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Abstract. An application’s quality of service (QoS) depends on resource
availability; e.g., response time is worse on a slow machine. On the cloud,
a virtualized application leases resources which are made available on de-
mand. When its work load increases, the application must decide whether
to reduce QoS or increase cost. Virtualized applications need to manage
their acquisition of resources. In this paper resource provisioning is in-
tegrated in high-level models of virtualized applications. We develop a
Real-Time ABS model of a cloud provider which leases virtual machines
to an application on demand. A case study of the Montage system then
demonstrates how to use such a model to compare resource manage-
ment strategies for virtualized software during software design. Real-
Time ABS is a timed abstract behavioral specification language target-
ing distributed object-oriented systems, in which dynamic deployment
scenarios can be expressed in executable models.

1 Introduction

The added value and compelling business drivers of cloud computing are unde-
niable [10], but considerable new challenges need to be addressed for industry to
make an effective usage of cloud computing. As the key technology enabler for
cloud computing, virtualization makes elastic amounts of resources available to
application-level services deployed on the cloud; for example, the processing ca-
pacity allocated to a service may be changed on the demand. The integration of
virtualization in general purpose software applications requires novel techniques
for leveraging resources and resource management into software engineering. Vir-
tualization poses challenges for the software-as-a-service abstraction concerning
the development, analysis, and dynamic composition of software with respect to
quality of service. Today these challenges are not satisfactorily addressed in soft-
ware engineering. In particular, better support for the modeling and validation
of application-level resource management strategies for virtualized resources are
needed to help the software developer make efficient use of the available virtu-
alized resources in their applications.
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The abstract behavioral specification language ABS is a formalism which aims
at describing systems at a level which abstracts from many implementation de-
tails but captures essential behavioral aspects of the targeted systems [25]. ABS
targets the engineering of concurrent, component-based systems by means of
executable object-oriented models which are easy to understand for the software
developer and allow rapid prototyping and analysis. The extension Real-Time
ABS integrates object orientation and timed behavior [8]. Whereas the func-
tional correctness of a planned system largely depends on its high-level behav-
ioral specification, the choice of deployment architecture may hugely influence
the system’s quality of service. For example, CPU limitations may restrict the
applications that can be supported on a cell phone, and the capacity of a server
may influence the response time of a service during peaks in the user traffic.

Whereas software components reflect the logical architecture of systems, de-
ployment components have recently been proposed for Real-Time ABS to reflect
the deployment architecture of systems [27, 28]. A deployment component is a
resource-restricted execution context for a set of concurrent object groups, which
controls how much computation can occur in this set between observable points
in time. Deployment components may be dynamically created and are parametric
in the amount of resources they provide to their objects. This explicit represen-
tation of deployment scenarios allows application-level response time and load
balancing to be expressed in the software models in a very natural and flexible
way, relative to the resources allocated to the software.

This paper shows how deployment components in Real-Time ABS may be
used to model virtualized systems in a cloud environment. We develop a Real-
Time ABS model of cloud provisioning and accounting for resource-aware ap-
plications: an abstract cloud provider offers virtual machines with given CPU
capacities to client applications and bills the applications for their resource us-
age. We use this model in a case study of the Montage system [24], a cloud-based
resource-aware application for scientific computing, and compare execution times
and accumulated costs depending on the number of leased machines by means of
simulations of the executable model. We show that our results are comparable
to those previously obtained for Montage with the same deployment scenarios
on specialized simulation tools [19] and thus that our formal model can be used
to estimate cloud deployment costs for realistic systems. We then introduce dy-
namic resource management strategies in the Montage model, and show that
these improve on the resource management strategies previously considered [19].

The paper is structured as follows. Section 2 presents the abstract behavioral
specification language Real-Time ABS, Section 3 develops our model of cloud
provisioning. Section 4 presents the case study of the Montage system. Section 5
discusses related work and Section 6 concludes the paper.

2 Abstract Behavioral Specification with Real-Time ABS

ABS is an executable object-oriented modeling language with a formal seman-
tics [25], which targets distributed systems. The language is based on concurrent
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object groups, akin to concurrent objects (e.g., [14,17,26]), Actors (e.g., [1,23]),
and Erlang processes [5]. Concurrent object groups in ABS internally support
interleaved concurrency using guarded commands. This allows active and reac-
tive behavior to be easily combined, based on cooperative scheduling of processes
which stem from method calls. A concurrent object group has at most one active
process at any time and a queue of suspended processes waiting to execute on
an object in the group. Objects in ABS are dynamically created from classes but
typed by interface; i.e., there is no explicit notion of hiding as the object state is
always encapsulated behind interfaces which offer methods to the environment.

2.1 Modeling Timed Behavior in ABS

ABS combines functional and imperative programming styles with a Java-like
syntax [25]. Concurrent object groups execute in parallel and communicate
through asynchronous method calls. Data manipulation inside methods is mod-
eled using a simple functional language. Thus, the modeler may abstract from
the details of low-level imperative implementations of data structures, and still
maintain an overall object-oriented design which is close to the target system.

The functional part of ABS allows user-defined algebraic data types such as
the empty type Unit, Booleans Bool, integers Int; parametric data types such
as sets Set<A> and maps Map<A> (given a value for the variable A); and user-
defined functions over values of these types, with support for pattern matching.

The imperative part of ABS addresses concurrency, communication, and syn-
chronization at the concurrent object level, and defines interfaces, classes, and
methods. ABS objects are active in the sense that their run method, if de-
fined, gets called upon creation. Statements for sequential composition s1; s2,
assignment x=rhs, skip, if, while, and return are standard. The statement
suspend unconditionally suspends the active process of an object by moving
this process to the queue, from which an enabled process is selected for execution.
In await g, the guard g controls suspension of the active process and consists
of Boolean conditions b and return tests x? (see below). Functional expressions
e and guards g are side-effect free. If g evaluates to false, the active process is
suspended, i.e., moved to the queue, and some process from the queue may exe-
cute. Expressions rhs include the creation of an object group new cog C(e),
object creation in the creator’s group new C(e), method calls o!m(e) and
o.m(e), future dereferencing x.get, and functional expressions e.

Communication and synchronization are decoupled in ABS, which allows com-
plex workflows to be modeled. Communication is based on asynchronous method
calls, denoted by assignments f=o!m(e) where f is a future variable, o an
object expression, and e are (data value or object) expressions. After calling
f=o!m(e), the future variable f refers to the return value of the call and the
caller may proceed with its execution without blocking on the method reply.
There are two operations on future variables, which control synchronization in
ABS. First, the statement await f? suspends the active process unless a return
value from the call associated with f has arrived, allowing other processes in the
object group to execute. Second, the return value is retrieved by the expression
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f.get, which blocks all execution in the object until the return value is available.
The statement sequence x=o!m(e);v=x.get encodes commonly used blocking
calls, abbreviated v=o.m(e) (reminiscent of synchronous calls).

We work with Real-Time ABS [8], a timed extension of ABS with a run-to-
completion semantics, which combines explicit and implicit time for ABS models.
Real-Time ABS has an interpreter defined in rewriting logic [30] which closely
reflects its semantics and which executes on the Maude platform [16]. In Real-
Time ABS, explicit time is specified directly in terms of durations (as in, e.g.,
UPPAAL [29]). Real-Time ABS provides the statement duration(b,w) to
specify a duration between the worst-case w and the best case b. A process may
also suspend for a certain duration, expressed by await duration(b,w). For
the purposes of this paper, it is sufficient to work with a discrete time domain,
and let b and w be of type Int. In contrast to explicit time, implicit time is
observed by measurements of the executing model. Measurements are obtained
by comparing clock values from a global clock, which can be read by an expres-
sion now() of type Time. With implicit time, no assumptions about execution
times are hard-coded into the models. The execution time of a method call de-
pends on how quickly the call is effectuated by the server object. In fact, the
execution time of a statement varies with the capacity of the chosen deployment
architecture and on synchronization with other (slower) objects.

2.2 Modeling Deployment Architectures in Real-Time ABS

Deployment components in Real-Time ABS abstractly capture the resource ca-
pacity at a location [27, 28]. Deployment components are first-class citizens in
Real-Time ABS and share their resources between their allocated objects. The
root object of a model is allocated to the deployment component environment,
which has unlimited resources. Deployment components with different resource
capacities may be dynamically created depending on the control flow of the
model or statically created in the main block of the model. When created, objects
are by default allocated to the same deployment component as their creator, but
they may also be explicitly allocated to a different component by an annotation.

Deployment components have the type DC and are instances of the class
DeploymentComponent. This class takes as parameters a name (the name
of the location, mostly used for monitoring purposes), given as a string, and
a set of restrictions on resources. Here we focus on resources reflecting the
components’ CPU processing capacity, which are specified by the constructor
CPUCapacity(r), where r of type Resource represents the amount of avail-
able abstract processing resources between observable points in time. The ex-
pression thisDC() evaluates to the deployment component of the current ob-
ject. The method total("CPU") of a deployment component returns the total
amount of CPU resources allocated to that component.

The CPU processing capacity of a deployment component determines how
much computation may occur in the objects allocated to that component. The
CPU resources of a component define its capacity between observable (discrete)
points in time, after which the resources are renewed. Objects allocated to the
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component compete for the shared resources in order to execute. With the run-
to-completion semantics, the objects may execute until the component runs out
of resources or they are otherwise blocked, after which time will advance [28].

The cost of executing statements is given by a cost model. A default cost
value for statements can be set as a compiler option (e.g., defaultcost=10).
This default cost does not discriminate between different statements. For some
statements a more precise cost expression is desirable in a realistic model; e.g.,
if e is a complex expression, then the statement x=e should have a significantly
higher cost than the statement skip. For this reason, more fine-grained costs
can be introduced into the models by means of annotations, as follows:
class C implements I {

Int m (T x) { [Cost: g(size(x))] return f(x); }
}

It is the responsibility of the modeler to specify an appropriate cost model. A
behavioral model with default costs may be gradually refined to obtain more
realistic resource-sensitive behavior. To provide cost functions such as g in our
example above, the modeler may be assisted by the COSTABS tool [2], which
computes a worst-case approximation of the cost for f in terms of the size of
the input value x based on static analysis techniques, when given the definition
of the expression f. However, the modeler may also want to capture resource
consumption at a more abstract level during the early stages of system design,
for example to make resource limitations explicit before further behavioral re-
finements of a model. Therefore, cost annotations may be used to abstractly
represent the cost of some computation which remains to be fully specified.

3 Resource Management and Cloud Provisioning

An explicit model of cloud provisioning allows the application developer to in-
teract in a simple way with a provisioning and accounting system for virtual
machines. This section explains how such cloud provisioning may be modeled,
for Infrastructure-as-a-Service [10] cloud environments. Consider an interface
CloudProvider which offers three methods for resource management to client
applications: createMachine, acquireMachine, and releaseMachine.

The method createMachine prepares and returns an abstract virtual ma-
chine with a specified processing capacity, after which the client application may
deploy objects on the machine. This method models the provisioning and config-
uration part of a cloud-based application, and corresponds roughly to instancing
and configuring a virtual machine on a cloud, without starting up the machine.

Before running a computation on a machine created with createMachine,
the client application must first call the method acquireMachine. The cloud
provider then starts accounting for the time this machine is kept running; the
client calls the method releaseMachine to “shut down” the machine again.
(For simplicity it is currently not checked whether processes are run before call-
ing acquireMachine or after releaseMachine; this is a straightforward
extension of the approach which could be useful to model “cheating” clients.)
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Fig. 1. Interaction between a client application and the cloud provider

For a later reactivation of the same machine, only acquireMachine needs
to be called. Fig. 1 shows one such sequence of interactions between a client
application and a cloud provider.

In addition, the interface offers a method getAccumulatedCost which re-
turns the cost accumulated so far by the client application. This method can be
used in load balancing schemes to implement various trade-offs between quality
of service and the cost of running the application, or to implement operator
alerts when certain QoS or cost budgets are bypassed.

A Model of Cloud Provisioning in Real-Time ABS. A class which implements
the CloudProvider interface is given in Fig. 2. Abstract virtual machines
are modeled as deployment components. The class has two formal parameters
to allow easy configuration: startupTime sets the length of the startup pro-
cedure for virtual machines and accountingPeriod sets the length of each
accounting period. In addition, the class has four fields: accumulatedCost
stores the cost incurred by the client application up to present time, the set
billableMachines contains the machines to be billed in the current time
interval, and the sets availableMachines and runningMachines contain
the created but not currently running and the running machines, respectively.
The empty set is denoted EmptySet. Let s be a set over elements of type T and
let e : T . The following functions are defined in the functional part of Real-Time
ABS: insertElement(s, e) returns {e} ∪ s, remove(s, e) returns s \ {e}, and
take(s) returns some e such that e ∈ s.

The methods for resource management move machines between these sets.
Any machine which is either created or running within an accounting period,
is billable in that period; i.e., a machine may be both acquired and released in
a period, so there may be more billable than running machines. The method
createMachine creates a new deployment component of the given capacity
and adds it to availableMachines. The method acquireMachine moves
a machine from availableMachines to runningMachines. Since the ma-
chine becomes billable, it is placed in billableMachines. The method sus-
pends for the duration of the startupTime before it returns, so the accounting
includes the startup time of the machine. The method releaseMachinemoves
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interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC machine);
Unit releaseMachine(DC machine);
Int getAccumulatedCost();

}
class CloudProvider (Int startupTime, Int accountingPeriod)

implements CloudProvider {
Int accumulatedCost = 0; Set<DC> billableMachines = EmptySet;
Set<DC> availableMachines = EmptySet;
Set<DC> runningMachines = EmptySet;

DC createMachine(Int r) {
DC dc = new DeploymentComponent("", set[CPUCapacity(r)]);
availableMachines = insertElement(availableMachines, dc);
return dc;

}
Unit acquireMachine(DC dc) {

billableMachines = insertElement(billableMachines, dc);
availableMachines = remove(availableMachines, dc);
runningMachines = insertElement(runningMachines, dc);
await duration(startupTime, startupTime);

}
Unit releaseMachine(DC dc) {

runningMachines = remove(runningMachines, dc);
availableMachines = insertElement(availableMachines, dc);

}
Int getAccumulatedCost(){ return accumulatedCost; }
Unit run() {

while (True) {
await duration(accountingPeriod, accountingPeriod);
Set<DeploymentComponent> billables = billableMachines;
while (~(billables == EmptySet)) {

DeploymentComponent dc = take(billables);
billables = remove(billables,dc); Int capacity = dc.total("CPU");
accumulatedCost = accumulatedCost+(accountingPeriod*capacity);

}
billableMachines = runningMachines;

}}}

Fig. 2. The CloudProvider class in Real-Time ABS

a machine from runningMachines to availableMachines. The machine
remains billable for the current accounting period.

The run method of the cloud provider implements the accounting of incurred
resource usage for the client application. The method suspends for the dura-
tion of the accounting period, after which all machines in billableMachines
are billed by adding their resource capacity for the duration of the account-
ing period to accumulatedCost. Remark that Real-Time ABS has a run-to-
completion semantics which guarantees that the loop in run will be executed
after every accounting period. After accounting is finished, only the currently
running machines are already billable for the next period. These are copied into
billableMachines and the run method suspends for the next accounting
period.
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Module Description
mImgtbl Extract geometry information from a set of FITS headers and

create a metadata table from it.
mOverlaps Analyze an image metadata table to determine which images

overlap on the sky.
mProject Reproject a FITS image.
mProjExec Reproject a set of images, running mProject for each image.
mDiff Perform a simple image difference between a pair of overlapping

images.
mDiffExec Run mDiff on all the overlap pairs identified by mOverlaps.
mFitplane Fit a plane (excluding outlier pixels) to an image. Used on the

difference images generated by mDiff.
mFitExec Run mFitplane on all overlapping pairs. Creates a table of image-

to-image difference parameters.
mBgModel Modeling/fitting program which uses the image-to-image difference

parameter table to interactively determine a set of corrections to
apply to each image to achieve a “best” global fit.

mBackground Remove a background from a single image
mBgExec Run mBackground on all the images in the metadata table.
mAdd Co-add the reprojected images to produce an output mosaic.

Fig. 3. The modules of the Montage case study

4 Case Study: The Montage Toolkit

Montage is a portable software toolkit for generating science-grade mosaics by
composing multiple astronomical images [24]. Montage is modular and can be
run on a researcher’s desktop machine, in a grid, or on a cloud. Due to the high
volume of data in a typical astronomical dataset and the high resolution of the
resulting mosaic, as well as the highly parallelizable nature of the needed com-
putations, Montage is a good candidate for cloud deployment. In [19], Deelman
et al. present simulations of cloud deployments of Montage and the cost of creat-
ing mosaics with different deployment scenarios, using the specialized simulation
tool GridSim [9].

This section describes the architecture of the Montage system and how it was
modeled in Real-Time ABS. We explain how costs were associated to the differ-
ent parts of the model. The results obtained by simulations of the model in the
Real-Time ABS interpreter are compared to those obtained in the specialized
simulator. Finally, more fine-grained dynamic resource management, not consid-
ered in the previous work [19], is proposed and compared to previous scenarios.

4.1 The Problem Description

Creating a mosaic from a set of input images involves a number of tasks: first
reprojecting the images to a common projection, coordinating system and scale,
then rectifying the background radiation in all images to a common flux scale
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Fig. 4. Montage abstract workflow

and background level, and finally co-adding the reprojected background-rectified
images into a final mosaic. The tasks exchange data in the format FITS, which
encapsulates image data and meta-data. These tasks are implemented by a num-
ber of Montage modules [24], which are listed and described in Fig. 3. These
modules can be run individually or combined in a workflow, locally or remotely
on a grid or a cloud. Fig. 4 depicts the dataflow dependencies between the mod-
ules in a typical Montage workflow [19]. These dependencies show which jobs
can be parallelized on multiprocessor systems, grids, or cloud services.

Simulation results for running Montage on the Amazon cloud with the work-
flow depicted in Fig. 4 have been published in [19], including cost measurements
for CPU and storage resources. The simulation tool GridSim [9] was used to
study the trade-offs between cost and performance for different execution and re-
source provisioning scenarios when running Montage in a cloud service provider.

We model and analyze the same abstract workflow architecture of Montage
based on the model of cloud provisioning presented in Section 3, as a means to
validate the presented formal model of cloud provisioning in Real-Time ABS.
In particular, we consider the case in which Montage processes multiple input
images in parallel. Our model abstracts from the implementation details of the
manipulation of images, replacing them with abstract statements and cost anno-
tations. One important result of [19] is that computation cost dominates storage
and data transfer cost for the Montage workload by 2-3 orders of magnitude,
which allows us to focus on CPU usage alone.

4.2 A Model of the Montage Workflow in Real-Time ABS

The Core Modules. The Montage core modules that execute atomic tasks (i.e.,
mProject, mDiff, mFitplane, mBgModel, mBackground, mAdd, mImgtbl,
and mOverlaps) are modeled as methods inside a class CalcServer which
implements the CalcServer interface shown in Fig. 5. In the methods of this
class, cost annotations are used to specify the costs of executing atomic tasks.
The images considered in the case study have a constant size, so it is sufficient
to use a constant cost for the atomic tasks. Lacking precise cost estimates for
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interface CalcServer {
DeploymentComponent getDC();
MetadataT mImgtbl(List<FITS> i);
MetadataT mOverlaps(MetadataT mt);
FITS mProject(FITS image);
FITSdf mDiff (FITS image1, FITS image2);
FITSfit mFitplane (FITSdf df);
CorrectionT mBgModel(Image2ImageT diffs, MetadataT ovlaps);
FITS mBackground (Int correction,FITS image );
FITS mAdd (List<FITS> images); }

class CalcServer implements CalcServer {
...
FITS mBackground (Int correction,FITS image ){

[Cost: 1] FITS result = correctFITS(image,correction);
return result;

}
... }

Fig. 5. CalcServer interface and class in Real-Time ABS

the individual tasks, we consider an abstract cost model in which each atomic
task is assigned the cost of 1 resource. (This cost model could be further re-
fined; although some timing measurements are given in [24], these are not de-
tailed enough for this purpose.) The code for one such atomic task inside the
CalcServer class is shown in Fig. 5.

Resource Management. The workflow process does not interact with the differ-
ent instances of CalcServer directly. Instead, tasks are sent to an instance
of ApplicationServer which acts a broker for the preallocated machine in-
stances and distributes tasks to free machines. The ApplicationServer inter-
face, partly shown in Fig. 6, provides the workflow with means to start the par-
allelizable tasks (i.e., mProjExec, mDiffExec, mFitExec and mBgExec) and
distributes the atomic tasks (e.g., mDiff) to instances of CalcServer. Atomic
tasks are sent directly to one calculation server. Two fields activeMachines
and servers keep track of the number of active jobs on each created machine
and the order in which servers get jobs, respectively. Surrounding every call to a
calculation server the auxiliary methods getServer and dropServer do the
bookkeeping and resource management of the virtual machines. Asynchronous
method calls to the future variables fimage and fnewimages, and task sus-
pension are used to keep the application server responsive.

Our model defines algebraic data types FITS, FITSdf, FITSfit, as well
as the list MetadataT and the maps CorrectionT and Image2ImageT to
represent the input and output data at the different stages of the workflow; for
example, FITS is a data type which represents image archives in FITS format,
which is constructed from an abstract representation of metadata and of image
data. This data can be used to keep track of data flow and abstractions of cal-
culation results. The empty list and map are denoted Nil and EmptyMap. On
lists, the constructor Cons(h, t) takes as arguments an element h and a list t;
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interface ApplicationServer {
FITS mAdd (List<FITS> images);
List<FITS> mProjExec(List<FITS> images);
List<FITSdf> mDiffExec (MetadataT metatable, List<FITS> images);
Image2ImageT mFitExec(List<FITSdf> dfs);
List<FITS> mBgExec (CorrectionT corrections, List<FITS> images);
... }

class ApplicationServer(CloudProvider provider)
implements ApplicationServer {

List<CalcServer> servers = Nil; Map<DC,Int> activeMachines = EmptyMap;
...
List<FITS> mBgExec(CorrectionT corrections,List<FITS> images) {

List<FITS> newimages = Nil;
if (isEmpty(images)==False) {
FITS image = head(images);
Int correction = lookupDefault(corrections,getId(image), 0);
CalcServer b = this.getServer();
Fut<FITS> fimage = b!mBackground (correction,image);
Fut<List<FITS>> fnewimages=this!mBgExec(corrections,tail(images));
await fimage?; FITS tmpimage = fimage.get;
this.dropServer(b);
await fnewimages?; List<FITS> newtmpimages = fnewimages.get;
newimages = Cons(tmpimage, newtmpimages);}

return newimages;}
... }

Fig. 6. The ApplicationServer interface and class (abridged)

head(Cons(h, t)) = h and tail(Cons(h, t)) = t. The function isEmpty(l) re-
turns true if l is the empty list. On maps, the function lookupDefault(m, k, v)
returns the value bound to k in m if the key k is bound in m, and otherwise it
returns the default value v.

4.3 Simulation Results

We simulated a workload equivalent to the Montage 1 scenario described in [19].
As in that paper, the simulations were run on deployment scenarios ranging from
1 to 128 virtual machine instances, where all the machines were started up prior
to the simulations (i.e., the startupTime parameter of the CloudProvider
class in our model has value 0). Both simulation approaches exhibit the expected
geometric downward progression of execution time when going from 1 to 128
machines, and roughly half an order of magnitude increase in cost. In our first
simulation runs, the execution cost (measured in simulated machine-minutes)
increased a little over two-fold over the full simulation range, versus closer to
a six-fold increase (“60 cents [...] versus almost 4$”) in [19]. To explain this
difference, we theorized that the observed lower cost may have resulted from
better machine allocation strategies in our model—the virtual machines were
eagerly released by the ApplicationServer class when no more work was
available to them, instead of being kept running until all computations finished.
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Fig. 7. Execution costs and times of simulation. The Montage 1 scenario (left figure)
is compared to dynamic resource management (right figure). The costs are presented
on a logarithmic scale for easier comparison with the results of [19].

To test this hypothesis, the ApplicationServer class was modified to keep
all instances running during the whole computation task. Using this allocation
strategy, we observed a cost increase of 4.27 from 1 to 128 computation servers,
which is more in line with the results obtained using GridSim. Fig. 7 (left) shows
the simulation results of the modified model. The authors of [19] later confirmed
in private communication that our hypothesis about the setup of the GridSim
simulation scenario was indeed correct.

In order to further investigate the initial results involving dynamic startup
and shutdown of machine instances, we refine our model by introducing startup
times for virtual machines. Fig. 7 (right) compares the previous static deploy-
ment scenario (constant) with two dynamic resource management scenarios with
varying startup times for virtual machines. One scenario models machine startup
times of roughly one tenth of the time needed for performing a basic task, the
other startup times roughly as large as basic task times. It can be seen that the
cost of running a single job in the Montage system can be substantially reduced
by switching off unused machines, given that the cost of starting machines is
dominated by the actual calculations taking place, with almost no loss in time.
On the other hand, if starting a machine is significantly slower than executing
a basic task, it can be seen that both cost and time of the dynamic scenario
are worse than when initially starting all machines in the static scenario of the
considered workflow except in the case of severe over-provisioning of machines.

5 Related Work

The concurrency model of ABS is based on concurrent objects and Actor-based
computation, in which software units with encapsulated processors communicate
asynchronously (e.g., [1,5,14,23,26]). Their inherent compositionality allows con-
current objects to be naturally distributed on different locations, because only
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the local state of a concurrent object is needed to execute its methods. In previous
work, the authors have introduced deployment components as a formal modeling
concept to capture restricted resources shared between concurrent object groups
and shown how components with parametric resources naturally model different
deployment architectures [28], extended the approach with resource realloca-
tion [27], and combined it with static cost analysis [4]. This paper complements
our previous work by using deployment components to model cloud-based sce-
narios and the development of the Montage case study. A companion paper [18]
further applies the approach of this paper to an industrial case study.

Techniques for prediction or analysis of non-functional properties are based
on either measurement or modeling. Measurement-based approaches apply to
existing implementations, using dedicated profiling or tracing tools like JMeter
or LoadRunner. Model-based approaches allow abstraction from specific system
intricacies, but depend on parameters provided by domain experts [20]. A survey
of model-based performance analysis techniques is given in [7]. Formal systems
using process algebra, Petri Nets, game theory, and timed automata have been
used in the embedded software domain (e.g., [15,21]). Real-Time ABS combines
explicit time modeling with duration statements with implicit measurements of
time already at the modeling level, which is made possible by the combination
of costs in the application model and capacities in the deployment components.

Work on modeling object-oriented systems with resource constraints is more
scarce.Using the UML SPT profile for schedulability, performance, and time, Petriu
and Woodside [32] informally define the Core Scenario Model (CSM) to solve ques-
tions that arise in performance model building. CSM has a notion of resource con-
text, which reflects an operation’s set of resources. CSM aims to bridge the gap
between UML and techniques to generate performance models [7]. Closer to our
work is M. Verhoef’s extension of VDM++ for embedded real-time systems [33],
in which static architectures are explicitly modeled using CPUs and buses. The
approach uses fixed resources targeting the embedded domain, namely proces-
sor cycles bound to the CPUs, while we consider more general resources for ar-
bitrary software. Verhoef’s approach is also based on abstract executable model-
ing, but the underlying object models and operational semantics differ. VDM++
has multi-thread concurrency, preemptive scheduling, and a strict separation of
synchronous method calls and asynchronous signals, in contrast to our work with
concurrent objects, cooperative scheduling, and caller-decided synchronization.

Related work on simulation tools for cloud computing are typically reminis-
cent of network simulators. A number of testing techniques and tools for cloud-
based software systems are surveyed in [6]. In particular, CloudSim [13] and
ICanCloud [31] are simulation tools using virtual machines to simulate cloud en-
vironments. CloudSim is a fairly mature tool which has already been used for a
number of papers, but it is restricted to simulations on a single computer. In con-
trast, ICanCloud supports distribution on a cluster. Additionally CloudSim was
originally based on GridSim [9], a toolkit for modeling and simulations of hetero-
geneous Grid resources. EMUSIM [12] is an integrated tool that uses AEF [11]
(Automated Emulation Framework) to estimate performance and costs for an
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application by means of emulations to produce improved input parameters for
simulations in CloudSim. Compared to these approaches, our work is based on
a formal semantics and aims to support the developer of software applications
for cloud-based environments at an early phase in the development process.

Another interesting line of research is static cost analysis for object-oriented
programs (e.g., [3,22]) Most tools for cost analysis only consider sequential pro-
grams, and assume that the program is fully developed before cost analysis can
be applied. COSTABS [2] is a cost analysis tool for ABS which supports concur-
rent object-oriented programs. Our approach, in which the modeler specifies cost
in cost annotations, could be supported by COSTABS to automatically derive
cost annotations for the parts of a model that are fully implemented. In collab-
oration with Albert et al., we have applied this approach for memory analysis
of ABS models [4]. However, the full integration of COSTABS in our tool chain
and the software development process remain future work.

6 Conclusion

This paper develops a model in Real-Time ABS of a cloud provider which offers
virtual machines with given CPU capacities to a client application. Virtual ma-
chines are modeled as deployment components with given CPU capacities, and
the cloud provider offers methods for resource management of virtual machines
to client applications. The proposed model has been validated by means of a case
study of the Montage toolkit, in which a typical Montage workflow was formal-
ized. This formalization allows different user scenarios and deployment models
to easily expressed and compared by means of simulations using the Real-Time
ABS interpreter. The results from these simulations were comparable to those
obtained for the Montage case study using specialized simulators, which suggests
that models using abstract behavioral specification languages such as Real-Time
ABS can be used to estimate cloud deployment costs for realistic systems.

Real-Time ABS aims to support the developer of client applications for cloud-
based deployment, and in particular to facilitate the development of strategies
for virtualized resource management at early stages in the development process.
We are not aware of similar work addressing the formal modeling of virtualized
resource management and cloud computing from the client application perspec-
tive. With the increasing focus on cloud-based deployment of general purpose
software, such support could become very useful for software developers.

This paper focused on the formalization of cloud provisioning and simulations
of the executable model. The presented work can be extended in a number of
directions. In particular, we are interested in how to combine different virtu-
alized resources in the same model to estimate combined costs of, e.g., com-
putations, storage, bandwidth, and power consumption. Another extension is
to strengthen the tool-based analysis support for Real-Time ABS. An integra-
tion with cost analysis tools such as COSTABS would assist the developer in
providing cost annotations in the model. Furthermore, we plan to investigate
symbolic execution techniques for Real-Time ABS, which would allow stronger
automated analysis results than those considered here. Finally, an integration of
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QoS contracts with the interfaces of Real-Time ABS could form a basis for anal-
ysis abstract behavioral specifications with respect to service-level agreements.
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