ [0, 1] is the weight
and assigned to 0.5 in this experiment.

We designed a web interface as shown in Fig. 3 to compare the results returned
by CoWS with and without trustworthiness, and executed ten most common
queries(listed in [2]) in CoWS. Fifteen graduate students with lots of experiences
of reusing Web services were invited to manually explore and grade the results
returned by CoWS for each query. The services were graded one of the following
values: 2 for services similar to the search query and with high trustworthiness; 1
for services similar to the search query but with low trustworthiness; 0 for other
services.

We used top-k Discounted Cumulative Gain (DCGk) to measure a search
engines ability to rank the good results before bad ones.

DCGk = gv1 +

k∑
i=2

gvi
log2i

(4)

654 M. Li et al.

Fig. 3. Web interface to comparing the results with and without trustworthiness

where gvi is the value of a search result graded by the graduate students. Top-5
DCG, top-10, and top-15 DCG were calculated, and the results were shown in
Fig. 4. From the results we can see that Web services with higher trustworthiness
were ranked toper in the result list, which would help developers to select and
reuse Web services.

Fig. 4. DCG performance with and without trustworthiness

5 Conclusion

In this paper, we propose an ARIMA model-based approach to evaluate and
predict Web services trustworthiness. Experiments conducted on a large-scale
real-world data set show that our method can effectively evaluate and predict
the trustworthiness of Web services, which helps users to reuse Web services.

In our future work, we will try to find and collect diverse kinds of trustworthy
evidences, improve the trustworthiness evaluation and prediction method, and
apply the trustworthiness in more scenarios.

ARIMA Model-Based Web Services Trustworthiness 655

Acknowledgment. This research was sponsored by the National Basic Re-
search Program of China under Grant No. 2009CB320703; the National Natural
Science Foundation of China under Grant No. 61121063, No. 60803011, No.
61103024, No. 61003072; National Department Public Benefit Research Founda-
tion under Grant No. 2012-10256; Key National Science & Technology Specific
Projects under Grant NO. 2011ZX01043-001-002; the High-Tech Research and
Development Program of China, Grant No. 2012AA011202; Research & Produc-
tion Combined Project of Guangdong Prov., No. 2010A090200031.

References

1. Zhang, J., Zhang, L., Chung, J.: Ws-trustworthy: a framework for web services
centered trustworthy computing. In: Proceedings of the 2004 IEEE International
Conference on Services Computing, SCC 2004, pp. 186–193. IEEE (2004)

2. Li, M., Zhao, J., Wang, L., Cai, S., Xie, B.: Cows: An internet-enriched and quality-
aware web services search engine. In: IEEE International Conference on Web Ser-
vices, ICWS 2011, pp. 419–427. IEEE (2011)

3. Al-Masri, E., Mahmoud, Q.: Understanding web service discovery goals. In: IEEE
International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 3714–
3719. IEEE (2009)

4. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and
reputation. In: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, HICSS 2002, pp. 2431–2439. IEEE (2002)

5. Zhang, Y., Zheng, Z., Lyu, M.: Wsexpress: A qos-aware search engine for web
services. In: IEEE International Conference on Web Services, ICWS 2010, pp. 91–
98. IEEE (2010)

6. Godse, M., Bellur, U., Sonar, R.: Automating qos based service selection. In: IEEE
International Conference on Web Services, ICWS 2010, pp. 534–541. IEEE (2010)

7. Solomon, A., Litoiu, M.: Business process performance prediction on a tracked
simulation model. In: Proceeding of the 3rd International Workshop on Principles
of Engineering Service-Oriented Systems, pp. 50–56. ACM (2011)

8. Chen, L., Feng, Y., Wu, J., Zheng, Z.: An enhanced qos prediction approach for
service selection. In: IEEE International Conference on Services Computing, SCC
2011, pp. 727–728. IEEE (2011)

9. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized qos prediction
forweb services via collaborative filtering. In: IEEE International Conference on
Web Services, ICWS 2007, pp. 439–446. IEEE (2007)

10. Maximilien, E., Singh, M.: Toward autonomic web services trust and selection. In:
Proceedings of the 2nd International Conference on Service Oriented Computing,
pp. 212–221. ACM (2004)

11. Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establish-
ment among web services. The VLDB Journal 18(4), 885–911 (2009)

12. Shumway, R., Stoffer, D.: Time series analysis and its applications. Springer (2000)
13. Wang, L., Liu, F., Zhang, L., Li, G., Xie, B.: Enriching descriptions for public

web services using information captured from related web pages on the internet.
In: Fifth IEEE International Symposium on Service Oriented System Engineering,
SOSE 2010, pp. 141–150. IEEE (2010)

Analyzing Coopetition Strategies
of Services within Communities

Babak Khosravifar1, Mahsa Alishahi2, Ehsan Khosrowshahi Asl2, Jamal Bentahar2,
Rabeb Mizouni3, and Hadi Otrok3

1 McGill University, Canada
2 Concordia University, Canada

3 Khalifa University, UAE
babak.khosravifar@mcgill.ca,

{m alish,e khosr}@encs.concordia.ca, bentahar@ciise.concordia.ca,
{rabeb.mizouni,hadi.otrak}@kustar.ac.ae

Abstract. Recently, a number of frameworks have been proposed to aggregate
web services within communities for the purpose of enhancing their capabili-
ties with respect to providing the required services. Most of the proposed frame-
works suggest that web services within these communities are competing but also
exhibit cooperative behavior, so web services are said to be coopetitive. How-
ever, deciding which strategy to adopt, which means competing or cooperating
is still an open question. The purpose of this paper is to answer this question
by discussing a mechanism web services can use to effectively choose interact-
ing strategies which bring maximum utility. In this direction, we investigate web
services’ characteristics and their expected utilities over different strategies. We
enable web services that are hosted in communities with reasoning capabilities
to enhance their quality of strategic interacting mechanisms as decision making
procedures. The ultimate objective is to analyze factors that helps web services
decide about different interacting strategies. Moreover, we develop a simulated
environment where we analyze different scenarios and verify the obtained theo-
retical results using parameters from a real web services dataset.

Keywords: Web services, Reputation, Strategies.

1 Introduction

Web services are developed to continuously interact with others that could be different
types of web services or service consumers. Abstracting and associating web services
with knowledge-empowered agents without changing the web services implementation
benefit them from interactions that those agents are able to manage [6,12]. That means
web services are no more considered as simply passive components but as intelligent
entities that enjoy autonomy and selfishness, two significant properties in business set-
tings where competition is a key factor [4,7]. Those web services follow two different
strategies of cooperating or competing towards serving service consumers and increas-
ing their utilities in terms of payoffs. Analyzing web services acting strategies in such
a context in terms of deciding which strategy to choose is an open and challenging

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 656–663, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analyzing Coopetition Strategies of Services within Communities 657

problem. Our main contribution in this paper is to address this problem and enable web
services to cope with strategic decision making in a particular situation.

There are a number of related proposals that take into account the correlation be-
tween web services and the ways these services coordinate their actions to accomplish
a task. In [4,5,9,10], authors propose to rank web services based on their reputation in
the system and to use this ranking as a means to facilitate cooperation of services. In
those models, services rely on one another using the reputation ranking system. There
are other models that facilitate cooperation mechanisms using transaction-based web
services [11] and communities that host and gather web services having similar or com-
plementary functionalities but different QoS parameters [6]. However, deciding about
which strategy to choose when web services are competing but still need to cooper-
ate to accomplish complex tasks is still an open issue. We propose analyzing those
different strategies to help web services in their decision making process when these
web services function within communities. The objective is to enable web services to
reasonably evaluate and decide over their coopetition strategies, which means when to
compete and when to cooperate.

More precisely, we propose a mechanism within which web services in the commu-
nity could choose either to compete for an announced task, or to cooperate with other
competing web services in the same community to accomplish some subtasks of the
announced task. As intelligent entities, web services require a reasoning technique that
enhances their abilities over best acting strategies and the attitude they could exhibit to
yield maximum outcome. In this paper, we implement a simulation environment with a
number of communities hosting a number of web services having parameters extracted
from a real dataset [2]1. This dataset represents 2507 real web services that exist on the
web. It includes the QoS values of 9 parameters including availability, throughput and
reliability. These QoS values were determined by monitoring the web services over a 6
day period. We equip some of those web services with our proposed strategic decision
making procedure and compare the performance of the equipped services against other
ordinary web services. We provide detailed discussions over the implemented environ-
ment and verify the effectiveness of the proposed mechanism.

2 The Proposed Framework

In this section, we first present the architecture of the proposed model. We explore the
characteristics of intelligent web services and their network. We link this architecture
to the implemented system where we investigate the services’ coopetitive attitudes. We
compute the involved system parameters and explain the web services’ interactive strat-
egy profiles by highlighting their coopetitive choices.

2.1 The Architecture

The proposed system consists of three types of autonomous entities with different goals.

1 The implemented environment includes the QWS dataset by Eyhab Al-Masri and Qusay H.
Mahmoud freely available at: www.uoguelph.ca/ qmahmoud/qws.

658 B. Khosravifar et al.

Collaborative
network

Master web
service

Web services
involved in some

collaborations

Competitive
web services

Cooperative
web services

Web services not
involved in any
collaboration

Fig. 1. Web services are partitioned into competitive and cooperative sets. Competitive web ser-
vices may get tasks directly from the master web service and they can share it with other cooper-
ative web services in their collaborative networks.

Web Services that reside inside a community which aggregates a number of function-
ally similar or complementary web services as a group [8]. Within the same community,
each web service has a network consisting of some other web services that might get
involved in a cooperative work (e.g. composition and substitution). As web services
are also competing, particularly when they provide similar functionalities, each one
of them aims to maximize its individual income (i.e. the payoff) by adopting a given
strategy.

Master Web Service is the manager and representative of the community of web ser-
vices. Among other functionalities, the master web service is responsible for allocating
tasks to web services within the community. After the task being accomplished, the
master rewards or penalizes the associated web service with respect to its reputation as
a member of the community.

Users generate tasks with specified QoS. In our proposed system, tasks are continuously
being generated and user satisfaction is abstracted since we focus on web services’
interactive strategies.

Figure 1 illustrates the architecture of a typical community aggregating a number of
web services with different interactive strategies. Some of them compete for the task
where they directly deal with the master. Some others cooperate in the associated task
where they only deal with the competed web service as the task leader and do not
directly interact with the master. We highlight details of the interactive strategies in the
rest of this section. In the proposed system, the master sorts the competing web services
based on some parameters (such as reputation) that we explain in the rest of this section.
If the web service is busy or unwilling to take a given task, the master allocates the task
to the second competing web service in the list. There is a chance that some tasks being
not assigned to any web service. These tasks are accumulated to the task pool to be
allocated in the next task allocation round. Upon allocation of a task, the web service
is responsible to offer the required QoS that is stated in the task being generated by a
consumer. Afterwards, the master rewards or penalizes the competing web service by
upgrading or degrading its reputation according to the offered QoS compared with the
required one.

Analyzing Coopetition Strategies of Services within Communities 659

2.2 System Parameters

Task QoS (T t
QoS) is the required QoS metric for a specific task at time t. Users define

tasks with specific QoS requirements such as response time, availability, and accuracy
[3]. We aggregate and normalize these metrics to a value between 0 and 1.

Web service QoS (QoSt
w) is the QoS provided by the web service w after performing

a task at time t. Again the metrics that contribute in computing this QoS are aggregated
and normalized to a value between 0 and 1. The offered quality might or might not meet
the required task quality T t

QoS . In the latter case, the service user would be disappointed
and a negative satisfaction feedback is expected. In our proposed system, both cases are
considered when calculating the web services’ reputation.

Budget (Bt
w) is the amount of money the web service w has in its disposal at time t,

which helps pay for the community membership fees (ε) and is one of the parameters
that the web service considers when deciding about getting involved in a competition
or not. This parameter has been used in other service computing settings such as [3].

Reputation is a factor in any online community where trust is important. Without any
trust enabling mechanism, users cannot differentiate between services, specially the
ones which offer the same type of service. Reputation mechanisms usually aggregate
users’ experiences and in our case it strongly depends on QoS that each web service
provides. Users define tasks with specific quality T t

QoS ; therefore, after performing a
task with QoSt

w, the reputation of w gets evaluated by the master web service. Reptw
refers to the reputation of w at time t. In Equation 1, we compute the reward that the
master computes considering the task QoS compared with the web service offered qual-
ity QoSt

w. In case the offered quality meets user expectations, the reward value would
be positive. In this system, we consider a small value as default rewards η which the
master considers together with the proportional level of satisfaction as a weighted value
(by υ). In this case, the higher the offered quality is, the more weighted reward is. In
case the offered quality did not meet the user expectations, the reward would be nega-
tive. In this case, we also have a default penalty value ρ (where ρ > η) together with
the weighted proportional difference.

rewardtw =

⎧⎨
⎩
η +

QoSt
w

T t
QoS

+QoSt
w
∗ υ if T t

QoS ≤ QoSt
w;

−(ρ+
T t
QoS

T t
QoS+QoSt

w
∗ υ) otherwise.

(1)

The assigned reputation value is updated by the computed reward value. The computed
reputation of web services is bounded by the minimum and maximum reputation values
0 and 1. Let Γ = Reptw + rewardtw . The updated reputation value is then computed as
follows:

Rept+1
w =

⎧⎪⎨
⎪⎩
Γ if 0 ≤ Γ ≤ 1;

0 if Γ < 0;

1 if Γ > 1.

(2)

Growth Factor is a parameter which declares web services’ performance based on their
recent strategies and activities. Growth factor is relative to web services’ reputation and
QoS. This parameter is the main variable a typical web service uses to decide which
strategy to adopt. We use Equation 3 to compute the growth factor Gt

w of the web

660 B. Khosravifar et al.

service w at time t. The growth factor function should be monotonically increasing
in QoSt

w, Reptw and Bt
w, which is satisfied by the equation and this could be easily

proven by calculating the partial derivatives of this function in 1) QoSt
w; 2) Reptw; and

then 3) Bt
w and show that they are all positive. The contribution of the budget Bt

w in the
calculation of the growth factor should be proportional to the ideal budget βw× t where
the web service receives all the offered tasks during the periods t. The parameter βw
denotes the profit obtained considering the mean received service fee μw and the cost
of community membership ε. The mean service fee depends on the strategy adopted by
the web service because a competitive service receives higher fees μw,CM compared to
a cooperative one μw,CO (μw,CM > μw,CO).

Gt
w =

Reptw +QoSt
w +

Bt
w

t×βw

3
βw = μw − ε, μw ∈ {μw,CM , μw,CO} (3)

2.3 Web Service Interactive Strategies

The main goal of each individual web service is to increase its income (payoff). This
income can be earned from tasks (or requests) done by this web service. In our model,
web services can decide to compete to get a task from the master web service or to coop-
erate with other web services in a given collaborative network (the way a collaborative
network is set by a leader is based on the cooperative web services reputation and their
QoS parameters that should coincide with the required QoS). Therefore, we define two
types of web service strategies. On the one hand, when a web service has higher level of
confidence based on its growth factor, it can compete to get a task from the master and
adopts the competitive strategy. On the other hand, when it has a lower level of confi-
dence that it does not feel able to compete to get a task, the web service waits for some
other peers to cooperate with for completing the task and thus it adopts the cooperative
strategy. Web services estimate the outcome of all the strategies and choose one accord-
ingly. This decision is not static but can change over time so web services can switch
from one strategy to the other and this dynamic attitude is referred to as coopetition.

3 Experimental Results

In this section, we provide an empirical analysis over the observed results regarding the
characteristics of intelligent web services hosted in different communities of web ser-
vices. In the implemented system, we simulate the behaviors of service consumers as
request generators, web services as service providers, and master web services as com-
munity representatives. The objective is to investigate the effectiveness of the proposed
strategic system on intelligent web services’ overall budget. The simulation application
is written in C# using Visual Studio. Developed web services are initialized with values
taken from a real dataset that includes 2507 real web services functioning on the web.
The dataset records the QoS values of 9 parameters including availability, throughput,
and reliability [2].

We start our discussions with cumulative budget comparison regarding different
communities within which services follow different reasoning techniques. Figure 2 part

Analyzing Coopetition Strategies of Services within Communities 661

(a) illustrates three graphs for three different communities. Each community hosts web
services that follow different reasoning techniques: (1) a community that follows the
interactive reasoning techniques presented in this paper (referred to as coopetitive); (2)
a community that follows a random reasoning technique so decisions about selecting
competitive or cooperative strategies are totally random (referred to as random coopet-
itive); and (3) a competitive community where all services follow the competitive strat-
egy (referred to as competitive). The proposed model’s reasoning mechanism enables
services to effectively select their interacting strategies and the obtained budget repre-
sents the best outcome over the strategic decision making procedure they run all the
time. The procedure allows services to make decisions that maximize their utilities, so
that if the web service cannot compete, the procedure would suggest to collaborate,
which is better than competing and failing to obtain the task. In this case (i.e., com-
peting and not getting the task), the service stays idle but still pays the community
membership fee, which means losing utility. The developed strategic decision mak-
ing mechanism leads some web services to follow cooperative strategies that overall
maintain an optimal community budget. In the same figure, we observe the cumulative
budget of a community where services follow random interacting strategies. The out-
come is clearly lower because services at each run randomly decide over their acting
strategies. This potentially influences the community budget because a low quality ser-
vice if randomly selects to follow the competitive strategy, it will fail to get a task. This
kind of strategy selection is totally random while the task allocation algorithm follows
a logical path. The ideal system is the one that analyzes the optimal strategic path and
consistently follows strategies that bring maximum outcome.

Fig. 2. Part (a): Cumulative community budget comparison. Part (b): Average community repu-
tation comparison over different strategic decisions.

The results illustrated in Figure 2 part (a) verify the importance of the strategic deci-
sion making procedure to logically decide over the possible competitive and cooperative
choices. Figure 2 part (b) illustrates communities average reputation of involved web
services. The graphs represent the influence of the rewards that the master web service
imposes to encourage highly capable web services to compete for a task. As for the
cumulative budget, we observe that the coopetitive community outperforms the random
coopetitive and competitive communities in terms of average reputation. The proposed
model’s average reputation increases because web services follow optimal strategies
where they can perform better so obtain higher rewards.

662 B. Khosravifar et al.

In Figure 3 parts (a) and (b), we observe the competitive and cooperative probability
of four different web services where two of them (w1 and w3) are following optimal
strategies (competitive for w1 and cooperative for w3) and the two others (w2 and w4)
are following non-optimal strategies. Over elapsing runs, web services that follow opti-
mal strategies bring best budget. In fact, the master web service rewards the high quality
web service that chooses the competitive strategy, cooperates with other web services
and successfully accomplishes the task. In this system, the reputation regarding such
a web service is increasing over time and the possibility of allocating further tasks is
increasing as well. By increasing the growth factor, such a web service (here shown as
w1) increases the probability of selecting the competitive strategy. On the other hand,
the other web service (here shown as w2) that is incapable of competing is penalized
by the master web service because the offered quality might not meet the required task
quality. Thus, w2 degrades its growth factor by following the competitive strategy. As
intelligent entity, this web service is encouraged to change its strategy to the coopera-
tive one and thus, its probability of selecting the competitive strategy is decreasing over
time. We have similar results in Figure 3 part (b) regarding web services w3 and w4

where unlike w4, w3 is strategically following the cooperative strategy. Therefore, w4

is more seeking the competitive strategy where it can increase its growth factor.

Fig. 3. Competitive and cooperative probabilities regarding four different web services

4 Related Work and Conclusion

Relevant proposals to the model presented in this paper are the ones that address ser-
vice selection and task allocation mechanisms. In many frameworks proposed in the
literature, service selection and task allocation are regulated based on the reputation pa-
rameter [5,11]. In [1], the authors present a dependable framework for cooperative web
services that is based on the tuple space coordination model. The intrusion-tolerant
perspective is emphasized in this paper where several security mechanisms are devel-
oped to enable a reliable coordination system. The proposed frameworks mostly aim
to facilitate the coordination mechanism between web services. However, the opposite
strategy of competing is not analyzed where web services might be more successful
when competing within a same group. In fact, web services are not always willing to
cooperate even if they have some common goals, particularly when they operate within
groups such as communities. In such a context, web services can follow different in-
teracting strategies and have to decide when to compete and when to cooperate so that
their ultimate goal, maximizing their incomes, can be better achieved.

Analyzing Coopetition Strategies of Services within Communities 663

The contribution of this paper is the proposition of a coopetitive strategic model to
analyze the interacting behavior of intelligent web services that are active within com-
munities. We considered two acting strategies where web services expect different sort
of payoffs: (1) competitive strategy where the web service claims that it can accomplish
a task, and therefore can take the responsibility over the service consumer satisfaction;
and (2) cooperative strategy where the web service does not take the responsibility to
accomplish the task and only cooperates with other competitive web services. Our pro-
posed model advances the state-of-the-art in cooperative systems by enabling intelligent
web services to effectively choose their interacting strategies that lead to optimal out-
comes. The proposed framework provides a reasoning technique that web services can
use to increase their overall obtained utilities. As future work, we plan to emphasize
the service consumer role in the proposed model to obtain more accurate results when
consumers post their service satisfaction feedback. Moreover, we would like to enhance
the reasoning technique’s features to cope with different unexpected scenarios. We also
need to expand the work to enable services to choose their collaboration networks.

References

1. Alchieri, E.A.P., Bessani, A.N., Fraga, J.S.: A dependable infrastructure for cooperative web
services coordination. In: Proc. of the Int. Conf. on Web Services, ICWS, pp. 21–28 (2008)

2. Al-Masri, E., Mahmoud, Q.H.: Discovering the best web service. In: Proc. of the 16th Int.
Conf. on World Wide Web, WWW, pp. 1257–1258 (2007)

3. Lim, E., Thiran, P., Maamar, Z., Bentahar, J.: On the analysis of satisfaction for web services
selection. In: Proc. of the 9th Int. Conf. on Services Computing, SCC (2012)

4. Jurca, R., Faltings, B.: Reputation-Based Service Level Agreements for Web Services. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 396–409.
Springer, Heidelberg (2005)

5. Kalepu, S., Krishnaswamy, S., Loke, S.W.: A QoS metric for selecting Web services and
providers. In: Proc. of the 4th Int. Conference on Web Information Systems Engineering
Workshops, pp. 131–139 (2003)

6. Khosravifar, B., Bentahar, J., Moazin, A., Thiran, P.: On the reputation of agent-based web
services. In: Proc. of the 24th Int. Conf. on Artificial Intelligence (AAAI), pp. 1352–1357
(2010)

7. Khosravifar, B., Bentahar, J., Clacens, K., Goffart, C., Thiran, P.: Game-Theoretic Analysis
of a Web Services Collaborative Mechanism. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 549–556. Springer, Heidelberg (2011)

8. Khosravifar, B., Bentahar, J., Moazin, A., Thiran, P.: Analyzing communities of web services
using incentives. Journal of Web Services Research 7(3), 30–51 (2010)

9. Malik, Z., Bouguettaya, A.: Evaluating Rater Credibility for Reputation Assessment of Web
Services. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W., Godart,
C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 38–49. Springer, Heidelberg (2007)

10. Maximilien, E.M., Singh, M.P.: Reputation and endorsement for web services. ACM SIGE-
com Exchanges 3(1), 24–31 (2002)

11. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for trans-
action based Web services. In: Proc. of the Int. Conf. on Web Services, ICWS, pp. 126–133
(2007)

12. Yassine, A., Shirehjini, A.A., Shirmohammadi, S., Tran, T.: Knowledge-empowered agent
information system for privecy payoff in ecommerce. Knowledge and Information Systems
(2011) doi: 10.1007/s10115-011-0415-3

Trust-Based Service Discovery

in Multi-relation Social Networks

Amine Louati, Joyce El Haddad, and Suzanne Pinson

Université Paris-Dauphine, LAMSADE CNRS UMR 7243, France
{amine.louati,elhaddad,pinson}@lamsade.dauphine.fr

Abstract. With the increasing number of services, the need to locate
relevant services remains essential. To satisfy the query of a service re-
quester, available service providers has first to be discovered. This task
has been heavily investigated from both industrial and academic per-
spectives based essentially on registers. However, they completely ignore
the contribution of the social dimension. When integrating social trust
dimension to service discovery, this task will gain wider credibility and
acceptance. If a service requester knows that discovered services are of-
fered by trustworthy providers, he will be more confident. In this paper,
we present a new discovery technique based on a social trust measure
that ranks service providers belonging to the service requester’s multi-
relation social network. The proposed measure is an aggregation of three
measures: the social position, the social proximity and the social similar-
ity. To compute these measures, we take into account both semantic and
structural knowledge extracted from the multi-relation social network.
Semantic information includes service requestor and provider profiles
and their interactions. Structural information includes among other the
position of service providers in the multi-relation social network graph.

1 Introduction

Traditional service discovery techniques in Web services area utilize functional
and non-functional properties to decide which relevant service to discover among
a huge number of available services. However, with the emergence of Web 2.0
and especially social networks, users show the willingness to use their social net-
works to find services as well as to offer services. Recently, few studies tried
to integrate social networking into Web service discovery [1–3]. In these works,
Maamar et al. argue that using social networking at the level of Web services
facilitate services discovery and composition. For authors, acquisition of inter-
actions between services by using social networking is beneficial to organize and
to extract sequences of anterior successful interactions for future needs of the
user requester. Despite enhancements in the service discovery, they lack support
for trust to make this task more effective. Another challenge in the service dis-
covery task is to find providers that can be trusted by requesters before using
their services. If a service requester knows that discovered services are offered
by trustworthy providers, he will be more confident. In social networks, a par-
ticular interest have been given to trust relationship. Golbeck [4, 5] proposes a

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 664–671, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Trust-Based Service Discovery in Multi-relation Social Networks 665

FilmTrust site for generating predictive movie recommendations from trust in
social network. The trust-based movie recommendation is founded on knowledge
extracted from annotations and user ratings added in the system. The idea is
to help film requesters to find the best offer from his social network. However,
this approach presents some weaknesses. First, the system covers only the case of
films. Second, knowledge defined in the social network can be richer than ratings
and reviews and includes other kind of relevant information such as user profiles.

In this paper, our research focuses on trustworthy service providers discovery
in a Multi-Relation Social Network (MRSN) of a service requester. We propose
to compute social trust between the service requester and service providers by
aggregating three measures: social position, social proximity and social similar-
ity. To compute these measures, we take into account semantic and structural
information extracted from the service requester MRSN. Semantic information
includes service requester and provider profiles and their interactions. As stated
in [6, 7], there is a strong correlation between trust and similarity of profiles:
people generally prefer suggestions that come from individuals with similar pro-
files. Thus, the more important the similarity between two users is, the more
likely a trust relationship exists between them [6]. Structural information in-
cludes among other the position of service providers in the MRSN graph. For
example, a weather service provider like the national weather provider is usually
more trusted than a corporate weather provider and very sought-after and subse-
quently is connected with a large number of requesters. In this case, such service
provider occupies a central position in the social network and is considered as a
trustworthy provider. The centrality measure is fundamental in a social network
and participate in the computation of the social trust as proved in [8]. As far as
we know, only [8, 9] combine both social dimension and trust to help users to
discover appropriate services from their social network. Both of these works do
not consider the multi-relation aspect of social networks.

This paper presents a new service discovery technique based on a social trust
measure that takes into account both semantic and structural properties of the
service requester MRSN. According to this measure, the outcome is a Trust-
Relation Social Network (TRSN), that is requester centered and based on a
single relation, the social trust relation that filters and ranks service providers.

The remainder of the paper is organized as follows. In the next section we de-
scribe our approach for building trust-relation social network for service providers
discovery and we present our three measures as well as how to aggregate them in
a single social trust measure. Experimental results are interpreted in Section 3,
and Section 4 contains our concluding remarks and future work.

2 Social Trust Measure

In this section, we begin with some definitions followed by a description of our
approach. We model a multi-relation social network by an undirected graph,
where nodes represent users (i.e. service requesters or service providers), and an
edge between two nodes indicate a symmetric social relationship between users.
More formally, a multi-relation social network is defined as follows:

666 A. Louati, J. El Haddad, and S. Pinson

Definition 1 (Multi-Relation Social Network (MRSN)). Given sets V
of users and R of types of symmetric relationships with R = {R1, . . . , Rr}. A
multi-relation social network is a connected undirected graph G = (V,E), where
V is the set of nodes and E = {E1, . . . , Er} is the set of edges where Ei is the set
of edges with respect to the ith relationship. In other words, an edge (u, v) ∈ Ei

implies the existence of a social relationship of type Ri between nodes u and v.

In a MRSN graph, the notion of neighborhood of a node can be expressed as
follows:

Definition 2 (Neighborhood). Given a MRSN graph G = (V,E), the neigh-
borhood of a node u regarding a type of relationship Ri, denoted NRi(u), is defined
as NRi(u) = {v ∈ V | (u, v) ∈ Ei}.

Our approach involve two steps as outlined by Figure 1. It takes as input a
MRSN, a service requester query Q, and produces a Trust-Relation Social Net-
work (TRSN). The service requester query is defined as Q = (G, s, U), where G is
a MRSN graph, s is a requested service, and U is a utility function expressing the
service requester preferences over types of relationships. For example, a babysit-
ting service requester will feel most confident if a member of the family looks after
his/her baby; otherwise he/she could prefer to a friend rather than a colleague.
So clearly, preferences over relationship types are: family / friend / colleague.
These preferences are modeled by the utility function as follow: U(family) = a,
U(friend) = b, and U(colleague) = c, with a ≥ b ≥ c and a, b, c ∈ N. To produce
the TRSN, we proceed in two steps: social measures computing step, and trust
computing and TRSN construction step. Next, we describe these two steps.

2.1 Social Measures Computing

This first step consist of analyzing the MRSN to extract useful information that
includes profiles of the service requester and service providers that contains per-
sonal data and information about their interests, and the kind of relationships
between them. Based on the analysis of the MRSN graph and the extracted in-
formation, three measures are computed: the social position, the social proximity
and the social similarity measures.

Social Position Measure. The social position of a service provider p, SPo(p),
represents its degree centrality which gives an indication of its social power. We
do not simply compute SPo(p) as the number of edges node p has, but we also
consider the type of relationships connecting p with the other nodes in the MRSN
graph. This measure is given by the following formula:

SPo(p) =

|R|∑
i=1,∀p′∈V

wi . a
i(p, p′)

where ai(p, p′) = 1 iff p and p′ are directly connected according to the relation-
ship Ri, 0 otherwise; and wi is the weight of Ri computed as 1

U(Ri)
.

Trust-Based Service Discovery in Multi-relation Social Networks 667

p

Trust-Relationship Social Network
(TRSN)

p
r

Social Similarity Measure (SSi)
between r and providers

p
r

Social Proximity Measure (SPr)
between r and providers

social measures computing

trust computing and TRSN construction

r p

Multi-Relational Social Network
(MRSN)

Query

Social Position Measure (SPo)
for each of the providers

...
p

Profiles for the requester
and each of the providers

...
pr

r
d

Fig. 1. Trust-Based Service Discovery Process

Social Proximity Measure. The social proximity between two nodes is com-
puted based on the MRSN graph and service requester r preferences. SPr(r, p)
represents the average cost of the path, from r to service provider p, that uses
the minimum number of different kind of relations regarding requester r prefer-
ences. For requester r, the cost of a path (x1, . . . , xk) where x1 = r, xk = p, and
(xi, xi+1) ∈ E, to a service provider p of length k − 1 is computed as follows:

SPr(r, p) =

∑k
i=1 U((xi, xi+1))

k − 1

where U((xi, xi+1)) is the cost of the edge (xi, xi+1) given by the utility function
in the requester preferences.

Social Similarity Measure. The social similarity between two nodes is com-
puted based on their profiles and the MRSN graph. SSi(r, p) is an aggregation
of two measures, namely, Degree Similarity (DS) and Profile Similarity (PS).

Degree Similarity (DS). From the MRSN graph, we propose a DS measure
to find ties between requester r and provider p based on the comparison of
their neighborhood. For a type of relation Ri, we count the number of nodes:

668 A. Louati, J. El Haddad, and S. Pinson

in common in both neighborhoods (ai = |NRi(r)∩NRi (p)|), in the neighborhood
of r without nodes in common in both neighborhoods (bi = |NRi(r)| − ai), in
the neighborhood of p without nodes in common in both neighborhoods (ci =
|NRi(p)|−ai). For a pair of nodes (r, p), the degree similarity, DS(r, p), can thus
be calculated as follows:

DS(r, p) =

|R|∑
i=1

wi . δ
i(r, p) with δi(r, p) =

1

1 + disti

where wi is the weight of the relation Ri; and disti = bi+ci
ai+bi+ci

is the Jaccard
distance [10] between r and p according to the relationship Ri.

Profile Similarity (PS). In social networks, a profile consist of a set of items
structured into a set of fields, each field containing one or several values (e.g.
gender=[female], music-likes=[folk, jazz, pop]). In the former, the field is called
a single-valued field and in the latter a multi-valued field. The aim of PS is to
compare values of fields in requester profile to those in provider profile in order to
determine how much requester and provider are similar. We chose the Burnaby
measure [11] to evaluate the profile similarity. This choice is motivated by our
interest in the neighborhood of a node, composed of nodes with which there
is interactions and therefore expected to be similar. More precisely, Burnaby
measure evaluates similarity between single-valued fields of two profiles as shown
by the following definition.

Definition 3 (Burnaby). Let i be a profile item consisting of a set Fd of
fields. Let Xk and Yk be the values of the kth single-valued field Fdk respectively
in profiles of service requester r and service provider p. The similarity of single-
valued fields is given by:

Burnaby(Xk, Yk) =

⎧⎨
⎩

1 if Xk = Yk∑
q∈Ak

2 log(1−p̂k(q))

log
p̂k(Xk)p̂k(Yk)

(1−p̂k(Xk))(1−p̂k(Yk))
+
∑

q∈Ak
2 log(1−p̂k(q))

otherwise

with

p̂k(x) =
fk(x)

N

where Ak denotes the set of all possible values of field Fdk; N the total number
of profiles; fk(x) the distribution of frequency of values taken by a field (i.e. the
number of times a field Fdk takes the value x), and p̂k(x) the sample probability
of a field Fdk takes the value x.

Next, inspired from [12], we show how to compute the similarity between items
and the similarity between profiles.

Definition 4 (Item Similarity). Let i be an item of a profile consisting of a set
Fd of fields. Let V(Fdrk) and V(Fd

p
k) be the set of values taken by the field Fdk for

item i in profiles of r and p respectively. Let Bk = {Burnaby(Xkm, Ykn), ∀Xkm ∈

Trust-Based Service Discovery in Multi-relation Social Networks 669

V(Fdrk) and ∀Ykn ∈ V(Fdpk)} be the set of single-valued field similarity com-
puted between all possible pairs of V(Fdrk) and V(Fdvk). Let MaxBk = {burl ∈
B | ∀l, 1 ≤ l ≤ |V(Fdrk)|, burl = Burnaby(Xkm, Ykn)} be the set of the |V(Fdrk)|
biggest values in Bk. The similarity between the ith items of r and p is defined
as:

Si(r, p) =
1

|Fd| ×
|Fd|∑
k=1

1

|V(Fdrk)|

|MaxBk|∑
l=1

burl

From the service requester r point of view, we define profile similarity, PS(r, p),
with a service provider p as follows:

PS(r, p) =
1

|I| ×
∑
i∈I

βi . Si(r, p)

where I is the set of items in profiles; and βi is a weight attributed to the item
i reflecting its importance in the profile description.

Social Similarity (SSi). The overall measure of social similarity, SSi(r, p), is the
product of the two above measures defined for a service requester r and a service
provider p as follows: SSi(r, p) = DS(r, p)× PS(r, p)

2.2 Trust Computing and TRSN Construction

The aim of this step is to build a new social network, a TRSN that is service
requester centered and based on a single relation, the Social Trust (ST) relation.
Before building the TRSN, this step computes based on all the social measure
values, generated in the first step, a single social trust value. After computing
all the social measure values, a vector Mp associated to each service provider p
is defined as Mp = (SPo(p), SPr(r, p), SSi(r, p)). By merging the vectors of all
service providers, a matrix M = (Mpj , p ∈ V and 1 ≤ j ≤ 3) is built.To compute
the value of the social trust for each service provider, we use a simple additive
weighting technique that proceed in two phases. The scaling phase which aims
to transform every measure value, of Mp vector, into a value M ′

pj between 0 and
1. We obtain a matrix M ′ = (M ′

pj , p ∈ V and 1 ≤ j ≤ 3).The weighting phase
which aims to rank service provider according to their social trust scores. The
score of social trust of a requester r in a provider p, ST (r, p), is computed by
using the following formula:

ST (r, p) =

3∑
j=1

λi . M
′
pj(r, p)

where λj is the weight of the jth social measure with λi ∈ [0, 1] and
∑3

j=1 λi = 1.
Based on the computation of ST (r, p) for every service provider p, we build a
TRSN that is service requester centered and modeled by a directed weighted
graph G′ = (V ′, E′), where V ′ is the set composed by the service providers and
the service requester, and E′ is the set of edges. An edge (r, p) ∈ E′ implies the
existence of a social trust relationship between r and p and the weight of an edge
(r, p) corresponds to the degree of trust requester r has in provider p.

670 A. Louati, J. El Haddad, and S. Pinson

Fig. 2. Computation cost by varying the number of nodes and relations in the MRSN

3 Implementation

In this section, we present implementation and results of evaluation of our ser-
vice providers discovery technique based on social trust measure on a variety of
synthetic datasets. The prototype was developed in JAVA and the MRSN graph
data were stored in a GML format1. All experiments were run on a 3.1GHz
Core(TM) i5-2400 running windows 7, with 8Go of RAM.

The experiments involved a MRSN varying the number of nodes and varying
the number of different kind of relations. Experimentations were done over the
10 scenarios. In the first scenario, the number of nodes in the MRSN is 1000 and
the number of relation types varies from 2 to 5. In the last scenario, the number
of nodes in the MRSN is 10000 and the number of relation types varies from
2 to 5. In all scenarios, the requester preferences were U(R1) = 1, U(R2) = 2,
U(R3) = 4, U(R4) = 8, and U(R5) = 16. We randomly generate the MRSN
graph. For each scenario, the experiment was executed 10 times sequentially
and the average execution time was recorded. Figure 2 shows execution time
(in milliseconds) of the social trust measure computing. We observe that the
computation cost increases when the number of nodes in the MRSN increases.
Also, the computation cost increases when the number of relations increases in
the MRSN.

4 Conclusion

In this paper, we considered multi-relation social network in the service discov-
ery task. We have proposed a new service providers discovery approach based on
social trust between requester and providers computed by taking into account
knowledge extracted from the requester multi-relation social network. The pro-
posed social trust is an overall score computed from values of three measures,
social position, social proximity and social similarity measures. According to the

1 Graph Modelling Language, 1997, http://www.fim.uni-passau.de/en/fim/

faculty/chairs/theoretische-informatik/projects.html - Extracted on Mai
2012.

http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html

Trust-Based Service Discovery in Multi-relation Social Networks 671

social trust measure, the outcome of the proposed approach is a weighted di-
rected graph modeling a new social network that is service requester centered
and based on a single relation, the social trust relation. With this relation, we
were able to rank service providers by mean of weights of an edge corresponding
to the degree of trust service requester has in service provider.
As future work, we would like to investigate enhancement of service discovery by
exploiting feedback of service requesters experiences. The idea is to accumulate
within each service provider the history of use of its service as well as requesters
past experiences with the service. We also would like to explore the extension
of our trust model to find a trustworthy composition of services based on the
propagation of trust among providers.

Acknowledgement. This work is supported by the Personal Information
Management through Internet project (PIMI-ANR-2012-VERS-0014-03) of the
French National Agency for Research.

References

1. Maamar, Z., Wives, L., Youakim, B., Said, E., Khouloud, B., Noura, F.: LinkedWS:
A Novel Web Services Discovery Model Based on the Metaphor of Social Networks.
Simulation Modelling Practice and Theory 19(2), 121–132 (2010)

2. Maamar, Z., Santos, P., Wives, L., Badr, Y., Faci, N., de Oliveira, J.: Using social
networks for web services discovery. IEEE Internet Computing 15, 48–54 (2011)

3. Maamar, Z., Hacid, H., Huhns, M.: Why Web Services need social networks. IEEE
Internet Computing 15(2), 90–94 (2011)

4. Golbeck, J.: Computing and Applying Trust in Web-Based Social Networks. PhD
thesis, University of Maryland at College Park, College Park, MD, USA (2005)

5. Golbeck, J.: Generating Predictive Movie Recommendations from Trust in Social
Networks. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.)
iTrust 2006. LNCS, vol. 3986, pp. 93–104. Springer, Heidelberg (2006)

6. Ziegler, C., Golbeck, J.: Investigating correlations of trust and interest similarity -
do birds of a feather really flock together? Decision Support Systems 43, 460–475
(2007)

7. Ziegler, C.-N., Lausen, G.: Analyzing Correlation between Trust and User Similar-
ity in Online Communities. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust
2004. LNCS, vol. 2995, pp. 251–265. Springer, Heidelberg (2004)

8. Bansal, S., Bansal, A., Blake, M.B.: Trust-based dynamic web service composition
using social network analysis. In: 2010 IEEE International Workshop on Business
Applications of Social Network Analysis, pp. 1–8 (2010)

9. Maaradji, A., Hakim, H., Daigremont, J., Crespi, N.: Towards a social network
based approach for services composition. In: IEEE International Conference on
Communications, ICC 2010, pp. 1–5 (2010)

10. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. Wiley-Interscience (2005)

11. Burnaby, T.: On a method for character weighting a similarity coefficient, employ-
ing the concept of information. Mathematical Geology 2, 25–38 (1970)

12. Akcora, C., Carminati, G., Ferrari, E.: Network and profile based measures for user
similarities on social networks. In: IRI, pp. 292–298 (2011)

RETRAiN: A REcommendation Tool

for Reconfiguration of RetAil BaNk Branch

Rakesh Pimplikar and Sameep Mehta

IBM Research, New Delhi, India
{rakesh.pimplikar,sameepmehta}@in.ibm.com

Abstract. Customers in many developing regions (like India) use phys-
ical bank branch as primary and preferred banking channel, resulting in
high footfall in the branch. This results in high wait time of customers
and high pressure on organization’s resources, impacting customer sat-
isfaction (CSAT) as well as employee satisfaction (ESAT) adversely. A
naive solution to handle this is to increase the service personnel to cater
to the customers. However, this is an unviable alternative because this
impacts top and bottom line of the bank. Therefore, organizations are
strategically looking for intelligent systems which can help in fine tuning
the overall business process to maximize their business objectives while
incurring zero or very less investments. Towards this end, we present a
system RETRAiN to enable such calibration of various components of
bank operations. Based on real time data like waiting customers, service
requests, availability of service personnel and business metrics, the sys-
tem provides recommendations for reconfiguration of the operations. The
reconfiguration includes selection of scheduling policy, number of service
personnel and configuration of service personnel. We present the overall
system along with analysis and optimization algorithms for generating
the recommendations. To showcase the efficacy and usefulness of our
system, we present results based on data collected over a period of four
months from multiple branches of a leading bank in India.

Keywords: Applications and Experience, Retail Banking, Services
Quality.

1 Introduction

In this paper, we present a framework to optimize the business process in re-
tail banking through use of analytic and optimization techniques. Customers in
many developing countries prefer to visit bank branch for their banking needs.
Even though various alternate channels like ATM, Internet banking and mobile
banking have evolved significantly in the last few years, the bank branch has still
retained its position as the primary service delivery channel in many emerging
economies. Due to various factors like literacy rate, lack of infrastructure, legacy
of public sector banks, lack of trust in e-transactions, the alternate channels
have not been adopted widely. While the private banks in India have nearly 35

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 672–687, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

RETRAiN 673

to 40%1 transactions through alternate channels, this figure is in single digit for
the public sector banks where the vast majority of population still bank. This
results in high footfall in the bank making it difficult to maintain Customer Sat-
isfaction (CSAT) at an acceptable level. Retail banking is one of the industries
where CSAT plays a key role towards retention and growth of customer base.
According to a study done by Financial Service Sector (FSS) consultants in our
organization, wait time, staff interaction, service time, and information availabil-
ity were discovered as important factors which influence CSAT. Of these wait
time was found to be the most important factor. Moreover, due to huge volume of
customers, the service personnel are also under constant scrutiny of customers
and face tremendous pressure (often undue) to be more efficient. This affects
the ESAT in an undesirable fashion. Please note that there is causal relationship
between ESAT and CSAT, i.e., less pressure on employees will reflect itself in
better interaction with customers, which in turn will positively impact CSAT.

A seemingly straightforward solution to the above mentioned challenges is to
increase the number of service personnel. This will reduce wait time of customers
(thereby increasing CSAT) as well as reduce workload for the service personnel
(thereby influencing ESAT). The readers would note that every organization
have multiple, sometime conflicting, business metrics. For example, even though
CSAT and ESAT is important, the organizations always strive to increase gross
profit. Therefore, adding personnel is an unviable solution because the bank
has to incur cost for hiring, training, providing seats, procuring computers etc.
Therefore, strategically, organizations are looking at intelligent integrated sys-
tems which help to meet diverse business objectives, minimize investments and
increase Return on Investments (RoI).

In this paper, we provide a transformation frameworkREcommendationTool
for Reconfiguration of RetAil BaNk Branch - RETRAiN, which generates var-
ious recommendations for the administrator or branch manager to reconfigure
the branch operations. The framework does not change the business process asso-
ciated with customer service but aims to optimize the process for various stake-
holders. The system takes into account the real time information of customers,
resources and service types to generate operational planning recommendations.
Specifically, RETRAiN generates recommendations for the following questions:
Given the real time mix of customers, service requests and resources2-

1. What is a good scheduling policy? Goodness depends on the efficacy of policy
with respect to the business metrics. Our setting in non-preemptive, i.e., the
customer service request is fulfilled in one go by assigned resource.

2. How many resources should be employed? The correct supply of resources
helps in matching customer demand.

3. What should be the configuration of resources? Since the resources we con-
sider are people, they display different proficiency towards different services.
Therefore, given the demand, the most efficient resources should be chosen.
The historical efficiency data is used for this assignment.

1 This figure was quoted by bank officials during our meetings.
2 In this article, we use resource and service personnel interchangeably.

674 R. Pimplikar and S. Mehta

Table 1. Comparison with BAU scenario and effect on KPM

Dimension Current Proposed Optimized KPM
(BAU) (RETRAIN)

Scheduling Policy Agnostic to Demand Demand aware, Profitability,
Fixed, FIFO Dynamic, non-FIFO Wait Time, CSAT

Number of Fixed Computed ESAT, Small Queue
Resources or Ad-hoc Change Customer Expectation
Resource Universal (for all services) Any Subset of services Reduction in Service Time

Configuration or Dedicated (for single service)

Table 1 highlights the key dimensions which are transformed by RETRAiN,
comparison with Business-As-Usual (BAU) scenario and the impact on Key Per-
formance Metrics (KPM) for a retail bank. We briefly describe the data in table.

Scheduling Policy. Currently, all banks use FIFO to schedule and serve cus-
tomers. While FIFO is a fair policy but it does not lend itself to customer and
service differentiation [1]. Given the number of customers coming in branch, the
banks are increasingly looking at way to pay more attention to more important
customers (High Networth Individuals -HNI) or high profitable services (like
Demand Orders) and provide better quality service (low wait times). However,
it is not always advisable to use non-FIFO policy. For example, consider the
following scenarios:

Scenario 1: Only 10% of customers waiting in branch are HNI.
Scenario 2: 60% of customers waiting in branch are HNI.

It is clear that a priority based scheduling will work very well in Scenario 1
and help server HNIs in a better fashion. However, in Scenario 2, a FIFO based
policy might be better because of large number of HNIs in the branch.

Number of Resources. Currently, the number of resources are fixed in the
bank or resources are added after manually observing the queue in the bank. In
our system, the choice of addition or removal of a resource is taken by analytically
computing the impact of such action on the business metrics.

Configuration of Resources. The banks configure the service personnel in
two ways either the personnel can provide all services or she provides only one
service (like Account Opening or investment advice). However, our system ana-
lyzes the current demand of customers while taking into account the individual
proficiencies of resources to generate a configuration which allows any subset of
services to be assigned to a resource.

To re-iterate, the crux of our framework is to leverage the current customer
demand, proficiencies of resources, priority of customers and profitability of ser-
vices to generate recommendations by employing novel algorithms which will
optimize various business metrics.

RETRAiN 675

To further motivate the need and importance of such framework, we present
few results derived from data which was collected from multiple branches while
deploying some functionality of RETRAiN. Figure 1(a) shows the wait time of
customers in each hourly slot for both FIFO as well as RETRAiN. Please note
that the wait time is almost equal for both cases. Overall, the FIFO provides
a slightly better performance. The wait time using FIFO is 2% less than RE-
TRAiN. However, our system does provide the differentiation between customers
by recommending non-FIFO based policies. Now, lets look at the number of re-
sources used as shown in Figure 1(b). The number of resource hours used by our
system is 29 whereas in static system the corresponding number is 40. There-
fore, our system is able to reduce 25% resource hours while increasing the wait
time by a mere 2%. Moreover, in few slots, our system recommended non-FIFO
policy which helped in focusing on important customers and profitable services,
thereby, optimizing metrics which matter the most.

0

20

40

60

80

100

120

140

160

180

0

10

20

30

40

50

60

70

80

90

100

W
ai

t T
im

e

N
um

be
r o

f C
us

to
m

er
s

Time Slots

Customers Arrival Pattern

Wait Time using RETRAiN

Wait Time using FIFO

0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f R
es

ou
rc

es

N
um

be
r o

f C
us

to
m

er
s

Time Slots

Customers Arrival Pattern

Resources Used for RETRAiN

Resources Used for FIFO

(a) (b)

Fig. 1. Comparison of wait time and number of resources

Section 2 describes the related work in this field. Due to real time nature of
the system, we chose to develop some polynomial time approximation algorithms
to handle the technical challenges. We provide those details in Section 3. Finally,
we present results on data in Section 4. The data was collected over a period of
four months from multiple branches of a leading bank in India.

2 Related Work

In the proposed system, different (human) resources have different efficiency. The
problem of scheduling in such settings is known as unrelated machine problem,
which has already been proved to be NP-Hard by [2]. Since then, several approx-
imation algorithms like [2–8] have been proposed for solving this problem. [9]
describes scheduling on unrelated parallel machines where every job is associated
with a weight. Our system also has a weight/priority assigned to every customer.
But unlike the standard problem where number of machines/resources are fixed,

676 R. Pimplikar and S. Mehta

number of resources may vary in our system. Apart from finding a good sched-
ule, we also need to find correct number of resources to be used in the schedule.
Moreover since all resources are not equally efficient, we also need to find which
resources are best to be used given the real time state of the system. Our schedule
depends not only on makespan but also on business metric. Therefore, solutions
mentioned in above literature are not suitable for our system. We propose a
polynomial time approximation algorithm for this problem. We point interested
readers to some excellent surveys on scheduling [10–12].

The work most pertinent to our work is by [13]. The authors describe a hy-
brid scheduling policy obtained from the integration of real time scheduling
algorithms. Based on the characteristics of jobs, hybrid scheduling policy gets
reduced to one of the scheduling algorithms. Their choice of real time scheduling
algorithms and formulation of hybrid scheduling policy are very much specific
to the embedded real time monitor and control system requirements. Hence it
cannot be extended for our system. Moreover, working of a scheduling policy is
supposed to be unknown to our system. We need to pick the best scheduling
policy based on the business metrics returned by various scheduling policies.
This objective of our system overrules the idea of having a hybrid policy.

In our previous work [1], we presented a scheduling algorithm for reducing
weighted average weight time of customers in a bank branch, while considering
prioritization of customers based on several factors. Our system also considers a
priority assigned to every customer. It additionally considers a priority assigned
to every service as well requested by customers. The focus of the this paper is
not on scheduling algorithm. The scheduling algorithm is one component of the
our system. Currently, we use algorithm presented in [1], however, the proposed
framework allows for replacing it with any other scheduling algorithm.

In commercial offerings, Adobe and IBM solutions for bank branch transfor-
mation [14] concentrates mainly on efficient processing of data and documents.
It focuses on providing solutions with more secure, personalized, and compelling
communications. It helps in setting up different processes in a bank branch ensur-
ing compliance with government regulations. In the similar spirit, Oracle’s Siebel
Branch Teller solution [15] provides a comprehensive, customer-centric teller so-
lution with the following features. It has 360-degree view of customer relationship
which enables more relevant and targeted sales offers (up/cross sell) and improves
customer experience. It streamlines transaction processing via an easy-to-use in-
terface. It improves operational efficiencies driven by centralizing business pro-
cesses and operational information that traditionally exists in each branch server.
A branch transformation system by Talaris [16] focuses on maximizing revenue
through increased sales of targeted financial products. It also mentions creating
a branch experience to retain and develop customer relationships through excep-
tional service. The tool advises on strategies to position the bank branch as strate-
gic delivery channel and their expertise assists clients to achieve specific outcomes
through targeted investment. However, like our system, none of above mentioned
bank branch transformation systems enhances customer experience by employ-
ing scheduling policy which is different from traditional FIFO scheduling policy.

RETRAiN 677

Ei,j

Step 1

R
e
s
o
u
r
c
e
s

R1

RM

S1 SK

Services

Efficiency Matrix

SR

Super Resource

QLQ2Q1

SRLSR2SR1

Cn1

C2

C1

Cn2

C2

C1

CnL

C2

C1

Queues Generated for
Selected Scheduling Policy

SR1

SR2

SRL

R1

R2

R3

RM

W1,1
. . .

. . .

. . .

...

WL,M

.

• Policy Gain
• Business Metrics

Greedily Pick
Dedicated Resources

Step 2 Step 3

Maximum Bipartite Matching
Map Super Resources To

Actual Resources

Step 4

Step 5

Iterate with different Policies

Iterate with increase in Number of Resources (L)

Recommendations

Step 6

Fig. 2. Depiction of algorithm

Optimizing resource usage for better demand and supply match is not supported
by the solutions. Similarly, various Queue Management Systems exist in market
to enforce discipline and schedule customers in some predefined order. The solu-
tions generally work on a static fair play principle and schedule customers in a
FIFO order. However, any advanced dynamic scheduling (e.g. based on multiple
service parameters) and real time decision support system is missing from these
products. To best of our knowledge, the proposed framework, associated technical
problems and business use cases are novel.

3 Algorithms

Notations. Let C = {C1, C2, . . . , CN} denote the customers. Assume
S ={S1, S2, . . . , SK} be the list of services offered by the organization. Each
customer Ci is associated with an arrival time ATi, service request(s) Gi ⊆ S
and a data packet Di. The data packet can contain customer specific informa-
tion like category, number of years with the bank, average quarterly balance etc.
Please note that the focus of our current work is to recommend a policy and
therefore, we do not delve into data requirements and the rules for individual
policies. The assumption is that the abstract data packet would contain all rele-
vant information which is needed by individual scheduling policies. For example,
a policy can give more priority to customers with long running accounts. This
priority can be calculated by using data packet. The list of scheduling policies
is represented by P ={P1, P2, . . . , PQ}. The list of M resources is denoted by R
= {R1, R2, . . . , RM}. E is a M ×K matrix capturing the efficiency of resources.
Ei,j stores the time which Ri takes to serve a request of type Sj . Finally, B =
{B1, B2, . . . , BU} represents the list of business metrics. Each policy Pi will gen-
erate a schedule for serving customers and also evaluate the generated schedule
with respect to various business metrics. Some metrics which we consider are
wait time, wait time per category, wait time of important customers, wait time
of customers with profitable services, etc.

678 R. Pimplikar and S. Mehta

Policy Evaluation Function. This function generates a schedule SchPi using
policy Pi, subset of customers C′, subset of resources R′ and corresponding
efficiency matrix E′. The definition is: Sch = evalPolicy(Pi, C’, R’, E’). If
there are L resources, the schedule will have L ranked lists one corresponding to
each resource. Please note that generation of the optimal schedule, in presence
of resources with different efficiencies, is a NP-Hard problem and is an area of
active research. However, in our proposed algorithm (Steps 1 and 2), we use
this function with equally efficient resources. Therefore, the scheduling reduces
to single resource scheduling problem (which can be solved in polynomial time)
and schedule generation component simply picks the unserved customer from
ranked list and assigns it to a free resource, thereby creating L ranked lists for
L resources.

Schedule Evaluation Function. Given a schedule generated by Pk, this
function returns values of different business metrics. The definition is
B = evalSch(SchPk

, R’, E’). For each resource, the corresponding ranked
list is simulated by taking into account the efficiency of the resource.

Gain Evaluation Function. Given a schedule and two policies P1 & P2, the
function computes the difference in the values of different business metrics. This
difference can be construed as gain G which a candidate policy P2 realizes over

current in-use policy P1. The function is implemented as: ∀Ui=1 G(i) =
B

P2
i −B

P1
i

B
P1
i

.

3.1 Algorithms

As noted in related work, the problem of scheduling jobs on known number of
unrelated machines is a NP-Hard problem. Our problem becomes much harder
because the number of machines (resources) and which resources to be used
are also unknown. The choice of resources depends upon the characteristics of
services being requested by the customers. Moreover, due to complexity of prob-
lem arising from varying efficiency of resources, properties which could help to
reduce search space do not hold. For example, P1 can outperform P2 on a busi-
ness metric given L resources, however, with addition of one more resource, the
performance may be reversed. Similarly, given customer and service data, as-
sume we use a single resource to serve all customers. Let resource R1 be the
best performer followed by R2 and R3. However, the top resources together, i.e.,
{R1, R2} can be outperformed by combination of {R2, R3}. This can happen if
efficiency of R2 and R3 complement each other. We propose a solution which
iterates over values of L from 1 to M , while picking best L resources and best
scheduling policy every time. We recommend L along with the corresponding
resources and policy, which perform the best as per the business metrics. The
bottleneck here is to chose best L resources, which is a NP-Hard problem.

NP-Hardness Proof. We already know that it is a NP-Complete problem to
decide if all edges of a graph can be covered by exactly K number of vertices.

RETRAiN 679

The problem of selecting optimal set of resources in current setting can be proved
to be NP-Hard by reducing Vertex Cover problem to resource selection problem
in polynomial time as follows. Create a resource for every vertex in the graph.
Create a customer for every edge in the graph who requires a unique service
corresponding to the same edge. A resource provides a service in unit time if
the vertex corresponding to the resource is one of the two vertices of the edge
corresponding to the service. Otherwise resource requires infinite time to pro-
vide a service. Now we solve this resource selection problem to select exactly K
resources so as to minimize the makespan. If the value of makespan is infinity,
there is at least one customer who requires a service which is not provided by
any of those K selected resources in unit time. It also indicates that all edges
in the graph cannot be covered by exactly K vertices. If the value of makespan
is any finite number, every customer can be served in unit time by one of the
K selected resources. It also indicates that all edges of the graph can be cov-
ered by K vertices corresponding to the K selected resources. Thus we can use
resource selection problem to solve vertex cover problem. Clearly, reduction of
vertex cover to resource selection problem takes polynomial time. Hence resource
selection problem is harder than vertex cover problem and can be included in
NP-Hard category. Even if we are given K optimal resources, we cannot verify it
in polynomial time. We need to enumerate all other combinations of K resources
to verify if the given solution actually results in the smallest makespan.

Figure 2 presents the key steps of the proposed solution.

Step 1. For each service type Sj , we find the resource Ri which takes the least
time to provide the service and store the service time, Ei,j , in SR. Formally,
SRj = min{E∗,j}. SR can be conceived as a Super Resource which provides all
services in minimum time possible.

Step 2. In this step, a schedule is generated given a scheduling policy Pk ∈ P
and L resources where 1 ≤ L ≤M . The point to note is that all L resources are
taken to be super resources. Moreover, with this setup we can use evalPolicy

to generate schedule. This construction provides, hypothetically, the best per-
formance (in terms of average wait time) which can be achieved by L resources.
In next step we map the super resources to actual resources while incurring an
increase in wait time. For a resource SRi and Policy Pk, the average wait time
WTPk

SRi
of assigned customers (Qi in Step 2 of Figure 2) as per policy Pk is

computed by using evalSch.

Step 3. In this step we map L super resources to L actual resources while
minimizing the increase in wait time. We pose this problem as a maximum bi-
partite matching with edge weights. Super Resources form one set of vertices
while actual resources the other set. The graph is fully connected because ev-
ery super resource can be replaced by any of the actual resource. The cost of
replacing a super resource by actual resource is Ci,j = WTPk

Rj
- WTPk

SRi
. The

cost/penalty captures the increase in wait time if SRi is replaced by Rj . Since
the objective is to find maximum weight matching, the weights are computed

680 R. Pimplikar and S. Mehta

as Wi,j = max{C∗,∗} − Ci,j+1. We use existing algorithm proposed by [17] to
find the matching. Algorithm takes O(mn log�m/n+1� n) where n is the number
of nodes and m is the number of edges.

If all resources are equally efficient or if we can order them in decreasing order
of their efficiencies such that Ri is more efficient than Rj in providing all services
for i < j, then resources selected in step 3 are nothing but the optimal resources.
Step 3 fails to get optimal resources when efficiencies of resources complement
each other for different services, for example, E1,1 < E2,1, but E1,2 > E2,2. Step
4 provides a greedy solution to fix this problem.

Step 4. Customers are scheduled in Step 2 considering super resources. It results
in service requests to be uniformly distributed among all resources. This overrules
the inclusion of resources who are extremely efficient in providing one service,
but equally bad in providing other services. In optimal solution, these resources
might have been selected to provide that one service dedicatedly, resulting in
reduction of total wait time of customers. Figure 3 represents an algorithm to
greedily select such dedicated resources.

Require: RL, set of L resources selected in Step 3;
RC , set of all available resources to be considered;
E, efficiency matrix; RCk, request count for service Sk;
RSi,k, number of requests of service Sk to be served by Ri;
P , policy in consideration; C′, waiting customers; WTmin, total wait time using
RL

1: while RC �= ∅ && maxi RCi > 0 do
2: Find a service with maximum requests, m ← argmaxk RCk

3: Find the most efficient resource for service Sm, d ← argmini∈RC Ei,m

4: RC ← RC − {Rd}
5: if Rd /∈ RL then
6: for all Ri ∈ RL do
7: Prepare a new set by replacingRi withRd,RL

new ← (RL − {Ri}
) ∪ {Rd}

8: Sch = evalPolicy(P, C′,RL
new , E)

9: Compute total wait time, WTi = evalSch(Sch,RL
new , E)

10: end for
11: if mini WTi < WTmin then
12: Find a resource to be removed from RL, n ← argminiWTi

13: Update minimum total wait time, WTmin ← WTn

14: Replace Rn with Rd in RL, RL ← (RL − {Rn}
) ∪ {Rd}

15: Decrease request count for Sm, RCm ← RCm −RSd,m

16: end if
17: else
18: Decrease request count for Sm, RCm ← RCm −RSd,m

19: end if
20: end while

Fig. 3. Algorithm to select dedicated resources

RETRAiN 681

‘IF’ condition on line 11 ensures that whenever a resource is replaced by a new
dedicate resource on line 14, our solution always results in decreased total wait
time and we approach towards the optimal solution. Though we could not prove
the approximation bound for our algorithm because of its complexity, it never
deviated from optimal solution by a factor more than 2 during our experiments.

Steps 2-4 are repeated by keeping the resources fixed at L and changing the
policy. At the end of this iteration, we would have identified L best resources for
each Pk.

Step 5. In this step we compute the gain G and other business metrics for each
policy and use a rule based system to generate candidate recommendations.
Next, we enumerate the rules and also describe intuition behind them:

– Rule 1. The Gain (G) over current configuration should be greater than
θ1 where θ1 defines the improvement which the organization would like to
witness. All policies with corresponding gain greater than θ1 are chosen to
generate candidate recommendations. In current deployment, average wait
time of all customers is used to compute gain. If gain is too less, it implies
that the organization is changing a business process with a new one without
substantial improvements.

– Rule 2. RETRAiN generates configuration recommendations after every F
minutes. Given policy (selected by Rule 1) and set of resources, we compute
how many customers can be served in next F minutes. Subtracting this from
the total waiting customers C′ (used in Policy Evaluation), gives the number
of unserved customers UC at the end of next F minutes. If UC

C′ ≤ θ2, then
the configuration gets added to candidate recommendations.

The configurations which satisfy both rules are tagged as candidate recommen-
dations with the following details {Pk, C′, L,R′, E′,G, UC

C′ }. If no configuration
satisfies rules, then number of resources is increased by 1 and Step 2 is repeated.
The process is continued till L ≤M .

Step 6. All the candidate recommendations are presented to the administrator
to choose from. The chosen recommendation then replaces the current config-
uration and is used for next F minutes. At this point, we would like to share
the key motivation of involving domain expert as opposed to the completely
automated system. Consider an example where recommendation CR1 results in
gain of 5% whereas CR2 shows gain of 4.9%. An automated system will choose
CR1 as new configuration. However, the domain expert can investigate respec-
tive policies and conclude that the policy used in CR2 enforces fairness whereas
CR1 gives high preference to a set of customers. In this case, based on business
logic and other real time factors, she may decide to choose CR2. Moreover, in
such scenarios, the rules itself keep changing based on state of the system includ-
ing number of customers, number of available resources, time of month, special
promotion season etc. Therefore, the same expert can take different decisions
based on real time state of the physical system. It would be very challenging to

682 R. Pimplikar and S. Mehta

encode and prioritize full expert knowledge base with different permutations of
system state.

4 Results

The experiments are conducted on real data collected during (partial) deploy-
ment of RETRAiN at multiple branches of a leading bank in India. Over the
deployment period, our system scheduled around 25000 customers. Category 2
(important customers) accounted for around 60% of customers whereas around
1500 customers were in Category 1 (most important customers). Out of 30000
service requests, around 75% were deemed to have positive value for the bank.
For each branch we collected one week of data with fixed resources and FIFO
policy. This data was used to learn the model and also baseline various metrics.

We demonstrate the working of our algorithm on different scenarios to show-
case the efficacy of the proposed solution. We consider four different categories
(priorities) of customers, denoted as Cat1, . . . ,Cat4. These categories scaled by
appropriate weight vector are used in ranking customers with Weighted Shortest
Job First (WSJF) policy. Different weighing vectors result in different policies.
For example, weight vector (0.5, 1, 1, 1) suggests that Cat1 customer is twice
more important than any other category. Similarly, vector (0, 1, 1, 1) implies
that Cat1 customers should be served as soon as a resource is free by pushing
it ahead of all other customers. Another weighing vector (1, 1 ,1, 5) captures
that all customers except Cat4 are equal and Cat4 would have to wait much
longer. Similarly we consider five different service categories as S1, . . . , S5. For
both customer and service categories, lower the category id, higher is the im-
portance. There are five resources in our setup with different proficiencies for
different services as mentioned in Table 2. Every cell represents the average time
(in seconds) required by corresponding resource to provide the corresponding
service. We computed the efficiency matrix from the collected data.

Table 2. Efficiency matrix

Resources�Services S1 S2 S3 S4 S5

R1 258.17 275.49 250.86 180.54 236.64

R2 199.70 201.89 185.73 145.60 191.91

R3 312.95 548.07 309.27 189.34 317.12

R4 453.57 300.62 123.95 240.66 253.90

R5 308.67 312.56 220.17 168.18 135.09

Key Results. The highlights of our deployment are:

– The wait time of Cat 2 customers reduced by 30% while the most important
customers (Cat 1) experienced a wait time reduction of 83%. This can be
attributed to non-FIFO policies. Due to large chunk of customers (65%) in
these two categories, the overall wait time over all customers went down as
compared to pure FIFO policy.

RETRAiN 683

– The wait time of least important customers (10% by volume) increased by
25%.

– For the above mentioned results, the number of resources were kept fixed
(same as in baseline data). When the number of resources and their config-
uration was optimized, we found that by using ≈ 25% less resources we can
maintain same wait time (within ± 2%) as in baseline data.

– We conducted an informal survey of customers to get their feedback on the
system. Around 70% customers felt reduction in wait time. Around 19% cus-
tomers had difficulty to understand the new system. Overall 82% customers
felt system has made a positive impact and thereby increasing CSAT.

– Informally, the bank staff also acknowledged the impact of the system. The
support was exemplary.

Next, we show some of the expository results. We consider FIFO as the baseline
policy. Different variants of WSJF constitute the policy bank. The experiments
use RETRAiN frequency F as 30 minutes. From real data we observed that
during peak hours, around 60 customers come to branch in an hour. Therefore, in
our experiments we use 30 customers. Please note the arrival frequency changes
through the day. However, we choose the peak period because RETRAiN is
motivated to help banks in peak periods. We set θ1 = 0.1, i.e., a policy with
improvement of at least 10% over FIFO should be selected for the current time
slot.

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
us

to
m

er
 C

at
eg

or
y

ID

Time (ti's)

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
us

to
m

er
 C

at
eg

or
y

ID

Time (ti's)

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4

Fr
eq

ue
nc

y

Customer Category ID

(a) (b) (c)

Fig. 4. Uniform ordering, (a) WSJF recommended (b) FIFO recommended (c) Cus-
tomer category distribution

In our first setting we study the effect of arrival patterns of customer cate-
gories on policy selection. Figure 4(a) shows a pattern where customer categories
are uniformly ordered and improvement of WSJF over FIFO is computed to be
21% (> θ1). Therefore, WSJF policy is selected as a candidate recommendation.
Figure 4(c) shows the histogram of different customer categories in the pattern.
Figure 4(b) shows a different arrival pattern for the same frequencies of cate-
gories. However, improvement of WSJF over FIFO in this case is very less, 9.3%
(< θ1). Therefore, FIFO is selected. It is evident that policy selection depends
on the arrival pattern of customer categories.

Consider a special case as shown in Figure 5 where there are maximum cus-
tomers of the same category Cat2 and others are distributed among other cate-
gories. Table 3 shows the two different WSJF and FIFO numbers (in seconds).

684 R. Pimplikar and S. Mehta

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
us

to
m

er
 C

at
eg

or
y

ID
Time (ti's)

0

5

10

15

20

25

1 2 3 4

Fr
eq

ue
nc

y

Customer Category ID

(a) (b)

Fig. 5. Skewed distribution

Table 3. Comparison of different policies

Policy All Customers Cat1 Cat2 Cat3 Cat4
FIFO 309.1 309.1 309.1 309.1 309.1
WSJF1 304.70 27.89 309.73 395.60 848
WSJF2 309.95 235.07 304.27 384.34 511

Since FIFO does not differentiate between customers, average wait time over
all customers is taken to be wait time in each category as well. WSJF1 drasti-
cally improves the wait time of Cat1 customers, however, customers in Cat4 are
penalized heavily. Moreover, the improvement in overall wait time (over FIFO)
is marginal. This small improvement for Cat1 may not justify heavy increase
in the wait time for other customers. Moreover, in such scenarios, the fairness
provided by FIFO also plays a role in the decision. However, WSJF2 provides
a viable alternative where wait time of important customers Cat1 decreases (by
23%) with small increase for Cat4 customers. Based on domain knowledge, the
admin can choose between FIFO or WSJF2. Wait time of Cat2 remains almost
unchanged in all three settings.

In an another setting, we study the effect of arrival patterns of service re-
quests on number of resources. Figure 6(a) and Figure 6(b) show two different
arrival patterns of service categories but with same frequencies as depicted in
Figure 6(c). In Figure 6(a) all services are uniformly ordered over the current
time slot and three best resources are suggested to be {R1, R2, R5}. Proficiency
matrix mentioned in Table 2 is used in selecting these resources. If we observe
this matrix, services S1 and S2 are most time consuming. Clearly if these two
services are clustered in the earlier part of the slot as shown in Figure 6(b), then
overall wait time of all customers increases. To reduce this wait time, system is
reconfigured and 4 resources are suggested as {R1, R2, R4, R5} instead of just 3
in previous case. Thus order of services and time required to process them are
important factors to suggest correct resources.

As noted in algorithm, we select minimum number of resources where UC
C′ ≤

θ2. In our setup, we have θ2 = 0.1. For a pattern shown in Figure 6(a) where
three resources are suggested, unserved customers are just 3 out of 30 (UC

C′ = 0.1)
and average wait time is 313s. Now if we add one more resource, the average
wait time decreases to 205s which is good for CSAT, but at the end of the slot
all four resources remain idle for 5 to 10 minutes. To avoid this under utilization,
θ2 plays an important role.

RETRAiN 685

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

S
er

vi
ce

 C
at

eg
or

y
ID

Time (ti's)

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

S
er

vi
ce

 C
at

eg
or

y
ID

Time (ti's)

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

Fr
eq

ue
nc

y

Service Category ID

(a) (b) (c)

Fig. 6. (a) Uniform ordering, three resources recommended (b) Non-uniform ordering,
four resources recommended (c) Service category distribution

We also present results of our system when run for an entire day over real time
data. Figure 7 shows recommendations given by our system for different time
slots of a day in a branch of a leading bank in India. RETRAiN frequency F is
set to be 1 hour. Horizontal axis shows slot durations along with recommended
policies and selected resources. Figure 7(a) shows distributions of customer cat-
egories for different time slots, while Figure 7(b) shows distributions of service
categories for corresponding times slots. Initially, when customers are small in
number in first slot, only two resources are selected. As we can observe services
S3 and S4 are predominantly required by customers in first slot. So resources
R2 and R5 are selected, because they are more efficient than others in providing
S3 and S4, which is clear from efficiency matrix shown in Table 2. WSJF policy
is recommended by our system for the first slot, as we are getting improvement
greater than θ1 over FIFO. FIFO is recommended for second and third slots, be-
cause WSJF has smaller improvement over FIFO in these slots. 4 and 5 resources
are selected respectively for these slots, because our system observed increased
in number of customers. When branch load decreases in later slots, resources are
removed and appropriate policies are recommended. You can observe in Figure
7(b) that service S4 is having high demand through out the day. So resource R2

is selected for all time slots, as he is the most efficient in providing service S4.
Thus resources are better managed by our system and now there is no need

for all 5 resources to be engaged for all the slots. This directly leads to reduction
of human hours from 30 to just 14 (53%).

0

5

10

15

20

25

30

35

10am-11am
WSJF Policy

{R2, R5}

11am-12pm
FIFO Policy

{R1, R2, R3, R5}

12pm-1pm
FIFO Policy

{R1, R2, R3, R4,
R5}

1pm-2pm
WSJF Policy

{R2,R5}

2pm-3pm
WSJF Policy

{R2}

3pm-4pm
FIFO Policy

{R2}

Time Slots

Fr
eq

ue
nc

y

Cust Cat 1 Cust Cat 2 Cust Cat 3 Cust Cat 4

0

10

20

30

40

50

60

10am-11am
WSJF Policy

{R2, R5}

11am-12pm
FIFO Policy

{R1, R2, R3, R5}

12pm-1pm
FIFO Policy
{R1, R2, R3,

R4,R5}

1pm-2pm
WSJF Policy

{R2, R5}

2pm-3pm
WSJF Policy

{R2}

3pm-4pm
FIFO Policy

{R2}

Time Slots

Fr
eq

ue
nc

y

Serv Cat 1 Serv Cat 2 Serv Cat 3 Serv Cat 4 Serv Cat 5

(a) Distribution of customer categories (b) Distribution of service categories

Fig. 7. Recommendations for entire day

686 R. Pimplikar and S. Mehta

Algorithmic Complexity and Timing Results. Scheduling customers us-
ing a policy with a single resource is typically a sorting task. The complexity
is O(N logN). Generation of actual schedule by assigning customers to super
resources is O(N logL) where 1 ≤ L ≤ M . Therefore, the overall complexity
of generating schedule for super resources is O(N logN) +O(N logM). Finally,
we create a bipartite graph which can have maximum M ∗M edges and 2 ∗M
nodes (if L = M). So, complexity of finding maximum bipartite matching is
O(M3) using [17]. The steps are repeated for every policy (1 to Q) and number
of resources (1 to M). So overall complexity of running our algorithm is dom-
inated by O(Q ×M ×M3). With Q = 10 (number of candidate policies), 90
customers and 7 resources, our system generates recommendations in approxi-
mately 2 seconds. Due to the limit on number of resources which the branch can
accommodate (typically 3 to 7), M4 is manageable. The time increases linearly
with the increase in number of policies.

5 Conclusions and Future Work

In this paper, we presented an integrated system RETRAiN which analyzes the
real time mix of customers, service requests and resources and recommends a
good configuration for optimizing the retail bank branch operations. The system
tries to use minimum resources and strives to improve business metrics. We
presented an approximation algorithm which discovers how many and which
resources should be used. We presented some results on real data collected from
a leading bank in India. Currently, we are conducting more experiments to study
the quality of our algorithm vis-a-vis optimal algorithm. The problem is modeled
as math program and solved using existing solver for optimal recommendation.
Solving math program for large number of instances and comparing it with our
algorithm will enable us to perform a gap analysis. Finally, we are also exploring
the possibility of deploying the complete RETRAiN system in live customer
environment as well as other domains like call centers.

References

1. Mehta, S., Chafle, G., Parija, G.R., Kedia, V.: A system for providing differentiated
qos in retail banking. In: IJCAI, pp. 2494–2499 (2011)

2. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46, 259–271 (1990)

3. Martello, S., Soumis, F., Toth, P.: Exact and approximation algorithms for
makespan minimization on unrelated parallel machines. Discrete Applied Math-
ematics 75(2), 169–188 (1997)

4. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated
parallel machines. In: Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, STOC 1999, pp. 408–417. ACM, New York (1999)

5. Efraimidis, Spirakis: Randomized approximation schemes for scheduling unrelated
parallel machines. In: ECCCTR: Electronic Colloquium on Computational Com-
plexity, technical reports (2000)

RETRAiN 687

6. Efraimidis, Spirakis: Approximation schemes for scheduling and covering on unre-
lated machines. TCS: Theoretical Computer Science 359 (2006)

7. Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algo-
rithm for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1-2),
87–99 (2007)

8. Verschae, J., Wiese, A.: On the Configuration-LP for Scheduling on Unrelated Ma-
chines. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942,
pp. 530–542. Springer, Heidelberg (2011)

9. Chudak, F.A.: A min-sum 3/2-approximation algorithm for scheduling unrelated
parallel machines. Journal of Scheduling 2, 73–77 (1999)

10. Sgall, J.: On-line Scheduling. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms
1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)

11. Vazirani, V.: Approximation Algorithms. Springer (2001)
12. Karger, D., Stein, C., Wein, J.: Scheduling algorithms. In: Handbook of Algorithms

and Theory of Computation. CRC Press (2010)
13. Deng, Q., Lv, M., Yu, G.: Selecting a Scheduling Policy for Embedded Real-Time

Monitor and Control Systems. In: Wu, Z., Chen, C., Guo, M., Bu, J. (eds.) ICESS
2004. LNCS, vol. 3605, pp. 494–501. Springer, Heidelberg (2005)

14. Adobe, IBM: Solutions for bank branch transformation,
http://www.adobe.com/enterprise/partners/ibm/banking.html

15. Oracle: Siebel branch teller,
http://www.oracle.com/us/industries/financial-services/046715.html

16. Talaris: Branch transformation,
http://www.talaris.com/en-gb/solutions/talaris-consulting/

branch-transformation.aspx

17. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys 18(1), 23 (1986)

http://www.adobe.com/enterprise/partners/ibm/banking.html
http://www.oracle.com/us/industries/financial-services/046715.html
http://www.talaris.com/en-gb/solutions/talaris-consulting/branch-transformation.aspx
http://www.talaris.com/en-gb/solutions/talaris-consulting/branch-transformation.aspx

Automate Back Office Activity Monitoring

to Drive Operational Excellence

Miao He1, Tao Qin1, Sai Zeng2, Changrui Ren1, and Lei Yuan3

1 IBM Research, China
{hmhem,qintao,rencr}@cn.ibm.com
2 IBM T.J. Watson Research Center

saizeng@us.ibm.com
3 IBM China Development Lab

leiycdl@cn.ibm.com

Abstract. Business process outsourcing (BPO) is growing rapidly with
intensive competition. BPO providers aim to deliver high quality ser-
vices with low cost. One of the key drivers is to optimize human re-
source utilization. It is critical to monitor and measure the activities
of the practitioners in order to identify inefficient workers, unnecessary
waste in operations, and non-standardized operations. Today’s practices
to monitor and measure the human activities are manual and error-prone.
Motivated by increasing the accuracy and eliminating manual efforts for
monitoring and measuring human activities, in this paper we present our
research work to automatically classify and time the daily activity of a
practitioner. Even though human behavior variations and noises brings
substantial deviations and randomness, the developed activity classifier
and timer handles the variations and reduces the noise to a satisfac-
tory extent. The pilot results demonstrate 98.18% accuracy to classify
transactions into the activity taxonomy, and 91.54% accuracy to find
out the transaction cycle time therefore to aggregate to the time spent
on each activity. The results are highly valued by our business partners,
and the tool is considered as a revolutionary solution for human activity
monitoring and measurement.

1 Introduction

Business process outsourcing (BPO) refers to the contracting of the operations
and responsibilities of specific, mostly “non-core”, business functions (or processes)
to a third-party service provider. The outsourced functions can be “human re-
sources, information technology, indirect procurement, finance, and accounting,
etc” [10]. BPO is a rapidly growing offshoremarketwith a projected annual growth
rate of 60 percent according to [17], but not every provider has the chance to thrive
in the undergoing industry prosperity. For instance, although Gartner forecasts a
6.3% in 2011 and 5% growth in 2012 for the worldwide market [1], it meanwhile
predicts that “one-quarter of the top BPO operatives will not exist as separate
entities in 2012,” due to “economic risks, loss-making contracts, and inability to
adapt to standardized delivery models” [5].

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 688–702, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automate Back Office Activity Monitoring to Drive Operational Excellence 689

Being aware that a wide variety of factors together drives a provider’s suc-
cess [3, 6, 18], this application-oriented research aims to help providers achieve
operational excellence in their back office processes. More specifically, we monitor
and capture the desktop application usages of practitioners, which account for
more than 90% of their working time. Based on application usages, we further
develop the activity classifier and timer. Let’s explain two key terms, activity
and transaction, which will be revisited many times in the following.

Activity The most granular level in the process taxonomy. Each activity has a
particular and unique succession of processing procedures, and different
activities have different successions of processing procedures.

Transaction A transaction is an instance of a particular activity type.

Note that “transaction” has a many-to-one relation against “activity” type. Sup-
pose there is an activity called “hotel invoice processing,” then we can have one
transaction with invoice number 123, and another with invoice number 456 -
same activity type, differed transaction IDs (invoice numbers).

Activity classifier and timer has dual objectives - identify the correct activity
type for each transaction, and simultaneously find the start and end time of each
transaction. In our solution, a training module first learns the sequential appli-
cation usage patterns of each activity type. This module takes application events
with class label (the activity type) as input and implement sequential pattern
mining algorithms. Then a testing module classifies and times a practitioner’s
work. Handling various human behavior variations and noises in the testing
phase is technically challenging, because variations and noises lead to imperfect
matching between actual application usages with the patterns learnt from stan-
dard operations. Typical variations and noises include (partial) batch processing,
random click on applications, incomplete processing procedures, combined or in-
terleaved processing and so on. If not handled, these variations and noises impose
significantly negative impact on accuracy of classification and timing. In our ap-
proach, we incorporate our knowledge into human behaviors to handle variations
and noises, and the details can be found in Section 3.

Our approach was implemented in a tool (the activity classifier and timer) and
tested in a pilot with a few rounds of result validation. Our business shareholder
from a leading BPO provider, endorses four major business benefits which were
never thought to be feasible in the past. The foremost important benefit is that
this tool can automate today’s manual activity monitoring with high accuracy.
One common practice of today’s activity monitoring relies on practitioners to
report their time spent on daily activities, plus team leads conduct floor auditing.
Our solution eliminates the manual effort of “self reporting” and “floor auditing.”
The second benefit is that the solution can accurately count the number of
transactions processed for each activity. Thirdly, we have observed an obvious
behavior change of practitioners after the tool has been deployed - they become
more efficient with less waste in operations just by awareness of “being watched”
by the tool. Lastly, the tool can also discover the non-standard or exceptional
operations, some of which should, but not yet, be documented in the desktop
procedures.

690 M. He et al.

In the remaining part of this paper, we will review related work in Section
2. Section 3 describes our approach in details, especially how we handle human
behavior variations and noises featured in the back office service delivery. Section
4 illustrates the results, findings and business benefits after implementing our
tool to the production environment. In Section 5 we conclude our work.

2 Related Work

To the best knowledge of the authors, there are no literatures relevant to au-
tomatic timer on service cycles based on knowledge discovery or data mining.
But classification, the task of assigning an input object to one of several pre-
defined categories, has many diverse applications. To name just a few, Bozorgi
et al. train linear support vector machines (SVMs) on high dimension feature
vectors to classify software vulnerabilities [4]; [7] develop a two-phase classifier
that caters to large-scale file categorization; and [9] train a rule-based classifier
for fingerprint classification. Some of the classification works focus on service
process delivery like us. For example, Tang et al. develop a classifier to label the
recorded conversations into a hierarchical taxonomy of the call types for a call
center [16]. [11] categorize incoming emails to the contact centers based upon
their contents. The resulted classifier identifies root, inner and leaf messages to
track the progress of the email interactions. Note that a root message and a leaf
message is the initiation and close of an interaction respectively, while an inner
message is in between.

The most common classification algorithms include, but not limited to, de-
cision tree, rule-based classifiers, nearest neighbor classifiers, Bayesian classi-
fiers, artificial neural network, support vector machine, etc [15]. The mentioned
methods depend on features rather than feature sequences to construct the cor-
responding classifiers. However, sequential patterns in application usage does
matter much in our problem. Agrawal and Srikant first introduce sequential pat-
tern mining in 1995 [2], which is trying to find if there exist any specific order
of the occurrence of events. Notable applications area include “customer pur-
chase behavior, Web access patterns, scientific experiments, disease treatments,
natural disasters, DNA sequences, and so on” [12]. There are two classical sets
of algorithms and derivatives in this area. One thought is to base the learning
process upon the “Apriori” property in association rule mining, including Aprio-
riAll, AprioriSome, DynamicSome in [2] , GSP in [14] and SPADE in [19], etc.
The other series of algorithms proposed rely on recursively projecting the data
sets into mutually exclusive subsets to speed up mining by avoiding scanning
the entire database, see FreeSpan [8] and PrefixSpan [12] for more details.

3 Activity Classifier and Timer

We have developed a tool called system timer capable of capturing the starting
and ending of every application event, machine idle and keyboard idle. An event
refers to a non-switching stay on one application page. For example, system timer

Automate Back Office Activity Monitoring to Drive Operational Excellence 691

will record the starting time as soon as one opens Facebook in IE. Upon switching
to Twitter after 10 seconds stay on Facebook, the tool promptly records the
ending time of the Facebook event. Obviously, the ending time of Facebook is
the starting time of Twitter. Machine idle refers to a special event type when a
desktop is locked and keyboard idle is also a special event type when one let the
computer on with neither mouse movement nor any key striking for a while. In
this way, we can capture application events at very fine granularity which serves
as the basis of the activity classifier and timer.

Before delving into the approach, we would like to walk the audience through
most common non-standard human behaviors as summarized in Table 1. Figure
1 provides graphical illustrations for normal processing and variations, where
each distinct shape represents a distinct application page (a processing step),
and shapes with the same filling forms an end-to-end transaction. Transactions
are of different activity types if their shape sequences are not identical. Omitted
processing steps are colored gray. We define end-to-end transaction processing
that exactly follows documented desktop procedures to be normal. Patternized
deviations from the normal cases are called variations, while noises are unpre-
dictable fluctuations around the normal cases without pattern governance. Our
pilot involves eight activity types, each of which has only one succession of stan-
dard processing procedures. In other words, the service delivery center defines
one standard pattern for each activity type. However, it turns out to have 40
variational sequential patterns after learning.

Understanding the variations and noises we are facing, we design an effective
approach as shown in Figure 2. The approach makes integrated use of knowledge

Table 1. Non-standard Human Behaviors

Human Behavior Variations

Index Variation type Description

Var-1 Incomplete processing Only early or later steps of a transaction are spotted.

Var-2 Batch processing Multiple transactions of the same activity type form a work unit,
where some of the steps (featured application pages) are triggered
in batch, for example, open ten invoices one after another before pro-
cessing them one by one.

Var-3 Interleaved processing Multiple transactions of different activity types form a work unit,
where the required steps (featured application pages) of each transac-
tion appear in an interleaving way.

Var-4 Combined processing Multiple transactions of different activity types form a work unit,
where not all the required steps (featured application pages) can be
found for at least one of the activities.

Human Behavior Noises

Index Noise type Description

Noi-1 Repetitive visits It is hard for a practitioner to complete everything on an applica-
tion page without switches, and therefore non-deterministic number
of visits on the same pages could occur.

Noi-2 Inadvertent clicks It is possible to click some featured application pages of other activity
types irrelevant to the transaction under processing. The inadvertent
clicks put our approach in trouble to correctly label and time the
actual activity being carried out.

692 M. He et al.

……

Four required steps

(a) Normal processing

……

Four required steps, two of which are unprocessed

Four required steps, one of which is unprocessed

(b) Var-1: Incomplete processing

…… ……

Process the triangular steps of

multiple transactions in batch

Four required steps

(c) Var-2: Batch processing

……

Four steps required in activity type 1

Four steps required in activity type 2

(d) Var-3: Interleaved processing

Three steps required in Activity 2

……

Four steps required in Activity 1
(the rectangle step is spared)

(e) Var-4: Combined processing

Fig. 1. Graphical illustration of variations

discovery techniques including sequential pattern mining, scoring function, con-
fidence interval. It follows the generic “training-testing” scheme, but attentive
audience may notice that the testing phase, starting from work unit partition, is
much more complicated than conventional approaches. The complexities result
from simultaneous classification and timing of each transaction cycle, as well as
the addressing of variations and noises as indicated in Table 1.

We also highlight that this approach embeds two sequential pattern mining
modules for normal and deviated cases, respectively. Henceforth, we will use
deviated cases to refer to cases with human behavior variations described in
Table 1. The normal sequential pattern mining is conducted only once, with
training data captured during the time veteran staffs, who strictly follow the
desktop procedures, are doing their work. The training for deviated cases, on
the contrary, requires iterative efforts, since it is impossible for practitioners to
intentionally provide the full set of variations. We therefore incrementally expand
the training data set for deviated cases with application events going through the
tool but remaining unclassified. Note that practitioners usually will not diverge
from the standard procedures unless shortcuts are discovered or un-documented
exceptional requests enter. In the following, we are going to describe the key
steps of the activity classifier and timer depicted in Figure 2.

Step 0 Initialization: The initialization includes signature page identification
and sequential pattern mining for normal cases. A signature page meets two
conditions. First it is a must that cannot be spared for a particular activity type,
and secondly it can differentiate different transactions of the same activity type.
In this work, we use the application page containing the unique transaction ID,

Automate Back Office Activity Monitoring to Drive Operational Excellence 693

or transaction ID page in short, as the signature page. Here we take advantage of
the business process nature which is primarily transaction based. In sequential
pattern mining, we always included the signature page as the first element in a
pattern. We will not elaborate how we implement the “Apriopri-like” algorithm
here. Interesting readers could refer to [13]. The initial sequential pattern mining
extracts frequent sequential application patterns for normal transaction cycles.
We initiate a toy example in the below, which will be used to demonstrate the
flow of our approach, where each letter represents a different application page
and letters with subscript (transaction ID) are the signature pages.

The problem setting of toy example

Normal pattern (learnt by mining) {ABCDxEFG}, {HIxJ}, {ECDxE}
Interleaved pattern (learnt by mining) {ABCDxHIxEFGJ}, enclosed activities are

{ABCDxEFG} and {HIxJ}
Input sequence {ECD1EABCD3HI8EFGJ}

Step 1 Work unit partition: We partition the whole day application events
by signature pages or signature page combinations, where the events around a
signature page are considered plausible to belong to the same transaction. In our
example, the three signature pages could partition the input sequence into three
work units, i.e., {ECD1EABC}, {EABCD3H}, {HI8EFGJ}. Alternatively,
we can partition the sequence into two work units, i.e., {ECD1EABC} and
{EABCD3HI8EFGJ} since the “D − I” signature combination may form an
interleaved work pattern learnt beforehand. Note that the applications between
two signature pages (or signature page combinations) are considered possible
to belong to both transactions at this phase. For instance, the EABC between
signature pages D1 and D3 are temporarily put into both work units. We point
out that this step generates partitions in all the possible ways and feeds them
into the following steps. In this example, we will generate partitions in two ways
where one include three isolated work units, and the other include one isolated
plus one interleaved work unit.

Step 2 Pattern testing and scoring: This critical step uses frequent patterns
of normal and deviated cases to test if they occur around the signature pages or
signature page combinations appropriately. The appropriateness means featured
pages occur, and occur in the expected order. It is worth mentioning that we
allow “partial matching,” which does not require a work unit containing 100%
application pages in a pattern or arranging featured application events exactly as
the pattern sequence.We apply this principle because incomplete processing cases
(Var-1) cannot have all the featured application events, while batch processing
(Var-2) cannot guarantee that all the transactions contain all the featured events.
In addition, this principle hedges against the risk of high generation error as a
result of overfitting, which means that patterns learnt in the training phase might
only work well for the training set, but are not superior for testing set.

However, “Partial matching” principle on the other hand causes the problem
of having multiple candidates. It is common that activities processed by the
same team (back office) are related with each other. The inherent relevance usu-

694 M. He et al.

Pattern Integrity
testing & scoring

Label the
deviation types

Label the activity
type

Rule-based work
unit splitting and

timing

Inadvertent
clicks exclusion

Inadvertent
click?

Output the activity
type, starting and

ending time

Work unit
categorization

Update the
support

threshold

No
Yes

Update the
parameters for
noise reduction

END

Work unit
partition

Signature page
identification

START

Unclassified eventsNormal cases

Sequential
pattern training

for normal cases

Initialization

Find the starting
and ending time

points

Sequential pattern
training for

deviated cases

Classifying &
Timing

5.2

5.1

4.1 4.2

3

2

1

0

Deviated cases

Fig. 2. The work flow

ally leads to application sharing to some extent. For example, activity “invoice
auditing” is a prerequisite of activity “invoice payment,” and both activities
visit the same application to retrieve invoices. Therefore, Application sharing
plus “partial matching” principle implies multiple candidate patterns. We de-
sign score function

score =
number of appropriately matched pages

number of pattern pages
(1)

to choose the best from the candidate patterns. Returning to the toy example,
we test and score each candidate pattern as shown in Table 2.

Theorem 1. When a transaction can either be extracted from an isolated work
unit or part of an interleaved (combined) work unit obtained in the partition
phase, the appropriately matched application pages in the former case will always
be a subset of the later.

The way we partition work units makes the Theorem 1 self-evident. In our ex-
ample, the transaction {HI8J} can be either extracted from the isolated work
unit {HI8EFGJ} or the interleaved work unit {EABCD3HI8EFGJ}. And
{HI8EFGJ} is a subset of {EABCD3HI8EFGJ} as Theorem 1 states.

Automate Back Office Activity Monitoring to Drive Operational Excellence 695

Theorem 2. When a transaction can either be extracted from an isolated work
unit or part of an interleaved (combined) work unit, it can always be split from the
interleaved (combined) work unit with score not lower than score of the isolated
case.

Theorem 1 establishes that the number of appropriately matched pages split from
the interleaved (combined) work unit must be equal to or more than the number
of appropriately matched pages in the isolated page. Given the appropriately
matched page count is the numerator in Equation (1), and the denominators are
the same for both cases, we would know that Theorem 2 is valid.

Table 2. The example: pattern testing & scoring

Work unit Pattern to test Score

{ECD1EABC} {ABCDxEFG} 3/7 = 42.9%

{ECDxE} 4/4 = 100.0%

{EABCD3H} {ABCDxEFG} 4/7 = 57.1%

{ECDxE} 2/4 = 50.0%

{HI8EFGJ} {HIxJ} 3/3 = 100.0%

{EABCD3HI8EFGJ} {ABCDxHIxEFGJ} 10/10 = 100.0%

Step 3 Work unit categorization: We categorize work units by applying the
below rules sequentially to compare across all the candidate patterns. Step 1
decides whether a work unit is a normal or a deviated case. Steps 2-4 defines the
rules to eventually choose only one pattern which matches the work unit under
concern to the best extent.

1. When a series of application events can be both a normal work unit or part of a deviated work
unit, the “deviated type” will be prioritized because of Theorem 2.

2. Choose the pattern that has most number of appropriately matched application pages appear
in the work unit under concern.

3. To break a tie in rule 2, select the pattern which has the highest matching score calculated via
Equation (1).

4. To break a tie in rule 3, randomly select a candidate pattern.

For a normal transaction which has complete cycle, this step labels it with
the activity type. For a deviated case, it points out the variation type and en-
closed activities. For example, the work unit {EABCD3HI8EFGJ} has varia-
tion type “interleaved work unit” and contains two interweaving activity types,
{ABCDxEFG} and {HIxJ}.

Let us still use the toy example for illustration. We go to rule 2 for the
work unit {ECD1EABC} and associate pattern {ECDxE} with this work unit.
Prioritizing {ABCDxHIxEFGJ} over {ABCDxEFG} plus {HIxJ} according
to rule 1, we label the work unit {EABCD3HI8EFGJ} as an interleaved case.

Step 4.1 Classifying and timing for normal and deviated work units:
For a normal case, we assign it with the activity type binding with the pattern
selected in the step 3. To find the starting and ending time, we employ the

696 M. He et al.

“farthest boundary” principle which adopts the earliest starting page and latest
ending page in the work unit to delimit the transaction cycle. This principle
is designed to offset the noise brought by the fact that practitioners cannot
always finish all the working on the same page without switching, or Noi-1 in
Table 1. After splitting a deviated case into sub units according to signature and
pattern pages, we similarly apply the “farthest boundary” principle to identify
the tentative transaction starting and ending time.

Step 4.2 Label unclassified events and sequential pattern mining for
deviated cases: This step invites domain experts or practitioners to look into
the unclassified events to label them for training. The threshold of the support for
the iterative mining is often adjusted by observing the variation frequencies. To
illustrate this, let the complete cycle for activity 1 be ABCDEFG and that for
activity 2 be HIJKLMN . Assume there exist two common interleaved working
styles, say, ABCD|HIJ |EFG|KLMN and ABCDE|HIJ |FG|KLMN which
approximately make up for 75.0% and 12.3% of the interleaved cases, respec-
tively. Then we could set the threshold of support no larger than 12.3% if the
second variations deserve identification, otherwise we should raise the threshold
to narrow the search space.

Table 3. Inadvertent click exclusion

For the transaction under concern, get its cycle time cycleT ime.

If (cycleT ime > maxSpan)

// Forward check

Set curPage = startPage = the signature page.

While (A directly antecedent featured page relevant to the current activity type

before curPage exists)

Set it to be startPage.

Set curGap to be time interval between startPage and curPage

If (curGap < maxGap)

Set curPage = startPage

Else

Set startPage = curPage and break while

End If

End While

// Backward check is similar to the forward check, except for that we are trying to find the

// endPage instead of startPage. We omit the details for length constraint.

End If

Step 5.1 Inadvertent click exclusion: We introduce two adaptive parame-
ters,maxSpan andmaxGap, to deal with the inadvertent clicking (Noi-2), given
Noi-1 has been handled in Step 4.1 with the “farthest boundary” principle. Pa-
rameter maxSpan restricts the cycle time of a particular activity type, while
maxGap confines the interval between two featured application pages under a
certain threshold. A transaction cycle time exceeding maxSpan calls for a dou-
ble check as a result of its abnormally longer processing time, implying that

Automate Back Office Activity Monitoring to Drive Operational Excellence 697

we probably incorrectly delimit or even misclassify the activity. We actuate the
mechanism in Table 3 to reduce the noises. maxSpan strikes a balance between
solution time against accuracy. An extremely large maxSpan is incapable to de-
tect and exclude inadvertent clicks for more accurate timing, while a too small
maxSpan leads to case-by-case checks, which are time-demanding.

Note that excluding inadvertent clicks might change the activity type, which
is rare, though. Take two activity types with sequential patterns ABCxD and
BCxD as an example. At first we classify the working time into type 1 because
of rule 2, but the noise reduction phase excludes A, for it takes 15 min to arrive
at B from A while maxGap = 3 minutes. We thereof send the trimmed work
unit to pattern testing and scoring (Step 2) for reclassification.

Step 5.2 Output and parameter update: This step outputs the class la-
bel, starting and ending time points of each transaction. Also, we update the
maxSpan and maxGap by constructing one-sided confidence intervals and in-
corporating the newly identified transactions. Briefly speaking, we calculate, for
each activity type i, the average cycle time X̄i and the standard deviation σi.

Let Z = (X̄i−μi)
σi/

√
ni

, then Z ∼ N(0, 1), and

maxSpani = X̄i + zασi/
√
ni,

where α is the significance level, ni is the sample size, zα is the value that makes
P{Z ≤ zα} = 1− α.

For maxGap, we need to compose it in real time in Step 5.1, since time
interval between two featured pages differs among activities and applications. We
calculate the upper bound for each application page similar to maxSpan, and
sum the upper bounds of all the applications between two featured application
pages to be maxGap in Table 3.

4 Performance Evaluation and Business Benefits

Through a pilot deployment of the activity classifier and timer to the production
environment, we evaluate the tool performance in terms of accuracy. Further
more, we share multifaceted business benefits realized by the tool, some of which
are pleasant surprises beyond expectation.

4.1 Pilot Introduction

The pilot took place at a service delivery center dedicating to F&A (Finance
& Accounting) processes. Out of dozens of activities, we only focus test our
tool with eight activity types. It last 14 working days on four desktops (four
practitioners) with 768 in-scope transactions processed.

In order to monitor the working time of a practitioner, the current practice of
center is to enforce the self-report by practitioners, which encompasses volume
report and time report. For volume report, practitioners upload the number of
processed transactions by activity type and on daily basis as shown in Table

698 M. He et al.

Table 4. Sample Volume and Time Reports

Sample Volume Report

Date Activity Type Volume

Nov 11, 2011 Invoice processing 20

Nov 11, 2011 Invoice payment 29

Sample Time Report

Activity Type Start Time End Time

Invoice processing 08:12:13, Nov 11, 2011 08:49:56, Nov 11, 2011

Invoice payment 08:49:56, Nov 11, 2011 09:12:00, Nov 11, 2011

Break 09:12:00, Nov 11, 2011 09:20:04, Nov 11, 2011

Invoice processing 09:20:04, Nov 11, 2011 09:51:17, Nov 11, 2011

4 (upper part). Upon switches between activities, the practitioners will man-
ually log the beginning of “switching-to” activity and the ending time of the
“switching-from” activity. Table 4 (lower part) shows what a time report looks
like. We emphasize that practitioners trigger the manual timing upon activity
type changeovers rather than transaction changeovers, which means multiple
“invoice payment” transactions may be processed from 08:49:56, Nov 11, 2011
to 09:12:00, Nov 11, 2011 (the second row in the Sample Time Report).

To provide the baseline for us to compare the tool performance with, our
business partner offered to audit the volume and time self-reports for three
working days of the four practitioners. The auditing covers 276 transactions or
518 minutes working time. 518 minutes is far less than 12 working days (three
days / practitioner * four practitioners) because we only have eight activities in
scope and practitioners spent time processing other out-of-scope activities, too.

4.2 Performance Evaluation

We evaluate the performance of the tool on volume count and time capture,
in correspondence with the volume and time self-report. The activity classifier
and timer supports automatic volume report generation by counting the distinct
transaction ID of each activity type. Table 5 (left part) shows the pilot results
in terms of volume count. The tool faces two sources of errors, unclassified and
misclassified transactions. For transactions which were indeed processed, but no
learnt pattern matches this work unit with a satisfactory degree, we will have
unclassified transactions. When a transaction is assigned with an incorrect la-
bel, we will have misclassified transaction. Misclassifications further breaks into
two types - misclassification (in scope) refers to a incorrectly labeled transac-
tion with its true class among one of the eight activities involved in the pilot;
misclassification (beyond scope) refers to one with its true class out of the eight
activities.

We measure the performance with accuracy, which is defined as

accuracy =
number of objects correctly classified

total number of objects
.

Automate Back Office Activity Monitoring to Drive Operational Excellence 699

Table 5. Performance of automatic volume report

Items
Volume Time

Self-report Auto-report Self-report Auto-report

Correctly classified 274 271 407 min 498 min

Unclassified 2 4 91 min 15 min

Misclassified (in scope) 0 1 20 min 5 min

Misclassified (beyond scope) 0 0 85 min 26 min

Accuracy 99.28% 98.18% 67.50% 91.54%

Audited volume, time 276 transactions 518 min

Our tool achieves 98.18% accuracy, which is slightly lower than the self-report
accuracy 99.27%. The automatic report accuracy drops from 100% with four
unclassified and one misclassified transactions. A deep dive into the four unclas-
sified transactions reveals that they are exceptional cases, where no signature
page such as the transaction ID page will appear. The signature-page-based
nature of our approach brings about the failure. This discovery uncovers the
problem with the process itself. Our business partner is happy that we expose
the unnoticed non-standard processing. They will follow to redesign the process
and make sure each transaction to have a signature page for monitoring purpose.

Next, we share the timing performance of our tool in Table 5 (right part). The
correctly classified time is 498 min while total time under concern is 544 min. We
can calculate that the accuracy is 91.54%, which is a significant improvement
comparing with the self-report accuracy, 67.50%. We have discussed the root
causes of low accuracy of self volume reports with our business partner, who be-
lieves too frequent manual time logging distracts practitioners from their normal
work flow and practitioners are reluctant to do so. We see it as an opportunity
where the automatic tool helps, since the charge model of our business partner
depends on working time on different activities.

The above numeric results illustrate that the activity classifier and timer
performs well in terms of both automatic volume and time reports. Next, we are
going to demonstrate the effectiveness of our approach design (Figure 2) with
“what-if” scenarios.

Require complete pattern (RCP) If a work unit do not contain all the application pages
appropriately of at least one pattern, it remains un-
classified.

Neglect variations (NV) Do not handle the variations.

Neglect inadvertent clicks (NIC) Do not address the inadvertent clicks (Nor-2).

Neglect repetitive visits (NRV) Do not address the repetitive visits (Nor-1).

Table 6 (left part) shows the results of the above four scenarios in terms of
transaction count accuracy.

We can observe that the requirement of complete pattern matching leads to
more unclassified transactions, which meets our intuition. The variation neglect
often results in fewer classified transactions because we fail to split the inter-
leaved or combined work units. Very seldom misclassified cases can occur due to

700 M. He et al.

Table 6. What-if analysis of automatic volume report

Items
Volume Time

RCP NV NIC NRV RCP NV NIC NRV

Correctly classified 215 243 271 271 422 466 503 446

Unclassified 61 32 4 4 88 40 12 68

Misclassified (in scope) 0 1 1 1 8 12 3 4

Misclassified (beyond scope) 0 0 0 0 24 28 1345 10

Accuracy 77.9% 88.4% 98.2% 98.2% 77.9% 89.0% 27.0% 84.5%

Audited volume, time 276 518 min

unaddressed inadvertent clicks, and we do not encounter it in our pilot. Repeti-
tive visits handling cannot improve the automatic volume report accuracy as we
can expect. Hence, the performance of NIC and NRV are identical to the activity
classifier and timer. With regard to timing accuracy, we also analyze the four
what-if scenarios to validate our algorithm effectiveness and the indispensability
of each step in Table 6 (right part).

We could observe that we have the largest amount of unclassified time due to
unclassified transactions when complete pattern matching required (RCP bar).
When we do not handle the variations, the unclassified time also has a slight rise
which indicates the practitioners did some combined or interleaved processing
during our pilot. It is interesting that if we do not exclude the advertent clicks, we
end in extremely low accuracy since the tool include too many out-of-scope time
because of inadvertent clicks on some featured pages. If we do not consider the
possibility of visiting the same page repetitively, we will have more unclassified
time because we only start from the latest starting application page and end
with the earliest ending application page.

4.3 Business Benefits

Section 4.2 demonstrates the high performance of the tool in classification and
timing, and how the performance will be degraded without critical steps. This
section shares the business benefits we obtained. A straightforward reap by en-
abling the automatic tool is the time saving in manual time and volume report,
which on average costs a practitioner 13.29 min per day (2.7%) assuming the
total working time is 8 hours per day. We can also save the auditing time of
team leads.

Next, we observe an obvious behavioral change of the practitioners who has
the tool deployed. The waste (consisting of machine idle and keyboard idle)
when processing the eight monitored activities is much lower than that when
processing out-of-scope activities. Table 7 shows our findings. If we extrapolate
the saving to an eight-hour working time, the monitored practitioners should
waste about 22 minutes but unmonitored ones has about 55 minutes to squander
- 30 minutes to save per person day. Additionally, the efficiency has risen for the
eight in-scope activities as compared to the pre-pilot period as shown in Table

Automate Back Office Activity Monitoring to Drive Operational Excellence 701

Table 7. Business Benefit: Waste and Efficiency

Waste: monitored versus unmonitored activities

Monitored activities Unmonitored activities

Waste (%) 4.73% 11.48%

Efficiency: pre-pilot versus pilot period

Pre-pilot period Pilot period

Efficiency (%) 90.61% 109.94%

7. The waste reduction and efficiency improvement, we believe, attributes to the
practitioners’ awareness of the “being watched.”

Finally, the iterative training mechanism in our approach helps our business
partner to unveil non-standard or exceptional processing procedures.
Non-standard processing, such as processing in batch, interleaved and combined
processing, tend to have strong reasons in behind. The practitioners learn to do
their work faster by combining or interleaving two related activity types together
to omit some steps, which we call shortcut-driven. It is also quite common to do
batch processing, since repetition creates efficiency with familiarity to particular
working contents and savings of changeover costs, which we call familiarity-
driven. The shortcuts discovered by practitioners may motivate the business to
redesign and document more efficient processing procedures. Moreover, the un-
classified time implies exceptional cases and should rouse the attention of the
team leads for further investigation.

5 Conclusions

In this paper, we present an approach and tool that automatically classifies and
times the transactions processed by practitioners, based on the fine-granular ap-
plication usages. This work contributes to the existing literature with a stream-
lined approach which comprehensively consolidates knowledge discovery & data
mining techniques, and furthermore handles the typical human variations and
noises in the service delivery process with domain knowledge.

A pilot with a world-class BPO provider showed a success in both technology
and business. Our approach results in high accuracy in both classification and
timing. The critical part is to be able to address human behavior variations and
noises for service delivery. Business wise, the tool can not only eliminate the self-
report efforts, it also discipline practitioners’ behavior to improve efficiency and
reduce waste. Lastly but not least, it can discover non-standard or exceptional
operations to enforce the process standardization and business control.

References

1. Computer Business Review (2011),
http://outsourcingbpo.cbronline.com/news/

worldwide-bpo-market-to-grow-by-63-in-2011-gartner-230811

http://outsourcingbpo.cbronline.com/news/worldwide-bpo-market-to-grow-by-63-in-2011-gartner-230811
http://outsourcingbpo.cbronline.com/news/worldwide-bpo-market-to-grow-by-63-in-2011-gartner-230811

702 M. He et al.

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th
International Conference on Data Engineering, pp. 3–14 (1995)

3. Bharadwaj, S.S., Saxena, K.B.C., Halemane, M.D.: Building a successful relation-
ship in business process outsourcing: An exploratory study. European Journal of
Information Systems 19(2), 168–180 (2010)

4. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: Learning
to classifify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
105–113 (2010)

5. Brown, R.H.: Business process outsourcing vendor consolidations: Is your contracts
at risk? Gartner (2009)

6. Du, Z., Liao, X.: Well-defined processes and their effects on business process out-
sourcing vendor’s success: An integrated framework. In: The 2010 International
Conference on E-Business Intelligence, pp. 27–36 (2010)

7. Forman, G., Rajaram, S.: Scaling up text classification for large file systems. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 239–246 (2008)

8. Han, J., Pei, J., Mortazavi-AsI, B., Chen, Q., Dayal, U., Hsu, M.: FreeSpan: Fre-
quent pattern-projected sequential pattern mining. In: Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
355–359 (2000)

9. Karu, K., Jain, A.K.: Fingerprint classification. Pattern Recognition 29(3), 389–404
(1996)

10. Lacity, M.C., Willcocks, L.P., Rottman, J.W.: Global outsourcing of back office
services: lessons, trends, and enduring challenges. Strategic Outsourcing 1(1), 13–
34 (2008)

11. Nenkova, A., Bagga, A.: Email classification for contact centers. In: Proceedings of
the 2003 ACM Symposium on Applied Computing, pp. 789–792 (2003)

12. Pei, J., Han, J., Mortazavi-AsI, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: PrefixS-
pan: Mining sequential patterns efficiently by prefixed-projected pattern growth.
In: Proceedings of the 17th International Conference on Data Engineering, pp.
215–224 (2001)

13. Qin, T., He, M., Zeng, S., Ren, C., Dong, J.: An effective pattern mining algo-
rithm to support automatic process classification in contact center back office. In:
Proceedings of the 2012 IEEE SOLI (2012)

14. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and per-
formance improvements. In: Proceedings of the 5th International Conference on
Extending Database Technology, pp. 3–17 (1996)

15. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. China Machine
Press (2010)

16. Tang, M., Pellom, B., Hacioglu, K.: Call-type classification and unsupervised train-
ing for the call center domain. In: Proceedings of the IEEE Workshop on Automatic
Speech Recognition and Understanding, pp. 204–208 (2003)

17. Tapper, D.: Worldwide and U.S. IT outsourcing services 2004-2008 forecast: A
potential perfect storm. IDC # 31089 (2004)

18. Tapper, D.: U.S. customers select IBM, HP-EDS, Unisys, Accenture, Infosys, ADP,
and Fedelity as top 5 ranked BPO vendors for transformation, integration, inno-
vation and cost optimization - excerpt from IDC # 216191. IDC # 216191 (2009)

19. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1-2), 31–60 (2001)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 703–717, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Collective Intelligence for Enhanced Quality
Management of IT Services

Maja Vukovic and Arjun Natarajan

IBM T.J. Watson Research, 19 Skyline Drive, Hawthorne, NY 10532, USA
{maja,arjunn}@us.ibm.com

Abstract. Customer satisfaction and delivery excellence measure the overall
quality of IT services. Services quality management relies on the insights
obtained by extracting large volumes of tacit knowledge about processes,
products and people. This knowledge is not automatically discoverable, as it is
unstructured and widely distributed among the experts, making it challenging to
drive quality across all these dimensions. To address these knowledge gaps
needed for next level of quality management of IT services we apply collective
intelligence methodology, by engaging a set of experts to discover knowledge
through collaboration. We further augment enterprise data sources with
uncovered human knowledge. We demonstrate the effectiveness of our
approach addressing challenges in scalable knowledge discovery both as part of
large-scale business transformational and on-going operational activities.

Keywords: Services Quality, IT Service Delivery, Collective Intelligence.

1 Introduction

IT outsourcing enables companies to contract out IT services, such as infrastructure
management, to external providers. It attracted enterprises given a cost reduction and
steep improvement in quality through aggressive service level agreements (SLAs)
[1,2]. As IT outsourcing matured, quality of service became a differentiating factor
for providers. To meet the quality expectations and reduce operating costs the
providers need to continuously improve services quality both at front-end (e.g., client
experience and satisfaction), and back-end (e.g. production and delivery).

IT outsourcing is a complex and extremely dynamic ecosystem. As shown on Fig.
1, typical IT service delivery environment consists of 1000s of products (e.g.
middleware), each with 100s of instances and configurations [3]. Moreover, there are
100000s people in delivery centers globally supporting 1000s of processes, such as
patch management and backup failure management. At that scale and complexity
driving quality across all dimensions and in global context, becomes challenging.

Success of quality management in manufacturing relies on understanding of the
back-end processes, and modularizing their operations. In contrast, IT services have
experiential nature and require user practice insights. For example, while a database
configuration can be automatically extracted, it is the expert who knows how it is
used and its importance. Similarly, although processes document the operation flows,
it is the delivery experts who understand where the bottlenecks are.

704 M. Vukovic and A. Natarajan

Fig. 1. IT Services Delivery - Process, Product and People [3]

Collective intelligence refers to a group of experts that through collaboration make
decisions and solve problems as a (distributed) team. Xerox’s Eureka system is one of
the early examples of applications of collective intelligence for IT support services
[4], which enabled experts to share best practices. To increase service quality in IT
outsourcing, by accelerating knowledge discovery, we propose end-to-end integration
of collective intelligence with existing process operations. As opposed to an “open-
call” approach, we select participants based on their expertise.

In this paper we present how we integrated collective intelligence of experts using
BizRay crowdsourcing service [5] with enterprise data systems, to derive quality
insights about products, processes and people in IT services. Next section introduces
background on IT service quality. Section 3 describes the integration of human and
digital knowledge. Section 4 presents applications of our approach to harvest the
knowledge about products, people and processes in IT services. Section 5 discusses
results from discovering knowledge about defect prevention tools from 2300+ quality
analysts, automation opportunities from 90 system administrators and compliance
insights from 128 delivery staff. Section 6 puts our work in the context of state of the
art in service quality and collective intelligence. Section 7 sets our future directions
and concludes.

2 Complexity of IT Service and Quality Management
Challenges

2.1 Background

IT outsourcing services consist of a stack of functions such as, infrastructure
management and help-desk operations. An IT outsourcing provider runs operation and
maintenance of client’s IT environment, with the goal of improving efficiency

 Collective Intelligence for Enhanced Quality Management of IT Services 705

through quality of production and delivery. In large deals the IT outsourcing provider
typically takes over the entire set of client’s IT functions, in contrast to smaller deals
where it assumes operations of only a single function such as help-desk operations.
Contract between provider and consumer outlines the outsourcing model and (quality)
metrics to be continuously verified, known as Service Level Agreement (SLA).

IT services evolved from isolated environments in 1980’s where there was no
formal separation between the users of IT and the providers. In the 1990’s services
were becoming more componentized and shared, and operations formalized given the
emergence of standards. In the 2000’s global delivery model was widely adopted, and
new challenges were introduced given the huge separation between provider and
consumer, time zone differences, language barriers, etc. Complexity of service
systems is evolving given the diversity of providers and consumer. This impacts how
we get services to work together and how we measure them. In the 2010’s we are
witnessing a dramatic growth in number of service providers and granularity of
services offered with inconsistent service levels, given a low barrier to entry. No
single entity owns the entire service system. Lack of standard metrics and centralized
ground truth source results in IT services based on inconsistent and conflicting data.

2.2 Quality of IT Services

With the increasing complexity of IT Service ecosystem and maturity of IT, quality of
service became a differentiating factor for providers. Client satisfaction is an
increasingly dominating choice of service provider. For example, 59% of respondents
in the Accenture’s study report switching from at least one provider within a year due
to poor service [6].

There are two distinct aspects to measuring services quality: a service provider
perspective and a service consumer perspective. Quality metrics in product industries
tend to be producer centric, whereas in services the consumer perspective is as
important if not dominant. Consumer perception includes the client value and SLAs.
The provider quality is measured using SLA attainment, number of defects and
financial aspects of operations. On the service provider side, key measure employs
General Sigma approach to drive service production quality. “Defect” can be defined
as an instance or event that is not a satisfactory outcome. On the consumer side,
traditional Sigma approach is less understood. The consumer measure represents the
difference between consumers’ perception and expectation. Notion of “defect” is
harder to define and carries a significant subjective component.

Consumer and provider perspective around the same service are often quite different.
For example, an airline industry study revealed the despite airline baggage handling
being at nearly 4 sigma1[7], it was still the 2nd highest passenger complaint [8].

While quality engineering methodology can be adopted from established fields such
as manufacturing, IT Services Quality has fundamental new dimensions related to the
experiential nature and co-production of services with the client. As such it requires
focus on integrated product-based process-driven, and people-centric operations.

1 “Sigma” is around a specific metric. A service system has a number of metrics reflecting

processes and tasks across the lifecycle. These metrics can range between 2 and 6 sigma as
business criticality of individual metrics vary.

706 M. Vukovic and A. Natarajan

From product perspective it is important to understand how products (and tools)
are used as part of IT services delivery processes. For example, in the defect
prevention, addressed in Section 4.1, quality analysts rely on tools to classify and
expedite the problem resolution. The quality depends on the usage and usability of
available tools. Opportunities for process quality improvements are associated with
automation. In Section 4.2, we investigate a set of work activities in delivery centers
to identify their current levels of performance and discover further automation
opportunities. Quality enhancements arising from people centric insights are two fold.
First is the improved compliance posture of business described in Section 4.3. Second
benefit is the ability to allocate experts more efficiently based on their expertise.

2.3 Front and Backend Elements of IT Service

Service systems can be conceptualized as a stage [9], with front-end (client-facing)
and back-end (operations) functions, shown on Figure 2. A lower level, back-end
stage, that focuses on consistent delivery through standardization, automaton and a
learning system for continuous improvement. The middle level glues the loop
between the front-stage and the back-stage. The top level, the front end, focuses on
the client by developing a branded services experience and client value. Metrics at
each level form a “network of metrics” determining overall quality of the service. For
IT Services Delivery to take advantage of advances in manufacturing industry, a
factory model has been applied to the back-end operations. This results in
standardized, automated processes with adaptive dispatching (tasks sent to experts
based on domain and complexity). Experts are grouped into “pools” sharing a specific
competency. The delivery knowledge is captured into best practices, and real-time
metrics provide sensing and response capabilities to drive continuous improvement.
Finally, a learning system prevents repeat incidents leading to self-healing.

Fig. 2. Quality Characteristics of IT Services at Front and Back-end [3]

 Collective Intelligence for Enhanced Quality Management of IT Services 707

3 Approach: Integrating Digital and Collective Intelligence

Knowledge discovery is a distributed process often relying on multiple human or
digital sources. Traditional techniques for knowledge discovery in enterprises such as
interviews, e-mails, instant messages and Web-forms are no longer sufficient to reach
out to today’s globally distributed teams in large enterprises. They fall short in
systematically tracing the responses, dealing with incomplete responses, and
understanding the organizational relationships, with Subject Matter Experts (SMEs)
moving out of organization. SMEs may forward knowledge requests to experts who
took over their previous roles, yet these methods are time-consuming and intractable.

There are two critical factors that impact success of the knowledge discovery:
knowing the potential source, or knowing someone who is aware of other sources.
Crowdsourcing gained popularity with the emergence of Web 2.0, enabling
enterprises to outsource tasks that are traditionally performed by designated human
agents to an undefined large group of humans [10]. Even within the enterprise it can
be applied in the form of an open call format allowing for anyone to participate. For
instance, when looking for information about Apache Tomcat build procedure it may
be useful to setup a forum for people interested. Yet, when seeking accurate
information on a business entity, the potential contributors that may answer correctly
are much smaller and may not be necessarily available for such inquiries. In this case
it is easier to establish chains of inquiries.

To implement principles of collaborative knowledge discovery (Figure 3.) in
Services Delivery we employ system BizRay [5]. Knowledge requests are captured in
the distributed questionnaire artifact, which consists of one or more sections, each of
which consists of one or more questions. BizRay manages its lifecycle, similar to a
workflow system and facilitates delegation of requests and their subtasking. More
than one expert (user) can complete each questionnaire instance. If the information
gathered is incomplete or unidentified, the user can forward the request to another
expert, asking for their help. As experts contribute their knowledge, the system keeps
track of their identity resulting in the formation of micro communities around the
object of that inquiry. The system also embeds capabilities to send out reminders and
escalations to users who did not respond to the initial request.

Fig. 3. Collective Intelligence Approach to Knowledge Discovery

708 M. Vukovic and A. Natarajan

Fig. 4. Integration of Crowdsourcing Results with Enterprise Data Sources

In contrast to our prior work [5] where questionnaires were deployed as isolated
instances, we integrated BizRay with existing enterprise data and reporting sources.
Figure 4 shows the system architecture and lifecycle, and how we automatically
processed questionnaire results, mapping them into the reports that are consumable
by business analysts. The centralized information model captures the data for
organization, labor, tools, automation potential, etc. Automated ETL tool maps
questionnaire to this data model. Automated reporting tool, based on IBM Cognos
platform, allows business users to query and view the different elements of
questionnaire data. BizRay was used to manage questionnaires, tasks, delegations,
status and reports. A feedback loop supports systematic refinement of
questionnaires. Open source crowdsourcing solutions can be used to provide core
functions, however BizRay has a unique feature that allows users to subtasks their
assignments.

4 IT Service Insights for Quality Management

In this section we describe three applications of collective intelligence to IT Services
Delivery operations within a global enterprise, harvesting insights and improving
product, processes and people aspects of the back-end processes.

 Collective Intelligence for Enhanced Quality Management of IT Services 709

Fig. 5. Dimensions affecting IT Service Quality

4.1 Product Insights - Defect Prevention Tools

Defect prevention is the proactive and systematic methodology for improving quality
and productivity by preventing the injection of defects into a service. It has three
primary objectives: improving quality, improving productivity, and improving
solution knowledge management. Improvements to quality in IT services are achieved
by targeting defects, understanding the root cause, and eliminating defects by
implementing solutions and corrective actions. Productivity improvement is achieved
by removing non-value add activities that are involved in defect handling. For
example, in IT Outsourcing, significant time is spent resolving recurring incidents and
alert disposition. This time can be eliminated and the effort can be spent on activities
that add value to the customer. Finally effective knowledge management is achieved
by ensuring organizational support to effectively leverage defect knowledge across
different outsourcing customers. The objective is that defect prevention leverages
globally distributed teams that provide IT services to resolve problems only once and
share the solutions globally, thereby improving the overall level of service quality.

Fig. 6. Defect Prevention Process Flow: Analysis, Solution and Reuse

Figure 6. shows the main stages in defect preventions process, starting with the
Quality Analysts (QAs) performing the classification and analysis of incoming issues
and trends and identifying follow-up investigations. Subsequently QAs together with
Subject Matter Experts (SMEs) and System Administrators (SAs), work on resolving
the issues and capturing the best practices.

Fig. 7. Defect Prevention Collective Knowledge Request

710 M. Vukovic and A. Natarajan

We have applied principles of collective intelligence to 2300+ quality analysts in
an effort to understand their practices, usage of available products (tools) for defect
prevention and sample opportunity for novel auto-classification capabilities. The
estimated time to complete the request, shown in Figure 7., was 5 minutes, and no
tangible incentive was offered to participants. The campaign ran for a month, during
which we obtained over 50% responses.

Within first week nearly 30% of respondents provided their responses. The rate of
responses slowed down, and has resurged following a reminder that we have issued
after third week. The primary value of the questionnaire is the insights obtained from
respondents. It was discovered that over 60% of the QAs are still manually locating
defect codes, opening up an opportunity for introducing advanced methods for auto-
classification capabilities with the defect prevention process. Analysis further
revealed that 25% requests were forwarded to another QA, reflecting team changed.
Another 20% of respondents rejected the knowledge request altogether, claiming that
they are no longer in this job function. Nevertheless, this data is enabling organization
to track the size and distributions of competencies and knowledge capital (i.e.
affecting people aspect of service delivery).

4.2 Process Insights – Automation Opportunities

Our objective was to discover automation opportunities for service management
processes using questionnaires about accounts that are managed by pools (Figure 8)
and the tools used. From account perspective our goal was to identify variances
among accounts being managed, business constraints and infrastructure prerequisites
for automation. From the tool perspective, the goal was to understand the execution
time for different work activities, existing automations and the estimated time
reduction they introduce. Work-types performed by pool members included resolving
hardware issues, patch and backup failure management, etc.

Fig. 8. Account Level Questionnaire for Automation Opportunities

 Collective Intelligence for Enhanced Quality Management of IT Services 711

We were interested in performance of current processes in pools and opportunities
for automation globally. As pools often develop their own productivity tools, we
wanted to obtain a list of existing assets and identify their synergies. We assigned the
questionnaire to SAs for 90 pools, with no explicit incentives.

Analysis of the results provided insights into variance in productivity between
different pools that share business objectives, as shown in Figure 9. For work type
Hardware Issues two pools report entire different duration estimates, whilst for the
first three work types (backup, application and capacity system growth) they are
consistent. Based on 30% of responses (other participants didn’t provide this
information), the mean time reduction arising from tool automation is 77.35min per
SME. Section 5 discusses challenges arising from inconsistent responses, missing
data, and misinterpreted requests.

Fig. 9. Operational Insights: Variance of pool performance

4.3 People Insights – Compliance

Whilst process automation has a direct impact on the quality, regulated usage and
access to customer’s data and systems is of utmost concern for any enterprise, let
alone IT service provider. Obtaining, managing, executing and disposing of access
rights to customer’s systems requires structured mechanisms that follow national and
industry compliance regulations. Complexity of IT Service environment calls for new
approaches to automate system access and provide fine granularity audit records [11].

To continuously improve compliance posture, adhering to a variety of regulations,
enterprises require accurate and in-depth insights into employees’ existing and
required system access rights [12]. To generate comprehensive audit trails enterprises
rely on detailed knowledge about how employees access existing systems. For that
purpose we have deployed a questionnaire capturing elements of compliance in 128
pools, which were distributed to pool focals. Eighty-nine experts completed the

712 M. Vukovic and A. Natarajan

request and twenty provided partial response. Due to the complexity questionnaire
took on average 13 days to complete (measured from first time access to closure of
the questionnaire in the system).

5 Discussion

5.1 Effectiveness of Collective Intelligence

Figure 10 shows the response time for three different deployments. In the simplest
questionnaire (defect prevention) up to 30% responses were submitted within the first
day. We observe bursts of responses as the reminders are sent. BizRay system has
minimized human effort in setting up and distributing questionnaire campaigns and
has enabled scaling of these activities. This has enabled us to easily reach out to 100s
or 1000s of SMEs at the same cost.

5.2 Design Considerations

Scaling out campaigns impacts the accuracy levels, by introducing inconsistency and
incompleteness of the gathered information (e.g. in the Automation Opportunities
questionnaire we observed large variance in responses, as a result of ambiguous
questions or respondents not providing the response in the correct unit of measure).

Fig. 10. Distribution of responses

 Collective Intelligence for Enhanced Quality Management of IT Services 713

For example, there was a case where a single SME reported that there is no support
for “user admins”, the other SME reported that “16hours were spent on supporting
user admins”, and yet another responded that “15mins were spent on supporting user
admins”. Anecdotally, the last SME did admit that they were not responsible for that
issue resolution, but did spend those 15 minutes helping another colleague. Similarly,
respondents may simply be in hurry and hastily respond, entering incorrect data.

However, collective intelligence approach does allow us to follow up with
(selected sample) of respondents and verify their responses as part of quality
assurance. The ambiguities about the questions can be overcome by facilitating
communication among users and questionnaire designer, which indeed the BizRay
tool supports.

We have also uncovered conflicts between responses of SMEs of the same pool,
for example some were reporting that there is no for Reporting and Health Check,
while another stated the names of the tools used for those activities. Normally, only
one of them should be right, but here both can be right if they are SME for different
accounts within the same pool. As a lesson learnt, we will capture account affiliation
of the SME, and further reduce the scope of the question. In addition we discovered
that respondents were collaborating on their (individual) questionnaires, and provided
similar responses. This may be viewed as a notion of community driven validation.

Table 1. Use of collaborative features

Questionnaire # Sent
Requests

of
Reassignments
(full and partial)

of Full
Reassignments

Product: Defect Prevention 2334 527 526
People: Compliance 128 103 98
Process: Automation Opportunities 90 6 2

5.3 Implications on Services Quality

Distributed questionnaires provided dual value: auxiliary and direct [13]. Direct
output is driven by the business objectives (e.g. discover automation assets and their
effectiveness). Auxiliary output is the derivative, such as discovering new Quality
Analysts. Both are critical to improvement of processes (e.g. understanding current
operations, and distributions of knowledge capital internally). Table 1 summarizes the
usage of collaborative features In the defect prevention scenario the high number of
delegations corresponds to the migration of SMEs within the enterprise departments
and change in role responsibilities. The communities of experts that were uncovered
can be reached out in subsequent campaigns to further expose the products used and
procedures followed. This provides an enormous potential in a large global enterprise
to further standardize the processes and assets used.

714 M. Vukovic and A. Natarajan

5.4 Effectiveness

In our initial application of BizRay for IT optimization we have demonstrated that
introduces up to 30x improvement to data collection process [14]. The results were
based on comparison of manually collected data using spreadsheets that were
distributed and managed via e-mail. They resulted in manual follow-ups with multiple
respondents. In the current work, a comparison is available for automation
opportunities. Initially delivery staff was interviewed, for an hour, in person by
consultants. Such sessions are often difficult to schedule, as experts need to attend to
various high priority tasks. Using BizRay expert can go back multiple times to update
their response. BizRay also allowed scaling of the questionnaires without increasing
the cost of the effort.

6 Related Work

We position our work with respect to the state of the art in services quality. We
compare our application of collective intelligence to the current state of the art in
enterprise crowdsourcing and draw parallels to open source development efforts.

6.1 Services Quality

Grover et al. [1] identify high correlation between outsourcing success and system
operations functions. Their results indicate that decision to outsource is driven by two
types of parameters that impact the overall service quality. First is the quantifiable
process improvement potential and related transaction cost. Second are the soft
elements of partnership such as trust, cooperation, and communication.

Lee [15] confirms the belief that knowledge sharing is one of the major predictors
for outsourcing success and impacts the soft factors of outsourcing partnership.
Organizational capability to learn or acquire the needed knowledge from other
organizations is a key source of successful knowledge sharing, and partnership
quality, impacting the outsourcing success. Zinelid verifies that the strong competitive
position is achieved through customer relationship management (CRM) and
product/service quality, and proposes a new technical-functional 5 qualities model to
measure the quality and loyalty [16]. This breakdown is much aligned with our
approach of applying collective intelligence both in the front-end and back-end of
services business. Indeed, social media techniques are becoming a prevalent method
in reaching out and maintaining the relationship with the customers [17].

6.2 Collective Intelligence

Emergence of Web 2.0 and advances in social networking technologies have
empowered the potential of collective intelligence to improve quality of business
processes and customer relations [18,19]. Before Web 2.0 companies were engaging
employees through competitions (e.g. employee of the month) to increase

 Collective Intelligence for Enhanced Quality Management of IT Services 715

productivity. Similarly they employed surveys to obtain insights about the potential
improvements in the workplace. Using the traditional media enterprises were reaching
out to customers to sample ideas for a new product or service or quality
improvements. Vukovic and Naik [20] engage enterprise online communities to
capture the information required for IT optimization, such as migration to Cloud. On
the customer facing side, nowadays we are witnessing a plethora of on-line
communities, forums and social media applications to engage customers in product
and service design decisions [21,22]. Beyond providing feedback on the service
operations, end-users and customers are evolving into a virtual extension of the
enterprise, by increasingly being embedded in the customer support processes [23,24].

6.3 Open Source Development

In production open source is a methodology that promotes free redistribution and
access to an end product's design and implementation details. Prior work has drawn
parallels between wisdom of crowd approach and open source [25], which Albers et
al. [26] identify as just one of the new Internet-based learning and network
collaboration paradigms. A main advantage of open-source model is the concept of
concurrent yet different agendas and approaches in production, in contrast to the
traditional centralized models of development and operations in enterprises. Moreover
end-product, source-material, and documentation resulting from the open source
method are available at no cost to the public in the open source approach. With
globally distributed, virtual teams becoming the norm in the enterprises [27], the
elements of open source method are being applied to internal operations.

7 Future Work and Conclusions

We have presented a collective intelligence approach to enhancing quality
management processes of IT services. The main contribution of this paper is a
mechanism to augment the tacit human knowledge with digital knowledge from
enterprise data sources to provide enhanced enterprise insights. In contrast prior art
considers collective intelligence as a stand-alone effort, disconnected from the
encompassing business process.

There is very little research in the quality management of front-end processes in IT
Services, opening an opportunity for unique differentiation amongst service providers.
Our future work will include engaging of clients and account teams to derive insights
about client processes and their quality parameters. This will enable us to close the
knowledge gap arising from complexity and dynamics involved in interactions
between front and back-end service elements.

Acknowledgements. We thank Jim Laredo and Sriram Rajagopal for contributions to
the BizRay system, and Winnie Chang for insights from defect prevention analysis.

716 M. Vukovic and A. Natarajan

References

1. Grover, V., Cheon, M.J., Teng, T.C.: The Effect of Service Quality and Partnership on the
Outsourcing of Information Systems Functions. Journal of Management Information
Systems 12(4), 89–117 (1996)

2. Beulen, E., Van Fenema, P., Currie, W.: From Application Outsourcing to Infrastructure
Management: Extending the Offshore Outsourcing Service Portfolio. European
Management Journal 23(2), 133–144 (2005)

3. IBM Global Technology Outlook, Services Quality (2009)
4. Bobrow, D.G., Whalen, J.: Community Knowledge Sharing in Practice. The Eureka Story.

Journal of the Society of Organizational Learning and MIT Press (2002)
5. Laredo, J., Vukovic, M., Rajagopal, S.: Scalable Knowledge Gathering for Non-

Discoverable Information. In: International Conference on Service Oriented Computing
(2011)

6. Accenture 2010 Global Consumer Research executive summary (2010),
http://www.accenture.com/us-en/Pages/
insight-accenture-customer-satisfaction-survey-2010-
summary.aspx

7. IBM. Beyond the carousel, http://www-935.ibm.com/services/
us/gbs/bus/pdf/g510-6592-00-baggage.pdf

8. Aviation Consumer Protection Division, http://airconsumer.ost.dot.gov
9. Teboul, J.: Service is Front Stage: Positioning Services for Value Advantage. Palgrave

Macmillan (2005)
10. Howe, J.: The Rise of Crowdsourcing. Wired 14(6) (2006)
11. Bhaskaran, K., Hernandez, M., Laredo, J., Luan, L., Ruan, Y., Vukovic, M.: Privileged

Identity Management in Enterprise Service-Hosting Environments. In: Proceedings of
Network Operations and Management Symposium, NOMS 2012 (2012)

12. Vukovic, M., Giblin, C., Rajagopal, S.: Accelerating the Deployment of Security Service
Infrastructure with Collective Intelligence and Analytics. In: IEEE Service Computing
Conference, SCC 2012, Honolulu (2012)

13. Vukovic, M., Stewart, O.: Collective Intelligence Applications in IT Services Business. In:
IEEE Service Computing Conference, SCC 2012, Honolulu (2012)

14. Vukovic, M., Lopez, M., Laredo, J.: PeopleCloud for the Globally Integrated Enterprise.
In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275,
pp. 109–114. Springer, Heidelberg (2010)

15. Lee, J.-N.: The Impact of Knowledge Sharing, Organizational Capability and Partnership
Quality on IS Outsourcing Success. Information Management (2001)

16. Zineldin, M.: The Royalty of Loyalty: CRM, quality and retention. Journal of Consumer
Marketing 23(7), 430–437 (2006)

17. Sarner, A., Thompson, E., Dunne, M., Davies, J.: Top Use Cases and Benefits for
Successful Social CRM. Gartner White Paper G00209091 (2010)

18. Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)
19. Brabham, D.C.: Crowdsourced advertising: How we outperform Madison Avenue. Flow:

A Critical Forum on Television and Media Culture (2009)
20. Vukovic, M., Naik, V.: Managing Enterprise IT Systems Using Online Communities. In:

IEEE Services Computing Conference, SCC (2011)
21. Getsatisfacation.com Online Community Software,

http://www.getsatisfaction.com
22. FixYa Solutions for Everything, http://www.fixya.com

 Collective Intelligence for Enhanced Quality Management of IT Services 717

23. CrowdEngineering, http://www.crowdengineering.com
24. giffgaff - the mobile network run by you, http://www.giffgaff.com
25. Brabham, D.: Crowdsourcing as a model for problem solving: An introduction and cases.

Convergence: The International Journal of Research into New Media Technologies (2008)
26. Albors, J., Ramos, J.C., Hervas, J.L.: New Learning Network Paradigms: Communities of

Objectives, Crowdsourcing, Wikis and Open Source. International Journal of Information
Management 28(3), 194–202 (2008)

27. Malone, T.: The Future of Work. How the New Order of Business Will Shape Your
Organization, Your Management Style and Your Life. Harvard Business School Press
(2004)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 718–732, 2012.
© Springer-Verlag Berlin Heidelberg 2012

MapReduce-Based Data Stream Processing
over Large History Data

Kaiyuan Qi1,2, Zhuofeng Zhao1, Jun Fang1, and Yanbo Han1

1 Cloud Computing Research Center,North China University of Technology,
No.5 Jinuanzhuang Road,100144 Beijing, China

2 Institute of Computing Technology, Chinese Academy of Sciences,
No.6 Academy South Road,100144 Beijing, China

{qikaiyuan,zhaozf}@software.ict.ac.cn, yhan@ict.ac.cn

Abstract. With the development of Internet of Things applications based on
sensor data, how to process high speed data stream over large scale history data
brings a new challenge. This paper proposes a new programming model RTMR,
which improves the real-time capability of traditional batch processing based
MapReduce by preprocessing and caching, along with pipelining and localizing.
Furthermore, to adapt the topologies to application characteristics and cluster
environments, a model analysis based RTMR cluster constructing method is
proposed. The benchmark built on the urban vehicle monitoring system shows
RTMR can provide the real-time capability and scalability for data stream
processing over large scale data.

Keywords: data stream processing, large scale data processing, MapReduce.

1 Introduction

With the development of IoT (Internet of Things), real-time sensor data based data
stream processing has become the key to IoT applications. When dealing with conti-
nuous data stream, processing systems must immediately react and response. Because
the finite systems cannot handle the full information of infinite stream, the window
mechanism is usually adopted to designate the boundary, within which the accumu-
lated data is called history data. With the improvement of data acquisition and
transmission technologies, high data stream speed makes accumulating large scale
historical data in a short period possible. Meanwhile, the long-term, comprehensive
and accurate requirements of current data stream processing applications also entail
the enlargement of history data scale. Take the urban vehicle monitoring system as an
example, which collects running vehicle information by sensor devices, and based on
the data automatically identifies fake license cars and other illegal cars. These
applications, in front of the data stream and historical data, should complete the com-
putations between the both inputs in real time. And the expansion of the window, the
increment of data objects (such as vehicles) and the increase of each object data (such
as vehicle information), result in the large scale of historical data. With the trend, how
to guarantee real-time data stream processing over large-scale historical data, i.e. to

 MapReduce-Based Data Stream Processing over Large History Data 719

provide scalable data stream processing for history data, became a new challenge to
IoT and cloud computing.

Traditional study on scalability of data stream processing can be divided into two
categories. In the centralized environments, subject to limited memory, scalability is
guaranteed by sacrificing the quality of service, such as synopsis data [3] and admis-
sion control [1]. In the distributed environments, where the data stream processing
network is consisting of multiple operators, scalability is supported by balancing the
distribution of operators across multiple nodes [2]. However, the processing capacity
is still limited by the window size a single node can handle and scalability is insuffi-
cient in the case of large scale historical data.

Fig. 1. Multi-core cluster architecture

Data stream processing over large scale history data needs breaking limitation of a
single node. Today, in order to support large scale data processing, shared-nothing
architecture is universal used, as well as 4-tier storage structure of cache, memory,
storage and distributed storage. In this architecture, as shown in Fig.1, multi-core
CPU forms the local computing resource, and memory and external storage forms the
local storage. Under shared-nothing architecture, MapReduce [4] programming model
is a core technology to solve large-scale data processing and has been widely adopted.
However, the existing MapReduce methods, such as Hadoop1 and Phoenix [5], are
designed for batch processing for static persistent data. Provided continuous data is
treated in this way, if the batches processed each time are small, then the system
overhead is too large to fulfill real-time requirement, mainly in: 1) the runtime need to
be initialized from the scratch, and history data need to be loaded and processed re-
peatedly, 2) there exists much synchronization and transmission overhead between
Map and Reduce phases. If the batches are large, then the processing latency is added.

To support data stream processing, MapReduce should be extended by preprocess-
ing and caching to avoid the repeated overhead on each data stream arrival, and by

1 Apache Hadoop, http://hadoop.apache.org/

720 K. Qi et al.

pipelining and localizing to reduce the synchronization overhead between stages and
the data transmission cost between nodes. This paper proposes a real-time MapRe-
duce model (RTMR) to support such kind of data processing. Furthermore, from the
view of constructing RTMR cluster, there exists many possible combinations of node
configurations and topologies for different applications and networks, how to build
optimal architecture is a problem. This paper also proposes an adaptive RTMR cluster
constructing method by establishing and analyzing the RTMR performance model.

2 Real-Time MapReduce Model

2.1 Key/value Data

In the era of big data, key/value model gradually replace the relational model to be-
come a mainstream data processing model.

Definition 1.Key/value data is a 2-tuple {key,val},in which key is key word and val is a
set of 2-tuple { attr,con},in which attr is attribute and cont is its content.

Key/value data is only related to data with the same keys, and independent of
processing environment. Because of environment independence, key/value data has
the nature of parallel processing and intermediate results can be saved as current state
without additional information. Furthermore, the details of parallel processing, load
balance and fault tolerance can be hidden from the abstract programming model, pro-
grammer can only focus on operations on key/value data.

Definition 2. Key/value algebra is a kind of abstract language used for operations on
key/value data.

Similar with relational algebra, key/value data algebra also includes set operations
(union, intersection and difference), special operations (Cartesian product, selection,
projection, concatenation and division), comparison operation (>, < and etc) and logic
operations (not, and, or).

2.2 RTMR Theory

The definition of MapReduce model is [4]:

 Map: k1,v1List<k2,v2>
 Reduce: k2,List<v2>list(v2)

in which Map phase turns the key/value pairs <k1,v1> into pairs < k2,v2>, and Reduce
phase performs operation list on the structure List<v2> of each k2. Supposing the
pending data is D, Map intermediate results for D is I, M represents the Map method,
R represents the Reduce method, and list represents Reduce operation, then the above
process can be denoted as MR(D)=R(M(D))=list(I).

MapReduce takes full advantage of key/value model: it provides sufficient seman-
tics to parallelly process large-scale data through a simple programming interface, and
shield task scheduling and data management from programmers. However, the
existing batch processing based MapReduce cannot meet the real-time requirement of
data stream processing. In order to extend the real-time capability of MapReduce, we
prove MapReduce is no less expressive than () key/value algebra at first.

 MapReduce-Based Data Stream Processing over Large History Data 721

Theorem 1. key/value MapReduce

Proof. In MapReduce, selection and projection operators can be implemented in Map,
and other key/value algebra operations can be implemented in Reduce. Therefore,
MapReduce is more expressive than key/value algebra.

Definition 3. For the function F:S→O, if there exists a function P:O×O→O, satisfy-
ing F(D+Δ)=P(F(D),F(Δ)), then F is mergeable.

Definition 4. For the data set D and its subsets D1,D2,...,Dn, if φ=n21 D...DD
and DD...DD =n21 , then D1,D2,...,Dn is called a partition on D .

Definition 5. For the key/value data set D={<key,value>} and the key set K, the col-
lection },.|{ DdKkeydd ∈∈ is called a selection of D on K, denoted by)(DKσ .

By the above definitions, we can see MapReduce has the following properties:

1. Map is distributive, i.e., the Map of the union of two data sets is equal to the union
of the Map of the two sets, M(D+Δ)=M(D)+M(Δ)

2. Reduce is distributive, i.e., if K1,K2, ..,Kn is a partition on the key set of interme-
diate results I, then list(I)=list(

1Kσ (I))+list(
2Kσ (I))+...+list(nKσ (I))

In the traditional batch processing based MapReduce, overhead for repeated
processing history data is the key factor to restricting real-time capability, therefore,
the large-scale historical data should be preprocessed and cached.

Theorem 2. list is mergeable ⇔ MapReduce is mergeable.

Proof. According to the properties of MapReduce, for data D and increment Δ,

 MR(D +Δ)
=R(M(D+Δ))
=R(M(D)+M(Δ))
=list(ID+IΔ)

If list is mergeable, then

list(ID+IΔ)
=list(list(ID),list(IΔ))
=R(MR(D),MR(Δ))

That is, if list is mergeable, then MapReduce is mergeable, and vice versa.
Theorem 2 shows that by caching MapReduce intermediate results of history data

preprocessing, repeated processing overhead can be avoided every time data stream
arrives. The above process can be denoted as MR(D+Δ)= list(ID+IΔ)=MR(Δ|ID).

In the existing MapReduce, another major factor to constraining real-time
processing capability is synchronization overhead between phases, which caused by
Reduce phase waiting to sort all the Map results. In fact, theorem 2 also shows that
there is no data dependency between Map and Reduce phases, so synchronization can
be eliminated by the asynchronous pipeline. In pipeline, Map and Reduce phases use
buffers to communicate. Each Map task puts the results into buffers immediately after
processing, and Reduce task obtains data asynchronously from the buffer to process.
MapReduce also includes the synchronized method like Partition, Combine and Sort.

722 K. Qi et al.

In pipeline manner, Partition and Sort can be completed respectively in Map and Re-
duce phase. As for Combine method, whether use it or not can be decided by the data
compression effect, the algorithm will be detailed in 4.2.

In addition, the data transmission between nodes constrains the processing capabil-
ity of MapReduce as well. In order to save data transmission cost, local computing
resources should be fully taken advantage of to complete MapReduce.

Theorem 3. If K1,K2,...,Kn is a partition of key set of MapReduce intermediate results
I, then the MapReduce of increment Δ over I satisfies

MR(Δ|I)=MR(Δ|
1Kσ (I))+MR(Δ|

2Kσ (I))+...+MR(Δ|
nKσ (I))

Proof. According to the properties of MapReduce, for intermediate results I and in-
crement Δ,

MR(Δ|I)=list(I+IΔ)
=list(

1Kσ (I+IΔ))+list(
2Kσ (I+IΔ))+...+list(

nKσ (I+IΔ))

For Reduce, the selection of intermediate results on K1 is only relevant to K1, i.e.

MR(Δ|
1Kσ (I))=list(IΔ+ 1Kσ (I))

=list(
1Kσ (IΔ+ 1Kσ (I)))=list(

1Kσ (IΔ+I))

Similarly, MR(Δ|
2Kσ (I))=list(

2Kσ (IΔ+I))

MR(Δ|

nKσ (I))=list(
nKσ (IΔ+I)

Hence, MR(Δ|I)=MR(Δ|
1Kσ (I))+MR(Δ|

2Kσ (I))+...+MR(Δ|
nKσ (I))

Theorem 3 shows that MapReduce can be localized by distributing intermediate re-
sults across the cluster. And because of avoiding data transmission, partitioning the
intermediate results properly can guarantee the scalability of the cluster.

2.3 RTMR Model

Theorem 1 gives the necessary and sufficient condition that MapReduce is mergeable.
However, this condition is only applies to some aggregate operations. For other op-
erations not mergable, an intermediate results cache structure apt to randomly read
and write can also be formed by grouping, sorting and indexing when preprocessing.

Definition 6. In RTMR, the [k2,List<v2>] and list(v2) of MapReduce model are called
intermediate results.

Following the idea of Metis [6], intermediate results are stored in memory using
Hash B+ tree, which is of high performance, as shown in Fig.2. In Hash B+ tree, keys
k2 with the same Hash value are grouped in the same Hash table entry as B+ tree, [k2,
list(v2)] are organized as a linked list in the B+ tree leaf node, and list(v2) is stored in
the B+ tree leaf node. If k2 has a unique Hash value, Hash table can be allocated
enough entries to avoid Hash conflict and tree search, then the complexity of insertion
and search operation is only O(1). If the Hash value of k2 is not unique, the complexi-
ty of insertion and search is just O(1)+O(logn). In order to enlarge the capacity, files

 MapReduce-Based Data Stream Processing over Large History Data 723

in the SSTable [7] structure are constructed at the external storage to store interme-
diate results. SSTable consists of an index block and several 64 KB data blocks, as
shown in Fig.3, which allocates disk space for Hash table entries in blocks. In data
stream processing, if desired intermediate result Hash entry is not in memory but in
the external storage and the memory space isn’t enough, memory replacement occurs.

 Fig. 2. Intermediate result structure Fig. 3. SSTable structure

 Fig. 4. RTMR architecture Fig. 5. Staged pipeline

In order to support data stream processing, RTMR constructs staged pipeline be-
tween Map and Reduce phases, as shown in Fig.4. In pipeline, each stage is com-
prised of the thread pool, input buffer and intra-stage controller, and shared resources
such as threads are allocated by extra-stage controllers. Staged pipeline reduces the
initialization overhead on each batch processing by the thread pools, and eliminates
the synchronization between phases though event driven buffers. Furthermore, the
real-time processing capability of staged pipeline can be improved by intra-stage
batch adjustment and extra-stage thread pool control.

Based on the above designs, we propose a real-time MapReduce (RTMR) model
for data stream processing over large scale data, which works as (Fig. 5):

1. Intermediate result caching. Preprocess history data resulting in intermediate re-
sults, and partition and distribute the results across the worker nodes according to
the Hash value on k2.

724 K. Qi et al.

2. Pipelining. MapReduce proceed in asynchronous way that Map phase groups the
data stream by the Hash function on k2 and transmit the data to corresponding Re-
duce node to compute with intermediate results according to range partitions.

3. Data updating. Update the local results to the distributed storage.

In RTMR, worker is responsible for maintaining the local cache and staged pipeline,
and controller is responsible for RTMR job scheduling, fault tolerant and scalability
guarantee. This paper mainly focuses on the RTMR model and architecture.

3 Adaptive RTMR Cluster

RTMR cluster architecture is decided by the Map/Reduce node configuration and
topology. In RTMR, to take full advantage of local computing resource, Map nodes
also act as Reduce nodes, and the architecture in the configuration of x Map nodes is
called RTMR(x). For an example of 4-node cluster, the architectures RTMR(1),
RTMR(2) and RTMR(4) configured 1, 2 and 4 Map node are shown in Fig.6 (a) (b)
(c), respectively. Under different application characteristics, node capacities and net-
work environments, how to construct optimal architecture is a key issue. For the data
stream processing system, the goal of adaptively constructing architecture is to mi-
nimize the average data processing delay.

Fig. 6. RTMR architectures

3.1 RTMR Performance Model

Because the data stream arrival and processing is very similar with the queuing mod-
el, and thus queuing theory is a natural selection of the performance model of data
stream system [8]. Previous work [3] and our statistics analysis on real scenarios
show that data stream arrival process can be modeled as a Poisson process.

Fig. 7. RTMR performance model

 MapReduce-Based Data Stream Processing over Large History Data 725

Assuming that the arrival data stream is the most simple flow, the Map processing
rate, network transmission speed and Reduce processing rate depends on negative
exponential distribution, then RTMR cluster can be modeled as a cascade of three
queuing system shown in Fig.7. Based on queuing theory [8], for the M/M/c queuing
system which has c service units, when data stream speed is λ and processing rate of
each unit is μ , the average processing delay is

μρ

ρρμλ 1

)1(!

)(
),,(

2
+

−⋅
⋅= P

c

c
cL

x

q
 , (1)

in which

μ
λρ

ρ
ρρ

=

−⋅
+=

−−

=

11

0
)(! ! cc

c

k
P

cc

k

k

.

For a n-node RTMR cluster, supposing the number of Map nodes is x, Map
processing rate of each node is mμ , then Map stage under the data stream speed mλ
is equivalent to a M/M/x queuing system. According to equation (1), the Map stage
average data processing delay is

),,(),,(mmqmmm xLxL μλμλ =
. (2)

For a n-node RTMR cluster, x of n Reduce nodes shared with Map (processing
rate

1rμ) is equivalent to a M/M/x queuing system, the other n-x exclusive Reduce

node (processing rate
2rμ) is equivalent to an M/M/n-x queuing system. Therefore,

the Reduce stage average data processing delay under data stream speed
rλ is

),,(),,(),,,(2121 rrqrrqrrrr n

xn
xnL

n

xn

n

x
xL

n

x
xL μλμλμμλ −−−+= . (3)

In RTMR(x), the output connections of each Map node are n-1, and the input connec-
tions of each Reduce node are x. If nodes is connected by the switch and the
bandwidth between two nodes is nμ , then each connection bandwidth is inversely
proportional to the total number of connections, that is

1
'

−+
=

nx
n

n
μμ .

On each connection, the data speed is xnrλ , according to the M/M/1 queuing model
[10], the network delay of data stream through one Map node is

xnnx

xL
rn

nrn λμμλ
−

−+

=

1

1
),,(' .

726 K. Qi et al.

And the average network delay of data stream parallelly through all Map nodes is

nnx

xx

xL
xL

rn

n
nrn λμμλ

−
−+

==

1

1)('
),,(. (4)

In RTMR, too many threads will cause additional overhead such as context switching
and critical resources competition. Corresponding to the connections, each pair of
Map and Reduce nodes exists n+x-1 threads receiving and sending data. If the delay
factor is ε , then the extra delay of data stream passing through 1 Map node is

ε⋅−+=)1()(' xnxLe ,

And the average extra delay of data stream parallelly through all Map nodes is

x

xn

x

xL
xL e

e
ε⋅−+==)1()('

)(. (5)

Above all, the data stream processing delay of RTMR(x) is

)(),,('),,,(),,()(21 xLxLxLxLxL enrnrrrrmmm +++= μλμμλμλ . (6)

3.2 Model Analysis

In general, adaptive constructing RTMR is to analyze the extreme value of equation
(6) to determine x. Given space limitation, instead of mentioning the solution of the
extreme value of L(x), two more practical architectures are discussed.

In RTMR, Combine method can be used to reduce the data transmission. If the data
compression rate of Combine method is τ , then the data speed of Reduce stage
is rr τλλ =' , and if the Map processing rate is down to 'mμ , then the data processing

delay of RTMR (x) is

)(),,('),,,()',,()(21 xLxLxLxLxL enrnrrrrmmmc +++= μτλμμτλμλ .

Then for applications that exists Combine, whether implement Combine or not is
decided by comparing)(xL with)(xLc .

Under the current IoT environment, the data speed is limited by acquisition termin-
al bandwidth, and the preliminary processing such as filtering and encoding has been
completed by the communication servers, so it only occupy a small part of CPU time
to accomplish the data receiving, transformation, selection and projection as well as
partitioning and combining. In this case, the impact of Map Processing on Reduce
performance on the shared node can be ignored, i.e. 21 rrr μμμ ≈= .Then the Reduce

stage can be considered as M/M/n system, the processing delay is

),,(),,(rrqmrrr nLxL μλμλ = ,

which is independent of x. Due to equations (2) (4) (5) are monotonically decreasing
functions of x. Thus, L(x) is a monotone decreasing function, i.e., for a n-node cluster,
RTMR(n) contributes to the minimum delay by the most highly parallel processing.

 MapReduce-Based Data Stream Processing over Large History Data 727

Besides, by theorem 3 we know another architecture shown in Fig.6 (d): the inter-
mediate results are cached across distributed nodes; each node redundantly receiving
the data stream, in pipeline manner, filters the data in the charge of itself at Map
phase and processing the data over the local cache at Reduce phase. This architecture
is defined as RTMR(0). In RTMR(0), if the existing computing and storage resources
cannot satisfy the real-time requirements, the cluster can be scaled up to more nodes
by repartitioning and moving the cache data. Due to avoiding data transmission and
extra latency, the data stream through each node is equivalent to passing through a
M/M/1 Map stage plus a M/M/1 Reduce stage, the delay of RTMR(0) is

n

L
r

r
mm

λμλμ −
+

−
= 11

)0(' .

And the processing delay of data stream parallelly passing through n nodes is

rrmm nnnn

L
L

λμλμ −
+

−
== 11)0('

)0(.

Apparently for these applications, adaptively constructing RTMR cluster is compar-
ing)(nL with)0(L .

4 Evaluation

In this section, we utilize the real-time urban traffic data processing applications as
the benchmark to evaluate RTMR.

In a large city, where license plates reach 107, the peak will reach 10 MB/s if com-
prehensively capturing running vehicle data (1 KB for each item, about 10 000
items/s). Meanwhile, if the data have been stored for 1 day, history data will reach 1
TB. In the benchmark, three typical applications are adopted, which are all from real
scenario of urban traffic monitoring system and can be regarded as the representative
use cases out of related references[9-14].

Fake-licensed car is determined by space-time contradiction. For each item of real-
time vehicle data at certain points, retrieve all the historical items at other points with-
in the maximum time threshold, and if the time difference between the two items is
less than the time threshold for the two points, the vehicle is suspected to be fake-
licensed. The RTMR algorithm is implemented as: for each license plate of item, Map
indexes its entry in Hash table grouped by plates; Reduce locates its list in the B+
tree, checks time difference with each historical data, and updates the list.

Traffic statistics application reports the vehicle counts of all the monitoring points,
the RTMR algorithm is: for each item of real-time data occurred at certain point, Map
indexes its entry in Hash table grouped by monitoring points; Reduce finds the imme-
diate result in the B+ tree to merge and update it.

Traffic flow analysis application calculates the average travel speeds between two
points to provide traffic guidance, the RTMR algorithm is: for each item of data cap-
tured at certain point, Map transforms the data into GPS coordination data and index-
es its entry in Hash table grouped by monitoring points; Reduce finds the list in the

728 K. Qi et al.

B+ tree, inserts the real-time data, eliminates the overdue data, and periodically merge
immediate results within the window to compute the average travel speed.

In the above 3 RTMR algorithms, Hash function hash(k)=k mod 220 can be used to
group data items, and the intermediate result Hash table has 220 entries, each storing
data of 107/220≈10 license plates.

RTMR cluster is set up on the 2×4 cores 2.0 GHz CPU, 32 GB RAM and 250 GB
disk servers, using a 4×4 cores 2.4 GHz CPU, 64 GB RAM server as control node,
and the cluster is connected by 1 Gbps Ethernet and switches. Additionally, Load
Runner 9.0 is deployed in a dual-core 3.0 GHz CPU and 4 GB RAM server to simu-
late data stream. In order to evaluate the scalability, on the basis of random and local
characteristics of vehicle data stream, we evenly partition immediate result ranges
across the cluster and simulate the uniform distribution stream. The method is: First,
use the decimal interval (0,108] to simulate license plates. Second, if there exists n
nodes, select n subsets on immediate result ranges of n nodes P1',P2',...,Pn', satisfying
|P1'|+|P2'|+...+|Pn'|=105, and then generate loads for each node cyclically. Third, for
node i, select a random entry t in Pi', select a random number x in the interval(0,10)
and regard 220x+t as the license plate of the data item, at last, randomly set its point
and add its timestamp.

Base on the benchmark, each experiment is conducted 10 tests, and at each test we
sample results for 10 minutes at steady state of the stream processing system, taking
the averages as the final results.

4.1 Adaptive Architecture Analysis

First, we analyze the adaptive architecture of the 3 applications shown in Table 1.

Table 1. Benchmark applications

Application Map Reduce

Traffic count The compression rate of Combine method is effective Merging

Fake-licensed car No combine Comparing and updating

Traffic flow analysis
Data transform costs much overhead,

and compression rate is 0
Merging and updating

For the traffic statistics application, compression ratio can be effective to reduce
the cost of data transferring, so the Combine method should be adopted.

For the fake-licensed car monitoring, because of the absence of the Combine and
other operations in Map phase, satisfying 21 rrr μμμ ≈= , then the only thing for adap-

tion is to compare L(n) with L(0). Experiment 1, under a 4-node cluster, compares the
data processing performance of RTMR(0),RTMR(1), RTMR(2) and RTMR(4) over
different history data scale. As Fig.8 shown, no matter what scale, the processing
capabilities of RTMR(1), RTMR(2) and the RTMR(4) are promoting with the in-
crease of Map nodes. In addition, when the data speed exceeds 15 MB/s, RTMR(0) is
less powerful than the other 3 architectures, this is because in the broadcast mode,

 MapReduce-Based Data Stream Processing over Large History Data 729

when it come to high speed data stream, receiving data and processing Map stage on
each node occupies too much CPU time, which reduces the CPU time for the Reduce
and thereby constrains the overall performance. With the history data scaling up, per-
formances of all the architectures decrease, when the speed drops to 15 MB/s,
RTMR(0) starts to be the most powerful, this is because the receiving and Map
processing overhead on each node no longer affect the Reduce stage, and meanwhile
avoid the data transmission cost.

For traffic flow analysis, although there exists Combine method, it cannot reduce
the data transmission significantly because its Reduce need to maintain all the data
within the window. Furthermore, its Map method includes expensive GPS coordinate
transformation operation, dissatisfying

21 rrr μμμ ≈= .The results of the extreme value

analysis of L(x) under the 4-node cluster are: from 0 to 200 GB data scale, x = 2; from
200 to 600 GB, x = 3; from 600 to 800 GB, x = 1. Experiment 2 compares the data
stream processing performance of RTMR(1), RTMR(2), RTMR(3) and RTMR(4)
over different historical data scale. Fig.8 shows the empirical results are consistent
with the model analysis.

0

10

20

30

40

50

0 5 10 25 50 100 200 300 400 500 600 700 800

F
a
k
e
-l
ic

e
n
s
e
d

 c
a
r

d
a
ta

 s
tr

e
a
m

(M
B

/s
)

Data scale(G）

RTMR(1) RTMR(2)

RTMR(4) RTMR(0)

0

10

20

30

40

50

0 5 10 25 50 100 200 300 400 500 600 700 800

T
ra

ff
ic

 f
lo

w
 a

n
a
ly

s
is

 d
a
ta

 s
tr

e
a
m

(M
B

/s
)

Data scale(G)

RTMR(1) RTMR(2)

RTMR(3) RTMR(4)

Fig. 8. Analysis of adaptive architecture

4.2 Scalability Analysis

Experiment 3 and 4 compare the scalability of RTMR(0) and RTMR(n). Experiment
3, at the fixed data stream 2 MB/s, tests historical data scale the cluster can handle
when adding nodes. Fig.9 shows, the promotion trend of RTMR(0) capacity is ap-
proximately linear, which is because RTMR(0) minimize the data transmission and
synchronization between nodes which affects the enhancement of parallel throughput
by distributing intermediate results and localizing. And the reason why RTMR(0)
doesn’t achieve linear scaling is that local file read and write overhead increases when
intermediate results scaling up. As for RTMT(n), as the nodes are added, data receiv-
ing and transferring cost between nodes increases significantly, thus limiting histori-
cal data scale that can be handled. Experiment 4, at the fixed intermediate results 50
GB for each node, tests the data stream the cluster can process when adding nodes.

730 K. Qi et al.

Fig.10 shows that, as the node increases, although the data sending-receiving and
transmission costs increase, but RTMR(n) is more scalable than RTMR(0) in data
stream speed, this is because RTMR(n) distributes data stream to be processed paral-
lelly across nodes, while RTMR(0) is restricted by the increasing CPU overhead of
receiving data and processing Map. Specifically, when the data stream speed is less
than 15 MB/s, the growth of RTMR(0) processing capability is approximately linear,
and when the speed is more than 15 MB/s, the growth slows down.

From the experiences of using RTMR to solve vehicle monitoring, the data stream
speed in current IoT environment, constrained by the bandwidth, is far less than 15
MB/s. In the situation of large scale history data, RTMR(0) is more adaptive.

0

5

10

15

20

25

30

35

40

0 5 10 15 20

D
at

a
st

re
am

sp
ee

d
(M

B
/s

)

Node

Linear Scaling
RTMR(0)
RTMR(N)

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

D
at

a
sc

al
e

(G
B

)

Node

Linear scaling
RTMR(0)
RTMR(N)

 Fig. 9. Scalability analysis for data stream Fig. 10. Scalability analysis for history data

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500

Th
ro

g
hp

ut
 (i

te
m

s/
s)

Data scale (GB)

HOP
S4
RTMR

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

E
rr

o
r r

at
e

Data scale(GB)

HOP
S4
RTMR

Fig. 11. Real-time capacity and Error rate

4.3 Real-Time Performance Analysis

Experiment 5 compares the real-time capacity of the architecture S4, HOP
and RTMR(0). Due to the lack of preprocessing, S4 and HOP process history data
repeatedly on each stream arrival. Hence, in order to compare data stream processing

 MapReduce-Based Data Stream Processing over Large History Data 731

capacity over large-scale data, preprocessing logic is inserted into the benchmark
implementation of S4 and HOP. All architectures are set up on 2 nodes, the data
stream is fixed at 5 MB/s. Fig.11 show that when the scale of intermediate results is
less than 32 GB, the throughputs of HOP and S4 are fairly high because a single node
can accommodate all the intermediate results, while the RTMR(0) is higher due to the
utilization of staged pipeline. When the intermediate results are more than 32 GB and
distributed to two node memory, the throughputs of HOP and S4 decrease rapidly
because of increasing data transmission and synchronization overhead between nodes,
while RTMR(0) is still very high owing to localization. When the intermediate results
reach 64 GB, since the scale is beyond the cache capacity, throughputs of S4 and
HOP are steady and the error rates increase with the data scaling up, whereas
RTMR(0) can reduce the error rate and maintain a relatively high throughput due to
the expansion of local intermediate result storage.

4.4 Related Work

Real-time improvement for MapReduce has become a research hotspot. Increment
processing Percolator [10] and iteration processing Twister [11] and Spark [12]
promote performance of large scale data processing in the way of random storage
access and intermediate result cache. However, these methods are still batch based
processing for static data increment. HOP [13] and S4 [14] extends the real-time
processing ability of MapReduce by pipelining and distributed processing elements
respectively, but they still do not focus on large scale history data, due to the lack
of the support to preprocess history data and cache immediate results, and the
mechanism to adaptively configure the cluster instead of relying on experience or
experiment way.

5 Conclusions

The difficult of data stream processing over large scale historical data is guaranteeing
both real-time capacity and scalability. And the contributions of this paper are:

• Improving the real-time data stream processing performance of MapReduce by
caching, pipelining and localizing.

• Proposing a model analysis based RTMR cluster constructing method which can
configure the Map/Reduce nodes and topologies adaptively according to applica-
tion characteristics and network environments.

• Showing that RTMR(0) is practically effective to support data stream processing
over large scale data in current IoT environment.

Programming model and cluster architecture is the basis of RTMR, and in addition,
load skew is another key factor to restrict the scalability of the RTMR cluster. So the
next work is to guarantee load balance of RTMR by static history data distribution
and dynamic date stream load adaption.

732 K. Qi et al.

Acknowledgments. This research has been funded by the National Natural Science
Foundation of China under Grant No. 60903137, No. 61033006.

References

1. Motwani, R., Widom, J., Arasu, A., et al.: Query processing, resource management, and
approximation in a data stream management system. In: 1st Biennial Conference on Inno-
vative Data Systems Research, pp. 176–187. ACM Press, New York (2003)

2. Abadi, D.J., Ahmad, Y., Balazinska, M., et al.: The design of the Borealis stream
processing engine. In: 2nd Biennial Conference on Innovative Data Systems Research, pp.
277–289. ACM Press, New York (2005)

3. Jin, C.Q., Qian, W.N., Zhou, A.Y.: Analysis and management of streaming data: A survey.
Journal of Software 15(8), 1172–1181 (2004)

4. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. ACM
Communication 51(1), 107–113 (2008)

5. Ranger, C., Raghuraman, R., Penmetsa, A., et al.: Evaluating MapReduce for multi-core
and multiprocessor systems. In: 13th International Conference on High Performance Com-
puter Architecture, pp. 13–24. IEEE Computer Society, Washington (2007)

6. Kaashoek, F., Morris, R., Mao, Y.: Optimizing MapReduce for multicore architectures.
Technical Report, MIT Computer Science and Artificial Intelligence Laboratory (2010)

7. Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A distributed storage system for struc-
tured data. In: 7th Symposium on Operating Systems Design and Implementation, pp.
205–218. USENIX Association, Berkeley (2006)

8. Diao, Z.J., Zheng, H.D., Liu, J.Z., et al.: Operational Research. Higher Education Press,
Beijing (2010)

9. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., et al.: Flux: An adaptive partitioning
operator for continuous query systems. In: 19th International Conference on Data Engi-
neering, pp. 25–36. IEEE Computer Society, Washington (2003)

10. Peng, D., Dabek, F.: Large-scale incremental processing using distributed transactions and
notifications. In: 9th USENIX Symposium on Operating Systems Design and Implementa-
tion, pp. 251–264. USENIX Association, Berkeley (2010)

11. Ekanayake, J., Li, H., Zhang, B., et al.: Twister: A runtime for iterative MapReduce. In:
19th ACM International Symposium on High Performance Distributed Computing, pp.
810–818. ACM Press, New York (2010)

12. Zaharia, M., Chowdhury, N.M., Franklin, M., et al.: Spark: Cluster competing with work-
ing sets. In: 2nd USENIX Conference on Hot Topics in Cloud Computing, pp. 1–10.
USENIX Association, Berkeley (2010)

13. Condie, T., Conway, N., Alvaro, P., et al.: MapReduce online. In: 7th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 313–328. USENIX Associa-
tion, Berkeley (2010)

14. Neumeyer, L., Robbins, L., Nair, A., et al.: S4: Distributed stream computing platform. In:
10th IEEE International Conference on Data Mining Workshops, pp. 170–177. IEEE
Computer Society, Washington (2010)

An Efficient Data Dissemination Approach

for Cloud Monitoring

Xingjian Lu, Jianwei Yin, Ying Li�,
Shuiguang Deng, and Mingfa Zhu

College of Computer Science and Technology,
Zhejiang University, 310027 Hangzhou, China

{zjulxj,zjuyjw,cnliying,dengsg}@zju.edu.cn, brucezmf@gmail.com

Abstract. Cloud computing brings dynamic resource scalability, pay-
per-use billing model and simplified developing platforms, however, the
monitoring of cloud today is still confronted with the flexibility, scala-
bility, efficiency and performance problems, especially when the scale of
cloud platform is being constantly expanding recent years. In this paper,
we first present an efficient and intelligent monitoring architecture for
cloud platform based on Data Distribution Service(DDS) and Complex
Event Processing(CEP), in order to cope with these challenging issues.
Then we mainly focus on the monitoring data dissemination, give more
details on how DDS is used in this architecture and propose a compre-
hensive data delivery algorithm to achieve better accuracy and efficiency.

Keywords: Cloud Monitoring, Data Distribution Service, Complex
Event Processing.

1 Introduction

As one of the hottest topics in current internet systems, cloud computing has
transferred the delivery of IT services to new level that brings comfort of tradi-
tional utilities such as water, electricity to its users by dynamically scaling the
service provision. Such dynamic scalability and service level agreement (SLA)
negotiability of cloud computing result in a strong demand for monitoring.

Resource monitoring, which has been widely used for software optimization,
profiling, performance evaluation, etc [1], is the premise of many major opera-
tions such as fault detecting, network analysis, job scheduling, and load balancing
in cloud systems [2]. Organizations that are using right mix of technologies for
cloud monitoring are more likely to enjoy following business benefits: preven-
tion and resolution of performance issues in a timely manner, ability to support
changes in business demand, ability to optimize spending decisions, etc [3].

However, monitoring the cloud at runtime is very challenging. Firstly, much
more monitoring concerns need to be covered in clouds than in traditional soft-
ware system, and individual monitoring schemas and mechanisms need to be

� Corresponding author.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 733–747, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

734 X. Lu et al.

designed and implemented respectively, due to the heterogeneity of components
in the cloud. An integral cloud monitoring system should cover all the concerns,
for satisfying the needs of different roles in the cloud.

Furthermore, each monitoring technique needs to consume some computing
resources to take effect. Therefore, it will lead to some undesired runtime over-
head to a running cloud. It is a challenging issue to keep such overhead within
an acceptable range. Although the weaker the monitoring ability is, the lower
the runtime overhead is, enough monitoring ability is still required to ensure the
healthy operation for a running cloud. Consequently, how to balance the tradeoff
between monitoring ability and runtime overhead is one of the most important
issues in cloud monitoring system.

Lastly, due to the large number of services and end users in cloud, monitor-
ing applications have to process a massive amount of runtime information for
sending alerts or triggering some actions once something noteworthy happens.
Usually, this information is provided in a steady stream of separate events which
are detected by certain monitoring sensors. As a result, an efficient and robust
communication infrastructure is required, for facilitating the dissemination of
monitoring events with high throughput and low latency. Additionally, it will
also need to apply real-time intelligence to the management of your cloud infras-
tructure through making automated decisions. For example, we can anticipate
upcoming peak loads and provide the necessary capacity in advance to avoid
performance slowdowns through cloud monitoring.

Therefore, in order to deal with these difficulties, an efficient and intelligent
monitoring architecture for cloud platform is first proposed in this paper. In
this architecture, an efficient and robust data dissemination framework is im-
plemented to transmit the monitoring information reliably with high through-
put and low latency based on Data Distribution Service (DDS)[5]. An intelli-
gent cloud action platform is also developed to deal with infinite dynamic event
stream based on Complex Event Processing (CEP) [6]. So it can filter out the
meaningful information from the event flood to support decision making.

Then, in this paper, we mainly focus on monitoring data dissemination, after
describing how DDS is used in this monitoring architecture, an extended com-
prehensive data delivery algorithm Papx is proposed to achieve better accuracy
and efficiency based on the theory of temporal locality. Through this algorithm,
the agent of our monitoring architecture can perform well on the balance be-
tween runtime overhead and monitoring capability with the adaptive updating
frequency regulation.

The organization of this paper is as follows: section 2 gives an overview of
the efficient and intelligent monitoring architecture for cloud platform. Then
in section 3, details of how DDS is used in this architecture and the concrete
implementation of Papx are presented. After that, section 4 shows the experi-
mental evaluation results of the proposed algorithm. In section 5, relevant work
concerning cloud monitoring is introduced. Finally, we summarize conclusions.

An Efficient Data Dissemination Approach for Cloud Monitoring 735

2 Efficient and Intelligent Monitoring Architecture for
Cloud Platform

The scale of cloud computing platform has being constantly expanding recent
years. According to reports, Google cloud computing platform already has more
than one million servers. Amazon, IBM, Microsoft, Yahoo and other companies
each also has hundreds of thousands of servers for their cloud computing. Besides
the powerful computing and storage capacity, this kind of fairly large scale also
brings some challenging issues for cloud monitoring.

One one hand, how to transmit the huge monitoring data to the server with
high throughput and low latency is one of the most challenging issues, especially
when it deals with thousands to millions physical servers. On the other hand,
due to large amount of real-time data will be generated in this large scale cloud
monitoring system, how to extract user required information from these con-
fused data to provide strong support for decision making is also one of the most
challenging issues in cloud monitoring.

In order to deal with these challenges, an efficient and intelligent monitoring
architecture for cloud platform is proposed based on DDS and CEP in this sec-
tion. As described in Fig. 1, different types of monitoring facilities are contained
in a monitoring agent to collect runtime information from entities of each level
of the cloud in timely manner. Then these runtime information will be encap-
sulated to events, so as to be delivered to the server by DDS efficiently and
timely. After that, on the one hand, for facilitating manual control, analysis and
display, monitoring server will save these data in database and system logs for
persistency and then show to cloud operators, service developers and end users
through different views. On the other hand, the cloud action platform will do a
variety of complex checking and statistics to trigger related operations through
CEP, in order to provide intelligent decisions for cloud management system.

Why and how we use DDS to transmit the huge monitoring information will
be described more details in section 3. Due to space limitation, we just give
an overview of the cloud action platform in this paper. The core component of
the cloud action platform is a CEP engine, which can coordinate and refine the
simple events to abstract the complex event for intelligent decision according to
the monitoring rules and event schemas [8].

In addition, for reducing the coupling of event rules and decision actions and
making the code reading and maintain easy, a portal that can help users configure
the complex events based on customized monitoring rules is also developed in
this cloud action platform. In this way, users or the third-party systems can
define their own complex events conveniently, and they can also modify the
rules dynamically when users’ requirements or system runtime status changed.

3 Efficient Data Dissemination for Cloud Monitoring

As the number of nodes in clouds reaches a high value, vast runtime information
will be send to monitoring server. It is likely to cause network congestion and

736 X. Lu et al.

Fig. 1. Efficient and Intelligent Monitoring Architecture for Cloud Platform

make system throughput decline. For neutralizing the impact of this challenge,
DDS will be used to delivery these huge monitoring data. Furthermore, an ex-
tended data delivery algorithm that can deal with the balance between runtime
overhead and monitoring capability will be made to cope with this challenge too.

3.1 Data Dissemination Based on DDS

DDS is an emergent platform-independent standard that defines a data cen-
tric publish/subscribe interaction paradigm. It particularly addresses the needs
of real-time applications that require deterministic information exchange, low
memory footprints and high robustness requirements.

Design of the Data Model. Entities required to be monitored in cloud sys-
tem can be classified into five categories: hardware, virtualization, middleware,
application and interaction [4]. However, due to the tradeoff between efficient
data transfer and flexible interpretation of these data, the data of each entity
are not published as a whole in our cloud monitoring architecture. We divide
the monitoring data of each entity into three categories: EntityBasicInfo, Enti-
tyStatus and EntityEvent. Note that the entities of interaction can be subsumed
to a specific EntityEvent.

An Efficient Data Dissemination Approach for Cloud Monitoring 737

The category of EntityBasicInfo contains the basic information of each mon-
itored entity. These basic information are often published to initialize the entity
and rarely to be modified during the runtime. Below an example is provided
for the data structure for virtual machine basic information. Each attribute is
defined with a data type and a name.

struct VMBasicInfo {
long vm id; long pm id;
int cpu amount; int memory size;
int disk size; string owner;

}

The category of EntityStatus defines all the runtime status information for each
entity. This information come from various monitoring metrics and will be pub-
lished periodically. As an example, the data structure for virtual machine status
is provided below.

struct VMStatus {
long vm id; string status;
double cpu util; double disk util;
double memory util;

}

The event data occurs in a running cloud will be pushed to the server imme-
diately. Furthermore, this kind of events occurs as not frequently as the status
updates, so we make it independent from the data type of entity status. There
maybe serval kinds of event data types for one entity, while each entity has
only one data type for the basic information and status. For example, there are
create, start, user login, shutdown, delete events for some specific application.
Due to the different causes and participants of these events, all of them will be
modeled as a data type individually in our cloud monitoring architecture.

Design of the Topic Structure. Topics, which hold one specific type of object
defined by one data type, play an important part when designing a distributed
publish/subscribe system [7]. In a DDS application, publishers write to topics
while subscribers read from them. For our cloud monitoring architecture, a lot
of topics will be defined, and each of them is bound to one data type. So we
classified them into five categories which are described in Fig. 2.

In the centre of this figure, data topic categories are displayed and the cor-
responding data types are provided in brackets. The arrow directions indicate
whether a participant is a publisher or subscriber with respect to a certain topic.
When the monitoring system initializes, agents will publish data into the topic
category BasicInfoInitiation to register the entities. If required you can publish
data into the topic BasicInfoModification to modify these basic information.
Then during runtime, all the status information are published periodically into
the topic category EntityStatusUpdate to update the runtime information for

738 X. Lu et al.

each entity, while the event information are published into the topic category
EntityEventReport to report these kinds of information in timely manner. In ad-
dition, server can publish the command data into the topic category Command
to control or configure the agent dynamically.

Fig. 2. Topic structure of cloud monitoring system

3.2 Comprehensive Data Delivery Algorithm

As one of the most challenging issues of cloud monitoring, the balance between
runtime overhead and monitoring capability has caught the attention of re-
searchers. In addition to dynamically adding or subtracting monitoring facilities
of the agent to achieve this balance, a comprehensive data delivery model that
combines the pull-based model and push-based model is proposed to deal with
cloud monitoring in [2], for decreasing updating times and costs.

However, the Pap algorithm proposed in [2] is inadequate in some respects.
First, User Tolerant Degree (UTD) proposed to describe how tolerant a user is
to the status inaccuracy, depends on specific application environment and can
not vary with the current runtime status dynamically. On the other hand, the
increased or decreased pull interval in the pull algorithm is fixed and can not be
adjusted according to the current change degree of pulled value.

In order to cope with these deficiencies, we extend this algorithm based on
the theory of temporal locality to achieve better accuracy and efficiency in our
monitoring architecture. Compared with the Pap algorithm, the extended PapX
algorithm can efficiently capture the significant change of monitored values and
dynamically adjust UTD and pull interval, for not losing the important updates
and improving the accuracy of monitored values.

An Efficient Data Dissemination Approach for Cloud Monitoring 739

The extended PapX model consists of two mutual exclusive algorithms: Push
algorithm and Pull algorithm. By comparing current change degree of monitored
values with dynamic user tolerant degree, the Push and Pull models are alter-
nated adaptively. Before introducing the details of this algorithm, let’s have a
look at the assumptions and definitions in the following.

Change Degree (CD), defined in Eq. (1), describes the extent of change for
monitoring status value between a producer and the corresponding consumer at
certain time point.

CD(t) =
|P (t)− C(t)|
Max−Min

(1)

Where P (t) denotes the status value of the producer at time t, while C(t) rep-
resents the value maintained in the consumer at time t. Max and Min are the
maximal and minimal possible value of status separately.

Additionally, in order to capture the change of monitored resource status
in recent period, we maintain a sliding window of information about previous
updated values for each resource status. Assume A0, A1, ..., Ai, i ≤ N , represents
the successive updates to the server in this window, whose size is N . Then the
average amount of change (Avg AC), which describes the average amount of
change for the resource status in the sliding window, can be defined as:

Avg AC =

∑N
i=1(|Ai −Ai−1| ∗ i)∑N

j=1 j
(2)

The Dynamic User Tolerant Degree (d UTD), defined in Eq. (3), describes how
tolerant a user is to the status inaccuracy in current sliding window, when taking
the average change degree of resource status in current sliding window as ad-
justable parameters. The value of d UTD is initialized to user defined UTD and
is dynamically calculated. If current change degree of the monitored resource
status is larger than the d UTD, the value will be updated.

d UTD = UTD× (1 − Avg AC

Max−Min
) (3)

The core idea behind d UTD is to decrease the value of UTD, for not losing
the important updates, when status changes significantly during current sliding
window. Since according to the theory of temporal locality, the larger the status
change is, the more attention we should pay on these updated values.

Different from the fixed incremental of pulling interval in [2], the server peri-
odically pull from the agents with a dynamic rate in our PapX algorithm. The
pulling rate is adaptively determined based on last pull interval and current
damping factor of pull interval, which depends on current average change degree
in the window and the user predefined initial incremental value in our algorithm,
so the dynamic pull interval (DPI) can be defined as:

DPI(t) =

{
�DPI(t0) + STEP × (1 − Avg AC

Max−Min)�, ifΔ ≤ 0,

�DPI(t0)− STEP × (1 − Avg AC
Max−Min)�, ifΔ > 0.

(4)

740 X. Lu et al.

Δ = CD(t) − d UTD(t) (5)

Where DPI(t0) is the last pull interval at time t0, STEP presents the user
predefined incremental of pulling interval. Fig. 3 and Fig. 4 show details of the
Push and Pull algorithm separately. In order to avoid Push and Pull operations
concurrently happen in a same period, the two operation identifiers, isPulled
and isPushed are set to be mutual exclusive to reduce updating times.

 1 WHILE TRUE
2 set Pull operation identifier isPulled←FALSE waiting for Push_interval
3 IF isPulled equals to TRUE during Push_interval
4 update status information (s_now) that Server currently holds,
5 update the values in the sliding window(can be modeled as a Length

 Fixed Queue)
6 ELSE //check whether need to Push
7 get sensor's current value (sensor_now) at Agent,
8 calculate the value of CD(t), Avg_AC, d_UTD according to Eq. (1), (2),
9 (3) separately
10 IF CD(t)>d_UTD
11 isPushed←TRUE, s_now←sensor_now,
12 push s_now to the Server
13 ENDIF
14 ENDIF
15 ENDWHILE

Fig. 3. PapX-Push Algorithm

When the value of d UTD is relatively small, the Push method dominates,
because the condition at line 10 in Fig. 3 is easily to be met, and the Push oper-
ations are frequently triggered. On the other side, although the Pull algorithm
is trying to minimize Pull interval’s value, the PULL INTERVAL MIN blocks
this trend when Pull interval becomes very small (line 20 to line 22 in Fig. 4).

Similarly, when the value of d UTD is relatively large, the Pull-based method
will dominates. Only when the value of d UTD is relatively moderate, none of
Push and Pull dominates and both of them act frequently. More details about
the evaluation and comparison between our extend PapX algorithm and the Pap
algorithm proposed in [2] will be described in Section 4.

4 Evaluation

The balance between updating times and accuracy of monitored values plays a
very important role on reducing costs and improving efficiency of cloud monitor-
ing. In this sectioon, we evaluate the key performance indexes of the proposed
PapX algorithm through experimental based tests.

An Efficient Data Dissemination Approach for Cloud Monitoring 741

 1 Initialize Pull operation's initial interval: PULL_INIT_INL,
minimal possible interval: PULL_INL_MIN and maximal possible interval:
PULL_INL_MAX, initial incremental interval: STEP

2 Pull_interval←PULL_INIT_INL
3 WHILE (TRUE)
4 set Push operation identifier isPushed←FLASE
5 waiting for Pull_interval
6 IF isPushed equals to TRUE
7 update status information (s_now) that Server currently holds,
8 update the values in the sliding window (can be modeled as a Length

Fixed Queue)
9 ELSE
10 isPulled←TRUE, Pull the Agent
11 update s_now,
12 update the sliding window
13 ENDIF
14 calculate the value of CD(t) according to Eq. (1)
15 calculate the value of d_UTD according to Eq. (2) and (3)
16 calculate the value of DPI(t) according to Eq. (4)
17 IF CD(t)≤d_UTD
18 Pull_interval=min{DPI(t), PULL_INL_MAX}
19 ENDIF
20 ELSE IF CD(t)>d_UTD
21 Pull_interval =max{DPI(t), PULL_INTERVAL_MIN}
22 ENDIF
23 s_last←s_now
24 ENDWHILE

Fig. 4. PapX-Pull Algorithm

4.1 Experimental Environment

In this experiment, we choose two PCs as a transmission pair to evaluate the
performance of our proposed PapX algorithm and the Pap algorithm proposed
in [2]. One PC plays as a Producer and the other plays as a Consumer. Each
PC is equipped with two Pentium(R) Dual-Core CPU E5200@2.50GHz, 2 GB
memory and Ubuntu Release 10.0.4(lucid). To simplify the experiment, we use
only the CPU load percentage to test performance of the two models.

This experiment aims for a high accuracy and low intrusiveness data trans-
mission for cloud monitoring. So we analyze and evaluate the two algorithms
from the two aspects. For better comparing the accuracy, we define Inaccuracy
Degree (ID) to denote the degree of inaccuracy between the value holds on the
server and the real value collected by the agent, the expression can be described
as follows:

ID(t) =
1

et− st
×
∫ et

st

[C(t)− P (t)]2dt (6)

742 X. Lu et al.

where st and et represent the start and end time of monitoring separately. C(t)
denotes the value that the server holds at time t, while P (t) denotes the value
collected by agent at time t.

4.2 Experimental Analysis

For facilitating repeating the experiments to analyze the efficiency and accuracy
of the two algorithms, we first collected and saved 1000 times of
updating. Then in later experiments, the Push interval of the agent was set
to 10s, and the server’s PULL INIT INTERVAL, PULL INTERVAL MIN, and
PULL INTERVAL MAX were set to 5s, 3s and 12s, respectively. In addition,
the STEP of Pull interval increment was set to 1s.

Table 1 describes the comparative results of PapX and Pap algorithm under
different window size and UTD. In this group of experiments, we set the presen-
tative values 2, 6, 10, 20, and 50 for window size. And the value of UTD varies
from 0 to 1 with an incremental interval of 0.1. For each cell of this table, the
value before ”/” is the result of Pap algorithm and the value after ”/” is the
result of PapX algorithm. Due to the limitation of space, the comparative results
when UTD is 0.3 and 0.7 are ignored in this table.

Table 1. Comparative results of PapX and Pap algorithm

0.1 0.2 0.4 0.5 0.6 0.8 0.9

2
Updates 319/310 154/152 96/99 90/93 88/88 87/88 87/88

Inaccuracy 0.12/0.10 0.23/0.22 0.31/0.30 0.35/0.34 0.35/0.31 0.39/0.36 0.37/0.35

6
Updates 319/314 154/146 96/96 90/93 88/89 87/88 87/88

Inaccuracy 0.12/0.12 0.23/0.24 0.31/0.29 0.35/0.32 0.35/0.32 0.39/0.36 0.37/0.34

10
Updates 319/310 154/151 96/100 90/93 88/88 87/88 87/88

Inaccuracy 0.12/0.13 0.23/0.28 0.31/0.30 0.35/0.34 0.33/0.32 0.39/0.36 0.37/0.36

20
Updates 319/323 154/155 96/97 90/93 88/88 87/88 87/88

Inaccuracy 0.19/0.13 0.23/0.22 0.31/0.30 0.35/0.33 0.35/0.32 0.39/0.35 0.37/0.36

50
Updates 319/326 154/158 96/97 90/94 88/88 87/88 87/88

Inaccuracy 0.12/0.15 0.23/0.22 0.31/0.33 0.35/0.33 0.35/0.32 0.39/0.36 0.37/0.36

Now, we will analyze these data in table 1. First, we fix the window size,
and vary UTD to reveal the relation between updating number and UTD. Fig.
5(a) describes the result when window size is fixed to 6 and UTD varies from
0 to 1. Overall, the total updating number decreases with UTD rising, and the
Push operations’ number drops dramatically, while the Pull operations’ number
grows slightly. The reason for this phenomenon is that the rate of Pull opera-
tions’ number increasing is much less than the rate of Push operations’ number
decreasing. The figure also proves our analytical result described in section 3.1.
That is when UTD is relatively low, most of the updating operations are push,
and when UTD is relatively high, the number of Pull operations is dominant.

Also we observe the number of Push operation is not 0 but a small value when
the UTD is 1 in our PapX algorithm, it is because the positive feedback effect of

An Efficient Data Dissemination Approach for Cloud Monitoring 743

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

700

800

900

1000

UTDs

U
pd

at
e

T
im

es
Update Times With Different UTDs (Window Size = 6)

Push Times
Pull Times
Total Times

(a)

2 6 10 20 50
0

20

40

60

80

100

120

Window Size

U
pd

at
e

T
im

es

Update Times With Different Window Size (UTD=0.3)

Push Times
Pull Times
Total Times

(b)

Fig. 5. Updating number of PapX at different (a)UTDs and (b)window size

dynamic UTD to the rare dramatically changes of monitoring values. In order
not to lose the important updating, the PapX algorithm proposed in this paper
needes to capture and transmit the significant changes even the UTD is relatively
high. In addition, as UTD increases, the number of pull operation increases
slowly until it to be stabilized. During this process, little fluctuations occur due
to the responding result of dynamic pull interval DPI(t) to the dramatically
change of monitoring information.

Fig. 5(b) shows the experimental result of PapX algorithm with different
window size and a fixed UTD 0.3. From this figure, we can see that overall the
differentiation of the results of different window size is small. The main reason
for this phenomenon is that the average change degree of the sliding window is
calculated according to the weighted moving average of the change of each two
adjacent monitored values, so the influence of the window size is weakened. This
is consistent with the theory of temporal locality, since the latest change of these
monitored values often has the greatest impact on the eventual result.

From table 1, we also find the updating number of PapX algorithm is a little
bigger than the Pap algorithm. However, the accuracy of PapX is much better
than Pap. We tried to give an intuitionistic comparison of the accuracy for
the two algorithms in one figure. Unluckily, the amount of the data is so large
that the differences of them are not evident in one figure. So in the following
experiments, we select the first 200 updates to compare the accuracy of them.
Since the window size has a little influence on the eventual result, we fix it to 6.

When UTD is 0, users can not tolerant the deviation of monitored values, so
the two alogorithms degenerate to the pure push algorithm, and the inaccuracy of
them are both 0. When UTD is relatively low, take 0.2 (Fig. 6(a)) for example,
the PapX algorithm has evident superiority than Pap algorithm on accuracy.
Although the updating number of PapX and Pap algorithm are both 42, the
inaccuracy degree of PapX is 0.67, while Pap is 0.74. This phenomenon is mainly
caused by the dynamic UTD. When significant changes of monitored values
occur, the dynamic UTD of PapX algorithm will decrease to do more push
operations, so the accuracy is improved evidently in PapX.

744 X. Lu et al.

When UTD is relatively high, take 1.0 (Fig. 6(b)) for example, the push oper-
ations of the two algorithms are not triggered in this example. However, the Pap
algorithm just modifies the pull interval according to the constant incremental,
while the PapX algorithm can modify the pull interval dynamically according to
the change degree of monitored values. So when significant change occurs, the
pull interval of PapX algorithm may decrease to a lower value immediately, and
improve the accuracy of monitored values. As described in Fig. 6(b), although
the updating number of PapX and Pap algorithm are both 19, the inaccuracy
degree of PapX is 1.08, while Pap is 1.11.

When UTD is relatively moderate, as described in Fig. 7(a) (UTD=0.6), PapX
algorithm also has evident superiority than Pap algorithm on accuracy. PapX
algorithm just updates one more time and the inaccuracy degree decreases from
0.91 to 0.85. The reason for this phenomenon is mainly the combined influence
by dynamic UTD and pull interval described before when significant changes
occur.

Through the above logical analysis and experimental comparison, we con-
clude that the proposed adaptive PapX algorithm can work efficiently with the
change of user requirements and monitoring status for cloud monitoring. When
compared with the Pap algorithm, PapX has a higher degree of intelligence,
since it can efficiently capture the mutations of monitored values to decrease the
number of updating and increase the accuracy of monitored values. Fig. 7(b)
shows the comparative result on updating number and accuracy for the two algo-
rithms. From this figure, we can see that when the total updating number is low,
the accuracy of PapX algorithm is much better than Pap algorithm under the
same updating number. As the number of updating increases, the superiority of
PapX algorithm on accuracy decreases slowly until the performance of them are
analogous.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Time Stamp (Window Size = 6)

V
al

ue
s

Accuracy comparison (UTD=0.2)

Source(Total:200)
Pap(Update:42, ID=0.74)
PapX(Update:42, ID=0.67)

(a)

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Time Stamp (Window Size = 6)

V
al

ue
s

Accuracy comparison (UTD=1.0)

Source(Total:200)
Pap(Update:19, ID=1.11)
PapX(Update:19, ID=1.08)

(b)

Fig. 6. Accuracy comparison between PapX and Pap when (a) UTD=0.2 and (b)
UTD=1.0, window size is 6

An Efficient Data Dissemination Approach for Cloud Monitoring 745

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Time Stamp (Window Size = 6)

V
al

ue
s

Accuracy comparison (UTD=0.6)

Source(Total:200)
Pap(Update:20, ID=0.91)
PapX(Update:21, ID=0.85)

(a)

50 100 150 200 250 300 350
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Update Times

ID
s

Performance Comparison (Window Size = 6)

pap
papx

(b)

Fig. 7. (a) Accuracy comparison between PapX and Pap when UTD=0.6, window size
is 6; (b) Comparison on updating number and accuracy for PapX and Pap

5 Related Work

Well-known clouds in the industry all have their own monitoring system. The
representative one is App Engine System Status Dashboard, which can be used
to show how the applications work in Google App Engine [11]. In addition, a
third-party tool CloudStatus [12] is also developed by Hyperic Inc. to monitor
Amazon service and Google App Engine.

However, research work concerned with cloud monitoring is relatively less.
Due to monitoring of cloud systems typically contains three main activities:
collection, dissemination and processing of monitoring information, below we
will focus the discussion of related work on them respectively.

Monitoring Data Collecting: A RESTful approach is proposed in [13] to
monitor and manage cloud infrastructures. Entities in the cloud are modeled
with REST in a tree structure. However, such an organization of monitored
information is suitable for cloud infrastructure, and other entities in the cloud
can not be modeled appropriately. Therefore, in [4], the authors propose a more
universal runtime model for cloud monitoring (RMCM). All the raw monitoring
data gathered by multiple monitoring techniques can be organized by this model
to present an intuitive representation of a cloud.

Monitoring Data Dissemination: There are two basic data delivery mod-
els for communications between consumers and producers: the pull model and
the push model [14]. However, a pure push or pull model is not suited for so
many different kinds of virtualized resources in cloud system. So a hybrid re-
source monitoring model called P&P model is proposed in [2] for cloud system.
Compared with this hybrid model, our extended model PapX can achieve better
suitability and efficiency for cloud monitoring, due to the dynamic UTD and
pull interval based on the theory of temporal locality.

For data dissemination methods, the standards-based QoS-enabled pub/sub
platforms are promising approaches to build and evolve large-scale monitoring

746 X. Lu et al.

systems. As an emergent standard for QoS-enabled pub/sub communication,
DDS [5] attracts more and more attentions in mission-critical distributed real-
time and embedded systems. Compared with the traditional pub/sub platforms,
such as CORBA [15], SOAP [16], JMS [17], DDS perform significantly better
and are well-suited for data-critical real-time systems [18]. Additionally, in [7],
the authors discussed the applicability of DDS for the development of automated
and modular manufacturing systems. As far as we know, we are the first to bring
DDS into the data dissemination for cloud monitoring.

Monitoring Data Processing:Monitoring applications often involves process-
ing a massive amount of data from a possibly huge number of data sources [19].
CEP [6] has evolved as the paradigm of choice to determine meaningful situa-
tions (complex events) for decision making by performing stepwise correlation
over event streams in many domains, such as processing of environmental sensor
data, trades in financial markets and RSS web feeds [19, 20]. In [21], a complex
event language that significantly extends existing event languages to meet the
needs of a range of RFID enabled monitoring applications is introduced first,
then a query plan-based approach and some optimization techniques are used to
efficiently implementing this language.

6 Conclusion

In this paper, an efficient and intelligent monitoring architecture for cloud plat-
form is proposed to deal with the flexibility, scalability and efficiency challenges
of cloud monitoring. In this architecture, an efficient and robust data dissem-
ination framework is implemented to transmit the huge runtime information
reliably with high throughput and low latency based on DDS. An intelligent
cloud action platform is developed to provide decision making support for cloud
management system based on CEP. In addition, an extended comprehensive
data delivery algorithm Papx is also proposed to achieve better balance between
runtime overhead and monitoring capability in this architecture.

Acknowledgment. This work was supported by National Science and Tech-
nology Supporting Program (No.2012BAH06F02, No.2011BAD21B02), Research
Fund for the Doctoral Program by Ministry of Education of China
(No.20110101110066), Science and Technology Program of Zhejiang Province
(No.2011C14004), Zhejiang Provincial Natural Science Foundation of China un-
der grant (No.LY12F02029), and National Technology Support Program under
grant (No.2011BAH16B04).

References

1. Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Transactions on Software Engineering, 859–872 (De-
cember 2004)

An Efficient Data Dissemination Approach for Cloud Monitoring 747

2. Huang, H., Wang, L.: P&P: a Combined Push-Pull Model for Resource Monitoring
in Cloud Computing Environment. In: IEEE 3rd International Conference on Cloud
Computing (2010)

3. White Paper from ManageEngine. Four Keys for Monitoring Cloud Services (March
2010), http://www.manageengine.com

4. Shao, J., Wei, H., Wang, Q., Mei, H.: A Runtime Model Based Monitoring Ap-
proach for Cloud. In: IEEE 3rd International Conference on Cloud Computing
(2010)

5. Object Management Group. Data Distribution Service (DDS) Brief (2011)
6. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over

Streams. In: SIGMOD 2006, Chicago, Illinois, USA, June 27-29 (2006)
7. Ryll, M., Ratchev, S.: Application of the Data Distribution Service for Flexible

Manufacturing Automation. Proceedings of World Academy of Sciency, Engineer-
ing and Technology 31 (July 2008)

8. Si-Tu, F.: Event-based Monitoring and Management of the Distributed System,
M.Sc. Dissertation, Shanghai Jiao Tong University, Shanghai, P.R. China (2009)

9. Baldoni, R., Bonomi, S., Lodi, G., Querzoni, L.: Data Dissemination supporting col-
laborative complex event processing: characteristics and open issues. In: DD4LCCI
2010, Valencia, Spain (2010)

10. Bry, F., Eckert, M., Etzion, O., Riecke, J., Paschke, A.: Event Processing Lan-
guages. Tutorial in DEBS 2009 (2009)

11. Google App Engine. Google Inc., http://code.google.com/appengine/
12. Cloudstatus. Hyperic Inc., http://www.cloudstatus.com/
13. Han, H., Kim, S., Jung, H., Yeom, H.Y., Yoon, C., Park, J., Lee, Y.: A restful

approach to the management of cloud infrastructure. In: Proc. IEEE International
Conference on Cloud Computing, CLOUD 2009, September 21-25 (2009)

14. Chung, W.-C., Chang, R.-S.: Chang A new mechanism for resource monitoring in
Grid computing. Future Generation Computer Systems 25, 1–7 (2009)

15. Krishna, A.S., Schmidt, D.C., Klefstad, R., Corsaro, A.: Real-time CORBA Mid-
dleware. In: Mahmoud, Q. (ed.) Middleware for Communications. Wiley and Sons,
New York (2003)

16. Abu-Ghazaleh, N., Lewis, M.J., Govindaraju, M.: Differential Serialization for
Optimized SOAP Performance. In: Proceedings of HPDC-13: IEEE International
Symposium on High Performance Distributed Computing, Honolulu, Hawaii, pp.
55–64

17. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service.
Sun Microsystems Inc., Santa Clara (2002)

18. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H., Schmidt, D.C.: Evaluating
the Performance of Publish/Subscribe Platforms for Information Management in
Distributed Real-time and Embedded Systems

19. Poul, N., Migliavacca, M., Pietzuch, P.: Distributed Complex Event Processing
with Query Rewriting. In: DEBS 2009, Nashville, TN, USA, July 6-9 (2009)

20. Volz, M., Koldehofe, B., Rothermel, K.: Supporting Strong Reliability for Dis-
tributed Complex Event Processing Systems. In: Proceedings of 13th IEEE Interna-
tional Conference on High Performance Computing and Communications (HPCC
2011), Banff, Alberta, Canada, pp. 477–486 (September 2011)

21. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over
Streams. In: SIGMOD 2006, Chicago, Illinois, USA, June 27-29 (2006)

http://www.manageengine.com
http://code.google.com/appengine/
http://www.cloudstatus.com/

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 748–762, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Service Oriented Architecture for Exploring High
Performance Distributed Power Models

Yan Liu, Jared M. Chase, and Ian Gorton

Pacific Northwest National Laboratory
Richland WA 99352

{yan.liu,jared.chase,ian.gorton}@pnnl.gov

Abstract. Power grids are increasingly incorporating high quality, high
throughput sensor devices inside power distribution networks. These devices
are driving an unprecedented increase in the volume and rate of available in-
formation. The real-time requirements for handling this data are beyond the ca-
pacity of conventional power models running in central utilities. Hence, we are
exploring distributed power models deployed at the regional scale. The connec-
tion of these models for a larger geographic region is supported by a distributed
system architecture. This architecture is built in a service oriented style, where-
by distributed power models running on high performance clusters are exposed
as services. Each service is semantically annotated and therefore can be discov-
ered through a service catalog and composed into workflows. The overall archi-
tecture has been implemented as an integrated workflow environment useful for
power researchers to explore newly developed distributed power models.

Keywords: Service oriented architecture, high performance computing, power
grid.

1 Introduction

Electrical power grids are increasingly incorporating high quality, high throughput
sensor devices in the power distribution network. These devices are driving an un-
precedented increase in the volume and the rate of information available to utilities.
For example, a new Phasor Measurement Unit (PMU) sensor produces up to 60 sam-
ples per second, in contrast to existing conventional Supervisory Control And Data
Acquisition (SCADA) measurements generated every five seconds or longer. The
dramatic growth of these high quality sensors demands new power grid models for
real-time predictions, with the time to solution in the range of ten milliseconds to one
second. This is a radical reduction from the current ranges of two to four minutes.

Given the sheer size of the power grid, the solution of mathematical power models
requires significant time to solve. With conventional power grid operations, the core
power model of state estimation can only be updated in an interval of several minutes
– much slower than the measurement cycle in seconds. However, a power grid could
become unstable and collapse within seconds [5]. Therefore, the current state estima-
tion is not fast enough to predict real-time power grid behavior and respond to emer-
gencies such as the 2003 US-Canada Blackout [6].

A Service Oriented Architecture for Exploring High Performance Distributed Power Models 749

High Performance Computing (HPC) techniques are essential to handle such a
dramatic increase in data size and rate and to meet the demand of the real-time predic-
tions. Using the Western Electricity Coordinating Council (WECC) model as an
example, for state estimation, the solution time is about five seconds [7], while for
contingency analysis, about a 500-times speedup was achieved with 512 processors
[8][9][10]. However, HPC capabilities usually can only support the computing de-
mand at the regional scale; while real-time predictions model for power grids requires
computing resources at the continental scale. Thus, the critical issue is how to build a
power model that connects HPC-enabled regional-scale distributed power grids.

Many researchers have worked on hierarchical or distributed state estimation, such
as [1-4]. Their work is mainly focused on the distributed state estimation algorithms
and their efficiencies. There is no such a tool that has a capability to deploy the distri-
buted power models in a HPC-based distributed computing environment.

At Pacific Northwest National Laboratory, our research aims to design a distri-
buted system architecture that leverages parallel computing capacities to support the
demand of real-time computing for distributed power models. In our previous work,
we have investigated a method to partition the overall topology of a power grid into
several connected sub-areas [20]. We have also implemented a distributed state esti-
mation algorithm that allows each sub-area to compute its local state estimation on a
HPC cluster. In this algorithm, adjacent sub-areas exchange their own state estimation
results so that global state beyond the local area can be computed [21].

Our previous implementation has the peer-to-peer data exchange through middle-
ware that connects state estimators through TCP sockets [20]. Therefore the data
communication logic has been hard-coded in the state estimation code, which needs to
know the destination of the intermediate results. This mechanism has limitations for
validating the distributed state estimation algorithm, as to study the algorithm beha-
vior, different partitions of the same power grid network should be tested [11]. The
partition may change how the sub-areas are connected and hence the peer-to-peer
interactions. Hardcoding the data communication in the state estimation code is cer-
tainly not sufficiently flexible to represent the procedural steps of distributed state
estimation.

In this paper, we present our solution of exposing individual state estimators as a
service and connecting distributed state estimation services into a workflow. The
inputs and outputs of each service are semantically defined and therefore can be regis-
tered and discovered through a service catalog. Connected services are guaranteed to
match the input and output types. The overall architecture has been implemented as
an integrated workflow environment, including a workbench for an engineer to com-
pose and monitor a workflow, a service repository to register and search a matching
service, and job management for launching HPC jobs in a remote cluster. This
workflow environment enables power grid researchers to explore newly developed
distributed power models. In this paper, we present our engineering solution to realize
this service oriented design. We discuss our experience and summarize the benefit
and limitation of this solution.

750 Y. Liu, J.M. Chase, and I. Gorton

2 Background on HPC-Based Distributed State Estimation

We briefly introduce the distributed state estimation algorithm. A state estimator basi-
cally solves the non-linear state estimation equations as:

eh(x) z += (1)

where z is the measurement vector of dimension; x is the state vector; e corresponds to
the measurement errors, and h is a vector of non-linear functions which relate states to
measurements [12]. Approximately, the state estimation problem can be solved by
obtaining the solution to the following equation:

eHx z += (2)

where H is the states to measurements matrix for the entire power system. The data
resources include power flow-injections and voltage magnitudes. In the distributed
version, the entire power system is decomposed into m non-overlapping sub-areas and
each sub-area can run its local state estimation algorithm and also exchange data with
neighboring sub-areas to reevaluate its local state estimation solution. Sub-areas are
connected via tie lines. Correspondingly, the matrix H and the vector z are also parti-
tioned into m parts as follows and each part is responsible for a subsystem of the en-
tire power system.

Figure 1 shows the typical tie-line of the IEEE 118-bus system [13] that is used in this
paper. The specific procedural steps are as follows, assuming Area 1 as internal and
Area 2 being external.

1. Perform the state estimation in individual areas not directly connected to each
other (i.e., Area 1 and Area 3) to create the pseudo-measurements of the internal
boundary buses connected via tie-lines to other areas (i.e., real and reactive
power injection Pinj and Qinj, and voltage V). These pseudo measurements create a
network equivalent attached to the external system.

2. Run the state estimator of the external connected areas (e.g. Area 2) with meas-
urements obtained in step 1 to calculate new tie-line data. These new data repre-
sent an equivalent network attached to external areas. They are used to resolve
the influence from the external states on the internal states.

3. Run the state estimator for internal areas. Verify that the boundary buses and tie
line estimates are within tolerances; otherwise re-run the external state estimator
with updated tie-line information (i.e. step 2).

The data exchanges between state estimators are depicted in Fig. 2 based on the parti-
tion shown in Fig. 3. Note that the partition of a bus system affects how sub-areas are
connected by tie-line buses [11] and consequently it affects the interaction between
the state estimators according to the distributed state estimation algorithm above.

A Service Oriented Architecture

Fig. 1. Partiti

Fig. 2. Data co

To understand the interacti
dural steps of interaction as
workflow environment allo
execution of the state estim
also the intermediate output

For each state estimator,
computational cluster to so
essor fetches the data from
and dispatches a block of d

e for Exploring High Performance Distributed Power Models

ioning the IEEE 118-bus system into three areas

ommunication between distributed state estimators

ion, it is helpful for a power engineer to model the pro
s a workflow and observer the workflow execution. Thu
ws the power engineer to examine in detail the step by s

mation algorithm and understand not only final results
ts.
 a Message Passing Interface (MPI)-based code is run o

olve the estimation metrics in (1) and (2). A master pr
the data communication infrastructure, partitions the d

data to a number of worker processors. All the process

751

oce-
us a
step
but

on a
roc-

data,
sors

752 Y. Liu, J.M. Chase, a

then run the computing task
all the computing tasks ar
work [21].

3 The Service Ori

The design of the architect
This means the boundaries
data inputs and outputs. In
with the data communicatio
managed by middleware th
es. Thus the state estimat
annotation (especially base
of this design follows serv
power engineer who has th
can connect state estimators
ture allows the engineer to
data exchange between state

Fig. 3. Service o

3.1 Architecture Overv

The architecture is depicted
reading and parsing data st
estimators as services and

and I. Gorton

ks in parallel. The state estimation results are gathered a
re completed. More details can be found in our previ

ented Architecture

ture aims to make individual state estimators autonomo
 between state estimators are explicit, defined in terms
n this architecture, the state estimator does not need to d
on with its adjacent neighbors. The data communicatio
at manages individual state estimators as registered serv
tors can be cataloged and retrieved based on its seman
d on the types of inputs and outputs). The implementat
vice oriented architecture principles. With this design
he knowledge of the distributed state estimation algorit
s into a workflow aligned with the algorithm. The archit
launch a state estimator on a HPC cluster and observe
e estimators.

oriented architecture of distributed state estimation

view

d in Fig. 3. This architecture consists of three key parts:
treams from the sensors at top of Fig. 3; (2) exposing s
coordinating the distributed state estimation workflow

after
ious

ous.
s of
deal
n is
vic-
ntic
tion
n, a
thm
tec-
the

 (1)
tate

w in

A Service Oriented Architecture for Exploring High Performance Distributed Power Models 753

the middle of Fig. 3; (3) launching HPC jobs to run state estimation at the bottom of
Fig. 3. The first part has been implemented by scripts and Java applications following
the standard IEEE C37.118 protocol to extract specific measurements of bus lines for
a power system. In this section, we focus on the other two parts.

3.2 Semantic Service Definition and Registration

The state estimators have been implemented as Fortran MPI programs. To expose a
state estimator as a service, we need to define the input and output ports for the state
estimator and provide the data type of each port. Input and output ports are defined
through constructing an OWL document as follows. In the example below, the seman-
tic type for the input port of the service at area 1 is defined in an OWL Class called
Area1Input. This OWL class has one property called hasA-
REA1InputFilename, and it is of the type Area1InputFile.

List 1 Semantic definition of the input port

The semantic type of resource Area1InputFile further defines that its data
type is string.

List 2 Semantic definition of the data type

The purpose of defining the semantic type of a port such as Area1InputFile is

to restrict the connection of two state estimator services unless they both have ports
that are Area1InputFile strings. Therefore, the rules of connecting state estima-
tors can be expressed by means of the semantic type of ports. Also, typed ports allow
searching state estimator services that match the exact type of ports. For example,
the resource class Area1InputFile can be used as an attribute to search with.
Similarly, an output port can be defined.

<owl:Class rdf:about="#Area1InputFile">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasFilename"/>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>
 <owl:someValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

<owl:Class rdf:about="#Area1Input">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=" #hasAREA1InputFilename"/>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>
 <owl:someValuesFrom rdf:resource="#Area1InputFile"/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

754 Y. Liu, J.M. Chase, and I. Gorton

After the input and output ports are defined, the next step is to define the service it-
self. We use an open source system called SADI (Semantic Automated Discovery
and Integration)1 to generate the service stub code essential for wrapping a state esti-
mator as a service. SADI is a framework for discovery of, and interoperability be-
tween, distributed data and analytical resources. It combines simple, stateless,
GET/POST-based Web Services with standards from the W3C Semantic Web initia-
tive. Using SADI, a Java Servlet class is generated and annotated given the service
name specified. Previously defined input and output ports are now annotated as
@InputClass and @OutputClass in the service definition class.

List 3 Generated service code

In this generated service definition class, the logic for launching state estimation

jobs on a remote cluster is implemented in the processInput method.

List 4 Service implementation to launching state estimation job

The input and output parameters for the processInput method are passed as an
RDF formatted document. To parse the RDF document and extract data of interest,
we have developed a Java class Vocab using the Apache JENA2 API. JENA is an
Apache framework for building Semantic Web applications that includes a Java API
for reading and writing RDF documents.

1 http://sadiframework.org/content/
2 http://jena.apache.org/

@Override
public void processInput(final Resource input, final Resource output)
{
 final int numCores = 1;
 String filename = input.getProperty(Vocab.hasAREA1InputFilename).getString();
 final String[] inputfiles = { filename };

 try {

 JobManagerService jm = new JobManagerService();
 String[] outputfiles = jm.launchJob("node_a_part1", "local", numCores, inputfiles);

 String outputfile = outputfiles[0];
 System.out.println("Area1Part1Service " + outputfile);
 output.addLiteral(Vocab.hasAREA1OutputFilename, outputfile);

 } catch (final IOException e) {
 e.printStackTrace();
 }
}

@Name("Area1Part1Service")
@Description("Area 1 Part 1 Service")
@ContactEmail("jared.chase@pnnl.gov")
@InputClass("http://neptune.pnl.gov:8090/powergrid2.owl#Area1Input")
@OutputClass("http://neptune.pnl.gov:8090/powergrid2.owl#Area1Output")

public class Area1Part1Service extends SimpleSynchronousServiceServlet {
…

A Service Oriented Architecture for Exploring High Performance Distributed Power Models 755

@SuppressWarnings("unused")
private static final class Vocab
{
 private static Model m_model = ModelFactory.createDefaultModel();

 public static final Property hasAREA1OutputFilename =
m_model.createProperty("http://neptune.pnl.gov:8090/powergrid2.owl#hasAREA1OutputFilename");

 public static final Property hasAREA1InputFilename =
m_model.createProperty("http://neptune.pnl.gov:8090/powergrid2.owl#hasAREA1InputFilename");

 public static final Property hasFilename =
m_model.createProperty("http://neptune.pnl.gov:8090/powergrid2.owl#hasFilename");

 public static final Resource Area1Input =
m_model.createResource("http://neptune.pnl.gov:8090/powergrid2.owl#Area1Input");

 public static final Resource Area1Output =
m_model.createResource("http://neptune.pnl.gov:8090/powergrid2.owl#Area1Output");

 public static final Resource string =
m_model.createResource("http://www.w3.org/2001/XMLSchema#string");

 public static final Resource Area1OutputFile =
m_model.createResource("http://neptune.pnl.gov:8090/powergrid2.owl#Area1OutputFile");

 public static final Resource Area1InputFile =
m_model.createResource("http://neptune.pnl.gov:8090/powergrid2.owl#Area1InputFile");
}

List 5 Creation of property and resource mapping

The Vocab class is developed to create property and resource instance variables to

tie the input and output data according to the semantic structure of the service. As
shown in List 5, the property hasAREA1InputFilename in List 1 and the
resource Area1InputFile in List 2 are tied to the URLs of the OWL file. The
property or resource variables of Vocab can be used to extract the input data and
package the output data using a well formed RDF document representation, for
example

String filename =
 iput.getProperty(Vocab.hasAREA1InputFilename).
 getString()

3.3 Job Launching

The processInput method defined in previous section invokes the job launching
software we have developed. This job launcher simplifies the remote job launch,
monitoring, and results handling for the state estimation scripts that are located on a
remote cluster. Fig. 4 below shows a high level view of the structure and the asso-
ciated steps to configure the job launcher. The first step is to configure the machine
registry. The configuration files include parameters of machine name, job scheduler,
installation directory of simulation code(s), number of compute nodes to use, and so
on. The second step invokes the job launching function, which writes the status of the
job to log files.

756 Y. Liu, J.M. Chase, a

The API to invoke the jo
gerService class. The l

JobManagerService jm = new Jo
String[] outputfiles = jm.lau

The first parameter is Co
formation from a code reg
submit an job to a cluster
trieves includes the submit/
output files.

The second parameter is
ing information from a ma
JobManagerService re
launch the job with, ssh key
tion location of code, time l

The third parameter is th
meter is only used when lau

The fourth parameter is
These files are transferred f
remote cluster machine. In
gument into the state estima

3.4 Service Registratio

Once a service is defined an
such as Tomcat, and then
service registry first valida

and I. Gorton

Fig. 4. Structure of job launching

ob launcher is the launchJob method in the JobMan
launchJob method takes 4 parameters.

obManagerService();
unchJob("node_a_part1", "local", numCores, inputfiles);

ode Registry, a string that is an identifier for retrieving
istry; in this case it is node_a_part1, a Perl scrip
queue. The information that JobManagerService

/launch script as well as the names for the code’s input

s Machine Registry, a string that is an identifier for retri
achine registry; in this case “local”. The information
etrieves includes the name of the machine, user accoun
ys (if required), number of nodes, queuing system, insta
limit, and other required parameters.
he number of cores to use to run a simulation. This pa
unching a job through a queuing system.
s an array of input files that will be used to run the j
from the machine that is running the SADI services to
n our example the input file is passed in this list as an
ator.

n

nd implemented, it is deployed to a web application ser
n registered using the SADI service registry. The SA
ates the service to make sure semantic types are correc

na-

g in-
pt to
 re-
and

iev-
the

nt to
alla-

ara-

job.
the

n ar-

rver
ADI
ctly

A Service Oriented Architecture for Exploring High Performance Distributed Power Models 757

defined. Then the SADI service registry registers the semantic types inside the service
catalog. Fig. 5 below shows the services that are registered within the SADI service
registry along with the semantic types of their input and output.

Fig. 5. Service registry

4 Composing a Workflow

Once services are created and registered for state estimators, they can be composed
using workflow tools that support Web Services. In our work, we use the Taverna

Fig. 6. Integrated Workflow Environment

758 Y. Liu, J.M. Chase, and I. Gorton

Workflow Management System 3 to
compose a workflow. The overall
integrated workflow environment is
shown in Fig. 6. This environment
consists of the Taverna workbench,
SADI service registry, state estima-
tion services registered in SADI, and
the job launcher embedded in the
service implementation. The details
of how to build and run a workflow
are discussed below.

Taverna supports a SADI plugin,
therefore the services that are created
and registered to SADI (as described
in section 3) are available in Taverna
as shown in Fig. 6. Since Area 1 and
Area 3 run state estimation in two
separate steps: first, running its own
local area state estimation, and sending
its estimation of measurement on the
tie-line buses to Area 2; and second,
running state estimation again when
Area 2 sends back its estimation of
measurement on the tie-line buses.
Therefore, Area 1 and Area3 have two
separate services, such as Area1Part1Service, Area3Part1Service and
Area1Part2Service,Area3Part2Service respectively.

Taverna allows SADI services to be used as drag-and-drop components to build
workflows. Each workflow component has semantically typed input and output ports
that can be used to perform service discovery. Service discovery guides users by help-
ing them find components with an output port that has the same semantic type as the
input port of an existing component.

To model the distributed state estimation workflow in Taverna, a power engineer
needs to compose the workflow components according to procedural steps of distri-
buted state estimation. In this paper, we focus on modeling the steps of distributed
state estimation introduced in Section 2. These steps are run iteratively as time passes.
This means for every time step of interest, these steps are invoked. Therefore,
we introduce a hierarchy to the workflow. The top level of the workflow contains a
list of values such as the timestamps to run the workflow steps. For each value in list
is parsed, a sub-level workflow is invoked. The sub level workflow models the steps
of distributed state estimation.

The sub workflow receives a value from the list in the top level workflow and trig-
gers the Area1Part1Service and the Area3Part1Service. When a service
is invoked within Taverna, it calls the JobManagerService to launch the state
estimation jobs in a remote cluster. After both these components complete, they send

3 http://www.taverna.org.uk/

Fig. 7. Workflow composition and execution

A Service Oriented Architecture for Exploring High Performance Distributed Power Models 759

their output to the Area2Service. After the Area2Service receives both inputs it
executes and sends a separate result back to Area1Part2Service and
Area3Part2Service. When both these services are finished a message is sent to
the output port of the top level workflow to indicate that one iteration of the workflow
is finished.

During the execution of a workflow, the result view of the Taverna workbench
shows the progress of the workflow by changing colors as the workflow components
execute (see Fig. 7). Once the entire workflow is finished executing, the lower result
view appears populated with results data as shown in Fig. 8. Intermediate inputs and
outputs for each component are available to navigate within a tree view. The separate
iterations for each sub workflow execution are available.

Fig. 8. Monitor workflow execution

By viewing the output file from the output port of each workflow component, a us-
er is aware of the status of interactions between distributed state estimators. The out-
put files in the result view allow a user to validate the distributed state estimation
algorithm and identify errors of the algorithm itself.

5 Reflection and Discussions

The major benefit of using semantic services is that semantic rules for connecting
services can be enforced and service discovery through the SADI service repository
can be executed within an integrated workflow environment. This helps guide the user
through the process of workflow composition and execution, especially when the
power model evolves and consequently the data flow changes. For example, each site
of the distributed state estimation involves 4 to 7 different input datasets, 2 scripts for
control actions and 2 to 4 exchanges of intermediate data. For any distributed state
estimation involving more than 2 sites, it is impractical to manually execute the
scripts and coordinate the data flow. With this simple sematic enhancement, the
workflow environment allows changing of the process through workflow composition
and any violation against the composition rule is prevented.

Some of the drawbacks of using SADI services include that they use a Servlet pro-
tocol as opposed to SOAP or REST which are more common protocols used in ser-
vice oriented architecture. SADI does include documentation for handling integration
with SOAP services using custom code inside the SADI servlet. Another limitation is
that SADI services use RDF structure data to send and receive messages. In our solu-
tion, we have developed custom code to unpackage and repackage the data specific to
measurements of power grid to send to a state estimation service.

760 Y. Liu, J.M. Chase, and I. Gorton

6 Related Work

The power grid is evolving to the future power grid that encompasses a business strat-
egy within the electric utility industry for incorporating intelligence in the power
distribution network. This evolution creates major challenges in the increasing com-
plexity of the bulk power grid to respond to demand growth, support renewable ener-
gy sources and satisfy the requirements for enhanced, adaptive service quality. One of
those challenges is concerned with data exchange. A service oriented architecture
(SOA) has been recently adopted and reported to cope with comprehensive data ex-
change in layers between different stakeholders [14-16]. According to [17], SOA and
Web services offer a flexible and extensible approach to integration of multiple, often
autonomous, data sources and analysis procedures. Service oriented technologies
support interoperability with other power grid frameworks (e.g., SCADA) through the
use of emerging standards including Common Interface Model (IEC 61970/61968)
and OPC Unified Architecture (IEC 62541). CIM is domain-specific data model and
can be seen as a domain ontology for the utility domain. The OPC UA can be viewed
as a platform for interoperability and service-based communication.

Within this background, semantic web services facilitate automation of service
discovery and execution. However, the discovery could fail even if there are matching
web services within the repository. For this purpose, the provision and consumption
of a service should be described in a much more specific way in terms of
semantics [18].

7 Conclusion

In this paper, we present a service oriented architecture for connecting distributed
power models (e.g. state estimation) in a workflow environment. We define sematic
services with input and output types to constrain the data exchange rules. The seman-
tic services are mapped to state estimators running on high performance clusters.
These services are registered in service repository, and discovered and composed in a
workflow. Overall this integrated workflow environment separates the concerns of
running individual state estimators and orchestrating their interactions in a workflow.
Our future work will enhance the semantic representation of power models and sup-
port standards of CIM (IEC 61970/61968) in the service oriented architecture.

References

1. Cutsem, T.V., Howard, J.L., Ribben-Pavalla, M., El-Fattah, Y.M.: Hierachical State Esti-
mation. International Journal of Electric Power and Energy Systems 2, 70–81 (1980)

2. Cutsem, T.V., Howard, J.L., Ribben-Pavalla, M.: A Two-level Static State Estimator for
Electric Power Systems. IEEE Trans. on PAS 100, 3722–3732 (1981)

A Service Oriented Architecture for Exploring High Performance Distributed Power Models 761

3. Cutsem, T.V., Ribbens-Pavella, M.: Critical Survey of Hierarchical Methods for State Es-
timation of Electrical Power Systems. IEEE Trans. on Power Apparatus and Sys-
tems 102(10), 3415–3424 (1983)

4. Habiballah, I.O., Irving, M.R.: Multipartitioning of Power System State Estimation Net-
works Using Simulated Annealing. Electric Power Systems Research 34, 117–120 (1995)

5. Huang, Z., Guttromson, R.T., Nieplocha, J., Pratt, R.G.: Transforming Power Grid Opera-
tions. Scientific Computing 24(5), 22–27 (2007)

6. U.S.-Canada Power System Outage Task Force, Final Report on the August 14, 2003
Blackout in the United State and Canada: Causes and Recommendations (April 2004),
https://reports.energy.gov/

7. Chen, Y., Huang, Z., Liu, Y., Rice, M., Jin, S.: Computational Challenges for Power Sys-
tem Operation. Accepted by Hawaii International Conference on System Sciences (2012)

8. Huang, Z., Chen, Y., Nieplocha, J.: Massive Contingency Analysis with High Performance
Computing. In: Proceedings of the IEEE Power Engineering Society General Meeting
2009, Calgary, Canada, July 26-30 (2009)

9. Gorton, I., Huang, Z., Chen, Y., Kalahar, B., Jin, S., Chavarría-Miranda, D., Baxter, D.,
Feo, J.: A High-Performance Hybrid Computing Approach to Massive Contingency Anal-
ysis in the Power Grid. In: Proceedings of the 2009 Fifth IEEE International Conference
on E-Science, E-SCIENCE, December 09-11, pp. 277–283. IEEE Computer Society,
Washington, DC (2009), doi:
http://dx.doi.org/10.1109/e-Science.2009.46

10. Chen, Y., Huang, Z., Chavarría-Miranda, D.: Performance Evaluation of Counter-Based
Dynamic Load Balancing Schemes for Massive Contingency Analysis with Different
Computing Environments. IEEE PES General Meeting. PNNL-SA-69878, Pacific North-
west National Laboratory, Richland, WA (2009)

11. Bose, A., Poon, K., Emami, R.: Implementation Issues for Hierarchical State Estimators.
Final Project Report (September 2010)

12. Abur, A., Expósito, A.G.: Power System State Estimation Theory and Implementation.
CRC Press (2004)

13. IEEE 118-bus teset case,
http://www.ee.washington.edu/research/pstca/
pf118/pg_tca118bus.html (accessed November 2011)

14. Pathak, J., Li, Y., Honavar, V., McCalley, J.: A Service-Oriented Architecture for Electric
Power Transmission System Asset Management. In: Georgakopoulos, D., Ritter, N., Bena-
tallah, B., Zirpins, C., Feuerlicht, G., Schoenherr, M., Motahari-Nezhad, H.R. (eds.)
ICSOC 2006. LNCS, vol. 4652, pp. 26–37. Springer, Heidelberg (2007)

15. Lalanda, P.: An E-Services Infrastructure for Power Distribution. IEEE Internet Compu-
ting 9(3), 52–59 (2005)

16. Marin, C., Lalanda, P., Donsez, D.: A MDE Approach for Power Distribution Service De-
velopment. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS,
vol. 3826, pp. 552–557. Springer, Heidelberg (2005)

17. Postina, M., Rohjans, S., Steffens, U., Uslar, M.: Views on Service Oriented Architectures
in the Context of Smart Grids. In: First IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 25–30. IEEE Computer Society (2010)

18. Rohjans, S., Uslar, M., Juergen Appelrath, H.: OPC UA and CIM: Semantics for the smart
grid. In: 2010 IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–
8 (2010)

762 Y. Liu, J.M. Chase, and I. Gorton

19. Buyya, R., Murshed, M.: GridSim: a Toolkit for the Modeling and Simulation of Distri-
buted Resouce Management and Scheduling for Grid Computing. Concurrency Computat.
Pract. Exper. 14, 1175–1220 (2002)

20. Liu, Y., Jiang, W., Jin, S., Rice, M., Chen, Y.: Distributing Power Grid State Estimation on
HPC Clusters A System Architecture Prototype. Accepted to the IEEE IPDPS Workshop
on Parallel and Distributed Scientific and Engineering Computing, Shanghai, China (May
2012)

21. Jin, S., Chen, Y., Rice, M., Liu, Y., Gorton, I.: A Testbed for Deploying Distributed State
Estimation in Power Grid. Accepted to IEEE Power & Energy Society General Meeting,
Orlando, FL, USA (May 2012)

Business Process Extensions as First-Class Entities —
A Model-Driven and Aspect-Oriented Approach

Heiko Witteborg, Anis Charfi, Mohamed Aly, and Ta‘id Holmes

SAP Research Darmstadt
Bleichstr. 8, Darmstadt, Germany

firstname.lastname@sap.com

Abstract. To facilitate customer adaptation, extensibility constitutes an attrac-
tive design choice for providers of business software. However, most works in the
context of business application extensibility are focusing on the code level. Lack-
ing a conceptual foundation, such extensibility has shortcomings with respect to
the understandability and the development of extensions. Addressing these issues,
this paper presents the novel concept of business process extensions as first-class
entities. We apply a model-driven approach which focuses on the business pro-
cess layer and uses aspect-oriented modeling implicitly.

Keywords: process extensions, extensibility, business process modeling, model-
driven.

1 Introduction

Enterprise resource planning (ERP) and customer relationship management (CRM) are
examples of business applications that support a wide range of standard business pro-
cesses. However, the reality shows that companies in the same activity domain (e.g.,
retail or service) may have their own variants of these processes. When looking at
diverse domains one observes that business processes are also performed in differ-
ent ways. In fact, the standard processes delivered and implemented by the business
software provider mostly require to be adapted to the particular needs of a certain
company running it or to those of a certain domain. The adaptation of the business
applications and their underlying business processes is typically done by implementing
extensions. These extensions are either built by the customer or by a third party such
as an independent software vendor (ISV). In fact, there is an ecosystem of ISVs and
consulting organizations around leading business software providers, which specialize
in configuring base software and building extensions to it. Extensions are owned by the
ISVs whereas the base software is owned by the provider of the business software.

Extending business applications is a complex task for both the application provider
and the extension developer (cf. [1]). Therefore, there is a need to raise the level of
abstraction in order to ease understanding, developing, and managing extensions and
systems that result from base software and extensions. The lack of appropriate models
for extensibility leads to further problems, which are hard to tackle on the code layer.
First, it is challenging to understand a business process that results after several exten-
sions have been applied to the base software. This is because no appropriate models of

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 763–770, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

764 H. Witteborg et al.

the extensions exist in code level approaches. Second, understanding which extensions
perform which activities at which points in the base business process is complicated.
Therefore, it is also difficult to identify potential conflicts between extensions without
looking deep into the code. The same applies to the activation and deactivation of exten-
sions, which, in current approaches, is a topic for expert technical users through com-
plex low-level configuration and management tools. In this paper we address some of
these problems using a model-driven and aspect-oriented approach for business process
extensibility.

Our contributions are three-fold: First, we present a novel approach for defining busi-
ness process extensions as first-class entities. This approach focuses on the business
process layer and also includes a mechanism for composing (resp. decomposing) the
extension models defined by the ISVs with (resp. from) the base business processes de-
livered by the business software provider. Second, we present a toolset supporting the
proposed approach, which includes an extension editor and model repositories. Starting
from a base process, the editor supports the in-place modeling of extensions as if the
end user was directly modifying the business process. Internally, the toolset extracts the
deltas modeled by the extender into business process extensions. This is transparent to
the modeler (implicit aspect-oriented modeling). Third, we discuss the benefits of our
approach and its application areas to further address the problems mentioned above.

2 Concepts and Tools for Business Process Extensibility

We propose a model-driven and aspect-oriented approach to business process extensi-
bility. Focusing on the process layer, it enables participants in the ecosystem of the base
software provider to extend the (read-only) process models of the business application,
e.g., to add new activities to the process, to match the needs of a specific domain, or
to integrate with other applications. The extended process is decomposed automatically
and stored in a modular way: the resulting extension encapsulates the modifications
that are associated with a certain concern, ready to be reapplied, or reused in another
context.

We exemplarily illustrate our approach using a common CRM process for creating
and approving sales quotations, as shown in Figure 2. In our extension scenario, this
process is extended to integrate customer rating data delivered through an external credit
reporting agency. Based on this additional information, an online shop could lower the
risk of non-payment, e.g., by appropriately setting the payment terms.

In the following, we shortly present the conceptual basis of our approach using a
business process extension metamodel. After that, we describe the main steps in the ex-
tension development approach. Finally, we present the toolset supporting our approach.

2.1 Business Process Extension Metamodel

Figure 1 shows a business process extension metamodel that formalizes the concepts
that enable an ISV to model process extensions as first-class entities. It consists of two
packages: The package processmodel contains the metamodel of the process defini-
tion language used to define the base process. We present a simplistic metamodel con-
sisting of processes, edges, and vertices to exemplarily show the generic interrelation

Business Process Extensions as First-Class Entities 765

Fig. 1. Process Extension Metamodel

between our extensibility concepts and the underlying process definition language 1.
The second part of Figure 1 is the package extensionmodel, which defines the con-
cepts that can be contained in an extension.

The fragments contain the new process elements introduced by the extension mod-
eler. It uses the same constructs as the base process modeling language, following a
symmetric approach to composition (cf. [10]), i.e., there is no conceptual distinction
between base process and the extension part. This facilitates the intuitive graphical defi-
nition of extensions, and supports extension of extensions. Figure 2 shows the extended
process of our motivating example, with a fragment consisting of a single task “Get
external customer rating”.

A Modification describes a single extension operation that is performed on a cer-
tain extension point. If extendingPoint is not specified, the modification describes a
deletion. A deletion can be represented by hiding the targeted element, or by showing
it grayed out. In the other case, the modification inserts and connects an extending ele-
ment contained in one of the extension’s fragments with the extension point contained in
the base process (hereinafter called binding). Both extension point and extending point
reference single identifiable nodes of the underlying process language, in our generic
case, a single vertex. The binding can easily be represented as an edge in an extended
process, with the towardsExt attribute specifying the direction of the edge.

Grouped using the ModificationSet concept, several bindings can be defined for the
same combination of base process and fragment. In our running example, the additional
task is integrated into the base process as an optional task after “Receive customer
request”; thus, there is a forking edge between these two vertices and a merging edge
targeting the successor vertex, as shown in Figure 2.

2.2 Extension Development Approach

The extension development is simplified by the fact that we use the same language for
both the extended process and the base process. However, visualizing the extension part
in the extended process, as well as extracting the extension when the process is saved

1 However, our approach can be applied to any process definition language that formalizes a
process as a flow of tasks, modeled as vertices interconnected via directed edges such as
Business Process Modeling Notation [12] (BPMN) for example.

766 H. Witteborg et al.

requires the extended process model to hold additional information 2; in particular, for
each element, modelId as a reference to the base process or extension the element is
assigned to, and modificationOperation indicating the modification operation.
Creation of Extended Processes. Using a special editor, the ISV can specify modifica-
tions directly by drawing them in the diagram of the base process. The newly added or
deleted elements are automatically annotated accordingly. Depending on the graphical
notation of the underlying process language, these annotations can be used to enhance
the visualization of the extended process, e.g., using different background and line col-
ors. This enables the ISV to intuitively distinguish the base process from the extension
parts. Figure 2 depicts the resulting extended process of our customer rating extension
example.
Decomposition of Extended Processes. When an extended process is saved, the exten-
sion is extracted automatically and the base process is left unmodified. Our decompo-
sition algorithm uses the extension annotations to retrieve the list of modified elements
and derive the fragments and modification sets. Listing 1 shows the extension artifact
derived by decomposing our extended example process. It consists of the extension
process with a single fragment and a modification set with two modifications.

Listing 1. Customer Rating Extension

<?xml version="1.0" encoding="UTF-8"?>
<extensionmodel:Extension xmi:version="2.0"˜xmlns:xmi="http://www.omg.org/XMI"

xmlns:extensionmodel="http://extensionmodel/1.0"
name="Customer Rating Extension">

<fragments name="Customer Rating">
<vertices name="Get external customer rating"/>

</fragments>
<modificationSets id="Quote2OrderModifications">
<modifications towardsExt="true" extendingPoint="//@fragments.0/@vertices.0"

baseProcessName="SalesQuotationCreation"
extensionPointName="Receive customer request"/>

<modifications extendingPoint="//@fragments.0/@vertices.0"
baseProcessName="SalesQuotationCreation"
extensionPointName="Check customer credit limit"/>

</modificationSets>
</extensionmodel:Extension>

Composition of a Base Process and Extensions. Base processes can be (re)composed
with extensions: First, the modification sets relevant for the selected base process are
retrieved. The corresponding fragment is inserted and annotated as added, and edges
are created to represent the bindings. For a deletion, the extension point is annotated
accordingly. Reapplying the extracted customer rating extension (cf. Listing 1) to the
“Sales Quotation Creation” process restores the extended process shown in Figure 2.

2.3 Tooling

For the accomplishment of an end-to-end solution we implemented a tool for modeling
business process extensions. This tool is supported by one or more model repositories
for storing the base processes and the extensions. While managing extension models

2 To store this information we annotate the extended process using lightweight language-specific
extension constructs. We abstract from concrete annotation implementation in the following,
assuming that the additional extension information is available.

Business Process Extensions as First-Class Entities 767

Fig. 2. Sales Quotation Creation Process with the Customer Rating Extension

as first-class artifacts in business software systems, these repositories with the tools
help to bridge the gaps between various phases of the engineering lifecycle. We refer
to such a setting as a Model-Aware Service Environment [11] (MORSE). Moreover, as
the repositories store conceptual, platform-independent models (PIMs) they can be uti-
lized across different products of the business software provider’s portfolio. Our tooling
consists of the following components:

The base business process models of one or more business applications are
stored in the central Process Model Repository. For reference and traceability
purposes each model and model element in the MORSE is identifiable by a
Universally Unique Identifier. The Extension Repository stores business process exten-
sion models separately from the process models although it might utilize the same
model repository with the access rights appropriately set. One reason for this separa-
tion is the separate ownership of the respective models: the base process models are
owned by the base software vendor whereas the process extension models are owned
by the ISVs.

The Process Editor enables the ISV to retrieve and view the base process models
from the Process Model Repository, as well as extensions to be stored in the Extension
Repository. Although having only read access, the editor allows to directly draw a new
extension into the base process diagram or loading and editing an existing extension
– in accordance with the modification restrictions defined by the base process owner.
Moreover, the user can load and reuse an extension in another process context. Saving
the extended process automatically triggers the extraction of the extension as a first-class
entity, stored in the Extension Repository. A screenshot of the tool is shown in Figure 2.

3 Discussion

In this section, we report on relevant design decisions and give some requirements from
practice. We also report on several application areas of our approach.

768 H. Witteborg et al.

3.1 Design Decisions and Requirements

In-Place Extension Modeling and Implicit Aspect-Oriented Support. One requirement
was to find and leverage a simple approach towards end users. To achieve that we intro-
duced the technique of in-place extension modeling, which means that an ISV models
the extension in our editor after loading the base business process as if he was directly
modifying that business process. As a result, the extension modeler does not have to
know or understand the metamodel and concepts presented in Section 2.1, unlike in
aspect-oriented approaches such as [8]. This reduces the complexity for end users.
Process Extensions as Modular First-Class Entities. An important requirement was to
have a strict separation of the base process model and the extension models. The base
processes are owned by the provider of the business software and extension models
are owned by the ISVs. Further, we had the requirement of being able to compose
multiple extensions from different ISVs with the same business process model. From
this requirement, which is supported through the separation of ownership, we derived
the design decision to have process extensions as modular first-class entities.

3.2 Application Areas

Code and Test Generation. The design and development process of business software
extensions may start now from the process extension models. These models – possibly
in conjunction with other models – can serve for generating implementation artifacts
for the extension. Furthermore, the process extension models can also serve as basis for
generating tests to ensure the correct interplay of the extension with the base applica-
tion.
Documentation. The process extension models also serve as a documentation of an
extension. In fact, every potential customer of an extension can now understand its
effects and its interplay with the base business processes (e.g., in case of an extended
process containing multiple extensions).
Extension Governance and Management. The proposed approach enables a better un-
derstanding of the business process resulting after the deployment of several extensions.
For example, a customer organization may buy the basis business application and gets
the respective process models. When each ISV extending that software provides a pro-
cess extension model as proposed in our approach a view with the complete process in-
cluding the base process and extensions can be generated for the customer organization.
A sample process view created by the composition mechanism is presented in Section 2.
This view not only serves the understandability but also can ease the management of
extensions and their dependencies and allows the detection of potential conflicts.

4 Related Work

Reference Process Models. Balko et al. [2,3] propose a conceptual framework using
provider defined reference workflow processes with extension points. Reference pro-
cesses are standard business processes that are realized by the software provider fol-
lowing a workflow approach. The provider defines extension points where an extender

Business Process Extensions as First-Class Entities 769

can plug in his extensions in the form of process fragments. Extensions should then be
managed and called at runtime by means of an extensibility framework (similar to an
extension aware BPEL engine or an aspect-aware BPEL engine as in AO4BPEL [7]).
That papers remain on the conceptual level providing only a high level description of
the framework without the implementation of the presented concepts.
Adaptation Techniques. Although the variety of business service types and natures is
very broad (cf. [6]), a common characteristic among all services is the process of value
creation between multiple parties in a flow of interaction/communication [9]. An ex-
tension of a business service therefore adds flow elements to the underlying process
model, with the goal of increasing the service’s business value in a specific scenario.
The idea of extending, reusing, and adapting a base model to construct models for a
concrete application domain is subject of the research area of reference modeling [4].
Concerning the adaptation techniques of reference models, vom Brocke [5] identifies
five mechanisms such as configuration, aggregation, instantiation, specialization, and
analogy. To ensure the applicability for our approach in a realistic business service net-
work, the adaptation technique should allow (a) an automated adaptation process and
(b) a maximum of flexibility for an ISV, while ensuring (c) the process owner’s busi-
ness need of having compliant and consistent core processes. The first requirement, an
analogy-based extension is too vague to be automated. Requirement (b), both configu-
ration and instantiation lack flexibility, because the modeler of the base process would
have to foresee all potential extensions (or, at least, the extension points). For special-
ization, problems may arise in regard to requirement (c) as this technique empowers an
ISV to fundamentally change the base process.
Aspect-Oriented Process Modeling. In a previous work [8], we defined an aspect-
oriented extension to BPMN called AO4BPMN. This extension allows to model as-
pects in business processes. Several differences exist between that work and the work
presented in this paper. In AO4BPMN aspects are modeled explicitly by an expert user
whereas here process extensions are extracted automatically by the toolset behind the
scenes. Moreover, AO4BPMN extends the metamodel of BPMN with aspect-oriented
concepts whereas in this work the same process modeling language is used for both the
base process and the extensions. AO4BPMN is a powerful language with a rich join
point model and pointcut language. In the current work the extension process elements
and the base process elements are related through the binding. There is no explicit
pointcut and no pointcut resolution (and thus no quantification). On the other hand
AO4BPMN is complex for a business user and requires an understanding of aspect-
oriented concepts.

5 Conclusion

Extensibility of business applications involves several stakeholders in the ecosystem of
the business software vendor such as ISVs who build extensions on top of the base soft-
ware and customers who use the base software together with these extensions. All of
these roles need to better understand the behavior of extensions, their effects on the base
business process, and also potential conflicts between different extensions. In this paper
we presented a model-driven and aspect-oriented approach and a toolset for defining

770 H. Witteborg et al.

business process extensions as first-class entities. Our approach addresses the limita-
tions of state-of-the-art approaches and – through an implicit aspect-oriented modeling
– makes extension development and management more accessible to business users. We
also discussed several application areas that are enabled by this approach in our indus-
trial context.

Acknowledgments. The authors would like to thank Batbold Bilegsaikhan for his im-
plementation of the customer rating extension and Wei Wei (危巍) for his contribu-
tions to the modeling environment prototype. The work presented in this paper was
performed in the context of the Software-Cluster project Emergent. It was partially
funded by the German Federal Ministry of Education and Research under grant no.
01IC10S01.

References

1. Aly, M., Charfi, A., Mezini, M.: On the extensibility requirements of business applications.
In: International Workshop on Next Generation Modularity Approaches for Requirements
and Architecture, NEMARA. ACM, Postdam (2012)

2. Balko, S., ter Hofstede, A.H., Barros, A.P., Rosa, M.L., Adams, M.J.: Controlled flexibility
and lifecycle management of business processes through extensibility. In: Proceedings of
the Workshop on Enterprise Modelling and Information Systems Architectures (EMISA). GI
(2009)

3. Balko, S., ter Hofstede, A.H., Barros, A.P., Rosa, M.L., Adams, M.J.: Business process ex-
tensibility. Enterprise Modelling and Information Systems Architectures Journal (July 2010)

4. Becker, J., Beverungen, D., Knackstedt, R.: The challenge of conceptual modeling for
product-service systems: status-quo and perspectives for reference models and modeling lan-
guages. Inf. Syst. E-Business Management 8(1), 33–66 (2010)

5. Brocke, J.V.: Referenzmodellierung - Gestaltung und Verteilung von Konstruktionsprozessen.
In: Advances in Information Systems and Management Science, vol. 4. Logos (2003)

6. Cardoso, J., Barros, A.P., May, N., Kylau, U.: Towards a unified service description language
for the internet of services: Requirements and first developments. In: IEEE SCC, pp. 602–
609. IEEE Computer Society (2010)

7. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. World Wide Web
Journal: Special Issue: Recent Advances in Web Services 10(3) (March 2007)

8. Charfi, A., Müller, H., Mezini, M.: Aspect-Oriented Business Process Modeling with
AO4BPMN. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS,
vol. 6138, pp. 48–61. Springer, Heidelberg (2010)

9. Chesbrough, H., Spohrer, J.: A research manifesto for services science. Commun.
ACM 49(7), 35–40 (2006)

10. Harrison, W.H., Ossher, H.L., Tarr, P.L.: Asymmetrically vs. symmetrically organized
paradigms for software composition. Tech. Rep. RC22685 (W0212-147), IBM (December
2002)

11. Holmes, T., Zdun, U., Dustdar, S.: MORSE: A model-aware service environment. In: Proceed-
ings of the 4th IEEE Asia-Pacific Services Computing Conference (APSCC), pp. 470–477.
IEEE (December 2009)

12. Object Management Group, Inc.: Business Process Model and Notation (BPMN), Version 2.0
(January 2011), http://www.omg.org/spec/BPMN/2.0 (accessed in August 2012)

http://www.software-cluster.org/
http://www.omg.org/spec/BPMN/2.0

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 771–778, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards Dynamic Reconfiguration
for QoS Consistent Services Based Applications

Yuyu Yin1 and Ying Li2

1 College of Computer, Hangzhou Dianzi University,
Hangzhou China

Yyy718@gmail.com
2 College of Computer Science and Technology, Zhejiang University,

Hangzhou China
cnliying@zju.edu.cn

Abstract. Original overall QoS(quality of service) constraints of services based
applications may be violated due to failed services or QoS degradation of com-
ponent services. Although some methods have been proposed to repair failed
services and achieve original overall QoS, few works focuses on recovery of
services based applications from QoS degradation of component services. In
order to provide QoS consistent service based applications, the paper presents a
QoS driven dynamic reconfiguration method. The key to the method lies in re-
placing only some component services rather than recomposing the entire ser-
vice based applications. In addition, degradation factor is introduced to find the
component services which are replaced to most likely achieve original overall
QoS constraint. In this way, reconfiguration overheads are lowered and service
disruptions may be reduced. The test shows the effectiveness of our approach.

Keywords: Services based application, Quality of service, dynamic reconfigu-
ration.

1 Introduction

Service Computing has become one of the most promising computing paradigms in
the Internet era [1]. As it is now adopted widely, great progress has been made in the
research about service composition. Presently, service composition has become an
increasingly important way for IT enterprises to rapidly develop their applications[3].

However, developing various service based applications is not the only critical step
of service composition. To the best of our knowledge, it becomes an additionally
urgent challenge how to adjust service based applications to meet highly dynamic
environments (e.g. in a clouding environment) and fast changing business require-
ments[4,5,9,10]. Up to now, although there existed many valuable works, most of
them focus on providing essential services and functions in the presence of runtime
environment changes[6-9]. With the ever increasing amount of services based appli-
cations now are adopted in wide range of critical domains(such as, real time system,
navigation system, and online payment system), it has become increasingly important

772 Y. Yin and Y. Li

for enterprises to make service based applications deliver a desirable QoS. Due to
many inevitable factors, such as network fault, host exception, and replacement of
failed component services, delivered QoS from service based applications may not
comply with their original claims at runtime. Once it happens, services based applica-
tions should be recovered immediately to continue holding original QoS. Moreover,
most enterprises would like to recover their applications with lower cost and better
efficiency, so that their customers may not undergo as few unexpected business shut-
downs as possible. Thus, providing QoS consistent services based applications has
become a huge challenge.

Although services based applications can be recovered by recomposition, service
recomposition is extremely time-consuming and may lead to system shutdown, since
the optimal service selection is a NP-hard problem[2]. Recently, some researchers
have introduced and extended the traditional dynamic reconfiguration technology[8]
to services based applications[6-8,12-14]. However, most of them still focus on the
function driven dynamic reconfiguration, which is to maintain the pre-defined func-
tions[6-8]. Few researchers[12,13] proposed dynamic reconfiguration methods to
maintain the original end-to-end QoS constraints, they only limit to deal with the case
of violation of some component service.

In the rest of the paper, the term component QoS and overall QoS are used to refer
to QoS of a component service and QoS of an application respectively.

In this paper, to address this issue:

We propose a QoS driven dynamic reconfiguration method. When degradation of
component QoS leads to violation of original overall QoS, we always try to replaced
component services which have the biggest degradation factor, as long as they are
reconfigured to deliver the original QoS. When some component services violate, our
method replace them with new services firstly, and then repeat the above process for
the rest of component services. In this way, our method can recover overall QoS with
less attempts and shorter response time;
Inspired by our previous work[15], the notion of degradation factor is presented to
guide us to find the component services which are replaced to most likely achieve the
original overall QoS constraints;
The tests are conducted to evaluate the performance of the proposed methods.

The remainder of this paper is organizes as follows. Section 2 presents our method
and gives the reconfiguration algorithms. Section 3 gives the tests to show the per-
formance of our method. Section 4 surveys the related works. Finally, we draw a con-
clusion and discuss the future work in Section 5.

2 Dynamic Reconfiguration Method for Consistent QoS

We now present a QoS driven dynamic reconfiguration method. Different from pre-
vious works, our method does not limit to repair overall QoS in the case of failure of
component services, it also deals with degradation of component QoS.

 Towards Dynamic Reconfiguration for QoS Consistent Services Based Applications 773

2.1 Dynamic Reconfiguration Algorithm

In this section, Algorithm RecQoS is to recovery the original QoS constraints. If there
not exist failure component services, The algorithm first computes degradation factor
of all component services in a services based application, and sorts all component
services according to their degradation factor(Step 4,5). Degradation factor is intro-
duced in Section 2.2. Then, two processes are executed as follows:

1) Single Services Replacement: we try to replace individual component service
one by one in the descending order of degradation factor only if there exists some
candidate service whose QoS is not worse than pre-defined QoS of the replaced ser-
vice(Step 6-13). Obviously, original overall QoS constraints can also be satisfied by
such replacement.

If such replacement cannot be found in the phase, then 2) Multiple Services Re-
placement: we begin to try to replace d component services whose degradation factor
is the highest among all component services. QoS of the substitutions of the d compo-
nent services is the best among their respective all candidate services. The range
bound of d starts from two and increases gradually until a replacement is found to
deliver original overall QoS(Step 14-24).

If there exists failure component services, Algorithm RecQoS first replace each
failed service with the substitution whose QoS is the best among all candidate servic-
es of failed service(Step 27-30). If delivered overall QoS by the new services based
application still do not satisfy original overall QoS, the algorithm RecDeg will be
called to reconfigure the rest of component services.

Algorithm. RecQoS

Input: all replaceable component services {S1,…,Sn} in a services based application S.

Output: the replaced services RS {S1,…,Sn} and their substitutions RD {CSi}.

Require: candidate services CSi={CSi1,…,CSim} of service Si.
1: SET RS =φ, RD =φ, Sr =φ, Dg[i]=null;
2: IF(not existing failure service sfi)
3: FOR(INT i = 0; i < n; i + +){
4: Dg[i]=CalDg(Si);}/*CalDg(Si) is to calculate degradation factor of Si */(See Section 2.2)
5: S’ = Sort(S); /*Sort(S) sorts S1,…, Sn in ascending order according to Dg[]*/
6: SET j = n;
7: While(j > 0) {
8: Sk = Get(S’. j); /* GetS

r
(j) is to get the j-th element in S’*/

9: IF(∃CSkp∈CSk && QoS of CSkp
 is not worse than pre-defined QoS of Sk){

10: SET j = 0;
11: RS = RS∪{Sk} ; Rd = Rd∪{CSkp}; Goto 27;
12: }Else{ j = j – 1；
13: }
14: }
15: SET d=2;
16: Do{
17: FOR(INT l = 0; l < d; l ++){
18: Rs[l] = Rs[l] ∪{Get(S’. j-l) };
19: RD[l] =RD[l]∪{Select(S’.j-l) }; /*Select a service CSkp for M[l] whose QoS is the best

among all its candidates*/
20: Replace M [l] with CSkp
21: }

774 Y. Yin and Y. Li

22: IF(the current QoS of S comply with the original overall QoS of S){ Goto 27;
23: }Else{ d= d+1;
24: }
25: }While(d < n + 1);
26: }ELSE{
27: RD[l] = Select(Sfi);/*Select a service CSkp for Sfi whose QoS is the best among all its candi-

dates*/
28: Replace Sfi with CSkp;
29: RD[l] = RD[l]∪{CSkp};
30: Rs = Sf ;
31: IF(the current QoS of S comply with the original overall QoS of S){ Goto 35;
32: }Else{ Goto 3;
33: }
34: }
35: RETURN RS[],RD[];

Once it happens, no such reconfigurations can deliver original overall QoS in cur-

rent given candidate services repository. A recomposition should be needed to
achieve original overall QoS for services based applications. But this goes beyond our
current study.

2.2 Degradation Factor

For our method, we would like to find and replace the most promising component
services so that the original overall QoS can be delivered as few attempts and as soon
as possible. Thus, all component services in a services based application need to be
evaluated by Degradation Factor.

Degradation factor of a component service shows the degree of its QoS actual de-
gradation relative to other component service. When original overall QoS constraints
are violated, the bigger relative degradation value of a component service is, the big-
ger its contributions to the violation are.

In this paper, we calculate degradation factor of a component service by the fol-
lowing steps:

a) to compute actual QoS degradation rate of a component service by Equa-
tion(1). Given a services based application Ω and its all component services S1,…,Sn.

,
i

i

S

j m
K

S
j

K

m

m n
≤

Δ
Δ = ×

, (1)

Where i
K
SΔ is the actual degradation rate of QoS property { , , , }

i i i iS S S SK T C R A∈

from Si; n is the monitored time in a period of time(users defined) before violation of

original overall QoS constrains; m(m n≤) is the degradation time; ,
i

K j
SΔ is the actual

degradation value of QoS property { , , , }
i i i iS S S SK T C R A∈ from Si.

b) to sort S1,…,Sn according to QoS actual degradation rate. Four sorts are got-
ten as follows: Δ , Δ , Δ ,and Δ . They are the descending sorts of actual
degradation value of Response time, Cost, Reliability, and Availability. And then a

 Towards Dynamic Reconfiguration for QoS Consistent Services Based Applications 775

4*n matrix G is built by the four sorts and denoted as Δ , Δ , Δ , Δ . Every
column in the matrix is assigned to a weight. The weight of the j-th column is set to
(n-j+1) ⁄ n.

c) to set effective weight of S1,…, and Sn. Effective weight of Si is a vector
WEi=(WETi, WECi, WERi, WEAi). WEi components are the column weights of Si in G.

Thus, relative QoS Degradation Value DVi of Si equals the sum of all components
of its effective weights. The formula is as follows:

4

Ti Ci Ri Ai
i

WE WE WE WE
DV

+ + += (2)

3 Evaluation

In order to evaluate the efficiency and effectiveness of our proposed method, three
groups of test are conducted.

We use a service test collection from JTangComponent previously built in [14]
where 1056 services have been included to generate the needed application in the test.
In addition, in order to support the test, QoS of candidate services is simulated and
produced by the following way: Cost and Response Time are randomly generated with
a uniform distribution from 1 to 100, Availability and Reliability are randomly gener-
ated with a uniform distribution from 0 to 1, are assigned to each candidate service.

In our experiment, we have generated one service based application P including
sequential, parallel, choose, and loop structures in our simulation study. P includes 20
nodes and 6 structures in Fig.1. For each service node in P, we provide 10 service
candidates with four randomly generated QoS values. Randomly select 1 or 2 services
in P to be failure services.

Fig. 1. Service based Application P

We compare the proposed approach with two other methods: Region-based me-
thod[12] and Random method. The idea of region-based approach is to produce re-
configuration regions that include one or more failed service. By reconfiguring only
services in the selected regions, the business process will not be affected significantly.
Random method is to select replaceable component services randomly and replace
them. In order to study the performance of the three methods, we consider the follow-
ing factors: attempt time, replaced services number, and recovery time.

Table 1 reports the performance of the three methods. In Table 1, all factors of our
approach are better than other two approaches obviously in the given cases.

;

776 Y. Yin and Y. Li

Table 1. Performance Comprision

Case Study 1 2

Method Our Method
Region based

approach
Random
Method

Our Method
Region based

approach
Random
Method

Failure services s1 s15

Attempt times 2 15 14 2 11 10

replaced services num-
ber

2 9 14 2 5 10

recovery time(ms) 15 105 71 11 100 57

Case Study 3 4

Method

Our
Method

Region based
approach

Random
Method

Our Method
Region based

approach
Random
Method

Failure services s12,s13 s16,s17

Attempt times 8 17 9 4 12 6

replaced services number 8 7 9 4 6 6

recovery time(ms) 16 88 19 22 105 9

Case Study 5 6

Method
Our

Method
Region based

approach
Random
Method

Our Method
Region based

approach
Random
Method

Failure services s1,s11 s9,s12

Attempt times 3 37 6 3 36 12

replaced services
number

3 8 6 3 8 12

recovery time(ms) 19 349 32 10 160 22

4 Related Work

In dynamic environments, service composition needs to support to recover services
based applications from unexpectable violation of not only function but also QoS.
Therefore, holding the original overall QoS constraints of services based applications
has proposed a big challenge that needs to be addressed.

Many works have studied QoS guarantee of service selection problem[16,17,19].
In addition, many researchers have been studied QoS optimization [18]or reoptimiaz-
tion[11,19] of service compostion. Danilo Ardagna et al. The main difference be-
tween the above works and our work is that besides end-to-end QoS constraints, their
work focuses more on service composition evolution and selection in order to optim-
ize overall QoS, while we emphasize more on the efficiency of reconfiguration to
recovery of services based applications when degradation of overall QoS.

 Towards Dynamic Reconfiguration for QoS Consistent Services Based Applications 777

Some researchers have studied dynamic reconfiguration of services based applica-
tions but without considering QoS[6-8,14]. Our previous work[15] also tried to
dynamically reconfigure services based applications to satisfy customer’s QoS con-
straints. But its goal is to improve overall QoS of services based applications, and it is
not able to make services based applications hold their original QoS. Bo
Jiang,et.al[10] proposed a statistical framework to assess component services and to
identify vulnerable areas called cracks to support service adaptation. Be different than
our method, their method is to find potential component services which can lead to
failure of key business of services based application. But this may become one of our
future research topics.

Recent works on dynamic reconfiguration for service composition has started to
study in order to hold the original overall QoS constraints. T.Yu et.al.[13] presented
an approach to conduct dynamic process reconfiguration under end-to-end QoS con-
straints. They use the replacement path idea to reconfigure a business process to avoid
only one faulty service. Yanlong Zhai et al. [12] presented an approach for repairing
multiple failed services by replacing them with new services and ensuring the new
system satisfies the end-to-end QoS constraints. Compared to our work, their works
limit to recovery when component services become faulty, while it becomes invalid
when the delivered QoS of component services degrades. Furthermore, our test has
shown the performance of our method is better than them.

5 Conclusion

Due to failed services or degradation of component QoS, original QoS of services
based applications may be broken. Once that happens, it is undesirable to halt and
recompose services based applications. Services based applications should be recov-
ered as soon and as efficiently as possible. The paper proposes a QoS driven dynamic
reconfiguration method to maintain the original QoS of services based applications.
The key of our method is degradation factor of component services which can guide
us to find the component services which are the most contribution to the violation of
overall QoS. The results of our evaluation show that our method can recover the orig-
inal overall QoS by reconfiguring only a small number of services with fewer at-
tempts in acceptable time.

Acknoledegments. This research is partially supported by the National Technology
Support Program under grant of 2012BAH16B04, Zhejiang Provincial Natural
Science Foundation of China under grant of LY12F02029, and the National Natural
Science Foundation of China under grant of 61100043.

References

1. Zhang, L., Zhang, J., Cai, H.: Services Computing. Springer & Tsinghua University Press
(2007)

2. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Trans. on Software Engineer-
ing 30(5), 311–327 (2004)

778 Y. Yin and Y. Li

3. Brian Blake, M., Tan, W., Rosenberg, F.: Composition as a Service. IEEE Internet Com-
puting (INTERNET) 14(1), 78–82 (2010)

4. Aoyama, M., Weerawarana, S., Maruyama, H., Szyperski, C., Sullivan, K., Lea, D.: Web
Services Engineering: Promises and Challenges. In: Proc. ICSE 2002, Orlando, pp. 647–
648 (2002)

5. Vambenepe, W., Thompson, C., Talwar, V., et al.: Dealing with Scale and Adaptation of
Global Web Services Management. Int. J. Web Service Res. (3), 65–84 (2007)

6. Tsai, W.T., Song, W., Chen, Y., Paul, R.: Dynamic System Reconfiguration Via Service
Composition for Dependable Computing. In: Kordon, F., Sztipanovits, J. (eds.) Monterey
Workshop 2005. LNCS, vol. 4322, pp. 203–224. Springer, Heidelberg (2007)

7. Avgeriou, P.: Run-time Reconfiguration of Service-Centric Systems. In: Proceeding of the
European Pattern Languages of Programming, EuroPLOP (2006)

8. Ezenwoye, O., Busi, S., Sadjadi, S.M.: Dynamically Reconfigurable Data-intensive Ser-
vice Composition. In: WEBIST 2010, pp. 125–130 (2010)

9. Yan, Y., Poizat, P., Zhao, L.: Repair vs. Recomposition for Broken Service Compositions.
In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470,
pp. 152–166. Springer, Heidelberg (2010)

10. Jiang, B., Chan, W.K., Zhang, Z., Tse, T.H.: Where to adapt dynamic service composi-
tions. In: WWW 2009, pp. 1123–1124 (2009)

11. Xiong, P., Fan, Y.S., Zhou, M.C.: Web Service Configuration under Multiple Quality-of-
Service Attributes. IEEE Trans. on Automation Science and Engineering, 311–321 (2008)

12. Zhai, Y.L., Zhang, J., Lin, K.-J.: SOA Middleware Support for Service Process Reconfigu-
ration with End-to-End QoS Constraints. In: The IEEE International Conference on Web
Services (ICWS), pp. 815–822 (2009)

13. Yu, T., Lin, K.J.: Adaptive algorithms for Finding Replacement Services in Autonomic
Distributed Business Processes. In: Proc. of the 7th International Symposium on Auto-
nomous Decentralized Systems (2005)

14. Yin, Y.Y., Li, Y., Yin, J.W., et al.: Ensuring Correctness of Dynamic Reconfiguration in
SOA Based Software. In: 2009 Congress on SERVICES-I, pp. 599–606 (2009)

15. Li, Y., Lu, Y.L., Yin, Y.Y., et al.: Towards QoS-Based Dynamic Reconfiguration of SOA-
Based Applications. In: APSCC 2010, pp. 107–114 (2010)

16. Zeng, L., Ngu, A., Benatallah, B., Podorozhny, R., Lei, H.: Dynamic composition and op-
timization of web services. Distrib. Parallel Databases 24(1-3), 45–72 (2008)

17. Zheng, H., Yang, J., Zhao, W.: QoS Analysis and Service Selection for Composite Servic-
es. In: IEEE SCC 2010, pp. 122–129 (2010)

18. Rosenberg, F., Müller, M.B., Leitner, P., Michlmayr, A., Bouguettaya, A., Dustdar, S.:
Metaheuristic Optimization of Large-Scale QoS-aware Service Compositions. In: IEEE
SCC 2010, pp. 97–104 (2010)

19. Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection with End-
to-End QoS Constraints. ACM Transactions on the Web 1(1), 1–26 (2007)

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 779–789, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Ontology-Based IoT Resource Model
for Resources Evolution and Reverse Evolution*

Shuai Zhao, Yang Zhang, and Junliang Chen

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China

{zhaoshuaiby,yangzhang,chjl}@bupt.edu.cn

Abstract. In view of the characteristics of Internet of Things (IoT), the current ar-
chitectures could not effectively use and manage IoT resources and information.
Numerous projects in the area of IoT have proposed architectures which aim at in-
tegrating geographically dispersed and internet interconnected heterogeneous
Wireless Sensor and Actuator Networks (WSAN) systems into a homogeneous
fabric for real world information and interaction. These architectures are faced
with very similar problems in how to support the evolution of resources and main-
tain service continuity, how to integrate the data which comes from heterogeneous
resources. To address these issues, this paper proposes a resource model support-
ing dynamic evolution and reverse evolution. The resource model uses Linked
Data and extends the existing ontologies, such as W3C SSN, etc. This resource
model can express domain knowledge, event rules, and support event-based re-
verse evolution. Based on the resource model, our SOA-based framework can au-
tomatically access resources, generate and interpret semantic context information,
dynamically create resources, and interpret historical data and events. The valida-
tion of the resource model and framework is shown through the CCMWS (Coal
mine comprehensive monitoring and early warning system).

1 Introduction

The Internet of Things (IoT) proposed by MIT Auto-ID Center is honored as the third
IT revolution following Computer and Internet [1]. The relevant theories and technol-
ogies become the research hotspot of academia. Huge amount of resources and infor-
mation are provided by the IoT, but they cannot be effectively utilized in the current
application mode. Some issues exist in the level of resource and information:

─ Resource Access: Dynamic resource access, i.e. realizing the PnP (Plug-and-Play)
of heterogeneous resources under the premise of limited resource ability and real-
time service demands. Resource access includes three aspects: recognizing new

* This study is supported by “973” program of National Basic Research Program of China

(Grant No. 2011CB302704, 2012CB315802). National Natural Science Foundation of China
(Grant No. 61001118, 61171102, 61003067, 61132001); Program for New Century Excel-
lent Talents in University (Grant No. NECT-11-0592); Project of New Generation Broadband
Wireless Network under Grant (Grant No.2010ZX03004-001, 2011ZX03002-002-01,
2012ZX03005008-001).

780 S. Zhao, Y. Zhang, and J. Chen

resource seamlessly; interpreting and processing the information generated by the
resources automatically; real-time maintaining the resource information according
to the changes of resource state.

─ Resource Discovery: Billions of resources provide more capabilities also bring
issues in resource discovery. How to find the most appropriate resource across dif-
ferent platforms and networks within the acceptable time and space range?

─ Resource Management: Resource management and maintenance are highly com-
plicated due to the heterogeneity, instability and evolution of the IoT. Management
framework should adapt to these characteristics to manage and track the evolution
of resources; the framework should promptly perceives the changes of resource
state and provides context-aware dynamic switching and scheduling mechanism of
heterogeneous resource to ensure the continuity of real-time service.

─ Resource Utilization: The real world can be reflected more and more realistically
by the digital world with the expansion of the range and the further capability of
sensing. Meanwhile, the operation and task generated in the digital world get more
complicated, using a single resource is unable to be competent. How to coordinate
and schedule distributed resources in a unified way according to business needs,
user need context and ubiquitous resource information context?

A normative resource model and framework are the basis of addressing the issues
above. Therefore, research program such as EU FP7 have been devoted to researching
normative architecture of the IoT, such as PECES [2, 3], SENSEI [4], etc. This paper
proposes a semantic model and resource framework which focus on the issues of re-
source access, resource evolution, real-world service [5] continuity, and generating
context information. The model and framework have the following characteristics:

─ The SOA-based framework integrates SCA (Service Component Architecture) and
ESB (Enterprise Service Bus) together as the execution platform. SCA serves as
the assembly standard of service components. ESB provides protocol translation,
message routing, security, management functions for the interaction between com-
ponents. Hot deploy and cross-platform capabilities are ensured by OSGi.

─ The ontology-based semantic model can express domain knowledge and business
information which are the basis of implementation the linkage (mutual influence)
between model and system business logic. The model extends the current ontolo-
gies such as W3C SSN [6], OWL-S, etc. to ensure the versatility and standardiza-
tion, it uses linked-data[10] to associate with functional ontologies.

─ Events are generated automatically in two modes: event tree; Abductive and De-
ductive Reasoning (ADR). Event tree is a fast matching method and appropriate
for the high real time applications. ADR is proposed by combining the improved
Parsimonious Covering Theory (PCT) reasoning [7-9] with the deductive reason-
ing. ADR can reason out the inducement events from basic events, then forecasts
what other events these inducement events can cause by deductive reasoning.

─ The semantic model can be not only adapted to the evolution but also able to re-
verse evolution. If the model is restored to a historical state, it can restore and
reproduce the real world context at that time and interpret the historical data and
events. To be emphasized, the existing work only focuses on the evolution.

An Ontology-Based IoT Resource Model for Resources Evolution and Reverse Evolution 781

However, with the enhancement of real-world sensing and control ability, due to
the evolution and instability of resources, tracking the evolution of the model and
the capability of reverse evolution are also very important. We use graph database
to store context information, use the model snapshots and archived events to track
the evolution and reverse evolution.

The rest of this paper is organized as follows. Section 2 describes the semantic model
and framework. Section 3 discusses the mechanism of model evolution and reverse
evolution. Section 4 presents the CCMWS to validate the model and framework. Sec-
tion 5 concludes the paper and discusses the further work.

2 Semantic Model and Framework

2.1 Framework

The SOA-based framework use SCA as the assembly standard and components inte-
ract with each other by service interface. The ESB provides protocol translation, mes-
sage routing, security and management functions for component interaction. What’s
more, the underlying OSGi offers hot deploy and cross-platform capabilities.

As shown in figure 1, the framework mainly contains these components:

─ Resource Adaption (RA) is used to adapt heterogeneous resources. It publishes
resource description when resource accesses and wraps the Resource Interface.

Fig. 1. Resource framework

782 S. Zhao, Y. Zhang, and J. Chen

─ Model Directory, a directory of Semantic Model, is used to retrieve resources and
entities efficiently.

─ Lifecycle Management (LM) monitors and manages the resource lifecycle.
─ Information Interpretation converts raw data to the domain data according to the

definition of domain processing, promotes it to meaningful context information.
─ Event Generator (EG) automatically generates events according to the event rules

defined in the Context Model.
─ The Persistent Component is used for persisting historical data and events.
─ Execution Management (EM) executes the task plan and monitors the resource

states.
─ Dynamic Resource creation can create new resources based on the domain know-

ledge.
─ Model Event Archived archives the model events using for reverse evolution.
─ Reverse Evolution (RE) restores the model to a historical state based on model

snapshots and events without interfering with the current model.

2.2 Semantic Model

Upper layer uses W3C SSN to describe the sensor resources and observation data, con-
text model and domain knowledge extensions are needed. OWL-Time is used to express
the time information. SemSOS O&M [11] and SENSEI O&M are extended as the ob-
servation data model. What’s more, we used Linked Data to link the model to ontolo-
gies such as FOAF, GeoNames, Linked-GeoData and DBpedia1. OWL-S is the upper
ontology for describing service. FOAF makes the Model more general and provides
additional information. GeoName and Linked-GeoData are worldwide geographic loca-
tion ontologies which express the global location of entities and resources. The domain
ontologies in the bottom extends the ontologies mentioned above and can express do-
main knowledge. Figure 2 shows the Semantic Model. In order to make the figure more
clearly, we removed the relationships with external ontologies.

Resource Model
Resource Model is compatible with the SSN ontology. The model is open end and can
be re-classified or further classified. We use three forms to express the location of
resources. They are latitude and longitude, local location and global location. Local
location represents the position in the specific application scenarios. Global location
links to a global position such as GeoName and Linked-GeoData. Observation Area is
the resource observation or control scope. Engineering Conversion describes a con-
version process which translates the raw data into available domain data. Protocol
Stack describes the sensor protocol used by interacting with resources. Resource Type
is a domain expert classification which is standardized and representative. It is useful
in resource searching and resource-entity binding. Tag provides some information of
time dimension, space dimension, capacities of the resources. Measurement Capabili-
ty describes the Quality of Service (QoS) of the resources under certain conditions
such as accuracy, precision, response time, delay and so on. The operation range of

1 http://en.wikipedia.org/wiki/File:DBpediaLogo.svg

An Ontology-Based IoT Resource Model for Resources Evolution and Reverse Evolution 783

resources includes equipment life, battery life, transmission range and so on. Observa-
tion and Provide Service are another two attributes of the Resources. They link to the
Service Model and Observation respectively. Observation mainly contains results,
location, time, QoI and unit, etc.

Fig. 2. Overview of the Semantic Model

Service Model
Resources are accessed by services which provide functionality to gather information
about entities they are associated with or manipulate physical properties of their asso-
ciated entities. Service Model describes the Real-World Service of resources which is
based on the Model, Profile, Grounding concepts of the OWL-S and the service mod-
el of literature [5]. Profile has four attributes which is IOPE (input, output, precondi-
tion, effect). Input and output link to the entity attributes. Meanwhile, precondition
and effect link to the entity attribute state. Model describes the service scope, service
description language and service interface type. Grounding has properties such as
service provider, service IOPE and so on. The input and output of the IOPE link to the
Observation of Resources Model, while precondition and effect link to a
SSN:Condition instance.

Context Model
Context Model includes Entity Model, Event Model and Sampling Description. Entity
model consists of Person, Observation Object and Duty. Person can describe state, rela-
tions, environment information of persons. Observation Object describes the state, rela-
tionship and their relative position of the entities observed. Duty contains information
such as position, responsibility and organization, etc. Event Model contains Event Tree
and Alarm Disposal Process. The Event Tree makes classification on events according
to location, emergency degree and theme. It also defines the relationship between
events. The Alarm Disposal Process defines alarm level, alarm form, disposal process,
etc. Event node associates with alarm disposal process, so the disposal process can make

784 S. Zhao, Y. Zhang, and J. Chen

appropriate decisions after the event occurs. The Sampling Description includes infor-
mation of sampling level, sampling type, etc. Domain attribute is linked to sample de-
scription to define the sampling rules of attributes. What’s more, it is also linked to
event condition to define the trigger conditions of attribute event. In our Semantic Mod-
el, the Observation of Resource Model is associated with domain attribute of Entity
Model. We call this association as Resource-Entity Binding. The binding is the basis for
promoting the observation data to context information. The binding can be static or
dynamic and be generated automatically or manually.

2.3 Model Evolution and Reverse Evolution

In our framework, evolution has the following aspects:

─ Mobility
─ State(Lifecycle, performance state, configuration)
─ New resource access
─ Attributes changing
─ Relationship changing

These aspects are not mutually isolated but have semantic association with each other;
an evolution may lead to other evolution behaviors. For example, the mobility of re-
source may cause resource attribute changing, resource availability changing and the
binding relationship between resource and entity changing. According to these evolu-
tion aspects, there are three main model-event types:

─ Lifecycle event (resource availability changing, resource access, lifecycle state
changing)

─ Attribute changing event (property value, state, configuration parameter and per-
formance parameter)

─ Relationship changing event(establish, update, release)

Table 1. Example of resource evolution

Time Model Event
Model

Snapshot Data Event
Entity Resource Relationship

 , , ,,,

 , ,

,,,

 : alarm

 : , , ,

,,,

: _ , : _ :

, ,

,,

 : , , ,

,,,

.

.

.

… … … … … …

An Ontology-Based IoT Resource Model for Resources Evolution and Reverse Evolution 785

 T Model T Model

 T Model Rollback to T Model

Fig. 3. Simple example of ontology evolution and reverse evolution

Model evolutions may be triggered by the underlying events from WSAN and the
monitoring of resource state, or manual configurations. An evolution action often
causes other evolution behaviors. For example, the sampling frequency drops lead to
the performance attribute change, and the releasing of resource-entity binding if it no
longer meets the requirements of entity. In order to track the evolution, EG archives
the model events and Reverse Evolution (RE) snapshots the model periodically. RE
rolls the model back to a historical state based on snapshots (closest to that historical
moment) and events without interfering with the current model. Then, the historical
model can interpret historical data and events.

Table 1 shows a simplified evolution process. Figure 3 shows the ontology which
expresses the model in different time along with the evolution.

786 S. Zhao, Y. Zhang, and J. Chen

At time , there are two adjacent entities and ; resource observes
the attribute value of and resource observes the attribute value of .

At time , alarm event happens on observed by .
At time , new resource is accessed.
At time , resource becomes unavailable, then “release relationship”, “delete

attribute” and “remove resource” events occur. All relationships and attributes related
to the resource must be released before removing the resource instance.

At time , assume that resource can provide observation service for entity
, then binding between and is established. Meanwhile, is the snapshot

time.
 is the current time.

It is unable to make a comprehensive and thorough analysis of alarm event on-
ly based on the event contents, historical model is needed. Reverse evolution me-
chanism can be applied to restore the model to the historical state.

For reverse evolution, system finds the snapshot which is closest to the historical
time desired and then reversely does the actions in the model events which are hap-
pened in the time intervals between snapshot time and historical time. In detail, sys-
tem finds the snapshot which is closest to , then reversely does the ac-
tions between and : releases the relationship between and ;
adds resource instance ; restores the attributes of ; restores the binding rela-
tionship between and ; removes the resource R . So, the model can be
restored to the T model which expresses the context information at that time. The
ontology restored to time T is shown in figure 3. The domain knowledge along
with the state and relationships of all resources and entities can be used to analyze
historical data and events.

3 Implementation and Case Study

CCMWS (Coal Mine Comprehensive Monitoring and Early Warning System) is a
coal mine safety application which is based on the resource model and framework.
We integrated Apache Tuscany and Fuse ESB together as the service execution plat-
form. With system implemented in Java, we store resource directory in H2 database,
semantic model in AllegroGraph graph database and observation data in MySQL
database. This section will show the function of system by two cases.

3.1 Dynamic Resource Creation

In the CCMWS, resource can be represented by graphic element vividly by relating
resource instances to graphic element instances. Resource user can manage and use
resources by dragging and dropping graphic element and these actions will be reflect-
ed in model automatically.

An Ontology-Based IoT Resource Model for Resources Evolution and Reverse Evolution 787

Fig. 4. Dynamic creation resource

Figure 5 shows the process of creating resource dynamically according to domain
knowledge. Entity “3302TransportGateRoad” has three attributes: “CH4UpperCorner”,
“CH4ReturnAir” and “CH4Average”. Number 1 of figure 6 shows that user defines the
domain knowledge that the attribute “CH4Averagecon” can be calculated from other
two attributes. Other more complicated domain processing such as "relative abundance
of methane” can also be defined. “CH4UpperCorner” and “CH4ReturnAir” have been
bound with resources respectively. On the basis of the conversion relationship of
attributes, system can create the resource”3302TransportCH4Average” dynamically.
The observation values of “CH4UpperCorner” and “CH4ReturnAir” are the inputs of
the resource “3302TransportCH4Average”. The resource will process the input data
according to domain processing definition, the result of processing will be interpretation
as the value of “CH4Average” attribute. Number 2 shows how to configure Sampling
Description, Protocol Stack and Event related to the resource instance.

Fig. 5. Historical event analysis

788 S. Zhao, Y. Zhang, and J. Chen

3.2 Historical Event Analysis

Figure 6 shows the functions of alarm event statistics and context panorama reproduc-
tion. Number 1 displays the current panorama of coal mine, “3302” is the current
working face while “3301” is worked out section. Number 4 shows the statistical
result of CH4 alarm events in a period of time. According to the statistics, the highest
alarm happened on “3301Transportworkingface”, which reached up to 2.65%. But as
the evolution of model, “3301” in current panorama has become a worked out section,
the related historical state and context are unavailable in the current model. In order to
analyze the event above, model reverse evolution mechanism will be applied to
present the context panorama when the event happened, which can show the state of
all resources and entities intuitively at that time. Then the system interprets the event
based on the historical model. Number 2 shows the context panorama restored when
the event happened, in which 3301 is the working face. Analysis of the historical
model and panorama found that there was nothing wrong with the sensor performance
and entity attribute threshold. But the “3301TransportFan” resource generated “stop
working” alarm and “AirReturnLaneFeed” generated “equipment malfunction”
events. So, we can determine the cause of the CH4 alarm is “power cut lead to 3301
transport fan stop working”. We can also analyze the causes of “equipment malfunc-
tion” events and other hidden dangers of coal mine. Number 3 shows the analysis of
the alarm disposal process executed when the alarm happened according to the histor-
ical model. The reverse evolution is very useful for failure, accident and disaster
analysis.

4 Conclusion

The resource model and resource framework are the foundation of the IoT architec-
ture, as well as the bridge between the upper layer application and the underlying
WSAN. This paper proposes a SOA-based resource framework, an ontology-based
resource model and proposes solutions for resource access, resource evolution and
reverse evolution. There are still some aspects need to be improved. The resource-
entity binding strategies need to be further studied and the binding maintainer and
binding opportunity need to be further clearly defined. The current model reverse
evolution method is an overall rollback which is not very effective. We plan to pro-
pose a partial rollback method based on time, space, topic and dependences, which
only roll the relevant part of the model back.

References

1. Xing, L., Jin, Z., Li, G.: Modeling and verifying services of Internet of Things based on
timed automata. Chinese Journal of Computers 34(8), 1365–1377 (2011) (in Chinese)

2. Villalonga, C., Bauer, M., López Aguilar, F., Huang, V., Strohbach, M.: A Resource Mod-
el for the Real World Internet. In: Lukowicz, P., Kunze, K., Kortuem, G. (eds.) EuroSSC
2010. LNCS, vol. 6446, pp. 163–176. Springer, Heidelberg (2010)

An Ontology-Based IoT Resource Model for Resources Evolution and Reverse Evolution 789

3. Haroon, M., Handte, M., Marrón, P.: Generic role assignment: a uniform middleware ab-
straction for configuration of pervasive systems. In: Proc. of the Pervasive Computing and
Communications (PerCom’s 2009), Galveston, United States, pp. 1–6 (2009)

4. Payam, B.: D3.6 Final SENSEI Architecture Framework, Public SENSEI Deliverable.
CEA-LETI (2011)

5. De, S., Barnaghi, P., Bauer, M., Meissner, S.: Service modeling for the Internet of Things,
pp. 949–955 (2011)

6. Semantic Sensor Network XG Final Report,
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

7. Henson, C., Thirunarayan, K., Sheth, A., Hitzler, P.: Representation of Parsimonious Cov-
ering Theory in OWL-DL. In: Proc. of the 8th International Workshop on OWL: Expe-
riences and Directions (OWLED 2011), San Francisco, CA, United States (2011)

8. Thirunarayan, K., Henson, C.A., Sheth, A.P.: Situation awareness via abductive reasoning
from semantic sensor data: a preliminary report. In: Proc. of the International Symposium
on Collaborative Technologies and Systems (CTS 2009), Balitimore, Maryland, USA, pp.
111–118 (2009)

9. Henson, C., Sheth, A., Thirunararyan, K.: Semantic Perception: A Semantic Approach to
Convert Sensory Observations to Abstractions. In: Proc. of the IEEE Internet Computing
(2012)

10. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on
Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)

11. Henson, C.A., Pschorr, J.K., Sheth, A.P., Thirunarayan, K.: SemSOS: Semantic sensor ob-
servation service. In: Proc. of the International Symposium on Collaborative Technologies
and Systems (CTS 2009), Balitimore, Maryland, USA, pp. 44–53 (2009)

Erratum: Cloud Service Selection
Based on Variability Modeling

Erik Wittern1, Jörn Kuhlenkamp1, and Michael Menzel2

1 eOrganization Research Group, Karlsruhe Institute of Technology (KIT)

Englerstr. 11, 76131 Karlsruhe, Germany
{Erik.Wittern,Joern.Kuhlenkamp}@kit.edu

http://www.eorganization.de
2 Research Center for Information Technology

Karlsruhe Institute of Technology (KIT)
Menzel@fzi.de

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 127–141, 2012.
© Springer-Verlag Berlin Heidelberg 2012

DOI 10.1007/978-3-642-34321-6_63

In chapter 9, Figure 1 has been given incorrectly. The correct figure should be as
follows:

Cloud Compute
Service

Security / Legal

Grouping
Feature

Abstract
Feature

Instance
Feature

Key:

Attribute type

Disk space [GByte]

Machine size

Geo. location Authentication

Cost <= 2 Euro /
hour

A: Domain model B: Service model Cloud Service X

Security / Legal

Disk space =
120 GByte

Machine size

AuthenticationGeo. location"Small" "Big"

OAuth
Disk space =
240 GByte

C: Requirements model D: Alternative model

Europe US

Alternative x:
Service name: Cloud Service X
 Machine size: "Small"
 Disk space: 120 GByte
 Cost: 1.5 Euro / hour
 Security / Legal
 Authentication: OAuth
 Geo. location: Europe

Cost [Euro / hour]

Cost = 1.5
Euro / hour

Cost = 2.5
Euro / hour

Cloud Compute
Service

Security / LegalMachine size

Authentication
{req.}

Geo. location

Europe

Attribute
= mandatory
 feature

= optional
 feature

= XOR = OR

= Requires

= Excludes

Fig. 1. Exemplary models illustrating model types and modeling elements

__
The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-34321-6_9
__

Author Index

Ali, Syed Adeel 283
Alishahi, Mahsa 656
Aly, Mohamed 763
Américo, João Claudio 32
Amirat, Yacine 450

Baouab, Aymen 222
Bartolini, Claudio 550
Basu, Samik 283
Baudry, Benoit 1
Belardinelli, Francesco 17
Benatallah, Boualem 142
Bentahar, Jamal 656
Bhattacharya, Kamal 48, 96
Bouguettaya, Athman 111
Bourne, Scott 507

Carro, Manuel 252
Chan, Nguyen Ngoc 541
Chang, Chii 374
Chang, Elizabeth 591
Charfi, Anis 763
Chase, Jared M. 748
Chen, Han 499
Chen, Jinjun 639
Chen, Junliang 779
Chen, Liang 574
Chi, Chi-Hung 359
Chibani, Abdelghani 450
Chollet, Stéphanie 344
Colman, Alan 206
Conseil, Benjamin Joyen 1
Cugola, Gianpaolo 607

Dam, Hoa Khanh 63, 582
Dasgupta, Gargi Banerjee 191
da Silva, Icamaan 328
Deng, Shuiguang 733
Desai, Nirmit 191
Ding, Chen 359
Djouani, Karim 450
Dong, Hai 591
Donsez, Didier 32
Dustdar, Schahram 48, 96

Eichelberger, Holger 516
El Haddad, Joyce 664

Fang, Jun 718
Faravelon, Aurélien 344
Feng, Yipeng 574
Front, Agnès 344

Gaaloul, Walid 541
Gatti, Máıra 599
Ghezzi, Carlo 607
Ghose, Aditya K. 63, 582
Godart, Claude 222
Gorton, Ian 748
Graupner, Sven 550
Guéhéneuc, Yann-Gaël 1
Gunarso, Steven O. 173
Guo, Guibing 298
Gupta, Hari S. 79

Han, Jun 173, 206
Han, Yanbo 718
He, Miao 688
Hermenegildo, Manuel V. 252
Herrmann, Ricardo 599
Hilia, Mohamed 450
Hoesch-Klohe, Konstantin 582
Holmes, Ta’id 763
Hua, Zhebang 648
Hussain, Farookh Khadeer 591

Ivanović, Dragan 252

Jain, Anshu 48
Jézéquel, Jean-Marc 1
Jung, Jooik 389

Kammerer, Klaus 484
Kenkre, Sreyash 615
Khosravifar, Babak 656
Khosrowshahi Asl, Ehsan 656
Kim, Minkyong 499
Kim, Sung Wook 558
Kolb, Jens 484
Kondapally, Ranganath 615

792 Author Index

Kotonya, Gerald 435
Kotsokalis, Constantinos 268
Kröher, Christian 516
Kuhlenkamp, Jörn 127, 158, E1
Kumara, Indika 206
Kurniawan, Tri A. 63

Lama, Manuel 623
Lê, Lam-Son 63
Lee, Juhnyoung 631
Lee, Kyong-Ho 389
Lei, Hui 499
Li, Meng 648
Li, Ying 733, 771
Liao, Kewen 313
Ling, Sea 374
Liu, Chang 639
Liu, Rong 631
Liu, Yan 748
Loewenstern, David 599
Lomuscio, Alessio 17
Louati, Amine 664
Lu, Kuan 268
Lu, Qinghua 404
Lu, Xingjian 733
Lyu, Michael R. 574

Ma, Jiangang 313
Ma, Shang-Pin 533
Mehta, Sameep 672
Menzel, Michael 127, E1
Mirmotalebi, Rozita 359
Mizouni, Rabeb 656
Moha, Naouel 1
Mönch, Lars 237
Motahari-Nezhad, Hamid Reza 550
Mucientes, Manuel 623
Munson, Jonathan 499

Nallacherry, Jayan 191
Natarajan, Arjun 703
Nayrolles, Mathieu 1
Nepal, Surya 566
Newman, Peter 435
Ngu, Anne H.H. 313
Nguyen, Huu Nghia 525

Oster, Zachary J. 283
Otrok, Hadi 656

Paik, Hye-Young 558
Palma, Francis 1
Pandit, Vinayaka 615
Patikirikorala, Tharindu 206
Patrizi, Fabio 17
Perrin, Olivier 222
Pimplikar, Rakesh 672
Pinel, Florian 599
Pinson, Suzanne 664
Pinto, Leandro Sales 607
Poizat, Pascal 525

Qi, Kaiyuan 718
Qin, Tao 688

Ramacher, Rene 237
Ranasinghe, Waruna 206
Reichert, Manfred 484
Ren, Changrui 688
Rodriguez-Mier, Pablo 623
Roop, Partha S. 283
Roy, Marcus 142

Santhanam, Ganesh Ram 283
Schmid, Klaus 516
Schuster, Nelly 158
Sengupta, Bikram 48, 79
Sheng, Quan Z. 173, 313, 507
Shrinivasan, Yedendra Babu 191
Shwartz, Larisa 599
Song, Hongye 298
Spence, Susan 550
Srirama, Satish Narayana 374
Su, Jianwen 420
Sun, Haiyang 566
Sun, Wenlong 298
Sun, Yutian 420
Szabo, Claudia 507

Tai, Stefan 158
Tamburrelli, Giordano 607
Tata, Samir 541
Tosic, Vladimir 404
Truong, Hong-Linh 48, 96

Verdier, Christine 344
Vukovic, Maja 703

Wang, Hongbing 298
Wang, Liuping 206

Author Index 793

Weber, Ingo 142, 558
Weerasiri, Denis 206
Witteborg, Heiko 763
Wittern, Erik 127, 158, E1
Wu, Jian 574

Xie, Bing 648
Xu, Wei 420
Xu, Xiwei 404

Yahyapour, Ramin 268
Yang, Yun 639
Yaqub, Edwin 268
Ye, Zhen 111
Yeh, Ching-Lung 533
Yin, Jianwei 733
Yin, Yuyu 771
Yu, Jian 173
Yu, Qi 468
Yuan, Lei 688

Zäıdi, Fatiha 525

Zeng, Sai 688

Zhang, Gaofeng 639

Zhang, Jie 298

Zhang, Xuyun 639

Zhang, Yanchun 313

Zhang, Yang 779

Zhao, Junfeng 648

Zhao, Shuai 779

Zhao, Weiliang 566

Zhao, Zhuofeng 718

Zheng, Zibin 574

Zhou, Xiang 298

Zhou, Xiaofang 111

Zhu, Liming 404

Zhu, Mingfa 733

Zisman, Andrea 328

Zou, Yanzhen 648

	Title
	Preface
	Organization
	Table of Contents
	Research Papers
	Service Engineering 1
	Specification and Detection of SOA Antipatterns
	Introduction
	Related Work
	The SODA Approach
	Specification of SOA Antipatterns
	Generation of Detection Algorithms
	SOFA: Underlying Framework

	Experiments
	Assumptions
	Subjects
	Objects
	Process
	Results
	Details of the Results
	Discussion on the Assumptions
	Threats to Validity

	Conclusion and Future Work
	References

	Verification of GSM-Based Artifact-Centric Systems through Finite Abstraction
	Introduction
	GSM Programs
	Execution of GSM Programs

	The RPO Scenario
	Artifact-Centric MAS with Parametric Actions
	Finite Abstractions

	AC-MAS Associated to GSM Programs
	Finite Abstractions of GSM Programs
	The RPO Scenario as an AC-MAS

	Conclusions
	References

	Service Component Architecture Extensions for Dynamic Systems
	Introduction
	Service Component Architecture
	Dynamic Binding Extensions for SCA
	Motivations
	Dynamic Binding Extension

	Implementation and Validation
	Dynamic Deployment and Substitution of SCA Components
	Evaluation
	Case Study

	Related Work
	Conclusions and Perspectives
	References

	Service Management 1
	Who Do You Call? Problem Resolution through Social Compute Units
	Introduction
	Motivating Example
	Incident Management Using SCUs: A Technical Framework
	System Model
	SCU Based Incident Management

	Experiments
	Experimental Set-Up
	Results and Discussion

	Related Work
	Conclusions and Future Work
	References

	Relationship-Preserving Change Propagation in Process Ecosystems
	Introduction
	Preliminaries
	Establishing Inter-process Relationships
	Relationship-Preserving Change Propagation
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Scheduling Service Tickets in Shared Delivery
	Introduction
	Related Work
	Domain Description
	MIP Formulation
	Greedy Algorithms
	Heuristic Algorithm
	Experiments
	Methodology
	Results

	Discussions
	References

	Cloud
	Programming Hybrid Services in the Cloud
	Introduction
	Motivation
	Contributions and Paper Structure

	Models for Clouds of Hybrid Services
	Models for HBS
	HBS Instances Provisioning
	Cloud APIs for Provisioning Hybrid Services

	Framework for Utilizing Hybrid Services
	Programming Hybrid Services
	Modeling HPU-Aware Task Dependency Graphs
	Combining HBS and SBS
	Forming and Configuring iSCUs
	Change Model for Task Graph's Human Power Unit

	Related Work
	Conclusions and Future Work
	References

	QoS-Aware Cloud Service Composition Based on Economic Models
	Introduction
	Motivating Scenario
	Background
	Cloud Service Composition Framework
	QoS Model
	Problem Definition

	ID-Based Composition Approach
	Cloud Economic Model
	Influence Diagram Problem
	Dynamic Programming Algorithm

	Experiments and Results
	Related Work
	Conclusion
	References

	Cloud Service Selection Based on Variability Modeling
	Introduction
	Related Work
	Modeling the Cloud Service Selection Problem
	Feature Modeling Basics
	Cloud Feature Modeling
	Model Type Transitions

	Cloud Service Selection Process (CSSP)
	Use Case: Cloud Storage Selection
	Implementation
	Performing the Use Case
	Discussion

	Conclusion and Future Work
	References

	Service Engineering 2
	Extending Enterprise Service Design Knowledge Using Clustering
	Introduction
	Using Service Design Knowledge
	A Representation of Service Design Knowledge
	Challenges of Using Service Design Knowledge

	Extending Services Design Knowledge Using Clustering
	Strict Classification
	Approximate Classification
	Knowledge Base-Driven Clustering
	Knowledge Base Extension

	Evaluation
	Evaluation Setup
	Evaluation Results

	Related Work
	Conclusion
	References

	Participatory Service Design through Composed and Coordinated Service Feature Models
	Introduction
	Service Feature Models
	Methodology
	Modeling Elements
	Service Feature Modeling in Practice

	Collaborative Service Feature Modeling
	Service Composition Model
	Roles
	Coordination Mechanisms for Service Feature Modeling

	Proof of Concept
	Architecture and Components
	Implementation

	Related Work
	Conclusion and Future Work
	References

	PerCAS: An Approach to Enabling Dynamic and Personalized Adaptation for Context-Aware Services
	Introduction
	A Motivating Scenario
	The PerCAS Approach
	Overview
	The Base Functionality Model
	The Personalized Context-Awareness Logic Model
	The Weave Mechanism and Personalization Mechanism

	The PerCAS Development Platform
	The Graphical Development Interface
	Transformation

	The Runtime Environment
	Related Work
	Conclusion
	References

	Service Management 2
	A Method for Assessing Influence Relationships among KPIs of Service Systems
	Introduction
	Method: Influence Estimation
	Internal and Observed KPIs
	Problem Formulation: KPI Value Prediction
	Steps

	Case Study: IT Services
	KPIs in IT Services
	Intuitive KPI Relationships

	Method Validation: IT Services
	Related Work
	Conclusions
	References

	Dynamic Performance Management in Multi-tenanted Business Process ServersUsing Nonlinear Control
	Introduction
	Background
	Related Work
	Problem Overview and Analysis
	Assumptions
	Performance Management Problem Definition
	Analysis of Nonlinearity

	Approach
	Input Nonlinear Block Design
	Output Nonlinear Block Design
	Linear Model Design
	Controller Design
	Overload Detection and Adaptation

	Experimentation
	System Modeling and Controller Design
	Experiment Results

	Conclusions and Discussion
	References

	An Optimized Derivation of Event Queries to Monitor Choreography Violations
	Introduction
	Scenario and Motivation
	Complex Event Queries to Monitor Choreographies
	Complex Event Processing (CEP)
	Formal Foundation (Choreography)
	Approach Overview
	Basic-Level Events Generation
	Causal Behavioral Profiles
	Choreography Structure Tree
	Enriching Events
	Rules and Higher-Level Events Generation
	Runtime Pattern Matching

	Evaluation
	Implementation
	Related Work
	Conclusion and Future Work
	References

	Service QoS
	Dynamic Service Selection with End-to-End Constrained Uncertain QoS Attributes
	Introduction
	Service Composition Model
	Dynamic Service Selection
	Markov Decision Processes
	State Model
	State Transition Probability Model
	Algorithm

	Performance Study
	Generation of Problem Instances
	Comparison Approach
	Simulation Results

	Related Work
	Conclusion
	References

	A Constraint-Based Approach to Quality Assurance in Service Choreographies
	Introduction
	Motivation
	Constraint-Based QoS Modeling for Choreographies
	Modeling Cumulative QoS Metrics
	QoS Models of Participants and Continuations
	Automatic Derivation of the QoS Constraint Model for a Participant
	Analysis of Message Types with Size Constraints
	Centralized and Distributed Processing of QoS Constraints

	Examples of Application
	Supporting SLA Negotiation for Classes of Input Data
	Predicting SLA Violations at Run Time
	SLA Compliance Checking, Dynamic Binding and Adaptation

	Conclusions
	References

	Structural Optimization of Reduced Ordered Binary Decision Diagrams for SLA Negotiation in IaaS of Cloud Computing
	Introduction
	Related Work
	Modeling SLA with ROBDD
	ROBDD Structural Optimization
	SLA Term Rewriting System with Mutual Exclusiveness in ROBDD
	ROBDD Variable Swap and Sifting Algorithm
	Node Optimization
	Path Optimization
	Multicriteria Optimization Problem

	Experimental Verification
	Conclusions and Future Work
	References

	Service Engineering 3
	A Service Composition Framework Based on Goal-Oriented Requirements Engineering, Model Checking, and Qualitative Preference Analysis
	Introduction
	Illustrative Example
	Preliminaries
	Goal Model: Decomposition of Functional Requirements
	CI-Nets: Expressing NFP Preferences
	Service Representations and Composition
	Behavioral Constraints
	Data Mismatches

	Service Composition Framework
	Specifying the Service Composition Problem
	Selecting, Creating, and Verifying a Composition
	Theoretical Properties

	Implementation and Case Studies
	Related Work
	Conclusions and Future Work

	WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection
	Introduction
	Background and Related Work
	CP-Nets
	Problems of CP-Nets
	Extensions and Variants of CP-Nets
	CP-Nets in Web Service Selection

	WCP-Nets: A Weighted Extension
	Adding Weights to Conditional Preference
	The Concept of Violation Degree
	Adjusting Initial Attribute Weights
	Example

	Experimental Validation
	Data Acquisition
	Performance Analysis

	Conclusion

	WS-Finder: A Framework for Similarity Search of Web Services
	Introduction
	Web Service Model and WS-Finder Architecture
	Web Service Model
	WS-Finder Architecture

	EMD-Based Optimization Algorithm
	Earth Mover's Distance
	Defining EMD
	Web Service Query Processing
	Defining Input Values
	The EMD Filter: LBGIM
	Top-k Records Retrieval

	Experiments
	Experimental Setting
	Experimental Results

	Related Work
	 Conclusions

	Service Security, Privacy and Personalization
	A Framework for Trusted Services
	Introduction
	Overview of the Framework
	Trust Model
	Implementation Aspects and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Configuring Private Data Management as Access Restrictions: From Design to Enforcement
	Introduction
	Global Approach
	Design Level
	Service Composition Metamodel
	Privacy Metamodel
	Logical Semantics
	Linking Service Composition and Access Control Views

	Execution Level
	Validation
	Design Level: Modeling Environment
	Binding Time: Execution Environment

	Related Works
	Conclusion

	Modeling User’s Non-functional Preferences for Personalized Service Ranking
	Introduction
	A Motivating Example
	Modeling User’s Non-functional Preferences
	Defining Non-functional Preferences
	Data Collection for User Modeling
	Implicit User Modeling

	Personalized Service Ranking
	Experiments
	Experiment Design
	User Preference From and An Illustratingt Example
	Factors Influencing the Result Accuracy

	Related Work
	Conclusions
	References

	Service Applications in Business and Society
	An Adaptive Mediation Framework for Mobile P2P Social Content Sharing
	Introduction
	System Design
	Overview of MSNP
	AMSNP Framework
	Adaptive Approach Selection Based on CPI Model

	Example
	Prototype
	Evaluation

	Related Works
	Conclusion and Future Work

	Socially-Enriched Semantic Mashup of Web APIs
	Introduction
	Related Work
	The Proposed Mashup Recommendation Algorithm
	Extraction Phase
	Discovery Phase
	Chaining Phase
	Selection Phase

	Experimental Results
	Conclusions and Future Work
	References

	Application of Business-Driven Decision Makingto RESTful Business Processes
	Introduction
	Motivating Example
	Related Work and Background
	Related Work
	Background

	Extending MiniZnMASC and Integrating It into RESTfulBP
	The Constraint Programming Model for Decision Making Algorithms
	Architecture of RESTfulBP That Adds the Extended MiniZnMASC

	Evaluation
	Feasibility, Functional Correctness, and Business Benefits
	Conclusion
	References

	Service Composition and Choreography
	Declarative Choreographies for Artifacts
	Introduction
	Motivating Example
	A Declarative Choreography Language
	Correlations of Artifacts, Messages, and Collaborative Schemas
	Choreography Constraints

	Realizability
	Guarded Conversation Protocols
	Guarded Peers
	A Realization Mechanism

	Related Work
	Conclusions
	References

	Managing Resource Contention in Embedded Service-Oriented Systems with Dynamic Orchestration
	Introduction
	Related Work
	Framework - EQoSystem
	Resource Management
	Resource Policies
	Policy Activation and Invocation

	Workflow Management
	Workflow Composition and Specification

	Case Study - Asset Tracker
	Methodology
	Resource Benchmarking

	Results
	Normal Operational Scenarios
	Power Management Scenario
	Resource Instability Scenario

	Conclusions
	References

	Semantic Service Composition Framework for Multidomain Ubiquitous Computing Applications
	Introduction
	Semantic Cooperation Framework
	Framework Overview

	Basic Constructive Description Logic (BCDL)
	Towards Constructive Description Logics
	 BCDL0 : Syntax and Semantics
	BCDL0 Computational Interpretation

	Cooperation Ontology Specification
	Provisioning Ontology Specification
	Control Access and Usage Rules Ontology Specification
	Domain Specific Ontology Specification

	E-Contract Modeling
	Service Specification
	Provisioning Service Modeling
	Service Composition Calculus PC
	Control Flow Rules and Composition Process

	Scenario : Healthcare Monitoring
	Related Work
	Conclusion and Future Work
	References

	Service Scaling and Cloud
	Sparse Functional Representation for Large-Scale Service Clustering
	Introduction
	Related Work
	Sparse Functional Representation for Service Clustering
	Sparse Functional Representation
	Relaxation of the Objective Function
	An Illustrating Example
	Clustering in Anchor Service Space
	Term Vector and Anchor Service Integration

	Experimental Study
	Service Dataset Description
	Metrics for Clustering Quality
	Clustering on Dataset_1
	Clustering on Dataset_2
	Impact of Parameters

	Conclusion and Future Directions
	References

	Updatable Process Views for User-Centered Adaption of Large Process Models�
	Introduction
	Fundamentals on Process View Creation
	Process Model
	Process View Creation
	Refactoring Operations

	Changing Processes through Updatable Process Views
	Updating Process Views
	Migrating Process Views to a New CPM Version

	Related Work
	Conclusion
	References

	Management-Based License Discovery for the Cloud
	Introduction
	Background
	Motivation
	Management-Based License Discovery
	Design
	Persisted Data
	Interaction with the Other Components in Cloud

	Prototype
	Related Work
	Conclusion and Future Work
	References

	Research Papers – Short
	Service Composition and Choreography
	Ensuring Well-Formed Conversations between Control and Operational Behaviors of Web Services
	Introduction
	Background
	Conversation Rules
	Conversation Sessions
	Conversation Rule Formalisms

	From Conversation Rules to Temporal Logic
	System Implementation and Validation
	Discussion and Conclusion
	References

	Variability in Service-Oriented Systems: An Analysis of Existing Approaches
	Introduction
	Characterizing Variability Implementation
	Literature Study
	Analysis of Variability Implementation Techniques
	Technical Core Ideas
	Variability Objects
	Forms of Variation
	Binding Times

	Conclusion
	References

	A Symbolic Framework for the Conformance Checking of Value-Passing Choreographies
	Introduction
	Architecture of the Framework
	Conclusion
	References

	Service Composition Management Using Risk Analysis and Tracking
	Introduction
	Approach Descriptions
	Core Concepts for the Proposed Approach
	Risk-Driven Service Composition Management Process

	Conclusions
	References

	Process Management
	Assisting Business Process Design by Activity Neighborhood Context Matching
	Introduction
	Related Work
	Activities Neighborhood Context Matching
	Graph-Based Activity Neighborhood Context
	Neighborhood Context Matching
	Activity Recommendation

	Experiments
	Dataset
	Experiments

	Conclusion
	References

	Adaptive Case Management in the Social Enterprise
	Introduction
	Requirements of ACM in the Social Enterprise
	SoCaM: The Social Case Management Framework
	The SoCaM Data Model
	Flexible Process Enactment for Case Management
	Supporting Cases in a Social Network
	Implementation and Case Study

	Related Work
	Conclusions and Future Work
	References

	Automating Form-Based Processes through Annotation
	Introduction
	Proposed Approach
	Form Upload
	Form Annotation
	Process Model
	Process Execution

	EzyForms Implementation
	User Study
	Conclusion and Future Work
	References

	PASOAC-Net: A Petri-Net Model to Manage Authorization in Service-Based Business Process
	Introduction
	Motivating Example

	Conceptual Model-PASOAC
	Specification of PASOAC-Net
	Structure of PASOAC-Net
	Execution of PASOAC-Net

	Related Work
	Conclusion and Future Work
	References

	Service Description and Discovery
	WSTRank: Ranking Tagsto Facilitate Web Service Mining
	Introduction
	Web Service Tag Ranking
	Service-Tag Network Building
	Tag Authority Computation

	Experiment
	Dataset Description and Experiment Setup
	Performance Evaluation of Tag Ranking

	Related Work
	Conclusion
	References

	Maintaining Motivation Models (in BMM) in the Context of a (WSDL-S) Service Landscape
	Introduction
	Preliminaries
	Formal Representation
	Maintaining Motivation-Service Graphs
	Conclusion and Future Work
	References

	Ontology-Learning-Based Focused Crawling for Online Service Advertising Information Discovery and Classification
	Introduction
	Related Work
	System Functions and Framework
	Service Knowledge Base
	System Workflow of the Modules

	Hybrid Concept-Metadata Matching Models
	System Implementation and Evaluation
	Conlusion
	References

	A Learning Method for Improving Quality of Service Infrastructure Management in New Technical Support Groups
	Introduction
	Related Work
	Method
	Experimental Results
	Discussion
	References

	Service Management
	Adaptive Service-Oriented Mobile Applications: A Declarative Approach
	Introduction
	A Motivating Example: The ShopReview App
	The SelfMotion Approach
	The SelfMotion Declarative Language
	Advantages of the SelfMotion Approach

	Related Work
	Conclusions and Future Work
	References

	Algorithmic Aspects of Planning under Uncertainty for Service Delivery Organizations
	Introduction
	Critical Service Contingency Planning (CSCP)
	Algorithm, Proof, and Generalization
	Generalization

	Experimental Evaluation
	References

	A Dynamic QoS-Aware Semantic Web Service Composition Algorithm
	Introduction
	QoS-Based Semantic Composition Model
	QoS Computation Model for DAG Compositions

	Algorithm Description
	Service Filtering
	Optimal QoS-Aware Composition
	Service Minimization

	Experiments
	Results Discussion

	Conclusions
	References

	IT Incident Management by Analyzing Incident Relations
	Introduction
	Case Study
	Search for Relevant Incidents
	Incident Classification
	Relevant Incident Search
	Root Cause Analysis Using Relevant Incidents

	Search Engine Implementation and Evaluation
	Related Work
	Concluding Remarks and Future Work
	References

	Service Security, Privacy and Personalization
	An Association Probability Based Noise Generation Strategy for Privacy Protection in Cloud Computing
	Introduction
	Novel Association Probability Based Noise GenerationStrategy
	Association Probability Based Noise Injection Model
	Association Probability Model for Noise Generation
	Association Probability Based Noise Generation
	Association Probability Based Noise Generation Strategy

	Evaluation
	Conclusions and Future Work
	References

	ARIMA Model-Based Web Services Trustworthiness Evaluation and Prediction
	Introduction
	Related Work
	Trustworthiness Evaluation and Prediction Methods
	Time Series Analysis

	Approach
	Internet-Based Trustworthy Evidences Collection
	Trustworthiness Evaluation
	Trustworthiness Prediction

	Evaluation
	Case Study
	Trustworthiness Prediction Validation
	Trustworthiness Application Validation

	Conclusion
	References

	Analyzing Coopetition Strategies of Services with in Communities
	Introduction
	The Proposed Framework
	The Architecture
	The Architecture
	System Parameters
	Web Service Interactive Strategies

	Experimental Results
	Related Work and Conclusion
	References

	Trust-Based Service Discovery in Multi-relation Social Networks
	Introduction
	Social Trust Measure
	Social Measures Computing
	Trust Computing and TRSN Construction

	Implementation
	Conclusion
	References

	Industrial Papers
	Service Applications
	RETRAiN: A REcommendation Tool for Reconfiguration of RetAil BaNk Branch
	Introduction
	Related Work
	Algorithms
	Algorithms

	Results
	Conclusions and Future Work
	References

	Automate Back Office Activity Monitoring to Drive Operational Excellence
	Introduction
	Related Work
	Activity Classifier and Timer
	Performance Evaluation and Business Benefits
	Pilot Introduction
	Performance Evaluation
	Business Benefits

	Conclusions
	References

	Collective Intelligence for Enhanced Quality Management of IT Services
	Introduction
	Complexity of IT Service and Quality Management Challenges
	Background
	Quality of IT Services
	Front and Backend Elements of IT Service

	Approach: Integrating Digital and Collective Intelligence
	IT Service Insights for Quality Management
	Product Insights - Defect Prevention Tools
	Process Insights – Automation Opportunities
	People Insights – Compliance

	Discussion
	Effectiveness of Collective Intelligence
	Design Considerations
	Implications on Services Quality
	Effectiveness

	Related Work
	Services Quality
	Collective Intelligence
	Open Source Development

	Future Work and Conclusions
	References

	Cloud Computing
	MapReduce-Based Data Stream Processing over Large History Data
	Introduction
	Real-Time MapReduce Model
	Key/value Data
	RTMR Theory
	RTMR Model

	Adaptive RTMR Cluster
	RTMR Performance Model
	Model Analysis

	Evaluation
	Adaptive Architecture Analysis
	Scalability Analysis
	Real-Time Performance Analysis
	Related Work

	Conclusions
	References

	An Efficient Data Dissemination Approach for Cloud Monitoring
	Introduction
	Efficient and Intelligent Monitoring Architecture for Cloud Platform
	Efficient Data Dissemination for Cloud Monitoring
	Data Dissemination Based on DDS
	Comprehensive Data Delivery Algorithm

	Evaluation
	Experimental Environment
	Experimental Analysis

	Related Work
	Conclusion
	References

	A Service Oriented Architecture for Exploring High Performance Distributed Power Models
	Introduction
	Background on HPC-Based Distributed State Estimation
	The Service Oriented Architecture
	Architecture Overview
	Semantic Service Definition and Registration
	Job Launching
	Service Registration

	Reflection and Discussions
	Related Work
	Conclusion
	References

	Industrial Papers – Short
	Business Process Extensions as First-Class Entities — A Model-Driven and Aspect-Oriented Approach
	Introduction
	Concepts and Tools for Business Process Extensibility
	Business Process Extension Metamodel
	Extension Development Approach
	Tooling

	Discussion
	Design Decisions and Requirements
	Application Areas

	Related Work
	Conclusion
	References

	Towards Dynamic Reconfiguration for QoS Consistent Services Based Applications
	Introduction
	Dynamic Reconfiguration Method for Consistent QoS
	Dynamic Reconfiguration Algorithm
	Degradation Factor

	Evaluation
	Related Work
	Conclusion
	References

	An Ontology-Based IoT Resource Model for Resources Evolution and Reverse Evolution
	Introduction
	Semantic Model and Framework
	Framework
	Semantic Model
	Model Evolution and Reverse Evolution

	Implementation and Case Study
	Dynamic Resource Creation
	Historical Event Analysis

	Conclusion
	References

	Erratum
	Erratum: Cloud Service Selection Based on Variability Modeling

	Author Index

