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Abstract. In the quantitative verification and synthesis of reactive sys-
tems, the states or transitions of a system are associated with payoffs, and
a quantitative property of a behavior of the system is often characterized
by the mean payoff for the behavior. This paper proposes an extension of
LTL that describes mean-payoff constraints. For each step of a behavior
of a system, the payment depends on a system transition and a temporal
property of the behavior. A mean-payoff constraint is a threshold con-
dition for the limit supremum or limit infimum of the mean payoffs of
a behavior. This extension allows us to describe specifications reflecting
qualitative and quantitative requirements on long-run average of costs
and the frequencies of satisfaction of temporal properties. Moreover, we
develop an algorithm for the emptiness problems of multi-dimensional
payoff automata with Büchi acceptance conditions and multi-threshold
mean-payoff acceptance conditions. The emptiness problems are decided
by solving linear constraint satisfaction problems, and the decision prob-
lems of our logic are reduced to the emptiness problems. Consequently,
we obtain exponential-time algorithms for the model- and satisfiability-
checking of the logic. Some optimization problems of the logic can also
be reduced to linear programming problems.

Keywords: LTL, automata, mean payoff, formal verification, decision
problems, specification optimization, linear programming.

1 Introduction

Research on the formal verification and synthesis of reactive systems has focused
on the qualitative properties of behaviors (e.g., “undesirable properties never
hold” and “some properties hold infinitely often”). Linear Temporal Logic [19]
(LTL), which is a subset of the class of ω-regular languages (i.e., languages recog-
nized by finite-state automata such as Büchi automata and Rabin automata), is
widely used to describe such properties. For LTL specifications, several model-
and realizability- [18] checkers (e.g., SPIN [21] and Acacia+ [1], respectively)
have been provided.

Alternatively, as an approach for describing quantitative properties, quantita-
tive languages [15,17,12,2,11] have recently been proposed. A quantitative lan-
guage is a function that gives a value in a certain ordered range to each word.1

1 It is a Boolean language if the range is Boolean.
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In the models of these languages, a payoff (or weight/cost/reward) is associated
with transitions or states. Some quantitative attributes of a system behavior
(e.g., the long-run average cost and the frequency of being in unexpected states)
can be characterized as certain values pertaining to the mean payoff of the be-
havior. In quantitative synthesis [14,7,13,10], a program or strategy is optimized
for such a value in the ordered range.

Alur et al. proposed a multi-threshold mean-payoff language [2], as a tractable
Boolean language for describing quantitative aspects of behaviors. This language
is recognized by a payoff automaton with a multi-threshold mean-payoff accep-
tance condition. A payoff is a real vector associated with a transition of the
automaton. It accepts a word over a run satisfying the mean-payoff acceptance
condition, given by a Boolean combination of threshold conditions (i.e., inequal-
ities relating a constant threshold and the maximum or minimum value of the
interval of a certain coordinate projection of accumulation points of mean payoffs
of the run). The closure property under Boolean operations and the decidability
of the emptiness problem for the language have been proved in [2]. However, the
languages are incompatible with ω-regular languages, and cannot capture qual-
itative fairness, such as “a certain property holds infinitely often”. Boker et al.
proposed LTLlim [8], which is an extension of LTL with path-accumulation as-
sertions (mean-payoff assertions). In a manner analogous to the multi-threshold
mean-payoff languages, a path-accumulation assertion LimSupAvg(v) ≥ c (resp.
LimInfAvg(v) ≥ c) is a threshold condition; i.e., an inequality relating a constant
c and the limit supremum (resp., limit infimum) of mean payoffs for v, where v
is a numeric variable whose value depends on the state of a system. They also
presented a model-checking algorithm for LTLlim against quantitative Kripke
structures (in other words, multi-dimensional weighted transition systems). In
this algorithm, model-checking is modified to the emptiness problem in [2], con-
sidering the Büchi condition reflecting an LTL portion of a specification. Con-
sequently, LTLlim allows us to check whether a system satisfies a specification
which reflects both qualitative and quantitative requirements. However, mean-
payoff assertions are almost meaningless for satisfiability-checking, because either
a combination of assertions is inconsistent according to algebraic rules or there
exists a trivial variable assignment for which the assertions are true.

This paper is aimed to develop a temporal logic that can describe both qual-
itative and quantitative properties, and can be used as a verifiable specification
language for realizability-checking and synthesis. We propose LTLmp, which is
an extension of LTLlim with a payment for satisfying temporal properties. In
this logic, for each step of a behavior of a system, the payoff depends not only
on a system transition but also on a temporal property of the behavior. Con-
cretely, a payment t consists of free variables v1, . . . , vn (for associating with
the transitions of a system), characteristic variables 1ϕ1 , . . . ,1ϕm for formulae
ϕ1, . . . , ϕm in the logic (i.e., each 1ϕi = 1 if ϕi holds at the time, and other-
wise 1ϕi = 0), and algebraic operations. The mean-payoff formula has a form
MP(t) ∼ c (≡ LimSupAvg(t) ∼ c) or MP(t) ∼ c (≡ LimInfAvg(t) ∼ c) for a
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payment t and ∼∈ {<,>,≤,≥}. LTLmp can represent the quantitative proper-
ties; e.g., “the frequency of satisfying ϕ is bounded below by 0.1” is represented
by MP(1ϕ) > 0.1, and “the long-run average cost is bounded above by 3” is
expressed by MP(6 · 1¬on∧Xon + 4 · 1on +5 · 1on∧X¬on) < 3 if the operating cost
is 4 and additional costs for booting and shutdown are 6 and 5, respectively. In
addition, we can check the satisfiability of specifications with such meaningful
mean-payoff constraints that have no free variable.

We reduce the decision problems of this logic to the emptiness problems of
payoff automata Büchi conditions and with multi-threshold mean-payoff con-
ditions. This type of emptiness problem can be also decided by a part of the
algorithm in [8]. However, the complexity of that algorithm is roughly estimated
to be exponential with respect to the size of the state space of the automaton.
Therefore, we develop an algorithm for the emptiness problems of the automata,
by reducing these problems to linear constraint satisfaction problems (LCSPs).
In terms of LCSPs, the difference between the two algorithms is explained as
follows: in their algorithm, the solution region is computed explicitly for finding
some solutions, whereas our algorithm captures the region implicitly via linear
constraints, and then finds the solutions. With this reduction, the emptiness
problem of an automaton is decidable in polynomial time for the state space
of the automaton. As a result, we obtain exponential-time algorithms for the
model- and satisfiability-checking of the logic.

An additional advantage of this reduction is that some optimization problems
concerning LTLmp specifications can be solved via linear programming (LP)
techniques, which are widely used and well-studied optimization methods. For
example, maximization/minimization problems for the limit supremum MP(t)
(or limit infimum MP(t)) of the mean payoff for a payment t, which is subject to
a specification described in LTLmp, are reduced to LP problems. Consequently,
we can analyze performance limitations under specifications. We conjecture that
this specification optimization method can be applied to realizability-checking
as well as optimal synthesis for specifications described in the logic.

Related Work. [12,2,11] introduced quantitative languages focusing on mean-
payoff properties. The multi-threshold mean-payoff language [2] and LTLlim [8]
have been proposed as Boolean languages for describing mean-payoff proper-
ties. A multi-threshold mean-payoff language can represent threshold mean-
payoff properties and some qualitative properties. LTLlim is an LTL extension
with threshold mean-payoff assertions for payoffs associated with transitions of
a model. LTLlim can be used as a specification language for model-checking.
However, the mean-payoff assertions are almost meaningless for satisfiability-
checking. This paper introduces LTLmp, which is an extension of LTLlim with
payments for satisfying temporal properties. LTLmp can represent quantitative
properties which are meaningful for satisfiability-checking.

In existing methods [14,7,13,10] for the quantitative synthesis, a program
(resp., strategy) is synthesized from a partial program or deterministic automa-
ton (resp., Markov decision process or game). A probabilistic environment is
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often assumed [14,13,10], and a synthesized program (or strategy) is optimal in
the average case. The notion of probability is also introduced in quantitative ver-
ification. Probabilistic temporal logics [16,4,5] (and their reward extensions [6,3])
are often used as specification languages, and some probabilistic model-checking
tools (e.g., PRISM [20]) have been provided. However, the decidability of their
satisfiability problems is an open question.2 This paper provides an optimiza-
tion method of LTLmp specifications, and we conjecture that our approach to
the specification optimization can be applied to optimal synthesis for temporal
logic specifications in which quantitative properties are described.

Previously, we introduced a probabilistic temporal logic, with a frequency
operator that can describe quantitative linear-time properties pertaining only to
conditional frequencies of satisfaction of temporal properties [22]. By contrast,
LTLmp is a non-probabilistic linear-time logic with mean-payoff formulae. A
payment for a mean-payoff formula can be flexibly described. Therefore, the
mean-payoff formulae can be used to represent linear-time properties pertaining
not only to conditional frequencies, but also to other types of frequencies, such
as long-run average costs. (However, the semantics of the mean-payoff formulae
are incompatible with those of the frequency operator.)

Organization of the Paper. In Section 2, we introduce the syntax and se-
mantics of LTLmp, which is an extension of LTLlim with payments for satisfying
temporal properties. In Section 3, we provide definitions and related notions of
payoff automata that accept words over runs satisfying both Büchi conditions
and multi-threshold mean-payoff conditions. In addition, we develop an algo-
rithm for the emptiness problems of the automata, in which the problems are
reduced to LCSPs. In Section 4, we show how to construct an automaton that
recognizes a given LTLmp formula, and how to reduce the decision problems of
LTLmp to the emptiness problems of the automata. We also show that some
optimization problems of LTLmp specifications can be solved by LP methods.
Our conclusions are stated in Section 5.

2 LTL with Mean-Payoff Constraints

In this section, we introduce the syntax and semantics of LTLmp, which is an
extension of LTLlim [8] with payments for satisfying temporal properties. In
LTLlim, an assertion has the form either LimSupAvg(v) ∼ c or LimInfAvg(v) ∼ c
for a variable v associated with transitions of the system. In comparison, in
LTLmp, a payment for each step of a behavior of a system depends not only
on a transition of the system, but also on a temporal property of the behavior.
An assertion in LTLmp has the form either MP(t) ∼ c (≡ LimSupAvg(t) ∼ c)
or MP(t) ∼ c (≡ LimInfAvg(t) ∼ c), for a payment t consisting of free variables
for associating with transitions of the system, characteristic variables associated
with temporal properties of the behavior, and algebraic operations.

2 For the qualitative fragment of Probabilistic CTL [16], the satisfiability problem is
decidable [9].
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First, we define the syntax of LTLmp. In the following discussion, we fix the
set AP of atomic propositions.

Definition 1 (Syntax). LTLmp over a set V of free variables is defined induc-
tively as follows:

ϕ ::= p | MP(t) ∼ c | MP(t) ∼ c | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ
t ::= v | 1ϕ | t+ t | − t | t · t | c · t

where p ∈ AP , v ∈ V , ∼ ∈ {<,>,≤,≥} and c ∈ R.

The operatorsX andU are standard temporal operators representing “next” and
“until”, respectively. Intuitively, Xϕ means that “ϕ holds in the next step”, and
ϕ1Uϕ2 means that “ϕ2 holds eventually and ϕ1 holds until then”. A payment
t consists of free variables v1, . . . , vn ∈ V , characteristic variables 1ϕ1 , . . . ,1ϕm

for formulae ϕ1, . . . , ϕm, and algebraic operators (+,− and ·). The major differ-
ence between LTLmp and LTLlim is the existence of characteristic variables. A
characteristic variable 1ϕ for a formula ϕ represents a payment for satisfying the
property ϕ; i.e., 1ϕ = 1 if ϕ holds at the given time, and otherwise 1ϕ = 0. The
satisfaction of ϕ at a given time depends on a temporal property of the present
and future. In this sense, a characteristic variable is bounded. A free variable v
is used for associating with transitions of a system, and an LTLmp formula is a
sentence if it has no free variable. Intuitively, MP(t) and MP(t) give the limit
supremum and limit infimum, respectively, of the mean payoff for t. The formu-
lae MP(t) ∼ c and MP(t) ∼ c are called mean-payoff formulae, and are simple if
t is constructed without characteristic variables for mean-payoff formulae.

We allow common abbreviations of normal logical symbols (tt ≡ ϕ ∨¬ϕ and
ff ≡ ¬tt), and connectives (ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

and ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)), and standard temporal operators
(�ϕ ≡ ttUϕ and �ϕ ≡ ¬�¬ϕ). Intuitively, �ϕ (resp., �ϕ) means that “ϕ
eventually (resp., always) holds”. We also use c instead of c · 1tt, for short.

LTLmp can represent a combination of qualitative properties described in
classical LTL and quantitative properties given by mean-payoff formulae. We
present some simple examples of quantitative properties.

Example 1 (Conditional frequency). A mean-payoff formula for the payment
t = (c1 · 1ϕ1 − c2 · 1¬ϕ1) · 1ϕ2 can represent a property pertaining to the condi-
tional frequency of satisfaction of ϕ1 under the condition ϕ2, where c1, c2 > 0.
Our previous work [22] focused on the conditional frequencies of satisfying tem-
poral properties and introduced a new binary temporal operator to describe
only this type of property. For ϕ1 = Xresponse and ϕ2 = request, the formula
MP(t) > 0 means that “the occurrence frequency of requests is not negligible
(i.e., MP(1request) > 0) and the limit infimum of the conditional frequency of
responding to requests in the next step is greater than c2

c1+c2
”.

Example 2 (Long-run average costs). Usually, a cost is associated with an event,
which has a corresponding proposition. A property of the long-run average of
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event-based costs is expressed as a mean-payoff formula for a payment t =∑
ci ·1pi , where pi is a proposition representing the occurrence of an event ei and

ci is the cost for the event ei. For example, MP(t) ≤ 5 means that “the long-run
average of costs obeying t is bounded above by 5”. In addition, switching costs
for pi are described by the characteristic variables 1pi∧X¬pi and 1¬pi∧Xpi .

Next we define the semantics of LTLmp.

Definition 2 (Semantics). For an infinite word σ = a0a1 · · · ∈ (2AP )ω, an
LTLmp formula ϕ over a set V of free variables, and an assignment α : V → R

ω,
the satisfaction relation |= is defined inductively as follows:

σ, α, i |= p⇔ p ∈ ai,

σ, α, i |= ¬ϕ⇔ σ, α, i �|= ϕ,

σ, α, i |= ϕ1 ∨ ϕ2 ⇔ σ, α, i |= ϕ1 or σ, α, i |= ϕ2,

σ, α, i |= Xϕ⇔ σ, α, i + 1 |= ϕ,

σ, α, i |= ϕ1Uϕ2 ⇔ ∃j ≥ i.(σ, α, j |= ϕ2 and ∀k ∈ [i, j).σ, α, k |= ϕ1),

σ, α, i |= MP(t) ∼ c ⇔ lim supn→∞
1

n+1 ·∑n
m=0[[t]]

α
σ(i+m) ∼ c,

σ, α, i |= MP(t) ∼ c ⇔ lim infn→∞ 1
n+1 ·∑n

m=0[[t]]
α
σ(i+m) ∼ c,

[[v]]ασ (i) = α(v)[i] for v ∈ V, [[1ϕ]]
α
σ(i) =

{
1 if σ, α, i |= ϕ,

0 otherwise,

[[t1 + t2]]
α
σ(i) = [[t1]]

α
σ(i) + [[t2]]

α
σ(i), [[−t]]ασ(i) = −[[t]]ασ(i),

[[t1 · t2]]ασ(i) = [[t1]]
α
σ(i) · [[t2]]ασ(i), [[c · t]]ασ(i) = c · [[t]]ασ(i),

where, for an infinite sequence x = x0x1 · · · ∈ R
ω of real numbers, we denote by

x[i] the i-th element of x.

We omit i and/or α from σ, α, i |= ϕ if i = 0 and/or V = ∅.
The semantics of mean-payoff formulae are expressed by the limit supremum

or limit infimum, and hence, for any word and assignment, the truth-value of a
mean-payoff formula is either always true or always false. In a manner analogous
to LTLlim, a formula ϕ with a mean-payoff subformula ψ is equivalent to a
formula (ϕ[ψ/tt]∧ψ)∨ (ϕ[ψ/ff]∧¬ψ). Furthermore, any payment over LTLmp

can be represented in the form
∑

(ci · 1ϕi ·
∏
vij). Therefore, we can restrict

the syntax of LTLmp, without loss of generality, to the form
∨
(ϕi ∧

∧
ψij),

where each ϕi is a classical LTL formula (not necessarily conjunctive), each
ψij is a simple mean-payoff formula, and each payment for ψij is of the form∑

(cijk ·1ϕijk
·∏ vijkl). We call such a form a mean-payoff normal form (MPNF).

An LTLmp formula ϕ with n mean-payoff formulae can be transformed, at worst,
into an equivalent MPNF formula with 2n disjuncts, where each distinct has one
LTL formula ϕi (|ϕi| ≤ |ϕ|) and n simple mean-payoff formulae.

3 Multi-threshold Mean-Payoff Büchi Automata

In [8], model-checking for an LTLlim formula is modified to the emptiness prob-
lem of a multi-dimensional payoff automaton with a multi-threshold mean-payoff
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condition [2], considering the Büchi condition reflecting the LTL portion of the
formula. In this paper, we define payoff automata with both Büchi conditions
and multi-threshold mean-payoff conditions. Such automata are called multi-
threshold mean-payoff Büchi automata (MTMPBAs). In Subsection 3.1, we in-
troduce definitions and concepts related to the automata. The decision problems
of LTLmp can be reduced to the emptiness problems of the automata, and it can
be solved via the part of the algorithm in [8], but with a high complexity. In
Subsection 3.2, we develop an algorithm for solving the emptiness problem, using
a different approach with lower complexity than that of [8].

3.1 Definitions

In this subsection, we introduce the definitions of the payoff systems and MTMP-
BAs, together with some concepts related to them.

A payoff system is a multi-dimensional weighted transition system. It is used
as a model in quantitative verification.

Definition 3. A d-dimensional payoff system PS is a tuple 〈Q,Σ,Δ, q0,w〉,
where Q is a finite set of states, Σ is a finite alphabet, Δ ⊆ Q × Σ × Q is a
transition relation, q0 ∈ Q is an initial state, and w : Δ → R

d is a weight
function that maps each transition to a d-dimensional real vector. We denote by
w[i] the i-th coordinate function of w; i.e., w(δ) = 〈w[1](δ), . . . ,w[d](δ)〉.
For a transition δ = 〈q, a, q′〉 ∈ Δ, we denote by pre(δ) the pre-state q, post(δ) the
post-state q′, and letter(δ) the letter a. A finite run r on Δ is a finite sequence
δ0 · · · δn ∈ Δ∗ of transitions such that post(δi) = pre(δi+1) for 0 ≤ i < n. A
finite word σ (= word(r)) over a finite run r = δ0 · · · δn is a finite sequence
letter(δ0) · · · letter(δn) ∈ Σ∗ of letters. A (d-dimensional) finite trace τ is a finite
sequence of (d-dimensional) real vectors. We denote by payoffw(r) the trace
w(δ0) · · ·w(δn) of payoffs, and by mpw(r) the trace w(δ0) · · · ( 1

n+1

∑n
i=0 w(δi))

of mean payoffs, over a finite run r = δ0 · · · δn for a d-dimensional weighted
function w. Infinite runs, words and traces are defined in a manner analogous
to the finite case. We denote by run(Δ) the set of finite or infinite runs on Δ,
and by run(PS) the set of infinite runs starting from the initial state q0 and
belonging to run(Δ). A finite run r = δ0 · · · δn ∈ run(Δ) is cyclic if pre(δ0) =
post(δn). A state q is reachable from q′ on Δ if q = q′ or there exists a finite
run δ0 · · · δn ∈ run(Δ) such that pre(δ0) = post(δn). A subgraph 〈Q′, Δ′〉 is a
strongly connected component (SCC) on PS if Δ′ ⊆ Δ ∩ Q′ × Σ × Q′, and for
any two states in Q′, one is reachable from the other on Δ′.

q1q0q2

A/〈0, 0〉A/〈0, 0〉

A/〈1, 0〉
A/〈1, 0〉

B/〈1, 1〉

C/〈0,−1〉

Fig. 1. Example 3

Example 3. Consider the payoff system PS =
〈Q, 2{p0,p1}, Δ, q0, w〉, where Q = {q0, q1, q2},
A = ∅, B = {p0}, C = {p1}, Δ =
{δ1, . . . , δ6}, δ1 = 〈q0, A, q1〉, δ2 = 〈q1, A, q1〉,
δ3 = 〈q1, B, q0〉, δ4 = 〈q0, A, q2〉, δ5 =
〈q2, A, q2〉, δ6 = 〈q2, C, q0〉, w[1](δ) = 1 if
δ ∈ {δ1, δ2, δ3} and otherwise w[1](δ) = 0,
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and w[2](δ3) = 1, w[2](δ6) = −1 and w[2](δ) = 0 if δ ∈ {δ1, δ2, δ4, δ5}
(Fig. 1). Consider runs r1 = (δ1δ3)

1δ4δ6(δ1δ3)
2δ4δ6(δ1δ3)

3δ4δ6 . . . and r2 =

(δ1δ3)(δ4δ
22−2
5 δ6)(δ1δ

23−2
2 δ3)(δ4δ

24−2
5 δ6) . . .. Then, the trace of payoffs over r1 is

(〈1, 0〉〈1, 1〉)1〈0, 0〉〈0, -1〉(〈1, 0〉〈1, 1〉)2〈0, 0〉〈0, -1〉(〈1, 0〉〈1, 1〉)3〈0, 0〉〈0, -1〉 . . ., and
the trace of mean payoffs over r1 converges to the point 〈1, 1/2〉. The trace of

payoffs over r2 is 〈1, 0〉2−1〈1, 1〉〈0, 0〉22−1〈0, -1〉〈1, 0〉23−1〈1, 1〉〈0, 0〉24−1〈0, -1〉 . . .,
and the trace of mean payoffs over r2 has the set of accumulation points3

{〈x, 0〉|1/3 ≤ x ≤ 2/3}.

Next, we define an MTMPBA which is a payoff system with two acceptance
conditions F and G on Büchi fairness and mean payoffs, respectively. We capture
a quantitative attribute of a run r via the set of accumulation points of the trace
mpw(r) of mean payoffs over r. Then, a mean-payoff acceptance condition G is
given by a Boolean combination of the threshold conditions for the maximum or
minimum value of the i-th projection of the set of accumulation points.

Definition 4. An MTMPBA A is a tuple 〈Q,Σ,Δ, q0,w, F,G〉 (or 〈PS, F,G〉
for a payoff system PS = 〈Q,Σ,Δ, q0,w〉), where
– F ⊆ Q is a Büchi acceptance condition given by a set of final states,
– G : 2R

d → Bool is a multi-threshold mean-payoff acceptance condition such
that G(X) is a Boolean combination of threshold conditions of the form
either max πi(X) ∼ c or minπi(X) ∼ c for ∼∈ {<,>,≤,≥}, c ∈ R and the
i-th projection πi.

The concepts of MTMPBAs are defined in a manner analogous to those of payoff
systems. We denote by Acc(τ) the set of accumulation points of a trace τ . Note
that, for an infinite run r ∈ run(A), the maximum (resp., minimum) of the
set πi(Acc(mpw(r))) is equal to the limit supremum (resp., limit infimum) of
the trace mpw[i](r). A threshold condition is universal if it has the form either
maxπi(·) < c, maxπi(·) ≤ c, minπi(·) > c, or min πi(·) ≥ c; i.e., it asserts that
“all” accumulation points of the i-th coordinate trace of mean payoffs over a run
satisfy the inequality. Otherwise, it is existential; i.e., it asserts that “some” of
the accumulation points satisfy the inequality.

An infinite run r ∈ run(A) is accepted by A if both the Büchi acceptance
condition F (i.e., a certain state q ∈ F occurs infinitely often on r) and the mean-
payoff acceptance condition G(Acc(mpw(r))) hold. An infinite word σ ∈ Σω is
accepted by A if there exists a run r such that σ = word(r) and r is accepted
by A (i.e., A is an existential MTMPBA in a strict sense). A language L ⊆ Σω

(resp., an LTLmp sentence ϕ) is recognized by A if, for all σ ∈ Σω, σ is accepted
by A ⇔ σ ∈ L (resp., σ |= ϕ). A language recognized by an MTMPBA with
Δ : Q×Σ → Q and F = Q is called a multi-threshold mean-payoff language [2].
Therefore, the class of languages recognized by MTMPBAs is the superclass of
ω-regular languages and of multi-threshold mean-payoff languages.

3 A point x ∈ R
d is an accumulation point of a trace x0x1 · · · ∈ (Rd)ω if, for any open

set containing x, there are infinitely many indices i1, i2, . . . such that xi1 ,xi2 , . . .
belong to the open set.
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Example 4. Consider the MTMPBAsA1 = 〈PS, {q0},minπ1(·) ≥ 1/2∧minπ2(·)
≥ 0〉 and A2 = 〈PS, {q0},maxπ1(·) > 1/2 ∧ minπ2(·) < 0〉, where PS is the
payoff system of Example 3. Both runs r1 and r2 in Example 3 satisfy the Büchi
condition {q0}. The traces of mean payoffs over r1 and r2 have the respective sets
{〈1, 1/2〉} and {〈x, 0〉|1/3 ≤ x ≤ 2/3} of accumulation points. Thus A1 accepts
r1, but rejects r2, and A2 rejects both r1 and r2.

Regarding the closure properties of the class of languages recognized by MTMP-
BAs, the following theorem holds. (The proof is omitted from this paper.)

Theorem 5. The class of languages recognized by MTMPBAs is closed under
union and intersection.

3.2 Emptiness Problems

An algorithm for the emptiness problems of multi-threshold mean-payoff lan-
guages has been proposed in [2]. An algorithm for the emptiness problems of
MTMPBAs has also been proposed as a part of a procedure for the model-
checking of LTLlim [8], and is based on the algorithm of [2]. The decision prob-
lems of LTLmp can be reduced to the emptiness problems of MTMPBAs (see
Section 4), and hence can be decided by the algorithm of [8]. However, the com-
plexity of that algorithm is exponential with respect to the size of the state space
of the automaton.

In this paper, we reduce the emptiness problems of MTMPBAs to linear con-
straint satisfaction problems (LCSPs), which can be solved by linear program-
ming (LP) methods. For an MTMPBA, the existence of an accepting run can
be inferred from the existence of some sets of cyclic runs. Then, the solution of
each LCSP is associated with a set of cyclic runs, and a set of solutions indicates
the existence of an accepting run on the automaton.

Lemma 6. Let A = 〈Q,Σ,Δ, q0,w, F,G〉 be a d-dimensional MTMPBA, where
G(·) = ∧

1≤i≤dminπi(·) ∼i 0. The following statements are equivalent.

– There exists an accepting run on A.
– There exists a reachable (and maximal) SCC 〈Q′, Δ′〉 on A such that (i) F ∩
Q′ �= ∅ and (ii) there exists a non-negative solution x for linear constraints
(1)-(4), and the following conditions also hold:

(ii-a) for each existential threshold condition of the form minπi(·) ≤ 0, there
exists a non-negative solution x for linear constraints (1)-(4) and (5),

(ii-b) for each existential threshold condition of the form minπi(·) < 0, there
exists a non-negative solution x for linear constraints (1)-(4) and (6),

where x is a |Δ′|-dimensional vector, xδ is the element of the vector x associated
with δ ∈ Δ′ and the linear constraints are:

∑
δ∈Δ′ xδ ≥ 1, (1)

∑
δ∈Δ′ s.t. post(δ)=q xδ =

∑
δ∈Δ′ s.t. pre(δ)=q xδ for each q ∈ Q′, (2)

∑
δ∈Δ′ w[j](δ) · xδ ≥ 0 for each j such that ∼j is ≥, (3)
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∑
δ∈Δ′ w[j](δ) · xδ ≥ 1 for each j such that ∼j is >, (4)

∑
δ∈Δ′ w[i](δ) · xδ ≤ 0, (5)

∑
δ∈Δ′ w[i](δ) · xδ ≤ −1. (6)

Proof. Let n be the number of existential threshold conditions in G, and fix a
reachable SCC S = 〈Q′, Δ′〉 on A.

First, consider a solution x for the linear constraints (1) and (2). If x is an
integer vector, each variable xδ can be interpreted as the number of occurrences
of the transition δ on runs. With this interpretation, x implies the existence ofm
cyclic finite runs r1, . . . , rm ∈ run(Δ′). This is because the linear constraint (1)
implies the existence of runs with positive length, and the linear constraint (2)
implies that, for each state, the number of incoming transitions is equal to the
number of outgoing transitions. Here, we shall denote by WMx(w) the weighted
mean (

∑
δ∈Δ′ xδ ·w(δ))/

∑
δ∈Δ′ xδ of w with respect to x (in this sense, x and

w are “weight” and “data” vectors, respectively). If m = 1, there exists a trivial
run r0(r1)

ω ∈ run(A), since S is reachable. The trace mpw(r0(r1)
ω) of mean

payoffs over this run converges on WMx(w). It is equal to the mean payoff of
r1, and is independent of the prefix r0. Otherwise, there exists a larger cyclic
finite run of the form r1r

′
1 · · · rmr′m ∈ run(Δ′), since S is a SCC. Then, we can

obtain a run r0(r1r
′
1 · · · rmr′m)((r1)

2r′1 · · · (rm)2r′m) · · · ∈ run(A). The trace of
mean payoffs over the run also converges on WMx(w) (i.e., the mean payoffs of
r1, . . . , rm). With this type of LCSP, given a solution x and a constant c ≥ 1, the
scalar product c · x is also a solution. Therefore, even if x is a real vector, there
still exists a run in run(A) such that the ratio of the occurrence of transitions
on r asymptotically approaches that of x.

Next, consider a solution x of the linear constraints (1), (2) and
∑

δ∈Δ′ w[k](δ)·
xδ ≥ 0 (resp.,

∑
δ∈Δ′ w[k](δ)·xδ ≥ 1,

∑
δ∈Δ′ w[k](δ)·xδ ≤ 0, and

∑
δ∈Δ′ w[k](δ)·

xδ ≤ −1). In a manner analogous to the first case, if a solution exists, there ex-
ists a run r ∈ run(A) such that minπk(Acc(mpw(r))) ∼k 0 holds, where ∼k is
≥ (resp., >, ≤ and <). This is because the k-th coordinate WMx(w[k]) of the
weighted mean with respect to x is greater than or equal to 0 (resp., greater
than 0, less than or equal to 0, and less than 0). Otherwise, there is no run
satisfying the threshold condition minπk(·) ∼k 0 on S. Hence, there exists a
solution x of linear constraints (1)-(4) (and either (5) for min πi(·) ≤ 0 or (6)
for minπi(·) < 0) iff there exists a run rx ∈ run(A) such that rx satisfies all
universal threshold conditions in G (and either minπi(·) ≤ 0 or minπi(·) < 0).

Accordingly, if n = 0, the condition (ii) holds iff there exists a run satisfy-
ing G. Otherwise, the condition (ii) holds iff there exist runs rxθ1

, . . . , rxθn
∈

run(A) corresponding to solutions xθ1 , . . . ,xθn for existential threshold condi-
tions θ1, . . . , θn in G. The trace of mean payoffs over rxθk

converges on the point
WMxθk

(w), and G({WMxθ1
(w), . . . ,WMxθn

(w)}) holds. This is because each of
the runs satisfies all of the universal threshold conditions in G, and each of the
existential threshold conditions is satisfied at least by one of the runs. There-
fore, we can construct a run such that the trace of mean payoffs over the run
comes arbitrarily close to every accumulation point WMxθk

(w) infinitely often.
Consequently, the condition (ii) holds iff there exists a run satisfying G.
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In addition, if such a run exists and condition (i) holds, there exists a run
such that both F and G hold [8]. Hence, there exists an accepting run on A iff
there exists a SCC on A satisfying the conditions (i) and (ii). �

Note that we can assume, without loss of generality, that (a) each coordinate is
referred to by just one threshold condition, since the duplication of the coordi-
nates of a weight function w does not change the recognizing language, and (b)
a threshold condition has the form minπi(·) ∼ 0, since any threshold condition
can be represented in this form via an affine transformation of w.

Therefore, the emptiness problems of MTMPBAs can be reduced to LCSPs.

Theorem 7. The emptiness problem of an MTMPBA is decidable in exponen-
tial time.

Proof. Let A = 〈Q,Σ,Δ, q0,w, F,G〉 be an MTMPBA, Gi the i-th disjunct of
a DNF formula

∨
Gi equivalent to G, and wi the affine transformation of w for

Gi, where each coordinate is referred to by just one threshold condition in Gi,
and each Gi has the form

∧
minπj(·) ∼ 0.

The language recognized by A is empty iff the language recognized by the
MTMPBAAi = 〈Q,Σ,Δ, q0,wi, F,Gi〉 is empty for all Gi. For Gi and reachable
(and maximal) SCC Sik on Ai, each LCSP in Lemma 6 can be solved by LP
methods in polynomial time for |Sik| and |G|. We must solve O(|G|) LCSPs to
decide whether Sik satisfies the condition (i) and (ii) in Lemma 6. Therefore,
the emptiness problem of Ai can be solved in polynomial time for |Q| and |G|.

In general, the number of disjuncts of a negation-free DNF formula equivalent
to G is exponential in |G|. Hence, the complexity of the emptiness problem is
polynomial in |Q| and exponential in |G|. �

The algorithm of [8] computes explicitly a counterpart to the solution region
for the linear constraints (1) and (2). The complexity is linear in the number of
simple cyclic finite runs on an automaton, and that number is roughly estimated
to be exponential in |Q| [8]. In comparison, our algorithm captures the region
implicitly, and solutions can be found in polynomial time for |Q|.
Example 5. Consider the MTMPBA A′

2 = 〈Q, 2{p0,p1}, Δ, q0, w′, {q0},minπ1(·)
< 0 ∧minπ2(·) < 0〉, obtained by affine transformation of the MTMPBA A2 =
〈Q, 2{p0,p1}, Δ, q0,w, {q0},maxπ1(·) > 1/2∧minπ2(·) < 0〉 of Example 4, where
w′[1](δ) = −w[1](δ) + 1/2 and w′[2](δ) = w[2](δ) for δ ∈ Δ. Trivially, the SCC
〈Q,Δ〉 is reachable and maximal, and has a final state q0. A′

2 has two existential
threshold conditions, and hence we must solve two LCSPs to decide whether
A′

2 (and also A2) is empty. For a non-negative vector 〈xδ1 , . . . , xδ6〉, the linear

constraints are: (1)
∑6

k=1 xδk ≥ 1, (2) xδ1 = xδ3 , xδ1 + xδ4 = xδ3 + xδ6 and
xδ4 = xδ6 , (6-1) − 1

2 (xδ1 +xδ2 +xδ3)+
1
2 (xδ4 +xδ5 +xδ6) ≤ −1 for minπ1(·) < 0,

and (6-2) xδ3 − xδ6 ≤ −1 for minπ2(·) < 0. As a result, 〈1, 0, 1, 0, 0, 0〉 and
〈0, 0, 0, 1, 0, 1〉 (for example) turn out to be solutions for {(1), (2) and (6-1)} and
{(1), (2) and (6-2)}, respectively. These vectors are indicative of the sets {δ1δ3}
and {δ4δ6} of single cyclic run. Therefore, we can construct an accepting run on

A2; e.g., (δ1δ3)
22(δ4δ6)

22
2

(δ1δ3)
22

3

(δ4δ6)
22

4

. . ..
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4 Decision and Optimization Problems of LTLmp

In this section, we present algorithms for the decision and optimization problems
of LTLmp.

In a manner analogous to the decision problems of classical LTL, we can reduce
the decision problems of LTLmp to the emptiness problems of automata, which
recognize LTLmp formulae. First, we show how to construct such an automaton
from a given LTLmp sentence.

Lemma 8. For an LTLmp sentence ϕ, there exists an MTMPBA recognizing ϕ.

Proof. Consider a future-independent payment t of the form
∑
ci ·1ψi (i.e., tem-

poral operators do not appear in every ψi). We can easily translate t into an
alphabetic weight function wt(δ) =

∑
letter(δ) satisfies ψi

ci, for δ ∈ Δ. Thus, the

MTMPBA A = 〈{q0}, 2AP , {q0} × 2AP × {q0}, q0,wt, {q0},minπ1(·) > c〉 rec-
ognizes the formula MP(t) > c. For a simple mean-payoff formula for such a
payment in another form, we can construct a recognizing MTMPBA in a simi-
lar way. Therefore, we can construct an MTMPBA recognizing a given LTLmp

sentence ϕ if ϕ has no future-dependent variable, since any LTLmp formula can
be represented in MPNF and Theorem 5 holds. The size of an MPNF formula
equivalent to ϕ is at worst linear in |ϕ| and exponential in the number n of
mean-payoff formulae in ϕ. Hence, the size of the resulting automaton is at
worst exponential in |ϕ| and n.

Next, consider an LTLmp sentence ϕ with m future-dependent characteristic
variables 1ψ1 , . . . ,1ψm . Then, we can obtain another LTLmp sentence ϕ′, which
has fresh predictive propositions p1, . . . , pm as follows:

ϕ′ = ϕ[ψ1, . . . , ψm/p1, . . . , pm] ∧∧
1≤j≤m�(pj ↔ ψj).

This sentence ϕ′ has no future-dependent variable, and preserves the behavioral
characteristics represented by ϕ. Therefore, we can obtain an MTMPBAAϕ that
recognizes ϕ, by eliminating p1, . . . , pm from an MTMPBA Aϕ′ that recognizes
ϕ′. The size of the resulting automaton is at worst exponential in also m. �

Example 6. Consider the following LTLmp formulae ϕ1, . . . , ϕ4: ϕ1 = ¬p0 ∧¬p1,
ϕ2 = �((¬p0 ∨ ¬p1) ∧ ((p0 ∨ p1) → X(¬p0 ∧ ¬p1))), ϕ3 = ��(p0 ∨ p1) and
ϕ4 = MP(1ψ1) ≥ 1/2 ∧ MP(1p0 − 1p1) ≥ 0, where ψ1 = (¬p0 ∧ ¬p1)Up1. The
MTMPBA A1 in Example 4 recognizes the LTLmp sentence

∧
1≤i≤4 ϕi, and A1

or an MTMPBA equivalent to it can easily be obtained from the sentence. Intu-
itively, ϕ1 represents the outgoing transitions 〈q0, A, q1〉 and 〈q0, A, q2〉 from the
initial state q0 of A1, ϕ2 represents the transition relation of A1, and ϕ3 and ϕ4

represent the Büchi and mean-payoff acceptance conditions of A1, respectively.
The nondeterminism of the transitions 〈q0, A, q1〉 and 〈q0, A, q2〉 on A1 is caused
by the future-dependent payment 1ψ1 .

4

4 Even if we consider multi-threshold mean-payoff “Rabin” automata, there is no de-
terministic automaton that recognizes the sentence

∧
1≤i≤4 ϕi. (The proof of this

fact is omitted from this paper.) However, some future-dependent payments (e.g.,
1Xp for p ∈ AP ) do not exhibit this result.
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In a manner analogous to the classical LTL model-checking, the model-checking
of an LTLmp formula ϕ against a payoff system PS can be reduced to the empti-
ness problem of a synchronized product of PS and an automaton recognizing
¬ϕ, considering the proper variable assignment. In this paper, we define the
satisfaction relation between a payoff system and an LTLmp formula as follows.

Definition 9 (PS |= ϕ). Let PS = 〈Q, 2AP , Δ, q0,w〉 be a d-dimensional payoff
system, and let ϕ be an LTLmp formula over a set V of free variables, where the
free variables are indexed and |V | = d. In addition, we assume that the i-th
free variable vi is associated with the i-th coordinate of w; i.e., we employ the
assignment αw,r such that αw,r(vi) = payoffw[i](r) for an infinite run r on PS.

We define the satisfaction relation PS |= ϕ by word(r), αw,r |= ϕ for all
r ∈ run(PS).

A little trick is required to assign traces of payoffs over a run of PS to free
variables in ϕ on the synchronized product. Then, we reduce the model-checking
to the emptiness problem.

Theorem 10. The model-checking for an LTLmp specification against a payoff
system is decidable in exponential time.

Proof. Let PS = 〈Q, 2AP , Δ, q0,w〉 be a payoff system, ϕ an LTLmp formula over
a set V of free variables, ϕi the i-th disjunct of an MPNF formula

∨
ϕi equivalent

to ¬ϕ, ψij the j-th simple mean-payoff formula in ϕi,
∑

(cijk · 1ϕijk
· ∏ vijkl)

the payment for ψij , w[ijkl] a coordinate function of w associated with the free
variable vijkl , and n the number of mean-payoff formulae in ϕ.
PS |= ϕ iff the language LPS,ϕi is empty for all ϕi, where LPS,ϕi is a set of

words over runs r ∈ run(PS) such that word(r) satisfies ϕi under the assignment
of each trace payoffw[ijkl](r) of payoffs over r to the corresponding free variable
vijkl in ϕi. Therefore, we construct MTMPBAs recognizing such languages, and
decide whether PS |= ϕ by checking the emptiness of them.

Then, we show how to construct such MTMPBAs. First, we construct an
MTMPBA Aϕ′

i
= 〈Qi, 2AP , Δi, qi0,wi, Fi, Gi〉 that recognize ϕ′

i = ϕi[v/0 for all
free variable v ∈ V ]. We assume that the j-th coordinate function wi[j] of wi

is associated with the payment for ψij , and predictive propositions for future-
dependent characteristic variables are still annotated on the automaton. Next, we
construct a synchronized product PS⊗Aϕi = 〈Q×Qi, 2AP , Δ′

i, 〈q0, qi0〉,w′
i, Q×

Fi, Gi〉 of PS and Aϕi , considering the proper variable assignment as follows:

Δ′
i = {〈〈q1, q′1〉, a, 〈q2, q′2〉〉|〈q1, a, q2〉 ∈ Δ, 〈q′1, a, q′2〉 ∈ Δi},

w′
i[j](〈〈q1, q′1〉, a, 〈q2, q′2〉〉) = wi[j](〈q′1, a, q′2〉)

+
∑

a satisfies ϕijk
(cijk ·

∏
w[ijkl](〈q1, a, q2〉)).

We use annotated predictive propositions to check whether the letter a satisfies
ϕijk if ϕijk has temporal operators. The automaton PS⊗Aϕi recognizes LPS,ϕi.

The automaton PS ⊗Aϕi has |Q| · |Qi| states and a conjunctive mean-payoff
acceptance condition Gi, where |Qi| = O(2|ϕ|) and |Gi| = O(n). The emptiness
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problem for PS ⊗Aϕi can be solved in polynomial time for |Q| · |Qi| and |Gi|,
since Gi is conjunctive (Theorem 7). The number of disjuncts of an MPNF
formula equivalent to ¬ϕ is exponential in n, and hence the complexity of the
model-checking is polynomial in |Q| and exponential in |ϕ| and n. �

Our algorithm can accomplish the model-checking of LTLmp with much less com-
plexity than the algorithm of [8], which is roughly estimated to be exponential
in |Q|, doubly exponential in |ϕ|, and triply exponential in n.

In a manner analogous to the classical LTL satisfiability problem, we can reduce
the satisfiability problem for an LTLmp sentence ϕ to the non-emptiness problem
of an automaton recognizing ϕ.

Theorem 11. The satisfiability problem of an LTLmp sentence is decidable in
exponential time.

Proof. An LTLmp sentence ϕ with n mean-payoff formulae is satisfiable iff an
MTMPBA that recognizes ϕ is not empty. By Theorem 7 and Lemma 8, the
satisfiability problem is decidable in exponential time for |ϕ| and n. �

We can eventually reduce the satisfiability problem of LTLmp to LCSPs, which
can be solved by LP methods. Therefore, some optimization problems of LTLmp

can be also solved by LP methods.

Theorem 12. The maximization/minimization problem for a mean-payoff ob-
jective (MP(t) or MP(t)), which is subject to an LTLmp sentence, is solvable in
exponential time.

Proof. Let θ be an objective (MP(t) or MP(t)), ϕ an LTLmp sentence, ϕi the i-th
disjunct MPNF formula

∨
ϕi equivalent to ϕ, and n the number of mean-payoff

formulae in ϕ.
The optimal value for θ, which is subject to ϕ, can be obtained as the optimal

value in the set of values optθ(ϕi), where optθ(ϕi) is the optimal value for θ,
which is subject to ϕi.

Such optθ(ϕi) can be found by using an MTMPBA At
ϕi
, which recognizes

ϕi and has an additional coordinate associated with t. For a disjunct ϕi, At
ϕi

can be obtained by a construction similar to that used in Lemma 8. Let wt be
the weight function of this additional coordinate, and let Gi be a mean-payoff
acceptance condition of At

ϕi
, where Gi has the form

∧
minπj(·) ∼ 0 and m

existential threshold conditions pi1, . . . , pim (m ≤ |Gi| ≤ n).
Then, optθ(ϕi) is obtained as the optimal value in a set of values optθ(At

ϕi
, Sik)

for reachable SCC Sik on At
ϕi
, where Sik satisfies the condition (i) and (ii) in

Lemma 6 and optθ(At
ϕi
, Sik) is the optimal value for θ, subject to ϕi on Sik.

If Sik satisfies the condition (i) and (ii), we obtain optθ(At
ϕi
, Sik) as follows:

– If (a)m = 0 or (b) the problem is the maximization ofMP(t) or the minimiza-
tion of MP(t), optθ(At

ϕi
, Sik) is the maximized/minimized weighted mean

WMx(wt) of wt with respect to the solution x, where x is subject to all uni-
versal threshold conditions in Gi on Sik (i.e., the linear constraints (1)-(4)
in Lemma 6).
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– Otherwise, optθ(At
ϕi
, Sik) is the minimum/maximum value in the set of the

maximized/minimized weighted means WMxik1
(wt), . . . ,WMxikm

(wt) of wt
with respect to the solutions xik1, . . . ,xikm, where each xikl is subject to all
universal threshold conditions in Gi and pil on Sik (i.e., the linear constraints
(1)-(4), and either (5) or (6) depending on pil in Lemma 6).

If (a) holds, optθ(At
ϕi
, Sik) is trivially optimal for ϕi on Sik. Otherwise, note

that each pil asserts that “some” accumulation points of mean payoffs over a
run satisfy the inequality. Therefore, if (b) holds, optθ(At

ϕi
, Sik) is obtained in-

dependently from pi1, . . . , pim. Otherwise, optθ(At
ϕi
, Sik) is given by the mini-

mum/maximum value in the set of the maximized/minimized weighted means
WMxik1

(wt), . . . ,WMxikm
(wt) for pi1, . . . , pim. Each optimization problem for

the weighted mean is a linear fractional programming problem (LFPP), which
can be solved by LP methods in polynomial time for |Sik| and n.

The basic flow of the optimization on At
ϕi

is similar to that of the emptiness
problem of an MTMPBAAϕi recognizing ϕi. Instead of each LCSP in the empti-
ness problem, we solve the corresponding LFPP in the optimization. Hence, the
complexity of the optimization problem is exponential in |ϕ| and n. �

Therefore, we can analyze performance limitations under given qualitative and
quantitative specifications described in LTLmp. LP and related techniques can be
also applied to other optimization problems (e.g., maximization/minimization
problems for the limit supremum or limit infimum of the ratio of the mean
payoffs for two payments) and multi-objective optimization problems, as in [14].
We conjecture that this LP-based approach for specification optimization can
effectively be applied to optimal synthesis for temporal logic specifications.

5 Conclusions and Future Work

In this paper, we introduced LTLmp, which is an extension of LTL with mean-
payoff formulae. A mean-payoff formula is a threshold condition for the limit
supremum or limit infimum of the mean payoffs pertaining to a given payment.
This extension allows us to describe specifications that reflect qualitative and
quantitative requirements on long-run average costs and frequencies of satisfy-
ing temporal properties. Moreover, we introduced multi-threshold mean-payoff
Büchi automata (MTMPBAs), which are payoff automata with Büchi accep-
tance conditions and multi-threshold mean-payoff acceptance conditions. Then,
we developed an algorithm for solving the emptiness problems of MTMPBAs,
by reducing the problems to linear constraint satisfaction problems. The deci-
sion problems of the logic can be reduced to the emptiness problems, and hence
we obtained exponential-time algorithms for model- and satisfiability-checking
of the logic. An additional advantage of the reduction is that some optimiza-
tion problems for specifications described in the logic can be solved by linear
programming methods in exponential time.

Future work will be devoted to a detailed analysis of the determinizability of
automata that recognize sentences described in mean-payoff extensions of LTL
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and to developing the realizability-checking and quantitative synthesis methods
of the extensions.
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