

Lecture Notes in Computer Science 7635
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Toshiaki Aoki Kenji Taguchi (Eds.)

Formal Methods
and Software Engineering

14th International Conference
on Formal Engineering Methods, ICFEM 2012
Kyoto, Japan, November 12-16, 2012
Proceedings

13

Volume Editors

Toshiaki Aoki
Japan Advanced Institute of Science and Technology (JAIST)
1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan
E-mail: toshiaki@jaist.ac.jp

Kenji Taguchi
National Institute of Advanced Industrial Science and Technology (AIST)
Nakoji 3-11-46, Amagasaki, Hyogo 661-0974, Japan
E-mail: kenji.taguchi@aist.go.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34280-6 e-ISBN 978-3-642-34281-3
DOI 10.1007/978-3-642-34281-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949358

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3, F.4.1, C.2, C.2.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The aim of the International Conference on Formal Engineering Methods
(ICFEM) is to provide an international forum to discuss research issues in for-
mal methods as well as to bring practitioners and researchers together to further
develop and to apply them to real-world problems. Formal methods are now be-
ing used in wide range of industrial sectors, and particularly in safety-critical
areas such as railways, automobiles, and avionics. We hope that ICFEM plays
an important role in encouraging researchers not only to advance theories but
also to develop application techniques of formal methods.

This was the 14th conference in the series and the third time that it was held
in Japan. It has been over a year since the Great East Japan earthquake and
Fukushima nuclear disaster took place. We really appreciate the encouragement,
concern, and humanitarian aid from all over the world and would like people to
come and see how we quickly recovered from such a great disaster.

The Program Committee received 85 submissions from 30 countries and each
paper was reviewed by at least three expert reviewers. We chose 31 papers as
the result of intensive discussions held among the Program Committee members.
We really appreciate the excellent reviews and lively discussions of the Program
Committee members and external reviewers in the review process. This year
we chose three prominent invited speakers, Mario Tokoro from Sony Computer
Science Laboratories, Robert E. Shostak from Vocera Communications, Inc.,
and Darren Cofer from Rockwell Collins, Advanced Technology Center. The
abstracts of their talks are included in these proceedings.

ICFEM 2012 was jointly organized by the National Institute of Advanced
Industrial Science and Technology (AIST) and Japan Advanced Institute of
Science and Technology (JAIST). This conference could not have been orga-
nized without the strong support from the staff members of both institutes. We
would especially like to thank Yuki Chiba, Takashi Kitamura, Kazuhiro Ogata,
Weiqiang Kong (University of Kyushu), Kenro Yadake, Hiromi Hatanaka, and
Satomi Takeda for their great help in organizing the conference. We also ap-
preciate the gentle guidance and help from General Chairs Shaoying Liu (Hosei
University) and Kokichi Futatsugi and the conference chair, Hitoshi Ohsaki.

November 2012 Toshiaki Aoki
Kenji Taguchi

Organization

Steering Committee

Keijiro Araki Kyushu University, Japan
Michael Butler University of Southampton, UK
Jin Song Dong National University of Singapore, Singapore
Jifeng He East China Normal University, China
Mike Hinchey University of Limerick, Ireland
Shaoying Liu (Chair) Hosei University, Japan
Jeff Offutt George Mason University, USA
Shengchao Qin University of Teesside, UK

General Chairs

Kokichi Futatsugi JAIST, Japan
Shaoying Liu Hosei University, Japan

Conference Chair

Hitoshi Ohsaki AIST, Japan

Program Chairs

Kenji Taguchi AIST, Japan
Toshiaki Aoki JAIST, Japan

Workshop/Tutorial Chairs

Kazuhiro Ogata JAIST, Japan
Weiqiang Kong Kyushu University, Japan

Publicity/Publication Chairs

Yuki Chiba JAIST, Japan
Takashi Kitamura AIST, Japan

Student Volunteer Chair

Kenro Yadake JAIST, Japan

VIII Organization

Web Chair

Nao Aoki JAIST, Japan

Conference Secretaries

Hiromi Hatanaka AIST, Japan
Satomi Takeda AIST, Japan

Program Committee

Bernhard K. Aichernig Graz University of Technology, Austria
Cyrille Valentin Artho AIST, Japan
Richard Banach University of Manchester, UK
Nikolaj Bjørner Microsoft Research Redmond, USA
Jonathan P. Bowen Museophile Limited and London South Bank

University, UK
Michael Butler University of Southampton, UK
Sagar Chaki Carnegie Mellon Software Engineering Institute,

USA
Rance Cleaveland University of Maryland, USA
Jim Davies University of Oxford, UK
Zhenhua Duan Xidian University, China
Joaquim Gabarro Universitat Politècnica de Catalunya, Spain
Andy Galloway University of York, UK
Stefania Gnesi ISTI-CNR, Italy
Wolfgang Grieskamp Google, USA
Kim Guldstrand Larsen Aalborg University, Denmark
Klaus Havelund NASA JPL, California Institute of Technology,

USA
Daniel Jackson MIT, USA
Thierry Jéron INRIA Rennes, France
Gerwin Klein NICTA and University of New South Wales,

Australia
Weiqiang Kong Kyushu University, Japan
Peter Gorm Larsen Aarhus University, Denmark
Insup Lee University of Pennsylvania, USA
Michael Leuschel University of Düsseldorf, Germany
Xuandong Li Nanjing University, China
Yuan-Fang Li Monash University, Australia
Zhiming Liu United Nations University, Macao
Dominique Méry Université de Lorraine, France

Organization IX

Stephan Merz INRIA Research Center Nancy Grand-Est,
France

Huaikou Miao Shanghai University, China
Alexandre Mota Universidade Federal de Pernambuco, Brazil
Shin Nakajima National Institute of Informatics, Japan
Kazuhiro Ogata JAIST, Japan
Jose Oliveira Universidade do Minho, Portugal
Jun Pang University of Luxembourg, Luxembourg
Shengchao Qin Teesside University, UK
Zongyan Qiu Peking University, China
S. Ramesh General Motors R&D, India
Alexander Romanovsky Newcastle University, UK
Wuwei Shen Western Michigan University, USA
Marjan Sirjani Reykjavik University, Iceland
Graeme Smith University of Queensland, Australia
Jing Sun The University of Auckland, New Zealand
Jun Sun Singapore University of Technology and Design,

Singapore
Yih-Kuen Tsay National Taiwan University, Taiwan
Viktor Vafeiadis Max Planck Institute for Software Systems,

Germany
Hai H. Wang Aston University, UK
Ji Wang National Laboratory for Parallel and

Distributed Processing, China
Wang Yi Uppsala University, Sweden
Jian Zhang Chinese Academy of Sciences, China
Huibiao Zhu East China Normal University, China

Additional Reviewers

Ait Ameur, Yamine
Alpuente, Maŕıa
Andrews, Zoe
Andronick, June
Barnett, Granville
Bryans, Jeremy
Bu, Lei
Carmona, Josep
Chen, Liqian
Chen, Xin
Chen, Yu-Fang
Chen, Zhenbang
Coleman, Joey
Cunha, Alcino
Daum, Matthias

Dong, Wei
Du, Dehui
Farias, Adalberto Cajueiro De
Ferrari, Alessio
Ferreira, Joao F.
Flodin, Jonas
Fontana, Peter
Ghassemi, Fatemeh
Goré, Rajeev
Gui, Lin
Hasuo, Ichiro
He, Guanhua
Huang, Yanhong
Höfner, Peter
Iliasov, Alexei

X Organization

Iyoda, Juliano
Juhl, Line
Khakpour, Narges
Khamespanah, Ehsan
Khosravi, Ramtin
Kitamura, Takashi
Li, Qin
Lluch Lafuente, Alberto
Maamria, Issam
Massink, Mieke
Mazzara, Manuel
Melo De Sousa, Simão
Murray, Toby
Nielsen, Claus Ballegaard
Orejas, Fernando
Passmore, Grant
Petrocchi, Marinella
Plagge, Daniel
Proenca, Jose
Ricker, Laurie
Sabouri, Hamideh
Salehi Fathabadi, Asieh
Sanan, David
Sarshogh, Mohammad Reza
Satpathy, Manoranjan
Schäf, Martin
Sharify, Zeynab

Shi, Ling
Shu, Qin
Silva, Renato Alexandre
Singh, Neeraj
Song, Songzheng
Sousa Pinto, Jorge
Stainer, Amelie
Su, Wen
Thomson, Jimmy
Tounsi, Mohamed
Traonouez, Louis-Marie
Tsai, Ming-Hsien
Venkatasubramanian, Krishna K.
Wang, Bow-Yaw
Wang, Linzhang
Wang, Shaohui
Wang, Zheng
Wu, Peng
Xiao, Hao
Xu, Meng
Zhang, Chenyi
Zhang, Nan
Zhang, Pengcheng
Zhang, Yufeng
Zhao, Jianhua
Zhong, Hao
Zhu, Ping

Sponsors

National Institute of Advanced Industrial Science and Technology (AIST), Japan
Research Center for Software Verification, Japan Advanced Institute of Science

and Technology (JAIST), Japan

Table of Contents

Invited Speech

Toward Practical Application of Formal Methods in Software Lifecycle
Processes . 1

Mario Tokoro

Formal Methods in the Aerospace Industry: Follow the Money 2
Darren Cofer

Applying Term Rewriting to Speech Recognition of Numbers 4
Robert E. Shostak

Concurrency

Variable Permissions for Concurrency Verification . 5
Duy-Khanh Le, Wei-Ngan Chin, and Yong-Meng Teo

A Concurrent Temporal Programming Model with Atomic Blocks 22
Xiaoxiao Yang, Yu Zhang, Ming Fu, and Xinyu Feng

A Composable Mixed Mode Concurrency Control Semantics
for Transactional Programs . 38

Granville Barnett and Shengchao Qin

Applications of Formal Methods to New Areas

Towards a Formal Verification Methodology for Collective Robotic
Systems . 54

Edmond Gjondrekaj, Michele Loreti, Rosario Pugliese,
Francesco Tiezzi, Carlo Pinciroli, Manuele Brambilla,
Mauro Birattari, and Marco Dorigo

Modeling Resource-Aware Virtualized Applications for the Cloud
in Real-Time ABS . 71

Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa

Specification and Model Checking of the Chandy and Lamport
Distributed Snapshot Algorithm in Rewriting Logic 87

Kazuhiro Ogata and Phan Thi Thanh Huyen

XII Table of Contents

Quantity and Probability

Quantitative Program Dependence Graphs . 103
Chunyan Mu

Quantitative Analysis of Information Flow Using Theorem Proving 119
Tarek Mhamdi, Osman Hasan, and Sofiène Tahar

Modeling and Verification of Probabilistic Actor Systems Using
pRebeca . 135

Mahsa Varshosaz and Ramtin Khosravi

Formal Verification

Modular Verification of OO Programs with Interfaces 151
Qiu Zongyan, Hong Ali, and Liu Yijing

Separation Predicates: A Taste of Separation Logic in First-Order
Logic . 167

François Bobot and Jean-Christophe Filliâtre

The Confinement Problem in the Presence of Faults 182
William L. Harrison, Adam Procter, and Gerard Allwein

Modeling and Development Methodology

Verification of ATL Transformations Using Transformation Models
and Model Finders . 198

Fabian Büttner, Marina Egea, Jordi Cabot, and Martin Gogolla

Automatic Generation of Provably Correct Embedded Systems 214
Shang-Wei Lin, Yang Liu, Pao-Ann Hsiung, Jun Sun, and
Jin Song Dong

Complementary Methodologies for Developing Hybrid Systems
with Event-B . 230

Wen Su, Jean-Raymond Abrial, and Huibiao Zhu

Temporal Logics

A Temporal Logic with Mean-Payoff Constraints . 249
Takashi Tomita, Shin Hiura, Shigeki Hagihara, and Naoki Yonezaki

Time Constraints with Temporal Logic Programming 266
Meng Han, Zhenhua Duan, and Xiaobing Wang

Stepwise Satisfiability Checking Procedure for Reactive System
Specifications by Tableau Method and Proof System 283

Yoshinori Neya and Noriaki Yoshiura

Table of Contents XIII

Abstraction and Refinement

Equational Abstraction Refinement for Certified Tree Regular Model
Checking . 299

Yohan Boichut, Benoit Boyer, Thomas Genet, and Axel Legay

SMT-Based False Positive Elimination in Static Program Analysis 316
Maximilian Junker, Ralf Huuck, Ansgar Fehnker, and
Alexander Knapp

Predicate Analysis with Block-Abstraction Memoization 332
Daniel Wonisch and Heike Wehrheim

Heuristic-Guided Abstraction Refinement for Concurrent Systems 348
Nils Timm, Heike Wehrheim, and Mike Czech

More Anti-chain Based Refinement Checking . 364
Ting Wang, Songzheng Song, Jun Sun, Yang Liu, Jin Song Dong,
Xinyu Wang, and Shanping Li

Tools

An Analytical and Experimental Comparison of CSP Extensions
and Tools . 381

Ling Shi, Yang Liu, Jun Sun, Jin Song Dong, and Gustavo Carvalho

Symbolic Model-Checking of Stateful Timed CSP Using BDD
and Digitization . 398

Truong Khanh Nguyen, Jun Sun, Yang Liu, and Jin Song Dong

Annotations for Alloy: Automated Incremental Analysis Using Domain
Specific Solvers . 414

Svetoslav Ganov, Sarfraz Khurshid, and Dewayne E. Perry

State Space c-Reductions of Concurrent Systems in Rewriting Logic 430
Alberto Lluch Lafuente, José Meseguer, and Andrea Vandin

Testing and Runtime Verification

A Practical Loop Invariant Generation Approach Based on Random
Testing, Constraint Solving and Verification . 447

Mengjun Li

ConSMutate: SQL Mutants for Guiding Concolic Testing of Database
Applications . 462

Tanmoy Sarkar, Samik Basu, and Johnny S. Wong

XIV Table of Contents

Demonic Testing of Concurrent Programs . 478
Scott West, Sebastian Nanz, and Bertrand Meyer

Towards Certified Runtime Verification . 494
Jan Olaf Blech, Yliès Falcone, and Klaus Becker

Author Index . 511

Toward Practical Application of Formal

Methods in Software Lifecycle Processes

Mario Tokoro

Sony Computer Science Laboratories, Inc., Tokyo, Japan
mario.tokoro@csl.sony.co.jp

Recent information systems are getting larger and more complex, and are
used for a long period of time, continually being modified to meet the unex-
pected changes of service objectives, users’ requirements, available technologies,
standards, and regulations. Such systems usually include externally-developed
modules, and are often connected to other systems, which may change occasion-
ally. Thus, today’s software lifecycle processes must be able to cope with such
changes.

One of the important goals of software lifecycle processes is to keep consis-
tency between the stakeholders’ aim at a system and its specification, between
the specification and its implementation, and between the implementation and
expected result of operations on the system, throughout the system’s lifecycle
in the above-mentioned situations. This is extremely difficult to achieve not
just because synchronized update of the aim, specification, implementation, and
the expectation of operation result is almost impossible, but also because the
meaning of each word cannot be completely defined, which is known as the in-
determinacy problem, and may change as the time progresses. The vocabulary
may also change. Formal methods play an important role in software lifecycle
processes, however, the issues lie not on the logic part per se, but on the interface
that facilitates description of the system and accommodates such changes.

We are challenging toward the aforementioned goal in the DEOS (Depend-
ability Engineering for Open Systems) project (http://www.dependable-os.net/
osddeos/index-e.html). The DEOS process treats the initial development, the
modification of a system, and system operation as an integrated iterative lifecy-
cle process. It includes an extension to assurance cases called D-Case for stake-
holders to achieve consensus on dependability issues, and the DEOS architecture
which provides flexible monitoring and control functions. D-Case Editor, D-Case
Viewer, and D-Case/Agda together facilitate description of the system and ac-
commodate various changes. The Agreement Description Database (D-ADD)
retains all the versions of D-Case descriptions with the reasons of revision and
the trace of all changes of the meaning of a word and vocabulary. This formation
enables formal methods to be practically used in the DEOS software lifecycle
process.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 2–3, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Formal Methods in the Aerospace Industry:
Follow the Money

Darren Cofer

Rockwell Collins, Advanced Technology Center
7805 Telegraph Rd. #100
Bloomington, MN 55438

ddcofer@rockwellcollins.com

Abstract. Modern aircraft contain millions of lines of complex software, much
of it performing functions that are critical to safe flight. This software must be
verified to function correctly with the highest levels of assurance, and aircraft
manufacturers must demonstrate evidence of correctness through a rigorous
certification process. Furthermore, the size and complexity of the on-board
software are rising exponentially. Current test-based verification methods are
becoming more expensive and account for a large fraction of the software
development cost. New approaches to verification are needed to cope
effectively with the software being developed for next-generation aircraft.

Formal analysis methods such as model checking permit software design
models to be evaluated much more completely than is possible through
simulation or test. This permits design defects to be identified and eliminated
early in the development process, when they have much lower impact on cost
and schedule. Advances in model checking technology, the adoption of model-
based software development processes, and new certification guidance are
enabling formal methods to be used by the aerospace industry for verification of
software.

This talk provides an overview of our work applying formal methods, such
as model checking, to the development of software for commercial and military
aircraft [1]. Formal methods being used to provide increased assurance of
correctness, reduce development cost, and satisfy certification objectives. A
number of applications of formal methods at Rockwell Collins will be presented
to illustrate these benefits and how they relate to the aerospace industry.

The traditional justification for the use of formal methods has been to
provide increased assurance of correctness, especially for systems or
components that implement safety-critical functions. Model checking excels in
this area, providing comprehensive exploration of system behavior and
exposure of design errors.

However, the strongest motivation for adoption of model checking in the
industry seems much more likely to be cost reduction [2]. The ability to detect
and eliminate defects early in the development process has a clear impact on
downstream costs. Errors are much easier and cheaper to correct in the
requirements and design phases than during subsequent implementation and
integration phases.

 Formal Methods in the Aerospace Industry: Follow the Money

3

An additional benefit which may become increasingly important is the
ability to satisfy certification objectives through the use of formal methods,
including model checking. New certification guidance supporting the use of
formal methods has been included in the recently published DO-178C [3], the
industry standard governing software aspects of aircraft certification. This will
also impact the economic motivations surrounding the use of formal methods.

References

1. Miller, S., Whalen, M., Cofer, D.: Software Model Checking Takes Off. Communications
of the ACM 53(2), 58–64 (2010)

2. Whalen, M., Cofer, D., Miller, S., Krogh, B.H., Storm, W.: Integration of Formal Analysis
into a Model-Based Software Development Process. In: Leue, S., Merino, P. (eds.) FMICS
2007. LNCS, vol. 4916, pp. 68–84. Springer, Heidelberg (2008)

3. DO-178C: Software Considerations in Airborne Systems and Equipment Certification.
RTCA (2012)

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, p. 4, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Applying Term Rewriting to Speech Recognition
of Numbers

Robert E. Shostak

Vocera Communications, Inc., San Jose, CA 95126 USA

Abstract. In typical speech recognition applications, the designer of the
application must supply the recognition engine with context- free grammars
defining the set of allowable utterances for each recognition.

In the case of the recognition of numeric quantities such as phone and room
numbers, such grammars can be fairly tricky to formulate. The natural
pronunciations of a number may have many variations and special cases
depending on the language and country. Consider, for example, the
pronunciations of the four-digit phone extension “2200” in the United Kingdom.
One could pronounce this “two-two-zero-zero”, of course, but you will also hear
“twenty-two hundred”, “double-two double-naught”, and many other
combinations. In North America, on the other hand, you would almost never hear
the use of “double”, “triple”, or “naught”. Conventions for pronouncing numbers
also depend heavily on the type of quantity being recognized. The year 1987, for
example, could be pronounced “nineteen eighty-seven” or in literary contexts,
“nineteen hundred and eighty seven” - but never “one-nine eighty-seven” or “one-
thousand-nine-hundred and eighty-seven”.

The richness and idiosyncrasies of pronunciation possibilities, together with
the combinatorics of dealing with multi-digit numbers of varying lengths, thus
make the practical task of manually designing sufficiently complete number
grammars laborious and error prone. This is especially true for applications that
must be localized to countries having differing telephone dial plans and
conventions for natural pronunciation. Ideally, one would like to be able to
generate such grammars automatically, or at least semi-automatically.

Doing so requires an intuitive specification technique that allows one to
easily encode pronunciation rules from which a grammar can be automatically
derived. In this talk, we will show how to define certain formal term rewriting
systems – which we call Number Generating Term Rewriting Systems
(NGTRS) – that work extremely well for this purpose. We will show that
given an NGTRS that generates pronunciations for digit strings representing
numeric quantities, we can mechanically generate an equivalent context-free
grammar. We’ll give some examples in a number of different natural
languages, and explain how classical term rewriting proof techniques can be
used to verify the consistency and completeness of the construction.

The method we describe was put to real-world use in Vocera’s speech-
controlled communication system. This is a commercial product that consists of
tiny, Star Trek-like wearable communicator badges operating against an enterprise-
class server on a Wi-Fi network. The system is currently used by nearly a half-
million nurses and doctors every day in hospitals in several countries.

Variable Permissions

for Concurrency Verification

Duy-Khanh Le, Wei-Ngan Chin, and Yong-Meng Teo

Department of Computer Science, National University of Singapore
{leduykha,chinwn,teoym}@comp.nus.edu.sg

Abstract. In the multicore era, verification for concurrent programs
is increasingly important. Although state-of-the-art verification systems
ensure safe concurrent accesses to heap data structures, they tend to ig-
nore program variables. This is problematic since these variables might
also be accessed by concurrent threads. One solution is to apply the
same permission system, designed for heap memory, to variables. How-
ever, variables have different properties than heap memory and could
benefit from a simpler reasoning scheme. In this paper, we propose a
new permission system to ensure safe accesses to shared variables. Given
a shared variable, a thread owns either a full permission or no permission
at all. This ensures data-race freedom when accessing variables. Our goal
is to soundly manage the transfer of variable permissions among threads.
Moreover, we present an algorithm to automatically infer variable per-
missions from procedure specifications. Though we propose a simpler
permission scheme, we show that our scheme is sufficiently expressive
to capture programming models such as POSIX threads and Cilk. We
also implement this new scheme inside a tool, called Vperm, to auto-
matically verify the correctness of concurrent programs based on given
pre/post-specifications.

Keywords: Variable, permission, concurrency, verification.

1 Introduction

Access permissions have recently attracted much attention for reasoning about
heap-manipulating concurrent programs [2, 4, 7, 9–12]. Each heap location is
associated with a permission and a thread can access a location if and only
if it has the access permission for that location. Permissions can be flexibly
transferred among callers and callees of the same threads or among different
threads. A thread needs a certain fraction of a permission to read a location but
it has to own the full permission in order to perform a write. This guarantees
data-race freedom in the presence of concurrent accesses to heap locations.

Program variables, as distinct from heap locations, can also be shared among
threads and are prone to data races. Therefore, one may adopt a similar scheme,
designed for heap locations, to reason about variables. “Variables as resource” [3,
22] indeed uses such a permission scheme for variables. Each variable x is aug-
mented with a predicate Own(x, π) where π denotes the permission to access x.
The permission domain is either (0,1] for fractional permissions [4] or [0,∞) for

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 5–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

6 D.-K. Le, W.-N. Chin, and Y.-M. Teo

counting permissions [2]. This allows variables to be treated in the same way
as heap locations. However, this permission scheme is more complex and places
higher burden on programmers to figure out the fraction to be associated to a
variable and how to perform permission accounting properly [2]. To the best of
our knowledge, we are not aware of any existing verifiers that have fully im-
plemented the idea. Smallfoot [1] uses side-conditions to outlaw conflicting
accesses to variables. This, however, requires subtle, global, and hard-to-check
conditions that a compiler should ensure [3, 23]. Similarly, Chalice [16, 17], a
program verifier developed for concurrency verification, does not support permis-
sions for variables in method bodies. Even Verifast [12, 13], a state-of-the-art
verifier, still does not naturally support concurrency reasoning using variables,
though it has support for variables by simulating them as heap locations. Con-
sequently, existing verification systems narrow the programmers’ choice to heap
locations instead of variables for shared accesses by concurrent threads at the
expense of losing the expressivity and simplicity that variables provide.

In this paper, we argue that variables with their own characteristics could
be treated in a much simpler way than heap locations. Firstly, each variable is
distinct; therefore, aliasing issue required for heap locations can be ignored for
variables in most cases. Secondly, if several threads need to concurrently read
a variable, the main thread holding the full permission of the variable can just
give each child thread a copy of the variable through pass-by-value mechanism. If
concurrent threads require write access to the same variable, this shared variable
can be protected by a mutex lock whose invariant holds the full permission of the
variable. Lastly, if only one thread requires a write access to a given variable, we
can simply pass the full permission of the variable into the thread (through pass-
by-reference) whose permission is only returned when the child thread joins the
main thread. This scheme allows concurrent but race-free accesses to variables.

Nonetheless, there are two scenarios where the above scheme is inadequate.
The first scenario occurs in languages such as C/C++ when some variables can
be aliased through the use of the address-of operator &. The second scenario
occurs when concurrent threads require phased accesses to shared variables, e.g.
concurrent threads safely read prior to writing to shared variables. In both sce-
narios, we propose to automatically translate the affected variables into pseudo-
heap locations where a more complex heap permission scheme is utilized.

Because of the above observations, we propose to simply assign a permission of
either full or zero to a variable. We can utilize heap (or pseudo-heap) locations to
complement our concurrent programmingmodel,where necessary, and also readily
use variables, where sufficient. The net result is a rich but still verifiable program-
ming paradigm for concurrent threads. We shall show that our treatment of vari-
able permissions is sound and expressive to capture programming models such as
POSIX threads [5] andCilk [8]. To relieve programmers fromannotation efforts,we
shall demonstrate an algorithm to automatically infer variable permissions by only
looking at procedure specifications. We shall also provide a translation scheme to
handle the variable aliasing (that can also be used for variables requiring phased
accesses) and thus complement our treatment of variable permissions.

Variable Permissions for Concurrency Verification 7

Contributions. In this paper, we make the following contributions:

– A simpler treatment of variable permissions to ensure safe concurrent ac-
cesses to program variables, as distinct from heap locations (Section 2 and
4.1). We also demonstrate the applicability of our scheme to popular pro-
gramming models such as POSIX threads and Cilk (Section 5.1).

– An algorithm to automatically infer variable permissions from procedure
specifications. This helps to reduce program annotations (Section 4.2).

– A translation scheme to eliminate variable aliasing for the purpose of pro-
gram verification. (Section 4.3). We present how to translate programs with
pointers and address-of operator (&) into our core language (Section 3).

– A prototype system,Vperm1, to show that our variable permission scheme is
practical to be implemented and to automatically verify concurrent programs
such as parallel mergesort and parallel quicksort among others. Experimental
results show that our system minimizes user annotations that are typically
required in verification (Section 6).

2 Motivating Example

This section illustrates our treatment of variable permissions to reason about
concurrent programs. Figure 1 shows an example illustrating the widely-used
task-decomposition pattern in concurrent programming. The main procedure
invokes the creator procedure to create a concurrent task and later performs a
join to collect its result. In this example, the main procedure creates two local
variables x and y and passes them to the creator. The creator forks a child
thread that increases x by 1, and itself increases y by 2. The identifier tid of the
child thread is returned to the main procedure which will later perform a join.

This example shows a fairly complicated inter-procedural passing of variables
between the main thread and the child thread. It poses two challenges: (i) how
to describe the fact that any accesses to x after forking the child thread and
before joining it are unsafe, and (ii) how to propagate this fact across procedure
boundaries. These issues can be resolved soundly and modularly by our proposed
variable permissions.

Modular reasoning is achieved by augmenting the specification of the program
with variable permissions: @full [...] and @value[...]. In pre-conditions (speci-
fied after requires keyword), @full [v∗] and @value[v∗] denote lists of pass-by-
reference and pass-by-value parameters respectively. If a variable is passed by
reference, the caller transfers the full permission of that variable to the callee. If
a variable is passed by value, only a copy of that variable is passed to the callee
and the caller still has the full permission of that variable. In post-conditions
(after ensures keyword), @full [v∗] specifies the transfer of full permissions from
the callee back to the caller via pass-by-reference parameters. Note that callers
and callees can be in a single thread in case of normal procedure calls or in
different threads in case of asynchronous calls via fork/join.

1 The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/vperm/.

8 D.-K. Le, W.-N. Chin, and Y.-M. Teo

void inc(ref int i, int j)
requires @full [i] ∧@value[j]
ensures @full [i] ∧ i′=i+j;
{ i = i+ j; }

int creator(ref int x, ref int y)
requires @full [x, y]
ensures @full [y] ∧ y′=y+2 ∧ res=tid
and @full [x]∧x′=x+1∧thread=tid;
{
int tid = fork(inc, x, 1);
inc(y, 2);
return tid;
}

void main()
{
int id;
int x = 0, y = 0;
id = creator(x, y);
...
join(id);
assert (x′ + y′ = 3);
}

Fig. 1. A Motivating Example

In this example, the main proce-
dure transfers the full permissions
of x and y to the creator (specified
in its precondition as @full [x, y]).
When forking a new child thread
executing the inc procedure, the
main thread transfers the full per-
mission of x to the child thread (us-
ing pass-by-reference mechanism).
This effect can be seen in the post-
condition of the creator where we
have two concurrent threads sep-
arated by the and keyword: af-
ter giving up the full permission
of x, the main thread retains the
full permission of y (@full [y]) while
the child thread (with identifier
thread=tid) holds the full permis-
sion of x (@full [x]). Thus, prior to
invoking a join to merge back the
child thread, the main thread has
zero permission of x and is not al-
lowed to access it (neither read nor
write). This ensures data-race free-
dom since only one thread at a time
can have the full permission of x.

In the specification, we use the
reserved keyword thread to capture the identifier tid of a child thread and the
keyword res to represent the return value of a procedure call (in case of creator,
the return value is the thread identifier tid of the child thread). Additionally,
we use primed notation to handle updates to variables. The primed version x′ of
a variable x denotes its latest value; the unprimed version x denotes its initial
value (i.e. its value at the beginning of the procedure). Note that a variable x
and its primed version x′ can be related but are two different logical variables.

One may think that this treatment of variable permissions can be easily cap-
tured through parameter passing, e.g. for each reference parameter v, just add
an @full [v] in the main thread of both pre- and post-conditions. However, this
simple assumption may not hold in the context of concurrency. The key question
is which thread holds full permission of a given variable. The full permission can
belong to the main thread in the pre-condition but later it is transferred to a
child thread in the post-condition and vice versa. For example, in the creator,
the main thread has @full [x] in the pre-condition but this permission is later
transferred to the child thread in the post-condition. In summary, the goal of
our scheme is to succinctly manage the transfer of variable permissions among
threads in a sound and modular manner.

Variable Permissions for Concurrency Verification 9

3 Programming and Specification Languages

Our core programming language (Figure 2) is an imperative language with
fork/join concurrency for dynamic thread creation. We chose fork/join as con-
structs for concurrency because they are often used in concurrent program-
ming [18]. A program consists of a list of data declarations (data decl∗), a list
of global variable declarations (global decl∗), and a list of procedure declarations
(proc decl∗). Each procedure proc decl is annotated with pairs of pre/post spec-
ifications (Φpr/Φpo). A parameter param can be passed by value or by reference
(ref). A fork receives a procedure name pn, a list of parameters v∗, and returns
a unique thread identifier as an integer. A join requires a thread identifier to join
the thread back. The semantics of other program statements is standard as can
be found in well-known languages such as C/C++. Note that the core language
does not include program pointers and address-of operator (&). In Section 4.3,
we show how to translate those constructs into the core language.

P ::= data decl∗ global decl∗ proc decl∗ Program
data decl ::= data C { field decl∗ } Data declaration
field decl ::= type f; Field declaration

global decl ::= global type v Global variable declaration
proc decl ::= ret type pn(param∗) spec∗ { e } Procedure declaration

spec ::= requires Φpr ensures Φpo; Pre/Post-conditions
param ::= type v | ref type v Parameter
type ::= int | bool | C Type

e ::= v | v.f | k Variable/field/constant

stmt ::=
v = fork(pn,v∗)
| join(v) | pn(v∗) | . . . Statement

Fig. 2. Programming Language with Annotations and Concurrency

Shape predicate spred ::= [self::]c[(f)]〈v∗〉 ≡ Φ [inv π0]
Separation formula Φ ::=

∨
(∃v∗ · μ[(and μ)∗])∗

Thread formula μ ::= κ ∧ ν ∧ γ ∧ φ
Heap formula κ ::= emp | � | κ1 ∗ κ2

Atomic heap formula � ::= p::c[(f)]〈v∗〉
Vperm formula ν ::= @zero[v∗] | @full [v∗] | @value[v∗]

| ν1 ∧ ν2 | ν1 ∨ ν2
Thread id formula γ ::= thread = v | true

Pure formula φ ::= ...

Fractional permission variable f ∈ (0,1] v ∈ Variables
c ∈ Data or predicate names k ∈ Integer constants

Fig. 3. Grammar for Specification Language

Figure 3 shows our rich specification language for concurrent programs manip-
ulating variables and heap locations. For variables, we use variable permissions.
For heap locations, we support user-defined predicates spred [19] and fractional

10 D.-K. Le, W.-N. Chin, and Y.-M. Teo

permissions f [4]. Φ is a separation logic formula [24] in disjunctive normal
form. Each disjunct in Φ consists of a thread formula μ for a main thread and
a list of thread formulas (separated by the and keyword) to represent concur-
rent threads. Each thread formula μ contains four parts: a heap formula κ, a
vperm formula ν, a threading formula γ, and a pure formula φ. A heap formula
κ consists of multiple atomic heap formulas � connected with each other via
separation connectives ∗ . An atomic heap formula p::c[(f)]〈v∗〉 represents the
fact that a thread has certain permission f to access a heap location of type
c pointed to by p. Vperm formula ν describes permissions of variables (Sec-
tion 4.1). A thread id formula γ specifies the identifier of a concurrent thread
using the keyword thread; a main thread has a thread id formula of true. A
pure formula φ consists of standard equality/inequality, Presburger arithmetic
and set constraints.

4 Variable Permissions for Safe Concurrency

4.1 Verification Rules

Our verification system is based on entailment checking:

ΔA � ΔC � ΔR

Intuitively, the entailment checks if the antecedentΔA is precise enough to imply
the consequent ΔC , and computes the residue for the next program state ΔR.

Formalism. In order to ensure safe concurrent accesses to variables, we use two
key annotations for variable permissions:

– @full [v∗] specifies the full permissions of a list of variables v∗. In pre-
conditions, it means that v∗ is a list of pass-by-reference parameters. In
post-conditions, it captures the return of permissions to caller.

– @value[v∗] only appears in pre-conditions to specify a list of pass-by-value
parameters v∗.

@full [S] ∧ v
∈S � @full [v] � fail FAIL−1

@full [S] ∧ v
∈S � @value[v] � fail FAIL−2

v ∈ S

@full [S] � @full [v] � @full [S−{v}] P−REF

v ∈ S

@full [S] � @value[v] � @full [S]
P−VAL

@full [S1] ∧@full [S2] � @full [S1 ∪ S2] NORM−1

@full [S1] ∨@full [S2] � @full [S1 ∩ S2] NORM−2

@full [S1] ∧@value[S2] � @full [S1 ∪ S2] BEGIN

Fig. 4. Entailment Rules on Variable Permissions

Variable permissions can be transferred among callers and callees of the same
thread, and among distinct threads. The verification rules for variable permis-
sions are shown in Figure 4. A main thread (or a caller) that does not have
full permission of a variable cannot pass that full permission to another thread

Variable Permissions for Concurrency Verification 11

(or a callee) either by reference or by value (FAIL−1 and FAIL−2). After passing
a variable by reference, a main thread (or a caller) loses the full permission of
that variable (P−REF). However, for a pass-by-value variable, it will still retain
the full permission (P−VAL). The normalization rules NORM−1 and NORM−2

soundly approximate sets of full permissions. At the beginning of a procedure,
a main thread has full permissions of its pass-by-reference and pass-by-value
parameters (BEGIN). The rules presented are simple, and this is precisely how
we would like the readers to feel. Simplicity has its virtue and we hope that this
would encourage safer concurrent programs to be written.

In our implementation, we also support @zero[· · ·] as a dual to @full [· · ·]
annotation. The former denotes a set of variables that may possibly have zero
permission. This is useful for more concise representation since only a small
fraction of variables typically lose their permissions temporarily.

Forward Verification. Forward verification is formalized using Hoare’s triples
of the form {Φpr}P{Φpo}: given a program P beginning in a state satisfying
the pre-condition Φpr, if it terminates, it will do so in a state satisfying the
post-condition Φpo. Our forward verification rules are presented in Figure 5. We
only focus on three key statements that transfer variable permissions: procedure
call, fork and join. Note that the transfer of variable permissions is done via
entailments as illustrated in Figure 4. In our system, each program state Δ[Δ∗

t]
consists of the current state Δ of a main thread and a list of post-states Δ∗

t of
child threads. Here post-states refer to states of child threads after they finish
execution. These post-states will be merged into the state of the main thread
when child threads are joined.

{P} pn(v∗) {Q} Δ � P � Δ1 Δ2
Δ
= Δ1 ∗ Q

{Δ[Δ∗
t]} pn(v∗) {Δ2[Δ

∗
t]}

CALL

{P} pn(v∗) {Q} Δ � P � Δ1

Δtnew
Δ
= Q ∧ thread=unique id

Δ2
Δ
= Δ1 ◦{v} v′=unique id

{Δ[Δ∗
t]} v := fork(pn,v∗) {Δ2[Δtnew ::Δ

∗
t]}

FORK

(Δ1 ∧ thread=id) ∈ Δ∗
t

Δ � v′ = id � Δ2 Δ3
Δ
= Δ2 ∗ Δ1

Δ∗
tnew = Δ∗

t−[Δ1 ∧ thread=id]

{Δ[Δ∗
t]} join(v) {Δ3[Δ

∗
tnew]}

JOIN

Fig. 5. Forward Verification Rules for Concurrency

In order to perform a procedure call (CALL), a main thread should be in a
state Δ that can entail the pre-condition P of the procedure pn. For clarity of
presentation, we omit the substitutions that link actual and formal parameters
of the procedure prior to the entailment. After the entailment, the main thread
subsumes the post-condition Q of the procedure with the residue Δ1 to form a
new state Δ2. The list of concurrent threads Δ∗

t remains unchanged.

12 D.-K. Le, W.-N. Chin, and Y.-M. Teo

Similarly, in order to fork a new child thread (FORK), a main thread should
be in a state Δ that can satisfy the pre-condition P of the forked procedure pn.
Then a new thread Δtnew with a unique identifier carrying the post-condition Q
of the corresponding forked procedure is created. The new thread is then added
to the list of child threads. The main thread keeps the identifier of the child
thread in its new state Δ2 via the return value v of the fork call.

In the opposite way, when joining a child thread with an identifier v (JOIN),
the main thread checks if v is a certain identifier in any child thread, merges the
post-state of the child thread Δ1 into its residue state Δ2 to form a new state
Δ3, and removes the thread from the list of concurrent threads (denoted by the
subtraction “−”). The rest of verification rules used in our system only operate
on the state of the main thread and are standard as discussed in [19].

Theorem 1 (Soundness of Variable Permission Scheme). Given a pro-
gram with a set of procedures P i and their corresponding pre/post-conditions
(Φi

pr/Φ
i
po) enhanced with variable permissions, if our verification system derives

a proof for every procedure P i, i.e. {Φi
pr} P i {Φi

po} is valid, then the program is
free from data races.

Proof. By proving that the scheme maintains the invariant that the full permis-
sion of each variable belongs to at most one thread at any time. More details
are given in the technical report [15]. �	

4.2 Inferring Variable Permissions

In this section, we investigate inference for variable permissions. Approaches in
permission inference for variables [23] and heap locations [7, 10] require entire
program code and/or its specifications for their global analysis. The simplicity of
our variable permission scheme offers opportunities for automatically and mod-
ularly inferring variable permissions by only looking at procedure specifications.

Our inference is based on following key observations. Firstly, local variables
of a procedure cannot escape from their lexical scope; therefore, they are not
allowed to appear in post-conditions. Secondly, scopes of pass-by-value pa-
rameters are only within their procedures; therefore, @value[...] only exists in
pre-conditions and updates to these parameters need not be specified in post-
conditions. Thirdly, for each procedure with its R-complete pre/post-conditions,
updates to its reference parameters must be specified in its post-condition via
primed notations. Lastly, because child threads carry the post-conditions of their
corresponding forked procedures, their states include information about updates
to variables that were passed by reference to their forked procedures.

Definition 1 (Primed Notations and R-complete Specifications).
Primed notations represent the latest values of program variables; unprimed no-
tations denote either logical variables or initial values of program variables. A
procedure specification is R-complete if all updates to its pass-by-reference pa-
rameters are specified in the pre/post conditions using primed notations.

Variable Permissions for Concurrency Verification 13

Algorithm 1. Inferring variable permissions from procedure specifications

Input: Φpr, Φpo: pre/post-conditions of a procedure without variable permissions
Input: Vref , Vval : sets of pass-by-reference and pass-by-value parameters
Output: Pre/post-conditions with inferred variable permissions
1: Vpost :=Vref

2: /*Infer @full [...] annotations for post-condition*/
3: for each thread Δ in Φpo do
4: /*Set of free variables that are updated in Δ using primed notations*/
5: Vm :={v : v ∈ FreeV ars(Δ) ∧ isPrimed(v)}
6: if (Vm−Vpost)
= φ then Error
7: else
8: Δ:=Δ ∧@full [Vm]
9: Vpost :=Vpost−Vm

10: end if
11: end for
12: /*excluding reference parameters not updated in post-condition*/
13: Vpre :=Vref−Vpost

14: /*Infer @full [...] annotations for pre-condition’s child threads*/
15: /*in the same way as with those in post-condition but replace Vpost by Vpre*/
16: for each child thread Δt in Φpr do
17: ...
18: end for
19: For the main thread Δ in Φpr: Δ := Δ ∧@full [Vpre] ∧@value[Vval]
20: return Φpr,Φpo

We present our inference in Algorithm 1. For each procedure, the algorithm
starts inference for the post-condition first. For each thread in the post-condition
(either main thread or child thread), the full permissions are inferred by com-
puting those pass-by-reference parameters that are updated in each thread’s
specification via primed notations. The if statement in line 6 detects an error
if there are some primed variables that (1) are not reference parameters or (2)
belonged to other threads in the previous iterations. The subtraction in line 9
removes from the set of reference parameters Vpost those variables whose inferred
full permissions already belonged to the current thread. This ensures that only
one thread in the specification holds the full permission of a variable. Because
child threads in the pre-condition carry the post-conditions of their correspond-
ing forked procedures, we infer variable permissions for these child threads in
the same way as with those in the post-condition. Note that the main thread
is the currently active execution thread; therefore, its state in the pre-condition
does not include primed variables. The main thread of the pre-condition holds
full permissions of variables whose are updated (specified in the post-condition)
and do not belong to any child threads. The subtraction in line 13 is necessary
because there are certain variables that are passed by reference but their full
permissions do not belong to any threads (see Section 5.1 for more discussions).
Finally, permission annotation @value[...] of pass-by-value parameters is added
into the main thread of the pre-condition. For illustration, we present a running
example in Table 1.

14 D.-K. Le, W.-N. Chin, and Y.-M. Teo

Table 1. Inferring variable permissions for procedure creator in Figure 1

Input Intermediate values Inferred

Vref :={x, y}, Vval :={}

Φpo:=
y’=y+2 ∧ res=tid Vpost :={y},Vm :={y} @full [y]
and x′=x+1 ∧ thread=tid; Vpost :={x, y},Vm :={x} @full [x]

Φpr:= true Vpre :={x, y} @full [x, y]

Theorem 2 (Soundness of Inference Algorithm). Given a procedure P

with its R-complete pre/post-conditions (Φpr/Φpo) without variable permissions,
and our inference algorithm results in new pre/post-conditions (Φ′

pr/Φ
′
po) with

inferred variable permissions, if our verification system derives a proof, i.e.
{Φ′

pr} P {Φ′
po} is valid, then the procedure P is free from data races.

Proof. We first prove that the inferred full permission of each variable belongs
to at most one thread in a procedure’s R-complete specification. Then we prove
that with the inferred variable permissions, the procedure is free from data races.
Details are given in the technical report [15]. �	

4.3 Eliminating Variable Aliasing

In this section, we investigate the problem of variable aliasing. Aliasing occurs
when a data location can be accessed through different symbolic names (i.e.
variable names). For example in C/C++, variables can be aliased by the use of
address-of operator (&). This poses challenges to program verification in general
and concurrency verification in particular. Figure 6a shows a problematic exam-
ple where p and x are aliased due to the assignment p=&x. After passing x by
reference to a child thread, although the main thread does not have permission
to access x, it can still access the value of x via its alias ∗p and therefore incurs
possible data races. Our goal is to ensure safe concurrent accesses to variables
even in the presence of aliasing, e.g. to outlaw racy accesses to the value of x.

void inc(ref int i, int j)
requires @full [i] ∧@value[j]
ensures @full [i] ∧ i′=i+j;
{ i = i+ j; }

void main()
{

int x = 0;
int ∗ p = &x;
int id = fork(inc, x, 1);
...//accesses to *p are racy
join(id);

}
(a) Original Program

void inc(int ptr i, int j)
requires i::int ptr〈old i〉 ∧@value[i, j]
ensures i::int ptr〈new i〉 ∧ new i=old i+ j;
{ i.val = i.val + j; }

void main()
{

int ptr x = new int ptr(0);
int ptr p = x;
int id = fork(inc, x, 1);
...//accesses to p.val or x.val are illegal
join(id);
delete(x);

}
(b) Translated Program

Fig. 6. An Example of Eliminating Variable Aliasing

Variable Permissions for Concurrency Verification 15

We propose a translation scheme to eliminating variable aliasing by unify-
ing pointers to program variables and pointers to heap locations. The trans-
lation is automatic and transparent to programmers. We refer to each vari-
able (or parameter) whose &x appears in the program as an addressable vari-
able. Intuitively, for each addressable variable, our translation scheme trans-
forms it into a pointer to a pseudo-heap location by the following substitution
ρ=[int
→ int ptr,&x
→ x, x
→ x.val]. Our approach covers values of any type
(including primitive and data types). For each type t, there is a corresponding
type t ptr to represent the type of pointers to pseudo-heap locations holding a
value of type t. The value located at a pseudo-heap location is accessed via its
val field (e.g. x.val).

Definition 2 (Pseudo-heap Locations). Pseudo-heap locations are heap-
allocated locations used for verification purpose only. Each pseudo-heap location
represents a transformed program variable and captures the original value of the
variable in its val field.

Our scheme also translates program pointers into pointers to heap-allocated loca-
tions by the following substitution ρ=[int∗
→ int ptr, ∗p
→ p.val]. For point-
ers that point to another pointer, our translation is also applicable, e.g. int∗∗

is translated into int ptr ptr. The translation scheme ensures that the seman-
tics of the translated program is equivalent to that of the original program. By
transforming addressable variables into pseudo-heap locations, reasoning about
aliased variables has been translated to reasoning about aliased heap locations
which is easier to handle (i.e. using separation logic [24]). For detailed formal
discussions, we refer interested readers to our technical report [15].

An example translation is shown inFigure 6b. The addressable variable x of type
int is transformed into a pointer to a pseudo-heap location of type int ptr. The
program pointer p becomes a pointer to the location which x refers to. Variable x
will then be passed to a child thread. The procedure inc is also translated to reflect
the fact that its reference parameter i has been transformed. In the specification,
i::int ptr〈old i〉 represents the fact that i is a variable of type int ptr pointing
to a pseudo-heap location containing certain value old i. The original value of
x is indeed captured in the value of the pseudo-heap location. In the translated
program, when the main thread passes variable x to the child thread, the pseudo-
heap location that x points to is also passed to the child thread. Therefore, before
the child thread joins, the main thread cannot access the pseudo-heap location
(e.g. via p.val) because it no longer owns that location. Note that the pseudo-heap
location is deleted at the end to prevent memory leak.

We propose this translation for verification purpose only and do not recom-
mend it for compilation use due to performance deficiency since accessing heap-
allocated locations are typically more costly than program variables. Variable
aliasing may also occur via parameter-passing when two reference parameters of
a procedure refer to the same actual variable. Our variable permission scheme
(as presented in Section 4.1) disallows the possibility because a caller cannot
have two full permissions of a variable to pass it by reference twice.

16 D.-K. Le, W.-N. Chin, and Y.-M. Teo

5 Discussion

5.1 Applicability of the Proposed Variable Permissions

In this section, we discuss the application of our variable permission scheme to
popular concurrent programming models such as POSIX threads and Cilk.

Pthreads is considered one of the most popular concurrent programming models
for C/C++ [5]. In Pthreads, when creating a new child thread, a main thread
passes a pointer to a heap location to the child thread. We model this argu-
ment passing by giving a copy of that pointer to the child thread. Furthermore,
Pthreads uses global variables to facilitate sharing among threads. If several
threads need to concurrently read a shared global variable, the main thread
holding the full permission of that variable can just give each child thread a
copy of that variable through pass-by-value mechanism. If concurrent threads
require write access to the same variables, these variables can be protected by
mutex locks whose invariants hold full permissions of the variables. This al-
lows concurrent but race-free accesses to shared global variables. In our system,
mutable global variables are automatically converted into pseudo reference pa-
rameters for each procedure (that uses them) prior to verification. For shared
global variables that are protected by mutex locks, although they are converted
into pseudo reference parameters, neither of concurrent threads has the variables’
full permissions. It is the locks’ invariants that capture the full permissions. Per-
mission annotations for these variables are automatically inferred as shown in
Section 4.2. Note that Pthreads’ mutex locks are heap-allocated and therefore
require reasoning over heap locations which is beyond the scope of this paper.
We refer interested readers to [9, 11, 12] for detailed discussions.

Cilk is a well-known concurrent programming model originally developed at
MIT and recently adopted by Intel [8]. In Cilk, the spawn keyword is used to
create a new thread and to return the value of the procedure call instead of a
thread identifier. Before the child thread ends, any accesses to that return value
are unsafe. Our fork can have the same effect by passing an additional variable
by reference to capture the return value. This guarantees data-race freedom
because only the child thread has the full permission of that variable. More
importantly, compared with Pthreads, Cilk provides more flexible parameter
passing when creating a child thread. Multiple variables can be passed to a child
thread either by value or by reference. This flexible passing can be naturally
handled by our pass-by-value and pass-by-reference scheme. To the best of our
knowledge, our scheme is the first verification methodology for expressing such
a flexible parameter passing style.

5.2 Phased Accesses to Shared Variables

Our variable permission is designed as a simpler permission scheme that can
be used where sufficient. For immutable variables that are shared by concur-
rent threads, the general guideline is to pass copies of those variables to the
threads to enjoy safe accesses to those copies. Mutable variables can be shared

Variable Permissions for Concurrency Verification 17

but should be protected by mutex locks to ensure race-freedom because there are
some threads mutating the variables. However, there is still a class of complex
sharing patterns that cannot be directly handled by our scheme. For example,
a thread holds a certain permission to read a shared variable and is guaranteed
that no other threads can modify the variable (read phase). Later, it acquires
additional permissions from other threads and/or lock invariants, and combines
them into a full permission to modify the shared variable (write phase). This
kind of phased accesses to shared variables cannot be verified without splitting
a full permission into smaller partial permissions. In this case, the thread can
hold a partial permission while the rest of permissions belong to other threads
and/or lock invariants.

Under this circumstance, we propose to detect those variables that are ac-
cessed in a phased way, and transform them into pseudo-heap locations where
a more complex reasoning scheme is utilized [9, 11, 12]. The translation is done
in a similar way as shown in Section 4.3. As a result, our general guideline is
to readily use variables in most cases where the proposed variable permission
scheme is sufficient, and to automatically and uniformly transform variables into
pseudo-heap locations where necessary, i.e. in complex scenarios such as aliasing
and phased accesses.

6 Experimental Results

We have integrated our variable permission scheme, inference algorithm, and
translation scheme into a tool called Vperm for verifying concurrent programs
(see our technical report [15] for detailed descriptions of these programs). Our
variable permission scheme is best compared with approaches in [3, 22, 23] but
implementations of these approaches are not available. Therefore, we compare
our system with Verifast, a state-of-the-art verifier, in terms of annotation
overhead (LOAnn

LOC) and verification time. Note that Verifast does not natu-
rally support permissions for variables but simulates shared variables as heap
locations. All experiments were done on a 3.20GHz Intel Core i7-960 processor

Table 2. Annotation Overhead and Verification Time (Procs is the number of proce-
dures used in a program; LOC stands for “lines of code”; LOAnn stands for “lines of
annotation”; Times are in seconds)

Program Procs LOC
Verifast Vperm

LOAnn Overhead Time LOAnn Overhead Time

alt threading 3 17 23 135% 0.03 6 35% 0.18
threads 8 68 34 50% 0.04 18 26% 0.44

tree count 1 20 2 10% 0.31
tree search 1 23 We are not aware of 3 13% 1.17
task decompose 3 19 corresponding programs 6 32% 0.21
fibonacci 2 30 in Verifast distribution. 4 13% 0.29
quicksort 3 78 They could be coded but 10 13% 1.60
mergesort 6 104 require much annotation 12 12% 1.48

18 D.-K. Le, W.-N. Chin, and Y.-M. Teo

with 16GB memory running Ubuntu Linux 10.04. Table 2 shows that although
slower than Verifast, our system is more automatic in the sense that our sys-
tem requires significantly less annotation overhead. The annotation overhead
does not grow with more lines of code because we only require pre/post specifi-
cations at the procedure boundary. On average, we require less than three lines
of annotation per procedure. This is important to reduce programmers’ efforts
for annotation. Verifast has higher annotation overhead because beside pre/-
post specifications, it requires additional annotations (such as which predicate
to open/close or which lemma to apply) for each non-trivial command, such
as field-access, fork and join. Although we attempted to write annotations for
those programs that are not present in Verifast distribution, they are by no
means trivial. In many cases, writing correct annotations is difficult and time-
consuming. Therefore, we believe that our system shows a decent trade-off where
it takes longer verification time (machine effort) but requires considerable less
manual annotation (human effort).

7 Related Work

In 1970s, Owicki-Gries [21] came up with the very first tractable proof method
for concurrent programs that prevents conflicting accesses to variables using
side-conditions. However, these conditions are subtle and hard for compilers to
check because it involves examining the entire program [3, 23]. Recently, con-
current separation logic (CSL) [20] has been proposed to nicely reason about
heap-manipulating concurrent programs but CSL still relies on side-conditions
for dealing with variables. Smallfoot verifier [1] uses CSL as its underlying
logic and therefore suffers from the same limitation. In contrast, our scheme
brings variable permissions into the logic and therefore makes it easier to check
for conflicting accesses to variables. “Variables as resource” [3, 22] has proposed
to apply permission systems [2, 4], originally designed for heap locations, to
variables. Recently, Reddy et. al. [23] reformulate the treatment of variables us-
ing the system of syntactic control of interference. They share the same idea
of applying fractional permissions [4] to variables. However, these more com-
plex permission schemes place higher burden on programmers to figure out the
permission fractions used to associate to variables. To the best of our knowl-
edge, we are not aware of any existing verifiers that have fully implemented the
idea. Chalice [16, 17] ignores the treatment of variables in method bodies while
Verifast [12, 13] simulates variables as heap locations. Although the underlying
semantics of Holfoot [25] formalizes “variables as resource”, its automatic ver-
ification system, which is based on Smallfoot, does not allow sharing variables
using fractional permissions. In contrast, our variable permission scheme is sim-
pler, using either full or zero permissions, but is expressive enough to support
popular programming models such as Pthreads [5] and Cilk [8]. Furthermore,
while previous approaches assume theoretical programming languages without
dynamic thread creation [3, 22, 25] and procedure [23], our variable permission
scheme is more practical to be incorporated into Vperm tool and to verify con-
current programs with procedures and dynamic thread creation such as parallel

Variable Permissions for Concurrency Verification 19

quicksort and mergesort. We also presented an algorithm to automatically infer
variable permissions and therefore reduce programmers’ efforts for annotations.
There is some work on automatic inference of access permissions in the liter-
ature [7, 10] but they only address permissions for heap locations. Reddy et.
al. [23] is the very first work on inferring permissions for variables. However,
their approach is different from ours. Firstly, while their approach is a two-pass
algorithm over entire program syntax tree and proof outline, our approach can
infer variable permissions directly from procedure specifications. Secondly, their
work targets programs written in a theoretical language without procedures and
dynamic thread creation while our approach supports more realistic programs
with procedures and fork/join concurrency. Lastly, most work on verification has
often disallowed variable aliasing by using side-conditions [20, 21] or via asser-
tions [3, 9]. Therefore, our presented translation scheme to eliminate variable
aliasing is orthogonal to their work since we provide a way to transform address-
able variables into pointers to pseudo-heap locations, and thus enable reasoning
about their behaviors in the same way as heap locations [9, 20]. In contrast to
several informal translation tools [6, 14] which attempt to translate C/C++ pro-
grams with pointers into Java, we present a translation scheme with its formal
semantics. Another difference is that while they focus on language translation,
we aim towards facilitating program verification.

8 Conclusion

We have proposed a new permission system to ensure data-race freedom when
accessing variables. Our scheme is simple but expressive to capture program-
ming models such as POSIX threads and Cilk. Through a simple permission
scheme for variables, we have extended formal reasoning to popular concurrent
programming paradigms that rely on variables. We have provided an algorithm
to automatically infer variable permissions and thus reduced program annota-
tions. We have also shown a translation scheme to eliminate variable aliasing and
to facilitate verification of programs with aliases on variables. Lastly, we have
implemented our scheme into a tool, called Vperm, for verifying concurrent
programs including parallel quicksort and parallel mergesort.

Acknowledgement. We thank the reviewers of ICFEM 2012 for insightful
feedback. This work is supported by MOE Project 2009-T2-1-063.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

2. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.: Permission Accounting in
Separation Logic. In: ACM Symposium on Principles of Programming Languages,
pp. 259–270. ACM, New York (2005)

20 D.-K. Le, W.-N. Chin, and Y.-M. Teo

3. Bornat, R., Calcagno, C., Yang, H.: Variables as Resource in Separation Logic.
Electronic Notes in Theoretical Computer Science 155, 247–276 (2006)

4. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

5. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Longman
Publishing Co., Inc., Boston (1997)

6. Demaine, E.D.: C to Java: Converting Pointers into References. Concurrency -
Practice and Experience 10(11-13), 851–861 (1998)

7. Ferrara, P., Müller, P.: Automatic Inference of Access Permissions. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 202–218. Springer,
Heidelberg (2012)

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Multi-
threaded Language. In: ACM SIGPLAN Conf. on Programming Language Design
and Implementation, New York, NY, USA, pp. 212–223 (1998)

9. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for
Storable Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp.
19–37. Springer, Heidelberg (2007)

10. Heule, S., Leino, K.R.M., Müller, P., Summers, A.J.: Fractional Permissions With-
out the Fractions. In: Proceedings of the International Workshop on Formal Tech-
niques for Java-like Programs (July 2011)

11. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle Semantics for Concurrent Separa-
tion Logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008)

12. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: ACM Symposium on Principles of Programming Languages, New York, NY,
USA, pp. 271–282 (2011)

13. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

14. Laffra, C.: A C++ to Java Translator. In: Advanced Java: Idioms, Pitfalls, Styles
and Programming Tips, ch. 4. Prentice Hall Computer Books (1996)

15. Le, D.K., Chin, W.N., Teo, Y.M.: Variable Permissions for Concurrency Verifica-
tion. Technical report, National University of Singapore (April 2012)

16. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-threaded Programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

17. Leino, K.R.M., Müller, P., Smans, J.: Verification of Concurrent Programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009.
LNCS, vol. 5705, pp. 195–222. Springer, Heidelberg (2009)

18. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional (2004)

19. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated Verification of Shape
and Size Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

20. O’Hearn, P.W.: Resources, Concurrency and Local Reasoning. In: Gardner,
P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer,
Heidelberg (2004)

Variable Permissions for Concurrency Verification 21

21. Owicki, S., Gries, D.: Verifying Properties of Parallel Programs: an Axiomatic
Approach. Communications of the ACM, 279–285 (1976)

22. Parkinson, M., Bornat, R., Calcagno, C.: Variables as Resource in Hoare Logics.
In: IEEE Logic in Computer Science, Washington, DC, USA, pp. 137–146 (2006)

23. Reddy, U.S., Reynolds, J.C.: Syntactic Control of Interference for Separation Logic.
In: ACM Symposium on Principles of Programming Languages, New York, NY,
USA, pp. 323–336 (2012)

24. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
IEEE Logic in Computer Science, Copenhagen, Denmark (July 2002)

25. Tuerk, T.: A Separation Logic Framework for HOL. PhD thesis. University of
Cambridge (2011)

A Concurrent Temporal Programming Model
with Atomic Blocks�

Xiaoxiao Yang1, Yu Zhang1, Ming Fu2, and Xinyu Feng2

1 State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 University of Science and Technology of China, Hefei, China

Abstract. Atomic blocks, a high-level language construct that allows program-
mers to explicitly specify the atomicity of operations without worrying about the
implementations, are a promising approach that simplifies concurrent program-
ming. On the other hand, temporal logic is a successful model in logic program-
ming and concurrency verification, but none of existing temporal programming
models supports concurrent programming with atomic blocks yet.

In this paper, we propose a temporal programming model (αPTL) which ex-
tends the projection temporal logic (PTL) to support concurrent programming
with atomic blocks. The novel construct that formulates atomic execution of code
blocks, which we call atomic interval formulas, is always interpreted over two
consecutive states, with the internal states of the block being abstracted away. We
show that the framing mechanism in interval temporal logic also works in the new
model, which consequently supports our development of an executive language.
The language supports concurrency by introducing a loose interleaving semantics
which tracks only the mutual exclusion between atomic blocks. We demonstrate
the usage of αPTL by modeling practical concurrent programs.

1 Introduction

Atomic blocks in the forms of atomic{C} or 〈C〉 are a high-level language construct that
allows programmers to explicitly specify the atomicity of the operation C, without wor-
rying how the atomicity is achieved by the underlying language implementation. They
can be used to model architecture-supported atomic instructions, such as compare-and-
swap (CAS), or to model high-level transactions implemented by software transactional
memory (STM). They are viewed as a promising approach to simplifying concurrent
programming in a multi-core era, and have been used in both theoretical study of fine-
grained concurrency verification [16] and in modern programming languages [6,17,19]
to support transactional programming.

On the other side, temporal logic has proved very useful in specifying and verifying
concurrent programs [11] and has seen particular success in the temporal logic pro-
gramming model, where both algorithms and their properties can be specified in the
same language [1]. Indeed, a number of temporal logic programming languages have

� This research was supported by NSFC 61100063, 61161130530, 61073040, 61103023, and
China Postdoctoral Science Foundation 201104162, 2012M511420.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 22–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Concurrent Temporal Programming Model with Atomic Blocks 23

been developed for the purpose of simulation and verification of software and hardware
systems, such as Temporal Logic of Actions (TLA) [7], Cactus [12], Tempura [10],
MSVL [8], etc. All these make a good foundation for applying temporal logic to imple-
ment and verify concurrent algorithms.

However, to our best knowledge, none of these languages supports concurrent pro-
gramming with atomic blocks. One can certainly implement arbitrary atomic code
blocks using traditional concurrent mechanism like locks, but this misses the point of
providing the abstract and implementation-independent constructs for atomicity decla-
rations, and the resulting programs could be very complex and increase dramatically
the burden of programming and verification.

For instance, modern concurrent programs running on multi-core machines often
involve machine-based memory primitives such as CAS. However, to describe such
programs in traditional temporal logics, one has to explore the implementation details
of CAS, which is roughly presented as the following temporal logic formula (”�” is a
basic temporal operator):

lock(x) ∧ �(if (x=old) then � (x=new ∧ ret=1) else � (ret=0) ∧ � � unlock(x))

To avoid writing such details in programs, a naive solution is to introduce all the low-
level memory operations as language primitives, but this is clearly not a systematic way,
not to mention that different architecture has different set of memory primitives. With
atomic blocks, one can simply define these primitives by wrapping the implementation
into atomic blocks:

CAS
def
= 〈if (x = old) then � (x = new ∧ ret = 1) else � (ret = 0)〉

It is sufficient that the language should support consistent abstraction of atomic blocks
and related concurrency.

Similar examples can be found in software memory transactions. For instance, the
following program illustrates a common transaction of reading a value from a variable
x, doing computation locally (via t) and writing the result back to x:

stm atomic { t := x ; compute with(t) ; x := t }
When reasoning about programs with such transactions, we would like to have a mech-
anism to express the atomicity of executing transactions, without considering how the
atomicity is implemented.

Therefore, we are motivated to define the notation of atomicity in the framework of
temporal logic and propose a new temporal logic programming language αPTL. Our
work is based on the interval-based temporal logics [10,3] and we extend interval tem-
poral logic programming languages with the mechanism of executing code blocks atom-
ically, together with a novel parallel operator that tracks only the interleaving of atomic
blocks. αPTL could facilitate specifying, verifying and developing reactive systems in
a more efficient and uniform way. The framing operators and the minimal model se-
mantics inherited from interval temporal logic programming may enable us to narrow
the gap between temporal logic and programming languages in a realistic way.

24 X. Yang et al.

Our contributions are summarized as follows:

– We extend Projection Temporal Logic (PTL) with the notion of atomicity, which
supports the formulation of atomic executions of code blocks. The semantics is
defined in the interval model and an atomic block is always interpreted over two
consecutive states, with internal state transitions abstracted away. Such a formaliza-
tion respects the essence of atomic execution: the environment must not interfere
with the execution of the code block, and the internal execution states of atomic
blocks must not be visible from outside. In fact, formulas inside atomic blocks are
interpreted over separate intervals in our model, and the connection between the
two levels of intervals is precisely defined.

– How values are carried through intervals is a central concern of temporal logic pro-
gramming. We adopt Duan’s framing technique using assignment flags and mini-
mal models [3,4], and show that the framing technique works smoothly with the
two levels of intervals, which can carry necessary values into and out of atomic
blocks — the abstraction of internal states does not affect the framing in our model.
The technique indeed supports our development of an executable language based
on αPTL.

– We define a novel notion of parallelism by considering only the interleaving of
atomic blocks — parallel composition of two programs (formulas) without any
atomic blocks will be translated directly into their conjunctions. For instance, x =
1 ‖ y = 1 will be translated into x = 1 ∧ y = 1, which reflects the fact that accesses
from different threads to different memory locations can indeed occur simultane-
ously. Such a translation enforces that access to shared memory locations must be
done in atomic blocks, otherwise the formulas can result in false, which indicates a
flaw in the program.

– αPTL not only allows us to express various low-level memory primitives like CAS,
but also makes it possible to model transactions of arbitrary granularity. We illus-
trate the practical use of αPTLby examples.

2 Temporal Logic

We start with a brief introduction to projection temporal logic (PTL), which was pro-
posed for reasoning about intervals of time for hardware and software systems.

2.1 Projection Temporal Logic

PTL terms and formulas are defined by the following grammar:

PTL terms: e, e1, . . . , em ::= x | f (e1, . . . , em) | �e | �e
PTL formulas p, q, p1, pm ::= π | e1 = e2 | Pred(e1, . . . , em) | ¬p | p ∧ q | �p

| (p1, . . . , pm) prj q | ∃x.p | p+

where x is a variable, f ranges over a predefined set of function symbols, �e and
�e indicate that term e is evaluated on the next and previous states respectively; π
ranges over a predefined set of atomic propositions, and Pred(e1, . . . , em) represents a

A Concurrent Temporal Programming Model with Atomic Blocks 25

predefined predicate constructed with e1, . . . , em; operators next(�), projection(prj) and
chop plus (+) are temporal operators.

LetV be the set of variables,D be the set of values including integers, lists, etc., and
Prop be the set of primitive propositions. A state s is a pair of assignments (Ivar, Iprop),
where Ivar ∈ V → D ∪ {nil} (nil denotes undefined values) and Iprop ∈ Prop →
{True,False}. We often write s[x] for the value Ivar(x), and s[π] for the boolean value
Iprop(π). An intervalσ = 〈s0, s1, . . .〉 is a sequence of states, of which the length, denoted
by |σ|, is n if σ = 〈s0, . . . , sn〉 and ω if σ is infinite. An empty interval is denoted by
ε. Interpretation of PTL formulas takes the following form: (σ, i, j) |= p, where σ is
an interval, p is a PTL formula. We call the tuple (σ, i, j) an interpretation. Intuitively,
(σ, i, j) |= p means that the formula p is interpreted over the subinterval of σ starting
from state si and ending at s j (j can be ω). Interpretations of PTL terms and formulas
are defined in Fig.1.

(σ, i, j)[x] = si[x]

(σ, i, j)[f (e1 , . . . , em)] =

{
f ((σ, i, j)[e1], . . . , (σ, i, j)[em]) if (σ, i, j)[eh] � nil for all h
nil otherwise

(σ, i, j)[�e] =

{
(σ, i + 1, j)[e] if i < j
nil otherwise

(σ, i, j)[�e] =

{
(σ, i − 1, j)[e] if i > 0
nil otherwise

(σ, i, j) |= π iff si[π] = True

(σ, i, j) |= e1 = e2 iff (σ, i, j)[e1] = (σ, i, j)[e2]

(σ, i, j) |= Pred(e1, . . . , em) iff Pred((σ, i, j)[e1], . . . , (σ, i, j)[em]) = True

(σ, i, j) |= ¬p iff (σ, i, j) �|= p

(σ, i, j) |= p1 ∧ p2 iff (σ, i, j) |= p1 and (σ, i, j) |= p2

(σ, i, j) |= �p iff i < j and (σ, i+1, j) |= p

(σ, i, j) |= ∃x.p iff there exists σ′ such that σ′ x
= σ and (σ′ , i, j) |= p

(σ, i, j) |= (p1 , . . . , pm) prj q iff if there are i = r0 ≤ r1 ≤ . . . ≤ rm � j such that
(σ, r0, r1) |= p1 and (σ, rl−1, rl) |= pl for all 1 < l ≤ m and
(σ′ , 0, |σ′|) |= q for σ′ given by :
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm)·σ(rm+1.. j)

(2) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.

(σ, i, j) |= p+ iff if there are i = r0 ≤ r1 ≤ . . . ≤ rn−1 ≤ rn = j (n ≥ 1) such that
(σ, r0, r1) |= p and (σ, rl−1, rl) |= p (1 < l ≤ n)

Fig. 1. Semantics for PTL Terms and Formulas

Below is a set of syntactic abbreviations that we shall use frequently:

ε
def
= ¬ � True more

def
= ¬ε p1 ; p2

def
= (p1, p2) prj ε �p

def
= True ; p �p

def
= ¬�¬p

len(n)
def
=

{
ε if n = 0
�len(n − 1) if n > 1

skip
def
= len(1) x := e

def
= �x = e ∧ skip

ε specifies intervals whose current state is the final state; an interval satisfying more
requires that the current state not be the final state; The semantics of p1 ; p2 says that
computation p2 follows p1, and the intervals for p1 and p2 share a common state. Note
that chop (;) formula can be defined directly by the projection operator. �p says that

26 X. Yang et al.

p holds eventually in the future; �p means p holds at every state after (including) the
current state; len(n) means that the distance from the current state to the final state is n;
skip specifies intervals with the length 1. x := e means that at the next state x = e holds
and the length of the interval over which the assignment takes place is 1.

2.2 Framing Issue

Framing concerns how the value of a variable can be carried from one state to the next.
Within ITL community, Duan and Maciej [3] proposed a framing technique through
an explicit operator (frame(x)), which enables us to establish a flexible framed envi-
ronment where framed and non-framed variables can be mixed, with frame operators
being used in sequential, conjunctive and parallel manner, and an executable version of
framed temporal logic programming language is developed [4,18]. The key character-
istic of the frame operator can be stated as: frame(x) means that variable x keeps its old
value over an interval if no assignment to x has been encountered.

The framing technique defines a primitive proposition px for each variable x: intu-
itively px denotes an assignment of a new value to x — whenever such an assignment
occurs, px must be true; however, if there is no assignment to x, px is unspecified, and
in this case, we will use a minimal model [3,4] to force it to be false. We also call px an
assignment flag. Formally, frame(x) is defined as follows:

frame(x)
def
= �(more→ � lbf(x)), where lbf(x)

def
= ¬px → ∃ b : (�x = b ∧ x = b)

Intuitively, lbf(x) (looking back framing) means that, when a variable is framed at a
state, its value remains unchanged (same as at the previous state) if no assignment
occurs at that state. We say a program is framed if it contains lbf(x) or frame(x).

3 Temporal Logic with Atomic Blocks

3.1 The Logic αPTL

αPTLextends projection temporal logic with atomic blocks. It can be defined by the
following grammar (αPTLterms are the same as in PTL):

αPTL Formulas: p, q, p1, pm ::= 〈p〉 | ¬p | p ∧ q | �p | (p1, . . . , pm)pr j q | ∃x.p | p+
π | e1 = e2 | Pred(e1, . . . , em)

The novel construct 〈. . .〉 is used to specify atomic blocks with arbitrary granularity in
concurrency and we call 〈p〉 an atomic interval formula. All other constructs are as in
PTL except that they can take atomic interval formulas.

The essence of atomic execution is twofold: first, the concrete execution of the code
block inside an atomic wrapper can take multiple state transitions; second, nobody out
of the atomic block can see the internal states. This leads to an interpretation of atomic
interval formulas based on two levels of intervals — at the outer level an atomic interval
formula 〈p〉 always specify a single transition between two consecutive states, which
the formula p will be interpreted at another interval (the inner level), which we call an
atomic interval and must be finite, with only the first and final states being exported

A Concurrent Temporal Programming Model with Atomic Blocks 27

to the outer level. The key point of such a two-level interval based interpretation is
the exportation of values which are computed inside atomic blocks. We shall show
how framing technique helps at this aspect. A few notations are introduced to support
formalizing the semantics of atomic interval formulas.

– Given a formula p, let Vp be the set of free variables of p. we define formula FRM(Vp) as
follows:

FRM(Vp)
def
=

⎧⎪⎪⎨⎪⎪⎩
∧

x∈Vp
frame(x) if Vp � ∅

True otherwise

FRM(Vp) says that each variable in the set Vp is a framing variable that allows to inherit the
old value from previous states. FRM(Vp) is essentially used to apply the framing technique
within atomic blocks, and allows values to be carried throughout an atomic block to its final
state, which will be exported.

– Interval concatenation is defined by

σ · σ′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ if |σ| = ω or σ′ = ε
σ′ if σ = ε
〈s0, ..., si, si+1, ...〉 if σ = 〈s0, ..., si〉 and σ′ = 〈si+1, ...〉

– If s = (Ivar, Iprop) is a state, we write s|I′prop
for the state (Ivar, I′prop), which has the same

interpretation for normal variables as s but a different interpretation I′prop for propositions.

Definition 1 (Interpretation of atomic interval formulas). Let (σ, i, j) be an inter-
pretation and p be a formula. Atomic interval formula 〈p〉 is defined as:

(σ, i, j) |= 〈p〉 iff there exists a finite interval σ′ and I′prop such that
〈si〉 · σ′ · 〈si+1|I′prop

〉 |= p ∧ FRM(Vp).

The interpretation of atomic interval formulas is the key novelty of the paper, which
represents exactly the semantics of atomic executions: the entire formula 〈p〉 specifies
a single state transition (from si to si+1), and the real execution of the block, which
represented by p, can be carried over a finite interval (of arbitrary length), with the first
and final state connected to si and si+1 respectively — the internal states of p (states
of σ′) are hidden from outside the atomic block. Notice that when interpreting p, we
use FRM(Vp) to carry values through the interval, however this may lead to conflict
interpretations to some primitive propositions (basically primitive propositions like px

for variables that take effect both outside and inside atomic blocks), hence the final state
is not exactly si+1 but si+1|I′prop

with a different interpretation of primitive propositions.
In Section 3.2, we shall explain the working details of framing in atomic blocks by
examples.

In the following, we present some useful αPTL formulas that are frequently used in
the rest of the paper.

– p∗ def
= p+ ∨ ε (chop star): either chop plus p+ or ε;

– p ≡ q
def
= �(p ↔ q) (strong equivalence): p and q have the same truth value in all states of

every model;

– p ⊃ q
def
= �(p→ q) (strong implication) : p→ q always holds in all states of every model.

28 X. Yang et al.

In the temporal programming model, we support two minimum execution unit defined
as follows. They are used to construct normal forms[4] of program executions.

State formulas. State formulas are defined as follows:.

ps ::= x = e | x⇐ e | ps ∧ ps | lbf(x) | True

We consider True as a state formula since every states satisfies True. Note that lbf(x)
is also a state formula when �x is evaluated to a value. The state frame lbf(x), which
denotes a special assignment that keeps the old value of a variable if there are no new
assignment to the variable, enables the inheritance of values from the previous state to
the current state. Apart from the general assignment x = e, in the paper we also allow
assignments such as lbf(x) ∧ x ⇐ e and lbf(x) ∧ x = e.

Extended state formulas. Since atomic interval formulas are introduced in αPTL, we
extend the notion of state formulas to include atomic interval formulas:

Qs ::= ps | 〈p〉 | Qs ∧ Qs

where p is arbitrary PTL formulas and ps is state formulas.

Theorem 1. The logic laws in Fig. 2 are valid, where Q, Q1 and Q2 are PTL formulas.

(L1) �p ≡ �p ∧more (L2) �p ⊃ more
(L3) �(p ∧ q) ≡ �p ∧ �q (L4) �(p ∨ q) ≡ �p ∨ �q
(L5) �(∃x : p) ≡ ∃x : �p (L6) �p ≡ p ∧ ��p
(L7) �p ∧ ε ≡ p ∧ ε (L8) �p ∧more ≡ p ∧ ��p
(L9) (p ∨ q) ; ps ≡ (p ; ps) ∨ (q ; ps) (L10) (ps ∧ p) ; q ≡ ps ∧ (p ; q)
(L11) �p ; q ≡ �(p ; q) (L12) ε ; q ≡ q
(L13) 〈Q1 ∨ Q2〉 ≡ 〈Q1〉 ∨ 〈Q2〉 (L14) 〈Q1〉 ≡ 〈Q2〉, if Q1 ≡ Q2

(L15) (p1 ∨ p2) ; q ≡ (p1 ; q) ∨ (p2 ; q) (L16) ∃x : p(x) ≡ ∃y : p(y)
(L17) x = e ≡ (px ∧ x = e) ∨ (¬px ∧ x = e) (L18) lbf(x) ≡ px ∨ (¬px ∧ (x = �x))
(L19) lbf(x) ∧ x = e ≡ x⇐ e (�x � e) (L20) lbf(x) ∧ x⇐ e ≡ x⇐ e
(L21) frame(x) ∧more ≡ �(frame(x) ∧ lbf(x)) (L22) frame(x) ∧ ε ≡ ε
(L23) (Qs ∧ �p1) ; p2 ≡ Qs ∧ �(p1 ; p2) (L24) Q1 ∧ 〈Q〉 ≡ Q2 ∧ 〈Q〉, if Q1 ≡ Q2

(L25) 〈Q〉 ≡ 〈frame(x) ∧ Q〉 x is a free variale in Q (L26) �e1 + �e2 = �(e1 + e2)

Fig. 2. Some αPTL Laws

3.2 Support Framing in Atomic Interval Formulas

Framing is a powerful technique that carries values through over interval states in tem-
poral logic programming and it is also used inside atomic blocks in αPTL. While in
PTL, framing is usually explicitly specified by users, we have made it inherent in the
semantics of atomic interval formulas in αPTL, which is the role of FRM(VQ). However,
framing inside atomic blocks must be carefully manipulated, as we use same primi-
tive propositions (such as px) to track the modification of variables outside and inside

A Concurrent Temporal Programming Model with Atomic Blocks 29

atomic blocks — conflict interpretations of primitive propositions may occur at the exit
of atomic blocks. We demonstrate this by the following example:

(σ, 0, |σ|) |= FRM({x}) ∧ x = 1 ∧ 〈Q〉 where Q
def
= �x = 2 ∧ len(2)

Q requires the length of the atomic interval (that is σ′ in the following diagram) to be 2.
Inside the atomic block, which is interpreted at the atomic interval, FRM({x}) will record
that x is updated with 2 at the second state (s′1) and remains unchanged till the last state
(s′2). When exiting the atomic block (at state s′2 of σ′), we need to merge the updating
information with that obtained from FRM({x}) outside the block, which intend to inherit
the previous value 1 if there is no assignment to x. This conflicts the value sent out from
the atomic block, which says that the value of x is 2 with a negative proposition ¬px.
The conflict is well illustrated by the following diagram:

x = 1 ∧ ¬px (x = 1 ∧ ¬px) ∨ px

σ : s0 s1

σ′ : s′0 s′1 s′2

x = 1 ∧ ¬px x = 2 ∧ px x = 2 ∧ ¬px

A naive merge of the last states (s1 and s′2) in both intervals will produce a false formula:
((x = 1 ∧ ¬px) ∨ px) ∧ (x = 2 ∧ ¬px). We solve this problem by adopting different
interpretation of px (the assignment proposition for x) at the exporting state (s1 in σ
and s′2 in σ′): outside the atomic block (at s1) we have (x = 1 ∧ ¬px ∨ px) while inside
the block we replace s′2 by s1|I′prop

with a reinterpretation of px in I′prop, which gives rise
to (x = 1 ∧ ¬px ∨ px) ∧ (x = 2) ≡ (x = 2) ∧ px at state s1. This defines consistent
interpretations of formulas outside and inside atomic blocks. It also conforms to the
intuition: as long as the value of global variable x is modified inside atomic blocks,
then the primitive proposition px associated with x must be set True when seen from
outside the block, even though there is no assignment outside or at the last internal state,
as in the above example.

4 Temporal Programming with Atomic Blocks

This section introduces a temporal programming language based on the logic αPTL,
where for concurrent programming, we extend the interval temporal programming with
atomic interval formulas, and a parallel operator, which captures the interleaving be-
tween processes with atomic blocks.

4.1 Expressions and Statements

Expressions. αPTL provides permissible arithmetic expressions and boolean expres-
sions and both are basic terms of αPTL.

Arithmetic expressions: e ::= n | x | �x | �x | e0 op e1

Boolean expressions: b ::= True | False | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

where n is an integer, x is a program variable, op represents common arithmetic opera-
tions, �x and �x mean that x is evaluated over the next and previous state respectively.

30 X. Yang et al.

Statements. Figure 3 shows the statements of αPTL, where p, q, . . . are αPTL formulas.
ε means termination on the current state; x = e represents unification over the current

Termination : ε Unification : x = e
Positive unification : x ⇐ e Assignment : x := e
State frame : lbf(x) Interval frame : frame(x)
Conjuction statement : p ∧ q Selection statement: p ∨ q
Next statement : �p Sequential statement : p ; q
Conditional statement : if b then p else q Existential quantification : ∃x : p(x)
While statement : while b do p Atomic block : 〈p〉
Parallel statement : p ||| q Latency assignment : x :=+ e

Fig. 3. Statements in αPTL

state or boolean conditions; x⇐ e, lbf(x) and frame(x) support framing mechanism and
are discussed in Section 3.2; the assignment x := e is as defined in Section 2.1; p ∧ q
means that the processes p and q are executed concurrently and they share all the states
and variables during the execution; p∨q represents selection statements; �p means that
p holds at the next state; p ; q means that p holds at every state from the current one
till some state in the future and from that state on p holds. The conditional and while
statements are defined as below:

if b then p else q
def
= (b ∧ p) ∨ (¬b ∧ q), while b do p

def
= (p ∧ b)∗ ∧ �(ε→ ¬b)

We use a renaming method [18] to reduce a program with existential quantification.
The last three statements are new in αPTL. 〈p〉 executes p atomically. p ||| q exe-

cutes programs p and q in parallel and we distinguish it from the standard concurrent
programs by defining a novel interleaving semantics which tracks only the interleaving
between atomic blocks. Intuitively, p and q must be executed at independent proces-
sors or computing units, and when neither of them contains atomic blocks, the program
can immediately reduce to p ∧ q, which indicates that the two programs are executed
in a truly concurrent manner. The formal definition of the interleaving semantics will
be given in Section 4.3. However, the new interpretation of parallel operator will force
programs running at different processors to execute synchronously as if there is a global
clock, which is certainly not true in reality. For instance, consider the program

(x := x + 1; y := y + 1) ||| (y := y + 2; x := x + 2).

In practice, if the two programs run on different processors, there will be data race
between them, when we intend to interpret such program as a false formula and indicate
a programming fault. But with the new parallel operator |||, since there is no atomic
blocks, the program is equivalent to

(�x = x + 1 ∧ �(�y = y + 1)) ∧ (�y = y + 2 ∧ �(�x = x + 2)),

which can still evaluate to true.
The latency assignment x :=+ e is introduced to represent the non-deterministic

delay of assignments:

x :=+ e
def
=
∨

n∈[1...N]

len(n) ∧ fin(x = e)

A Concurrent Temporal Programming Model with Atomic Blocks 31

where fin(p)
def
= �(ε→ p) and N is a constant denoting a latency bound. The intuition of

latency assignment is that an assignment can have an arbitrary latency up to the bound
before it takes effect. We explicitly require that every assignment outside atomic blocks
must be a latency assignment. In order to avoid an excessive number of parentheses, the
priority level of the parallel operator is the lowest in αPTL.

4.2 Semi-normal Form

In the αPTL programming model, the execution of programs can be treated as a kind
of formula reduction. Target programs are obtained by rewriting the original programs
with logic laws (see Fig.2), and the laws ensure that original and target programs are
logically equivalent. Usually, our target programs should be represented as αPTL for-
mulas in normal forms. In this section, we shall describe how αPTL programs can be
transformed into their normal forms. Since we have both state formulas and atomic
interval formulas as minimum execution units, we use a different regular form of for-
mulas called semi-normal form (SNF for short) to define the interleaving semantics, and
it provides an intermediate form for transforming αPTL programs into normal forms.

Definition 2 (Semi-normal Form). An αPTL program is semi-normal if it has the fol-
lowing form

(
n1∨
i=1

Qsci ∧ �p f i) ∨ (
n2∨
j=1

Qse j ∧ ε)

where Qsci and Qse j are extended state formulas for all i, j, p f i is an αPTL program,
n1 + n2 ≥ 1. P f i is an αPTL program.

If a program terminates at the current state, then it is transformed to
∨n2

j=1 Qse j ∧ ε; oth-
erwise, it is transformed to

∨n1
i=1 Qsci∧�p f i. For convenience, we often call (

∨n1
i=1 Qsci∧

�p f i) future formulas and (Qsci ∧�p f i) single future formulas; whereas (
∨n2

j=1 Qse j ∧ ε)
terminal formulas and (Qse j ∧ ε) single terminal formulas.

4.3 The Interleaving Semantics with Atomic Blocks

In the following we define the parallel statement (p ||| q) based on the SNFs. We first
define the interleaving semantics for the single future formula (Qs ∧�p) and the single
terminal formula (Qs∧ε) in Definition 3. Note that the interleaving semantics only con-
cerns with atomic blocks, and for non-atomic blocks, the interleaving can be regarded
as the conjunction of them. Therefore, the definition is discussed depending on the ex-
tended state formula Qs. For short, we use the following abbreviation, where q1, . . . , ql

are αPTLformulas:
l∧

i=1

〈qi〉 def
=

{
〈q1〉 ∧ . . . ∧ 〈ql〉 if l ≥ 1, l ∈ N
True if l = 0

Definition 3. Let ps1 and ps2 be state formulas,Qs1≡ ps1 ∧
l1∧

i=1
〈qi〉 and Qs2≡ ps2 ∧

l2∧
i=1
〈q′i〉

be extended state formulas (l1, l2 ≥ 0), Ti denote �pi or ε (i = 1, 2). The interleaving
semantics for (Qs1 ∧ T1) ||| (Qs2 ∧ T2) is inductively defined as follows.

32 X. Yang et al.

– case 1:

(Qs1∧�p1) ||| (Qs2∧�p2)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) (Qs1∧Qs2)∧�(p1 ||| p2), if Vqi ∩ Vq′i = ∅

(ii) (Qs1∧ps2)∧�(p1 ||| (
l2∧

i=1
〈q′i 〉∧�p2))

∨ if Vqi ∩ Vq′i � ∅

(Qs2 ∧ ps1) ∧ �(p2 ||| (
l1∧

i=1
〈qi〉 ∧ �p1))

– case 2:

(Qs1∧ε) ||| (Qs2∧T2)
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i) (Qs1∧Qs2)∧T2, if (l1= l2=0) or (l1=0 and l2>0 and T2=�p2)
(ii) Qs1∧ε, if (l2>0 and T2=ε)
(iii) Qs2∧T2, if (l1 � 0)

– case 3: (Qs1 ∧ T1) ||| (Qs2 ∧ ε) can be defined similarly as case 2.

In Definition 3, there are three cases. Case 1 is about the interleaving between two single
future formulas. We have two subcases. On one hand, in case 1(i): If Vqi ∩ Vq′i = ∅,
which means that there are no shared variables in both of the atomic interval formulas,
then we can execute them in a parallel way by means of the conjunction construct (∧).
On the other hand, in case 1(ii): If Vqi ∩ V ′qi

� ∅, which presents that there are at least

one variable that is shared with the atomic interval formulas
∧l1

i=1〈qi〉 and
∧l2

i=1〈q′i〉, then
we can select one of them (such as

∧l1
i=1〈qi〉) to execute at the current state, and the other

atomic interval formulas (such as
∧l2

i=1〈q′i〉) are reduced at the next state. Case 2 is about
the interleaving between one single terminal formula and one single future formula or
between two single terminal formulas. In case 2(i), if Qs1 and Qs2 do not contain any
atomic interval formulas (i.e., l1 = l2 = 0) or there are at least one atomic interval
formula in Qs2 (i.e., l2 > 0) and T2 is required to be the next statement (�p2), then we
define (Qs1 ∧ ε) ||| (Qs2 ∧ T2) as (Qs1 ∧ Qs2 ∧ T2). Since the atomic interval formula∧n

i=1〈qi〉 is interpreted over an interval with at least two states, we have
∧n

i=1〈qi〉 ∧ ε ≡
False. We discuss it in case 2(ii) and (iii) respectively. In case 2(ii), l2 > 0 and T2 = ε
means that Qs2 ∧ T2 is False and we define (Qs1 ∧ ε) ||| (Qs2 ∧ T2) as (Qs1 ∧ ε); In
case 2(iii), (l1 � 0) implies that Qs1 ∧ ε is False and (Qs1 ∧ ε) ||| (Qs2 ∧ T2) is defined
as (Qs2 ∧ T2). Further, case 3 can be defined and understood similarly.

In Definition 3, we have discussed the interleaving semantics between the single
future formula (Qs∧�p) and the single terminal formula (Qs∧ε). Further, in Definition
4, we extend Definition 3 to general SNFs.

Definition 4. Let (
n1∨
i=1

Qsci ∧ �p f i) ∨ (
n2∨
j=1

Qse j ∧ ε) and (
m1∨
k=1

Qs′ck ∧ �p′f k) ∨ (
m2∨
t=1

Qs′et ∧ ε)
(n1 + n2 ≥ 1,m1 + m2 ≥ 1) be general SNFs. We have the following definition.

(
n1∨
i=1

Qsci ∧ �pf i) ∨ (
n2∨
j=1

Qse j ∧ ε) ||| (
m1∨
k=1

Qs′ck ∧ �p′f k) ∨ (
m2∨
t=1

Qs′et ∧ ε)
def
=

n1∨
i=1

m1∨
k=1

(
Qsci ∧ �pf i ||| Qs′ck ∧ �p′f k

)
∨

n1∨
i=1

m2∨
t=1

(
Qsci ∧ �pf i ||| Qs′ek ∧ ε

)
∨

n2∨
j=1

m1∨
k=1

(
Qse j ∧ ε ||| Qs′ck ∧ �p′f k

)
∨

n2∨
j=1

m2∨
t=1

(
Qse j ∧ ε ||| Qs′et ∧ ε

)

A Concurrent Temporal Programming Model with Atomic Blocks 33

Definition 5. Let p and q be αPTL programs. If p ≡ (
n1∨
i=1

Qsci ∧ �p f i) ∨ (
n2∨
j=1

Qse j ∧ ε)

and q ≡ (
m1∨
k=1

Qs′ck ∧ �p′f k) ∨ (
m2∨
t=1

Qs′et ∧ ε), then we have

p ||| q def
= (

n1∨
i=1

Qsci ∧ �p f i) ∨ (
n2∨
j=1

Qse j ∧ ε) ||| (
m1∨
k=1

Qs′ck ∧ �p′f k) ∨ (
m2∨
t=1

Qs′et ∧ ε)

Definition 5 means that if programs p and q have SNFs, then the interleaving semantics
between p and q is the interleaving between their SNFs.

Theorem 2. For any αPTL program p, there exists a SNF q such that p ≡ q.

As discussed before, since introducing atomic interval formulas, semi-normal form is
necessary as a bridge for transforming programs into normal forms. In the following,
we define normal form for any αPTL program and present some relevant results.

Definition 6 (Normal Form). The normal form of formula p in αPTL is defined as
follows:

p ≡ (
l∨

i=1

pei ∧ ε) ∨ (
m∨

j=1

pc j ∧ �p f j)

where l + m ≥ 1 and each pei and pc j is state formulas, p f j is an αPTL program.

We can see that normal form is defined based on the state formulas, whereas semi-
normal form is defined based on the extended state formulas that includes the atomic
interval formulas. By the definition of atomic interval formula in Definition 1, we can
unfolding the atomic interval formula into formulas such as ps∧�ps′, where ps and ps′
are state formulas, which are executed over two consecutive states. Thus, the extended
state formulas can be reduced to the state formulas at last.

Theorem 3. For any αPTL program p, there exists a normal form q such that p ≡ q.

Theorem 4. For any satisfiable αPTL program p, there is at least one minimal model.

5 Examples

We give some examples in this section to illustrate how the logic αPTL can be used.
Basically, executing a program p is to find an interval to satisfy the program. The ex-
ecution of a program consists of a series of reductions or rewriting over a sequence of
states (i.e., interval). At each state, the program is logically equivalent transformed to
normal form, such as ps∧�p f if the interval does indeed continue; otherwise it reduced
to ps ∧ ε. And, the correctness of reduction at each state is enforced by logic laws. In
the following, we give three simple examples to simulate transactions with our atomic
interval formulas and present the reductions in details. The first example shows that
the framing mechanism can be supported in αPTL, and we can also hide local variables
when doing logic programming. In the second example, we use a two-thread concurrent
program to demonstrate the reduction with the interleaving operator. Finally, the third
example shows αPTL can be used to model fine-grained algorithms as well.

34 X. Yang et al.

frame(x)∧x = 0∧y = 0∧〈∃t : frame(t)∧(t := x;x := t + 1;y := y + 1)〉 ∧ skip

(L1) ≡ frame(x)∧x = 0∧y = 0∧〈∃t : frame(t)∧(t := x;x := t + 1;y := y+1)〉∧�ε∧more

(L21) ≡ x=0∧y=0∧�(frame(x)∧lbf(x)∧ε)∧〈∃t : frame(t)∧(t := x;x := t+1;y :=y+1)〉
(L22) ≡ x = 0∧y = 0∧�(lbf(x)∧lbf(y)∧ε)∧〈∃t : frame(t)∧(t := x;x := t + 1;y := y + 1)〉
(L25) ≡ . . .∧〈frame(x)∧frame(y)∧∃t : frame(t)∧(t := x;x := t+1;y := y+1)〉

z≡ . . .∧〈FRM({x, y, z}) ∧(z := x ; x := z + 1 ; y := y + 1)〉
≡ . . .∧〈FRM({x, y, z}∧((�z = x ∧ skip) ; (�x = z+1∧skip) ; (�y = y+1∧skip))〉

(L11,12) ≡ . . .∧〈FRM({x, y, z}∧�z = 0 ∧ �(�x = z + 1∧skip ; (�y = y+1∧skip))〉
(L21) ≡ . . .∧〈�(FRM({x, y, z}∧lbf(x)∧lbf(y)∧lbf(z)∧z = 0∧

(�x = z + 1∧skip ; (�y = y+1∧skip))〉
(L11,12,17,19) ≡ . . .∧〈�(FRM({x, y, z}∧(x = 0 ∧ ¬px)∧(y = 0 ∧ ¬py)∧(z = 0 ∧ pz)

∧� x = z + 1∧� (�y = y+1∧skip)〉
(L21) ≡ . . .∧〈�((x = 0 ∧ ¬px)∧(y = 0 ∧ ¬py)∧(z = 0 ∧ pz)

∧� (FRM({x, y, z}∧x = 1∧lbf(x)∧lbf(y)∧lbf(z)∧�y = y+1∧�ε))〉
(L18-22) ≡ . . .∧〈�((x = 0 ∧ ¬px)∧(y = 0 ∧ ¬py)∧(z = 0 ∧ pz)∧�((x = 1 ∧ px)

∧(y = 0∧¬py)∧(z = 0∧¬pz)∧�lbf(x)∧lbf(y)∧lbf(z)∧y = 1∧ε))〉
(L18-22) ≡ . . .∧〈�((x = 0 ∧ ¬px)∧(y = 0 ∧ ¬py)∧(z = 0 ∧ pz)∧�((x = 1 ∧ px)

∧(y = 0∧¬py)∧(z = 0∧¬pz)∧�(x = 1∧¬px∧z = 0∧¬pz∧(y = 1∧py)∧ε)))〉
(Def.1) ≡ x = 0∧y = 0∧�(lbf(x)∧lbf(y)∧ε)∧�(x = 1∧y = 1)

≡ (x = 0 ∧ ¬px)∧(y = 0∧¬py)∧�((x = 1∧px)∧(y = 1∧py)∧ε)

Fig. 4. Rewriting Procedure for Prog1

Example 1. Suppose that a transaction is aimed to increment shared variable x and
y atomically and variable t is a local variable used for the computation inside atomic
blocks. The transactional code is shown as below, the atomicity is enforced by the low-
level implementations of transactional memory system.

stm atomic { t := x ; x := t + 1 ; y := y + 1 }

Let the initial state be x = 0, y = 0. The above transactional code can be defined with
αPTL as follows.

Prog1
def
= frame(x) ∧ x = 0∧y = 0∧〈∃t : frame(t)∧(t := x;x := t+1;y := y+1)〉∧skip

Fig. 4 presents the detailed rewriting procedure for the above transactional code.

The second example is about money transfer in the bank. Suppose that the money could
be transferred from the account A to the account B or from the account B to the account
A atomically for n (n ≥ 1) times. The atomicity is enforced by STM implementations.
We use two concurrent threads to implement the task as below.

A Concurrent Temporal Programming Model with Atomic Blocks 35

Prog2
def
= frame(i, tmp1, tmp2, accA, accB)∧(accA = m1)∧(accB = m2)∧(T1 ||| T2)

T1
def
= (i = 0) ∧ (tmp1 = salary1)∧
while (i ≤ n ∧ tmp1 ≤ m1) do
{

i :=+ i + 1 ;
〈(accA := accA − tmp1) ;
(accB := accB + tmp1)〉
}

T2
def
= (j = 0) ∧ (tmp2 = salary2)∧
while (i ≤ n ∧ tmp2 ≤ m2) do
{

j :=+ j + 1 ;
〈(accB := accB − tmp2);
(accA := accA + tmp2)〉
}

Fig. 5. Money Transfer using Transactions

Example 2. Let T1 denote the money transfer from the account A to the account B and
T2 denote the money transfer from the account B to the account A. This example can be
simulated in αPTL shown in Fig. 5.

In the above example, salary1, salary2, m1, m2 and n are constants, where salary1
and salary2 are money need to transfer; m1 and m2 are money in the account, and n
denotes the transfer times. The transaction for money transfer in each thread is encoded
in the atomic interval formula. To implement Prog2, by Theorem 2, we first reduce
threads T1 and T2 into their semi-normal forms, which are presented as follows.

T1 ≡ (i = 0) ∧ (tmp1 = salary1) ∧ �p1 ∧ 〈(accA := accA − tmp1);(accB := accB + tmp1)〉
T2 ≡ (j = 0) ∧ (tmp2 = salary2) ∧ �p2 ∧ 〈(accB := accB − tmp2);(accA := accA + tmp2)〉

where p1 and p2 are programs that will be executed at the next state and we omit their
reduction details here. Further, by Definition 3, we have

T1 ||| T2
def
= (i = 0) ∧ (tmp1 = salary1) ∧ (j = 0) ∧ (tmp2 = salary2)∧

〈(accA := accA − tmp1);(accB := accB + tmp1)〉∧
�(p1 ||| (�p2 ∧ 〈(accB := accB − tmp2);(accA := accA + tmp2)〉))

∨ (i = 0) ∧ (tmp1 = salary1) ∧ (j = 0) ∧ (tmp2 = salary2)∧
〈(accB := accB − tmp2) ; (accA := accA + tmp2)〉∧
�(p2 ||| (p1 ∧ 〈(accA := accA − tmp1);(accB := accB + tmp1)〉))

Now T1 ||| T2 is reduced to the semi-normal form like Qs ∧ �p. Hence, based on the
semi-normal form, we can further reduce Prog2 to its normal form by interpreting the
atomic interval formulas.

In addition to simulating transactional codes, αPTL is able to model fine-grained con-
current algorithms as well. Fine-grained concurrency algorithms are usually imple-
mented with basic machine primitives, whose atomicity is enforced by the hardware.
The behaviors of these machine primitives can be modeled with atomic interval formu-
las in αPTL like this: “〈∨n

i=1(psi ∧ �ps′i ∧ skip)〉”. For instance, the machine primitive

36 X. Yang et al.

CAS(x, old, new; ret) can be defined in αPTL as follows, which has the meaning : if the
value of the shared variable x is equivalent to old then to update it with new and return
1, otherwise keep x unchanged and return 0.

CAS(x, old, new; ret)
def
= 〈 if (x = old) then x := new ∧ ret :=1) else ret := 0 〉
≡ 〈(x = old ∧ x := new ∧ ret := 1) ∨ (¬(x = old) ∧ ret := 0)〉
≡ 〈(x = old ∧ �(x = new ∧ ret = 1 ∧ ε)) ∨ (¬(x=old) ∧ �(ret =0 ∧ ε)〉

6 Related Works and Conclusions

Several researchers have proposed extending logic programming with temporal logic:
Tempura [10] and MSVL [8] based on interval temporal logic, Cactus [12] based on
branching-time temporal logic, XYZ/E [14], Templog [1] based on linear-time temporal
logic. While most of these temporal languages adopt a Prolog-like syntax and program-
ming style due to their origination in logic programming, interval temporal logic pro-
gramming languages such like Tempura and MSVL can support imperative program-
ming style. Not only does interval temporal logic allow itself to be executed (imperative
constructs like sequential composition and while-loop can be derived straightforwardly
in PTL), but more importantly, the imperative execution of interval temporal programs
are well founded on the solid theory of framing and minimal model semantics. Indeed,
interval temporal logic programming languages have narrowed the gap between the
logic and imperative programming languages, and facilitate specifying, verifying and
developing reactive systems in a more efficient and uniform way [2,5,13,15].

The fact that none of existing temporal logic programming language supports con-
current logic programming with atomic blocks, motivates our work on αPTL— the
new logic allows us to model programs with the fundamental mechanism in modern
concurrent programming. We have chosen to base our work on interval temporal logic
and introduce a new form of formulas — atomic interval formulas, which is powerful
enough to specify synchronization primitives with arbitrary granularity, as well as their
interval-based semantics. The choice of PTL also enables us to make use of the framing
technique and develop an executive language on top of the logic consequently. Indeed,
we show that framing works smoothly with our interval semantics for atomicity. In the
near future work, we shall focus on the practical use of αPTL and extend the theory
and the existing tool MSVL [8] to support the specification and verification of various
temporal properties in synchronization algorithms with complex data structure such as
the linked list queue [9].

References

1. Abadi, M., Manna, Z.: Temporal logic programming. Journal of Symbolic Computation 8,
277–295 (1989)

2. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying Linearisability with Potential Lineari-
sation Points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 323–337.
Springer, Heidelberg (2011)

3. Duan, Z., Koutny, M.: A framed temporal logic programming language. Journal of Computer
Science and Technology 19, 341–351 (2004)

A Concurrent Temporal Programming Model with Atomic Blocks 37

4. Duan, Z., Yang, X., Koutny, M.: Semantics of Framed Temporal Logic Programs. In: Gab-
brielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 356–370. Springer, Heidelberg
(2005)

5. Duan, Z., Zhang, N.: A complete axiomatization of propositional projection temporal logic.
In: TASE 2008, pp. 271–278. IEEE Computer Science (2008)

6. Harris, T.L., Fraser, K.: Language support for lightweight transactions, pp. 388–402 (2003)
7. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3),

872–923 (1994)
8. Ma, Y., Duan, Z., Wang, X., Yang, X.: An interpreter for framed tempura and its application.

In: Proc. 1st Joint IEEE/IFIP Symp. on Theoretical Aspects of Soft. Eng. (TASE 2007), pp.
251–260 (2007)

9. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking on multi-
programmed shared memory multiprocessors. J. Parallel Distrib. Comput. 51(1), 1–26 (1998)

10. Moszkowski, B.C.: Executing temporal logic programs. Cambridge University Press (1986)
11. Pnueli, A.: The Temporal Semantics of Concurrent Programs. In: Kahn, G. (ed.) Semantics

of Concurrent Computation. LNCS, vol. 70, pp. 1–20. Springer, Heidelberg (1979)
12. Rondogiannis, P., Gergatsoulis, M., Panayiotopoulos, T.: Branching-time logic program-

ming: The language cactus and its applications. Computer Language 24(3), 155–178 (1998)
13. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-guarantee rea-

soning with itl. In: Proc. TIME 2011, pp. 99–106. IEEE Computer Science (2011)
14. Tang, C.: A temporal logic language oriented toward software engineering – introduction to

XYZ system (I). Chinese Journal of Advanced Software Research 1, 1–27 (1994)
15. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on

SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

16. Vafeiadis, V., Parkinson, M.: A Marriage of Rely/Guarantee and Separation Logic. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007)

17. Yang, N., Adam, W., Adl-Tabatabai, Bach, M., Berkowits, S.: Design and implementation of
transactional constructs for C/C++. In: Proceedings OOPSLA 2008, pp. 195–212 (Septem-
ber 2008)

18. Yang, X., Duan, Z.: Operational semantics of framed tempura. Journal of Logic and Alge-
braic Programming 78(1), 22–51 (2008)

19. Zyulkyarov, F., Harris, T., Unsal, O.S., Cristal, A., Valeroh, M.: Debugging programs that
use atomic blocks and transactional memory. In: Proc. PPoPP 2010, pp. 57–66 (2010)

A Composable Mixed Mode Concurrency

Control Semantics for Transactional Programs

Granville Barnett1 and Shengchao Qin2,3

1 School of Engineering and Computing Sciences, Durham University
2 School of Computing, Teesside University

3 State Key Lab. for Novel Software Technology, Nanjing University
granville.barnett@durham.ac.uk, s.qin@tees.ac.uk

Abstract. Most software transactional memories employ optimistic con-
currency control. A pessimistic semantics, however, is not without its ben-
efits: its programming model is often much simpler to reason about and
supports the execution of irreversible operations. We present a program-
ming model that supports both optimistic and pessimistic concurrency
control semantics. Our pessimistic transactions, guaranteed transactions
(gatomics), afford a stronger semantics than that typically employed by
pessimistic transactions by guaranteeing run once execution and safe en-
capsulation of the privatisation and publication idioms. We describe our
mixed mode transactional programming language by giving a small step
operational semantics. Using our semantics and their derived schedules of
actions (reads and writes) we show that conflicting transactions (atomics)
and gatomics are serialisable. We then go on to define schedules of actions
in the form of Java’s memory model (JMM) and show that the same prop-
erties that held under our restrictive memory model also hold under our
modified JMM.

1 Introduction

Software transactional memory (STM) [27] has gained considerable traction
in recent years and has subsequently been adopted by a number of languages
[10, 13]. STM is only an alternative to locks. One cannot safely substitute every
occurrence of a lock with a transaction and guarantee the original program se-
mantics. This is mainly due to the optimistic concurrency control traditionally
employed by STMs. For example, one cannot optimistically execute an irre-
versible operation and still guarantee consistency. Similarly, optimistic concur-
rency control is not ideal for executing expensive operations, catering for “hot”
regions of memory [29], or for systems with finite resources [4].

One approach of addressing these issues is to permit pessimistic and optimistic
transactions to co-exist. Previous literature such as that by McCloskey et al. [21],
Ziarek et al. [32], Ni et al. [23], Welc et al. [31] and Sonmez et al. [29] have in-
vestigated such approaches, with each providing a different take on how and
why pessimism should be introduced into systems already exposing optimistic
STM. However, each lack a formal underpinning when addressing two problems:

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 38–53, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Composable Mixed Mode Concurrency Control Semantics 39

when pessimistic semantics are necessary due to the semantics of the opera-
tions being performed, and how pessimistic and optimistic modes of concur-
rency control safely co-exist. The closest work on providing a formal foundation
for pessimistic and optimistic transactions was by Koskinen et al. [16] but they
treat each in isolation. Other work also exists on the semantics of STM such as
that by Abadi et al. [1] but again does not provide a model of co-existence for
transactions of differing concurrency control semantics.

The focus of this paper is on presenting an operational semantics for a pro-
gramming language that supports both optimistic and pessimistic transactions.
We partition transactional mediation of accesses to memory into two types:
transactions (atomic) which are optimistic, and guaranteed transactions
(gatomic) which are pessimistic. Atomics under our system have the following
properties (in addition to the ACI properties [8]): (i) word-based : conflicts are
detected at the granularity of memory locations; (ii) out-of-place: atomics op-
erate upon a thread-local copy of their dataset which is only observed by other
threads should the atomic commit; (iii) optimistic: a contention manager [12]
determines, at the point when all constituent commands of an atomic have been
executed, whether or not the atomic should commit or abort; and (iv) weakly
isolated [6, 7]: atomic accesses are only isolated w.r.t. other atomic and gatomic
accesses. The best comparison of a gatomic w.r.t. the current literature is that
a gatomic is an obstinate transaction [23] but is guaranteed to never abort, ei-
ther prior to, or during its execution, and infers a stronger notion of its dataset.
Multiple gatomics can run at any given time provided consistency invariants
are maintained, unlike single owner read locks presented by Welc et al. [31]. A
constituent operation of a gatomic is guaranteed to only ever run once. Further-
more, gatomics offer a sensible and intuitive encapsulation of the privatisation
and publication idioms which are erroneous under some STMs [30]. In addition
to being word-based and out-of-place, gatomics entail the following properties:
(i) pessimistic: contention is resolved at the point of execution; and (ii) dataset
inference: the transitive closure of reachable objects from those referenced within
the gatomic form the dataset of the gatomic. Atomics and gatomics can be freely
composed w.r.t. one another.

The algorithm in Fig. 1 uses a gatomic to privatise a list suffix to the invok-
ing thread. Under an atomic semantics the privatisation of the list suffix may
not be consistent [30]. Executing privatiseListSuffix under a gatomic se-
mantics always maintains memory consistency. For example, given two threads
T1 and T2, where T1 and T2 invoke list.privatiseListSuffix(5) and resp.
list.privatiseListSuffix(3) on a shared list object list (a singly linked
list) which comprises of the values [1..10], we have either T1 and T2 printing
[5..10] and resp. [3, 4], or [3..10] and resp. []. Under other STMs [30] this exam-
ple would require programmer specified logic to explicitly transfer ownership of
heap locations to the invoking thread [30], however under a gatomic semantics
this process is managed entirely by the underlying system.

Our guiding philosophy can be summarised as follows: optimistic concurrency
control (atomic) should be used in most cases, but for operations that access

40 G. Barnett and S. Qin

class LinkedList {
// . . .
gatomic p r i v a t i s e L i s t S u f f i x (Value v) {

prev := head ;
curr := prev . next ;
while (curr . va lue != v) {

prev := curr ; curr := curr . next ;
i f (curr == nu l l) goto 9 ;

}
prev . next = nu l l ;
while (curr != nu l l) {

p r in t (curr . va lue) ;
curr = curr . next ;

} }
// . . .

}

Fig. 1. Gatomics guarantee the safety of privatising operations

highly contended memory, execute irreversible operations, demand run once se-
mantics or perform expensive computations, then on-occasion pessimistic con-
currency control (gatomic) may be preferable [26].

To summarise, we make the following contributions:

– We give a small-step operational semantics (Sect. 2) for an object-oriented
programming language that supports atomics and gatomics.

– We define legal schedules of reads and writes issued by atomics and gatomics,
first in the form of sequential consistency (SC, Sect. 2.5), and then as part
of a modified definition of the Java memory model (JMM, Sect.3).

– We show that the actions issued by conflicting atomics and gatomics are
serialisable both under SC and the JMM. (Sects. 2.6 and 3.)

2 Programming Model

2.1 Programming Language

We present a minimal object-oriented language that supports atomics and
gatomics for mediating accesses to memory locations. Atomic and gatomic re-
gions of code can be defined at the granularity of a method or be explicitly
scoped.

prog ::= cdecl∗ (t v)∗ (S || . . . || S)
cdecl ::= class cn { (t v)∗ meth∗ }
t ::= cn | primitive
meth ::= [atomic | gatomic] t m((t p)∗) {C}
S ::= (t v)∗ C
C ::= v := x | v.f := x | v.m(p∗) | atomic{C} | gatomic{C} | C;C

A Composable Mixed Mode Concurrency Control Semantics 41

Where v, p and x range over variables, t over types and f over the fields defined
by the variable’s type. Notable features of our language include the use of atom-
ics (atomic{C}) and gatomics (gatomic{C}) as commands. Classes, methods and
method calls are also permitted. Methods can be defined to execute under an
atomic, gatomic or non-synchronised semantics. For simplicity of presentation,
the above language does not include conditional commands and while loops. Con-
ditional commands cause no extra difficulty in our semantic definitions. While
loops can be dealt with via their corresponding tail-recursive methods.

2.2 Program Text Preprocessing

Each invocation of an atomic or gatomic method is wrapped with the synchro-
nisation action (SA, either an atomic or gatomic) defined by the method’s sig-
nature. A method invocation v.m(p∗) is transformed into atomic{v.m(p∗)} if m
is defined as an atomic method. Similarly, the invocation v.m(p∗) is transformed
into gatomic{v.m(p∗)} if m is defined to execute under a gatomic semantics.

Nested SAs are flattened by applying the following sequence of phases:

1. Discovery: determines the strongest semantics used within the nested SAs.
The semantics afforded by a gatomic are stronger than that of an atomic.

2. Semantic Boosting: uses the semantics yielded by the discovery phase as the
new semantics of the outermost SA.

3. Flattening: removes the nested SA semantics from the outermost SA result-
ing in a single monolithic SA.

To illustrate the use of these phases we now apply them to the command
atomic{ci; gatomic{cj}}:

– Discovery: the gatomic is selected as its semantics are stronger than that
afforded by an atomic.

– Semantic Boosting: the outermost SA (atomic) adopts the semantics identi-
fied by the discovery phase resulting in gatomic{ci; gatomic{cj}}.

– Flattening: the nested gatomic is removed resulting in gatomic{ci; cj}.

The last stage of our preprocessing is to associate a unique identifier, id, with
each instance of an atomic and gatomic.

2.3 Preliminaries

State. Our model of state is defined as follows:

s ∈ Stores
def
= Variables→ Addresses

h ∈ Heaps
def
= Addresses⇀fin ObjVal

Variables
def
= {x, y, ...} Addresses

def
= {0, 1, 2, ...}

(s, h) ∈ States
def
= Stores× Heaps

42 G. Barnett and S. Qin

Note that s is a function that maps a variable to its address on the heap. A
heap h is a partial function that maps an address to an object value cn[f1
→
ν1, . . . , fn
→ νn] where cn is the type of the object and ν1 . . . νn are the values of
the fields f1 . . . fn. We use h(s(x)).f to access the value of a field f of the object
pointed-to by x. We often use σ or δ to denote a state, (s, h).

Configurations. Given a parallel composition C1‖ . . . ‖Cn, the machine con-
figuration P is of the form 〈T1‖ . . . ‖Tn, σ, Γ 〉, where T1, .., Tn are thread config-
urations, σ is the program state, and Γ records all current instances of SAs.

A thread configuration T is of the form 〈τ, Cτ , sτ , δ〉, where τ∈T ={1, .., n}
is the thread identifier, Cτ is the command to execute, sτ is the thread’s store
mapping, and δ is a copy of the program state. δ entails the thread store and
the program state.

Every active SA instance is associated with some metadata of the form
(beg, cmt, rs,ws, ds, type), where beg and cmt are time stamps representing be-
gin and commit times, rs and ws are read and write sets (sets of addresses),

ds
def
= rs ∪ ws is the dataset, and type is the type of the SA instance, defined as

Ψ if the SA is a gatomic or undefined (⊥) otherwise. Each component of an SA
entry is initially ⊥. Γ in the program configuration is a mapping that takes a
thread identifier and an SA label and returns the metadata associated with the
specified SA instance. Metadata facilitates the safe execution of SAs; specifically,
the checking of which SAs conflict and which do not. Given two distinct SAs
x and y, x and y conflict if x’s write set (ws) intersected with y’s dataset (ds)
yields a non-empty set.

Transition Relations. We model the execution of each thread command us-
ing the following transition relation: T, σ, Γ

λ−→ T ′, σ′, Γ ′, as in Fig. 3. To fa-
cilitate the presentation, we also define a set of auxiliary rules of the form

C, σ, γR, γW
λR | λW−−−−−→ C′, σ′, γ′R,

′ γ′W in Fig. 2. Where γR and γW are incremen-
tally accumulated read and write sets. A transition in the auxiliary rules gener-
ates a sequence of reads (λR) and/or writes (λW). An action that is generated
due to a reduction in either the thread or auxiliary rules is termed a fine-grained
action. λ is used as a metavariable that ranges over fine-grained actions. We
model the execution of a parallel composition (Fig. 5) using the following transi-

tion relation P
‖mv∈I∪MΛmv−−−−−−−−→ P ′, where P, P ′ are of the form 〈T1‖ . . . ‖Tn, σ, Γ 〉 as

defined earlier. The label ‖mv∈I∪M Λmv denotes that during the transition from
P to P ′, all actions Λmv (mv∈I ∪M) take place concurrently in some arbitrary
order. Each action Λmv entails a sequence of finer-grained actions, λ, either of
the form tbeg�λ∗�tcmt (for atomics) or gbeg�λ∗�gcmt (for gatomics). Where
λ∗ is a sequence of reads and/or writes.

2.4 Thread Command Semantics

We extend the commands of our language to include the following intermediate
constructs to facilitate the presentation of the semantics:

C ::= . . . | ablk(C, C) | gablk(C) | ret({v1, . . . , vn}, C)

A Composable Mixed Mode Concurrency Control Semantics 43

[ASSIGN]
s′ = s[v �→s(x)]

γ′
R = γR ∪ {x} γ′

W = γW ∪ {v}
v:=x, (s, h), γR, γW

λRλW−−−−→ ε, (s′, h), γ′
R, γ′

W

[FLD UPDATE]
h′ = h[s(v) �→ (h(s(v))[f �→s(x)])]

γ′
R = γR ∪ {x} γ′

W = γW ∪ {s(v)}
v.f :=x, (s, h), γR, γW

λRλW−−−−→ ε, (s, h′), γ′
R, γ′

W

[INV1]
t mn(t1 p1, .., tn pn) {c} ∈ methods(cn)

s0 = [this �→sτ (u0), p1 �→sτ (u1), .., pn �→sτ (un)] s′ = push frame(s0, s)
γ′
R = γR ∪ {u1, . . . , un}

u0.mn(u1..un), (s, h), γR, γW
λR1...λRn−−−−−−−→ ret({this, p1..pn}, c), (s′, h), γ′

R, γW

[INV2]

c, (s, h), γR, γW
λ−→ c′, (s′, h′), γ′

R, γ′
W

ret(V, c), (s, h), γR, γW
λ−→ ret(V, c′), (s′, h′), γ′

R, γ′
W

[INV3]
s′ = pop frame(V, s)

ret(V, ε), (s, h), γR, γW
ε−→ ε, (s′, h), γR, γW

[SEQ1]

c1, (s, h), γR, γW
λ−→ c′1, (s

′, h′), γ′
R, γ′

W

c1; c2, (s, h), γR, γW
λ−→ c′1; c2, (s

′, h′), γ′
R, γ′

W

[SEQ2]

c1, (s, h), γR, γW
λ−→ ε, (s′, h′), γ′

R, γ′
W

c1; c2, (s, h), γR, γW
λ−→ c2, (s′, h′), γ′

R, γ′
W

Fig. 2. Auxiliary Sequential Rules instrumented with Datasets

where ablk(C, C) and gablk(C) are intermediate representations of atomic{C}
and resp. gatomic{C} within the program source text. The second component
of ablk is the backup program command and is used as the point to rollback to
should the atomic abort. The construct ret({p1, . . . , pn}, C) is used as a mark
when executing methods.

The rest of this section covers the operational semantics of our language.
During our commentary we give only brief descriptions of the auxiliary functions
our rules reference. We refer the reader to Fig. 4 for their formal definitions.

Auxiliary Rules. [ASSIGN] and [FLD UPDATE] (Fig. 2) are employed when
executing either an assignment or field update within an SA. Each command
registers the memory locations it reads and writes and stores them in its read
(γR) and/or resp. write (γW) set. The read and write sets of a command aid
conflict detection of atomics and gatomics (see Sects. 2.4 and 2.4). The rules
[INV1], [INV2] and [INV3] facilitate method calls. [INV1] is applied when invok-
ing a method. Note that the store s is viewed as a “stackable” mapping, where a
variable p may occur several times, and s(p) always refers to the value of the vari-
ables p that were pushed in most recently. We use the operation push frame(s0, s)
to “push” the frame s0 to s, push frame([p
→ν], s)(p) = ν. [INV2] is applied when
executing the constituent commands of a method and [INV3] is applied when a
method completes. In [INV3] pop frame(V, s) is used to “pop out” the variables

44 G. Barnett and S. Qin

[ATOMIC BEG]
δ = (sτ ∪ σ.s, σ.h)

Γ ′ = Γ [(τ, id) �→(Ω,⊥, ∅, ∅, ∅,⊥)]
〈τ, id:atomic{c}, sτ ,⊥〉, σ, Γ

tbeg−−→
〈τ, id:ablk(c, id:atomic{c}), sτ , δ〉, σ, Γ ′

[ATOMIC UPDATE]
γR = Γ (τ, id)(rs) γW = Γ (τ, id)(ws)

c, δ, γR, γW
λ−→ c′, δ′, γ′

R, γ
′
W

Γ ′ = Γ [(τ, id) �→(Γ (τ, id)[rs �→γ′
R,ws �→γ′

W])]

〈τ, id:ablk(c, c1), sτ , δ〉, σ, Γ
λ−→

〈τ, id:ablk(c′, c1), sτ , δ′〉, σ, Γ ′

[ATOMIC CMT]
∀τ ′ ∈ T .¬conflict(τ, τ ′, Γ)

(s′τ , σ
′) = merge upd(δ, sτ , σ)

Γ ′ = Γ [(τ, id) �→Γ (τ, id)[cmt �→Ω]]

〈τ, id:ablk(ε, c1), sτ , δ〉, σ, Γ
tcmt−−→

〈τ, ε, s′τ ,⊥〉, σ′, Γ ′

[GATOMIC BEG]
∀τ ′ ∈ T .¬ga conflict(τ, τ ′, Γ ′)

δ = (sτ ∪ σ.s, σ.h)
γR = reads(c, δ) γW = writes(c, δ)

Γ ′ = Γ [(τ, id) �→(Ω,⊥, γR, γW , γR ∪ γW , Ψ)]

〈τ, id:gatomic{c}, sτ ,⊥〉, σ, Γ
gbeg−−→

〈τ, id:gablk(c), sτ , δ〉, σ, Γ ′

[ATOMIC ABT]
∃τ ′ ∈ T .conflict(τ, τ ′, Γ)

〈τ, id:ablk(ε, c′), sτ , δ〉, σ, Γ
tabt−−→

〈τ, c′, sτ ,⊥〉, σ, Γ\{(τ, id)}

[GATOMIC UPDATE]

c, δ, ,
λ−→ c′, δ′, ,

〈τ, id:gablk(c), sτ , δ〉, σ, Γ
λ−→

〈τ, id:gablk(c′), sτ , δ′〉, σ, Γ

[GATOMIC CMT]
(s′τ , σ

′) = merge upd(δ, sτ , σ)
Γ ′ = Γ [(τ, id) �→(Γ (τ, id)[cmt �→Ω])]

〈τ, id:gablk(ε), sτ , δ〉, σ, Γ
gcmt−−→

〈τ, ε, s′τ ,⊥〉, σ′, Γ ′

[GATOMIC BLOCK]
γR = reads(c, (sτ ∪ σ.s, σ.h))
γW = writes(c, (sτ ∪ σ.s, σ.h))

Γ = Γ [(τ, id) �→(Ω,⊥, γR, γW , γR ∪ γW , Ψ)]

∃τ ′∈T .ga conflict(τ, τ ′, Γ)

〈τ, id:gatomic{c}, sτ ,⊥〉, σ, Γ
blk−→

〈τ, id:gatomic{c}, sτ ,⊥〉, σ, Γ

Fig. 3. Synchronisation Action Command Semantics

in V from the stack s, and s[p
→ν] changes the value of the most recent p in stack
s to ν. The ε in [SEQ2] denotes an empty command.

Transactions [ATOMIC BEG] (Fig. 3) is applied when an atomic{C} is encoun-
tered in the source text. An atomic is relatively simple to setup: a local copy of
the state, δ, is made which comprises of a store heap pair where the store entails
both the thread-local and global store mappings and some default metadata is
associated with the SA instance. We use Ω as a meta-timestamp that returns
the current time. [ATOMIC UPDATE] is applied for each constituent command
within an atomic. When all the constituent commands of an atomic have been
executed either [ATOMIC CMT] or [ATOMIC ABT] is applied. [ATOMIC CMT]
applies should the dataset of the atomic not conflict with any other running or

A Composable Mixed Mode Concurrency Control Semantics 45

merge(σ1, σ2)
def
= (mergefun(σ1.s, σ2.s),mergefun(σ1.h, σ2.h))

mergefun(f1, f2)(x)
def
=

{
f2(x) x ∈ dom(f2)
f1(x) x ∈ dom(f1)\dom(f2)

merge sets(σ, {σ1, .., σn}) def
=

{
merge(σ, σ1) n = 1
merge sets(merge(σ, σ1), {σ2, .., σn}) n≥2

merge upd((s1, h1), s, σ)
def
= (mergefun(s ∪ σ.s, s1),mergefun(σ.h, h1))

conflict(τ1, τ2, Γ)
def
= τ1
=τ2 ∧ ∃id1, id2 ∈ Labels.Γ (τ1, id1).ws ∩ Γ (τ2, id2).ds
= ∅

∧ (Γ (τ1, id1).beg≤Γ (τ2, id2).cmt≤Ω
∨ Γ (τ2, id2).type = Ψ ∧ Γ (τ2, id2).cmt = ⊥)

ga conflict(τ1, τ2, Γ)
def
= τ1
=τ2 ∧ ∃id1, id2 ∈ Labels.Γ (τ1, id1).type = Ψ

∧ Γ (τ2, id2).type = Ψ
∧ Γ (τ1, id1).ws ∩ Γ (τ2, id2).ds
= ∅ ∧ Γ (τ2, id2).cmt = ⊥

Ti, σ, Γ (
λ1−→ ◦ λ2−→) T′

i, σ
′, Γ ′ def

= ∃T′′
i , σ

′′, Γ ′′ · Ti, σ, Γ
λ1−→ T′′

i , σ
′′, Γ ′′

∧ T′′
i , σ

′′, Γ ′′ λ2−→ T′
i, σ

′, Γ ′

(
λ−→)∗ def

=
⋃
r≥1

(
λ−→)r (

λ−→)r+1 def
= (

λ−→) ◦ (λ−→)r

merge sa(Γ, {Γ 1, .., Γn}) def
= Γ ∪

⋃
1≤i≤n

(Γ i−Γ)

Fig. 4. Auxiliary Definitions

recently committed SA. Committing an atomic entails the merging of its effect
(δ) into sτ and σ via the function merge upd, and the updating of its SA entry.
The dataset of an atomic is validated only when all its constituent commands
have been executed. [ATOMIC ABT] is applied if the atomic’s dataset has been
invalidated due to a conflict with another running or recently committed SA.
Aborting an atomic is trivial: its SA entry is removed from Γ and the program
counter of τ is set to c′. The predicate conflict in Fig. 4 determines whether or
not an atomic conflicts with another SA. Informally, if a conflicting atomic or
gatomic committed after or at the same time as the atomic under investigation
began then the atomic is aborted.

Guaranteed Transactions [GATOMIC BEG] is applied when gatomic{C} is en-
countered in the program source text. Due to the run once semantics of gatomics
[GATOMIC BEG] performs a check to see if the gatomic conflicts with any other
currently running gatomic. Should a conflict exist then the gatomic cannot be
immediately scheduled to run and [GATOMIC BLOCK] is applied; otherwise, it
begins execution. The functions reads and writes return the transitive closure
of all locations reachable by the objects referenced within the gatomic that
are read and resp. written. We resort to existing analyses (e.g., [5, 15, 20, 25])

46 G. Barnett and S. Qin

to compute this information. The predicate ga conflict (Fig. 4) encapsulates
the pessimistic scheduling check that gatomics entail. Conceptually gatomics
use two-phase locking: locks associated with the referenced objects within the
gatomic are acquired before entering the gatomic and only released upon the
completion of the gatomic. The temporary mapping Γ in [GATOMIC BLOCK]
is used to determine if the gatomic conflicts with any other running gatomic.
[GATOMIC UPDATE] is applied per each constituent command executed by the
gatomic. The commands that a gatomic executes are non-instrumented versions
of the commands presented in Fig. 2. [GATOMIC CMT] is applied when the
gatomic has executed all of its constituent commands.

Note that in Fig. 3, we present only semantics for atomics and gatomics, and
ignore semantics for other commands (which are straightforward to define).

1

2

3

4

5

6

7

8 9

[PCOMP]
T = I ∪ J ∪K ∪M I ∪M
= ∅

∀i ∈ I · Ti=〈i, idi:gatomic{ci}; c′i, si,⊥〉 ∧ T′
i=〈i, c′i, s′i,⊥〉 ∧ T′′

i =〈i, idi:gablk(ε); c′i, si, δi〉
∀j ∈ J · Tj=〈j, idj:gatomic{cj}; c′j , sj ,⊥〉

∀k ∈ K · Tk=〈k, idk:atomic{ck}; c′k, sk,⊥〉 ∧ T′′
k=〈k, idk:ablk(ε, ck); c′k, sk, δk〉

∀m ∈ M · Tm=〈m, idm:atomic{cm}; c′m, sm,⊥〉 ∧ T′
m = 〈m, c′m, s′m,⊥〉

∧ T′′
m = 〈m, idm:ablk(ε, cm); c′m, sm, δm〉

∀i, j ∈ I · i
=j ⇒ Γ (i, idi)(ws) ∩ Γ (j, idj)(ds) = ∅
∀j ∈ J · (∃i ∈ I · Γ (i, idi)(ws) ∩ Γ (j, idj)(ds)
= ∅)

∀i ∈ I · Ti, σ, Γ
gbeg−−→ ◦(λ−→)∗ T′′

i , σ
′
i, Γ

′
i

gcmt−−→ T′
i, σi, Γi ∧ Λi = gbeg�λ∗�gcmt

∀k ∈ K · Tk, σ, Γ
tbeg−−→ ◦(λ−→)∗ T′′

k , σ, Γ
′
k

tabt−−→ Tk, σ, Γ

∀m ∈M · Tm, σ, Γ
tbeg−−→ ◦(λ−→)∗ T′′

m, σ, Γ ′
m

tcmt−−→ T′
m, σm, Γm

∧ Λm = tbeg�λ∗�tcmt
∀k ∈ K · (∃i ∈ I.Γ ′

k(k, idk)(ws) ∩ Γ (i, idi)(ds)
= ∅
∨ ∃m ∈M.Γ ′

k(k, idk)(ws) ∩ Γ ′
m(m, idm)(ds)
= ∅)

∀m ∈M · (∀i ∈ I.Γ ′
m(m, idm)(ws) ∩ Γ (i, idi)(ds) = ∅ ∧

∀m′ ∈M\{m}.¬∃idm′ .Γ ′
m(m, idm)(ws) ∩ Γ ′

m′(m′, idm′)(ds)
= ∅)
σ′ = merge sets(σ, {στ | τ ∈ I ∪M}) Γ ′ = merge sa(Γ, {Γτ | τ ∈ I ∪M})

〈. . . ||Ti||..||Tj ||..||Tk||..||Tm||.., σ, Γ 〉
‖mv∈I∪MΛmv−−−−−−−−→ 〈..||T′

i||..||Tj ||..||Tk||..||T′
m||.., σ′, Γ ′〉

Fig. 5. Big-Step Program Move Semantics

2.5 Program Move Semantics

The orchestration of concurrently executing threads is handled by the rule
[PCOMP] (Fig. 5). [PCOMP] caters for the most interesting scenario where each
thread has an atomic or gatomic to run (Other scenarios are not included). It
distinguishes the set of threads which make progress in their respective transition
systems (moving threads) from those that do not (non-moving threads). Moving
threads are executing either atomics that are to be committed or gatomics that
are safe to run. To facilitate our reasoning we assume the set of concurrently
executing threads T are split into four sets (Label 1 in Fig. 5):

A Composable Mixed Mode Concurrency Control Semantics 47

– I is the set of threads that are executing code under a gatomic semantics.
Every thread in I has satisfied the predicate ¬ga conflict for its respective
gatomic.

– J represents the set of threads that are currently blocking due to their resp.
gatomics conflicting with some threads already running in I.

– M is the set of threads that can commit their atomics.
– K is the set of threads whose atomics are to be aborted.

Label 2 in Fig. 5 defines the configurations that each of the partitioned threads in
I, J,M and K move through. Label 3 requires that each of the threads in I run-
ning a gatomic do not conflict w.r.t. each other. Label 4 denotes that the gatomics
in threads J are currently blocking due to them conflicting with some threads
currently running in I. Label 5 illustrates the transitions undertaken by each of
the threads in I, J,M andK. Threads in I apply an instance of [GATOMIC BEG],
a number of [GATOMIC UPDATE] instances and an instance of [GATOMIC CMT].
The blocking threads in J apply an instance of [GATOMIC BLOCK] and as
such do not make any progress in their resp. transition systems. Threads in
K and M differ only in their final reduction: threads in K apply instances of
[ATOMIC ABT] and those inM apply instances of [ATOMIC CMT]. Label 6 states
that the threads in K are due to abort if they conflict with either a gatomic or a
committing atomic. Label 7 requires that the committing atomics do not conflict
with any gatomics nor any other committing atomic. Moving threads merge their
entailed effects with the program state via merge sets (Label 8) and also merge
the updates made to their respective SA entries courtesy of merge sa (Label 9).

Each SA being executed by the threads in I, J,M and K generates a sequence
of fine grained actions, λs, due to the reductions taken in their resp. transition
systems. The sequence of fine grained actions generated by each SA form an
action, Λ. Λmv is used to denote the actions associated with the SAs being
executed by the moving threads in I and M . The fine grained actions (λs) of
the actions in Λmv can be arbitrarily concurrently interleaved due to the SAs
executed by threads in I and M not conflicting. This interleaving is denoted in
the reduction of [PCOMP]. The resulting interleaving is governed by the same
restrictions imposed by sequential consistency (SC) [17].

2.6 Properties

We show that the semantics of atomics and gatomics given in Figs. 3 and 5 are
serialisable [24] and that correctly isolated programs are data-race-free.

Definition 1. Ordered-Before (<). Defined over actions (Λs). Total ordering.
If each fine grained action λi of Λi takes effect before the first fine grained action
λj of Λj, then Λi < Λj.

Intuitively if Λi < Λj then we say that the effect of Λi serialises-before Λj. The
ordered-before relation is constructed during the reduction of [PCOMP]. We show
for any given execution that conflicting atomics and gatomics are serialised.

48 G. Barnett and S. Qin

Theorem 1. There exists a total (serialisable) order over conflicting atomics.

Proof. Let Λi and Λj be the actions associated with the conflicting atomics Ti
and resp. Tj. By definition of conflict we apply instances of [ATOMIC CMT] and
resp. [ATOMIC ABT]. Therefore, either Λi < Λj ∨ Λj < Λi.

Theorem 2. There exists a total (serialisable) order over conflicting gatomics.

Proof. Let Λi and Λj be the actions associated with the conflicting gatomics Ti
and resp. Tj. By definition of ga conflict we apply instances of [GATOMIC BEG]
and resp. [GATOMIC BLOCK]. Therefore, either Λi < Λj ∨ Λj < Λi.

Theorem 3. There exists a total (serialisable) order over conflicting SAs of
mixed type.

Proof. Let Λi and Λj be the actions associated with the conflicting atomic Ti and
resp. gatomic Tj . By definition of conflict we apply instances of [ATOMIC ABT]
and resp. [GATOMIC CMT]. Therefore, Λj < Λi.

Intuitively gatomics have a serialisation priority over transactions due to a
gatomic guaranteeing run once semantics.

A correctly isolated program is one that encapsulates every access to a memory
region that is accessed by multiple threads with either an atomic or gatomic.

Theorem 4. Correctly isolated programs are data-race-free.

Proof. Follows from Thms. 1, 2 and 3.

3 Java Memory Model

In Sect. 2.5 we presented actions, λs, and described via [PCOMP] (Fig. 5) how
these actions were permitted to be interleaved. For each execution this inter-
leaving forms a schedule. In the literature a schedule is governed by a memory
model [2]. Most importantly a memory model specifies the set of values a read
may observe. The schedules of actions constructed in Fig. 5 were due to SC.
Under SC actions from all threads appear in a totally ordered sequence, with
each action respecting the program order of its issuing thread. The goal of this
section is to define legal schedules of actions in terms of the Java memory model
(JMM) [19]. In particular, we wish to show how happens-before relationships are
established between atomics and gatomics. Having defined our SAs under the
JMM we show that they satisfy the properties given in Sect. 2.6.

3.1 Correctly Synchronised Programs

The JMM takes a rather simple approach when defining what constitutes a
correctly synchronised program, informally: any program that is data-race-free
(DRF) [3] is guaranteed to observe an SC semantics. Before describing what it
means for a program to be DRF we must cover the terminology outlined by the
JMM.

A Composable Mixed Mode Concurrency Control Semantics 49

– Conflicting Accesses: a read or write to a variable x is an access of x.
Two accesses to x are conflicting if at least one of the accesses is a write.

– Synchronisation Actions: includes locks, unlocks, reads of volatile vari-
ables and writes to volatile variables.

– Program Order: the actions issued by a thread τ form a total ordering
known as the program order of τ .

– Synchronisation Order: every execution is associated with a synchronisa-
tion order which is a total ordering over all SAs. Only synchronisation orders
that are consistent with program order can be considered. For example, a
read r of a volatile field v must observe the value written to v by the write
w such that w occurs before r in the synchronisation order, w

so−→ r. Every
execution is associated with a synchronisation order.

– Synchronises-With Order: an unlock action a on a monitor M
“synchronises-with” a subsequent, as defined by the synchronisation order,
lock action b on M , a

sw−−→ b.
sw−−→ is a partial order. Actions within the

synchronises-with order can be issued by different threads.

– Happens-Before Order: is the transitive closure of the program order and
synchronises-with order. An action a “happens-before” [18] another action b

if a occurs before b in the happens-before ordering, written a
hb−→ b.

– Data Race: two accesses a and b to a variable v form a data race if a
and b conflict, are issued by separate threads and are not ordered by the
happens-before relation.

– Data-Race-Free Program: a program is DRF if and only if all sequentially
consistent executions of the program are free of data races.

The happens-before relation in the JMM defines the set of values a read can
observe. Establishing edges in this relation requires the use of an SA. In Java such
actions are generated via the use of either volatile variables or synchronized
methods/blocks. As defined by the synchronises-with order there exists a pair of
matching unlock and lock actions on the same monitor object M . Conceptually
every monitorM is associated with an unlock action onM before any actions of a
program are executed. Before we proceed further we must update the definitions
of synchronisation actions and the synchronises-with order to be the following:

– Synchronisation Actions: includes the beginning of an atomic and gatomic
(tbeg and resp. gbeg) and the end of an atomic and gatomic (tcmt and resp.
gcmt).

– Synchronises-With Order: a tcmt (and resp. gcmt) action a on a dataset
da “synchronises-with” a subsequent, as defined by the synchronisation order,
tbeg (and resp. gbeg) action b on a dataset db when da ∩ db �= ∅, written
a

sw−−→ b.

Our begin and end actions for atomics and gatomics are abstractions. We give
their semantics in the form of the JMMs acquire and release actions in the next
section.

50 G. Barnett and S. Qin

3.2 Execution Semantics

Actions. An action A = 〈τ, k, v, u〉 where τ is the thread performing the action,
k is the kind of action being performed (discussed later), v is the variable involved
in the action and u ∈ Integers is the unique identifier of the action. The kind k
of an action can be one of the following: (i) write (W); (ii) read (R); (iii) acquire
(Acq); or (iv) release (Rel). We do not cater for volatiles. To keep things simple
we permit a write to be performed directly on a field, e.g. 〈τ,W, v.f, 1〉. The
semantics of tcmt, gbeg and gcmt are defined as follows:

tcmt
def
= Acq �i . . .Acq �n Rel �n . . .Rel �i

gbeg
def
= Acq �i . . .Acq �n

gcmt
def
= Rel �n . . .Rel �i

Where each � can be a variable or an object value and forms the dataset of
an atomic or gatomic. We require that the contention manager has made this
schedule safe and that the acquisition and release orders are topologically sorted
as in McCloskey et al. [21].1 blk is ignored (it is a sink action) and tbeg simply acts
as a mark to delimit the beginning of an atomic’s constituent actions. tabt does
not feature in any execution as its subsequence of actions will not be observed.
A valid sequence of actions for atomics and gatomics is a composition of the
above with a number of reads and writes:

tbeg (W | R)∗ tcmt gbeg (W | R)∗ gcmt

Note that these sequences correspond to those of the moving threads I and M
in Fig. 5.

Executions. An execution E = 〈P,A, po−→, so−→,Ws,Vs,
sw−−→, hb−→〉 where P is as

defined in Sect. 2, A is a set of actions,
po−→ is the program order of the actions

performed by each τ ∈ T , so−→ is the synchronisation order, Ws is a write-seen

function, Vs is a value-seen function and
sw−−→ and

hb−→ are as defined previously.

4 Related Work

Shavit and Touitou [27] introduced software transactional memory (STM). The
isolation semantics afforded by an STM are either weak or strong [6, 7, 11]. Liter-
ature on the semantics of STM includes that by Abadi et al. [1] which is based on
the automatic mutual exclusion (AME) [14] concurrent programming language.
Koskinen et al. [16] have also studied the semantics of STM but their work does
not entail the mixing of pessimistic and optimistic concurrency control.

1 This model is used only to illustrate a projection onto the JMMs existing SAs.

A Composable Mixed Mode Concurrency Control Semantics 51

Ziarek et al. [32] described a dynamic approach for selecting a stronger seman-
tics when an atomic attempted to execute an operation which seems (determined
by a magic analysis) to require stronger guarantees than that afforded by an
atomic. Unfortunately, such a semantics reverts to using programmer specified
lock invariants which are error prone. Smaragdakis et al. [28] presented a set of
language extensions to temporarily “suspend” an atomic’s isolation in order to
support irreversible operations, however they rely heavily on the specification of
isolation invariants, which are again, error prone. Privatisation and publication
[30] can be used to emulate a stronger semantics within STM but requires the
programmer to correctly transfer ownership of memory regions between threads.

Ni et al. [23] championed obstinate transactions but are a product of a prior
abort. Welc et al. [31] use single owner read locks to transition to a guaranteed
semantics but permit only a single such atomic to run at any given time. Sonmez
et al. [29] present a model built on Haskell STM that turns atomics that access
“hot” regions of memory into pessimistic atomics, however this approach again
is dynamic and does not afford dataset guarantees. Autolocker [21] presents
a model of pessimistic atomics by using a type system that uses programmer
specified lock protection annotations to convert atomics into lock-based equiva-
lents statically. Recent literature such as that by McCloskey et al. [21], Ni et al.
[23], Shavit and Matveev [26] and Welc et al. [31] have, via empirical evidence,
more than justified not only the practical feasibility of pessimistic concurrency
control for STM but also its importance in simplifying the programming model.

Adding atomics to a language such as Java impacts the underlying memory
model [2] as outlined by Ziarek et al. [32] and Grossman et al. [9]. Menon et al.
[22] provide a number of properties that memory models must take into consid-
eration for supporting atomics, such as the Java memory model (JMM) [19].

5 Summary

We have presented a small-step operational semantics for a programming lan-
guage that supports compositional mixed mode concurrency control for trans-
actional programs. Our language partitions transactions into two types: atomics
(optimistic) and gatomics (pessimistic). Gatomics guarantee run once semantics
and the safe use of the privatisation and publication idioms. We also showed
that the reads and writes issued by atomics and gatomics are serialisable under
both a sequential consistency and Java memory model semantics.

Acknowledgment. Granville Barnett is supported by EPSRC Doctoral Train-
ing Award. Shengchao Qin is supported in part by EPSRC project EP/G042322.

References

[1] Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. In: Principles of Programming Languages (2008)

[2] Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Computer (1996)

52 G. Barnett and S. Qin

[3] Adve, S.V., Hill, M.D.: Weak ordering – a new definition. In: International Sym-
posium on Computer Architecture (1990)

[4] Agrawal, R., Carey, M.J., Livny, M.: Concurrency control performance modeling:
alternatives and implications. ACM Trans. Database Syst. (1987)

[5] Andersen, L.O.: Program analysis and specialization for the c programming lan-
guage. Technical report. University of Copenhagen (1994)

[6] Blundell, C., Christopher Lewis, E., Martin, M.M.K.: Deconstructing transac-
tional semantics: The subtleties of atomicity. In: Workshop on Duplicating, De-
constructing, and Debunking (2005)

[7] Blundell, C., Devietti, J., Christopher Lewis, E., Martin, M.M.K.: Making the fast
case common and the uncommon case simple in unbounded transactional memory.
In: International Symposium on Computer Architecture (2007)

[8] Gray, J.: The transaction concept: virtues and limitations. Very Large Data Bases
(1981)

[9] Grossman, D., Manson, J., Pugh, W.: What do high-level memory models mean
for transactions? In: Memory System Performance and Correctness (2006)

[10] Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Principles and Practice of Parallel Programming (2005)

[11] Harris, T., Larus, J., Rajwar, R.: Transactional memory, 2nd edn. (2010)
[12] Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional

memory for dynamic-sized data structures. In: Principles of Distributed Comput-
ing (2003)

[13] Hickey, R.: The clojure programming language. In: Dynamic Languages Sympo-
sium (2008)

[14] Isard, M., Birrell, A.: Automatic mutual exclusion. In: USENIX (2007)
[15] Jenista, J., Demsky, B.: Disjointness analysis for java-like languages. Technical

report, University of California, Irvine (2009)
[16] Koskinen, E., Parkinson, M., Herlihy, M.: Coarse-grained transactions. In: Prin-

ciples of Programming Languages (2010)
[17] Lamport, L.: How to make a multiprocessor computer that correctly executes

multiprocess programs. Transactions on Computers (1979)
[18] Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM (1978)
[19] Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Principles of

Programming Languages (2005)
[20] Marron, M., Méndez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Shar-

ing analysis of arrays, collections, and recursive structures. In: Program Analysis
for Software Tools and Engineering (2008)

[21] McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization infer-
ence for atomic sections. In: Principles of Programming Languages (2006)

[22] Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.-R., Hudson, R.L.,
Saha, B., Welc, A.: Practical weak-atomicity semantics for java stm. In: Sympo-
sium on Parallelism in Algorithms and Architectures (2008)

[23] Ni, Y., Welc, A., Adl-Tabatabai, A.-R., Bach, M., Berkowits, S., Cownie, J., Geva,
R., Kozhukow, S., Narayanaswamy, R., Olivier, J., Preis, S., Saha, B., Tal, A.,
Tian, X.: Design and implementation of transactional constructs for c/c++. In:
Object-Oriented Programming Systems Languages and Applications (2008)

[24] Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
(1979)

[25] Pugh, W., Wonnacott, D.: Constraint-based array dependence analysis. Transac-
tions on Programming Languages and Systems (1998)

A Composable Mixed Mode Concurrency Control Semantics 53

[26] Shavit, N., Matveev, A.: Towards a fully pessimistic stm model. Transactional
Computing (2012)

[27] Shavit, N., Touitou, D.: Software transactional memory. In: Principles of Dis-
tributed Computing (1995)

[28] Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with isolation
and cooperation. In: Object-Oriented Programming Systems Languages and Ap-
plications (2007)

[29] Sonmez, N., Harris, T., Cristal, A., Unsal, O.S., Valero, M.: Taking the heat off
transactions: Dynamic selection of pessimistic concurrency control. In: Interna-
tional Symposium on Parallel and Distributed Processing (2009)

[30] Spear, M.F., Marathe, V.J., Daless, L., Scott, M.L.: Privatization techniques for
software transactional memory. In: Principles of Distributed Computing (2007)

[31] Welc, A., Saha, B., Adl-Tabatabai, A.-R.: Irrevocable transactions and their ap-
plications. In: Symposium on Parallelism in Algorithms and Architectures (2008)

[32] Ziarek, L.,Welc,A.,Adl-Tabatabai,A.-R.,Menon,V., Shpeisman,T., Jagannathan,
S.: A Uniform Transactional Execution Environment for Java. In: Dell’Acqua, P.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 129–154. Springer, Heidelberg (2008)

Towards a Formal Verification Methodology
for Collective Robotic Systems�

Edmond Gjondrekaj1, Michele Loreti1, Rosario Pugliese1, Francesco Tiezzi2,
Carlo Pinciroli3, Manuele Brambilla3, Mauro Birattari3, and Marco Dorigo3

1 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Italy
2 IMT, Institute for Advanced Studies Lucca, Italy

3 IRIDIA, CoDE, Université Libre de Bruxelles, Belgium

Abstract. We present a novel formal verification approach for collective robotic
systems that is based on the use of the formal language Klaim and related analysis
tools. While existing approaches focus on either micro- or macroscopic views of
a system, we model aspects of both the robot hardware and behaviour, as well as
relevant aspects of the environment. We illustrate our approach through a robotics
scenario, in which three robots cooperate in a decentralized fashion to transport
an object to a goal area. We first model the scenario in Klaim. Subsequently,
we introduce random aspects to the model by stochastically specifying actions
execution time. Unlike other approaches, the specification thus obtained enables
quantitative analysis of crucial properties of the system. We validate our approach
by comparing the results with those obtained through physics-based simulations.

1 Introduction

Collective robotic systems are systems in which a group of autonomous robots coop-
erates to tackle a task. By taking advantage of the absence of a centralized controller,
the use of local communication and sensing, and the lack of global knowledge, these
systems have the potential to display properties such as robustness and parallelism.

Collective robotic systems are difficult to design and analyse because the collective
behaviour of the system is the result of the non-linear interaction of the individual robots
with each other and with the environment. The realisation of these systems currently
relies on the ingenuity and expertise of the designer due to the lack of sound engineer-
ing approaches and accountable engineering practices. The typical design approach in-
volves several loops of development, testing and modification of the behaviour of each
robot until the desired collective behaviour is obtained. This iterative process, often
performed first using computer simulations and eventually on real robots, is in gen-
eral expensive, time consuming, and cannot provide guarantees of system correctness.
Indeed, experimentation with real robots is very costly and time consuming. Physics-
based simulation, that attempts to realistically model the environment, the robots and
their interactions, is faster and more reliable than experimentation, but requires an ex-
haustive scan of the design parameter space to reach any conclusion (see e.g. [18]). Be-
sides, experimentation and simulation can only validate a small subset of the possible

� This work has been partially sponsored by the EU project ASCENS, 257414.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 54–70, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards a Formal Verification Methodology for Collective Robotic Systems 55

system scenarios and are often impractical to exhaustively study a collective behaviour.
In other words, these approaches cannot ensure a complete coverage of the critical as-
pects of the system nor the absence of residual anomalies.

A major open issue in the design and development of collective robotic systems is
thus to guarantee the correctness of the collective behaviour of a system composed of
autonomous components. Formal verification techniques, such as model checking, can
complement traditional approaches by guaranteing that certain system properties hold.

In this paper, we introduce a formal verification approach for the design of collective
robotic systems that lays down the basis of a principled development methodology for
such systems. Our approach consists of two phases. In the first phase, we model the
robot behaviour and the environment with the formal language Klaim [7]. Klaim is a
tuple-space-based coordination language that allows one to define an accurate model
of a distributed system using a small set of primitives. Unlike existing approaches that
mainly focus on micro- or macroscopic aspects of the system, Klaim permits to capture
both hardware aspects of the robots and their behaviour. In addition, Klaim can suitably
model relevant environmental aspects. In the second phase, we enrich the model with
stochastic aspects, using Klaim’s stochastic extension StoKlaim [8], and formalise the
desired properties using MoSL [8]. MoSL is a stochastic logic that, in addition to quali-
tative properties, permits specifying time-bounded probabilistic reachability properties
and properties about resource distribution. The properties of interest are then verified
against the StoKlaim specifications by exploiting the analysis tool Sam [8,19].

To demonstrate the approach, we analyse a collective transport scenario [10], in
which, while avoiding obstacles, a group of three robots must carry an object that is
too heavy for a single robot to move. This behaviour is a good candidate to establish the
validity of our approach since it has many of the features which characterize collective
robotic systems. Indeed, the system is completely distributed (there is neither a central-
ized controller nor a leader), the robots do not have any global knowledge, such as a
map of the environment, and no common frame of reference is used for coordination.

Modelling collective robotic systems is a challenging task. Indeed, for understanding
their dynamics, it is necessary to model in detail both the spatial aspects (e.g. positions
of robots, obstacles and carried objects) and the temporal aspects (e.g. robots’ action
execution time) of a system. These aspects are crucial since, e.g., without the position
of robots and carried objects in time the model would be of limited use to verify the
correctness of the collective transport behaviour. Differently from the relevant literature,
in which spatial and temporal aspects are usually discarded or simplified (see, e.g.,
[18,12]), our approach allows us to easily achieve the needed level of detail. The price
to be paid is an increased complexity of the model that might limit the number of robots
that can be considered in a given scenario.

In addition to suit collective robotic systems, compositionality and high modularity,
which are typical of Klaim and StoKlaim specifications, allow us to easily and flex-
ibly experiment with different values of the behaviour and scenario parameters. This
permits tuning them in order, for example, to optimise the performance of the system
or prevent instabilities. Moreover, the possibility to change the parameters of the envi-
ronment permits to easily check the collective behaviour of the robots under different
environmental conditions while saving time and resources with respect to simulated or

56 E. Gjondrekaj et al.

real robots. E.g., regarding our scenario, we have studied how robots’ behaviour is in-
fluenced by the position of the light source indicating the goal area. We have verified
that if the robots do not perceive the light they could not be able to reach the goal, and
demonstrated that a simple change to their behaviour is enough to solve this problem.

State of the art and related work. Formal verification has been successfully applied to
many different classes of distributed systems, such as embedded real-time systems and
wireless sensor networks [6,20]. These kinds of systems, even though distributed, do
not present the challenges of robotic systems. In fact, their components do not move
and do not interact with the environment as a robot does. Considering more specifically
modelling and verification of collective robotic systems, most of the work focuses on
systems that are not fully distributed as they have a centralized controller or a leader, or
make use of global knowledge. Examples of such work can be found in [15,11].

Only a few studies deal explicitly with robotic systems which are fully distributed
and do not use global knowledge. Winfield et al. [21] devised a microscopic modelling
approach based on linear temporal logic (LTL) to model a swarm of robots whose
goal is to navigate in the environment while keeping in communication range. The
same approach was then studied and expanded in [9]. Konur et al. [17] proposed to
use probabilistic computation tree logic (PCTL) to formally verify the properties of a
swarm of robots that perform a foraging task using a macroscopic model. A similar
property-driven approach is proposed in [3], where PRISM is used to verify PCTL for-
mulae expressing properties of an aggregation scenario, described by a Discrete Time
Markov Chain, where the robots have to cluster in an area of the environment. The de-
sign methodology proposed in [16] exploits a post hoc analysis to evaluate the expected
performance of synthesized robot controllers. Such analysis does not permit verifying
generic system properties, but just determining the probability of correct task execution
to refine the controller synthesis. Moreover, robot systems are not specified through a
linguistic approach, but in terms of states, functions over states, and state transitions. In
[4], the use of Maude and related tools is put forward for analysing a self-assembling
robots scenario, where robots physically connect to each other when the environment
prevents them from reaching their goals individually. The work focusses on the adap-
tive aspects of the system, while abstracting from the spatial one, since the arena is
modelled as a discrete grid and robots movements are discretized into four directions.

All the above approaches greatly simplify the spatial and/or temporal aspects of the
system and are thus not suited for a collective transport behaviour. Moreover, in contrast
to these approaches, we focus on analysing the properties of a robot’s behaviour both
from the point of view of the interaction between the running code and the robot’s
internal devices (i.e. sensors and actuators) and from the point of view of the interaction
with the other robots. To the best of our knowledge, there are no published works that
deal with modelling and formal verification of a collective transport behaviour.

Summary of the rest of the paper. In Section 2, we introduce the considered robotics
scenario. In Section 3, we review the formal basis underlying the proposed verification
approach, namely the specification language Klaim, the stochastic extension StoKlaim,
the stochastic logic MoSL, and the analysis tool Sam. In Section 4, we describe the rel-
evant aspects of the Klaim specification of the scenario, while in Section 5, we present
its stochastic analysis. Finally, in Section 6 we indicate directions for future work.

Towards a Formal Verification Methodology for Collective Robotic Systems 57

Goal Direction

Direction Mediation

Obstacle Avoidance

Direction Arbiter

Motion Control

vgd

voa

θda

θdn

Li
gh

t
D

is
ta

nc
e

R
&

B M

W
he

el
s

R
&

B

L

D

w , w l

m

Sensors Actuators

r

Symbol Meaning
L Set of light readings
D Set of distances
M Set of received messages
m Sent message

vgd Vector toward to the goal area
voa Vector to avoid obstacles
θda Individual desired direction

wl/wr Left/right wheel speed
θdn Mediated direction

Fig. 1. A diagrammatic description of the behaviour for collective transport of an object

2 A Collective Robotics Scenario

In order to illustrate our approach, we consider a robotics scenario, borrowed from [10],
whereby three identical robots must collectively transport an object to a goal area. The
robots operate in an arena where a number of obstacles are present and a light source
indicates the goal area. It is assumed that the three robots have already physically as-
sembled to the object to transport and cannot disassemble until the goal area is reached.

Each robot is a marXbot [2] equipped with: (i) a light sensor, to perceive the direction
to a light source; (ii) a distance scanner, to obtain relative distances from objects in the
environment; (iii) a range and bearing communication system, to communicate with
other robots; (iv) wheels, to move around the environment.

All robots execute the same code, i.e., the so-called behaviour. Each of them senses
the environment and calculates the desired direction, that is, the direction the robot
would follow if it were alone. Since each robot has a local perception of the environ-
ment, the desired directions of the robots could differ. In fact, at each control step, one
robot could sense or not the position of the goal and/or the position of obstacles. Ac-
cording to the available information, in different moments, a robot can be informed, that
is, it has a desired direction to follow, or non-informed otherwise. Informed robots com-
municate to the other robots their desired direction. Anyway, to actuate the wheels, any
robot uses a socially mediated direction obtained by averaging the received directions,
so all robots can follow the same direction even if they have a different perception of
the environment.

A diagrammatic description of the behaviour, together with an explanation of the
used notation, is reported in Fig. 1. The horizontal blobs are behavioural modules that
take an input and produce an output. The output is usually a set of variables that can
be input to other modules or set as actuator values, while the input can be the result of
other modules and/or sensor readings. The behaviour is composed of five modules.

Goal Direction queries the light sensors to calculate the vector vgd to the position of
maximum light intensity sensed, which points toward to the goal area. 24 light sensors
are located around the body of the robot in a ring at uniform fixed angles, and each

58 E. Gjondrekaj et al.

of them returns the measured intensity expressed as a vector directed from the robot’s
center outwards. The vector vgd is calculated as a normalised sum over these 24 vectors.
Obstacle Avoidance detects the presence of obstacles and calculates the vector voa that
points away from the obstacle. The distance scanner is a rotating sensor that can span
the area around the robot and return 24 vectors whose length corresponds to the distance
to a sensed object from the center of the robot (if no obstacle is perceived along a given
direction, the length of the vector is obs dMAX). The length of vector voa corresponds
to the distance to the closest object rescaled in [0, 1], while its angle corresponds to the
angle of the sum of all the readings. Notably, the resulting angle points away from the
closest obstacles, because the readings that correspond to obstacle-free areas have the
highest value obs dMAX . Direction Arbiter takes as inputs vgd and voa and calculates the
direction θda, that is the desired direction of the robot before computing the mediated
direction. Since the length of voa represents how urgent it is to avoid obstacles, we use it
as a weight to combine the directions to the goal area and to avoid obstacles. Direction
Mediation calculates the mediated direction θdn as the average of the directions received
from other robots through the range and bearing communication system. This module
sends a message m to nearby robots containing θda, if the robot is informed, and θdn

otherwise. Motion Control converts the direction θdn into the wheel speeds wr and wl.

3 Formal Foundations of the Verification Approach

In this section, we provide a brief overview of the formal methods exploited by the
proposed approach for specifying and verifying collective robotic systems.

Specification. A distributed system is modelled in Klaim as a net of nodes, each one
with a local data repository and a set of running processes. We informally present here
a version of Klaim enriched with some standard control flow constructs (i.e., if-then-
else, sequence, etc.) that are part of the input language of the analysis tool used in
Section 5. These constructs simplify the specification task and can be easily rendered
in the language originally presented in [7]. For simplicity’s sake, we omit the linguistic
constructs for dealing with name restriction and dynamic node creation, since they are
not used in the considered robotics system specification. We refer to [7] for a formal
presentation of the language and to [1] for a Java framework for programming in Klaim.

Nets are finite plain collections of nodes composed by means of the parallel compo-
sition operator ‖ . Nodes s ::ρ C have a unique locality name s (i.e., their network
address) and an allocation environment ρ, and host a set of components C. An alloca-
tion environment provides a name resolution mechanism by mapping locality variables l
(i.e., aliases for addresses), occurring in the processes hosted in the corresponding node,
into localities s. The distinguished locality variable self is used by processes to refer to
the address of their current hosting node. Components are finite plain collections of
processes P and evaluated tuples 〈t〉, composed by means of the parallel operator | .

Processes P are the Klaim active computational units and may be executed concur-
rently either at the same locality or at different localities. They are built up from basic
actions (see below) and process calls A(p1, . . . , pm) by means of sequential composition
P1; P2, parallel composition P1 | P2, conditional choice if (e) then {P} else {Q}, itera-
tive constructs for i = n to m { P } and while (e) {P}, and (possibly recursive) process

Towards a Formal Verification Methodology for Collective Robotic Systems 59

definitions A(f1, . . . , fn) � P with fi pairwise distinct. Notably, A denotes a process
identifier, while fi and p j denote formal and actual parameters, respectively. Moreover,
e ranges over expressions, which contain basic values (booleans, integers, strings, floats,
etc.) and value variables x, and are formed by using the standard operators on basic val-
ues, simple data structures (i.e., arrays and lists) and the non-blocking retrieval actions
inp and readp (explained below). In the rest of this section, we will use the notation �
to range over locality names and locality variables.

During their execution, processes perform some basic actions. Actions in(T)@� and
read(T)@� are retrieval actions and permit to withdraw/read data tuples from the tuple
space hosted at the (possibly remote) locality �: if a matching tuple is found, one is
non-deterministically chosen, otherwise the process is blocked. They exploit templates
as patterns to select tuples in shared tuple spaces. Tuples t are sequences of actual fields,
i.e. locality names, locality variables, expressions and processes. Instead, templates T
are sequences of actual and formal fields, where the latter are written ! x, ! l or ! X and
are used to bind variables to values, locality names or processes, respectively. For the
sake of readability, we use “ ” to denote a don’t care formal field in a template; this cor-
responds to a formal field ! dc using the variable dc that does not occur elsewhere in the
specification. Actions inp(T)@� and readp(T)@� are non-blocking versions of the re-
trieval actions: namely, during their execution processes are never blocked. Indeed, if a
matching tuple is found, inp and readp act similarly to in and read, and additionally re-
turn the value true; otherwise they return the value false and the executing process does
not block. inp(T)@� and readp(T)@� can be used where either a boolean expression
or an action is expected (in the latter case, the returned value is simply ignored). Action
out(t)@� adds the tuple resulting from the evaluation of t to the tuple space of the tar-
get node identified by �, while action eval(P)@� sends the process P for execution to
the (possibly remote) node identified by �. Both out and eval are non-blocking actions.
Action rpl(T)→ (t)@� atomically replaces a non-deterministically chosen tuple in �
matching the template T by the tuple t; if no tuple in � matches T , the action behaves
as out(t)@�. Finally, action x := e assigns the value of e to x and, differently from all
the other actions, it is not indexed with an address because it always acts locally.

Verification. Quantitative analysis of a Klaim specification can be enabled by associat-
ing a rate to each action, thus obtaining a StoKlaim [8] specification. This rate is the
parameter of an exponentially distributed random variable accounting for the action du-
ration time. A real valued random variable X has a negative exponential distribution
with rate λ > 0 if and only if the probability that X ≤ t, with t > 0, is 1 − e−λ·t.
The expected value of X is λ−1, while its variance is λ−2. The operational semantics of
StoKlaim permits associating to each specification a Continuous Time Markov Chain
that can be used to perform quantitative analyses of the considered system.

The desired properties of a system under verification are formalised using the
stochastic logic MoSL [8]. MoSL formulae use predicates on the tuples located in the
considered Klaim net to express the reachability of the system goal, or more generally,
of a certain system state, while passing or not through other specific intermediate states.
Therefore, MoSL can be used to express quantitative properties of the overall system
behaviour, such as, e.g., if the robots are able to reach the goal, or collisions between
the robots and the obstacles ever happen in the system. The results of the evaluation of

60 E. Gjondrekaj et al.

robot 3

robot2

Abehaviour

TUPLE SPACE

robot1

Acommunication

TUPLE SPACE

env

AmoveAlight Adistance

Fig. 2. Graphical representation of the Klaim specification

such properties do not have a rigid meaning, like true or false, but have a less absolute
nature, e.g. in 99.7% of the cases, the robots reach the goal within t time units.

Verification of MoSL formulae over StoKlaim specifications is assisted by the anal-
ysis tool Sam [8,19], which uses a statistical model checking algorithm [5] to estimate
the probability of the property satisfaction. In this way, the probability associated to a
path-formula is determined after a set of independent observations and the algorithm
guarantees that the difference between the computed value and the exact one exceeds a
given tolerance ε with a probability that is less than a given error probability p.

4 Specification of the Robotics Scenario

In this section, we present the Klaim specification of the robots’ behaviour informally
introduced in Section 2. Moreover, to formally analyse the behaviour, we specify the
low-level details about the robots and the arena where the robots move, i.e., the obsta-
cles, the goal, etc. We use Klaim to model also these aspects because, on the one hand,
the language is expressive enough to suitably represent them and, on the other hand,
this approach enables the use of existing tools for the analysis of Klaim specifications.

Here, we focus only on the qualitative aspects of the scenario. In the next section,
our specification will be enriched with quantitative aspects by simply associating a rate
to each Klaim action, thus obtaining a StoKlaim specification.

The scenario model. The overall scenario is rendered in Klaim by the following net

robot1 ::{self �→robot1} Abehaviour | CrobotData 1

‖ robot2 ::{self �→robot2} Abehaviour | CrobotData 2

‖ robot3 ::{self �→robot3} Abehaviour | CrobotData 3

‖ env ::{self �→env,r1 �→robot1 ,r2 �→robot2 ,r3 �→robot3} Alight | Adistance | Acommunication | Amove | CenvData

which is graphically depicted in Fig. 2. The three robots are modelled as three Klaim
nodes whose locality names are robot1, robot2 and robot3. Similarly, the environment
around the robots is rendered as a node, with locality name env, as well. The allocation
environment of each robot node contains only the binding for self (i.e., self �→ roboti),
while the allocation environment of the env node contains the binding for self (i.e.,
self �→ env) and the bindings for the robot nodes (i.e., ri �→ roboti, with i ∈ {1, 2, 3}).

The behaviour is rendered as a process identified by Abehaviour, which is exactly the
same in all three robots. The items of local knowledge data CrobotData i of each robot are

Towards a Formal Verification Methodology for Collective Robotic Systems 61

stored in the tuple space of the corresponding node and consist of sensor readings and
computed data; at the outset, such data are the sensor readings at the initial position.

The processes running on the env node provide environmental data to the robots’
sensors and keep this information up-to-date as time goes by according to the actions
performed by the robots’ actuators. The process Alight, given the position of the light
source and the current position of the robots, periodically computes the information
about the light position for each robot and sends it to them. This data corresponds to
the values obtained from light sensors and is stored in the tuple space of each robot.
Similarly, the process Adistance provides each robot with information about the obsta-
cles around it. The process Acommunication models the communication infrastructure and,
hence, takes care of delivering the messages sent by the robots by means of their range
and bearing communication systems. Finally, the process Amove periodically updates the
robots’ positions according to their directions.

The data within the env node can be static, such as the information about the ob-
stacles and the source of light, or dynamic, such as the robots’ positions. The tuples
CenvData are stored in the tuple space of this node and their meaning is as follows
(as usual, strings are enclosed within double quotes): 〈“pos”, x1, y1, x2, y2, x3, y3〉 rep-
resents the positions (x1, y1), (x2, y2) and (x3, y3) of the three robots; 〈“light”, xl, yl, i〉
represents a light source, with intensity i and origin in (xl, yl), indicating the goal posi-
tion; 〈“obstacles”,m〉 indicates the total number of obstacles present in the environment
(this permits simplifying the scanning of obstacles data in the Klaim specification);
and 〈“obs”, n, x1, y1, x2, y2, x3, y3, x4, y4〉 represents the n-th rectangular-shaped obsta-
cle, with vertices (x1, y1), (x2, y2), (x3, y3) and (x4, y4).

It is worth noticing that, while the Klaim process Abehaviour is intended to model the
actual robot’s behaviour (e.g., it could be used as a skeleton to generate the code of the
behaviour), the Klaim processes and data representing the robots’ running environment
(i.e., sensors, actuators, obstacles, goal, etc.) are just models of the environment and of
physical devices, which are needed to enable the analysis.

The robot model. Each robot executes a behaviour that interacts with the robot’s tuple
space for reading and producing sensors and actuators data to cyclically perform the
following activities: sensing data about the local environment, elaborating the retrieved
knowledge data to make decisions, and acting according to the elaborated decisions
(i.e., it transmits data to other robots and actuates the wheels to perform a movement).

Different choices can be made when developing the model of the robot [18]. We have
chosen to model individually the behaviour of each robot and the corresponding sensors
and actuators. We illustrate in this section the data associated to the robots’ sensors and
actuators, and the Klaim specification of the robots’ behaviour (due to lack of space,
the rest of the specification is relegated to a companion technical report [14]).

Robots’ sensor and actuator data. The light sensor data is rendered in Klaim as a tuple
of the form 〈“light”, �〉, where “light” is a tag indicating the sensor originating the data
while � is an array of 24 elements. For each i ∈ [0, 23], �[i] represents the light intensity
perceived by the sensor along the direction 2π i

24 .
The tuple containing the measures of the distance scanner sensor is similar. Indeed,

it is of the form 〈“obs”, d〉, where “obs” is the tag associated to distance scanner sensor

62 E. Gjondrekaj et al.

data and d is an array of 24 elements. For each i ∈ [0, 23], d[i] is the distance to the
closest obstacle measured by the sensor along the direction 2π i

24 .
The range and bearing communication system acts as both a sensor and an actuator.

Indeed, it allows a robot to send messages to other robots in its neighborhood and to
receive messages sent by them. A process running in the environment node is used to
read (and consume) the messages produced by each robot’s behaviour and to route them
to the other robots (through the environment node). This process models the commu-
nication medium and specifies the range and bearing communication system without
considering explicitly the details of the underlying communication framework. Each
robot stores received messages in a local tuple of the form 〈“msgs”, [m1,m2, . . . ,mn]〉
representing a queue of length n containing messages m1,m2,. . . ,mn

1. Instead, to send
a message to other robots, a behaviour locally stores a tuple of the form 〈“msg”,m〉.
The process running on the environment node is in charge of reading each message and
propagating it to the other robots that are in the sender’s communication range.

Finally, the wheel actuators are rendered as a process running in the environment
node that reads the new directions to be followed by the robots (i.e., tuples of the form
〈“move”, θ〉) and updates the robots’ position (which is, in fact, an information stored
in the tuple space of the environment node). This slightly differs from the original spec-
ification given in Section 2, where the Motion Control module converts the direction
calculated by the Direction Mediation module into speeds for the two wheels, which
are then passed to the wheels actuator. In fact, although our specification is quite de-
tailed, it is still an abstract description of a real-world scenario. Thus, some details that
do not affect the analysis, such as those involving the calculation of the robots’ move-
ments, are considered at an higher level of abstraction.

For simplicity’s sake, we do not consider noise and failures of sensors and actuators.

Robot’s behaviour. The process Abehaviour, modelling the robot’s behaviour graphically
depicted in Fig. 1, is defined as follows:

Abehaviour � AgoalDirection | AobstacleAvoidance | AdirectionArbiter | AdirectionMediation | AmotionControl

Each behavioural module (i.e., a yellow blob in Fig. 1) corresponds to one of the above
Klaim processes, whose definitions are provided below. The specification code is made
self-explanatory through the use of comments (i.e. strings starting with //).

The Goal Direction module takes as input the last light sensors readings (here ren-
dered as a tuple of the form 〈“light”, �〉) and returns the vector vgd (actually, here only
the direction of vgd is returned, because its length is always 1 and does not play any
role on the computation of the new direction to be followed). This behavioural module
is modelled by the recursive process AgoalDirection defined as follows:

AgoalDirection �
xsum , ysum := 0;
read(“light”, !�)@self; // read the tuple containing the light sensor readings
for i = 0 to 23{

xsum := xsum + �[i] · cos(2πi/24); // calculate the coordinates of the final point of the. . .
ysum := ysum + �[i] · sin(2πi/24); // . . . vector (with the origin as initial point) resulting. . .

}; // . . . from the vectorial sum of the reading vectors

1 [v1, . . . , vn] denotes a list of n elements, [] the empty list, and :: the concatenation operator.

Towards a Formal Verification Methodology for Collective Robotic Systems 63

if ((xsum ! = 0) ∧ (ysum ! = 0)) then { // check if the light is perceived
∠ vgd := Angle(0, 0, xsum, ysum); // calculate ∠ vgd , i.e., the direction of vector vgd

rpl(“vgd”,)→ (“vgd”, ∠ vgd)@self; // update the vector vgd data
} else {

inp(“vgd”,)@self // if the light is not preceived, remove the previous vector vgd data
}; AgoalDirection

The sensor readings are always present in the tuple space, because they are present at
the outset and the processes modelling behavioural modules do not consume sensor data
while reading or updating them. Therefore, the read action before the for loop above
never blocks the execution of process AgoalDirection. In principle, by pooling the tuple
space in this way, the same sensor data could be read more than once; this faithfully
reflects the actual interaction model between the robots code and the sensors. Anyway,
it does not lead to divergent behaviours during the analysis, because such interactions
are regulated by the action rates specified in the StoKlaim model (see Section 5).

The function Angle(x0, y0, x1, y1), used above and in subsequent parts of the speci-
fication, returns the direction (i.e., the angle) of the vector from (x0, y0) to (x1, y1). We
refer the interested reader to [13] for its definition.

The Obstacle Avoidance module takes as input the last distance sensors readings
(here rendered as a tuple of the form 〈“obs”, d〉) and returns the vector voa. This be-
havioural module is modelled by the process AobstacleAvoidance defined as follows:

AobstacleAvoidance �
xsum , ysum := 0; min := obs dMAX ;
read(“obs”, !d)@self; // read the tuple representing the distance sensor readings
for i = 0 to 23{

xsum := xsum + d[i] · cos(2πi/24); // calculate the coordinates of the final point of the. . .
ysum := ysum + d[i] · sin(2πi/24); // . . . vectorial sum of the reading vectors
if (d[i] < min) then min := d[i] // calculate the minimum length of the vectors

};
‖ voa ‖ := min/obs dMAX ; // calculate ‖ voa ‖, i.e., the length of vector voa rescaled in [0, 1]
∠ voa := Angle(0, 0, xsum, ysum); // calculate ∠ voa, i.e., the direction of vector voa

rpl(“voa”, ,)→ (“voa”, ‖ voa ‖, ∠ voa)@self; // update the vector voa data
AobstacleAvoidance

where obs dMAX is the maximum range of the distance sensor (in [10], it is set to 1.5 m).
The process AdirectionArbiter modelling the Direction Arbiter module, which takes vgd

and voa as input and returns the direction θda, is defined as follows:

AdirectionArbiter �
in(“voa”, !voa l, !θoa)@self; // read and consume the tuple containing voa (it’s always present)
if (inp(“vgd”, !θgd)@self) then { // read and consume the tuple containing vgd (if available)

vda
x := (1 − voa l) · cos(θoa) + voa l · cos(θgd); // calculate the coordinates of the. . .

vda
y := (1 − voa l) · sin(θoa) + voa l · sin(θgd); // . . . vector to the desired direction
θda := Angle(0, 0, vda

x , vda
y); // compute the angle θda

rpl(“da”,)→ (“da”, θda)@self; // update the angle θda data
} else {

if (voa l < 1) then { // check if any obstacle has been detected
rpl(“da”,)→ (“da”, θoa)@self // use the obstacle avoidance direction as θda

}
}; AdirectionArbiter

64 E. Gjondrekaj et al.

Notably, differently from sensor readings, data produced by other modules (e.g. vgd

and voa) are removed from the tuple space when read.
The Direction Mediation module takes as input the direction θda computed by the

Direction Arbiter and the last received messages (here rendered as a tuple of the form
〈“msgs”, [m1,m2, . . . ,mn]〉) and returns the direction θdn, to be used by the Motion Con-
trol module, and a message m, to be sent to the other robots via the range and bearing
system. The Direction Mediation module is modelled by the following process:

AdirectionMediation �
c , sumx , sumy := 0;
rpl(“msgs”, !l)→ (“msgs”, [])@self; // read and reset the list of received messages
while (l == θ :: tail) { // scan the list

l := tail;
sumx := sumx + cos(θ); // calculate the sum of the received. . .
sumy := sumy + sin(θ); // . . . directions
c := c + 1 // increase the counter of the received messages

};
if (c == 0) then { // check if there are received messages

if (inp(“da”, !θda)@self) then { // if there aren’t, check if the robot is informed
rpl(“dir”,)→ (“dir”, θda)@self; // update the direction data for the motion control
rpl(“msg”,)→ (“msg”, θda)@self // update the message to be sent to the other robots

}
} else { // if there are received messages,. . .
θdn := Angle(0, 0, sumx, sumy); // . . . calculate the average direction and proceed
(rpl(“dir”,)→ (“dir”, θdn)@self // update the data for the motion control
|
(if (inp(“da”, !θda)@self) then { // check if the robot is informed

m := θda // if it is, the produced message contains θda

} else {
m := θdn // if the robot is not informed, the produced message contains θdn

};
rpl(“msg”,)→ (“msg”,m)@self // update the message to be sent to the other robots

)
)

}; AdirectionMediation

Notice that the tuple containing the direction θda is consumed when read. Thus, to avoid
blocking the execution of the process, to read such tuple an action inp (within the con-
dition of an if construct) is exploited.

The Motion Control module takes as input the direction computed by the Direction
Mediation module and transmits it to the wheels actuator. The Motion Control module
is modelled by the following process:

AmotionControl �
in(“dir”, !θdn)@self; // wait (and consume) a direction of movement
rpl(“move”,)→ (“move”, θdn)@self; // transmit the direction to the wheels actuator
AmotionControl

As previously explained, we do not need to model the conversion of the direction cal-
culated by the Direction Mediation module into speeds for the wheels.

Towards a Formal Verification Methodology for Collective Robotic Systems 65

Fig. 3. Arena and initial configuration

5 Stochastic Specification and Analysis

In this section, we demonstrate how the Klaim specification presented n the previous
section can support the analysis. The proposed methodology can be used to verify the
system success, obtaining accurate estimations of the system performance expressed in
terms of the probability of reaching the goal without entering unwanted intermediate
states. This permits making comparisons of the algorithm performance in different sce-
narios, which may use different features of the obstacles, transported objects, terrain,
and also different goals and requirements. It also permits to analyse different details
of the system behaviour, which can provide helpful information for understanding the
reasons why an unwanted behaviour is observed and can allow the system designer to
tune the system in order to improve its performance under different conditions. Our
approach relies on formal tools, like stochastic modal logics and model checking, that
permits expressing and evaluating performance measures in terms of logical formu-
lae. In this way, we obtain a framework for the analysis of collective robotic systems
which is more abstract and expressive than existing simulation frameworks, where the
analysis is typically performed by relying on an a posteriori data analysis. Moreover,
for the sake of efficiency, simulators are usually deterministic, e.g. all robots act syn-
chronously. This means that some possible behaviours of a real system are not taken
into account in the simulation. Instead, stochastic modelling tools permit considering
the typical uncertainty of real systems, e.g. by abstracting from the precise scheduling
of robot movements. In this way, developers are guaranteed that their analyses cover
more critical situations of the considered scenario, according to a given margin of error.

We now enrich the Klaim specification introduced in the previous section with
stochastic aspects and consider the scenario configuration presented in [10] and
depicted in Fig. 3. Seven rectangular objects are scattered in the arena, while the light
source is positioned high above the goal area and is always visible to the robots. We as-
sume that robots, on average, are able to perform 10 sensor readings per second and that
they have an average speed of 2cm/sec , and let the part of the specification modeling
the environment be able to perform a mean of 100 operations per second. Starting from
these parameters we have derived specific rates for defining the StoKlaim specification.

66 E. Gjondrekaj et al.

As an excerpt of the StoKlaim specification, we report below the stochastic definition
of process AobstacleAvoidance:

AobstacleAvoidance �
xsum , ysum := 0; min := obs dMAX ;
read(“obs”, !d)@self : λ1 ;

for i = 0 to 23{ . . . }; ‖ voa ‖ := min/obs dMAX ; ∠ voa := Angle(0, 0, xsum, ysum);
rpl(“voa”, ,)→ (“voa”, ‖ voa ‖, ∠ voa)@self : λ2 ;

AobstacleAvoidance

The actions highlighted by a gray background are those annotated with rates λ, where
λ1 = 24.0 and λ2 = 90.0. These rates guarantee that obstacle avoidance data are up-
dated every 1

24 +
1
90 time units on average, i.e. about 20 times per second. We refer the

interested reader to [13] for the rest of the stochastic specification.
The result of a simulation run of the StoKlaim specification, performed by using

Sam, is reported in Fig. 4 (a). The trajectories followed by the three robots in this run
are plotted in the figure with three different colors; they show that the robots reach the
goal without collisions. On an Apple iMac computer (2.33 GHz Intel Core 2 Duo and
2 GB of memory) simulation of a single run needs an average time of 123 seconds.

We have analysed the probability to reach the goal without colliding with any obsta-
cles. The property “robots have reached the goal area” is formalized in MoSL, for the
specific system under analysis, by the formula φgoal defined below:

φgoal = 〈“pos”, !x1, !y1, !x2, !y2, !x3, !y3〉@env→ y1 ≥ 4.0 ∧ y2 ≥ 4.0 ∧ y3 ≥ 4.0

This formula relies on consumption operator, 〈T 〉@l → φ, that is satisfied whenever a
tuple matching template T is located at l and the remaining part of the system satisfies φ.
Hence, formula φgoal is satisfied if and only if tuple 〈“pos”, x1, y1, x2, y2, x3, y3〉, where
each yi is greater than 4.0, is in the tuple space located at env (all robots are in the goal
area). Similarly, the property “a robot collided an obstacle” is formalized by:

φcol = 〈“collision”〉@env→ true

where tuple 〈“collision”〉 is located at env whenever a robot collided an obstacle.
The considered analyses have been then performed by estimating the total probability

of the set of runs satisfying ¬φcolU≤tφgoal where the formula φ1U≤tφ2 is satisfied by all
the runs that reach within t time units a state satisfying φ2 while only traversing states
that satisfy φ1. In the analysis, a time-out of 500sec has been considered.

Under the configuration of Fig. 3, i.e. when the robots are always able to perceive
the light, we get that the goal can be reached without collisions with probability 0.916,
while robots do not reach the goal or collide with obstacles with probability 0.084 (these
values have been estimated with parameters p = 0.1 and ε = 0.1, 1198 runs). Such
results are in accordance with those reported in [10], where the estimated probability to
reach the goal is 0.94. The slight variation is mainly due to a different way of rendering
robots movement, which is computed via a physical simulator in [10], while in our case
it is approximated as the vectorial sum of the movement of each single robot.

We have then modified the original scenario by locating the light source on the same
plane of the arena and we noticed that the overall system performances are deeply
influenced. Indeed, since objects cast shadows, they can prevent robots from sensing

Towards a Formal Verification Methodology for Collective Robotic Systems 67

(a) (b)

Fig. 4. Some simulation results obtained for the robotics scenario from [10]

(a) (b)

Fig. 5. Some simulation results obtained for a simple robotics scenario

the light. Under this configuration, the robots are not able to reach the goal area (see
Fig. 4 (b) for a simulation trace representing a sort of counterexample for the given
property) and the probability to reach the goal without collisions plummets to 0.0.

In order to validate our model and to verify the robots’ behaviour, we have also
considered other scenarios. In Fig. 5 (a) we show a simpler scenario where just two
obstacles are placed at the center of the arena. At the beginning, the obstacles do not
hide the light to the robots. However, when the first obstacle enters in the range of the
robots’ distance sensors, the robots turn to right, enter in the shadow cast by the second
object and then never reach the goal area. This problem can be avoided by modifying the
robot behaviour so that, when the light is not perceived, the last known goal direction is
used. The adoption of this simple policy increases the probability to reach the goal area
without collisions, from 0.234 to 1.0 (see the simulation run in Fig. 5 (b)).

68 E. Gjondrekaj et al.

6 Concluding Remarks

We have presented a novel approach to formal verification of collective robotic systems
and validated it against a traditional approach consisting in physics-based simulations.
We have shown that the obtained results are in accordance with those resulting from
physics-based simulations and reported in [10], which have been in fact exploited for
tuning the quantitative aspects of our analysis (e.g. the robots’ actions execution time).

Our approach paves the way for the definition of a 5-step engineering methodology
based on formal foundations. In the first step, the designer models the system formally
with Klaim. In the second step, he adds stochastic aspects to enable its analysis and anal-
yses the system properties to discover flaws in the formal model. These two steps can
be iterated, allowing the designer to discover and fix flaws of the system even before the
actual code is written. In the third step, the specification is converted into (the skeleton
of) the robots behaviour code. In the fourth step, the code is tested with physics-based
simulations, to reveal further model-worthy aspects that were neglected in the first two
steps. Finally, in the fifth step, robots behaviour is tested on real robots. The focus of
this paper is on the definition of the first two steps.

We believe that the development methodology we envisage has many advantages
when compared with ad-hoc design and validation through physics-based simulation
and experimentation with real robots. Indeed, it permits to formally specify the require-
ments of the system and to minimize the risk of developing a system that does not
satisfy the required properties, as these properties are checked at each step of the devel-
opment phase. It also permits detecting potential design flaws early in the development
process thus reducing the cost of later validation efforts.

Depending on the complexity of the system to develop, implementing the model for
enabling physics-based simulation might not be straightforward and could require the
ingenuity and expertise of the developer. Therefore, we intend to define and implement
an automatic translation from Klaim specifications of robot behaviours to actual code
that can be taken as input by the physics-based simulator. This would allows us to com-
plete the 5-step development process mentioned above. We also plan to apply our ap-
proach to other challenging robotic scenarios, by studying the performance of different
robot behaviours while changing environmental conditions and system requirements.

Moreover, we intend to consider more abstract system specifications to conveniently
deal with swarm robotics scenarios. In fact, to enable the verification of the class of
properties we deemed interesting for the collective robotics domain, we have defined
a very detailed model of the system under analysis. Indeed, the model we propose
permits taking into account, during the analysis process, the exact position of each
robot, as well as any other information about its internal state, at each instant of time.
The model fits well with collective transport scenarios, where usually a limited number
of robots are involved; however, it may become not tractable using available tools when
the number of robots significantly grows. To deal with such kind of scenarios, like e.g.
the swarm robotics one, the abstraction level of the model has to be gradually raised up
in accordance with an increasing number of robots, by focussing on those aspects of
the system that become most relevant. This approach would be reasonable in case of

Towards a Formal Verification Methodology for Collective Robotic Systems 69

swarms, because the properties of interest are no longer related to the exact position of
each single robots, but concern the global (abstract) behaviour of the overall system.

References

1. Bettini, L., De Nicola, R., Pugliese, R.: Klava: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience 32(14), 1365–1394 (2002)

2. Bonani, M., et al.: The marxbot, a miniature mobile robot opening new perspectives for the
collective-robotic research. In: IROS, pp. 4187–4193. IEEE (2010)

3. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for swarm
robotics. In: AAMAS. IFAAMAS (to appear, 2012)

4. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling and An-
alyzing Adaptive Self-assembly Strategies with Maude. In: Durán, F. (ed.) WRLA 2012.
LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

5. Calzolai, F., Loreti, M.: Simulation and Analysis of Distributed Systems in Klaim. In: Clarke,
D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 122–136. Springer,
Heidelberg (2010)

6. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions. ACM Com-
put. Surv. 28, 626–643 (1996)

7. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A Kernel Language for Agents Interaction
and Mobility. Transactions on Software Engineering 24(5), 315–330 (1998)

8. De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking mobile
stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

9. Dixon, C., Winfield, A., Fisher, M.: Towards Temporal Verification of Emergent Behaviours
in Swarm Robotic Systems. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott,
T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 336–347. Springer, Heidelberg
(2011)

10. Ferrante, E., Brambilla, M., Birattari, M., Dorigo, M.: Socially-Mediated Negotiation for
Obstacle Avoidance in Collective Transport. In: Martinoli, A., Mondada, F., Correll, N., Mer-
moud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous
Robotic Systems. STAR, vol. 83, pp. 571–583. Springer, Heidelberg (2013)

11. Fisher, M., Wooldridge, M.: On the formal specification and verification of multi-agent sys-
tems. Int. Journal of Cooperative Information Systems 6(1), 37–66 (1997)

12. Galstyan, A., Hogg, T., Lerman, K.: Modeling and Mathematical Analysis of Swarms of
Microscopic Robots. In: SIS, pp. 201–208. IEEE (2005)

13. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F.: Specification and Analysis of a Collective
Robotics Scenario in SAM (2011), SAM source file available at
http://rap.dsi.unifi.it/SAM/

14. Gjondrekaj, E., et al.: Towards a formal verification methodology for collective robotic
systems. Technical report, Univ. Firenze (2011), http://rap.dsi.unifi.it/˜loreti/
papers/collective transport verification.pdf

15. Jeyaraman, S., et al.: Formal techniques for the modelling and validation of a co-operating
UAV team that uses Dubins set for path planning. In: ACC, vol. 7, pp. 4690–4695. IEEE
(2005)

16. Jones, C., Mataric, M.J.: Synthesis and Analysis of Non-Reactive Controllers for Multi-
Robot Sequential Task Domains. In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics
IX. STAR, vol. 21, pp. 417–426. Springer, Heidelberg (2004)

http://rap.dsi.unifi.it/SAM/
http://rap.dsi.unifi.it/~loreti/papers/collective_transport_verification.pdf
http://rap.dsi.unifi.it/~loreti/papers/collective_transport_verification.pdf

70 E. Gjondrekaj et al.

17. Konur, S., Dixon, C., Fisher, M.: Formal Verification of Probabilistic Swarm Behaviours.
In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D.,
Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS,
vol. 6234, pp. 440–447. Springer, Heidelberg (2010)

18. Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic Models
for Swarm Robotic Systems. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics WS 2004.
LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)

19. Loreti, M.: SAM: Stochastic Analyser for Mobility, http://rap.dsi.unifi.it/SAM/
20. Stankovic, J.A.: Strategic directions in real-time and embedded systems. ACM Comput.

Surv. 28, 751–763 (1996)
21. Winfield, A., et al.: On Formal Specification of Emergent Behaviours in Swarm Robotic

Systems. Int. Journal of Advanced Robotic Systems 2(4), 363–370 (2005)

http://rap.dsi.unifi.it/SAM/

Modeling Resource-Aware Virtualized
Applications for the Cloud in Real-Time ABS�

Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,rudi,sltarifa}@ifi.uio.no

Abstract. An application’s quality of service (QoS) depends on resource
availability; e.g., response time is worse on a slow machine. On the cloud,
a virtualized application leases resources which are made available on de-
mand. When its work load increases, the application must decide whether
to reduce QoS or increase cost. Virtualized applications need to manage
their acquisition of resources. In this paper resource provisioning is in-
tegrated in high-level models of virtualized applications. We develop a
Real-Time ABS model of a cloud provider which leases virtual machines
to an application on demand. A case study of the Montage system then
demonstrates how to use such a model to compare resource manage-
ment strategies for virtualized software during software design. Real-
Time ABS is a timed abstract behavioral specification language target-
ing distributed object-oriented systems, in which dynamic deployment
scenarios can be expressed in executable models.

1 Introduction

The added value and compelling business drivers of cloud computing are unde-
niable [10], but considerable new challenges need to be addressed for industry to
make an effective usage of cloud computing. As the key technology enabler for
cloud computing, virtualization makes elastic amounts of resources available to
application-level services deployed on the cloud; for example, the processing ca-
pacity allocated to a service may be changed on the demand. The integration of
virtualization in general purpose software applications requires novel techniques
for leveraging resources and resource management into software engineering. Vir-
tualization poses challenges for the software-as-a-service abstraction concerning
the development, analysis, and dynamic composition of software with respect to
quality of service. Today these challenges are not satisfactorily addressed in soft-
ware engineering. In particular, better support for the modeling and validation
of application-level resource management strategies for virtualized resources are
needed to help the software developer make efficient use of the available virtu-
alized resources in their applications.

� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 71–86, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.hats-project.eu

72 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

The abstract behavioral specification language ABS is a formalism which aims
at describing systems at a level which abstracts from many implementation de-
tails but captures essential behavioral aspects of the targeted systems [25]. ABS
targets the engineering of concurrent, component-based systems by means of
executable object-oriented models which are easy to understand for the software
developer and allow rapid prototyping and analysis. The extension Real-Time
ABS integrates object orientation and timed behavior [8]. Whereas the func-
tional correctness of a planned system largely depends on its high-level behav-
ioral specification, the choice of deployment architecture may hugely influence
the system’s quality of service. For example, CPU limitations may restrict the
applications that can be supported on a cell phone, and the capacity of a server
may influence the response time of a service during peaks in the user traffic.

Whereas software components reflect the logical architecture of systems, de-
ployment components have recently been proposed for Real-Time ABS to reflect
the deployment architecture of systems [27, 28]. A deployment component is a
resource-restricted execution context for a set of concurrent object groups, which
controls how much computation can occur in this set between observable points
in time. Deployment components may be dynamically created and are parametric
in the amount of resources they provide to their objects. This explicit represen-
tation of deployment scenarios allows application-level response time and load
balancing to be expressed in the software models in a very natural and flexible
way, relative to the resources allocated to the software.

This paper shows how deployment components in Real-Time ABS may be
used to model virtualized systems in a cloud environment. We develop a Real-
Time ABS model of cloud provisioning and accounting for resource-aware ap-
plications: an abstract cloud provider offers virtual machines with given CPU
capacities to client applications and bills the applications for their resource us-
age. We use this model in a case study of the Montage system [24], a cloud-based
resource-aware application for scientific computing, and compare execution times
and accumulated costs depending on the number of leased machines by means of
simulations of the executable model. We show that our results are comparable
to those previously obtained for Montage with the same deployment scenarios
on specialized simulation tools [19] and thus that our formal model can be used
to estimate cloud deployment costs for realistic systems. We then introduce dy-
namic resource management strategies in the Montage model, and show that
these improve on the resource management strategies previously considered [19].

The paper is structured as follows. Section 2 presents the abstract behavioral
specification language Real-Time ABS, Section 3 develops our model of cloud
provisioning. Section 4 presents the case study of the Montage system. Section 5
discusses related work and Section 6 concludes the paper.

2 Abstract Behavioral Specification with Real-Time ABS

ABS is an executable object-oriented modeling language with a formal seman-
tics [25], which targets distributed systems. The language is based on concurrent

Modeling Resource-Aware Virtualized Applications 73

object groups, akin to concurrent objects (e.g., [14,17,26]), Actors (e.g., [1,23]),
and Erlang processes [5]. Concurrent object groups in ABS internally support
interleaved concurrency using guarded commands. This allows active and reac-
tive behavior to be easily combined, based on cooperative scheduling of processes
which stem from method calls. A concurrent object group has at most one active
process at any time and a queue of suspended processes waiting to execute on
an object in the group. Objects in ABS are dynamically created from classes but
typed by interface; i.e., there is no explicit notion of hiding as the object state is
always encapsulated behind interfaces which offer methods to the environment.

2.1 Modeling Timed Behavior in ABS

ABS combines functional and imperative programming styles with a Java-like
syntax [25]. Concurrent object groups execute in parallel and communicate
through asynchronous method calls. Data manipulation inside methods is mod-
eled using a simple functional language. Thus, the modeler may abstract from
the details of low-level imperative implementations of data structures, and still
maintain an overall object-oriented design which is close to the target system.

The functional part of ABS allows user-defined algebraic data types such as
the empty type Unit, Booleans Bool, integers Int; parametric data types such
as sets Set<A> and maps Map<A> (given a value for the variable A); and user-
defined functions over values of these types, with support for pattern matching.

The imperative part of ABS addresses concurrency, communication, and syn-
chronization at the concurrent object level, and defines interfaces, classes, and
methods. ABS objects are active in the sense that their run method, if de-
fined, gets called upon creation. Statements for sequential composition s1; s2,
assignment x=rhs, skip, if, while, and return are standard. The statement
suspend unconditionally suspends the active process of an object by moving
this process to the queue, from which an enabled process is selected for execution.
In await g, the guard g controls suspension of the active process and consists
of Boolean conditions b and return tests x? (see below). Functional expressions
e and guards g are side-effect free. If g evaluates to false, the active process is
suspended, i.e., moved to the queue, and some process from the queue may exe-
cute. Expressions rhs include the creation of an object group new cog C(e),
object creation in the creator’s group new C(e), method calls o!m(e) and
o.m(e), future dereferencing x.get, and functional expressions e.

Communication and synchronization are decoupled in ABS, which allows com-
plex workflows to be modeled. Communication is based on asynchronous method
calls, denoted by assignments f=o!m(e) where f is a future variable, o an
object expression, and e are (data value or object) expressions. After calling
f=o!m(e), the future variable f refers to the return value of the call and the
caller may proceed with its execution without blocking on the method reply.
There are two operations on future variables, which control synchronization in
ABS. First, the statement await f? suspends the active process unless a return
value from the call associated with f has arrived, allowing other processes in the
object group to execute. Second, the return value is retrieved by the expression

74 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

f.get, which blocks all execution in the object until the return value is available.
The statement sequence x=o!m(e);v=x.get encodes commonly used blocking
calls, abbreviated v=o.m(e) (reminiscent of synchronous calls).

We work with Real-Time ABS [8], a timed extension of ABS with a run-to-
completion semantics, which combines explicit and implicit time for ABS models.
Real-Time ABS has an interpreter defined in rewriting logic [30] which closely
reflects its semantics and which executes on the Maude platform [16]. In Real-
Time ABS, explicit time is specified directly in terms of durations (as in, e.g.,
UPPAAL [29]). Real-Time ABS provides the statement duration(b,w) to
specify a duration between the worst-case w and the best case b. A process may
also suspend for a certain duration, expressed by await duration(b,w). For
the purposes of this paper, it is sufficient to work with a discrete time domain,
and let b and w be of type Int. In contrast to explicit time, implicit time is
observed by measurements of the executing model. Measurements are obtained
by comparing clock values from a global clock, which can be read by an expres-
sion now() of type Time. With implicit time, no assumptions about execution
times are hard-coded into the models. The execution time of a method call de-
pends on how quickly the call is effectuated by the server object. In fact, the
execution time of a statement varies with the capacity of the chosen deployment
architecture and on synchronization with other (slower) objects.

2.2 Modeling Deployment Architectures in Real-Time ABS

Deployment components in Real-Time ABS abstractly capture the resource ca-
pacity at a location [27, 28]. Deployment components are first-class citizens in
Real-Time ABS and share their resources between their allocated objects. The
root object of a model is allocated to the deployment component environment,
which has unlimited resources. Deployment components with different resource
capacities may be dynamically created depending on the control flow of the
model or statically created in the main block of the model. When created, objects
are by default allocated to the same deployment component as their creator, but
they may also be explicitly allocated to a different component by an annotation.

Deployment components have the type DC and are instances of the class
DeploymentComponent. This class takes as parameters a name (the name
of the location, mostly used for monitoring purposes), given as a string, and
a set of restrictions on resources. Here we focus on resources reflecting the
components’ CPU processing capacity, which are specified by the constructor
CPUCapacity(r), where r of type Resource represents the amount of avail-
able abstract processing resources between observable points in time. The ex-
pression thisDC() evaluates to the deployment component of the current ob-
ject. The method total("CPU") of a deployment component returns the total
amount of CPU resources allocated to that component.

The CPU processing capacity of a deployment component determines how
much computation may occur in the objects allocated to that component. The
CPU resources of a component define its capacity between observable (discrete)
points in time, after which the resources are renewed. Objects allocated to the

Modeling Resource-Aware Virtualized Applications 75

component compete for the shared resources in order to execute. With the run-
to-completion semantics, the objects may execute until the component runs out
of resources or they are otherwise blocked, after which time will advance [28].

The cost of executing statements is given by a cost model. A default cost
value for statements can be set as a compiler option (e.g., defaultcost=10).
This default cost does not discriminate between different statements. For some
statements a more precise cost expression is desirable in a realistic model; e.g.,
if e is a complex expression, then the statement x=e should have a significantly
higher cost than the statement skip. For this reason, more fine-grained costs
can be introduced into the models by means of annotations, as follows:
class C implements I {

Int m (T x) { [Cost: g(size(x))] return f(x); }
}

It is the responsibility of the modeler to specify an appropriate cost model. A
behavioral model with default costs may be gradually refined to obtain more
realistic resource-sensitive behavior. To provide cost functions such as g in our
example above, the modeler may be assisted by the COSTABS tool [2], which
computes a worst-case approximation of the cost for f in terms of the size of
the input value x based on static analysis techniques, when given the definition
of the expression f. However, the modeler may also want to capture resource
consumption at a more abstract level during the early stages of system design,
for example to make resource limitations explicit before further behavioral re-
finements of a model. Therefore, cost annotations may be used to abstractly
represent the cost of some computation which remains to be fully specified.

3 Resource Management and Cloud Provisioning

An explicit model of cloud provisioning allows the application developer to in-
teract in a simple way with a provisioning and accounting system for virtual
machines. This section explains how such cloud provisioning may be modeled,
for Infrastructure-as-a-Service [10] cloud environments. Consider an interface
CloudProvider which offers three methods for resource management to client
applications: createMachine, acquireMachine, and releaseMachine.

The method createMachine prepares and returns an abstract virtual ma-
chine with a specified processing capacity, after which the client application may
deploy objects on the machine. This method models the provisioning and config-
uration part of a cloud-based application, and corresponds roughly to instancing
and configuring a virtual machine on a cloud, without starting up the machine.

Before running a computation on a machine created with createMachine,
the client application must first call the method acquireMachine. The cloud
provider then starts accounting for the time this machine is kept running; the
client calls the method releaseMachine to “shut down” the machine again.
(For simplicity it is currently not checked whether processes are run before call-
ing acquireMachine or after releaseMachine; this is a straightforward
extension of the approach which could be useful to model “cheating” clients.)

76 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

Client Application Cloud Provider

createMachine

acquireMachine

releaseMachine

M
achine usable

A
ccounting

Fig. 1. Interaction between a client application and the cloud provider

For a later reactivation of the same machine, only acquireMachine needs
to be called. Fig. 1 shows one such sequence of interactions between a client
application and a cloud provider.

In addition, the interface offers a method getAccumulatedCost which re-
turns the cost accumulated so far by the client application. This method can be
used in load balancing schemes to implement various trade-offs between quality
of service and the cost of running the application, or to implement operator
alerts when certain QoS or cost budgets are bypassed.

A Model of Cloud Provisioning in Real-Time ABS. A class which implements
the CloudProvider interface is given in Fig. 2. Abstract virtual machines
are modeled as deployment components. The class has two formal parameters
to allow easy configuration: startupTime sets the length of the startup pro-
cedure for virtual machines and accountingPeriod sets the length of each
accounting period. In addition, the class has four fields: accumulatedCost
stores the cost incurred by the client application up to present time, the set
billableMachines contains the machines to be billed in the current time
interval, and the sets availableMachines and runningMachines contain
the created but not currently running and the running machines, respectively.
The empty set is denoted EmptySet. Let s be a set over elements of type T and
let e : T . The following functions are defined in the functional part of Real-Time
ABS: insertElement(s, e) returns {e} ∪ s, remove(s, e) returns s \ {e}, and
take(s) returns some e such that e ∈ s.

The methods for resource management move machines between these sets.
Any machine which is either created or running within an accounting period,
is billable in that period; i.e., a machine may be both acquired and released in
a period, so there may be more billable than running machines. The method
createMachine creates a new deployment component of the given capacity
and adds it to availableMachines. The method acquireMachine moves
a machine from availableMachines to runningMachines. Since the ma-
chine becomes billable, it is placed in billableMachines. The method sus-
pends for the duration of the startupTime before it returns, so the accounting
includes the startup time of the machine. The method releaseMachinemoves

Modeling Resource-Aware Virtualized Applications 77

interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC machine);
Unit releaseMachine(DC machine);
Int getAccumulatedCost();

}
class CloudProvider (Int startupTime, Int accountingPeriod)

implements CloudProvider {
Int accumulatedCost = 0; Set<DC> billableMachines = EmptySet;
Set<DC> availableMachines = EmptySet;
Set<DC> runningMachines = EmptySet;

DC createMachine(Int r) {
DC dc = new DeploymentComponent("", set[CPUCapacity(r)]);
availableMachines = insertElement(availableMachines, dc);
return dc;

}
Unit acquireMachine(DC dc) {

billableMachines = insertElement(billableMachines, dc);
availableMachines = remove(availableMachines, dc);
runningMachines = insertElement(runningMachines, dc);
await duration(startupTime, startupTime);

}
Unit releaseMachine(DC dc) {

runningMachines = remove(runningMachines, dc);
availableMachines = insertElement(availableMachines, dc);

}
Int getAccumulatedCost(){ return accumulatedCost; }
Unit run() {

while (True) {
await duration(accountingPeriod, accountingPeriod);
Set<DeploymentComponent> billables = billableMachines;
while (~(billables == EmptySet)) {

DeploymentComponent dc = take(billables);
billables = remove(billables,dc); Int capacity = dc.total("CPU");
accumulatedCost = accumulatedCost+(accountingPeriod*capacity);

}
billableMachines = runningMachines;

}}}

Fig. 2. The CloudProvider class in Real-Time ABS

a machine from runningMachines to availableMachines. The machine
remains billable for the current accounting period.

The run method of the cloud provider implements the accounting of incurred
resource usage for the client application. The method suspends for the dura-
tion of the accounting period, after which all machines in billableMachines
are billed by adding their resource capacity for the duration of the account-
ing period to accumulatedCost. Remark that Real-Time ABS has a run-to-
completion semantics which guarantees that the loop in run will be executed
after every accounting period. After accounting is finished, only the currently
running machines are already billable for the next period. These are copied into
billableMachines and the run method suspends for the next accounting
period.

78 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

Module Description
mImgtbl Extract geometry information from a set of FITS headers and

create a metadata table from it.
mOverlaps Analyze an image metadata table to determine which images

overlap on the sky.
mProject Reproject a FITS image.
mProjExec Reproject a set of images, running mProject for each image.
mDiff Perform a simple image difference between a pair of overlapping

images.
mDiffExec Run mDiff on all the overlap pairs identified by mOverlaps.
mFitplane Fit a plane (excluding outlier pixels) to an image. Used on the

difference images generated by mDiff.
mFitExec Run mFitplane on all overlapping pairs. Creates a table of image-

to-image difference parameters.
mBgModel Modeling/fitting program which uses the image-to-image difference

parameter table to interactively determine a set of corrections to
apply to each image to achieve a “best” global fit.

mBackground Remove a background from a single image
mBgExec Run mBackground on all the images in the metadata table.
mAdd Co-add the reprojected images to produce an output mosaic.

Fig. 3. The modules of the Montage case study

4 Case Study: The Montage Toolkit

Montage is a portable software toolkit for generating science-grade mosaics by
composing multiple astronomical images [24]. Montage is modular and can be
run on a researcher’s desktop machine, in a grid, or on a cloud. Due to the high
volume of data in a typical astronomical dataset and the high resolution of the
resulting mosaic, as well as the highly parallelizable nature of the needed com-
putations, Montage is a good candidate for cloud deployment. In [19], Deelman
et al. present simulations of cloud deployments of Montage and the cost of creat-
ing mosaics with different deployment scenarios, using the specialized simulation
tool GridSim [9].

This section describes the architecture of the Montage system and how it was
modeled in Real-Time ABS. We explain how costs were associated to the differ-
ent parts of the model. The results obtained by simulations of the model in the
Real-Time ABS interpreter are compared to those obtained in the specialized
simulator. Finally, more fine-grained dynamic resource management, not consid-
ered in the previous work [19], is proposed and compared to previous scenarios.

4.1 The Problem Description

Creating a mosaic from a set of input images involves a number of tasks: first
reprojecting the images to a common projection, coordinating system and scale,
then rectifying the background radiation in all images to a common flux scale

Modeling Resource-Aware Virtualized Applications 79

mProject

mProjExec

mImgtbl mOverlaps

mDiffExec

mDiff

mFitExec

mFitplane

mBgModel

mBackground

mBgExec

mAdd

Fig. 4. Montage abstract workflow

and background level, and finally co-adding the reprojected background-rectified
images into a final mosaic. The tasks exchange data in the format FITS, which
encapsulates image data and meta-data. These tasks are implemented by a num-
ber of Montage modules [24], which are listed and described in Fig. 3. These
modules can be run individually or combined in a workflow, locally or remotely
on a grid or a cloud. Fig. 4 depicts the dataflow dependencies between the mod-
ules in a typical Montage workflow [19]. These dependencies show which jobs
can be parallelized on multiprocessor systems, grids, or cloud services.

Simulation results for running Montage on the Amazon cloud with the work-
flow depicted in Fig. 4 have been published in [19], including cost measurements
for CPU and storage resources. The simulation tool GridSim [9] was used to
study the trade-offs between cost and performance for different execution and re-
source provisioning scenarios when running Montage in a cloud service provider.

We model and analyze the same abstract workflow architecture of Montage
based on the model of cloud provisioning presented in Section 3, as a means to
validate the presented formal model of cloud provisioning in Real-Time ABS.
In particular, we consider the case in which Montage processes multiple input
images in parallel. Our model abstracts from the implementation details of the
manipulation of images, replacing them with abstract statements and cost anno-
tations. One important result of [19] is that computation cost dominates storage
and data transfer cost for the Montage workload by 2-3 orders of magnitude,
which allows us to focus on CPU usage alone.

4.2 A Model of the Montage Workflow in Real-Time ABS

The Core Modules. The Montage core modules that execute atomic tasks (i.e.,
mProject, mDiff, mFitplane, mBgModel, mBackground, mAdd, mImgtbl,
and mOverlaps) are modeled as methods inside a class CalcServer which
implements the CalcServer interface shown in Fig. 5. In the methods of this
class, cost annotations are used to specify the costs of executing atomic tasks.
The images considered in the case study have a constant size, so it is sufficient
to use a constant cost for the atomic tasks. Lacking precise cost estimates for

80 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

interface CalcServer {
DeploymentComponent getDC();
MetadataT mImgtbl(List<FITS> i);
MetadataT mOverlaps(MetadataT mt);
FITS mProject(FITS image);
FITSdf mDiff (FITS image1, FITS image2);
FITSfit mFitplane (FITSdf df);
CorrectionT mBgModel(Image2ImageT diffs, MetadataT ovlaps);
FITS mBackground (Int correction,FITS image);
FITS mAdd (List<FITS> images); }

class CalcServer implements CalcServer {
...
FITS mBackground (Int correction,FITS image){

[Cost: 1] FITS result = correctFITS(image,correction);
return result;

}
... }

Fig. 5. CalcServer interface and class in Real-Time ABS

the individual tasks, we consider an abstract cost model in which each atomic
task is assigned the cost of 1 resource. (This cost model could be further re-
fined; although some timing measurements are given in [24], these are not de-
tailed enough for this purpose.) The code for one such atomic task inside the
CalcServer class is shown in Fig. 5.

Resource Management. The workflow process does not interact with the differ-
ent instances of CalcServer directly. Instead, tasks are sent to an instance
of ApplicationServer which acts a broker for the preallocated machine in-
stances and distributes tasks to free machines. The ApplicationServer inter-
face, partly shown in Fig. 6, provides the workflow with means to start the par-
allelizable tasks (i.e., mProjExec, mDiffExec, mFitExec and mBgExec) and
distributes the atomic tasks (e.g., mDiff) to instances of CalcServer. Atomic
tasks are sent directly to one calculation server. Two fields activeMachines
and servers keep track of the number of active jobs on each created machine
and the order in which servers get jobs, respectively. Surrounding every call to a
calculation server the auxiliary methods getServer and dropServer do the
bookkeeping and resource management of the virtual machines. Asynchronous
method calls to the future variables fimage and fnewimages, and task sus-
pension are used to keep the application server responsive.

Our model defines algebraic data types FITS, FITSdf, FITSfit, as well
as the list MetadataT and the maps CorrectionT and Image2ImageT to
represent the input and output data at the different stages of the workflow; for
example, FITS is a data type which represents image archives in FITS format,
which is constructed from an abstract representation of metadata and of image
data. This data can be used to keep track of data flow and abstractions of cal-
culation results. The empty list and map are denoted Nil and EmptyMap. On
lists, the constructor Cons(h, t) takes as arguments an element h and a list t;

Modeling Resource-Aware Virtualized Applications 81

interface ApplicationServer {
FITS mAdd (List<FITS> images);
List<FITS> mProjExec(List<FITS> images);
List<FITSdf> mDiffExec (MetadataT metatable, List<FITS> images);
Image2ImageT mFitExec(List<FITSdf> dfs);
List<FITS> mBgExec (CorrectionT corrections, List<FITS> images);
... }

class ApplicationServer(CloudProvider provider)
implements ApplicationServer {

List<CalcServer> servers = Nil; Map<DC,Int> activeMachines = EmptyMap;
...
List<FITS> mBgExec(CorrectionT corrections,List<FITS> images) {

List<FITS> newimages = Nil;
if (isEmpty(images)==False) {
FITS image = head(images);
Int correction = lookupDefault(corrections,getId(image), 0);
CalcServer b = this.getServer();
Fut<FITS> fimage = b!mBackground (correction,image);
Fut<List<FITS>> fnewimages=this!mBgExec(corrections,tail(images));
await fimage?; FITS tmpimage = fimage.get;
this.dropServer(b);
await fnewimages?; List<FITS> newtmpimages = fnewimages.get;
newimages = Cons(tmpimage, newtmpimages);}

return newimages;}
... }

Fig. 6. The ApplicationServer interface and class (abridged)

head(Cons(h, t)) = h and tail(Cons(h, t)) = t. The function isEmpty(l) re-
turns true if l is the empty list. On maps, the function lookupDefault(m, k, v)
returns the value bound to k in m if the key k is bound in m, and otherwise it
returns the default value v.

4.3 Simulation Results

We simulated a workload equivalent to the Montage 1 scenario described in [19].
As in that paper, the simulations were run on deployment scenarios ranging from
1 to 128 virtual machine instances, where all the machines were started up prior
to the simulations (i.e., the startupTime parameter of the CloudProvider
class in our model has value 0). Both simulation approaches exhibit the expected
geometric downward progression of execution time when going from 1 to 128
machines, and roughly half an order of magnitude increase in cost. In our first
simulation runs, the execution cost (measured in simulated machine-minutes)
increased a little over two-fold over the full simulation range, versus closer to
a six-fold increase (“60 cents [...] versus almost 4$”) in [19]. To explain this
difference, we theorized that the observed lower cost may have resulted from
better machine allocation strategies in our model—the virtual machines were
eagerly released by the ApplicationServer class when no more work was
available to them, instead of being kept running until all computations finished.

82 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

0

25

50

75

100

1 2 4 8 16 32 64 128
1

10

100

1000

10000

Ti
m

e

C
PU

 C
os

t

time cost (dynamic, small startup time)
time cost (dynamic, large startup time)
time cost (constant)

0

25

50

75

100

1 2 4 8 16 32 64 128
1

10

100

1000

10000

Ti
m

e

C
PU

 C
os

t

Processing Time Cost

Fig. 7. Execution costs and times of simulation. The Montage 1 scenario (left figure)
is compared to dynamic resource management (right figure). The costs are presented
on a logarithmic scale for easier comparison with the results of [19].

To test this hypothesis, the ApplicationServer class was modified to keep
all instances running during the whole computation task. Using this allocation
strategy, we observed a cost increase of 4.27 from 1 to 128 computation servers,
which is more in line with the results obtained using GridSim. Fig. 7 (left) shows
the simulation results of the modified model. The authors of [19] later confirmed
in private communication that our hypothesis about the setup of the GridSim
simulation scenario was indeed correct.

In order to further investigate the initial results involving dynamic startup
and shutdown of machine instances, we refine our model by introducing startup
times for virtual machines. Fig. 7 (right) compares the previous static deploy-
ment scenario (constant) with two dynamic resource management scenarios with
varying startup times for virtual machines. One scenario models machine startup
times of roughly one tenth of the time needed for performing a basic task, the
other startup times roughly as large as basic task times. It can be seen that the
cost of running a single job in the Montage system can be substantially reduced
by switching off unused machines, given that the cost of starting machines is
dominated by the actual calculations taking place, with almost no loss in time.
On the other hand, if starting a machine is significantly slower than executing
a basic task, it can be seen that both cost and time of the dynamic scenario
are worse than when initially starting all machines in the static scenario of the
considered workflow except in the case of severe over-provisioning of machines.

5 Related Work

The concurrency model of ABS is based on concurrent objects and Actor-based
computation, in which software units with encapsulated processors communicate
asynchronously (e.g., [1,5,14,23,26]). Their inherent compositionality allows con-
current objects to be naturally distributed on different locations, because only

Modeling Resource-Aware Virtualized Applications 83

the local state of a concurrent object is needed to execute its methods. In previous
work, the authors have introduced deployment components as a formal modeling
concept to capture restricted resources shared between concurrent object groups
and shown how components with parametric resources naturally model different
deployment architectures [28], extended the approach with resource realloca-
tion [27], and combined it with static cost analysis [4]. This paper complements
our previous work by using deployment components to model cloud-based sce-
narios and the development of the Montage case study. A companion paper [18]
further applies the approach of this paper to an industrial case study.

Techniques for prediction or analysis of non-functional properties are based
on either measurement or modeling. Measurement-based approaches apply to
existing implementations, using dedicated profiling or tracing tools like JMeter
or LoadRunner. Model-based approaches allow abstraction from specific system
intricacies, but depend on parameters provided by domain experts [20]. A survey
of model-based performance analysis techniques is given in [7]. Formal systems
using process algebra, Petri Nets, game theory, and timed automata have been
used in the embedded software domain (e.g., [15,21]). Real-Time ABS combines
explicit time modeling with duration statements with implicit measurements of
time already at the modeling level, which is made possible by the combination
of costs in the application model and capacities in the deployment components.

Work on modeling object-oriented systems with resource constraints is more
scarce.Using the UML SPT profile for schedulability, performance, and time, Petriu
and Woodside [32] informally define the Core Scenario Model (CSM) to solve ques-
tions that arise in performance model building. CSM has a notion of resource con-
text, which reflects an operation’s set of resources. CSM aims to bridge the gap
between UML and techniques to generate performance models [7]. Closer to our
work is M. Verhoef’s extension of VDM++ for embedded real-time systems [33],
in which static architectures are explicitly modeled using CPUs and buses. The
approach uses fixed resources targeting the embedded domain, namely proces-
sor cycles bound to the CPUs, while we consider more general resources for ar-
bitrary software. Verhoef’s approach is also based on abstract executable model-
ing, but the underlying object models and operational semantics differ. VDM++
has multi-thread concurrency, preemptive scheduling, and a strict separation of
synchronous method calls and asynchronous signals, in contrast to our work with
concurrent objects, cooperative scheduling, and caller-decided synchronization.

Related work on simulation tools for cloud computing are typically reminis-
cent of network simulators. A number of testing techniques and tools for cloud-
based software systems are surveyed in [6]. In particular, CloudSim [13] and
ICanCloud [31] are simulation tools using virtual machines to simulate cloud en-
vironments. CloudSim is a fairly mature tool which has already been used for a
number of papers, but it is restricted to simulations on a single computer. In con-
trast, ICanCloud supports distribution on a cluster. Additionally CloudSim was
originally based on GridSim [9], a toolkit for modeling and simulations of hetero-
geneous Grid resources. EMUSIM [12] is an integrated tool that uses AEF [11]
(Automated Emulation Framework) to estimate performance and costs for an

84 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

application by means of emulations to produce improved input parameters for
simulations in CloudSim. Compared to these approaches, our work is based on
a formal semantics and aims to support the developer of software applications
for cloud-based environments at an early phase in the development process.

Another interesting line of research is static cost analysis for object-oriented
programs (e.g., [3,22]) Most tools for cost analysis only consider sequential pro-
grams, and assume that the program is fully developed before cost analysis can
be applied. COSTABS [2] is a cost analysis tool for ABS which supports concur-
rent object-oriented programs. Our approach, in which the modeler specifies cost
in cost annotations, could be supported by COSTABS to automatically derive
cost annotations for the parts of a model that are fully implemented. In collab-
oration with Albert et al., we have applied this approach for memory analysis
of ABS models [4]. However, the full integration of COSTABS in our tool chain
and the software development process remain future work.

6 Conclusion

This paper develops a model in Real-Time ABS of a cloud provider which offers
virtual machines with given CPU capacities to a client application. Virtual ma-
chines are modeled as deployment components with given CPU capacities, and
the cloud provider offers methods for resource management of virtual machines
to client applications. The proposed model has been validated by means of a case
study of the Montage toolkit, in which a typical Montage workflow was formal-
ized. This formalization allows different user scenarios and deployment models
to easily expressed and compared by means of simulations using the Real-Time
ABS interpreter. The results from these simulations were comparable to those
obtained for the Montage case study using specialized simulators, which suggests
that models using abstract behavioral specification languages such as Real-Time
ABS can be used to estimate cloud deployment costs for realistic systems.

Real-Time ABS aims to support the developer of client applications for cloud-
based deployment, and in particular to facilitate the development of strategies
for virtualized resource management at early stages in the development process.
We are not aware of similar work addressing the formal modeling of virtualized
resource management and cloud computing from the client application perspec-
tive. With the increasing focus on cloud-based deployment of general purpose
software, such support could become very useful for software developers.

This paper focused on the formalization of cloud provisioning and simulations
of the executable model. The presented work can be extended in a number of
directions. In particular, we are interested in how to combine different virtu-
alized resources in the same model to estimate combined costs of, e.g., com-
putations, storage, bandwidth, and power consumption. Another extension is
to strengthen the tool-based analysis support for Real-Time ABS. An integra-
tion with cost analysis tools such as COSTABS would assist the developer in
providing cost annotations in the model. Furthermore, we plan to investigate
symbolic execution techniques for Real-Time ABS, which would allow stronger
automated analysis results than those considered here. Finally, an integration of

Modeling Resource-Aware Virtualized Applications 85

QoS contracts with the interfaces of Real-Time ABS could form a basis for anal-
ysis abstract behavioral specifications with respect to service-level agreements.

Acknowledgment. We thank G. Bruce Berriman and Ewa Deelman for helping
us with additional details of the Montage case study.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: a
cost and termination analyzer for ABS. In: Proc. Workshop on Partial Evaluation
and Program Manipulation (PEPM 2012), pp. 151–154. ACM (2012)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

4. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia
Tarifa, S.L.: Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer,
Heidelberg (2011)

5. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

6. Bai, X., Li, M., Chen, B., Tsai, W.-T., Gao, J.: Cloud testing tools. In: Proc. 6th
Symposium on Service Oriented System Engineering, pp. 1–12. IEEE (2011)

7. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (2004)

8. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-defined
schedulers for real-time concurrent objects. Innovations in Systems and Software En-
gineering (2012), http://dx.doi.org/10.1007/s11334-012-0184-5

9. Buyya, R., Murshed, M.: GridSim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience 14, 1175–1220 (2002)

10. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

11. Calheiros, R.N., Buyya, R., De Rose, C.A.F.: Building an automated and self-
configurable emulation testbed for grid applications. Software: Practice and Expe-
rience 40(5), 405–429 (2010)

12. Calheiros, R.N., Netto, M.A., De Rose, C.A.F., Buyya, R.: EMUSIM: an integrated
emulation and simulation environment for modeling, evaluation, and validation of
performance of cloud computing applications. Software: Practice and Experience
(2012)

13. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software, Practice and Expe-
rience 41(1), 23–50 (2011)

14. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer (2005)
15. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.

In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

http://dx.doi.org/10.1007/s11334-012-0184-5

86 E.B. Johnsen, R. Schlatte, and S.L. Tapia Tarifa

16. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

17. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

18. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.H.: Formal Mod-
eling of Resource Management for Cloud Architectures: An Industrial Case Study.
In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 91–106. Springer, Heidelberg (2012)

19. Deelman, E., Singh, G., Livny, M., Berriman, G.B., Good, J.: The cost of doing sci-
ence on the cloud: The Montage example. In: Proc. High Performance Computing
(SC 2008), pp. 1–12. IEEE/ACM (2008)

20. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: Proc. ICSE 2009, pp. 111–121. IEEE (2009)

21. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decid-
ability and undecidability. Information and Computation 205(8), 1149–1172 (2007)

22. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Esti-
mation of Program Computational Complexity. In: Proc. POPL 2009, pp. 127–139.
ACM (2009)

23. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

24. Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J., Laity, A.C., Deelman, E., Kessel-
man, C., Singh, G., Su, M.-H., Prince, T.A., Williams, R.: Montage: a grid portal
and software toolkit for science-grade astronomical image mosaicking. Intl. Journal
of Computational Science and Engineering 4(2), 73–87 (2009)

25. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

26. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

27. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Real-
location between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

28. Johnsen, E. B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models
of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

29. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Intl. Journal on
Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

30. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

31. Nuñez, A., Vázquez-Poletti, J., Caminero, A., Castañé, G., Carretero, J., Llorente,
I.: iCanCloud: A flexible and scalable cloud infrastructure simulator. Journal of
Grid Computing 10, 185–209 (2012)

32. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tem Modeling 6(2), 163–184 (2007)

33. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Em-
bedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

Specification and Model Checking

of the Chandy and Lamport Distributed
Snapshot Algorithm in Rewriting Logic

Kazuhiro Ogata and Phan Thi Thanh Huyen

School of Information Science, JAIST
{ogata,huyenttp}@jaist.ac.jp

Abstract. Many model checkers have been developed and then many
case studies have been conducted by applying them to mechanical anal-
ysis of systems including distributed systems, protocols and algorithms.
To the best of our knowledge, however, there are few case studies in which
the Chandy & Lamport distributed snapshot algorithm is mechanically
analyzed with model checkers. We think that this is because it is not
straightforward to express the significant property that the algorithm
should enjoy in LTL and CTL. In this paper, we describe how to spec-
ify the algorithm in Maude, a specification and programming language
based on rewriting logic, and how to model check the significant prop-
erty with the Maude search command, which demonstrates the power of
the command. The case study also demonstrates the importance of case
analysis in specification.

Keywords: distributed snapshot, distributed system, Maude, model
checking, the search command.

1 Introduction

Many model checkers such as symbolic model checkers, explicit-state
model checkers and SAT/SMT-based bounded model checkers have been
proposed[1,2,3]. Accordingly, many case studies have been conducted by applying
them to mechanical analysis of systems including distributed systems, protocols
and algorithms[4,5,6]. To the best of our knowledge, however, there are few case
studies in which the Chandy & Lamport distributed snapshot algorithm[7] is
mechanically analyzed with model checkers. We think that this is because it is
not straightforward to express the most significant property that the algorithm
should enjoy in standard temporal logics such as LTL and CTL.

Let s1, s∗ and s2 be the state (called the start state) when a distributed
snapshot starts being taken, the snapshot, and the state (called the finish state)
when the snapshot completes being taken, respectively. The most significant
property is that s∗ is always reachable from s1 and s2 is always reachable from
s∗. To check the property, all needed to do is to check if s∗ is reachable from s1
and s2 is reachable from s∗ whenever s2 is obtained, namely that the algorithm
terminates. If computations, namely sequences of states, are first-class objects,

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 87–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

88 K. Ogata and P.T. Thanh Huyen

p(0) p(1)

p(2)

Fig. 1. The 3-process & 4-channel system

the property can be expressed as an invariant property[8]. But, computations
are not first-class objects in LTL and CTL. There might be some way to model
the algorithm such that the property can be expressed in LTL and/or CTL. But,
such a model must be too complicated to be model checked.

Maude[9] is a specification and programming language based on rewriting
logic. The Maude search command can be used as a (bounded) model checker for
invariant properties. Given a state s, a state pattern p and an optional condition
c, the search command searches the reachable state space from s in a breadth-
first manner for all states that match p such that c holds. Reachability can
also be checked in the optional condition c. This makes it possible to check the
property. In this paper, we describe how to specify the algorithm in Maude and
how to model check the property with the search command, which demonstrates
the power of the command, namely that more general invariant properties can
be checked by the command than standard LTL and CTL model checkers. The
case study also demonstrates the importance of case analysis in specification,
which often needs to be conducted for interactive theorem proving. It is also
worth noting that the formal specification of the algorithm in Maude depends
on neither the number of processes nor the number of channels in the algorithm,
although we need to fix them to conduct model checking.

The rest of the paper is organized as follows. §2 describes the Chandy & Lam-
port algorithm. §3 describes Maude. §4 describes how to specify the algorithm in
Maude. §5 describes how to model check the property with the search command.
§6 mentions some related work. §7 concludes the paper.

2 The Chandy and Lamport Algorithm

A distributed system (called an underlying system) whose snapshot is taken is
first described. An underlying system consists of one or more processes (typically
two or more processes) and directed channels that are unbounded queues from
processes to processes. Given two processes, there may be two or more channels
from one to the other. Fig. 1 shows a system that consists of three processes and
four channels, in which there are two channels from process p(0) to process p(1).
Each process has its own state, and so does each channel. The state of a channel
is a sequence of messages that have been sent by its source process but that
have not yet been received by its destination process. Each channel is reliable in
that no messages are lost, duplicated or swapped. The state of the system is the
collection of the states of the processes and channels. What each process does is

Specification and Model Checking 89

– to put a message into one of its outgoing channels and/or change its state,
– to get a message from one of its non-empty incoming channels and/or change

its state, or
– to change its state with neither sending nor receiving any messages.

When a snapshot is taken, each process records its own state and the state of
each of its incoming channels. But, the problem is when each process should do
so. If each process does so at any time when it wants, the global snapshot may
be inconsistent, namely that the snapshot may not be reachable from the state
when the snapshot has started being taken. Chandy and Lamport designed an
algorithm that instructs each process when it does so by sending special messages
called markers[7].

What each process does with respect to (w.r.t.) the algorithm is as follows:

1. The process may record its state when it has not yet received any markers. If
that is the case, the process puts a marker into each of its outgoing channels
before it puts any non-marker messages into the channel.

2. The process may get a marker from one of its incoming channels.
(a) If the process has not yet recorded its state, it records its state and the

state of the incoming channel as empty, and initializes the records of the
other incoming channels as empty. The process then puts a marker into
each of its outgoing channels before it puts any non-marker messages
into the channel.

(b) If the process has already recorded its state, it has completed the record
of the incoming channel.

3. When the process has already recorded its state and gets a non-marker
message from one of its incoming channel from which a marker has not yet
been received, it updates the record of the incoming channel by putting the
non-marker message into the record.

When each process has completed the records of its state and all of its incoming
channels, a global snapshot has been taken, which is the collection of all those
records.

Let s1, s∗ and s2 be the state (called the start state) when a distributed
snapshot starts being taken, the snapshot, and the state (called the finish state)
when the snapshot completes being taken, respectively. The most significant
property consists of two reachability properties that are called the reachability
property 1 (RP1) and the reachability property 2 (RP2), respectively, in this
paper. RP1 is that s∗ is always reachable from s1, and RP2 is that s2 is always
reachable from s∗.

3 Maude

Maude[9] is a specification and programming language based on rewriting logic
that includes as a sub-logic membership equational logic (an extension of order-
sorted equational logic). State machines (or transition systems) are specified in

90 K. Ogata and P.T. Thanh Huyen

rewriting logic, and their specifications are called system specifications. Data
used in state machines are specified in membership equational logic. States of
state machines are expressed as data such as tuples and associative-commutative
collections (called soups), and state transitions are described in rewriting rules.

Basic units of Maude specifications/programs are modules. Some built-in
modules are provided such as BOOL and NAT for Boolean values and natu-
ral numbers. The Boolean values are denoted as true and false, and natural
numbers as 0, 1, 2, . . . as usual. The corresponding sorts are Bool and Nat. Pre-
cisely, there are three sorts for natural numbers Zero, NzNat, and Nat that are
for zero, non-zero natural numbers, and natural numbers that may be zero or
non-zero. Sort Nat is the super-sort of Zero and NzNat.

Let us consider a simple system as an example. The system consists of two
processes p and q and one channel (which is an unbounded queue) from p to q.
Each process has a set of natural numbers, which is regarded as the state of the
process. Initially, p’s set is {0, 1, 2}, q’s set is empty, and the channel is empty.
p arbitrarily chooses and deletes one natural number x from its set, and puts x
into the channel, which is referred to as p’s action. If the channel is not empty
and q’s set does not contain 0, q gets the top y from the channel and adds y to
its set, which is referred to as q’s action. Let us specify this system, precisely a
state machine modeling this system, in Maude.

A set of natural numbers is expressed as a soup of natural numbers. The
corresponding sort is NSoup that is declared as a super-sort of Nat, which means
that a natural number itself is also the singleton. The empty set is denoted
as noNat, and the soup of n natural numbers x1, . . . , xn as x1 . . . xn whose
constructor is called the juxtaposition operator or the empty syntax. noNat is
declared as an identity of the constructor.

The empty channel is denoted as empChan, and the non-empty channel that
consists of n natural numbers x1, . . . , xn as x1 | . . . |xn | empChan. The corre-
sponding sort is Chan.

States of p, q, and the channel are expressed as p : ns, q : ms , and c : q,
respectively, where ns and ms are soups of natural numbers and q is a channel
(queue) of natural numbers. p : ns, q : ms, and c : q are called observable
components, and the corresponding sort is OCom. A state of the system is
expressed as a soup (called a configuration) of those observable components,
which is expressed as (p : ns) (q : ms) (c : q). The corresponding sort is
Config that is a super-sort of OCom. The initial configuration is expressed as
(p : (0 1 2)) (q : noNat) (c : empChan). Let ic be the initial configuration.

LetN be a Maude variable of sort Nat, NS be a Maude variable of sort NSoup,
C be a Maude variable of sort Chan in the rest of this section.
p’s action is described in the following rewriting rule:

rl [snd] : (p : (N NS)) (c : C)⇒ (p : NS) (c : put(C,N)) .

where snd is the label of the rewriting rule, and put takes a channel C and a
natural number N and returns the channel obtained by putting N into C at the
end. If a given term contains an instance of (p : (N NS)) (c : C), the instance
is replaced with the corresponding instance of (p : NS) (c : put(C,N)).

Specification and Model Checking 91

q’s action is described in the following rewriting rule:

crl [rec] : (c : (N |C) (q : NS)⇒ (c : C) (q : (N NS)) if 0 �∈ NS .

This rewriting rule is conditional. The condition is 0 �∈ NS. The rule can be
applied if the condition holds.

The Maude system is equipped with model checking facilities: the search com-
mand and the LTL model checker. In this paper, the search command is used.
Given a state s, a state pattern p and an optional condition c, the search com-
mand searches the reachable state space from s in a breadth-first manner for
all states that match p such that c holds. Such states are called solutions. The
syntax is as follows:

search in M : s⇒∗ p such that c .

where M is a module in which the specification of the state machine concerned
is described or available. A rewrite expression t⇒ t′ can be used in the optional
condition c. This checks if t′ is reachable from t by zero or more rewrite steps
with rewriting rules. This is the essence of model checking RP1 and RP2 for the
Chandy & Lamport distributed snapshot algorithm.

The following search finds all states (configurations) such that they are reach-
able from ic and the q’s set contains only 2:

search in EXPERIMENT : ic⇒∗ (q : 2) CONFIG .

where EXPERIMENT is the module in which the specification of the system we
have been discussing is available. The search finds 5 solutions.

The following search finds all states (configurations) such that they are reach-
able from ic, the q’s set contains only 2, and (p : noNat) (c : empChan) (q :
(0 1 2)) is reachable from them:

search in EXPERIMENT : ic⇒∗ (q : 2) CONFIG
such that (q : 2) CONFIG ⇒ (p : noNat) (c : empChan) (q : (0 1 2)) .

The search finds 3 solutions.
Note that although the reachable state space from ic is bounded, the whole

state space is unbounded. The search command can be given as options the max-
imum number of solutions and the maximum depth of search. If the maximum
number n of solutions is given, the search terminates when it finds n solutions.
Therefore, even if the reachable state space from a given state is unbounded, the
search command can be used and may terminate. If the maximum depth d of
search is given, only the bounded reachable state space from a given state up
to depth d is searched. Hence, the search command can be used as a bounded
model checker. These options are not used in this paper.

4 System Specification of the Algorithm

We describe our way of modeling (formalizing) the algorithm. What is modeled
(formalized) is actually distributed systems on which the algorithm is superim-
posed. An underlying distributed system consists of one or more processes that

92 K. Ogata and P.T. Thanh Huyen

are connected with directed channels that are unbounded queues. To cover all
possible situations, a system may consists of one process only, and some processes
have no outgoing channels, no incoming channels, or neither of them, although
such a system may not be regarded as a distributed system, or may be regarded
as multiple distributed systems. Processes exchange non-marker messages that
are called tokens and may consume them. We suppose that the state of each
process only depends on the set of tokens owned by the process. We also sup-
pose that at most one distributed snapshot is taken in each computation of a
distributed system, and there is no self-channel, namely a channel from a process
to the same process.

4.1 Basic Data Used

Processes (or process identifiers) are denoted as p(0), p(1), . . ., and the sort is
Pid.

Tokens are denoted as t(0), t(1), . . ., and the sort is Token. A marker is denoted
as marker, and the sort is Marker. Sort Msg is declared as a super-sort of Token
and Marker.

Sorts EmpChan, NeChan, and Chan are for the empty channel, non-empty
channels, and channels that may be empty or non-empty. The empty chan-
nel is denoted as empChan. A non-empty channel that consists of n messages
m0,m1, . . . ,mn−1 in this order is denoted as m0 |m1 | . . . |mn−1 | empChan. A
function put takes a channel c and a message m (namely a token or a marker),
and returns the channel obtained by putting m into c at the end.

Since the state of a process only depends on the set of tokens owned by the
process, the state can be expressed as the soup of tokens. The sort for soups
of tokens is PState that is also declared as a super-sort of sort Token. The
empty soup is denoted as noToken. The soup of n tokens t(0), t(1), . . . , t(n− 1)
is denoted as t(0) t(1) . . . t(n−1). Note that noToken is declared as an identity
of the constructor (the juxtaposition operator) of soups of tokens.

Each process has not yet started the algorithm, has started but not com-
pleted it, or completed it. Those situations are denoted as notYet, started and
completed, respectively. The corresponding sort is Prog.

4.2 Observable Components and (Meta) Configurations

The state of an underlying system consists of the state of each process and the
state of each channel. The state ps of a process p is denoted as p-state[p] : ps ,
and the state cs of a channel from a process p to a process q is denoted as
c-state[p, q, n] : cs , where n is a natural number. Since there may be more than
one channel from p to q, n is used to identify one of them. “p-state[p] : ps” and
“c-state[p, q, n] : cs” are called observable components. The corresponding sort
is OCom. The state of a system is expressed as a soup of observable components
that is called a configuration. The corresponding sort is Config that is a super-
sort of OCom. The empty configuration is denoted as empConfig that is an
identity of the constructor of soups of observable components.

Specification and Model Checking 93

Example 1 (A configuration of the 3-process & 4-channel system). Let us con-
sider the 3-process & 4-channel system in Fig. 1. We suppose that p(0) has one
token t(1), the other processes have no token, one channel from p(0) to p(1) con-
sists of one token t(0), and the other channels are empty. The state is expressed
as the configuration:

(p-state[p(0)] : t(1)) (p-state[p(1)] : noToken) (p-state[p(2)] : noToken)
(c-state[p(0), p(1), 0] : (t(0) | empChan)) (c-state[p(0), p(1), 1] : empChan)
(c-state[p(1), p(2), 0] : empChan) (c-state[p(2), p(0), 0] : empChan)

We need to have more information to take into account the algorithm superim-
posing an underlying system. We need to record the start state, the snapshot,
and the finish state. Moreover, we also need to have some control information
for the algorithm.

The states of an underlying distributed system, the start state, the fin-
ish state, and the snapshot are expressed as base-state(. . .), start-state(. . .),
finish-state(. . .), and snapshot(. . .), respectively, where . . . is a soup of p-state
and c-state observable components. Those are called meta configuration compo-
nents and the sort is MCComp.

In addition to p-state and c-state observable components, we use the following
observable components of control information:

– “cnt : n” – n is the number of processes that have not yet completed the
algorithm. When n becomes 0, a distributed snapshot has been taken.

– “prog[p] : pg” – It indicates that a process p has not yet started, has started,
or completed the algorithm. pg is notYet, started, or completed.

– “#ms[p] : n” – n is the number of incoming channels to a process p from
which markers have not yet been received. When n becomes 0, p has received
markers from all the incoming channels, implying that p completes the al-
gorithm if p has one or more incoming channels. Note that p may have no
incoming channels and then n may be 0 even in initial states.

– “done[p, q, n] : b” – b is either true or false. If b is true, a process q has
received a marker from the incoming channel identified by n from a process
p to q. Otherwise, q has not.

– “consume : b” – b is either true or false. If b is true, tokens may be consumed.
Otherwise, tokens are not.

The control information is expressed as control(. . .) that is also a meta config-
uration component, where . . . is a soup of cnt, prog, #ms, done and consume
observable components. When the content in each prog component is completed,
a snapshot has been taken. Hence, the cnt component seems redundant. But,
the component can make the system specification less complicated. This is why
it is used.

A state of an underlying distributed system that is superimposed by the al-
gorithm is expressed as a soup of meta configuration components:

base-state(bc) start-state(sc) finish-state(fc) snapshot(ssc) control(ctl)

94 K. Ogata and P.T. Thanh Huyen

which is called a meta configuration. The corresponding sort is MConfig that
is a super-sort of MCComp. Initially, all of sc, fc and ssc are empConfig. If sc
is not empConfig, a distributed snapshot has started being taken. If fc is not
empConfig, a distributed snapshot has been taken and then ssc is the snapshot.

Example 2 (A meta configuration of the 3-process & 4-channel system). Let us
consider the 3-process & 4-channel system again. Initially, however, p(0) has the
two tokens t(0) and t(1), the other processes have no tokens, and each channel
is empty. Tokens may be consumed. The initial meta configuration is as follows:

base-state((p-state[p(0)] : (t(0) t(1))) (p-state[p(1)] : noToken)
(p-state[p(2)] : noToken)
(c-state[p(0), p(1), 0] : empChan) (c-state[p(0), p(1), 1] : empChan)
(c-state[p(1), p(2), 0] : empChan) (c-state[p(2), p(0), 0] : empChan))

start-state(empConfig)
finish-state(empConfig)
snapshot(empConfig)
control((cnt : 3) (#ms[p(0)] : 1) (#ms[p(1)] : 2) (#ms[p(2)] : 1)

(done[p(0), p(1), 0] : false) (done[p(0), p(1), 1] : false)
(done[p(1), p(2), 0] : false) (done[p(2), p(0), 0] : false)
(prog[p(0)] : notYet) (prog[p(1)] : notYet) (prog[p(2)] : notYet)
(consume : true))

4.3 State Transitions for Underlying Systems and the Algorithm

What each process in the underlying systems superimposed by the algorithm
does is as follows:

1. The process may consume a token owned by it. Accordingly, it changes its
state.

2. The process may put a token owned by it in one outgoing channel if it has
some outgoing channels. Accordingly, it changes its state.

3. The process may get a token from one non-empty incoming channel if it has
some non-empty incoming channels. Accordingly, it changes its state.

4. The process may start the algorithm when it has not yet received any mark-
ers. It records its state, initializes the states of its incoming channels as
empty if any, and puts markers in its outgoing channels if any.

5. The process may get a marker from one incoming channel if it has some
incoming channel. If it has already started the algorithm, it has completed
the record of the incoming channel. Moreover, if it has received markers from
all the incoming channels, it has locally completed the algorithm. If it has
not yet started, it records its state and the state of the incoming channel as
empty, and initializes the states of the other incoming channels as empty if
any. Then, it puts markers in its outgoing channels if any. If it has only one
incoming channel, it has locally completed the algorithm.

Specification and Model Checking 95

In the rest of the paper, BC , CC , SC and SSC are Maude variables of sort
Config, P and Q are Maude variables of sort Pid, T is a Maude variable of sort
Token, PS is a Maude variable of sort PState, N is a Maude variable of sort
Nat, C and C′ are Maude variables of sort Chan, and NzN and NzN ′ are Maude
variables of sort NzNat.

Consumption of Tokens. The consumption of tokens is described by the
following rewriting rule:

rl [chgStt] :
base-state((p-state[P] : (T PS)) BC)
finish-state(empConfig) control((consume : true) CC)
⇒
base-state((p-state[P] : PS) BC)
finish-state(empConfig) control((consume : true) CC) .

When a distributed snapshot has been taken, namely that the content of the
finish-state meta configuration component is not empConfig, then we intention-
ally stop the underlying computation because we want to reduce the size of the
reachable state space. This is why we have finish-state(empConfig) on both sides
of the rule.

Sending of Tokens. The sending of tokens is described by the following rewrit-
ing rule:

rl [sndTkn] :
base-state((p-state[P] : (T PS)) (c-state[P,Q,N] : C) BC)
finish-state(empConfig)
⇒
base-state((p-state[P] : PS) (c-state[P,Q,N] : put(C, T)) BC)
finish-state(empConfig) .

Receipt of Tokens. When a process receives a token from an incoming channel,
we need to take into account the following four cases:

(3-1) The process has not yet started the algorithm.
(3-2) The process has completed the algorithm.
(3-3) The process has started the algorithm, not yet completed it, and has not

yet received a marker from the incoming channel.
(3-4) The process has started the algorithm, not yet completed it, and has

already received a marker from the incoming channel.

In this paper, we show the rewriting rule for case (3-3):

rl [recTkn&started&˜done] :
base-state((p-state[P] : PS) (c-state[Q,P,N] : T |C) BC)
snapshot((c-state[Q,P,N] : C′) SSC)

96 K. Ogata and P.T. Thanh Huyen

finish-state(empConfig)
control((prog[P] : started) (done[Q,P,N] : false) CC)
⇒
base-state((p-state[P] : (T PS)) (c-state[Q,P,N] : C) BC)
snapshot((c-state[Q,P,N] : put(C′, T)) SSC)
finish-state(empConfig)
control((prog[P] : started) (done[Q,P,N] : false) CC) .

When a process P starts the algorithm, it initializes the record of each incoming
channel (identified by a natural number N) from each process Q unless a marker
has been received from the channel. The initialization is described by adding
“c-state[Q,P,N] : empChan” into the snapshot meta configuration component.
For case (3-3), such a record is updated by putting the received token. For the
other three cases, it is not necessary to update such a record.

Record of Process States. If a process has already received a marker, it has
already recorded its state as well. Hence, we only need to take into account the
case in which a process has not yet received any markers. When a process records
its state in the case, the case is split into two sub-cases:

(4-1) The process globally initiates the algorithm, namely the first process that
records its state in the system.

(4-2) The process does not, namely that there exists another process that has
globally initiated the algorithm.

Case (4-1) is further split into three sub-cases:

(4-1-1) The underlying system only consists of the process.
(4-1-2) The system consists of more than one process, and the process does not

have any incoming channels.
(4-1-3) The system consists of more than one process, and the process has one

or more incoming channels.

Case (4-2) is further split into three sub-cases:

(4-2-1) The process does not have any incoming channels, and there are no
processes except for the process that have not completed the algorithm.

(4-2-2) The process does not have any incoming channels, and there are some
other processes that have not completed the algorithm.

(4-2-3) The process has some incoming channels.

For case (4-1-1), the algorithm will be completed. For case (4-1-2), the pro-
cess will locally complete the algorithm. For case (4-1-3), we have the following
rewriting rule:

rl [start&#ms>0] :
base-state((p-state[P] : PS) BC)
start-state(empConfig) snapshot(empConfig)

Specification and Model Checking 97

control((prog[P] : notYet) (#ms[P] : NzN ′) CC)
⇒
base-state((p-state[P] : PS) bcast(BC , P,marker))
start-state((p-state[P] : PS) BC)
snapshot((p-state[P] : PS) inchans(BC , P))
control((prog[P] : started) (#ms[P] : NzN ′) CC) .

where bcast(BC , P ,marker) puts markers in all the outgoing channels from pro-
cess P , and inchans(BC , P) initializes the states of all the incoming channels.
start-state(empConfig) indicates that the process P is the first that starts taking
a distributed snapshot. (#ms[P] : NzN ′) means that the process P has one or
more incoming channels and then the system consists of more than one process
because NzN ′ is a non-zero natural number and the number of the process P ’s
incoming channels if P has not started the algorithm, which is indicated by
(prog[P] : notYet). The start state is recorded as “(p-state[P] : PS) BC ” in the
start-state meta configuration component. The process P ’s state is recorded
and the state of each incoming channel to P is initialized as “(p-state[P] :
PS) inchans(BC , P)” in the snapshot meta configuration component.

For case (4-2-1), the algorithm will be completed. For case (4-2-2), the pro-
cess will locally complete the algorithm. For case (4-2-3), we have the following
rewriting rule:

crl [record&#ms>0] :
base-state((p-state[P] : PS) BC)
start-state(SC) snapshot(SSC)
control((prog[P] : notYet) (#ms[P] : NzN ′) CC)
⇒
base-state((p-state[P] : PS) bcast(BC , P,marker))
start-state(SC) snapshot((p-state[P] : PS) inchans(BC , P) SSC)
control((prog[P] : started) (#ms[P] : NzN ′) CC)

if SC �= empConfig .

The condition SC �= empConfig indicates that the process P is not the first that
starts the algorithm.

Receipt of Markers. When a process receives a marker from an incoming
channel, we first need to take into account the following two cases:

(5-1) The process has not yet started the algorithm.
(5-2) The process has already started the algorithm.

Case (5-1) is further split into three sub-cases:

(5-1-1) The process has only one incoming channel, and there are no processes
that have not yet completed the algorithm except for the process, which
implies that the process does not have any outgoing channels.

(5-1-2) The process has only one incoming channel, and there are some other
processes that have not yet completed the algorithm.

98 K. Ogata and P.T. Thanh Huyen

(5-1-3) The process has more than one incoming channel.

Case (5-2) is further split into three sub-cases:

(5-2-1) There are no incoming channels from which markers have not been
received except for the incoming channel, and there are no processes that
have not yet completed the algorithm except for the process.

(5-2-2) There are no incoming channels from which markers have not been
received except for the incoming channel, and there are some other processes
that have not yet completed the algorithm.

(5-2-3) There are some other incoming channels from which markers have not
been received.

In this paper, we show the rewriting rules for cases (5-1-3) and (5-2-1):

crl [recMkr¬Yet&#ms>1] :
base-state((p-state[P] : PS) (c-state[Q,P,N] : marker |C) BC)
snapshot(SSC)
control((prog[P] : notYet) (#ms[P] : NzN ′) (cnt : NzN)

(done[Q,P,N] : false) CC)
⇒
base-state((p-state[P] : PS) (c-state[Q,P,N] : C) bcast(BC , P,marker))
snapshot((p-state[P] : PS) (c-state[Q,P,N] : empChan)

inchans(BC , P) SSC)
control((prog[P] : started) (#ms[P] : sd(NzN ′, 1)) (cnt : NzN)

(done[Q,P,N] : true) CC)
if NzN ′ > 1 .

where sd, which stands for symmetric difference, takes two natural numbers
x, y, and returns x − y if x > y and y − x otherwise. Note that when a process
receives a marker from an incoming channel, the natural number in the #ms
observable component must be greater than zero and the natural number in
the cnt observable component must be greater than zero. This is why we have
(cnt : NzN) on both sides.

rl [recMkr&started&#ms=1&cnt=1] :
base-state((p-state[P] : PS) (c-state[Q,P,N] : marker |C) BC)
finish-state(empConfig)
control((prog[P] : started) (#ms[P] : 1) (cnt : 1) (done[Q,P,N] : false) CC)
⇒
base-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)
finish-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)
control((prog[P] : completed) (#ms[P] : 0) (cnt : 0)

(done[Q,P,N] : true) CC) .

When the process P receives the marker, a global snapshot has been taken
because of the assumption (see (5-2-1)). The receipt of the marker by P does
not affect (the contents of) the global snapshot. This is why the rewriting rule

Specification and Model Checking 99

does not have any snapshot meta configuration components. The finish state is
recorded as (p-state[P] : PS) (c-state[Q,P,N] : C) BC in the finish-state meta
configuration component.

Note that the system specification depends on neither the number of processes
nor the number of channels. To model check RP1 and RP2, however, we need
to fix those numbers, which are described in initial meta configurations.

A meta configuration is a global view of the system (a distributed system
superimposed by the algorithm). We need to have such a global view so that
we can check (or verify) some properties of the system. Global views of the
system are also used to describe rewriting rules. For each of most basic actions
of processes such as receipt of a marker, there are multiple rewriting rules that
have been obtained by case analyzes (or case distinctions) based on predicates
that are not locally observable by any process. The purpose of the case analyzes
is to cover all possible situations. The case analyzes based on global predicates
do not affect the action of each process designated by the system. This is because
each rewriting rule whose main player is a process P can modify only the P ’s
state, incoming channels and/or outgoing channels w.r.t. the base-state meta
configuration component.

We informally reason about the algorithm to write rewriting rules. For Record
of Process States, we argue the following. “If a process has already received a
marker, it has already recorded its state as well. Hence, we only need to take
into account the case in which a process has not yet received any markers.” For
(5-1-1) in Receipt of Markers, we argue the following. “The process has only
one incoming channel, and there are no processes that have not yet completed
the algorithm except for the process, which implies that the process does not
have any outgoing channels.” This informal reasoning can reduce the number of
rewriting rules but may overlook some possible situations. Since any process of
making formal models and writing formal specifications is not formal, however,
any way of dosing so may overlook some possible situations. As far as we know,
all we can do is to carefully make formal models and write formal specifications,
and carefully validate them by some means such as animation. Since formal
specifications in Maude (and any other OBJ family languages such as CafeOBJ)
are executable, we can animate/execute formal specifications to validate them.

5 Model Checking of Reachability Properties

Both RP1 and RP2 can be checked with the search command. Let imc be an
initial meta configuration of a system that is superimposed by the algorithm.
We suppose that the system consists of n processes p(0), . . . , p(n− 1).

The following search (called the search for snapshots) finds all states in which
a snapshot has been taken:

search in EXPERIMENT :
imc ⇒∗ start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC �= empConfig .

100 K. Ogata and P.T. Thanh Huyen

where EXPERIMENT is a module where the system specification module is
imported and some variables such as SC , FC , SSC and MC are declared. Let
m1 be the number of the solutions to the search for snapshots.

The following search (called the search for RP1) finds all states in which a
snapshot has been taken such that the snapshot SSC is reachable from the start
state SC under the underlying distributed system:

search in EXPERIMENT :
imc ⇒∗ start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC �= empConfig
∧ base-state(SC) finish-state(empConfig)
control((prog[p(0)] : notYet) . . . (prog[p(n− 1)] : notYet) (consume : b))
⇒
base-state(SSC) finish-state(empConfig)
control((prog[p(0)] : notYet) . . . (prog[p(n− 1)] : notYet) (consume : b)) .

where b is true if tokens may be consumed, and false otherwise. The rewrite
expression in the condition checks if SSC is reachable from SC with the three
rewriting rules “chgStt”, “sndTkn” and the one for case (3-1), namely under
the underlying distributed system. We need to have finish-state(empConfig) and
control((prog[p(0)] : notYet) . . .) in the rewrite expression to enforce using the
three rewriting rules. Let m2 be the number of the solutions to the search for
RP1. Ifm2 equalsm1, the algorithm enjoys RP1 w.r.t. the underlying distributed
system.

RP2 can be checked likewise. All needed to do is to replace SC and SSC with
SSC and FC , respectively, in the rewrite expression. This search is called the
search for RP2.

Let us consider the 3-process & 4-channel system, and imc be the initial meta
configuration shown in Example 2. All the searches for snapshots, RP1 and RP2
find 81,740 solutions. Therefore, the algorithm enjoys RP1 and RP2 w.r.t. the
3-process & 4-channel system. Note that the number of reachable states (meta
configurations) from imc w.r.t. the 3-process & 4-channel system is 810,938.

6 Related Work

Chandy and Lamport manually prove that their algorithm enjoys RP1 and
RP2[7]. Precisely, they prove a stronger theorem that implies the two properties.

The algorithm has been analyzed based on some formal methods such as I/O
automata[10] and UNITY[8].

How to analyze the algorithm based on I/O automata is as follows[10]. Each
process i in an underlying system is described as an I/O automaton Ai, and
a global snapshot is taken by each I/O automaton ChandyLamport(Ai) that
monitors Ai. What is proved is the same as what Chandy and Lamport do.
The difference is to formalize the underlying system that is superimposed by the
algorithm as I/O automata. But, the proof is done manually.

Chandy and Misra[8] define two properties that each snapshot algorithm
should enjoy:

Specification and Model Checking 101

1. invariant 〈
∧
x :: x.done〉 ⇒ 〈∃u,v :: [init]u [rec] ∧ [rec]v [cur]〉

2. begun
→ 〈
∧
x :: x.done〉

where x is a variable used by an underlying system, x.done indicates whether x
has been recorded, [init] is a start state, [rec] is a snapshot, [cur] is a finish state,
u and v are computations (sequence of states), [init]u [rec] is a computation in
which [init] is the initial state and [rec] is the final state, and begun indicates
whether a snapshot has started being taken. The second property assures that
the algorithm terminates, and the first property is RP1 and RP2.

Instead of proving that the Chandy & Lamport algorithm enjoys the two
properties, they provide a more fundamental rule called Rule R: when a state-
ment in the underlying program is executed, either all variables named in the
statement are recorded, or all variables named in the statement are unrecorded.
They manually prove that Rule R enjoys the two properties. Precisely, they prove
that Rule R enjoys a stronger version of the first property. Then, they derive the
Chandy & Lamport algorithm as an implementation of Rule R.

The algorithm is manually analyzed but not mechanically in all the three
cases described so far. As far as we know, there exists one case in which the
algorithm is analyzed mechanically. An underlying system superimposed by the
algorithm is described in Promela and analyzed with Spin[11]. One property
(called the consistency property) is defined: a snapshot is consistent if it can
unambiguously identify every message that has been sent as either received or
as still in the channel. The underlying system used for model checking with Spin
consists of two processes (a sender and a receiver) and one channel. Instead of
directly checking the consistency property, the two assertions are checked when
the algorithm terminates:

assert(lastSent == messageAtMarker);
assert(messageAtRecord <= messageAtMarker);

where lastSent indicates the last message that the sender put in the channel,
messageAtMarker indicates the message that the receiver got from the channel
just before getting a marker from it, and messageAtRecord indicates the mes-
sage that the receiver got from the channel just before recording its state. The
first assertion says that all messages sent by the sender before a marker have
been received by the receiver, and the second assertion says that some messages
denoted by messageAtRecord + 1, . . . ,messageAtMarker (if any) are still in the
channel in the snapshot taken. RP1 and RP2 are not (at least directly) checked.

Although we know another report in which the algorithm has been mechani-
cally analyzed, the report just mentions it[12].

7 Conclusion

We have described how to specify distributed systems superimposed by the algo-
rithm in Maude and how to model check RP1 and RP2 with the search command,
which demonstrates the power of the command, namely that more general in-
variant properties can be checked by the command than standard LTL and CTL

102 K. Ogata and P.T. Thanh Huyen

model checkers. Case analysis, which often needs to be conducted for interac-
tive theorem proving, has played a very important role in the specification. The
specification of distributed systems superimposed by the algorithm depends on
neither the number of processes nor the number of channels, which demonstrates
the power of Maude. Let us note that the same specification can also be described
in CafeOBJ, a sibling language of Maude. The current implementation of Maude
is superior to that of CafeOBJ, however, in terms of execution performance. This
is why we have used Maude in the case study.

Only model checking does not let us conclude that the algorithm enjoys RP1
and RP2 for all distributed systems. One possible way to achieve this goal is to
prove that if the algorithm does not enjoy RP1 and RP2 for a distributed system
that consists of an arbitrary number of processes and an arbitrary number of
channels, then neither does it for a smaller system that consists of a few processes
and a few channels such as the 3-process & 4-channel system.

Our experience tells us that it is not straightforward to express RP1 and RP2
in existing standard temporal logics such as LTL and CTL. But, we do not have
any concrete evidence of how hard it is. It would be worth investigating how
hard it is.

References

1. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

2. Holzmann, G.J.: The SPIN Model Checker – Primer and Reference Manual.
Addison-Wesley (2004)

3. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

4. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms using satisfiability
solving. Distributed Computing 23, 341–358 (2011)

5. An, X., Pang, J.: Model checking round-based distributed algorithms. In: 15th
IEEE ICECCS, pp. 127–135. IEEE (2010)

6. Ogata, K., Futatsugi, K.: Comparison of Maude and SAL by conducting case stud-
ies model checking a distributed algorithm. IEICE Trans. Fundamentals E90-A,
1690–1703 (2007)

7. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed system. ACM TOCS 3, 63–75 (1985)

8. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
(1988)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

10. Lynch, N.A.: Distributed Algorithms. Morgan-Kaufmann (1996)
11. Ben-Ari, M.: Principles of the Spin Model Checker. Springer (2008)
12. Konnov, I.: CheAPS: a checker of asynchronous parameterized systems. In: WING

2010. EPiC Series, vol. 1, pp. 128–129. EasyChair (2012)

Quantitative Program Dependence Graphs

Chunyan Mu

School of Computing Science, Newcastle University
Newcastle Upon Tyne, UK
chunyan.mu@ncl.ac.uk

Abstract. This paper develops a novel approach that analyses depen-
dencies of programs in a quantitative aspect. We introduce a definition
of Quantitative Program Dependence Graph (QPDG) which can be used
to model a program’s behaviour given spaces of inputs. The programs we
consider are in a core while-language. We present the semantics for the
purpose of building QPDGs. The QPDG reasons about the program’s
quantitative uncertainty behaviours based on a probabilistic analysis. It
can be used to characterise dependence analysis of programs in a quan-
titative way. We also provides an optimisation of the QPDG by doing
slicing in order to perform a flow analysis, e.g., how input variables at
the source node might affect a given output variable at the target node
and how much.

Keywords: Language, Semantics, Quantity, Dependence, Graph, Flow.

1 Introduction

Program executions contain many dependencies. Dependence analysis between
entities is an important part of program analysis. Although the dependence de-
cision made at two entities of interest is normally treated as a binary decision,
the information obtained during the dependence analysis can be quantified. This
paper presents an approach to dependence analysis that, rather than just ap-
proximating whether the value of one variable in a program depends on another,
also quantifying to what extent a variable depends on another.

A quantitative analysis of program execution is essential to the system design
process and information flow control mechanisms. A quantitative dependence
analysis can be used to characterise the exact nature of dependencies between
statements or variables for program analysis. In this paper, we propose a rep-
resentation of the program dependence graph that can be used to capture the
properties of dependence relations between variables by executing the program.
By using the idea of information theory [19], we compute the quantity of the
interference introduced by data dependence among variables at points of inter-
est. In the security community, it can be used to capture the information flow
from sensitive inputs to public outputs by executing the program, and there-
fore we can calculate how much information can be learned about the security
input operation by observing the public output. Intuitively, information flow

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 103–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

104 C. Mu

in programs is naturally related to the interference between variables, which
is naturally related to the dependence relations between variables given pro-
gram points. Dependency and interference play a key role in designing suitable
abstractions or in partitioning complex systems into simpler ones. Identifying
and measuring dependency and interference is useful in many fields, particularly
security, program analysis and verification. We therefore motivate our idea to
provide a quantified dependence analysis for programs.

Related Work. There are a number of techniques that have been developed for
dependence representations of programs, e.g., [6,14,20,8,9]. Ottenstein and Ot-
tenstein [17] use the PDG for static slicing of single-procedure programs. They
define slicing as a reachability problem in a dependence graph representation of
a program. Jackson and Rollins [8] introduce a PDG that is distinguished by
fine-grained dependences between individual variables defined or used at pro-
gram points. The quantified program dependences investigated in this paper is
more relevant to the underline model of dependences between variables discussed
in [8]. They are difficult to automatically capture quantified dependence between
variables. [1] presented a probabilistic program dependence graph model based
on the PDG called PPDG. The PPDG captured the statistical dependences
among program statements and enabled the use of probabilistic reasoning to
analyse program behaviors. Two applications of the PPDG to fault localization
and fault comprehension were presented by simple calculations on the informa-
tion of suspicious statements of the program. Although a lot of efforts on the
development of program dependence graphs, to the best of our knowledge there
is no research conducted to a quantitative version of dependence analysis be-
tween program variables, which is our main contribution in this paper. Our work
can also relate to the topic of quantitative information flow analysis for programs
including [5,4,11,7,2,16,15,3,13], and fault localisation based on dependencies in
programs including [10,12,22,1], as an application.

Contributions. We consider a simple programming language, give the syntax
and semantics of the language, describe the QPDG representation for this lan-
guage, and construct the dependencies between variables from the syntax of the
program statements. By semantically interpreting the concepts of control and
data dependence, we derive a denotational definition of the control and data
demand generated by variables at program points of interest. We present the
definition of QPDG, which can be used to provide a quantitative analysis of de-
pendencies between program variables by executing the program. Furthermore,
we give a simple algorithm in order to build a reduced QPDG which can be used
to perform quantitative analysis of unified dependences and information flow. In-
tuitively, we are particularly interested in which variables at a source node might
affect a given variable at a target node and how much in information bits. We
also discuss the possible applications of the reduced QPDG to flow measurement
in the security community, and show that simple and intuitive computation can
be obtained.

Outline. In section 2, we recall some definitions from the literature of program
dependence graphs, random variables and information entropy. Section 3 defines

Quantitative Program Dependence Graphs 105

the syntax and semantics for a simple while language and semantically describes
the QPDG for this language. Section 4 introduces our definition of QPDG to
describe quantified dependencies between program variables within program op-
erations. 5 presents an algorithm for building a reduced QPDG to provide a
more efficient quantitative dependence analysis and suggest a possible applica-
tion to information flow measurement. The final Section summarises our work
and presents directions for future research.

2 Preliminaries

In this section, we briefly review some definitions in the relevant background
including program dependence graph, random variables and programs.

2.1 Program Dependence Graph

Many analyses and transformations of programs are based on dependence rela-
tions which are normally represented by program dependence graph (PDG) [6].
The PDG plays an important role in expressing the essential dependencies of
atomic program operations. We use the dependence graph as our intermediate
representation basis. Intuitively, the dependence graph can be viewed as a data
structure in which edges represent dependencies between operations. Depen-
dence graphs integrate data and control dependence information into a single
structure, making efficient algorithms for program analysis. A dependence graph
consists of a set of nodes representing functional operators and a set of edges
representing the dependencies and precedence relations that exist between those
operations.

In this paper, we develop a representation of PDG that can be used to capture
the quantified dependencies between variables rather than just the statements
themselves. For instance, we are interested in how a specific output variable at
a target node might be affected by a given input variable at a source node.

2.2 Random Variables and Programs

There is a clear connection between the notion of probability space, informa-
tion theory, and dependence & interference extent in a program. A probability
space [18] is a measure space such that the measure of the whole space is equal to
one. Specifically, a probability space is a triple (Ω,B, μ): Ω is the sample space,
an arbitrary non-empty set; the σ-algebra B ⊆ 2Ω is a set of subsets of Ω, called
events, such that contains the empty set: ∅ ∈ B; is closed under complements: if
A ∈ B, then also (Ω \A) ∈ B; and is closed under countable unions: if Ai ∈ B for
i = 1, 2, . . ., then also (

⋃
iAi) ∈ B; the measure of entire sample space is equal to

one: μ(Ω) = 1. In order to investigate the quantitative dependence analysis be-
tween program variables for programs, we consider program variables as random
variables and semantic functions as measurable functions. A random variable is
a measurable function from a probability space into a measurable space. Let X

106 C. Mu

and Y are probability spaces, mapping f : X → Y is a measurable function if for
allW measurable in Y , f−1(W) is measurable in X . The denotational semantics
of commands is a mapping from the set X of possible environments before the
commands into the set Y of possible environments after the commands.

2.3 Information Entropy

Information theory [19] introduced the definition of entropy, H, to measure
the average uncertainty in random variables. Consider a program as a state
transformer, random variable X is a mapping between two states which are
equipped with distributions. Let p(x) denote the probability that X takes the
value x, then the entropy H(X) of discrete random variable X is defined as:
H(X) =

∑
x p(x) log2

1
p(x) = −

∑
x p(x) log2 p(x). The concept of mutual infor-

mation is a measure of the amount of information that one random variable
contains about another one, i.e., shared information. It implies the reduction
in the uncertainty of one random variable due to the knowledge of the other.
It therefore reasonably suggests the quantity of dependencies between random
variables, i.e., knowledge of one may change the information about another. Let
p(x, y) denote the joint distribution of x ∈ X and y ∈ Y , the mutual information

between X and Y , I(X ;Y), is given by: I(X ;Y) =
∑

x

∑
y p(x, y) log2

p(x,y)
p(x)p(y) .

The conditional version of mutual information can be considered as the re-
duction in the uncertainty of X due to knowledge of Y when Z is given by:
I(X ;Y |Z) = H(X |Z) +H(Y |Z)−H(X,Y |Z).

3 The Semantics and Program Dependences

This section presents the language and semantics aimed at semantically express-
ing the dependency between program variables. In order to perform a quantita-
tive analysis of program dependencies between variables for programs, we con-
sider the program variables as random variables which take probability spaces as
mapped values rather than single values, i.e., there are probability distributions
on the state space rather than just values.

3.1 The Abstract Syntax

To simplify our presentation and focus on the problem of quantified dependence
analysis of programs, we consider a simplified language. We present the syntax
of the core language in Table 1, where s ranges over statements, l denotes a
label, x ranges over a set of variables, b ranges over a set of boolean expressions,
and e ranges over a set of arithmetic expressions.

3.2 Semantic Domains

We have the following semantic domains:

Quantitative Program Dependence Graphs 107

Table 1. The abstract syntax of the language

s ∈ Stmt l ∈ Lab x ∈ Ide e ∈ Exp b ∈ BExp n ∈ Num
s ::= input(x) | skip | x := e | s1; s2 | if b then s else s | while b do s
e ::= x | n | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2 | e1%e2
b ::= ¬b | e1 < e2 | e1 > e2 | e1 = e2

Val
df
= (Ω,B, μ) σ ∈ Store

df
= Ide
→ Val

δ
df
= P(Ide) Δl ∈ Dep

df
= P(Ide
→ δ ∪Val)

where Val is a probability space (Ω,B, μ); σ ∈ Store is a state which maps
Ide to probability spaces; δ denotes the set of program variables which a given
expression evaluation depends on; Δl denotes the a superset of the dependencies
between variables for a statement with label l each of which can be treated as
a function of type x
→ δ ∪Val, where x ∈ Ide: variable x depends on a set of
variables in δ or Val by executing the statement with label l. Intuitively, δ can
be viewed as a set of place-holders in an expression whose values are substitute to
evaluate the expression. Hence, the value of expression depends on the variables
within it.

3.3 The Semantics

Denotational semantics is closely related to dependence analysis. We formulate
the probabilistic denotational semantics so that the dependencies can be ex-
tracted and recorded for the program. The assignment is ignored unless it affects
the visible contents of the program store. A definition of our denotational se-
mantics is given in Table 2. For clear cases, we use μIde to denote the probability
space of Ide in stead of writing (Ω,B, μ).

Table 2. Denotational Semantics of Programs

[[s]] : Stmt→ (Store×Dep→ Store×Dep)
[[e]] : Exp→ (Store→ Val)→ δ
[[b]] : BExp→ (Store→ Store)→ δ

[[input(x)]]l σlΔl
df
= σl′(x �→ μx)Δl′(x �→ μx)

[[x := e]]l σlΔl
df
= λW.σl([[x := e]]−1

l (W))Δl′(x �→ δ(e))

[[s1; s2]]l σlΔl
df
= [[s2]] ◦ [[s1]]σlΔl

[[if b then s1 else s2]]l σlΔl
df
= Δl′({x �→ δx ∪ δ(b)|x ∈ Def(s1)})[[s1]] ◦ [[b]]σlΔl

⋃
Δl′({x �→ δx ∪ δ(b)|x ∈ Def(s2)})[[s2]] ◦ [[¬b]]σlΔl

[[while b do s]]l σlΔl
df
= Δl′({x �→ δx ∪ δ(b)|x ∈ Def(s)})

[[¬b]](limn→∞(λσ′
lΔ

′
l.σlΔl

⋃
[[s]] ◦ [[b]](σ′

lΔ
′
l))

n)(λX.⊥))
where, [[b]]σl = λX.σl(X ∩Mb)

108 C. Mu

An arithmetic expression is a function [[e]] : σ
→ Val by using two’s-
complement interpretations of +,−, ∗, / as standard. Let δ(e) denote a set of
variables calculating e depends on, i.e., the value of [[e]] depends at most on the
variables in δ(e). A boolean expression is interpreted as a function [[b]] : σ → σ.
The function defines the part of the store matched by the condition b. In ad-
dition, the value of [[b]] depends at most on the variables in δ(b). For example,
assume the current store is: σ

(
x
→

[
0
→ 1

4 , 1
→
1
4 , 2
→

1
4 , 3
→

1
4

])
. Consider

the expression b is [[x > 1]], we have δ(b) = {x} and the updated store under con-
dition b as: σ

(
x
→

[
2
→ 1

4 , 3
→
1
4

])
. A command is interpreted as a function:

[[s]] : σ ×Δ→ σ ×Δ.
The semantics is a store transformer that carries program dependencies. The

meaning of a statement s is not a transformer of the entire input store σ but
a transformer only the part of the store consisting of the variables that are
defined in s. For a given statement s, Def(s) returns the superset of all variables
that may be assigned to. Given a label l, Δl returns the superset of maps:
P(Ide → δ ∪ Val) which constitute dependencies for the statement with that
label. Specifically,

– Random input input(x) assigns a probability space μx to x, and builds
a dependence relation such that variable x depends on the input space:
Valx = μx, σ(x
→ Valx), Δ(x
→ Valx).

– Assignment updates the store such that the state of the assigned variable x
is updated to become that of expression e, and updates the dependence such
that Δ(x
→ δ(e)). The distribution transformation function for assignment
is presented by using an inverse image: λW.σ([[x := e]]−1

l (W)) to keep the
measurability of the semantic function. For all measurable W ∈ σ′, [[x :=
e]]−1

l (W) is measurable in σ, where σ and σ′ denote the state before and
after the assignment operator.

– The distribution transformation function for the sequential composition op-
erator is obtained via functional composition:

[[s1; s2]]lσlΔl = [[s2]] ◦ [[s1]]σlΔl.

Note that Δl is a binary relation on variables. The relational composition is
considered as follows: assume δx denotes the set of variables that x depends
on by executing the statement s1, δy denotes the set of variables on which
y depends by executing the statement s2, assume x ∈ Def(s1), and y ∈
Def(s2), we compute:

[[s1]]Δl = Δ′
l({x
→ δx | x ∈ Def(s1)})

[[s2]]Δ
′
l = Δl′

(
{x
→ δx | x ∈ Def(s1) ∧ x /∈ Def(s2)} ∪
{y
→ (λx.δy)δx | y ∈ Def(s2), x ∈ Def(s1)}

)
,

where we use (λx.δy)δx = [δx/x]δy to indicate that all occurrences of x in δy
are substituted by δx. We therefore write:

[[s1; s2]]lΔl = ([[s2]] ◦ [[s1]])lΔl

Quantitative Program Dependence Graphs 109

= Δl′
(
{x
→ δx | x ∈ Def(s1) ∧ x /∈ Def(s2)} ∪
{y
→ (λx.δy)δx | y ∈ Def(s2), x ∈ Def(s1)}

)
.

Hence the ◦ operator for sequential statements ensures that the dependencies
which come from previous statements are recorded; and only dependencies
for variables that are defined in the last statement are kept.

– The boolean function [[b]] for boolean test b defines the part of the space
defined in the current store and matched by the condition b: [[b]]σ = λX.σ(X∩
Mb). The boolean test causes the space to split apart, X ∩Mb denotes the
part of the space which makes the boolean test b to be true. We use δ(b) to
denote the set of variables that are required for evaluating b.

– A Conditional statement is executed with the conditional probability distri-
butions for either the true branch or false branch:

Δl({x
→ δx ∪ δ(b)|x ∈ Def(s1)})[[s1]] ◦ [[b]]σlΔl ∪
Δl({x
→ δx ∪ δ(b)|x ∈ Def(s2)})[[s2]] ◦ [[¬b]]σlΔl

where Δl({x
→ δx ∪ δ(b)|x ∈ Def(s1)}) means that, ∀x ∈ Def(si), i = 1, 2,
we update the dependence relation of x by union δ(b), whereDef(si) denotes
the set of variables are assigned to during the evaluation of statement si, δx
denotes the set of variables that x depends on after executing [[si]], i.e.,
[[si]] ◦ [[b]]Δl. For instance, consider a piece of program with an if statement:

[[if (x > 1) then y := y − 1 else y := y+ 1;]]l.

Assume the space of x, y at the beginning of the program is written as:

σl

[
x
→

(
0
→ 1

4
1
→ 1

4
2
→ 1

4
3
→ 1

4

)
, y
→ (0
→ 1)

]
.

After executing the if statement, according to the semantics, the store is
updated as:

σl′
[
x
→

(
0
→ 1

4 1
→ 1
4 2
→ 1

4 3
→ 1
4

)
, y
→

(
−1
→ 1

2 1
→ 1
2

)]
,

and the dependence relation is updated as: Δl′(y
→ y ∪ δ(b)) = Δl′(y
→
{x, y}) i.e.,

[[if (x > 1) then y := y− 1 else y := y+ 1;]]lσlΔl

= σl′

[
x
→

(
0
→ 1

4 1
→ 1
4

2
→ 1
4 3
→ 1

4

)
, y
→

(
−1
→ 1

2
1
→ 1

2

)]
Δl′(y
→ {x, y}).

– The loop statement can be represented as an infinite nested if statement, the
state space with distribution μ defined in the current store goes around the
loop, and at each iteration, the remaining part that makes test b false breaks
off and exits the loop, while the rest of the space goes around again. The
output distribution [[while b do s]]lσl is thus the sum of all the partitions
that finally find their way out. For non-termination cases, we consider the
quantity of the dependence is 0. The dependence representation, {x
→ δx ∪
δ(b)|x ∈ Def(s)}), defines the dependencies introduced by the loop.

110 C. Mu

4 Quantitative Program Dependence Graph

This section introduces our definition of QPDG to describe quantified dependen-
cies between program variables within program operations based on the seman-
tics defined in Section 3. A program dependence graph defines a partial ordering
on the statements and the program performance to preserve the semantics of the
original program. A quantified program dependence graph consists of a set of
nodes representing atomic computations (assignments and predicate expressions)
with current stores regarding to σ and a set of edges representing the dependen-
cies regarding to Δ. We adapt the nodes to accommodate the current store and
dependencies between variables introduced by the statement in the node. The
dependencies relate to definitions and uses of program variables rather than the
whole program statements. The set of edges contains data dependence edges and
control dependence edges.

There are some differences between our QPDG and the standard PDG. First,
rather than considering dependencies between statements, we consider the de-
pendencies between variables. Second, the node of the QPDG is labelled by
program statement blocks : Block ∈ P(Stmt). Third, each node accommodates
the stores which record the states of each variable obtained from the stores σ
and the dependence relations defined in Δ given by the semantic functions. In-
tuitively, the node of the QPDG can be viewed as a transformation box, which
accommodates a statement block with label l, a set of entry ports and a set of
exit ports, and a set of directed internal edges between entry ports and exit ports
of the node. Each entry port stores the state of a “will-be-used” variable before
executing the statement block. Each exit port stores the state of each defined
variable after executing the statement block. Note that nodes can be nested for
the case of nested if statements and loops. Fourth, directed internal edges be-
tween entry ports and exit ports of a node are used for connecting multiple pairs
of variables according to their dependencies obtained from Δ within the node.
The dependence (denoted by an internal edge) between each pair is introduced by
executing the statement block accommodated at this node. Furthermore, exter-
nal dependence edges are essentially data dependence edges between two nodes.
An external dependence edge starts from an exit port (accommodates a defined
variable and its state) of a node and ends at an entry port (accommodates a
used variable and its states) of another node. It implies that there is a prece-
dence relation and a data dependence relation between these two variables at
these two nodes. In addition, we define the quantity of a dependence edge based
on conditional mutual information which will be discussed later. The value of the
quantified dependence edge indicates the content of the dependency between a
pair of program variables. We now present the definition of quantitative program
dependence graph as follows.

Definition 1. A quantitative program dependence graph (QPDG) is defined as
a pair: QPDG = (N,Ex), where,

(i) N = P(Block, Pentry(σ), Pexit(σ), Ei(Δ)) is a set of tuples of executable
statement boxes each of which accommodates a statement Block, a set of

Quantitative Program Dependence Graphs 111

entry ports Pentry(σ) and a set of exit ports Pexit(σ), and directed internal

dependencies edges denoted by Ei(Δ).
Each entry port accommodates a will-be-used variable with its state defined
in σ before executing the statement Block.
Each exit port accommodates a defined variable with its state defined in σ
after executing the statement block Block.
Directed internal edges Ei between entry ports and exit ports connects mul-
tiple pairs of variables which can be extracted from their dependencies given
in Δ defined by the semantics. Specifically, Ei is a set of directed edges
inside the nodes. Each edge e ∈ Ei is a tuple (pentry, pexit, qe), where
pentry ∈ Pentry, pexit ∈ Pexit, and qe denotes the quantity of e defined

by qe = I(X ;Y ′|Z), where X denotes the random variable located at Pentry,

and Y ′ denotes the random variable located at Pexit, and Z denote the joint
random variable of a set of variables located in Qentry = Pentry \ pentry,
if there exists an internal edge e′ ∈ Ei, qentry ∈ Qentry, and e′ �= e where

e′ = (qentry, pexit, qe′). Intuitively, each internal edge connects an entry
port which accommodates a variable will-be-used in the node and an exit port
which accommodates a defined variable in the node. The internal flow edges
Ei imply the dependencies introduced by the statement block of the nodes.
Note that the store σ (defined in the semantics) is a set of maps from the
program variables to their probability spaces, and Δ denotes a set of depen-
dencies between variables introduced by the statement block.

(ii) Ex is a set of directed external edges among the nodes. Each edge of Ex

starts from an exit port of one node m and ends at an entry port of another
node n. Specifically, a defined variable in node m will be used in node n,
where m,n ∈ N . Intuitively, a data flow edge between nodes actually connects
programs variables and implies a data flow dependence.

Example 1. Consider a piece of program as follows.

l1: input(x);

l2: y:=0;

l3: if (x % 2 ==0) then y:= y-1 else y:=y+1;

According to the intuitive description of the QPDG above, we have three nodes
(transformation boxes). The first two denote the random input and assignment
respectively, and the third one denotes the if statement. Assume that the state
of x introduced by input(x) is: σl1

[
x
→

(
0
→ 1

4 1
→ 1
4 2
→ 1

4 3
→ 1
4

)]
. We

present the elements of the graph for this example in Table 3 and the QPDG in
Fig. 1 to show some intuitions of the graph.

Intuitively, each node is a transformation box with two sides of “ports”: entry
ports and exit ports. Each entry port accommodates a “will-be-used” variable
with its state before executing the statement block. Each exit port accommodates
a “defined variable” with its state after executing the statement block. If there
is an internal connection between an entry port and an exit port within the box

112 C. Mu

Table 3. A simple example of QPDG: the nodes

semantic blocks (nodes) entry ports exit ports dependencies Δ

l1: input(x) Valx x �→
(
0 �→ 1

4
1 �→ 1

4

2 �→ 1
4
3 �→ 1

4

)
x �→ Valx

l2: y:=0 Valy y �→ (0 �→ 1) y �→ Valy

l3:

if (x%2 == 0)

then y:=y-1

else y:=y+1

x �→
(
0 �→ 1

4
1 �→ 1

4

2 �→ 1
4
3 �→ 1

4

)
y �→ (0 �→ 1)

y �→ (−1 �→ 1
2
1 �→ 1

2
) y �→ {x, y}

Fig. 1. A simple example of QPDG: the graph

then there is a dependency between them which is introduced by the statement
of this node. For instance, the internal dependence edges within the node with
label l3 means that the definition of y in the if statement depends on variables
x and y according to the semantics. Let q(Δl3(y
→ x)) denote the quantity of
the dependence between the variable y and the variable x. Let X,Y, Y ′ denote
the random variables of the variable x at the entry port before executing the
program, program variable y at the entry port (before executing the program),
and program variable y at the exit port (after executing the program). We have:
q(Δl3(y
→ x)) = I(Y ′;X |Y) = 1. This also meets our intuition: the space of
Y ′ depends on the last bit of X (0 to be even and 1 to be odd regarding to
the control dependence introduced by the boolean test x%2 == 0) . In addition,
the external data dependence edge between the node of input(x) and the node
of the if statement suggests that the will-be-used variable x at the if statement
node (entry port) depends on the defined variable at the node of input(x) (exit
port).

Example 2. Consider an example program P presented in Fig. 2. Assume the
distribution of possible values of x produced by statement input(x) is:

μx : x
→
(
0
→ 1

4 1
→ 1
4 2
→ 1

4 3
→ 1
4

)

Quantitative Program Dependence Graphs 113

l1: input(x);

l2: z := 1;

l3: y := 0;

l4: while (x>y) {

y := y+1;

z := z*y;

}

l5. output(y);

Fig. 2. Program P and its QPDG

According to the semantic function defined in Table 2, the transformation of
program P can be written as:

[[input]]l1σl1Δl1 = σl2

[
x �→

(
0 �→ 1

4
1 �→ 1

4

2 �→ 1
4
3 �→ 1

4

)]
Δl2(x �→ Valx)

[[z := 1]]l2σl2Δl2 = σl3

[
x �→

(
0 �→ 1

4
1 �→ 1

4

2 �→ 1
4
3 �→ 1

4

)
, z �→ 1 �→ 1

]
Δl3(z �→ Valz)

[[y := 0]]l3σl3Δl3 = σl4

[
x �→

(
0 �→ 1

4
1 �→ 1

4

2 �→ 1
4
3 �→ 1

4

)
, z �→ 1 �→ 1, y �→ 0 �→ 1

]
Δl4(y �→Valy)

[[while]]l4σl4Δl4 = σl5

⎡⎢⎢⎣x �→
⎛⎜⎜⎝

0 �→ 1
4

1 �→ 1
4

2 �→ 1
4

3 �→ 1
4

⎞⎟⎟⎠ , z �→

⎛⎝ 1 �→ 1
2

2 �→ 1
4

3 �→ 1
4

⎞⎠ , y �→

⎛⎜⎜⎝
0 �→ 1

4

1 �→ 1
4

2 �→ 1
4

3 �→ 1
4

⎞⎟⎟⎠
⎤⎥⎥⎦

Δl5(y �→ {x, y}, z �→ {y, z})

Note that the while loop introduces a set of data flow dependencies. For instance,
there is an edge between statement block l1 and l4 which implies that the defined
variable x at point l1 affects the value of the boolean test of the while loop at
point l4; and there is an edge between point l3 and l4 which implies that the
defined variable y at point l3 used by the statement at l5. A translation of the
P into the QPDG is presented in Fig. 2. Let us consider the node of while loop
denoted as nl4 as an example. Clearly:

nl4 =
(
[[while (x > y) do y := y + 1; z := z ∗ y;]]l4 , Pentry, Pexit, {ei|1 ≤ i ≤ 4}

)
where, Pentry = {x, z, y}, Pexit = {x, z, y}.

Consider two internal dependence edges of interest for an example: e1=(x, z, 23)
and e2 = (x, y, 2). Note that the quantity of internal dependence edge ei is com-
puted by conditional mutual information as discussed above. For example, the
quantity of the dependence edge e1 and e2 of interest can be computed by:
qe1 = I(Z ′;X |Y) = I(Z ′;X) = 2

3 and qe2 = I(Y ′;X |Y) = I(Y ′;X) = 2, where
X,Y, Y ′, Z, Z ′ denote the random variables of the program variable x before

114 C. Mu

executing the loop block, program variable y before and after executing the loop
block, program variable z before and after executing the loop block.

5 Reducing QPDG by Slicing for Flow Analysis

We introduce an algorithm to build reduced QPDG in this section. Intuitively,
the reduced QPDGs extract the part of the program that introduces dependences
from the source node of interest to the target node of interest.

The dependence we concern for flow analysis relates a variable at one program
point to a variable at another, e.g., we are particularly interested in whether or
not an output variable at a target node depends on an input variable at a source
node and how much. We introduce a reduction on the QPDG by doing slicing [21]
on it in order to extract the part of a program (the slice) which is relevant to a
subset of the program dependence behaviour of interest. Specifically, given the
target node and source node of interest, we perform a backward slicing to chop
out the nodes and data flow components without affecting the execution of the
target node. In this way, we chop the program dependence graph to extract the
sub-graph of the program that affects the values of the target node and filters
the components of the graphs that do not affect the values of it. Given a source
node, if the source node is not included in the chopped graph, the target node is
not affected by the source node and hence there is no interference between the
output variable at the target node and the input variable defined at the source
node.

5.1 Reducing QPDG

Slicing is a program analysis technique developed by Weiser [21] for imperative
languages. It contains all parts of a program that affect a program variable v
at a statement labelled by l. The pair (v, l) is called slicing criterion, and a
slice is computed regarding to a slicing criterion. In this section, we introduce a
reduction on the QPDG based on the idea of slicing. A slice w.r.t. any variable
that is either defined or used at a program point can be extracted directly from
the graph. This enables us to determine more accurately which variables are
responsible for the inclusion of a particular statement in a slice. We first present
the definition of the reduction on the QPDG as follows.

Definition 2. A reduced graph, RG, is an abstraction of the original QPDG G
such that:

(i) RG is an abstract graph of the original graph, written as: RG � G.
(ii) only the nodes of interest are included in the reduced graph RG, i.e., NR ⊆

N , where NR and N denote the set of the nodes of RG and G respectively;
(iii) only the edges of interest are included in the reduced graph RG: ER

x ⊆ Ex

and ∀i ∈ NR ∧ i ∈ N, ER
i ⊆ Ei, where E

R
x and Ex denote the set of ex-

ternal dependence edges of RG and G, ER
i and Ei denote the set of internal

dependence edges of any node i in RG and the corresponding ones in G;

Quantitative Program Dependence Graphs 115

(iv) let fG and fRG be the space transformation function of the G and RG, we
have: fRG � fG i.e., the reduced graph computes the same space transfor-
mation of interest for the original graph does.

Specifically, a backward slice is defined to contain the statements of the program
that are affecting the slicing criterion. We reduce the QPDG based on backward
slicing. The backward slied QPDG filters the nodes and edges that are not
affecting the target variable at the target point. A backward slice consists of
all the nodes that affect the state of a given variable at a given target point in
the program. In what follows, we present the description to build a backward
slied QPDG.

1. Given the target variable and the target node, the source variable and the
source node, assume the original QPDG is denoted by G.

2. By doing a backward slicing from the target node, we obtain the sets of
statements of the program that influence the output variable at the target
node. In particular, we follow the edges backwards performing a simple graph
traversal and marking nodes encountered on the way. Let RGι denote the
graph obtained after doing the backward slice.

3. Find all the variables at their definition points, denoted by: Σ0 = {(z, n)|n ∈
N, z ∈ Ide}, which affect the final value of the target variable at the target
point, i.e., a definition of variable z at node n reaches the target node.

4. If the source node is not included in the obtained graph RGι, then there is
no dependence or interference between the definition of the source variable
at the source node and the target variable at the target node. The algorithm
is terminated here and the quantity of the dependency between the source
variable at source and the target variable at target is 0.

5. Otherwise, we can compute the quantity of the dependency denoted by
d(x � y) between the relevant random variable defined at source node
denoted by X and the relevant random variable used at the target node
denoted by Y ′: d(x � y) = I(Y ′;X |Z), where Z denote the joint random
variable of all the variables at their definition points i.e.,

Σ0 \X = {(z, n) | n ∈ N, (z, n) ∈ Σ0 ∧ z �= x}.

The relationship between the backward sliced QPDG RGι by performing back-
ward slicing discussed above and the corresponding QPDG G is described in the
following theorem.

Theorem 1. RGι is a reduced graph of G which makes same state and depen-
dence relation of the selected variable at the selected point.

Proof. By definition, all statements in RGι by performing backward slice make
a difference in the results at the selected point. These statements in the slice
either directly or indirectly affect the results. First, for the case of directly af-
fecting the results: nodes accommodate these statement Blocks are included
in the corresponding QPDG G and backward sliced QPDG RGι according to
Definition 1 (i) and the description of building an RGι. Specifically, nodes of

116 C. Mu

RGι, NR = {NR
1 , . . . , N

R
x , . . . , N

R
y }, are a subset of nodes of the corresponding

G, N = {N1, . . . , Nx, . . . , Ny, . . . , Nn}, i.e., NR ⊆ N , NR
x = Nx, N

R
y = Ny,

where NR
y and Ny denote the target nodes of the RGι and G respectively, NR

x

and Nx denotes the source nodes of the RG and G respectively. Second, the
sequential operators in the semantics ensures the transitivity of the dependen-
cies. Therefore, for the case of indirectly affecting the results: external edges and
corresponding nodes are included in the corresponding QPDG G and RGι ac-
cording to Definition 1 (ii) and the description of building an RGι. Specifically,
external edges of RGι, are a subset of external edges of the corresponding G,
i.e., ER

x ⊆ Ex. Therefore, according to Definition 2, RGι is a reduced QPDG of
G which makes same results of the output variable at the selected point.

5.2 Applying to Quantified Flow Analysis

Information flow analysis is an aspect of computer security concerned with how
security information is allowed to flow through a computer system. Consider
the following examples, which shows that the dependence relations cause secure
information flow to be violated during the execution of the programs:

1) l:=h+5;

2) if (h % 2 == 0) then l:=0 else l:=1;

3) l:=0; while (h>l) l:=l++;

where l is a low level variable, h is a high level variable. It is clear that, the
assignment command contains a data dependence between h and l and thus
causes the explicit flow, both the if statement and the loop contains control
dependence between h and l which causes the implicit flows. Formally, secure
information flow of a terminating program can be described as follows.

Definition 3. Given a terminating program P with high variables H=h1, . . . , hn
and low variables L = l1, . . . , ln, P is secure if and only if the values of L at the
point that P terminates are independent of the initial values of H.

Note that the dependence relations between program variables with different se-
curity types reduces the uncertainty of secure information and causes the infor-
mation flow. The reduced QPDG discussed in this paper can be used to provide a
quantified flow analysis. Intuitively, given two points of interest (high input and
low output), the chopped QPDG consists of those statements that can transmit
a change from the source to the target . By building a chopped QPDG, the
statements of the program which do not contribute to bring secure information
flows from high input to low output are filtered. We therefore can provide a
more effective analysis by focusing on the essential parts which introduces the
unwellcome flows.

Theorem 2 (Dependences and information flow). Given a QPDG G =
(N,Ex), if there is a backward path from an output variable y typed as L at target
node to an input variable x typed as H at source node, there is a dependence
relationship between them: Δ(y
→ x), and there is information flow from x to
y: x� y.

Quantitative Program Dependence Graphs 117

Proof. Follows from Definition 1 and Definition 3. If we view the reduced QPDG
as a single box labelled by lRG, it conveyed the dependence relations between x
and y directly. Therefore the quantity of the information flow from x to y can
be viewed as the content of the dependence introduced by lRG. i.e., the flow
quantity from x to y is computed by: d(x � y) = q(ΔlRG(y
→ x)), where X,Y
denotes the random variable of the program variables x, y, Z denotes the joint
random variable of other program variables on which y depends.

Clearly, if the quantity of the dependence between them is 0, there is no in-
formation flow from high input to low output, i.e., the program satisfies non-
interference and is secure. Specifically, the analysed program Sl is considered
secure if ∀x ∈ L, there is no y ∈ H such that Δl(x
→ y), i.e., there is no low
level variable at the target node depending on high level variables at the source
node. We therefore can present the security condition as follows.

Definition 4. Security condition. ∀x ∈ L, there is no y ∈ H such that Δ(x
→
δ) ∧ y ∈ δ.

6 Conclusions

We have introduced a definition of Quantitative Program Dependence Graph
(QPDG), which can be used to capture the quantified dependencies of programs
given the source node and target node of interest. We presented the semantics in
order to build a QPDG, and suggested a method to provide a further abstraction
on the QPDG given the target node and source node by doing backward slicing.
Since such a graph can show the information flow on a data slice explicitly, as
an application, it can represent well the interesting elementary changes of the
information flow of a program. We believe that the QPDGs can be useful in
a number of area in program analysis and software engineering in quantitative
aspects, e.g., program verification, fault localisation, and program optimisation
etc. For future work, we propose to explore an application of the reduced QPDG
for localising faults in programs with quantitative reasoning. For instance, we
propose to explore algorithms to calculate the degree of the suspicious of the
statements in order to localise the possible faults regarding to different require-
ments. We also plan to extend our language and graphs to a richer version to
allow procedures and capture concurrent behaviours.

Acknowledgements. Many thanks to Ian Hayes, Cliff Jones, Ken Pierce, Carl
Gamble and the anonymous reviewers for discussions and comments.

References

1. Baah, G.K., Podgurski, A., Harrold, M.J.: The probabilistic program dependence
graph and its application to fault diagnosis. IEEE Trans. Software Eng. 36(4),
528–545 (2010)

118 C. Mu

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: S & P (2009)

3. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement of Information
Leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010)

4. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. Journal of Computer Security 15, 321–371
(2007)

5. Clark, D., Hankin, C., Hunt, S.: Information flow for algol-like languages. Comput.
Lang. 28(1), 3–28 (2002)

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

7. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: ACSAC,
pp. 261–269 (2010)

8. Jackson, D., Rollins, E.J.: A new model of program dependences for reverse engi-
neering. In: SIGSOFT FSE, pp. 2–10 (1994)

9. Jackson, D.: Aspect: Detecting bugs with abstract dependences. ACM Trans.
Softw. Eng. Methodol. 4(2), 109–145 (1995)

10. Kuper, R.: Dependency-directed localization of software bugs (1989)
11. Malacaria, P.: Assessing security threats of looping constructs. In: POPL,

pp. 225–235. ACM Press, Nice (2007)
12. Mateis, C., Stumptner, M., Wieland, D., Wotawa, F.: Model-based debugging of

java programs. In: AADEBUG (2000)
13. McIver, A., Meinicke, L., Morgan, C.: Hidden-markov program algebra with iter-

ation. CoRR abs/1102.0333 (2011)
14. Moriconi, M., Winkler, T.C.: Approximate reasoning about the semantic effects of

program changes. IEEE Transactions on Software Engineering 16, 980–992 (1990)
15. Mu, C., Clark, D.: An interval-based abstraction for quantifying information flow.

In: ENTCS, vol. 59, pp. 119–141. Elsevier (2009)
16. Mu, C., Clark, D.: Quantitative analysis of secure information flow via probabilistic

semantics. In: ARES, pp. 49–57 (2009)
17. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software

development environment. In: Software Development Environments (SDE), pp.
177–184 (1984)

18. Rudin, W.: Real and Complex Analysis. McGraw-Hill (1966)
19. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob.

Comput. Commun. Rev. 5(1), 3–55 (1948)
20. Weise, D., Crew, R.F., Ernst, M., Steensgaard, B.: Value dependence graphs: Rep-

resentation without taxation. In: POPL, pp. 297–310 (1994)
21. Weiser, M.D.: Program slices: formal, psychological, and practical investigations of

an automatic program abstraction method, aAI8007856 (1979)
22. Wotawa, F., Soomro, S.: Fault Localization Based on Abstract Dependencies. In:

Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 357–359.
Springer, Heidelberg (2005)

Quantitative Analysis of Information Flow

Using Theorem Proving

Tarek Mhamdi, Osman Hasan, and Sofiène Tahar

ECE Department, Concordia University, Montreal, QC, Canada
{mhamdi,o hasan,tahar}@ece.concordia.ca

Abstract. Quantitative analysis of information flow is widely used to
measure how much information was leaked from the secret inputs to
the outputs or public inputs of a program. We propose to conduct the
quantitative analysis of information flow within the trusted kernel of a
higher-order-logic theorem prover in order to overcome the inaccuracy
limitations of traditional analysis techniques used in this domain. For this
purpose, we present the formalization of the Kullback-Leibler divergence
that can be used as a unified measure of information leakage. Further-
more, we propose two new measures of information leakage, namely the
information leakage degree and the conditional information leakage de-
gree. We also formalize the notion of anonymity-based single MIX and
use the channel capacity as a measure of information leakage in the MIX.
Finally, for illustration purposes, we show how our framework allowed
us to find a counter-example for a theorem that was reported in the lit-
erature to describe the leakage properties of the anonymity-based single
MIX.

1 Introduction

Quantitative information flow [19,17] allows to measure how much information
about the high security inputs of a system can be leaked, accidentally or mali-
ciously, by observing the systems outputs and possibly the low security inputs.
Unlike non-interference analysis, which only determines whether a system is
completely secure or not completely secure, quantitative information flow pro-
vides an information theoretic measure on how secure or insecure a system is.
Quantitative information flow is extensively used for analyzing anonymity pro-
tocols and secure communications using various measures of information flow.
Serjantov [18] and Diaz et al. [6] independently proposed to use the entropy to
define the quality of anonymity and to compare different anonymity systems.
Malacaria [12] defined the leakage of confidential information in a program as
the conditional mutual information between its outputs and secret inputs, given
the knowledge of its low security inputs. Deng [5] proposed relative entropy as
a measure of the amount of information revealed to the attacker after observing
the outcomes of the protocol, together with the a priori information. Chatzikoko-
lakis [1] modeled anonymity protocols as noisy channels and used the channel
capacity as a measure of the loss of anonymity.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 119–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

120 T. Mhamdi, O. Hasan, and S. Tahar

Traditionally, paper-and-pencil based analysis or computer simulations have
been used for quantitative analysis of information flow. Paper-and pencil analysis
does not scale well to complex systems and is prone to human error. Computer
simulation, on the other hand, lacks in accuracy due to numerical approxima-
tions. These analysis inaccuracies may result in compromising national security
and finances given the safety and security-critical nature of systems where in-
formation flow analysis is usually used.

As an alternative approach, we propose a machine-assisted analysis of infor-
mation flow by conducting the analysis within the trusted kernel of a higher-
order-logic theorem prover [9]. Higher-order logic is a system of deduction with
precise semantics and, due to its high expressiveness, can be used to describe any
mathematical relationship. Interactive theorem proving is the field of computer
science and mathematical logic concerned with computer-based formal proof
tools that require human assistance. We argue that the high expressiveness of
higher-order logic can be leveraged to formalize the commonly used information
leakage measures by building upon the existing formalization of measure, in-
tegration and probability [13], and information theories [14]. This foundational
formalization can hence be used to formally reason about quantitative properties
of information flow analysis within the sound core of a theorem prover and thus
guarantee accuracy of the analysis.

In particular, this paper presents an extension of existing theories of measure,
Lebesgue integration and probability [13] to cater for measures involving multiple
random variables. Building upon this formalization, we present a higher-order-
logic formalization of the Kullback-Leibler (KL) divergence [4] from which we can
derive the formalization of most of the information leakage measures presented in
the literature so far. Furthermore, we propose two novel measures of information
leakage termed as degrees of information leakage. We will show that they are
somehow related to the existing measures but have the advantage that they not
only quantify the information leakage but also describe the quality of leakage by
normalizing the measure by the maximum leakage that the system allows under
extreme situations. The formalization reported in this paper has been done using
the HOL4 [10] theorem prover. The prime motivation behind this choice is the
availability of the measure, probability and integration theories [13,14].

We illustrate the usefulness of the framework for formal analysis of quan-
titative information flow by tackling an anonymity-based single MIX applica-
tion [20]. We provide a higher-order-logic formalization of the single MIX as well
as the channel capacity which we use as a measure of information leakage within
the MIX. We then formally verify that a sender using the MIX as a covert chan-
nel, can transmit information through the MIX at maximum capacity without
having to communicate with all the receivers. This result allowed us to identify
a flaw in the paper-and-pencil based analysis of a similar problem [20] which
clearly indicates the usefulness of the proposed technique.

The rest of the paper is organized as follows: In Section 2 we briefly present
the proposed extensions to the formalization of measure, integration and proba-
bility theories [13]. In Section 3, we describe our formalization of KL divergence

Quantitative Analysis of Information Flow Using Theorem Proving 121

and how we use it to formalize various measures of information leakage as well
as prove their properties in HOL. We introduce novel information leakage de-
grees in Section 4. In Section 5, we present an analysis of an anonymity-based
single MIX. We discuss related work in Section 6 and conclude the paper in
Section 7.

2 Measure, Integration and Probabilities

In this section, we extend the formalization of measure theory [13] and Lebesgue
integration [13] as well as probability theory [14] to support products of mea-
sure spaces and joint distributions of two or more random variables. Both are
necessary to define measures over multiple random variables.

Products of Measure Spaces. Let m1 = (X1,S1, μ1) and m2 = (X2,S2, μ2)
be two measure spaces. The product of m1 and m2 is defined to be the measure
space (X1 ×X2,S, μ), where S is the sigma algebra on X1 × X2 generated by
subsets of the form A1 × A2 where A1 ∈ S1, and A2 ∈ S2. The measure μ is
defined for σ-finite measure spaces as

μ(A) =

∫
X1

μ2({y ∈ X2|(x, y) ∈ A}) dμ1

and S is defined using the sigma operator which returns the smallest sigma
algebra containing a set of subsets, i.e., the product subsets in this case.

Let g(s1) be the function s2 → (s1, s2) and PREIMAGE denote the HOL function
for inverse image, then the product measure is formalized as

� prod_measure m1 m2 =

(λa. integral m1 (λs1. measure m2 (PREIMAGE g(s1) a)))

We verified in HOL that the product measure can be reduced to μ(a1 × a2) =
μ1(a1)× μ2(a2) for finite measure spaces.

� prod_measure m1 m2 (a1 × a2) = measure m1 a1 × measure m2 a2

We use the above definitions to define products of more than two measure spaces
as follows. X1 × X2 × X3 = X1 × (X2 × X3) and μ1 × μ2 × μ3 is defined as
μ1 × (μ2 × μ3). We also define the notion of absolutely continuous measures
where μ1 is said to be absolutely continuous w.r.t μ2 iff for every measurable set
A, μ2(A) = 0 implies μ1(A) = 0. Further details about this formalization can be
found in [15].

Joint Distribution. The joint distribution of two random variables defined on
the same probability space is defined as,

pXY (a) = p({(X,Y) ∈ a})

122 T. Mhamdi, O. Hasan, and S. Tahar

� joint_distribution p X Y =

(λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ Ω))

Here the intersection with the sample space Ω is required because HOL functions
are total and should be defined on all variables of the specific type instead of
only on Ω. The joint distribution of any number of variables can be defined in
a similar way. We formally verified a number of joint distribution properties in
HOL [15] and some of the useful ones are given below:

� 0 ≤ joint_distribution p X Y a

� joint_distribution p X Y = joint_distribution p Y X

� joint_distribution p X Y (a × b) ≤ distribution p X a

� joint_distribution p X Y (a × b) ≤ distribution p Y b

We also verified that the joint distribution is absolutely continuous w.r.t to the
product of marginal distributions and the following useful properties in HOL.

pX(a) =
∑

y∈Y (Ω)

pXY (a× {y})

pY (b) =
∑

x∈X(Ω)

pXY ({x} × b)

The formalization of joint distributions and products of measures spaces, pre-
sented in the next section, play a vital role in formalizing information-theoretic
measures with multiple random variables.

3 Measures of Information Leakage

In this section, we first provide a formalization of the Radon-Nikodym deriva-
tive [8] which is then used to define the KL divergence. Based on the latter, we
define most of the commonly used measures of information leakage. We start by
providing general definitions which are valid for both discrete and continuous
cases and then prove the corresponding reduced expressions where the measures
considered are absolutely continuous over finite spaces.

3.1 Radon-Nikodym Derivative

The Radon-Nikodym derivative of a measure ν with respect to the measure
μ is defined as a non-negative measurable function f , satisfying the following
formula, for any measurable set A.∫

A

f dμ = ν(A)

We formalize the Radon-Nikodym derivative in HOL as

Quantitative Analysis of Information Flow Using Theorem Proving 123

� RN_deriv m v =

@f. f IN measurable (X, S) Borel ∧
∀x ∈ X, 0 ≤ f x ∧
∀a ∈ S, integral m (λx. f x * indicator_fn a x) = v a

where @ denotes the Hilbert-choice operator in HOL. The existence of the
Radon-Nikodym derivative is guaranteed for absolutely continuous measures by
the Radon-Nikodym theorem.

Theorem 1. If ν is absolutely continuous with respect to μ, then there exists a
non-negative measurable function f such that for any measurable set A,∫

A

f dμ = ν(A)

We proved the Radon-Nikodym theorem in HOL for finite measures which can
be easily generalized to σ-finite measures.

� ∀m v s st.

measure_space (s,st,m) ∧ measure_space (s,st,v) ∧
measure_absolutely_continuous (s,st,m) (s,st,v) ∧
v s �= ∞ ∧ m s �= ∞ ⇒
∃f. f ∈ measurable (s,st) Borel ∧
∀x ∈ s, 0 ≤ f x < ∞ ∧
∀a ∈ st,

integral m (λx. f x * indicator_fn a x) = v a

The formal reasoning about the above theorem is primarily based on the Lebesgue
monotone convergence and the following lemma which, to the best of our knowl-
edge, has not been referred to in paper-and-pencil based mathematical texts
before.

Lemma 1. If P is a non-empty set of extended-real valued functions closed
under the max operator, g is monotone over P and g(P) is upper bounded, then
there exists a monotonically increasing sequence f(n) of functions, elements of
P , such that

sup
n∈N

g(f(n)) = sup
f∈P

g(f)

Finally, we formally verified various properties of the Radon-Nikodym derivative.
For instance, we prove that for absolutely continuous measures defined over a
finite space, the derivative reduces to

� ∀x ∈ s, u{x} �= 0 ⇒ RN_deriv u v x = v{x} / u{x}

The following properties play a vital role in formally reasoning about the Radon-
Nikodym derivative and have also been formally verified.

� ∀x ∈ s, 0 ≤ RN_deriv m v x < ∞
� RN_deriv ∈ measurable (s,st) Borel

� ∀a ∈ st, integral m (λx. RN_deriv m v x * indicator_fn a x) = v a

124 T. Mhamdi, O. Hasan, and S. Tahar

3.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [4] DKL(μ||ν) is a measure of the distance
between two distributions μ and ν. It can be used to define most information-
theoretic measures such as the mutual information and entropy and can, hence,
be used to provide a unified framework to formalize most information leakage
measures. It is because of this reason that we propose to formalize the KL
divergence in this paper as it will facilitate formal reasoning about a wide variety
of information flow related properties. The KL divergence is defined as

DKL(μ||ν) = −
∫
X

log
dν

dμ
dμ

where dν
dμ is the Radon-Nikodym derivative of ν with respect to μ. The KL

divergence is formalized in HOL as

� KL_divergence b m v = -integral m (λx. logr b((RN_deriv m v)x))

where b is the base of the logarithm. DKL is measured in bits when b = 2. We
formally verify various properties of the KL divergence. For instance, we prove
that for absolutely continuous measures over a finite space, it reduces to

DKL(μ||ν) =
∑
x∈s

μ{x} log μ{x}
ν{x}

� KL_divergence b u v = SIGMA (λx. u{x} logr b (u{x} / v{x})) s

We also prove the following properties

� KL_divergence b u u = 0

� 1 ≤ b ⇒ 0 ≤ KL_divergence b u v

The non-negativity of the KL divergence for absolutely continuous probability
measures over finite spaces is extensively used to prove the properties of in-
formation theory measures like the mutual information and entropy. To prove
this result, we use the Jensen’s inequality and the concavity of the logarithm
function.

We show in the subsequent sections how we use the KL divergence to for-
malize the mutual information, Shannon entropy, conditional entropy and the
conditional mutual information, which are some of the most commonly used
measures of information leakage.

3.3 Mutual Information and Entropy

The mutual information has been proposed as a measure of information leak-
age [20] from the secure inputs S of a program to its public outputs O as it
represents the mutual dependence between the two random variables S and O.
The mutual information is defined as the KL divergence between the joint distri-
bution and the product of marginal distributions. The following is a formalization
of the mutual information in HOL.

Quantitative Analysis of Information Flow Using Theorem Proving 125

� I(X;Y) = KL_divergence b (joint_distribution p X Y)

prod_measure (distribution p X)

(distribution p Y)

We prove various properties of the mutual information in HOL, such as the non-
negativity, symmetry and reduced expression for finite spaces, using the result
that the joint distribution is absolutely continuous w.r.t the product of marginal
distributions.

� 0 ≤ I(X;Y)

� I(X;Y) = I(Y;X)

� I(X;Y) = 0 ⇔ X and Y independent

� I(X;Y) = SIGMA (λ(x,y). p{(x,y)} logr b (p{(x,y)}/p{x}p{y})) s

The Shannon entropy H(X) was one of the first measures to be proposed to
analyze anonymity protocols and secure communications [18,6] as it intuitively
measures the uncertainty of a random variable X. It can be defined as the expec-
tation of pX or simply as I(X ;X).

� H(X) = I(X;X)

We prove that it can also be expressed in terms of the KL divergence between
pX and the uniform distribution puX , where N is the size of the alphabet of X .

� H(X) = log(N) - KL_divergence b (distribution p X)

(uniform_dist p X)

The cross entropy H(X,Y) is the entropy of the random variable (X,Y) and
hence there is no need for a separate formalization of the cross entropy.
The conditional entropy is defined in terms of the KL divergence as follows:

� H(X|Y) = log(N) - KL_divergence b (joint_distribution p X Y)

prod_measure (uniform_dist p X)

(distribution p Y)

The entropy properties that we prove in HOL include:

� 0 ≤ H(X) ≤ log(N)

� max(H(X),H(Y)) ≤ H(X,Y) ≤ H(X) + H(Y)

� H(X|Y) = H(X,Y) - H(Y)

� 0 ≤ H(X|Y) ≤ H(X)

� I(X;Y) = H(X) + H(Y) - H(X,Y)

� I(X;Y) ≤ min(H(X),H(Y))

� H(X) = -SIGMA (λx. p{x} logr b (p{x})) s

� H(X|Y) = -SIGMA (λ(x,y). p{(x,y)} logr b (p{(x,y)}/p{y})) s

126 T. Mhamdi, O. Hasan, and S. Tahar

3.4 Conditional Mutual Information

The conditional mutual information I(X ;Y |Z) allows one to measure how much
information about the secret inputs X is leaked to the attacker by observing
the outputs Y of a program given knowledge of the low security inputs Z. This
property was used by Malacaria [12] to introduce the conditional mutual infor-
mation as a measure of information flow for a program with high security inputs
and low security inputs and outputs. The conditional mutual information is de-
fined as the KL divergence between the joint distribution pXY Z and the product
measure pX|ZpY |ZpZ . The HOL formalization is as follows.

� conditional_mutual_information b p X Y Z =

KL_divergence b (joint_distribution p X Y Z)

(prod_measure (conditional_distribution p X Z)

(conditional_distribution p Y Z)

(distribution p Y))

We formally verify the following reduced form of the conditional mutual infor-
mation for finite spaces by first proving that pXY Z is absolutely continuous w.r.t
pX|ZpY |ZpZ and then apply the reduced form of the KL divergence.

I(X ;Y |Z) =
∑

(x,y,z)∈X×Y×Z
p(x, y, z) log

p(x, y, z)

p(x|z)p(y|z)p(z)

When the two random variables X and Y are independent given Z, the condi-
tional mutual information I(X ;Y |Z) = 0. In fact, in this case,
∀x, y, z. p(x, y, z) = p(x, y|z)p(z) = p(x|z)p(y|z)p(z).

� indep_rv_cond p X Y Z ⇒ I(X;Y|Z) = 0

We also prove a few other important results regarding the conditional mutual
information which will be useful later in our work.

� 0 ≤ I(X;Y|Z)

� I(X;Y|Z) = H(X|Z) - H(X|Y,Z)

� I(X;Y|Z) = I(X;(Y,Z)) - I(X;Z)

� I(X;Y|Z) ≤ H(X|Z)

So far, we have provided a higher-order-logic formalization of the KL divergence
which we used to define various measures of quantitative information flow. This
framework, along with the formalization of measure and probability theories,
allows us to conduct many analyses of quantitative information flow using a
theorem prover and hence guaranteeing the soundness of the analysis.

4 Degrees of Information Leakage

We introduce two new measures of information leakage that can be used to
describe the anonymity properties of security systems and protocols, namely the
information leakage degree and the conditional information leakage degree.

Quantitative Analysis of Information Flow Using Theorem Proving 127

4.1 Information Leakage Degree

We define the information leakage degree between random variables X and Y
representing the secret inputs and public outputs of a program, respectively, as

D =
H(X |Y)

H(X)

� information_leakage_degree p X Y =

conditional_entropy p X Y / entropy p X

To better understand the intuition behind this definition, let us consider the
two extreme cases of a completely secure program and a completely insecure
program. Complete security, intuitively, happens when the knowledge of the
public output Y of a program does not affect the uncertainty about the secret
input X . This is equivalent to the requirement that X is independent of Y . In
this case H(X |Y) = H(X) and the information leakage degree is equal to 1. On
the other hand, when the output of the program completely identifies its secret
input, the entropy H(X |Y) is equal to 0 and hence the information leakage
degree is equal to 0 in this case of perfect identification. For situations between
the two extremes, the information leakage degree lies in the interval (0, 1). We
formally verified this result as the following theorem in HOL which provides the
bounds of the degree of information leakage.

� 0 ≤ information_leakage_degree p X Y ≤ 1

Using the properties of the mutual information we prove that the information
leakage degree is also equal to

D = 1− I(X ;Y)

H(X)

This result illustrates the significance of the information leakage degree defini-
tion since the mutual information measures how much information an adversary
can learn about the input X after observing the output Y . This also allows to
compare our definition to the anonymity degree proposed in [20] as

D′ = 1− I(X ;Y)

logN

where N is the size of the alphabet of X . Our definition is more general. In fact,
when X is uniformly distributed, the two measures coincide D = D′. However
in the general case we believe that our definition is more accurate since in the
perfect identification scenario, for instance, D is always equal to 1 regardless of
the input distribution. On the other hand, D′ is equal to 1 only in the special
case of a uniform distribution. In [20] the authors considered using H(X) as a
normalization factor instead of logN but opted for the latter arguing that the
input distribution is already accounted for in the mutual information. But as
stated previously, with the definition of D′, the proof for perfect identification
is only valid for uniformly distributed inputs.

128 T. Mhamdi, O. Hasan, and S. Tahar

4.2 Conditional Information Leakage Degree

We propose another variation of information leakage degree that is more general
and can cover a wider range of scenarios. First, consider a program which has a
set of high security inputs S, a set of low security inputs L and a set of public
outputs O. The adversary wants to learn about the high inputs S by observing
the outputs O given the knowledge of the low inputs L. To capture this added
information to the adversary (low inputs), we propose the following definition,
which we call the conditional information leakage degree.

Dc =
H(S|(O,L))
H(S|L)

This can be formalized in HOL as

� conditional_information_leakage_degree p S L O =

conditional_entropy p S (O,L) / conditional_entropy p S L

Just like the previous case, consider the two extremes of perfect security and
perfect identification. When the outputs and the secret inputs are independent,
given L, the conditional entropy H(S|(O,L)) is equal to H(S|L) which results in
a conditional leakage degree equal to 1 for perfect security. However, if the pub-
lic inputs and outputs completely identify the secret inputs, then H(S|(O,L))
is equal to 0 and so is the conditional leakage degree in the case of perfect iden-
tification. As in the case of leakage degree, we are also able to prove that the
conditional information leakage degree lies in the interval [0, 1].

� 0 ≤ conditional_information_leakage_degree p X Y Z ≤ 1

We also prove that the conditional information leakage degree can be written in
terms of the conditional mutual information and the conditional entropy.

D = 1− I(S;O|L)
H(S|L)

This shows that this definition is clearly a generalization of the information
leakage degree for the case of programs with additional low security inputs. We
provide more intuition to interpret this definition by proving the data processing
inequality (DPI) [4].

Definition 1. Random variables X, Y , Z are said to form a Markov chain is
that order (denoted by X → Y → Z) if the conditional distribution of Z depends
only on Y and is conditionally independent of X. Specifically, X, Y and Z form
a Markov chain X → Y → Z if the joint probability mass function can be written
as p(x, y, z) = p(x)p(y|x)p(z|y).
We formalize this in HOL as follows.

� markov_chain p X Y Z =

∀ x y z. joint_distribution p X Y Z {(x,y,z)} =

distribution p X {x} *

conditional_distribution p Y X {(y,x)} *

conditional_distribution p Z Y {(z,y)}

Quantitative Analysis of Information Flow Using Theorem Proving 129

We prove that X → Y → Z is equivalent to the statement that X and Z are
conditionally independent given Y . In fact, p(x)p(y|x)p(z|y) = p(x, y)p(z|y) =
p(x|y)p(z|y)p(y). This in turn is equivalent to I(X ;Z|Y) = 0. This result will
allow us to prove the DPI theorem.

Theorem 2. (DPI) if X → Y → Z then I(X ;Z) ≤ I(X ;Y)

� markov_chain p X Y Z ⇒
mutual_information b p X Z ≤ mutual_information b p X Y

We prove the DPI theorem using the properties of the mutual information. In
fact, as shown previously, I(X ; (Y, Z)) = I(X ;Z) + I(X ;Y |Z). By symmetry
of the mutual information, we also have I(X ; (Y, Z)) = I(X ;Y) + I(X ;Z|Y) =
I(X ;Y). The last equality results from the fact that I(X ;Z|Y) = 0 for a Markov
Chain. Using the non-negativity of the conditional mutual information, which
we proved previously, it is straightforward to conclude that I(X ;Z) ≤ I(X ;Y).

The data processing inequality is an important result in information theory
that is used, for instance, in statistics to define the notion of sufficient statistic.
We make use of the DPI to interpret the conditional information leakage degree.
For a system with high security inputs S, low security inputs L and outputs
O, if the outputs depend only on the low inputs, i.e., p(O|S,L) = p(O|L) then
S → L → O and S and O are conditionally independent given L. This is the
perfect security scenario, for which Dc = 1. Using the DPI, we conclude that
I(S;O) ≤ I(S;L). This means that when the conditional mutual information
leakage is equal to 1, no clever manipulation of the low inputs, by the attacker,
deterministic or random, can increase the information that L contains about S
(I(S;L)).

We have presented so far our higher-order-logic formalization of measures of
information flow building upon the extension of measure, Lebesgue integration
and probability formalization in HOL. Overall the HOL definitions and proof
scripts of the above formalization required around 15,000 lines of code [15].
These results can now be readily used to reason about information flow analysis
of real-world protocols and programs.

5 Application

In this section, we use our formalization to reason about an anonymity-based sin-
gle MIX, designed to hide the communication links between a set of senders and
a set of receivers. We model a single MIX as a communication node connecting
m senders (s1, . . . , sm) to n receivers (r1, . . . , rn). The single MIX is determined
by its inputs (senders), outputs (receivers) and the transition probabilities. We
can also add clauses in the specification to capture additional information about
the MIX like structural symmetry. The following is the formalization of the sin-
gle MIX given in Figure 1.

130 T. Mhamdi, O. Hasan, and S. Tahar

� MIX_channel s m X Y =

(IMAGE X s = {0;1}) ∧ (IMAGE Y s = {0;1;2;3}) ∧
(conditional_distribution (s,POW s,m) Y X {0} {0} = 1/2) ∧
(conditional_distribution (s,POW s,m) Y X {1} {0} = 1/2) ∧
(conditional_distribution (s,POW s,m) Y X {2} {1} = 1)

r3

r2

r1

r0

1
2

1

1
2

s0

s1

Fig. 1. Single MIX

Zhu and Bettati [20] used the single MIX to model an anonymity-based covert-
channel where a sender is trying to covertly send messages through the MIX.
They used the channel capacity as a measure of the maximum information that
can be leaked through the MIX and can be used as a measure of the quality of
anonymity of the network. A communication between a sender si and a receiver
rj is denoted by [si, rj]. The term p([su, rv]s|[si, rj]a) represents the probability
that the communication [su, rv] is suspected given that [si, rj] is actually taking
place. This model describes attacks on sender-receiver anonymity. The input
symbols of the covert-channel are the actual sender-receiver pairs [s, r]a and
the output symbols are the suspected pairs [s, r]s. In this case, p([s, r]s|[s, r]a)
represents the result of the anonymity attack. We consider the case where an
attacker can establish a covert-channel by having 1 sender s1 communicate with
any combination of j receivers. The same reasoning can be applied to multiple
senders. The authors claim the following result [20]

Lemma 2. For a single sender s1 on a single mix, the maximum covert-channel
capacity is achieved when s1 can communicate to all receivers.

We initially tried to formally verify this result, using the foundational results
presented in the previous two sections of this paper, but we found a counter-
example for an assumption upon which the paper-and-pencil proof of Lemma 2
is based [20]. The erroneous assumption states that the maximum of the mutual
information is achieved when all input symbols have non-zero probabilities re-
gardless of the transition probabilities (the results of the anonymity attack). We
are able to prove in HOL that it is not necessary for the sender s1 to communicate
with all receivers to achieve capacity.

Quantitative Analysis of Information Flow Using Theorem Proving 131

First, we provide a higher-logic-formalization of the channel capacity which is
defined as the maximum, over all input distributions, of the mutual information
between the input and the output of the channel. We formalize it in HOL using
the Hilbert-choice operator; i.e., if it exists, the capacity is some c such that
c = Im(X ;Y) for some probability distribution m and for any input distribution
p, Ip(X ;Y) ≤ c.

� capacity s X Y = @c.

∃m. c = mutual_information (s, POW s, m) X Y ∧
∀m. mutual_information (s, POW s, m) X Y ≤ c

Next, consider the covert-channel depicted in Figure 2. To simplify the notation,
let xi = [s1, ri]a and yi = [s1, ri]s. This covert-channel is formalized in HOL as

� MIX_channel_1 s m X Y =

(IMAGE X s = {0;1;2}) ∧ (IMAGE Y s = {0;1;2}) ∧
(distribution(s,POW s,m) X{0} = distribution(s,POW s,m) X{2}) ∧
(conditional_distribution (s,POW s,m) Y X {0} {0} = 1) ∧
(conditional_distribution (s,POW s,m) Y X {0} {1} = 1 / 2) ∧
(conditional_distribution (s,POW s,m) Y X {0} {2} = 0) ∧
(conditional_distribution (s,POW s,m) Y X {1} {0} = 0) ∧
(conditional_distribution (s,POW s,m) Y X {1} {1} = 0) ∧
(conditional_distribution (s,POW s,m) Y X {1} {2} = 0) ∧
(conditional_distribution (s,POW s,m) Y X {2} {0} = 0) ∧
(conditional_distribution (s,POW s,m) Y X {2} {1} = 1 / 2) ∧
(conditional_distribution (s,POW s,m) Y X {2} {2} = 1)

[s1, r2]s

[s1, r3]s

[s1, r1]s

1
2

1
p

1− 2p

p

[s1, r1]a

[s1, r2]a

[s1, r3]a
1

1
2

Fig. 2. Single MIX example

We prove that its mutual information is equal to 2p.

� ∀X Y s. MIX_channel_1 s m X Y ⇒
mutual_information 2 (s, POW s, m) X Y =

2 * distribution (s, POW s, m) X {0}

132 T. Mhamdi, O. Hasan, and S. Tahar

We also prove that the capacity is equal to 1 and corresponds to p = 1
2 .

This means that the input distribution that achieves the channel capacity is
[p{x0} = 1

2 , p{x1} = 0, p{x2} = 1
2]. Hence, we prove that the sender s1 does not

need to communicate with the receiver r2 and still achieve maximum capacity,
contradicting Lemma 2. Notice that with p = 1

2 , I(X ;Y) = H(X) = 1 which
implies that the degree of information leakage D = 0. So for this covert-channel,
the maximum capacity corresponds to perfect identification.

Unlike the paper-and-pencil based analysis, a machine-assisted analysis of
quantitative information flow using theorem proving guarantees the accuracy of
the results. In fact, the soundness of theorem proving inherently ensures that
only valid formulas are provable. The requirement that every single step of the
proof needs to be derived from axioms or previous theorems using inference rules,
allows us to find missing assumptions and even sometimes wrong statements as
was the case in the single MIX application. We were able to detect the problem
with the reasoning and confirm the result using our formalization in HOL.

6 Related Work

The underlying theories over which we built this work are mainly from [13] and
[14]. In [13], we provided a formalization of the measure theory and Lebesgue
integration in HOL and proved some classical probability results like the Weak
Law of Large Numbers. In [14], we formalized extended reals and based on them
provided a more extensive formalization of measure and Lebesgue integration.
We also formalized the Shannon entropy and Relative entropy and proved the
Asymptotic Equipartition Property. In the current paper, we enrich the under-
lying theories by adding, for instance, products of measure spaces and joint
distributions. The main difference, however, is that in this paper we propose
new measures of information leakage and formalize various other measures like
mutual information and conditional mutual information based on a unified def-
inition of the KL divergence. We also formalize the channel capacity and the
notion of single MIX and use the framework for an illustrative example.

Coble [3] formalized some information theory in higher-order logic and used
Malacaria’s measure of information leakage, i.e., the conditional mutual informa-
tion [12], to formally analyse the anonymity properties of the Dining Cryptogra-
phers protocol. Our formalization of information theory is an extended version
of Coble’s formalization, i.e., it supports Borel spaces and extended real numbers
which allowed us to prove the Radon Nikodym theorem. Coble’s formalization
of information theory does not offer these capabilities and thus cannot be used
to formally verify the Radon Nikodym theorem.

Zhu and Bettati [20] proposed the notion of degree of anonymity which is close
to our definition of information leakage degree but we showed that our definition
is more general and the two are equal in the case of uniform distribution. Besides,
we proposed the conditional information leakage degree, suitable for programs
with low security inputs and proved the data processing inequality to give more
insight into the intuition behind this new definition. Moreover, our work is based
on higher-order-logic theorem proving, which is arguably more sound than the

Quantitative Analysis of Information Flow Using Theorem Proving 133

paper-and-pencil based analysis of Zhu and Bettati. In fact, with our analysis
we were able to detect the aforementioned problem with the analysis in [20] and
provide a counter-example using theorem proving.

Chatzikokolakis [1] modeled anonymity protocols as noisy channels and used
the channel capacity as a measure of the loss of anonymity. In the case where
some leakage is intended by design, like in an election protocol, they introduced
the notion of conditional capacity which is related to the conditional mutual in-
formation. They used the PRISM model checker [11] to assist in computing the
transition probabilities and capacity of two protocols, namely the Dining cryp-
tographers and the Crowds protocol. This probabilistic model checking based
analysis technique inherits the state-space explosion limitation of model check-
ing. Similarly, it cannot be used to verify universally quantified generic mathe-
matical relationships like we have been able to verify in the reported work.

7 Conclusions

In this paper, we conducted the quantitative analysis of information flow within
the sound core of higher-order-logic theorem prover. For this purpose, we pro-
vided a formalization of the Kullback-Liebler divergence in the HOL4 theorem
prover and used it to formalize various measures of information leakage that
have been proposed in the literature such as the entropy, mutual information
and conditional mutual information. We proposed two novel measures of infor-
mation leakage which we called information leakage degree and gave some insight
into the intuition behind the definitions.

We also provided a higher-order-logic formalization of channel capacity and
the single MIX and used our framework in a small example to show the usefulness
of using a theorem prover in this context. In fact, we were able to come up with
a counter-example to a result that appeared in [20] related to the single MIX
and proved in HOL that the senders need not communicate with all receivers
to achieve channel capacity. Our results have been confirmed by Prof. Gallager
from MIT, a well-known name in Information Theory and the author of the book
Information Theory and Reliable Communication [7]. Catching this significant
problem in the paper-and-pencil proofs clearly indicates the usefulness of using
higher-order-logic theorem proving for conducting information flow analysis.

Our future plans include using this framework and new measures of informa-
tion leakage to study the security properties of various protocols in HOL like the
Dining Cryptographers [2] and Crowds protocols [16].

References

1. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity Protocols as
Noisy Channels. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 281–300. Springer, Heidelberg (2007)

2. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability. Journal of Cryptology 1(1), 65–75 (1988)

134 T. Mhamdi, O. Hasan, and S. Tahar

3. Coble, A.R.: Formalized Information-Theoretic Proofs of Privacy Using the HOL4
Theorem-Prover. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134,
pp. 77–98. Springer, Heidelberg (2008)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience
(1991)

5. Deng, Y., Pang, J., Wu, P.: Measuring Anonymity with Relative Entropy. In: Dim-
itrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS,
vol. 4691, pp. 65–79. Springer, Heidelberg (2007)

6. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68.
Springer, Heidelberg (2003)

7. Gallager, R.G.: Information Theory and Reliable Communication. John Wiley &
Sons, Inc. (1968)

8. Goldberg, R.R.: Methods of Real Analysis. Wiley (1976)
9. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In:

Current Trends in Hardware Verification and Automated Theorem Proving,
pp. 387–439. Springer (1989)

10. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press (1993)

11. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative Analysis with the Prob-
abilistic Model Checker PRISM. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 5–31 (2005)

12. Malacaria, P.: Assessing Security Threats of Looping Constructs. SIGPLAN
Notes 42(1), 225–235 (2007)

13. Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Integra-
tion Theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 387–402. Springer, Heidelberg (2010)

14. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of Entropy Measures in HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 233–248. Springer, Heidelberg (2011)

15. Mhamdi, T., Hasan, O., Tahar, S.: Quantitative Information Flow Analysis in HOL
(2012), http://hvg.ece.concordia.ca/code/hol/information-flow/

16. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Trans-
actions on Information and System Security 1(1), 66–92 (1998)

17. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

18. Serjantov, A., Danezis, G.: Towards an Information Theoretic Metric for
Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482,
pp. 41–53. Springer, Heidelberg (2003)

19. Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

20. Zhu, Y., Bettati, R.: Information Leakage as a Model for Quality of Anonymity
Networks. IEEE Transactions on Parallel and Distributed Systems 20(4), 540–552
(2009)

http://hvg.ece.concordia.ca/code/hol/information-flow/

Modeling and Verification of Probabilistic Actor

Systems Using pRebeca

Mahsa Varshosaz and Ramtin Khosravi

School of Electrical and Computer Engineering,
College of Engineering, University of Tehran, Tehran, Iran

{m.varshosaz,rkhosravi}@ece.ut.ac.ir

Abstract. Quantitative verification has gained an increasing attention
as a promising approach for analysis of systems in various domains, espe-
cially for distributed systems, where the uncertainties of the environment
cause the system to exhibit probabilistic and nondeterministic behavior.
In this paper, we introduce pRebeca, an extension to the high-level actor-
based modeling language Rebeca, that is used to model distributed and
reactive systems with probabilistic and nondeterministic nature. We pro-
pose a simple syntax suitable for describing different aspects of a proba-
bilistic system behavior and provide a formal semantics based on Markov
decision processes. To model check a pRebeca model, it is converted to
a Markov decision process and verified using the PRISM model checker
against PCTL properties. Using a couple of examples, we show how a
probabilistic system can be expressed in pRebeca in a simple way, while
taking advantage of the PRISM model checker features.

Keywords: probabilistic model checking, actor model, pRebeca, Re-
beca.

1 Introduction

As a broad range of computer systems exhibit probabilistic and nondeterministic
behavior, there has been an increasing interest in employing and developing
quantitative verification techniques to analyze and evaluate various properties of
such systems. Distributed systems have been among motivating domains gaining
much attention for application of quantitative techniques. The widespread and
rapid growth of distributed systems such as sensor networks, web-based systems,
etc., make it worth to analyze various quantitative and qualitative properties
about them. As a starting point of analysis, modeling of such systems could
take some effort due to structural and behavioral complexities. Thus, using a
computational model compatible with the domain can effectively reduce this
effort by expressing the concepts and entities of the domain directly. A modeling
language based on the proper computational model, avoids putting extra effort
to model the basic computations by providing proper primitives and level of
abstraction, making the model more readable and maintainable. To this end,
we introduce pRebeca which is an extension to the Rebeca (Reactive Objects

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 135–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

136 M. Varshosaz and R. Khosravi

Language) [1] language. It is a high-level object-based modeling language based
on the actor model, suitable for describing asynchronous distributed systems
with probabilistic behavior.

The actor model is one of the pioneering computing models for concurrent
and asynchronous distributed systems. An actor model consists of a number
of actors, which are the universal primitives in this model, communicating via
asynchronous message passing. Since the introduction of actor as an agent-based
language by Hewitt [2] and its development by Agha [3, 4] to a concurrent object
based language, various interpretations and extensions of this model have been
developed and are widely used in theory and practice [5–7]. Rebeca is an opera-
tional interpretation of actor model in the form of a high-level modeling language
with simple Java-like syntax, formal semantics, and model checking tools which
makes it proper and easy to use especially for asynchronous distributed sys-
tems. In a Rebeca model, rebecs (reactive objects) are actors, communicating
via asynchronous message passing. Each rebec can perform computation on its
local variables, send messages or create new rebecs in response to a received
message.

In spite of widespread use of the actor model in both industry and academia,
there has been little work done on modeling and verification of actor-based
systems with probabilistic features. To the best of our knowledge, pRebeca is
the first actor based modeling language with probabilistic modeling features. The
only related work is PMAUDE [8] which is a specification language not based on
the actor model but implementing actors with distribution probabilities on time
of message passing and computation, without nondeterminism [8]. We extended
Rebeca to make it capable of modeling actor-based systems with probabilistic
and nondeterministic behavior. The simple and easy to learn syntax of pRebeca,
makes it a suitable modeling language in practice. In a nutshell, in this work we
present:

– Support for modeling probabilistic actor systems, via language constructs
for:
• Probabilistic choice between alternative behavior
• Unreliable message passing between actors

– pRebeca syntax as an extension to the Rebeca syntax
– pRebeca model semantics based on Markov decision processes (MDPs)
– A method to model check pRebeca models by means of the PRISM model

checker [9]

To verify pRebeca models, we use a two step method. In the first step pRebeca
model is converted to an MDP by means of the state-space generation engine
of Afra [10], a Rebeca model checker. In the second phase, the resulting MDP
is expressed in the PRISM language and Probabilistic Computation Tree Logic
(PCTL) properties can be checked against it. Hence, modelers using pRebeca
can take advantage of using a high-level modeling language along with using
PRISM features as a powerful model checking tool to verify their models.

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 137

The rest of this paper is organized as follows. Section 2 contains the related
work and some explanation on differentiating points of this work from existing
ones. Some preliminary definitions and concepts are explained in section 3. Sec-
tion 4 consists of explanations of the syntax and semantics of pRebeca. Section
5 presents the method proposed to model checking pRebeca models and also
includes a case study, and the work is concluded in section 6.

2 Related Work

There have been a number of process algebras [11–17], modeling languages, and
model checking tools [9, 18–20] introduced so far to model and model check prob-
abilistic systems. PRISM [9] is a well-known powerful probabilistic model checker
with a guarded-command input language. A PRISM model is composed of reac-
tive modules which can interact with each other. Although PRISM is a powerful
model checker, the PRISM language does not support high-level constructs such
as conditional or loop statements and just has a few primary data types, thus it
is not suitable for high-level modeling of systems. ProbVerus [21] is another prob-
abilistic model checker which is an extension to Verus verifier and implements
symbolic techniques for PCTL model checking. ProbVerus does not support non-
determinism in its models. The ProbVerus language provides constructs such as
assignment, conditional and loop statements and a probabilistic choice as a prob-
abilistic feature and its semantics is based on Markov chains. PMAUDE is a spec-
ification language based on probabilistic rewriting theories with tool support for
discrete event simulation and statistical verification. There is an implementation
of actor modules in PMAUDE, in which the probabilistic distribution of time for
message passing and computation is considered. The nondeterminism have been
removed from the models for the sake of statistical model checking. Probmela
[22] is a variant of Promela modeling language with tool support for quantitative
Linear Temporal Logic (LTL) model checking. There has been also a direct map-
ping from Probmela to PRISM language. The Probmela Language constructs
are close to our work in which there are high-level constructs such as condi-
tionals, loops, probabilistic choices and primitives to model unreliable message
passing.

The main difference of our work with others is that we extended an object
based modeling language which is based on actor model and containing concepts
such as classes and methods in Java-like style. pRebeca provides high-level con-
structs such as loops, conditional statements, assignment and also probabilistic
primitives to model probabilistic choice between alternative behavior and unre-
liable message passing. All these facilities make pRebeca a suitable language for
modeling asynchronous distributed systems. The method that we use for model
checking keeps generated PRISM models in a rational size. This method pre-
vents generation of models with extra overhead which may be resulted by direct
mapping between two languages.

138 M. Varshosaz and R. Khosravi

3 Preliminaries

3.1 Rebeca

Rebeca is a high-level modeling language based on actor model. The behavior of a
Rebeca model is resulted from fairly interleaving of some self contained, reactive
objects running on separate threads. Rebecs communicate only via asynchronous
message passing and they have no shared state. Each rebec has an unbounded
FIFO queue called its message queue to automatically receive messages. In Re-
beca, rebecs are instances of reactive classes.

The structure of a Rebeca model consists of reactive class definitions and a
”main” block. Each reactive class takes an integer value as an upper bound to
its message queue which is used for model checking. There are three main parts
in a reactive class:

– Definition of known rebecs denoting rebecs that can be receivers of the send-
ing messages. Known rebecs define the infrastructure network topology.

– Definition of state variables that can be manipulated along processing of
messages. State variables can be typed as integer, character, boolean or
array.

– Definition of message servers which play the role of methods of the reac-
tive class. The body of a message server contains a set of local variables
and a sequence of statements. Messages in a Rebeca model are calls to mes-
sage servers in the form of r.m(params) where r denotes one of the known
rebecs of the sender, or self in case of sending a message to self. The mes-
sage name m determines the message server of r that should be executed
with the parameter list params. The statements in the body of a message
server can be loops, conditional statements, assignment and (non-blocking)
message send statements. Each rebec should have an initial message server
which is invoked at the beginning of the model running. The execution of
message servers is atomic. Thus, a computation step in a Rebeca model is
the execution of a message server.

The main block in a Rebeca model consist of declaration of rebecs as the in-
stances of reactive classes and binding of the declared rebecs to their known
rebecs. Also, some parameter values can be sent to the initial message server
of each rebec. At the beginning of the running of a model, instances of reactive
classes are made and an invocation to the initial message server of each rebec is
put into its message queue. Then, one of the rebecs is selected nondeterministi-
cally and the message at the head of its queue is popped out and executed and
after that another rebec takes the turn and so on.

3.2 Markov Decision Process

In oreder to explain the semantics of pRebeca based on a Markov decision process
we need to explain some definitions and concepts related to this structure. All
the notations are adopted from [23].

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 139

Definition 1. A distribution function over a set of states S can be denoted by
ρ: S → [0,1] where

∑
s∈S ρ(s)=1. The set of all possible distribution functions

over S is denoted by Distr(S).

Definition 2. A Markov decision process can be defined by a tuple M=(S,Sinit ,
Act, τ ,AP,L) where:

– S is a set of states.
– Sinit is the set of initial states.
– Act is the set of actions.
– τ ⊆ S × Act × Distr(S) is the probabilistic transition relation.
– AP is the set of atomic propositions.
– L ⊆ S × 2AP is the labeling function.

In each state s, transitions take place by first nondeterministically choosing an
action a ∈ Act(s) where Act(s) denotes the set of possible actions in state s.
Then, there is a corresponding transition distribution function which determines
the probability of the transition to other states in S. The transition relation s
→a ρ denotes that ρ is the distribution function in state s by selecting action a
(simply, ρs,a denotes the transition distribution function in state s by selecting

action a). All s
′ ∈ S for which ρ(s

′
)>0 are called a-successors of s. A transition

such as s→a ρ1t denotes that the only a-successor of s is t and the probability
of transition to t is one and this relation can be viewed as s→a t in a Labeled
Transition System.

4 pRebeca

In this section, we explain the syntax and semantics of pRebeca and provide an
example in order to better understand the language constructs.

4.1 Syntax

The syntax of pRebeca is an extension to the syntax of the Rebeca language.
In order to provide a concise syntax, we investigated possible probabilistic as-
pects that could exist in an actor based system. In the actor model, actors are
executed independently and communicate just via asynchronous message pass-
ing. Thus, the probabilistic features in the actor model can be considered as
follows:

– An actor can exhibit different alternative behaviors with some probability.
Such as a node in the network which can behave differently in each of the
safe or failure states.

– Messages can be lost being sent via unreliable communication media. Unreli-
ability is a usual feature of communication media in the real world networks
that should be considered in modeling.

140 M. Varshosaz and R. Khosravi

To address the mentioned probabilistic features, we extended the Rebeca syntax
by adding the following features.

– Probabilistic alternative behavior:
pAlt{
prob(p1):{statement;∗}
...
prob(pn):{statement;∗}
}
where pi ∈ [0,1], i ∈ {1,..., n}.

A pAlt statement denotes probabilistic choice between alternative behav-
ior. In a pAlt structure, each block of statements may be executed by the
mentioned probabilities. If the sum of the probabilities is less than one, the
remaining probability indicates doing nothing with probability pdefault=1-∑n

i=1 pi. As an example, with execution of the following structure:
pAlt {prob(0.3): {x=x+1} prob(0.6): {x=x-1;}}, the value of x may be
incremented by one with probability 0.3 or it would be decremented by one
with probability 0.6 and remain unchanged with probability 0.1.

– Probabilistic assignment:
x=?(p1:v1,. . . , pn:vn), where p1+. . .+pn=1 and v1,..., vn are possible values
for the variable x.

A probabilistic assignment denotes assigning values v1,. . ., vn to x by
respective probabilities p1,. . ., pn. As an example, the statement x=?(0.2:5,
0.8:2); assigns values 5 and 2 to x with probabilities 0.2 and 0.8 respectively.
This primitive can be implemented by means of a pAlt construct but is
included for the sake of simplicity, as a syntactic sugar.

– Probabilistic message sending:
r.m() probloss(p)

This statement denotes sending messages with loss probability of p. This
feature is added in order to model unreliable communications. As an ex-
ample, the execution of r.m()probloss(0.2) may result in adding a message
to the message queue of rebec r with probability 0.8 and no changes would
happen with probability 0.2.

The grammar of pRebeca is presented in Figure 1. Complete explanations on
the syntax of the Rebeca language can be found in [1].

As client-server architecture is one of the common architectures used for dis-
tributed systems, we choose an unreliable client server system as a running
example. In this model, there are two reactive classes Client and Server. Three
instances of Client and one instance of Server are declared. All clients can send
requests to the server and do not communicate directly. Instances of Server
have two operating modes: safe mode in which the server exhibits its expected
functionality and failure mode in which the server is unable to respond to the
requests correctly. A client exhibits probabilistic behavior in the way that it

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 141

Model::= reactiveClass∗ Main
reactiveClass::= reactiveclass C(I){knownRebecs stateVars msgSrv∗}
Main::= {rebecDcl∗}
knownRebecs::= knownrebecs{krDcl∗}
msgSrv::= msgsrv(<T v>∗){stmt∗}
stateVars::= statevars{varDcl∗}
varDcl::= T <v>+;
krDCL::= C c;
stmt::= v=e;|r=new C(<e>∗);| call;| conditional| pAlt| pAssignment
call::= r.M(<e>∗)|r.M(<e>∗)lossprob(p)
conditinal::= if(e){stmt+}| if(e){stmt+} else{stmt+}
rebecDcl::= C r(<r>∗):(<c>∗);
pAlt::= pAlt{prob(p1){stmt+ },..., prob(pn){stmt+}}
pAssignment::= v=?(<pi:c>

+);

Fig. 1. BNF grammar for pRebeca language. Superscript + denotes repetition of one
or more times and superscript * denotes zero or more times repetition. Using angle
brackets with repetition denotes comma separated lists. The Symbols C, T, I, v, c,
r, m, and e denote reactive class, type, constant, variable, class name, rebec, message
server, and expression respectively. Expressions in pRebeca are the same as expressions
in Java.

chooses one of the existing client identifiers probabilistically and then, sends a
message containing the selected id to the server. The number of repetitions of
this message sending is determined via another probabilistic choice. Clients ig-
nore the received messages which have different receiver ids. The server checks
the id in the message and if in safe mode, sends the message to the corresponding
id. If it is in the failure mode, it either ignores the message or sends it to a wrong
client. The communication media in this system is lossy. This example does not
describe any specific and realistic system and is just used for the sake of better
representing the syntax and semantics of the language. The pRebeca model of
unreliable client-server system is presented in Figure 2.

4.2 Semantics

Before explaining the semantics of a pRebeca model we need to define some
notations and basic given sets.
In a pRebeca model P , we assume to have the following sets.

– IdP is the set of rebec identifiers.
– V alP is the set of all possible values for all state variables.
– MSP is the set of all message servers in the model.

142 M. Varshosaz and R. Khosravi

1 reactiveclass Server() {
2 knownrebecs { Client cl1,cl2,cl3; }
3 statevars { boolean mode; }
4 msgsrv initial() {}
5 msgsrv takeRequest(int Id) {
6 mode=false;
7 pAlt{
8 prob(0.7){ //server in safe mode
9 mode=true;
10 if(Id==1)
11 cl1.receive(Id)probloss(0.3);
12 if(Id==2)
13 cl2.receive(Id)probloss(0.2);
14 if(Id==3)
15 cl3.receive(Id) probloss(0.4);}
16 prob(0.2){ //server in failure mode
17 if(Id==1){
18 cl2.receive(Id)probloss(0.2);
19 cl3.receive(Id)probloss(0.4);}
20 if(Id==2){
21 cl1.receive(Id)probloss(0.3);
22 cl3.receive(Id)probloss(0.4);}
23 if(Id==3){
24 cl1.receive(Id) probloss(0.3);
25 cl2.receive(Id) probloss(0.2);}
26 }
27 }
28 }
29 main{
30 Server Server1(client1,client2,client3):();
31 Client client1(server1):(1,2,3);
32 Client client2(server1):(2,1,3);
33 Client client3(server1):(3,2,1);
34 }

1’ reactiveclass Client() {
2’ knownrebecs {Server mServer;}
3’ statevars {
4’ int rand,Id1,Id2,myId,rep;
5’ boolean ignore;}
6’ msgsrv initial(int m,int n,int k){
7’ myId = m;
8’ Id1 = n;
9’ Id2 = k;
10’ self.send();
11’ }

12’ msgsrv send() {
13’ rand=?(0.3:Id1,0.7:Id2)
14’ rep=?(0.5:1,0.5:2)
15’ while(rep>0)
16’ {
17’ mServer.takeRequest(rand)

probloss(0.2);
18’ rep−−;
19’ }
20’ self.send();
21’ }
22’ msgsrv receive(int recId){
23’ If(recId!=myId)
24’ ignore=true;
25’ }
26’ }

Fig. 2. The pRebeca model of unreliable client-server system

We formalize the structure and state of a rebec in a pRebeca model P , as follows:

Definition 3. The structure of a rebec, ri (where ri ∈ IdP), can be described
by a tuple (SVi, KRi, MSi) where:

– SVi is the set of the state variables of ri.
– KRi is the set of the known rebecs of ri.
– MSi is the set of the message servers in ri.

Definition 4. The structure of a message received by rebec ri can be formalized
by a tuple Msg=(senderId, M) where:

– senderId ∈ IdP .
– M ∈ MSi.

We denote the message queue of rebec ri by qi and define the following functions
for a message queue:

Definition 5. head(qi) denotes the message at the head of message queue qi.
append(qi, msg) denotes adding msg to the end of message queue qi.

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 143

Definition 6. The state of a rebec ri, can be defined by means of an evaluation
function si: SVi → V alP . The function si determines the value of each state
variable in ri at the current state.

We separate the contents of the message queue of a rebec from its state for
the sake of better matching and explaining the semantics based on an MDP
structure. Hence, we define an evaluation function determining the content of
the message queues in the model.

Definition 7. The message queue evaluation function is defined as the function
ζ:(

⋃
qi) → (IdP × MSP)

∗ where qi denotes the message queue of ri and (IdP
× MSP)

∗ denotes all possible sequences of messages in a message queue.

The operational semantics of a pRebeca model is based on an MDP in which,
each state is a combination of the states of the rebecs included in the model and
the message queue evaluation function. The transitions in this MDP can take
place by first, nondeterministic selection of one of the rebecs with nonempty
message queue and popping out the first message which determines the action
of the transition, and then, a distribution function corresponding to the action
determines the probability of transitions to the succeeding states.

Definition 8. The operational semantics of a pRebeca model, P with n rebecs,
can be defined as an MDP MP=(SP , S0P , ActP , τP , APP , LP) where:

– SP is the set of states where each state is a tuple of the form:

(s1, ..., sn, ζ) (1)

where si denotes the state of rebec i and ζ is the evaluation function of
message queues.

– S0P is the initial state where all rebecs are in their initial states sinit i. In
the initial state of each rebec, all the state variables have their initial values
and the only message in each rebec’s message queue is an initial message.

– ActP ⊆ IdP × MSP is the set of actions in MP which is the set of all
possible messages that can be sent in P .

– APP is the set of atomic propositions which is a subset of IdP × (
⋃
SVi).

We consider the Boolean-valued variables of the rebecs as labels. The atomic
proposition (ri, v) corresponds to variable v of rebec ri.

– LP is the labeling function SM → 2APP , which assigns the variables with
true value to the states.

– τP ∈ SP × ACTP × Dist(SP) is the set of transitions in MP . A transition
in M is defined by:

head(qi) = ai
(s1, ..., sn, ζ)→ai υ

(2)

where si is the state of rebec ri and ai is an invocation of one of the message
servers of rebec ri. This formula denotes the nondeterministic selection of
action ai at state (s1,..., sn, ζ). the function υ is the distribution function de-
termining the probability of transition to the ai-successors of state (s1,..., sn,

144 M. Varshosaz and R. Khosravi

ζ). The probability of transitions is determined from the effect of statements
in the body of the corresponding message server (as will be described shortly).

Processing action ai can only make changes to the state of rebec ri and also can
change the contents of the message queues in the model. As in a pRebeca model
a message is an invocation of a message server and the execution of message
servers is atomic we need to specify the effect of each statement separately and
afterwards the effect of executing a sequence of statements.
Assignment, conditional statements and loop statements have the same meaning
as in Rebeca and a complete explanation of the semantics of these statements can
be found in [1]. Thus, we continue with explaining the semantics of probabilistic
primitives of the pRebeca language only. As said before, processing a message
by rebec ri only affects si and ζ. Hence, in the following we restrict our notation
to rebec ri only. To be more precise, all of the notations defined bellow must be
subscripted by i, but we drop the subscript to make it more readable.

Definition 9. The set of local states combined with the message queues is de-
fined as IState= (SVi → ValP) × (

⋃
qi → (IdP × MSP)

∗).
For σ=(s × ζ) ∈ IState, s denotes the state of ri and ζ is the contents of the
queues.

Definition 10. A distribution function specifying the probability of transition
to the successor IStates can be defined as: ϕ: IState→[0,1].

In order to recursively compute the probabilities of transitions from an IState
after the execution of a sequence of statements, we need to define the sum of
two distribution functions in the case that equal IStates are generated from
different paths of computations which may be a result of different combination
of probabilistic choices during the execution of probabilistic statements.

Definition 11. If ϕ={σ1
→ p1,..., σk
→ pk} and ϕ
′
={σ′

1
→ p
′
1,..., σ

′
k
→ p

′
k}

be two distribution functions over IStates, then sum of the functions is defined
as:
ϕ+ϕ

′
={σ
→ p | σ ∈ {σ1,..., σk}

⋃
{σ′

1,..., σ
′
k}}

where p=ϕ(σ)+ϕ
′
(σ)

TotalProb , TotalProb=
∑

p , p ∈ {p1,..., pk, p
′
1,..., p

′
k}. We assume

ϕ(σj)=0 for σj which is not in the domain of ϕ and ϕ
′
(σj)=0 for σj which is

not in the domain of ϕ
′
. We also use the notation:

∑n
j=1 ϕj=ϕ1+...+ϕn.

We also define the scalar product of a probability p ∈ [0,1] in a distribution
function as follows:

Definition 12. If ϕ={σ1
→ p1,..., σk
→ pk} and p ∈ [0,1] then p.ϕ={σ1
→
p.p1,..., σk
→ p.pk}.

Definition 13. The effect of a statement stmt on an IState σ is defined by
means of the function Effect: IState × stmt→ (IState→ [0,1]). In fact, Effect(σ,
stmt)=(σ1 → p1,..., σk → pk) where σi is one of the possible successors of σ
with transition probability pi.

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 145

Definition 14. The effect of a sequence of statements is defined by Effect(σ,
stmt;stmtlist)=

∑
pj.Effect(σj , stmtlist), 1 ≤ j ≤ k, where Effect(σ, stmt)=(σ1

→ p1,..., σk
→ pk) and stmtlist::= stmt | stmt;stmtlist denotes a sequence of
statements.

Now we define the effect of the probabilistic statements in pRebeca model:

– Effect(σ, pAlt{ prob(p1): {stmtlist1},..., prob(pn): {stmtlistn}})=∑
pj .Effect(σ, stmtlistj).

– Effect(σ,x=?(p1: v1,..., pn : vn))=(σ[x:=v1]
→ p1,..., σ[x:=vn]
→ pn) where
σ[x:=vi] denotes a successor state of σ in which the value of the state vari-
able x is changed to vi .

– Effect(σ, ri .m()probloss(p))=(σ[qi=append(qi , m())]
→ (1-p), σ
→ p)
where σ[qi=append(qi , m())] denotes the state which differs from σ only in
the contents of message queue qi where a new message m is added to the
end of the message queue.

Now we can explain the transition relation in the mentioned MDP. In transition
(s1 ,..., sn ,ζ)→ai υ where rebec ri processes message ai , we have:

-υ(s
′
1 ,..., s

′
n , ζ

′
)=0 for the states where s

′
j �= sj for i �= j.

-υ(s
′
1 ,..., s

′
n , ζ

′
)=Effect(σ, Body(ai)) where s

′
j = sj for i �= j.

where σ=(si , ζ) and Body(ai) denotes the sequence of statements of the message
server invoked by ai .

5 Model Checking pRebeca

In this section, we explain our method for model checking pRebeca models. We
chose PRISM as the model checker for pRebeca models since it is a powerful tool
supporting analysis of models based on MDPs and other Markovian structures.
We consider two different methods to analyze pRebeca models by means of
PRISM. The first is the direct mapping of pRebeca models to PRISM models
which is very complicated since the PRISM modeling language does not support
most of the required high level constructs both in data and control aspects.
There are many entities in a pRebeca model that can not be easily implemented
in the PRISM language such as message queues and loops.

The PRISM language does not support array data type. Thus we need to
model a message queue by defining a number of variables which model the loca-
tions of the queue and a variable to keep the number of messages in the queue.
Popping out a message from a message queue in pRebeca which is automatically

146 M. Varshosaz and R. Khosravi

done can be modeled in PRISM by shifting the value of all variables towards
the head and update the value of variable that keeps the number of filled ele-
ments. This part of code should be rewritten for different possible number of
messages in a message queue. Besides, there is another problem with keeping
parameters that can be sent through a message because there is no support for
data structures in PRISM. There would be similar problems in implementing
other high level constructs of pRebeca by PRISM language. The direct map-
ping as explained above may require to define a large number of variables which
may cause extraordinary growth in model size and makes the model checking
impossible.

As the direct mapping of pRebeca models to PRISM models would be over-
bearing and may cause extraordinary growth in model size and makes the model
checking impossible we provided a two step method which makes significantly
less overhead. This method has two main steps that can be explained as follows:

1. The pRebeca model is converted to an MDP using state space engine of Afra
which is a Rebeca model checker.

2. The generated MDP is converted to a PRISM model.

The result of the first step is an MDP which contains the states, transitions, and
the probability of each transition. Before explaining the description of an MDP
by means of the PRISM language, we give a brief explanation about PRISM
language. A command in the PRISM language is in the form:
[]guard → prob1 : update1 + ... + probn : updaten ;

If the guard holds, each one of the updates may take place by the correspond-
ing probability. If the guards of two or more commands hold simultaneously, one
of them is executed nondeterministically.

In order to describe an MDP structure in PRISM, we assign each state of the
MDP a number and the probability of transitions would be the corresponding
probabilities with update parts. An update is the change of current state number
which shows transition to another state. Figure 3 represents the transformation
of a part of the state space of our running example, generated by Afra, in the
form of an MDP and the corresponding PRISM specification. Using this method
based on our experience has less overhead and keeps the size of the resulting
models in an acceptable order to be checked by PRISM.

5.1 Case Study

We choose asynchronous leader election algorithm based on [24] as a case study.
Leader election is one of the well-known algorithms used in distributed systems.
In this variant of the algorithm, the nodes do not have any identifiers and are
identical, spread over a network. In our case study, the network has ring topology,
however the network topology can be easily changed by making a few changes
to known rebecs part. Each node has a left and a right neighbour and only sends

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 147

Fig. 3. Transforming pRebeca transitions (top-left) to PRISM specification (top-right)
based on the equivalent MDP (bottom)

messages to its right neighbour. There are two modes for each node, active and
inactive. At the beginning, all nodes are active. To elect a leader at the starting
point, each node flips a coin and sends the result to its right neighbour. If a
node has a head (denoted by false) in flipping coin and its left neighbour gets
tail (denoted by true) it becomes inactive, and it repeats the process otherwise.
An inactive node can only pass messages it receives to its right neighbour. Nodes
initially have the number of active nodes and in the case that a node becomes
inactive, it decreases the number of active nodes by one. The number of active
nodes will be passed through messages making it possible for nodes to update
their local information. The execution will continue until the number of active
nodes equals 1. The pRebeca code of leader election protocol is presented in
Figure 4.

We have modeled this system for 3, 4 and 5 nodes and the resulting PRISM
models have the proper size to be checked by the PRISM model checker. We
have model checked some PCTL properties such as the maximum probability of
electing a leader in 2N rounds where N is the number of nodes and the maximum
probability of finally electing a leader. We have also analyzed a number of well-
known protocols and algorithms such as randomized dinning philosophers (with
6 philosophers) and IPV4 zeroconf protocol and the time/space consumption of
model checking was reasonable.

148 M. Varshosaz and R. Khosravi

1 reactiveclass Node() {
2 knownrebecs {
3 Node rNeighbour;
5 }
6 statevars {
7 boolean leader;
8 int nActive;
9 boolean active;
10 boolean x;
11 }
12 msgsrv initial(int num) {
13 nActive=num;
14 active=true;
15 leader=false;
16 self.flip();
17 }
18 msgsrv flip() { //flipping the coin and sending result to right neighbour
19 x=?(0.5:false,0.5:true);
20 rNeighbour.elect(x,nActive);
21 }
22 msgsrv elect(boolean i,int n) {
23 if(active==true){
24 if(nActive==1){
25 leader=true;
26 rNeighbour.leaderElected()
27 }
28 else{
29 if(nActive>n) //updating the number of active nodes if needed
30 nActive=n;
31 if(x==false ∧ i==true){
32 active=false;
33 nActive−−;
34 }
35 else{
36 self.flip();
37 }
38 }
39 }
40 else{ //just passing received messages in case of being inactive
41 rNeighbour.elect(i,n);
42 }
43 }
44 msgsrv leaderElected(){
45 if(leader==false){ //informing right neighbours that a leader has been elected
46 active=false
47 rNeighbour.leaderElected();
48 }
49 }
50 }
51 main{ //declaration of rebecs and passing the number of rebecs to initial message servers
52 Node n0(n1):(3); //the number of nodes is passed to initial message servers
53 Node n1(n2):(3);
54 Node n2(n0):(3);
55 }

Fig. 4. The pRebeca model of randomized leader election

Modeling and Verification of Probabilistic Actor Systems Using pRebeca 149

6 Conclusion and Future Work

In this paper, we presented pRebeca, an extension to an object-based high-
level modeling language based on actor model, which is suitable for modeling
asynchronous distributed systems. We proposed the syntax of pRebeca which
is an extension of the Rebeca syntax and also provided the semantics of this
language based on MDPs. A two step method was presented to model check
pRebeca models by means of the well-known probabilistic model checker PRISM.
Using the proposed approach, the modeler of a probabilistic distributed system
can effectively model the system in a high-level, readable, and maintainable
language. These benefits all come from the object encapsulation and elegant
concurrency paradigm in actor model, as well as familiar, high-level Java-like
syntax of Rebeca. Our effective way to generate PRISM models from pRebeca
enables to have the mentioned benefits, while using a powerful model checking
engine like PRISM. Although our method reduces the complexity of converting
pRebeca model to a proper input model described by the PRISM language, we
are planning to develop methods and tools to better and more efficiently analyze
pRebeca models.

References

1. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inf. 63(4), 385–410 (2004)

2. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot. MIT Artificial
Intelligence Technical Report 258, Department of Computer Science. MIT (April
1972)

3. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

4. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. Journal of Functional Programming 7, 1–72 (1998)

5. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform:
a comparative analysis. In: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, PPPJ 2009, pp. 11–20. ACM,
New York (2009)

6. Hewitt, C.: Orgs for scalable, robust, privacy-friendly client cloud computing. IEEE
Internet Computing 12(5), 96–99 (2008)

7. Hewitt, C.: Actorscript(tm): Industrial strength integration of local and nonlocal
concurrency for client-cloud computing. CoRR abs/0907.3330 (2009)

8. Agha, G., Meseguer, J., Sen, K.: Pmaude: Rewrite-based specification language for
probabilistic object systems. Electron. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

10. Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., Sirjani, M.:
Sysfier: Actor-based formal verification of systemc. ACM Trans. Embed. Comput.
Syst. 10(2), 19:1–19:35 (2011)

150 M. Varshosaz and R. Khosravi

11. Baier, C., Kwiatkowska, M.Z.: Domain equations for probabilistic processes. Electr.
Notes Theor. Comput. Sci. 7, 34–54 (1997)

12. den Hartog, J., de Vink, E.P.: Mixing up nondeterminism and probability: a pre-
liminary report. Electr. Notes Theor. Comput. Sci. 22, 88–110 (1999)

13. Hansson, H.A.: Time and Probability in Formal Design of Distributed Systems.
Elsevier Science Inc., New York (1994)

14. Larsen, K.G., Skou, A.: Compositional Verification of Probabilistic Processes. In:
Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 456–471. Springer,
Heidelberg (1992)

15. Lowe, G.: Probabilistic and prioritized models of timed csp. Theor. Comput.
Sci. 138(2), 315–352 (1995)

16. Penczek, W., Sza�las, A. (eds.): MFCS 1996. LNCS, vol. 1113. Springer, Heidelberg
(1996)

17. Tofts, C.: A Synchronous Calculus of Relative Frequency. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 467–480. Springer, Heidelberg
(1990)

18. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. 3rd International Conference on Quantitative
Evaluation of Systems (QEST 2006), pp. 131–132. IEEE CS Press (2006)

19. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and
Outs of The Probabilistic Model Checker MRMC. In: Quantitative Evaluation of
Systems (QEST), pp. 167–176. IEEE Computer Society (2009),
www.mrmc-tool.org

20. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: Modest: A com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006)

21. Katoen, J.-P. (ed.): ARTS 1999. LNCS, vol. 1601. Springer, Heidelberg (1999)
22. Proceedings of the 2nd ACM & IEEE International Conference on Formal Methods

and Models for Co-Design (MEMOCODE 2004), San Diego, California, USA, June
23-25. IEEE (2004)

23. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind
Series. The MIT Press (2008)

24. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1) (1990)

www.mrmc-tool.org

Modular Verification of OO Programs with Interfaces∗

Qiu Zongyan1,2, Hong Ali1, and Liu Yijing1

1 LMAM and Department of Informatics, School of Math., Peking University, China
2 State Key Laboratory of Computer Science, ISCAS, China
{qzy,hongali,liuyijing}@math.pku.edu.cn

Abstract. Interface types in OO languages support polymorphism, abstraction
and information hiding by separating interfaces from their implementations. The
separation enhances modularity of programs, however, it causes also challenges
to the formal verification. Here we present a study on interface types, and develop
a specification and verification theory based on our former VeriJ framework. We
support multi-specifications for classes inherited from interfaces and the super-
class, and keep the verification modularly without re-touching the verified code.
The concepts developed in VeriJ, namely the abstract specification and specifica-
tion predicate, play important roles in this extension, and thus are proved widely
useful and very natural in the formal proofs of OO programs.

1 Introduction

The reliability and correctness for software systems attract more and more attentions,
because faults in an important system may cause serious damages or even loss of life.
Object-Oriented (OO) techniques are widely used in software practice, and thus the
useful techniques supporting high-quality OO development are really demanded, e.g.,
the formal verification techniques. Core OO features, saying modularity, encapsulation,
inheritance, polymorphism, etc., enhance scalability of programs greatly in practice,
but they bring also challenges to formal verification. Encapsulation implies information
hiding and invisible (and replaceable) implementation details; polymorphism enables
dynamically determined behaviors. Both cause difficulties to the verification.

Separating the interface from implementation is one of the most important tech-
niques in OO development. With this separation, clients can use objects of different
types via a common interface, and call methods determined by concrete types of the
objects. It enables low coupling of clients from implementations, and makes the sys-
tem easy to modify and extend. The technique is used widely, e.g., it appears in many
design patterns [6]. To support this important technique, many OO languages, notably
Java and C#, offer special features. In languages without direct support, various fea-
tures to mimic interfaces are available. To verify OO programs with interfaces raises
new challenges. We need to define formally the roles played by interfaces, and make
clear not only relations among them, but also their relations with classes. We should
develop ways for verifying client code which uses objects via variables of interface
types. Note that interfaces provide only method declarations without implementations.

∗ Supported by NNSF of China, Grant No. 90718002 and 61100061.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 151–166, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 Z. Qiu, A. Hong , and Y. Liu

How to specify these methods independently for verification makes a new challenge. In
addition, we want modular verification: neither re-verifying class implementations, nor
touching implementation details of the classes in verifying client code.

Behavioral subtyping [13] is one of the most important concepts in OO world, a cor-
nerstone in OO practice, and a crucial element of many formal works for OO, e.g. [2,9].
An OO program obeying behavioral subtyping gives good support to reason it modu-
larly, because it demands that an object of a subtype behaves the same when it is used
in a context where a supertype object is required. However, when multiple interfaces
present, how can we define behavioral subtyping without implementations?

Many concepts have been proposed for the verification in OO area, e.g., model
field/abstract field [3,11,14], data group [12], and pure methods [17], etc. Verifying OO
programs with interfaces is also studied in some work, e.g. [16,14,7,2,5]. [16] integrated
interface types and proposed some techniques which inspired many later research. The
work on JML and Spec# [7,2] introduced specifications for interface types with data
abstraction to some extent, ensured behavioral subtyping and developed some verifica-
tion tools. However, these early work have some weak points. For example, as pointed
by [15], none of them addresses the inheritance in a satisfactory way, because they ei-
ther restrict behaviors of subclasses, or require re-verification of inherited methods. In
addition, mutable object structures are largely neglected. To remedy the situation, [15,4]
provided similar ideas by suggesting dual specifications for a method, where the static
one describes its detailed behavior for verifying implementation, and the dynamic one
supports verifying dynamically bound invocations. However, this dual is not necessary,
and our VeriJ framework [18] can handle the problem where only one specification for
each method is provided.

To develop a verification framework for OO languages with interface types is the
goal of this study. It seems not easy to extend the dual specification approaches to cover
interface types, because interfaces do not have behaviors, neither static nor dynamic.
Our VeriJ framework is based on abstract specifications and specification predicates,
while the former supports specifying method behavior on a suitable abstract level, and
the latter serves to connect the specification with concrete implementations. Based on
these concepts, we develop a framework which seems very satisfactory.

Our main contributions are: (1) we give a deep analysis for interface types when the
verification is the goal; (2) we define a framework to support abstract specification for
interface-based information hiding and encapsulation. We show that the specification
predicates are natural in connecting abstract specification with implementation details,
and supporting modular verification of different implementing classes under an inter-
face; (3) we propose a general model for dealing with multi-inheritance of specifica-
tions, and inference rules for proving the implementation and client code modularly;
(4) we develop some examples to show the power and usefulness of our framework.
To our limited knowledge, this is the first framework which can avoid reverification of
method bodies in a language with rich OO features and interface types.

In Section 2, we discuss key situations that a useful theoretical work for interface
types must address. We introduce briefly our assertion language and VeriJ in Section 3,
and define its verification framework in Section 4. We illustrate our ideas for modular
specification and verification by an example in Section 5. Then we conclude.

Modular Verification of OO Programs with Interfaces 153

inter I1 { T1 m(..); T2 f(..); } inter I2 { T1 m(..); T3 g(..); }
class B : Object { T1 m(..){. . .} T3 g(..){. . .} T4 h(..){. . .} T5 k(..){. . .} }
class D : B � I1, I2 { T1 m(..){. . .} T2 f(..){. . .} T5 k(..){. . .} T6 n(..){. . .} }
class E : Object� I1 { T1 m(..){. . .} T2 f(..){. . .} T7 p(..){. . .} }

Fig. 1. A Program with Interfaces

2 Interfaces and Verification: Basics

To give some ideas for the problem, code in Fig. 1 is used in the discussion. The basic
language we use is similar to Java or JML with some abbreviations for saving space.
We will present some issues related to the specification and verification of OO programs
with interfaces. We take “type” as a generic word for either a class or an interface.

Here we declare two interfaces I1 and I2, while each declares some method proto-
types. Different interfaces may declare methods with the same name, e.g. m here. Here
are also three classes. B takes Object as its superclass and defines some methods. It
implements neither I1 nor I2. Class D is defined as B’s subclass, which inherits g, h
from B, overrides m, k of B, and defines f and n itself. In addition, D implements
both I1 and I2, thus it must implement (and has implemented) all methods declared
in I1 and I2. There are some interesting phenomena: D implements f of I1 itself, but
inherits g from B to implement g of I2. The situation for method m is more complex.
Here both interfaces declare a method prototype with name m, in addition, a method
with the same name is defined in B too. In D, a new definition overrides m in B and
implements the m in both I1 and I2. At last, another class E implements also I1.

We think that an interface defines a type, while a class defines a type with an imple-
mentation. When a class implements some interfaces or inherits a superclass, it defines
a subtype of them. To simplify the discussion, we assume that data fields in classes are
all protected, and thus are not visible out of their classes. Under this assumption, a type
is just a set of methods with signatures. We must have some type-related constraints.
As in Java, when a class implements an interface I , it must provide all implementations
for the methods declared in I , by either defining in itself or inheriting from its super-
class. When a class implements several interfaces, a method with multiple declarations
in these interfaces and/or the superclass must have the same signature, e.g. m in our
example code. Constraints like these should be checked to ensure well-formedness. In
the following, we suppose all programs under discussion to be well-formed.

For verification, we need specifications for methods. Assuming method m in D has
specification π

D
, we need to prove that the implementation of m in D satisfies π

D
.

In addition, we should support verifications of client code which calls methods. For
example, here we may need to verify programs as:

I1 x = newD(..); I2 y = (D)x; . . . x.m(..); y.m(..); (1)

Here a D object is created and assigned to variable x of type I1, and then to variable y
of type I2. Afterward, methodm is called from x and y respectively, where theD object
is used from variables of types I1 and I2. To verify the code, we hope to only consult

154 Z. Qiu, A. Hong , and Y. Liu

information for m in I1 or I2, but neither its implementation nor its specification in D.
This restriction is clear, because there may be another creation, e.g.,

I1 z = newE(..); x = (E)z;

and then the control may go to the same call statement from x in (1). This means that
methods in interfaces must go with their specifications to support verification of client
code as (1). The method declarations in interfaces have no body, thus their specifica-
tions must be abstract and say nothing about the implementation.

We extend method declarations and definitions in interfaces/classes as follows:

T1 m(..) 〈ϕ〉〈ψ〉; T1 m(..) 〈ϕ〉〈ψ〉 { . . . }

Here ϕ and ψ are the pre/post conditions ofm, which are specified by requires and en-
sures clauses in JML/SPEC# respectively. For interfaces, we need to specify a method
based on its calling object, parameters and return only, because no body here.

To support modular verification, a class C should be not only a behavioral subtype
of its superclass, but also a behavioral subtype of its implementing interfaces, because
C objects may be used via variables of any of C’s supertypes. In our example, D must
be a behavioral subtype of B, I1 and I2. Suppose the specifications of m in I1, I2,
and B are π1, π2, and πB respectively, then we must prove that m’s implementation in
D satisfies these three specifications. As a simplification, we may prove some correct
relations between π

D
with each of π1, π2, and π

B
.

If a method is explicitly specified, its specification is obvious. We support specifica-
tion inheritance in our framework as in JML and Spec#. This means, when a method
is not explicitly specified, its specification is inherited from its supertype(s). Because
one class can have more than one supertypes (some interfaces and one superclass), a
method may inherit several specifications. For example, if m in D is not explicitly
specified, then it inherits specifications π1, π2, and πB . In this case, we take its spec-
ification as a set {π1, π2, πB

}. Then we should define how a method body satisfies a
specification as this, and how this specification is used in verifying client code.

Here we have provided an outline for the problems when we think about the verifica-
tion of OO programs with interfaces. Based on our previous work VeriJ [18], with the
concepts of abstract specification and specification predications, we develop a modular
verification framework for these OO programs.

3 VeriJ: An OO Language with Specifications

Now we introduce our specification and programming language used in the work.
In [19] we developed OO Separation Logic (OOSL) for describing OO states and

reasoning about programs. We use it as the assertion language in this work. Here we
give a short introduction to OOSL. Readers can refer [19] to find more details.

OOSL is similar to the Separation Logic with some revisions:

ρ ::= true | false | r1 = r2 | r : T | r <: T | v = r
η ::= emp | r1.a
→ r2 | obj(r, T)
ψ ::= ρ | η | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ ⇒ ψ | ψ ∗ ψ | ψ—∗ψ | ∃r · ψ | ∀r · ψ

Modular Verification of OO Programs with Interfaces 155

v ::= this | x
e ::= true | false | null | v | d | e� e
b ::= true | false | e < e | e > e

| e = e | ¬b | b ∨ b | b ∧ b
c ::= skip | x := e | v.a := e | x := v.a | x := (C)v

| x := v.m(e) | x := newC(e) | return e
| c; c | if b c else c | while b c

T ::= Bool | Object | Int | C | I
π ::= 〈ϕ〉〈ψ〉

M ::= T ′ m(T1 z)
P ::= def [pub] p(this, x)

L ::= inter I [: J] {P ; M [π];}
K ::= class C : B [�I] {

[pub] T a; P : ψ;

C(T1 z) [π] {T2 y ; c}
M [π] {T2 y ; c} }

G ::= (K | L) | (K | L) G

Fig. 2. Syntax of VeriJ

where T is a type, v a variable or constant, r1, r2 references, ψ an assertion:

– ρ denotes assertions which are independent of heaps. For any references r1 and r2,
r1 = r2 iff r1 and r2 are identical. r : T means that r refers to an object with exact
type T . r <: T means that r refers to an object of T or one of its subtypes. And
v = r asserts that the value of variable or constant v is r.

– η denotes assertions involving heaps: emp asserts an empty heap; the singleton
assertion r1.a
→ r2 means that the heap is exact a field a of an object (denoted by
r1) holding value r2; obj(r, T) means that the heap is exact an entire object of type
T , which r refers to. Because the existence of empty objects in OO, we cannot use
r.a
→- or r.a ↪→- to assert the existence of objects in heaps.

– ∗ and —∗ are from Separation Logic: ψ1 ∗ ψ2 means the heap can be split into two
parts, where ψ1 and ψ2 hold on each part respectively; ψ1 —∗ψ2 means that if a
heap satisfying ψ1 is added to the heap, the whole heap satisfies ψ2.

We allow user-defined predicates to extend vocabulary of the assertion language. A
predicate definition takes the form p(x) : ψ, where p is a symbol (predicate name), x
are its formal parameters, and ψ is the body which is an assertion correlated with x.
Recursive definitions are allowed. In fact, the recursive predicates are indispensable to
support specification and verification of programs involving recursive data structures,
e.g., lists, trees, etc. Having a definition for symbol p, expression p(e) can be used as a
basic assertion. We use Ψ to denote the set of OOSL assertions.

We use ψ[v/x] (or ψ[r/x], ψ[r1/r2]) to denote substitutions. We treat r = v the
same as v = r, and define v.a
→ r (which is not a basic assertion here) as ∃r′ · (v =
r′ ∧ r′.a
→ r). Some common abbreviations are:

r.a
→- = ∃r′ · r.a
→ r′ r.a ↪→ r′ = r.a
→ r′ ∗ true

We use type(r) to denote type of the object which r refers to. Sometimes we need it.
In [19] we defined the semantics for OOSL and proved that most axioms and infer-

ence rules for Separation Logic are also correct in OOSL. In practice, we often need
to add some mathematical concepts into OOSL, such as relation, set, sequence, etc., to
enhance its expressiveness. Such extensions are orthogonal with the core.

We use in this work a small OO language VeriJ which is an extension of a subset
of Java with essential OO features. It integrates features of interface, specification and
verification with the syntax given in Fig. 2, where:

156 Z. Qiu, A. Hong , and Y. Liu

– C and I are class and interface names, respectively. pub is used to announce that
a date field or predicate is publicly accessible. Mutation, field accessing, casting,
method invocation, and object creation are all taken as special assignments.

– We can have a specification π for a constructor or method in a class or interface.
In postcondition ψ we can use old(e) to denote the value of e in the pre-state.
Specifications in a supertype can be inherited or overridden in subtypes. If a non-
overridden method is not explicitly specified, it takes default “〈true〉〈true〉”.

– User-defined predicates (specification predicates in our words) are defined by the
form p(this, x) : ψ where the body is ψ, and this is written explicitly as the
first parameter to denote current object. The non-pub predicates in a class are
used in method specification to make it abstract and hide implementation details.
In addition, methods declared in interfaces have no implementation, and we often
need to declare some predicates and specify the methods based on them. When
a class C implements an interface I , it should not only provide implementations
for methods declared in I , but also definitions for the predicates declared in I , to
connect the method specifications in I (and C) with C’s implementations.

– L declares an interface which may inherit another interface J . A class C may im-
plement some interfaces I , and inherit a class B. A sub-interface should not rede-
clare the same methods of its super-interfaces. As in Java, each class has a super-
class, possibly Object, but may implement zero or more interfaces. We assume
all methods are public. For simple we omit method overloading here. A programG
is a (non-empty) sequence of class and interface declarations.

We consider only well-typed programs in verification, and use a static environment to
record information in the program text. The environment for program G takes the form
ΓG = (ΔG, ΘG, ΠG, ΦG), where Δ is the typing environment recording structural in-
formation of declarations;Θ is a method lookup environment mappingC,m to its body;
Π records method specifications; and Φ records the specification predicates defined in
G. We will omit the subscript G when there is no ambiguity.

As said before, an interface defines a type, and a class defines a type with implemen-
tation. We always assume that types in discussion are valid in the program, and useC,D
for class names, I for interface names, T for type names, to avoid simple conditions.
We use (T, T ′) ∈ Δ.super to mean that T ′ is a direct supertype of T . We often omit
Δ. In the example of Fig. 1, we have super(D, I1), super(D, I2), and super(D,B).
We use super(C) to get all supertypes of C. In addition, C <: T means that C is a
subtype of T (<: is the transitive and reflective closure of super). We use Δ(T) to get
the map from the method name set of T to their signatures, and then Δ(T)(m) is the
signature of methodm in type T , with the form of (T1 z) : T . We will use Δ(T.m) as
an abbreviation of Δ(T)(m). The similar abbreviations are used throughout this paper.

We record all inherited components (fields, method signatures, bodies and specifi-
cations, and predicates) for a class as if they were redeclared in the class. Because the
basic language supports only single inheritance, all the inherited components are sim-
ple to record. A method in a class has a body, either given by a definition, or inherited
from the superclass. For a type T , we use Θ(T) to get the map from method names in
T to their bodies. If m is a method name of C, then Θ(C.m) gets its body. If T is an
interface, we suppose Θ(T) = ∅. We allow method overridden but not overloading.

Modular Verification of OO Programs with Interfaces 157

For a predicate, we record its publicity (pub or not) with the body in Φ, then Φ(T.p)
gives p’s definition in T with the pub label if existing. For an interface, because there
is no implementation, bodies of its predicates are recorded as undef. The specifications
are recorded in Π . If method m defined in class C is explicitly specified, its speci-
fication is clear; otherwise, m inherits the specification(s) from C’s supertypes. If C
inheritsm from its superclass, it inheritsm’s specification from the superclass too. Due
to the specification inheritance, when C implements interfaces I1, I2, . . ., and defines
method m without giving a specification, m in C may have multiple specifications
π1, π2, . . . , πk if more than one of the interfaces have specifications for m. In this case,
Π(T) is a relation from method names to the corresponding specifications. We will use
{ϕ}{ψ} ∈ Π(T.m) in semantic definition to mean that {ϕ}{ψ} is a specification of m
in T , and Π(T.m) = {ϕ}{ψ} when {ϕ}{ψ} is the only specification.

These components are easy to build by scanning the program text, some details are
given in our report [20]. With the environment, the type checking is easy to conduct.
We omit it here. One notable fact is that we need also type-checking specifications in
VeriJ programs. For a method declaration (or definition) to be well-formed, its pre and
post conditions must be well-formed, and the predicates declared in an interface must
be realized in its implementation classes, etc. We omit all these details.

4 Verification Framework

Now we develop a framework for modular specification and verification of VeriJ pro-
grams. We introduce some notations and definitions first.

We use Γ,C,m � ψ to state that assertion ψ holds in methodm of class C under Γ .
Clearly, here ψ can only be a state-independent assertion. We use Γ,C,m � {ϕ} c{ψ}
to say that command c in method m satisfies the specification consisting of precondi-
tion ϕ and postcondition ψ. We write Γ � {ϕ} C.m{ψ} to state that C.m is correct
wrt. specification {ϕ}{ψ} under Γ , and Γ � {ϕ}C.C{ψ} for the constructor C is cor-
rect wrt. {ϕ}{ψ}. For a method, because it may have multiple specifications, we use
Γ,C.m � Π(C.m) to say that C.m is correct wrt. its every specification.

For OO programs, behavioral subtyping is crucial in modular verification. To intro-
duce it into our framework, we define a refinement relation between specifications.

Definition 1 (Refinement of Specification). Given two specifications {ϕ1}{ψ1} and
{ϕ2}{ψ2}, we say that the latter one refines the former in context Γ,C, iff there exists
an assertion R which is free of the program variables, such that Γ,C � (ϕ1 ⇒ ϕ2 ∗
R) ∧ (ψ2 ∗R⇒ ψ1). We use Γ,C � {ϕ1}{ψ1} � {ϕ2}{ψ2} to denote this fact.

For specifications {πi}i and {π′
j}j , we say {πi}i � {π′

j}j iff ∀i ∃j · πi � π′
j . �	

Liskov [13] defined the condition for specification refinement as ϕ1 ⇒ ϕ2 ∧ ψ2 ⇒
ψ1. Above definition is its extension by considering the storage extension and multiple
specifications. It follows also the nature refinement order proposed in [8].

Interfaces, their inheritance, and the behavioral subtyping relation also correlate with
verifications, which we call static verification. For an interface I with super-interface
I ′, if methodm in I has a new specification {ϕ}{ψ} overriding its original {ϕ′}{ψ′} in
I ′, we must verify refinement relation Γ, I � {ϕ′}{ψ′} � {ϕ}{ψ}. This verification is

158 Z. Qiu, A. Hong , and Y. Liu

[H-THIS] Γ, T,m � this : T [H-SKIP] Γ � {ϕ} skip{ϕ} [H-ASN] Γ � {ϕ[e/x]} x := e; {ϕ}
[H-MUT] Γ � {v = r1 ∧ e = r2 ∧ r1.a �→-} v.a := e; {v = r1 ∧ e = r2 ∧ r1.a �→ r2}

[H-LKUP] Γ � {v = r1 ∧ r1.a �→ r2} x := v.a; {x = r2 ∧ v = r1 ∧ r1.a �→ r2}
[H-CAST] Γ � {v = r ∧ r <: N} x := (N)v; {x = r} [H-RET] Γ � {ϕ[e/res]} return e; {ϕ}

[H-SEQ]
Γ � {ϕ} c1{ψ}, Γ � {ψ} c2{R}

Γ � {ϕ} c1 c2{R}
[H-COND]

Γ � {b ∧ ϕ} c1{ψ}, Γ � {¬b ∧ ϕ} c2{ψ}
Γ � {ϕ} if b c1 else c2{ψ}

[H-ITER]
Γ � {b ∧ I} c{I}

Γ � {I}while b c{¬b ∧ I}
[H-FRAME]

Γ,C,m � {ϕ} c{ψ} FV(R) ∩MD(c) = ∅
Γ,C,m � {ϕ ∗R} c{ψ ∗R}

[H-CONS]

Γ, C,m � ϕ⇒ ϕ′, Γ, C � ψ′ ⇒ ψ
Γ,C,m � {ϕ′} c{ψ′}
Γ,C,m � {ϕ} c{ψ}

[H-EX]

Γ,C,m � {ϕ} c{ψ}
r is free in ϕ, ψ

Γ,C,m � {∃r · ϕ} c{∃r · ψ}

[H-OLD]
∀{ϕ}{ψ} ∈ Π(T.m) • Γ, T,m � (z = r ∧ ϕ[r/z])⇒ ψ′

Γ, T,m � ψ′[old(e)/e]
[H-DPRE]

r :D, C <: D, Φ(D.p(this, a)) = ψ
Γ,C,m � p(r, r′)⇔ ψ[r, r′/this, a]

[H-SPRE]

C <: D, Φ(D.p(this, a)) = ψ
Γ,C,m � D.p(r, r′)⇔ fix(D,ψ)[r, r′/this, a]

[H-PDPRE]

r :D, Φ(D.p(this, a)) = pub ψ
Γ,C,m � p(r, r′)⇔ ψ[r, r′/this, a′]

[H-PSPRE]

Φ(D.p(this, a)) = pubψ
Γ,C,m � D.p(r, r′)⇔ fix(D,ψ)[r, r′/this, a]

Fig. 3. Basic Inference Rules

done only on the logic level, because of no method body in interfaces. This verification
is supported by the abstract specifications in our framework.

Now we define the correct program, which demands us to verify that every method
in a program meets its specification.

Definition 2 (Correct Prog.). Program G is correct, iff for each {ϕ}{ψ} ∈ ΠG(T.m)
(andΠG(C.C) = {ϕ}{ψ}), we have ΓG � {ϕ}T.m{ψ} (and ΓG � {ϕ}C.C{ψ}). �	

Basic inference rules are given in Fig. 3. Rules for assignment, mutation and lookup are
similar as their counterparts in Separation Logic. [H-CAST] is special for type casting,
and [H-RET] is similar to [H-ASN] but the target is res specially. Rules for composition
structures, and rules [H-CONS], [H-EX] take the same forms as what in Hoare logic.
[H-FRAME] is the important frame rule, where FV(R) is the set of all program vari-
ables (including internal res) in assertion R, and MD(c) is the set of variables modified
by command c. [H-THIS] is simply a type assertion. [H-OLD] says that if assertion ψ′

is provable in the pre-state, then ψ′[old(e)/e] is provable in the body of the method. A
similar rule for constructors is omitted here. Note that here ∀ is used only as a shorthand
but not a quantifier in logic. Similar notations are used below.

Rules [H-DPRE], [H-SPRE] are key to show our idea that non-public specifica-
tion predicates have their scopes, and thus can have more than one definitions in the
classes crossing the class hierarchy, to implement polymorphism. If a predicate invoked
is in scope (in its class or the subclasses), it can be unfolded to its definition. These
rules support hiding implementation details, even the details are in the definition of the

Modular Verification of OO Programs with Interfaces 159

predicates used in method specifications. However, these two rules are different.
[H-DPRE] says if r is of the type D, then in any subclass of D, p(r, r′) can be un-
folded to the body of p. [H-SPRE] is for the static binding, in that case, D.p(r, r′) is
unfolded to its definition in D, where fix(D,ψ) gives the instantiation of ψ in D:

fix(D,ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
¬fix(D,ψ′), if ψ is ¬ψ′

fix(D,ψ1)⊗ fix(D,ψ2), if ψ is ψ1 ⊗ ψ2

∃r · fix(D,ψ′), if ψ is ∃r · ψ′

D.q(this, r), if ψ is q(this, r)
ψ, otherwise.

Here ⊗ can be ∨, ∗, or —∗. Intuitively, fix substitutes predicate names with their defi-
nitions in D to their complete names, and then uses the resulting assertion, so it fixes
the meaning of an assertion with respect to D. In other words, this function provides a
static and fixed explanation for ψ according to a given class. Notice here in unfolding
D.q(r, r′), we use fix(D,ψ) to fix the meaning of q at first, then do the substitution.
With this definition, we can have the correct expansion, and at the same time, avoid
infinite expansion in unfolding the recursive defined predicate.

Rules [H-PDPRE] and [H-PSPRE] are similar to [H-DPRE], [H-SPRE], but deal
with public predicates. Comparing to above rules, they do not restrict the scope.

Rules related to methods and constructors are given in Fig. 4 where there is a de-
fault side-condition that local variables y are not free in ϕ, ψ. This can be provided by
renaming when necessary. An available method in class C can have a specification in
C, thus have a definition, or have no specification in C but might be a definition, or an
inherited definition with also inherited specification from its superclass. Therefore, we
define rules according to these three cases for verifying methods.

[H-MTHD1] is for verifying methods with a specification (and of course a definition)
in a class. The rule demands firstly that C.m’s body meets its specification, and then
asks to check the refinement relations between specifications of m in C and C’s super-
types, if existed. Here we promote Π to type set, thus Π(super(C))(m) gives specifi-
cations for m in C’s supertypes. If there are such specifications, we have to prove the
refinement relation with each of them. If there is no, this check is true by default.

[H-MTHD2] is for verifying methods defined in classes without specification. Taking
m of C as an example, in this case, we need to verify that the body of m implements
correctly with every specification of m in C’s supertypes, because C inherits all these
specifications, and m may be called from variables of these types. Here Π(C.m) is the
same set as if we took the type set super(C) then took all specifications of m from
these types. Now we do not need to prove specification refinement relation anymore
even if some predicates used in the specifications have been overridden in C. After
we have verified m’s new body with its each specification in Π(C.m), the abstract
specifications seem to equivalence from view of the clients.

[H-MINH] is for verifying inherited methods. The rule asks specially to check if m’s
specification(s) (inheriting fromD, maybe more than one becauseDmight inherit some
specifications from its supertype(s)) interpreted in C is compatible with its interpreta-
tion in D. Here we use fix(D, •) to fix the meaning of predicates. In addition, we check
if the method satisfies each specification of m in C’s implementing interfaces (if any)
by proving the refinement relation.

160 Z. Qiu, A. Hong , and Y. Liu

[H-MTHD1]

C has specification for m, Θ(C.m) = λ(z){var y ; c}, Π(C.m) = {ϕ}{ψ}
Γ,C,m � {this :C ∧ z = r ∧ y = nil ∧ ϕ[r/z]} c{ψ[r/z]}

Γ,C � Π(super(C))(m) � {ϕ}{ψ}
Γ � {ϕ} C.m{ψ}

[H-MTHD2]

C defines m without specification, Θ(C.m) = λ(z){var y ; c}
∀ {ϕ}{ψ} ∈ Π(C.m) • Γ, C,m � {this :C ∧ z = r ∧ y = nil ∧ ϕ[r/z]} c{ψ[r/z]}

Γ,C.m � Π(C.m)

[H-MINH]

C inherits D.m, ∀ {ϕ}{ψ} ∈ Π(C.m) • Γ,C � {ϕ}{ψ} � {fix(D,ϕ)}{fix(D,ψ)}
∀ I ∈ super(C) ∧Π(I.m) = {ϕ′}{ψ′} • Γ,C � {ϕ′}{ψ′} � Π(C.m)

Γ,C.m � Π(C.m)

[H-CONSTR]

Π(C.C) = {ϕ}{ψ}, Θ(C.C) = λ(z){var y ; c}
Γ,C,C � {z = r ∧ y = nil ∧ raw(this, C) ∗ ϕ[r/z]} c{ψ[r/z]}

Γ � {ϕ} C.C{ψ}

[H-INV]
Γ,C,m � v :T, {ϕ}{ψ} ∈ Π(T.n)

Γ,C,m � {v = r ∧ e = r′ ∧ ϕ[r, r′/this, z]} x := v.n(e) {ψ[r, r′, x/this, z , res]}

[H-NEW]
Π(C′.C′) = {ϕ}{ψ}

Γ,C,m � {e = r′ ∧ ϕ[r′/z]} x := newC′(e){∃r · x = r ∧ ψ[r, r′/this, z]}

Fig. 4. Inference Rules related to Methods and Constructors

Rule [H-CONSTR] is for constructors which has a similar form with [H-MTHD1].
However, a constructor will not have multiple specifications. Here raw(this, C) spec-
ifies that this refers to a newly created raw object of type C, and then c modifies its
state. The definition of raw(r,N) is

raw(r,N) =̂

{
obj(r,N), N has no field
r :N ∧ (r.a1
→ nil) ∗ · · · ∗ (r.ak
→ nil), fields of N is a1, . . . , ak

Last two rules are for method invocation and object creation. Note that T.n may have
multiple specifications, and we can use any of them in proving client code. Due to
the behavioral subtyping, it is enough to do the verification by the type of variable v.
Because [H-INV] refers to only specifications, recursive methods are supported.

The soundness of these rules are easy to prove. However, readers may think that
[H-MTHD2] is not very satisfactory because it asks for verifying method body for pos-
sibly several times. The first answer is that this is necessary, because different specifi-
cations for m in the superclass or implemented interfaces may cover different aspects
of m’s behavior. The definition of m in subclass C must satisfy each of these specifi-
cations. However, we may give a new (and weaker) rule to avoid some method body
verifications, if we can find that a specification {ϕ}{ψ} is the strongest:

[H-MTHD2’]

C defines m without specification, Θ(C.m) = λ(z){var y ; c}
∃ {ϕ}{ψ} ∈ Π(C.m) • ((∀ {ϕ′}{ψ′} ∈ Π(C.m) • Γ,C � {ϕ′}{ψ′} � {ϕ}{ψ})

∧ Γ, C,m � {this :C ∧ z = r ∧ y = nil ∧ ϕ[r/z]} c{ψ[r/z]})
Γ,C.m � Π(C.m)

Modular Verification of OO Programs with Interfaces 161

Here {ϕ}{ψ} is the strongest one which refines all the other specifications, including
itself. However, if there is no strongest one in Π(C.m), this rule will be not applicable,
even the method body in C does satisfy all the specifications. In addition, based on the
general [H-MTHD2], we may develop some other rules in advance.

Here we see how the information given by developers affects the verification. A given
specification for a method is a specific requirement and induces some special proof obli-
gations. It forms a connection between the implementation with the surrounding world:
the implemented interfaces, the superclass, and the client codes. When no specification
is given, we need to verify more to ensure all the possibilities.

Clearly, our verification framework is modular, because we do not need to re-touch
the code in superclass when consider a subclass. In adding a new class to existed code,
we just need to verify the new class but not re-consider the existing part. On the other
side, in verifying client code, no matter which variable a method invocation is from, be
it a variable of a class or an interface, we do not need to consider the real object the
variable refers to. This shows that our basic framework, based on the abstract speci-
fication and specification predicate concepts, can be naturally extended to support the
verification of programs with interfaces. From this extension, we see our framework is
nature in dealing with wide spectrum of OO programs. To reveal these good properties,
we consider an examples in the next section. More examples can be found in [20].

5 An Example

The hierarchy of classes used here is given in Fig. 5 using a UML class diagram. It is a
variant of a typical example used in OO program’s specification and verification study.
A class Cell offers simple methods to set and get the value of its field x. We want some
classes which can roll back one previous value, and thus declare an interface Undoable
with one more method undo than Cell . To offer a real class, we define ReCell which
inherits Cell and implements Undoable . This subclass contains a new field y for saving
the old value of x when it is set. To implement the methods declared in Undoable ,
class ReCell defines a method undo, inherits Cell .get , and overrides Cell .set by a
new definition. Here we omit the constructors for simplicity.

Here we give also specifications for methods, in which some specification predicates
are used to hide implementation details. Class Cell defines predicate cell(this, v) to
denote that the object holds v, and later in ReCell this predicate is overridden by a new
definition. Interface Undoable defines predicates cell and bak to assert the current and
backup values, while their implementations are left to the implementing class. Note that
predicate ReCell .cell(this, v) records both current value v in x and some unconcerned
value for y, and ReCell .bak (this, v) records v as the value of y and leaves value of
x unconcerned. Because ReCell .set is not explicitly specified, it inherits two specifi-
cations from Undoable.set and Cell .set . Similarly, ReCell .get inherits a specification
from Cell .get ; and ReCell .undo inherits a specification from Undoable.undo. All of
these are recorded in the specification environment.

Now we consider how to prove that the program is correct with given specifications
by VeriJ inference rules before giving it to clients. Due to the page limited, we only
present the main part of the proof process here.

162 Z. Qiu, A. Hong , and Y. Liu

Undoable

 set();get();undo()

Cell

 x

 Cell();set();get()

ReCell

 y

 ReCell();set();undo()

class Cell : Object{
Int x;
def cell(this, v) : this.x ↪→ v;
void set(Int v)
〈cell(this,-)〉〈cell(this, v)〉
{ this.x = v; }
Int get() 〈cell(this, v)〉
〈cell(this, v) ∧ res = v〉

{ Int c; c = this.x; return c; }
}

interUndoable{
def cell(this, v);
def bak(this, v);
void set(Int v) 〈cell(this, b)〉
〈cell(this, v) ∧ bak(this, b)〉;

Int get() 〈cell(this, v)〉
〈cell(this, v) ∧ res = v〉;

void undo() 〈bak(this, b)〉〈cell(this, b)〉;
}

class ReCell : Cell � Undoable{
Int y;
def cell(this, v) : this.x ↪→ v ∗ this.y ↪→-;
def bak(this, v) : this.x ↪→- ∗ this.y ↪→ v;
void set(Int v) { Int c;
c = this.x; this.y = c; this.x = v; }

void undo() { Int c;
c = this.y; this.x = c; }

}

Fig. 5. Interface Undoable and classes Cell ,ReCell

Proving Cell .set :
{cell(this,-)}
{this.x ↪→-}[H-DPRE]

this.x = v;
{this.x ↪→ v}[H-MUT]

{cell(this, v)}[H-DPRE]

Proving Cell .get :
{cell(this, v) ∧ c = 0}
{this.x ↪→ v ∧ c = 0}
c = this.x;
{this.x ↪→ v ∧ c = v}
return c;
{cell(this, v) ∧ res = v}

Proving ReCell .undo:
{bak(this, b) ∧ c = 0}
{c = 0 ∧ this.x ↪→ - ∗ this.y ↪→ b}
c = this.y; this.x = c;
{c = b ∧ this.x ↪→ c ∗ this.y ↪→ b}
{this.x ↪→ b ∗ this.y ↪→ b}
{cell(this, b) ∧ bak(this, b)}
{cell(this, b)}

Fig. 6. Proofs for Some Simple Cases

Obviously, to verify methods of Cell , we should use rule [H-MTHD1] because all
the methods are specified well in Cell . Here the premise for specification refinement
is vain and thus trivially true. We only need to verify the method bodies. The formal
proofs of these two methods are simple and given in Fig. 6. As an example, we explain
the verifying for the body of Cell .set informally. From its precondition cell(this,-),
we first apply rule [H-DPRE] to unfold the predicate cell used here and get an assertion
this.x ↪→ -, which is the precondition of the next command this.x = v. Then we
apply rule [H-MUT] on this command and obtain another assertion this.x ↪→ v which
equals to the postcondition cell(this, v) according to the rule [H-DPRE] again. Thus,
we can conclude that method Cell .set is correct with its specification. The proofs for
the other methods are similar, and we omit their explanations to save the space.

For ReCell .set and ReCell .undo, we need to prove that their bodies meet the re-
spectively inherited specifications fromReCell ’s supertypes, because they are not spec-
ified explicitly. This asks us to use [H-MTHD2]. The proof for ReCell .undo is simple
and given also in Fig. 6. For ReCell .set , we need to prove that it meets its two inherited

Modular Verification of OO Programs with Interfaces 163

Proving ReCell .set with Π(Undoable.set):
{cell(this, b) ∧ c = 0}
{c = 0 ∧ this.x ↪→ b ∗ this.y ↪→-}
c = this.x; this.y = c;
{c = b ∧ this.x ↪→ b ∗ this.y ↪→ c}
this.x = v;
{this.x ↪→ v ∗ this.y ↪→ b}
{(this.x ↪→ v ∗ this.y ↪→-)∧
(this.x ↪→- ∗ this.y ↪→ b)}

{cell(this, v) ∧ bak(this, b)}

Proving ReCell .set with Π(Cell .set):
{cell(this,-) ∧ c = 0}
{c = 0 ∧ this.x ↪→- ∗ this.y ↪→-}
{c = 0 ∧ ∃b · this.x ↪→ b ∗ this.y ↪→-}
c = this.x; this.y = c;
{∃ b · c = b ∧ this.x ↪→ b ∗ this.y ↪→ c}
this.x = v;
{∃ b · this.x ↪→ v ∗ this.y ↪→ b}
{this.x ↪→ v}
{cell(this, v)}

Fig. 7. Proofs for ReCell .set with two specifications

specifications from Undoable and Cell firstly. The proofs are given in Fig. 7. Based on
these proofs, we can easily conclude that ReCell .set meets its specification.

In addition, we find that rule [H-MTHD2’] is also applicable here to avoid verifying
method body more then one time because there is a refinement relation between the
specifications. We show the proof as an example. To work in this way, now we need only
check the refinement relation, because we have proved that set meets its specification
in Undoable . By Definition 1, we have trivially:

Γ,ReCell � {cell(this, b)}{cell(this, v) ∧ bak(this, b)} ⇒ {cell(this,-)}{cell(this, v)}
⇒{cell(this,-)}{cell(this, v)} � {cell(this, b)}{cell(this, v) ∧ bak(this, b)}

This derivation tells us “Γ,ReCell � Π(Cell .set) � Π(Undoable.set)”. Thus, the
body of ReCell .set also meets the specification in the superclass Cell according to our
weakened rule [H-MTHD2’].

For ReCell .get , rule [H-MINH] asks us to prove only specification refinement re-
lations, thus we avoid re-verifying method body and achieve modularity. ReCell .get
inherits its specification from Cell .get , which is a single specification. Thus, the refine-
ment relation between specifications of Undoable.get and ReCell .get is “Γ,ReCell �
{ϕ′}{ψ′} � {ϕ}{ψ}”, where ϕ = ϕ′ = cell(this, v) and ψ = ψ′ = (cell (this, v) ∧
res = v). This relation holds trivially.

For proving the specification refinement relation between Cell .get and ReCell .get ,
the case is different. Here we must prove

Γ,ReCell � {cell(this, v)}{cell(this, v) ∧ res = v}
� {fix(Cell , cell(this, v))}{fix(Cell , cell(this, v) ∧ res = v)}

By the Definition 1 and the definition of fix, we need to prove that there exists an
assertion R such that

Γ,ReCell � (cell(this, v)⇒ fix(Cell , cell(this, v)) ∗R)∧
(fix(Cell , cell(this, v) ∧ res = v) ∗ R⇒ (cell(this, v) ∧ res = v))

⇒(cell(this, v)⇒ Cell .cell(this, v) ∗R)∧
((Cell .cell(this, v) ∧ res = v) ∗ R⇒ (cell(this, v) ∧ res = v))

⇒((this.x ↪→ v ∗ this.y ↪→-)⇒ (this.x ↪→ v ∗ R))∧
(((this.x ↪→ v ∗R) ∧ res = v)⇒ ((this.x ↪→ v ∗ this.y ↪→-) ∧ res = v))

Note that, res = v is a pure, so when inferring from the second assertion to the third
one, we apply an axiom in OOSL, which says that, if an assertion q is pure, we have

164 Z. Qiu, A. Hong , and Y. Liu

Bool cell test()
〈true〉〈res = rtrue〉
{
Int c1, c2;
Bool b = false;
Cell t1;
Undoable t2;
t1 = new ReCell();
t2 = (Undoable)t1;
t1.set(5);
c1 = t2.get();
t2.set(3);
t2.undo();
c2 = t1.get();
if (c1==c2) b = true;
return b;

}

{c1 = 0 ∧ c2 = 0 ∧ b = rfalse ∧ t1 = rnull ∧ t2 = rnull}
t1 = new ReCell(); t2 = (Undoable)t1;
{∃r1, r2, v1, v2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 0 ∧ c2 = 0 ∧

b = rfalse ∧ r1 = r2 ∧ cell(r1, v1) ∧ bak(r1, v2)}
t1.set(5); c1 = t2.get();
{∃r1, r2, v1 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 0 ∧

b = rfalse ∧ r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, v1)}
t2.set(3);
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 0 ∧ b = rfalse ∧

r1 = r2 ∧ cell(r1, 3) ∧ bak(r1, 5)}
t2.undo(); c2 = t1.get();
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 5 ∧ b = rfalse∧

r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, 5)}
if (c1==c2)
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 5 ∧ b = rfalse ∧
c1 = c2 ∧ r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, 5)}

b = true;
{∃r1, r2 · t1 = r1 ∧ t2 = r2 ∧ c1 = 5 ∧ c2 = 5 ∧ b = rtrue ∧
c1 = c2 ∧ r1 = r2 ∧ cell(r1, 5) ∧ bak(r1, 5)}

{b = rtrue}
return b;
{res = rtrue}

Fig. 8. A Client Method and Its Proof

(p∧ q) ∗ r ⇒ (p ∗ r) ∧ q. Let “R = this.y ↪→-”, then we have the above implications
true easily. Therefore, we can conclude that ReCell .get meets its specification.

Now we show how a client can be verified by just referring to the specifications in
interfaces and classes, thus is done abstractly and modularly. In Fig. 8 (left), we define a
method cell test which declares a variable of type Cell but actually assigns it an object
of ReCell . Then a new variable t2 is declared and assigned the same object by casting
t1 to Undoable . We give the proof of this method in detail in the figure too. The proof
involves only the abstract specifications of the interface and classes.

6 Related Work and Conclusion

To support specifications and verification of OO programs with interface types, we
develop here a formal framework which offers modularity for both specification and
verification. The OO language VeriJ used here takes the pure reference semantics. A
version of Separation Logic, named OOSL, is used for specifying and reasoning VeriJ
programs. We suggest abstract specifications for describing behaviors of methods. This
technique can support also “behavioral” specification for the method declarations in in-
terfaces which have no implementations. We introduce specification predicates to link
abstract specifications with implementation details, which serve also the connection
between the classes with the interfaces which they implement.

We design rules for visibility, inheritance and overriding of specification predicates
and method specifications, and develop a set of inference rules which can derive proof

Modular Verification of OO Programs with Interfaces 165

obligations from program with specifications for verifying VeriJ programs. Our ap-
proach supports full encapsulation for the implementation details, and can also avoid
re-verification of inherited methods. In contrast to the work presented in [15,4], we use
only one specification for each method. As in the main-stream OO languages, e.g. Java
and C#, here one class may implement several interfaces, as well as inherit a superclass.
Our framework supports inheriting multi-specifications for methods from implemented
interfaces and the superclass. We define the refinement relation for multi-specifications,
and propose inference rules for proving programs in this situation. By an example, with
more examples in our report [20], we show that the framework can deal with various
common problems encountered in OO practice.

The research on the specification and verification in JML and Spec# frameworks
[9,7,10,2,1] considered also interface types. Similarly, these frameworks support method
specifications in interfaces, and allow specification inheritance. The refinement rela-
tions between supertypes and their subtypes are defined to pursue modular reasoning
and behavioral subtyping. Differently, Spec# requires overriding methods in a subtype
inherit the same preconditions from its supertypes while postconditions can be strength-
ened. This brings a big constraint on implementations in subtypes. Actually, to allow
more flexible behaviors, we should permit not only strengthening postconditions but
also weakening preconditions in subtypes, as what we and JML do. Notably, our frame-
work is more general. In one side, we develop an approach for the inheritance with
multiple specifications for methods. In addition, our definition for specification refine-
ment allows storage extension of subclass, which is necessary for dealing with mutable
OO structures but totally omitted in Spec# and JML frameworks.

Abstraction techniques adopted in JML and Spec# are similar. Both use model fields
and calls of pure methods in their specifications. We find such calls in specifications
are not abstract and convenient enough for clients to use and understand, because it
may enforce clients to know what these pure methods do. We propose specification
predicates to hide information from clients and use them in specifications in interfaces
(and classes) to provide enough information for verifying class and client codes conve-
niently. In addition, as pointed by [15], the early work, including JML and Spec#, can
not avoid re-verification of the inherited methods. That might be another weakness of
the approaches based on the model fields, pure methods, etc.

In this work, we utilize structures in programs and specification predicates as the se-
mantic link over the class hierarchy, rather than linking the abstract predicate families
to classes by the type of their first parameter and a tag [15]. Using one specification for
a method, we can get rid of repeated expressions, and express the semantic decision for
the class only in the local defined predicates. This feature makes it better to support the
single point rule in the specifications. In addition, it is not clear how the abstract pred-
icate families and dual specifications mechanisms can be used (extended) to support
specification and verification of OO programs with interface types.

By successfully extending our framework to support the interface features, we see
more clearly the usefulness of the concept specification predicates and its potential
power. In fact, the key point of our approach is to introduce polymorphism concepts
into the specification and verification framework that is learnt from the successful OO
practice. As the future work, we will explore further the potentials of our approach, to

166 Z. Qiu, A. Hong , and Y. Liu

support more OO and verification features, such as object invariants, frame problems
and confinement, open programs, and so on.

References

1. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the spec# experience. Communications of the ACM 54(6), 81–91 (2011)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly supporting
abstraction in design by contract. Software: Practice and Experience 35(6), 583–599 (2005)

4. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO verification with
separation logic. In: POPL 2008, pp. 87–99. ACM, New York (2008)

5. Distefano, D., Parkinson, M.J.: jstar: Towards practical verification for java. ACM SIGPLAN
Notices 43(10), 213–226 (2008)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addlison Wesley (1994)

7. Leavens, G.T.: JML’s Rich, Inherited Specifications for Behavioral Subtypes. In: Liu, Z., He,
J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer, Heidelberg (2006)

8. Leavens, G.T., Naumann, D.A.: Behavioral subtyping is equivalent to modular reasoning for
object-oriented programs. Technical Report 06-36, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011 (2006)

9. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Software Engineering Notes 31(3), 1–38 (2006)

10. Leavens, G.T., Müller, P.: Information hiding and visibility in interface specifications. In:
29th International Conference on Software Engineering, ICSE 2007, pp. 385–395 (2007)

11. Leino, K.R.M.: Toward reliable modular programs. PhD thesis, California Institute of Tech-
nology, Pasadena, CA, USA, UMI Order No. GAX95-26835 (1995)

12. Leino, K.R.M.: Data groups: specifying the modification of extended state. SIGPLAN No-
tices 33, 144–153 (1998)

13. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on Programing
Languages and Systems 16(6), 1811–1841 (1994)

14. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. LNCS,
vol. 2262. Springer, Heidelberg (2002)

15. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In: POPL
2008, pp. 75–86. ACM, New York (2008)

16. Poetzsch-Heffter, A.: Specification and verification of object-oriented programs. Technische
Universität München (1997)

17. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic Frames
and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 148–
172. Springer, Heidelberg (2009)

18. Yijing, L., Ali, H., Zongyan, Q.: Inheritance and modularity in specification and verification
of OO programs. In: TASE 2011, pp. 19–26. IEEE Computer Society (2011)

19. Yijing, L., Zongyan, Q.: A Separation Logic for OO Programs. In: Barbosa, L.S., Lumpe, M.
(eds.) FACS 2010. LNCS, vol. 6921, pp. 88–105. Springer, Heidelberg (2010)

20. Zongyan, Q., Ali, H., Yijing, L.: Modular verification of OO programs with interface types.
Technical report, School of Math., Peking Univ. (2012),
http://www.mathinst.pku.edu.cn/download.php?classid=22

http://www.mathinst.pku.edu.cn/download.php?classid=22

Separation Predicates: A Taste

of Separation Logic in First-Order Logic�

François Bobot and Jean-Christophe Filliâtre

LRI, Univ Paris-Sud, CNRS, Orsay F-91405
INRIA Saclay-̂Ile-de-France, ProVal, Orsay F-91893

Abstract. This paper introduces separation predicates, a technique to
reuse some ideas from separation logic in the framework of program ver-
ification using a traditional first-order logic. The purpose is to benefit
from existing specification languages, verification condition generators,
and automated theorem provers. Separation predicates are automatically
derived from user-defined inductive predicates. We illustrate this idea on
a non-trivial case study, namely the composite pattern, which is speci-
fied in C/ACSL and verified in a fully automatic way using SMT solvers
Alt-Ergo, CVC3, and Z3.

1 Introduction

Program verification has recently entered a new era. It is now possible to prove
rather complex programs in a reasonable amount of time, as demonstrated in
recent program verification competitions [17,12,10]. One of the reasons for this is
tremendous progress in automated theorem provers. SMT solvers, in particular,
are tools of choice to discharge verification conditions, for they combine full first-
order logic with equality, arithmetic, and a handful of other theories relevant to
program verification, such as arrays, bit vectors, or tuples. Notable examples of
SMT solvers include Alt-Ergo [4], CVC3 [1], Yices [9], and Z3 [8].

Yet, when it comes to verifying programs involving pointer-based data struc-
tures, such as linked lists, trees, or graphs, the use of traditional first-order logic
to specify, and of SMT solvers to verify, shows some limitations. Separation
logic [22] is then an elegant alternative. Designed at the turn of the century, it is
a program logic with a new notion of conjunction to express spatial separation.
Separation logic requires dedicated theorem provers, implemented in tools such
as Smallfoot [2] or VeriFast [13,15]. One drawback of such provers, however, is to
either limit the expressiveness of formulas (e.g. to the so-called symbolic heaps),
or to require some user-guidance (e.g. open/close commands in Verifast).

In an attempt to conciliate both approaches, we introduce the notion of sep-
aration predicates. The idea is to introduce some ideas from separation logic
into a traditional verification framework where the specification language, the

� This work was (partially) supported by the Information and Communication Tech-
nologies (ICT) Programme as Project FP7-ICT-2009-C-243881 CerCo and by the
U3CAT project (ANR-08-SEGI-021) of the French national research organization.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 167–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 F. Bobot and J.-C. Filliâtre

verification condition generator, and the theorem provers were not designed with
separation logic in mind. Separation predicates are automatically derived from
user-defined inductive predicates, on demand. Then they can be used in program
annotations, exactly as other predicates, i.e., without any constraint. Simply
speaking, where one would write P �Q in separation logic, one will here ask for
the generation of a separation predicate sep and then use it as P ∧Q∧sep(P,Q).

We have implemented separation predicates within Frama-C’s plug-in Jessie
for deductive verification [21]. This paper demonstrates the usefulness of sep-
aration predicates on a realistic, non-trivial case study, namely the composite
pattern from the VACID-0 benchmark [20]. We achieve a fully automatic proof
using three existing SMT solvers.

This paper is organized as follows. Section 2 gives a quick overview of what
separation predicates are, using the classic example of list reversal. Section 3
formalizes the notion of separation predicates and briefly describes our imple-
mentation. Then, Section 4 goes through the composite pattern case study. Sec-
tion 5 presents how this framework can be extended to express the set of pointers
modified by a function. We conclude with related work in Section 6.

2 Motivating Example

As an example, let us consider the classic in-place list reversal algorithm:

rev(p) ≡
q := NULL

while p �= NULL do t := p→next; p→next := q; q := p; p := t done
return q

We may want to verify that, whenever p points to a finite singly-linked list,
then rev(p) returns a finite list. (Proving that lists are indeed reversed requires
more space than available here.) To do so, we first define the notion of finite
singly-linked lists, for instance using the following inductive predicate islist :

inductive islist(p) ≡
| C0 : islist(NULL)
| C1 : ∀p. p �= NULL⇒ islist(p→next)⇒ islist(p)

Then we specify function rev using the following Hoare triple:

{islist(p)} q := rev(p) {islist(q)}

To perform the proof, we need a loop invariant. A natural invariant expresses
that both p and q are finite lists, that is islist(p) ∧ islist(q).

Unfortunately, this is not enough for the proof to be carried out. Indeed, we
lack the crucial information that assigning p→next will not modify lists q and t.
Therefore, we cannot prove that the invariant above is preserved.

Separation Predicates: A Taste of Separation Logic in First-Order Logic 169

Separation logic proposes an elegant solution to this problem. It introduces a
new logical connective P � Q that acts as the conjunction P ∧ Q and expresses
spatial separation of P and Q at the same time. In the list reversal example, it
is used at two places. First, it is used in the definition of islist to express that
the first node of a list is disjoint from the remaining nodes:

islist(p) ≡ if p = NULL then emp else ∃q. p→next
→ q � islist(q)

This way, we can now prove that list t is preserved when p→ next is assigned.
Second, the connective � is also used in the loop invariant to express that lists p
and q do not share any pointer:

islist(p) � islist(q).

This way, we can now prove that list q is preserved when p→next is assigned.
Using a dedicated prover for separation logic, list reversal can be proved correct
using this loop invariant.

In our attempt to use traditional SMT solvers instead, we introduce the notion
of separation predicates : the � connective of separation logic is replaced by new
predicate symbols, which are generated on a user-demand basis. Our annotated
C code for list reversal using separation predicates is given in Fig. 1.

We define predicate islist inductively (lines 4–8), as we did earlier in this
section. In this definition \valid(p) express that p is a pointer that can be
safely dereferenced (allocated and not freed). It captures finite lists only and,
consequently, the first node of a list is disjoint from the remaining nodes. How-
ever, such a proof requires induction and thus is out of reach of SMT solvers.
We add this property as a lemma (lines 11–12), using a separation predicate
sep_node_islist (introduced at line 10). This lemma is analogous to the �
used in the definition of islist in separation logic. To account for the � in the
loop invariant, we first introduce a new separation predicate sep_islist_islist
(line 14) and then we use it in the loop invariant (line 21).

With these annotations, the axiomatizations and the definitions automati-
cally generated for sep_node_islist and sep_islist_islist allow a general-
purpose SMT solver such as Alt-Ergo or CVC3 to discharge all verification con-
ditions obtained by weakest precondition for the code in Fig. 1, in no time.

3 Separation Predicates

3.1 Inductive Definitions

A separation predicate is generated from user-defined inductive predicates. The
generation is sound only if the definitions of the inductive predicates obey sev-
eral constraints, the main one being that two distinct cases should not overlap.
Fortunately, this is the case for most common inductive predicates. For instance,
predicate islist from Fig. 1 (lines 4–8) trivially satisfies the non-overlapping
constraint, since p cannot be both null and non-null.

Generally speaking, we consider inductive definitions following the syntax
given in Fig. 2. The constraints are then the following:

170 F. Bobot and J.-C. Filliâtre

1 struct node { int hd; struct node *next; };

2
3 /*@

4 inductive islist (struct node *p) {

5 case nil: islist (\ null);

6 case cons: \forall struct node *p; p != \null ==> \valid(p) ==>

7 islist (p->next) ==> islist (p);

8 }

9
10 # Gen_Separation sep_node_islist(struct node*, islist)

11 lemma list_sep:

12 \forall struct node *p; p!= null ==>

13 islist (p) ==> sep_node_islist(p, p->next);

14
15 # Gen_Separation sep_islist_islist(islist , islist)

16 @*/

17
18 /*@ requires islist (p); ensures islist (\ result); @*/

19 struct node * rev(struct node *p) {

20 struct node *q = NULL;

21 /*@ loop invariant

22 islist (p) && islist (q) && sep_islist_islist(p,q); @*/

23 while(p != NULL) {

24 struct node *tmp = p->next;

25 p->next = q;

26 q = p;

27 p = tmp;

28 }

29 return q;

30 }

Fig. 1. List Reversal

(terms) t ::= x | t→field | φ(t)
(formulas) f ::= t = t | ¬(t = t) | p(x)

(inductive case) c ::= C : ∀x.f ⇒ . . .⇒ f ⇒ p(x)
(inductive definition) d ::= inductive p(x) = c| . . . |c

Fig. 2. Inductive Definitions

– in a term t, a function symbol φ cannot refer to the memory state;
– in a formula f , a predicate symbol p can refer to the memory state only if it

is an inductively defined predicate following the constraints (which includes
the predicate being defined);

– if Ci : ∀x.fi,1 ⇒ . . . ⇒ fi,ni ⇒ p(x) and Cj : ∀x.fj,1 ⇒ . . . ⇒ fj,nj ⇒ p(x)
are two distinct cases of inductivep(x) = c1| . . . |cn, then we should have

∀x.¬(fi,1 ∧ · · · ∧ fi,ni ∧ fj,1 ∧ · · · ∧ fj,nj).

It is worth pointing out that an inductive predicate which is never used to define
a separation predicate does not have to follow these restrictions.

Separation Predicates: A Taste of Separation Logic in First-Order Logic 171

3.2 An Axiomatization of Footprints

The footprint of an inductive predicate p is the set of pointers which it depends
on. More precisely, in a memory state m where p(x) is true, the pointer q is in
the footprint of p(x) if we can modify the value q points at such that p(x) does
not hold anymore. Such a definition is too precise to be used in practice. We use
instead a coarser notion of footprint, which is derived from the definition of p
and over-approximates the precise footprint.

Let us consider the definition of islist. First, we introduce a new type ft for
footprints. Then we declare a function symbol ftislist and a predicate symbol
∈. The intended semantics is the following: ftislist(m, p) is the footprint of
islist(p) in memory state m and q ∈ ftislist(m, p) means that q belongs to
the footprint ftislist(m, p). Both symbols are axiomatized simultaneously as
follows:

∀q.∀m.∀p. q ∈ ftislist(m, p)⇔
(

p �= NULL∧ islist(m, {p→next}m)

∧(q = p ∨ q ∈ ftislist(m, {p→next}m))

)

where {p→next}m stands for expression p→next in memory state m.
Then separation predicates are easily defined from footprints. The pragma

from line 10 in Fig. 1 generates the definition

sep_node_islist(m, q, p) � q �∈ ftislist(m, p)

and pragma from line 14 generates the definition

sep_islist_islist(m, p1, p2) �
∀q. q �∈ ftislist(m, p1) ∨ q �∈ ftislist(m, p2)

(where q �∈ s stands for ¬(q ∈ s)). The predicate symbols and the types that
appears in the pragma specify the signature of the separation predicate and
which inductive predicate must be used to defined the separation predicate. A
type is viewed as the predicate symbol of an unary predicate of this type whose
footprint is reduced to its argument. The signature of the defined separation
predicate is the concatenation of the signature of the predicate symbols.

Generally speaking, in order to axiomatize the footprint of an inductive predi-
cate, we first introduce a meta-operation FTm,q(e) that builds a formula express-
ing that q is in the footprint of a given expression e in memory state m:

FTm,q(x) =⊥
FTm,q(t→j) = FTm,q(t) ∨ q = t

FTm,q(φ(t)) =
∨
j

FTm,q(tj)

FTm,q(t1 = t2) = FTm,q(¬(t1 = t2)) = FTm,q(t1) ∨ FTm,q(t2)

FTm,q(p(t)) =
∨
j

FTm,q(tj) ∨ q ∈ ftp(m, t)

172 F. Bobot and J.-C. Filliâtre

We pose q ∈ ftp(m, t) � ⊥ whenever predicate p does not depend on the memory
state. Then the footprint of an inductive predicate p defined by inductivep(x) =
c1| . . . |cn with ci being Ci : ∀x.fi,1 ⇒ . . . ⇒ fi,ni ⇒ p(x) is axiomatized as fol-
lows:

∀q.∀m.∀x. q ∈ ftp(m,x)⇔
∨
i

⎛⎝∧
j

fi,j ∧
∨
j

FTm,q(fi,j)

⎞⎠
where fi,j is the version of fi,j with the memory explicited (eg. t→j = {t→j}m).
In the axiom above for the footprint of islist, we simplified the NULL case since
it is equivalent to ⊥.

With the footprints of the inductive predicates you can now define the separa-
tion predicate. A separation predicate that define the separation of n inductive
predicates is defined as the conjunction of all the disjunction q ∈ ftpi

(m,xi)∨q ∈
ftpj

(m,xj) between the footprint of the inductive predicate. The soundness of
this construction have been proved in [3].

The separation predicates allow you to translate a large set of separation logic
formulas, namely first-order separation logic formula without magic wand and
with separation conjunction used only on inductive predicates which definitions
satisfy our constraints.

3.3 Mutation Axioms

The last ingredient we generate is a mutation axiom. It states the main property
of the footprint, namely that an assignment outside the footprint does not in-
validate the corresponding predicate. In the case of islist, the mutation axiom
is

∀m, p, q, v. q �∈ ftislist(m, p)⇒ islist(m, p)⇒ islist(m[q→next := v], p)

where m[q→ next := v] stands for a new memory state obtained from m by
assigning value v to memory location q→next. Actually, this property could be
proved from the definition of ftislist, but this would require induction. Since this
is out of reach of SMT solvers, we state it as an axiom. We do not require the user
to discharge it as a lemma, since it is proved sound in the meta-theory [3]. This
is somehow analogous to the mutation rule of separation logic, which is proved
sound in the meta-theory. The mutation rule of separation logic also allows
proving that two formulas stay separated if you modify something separated
from both of them. We can prove the same by adding an autoframe axiom,
which is reminiscent of the autoframe concept in dynamic frames [16]:

∀m, p, q, v. q �∈ ftislist(m, p)⇒ islist(m, p)⇒
ftislist(m, p) = ftislist(m[q→next := v], p)

Generally speaking, for each inductive predicate p and for each field field we
add the following axioms :

∀q.∀v.∀m.∀x.¬q ∈ ftp(m,x)⇒ p(m,x)⇒ p(m[q→field := v],x)

Separation Predicates: A Taste of Separation Logic in First-Order Logic 173

and
∀q.∀v.∀m.∀x. ¬q ∈ ftcp(m,x)⇒ p(m,x)⇒

ftp(m,x) = ftp(m[q→field := v],x).

The distinctness of the cases of the inductive predicate p appears in the proof of
the autoframe property.

3.4 Implementation

Our generation of separation predicates is implemented in the Frama-C/Jessie
tool chain for the verification of C programs [11,21,5]. This tool chain can be
depicted as follows:

From a technical point of view, our implementation is located in the Jessie tool,
since this is the first place where the memory model is made explicit1. Jessie
uses the component-as-array model also known as the Burstall-Bornat memory
model [7,6]. Each structure field is modeled using a distinct applicative array.
Consequently, function and predicate symbols such as ftislist or islist do not
take a single argumentm to denote memory state, but one or several applicative
arrays instead, one for each field mentioned in the inductive definition. Similarly,
a quantification ∀m in our meta-theory (Sec. 3.2 and 3.3 above) is materialized in
the implementation by one or several quantifications over applicative arrays, one
for each field appearing in the formula. In the case of islist, for instance, quan-
tification ∀m becomes ∀next, expression {p→next}m becomes get(next, p), and
expression m[q→next := v] becomes set(next, p, v), where get and set are ac-
cess and update operations over applicative arrays. Additionally, we have to
define one footprint symbol for each field.

It is worth pointing out that we made no modification at all in Why3 to
support our separation predicates. Only Jessie has been modified.

4 A Case Study: Composite Pattern

To show the usefulness of separation predicates, we consider the problem of
verifying an instance of the Composite Pattern, as proposed in the VACID-0
benchmark [20].

4.1 The Problem

We consider a forest, whose nodes are linked upward through parent links. Each
node carries an integer value, as well as the sum of the values for all nodes in
its subtree (including itself). The corresponding C structure is thus defined as
follows:
1 Since we could not extend the ACSL language with the new pragmas for separation,
we have to modify the Jessie input file manually at each run. Furthermore we use in
the assigns clauses the keyword \all that does not exist yet in ACSL.

174 F. Bobot and J.-C. Filliâtre

struct node {

int val , sum;

struct node *parent;

};

typedef struct node *NODE;

The operations considered here are the following: NODE create(int v);, cre-
ates a new node; void update(NODE p, int v);, assigns value v to node p;
void addChild(NODE p, NODE q);, set node p as q’s parent, assuming node q

has no parent; void dislodge(NODE p);, disconnects p from its parent, if any.
One challenge with such a data structure is that operations update, addChild,

and dislodge have non-local consequences, as the sum field must be updated for
all ancestors. Another challenge is to prevent addChild from creating a cycle,
i.e., to express that node q is not already an ancestor of node p. Thus we prove
the memory safety and the correct behavior of these operations.

4.2 Code and Specification

Our annotated C code for this instance of the composite pattern is given in
the appendix. In this section, we comment on the key aspects of our solution.
The annotations are written in the ACSL specification language. The behavior
of the functions are defined by contract: the keyword requires introduces the
precondition expressed by a first-order formula, the keyword ensures introduces
the post-conditions, and the keyword assigns introduces the set of memory
location that can be modified by a call to the function. The precondition and
this set are interpreted before the execution of the function, the post-conditions
is interpreted after. One can refer in the post-condition to the state before the
execution of the function using the keyword \old. It must be remarked that
if a field of a type is never modified in the body of a function you don’t need
to mention it in the assigns clauses. Moreover the component-as-array memory
model ensures without reasoning that any formulas that depend only of such
fields remain true after a call to the function.

Separation Predicate. For the purpose of addChild’s specification, we use a sepa-
ration predicate. It states that a given node is disjoint from the list of ancestors of
another node. Such a list is defined using predicate parents (lines 7–12), which
is similar to predicate islist in the previous section. The separation predicate,
sep_node_parents, is then introduced on line 14 and used in the precondition
of addChild on line 84.

This is a crucial step, since otherwise assignment q->parent = p on line 95
could break property parents(p). Such a property is indeed required by upd_inv
to ensure its termination.

Restoring the Invariant. As suggested in VACID-0 [20], we introduce a function
to restore the invariant (function upd_inv on lines 68–77). Given a node p and
an offset delta, it adds delta to the sum field of p and of all its ancestors.

Separation Predicates: A Taste of Separation Logic in First-Order Logic 175

This way, we reuse this function in addChild (with the new child’s sum), in
update (with the difference), and in dislodge (with the opposite of the child’s
sum).

Local and Global Invariant. Another key ingredient of the proof is to ensure the
invariant property that, for each node, the sum field contains the sum of values
in all nodes beneath, including itself. To state such a property, we need to access
children nodes. Since the data structure does not provide any way to do that (we
only have parent links), we augment the data structure with ghost children links.
To make it simple, we assume that each node has at most two children, stored in
ghost fields left and right (line 4). Structural invariants relating fields parent,
left, and right are gathered in predicate wf (lines 28–37).

To state the invariant for sum fields, we first introduce a predicate good (lines
20–23). It states that the sum field of a given node p has a correct value when
delta is added to it. It is important to notice that predicate good is a local
invariant, which assumes that the left and right children of p have correct sums.
Then we introduce a predicate inv (lines 25–26) to state that any node p verifies
good(p, 0), with the possible exception of node except. Using an exception
is convenient to state that the invariant is locally violated during upd_inv. To
state that the invariant holds for all nodes, we simply use inv(NULL).

Our local invariant is convenient, as it does not require any induction. How-
ever, to convince the reader that we indeed proved the expected property, we
also show that this local invariant implies a global, inductively-defined invari-
ant. Lines 130–137 introduce the sum of all values in a tree, as an inductive
predicate treesum, and a lemma to state that local invariant inv(NULL) implies
treesum(p, p→sum) for any node p.

4.3 Proof

The proof was performed using Frama-C Carbon2 and its Jessie plug-in [21],
using SMT solvers Alt-Ergo 0.92.3, CVC3 2.2, and Z3 2.19, on an Intel Core Duo
2.4 GHz. As explained in Sec. 3.4, we first run Frama-C on the annotated C code
and then we insert the separation pragmas in the generated Jessie code (this is
a benign modification). All verification conditions are discharged automatically
within a total time of 30 seconds.

The two lemmas parents_sep and global_invariant were proved interac-
tively using the Coq proof assistant version 8.3pl3 [26]. A total of 100 lines of
tactics is needed. It doesn’t take more than three days for one of the author to
find the good specifications and make the proofs.

5 Function Footprints

In the case of the composite pattern, it is easy to specify the footprints of the
C functions. Indeed, we can simply say that any sum field may be modified

2 http://frama-c.com/

http://frama-c.com/

176 F. Bobot and J.-C. Filliâtre

(using \all->sum in assigns clauses), since the invariant provides all necessary
information regarding the contents of sum fields. For a function such as list
reversal, however, we need to be more precise. We want to know that any list
separated from the one being reversed is left unmodified. For instance, we would
like to be able to prove the following piece of code:

1 /*@
2 requires islist(p) && islist(q) && sep_list_list(p,q);
3 ensures islist(p) && islist(q) && sep_list_list(p,q);
4 @*/
5 void bar(struct node * p, struct node * q) {
6 p = rev(p);
7 }

For that purpose we must strengthen the specification and loop invariant of
function rev with a suitable frame property. One possibility is to proceed as
follows:

1 /*@
2 #Gen_Frame : list_frame list
3 #Gen_Sub: list_sub list list
4
5 requires list(p);
6 ensures list (\result) && list_frame {Old ,Here }(p,result);
7 @*/
8 struct node * rev(struct node * p);
9 ...

10 /*@ loop invariant
11 list(p) && list(q) && sep_list_list (p,q)
12 && list_frame {Init ,Here }(\at(p,Init),q)
13 && list_sub {Init ,Here }(\at(p,Init),p); @*/
14 ...

Two pragmas introduce new predicates list_frame and list_sub. Both de-
pend on two memory states. The formula list_frame{Old,Here}(p,result)

expresses in the post-condition that, between pre-state Old and post-state Here,
all modified pointers belong to list p. It also specifies that the footprint of list
result is included in the (old) footprint of list p. On the example of function
bar, we now know that only pointers from p have been modified, so we can
conclude that islist(q) is preserved. Additionally, we know that the footprint
of islist(p) has not grown so we can conclude that it is still separated from
islist(q). The formula list_sub{Init,Here}(\at(p,Init),p) specifies only
the inclusion of the footprint of the lists.

These two predicates could be axiomatized using membership only. For in-
stance, list_sub(p, q) could be simply axiomatized as ∀x, x ∈ ftislist(p) ⇒
x ∈ ftislist(q). But doing so has a rather negative impact on SMT solvers,
as they have to first instantiate this axiom and then to resort to other axioms
related to membership. Moreover this axiom is very generic and can be applied
when not needed. For that reason we provide, in addition to axioms related
to membership, axioms for footprint inclusion, to prove either s ⊂ ftp(p) or

Separation Predicates: A Taste of Separation Logic in First-Order Logic 177

ftp(p) ⊂ s directly. With such axioms, functions rev and bar are proved correct
automatically.

6 Related and Future Work

VeriFast [13,15] allows user-defined predicates but requires user annotations to
fold or unfold these predicates. In our work, we rely instead on the capability of
first-order provers to fold and unfold definitions. VeriFast uses the SMT solver
Z3, but only as a constraint solver on ground terms.

The technique of implicit dynamic frames [24] is closer to our work, except
that formulas are restricted. Additionally, implicit dynamic frames make use of
a set theory, whereas we do not require any, as we directly encode the relevant
parts of set theory inside our footprint definition axioms.

Both these works do not allow a function to access (and thus modify) a pointer
that is not in the footprint of the function’s precondition — except if it is allo-
cated inside the function. In our work, we do not have such a restriction. When
necessary, we may define the footprint of a function using separation predicates,
as explained in the first author’s thesis [3].

There exist already several proofs of the composite pattern. One is performed
using VeriFast [14]. It requires many lemmas and many open/close statements,
whereas our proof does not contain much proof-related annotations.

The use of a local invariant in our proof is not new. It was first described
in [19]. The proof by Rosenberg, Banerjee, and Naumann [23] also makes use
of it. In order to prove that addChild is not creating cycles, the latter proof
introduces two ghost fields, one for the set of descendants and one for the root
node of the tree. Updating these ghost fields must be done at several places. In
our case, we could manage to perform the case only with the generated predicate
sep_node_parents without need of extra ghost fields which leads to a simpler
proof.

The composite pattern has also been proved using considerate reasoning [25],
a technique that advocates for local invariant like the one we used. Our predicate
inv is similar to their broken declaration. As far as we understand, this proof is
not mechanized, though.

Our future work includes generalizing the frame pragma used to describe the
footprint of a function. One solution is to compute the footprint directly from
ACSL’s assigns clause, if any. Another is to describe the footprint using the
linear maps framework [18]. One valuable future work would be to formally prove
the consistency of our axioms, either using a meta-theoretical formalization, or,
in a more tractable way, by producing proofs for each generated axiom.

References

1. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

178 F. Bobot and J.-C. Filliâtre

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

3. Bobot, F.: Logique de séparation et vérification déductive. Thèse de doctorat, Uni-
versité Paris-Sud (December 2011)

4. Bobot, F., Conchon, S., Contejean, É., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/

5. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

6. Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

7. Burstall, R.: Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence 7, 23–50 (1972)

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. de Moura, L., Dutertre, B.: Yices: An SMT Solver, http://yices.csl.sri.com/
10. Filliâtre, J.-C., Paskevich, A., Stump, A.: The 2nd Verified Software Competition

(November 2011), https://sites.google.com/site/vstte2012/compet
11. The Frama-C platform for static analysis of C programs (2008),

http://www.frama-c.cea.fr/

12. Huisman, M., Klebanov, V., Monahan, R.: (October 2011),
http://foveoos2011.cost-ic0701.org/verification-competition

13. Jacobs, B., Piessens, F.: The verifast program verifier. CW Reports CW520, De-
partment of Computer Science, K.U.Leuven (August 2008)

14. Jacobs, B., Smans, J., Piessens, F.: Verifying the composite pattern using sepa-
ration logic. In: Workshop on Specification and Verification of Component-Based
Systems, Challenge Problem Track (November 2008)

15. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010)

16. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

17. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Experience Report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011), Materials available at www.vscomp.org

18. Lahiri, S.K., Qadeer, S., Walker, D.: Linear maps. In: Proceedings of the 5th ACM
Workshop on Programming Languages Meets Program Verification, PLPV 2011,
pp. 3–14. ACM, New York (2011)

19. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing (2007)

20. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invari-
ants of data-structures, edition 0. In: Proceedings of Tools and Experiments Work-
shop at VSTTE (2010)

http://alt-ergo.lri.fr/
http://yices.csl.sri.com/
https://sites.google.com/site/vstte2012/compet
http://www.frama-c.cea.fr/
http://foveoos2011.cost-ic0701.org/verification-competition
www.vscomp.org

Separation Predicates: A Taste of Separation Logic in First-Order Logic 179

21. Moy, Y., Marché, C.: The Jessie plugin for Deduction Verification in Frama-C —
Tutorial and Reference Manual. INRIA & LRI (2011), http://krakatoa.lri.fr/

22. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc.
Press (2002)

23. Rosenberg, S., Banerjee, A., Naumann, D.A.: Local Reasoning and Dynamic Fram-
ing for the Composite Pattern and Its Clients. In: Leavens, G.T., O’Hearn, P.,
Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 183–198. Springer, Hei-
delberg (2010)

24. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic
Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

25. Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite
Design Pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,
vol. 5944, pp. 328–344. Springer, Heidelberg (2010)

26. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.3 (2010), http://coq.inria.fr

A Annotated Source Code

1 typedef struct node {

2 int val , sum;

3 struct node *parent;

4 //@ ghost struct node *left , *right;

5 } *NODE;

6
7 /*@ inductive parents (NODE p) {

8 case nil: \forall NODE p; p== NULL ==> parents (p);

9 case cons: \forall NODE p;

10 p != NULL ==> \valid(p) ==>

11 parents (p->parent) ==> parents (p);

12 }

13
14 #Gen_Separation sep_node_parents(NODE , parents)

15
16 lemma parents_sep:

17 \forall NODE p; p!= NULL ==>

18 parents (p) ==> sep_node_parents(p, p->parent);

19
20 predicate good(NODE p, int delta) =

21 p->sum + delta == p->val +

22 (p->left == NULL? 0 : p->left ->sum) +

23 (p->right == NULL? 0 : p->right ->sum);

24
25 predicate inv(NODE except) =

26 \forall NODE p; \valid(p) ==> p != except ==> good(p, 0);

27
28 predicate wf(NODE except) =

29 \forall NODE p; \valid(p) ==> p != except ==>

30 (p->right != NULL ==>

31 p->right ->parent == p && \valid(p->right)) &&

32 (p->left != NULL ==>

33 p->left ->parent == p && \valid(p->left)) &&

34 (p->right == p->left ==> p->right == NULL) &&

http://krakatoa.lri.fr/
http://coq.inria.fr

180 F. Bobot and J.-C. Filliâtre

35 (p->parent != NULL ==> \valid(p->parent)) &&

36 (p->parent != NULL ==>

37 p->parent ->left == p || p->parent ->right == p);

38
39 predicate newnode (NODE p, integer v) =

40 parents (p) && p->right == NULL && p->left == NULL &&

41 p->parent == NULL && p->val == v && \valid(p);

42 @*/

43
44 /*@ requires

45 inv(NULL) && wf(NULL);

46 ensures

47 inv(NULL) && wf(NULL) && newnode (\result , v) &&

48 \forall NODE n; \old (\valid(n)) ==>

49 \result != n && \valid(n) &&

50 \old(n->val) == n->val && \old(n->parent) == n->parent &&

51 \old(n->left) == n->left && \old(n->right) == n->right;

52 @*/

53 NODE create(int v) {

54 Before:

55 {

56 NODE p = (NODE)malloc(sizeof(struct node));

57 /*@ assert \forall NODE n; n != p ==>

58 \valid(n) ==> \at(\valid(n),Before); @*/

59 p->val = p->sum = v;

60 p->parent = p->left = p->right = NULL;

61 return p;

62 }}

63
64 /*@ requires inv(p) && parents (p) && wf(NULL) && good(p,delta);

65 ensures inv(NULL);

66 assigns \all ->sum;

67 @*/

68 void upd_inv(NODE p, int delta) {

69 NODE n = p;

70 /*@ loop invariant

71 inv(n) && parents (n) && (n != NULL ==> good(n,delta));

72 @*/

73 while (n != NULL) {

74 n->sum = n->sum + delta;

75 n = n->parent;

76 }

77 };

78
79 /*@

80 requires

81 inv(NULL) && wf(NULL) &&

82 \valid(q) && q->parent == NULL &&

83 parents (p) && p != NULL && sep_node_parents(p, p->parent) &&

84 (p->left == NULL || p->right == NULL) && sep_node_parents(q,p);

85 ensures

86 parents (q) && parents (p) && inv(NULL) && wf(NULL) &&

87 (\old(p->left) == NULL ==>

88 p->left == q && \old(p->right) == p->right) &&

89 (\old(p->left) != NULL ==>

90 p->right == q && \old(p->left) == p->left);

91 assigns p->left , p->right , q->parent , \all ->sum;

92 @*/

93 void addChild(NODE p, NODE q) {

94 if (p->left == NULL) p->left = q; else p->right = q;

Separation Predicates: A Taste of Separation Logic in First-Order Logic 181

95 q->parent = p;

96 upd_inv(p, q->sum);

97 }

98
99 /*@ requires parents (p) && p != NULL && inv(NULL) && wf(NULL);

100 ensures p->val == v && parents (p) && inv(NULL) && wf(NULL);

101 assigns p->val , \all ->sum;

102 @*/

103 void update(NODE p, int v) {

104 int delta = v - p->val;

105 p->val = v;

106 upd_inv(p, delta);

107 }

108
109 /*@

110 requires

111 parents (p) && p != NULL && p->parent != NULL &&

112 inv(NULL) && wf(NULL);

113 ensures

114 parents (p) && p->parent == NULL && inv(NULL) && wf(NULL) &&

115 (\old(p->parent ->left) == p ==>

116 \old(p->parent)->left == NULL) &&

117 (\old(p->parent ->right) == p ==>

118 \old(p->parent)->right == NULL);

119 assigns p->parent ->left , p->parent ->right , p->parent , \all ->sum;

120 @*/

121 void dislodge(NODE p) {

122 NODE n = p->parent;

123 if(p->parent ->left == p) p->parent ->left = NULL;

124 if(p->parent ->right == p) p->parent ->right = NULL;

125 p->parent = NULL;

126 upd_inv(n, -p->sum);

127 }

128
129 /*@

130 inductive treesum {L}(NODE p, integer v) {

131 case treesum_null{L}:

132 treesum (NULL , 0);

133 case treesum_node{L}:

134 \forall NODE p; p != NULL ==> \forall integer sl , sr;

135 treesum (p->left , sl) ==> treesum (p->right , sr) ==>

136 treesum (p, p->val + sl + sr);

137 }

138
139 lemma global_invariant{L}:

140 inv(NULL) ==> wf(NULL) ==>

141 \forall NODE p; \valid(p) ==> treesum (p, p->sum);

142 @*/

The Confinement Problem

in the Presence of Faults�

William L. Harrison1, Adam Procter1, and Gerard Allwein2

1 University of Missouri, MO 65211 USA
2 US Naval Research Laboratory, Code 5543, Washington, DC, USA

Abstract. In this paper, we establish a semantic foundation for the
safe execution of untrusted code. Our approach extends Moggi’s compu-
tational λ-calculus in two dimensions with operations for asynchronous
concurrency, shared state and software faults and with an effect type sys-
tem à la Wadler providing fine-grained control of effects. An equational
system for fault isolation is exhibited and its soundness demonstrated
with a semantics based on monad transformers. Our formalization of
the equational system in the Coq theorem prover is discussed. We argue
that the approach may be generalized to capture other safety properties,
including information flow security.

1 Introduction

Suppose that you possess an executable of unknown provenance and you wish to
run it safely. The cost of analyzing the binary is prohibitive, and so, ultimately,
you have little choice but to explore its effects by trial and error. That is, you run
it and hope that nothing irreversibly damaging is done to your system. There
are two alternatives proposed in the literature to the trial and error strategy.
You can attempt to detect safety and security flaws in the untrusted code with
automated static analyses. This is the approach being explored by much of the
literature from the language-based security [27] community. The other approach
is to isolate the untrusted code so that any destructive side effects (malicious or
otherwise) resulting from its execution are rendered inert.

This paper introduces the confinement calculus (CC) and uses it as a vehicle
for exploring the design and verification of isolation kernels (defined below). CC
extends Moggi’s computational λ-calculus [22] with constructs for state, faults
and concurrency. Furthermore, the type system for the CC also incorporates an
effect system à la Wadler [29] to distinguish computations occurring on different
domains. The CC concurrency metalanguage is closely related to recent work of
Goncharov and Schröder [12].

Lampson coined the term confinement problem [17] for the challenge of confin-
ing arbitrary programs—i.e., executing arbitrary code in a manner that prevents
the illegitimate leakage of information through what Lampson termed covert

� This research was supported by NSF CAREER Award 00017806, US Naval Re-
search Laboratory Contract 1302-08-015S, and by the U.S. Department of Education
GAANN grant no. P200A100053.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 182–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Confinement Problem in the Presence of Faults 183

channels. Legitimate channels transfer information via a system’s resources used
as intended by its architects. Covert channels transfer information by using or
misusing system resources in ways unintended by the system’s architects. The
isolation property we define—called domain isolation—is similar to, albeit more
restrictive than, the security property from our previous work [14]. Delimiting
the scope of effects for arbitrary programs is the essence of confinement and the
combination of effect types with monads is the scoping mechanism we use to
confine effects.

A simple isolation kernel written in CC is presented in Figure 1. We assume
there are two confinement domains, named Athens (A) and Sparta (S). The
kernel is a function k which is parameterized by domain handler functions for
each of the input domains, with types ΔA and ΔS respectively. These domain
handlers are applied by the kernel to produce a single effectful computation step;
the effect system guarantees that the effects of the ΔA (resp. ΔS)-typed handler
are restricted to A(S). The kernel also takes as input an internal kernel state
value (here just a domain tag of type D which serves a similar function to a
process id), and domain state values of types DomA and DomS. Execution of the
respective threads is interleaved according to a round robin policy. The unfold
operator encapsulates guarded recursion.

The proof that k is, in fact, an isolation kernel rests on two important features
of the CC. The effect system guarantees that the domain handlers do not them-
selves induce state effects outside of their respective domains. The equational
logic allows us to prove, using simple monadic equational reasoning, that the
interleaving of the threads by k does not introduce new interactions between the
domains: failure in Athens will not propagate to Sparta (nor vice versa).

D = {A, S}
k : (ΔA×ΔS) → (D×DomA×DomS) → RD()
k (ha,hs) (s0,α0,σ0) =
unfold (s0,α0,σ0)

(λ(s,α,σ). case s of
A -> case α of

(Just x) -> ha x >>= λα′. return (Left (S,α′,σ))
Nothing -> return (Left (S,α,σ))

S -> case σ of
(Just x) -> hs x >>= λσ′. return (Left (A,α,σ′))
Nothing -> return (Left (A,α,σ)))

Fig. 1. A Simple Isolation Kernel in CC

The structure of the remainder of this article is as follows. The rest of this
section introduces the safety property fault isolation and motivates our approach
to it. Section 2 presents an overview of the literature on effect systems and mon-
ads. The Confinement Calculus is defined in Section 3. Section 4 demonstrates
how to use the CC to construct and verify an isolating kernel. Formalization of
the Confinement Calculus in the Coq theorem prover is discussed in Section 5.
Related work is discussed in Section 6, and Section 7 concludes.

184 W.L. Harrison, A. Procter, and G. Allwein

A Monadic Analysis of Fault Isolation

Fault isolation is a safety property which prescribes boundaries on the extent
of a fault effect. Here, we take a fault to mean a failure within a thread that
causes it to terminate abnormally. The causes of a fault can be many and system-
dependent, but some typical causes include activities such as division by zero,
the corruption of a runtime stack, etc. Under some circumstances, one thread’s
failure can “crash” other threads. Fault isolation in this context means that the
failure of one thread can only effect a subset of all threads running on a system.

We assume that the threads running on a system are partitioned into domains
where the term is adapted from the terminology of hypervisors [3] and separation
kernels [20] rather than denotational semantics. Fault isolation, as we use the
term, means that a thread effect may only operate on its own domain. We
refer to a fault-isolating kernel as a multitasking, multi-domain kernel in which
the imperative and fault operations on one domain have no impact on other
thread domains. Our fault model applies equally as well to software traps and
programmable exceptions, although we do not provide the details here.

From the perspective of an individual thread, the scope of a fault should
be global. Let the thread t be a sequence of atoms, a0; a1; a2; · · · , then, if a0
causes a fault, then the execution of a1; a2; · · · should be cancelled, thereby
satisfying the (pseudo-)equation, a0; a1; a2; · · · = a0. From the point of view
of a concurrent system (e.g., a multitasking kernel, etc.), the scope of a fault
within an individual thread must remain isolated. The execution of t is really
interwoven with other actions, including potentially those of other threads (e.g.,
b0; a0; b1; a1; b2; a2; · · ·), and a fault within t must not effect the execution of the
other actions. In other words, should a0 cause a fault, then the following (pseudo-
)equation should hold, b0; a0; b1; a1; b2; a2; · · · = b0; a0; b1; b2; · · · , specifying that
the subsequent actions of t should be filtered from the global system execution.
The pseudo- prefix on the aforementioned equations signifies that the equations
capture intuitions rather than rigorous mathematical truth. The confinement
calculus will allow us to make these statements rigorous.

2 Effect Systems and Monads

Effect systems [24] and monads [22,18] are means of representing the poten-
tial side effects of a program explicitly within its type. This section provides
a brief overview of effect systems and monads and motivates our use of their
combination.

Effect Types. Effect systems are commonly associated with impure, strongly
typed functional languages (e.g., ML [21]) because the effect type annotations
make explicit the side effects already present implicitly in the language itself. In
an impure, strongly-typed functional language, the type of a function specifies
its input and output behavior only. An ML function, f : int→ int, takes and
returns integer values, but, because ML is impure, it may also have side effects
(e.g., destructive update or programmable exceptions) which are not reflected

The Confinement Problem in the Presence of Faults 185

in its type. An effect system would indicate the potential side effects in the type

itself. Annotating the arrow in f ’s type with ρ (i.e., f : int
ρ→ int) could be

used to indicate that f may destructively update region ρ. Effect annotations
are introduced via side effecting language constructs (e.g., ML’s assignment and
dereference operations, := and !, respectively). An effect type system tracks the
effects within a program to indicate its potential side effects. For an excellent
account of effect systems, the reader is referred to Nielson, et al. [24].

Monads. Pure, strongly-typed functional languages (e.g., Haskell [25]) do not
allow side effects, so there are no implicit side effects to make explicit. Monads
are used to mimic side effecting computations within a pure language. Monads
in Haskell are type constructors with additional operations, bind (>>=) and unit
(return), obeying the “monad laws” (defined in Figure 2). What makes mon-
ads useful is that programmers can tailor the desired effects to the application
being constructed, effectively configuring a domain-specific language for each
application. Rewriting it in Haskell, f now has type Int → M Int where M is
the monad type constructor that encapsulates desired effects. Monads are also
algebraic constructions with properties useful to formal verification (more will
be said about this below). Figure 2 presents Moggi’s well-known computational
λ-calculus [22]. The computational λ-calculus is the core of any equational logic
for monadic specifications, including the logic presented in Section 3. An equa-
tional judgment has the form, Σ �Γ � e1= e2 : t, where Σ, Γ and t are a set
of hypotheses, a typing environment, and a type, respectively.

Σ � Γ, x : B � e1 = e2 : A

Σ � Γ, x : B � return(e1) = return(e2) : MA
(cong1)

Σ � Γ, x : C � e1 = e2 : MA Σ � Γ, x′ : A � e′1 = e′2 : MB

Σ � Γ, x : C � e1>>=λx
′.e′1 = e2>>=λx

′.e′2 : MB
(cong2)

Γ, x : A � e1 : MA Γ, x1 : B � e2 : MB Γ, x2 : C � e3 : MC

Σ � Γ, x : A � (e1 >>= λx1.e2) >>= λx2.e3 = e1 >>= λx1.(e2 >>= λx2.e3) : MC
(assoc)

Γ, x : A � e1 : B Γ, x1 : B � e2 : MC

Σ � Γ, x : A � (return(e1) >>= λx1.e2) = [e1/x1]e2 : MC
(l-unit)

Γ, x : A � e1 : MB

Σ � Γ, x : A � e1 >>= λx1.return(x1) = e1 : MB
(r-unit)

Fig. 2. The Computational λ-Calculus. M stands for any monad. The “monad laws”
are assoc (associativity), l-unit (left unit), and r-unit (right unit).

Effect Systems + Monads. Combining effect systems with monadic semantics
(as in Wadler [29]) provides fine-grained tracking of effects with a semantic model
of those effects. Monads give rise to an integrated theory of effects and effect
propagation. The integration of multiple effects within a single monad M has
consequences for formal verification. Because all of the effects are typed in M ,
those effects are not distinguished syntactically within the type system of a

186 W.L. Harrison, A. Procter, and G. Allwein

specification language. More positively, a rich equational theory governing their
interaction follows by construction.

Effect systems can reflect this semantic information in the syntax of the spec-
ification language itself, thereby making monadic specifications more amenable
to logical analysis. In the setting of this research, the combination of effects
systems with monads is used to abstract over computations that occur on a
particular domain. Given a particular domain d and monad K , for example,
any term, Γ � e : K{d}A, is arbitrary code on domain d, i.e., its effects occur
only in domain d. Combining effects systems and monads delimits the scope of
effects for arbitrary programs and is the principal mechanism for designing and
verifying confinement systems.

The Identity and State Monads. The identity (left) and state (right)
monads are defined below (where Sto can be any type). The return operator
is the monadic analogue of the identity function, injecting a value into the
monad. The = operator is a form of sequential application. Monadic oper-
ators other than = and return are key to the formulation of a particular no-
tion of computation. The state monad S encapsulates an imperative notion of
computation with operators for updating and reading the state, u and g, resp.

data Id a = Id a
return v = Id v
(Id x) �= f = f x
data Sa = S(Sto→ (a, Sto))
deS (S x) = x
u : (Sto→ Sto)→ S()
u f = S (λσ.((), f σ))

g : S Sto
g = S (λσ.(σ, σ))
return v = S (λσ. (v , σ))
(S x) �= f

= S (λσ0. let (v , σ1) = x σ0

in deS (f v) σ1)

The Maybe Monad and Errors. The usual formulation of an error
monad is called Maybe in Haskell (see below). An error (i.e., Nothing)
has the effect of canceling the rest of the computation (i.e., f). The
scope of Nothing is global in the sense that each of the following expres-
sions evaluates to Nothing : (Just 1 = λv . Nothing), (Nothing = λd . Just 1),
(Just 1 = λv . Nothing = λd . Just 2).

dataMaybe a = Just a |Nothing
return = Just

Just v �= f = f v
Nothing �= f = Nothing

Observe that this behavior precludes the possibility of fault isolation within
domains: if the Nothing occurs on one domain and the (Just 1) or (Just 2) oc-
cur on another, the entire multi-domain computation will be canceled. From a
security point of view, this is clearly undesirable: allowing a high-security com-
putation to terminate a low-security computation introduces information flow
via a termination channel, and allowing a low-security computation to terminate
a high-security computation exposes the system to a denial of service attack.

The Confinement Problem in the Presence of Faults 187

Monad Transformers. Monad transformers allow monads to be combined and

extended. Monad transformers corresponding to the state monad are defined in
Haskell below. Formulations of the state monad equivalent to those above are
produced by the applications of this transformer to the identity monad, StateT
Sto Id. In the following, type variable m abstracts over monads.

data StateT s m a = ST (s → m (a, s))
deST (ST x) = x
return v = ST (λs. returnm (v , s))
(ST x) �= f = ST (λs0. (x s0) �=m λ(y , s1). deST (f y) s1)
lift : m a → StateT s m a
lift ϕ = ST (λs. ϕ �=m λv . returnm (v , s))

For a monad m and type s, (StateT s m) “extends” m with an updateable store s.
The lift morphism is used to redefine any existing operations on m for the monad
(StateT s m). The process of lifting operations is analogous to inheritance in
object-oriented languages. The layer (StateT s m) also generalizes the definitions
of the update and get operators:

u : (s → s) → StateT s m ()
u f = ST (λs. returnm ((), f s))

g : StateT s m s
g = ST (λs. returnm (s, s))

Layered State Monads. A layered state monad is a monad constructed from
multiple applications of the state monad transformer to an existing monad.

type K = StateT Sto (StateT Sto (StateT Sto Id))
u1, u2, u3 : (Sto → Sto) → K ()
u1 f = u f
u2 f = lift (u f)
u3 f = lift (lift (u f))

Each application of (StateT Sto) creates a layer with its own instances of the
update (u1-u3) and get operations (not shown). These imperative operators come
with useful properties by construction [14] and some of these are included as the
equational rules (clobber) and (atomic n.i.) (atomic non-interference) in Section 3.

Resumption-Monadic Concurrency. Two varieties of resumption monad are
utilized here, the basic and reactive resumption monads [13]. Basic resumptions
encapsulate a concurrency-as-interleaving notion of computation, while reactive
resumptions refine this notion to include a failure signal. The basic and reactive
monad transformers are defined in Haskell in terms of monad m as:

data ResT m a =Done a | Pause (m (ResT m a))
return =Done
(Done v) �= f = f v
(Pause ϕ) �= f = Pause (ϕ �=m λκ. returnm (κ �= f))

data ReactT m a =Dn a | Ps (m (ReactT m a)) | Fail
return =Dn
(Dn v) �= f = f v

188 W.L. Harrison, A. Procter, and G. Allwein

(Ps ϕ) �= f = Ps (ϕ �=m λκ. returnm (κ �= f))
Fail �= f = Fail

We chose to formulate the reactive resumption transformer along the lines of
Swierstra and Altenkirch [28] rather than that of our previous work [13] because
it is simpler. We define the following monads: Re = ReactTK, R = ResTK,
and K = StateT n Sto Id where n is the the number of domains and Sto is the
type of stores (left unspecified).

Figure 3 presents the concurrency and co-recursion operations for R and Re.
The step operation lifts an m-computation into the R (resp. Re) monad, thereby
creating an atomic (w.r.t. R (Re)) computation. A resumption computation may
be viewed as a (possibly infinite) sequence of such steps; a finite R-computation
will have the form, (stepR m1) =R λv1. · · · =R λvn . (stepR mn). The definition
of stepR is below (stepRe is analogous). The unfoldR operator is used to define
kernels while the unfoldRe operator is used to define threads. The co-recursion
provided by these operators is the only form of co-recursion supported by the
confinement calculus. An important consequence of this limitation on recursion
is that it guarantees productivity [8]. It should be noted that the presence of
Maybe in the type of unfoldRe means that threads may fail, while its absence
from the type of unfoldR means that kernels cannot fail. The unfold operators
are defined below; note that Either a b is simply Haskell-inspired notation for
the sum type a+ b.

stepR : KA→ RA
stepR ϕ = Pause (ϕ �= (return ◦ Done))

unfoldR : (Monad t) ⇒ a → (a → t (Either a b)) → ResT t b
unfoldR a f = stepR (f a) �= λκ.

case κ of
(Left a′) → unfoldR a′ f
(Right b) → return b

unfoldRe : (Monad t) ⇒ a → (a → t (Maybe (Either a b))) → ReactT t b
unfoldRe a f = stepRe (f a) �= λκ.

case κ of
(Just (Left a′)) → unfoldRe a

′ f
(Just (Right b)) → return b
Nothing → Fail

Fig. 3. Monadic Concurrency and Co-recursion Operations

3 The Confinement Calculus

This section introduces the confinement calculus and defines its syntax, type
system and semantics. The CC proceeds from Moggi’s computational λ-calculus
[22] and Wadler’s marriage of type systems for effects with monads [29].

The Confinement Problem in the Presence of Faults 189

e, e′ ∈ Exp ::= x | λx.e | e e′ | return e | e >>= λx.e′ | get | upd e
| fail | mask | out | step | unfold | zero | succ | natRec

A,B ∈ Type ::= A→ B | Kσ A | Rσ A | Reσ A | Sto | Nat | () | A+B | A×B

Fig. 4. Abstract Syntax. Assume D = {d1, . . . , dn} and σ ∈ P(D).

Types in the CC are directly reflective of semantic domains introduced in the
previous section, and as a result are named similarly. As a notational convention,
we will use teletype font when expressing a type in CC (e.g. K Nat), and an italic
font when referring to semantic domains (e.g. K Nat).

Abstract Syntax. Figure 4 presents the abstract syntax for the CC. The finite
set of domains, D contains labels for all thread domains in the system (D replaces
Region from Wadler’s original presentation of MONAD [29]). We also diverge
slightly from Wadler’s language in that we do not track the “sort” of effects that
a computation may cause: reading, writing, and failure are all treated the same.

The monadic expression language Exp has familiar computational λ-calculus
constructs as well as imperative operations (get, upd), an imperative opera-
tion (mask) used in specifying the isolation of imperative effects [14], and oth-
ers for resumption monadic computations (out, step, and unfold). Intuitively,
the mask operation has the effect of resetting or “zeroing out” a particular do-
main. Expressions unfold, step and out are resumption-monadic operations.
The unfold operator encapsulates corecursion, and its semantics are structured
to allow only guarded recursion. More will be said about fail, step and out

later in this section. Finally, the expressions zero, succ, and natRec allow con-
struction of, and primitive recursion over, natural numbers. Note that the only
forms of recursion permitted by CC are primitive recursion over naturals (via
natRec), and guarded corecursion over resumptions (via unfold).

Γ � e : A

Γ � return e : K∅A

Γ � e : KσA Γ, x : A � e′ : Kσ
′
B

Γ � e >>= λx.e′ : Kσ∪σ′
B

Γ � e : KσA σ ⊆ σ′

Γ � e : Kσ
′
A

Γ � get : K{d}Sto

Γ � f : Sto→ Sto

Γ � upd f : K{d}() Γ � mask : K{d}()

Fig. 5. Type System for Imperative Effects

The type syntax in Figure 4 contains three monads. The monads K, R and
Re encapsulate layered state, concurrency and system executions, and concur-
rent threads, respectively. The effect system can express fine-grained distinctions
about computations and, in particular, allows the domain of a thread to be ex-
pressed in its type.

Types and Effects for the Confinement Calculus. The type and effect
system for the CC is presented in Figures 5-7 and that figure is divided into

190 W.L. Harrison, A. Procter, and G. Allwein

Γ � e : A

Γ � return e : R∅A

Γ � e : RσA Γ, x : A � e′ : Rσ
′
B

Γ � e >>= λx.e′ : Rσ∪σ′
B

Γ � e : KσA
Γ � step e : RσA

Γ � p : RσA

Γ � out p : Kσ(RσA)

Γ � p : A Γ, x:A � q : Kσ(A+B)

Γ � unfold p (λx.q) : RσB
Γ � natRec :

A→(A→A)→Nat→A

Fig. 6. Type System for Concurrency. The rule for natRec is also included.

three sections. Figure 5 contains the system for the imperative core of CC—
i.e., the computations in the monad K. Figure 6 contains the type system for
concurrency. Figure 7 contains the type system for threads—i.e., computations
in the Re monad. The Re monad expresses the same notion of computation as
the R monad, except that it also contains a signal fail. A thread may use fail
to generate a fault, and it is up to the kernel component to limit the extent of
the fault to the thread’s domain.

Γ � e : A

Γ � return e : Re∅A

Γ � e : ReσA Γ, x : A � e′ : Reσ
′
B

Γ � e >>= λx.e′ : Reσ∪σ′
B

Γ � e : KσA
Γ � step e : ReσA

Γ � p : ReσA

Γ � out p : Kσ(ReσA)

Γ � p : A Γ, x:A � q : Kσ(A+B + ())

Γ � unfold p (λx.q) : ReσB Γ � fail : Re{d}A

A <: B σ0 ⊆ σ1

Kσ0A <: Kσ1B

A <: B σ0 ⊆ σ1

Rσ0A <: Rσ1B

A <: B σ0 ⊆ σ1

Reσ0A <: Reσ1B

Fig. 7. Type System for Reactive Concurrency; Subtyping Relation

Figure 7 gives the rules for subtyping monadic computations (standard rules
for reflexivity, transitivity, and for arrow, product, and sum types are omitted).
The intuition is that one monadic computation ϕ may stand in for another
computation γ without breaking type safety, if and only if the result type of
ϕ is a subtype of that of γ, and ϕ’s affected domains are a subset of γ’s. An
effect-free computation of type K∅A also has type K{d}A (but not vice versa).

Denotational Semantics of the Confinement Calculus. The dynamic se-
mantics of CC is a typed denotational semantics, meaning that the denotation
of terms depends in part on their typing derivations. This allows us to overload
the monad operations. The denotation of types does not depend on effect anno-
tations and is completely standard. The out operation accesses the first step of
a concurrent (R-typed) computation, producing a K-typed computation. Omit-
ted from Figure 8 is the denotation of natRec, which is defined by structural
induction on naturals. The CC term run and its denotation are defined as:

The Confinement Problem in the Presence of Faults 191

run n ϕ0 = natRec (returnK ϕ0) (λϕ. (ϕ >>= outR)) n

run : Nat → RA→ K(RA)
run 0 ϕ = return ϕ
run (n + 1) ϕ = out ϕ = run n

[[Γ � x : A]]ρ = ρ x
[[Γ � λx.e : A→ B]]ρ = λv.[[Γ, x : A � e : B]](ρ[x
→ v])
[[Γ � e e′ : A]]ρ = ([[Γ � e : B → A]]ρ) ([[Γ � e′ : B]]ρ)

[[Γ � return e :M∅A]]ρ = returnM ([[Γ � e : A]]ρ)
[[Γ � get : KdiSto]]ρ = lift i g
[[Γ � upd δ : Kdi ()]]ρ = lift i (u ([[Γ � δ : Sto → Sto]]ρ))
[[Γ � mask : Kdi ()]]ρ = lift i (u (λx.s0))

[[Γ � e >>= λx.e′ :Mσ∪σ′
B]]ρ

= [[Γ � e :MσA]]ρ>>=Mλv.[[Γ, x:A � e′ :Mσ′
B]](ρ[x
→ v])

[[Γ � unfold e (λx.e′) : RσB]]ρ
= unfoldR ([[Γ � e : A]]ρ) (λv.[[Γ, x : A � e′ : Kσ(A+B)]] (ρ[x
→ v]))

[[Γ � out(p) : Kσ(RσA)]]ρ =

{
return (Done v) if[[p]]ρ = Done v
ϕ if[[p]]ρ = Pause ϕ

[[Γ � fail : Redi A]]ρ = Fail
[[Γ � unfold e (λx.e′) : ReσB]]ρ

= unfoldRe ([[Γ � e : A]]ρ)(λv.[[Γ, x : A � e′ : Kσ(A+B + ())]] (ρ[x
→ v]))

[[Γ � out(p) : Kσ(ReσA)]]ρ =

⎧⎨⎩
return (Just(Dn v)) if[[p]]ρ = Dn v
ϕ = (return ◦ Just) if[[p]]ρ = Ps ϕ
returnNothing if[[p]]ρ = Fail

Fig. 8. Denotational Semantics. M stands for the K, R, or Re monads. K, R, and Re
are defined in Section 2.

Equational Logic. The rules of the equational logic encode known facts about
the denotational semantics proven in an earlier publication [14]. For instance,
the run operator “unrolls” R computations:

run (n+ 1) (step ϕ =R f) = ϕ =K run n ◦ f (1)

run (n+ 1) (returnR x) = returnK (returnR x) (2)

Properties (1) and (2) justify our introduction of the following rules:

Γ � n : Nat Γ � ϕ : KσA Γ, x : A � e : RσB

Σ � Γ � run (n+1) (stepϕ >>= λx.e) = ϕ >>= λx. run n e : Kσ(RσB)
(run-step)

Γ � n : Nat Γ � e : A
Σ � Γ � run (n+1) (returnR e) = returnK (returnR e) : Kσ(Rσ A)

(run-return)

A straightforward induction on the structure of type derivations justifies the
soundness of the following rules. This induction makes use of previous work

192 W.L. Harrison, A. Procter, and G. Allwein

(specifically Theorems 1-3 on page 17 [14]) and the “lifting law” of Liang [18]:
lift(x = f) = liftx = lift ◦ f .

Γ � ϕ : Kσ0A Γ � mask : Kσ1() σ0 ⊆ σ1

Σ � Γ � ϕ >> mask = mask : Kσ1()
(clobber)

Γ � ϕ : Kσ0() Γ � γ : Kσ1() σ0 ∩ σ1 = ∅
Σ � Γ � ϕ >> γ = γ >> ϕ : Kσ0∪σ1()

(atomic n.i.)

4 Isolation Kernels in Confinement Calculus

In this section, we turn our attention the construction of isolation kernels within
the confinement calculus. An isolation kernel is a function which interleaves the
execution of two or more threads in different domains, without introducing any
interactions across domains. Put another way, an isolation kernel must have the
property that a computation in domain d, when interleaved with a computation
in d′ �= d, behaves exactly the same as it would if the d′ computation had never
happened.

The formal definition of isolation is made in terms of a notion called domain
similarity. Two computations ϕ and γ are domain similar in a domain d if and
only if for every finite prefix of ϕ, there exists a finite prefix of γ whose effects
in d are the same.

Definition 1 (Domain Similarity Relation). Consider two computations
ϕ, γ : Rd1 ∪ ... ∪ dn A. We say ϕ and γ are similar with respect to domain di
(written ϕ ∼di γ) if and only if the following holds.

∀ n∈N . ∃m∈N . runn ϕ >>K mask = runm γ >>K mask

where mask = maskd1>> . . . >>maskdi−1>>maskdi+1>> . . . >>maskdn.

Kernels. Assume in Definitions 2-4 that D = {d1, . . . , dn} is a fixed set of
domains. We first define a notion of state: namely a tuple containing one ele-
ment representing the kernel’s internal state, and an additional element for the
state of each confinement domain. The domain states are wrapped in a Maybe
constructor to represent the possibility of failure within a domain.

Definition 2 (Domain and Kernel State). The state of domain i, Domi is
defined as:

Domi = Re{di}()

The type of kernel states for a type t is:

S = t×(Maybe Dom1)× . . .×(Maybe Domn)

A kernel is parameterized by handlers for each domain. A handler is a state
transition function on domain states, which may also have effects on the global
state (hence the presence of K in the type). The only restriction on a handler
for domain di is that its effects must be restricted to di.

The Confinement Problem in the Presence of Faults 193

Definition 3 (Domain Handler Function). The type of handler functions
for domain di is:

Δdi = Dom i → K{di}(Maybe Domi)

The handler vector type for D is:

ΔD = Δ1× . . .×Δn

Putting the pieces together brings us to the definition of a kernel. Note that a
kernel in our sense is parameterized over handler vectors.

Definition 4 (Kernel). Given a handler vector ΔD, kernel state type S, and
an answer type Ans, the type of kernels is defined by the following:

ΔD → S → KD(S +Ans)

Defining and Proving Isolation. To simplify the presentation, we will restrict
our attention for the remainder of this section to the case of two domains, called
A (for Athens) and S (for Sparta). All the results here generalize naturally to
more than two domains.

We define isolation by an extensional property on kernels. A kernel is said to be
isolating if the result of “eliminating” the computation in any one domain has no
effect on the outcome of any other. This is a property akin to noninterference [11].
We express this formally by replacing the domain handler with return – the
“do-nothing” computation – and replacing the domain state with Nothing.

Definition 5 (Isolation in the Presence of Faults). A kernel k is isolating
in the presence of faults if and only if

k (fA, fS)(s, dA, dS) ∼A k (fA, return)(s, dA, Nothing)
k (fA, fS)(s, dA, dS) ∼S k (return, fS)(s, Nothing, dS)

The following theorem shows that kernel k of Figure 1 satisfies this definition.

Theorem 1 (k is isolating). The kernel k of Figure 1 is isolating in the pres-
ence of faults.

Proof. We will show the S-similarity side of the proof, since the A-similarity
proof is analogous. N.b., Definition 1 allows the number of steps on each side of
the equation (n and m) to be different. Here it suffices to fix m = n:

run n (k (fA, fS) (s, dA, dS)) >> maskA
= run n (k (return, fS) (s, Nothing, dS)) >> maskA

The proof is by induction on n. The base case is trivial. We proceed by cases
on s, dA, and dS. The most interesting case is when s = A and dA = Just x;
all others involve no more than straightforward evaluation and an application of
the induction hypothesis. Let s = A and dA = Just x. Then:

run(n+ 1)(k(fA, fS)(A, Just x, dS)))>>maskA

194 W.L. Harrison, A. Procter, and G. Allwein

= run1 (k (fA, fS) (A, Just x , dS)) >>= runn >> maskA {prop run}
= fA x >>= λd ′

A. runn (k (fA, fS) (S, Just x , dS)) >> maskA {evaluation}
= fA x >>= λd ′

A. runn (k (return, fS) (S, Nothing, dS)) >> maskA {i.h.}
= fA x >>= λd ′

A. maskA >> runn (k (return, fS) (S,Nothing, dS)) {atomic n.i.}
= fA x >> maskA >> runn (k (return, fS) (S, Nothing, dS)) {d′

A does not occur}
= maskA >> runn (k (return, fS) (S, Nothing, dS)) {clobber}
= runn (k (return, fS) (S, Nothing, dS)) >> maskA {atomic n.i.}
= return () >> runn (k (return, fS) (S, Nothing, dS)) >> maskA {left unit}
= run1 (k (return, fS) (A, Nothing, dS)) >>= runn >> maskA {evaluation}
= run (n + 1) (k (return, fS) (A, Nothing, dS)) >> maskA {prop run}

5 Mechanizing the Logic in Coq

The syntax, denotational semantics, and equational logic of CC have all been
mechanized in the Coq [8] theorem prover. In lieu of separate syntaxes for type
judgments and terms as presented in the preceding sections, the Coq formulation
uses a strongly-typed term formulation as suggested by Benton et al [7]. We
combine this with a dependently typed denotational semantics along the lines of
Chlipala [9] (see Chapter 9). The payoff of this approach is that we do not need
to establish many of the usual properties such as progress and subject reduction
that usually accompany an operational approach. Furthermore, strongly-typed
terms are much more amenable to the use of Coq’s built-in system of parametric
relations and morphisms. Just a handful of relation and morphism declarations
lets us reuse many of Coq’s standard tactics (e.g., replace and rewrite) when
reasoning in the CC logic.

Figure 9 presents an example equational judgment rule from the Coq devel-
opment, representing the clobber rule. The only major difference between the
Coq formalism and the corresponding rule in Section 3 has to do with the need
for explicit subtyping: the term constructor subsume casts a term from a super-
type to a subtype, and requires as an argument a proof term showing that the
subtyping relationship holds (here called S just). The full development in Coq
is available by request.

6 Related Work

Klein et al. [15] describe their experience in designing, implementing and verify-
ing the seL4 secure kernel. Monads are applied as an organizing principle at all
levels of the seL4 design, implementation and verification. Their model of effects

J_clobber : ∀ (Γ:list ty) (d:domain) (t:ty)
(te:term Γ (tyK (onedom d) t)),

let S_just := S_tyK (onedom d) (union (onedom d) (onedom d))
(S_refl tynil) (clobber_obligation _)

in eq_judgment (subsume S_just (nullbindK te (mask Γ d))) (mask Γ d)

Fig. 9. Expressing the clobber rule in Coq

The Confinement Problem in the Presence of Faults 195

is different from the one described here. The seL4 monadic models encapsulate
errors, state and non-determinism. The notions of computation applied here in-
clude concurrency and interactivity (R and Re, respectively) as well as layered
state (K). Also, the type system underlying the seL4 models does not include
effect types. The present work models faults via simulation on distinct domains
rather than as part of an integrated model of effects. Cock, Klein and Sewell [10]
apply Hoare-style reasoning to prove that a design is fault free. Kernels in the
CC are fault-free as a by-product of our type system and it would be interest-
ing to investigate whether the application of CC in the seL4 construction and
verification process would alleviate some verification effort.

Another similarly interesting question is to consider the impact of integrating
layered state and resumption-based concurrency into their abstract, executable
and machine models. One design choice, for example, concerns the placement
of preemption points—i.e., places where interrupts may occur—within the seL4
kernel specifications. It seems plausible that interrupt handling in seL4 might be
simplified by the presence of an explicit concurrency model—i.e., resumptions.
It also seems plausible that aspects of the seL4 design and verification effort
might be reduced or abstracted by the inclusion of effect-scoping mechanisms
like layered state and effect types—e.g., issues arising from the separation of
kernel space from user space.

Language-based security [27] seeks to apply concepts from programming lan-
guages research to the design, construction and verification of secure systems.
While fault isolation is generally considered a safety property, it is also a security
property as well in that an unconfined fault may be used for a denial of service
attack and also as a covert channel. Monads were first applied within the context
of language-based security by Abadi et al. [1], although the use of effect systems
seems considerably less common in the security literature. Bartoletti et al. [4,5]
apply effect systems to history-based access control and to the secure orchestra-
tion of networked services. Bauer et al. [6] applied the combination of effect sys-
tems and monads to the design of secure programmonitors; their work appears to
be the first and only previously published research in security to do so. The cur-
rent work differs from theirs mainly in our use of interaction properties of effects
that follow by the construction of the monads themselves. These by-construction
properties provide considerable leverage towards formal verification. Scheduler-
independent security [26,19]) considers the relationship between scheduling and
security and investigates possibilistic models of security that do not depend on
particular schedulers. A natural next step for the current research is to investi-
gate scheduler freedom with respect to CC kernels (e.g., Definition 4).

7 Conclusions

The research described here seeks to apply tools and techniques from program-
ming languages research—e.g., monads, type theory, language compilers—to the
production of high assurance systems.We are interested, in particular, in reducing
the cost of certification and re-certification of verified artifacts. The questions we

196 W.L. Harrison, A. Procter, and G. Allwein

confront are, in terms of semantic effects, what can untrusted code do and, given
a semantic model of untrusted code, how can we specify a system for running it
safely in isolation? Untrusted code can read and write store obviously. It can fail—
i.e., cause an exception. It can also signal the operating system via a trap. These
effects are inherited from the machine language of the underlying hardware.

Previous work [14] explored the application of modular monadic semantics to
the design and verification of separation kernels. Each domain is associated with
an individual state monad transformer [18] and the “layered” state monad con-
structed with these transformers has “by-construction” properties that are help-
ful for verifying the information flow security. The present work builds upon this
in the following ways. Our previous work did not consider fault effects, and the
layering approach taken in that work does not generalize to handle faults. It is
also interesting, albeit less significant, that the semantics of the CC effect system
is organized by state monad transformers. Structuring the semantics of Wadler’s
MONAD language with monad transformers was first suggested by Wadler [29]
and the present work, to the best of our knowledge, is the first to actually do so.
Although the current work focuses on isolation, we believe that it can be readily
adapted to MILS (multiple independent levels of security) systems by refining the
effect types to distinguish, for example, reads and writes on domains (as Wadler’s
original MONAD language did). One could then express, for example, a high se-
curity handler that is allowed to read from, but not write to, domains lower in the
security hierarchy.

Kobayashi [16] proposed a general framework for reasoning aboutmonadic spec-
ifications based inmodal logic inwhichmonads are formalized as individualmodal-
ities. Nanevski elaborated on the monad-as-modality paradigm, introducing a
modal logic for exception handling as an alternative to the exception monad [23].
Nanevski’s logic is an S4 modal logic in which necessity encodes a computation
which may cause an exception—i.e., �CA represents a computation of an A value
that may cause an exception named in set C. Modal logics have been adapted to
security verification by partially ordering modalities to reflect a security lattice
by Allwein and Harrison [2]. We are currently investigating the integration of the
monad-as-modality paradigm with security-enabled partially-ordered modalities
into a modal logic for verifying the security of monadic specifications in the con-
finement calculus and related systems.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.: A core calculus of dependency. In:
26th ACM Symp. on Principles of Programming Languages, pp. 147–160 (1999)

2. Allwein, G., Harrison, W.L.: Partially-ordered modalities. In: Advances in Modal
Logic, pp. 1–21 (2010)

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
19th ACM Symposium on Operating Systems Principles, pp. 164–177 (2003)

4. Bartolett, M., Degano, P., Ferrari, G.-L.: History-Based Access Control with Lo-
cal Policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

The Confinement Problem in the Presence of Faults 197

5. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service or-
chestration. In: 19th IEEE Computer Security Foundations Workshop (2006)

6. Bauer, L., Ligatti, J., Walker, D.W.: Types and Effects for Non-interfering Program
Monitors. In: Okada, M., Babu, C.S., Scedrov, A., Tokuda, H. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 154–171. Springer, Heidelberg (2003)

7. Benton, N., Hur, C.-K., Kennedy, A., McBride, C.: Strongly Typed Term Repre-
sentations in Coq. Journal of Automated Reasoning, 1–19 (to appear)

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

9. Chlipala, A.: Certified programming with dependent types Book draft of April 12
(2012), http://adam.chlipala.net/cpdt/

10. Cock, D., Klein, G., Sewell, T.: Secure Microkernels, State Monads and Scalable
Refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008)

11. Goguen, J., Meseguer, J.: Security policies and security models. In: Symposium on
Security and Privacy, pp. 11–20. IEEE (1982)

12. Goncharov, S., Schröder, L.: A Coinductive Calculus for Asynchronous Side-
Effecting Processes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS,
vol. 6914, pp. 276–287. Springer, Heidelberg (2011)

13. Harrison, W.L.: The Essence of Multitasking. In: Johnson, M., Vene, V. (eds.)
AMAST 2006. LNCS, vol. 4019, pp. 158–172. Springer, Heidelberg (2006)

14. Harrison, W.L., Hook, J.: Achieving information flow security through monadic
control of effects. Journal of Computer Security 17(5), 599–653 (2009)

15. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Sympo-
sium on Operating Systems Principles (SOSP), pp. 207–220 (2009)

16. Kobayashi, S.: Monad as modality. Theor. Computer Science 175(1), 29–74 (1997)
17. Lampson, B.: A note on the confinement problem. CACM 16(10), 613–615 (1973)
18. Liang, S.: Modular Monadic Semantics and Comp. PhD thesis, Yale Univ. (1998)
19. Mantel, H., Sudbrock, H.: Flexible Scheduler-Independent Security. In: Gritzalis,

D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
116–133. Springer, Heidelberg (2010)

20. Martin, W., White, P., Taylor, F.S., Goldberg, A.: Formal construction of the
mathematically analyzed separation kernel. In: Proceedings of the 15th IEEE In-
ternational Conference on Automated Software Engineering, pp. 133–141 (2000)

21. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). The MIT Press (1997)

22. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

23. Nanevski, A.: A Modal Calculus for Exception Handling. In: Intuitionistic Modal
Logics and Applications Workshop (IMLA 2005) (June 2005)

24. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis (1999)
25. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, the Revised Report.

Cambridge University Press (2003)
26. Russo, A., Sabelfeld, A.: Securing interaction between threads and the scheduler.

In: Proc. of the 19th IEEE Workshop on Comp. Sec. Found., pp. 177–189 (2006)
27. Sabelfeld, A., Myers, A.C.: Language-based information flow security. IEEE Jour-

nal on Selected Areas in Communications 21(1), 5–19 (2003)
28. Swierstra, W., Altenkirch, T.: Beauty in the beast. In: Proceedings of the ACM

SIGPLAN Haskell Workshop (Haskell 2007), pp. 25–36 (2007)
29. Wadler, P.: The marriage of effects and monads. In: Proceedings of the 3rd ACM

SIGPLAN International Conference on Functional Programming, pp. 63–74 (1998)

http://adam.chlipala.net/cpdt/

Verification of ATL Transformations
Using Transformation Models and Model Finders

Fabian Büttner1,�, Marina Egea2,��, Jordi Cabot1, Martin Gogolla3

1 AtlanMod Research Group, INRIA / Ecole des Mines de Nantes
2 Atos Research & Innovation Dept., Madrid

3 Database Systems Group, University of Bremen

fabian.buettner@inria.fr, marina.egea@atosresearch.eu,
jordi.cabot@inria.fr, gogolla@tzi.de

Abstract. In model-driven engineering, models constitute pivotal elements of
the software to be built. If models are specified well, transformations can be em-
ployed for different purposes, e.g., to produce final code. However, it is impor-
tant that models produced by a transformation from valid input models are valid,
too, where validity refers to the metamodel constraints, often written in OCL.
Transformation models are a way to describe this Hoare-style notion of partial
correctness of model transformations using only metamodels and constraints. In
this paper, we provide an automatic translation of declarative, rule-based ATL
transformations into such transformation models, providing an intuitive and ver-
satile encoding of ATL into OCL that can be used for the analysis of various
properties of transformations. We furthermore show how existing model veri-
fiers (satisfiability checkers) for OCL-annotated metamodels can be applied for
the verification of the translated ATL transformations, providing evidence for the
effectiveness of our approach in practice.

Keywords: Model transformation, Verification, ATL, OCL.

1 Introduction

In model-driven engineering (MDE), models constitute pivotal elements of the software
to be built. Ideally, if these models are specified sufficiently well, model transformations
can be employed for different purposes, e.g., they may be used to finally produce code.
The increasingly popularity of MDE has led to a growing complexity in both models
and transformations, and it is essential that transformations are correct if they are to
play their key role. Otherwise, errors introduced by transformations will be propagated
and may produce more errors in the subsequent MDE steps.

Our work focuses on checking partial correctness of declarative, rule-based transfor-
mations between constrained metamodels. More specifically, we consider the trans-
formation language ATL [15] and metamodels in MOF [21] style (e.g., EMF [25],
KM3 [16]) that employ OCL [20,27] constraints to precisely describe their domain.

� This research was partially funded by the Nouvelles Eq́uipes program of the Pays de la Loire
region (France).

�� This research was partially funded by the EU project NESSoS (FP7 256890).

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 198–213, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Verification of ATL Transformations Using Transformation Models and Model Finders 199

These ingredients are popular due to their sophisticated tool support (in particular on
the Eclipse platform) and because OCL is employed in almost all OMG specifications.
Model transformations can be considered as programs that operate on instances of meta-
models. In this sense, we can also apply the classical notion of correctness to model
transformations. In this paper, we are interested in a Hoare-style notion of partial cor-
rectness, i.e., in the correctness of a transformation with respect to the constraints of the
involved metamodels. In other words, we are interested in whether the output model
produced by an ATL transformation is valid for any valid input model.

In this paper we present a verification approach based on transformation models.
Transformation models are a specific kind of what is commonly called a ‘trace model’.
Given an ATL transformationT :MI →MF from a source metamodelMI to a target
metamodel1 MF , a transformation modelMT is a metamodel that includesMI and
MF , and additional structural modeling elements and constraints in order to capture
the execution semantics of T . In our opinion, this approach brings advantage because
it reduces the problem of verifying rule-based transformations between constrained
metamodels to the problem of verifying constrained metamodels only. This way, in
terms of automated verification, we can reuse existing implementations and work for
model verification, benefiting from the results achieved by a broad community over a
decade.

The transformation model methodology was first presented in [11] and [6]. We pro-
vided a first sketch of how to apply the methodology to ATL in [4]. In this paper, we
now present a precise description of how to automatically generate transformation mod-
els from declarative ATL transformations. Furthermore, we show how existing model
finders for OCL-annotated metamodels can be employed ‘off-the-shelf’ in practical
verification. We employ a transformation ER-to-Relational (ER2REL) to illustrate our
approach, as this example is well-known and conceptually ‘dense’ (it contains only few
classes but comparatively many constraints). We show how the transformation model
is derived using our algorithm and how it can be used to effectively verify the ATL
transformation using UML2Alloy [1] and Alloy as a bounded model verification tool
(with Alloy being based on SAT in turn). Notice, however, that the methodology is
independent from a specific verification technique.

Organization. Sect. 2 describes the running example ER2REL. Sect. 3 shows how to
derive transformation models for ATL. In Sect. 4 we present how UML2Alloy could be
employed to validate ER2REL (based on the derived transformation model). Sect. 5 puts
our contribution in the context of related work. We conclude in Sect. 6.

2 Running Example

We have chosen an ATL transformation (ER2REL) from a simple Entity-Relationship
(ER) to a simple relational (REL) data model as a running example for our paper for
two reasons. First, this domain is well-known (the results can be easily validated). Sec-
ond, almost all elements are constrained by one or more invariants, including several

1 For typographical reasons we use MI (‘initial’) and MF (‘final’) to denote the input and
output.

200 F. Büttner et al.

1..*

name : String

RelshipEnd

attrs

{xor}

ends

2..* 1

name : String
isKey : Boolean

ERAttribute

attrs

type

1
RelshipEntity

name : String

SchemaElement
ERSchema

1

elements

(a) ER

attrs

name : String

Relation

RELSchema

name : String
isKey : Boolean

RELAttribute

0..1

*

relations0..1

*

(b) REL

Fig. 1. ER and REL metamodels

context ERSchema inv ER_EN: -- element names are unique in schema
self.elements->forAll(e1,e2 | e1.name=e2.name implies e1=e2)

context Entity inv ER_EAN: -- attr names are unique in entity
self.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

context Relship inv ER_RAN: -- attr names are unique in relship
self.attrs->forAll(a1,a2 | a1.name = a2.name implies a1=a2)

context Entity inv ER_EK: -- entities have a key
self.attrs->exists(a | a.isKey)

context Relship inv ER_RK: -- relships do not have a key
not attrs->exists(a1 | a1.isKey)

-- -

context RELSchema inv REL_RN: -- relation names are unique in schema
relations->forall(r1,r2| r1.name=r2.name implies r1=r2)

context Relation inv REL_AN: -- attribute names unique in relation
self.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

context Relation inv REL_K: -- relations have a key
self.attrs->exists(a | a.isKey)

context RELSchema inv REL_mult1: self.relations->size() > 0 -- mult. 1..*
context Relation inv REL_mult2: self.schema <> null -- mult. 1..1

context Relation inv REL_mult3: self.relations->size() > 0 -- mult. 1..*
context RELAttribute inv REL_mult4: self.relation <> null -- mult. 1..1

Fig. 2. OCL constraints for ER and REL

universal quantifiers. This makes the verification of this transformation reasonably hard.
Fig. 1 depicts the ER and REL metamodels2. Fig. 2 shows the corresponding OCL

constraints. The constraints are as expected: names must be unique within their respec-
tive contexts, entities and relation must have a key, relationships must not have a key.
Notice that we encoded the multiplicity constraints for REL as explicit OCL constraints
(REL_mult). We only left the unrestricted multiplicities of 0..1 (for object-typed nav-
igations) and 0..∗ (for collection-typed navigations) in the class diagram, because we
want to verify the validity of ER2REL w.r.t. these multiplicities later.

The ATL transformation ER2REL is shown in Fig. 3 and contains six rules: The first
rule S2S maps ER schemas to REL schemas, the second rule E2R maps each entity to
a relation, and the third rule R2R maps each relationship to a relation. The remaining

2 Notice that we simply refer to the elements as entities, relationships, and relations instead of
entity types, relationship types, and relation types.

Verification of ATL Transformations Using Transformation Models and Model Finders 201

module ER2REL; create OUT : REL from IN : ER;

rule S2S {
from s : ER!ERSchema
to t : REL!RELSchema (relations <- s.entities->union(s.relships))}

rule E2R {
from s : ER!Entity
to t : REL!Relation (name<-s.name, schema<-s.schema) }

rule R2R {
from s : ER!Relship
to t : REL!Relation (name <-s.name, schema<-s.schema) }

rule EA2A {
from att : ER!ERAttribute, ent : ER!Entity (att.entity=ent)
to t : REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-ent)}

rule RA2A {
from att : ER!ERAttribute, rs : ER!Relship (att.relship=rs)
to t : REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-rs)}

rule RA2AK {
from att : ER!ERAttribute,

rse : ER!RelshipEnd (att.entity=rse.entity and att.isKey=true)
to t : REL!RELAttribute

(name<-att.name, isKey<-att.isKey, relation<-rse.relship)}

Fig. 3. Initial version of the ATL transformation ER2REL

three rules generate attributes for the relations. Both entity and relationship attributes are
mapped to relation attributes (rules EA2A and RA2A). Furthermore, the key attributes
of the participating entities are mapped to relation attributes as well (rule RA2AK).

All six rules of ER2REL are matched rules, which are the main constructs of ATL.
A matched rule is composed of a source pattern and a target pattern. The source pat-
tern specifies a set of objects of the source metamodel and uses, optionally, an OCL
expression as a filtering condition. The target pattern specifies a set of objects of the
target metamodel plus a set of bindings. The bindings describe assignments to features
(i.e., attributes, references, and association ends) of the target objects. The execution
semantics of matched rules can be described in three steps: First, the source patterns of
all rules are matched against input model elements. Second, for every matched source
pattern, the target pattern is followed to create objects in the target model. Notice that
the execution of an ATL transformation always starts with an empty target model. In
the third step, the bindings of the target patterns are executed. These bindings are per-
formed straight-forwardly with one exception: If a value that is assigned to a property is
an object of the input model, and if this object has been mapped by a rule in the previous
step, then instead of the input object the (first) output object that has been created by
this rule is used. By default, the ATL execution engine reports an error if no or multiple
of such matches exist.

Next, in order to illustrate the ATL execution semantics, we explain how it
works, for instance, for the rule RA2A. This rule is applied to every combination
of an ERAttribute att and a Relship rs instance for which the condition
att.relship=rs holds. For each such match, one RELAttribute t is created.
The values of the name and isKey properties of t are simply copied from att. For
the binding of the property relation, the implicit resolution strategy of ATL will replace
the value of the input pattern element rs (which is an object of the source model) by a

202 F. Büttner et al.

reference to the Relation object that has been created by R2R for rs. In this case, R2R
is the only rule that can be used to resolve Relation-objects. However, in general,
there can be multiple rules for each type.

3 Transformation Models for ATL

Model transformations can be considered as programs that operate on instances of meta-
models. In this sense, we can also apply notions of correctness for programs to model
transformations. We will consider the input and output models of a transformation as
valid if and only if they conform to the structure and to the constraints of their meta-
models. Partial correctness then states that if the transformation produces an output
model from a valid input model, that output model is valid as well. Total correctness
extends this notion and states that the transformation produces a valid output for every
valid input model (i.e., that the transformation terminates for every valid input model
and does not abort with an error message).

Our notion of a transformation model MT of a transformation T : MI → MF

aims to support the verification of partial correctness of T usingMT as an equivalent
surrogate as follows. A transformation model MT is a metamodel (i.e., a structural
specification of classes, associations, and constraints) that integratesMI andMF and
additional structural modeling elements and constraints that capture the execution se-
mantics of T . A pair of an MI instance MI and an MF instance MF is related by
T if and only if there is an instance ofMT , valid w.r.t. to all constraints, whoseMI

part is MI and whoseMF part is MF . In practice, we want to loosen this equivalence
to hold only for those MI for which T terminates. However, for the declarative subset
of ATL that we consider, recursive OCL helper operations are the only source of non-
termination, as the actual execution of ATL rules is non-recursive and non-looping (and
also deterministic [17]).

Having such an equivalent transformation model, we can verify partial correctness
of T using ‘off-the-shelf’ model finders (e.g., based on SAT solving). In the remaining
section, we show how to systematically derive such transformation models for ATL
transformations. We provide a general algorithm for this (Sect. 3.1) and discuss the
validity of our translation (Sect. 3.2).

3.1 An Algorithm to Derive Transformation Models for ATL

Our translation does cover a significant subset of ATL, namely matched rules, which are
the workhorse of ATL, in the form provided in Fig. 4. We presume that all expressions
and bindings in the transformation are correctly typed. We do not support imperative
extensions, called or lazy rules at the moment, and we do not allow recursive OCL
helper operations.

The algorithm that creates MT for T : MI → MF is depicted in Fig. 5. It con-
sists of four main steps. The results of the algorithm for ER2REL is shown in Fig. 6
(generated classes and associations) and Fig. 7 (generated constraints). The first step
includes all elements (i.e., classes, associations, attributes, constraints) ofMI andMF .

Verification of ATL Transformations Using Transformation Models and Model Finders 203

rule r

from s1 : t1, . . . , sm : tm (filterExpr)

to o1 : t′1(prop1,1 ← expr1,1, . . . , prop1,k1
← expr1,k1

),

...

on : t′n(propn,1 ← exprn,1, . . . , propn,kn
← exprn,kn

)

where each expr j,p has one of the following shapes:

Sh. I: propj,p ← expr j,p where expr j,p has a basic type
Sh. II: propj,p ← o where o is an output pattern variable of r
Sh. III: propj,p ← Set{o1, . . . , oq} where o1, . . . , oq are output pattern variables of r
Sh. IV: propj,p ← expr j,p where expr j,p has type t and t corresponds to a class inMI

Sh. V: propj,p ← expr j,p where expr j,p has type Set(t) and t corresponds to MI

Fig. 4. ATL matched rule’s patterns currently supported by our mapping

The second step adds a new class cr for each rule r in T (step 1a; e.g., class ‘S2S’
in Fig. 6), connects cr to the types of the input and output pattern variables (steps 1b
and 1c). Notice that for rules with multiple pattern elements, the same input object
can participate several times (with different partners), hence the ‘0..*’ multiplicity.
In the next step we add matching constraints that ensure that exactly those combi-
nations of MI objects are connected to a cr object that are matched by r (steps 1d and
1e; e.g., match_EA2A and match_EA2A_cond in Fig. 7). For each binding to an out-
put pattern object, corresponding binding constraints over cr are added (step 1f; e.g.,
bind_E2R_t_name). For unassigned properties, a constraint is added that ensures that
these properties are null (step 2g). The third step considers each class inMF and adds
a creation constraint to ensure that each MF object is created by exactly one rule of T
(e.g., create_Relation in Fig. 7). The fourth step is specific to those transformations that
have potentially overlapping patterns. Recall that ATL does not allow a combination of
MI objects to be matched by more than one rule (the engine would abort in this case).
The fourth step corresponding mutual exclusion constraints for all pairs of potentially
overlapping rules (ER2REL does not contain such rules).

We make use of some auxiliary functions in the description of the algorithm that
generate OCL expressions for the more complex constraints. We define them below. To
create the associations that connect the classes cr to the resp. class in MI and MF ,
we assume −→s and −→o to name the the corresponding navigable association ends for
the pattern variables s and o (from the perspective of the rule class), and ←−s and ←−o
to generate unique opposite association end names (from the perspective of the resp.
classes inMI andMF). We use the hat notation ẑ to denote a fresh variable.

Auxiliary function matchExpr (r). The function matchExpr (r) that we use in step 1d
yields a Boolean OCL expression of m nested ‘forAll’ expressions for the m input

204 F. Büttner et al.

1. Copy all model elements ofMI and MF .

2. For each matched rule r in T let s1 : t1, . . . , sm : tm denote the input pattern variables
of r and o1 : t′1, . . . , on : t′n the output pattern variables of r. Then:

(a) Add a class cr .

(b) If m = 1 (i.e., r has only single input pattern variable), add an association

t1 cr
1..1

−→s1
0..1

←−s1
.

Else, if m > 1, add the following association for each 1 ≤ i ≤ m

ti cr
1..1

−→si
0..∗

←−si
.

(c) For each output pattern variable oj : t
′
j of r with 1 ≤ j ≤ n add an association

cr t′j0..1

←−oj
1..1

−→oj
.

(d) Add a constraint context t1 inv : matchExpr (r).

(e) Add a constraint context cr inv : filterExpr ′ where
filterExpr ′ = filterExpr [s1 . . . sm]/[self.−→s1 . . . self.−→sm]
is the filter expression with all input pattern variables are replaced by navigations
from the rule object.

(f) For each binding propj,p ← expr j,p to an output pattern variable oj of r with
1 ≤ j ≤ n and 1 ≤ p ≤ kn, add a constraint
context cr inv : self.−→oj .propj,p = resolve [[expr ′

j,p]]

where expr ′
j,p = [s1 . . . sm]/[self.−→s1 . . . self.−→sm].

If expr j,p is of shape IV furthermore add a constraint
context cr inv : (expr ′

j,p = null) = (resolve [[expr ′
j,p]] = null).

If expr j,p is of shape V furthermore add a constraint
context cr inv : expr ′

j,p → size() = resolve [[expr ′
j,p]]→ size().

(g) For each property prop of oj that is not bound by r, we add a constraint
context cr inv : self.−→oj .prop = null.

3. For each class c inMF , if {o1 : t′1, . . . , oq : t′q} = creators(c) then add a constraint
context c inv : self.←−o1 → size() + · · ·+ self.←−oq → size() = 1.
Otherwise, when there are no creators for c, add a constraint context c inv : false.

4. For each pair of rules r, r′ in T that have input patterns of the same size m and each
sequence ofMI types t′′1 , . . . , t

′′
m, add a mutual exclusion constraint if r and r′ poten-

tially overlap on t′′1 , . . . t
′′
m:

context t1 inv : mutexExpr (r, r′, 〈t′′1 , . . . , t′′m〉)
The rules r and r′ overlap on t′′1 , . . . t

′′
m when t′′i ≤ ti and t′′i ≤ t′i holds for each i with

1 ≤ i ≤ m.

Fig. 5. Algorithm

Verification of ATL Transformations Using Transformation Models and Model Finders 205

pattern elements of r such that for each combination of objects in MI that matches r
exactly one instance of cr is connected to these objects. It is defined as follows.

matchExpr (r) := t1 → forAll(ŝ1 | t2 → forAll(ŝ2 | . . . tm → forAll(ŝm |
filterExpr ′ implies cr.allInstances()→ one(ẑ |

ẑ.−→s1 = ŝ1 and . . . and ẑ.−→sm = ŝm) · · ·)

where filterExpr ′ = filterExpr [s1 . . . sm]/[ŝ1 . . . ŝm] is the filter expression of r in
which the pattern variables are replaced by the variables used in the above iteration.

Auxiliary function resolve[[expr]]. The function resolve[[expr]] that we use in step 1f
is the most complex one. We use it to translate the implicit resolve mechanism of ATL
into OCL. Recall that ATL, when processing a binding prop ← expr , replaces each
object value from MI by an object value from MF . To do this, it uses the first output
pattern variable of the (unary input pattern) rule that matched the resp. object in MI .
Let t be the type (for shape IV) resp. the element type (shape V) of expr . Let {(x1 :
t1, y1 : t′1), . . . , (xq : tq, yq : t′q)} be the set of pairs (xi : ti, yi : t′i) of the (only) input
pattern variable and the first output pattern variable with t ≤ ti or ti ≤ t, taken from all
rules in T that have a unary input pattern (these are the rules that can map an object of
type t). Notice that in this set we consider pattern variables of multiple rules in T .

– For shapes I, II, and III, no resolution is required, as the result is either a basic
type or a (collection) value of MF – recall that we have already replaced all target
pattern variables o by self.−→o in step (2f). We have resolve[[expr]] := expr .

– For shape IV we distinguish two cases. When we have q = 1 (there is only one
rule that can possibly match this type), then we can translate the resolution into
two simple navigation steps3 (the type cast may be omitted when expr already has
a sufficient specific type):

resolve[[expr]] := expr .oclAsType(t1).
←−x1.−→y1.

When we have q > 1, then there are multiple potential rules to be used for this
resolution step. Notice that there cannot be two rules applied at the same time (we
guarantee this by mutual exclusion constraints), so there is at most one non-null
element (MF object) in the set expression below, and we can use the ‘any’ operator
to deterministically select it.

resolve[[expr]] := Set{expr .oclAsType(t1).
←−x1.−→y1,

. . . ,

expr .oclAsType(tq).
←−xq.−→yq} → any(ẑ|ẑ < > null)

– For shape V, the translation is similar to the previous one, but now we have to
apply the resolution step to each element of the collection (using ‘collect’). The
intermediate result is a set that contains one bag (multi-set) for each rule that can

3 Recall that only matched rules with unary input patterns are used, so ←−x1 is an object-valued
navigation, cf. step 2b.

206 F. Büttner et al.

1

ERSchema

name : String

RelshipEnd

RELSchema

EA2A

S2S

E2R

R2R

RA2A

RA2AK

Entity

rs

s

name : String
isKey : Boolean

ERAttribute

1

att

1

s

rse

1

0..1

Relation

name : String

1t

t

1

t

1
name : String
isKey : Boolean

RELAttribute

1

t

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

1
Relship

1ent

s 1

Fig. 6. Class diagram of the generated transformation modelMER2REL

potentially map t. We turn this into a flat set and remove the unmapped elements.

resolve[[expr]] := Set{ expr → collect(ẑ|ẑ.oclAsType(t1).
←−x1.−→y1),

. . . ,

expr → collect(ẑ|ẑ.oclAsType(tq).
←−xq .−→yq)}

→ flatten()→ select(ẑ|ẑ < > null)

Auxiliary function creators(c). We use creators(c) to identify all locations where a
class of MF may be instantiated. This is the set of all output pattern variables {o1 :
t1, . . . , oq : tq} from the set of all rules of T with tj ≤ c for each j with 1 ≤ j ≤ q.

Auxiliary function mutexExpr(r, r′, 〈t′′1 , . . . , t′′n〉). This function yields a mutual ex-
clusion expression for a pair of potentially overlapping rules r, r′ in step 4. Recall that
each tuple ofMI objects can be matched by at most one rule, otherwise the ATL engine
aborts. Let s1 : t1, . . . sm : tm and s′1 : t′1, . . . s

′
m : t′m be the input pattern variables

of the rules r and r′. Let t′′1 , . . . , t′′m denote a sequence of MI object types that can
be matched potentially by both r and r′. The function mutexExpr(r, r′, 〈t′′1 , . . . , t′′n〉)
generates an Boolean OCL expression that states that no combination of instances of
t′′1 , . . . t

′′
m can be connected to both a cr and a cr′ instance.

mutexExpr(s, s′, 〈t′′1 , . . . , t′′n〉) :=
t′′1 .allInstances()→ forAll(ŝ1| · · · t′′m.allInstances()→ forAll(ŝm|

not(cr.allInstances()→ exists(ẑ|ẑ.−→s1 = ŝ1 and · · · and ẑ.−→sm = ŝm) and

cr′ .allInstances()→ exists(ẑ′|ẑ′.
−→
s′1 = ŝ1 and · · · and ẑ′.

−→
s′m = ŝm)) · · ·)

3.2 Validity of the Translation

As said in the beginning of this section, a transformation modelMT shall be equivalent
to T (for transformations that do not employ recursive helper operations), in order to
useMT as a surrogate to verify the (partial) correctness of T . Recall that we defined
the notion of a transformation model as follows: A pair of anMI instance MI and an
MF instance MF is related by T if and only if there is an instance ofMT whoseMI

part isMI and whoseMF part isMF . As there is not official formal semantics for ATL
so far, we cannot prove formally that our axiomatization is correct. However, we justify

Verification of ATL Transformations Using Transformation Models and Model Finders 207

-- constraints generated by steps 2d and 2e: matching constraints
context ERSchema inv match_S2S:
ERSchema.allInstances()->forAll(x1 : ERSchema |

S2S.allInstances()->one(z : S2S | z.s = x1))

context Entity inv match_E2R:
Entity.allInstances()->forAll(x1 : Entity |

E2R.allInstances()->one(z : E2R | z.s = x1))

context Relship inv match_R2R:
Relship.allInstances()->forAll(x1 : Relship |

R2R.allInstances()->one(z : R2R | z.s = x1))

context ERAttribute inv match_EA2A:
ERAttribute.allInstances()->forAll(x1 : ERAttribute |

Entity.allInstances()->forAll(l_ent : Entity | x1.entity=(l_ent) implies
EA2A.allInstances()->one(z : EA2A | z.att = x1 and z.ent = l_ent)))

context EA2A inv match_EA2A_cond: self.att.entity = self.ent

context ERAttribute inv match_RA2A:
ERAttribute.allInstances()->forAll(x1 : ERAttribute |

Relship.allInstances()->forAll(x2 : Relship | x1.relship=x2 implies
RA2A.allInstances()->one(z : RA2A | z.att = x1 and z.rs = x2)))

context RA2A inv match_RA2A_cond: self.att.relship = self.rs

context ERAttribute inv match_RA2AK:
ERAttribute.allInstances()->forAll(x1 : ERAttribute |

RelshipEnd.allInstances()->forAll(x2 : RelshipEnd |
x1.entity=x2.entity and x1.isKey implies
RA2AK.allInstances()->one(z : RA2AK | z.att = x1 and z.rse = x2)))

context RA2AK inv match_RA2AK_cond: self.att.entity = self.rse.entity and
self.att.isKey

-- constraints generated by step 2f: binding constraints
context S2S inv bind_S2S_t_relations: self.t.relations =

Set{self.s.elements->collect(z|z.oclAsType(Entity).e2r.t),
self.s.elements->collect(z|z.oclAsType(Relship).r2r.t)}

->flatten()->select(z|z <> null)

context E2R inv bind_E2R_t_name: self.t.name = self.s.name
context R2R inv bind_R2R_t_name: self.t.name = self.s.name

context EA2A inv bind_EA2A_t_relation: self.t.relation = self.ent.e2r.t
context EA2A inv bind_EA2A_t_name: self.t.name = self.att.name
context EA2A inv bind_EA2A_t_isKey: self.t.isKey = self.att.isKey

context RA2A inv bind_RA2A_t_name: self.t.name = self.att.name
context RA2A inv bind_RA2A_t_relation: self.t.relation = self.rs.r2r.t
context RA2A inv bind_RA2A_t_isKey: self.t.isKey = self.att.isKey

context RA2AK inv bind_RA2AK_t_isKey: self.t.isKey = self.att.isKey
context RA2AK inv bind_RA2AK_t_relation: self.t.relation =

self.rse.relship.r2r.t
context RA2AK inv bind_RA2AK_t_name: self.t.name = self.att.name

-- constraints generated by step 3: creation constraints
context RELSchema inv create_RELSchema: self.s2s->size() = 1
context Relation inv create_Relation: self.e2r->size() + self.r2r->size() = 1
context RELAttribute inv create_RELAttribute:
self.ea2a->size() + self.ra2a->size() + self.ra2ak->size() = 1

-- no constraints generated by step 4 (mutual exclusion constraints)

Fig. 7. Constraints of the generated transformation model MER2REL

208 F. Büttner et al.

our OCL axiomatization informally. In the following, we consider the different aspects
of the execution semantics of ATL matched rules and give reasons why our translation
into OCL constraints is appropriate. For the sake of brevity we simply say ‘MT over
MI and MF ’ to state that MT is an instance ofMT whoseMI part is MI and whose
MF part is MF .

Abnormal termination. For the considered subset of ATL (well-typed matched rules, no
imperative extensions, no recursive helper operations), the engine will always halt, and
there are only two abnormal terminations of applying a transformation T to an input
model MI . The first one is when two or more rules are applied to the same tuple of
MI objects. Our translation prevents this by mutual exclusion constraints (generated in
step 4). The second one abnormal termination condition is when an MI object cannot
be resolved to an MF object when processing the bindings. This condition is excluded
by the constraints generated in step 2f. Thus, when T aborts onMI , there is no instance
ofMT that completes MI .

Matching. The constraints generated in step 2d require that every tuple of objects that
matches the input pattern of a rule r must be connected to exactly on instance of cr.
The 1..1 multiplicities generated for the input associations for cr ensure that no other
instances of cr exist. Thus, taking also into account thatMT does excludeMI instances
that would result in abnormal termination on multiple matches, the matching constraints
inMT encode exactly the matching semantics of ATL.

Binding and Resolution. In ATL, an MF object can only be created by one rule, and
only by this rule the properties of that object are assigned. This is mirrored one-to-one
by the binding constraints we generate in step 2f. We already justified that our auxiliary
function resolve encodes the implicit resolution mechanism of ATL. Thus, taking also
into account that MT does exclude MI instances that would leave unresolved refer-
ences, the binding constraints inMT encode exactly the binding semantics of ATL.

Frame problem. So far, we have justified by the matching and binding constraints that
an instance MT over MI and MF exists if MF = T (MI). The creation constraints
created in step 3 guarantee that MT does not contain any MF objects that are not
generated by a rule (as the transformation always starts with an empty output model).
Furthermore, step 2g guarantees that properties are null unless they are assigned by a
rule. Together, this concludes the if and only if correspondence regarding T andMT .

4 Employing Model Finders to Verify ATL Transformations

Having translated an ATL transformation T into a purely structural transformation
model MT (i.e., a metamodel consisting of classes and their properties, and con-
straints), we can employ ‘off-the-shelf’ model finders (model satisfiability checkers)
to verify partial correctness of T w.r.t. the metamodel constraints ofMF usingMT .

In particular, we can check whether T might turn a valid input modelMI into an in-
valid output modelMF as follows: Let coni with 1 ≤ i ≤ n denote the i-th constraints

Verification of ATL Transformations Using Transformation Models and Model Finders 209

ofMF . LetMF i
denote a modified version ofMF stripped of all its constraints and

having one new constraint negconi that is the negation of con i. LetMT i denote the
transformation model constructed for T :MI →MF i. T is correct w.r.t. coni if and
only ifMT i

has no instance. If such an instance exist, itsMI is a counter example for
which T produces an invalid result.

4.1 Verification Using UML2Alloy

We have implemented the presented translation as a so-called ‘higher-order’ ATL trans-
formation, that is, an ATL transformation that takes an ATL transformation (the one to
be verified, including the input and output metamodels) that produces the correspond-
ing transformation model. The metamodels and constraints are technically represented
using EMF and OCLinEcore. We employed the UML2Alloy model finder [1] to check
the ‘negated’ transformation model (as explained before) for satisfiability.

UML2Alloy translates the metamodel and the OCL constraints into a specifica-
tion for the Alloy tool, which implements bounded verification of relational logic. In
the resulting specification, each class is represented as an Alloy signature each OCL
constraint is represented by exactly one Alloy fact with the same name as the OCL
constraint. Thus, we can check for the constraint subsumption easily by disabling and
negating the facts (one after another) for theMF constraints.

Table 1 shows the verification results for ER2REL. We verified all seven constraints of
REL using an increasing number of objects per class (the maximum extent per signature
must be specified when running Alloy). We can see that a counter example for (only)
the constraints REL_AN can be found using at least three objects per class. This means
that there exists a valid ER instance that is transformed into an invalid REL instance by
ER2REL. Alloy presents the counter example in both an XML format and in a graphical,
object-diagram like notation.

Figure 8 depicts such a counter example for REL_AN. Notice that the instances of
the transformation model have a natural interpretation as a trace model of the original
transformation, the counter example directly shows which objects are mapped by which
rules. In Fig. 8, apparently, ER2REL does not treat reflexive relationships appropriately,
while all attribute names are unique within their owning entities and relationships in
the input model, the transformation generates identical attribute names within one rela-
tion in the output model. There are several ways to deal with this particular problem in
ER2REL. As one solution we could modify rule RA2AK to use the name of the relation-
ship end (instead of the key attribute) to determine the name of a foreign key attribute.
But in this case, we must disallow combined keys, or we will get another violation of
REL_AN in the next verification round. As a more general solution we could introduce
qualified names for foreign keys (combining the name of the association end and the
name of the key attribute). We leave it to the reader to decide what is the most appropri-
ate solution for which situation. Instead we want to consider again Fig. 8 and emphasize
the benefits of the counter examples that our method produces: The counter examples
present at the same time the offending input model (that reveals the problem) and an
explanation of the transformation execution (how the rules turn the input model into
an invalid output model). In our view, this makes our method an intuitive and powerful
tool for transformation developers.

210 F. Büttner et al.

Table 1. Avg. solving times (in seconds) using Alloy. Non-subsumed constraint marked with †.
Undetected counter example marked by (*). All checks were conducted several times on a 2.2
Ghz office laptop running Alloy 4.1, Windows 7, and Java 7.

Obj/Class Obj/Total REL_RN REL_AN† REL_K REL_M1 REL_M2 REL_M3 REL_M4
2 28 0.06 * 0.06 0.05 0.05 0.05 0.7 0.05
3 42 0.15 0.11 0.10 0.11 0.11 0.11 0.09
5 70 3.12 0.51 0.70 0.40 0.21 0.52 0.20
7 98 38.62 0.58 4.21 1.21 0.54 3.93 0.48

10 140 543.93 1.70 136.61 4.96 1.53 17.03 1.33

4.2 Scalability

Table 1 also provides some insights on the scalability of the verification method. De-
pending on the constraint, the verification time starts to become significant above 100
objects. Of course, these numbers are highly dependent on the constraint complexity.
While the ER2REL example is simple in terms of the number of classes and associa-
tions, we consider it to have a comparatively high constraint complexity per class. We
could confirm that larger class diagrams / larger instance sets do not necessarily in-
crease the solving times, whereas harder (more overlapping, less tractable) constraints
do. In this sense, we are confident that our method is applicable to larger metamodels as
well. However, for the verification of industrial size metamodels and transformations,
we expect that further heuristics and separation of concerns strategies will be required
(e.g., metamodel pruning [23]).

name = x

: ERAttribute

isKey = true
name = x

: EA2A: RelshipEnd

: RelshipEnd

: Entity : E2R : Relation

: RELAttribute

isKey = true
name = x

: Relship
: R2R

: Relation

: RELAttribute

name = x
isKey = true

: RA2AK

: RA2AK

: RELAttribute

isKey = true

Fig. 8. Counter example: REL_AN violation

With respect to the chosen model verification tools (UML2Alloy and Alloy), it is
important to remark again that these tools can only perform bounded verification. Thus,
if Alloy cannot find a counter example, this does not mean that no counter example
exists outside the fixed search bounds.

5 Related Work

We can relate our paper to several works. There are a couple of approaches that ad-
dress partial, Hoare-style correctness of model transformation with respect to meta-
model constraints as transformation pre- and postconditions. Inaba et al. automatically
infer schema (i.e., metamodel) conformance for transformations based on the UnCAL

Verification of ATL Transformations Using Transformation Models and Model Finders 211

query language using the MONA solver [14]. The schema expressiveness in this ap-
proach is more restricted than OCL and describes only the typing of the graph. For
example, uniqueness of names, as in ER and REL, could not be expressed. Asztalos et
al. infer assertions for graph transformation-based model transformations [2]. They use
an assertion language based on graph patterns, to enforce or avoid certain patterns in
the model, which is a different paradigm than OCL. They provide explicit deduction
rules for the verification (implemented in Prolog). On the contrary, we do not propose
new deduction rules but rely on existing model finders. In similar vein, Rensink and
Lucio et al. use model checking for the verification of first-order linear temporal [22]
and pattern-based properties [19].

More specifically, there are also approaches that translate model transformations into
transformation models in a similar fashion as we do: In a previous work, we translate
triple graph grammars (which have a different execution semantics than ATL) and ver-
ify various conditions such weak and strong executability [7]. This work addresses exe-
cutability but focuses on partial correctness (although we expect that executability could
be expressed for ATL, too, using a tailored version of our algorithm). In similar vein
Guerra et al. use triple graph grammar based transformation specifications and generate
OCL invariants to check the satisfaction of these specifications by models [13]. To our
knowledge, we are the only ones to present such a verification approach for ATL. Our
paper is a successor of earlier results [4]. In that previous work, we gave a first sketch
of the translation, but did not provide a complete algorithmic translation into OCL, as
we do in our current contribution.

Related to the transformation model concept, the works of Braga et al., Cariou et al.,
and Gogolla and Vallecillo use OCL constraints to axiomatize properties of rule-based
model transformation in terms of transformation contracts (but they do not generate
them from a transformation specification as we do) [3,9,12].

To our knowledge, there are only two other approaches for the verification of ATL:
First, Troya and Vallecillo provide a rewriting logic semantics for ATL and uses Maude
to simulate and verify transformations, but do not consider the verification of Hoare
style correctness [26]. Second, we recently presented an alternative approach to the for-
mal verification of partial correctness of ATL using SMT solvers and a direct translation
of the ATL transformation into first-order logic [5]. This approach is complementary to
our current one and to other bounded verification approaches for ATL: It reasons sym-
bolically and does not require bounds on the model extent, but it is incomplete (not
all properties can be automatically decided this way, although it is refutationally com-
plete in many cases). It can be used to verify several pre-post implications, but is not
well suited to find counter examples. Furthermore, it builds on the translation of OCL to
first-order logic by Egea and Clavel [10] which can only handle a subset of OCL. While
the lightweight OCL axiomatization presented in our current work is fine for bounded
model finders (and has an intuitive interpretation of counter examples as trace models),
we were not able to employ SMT solvers for its verification. Using a direct translation
of ATL+OCL into FOL [5] we could automatically prove several desired implications
using the Z3 theorem prover solver (for the price that this approach requires of a full
FOL encoding of ATL and OCL).

212 F. Büttner et al.

In this paper, we employed UML2Alloy [1] to perform the actual model verification.
The community has developed several strong alternative approaches for the formal ver-
ification of models with constraints that we could use as well. They have in common
that the model is translated into a formalism that has a well-defined semantics. Most ap-
proaches employ automated reasoning in the target formalism, for example, relational
logic [18], constraint satisfaction problems [8], first-order logic [10], or propositional
logic [24].

6 Conclusion and Future Work

In our paper, we have presented an approach that eases the verification of ATL transfor-
mations and thus helps to improve the quality of the MDE methodology in practice. As
its core it is based on an automatic translation from ATL into a transformation model,
which is a constrained metamodel that can be used as a surrogate for the verification
of partial transformation correctness w.r.t. to the constraints of the input and output
metamodels. We have presented a precise, executable description of the translation for
a significant subset of ATL. We have also shown how this methodology can be im-
plemented in practice using an ATL higher-order transformation and an ‘off-the-shelf’
model satisfiability checker (UML2Alloy). To our knowledge, we are the first ones to
provide such an automatic approach for the verification of partial correctness for ATL.

We want to emphasize that the verification process can be automated as a “black box”
technology, in the sense that the transformation developer is in contact only with mod-
els, in which the generated transformation models and their instances have a familiar
representation for him.

In the future, we plan to explore the capabilities of different model finders as back-
ends to our approach, in order to evaluate which are best suited for this kind of verifi-
cation. Regarding ATL, we have already implemented an important subset of ATL, but
we will incorporate (a restricted form) of so called lazy rules, which can be found in
several transformations. Last but not least, comprehensive case studies must give more
feedback on the applicability of our work.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model Trans-
formation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS 2007. LNCS,
vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

2. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards Automated, Formal Verification of
Model Transformations. In: Proc. ICST 2010, pp. 15–24. IEEE Computer Society (2010)

3. Braga, C., Menezes, R., Comicio, T., Santos, C., Landim, E.: On the Specification, Verification
and Implementation of Model Transformations with Transformation Contracts. In: Simao, A.,
Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021, pp. 108–123. Springer, Heidelberg (2011)

4. Büttner, F., Cabot, J., Gogolla, M.: On Validation of ATL Transformation Rules By Trans-
formation Models. In: Proc. MoDeVVa 2011. ACM Digital Library (2012)

5. Büttner, F., Egea, M., Cabot, J.: On Verifying ATL Transformations Using ‘off-the-shelf’
SMT Solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012.
LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

6. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model Transforma-
tions? Transformation Models! In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

Verification of ATL Transformations Using Transformation Models and Model Finders 213

7. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declarative model-
to-model transformations through invariants. Journal of Systems and Software 83(2), 283–
302 (2010)

8. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UM-
L/OCL models using constraint programming. In: Proc. Automated Software Engineering,
ASE 2007. ACM (2007)

9. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of model
transformations. Electronic Communications of the EASST 24 (2009)

10. Clavel, M., Egea, M., de Dios, M.A.G.: Checking Unsatisfiability for OCL Constraints. Elec-
tronic Communications of the EASST 24, 1–13 (2009)

11. Gogolla, M.: Tales of ER and RE Syntax and Semantics. In: Transformation Techniques in
Software Engineering. Dagstuhl Seminar Proc., vol. 05161. IBFI (2005)

12. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: France, R.B.,
Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 221–235.
Springer, Heidelberg (2011)

13. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: A Visual Specification Language for
Model-to-Model Transformations. In: 2010 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2010), pp. 119–126. IEEE Computer Society (2010)

14. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verification us-
ing monadic second-order logic. In: Proc. ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, PPDP 2011, pp. 17–28. ACM (2011)

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-
put. Program. 72(1-2), 31–39 (2008)

16. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Gorrieri, R., Wehrheim,
H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidelberg (2006)

17. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

18. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models by Inte-
grating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

19. Lúcio, L., Barroca, B., Amaral, V.: A Technique for Automatic Validation of Model Trans-
formations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS,
vol. 6394, pp. 136–150. Springer, Heidelberg (2010)

20. OMG: The Object Constraint Language Specification v. 2.2 (Document formal/2010-02-01).
Object Management Group, Inc., Internet (2010),
http://www.omg.org/spec/OCL/2.2/

21. OMG: Meta Object Facility (MOF) Core Specification 2.4.1 (Document formal/2011-08-07).
Object Management Group, Inc., Internet (2011), http://www.omg.org

22. Rensink, A.: Explicit State Model Checking for Graph Grammars. In: Degano, P., De Nicola,
R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 114–132.
Springer, Heidelberg (2008)

23. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model Pruning. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg (2009)

24. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based Verification
of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp.
152–170. Springer, Heidelberg (2011)

25. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,
2nd edn. Addison-Wesley Longman, Amsterdam (2008)

26. Troya, J., Vallecillo, A.: A Rewriting Logic Semantics for ATL. Journal of Object Technol-
ogy 10, 5:1–5:29 (2011)

27. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Getting Your Models Ready
for MDA, 2nd edn. Addison-Wesley (2003)

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org

Automatic Generation of Provably
Correct Embedded Systems�

Shang-Wei Lin1, Yang Liu1,4, Pao-Ann Hsiung2, Jun Sun3, and Jin Song Dong4

1 Temasek Laboratories, National University of Singapore
{tsllsw,tslliuya}@nus.edu.sg

2 National Chung Cheng University, Chia-Yi, Taiwan
pahsiung@cs.ccu.edu.tw

3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

4 National University of Singapore
dongjs@comp.nus.edu.sg

Abstract. With the demand for new and complicated features, embedded sys-
tems are becoming more and more difficult to design and verify. Even if the de-
sign of a system is verified, how to guarantee the consistency between the design
and its implementation remains a big issue. As a solution, we propose a frame-
work that can help a system designer to model his or her embedded system using a
high-level modeling language, verify the design of the system, and automatically
generate executable software codes whose behavior semantics are consistent with
that of the high-level model. We use two case studies to demonstrate the effec-
tiveness of our framework.

1 Introduction

Embedded systems are increasingly used to control our daily life or critical tasks, which
makes it important to guarantee the correctness. However, embedded systems are more
and more complex due to the demand for new and complicated features, which makes
it challenging to verify the correctness.

To verify embedded systems, system designers usually model the control behavior
of the system using state-based diagrams such as UML state machines, where data
and its operations are abstracted because modeling data and its operations by state-
based diagrams is not straightforward. Furthermore, the number of possible system
states often increases exponentially, which makes system verification (e.g., by model
checking) infeasible. Even if data and its operations are specified by designers directly
in high-level programming languages, the exact interactions among the user-written
code and user-specified models are not precise, which leads to a possible semantic gap
between the code and the models. During verification, if any fault occurs within this
semantic gap, it will go undetected.
� This work is mainly supported by TRF Project “Research and Development in the Formal Ver-

ification of System Design and Implementation” from Temasek Lab@National University of
Singapore; partially supported by project IDG31100105/IDD11100102 from Singapore Uni-
versity of Technology and Design, and project MOE2009-T2-1-072 from School of Comput-
ing@National University of Singapore.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 214–229, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Generation of Provably Correct Embedded Systems 215

In this work, we propose a framework as a solution to bridge the semantic gap. Our
framework adopts communication sequential program (CSP#) [16] as our high-level
modeling facility. CSP# is an expressive formal modeling language, which can be used
to model concurrent processes communicating via both shared memory and message
passing. CSP# even allows users to declare variables and model data operations on the
declared variables. With its expressiveness, the control behavior and data operations of
the system are formally and precisely modeled as a whole, which eliminates the se-
mantic gap between control and data. In addition, to guarantee the consistency between
the design of an embedded system and its implementation, the proposed framework
automatically generates executable embedded software in a constructive way for the
designer such that the functional correctness of the high-level CSP# models is trans-
ferred to the synthesized code. The contributions of this work include the following.

1. We propose a complete framework for modeling and verifying embedded systems.
2. The proposed framework can further automatically generate software code with

functional correctness, and we have proved that the behavior semantics of the gen-
erated code conforms to the high-level model.

The rest of this paper is organized as follows. Section 2 gives related works. Section 3
gives an introduction to the CSP# language as well as its operational semantics. Sec-
tion 4 introduces the proposed framework and proves the correctness of the generated
code. We have applied our framework on two case studies, as given in Section 5. Sec-
tion 6 concludes this paper and discusses some future works.

2 Related Work

Toolsets for design and verification of systems include the SCR toolset [3], NIMBUS
[17], and SCADE Suite [15]. The SCR toolset uses the SPIN model checker, PVS-
based TAME theorem prover, a property checker, and an invariant generator for formal
verification of a real-time embedded system specified using the SCR tabular notation. It
supports test case generation the TVEC toolset. NIMBUS is a specification-based proto-
typing framework for embedded safety-critical systems. It allows execution of software
requirements expressed in RSML with various models of the environment, and it sup-
ports model checking and theorem proving. However, they do not support automatic
code generation. SCADE Suite uses safe state machines (SSM) for requirement spec-
ification and automatically generates DO-178B Level A compliant and verified C/Ada
code for avionics systems.

Worldwide research projects targeting embedded real-time software design include
the MoBIES project [11] supported by USA DARPA, the HUGO project [7] supported
by Germany’s Ludwig-Maximilians-Universitä München, and the TIMES project [1]
supported by the Uppsala University of Sweden. However, none of them completely
support system designers to model, verify, and implement embedded systems with a
comprehensive framework.

For automatic code generation, several works have been proposed on different formal
models such as Objective-Z [13] and Event-B [10]. However, none of them proved the
semantics consistency between the model and the generated code.

216 S.-W. Lin et al.

Verifiable Embedded Real-Time Application Framework (VERTAF) [4–6], is a com-
prehensive framework supporting high-level modeling, verification, and automatic code
generation for real-time embedded systems. VERTAF adopts UML diagrams as its
modeling language. Since UML diagrams are informal and have limited expressive-
ness, the exact interactions among the user-written high-level programming language
code and the UML models cannot be precisely specified in VERTAF. This leads to
a possible semantic gap between the user-written code and the user-specified models.
During verification, if any fault occurs within this semantic gap, it will go undetected
by the model checker. In this work, we extend the modeling ability of VERTAF with the
CSP# language and enhance the ability of code synthesis such that executable verified
software code can be generated automatically and the generated code is consistent with
the high-level models.

3 Preliminaries

This section is devoted to a brief introduction to the CSP# language and its operational
semantics. A CSP# process is defined (using a core subset of process constructs) as,

P ::= Stop | Skip | e{prog} → P | ch!x→ P | ch?x→ P | P ;Q
| [b]P | if b {P} else {Q} | P �Q | P []Q

where e is an event with an operational sequential program prog, ch is a channel with
a bounded buffer size, x is a variable, and b is a Boolean expression.

Let Σ denote the set of all visible events, τ denote an invisible action, and� denote
the the special event of termination. Let Στ = Σ ∪ {τ} and Στ,� = Σ ∪ {τ,�}.
The Stop process communicates nothing (also called deadlock). The Skip process is
defined as Skip = � → Stop. Event prefixing e → P performs e and afterwards
behaves as process P . If e is attached with a program prog (also called data operation),
the program is executed automatically together with the occurrence of the event. The
attached program prog can be C# program or any language with reflection that can be
used for observing and/or modifying program execution at runtime. Channel commu-
nication process ch!x → P or ch?x → P behaves as P after sending or receiving x
through the channel ch, respectively. Sequential composition (P ;Q) behaves as P until
its termination and then behaves as Q. Conditional choice if b {P} else {Q} behaves
as P if b evaluates to true and behaves as Q otherwise. Process [b]P waits until condi-
tion b becomes true and then behaves as P . Process P �1Q runsP andQ independently
and they can communicate through shared variables. Process P []2Q behaves as either
P or Q randomly. Example 1 illustrates how to model a system using CSP#.

Example 1. Peterson’s algorithm [12] was designed for the synchronization problem
for processes. Each process has to get into its critical section to do some computa-
tion,but only one process is allowed in its critical section at the same time. Listing 1.1

1 In this work, we only consider the interleaving composition (�) because parallel composition
(‖) is not natural and practical in real programs.

2 CSP# provides general, external, and internal choice compositions. In this work, we focus on
the general choice composition. The syntax and semantics of the three choice compositions
can be found in PAT user manual.

Automatic Generation of Provably Correct Embedded Systems 217

Listing 1.1. CSP# Model for Peterson’s Algorithm

1 v a r t u r n ; v a r pos [2] ;
2

3 P0 () = r e q .0{ pos [0] = 1 ; t u r n = 1} −> Wait0 () ; c s . 0 −> r e s e t .0{ pos [0] = 0} −> P0 () ;
4 Wait0 () = i f (pos [1] == 1 && t u r n == 1) { Wait0 () } e l s e { Stop } ;
5

6 P1 () = r e q .1{ pos [1] = 1 ; t u r n = 0} −> Wait1 () ; c s . 1 −> r e s e t .1{ pos [1] = 0} −> P1 () ;
7 Wait1 () = i f (pos [0] == 1 && t u r n == 0) { Wait1 () } e l s e { Stop } ;
8

9 P e t e r s o n () = P0 () | | | P1 () ;

shows the CSP# model of the Peterson’s algorithm for two processes P0 and P1, where
req.0 and cs.0 represent that P0 requests to enter its critical section and P0 is cur-
rently in its critical section, respectively.

Given a system modeled by a CSP# process, a system configuration is a three-tuple
(P, V, C) where P is the current process expression, V is the current valuation of the
global variables which is a mapping from a name to a value, and C is the current status
of channels which is a mapping from a channel name to a sequence of items in the
channel. A transition is of the form (P, V, C)

e−→ (P ′, V ′, C′) meaning that (P, V, C)
evolves to (P ′, V ′, C′) by performing event e. The meaning or behavior of a CSP# pro-
cess can be described by the operational semantics, as shown in Fig 1, where e ∈ Σ and
eτ ∈ Στ . We use upd(V, prog) to denote the function which, given a sequential pro-
gram prog and V , returns the modified valuation function V ′ according to the semantics
of the program. We use V |= b (or V �|= b) to denote that boolean condition b evaluates
to true (or false) given V . We use eva(V, exp) to denote the value of the expression
evaluated with variable valuations in V . By the operational semantics, a CSP# process
is associated with a labeled transition systems (LTS), as formulated in Definition 1.

Definition 1. (Labeled Transition System). A labeled transition system (LTS) is a 4-
tuple (S,Στ,�,−→, s0) where S is a set of system configurations, Στ,� is a set of
events, −→⊆ S ×Στ,� × S is a transition relation, and s0 ∈ S is the initial state. We
use s

α−→ s′, for simplicity, to denote (s, α, s′) ∈−→ where s, s′ ∈ S and α ∈ Στ,�.

4 Design and Synthesis Flow

Fig. 2 shows the overall flow of our approach. It consists of two main phases, namely,
design phase and synthesis phase, and we refer to them as the front-end and back-end,
respectively. The front-end is further divided into three subphases, namely, modeling,
scheduling, and verification phases. There are two subphases in the back-end, namely,
implementation mapping and code generation phases. The details of each phase are
described in the following subsections.

4.1 Modeling

In the modeling phase, we adopt communicating sequential programs (CSP#) [16] as
our modeling language, which is a high-level formal modeling language for concurrent

218 S.-W. Lin et al.

(Skip, V, C)
�−→ (Stop, V, C)

[skip]
(P, V,C)

e−→ (P ′, V ′, C′), V |= b

([b]P, V,C)
e−→ (P, V,C)

[guard]

(P, V,C)
e−→ (P ′, V ′, C)

(P � Q,V,C)
e−→ (P ′ � Q,V ′, C)

[int1]
(Q,V,C)

e−→ (Q′, V ′, C)

(P � Q,V,C)
e−→ (P � Q′, V ′, C)

[int2]

(P, V,C)
�−→ (P ′, V ′, C) and (Q,V,C)

�−→ (Q′, V ′, C)

(P � Q,V,C)
�−→ (P ′ � Q′, V, C)

[int3]

(e{prog} → P, V,C)
e−→ (P, upd(V, prog), C)

[prog]

(P, V,C)
e−→ (P ′, V ′, C)

(P ; Q,V,C)
e−→ (P ′ ; Q,V ′, C)

[seq1]
(P, V,C)

�−→ (P ′, V ′, C)

(P ; Q,V,C)
τ−→ (Q,V ′, C)

[seq2]

V |= b

(if b {P} else {Q}, V, C)
τ−→ (P, V,C)

[cond1]

V
|= b

(if b {P} else {Q}, V, C)
τ−→ (Q,V,C)

[cond2]

(P, V, C)
eτ−→ (P ′, V ′, C)

(P [] Q,V,C)
eτ−→ (P ′, V ′, C)

[ch1]
(Q,V,C)

eτ−→ (Q′, V ′, C)

(P [] Q,V,C)
eτ−→ (Q′, V ′, C)

[ch2]

C(ch) is not empty

(ch?x→ P, V,C)
ch?C(ch).head−−−−−−−−−→ (P, V,C′), where C′(ch) = C(ch) \ {C(ch).head}

[in]

C(ch) is not full

(ch!exp→ P, V, C)
ch!eva(V,exp)−−−−−−−−−→ (P, V,C′), where C′(ch) = C(ch) ∪ {eva(V, exp)}

[out]

Fig. 1. Operational Semantics of CSP# Processes [16]

systems. In CSP#, complex communications such as shared memory and message pass-
ing can be easily modeled, and system designers can even include code fragments in the
model. Most importantly, a complete simulation and verification tool support, Process
Analysis Toolkit (PAT) [9], is available.

To model the interactions between system model and hardware, we classify hard-
ware components and define generic hardware API for each class, e.g., for multi-media
hardware components such as a LCD, we define init(), reset(), display(),
and refresh(). Designers can use the generic hardware APIs as data operations in
CSP# to describe the system behavior of interacting with hardware. Note that we as-
sume hardware APIs have no side effects, i.e., they do not change the values of the
declared variables in the model. Thus, they are not considered in the verification.

Automatic Generation of Provably Correct Embedded Systems 219

Scheduling Verification

Schedulable Specification
Satisfied

Code
Generation

Yes

No
Yes

Front End
Back End

No Un-schedulable
Information

CSP#
Model

Non-functional
Information

Counterexample

Software
C/C++ Code

Implementation
Mapping

Implementation
Configuration File

Fig. 2. Overall Flow

4.2 Scheduling

Non-functional requirements such as low-power consumption and worst-case execution
time can be evaluated in this phase. To evaluate the non-functional parts of systems, the
system designer can describe the power consumption or execution time of each event
and each data operation (obtained by profiling) in the non-functional information file,
and the requirements of non-functional properties are specified as assertions in CSP#
in the modeling phase. Our framework provides several scheduling algorithms, such as
Quasi-dynamic Scheduling (QDS) [6], to evaluate the non-functional properties. If the
system design is not feasible, information on why it is non-schedulable will be given to
designers. If the system design is schedulable, the flow goes to the verification phase.

4.3 Formal Verification

To check the functional correctness of the systems, we apply model checking [2] in
this phase. Model checking is an automatic analysis procedure that can show if a sys-
tem satisfies a temporal property or violates it with a counterexample. We integrate
the PAT [9] model checker, which takes CSP# model as its input, with our framework.
PAT is a self-contained model checker to support composing, simulating and reason-
ing of concurrent, real-time systems and other possible domains. It implements various
model checking techniques catering for different properties such as deadlock-freeness,
divergence-freeness, reachability, LTL properties with fairness assumptions, refinement
checking and probabilistic model checking. If the system model does not satisfy the

220 S.-W. Lin et al.

assertions of functional correctness, a counterexample will be given to the system de-
signer. If the assertions are all satisfied, then the flow moves on to the back-end phase.

4.4 Implementation Mapping

To make the design of a system executable on a real hardware platform, every generic
hardware API used in the modeling phase has to be mapped into a concrete imple-
mentation. In this phase, the target hardware platform where the final system runs is
configured, and each generic hardware API is mapped into its corresponding imple-
mentation in the specified hardware platform. Hardware-dependent files such as make
files and header files are all included in this phase.

4.5 Automatic Code Generation

In the code generation phase, executable software code is automatically generated from
the high-level CSP# model in two steps. The CSP# processes are first translated into
state machine models and then software code is synthesized from the translated state
machines. The reasons for the two-phase synthesis instead of generating software code
directing from CSP# model are as follows: (1) state machines are still the most popular
models in industries, and the two-phase synthesis gives designers the flexibility to ex-
change state machine models of their system designs. (2) there is a mature middleware
library, Quantum Platform (QP) [14], providing a programming paradigm for imple-
menting the state machine models in C/C++ programming language. In the paradigm
supported by QP, a state and a transition have their corresponding implementation pat-
terns such that general principles can be concluded and code synthesis for state ma-
chines can be automated. In addition, QP supports many operating systems such as
Linux/BSD, Windows/WinCE, μC/OS-II, etc., and many hardware platforms such as
80X86, ARM-Cortex/ARM9/ARM7, etc, which makes the generated software codes
portable. Fig. 3 shows the architecture of QP.

Hardware Platform

Quantum Platform (Middleware)

RTOS

Application Code (Active Objects)

Fig. 3. Multi-Layer Code Generation

We formulate a state machine in Definition 2 and the interleaving, sequential, and
choice compositions between two state machines in Definitions 3 to 5, respectively.

Definition 2. (State Machine). A state machine is a 6-tupleM = (S,Σ,B,A, s0, T)
where S is a set of states; Σ is a set of events; B is a set of Boolean expressions; A is

Automatic Generation of Provably Correct Embedded Systems 221

a set of actions; s0 ∈ S is the initial state; T ⊆ S × (Σ ∪ {τ,�})×B ×A∗ × S is a

transition relation. We use s
e[b]/a1;a2;··· ;an−−−−−−−−−−→ s′ to denote a transition, where s ∈ S is

the source state, s′ ∈ S is the destination state, e ∈ Σ is the event trigger, b ∈ B is the
triggering condition, and (a1; a2; · · · ; an) ∈ A∗ is a sequence of actions for ai ∈ A
and i ∈ {1, 2, . . . , n}. We define Post(s, e) = {s′ ∈ S | s e/−→ s′}.
Definition 3. (Interleaving). Given two state machinesMi = (Si, Σi, Bi, Ai, s

i
0, Ti)

for i ∈ {1, 2}, the interleave composition is the state machine M1 �M2 = (S1 ×
S2, Σ1 ∪Σ2, B1 ∪B2, A1 ∪A2, s

1
0 × s20, T) where T is defined as follows:

(s1, s2)
e[b]/a1;a2;··· ;an−−−−−−−−−−→ (s′1, s2) if s1

e[b]/a1;a2;··· ;an−−−−−−−−−−→ s′1
(s1, s2)

e[b]/a1;a2;··· ;an−−−−−−−−−−→ (s1, s
′
2) if s2

e[b]/a1;a2;··· ;an−−−−−−−−−−→ s′2
(s1, s2)

�/−−→ (s′1, s
′
2) if s1

�/−−→ s′1 and s2
�/−−→ s′2

Definition 4. (Sequential Composition).
Given two state machinesMi = (Si, Σi, Bi, Ai, s

i
0, Ti) for i ∈ {1, 2}, the sequential

composition is the state machine (M1;M2) = (S1 ∪ S2, Σ1 ∪ Σ2, B1 ∪ B2, A1 ∪
A2, s

1
0, T) where T is defined as follows, where s ∈ S1.

T = T1 ∪ T2 \ {s
�/−−→ s′ ∈ T1 | s′ ∈ Post(s,�)} ∪ {s

τ/−→ s20 | Post(s,�) �= ∅}.
Definition 5. (Choice Composition).
Given two state machinesMi = (Si, Σi, Bi, Ai, s

i
0, Ti) for i ∈ {1, 2}, the choice com-

position is the state machine (M1[]M2) = (Si, Σi, Bi, Ai, s
i
0, Ti) where i is randomly

chosen from {1, 2}.
Fig. 4 shows the one-to-one mapping from CSP# processes into state machines. The
translation is performed constructively according the mapping step by step for each
CSP# process. The translated state machineM0 for process P0 in Example 1 is shown
in Fig. 5. We omit the translated state machineM1 for process P1 here since it is the
same as M0 except the conditions on transitions are symmetric to those ofM0.

Theorem 1 proves that the behavior of the translated state machines is consistent
with the behavior of the original CSP# models based on the concept of bisimulation.

Definition 6. (Bisimulation). Given two LTS Li = (Si, Σ,−→i, s
i
0) for i ∈ {1, 2}, we

say two states p ∈ S1 and q ∈ S2 are bisimulation of each other, denoted by p ≈ q iff

– for all α ∈ Σ if p
α−→1 p

′, then there exists q′ such that q
α−→2 q

′ and p′ ≈ q′
– for all α ∈ Σ if q

α−→2 q
′, then there exists p′ such that p

α−→1 p
′ and p′ ≈ q′

We say L1 and L2 are bisimulation of each other, denoted by L1 ≈ L2 iff s10 ≈ s20.

Theorem 1. The translated state machine is a bisimulation of the original CSP# model.

Proof. Given a CSP# process expression E , let the labeled transition system asso-
ciated with the process be LE = (O,Στ,�,−→1, o0). Let the translated state ma-
chine w.r.t. the CSP# process be ME and its associated labeled transition system be
LME = (S,Στ,�,−→2, s0). We want to prove that LE ≈ LME , i.e., o0 ≈ s0. We use
E ≈ME to denote LE ≈ LME . It can be proved by a structural induction on the CSP#
expression from the following primitive processes.

222 S.-W. Lin et al.

(a) Stop Stop

(b) Skip s0 Stop
� /

(c): e{prog} → P s0 sP0
. . .

MP

e / prog()

(d) [b]P s0
.
.
.

MP
en[b] /

e1[b] /

(e) if b {P} else {Q} s0 sP0sQ0
.

MPMQ

τ [b] /τ [¬b] /

(f) ch?x→ P s0 sP0
MP

. . .ch?x /

(g) ch!x→ P s0 sP0
ch!eva(V, x) /

MP

. . .

(h) P ;Q
s′ sQ0ssP0

.

MQMP

τ /

� /

(h) P []Q
sP0 sQ0

random choice

MP MQ

.

Fig. 4. Translation Rules from CSP# Processes and State Machines

Automatic Generation of Provably Correct Embedded Systems 223

0

1 2

3

req.0 / pos[0]=1; turn=1

τ [pos[0]=1 ∧ turn=1] /
τ [pos[0]=0 ∨ turn=0] /

cs.0 /

reset.0 / pos[0]=0

Fig. 5. Generated State Machine M0 for Process P0

– Stop: By CSP# operational semantics, there is no transition rule for the Skip pro-
cess, so LStop is a LTS having a single state without any transitions. Its corre-
sponding state machineMStop also has one state without any transitions, as shown
in Fig. 4 (a). Thus, Stop ≈MStop.

– Skip: By CSP# operational semantics, Skip = � → Stop. the LTS LE has

two states o0, o and one transition o0
�−→ o, where o0 = (Skip, V, C) and o =

(Stop, V, C). The translated state machineME has two states s0, s and one transi-

tion s0
�/−−→ s, as shown in Fig. 4 (b). It is obvious o0 ≈ s0. Thus, Skip ≈MSkip.

– E = e{prog} → P : By CSP# operational semantics, the LTS LE takes tran-
sition o0

e−→ o and behaves like P , where o0 = (e{prog} → P, V, C) and
o = (P, upd(V, prog), C). LetMP be the translated state machine w.r.t. process

P such that P ≈ MP . We add transition s0
e/prog()−−−−−→ sP0 in the translated state

machine ME , as shown in Fig. 4 (c), where sP0 is the initial state of MP . It is
obvious that o0 ≈ s0. Thus, E ≈ME .

– E = [b]P : By CSP# operational semantics, process [b]P behaves like P only if b
holds, i.e., processP can perform an event only if b holds. LetMP be the translated
state machine w.r.t. process P such that P ≈ MP . For each outgoing transition
from the initial state ofMP , We add a triggering condition b, as shown in Fig. 4 (d),
which guarantees that each outgoing transition from the initial state is taken only if
b holds. Thus, E ≈ME .

– E = if b {P} else {Q}: By CSP# operational semantics, the LTS LE may take
transition o0

τ−→ o′ if b holds; otherwise it takes transition o0
τ−→ o′′, where

o0 = (if b {P} else {Q}, V, C), o′ = (P, V, C), and o′′ = (Q, V,C). Let
MP and MQ be the translated state machines w.r.t. P and Q, respectively, and
P ≈ MP , Q ≈ MQ. In the initial state s0 of ME , two outgoing transitions

s0
τ [b]/−−−→ sP0 and s0

τ [¬b]/−−−−→ sQ0 are available, as shown in Fig. 4 (e), where sP0 and
sQ0 are the initial states ofMP andMQ, respectively. It is obvious that o0 ≈ s0.
Thus, E ≈ME .

– E = ch?x → P : By CSP# operational semantics, if the channel ch is not empty,

the LTS LE takes transition o0
ch?C(ch).head−−−−−−−−−→ o, where o0 = (ch?x → P, V, C),

o = (P, V, C′), andC′(ch) = C(ch)\{C(ch).head}, and behaves like P . LetMP

be the translated state machine w.r.t. process P such that P ≈ MP . In the initial

state s0 ofME , we add transitions s0
ch?C(ch).head/−−−−−−−−−−→ sP0 , as shown in Fig. 4 (f),

where sP0 is the initial state ofMP . It is obvious that o0 ≈ s0. Thus, E ≈ME .

224 S.-W. Lin et al.

– E = ch!x → P : By CSP# operational semantics, if the channel ch is not full,

the LTS LE takes transition o0
ch!eva(V,x)−−−−−−−→ o, where o0 = (ch!x → P, V, C),

o = (P, V, C′), and C′(ch) = C(ch) ∪ {eva(V, exp)}, and then behaves like P .
LetMP be the translated state machine w.r.t. process P such that P ≈ MP . In

the initial state s0 of ME , we add transitions s0
ch!eva(V,x)/−−−−−−−−→ sP0 , as shown in

Fig. 4 (g), where sP0 is the initial state ofMP . It is obvious that o0 ≈ s0. Thus,
E ≈ME .

– E = P �Q: By CSP# operational semantics, the transitions available in LE are

(P �Q, V,C)
e−→ (P ′ �Q, V ′, C) if (P, V, C)

e−→ (P ′, V ′, C), e �= �
(P �Q, V,C)

e−→ (P �Q′, V ′, C) if (Q, V,C)
e−→ (Q′, V ′, C), e �= �

(P �Q, V,C)
�−→ (P ′ �Q′, V ′, C) if

{
(Q, V,C)

�−→ (Q′, V ′, C)

(P, V, C)
�−→ (P ′, V, C)

LetMP andMQ be the two translated state machines w.r.t. P and Q, respectively,
such that P ≈ MP and Q ≈ MQ. The state machineME w.r.t. E is defined as
ME =MP �MQ. By Definition 3, the only three transitions inME correspond
to the above three transitions in LE , respectively. Thus, E ≈ME .

– E = P ;Q: By CSP# operational semantics, process E first behaves like P until P ’s
termination and then behaves like Q. LetMP andMQ be the two translated state
machines w.r.t. P and Q, respectively, such that P ≈ MP and Q ≈ MQ. The
translated state machineME , as shown in Fig. 4 (f), first behaves likeMP . Right

before the termination ofMP , it takes transition s
τ/−→ sQ0 and then behaves like

MQ, which corresponds to the operation semantics of E . Thus, E ≈ME .
– E = P []Q: By CSP# operational semantics, process E behaves like either P or Q

randomly. LetMP andMQ be the two translated state machines w.r.t. P and Q,
respectively, such that P ≈MP and Q ≈MQ. The translated state machineME ,
as shown in Fig. 4 (i), behaves like eitherMP orMQ randomly, which corresponds
to the operation semantics of E . Thus, E ≈ME .

Since any CSP# process expression E is composed with primitive processes inductively
and we have proved that for each primitive process, the translated state machine is a
bisimulation of it, therefore we can conclude that E ≈ME for any CSP# process. �	

The executable software code is then synthesized from the translated state machine
models. Let us take the Peterson’s algorithm in Example 1 to illustrate how software
code is automatically generated. In QP, an active object consists of a logical state ma-
chine structure, an event queue, and an execution thread, as shown in Fig. 6. QP provides
a base class, QActive, to implement an active object. A state machine is implemented
as a subclass of the QActive class, and each state is implemented as a member func-
tion of the class. Listing 1.2 shows the declaration file of state machineM0 in Fig. 5,
where the four states 0, 1, 2, 3 are implemented as four member functions P0 0(),
P0 1(), P0 2(), and P0 3(), respectively. Each execution thread of an active ob-
ject is responsible for dispatching events in its event queue, i.e., invoking the member

Automatic Generation of Provably Correct Embedded Systems 225

Listing 1.2. P0.h

1 c l a s s P0 : p u b l i c QActive {
2 p r i v a t e : s t a t i c QS t a t e i n i t i a l (P0 ∗me , QEvent c o n s t ∗e) ;
3 s t a t i c Q S t a t e P0 0 (P0 ∗me , QEvent c o n s t ∗e) ;
4 s t a t i c Q S t a t e P0 1 (P0 ∗me , QEvent c o n s t ∗e) ;
5 s t a t i c Q S t a t e P0 2 (P0 ∗me , QEvent c o n s t ∗e) ;
6 s t a t i c Q S t a t e P0 3 (P0 ∗me , QEvent c o n s t ∗e) ;
7 QTimeEvt m t imeEvt ;
8 p u b l i c : P0 () : QActive ((Q S t a t e H a n d l e r)&P0 : : i n i t i a l) , m t imeEvt (TIMEOUT SIG){} ;
9 ˜ P0 (){} ;

10 void r e q 0 () { s t d : : cou t<<” r e q 0 ”<<s t d : : e n d l ; }
11 void c s 0 () { s t d : : cou t<<” c s 0 ”<<s t d : : e n d l ; }
12 void r e s e t 0 () { s t d : : cou t<<” r e s e t 0 ”<<s t d : : e n d l ; }
13 } ;

function representing the current state and passing the event as the argument. A transi-
tion from state s to s′ in the state machine is implemented by invoking the Q TRAN(s′)
macro provided by QP.

An active object can communicate with others via shared variables and message
passing. QP provides a publish-subscription mechanism for supporting message pass-
ing communication among active objects. Once an active object publishes an event, QP
delivers the event to the event queue of whoever subscribes it, and each subscriber will
receive the event by the execution thread. The dotted arrows in Fig. 6 show the paths of
event passing between active objects and QP.

Quantum Platform (QP)

publish
event e

Active Object Active Object

TIMEOUT event

init()

e = queue.get()

dispatch(e)

e

Fig. 6. Communications among Active Objects

QP also provides the timer facility such that an active object can register a timeout
event of a certain time interval. After the time interval since the timer is fired, QP puts
a timeout event into the event queue of the active object that registered it. Let us recall
M0 in Fig. 5, we implement state 0 by registering a timeout event (Line 6 in List-
ing 1.3). After the timeout event occurs, the active object performs the req 0() func-
tion representing the CSP# event req.0 and assigns value 1 to both of the variables

226 S.-W. Lin et al.

Listing 1.3. P0.cpp

1 Q S ta t e P0 : : i n i t i a l (P0 ∗me , QEvent c o n s t ∗){ re turn Q TRAN(&P0 : : P0 0) ; }
2

3 Q S t a t e P0 : : P0 0 (P0 ∗me , QEvent c o n s t ∗e){
4 s w i t c h (e−>s i g){
5 case Q ENTRY SIG :
6 me−>m timeEvt . p o s t I n (me , WAIT TIME) ; re turn Q HANDLED () ;
7 case TIMEOUT SIG :
8 me−>r e q 0 () ; pos [0] = 1 ; t u r n = 1 ;
9 re turn Q TRAN(&P0 : : P0 1) ;

10 } re turn Q SUPER(&QHsm : : t o p) ;
11 }
12

13 Q S t a t e P0 : : P0 1 (P0 ∗me , QEvent c o n s t ∗e){
14 s w i t c h (e−>s i g){
15 case Q ENTRY SIG :
16 me−>m timeEvt . p o s t I n (me , WAIT TIME) ; re turn Q HANDLED () ;
17 case TIMEOUT SIG :
18 i f (pos [1] == 1 && t u r n == 1) { re turn Q TRAN(&P0 : : P0 1) ; }
19 e l s e { re turn Q TRAN(&P0 : : P0 2) ; }
20 } re turn Q SUPER(&QHsm : : t o p) ;
21 }
22 . . .

pos[0] and turn, which corresponds to Line 8 in Listing 1.3. Then it transits to state
1 by invoking the Q TRAN macro provided by QP (Line 9).
Theorem 2 proves that the behavior of implementation in active objects conforms to the
behavior of the state machines.

Theorem 2. The behavior of the implementation conforms to the state machine.

Proof. We give our proof sketch here. To prove that for each state machine, the be-
havior of its implementation in active object conforms to the original one, let us recall
and analyze what the execution thread of each active object does, as shown at the right
side of Fig 6. The execution thread keeps doing the followings: if there is an event in
the event queue, it removes the event and dispatches the event by invoking the member
function representing the current state and passing the event as the argument. In the
current active state, the pointer to the member function representing the current active
state is changed to its successor state by invoking Q TRAN() macro provided by QP.

For each transition A
e[b]/act()−−−−−−→ B from state A to state B, the call graph for QP func-

tions and member functions representing states A and B is as shown in Fig. 7, which
satisfies the operational semantics of state machines. Since the implementation for each
transition satisfies the operational semantics of state machines, we can conclude that
the implementation for the whole active object conforms to the original state machine.

In CSP# operational semantics, the execution of each transition is atomic. If we want
to conclude that two-phase code generation is sound by Theorems 1 and 2, we have to
make an assumption that the execution of the action on a transition of a state machine is
also atomic. Fortunately, this can be guaranteed by taking and releasing a mutex at the
beginning and the end of the action, respectively, which is exactly how we implement
in our framework. Thus, the code generation in our framework is sound. �	

Automatic Generation of Provably Correct Embedded Systems 227

A B
e[b] / act()

e = queue.get() dispatch(e) A() act() Q TRAN(B)
e[b]/

Fig. 7. Call Graph of A State Transition

Listing 1.4. CSP# Model for the Entrance Guard System

1 # d e f i n e RESET 7 7 ;
2 v a r p i n [4] ; v a r r e s u l t = 0 ; v a r open = 0 ;
3 v a r a l a rm = 0 ; v a r symbol = 0 ;
4 c h a n n e l pw 0 ; c h a n n e l i 2 c t r 0 ; c h a n n e l c t r 2 d b 0 ; c h a n n e l d b 2 c t r 0 ;
5 c h a n n e l i 2 d 0 ; c h a n n e l c t r 2 a 0 ; c h a n n e l c t r 2 a l m 0 ; c h a n n e l f l a g 0 ;
6

7 User () = User2 () [] User1 () ; f l a g ?x−> i f (open == 1) { e n t e r−> Skip } e l s e { User () } ;
8 User1 () = pw!1 −> pw!1 −> pw!1 −> pw!1 −> Skip ;
9 User2 () = pw!2 −> pw !RESET −> pw!2 −> pw!2 −> pw!2 −> pw!2 −> Skip ;

10 I n p u t () = pw? x −> check{symbol = x} −> i f (symbol == RESET) { I n p u t () } e l s e {
11 i n p u t 1 { p i n [0] = symbol } −> i 2 d ! symbol −> pw? y −> check{ symbol = y } −>
12 i f (symbol == RESET) { I n p u t () } e l s e {
13 i n p u t 2{ p i n [1] = symbol } −> i 2 d ! symbol −> pw? z −>check{ symbol = z } −>
14 i f (symbol == RESET){ I n p u t () } e l s e {
15 i n p u t 3 { p i n [2] = symbol } −> i 2 d ! symbol−> pw? k −> check{symbol = k} −>
16 i f (symbol == RESET) { I n p u t () } e l s e { i n p u t 4{ p i n [3] = symbol } −>
17 i 2 d ! symbol −> i 2 c t r !1 −> I n p u t () }
18 }
19 } } ;
20 D i s p l a y () = i 2 d ? x −> show { d i s p l a y (’∗ ’) } −> D i s p l a y () ;
21 C o n t r o l l e r () = i 2 c t r ? x −> c t r 2 d b ! x −> d b 2 c t r ? x −>
22 i f (r e s u l t ==1) { c t r 2 a !1 −> f l a g !1 −> C o n t r o l l e r () }
23 e l s e { c t r 2 a l m !1 −> f l a g !1 −> C o n t r o l l e r () } ;
24 DBMS() = c t r 2 d b ? x −>
25 i f (p i n [0]==1 && p i n [1]==1 && p i n [2]==1 && p i n [3] = = 1) {
26 checkOK{ r e s u l t = 1;}−> d b 2 c t r !1 −> DBMS()
27 } e l s e { c h e c k F a i l{ r e s u l t = 0;} −> d b 2 c t r !1 −> DBMS() } ;
28 Alarm () = c t r 2 a l m ? x −> a la rmon{a la rm = 1} −> a l a r m o f f{a la rm = 0} −> Alarm () ;
29 A c t u a t o r () = c t r 2 a ? x −> opendoor{open = 1;} −> c l o s e d o o r{open = 0} −> A c t u a t o r () ;
30 System () = User () | | | I n p u t () | | | C o n t r o l l e r () | | | DBMS() | | |
31 D i s p l a y () | | | A c t u a t o r () | | | Alarm () ;
32 # d e f i n e p r e p i n [0]==1 && p i n [1]==1 && p i n [2]==1 && p i n [3] = = 1 ;
33 # a s s e r t System () |= [] p r e −><> open == 1 ;
34 # a s s e r t System () r e a c h e s (r e s u l t == 0 && open == 1) ;
35 # a s s e r t System () |= [] r e s u l t == 0 −><> a la rm == 1 ;

5 Case Studies

We have applied the proposed framework on two case studies, namely an entrance guard
system and a secure communication box. Both of the systems are modeled using the
CSP# language and verified by the PAT model checker, and executable software codes
for both systems are generated by our framework automatically.

The entrance guard system (EGS) controls the entrance of a building and it consists
of six components, namely Input, Display, Controller, DBMS, Actuator, and Alarm,
which are modeled as six CSP# processes in Listing 1.4. Input is a keypad receiving
the 4-digit password as user input. Once a user enters a digit, it saves the digit to the
PIN array and sends the digit to Display via the channel i2d. If the user presses the
reset button, Input collects the 4-digit password from the first digit. After receiving
four digits, it sends the password to Controller via the channel i2ctr (Lines 10-19).
Display receives digits from Input and prints a ‘*’ symbol by calling the hardware
API display() for each digit on the LCD (Line 20). Controller sends the query

228 S.-W. Lin et al.

Listing 1.5. CSP# Model for the Secure Communication Box

1 # d e f i n e UserConnec t 1 ; # d e f i n e Data 2 ; # d e f i n e U s e r D i s c o n n e c t 3 ;
2 c h a n n e l ne twork 0 ; v a r p a c k e t ;
3

4 User () = ne twork ! UserConnec t −> ne twork ! Data −> ne twork ! U s e r D i s c o n n e c t −> User () ;
5 Box () = poweron −> i n i t −> ne twork ? UserConnec t −> Connec ted () ; Box () ;
6 Connec ted () = ne twork ? x −> s t o r e {p a c k e t =x} −>
7 i f (p a c k e t == Data) {Connec ted ()} e l s e { r e s e t −> Skip } ;
8 System () = User () | | | Box () ;

of password to DBMS and receives the result via the channel ctr2db (Line 21). If
the password is correct, it notifies Actuator to open the door via the channel ctr2a
(Line 22); otherwise, it notifies Alarm via the channel ctr2alm (Line 23). Actuator
will open the door if Controller notifies it, and then it closes the door after a certain time
interval (Line 29).

For verifying EGS, we add a User process to model user behavior (Line 7). The sys-
tem is the interleaving of six components and User. Note that User is just used for veri-
fication, and we don’t generate code for user behavior (our framework gives designers
the flexibility to choose the components to generate software code for). We have veri-
fied three assertions: (1) the door never opens if the password is incorrect, (2) the door
will eventually open once the correct password is entered, and (3) if the password is
incorrect, Alarm will eventually be switched on (Lines 32-35). After the verification,
EGS satisfies the three assertions. The detailed model and the generated software code
for EGS can be found in [8].

The secure communication box (SCB) is a device for providing secure communica-
tion between two clients. SCB is funded by Singapore Defense, and it is confidential.
Thus, we only give a prototype here. Listing 1.5 shows the CSP# model for the SCB
prototype. After being powered on, SCB is initialized and then waits for a user connec-
tion (Line 5). In our framework, we provide the flexibility of implementing channels as
interprocess or socket communications. Designers can choose the implementation for
each channel. In SCB, the channel network is implemented as a socket communi-
cation. Once a user connects to SCB, it keeps receiving packets until the user sends a
disconnection packet (Line 7). The detailed model and the generated software code can
be found in [8].

6 Conclusion and Future Work

In this work, we proposed a framework that can help a system designer to model em-
bedded systems from a high-level modeling language, verify the design of the system,
and automatically generate executable software code whose behavior semantics is con-
sistent with the high-level model. With our framework, the development cycle of em-
bedded systems can be significantly reduced. In our future work, we plan to enhance the
code generation such that the synthesized software code can be executed on multi-core
architectures. We also plan to extend the syntax of the CSP# modeling language as well
as its semantics such that system designers can design more featured systems such as
real-time systems, probabilistic systems, safety-critical systems, and security protocols.

Automatic Generation of Provably Correct Embedded Systems 229

References

1. Amnell, T., Fersman, L., Mokrushin, E., Petterson, P., Yi, W.: TIMES: A Tool for Schedu-
lability Analysis and Code Generation of Real-Time Systems. In: Larsen, K.G., Niebert, P.
(eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer, Heidelberg (2004)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
3. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR*: A Toolset for Specifying and

Analyzing Software Requirements. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp.
526–531. Springer, Heidelberg (1998)

4. Hsiung, P.A., Lin, S.W.: Automatic synthesis and verification of real-time embedded soft-
ware for mobile and ubiquitous systems. Computer Languages, Systems & Structures 34(4),
153–169 (2008)

5. Hsiung, P.-A., Lin, S.-W., Hung, C.-C., Fu, J.-M., Lin, C.-S., Chiang, C.-C., Chiang, K.-
C., Lu, C.-H., Lu, P.-H.: Real-Time Embedded Software Design for Mobile and Ubiquitous
Systems. In: Kuo, T.-W., Sha, E., Guo, M., Yang, L.T., Shao, Z. (eds.) EUC 2007. LNCS,
vol. 4808, pp. 718–729. Springer, Heidelberg (2007)

6. Hsiung, P.A., Lin, S.W., Tseng, C.H., Lee, T.Y., Fu, J.M., See, W.B.: VERTAF: An applica-
tion framework for the design and verification of embedded real-time software. IEEE Trans-
actions on Software Engineering 30(10), 656–674 (2004)

7. Knapp, A., Merz, S., Rauh, C.: Model Checking - Timed UML State Machines and Collabo-
rations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–414.
Springer, Heidelberg (2002)

8. Lin, S.W.: https://sites.google.com/site/shangweilin/pat-codegen
9. Liu, Y., Sun, J., Dong, J.S.: Developing Model Checkers Using PAT. In: Bouajjani, A., Chin,

W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 371–377. Springer, Heidelberg (2010)
10. Méry, D., Singh, N.K.: Automatic code generation from event-B models. In: SoICT 2011,

pp. 179–188 (2011)
11. Niz, D., Rajkumar, R.: Time Weaver: A software-through-models framework for embedded

real-time systems. In: LCTES, pp. 133–143 (2003)
12. Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing Let-

ters 10(3), 115–116 (1981)
13. Ramkarthik, S., Zhang, C.: Generating java skeletal code with design contracts from specifi-

cations in a subset of object Z. In: ACIS-ICIS 2006, pp. 405–411 (2006)
14. Samek, M.: Practical UML Statecharts in C/C++: Event-Driven Programming for Embedded

Systems. Newnes (2008)
15. SCADE,

http://www.esterel-technologies.com/products/scade-suite/
16. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for system

modeling and verification. In: TASE 2009, vol. 962, pp. 127–135 (2009)
17. Thompson, J.M., Heimdahl, M.P.E., Miller, S.P.: Specification-based prototyping for embed-

ded systems. In: SIGSOFT 1999, pp. 163–179 (1999)

https://sites.google.com/site/shangweilin/pat-codegen
http://www.esterel-technologies.com/products/scade-suite/

Complementary Methodologies
for Developing Hybrid Systems with Event-B

Wen Su1, Jean-Raymond Abrial2, and Huibiao Zhu1

1 Software Engineering Institute, East China Normal University
{wensu,hbzhu}@sei.ecnu.edu.cn

2 Marseille, France
jrabrial@neuf.fr

Abstract. This paper contains a further contribution to the handling
of hybrid systems as presented in [3]. This time we insist on the usage of
multiple methodologies involving not only refinements and proofs as in
Event-B and the Rodin Platform, but also Matlab simulation, Anima-
tion, and Invariant discovery. We believe that a successful understanding
of hybrid systems has to be done in this way by involving several dis-
tinct methodologies that are complementary. The paper also presents
many examples illustrating the approach.

1 Introduction

By studying the extremely rich literature on hybrid systems, we found that it
can be divided, roughly speaking, into two separate groups: those papers dealing
with theoretical developments presenting, among others, ways of discovering
invariants for hybrid systems whose continuous parts are defined by non-linear
differential equations [12] [13] [14] [15], and those papers dealing with practical
developments on the verification of hybrid systems whose continuous parts are
based on linear differential equations [6] [8] [9] [10]1. In the present paper we
definitely place ourselves in the second group. The reason for this choice is not
that we think that the problematics studied and the results presented in the first
group are not important, they definitely are, this is rather because we found that
the examples presented in the second group are closer to industrial applications
than those presented in the first group.

Another reason for our choice of the second group is that the examples pre-
sented in this group are usually studied with one technology only (mainly model
checking). We believe that they could be approached by using several technologies
that are complementary. In fact, it seems to us that this philosophy is adequate
for handling industrial developments where safety is important. We believe that
the confidence in the correct development of complex systems is significantly im-
proved by the positive convergence of several independent (but complementary)
approaches.

1 There are obviously far more papers in these two groups than the ones cited here.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 230–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Complementary Methodologies for Developing Hybrid Systems with Event-B 231

Our paper is organized as follows: the next section contains the description
of our methodology where we explain how various technologies are applied. The
subsequent section contains many examples illustrating our approach. We finally
conclude and propose some future research.

2 Methodological Approach

In this section, we develop four techniques for building up a methodology to be
used in a systematic fashion for the development of hybrid systems. The first
technique (section 2.1) consists in defining a design pattern for handling tasks
under some timing constraints in Event-B framework [1]. The second technique
(in section 2.2) shows how we can take advantage of performing simulations
of hybrid systems using Matlab. The third technique (in section 2.3) proposes a
systematic technique for discovering and handling, so-called, technical invariants
by means of the prover of the Rodin Platform [2] as well as its animator. The
final technique (in section 2.4) shows how ideal hybrid systems can be made
more practical by introducing some time constrained sensors and actuators in
between a controller and an environment. It is important to note again that
these different approaches are very complementary. Each example of section 3
will use several of them.

2.1 Design Patterns for Linear Hybrid Systems

We are interested in presenting a general framework (a formal design pattern as
proposed in [4] and [5]) that can be used in the development of hybrid systems
where the continuous parts are using some simple clocks. This framework will
be used under various options in some of the examples proposed in section 3. It
can be proved that this approach is similar (although done differently) to the
one advocated in continuous Action System [7] [8] [9]: rather than dealing with
an absolute time as in [7], we rather handle time with delays.

Such systems are represented by means of a number of tasks. We suppose that
each task can be either working or idle (boolean variable work where work =
TRUE means the task is working while work = FALSE means it is idle). A
working task can do so for a certain duration (variable working). Likewise, an
idle task can be sleeping for a certain duration (variable sleeping). This can be
formalized in Event-B [3] with the following variables and invariants for each
task (here task1):

inv1: work1 = TRUE ⇒ sleeping1 = 0
inv2: work1 = FALSE ⇒ working1 = 0

Notice that a task may have no sleeping time when it is triggered by another
one (example: an actuator task). Likewise, a task my have no working time
when "execution" is not taken into account. However, such a task might have a
sleeping time if it is periodic (example: a sensor task). Besides the initialization,
the dynamic behavior of each task is formalized by means of two events as follows
(here for task1):

232 W. Su, J.-R. Abrial, and H. Zhu

task1_start
when

work1 = FALSE
sleeping1 = 0

then
work1 := TRUE
working1 := ...

end

task1_end
when

work1 = TRUE
working1 = 0

then
work1 := FALSE
sleeping1 := ...

end

The advance of time in the mathematical simulation of such a system is per-
formed by means of a special event called Click that is shown below in the case
of two tasks, task1 and task2. The event Click is enabled when no "normal"
event can be enabled any more (this is taken into account in the third guard of
the event Click). By doing this, the time makes progress only when all actions
to be performed at the "present" time have been "executed". Then, time makes
progress by taking the smallest non zero working or sleeping time and removing
it from non zero working or sleeping times.

Click
any w where

{working1, sleeping1, working2, sleeping2} \ {0} �= ∅
w = min({working1, sleeping1, working2, sleeping2} \ {0})
¬((work1 = FALSE ∧ sleeping1 = 0) ∨ (work1 = TRUE ∧ working1 = 0) ∨

(work2 = FALSE ∧ sleeping2 = 0) ∨ (work2 = TRUE ∧ working2 = 0))
then

working1 := max({0, working1 − w})
sleeping1 := max({0, sleeping1 − w})
working2 := max({0, working2 − w})
sleeping2 := max({0, sleeping2 − w})

end

For instance if working1 = 3, sleeping1 = 0, working2 = 0, and sleeping2 = 5,
then after Click, working1 = 0, sleeping1 = 0, working2 = 0, and sleeping2 = 2.

More relationships can be defined between tasks.
For instance, there could exist some priorities
between them. In the case where, say, task1 has a
priority that is greater than that of task2, this is for-
malized by means of the invariant inv3 (when task1
is working then task2 cannot) and the modification
of the starting event of task2 (task2 can only start
when task1 is sleeping).

In case of the introduction of priorities, another re-
lationship may exist between tasks: a working task
of lower priority can be preempted by a task with
greater priority. In the case where, say, task1 has a

inv3: working1 > 0 ⇒
working2 = 0

task2_start
when

work2 = FALSE
sleeping2 = 0
sleeping1 > 0

then
work2 := TRUE
working2 := ...

end

greater priority than that of task2 and is able to preempt task2, this is formalized
by introducing a new variable remaining2 together with the following invariants

Complementary Methodologies for Developing Hybrid Systems with Event-B 233

(remaining2 records the time that remains in the execution of task2 in case it
has been preempted):

inv4: work2 = FALSE ⇒ remaining2 = 0
inv5: working2 = 0 ∨ remaining2 = 0

Then the event task1_start is modified as follows (it possibly preempts task2)
and a new event task2_restart is introduced in order to restart task2 in case it
has been previously preempted by task1:

task1_start
when

work1 = FALSE
sleeping1 = 0

then
work1 := TRUE
working1 := ...
working2 := 0
remaining2 := working2

end

task2_restart
when

work2 = TRUE
sleeping1 > 0
remaining2 > 0

then
working2 := remaining2
remaining2 := 0

end

Also the guard remaining2 = 0 has to be added to the event task2_stop: a
preempted task cannot be stopped. Clearly, the just introduced extensions for
taking account of preemption require a corresponding extension of the event
Click. In the case where we have more than two events with priorities and multiple
preemptions (that is preemption of a preempted task) the previous modifications
are a little more elaborate: this can be seen in the example of section 3.4, where
all features introduced in this design pattern are shown. Various less complete
usage of our design pattern can be seen in the examples of sections 3.1 and 3.3.

2.2 Using Matlab

Matlab Simulink is used to model, simulate and analyze dynamic systems. More-
over, an extension of Simulink, Stateflow, is a special product used for event-
driven system. By using Matlab Simulink/Stateflow, we can analyze a model by
setting different parameter values.

Our formalization using Matlab follows exactly the last model of each example.
This has been done manually for the moment, but we think that it is possible
to have a systematic translation from Event-B to Matlab realized in a plug-in.

In the "Water Tank" example we present in section 3.2, we can observe inter-
esting dynamic behaviors under different parameter settings. If the parameters
obey the axioms used in the formal development, the system runs normally. In
contrast, if these parameters violate the axioms, we can see an abnormal be-
havior. Also the relationship among such parameters can be analyzed through
simulation. More details can be found in section 3.2. We also develop simulation
models for other examples presented in this paper to complement the formal
development.

234 W. Su, J.-R. Abrial, and H. Zhu

2.3 Invariant and Guard Discoveries with the Rodin Platform

When studying the formal development of a system, some of the invariants and
event guards are easy to write because they are direct translations of the in-
formal requirements of the system at hand. However, when trying to prove the
maintenance of these invariants, one can figure out quite often that it is not
possible unless one introduces more invariants that are not so natural than the
previous ones. The problem is then to find these new invariants.

An idea, also proposed in [19] is to use the prover for discovering such tech-
nical invariants. Here we propose the following: when the prover fails to prove
something at a certain point in a proof, one can see where it was blocked (un-
able to proceed). This is represented by a certain sequent (some hypotheses H
together with a goal G: H � G) that is impossible to discharge. The simple idea
then is to try the following new invariant: H’ ⇒ G, where H’ is the conjunction
of some of the hypotheses in H.

Introducing this new invariant will discharge the previous proof but requires,
of course, to be itself proved. If it is not possible then one can use the same tech-
nique, and so on. Usually after a few such iterations, one reachs the "fixpoint"
where no new invariants are needed.

The technique we just presented consisted in adding some new invariants.
Another technique consists in adding a guard to the event where the invari-
ant maintenance failed. It is a good technique because it does not require more
proofs. However, it is not always possible to use as it might change the formal-
ization of the problem and possibly introduce some deadlocks. In the examples
of section 3, we shall use both techniques introduced in this section: this is
particularly efficient in the example of section 3.3 (mutual exclusion).

An interesting technique to be used while discovering new invariants or new
guards is to use the Animators of the Rodin Platform. There are two of them:
ProB [18] and AnimB. ProB is more than an animator, it is also a model checker
that is quite elaborate. In the formal development of the example presented in
this paper, it was sufficient to use AnimB. The idea is to check that the potential
addition of an invariant or guard does not introduce some counter-examples. The
technique consisting in using the animator as a debugger together with doing
formal proofs might seem strange to purists, but we found out that it was very
useful as a complementary action.

2.4 Introducing Sensors and Actuators for Refining Ideal Systems

Many examples we found in the literature are dealing with hybrid systems where
a controller interacts with an external environment. However, such examples are
often ideal in that the controller continuously and directly interacts with its
environment. We found that it is quite interesting to put some sensors and ac-
tuators between the controller and the environment. Such sensors and actuators
might also take some significant time to perform their job. It makes the examples
more practical. The price to be paid is that the correct construction can become
sometimes quite tricky.

Complementary Methodologies for Developing Hybrid Systems with Event-B 235

One of the examples below in section 3.2 deals with this question. It appears
to us to be more difficult than we expected. In our opinion, more has to be done
to find out some systematic ways of handling such situations.

3 Examples

In this section, we present four examples illustrating our usage of the methodol-
ogy presented in the previous section. The first example in section 3.1 is a trivial
application of the the design pattern defined in section 2.1. The second example
in section 3.2 illustrates the methodology presented in section 2.4 by introducing
sensors in an ideal system. The third and fourth examples in sections 3.3 and 3.4
illustrate more elaborate uses of the technologies presented in section 2.1 and
2.3. Some examples illustrate the usage of Matlab as presented in section 2.2.

3.1 Press

This example is taken from [8] and [17]. It describes a simple model for a me-
chanical press working in a metal factory. The purpose of this example is to
apply the design pattern described in section 2.1 on a reactive system where
several devices are working in parallel.

Informal Presentation. The press works as illustrated in the diagrams below.
Here is an informal description of this system as quoted from [8]: "The press
works as follows. First, its lower part is raised to the middle position. Then an
upper conveyor belt feeds a metal blank into the press. When the press is loaded
(signaled by sensor1 being true), the lower part of the press is raised to the
top position and the blank is forged. The press will then move down until the
bottom position and the forged blank is placed into a lower conveyor belt. When
the press is unloaded (signaled by sensor2 being true), the lower part is raised
to the middle position for being loaded again."

Defining Some Constants. We start the formal development by defining the
three constants bottom, middle, and top. They are numbers with the following
obvious axioms: bottom < middle < top.

Initial Model. We define a variable position with the three possible val-
ues (bottom, middle, and top), the two boolean variables for the belt sensors:
sensor1 and sensor2. Finally, we define three "work variables": bottom_work,
middle_work, and top_work. When true it means that the corresponding task
is active. As a consequence. we have the following invariants:

236 W. Su, J.-R. Abrial, and H. Zhu

inv1: middle_work = TRUE ⇒ position = middle
inv2: top_work = TRUE ⇒ position = top
inv3: bottom_work = TRUE ⇒ position = bottom

Next are some events corresponding to task starting or ending:

Loading_start
when

position = middle
sensor1 = TRUE
middle_work = FALSE

then
sensor1 := FALSE
middle_work := TRUE

end

Loading_end
when

middle_work = TRUE
then

position := top
middle_work1 := FALSE

end

Belt_1
when

sensor1 = FALSE
then

sensor1 := TRUE
end

During the events Loading_start and Loading_end, the press is moving from
middle to top. Similarly, the events Pressing and Unloading (_start and _end)
are used to move the press from top to bottom and, from bottom to middle
respectively.

First Refinement. In this refinement, we introduce the timing constraints: the
three main tasks last for certain times denoted by the variables middle_working,
top_working, and bottom_working. Each of them are set to three constants
middle_t, top_t, and bottom_t when started. The two belts might be sleeping
(variables belt1_sleeping and belt2_sleeping) for certain constant times belt1_t
and belt2_t. All these constant times are greater than 0, this are obvious axioms.
From the design pattern, we obtain the following invariants:

inv1: middle_work = FALSE ⇒ middle_working = 0
inv2: top_work = FALSE ⇒ top_working = 0
inv3: bottom_work = FALSE ⇒ bottom_working = 0

The events are modified accordingly. We show below, the refined events for the
middle task and for the belts.

Loading_start
when

position = middle
sensor1 = TRUE
middle_work = FALSE

then
sensor1 := FALSE
middle_work := TRUE
middle_working := middle_t

end

Loading_end
when

middle_work =
TRUE

middle_working=0

then
position := top
middle_work :=

FALSE
end

Belt_1
when

sensor1 = FALSE
belt1_sleeping = 0

then
sensor1 := TRUE
sleeping_s1:=t_sen

end

Complementary Methodologies for Developing Hybrid Systems with Event-B 237

Finally, we write the Click event according to the design pattern of section 2.1.

Click
any w where

{midddle_working, top_working, bottom_working, ...} \ {0} �= ∅

w = min({midddle_working, top_working, bottom_working, ...} \ {0})
"negation of the disjunction of the guards of other events"

then
mid_working := max({0, middle_working − w})
top_working := max({0, top_working − w})
bot_working := max({0, bottom_working − w})
belt1_sleeping := max({0, belt1_sleeping − w})
belt2_sleeping := max({0, belt2_sleeping − w})

end

Second Refinement. In this refinement (not shown here), the move of the
press is done at a certain constant speed v, which gives three axioms, such as
middle_t = (top − middle) ÷ v. Others are similar.

Proof. The overall proof effort of the Rodin platform for this example is the
following: 55 proof obligations were generated and proved automatically, except
1 of them proved interactively.

Matlab Simulation. The Matlab simulation
is derived from the second refinement, with the
following parameters: bottom = 0, middle =
5, top = 10, middle_t = 2.5, top_t =
5, bottom_t = 2.5, t_sen = 20, which strictly
obey all the axioms. The right figure is one
output of Matlab: it shows how the position
(y-axis) evolves with time (x-axis). We see that
before loading, the press wait for the sensor of
Belt1.

3.2 Water Tank

The example presented in this section is based on the water tank monitoring
system presented in [10]. In this example, we illustrate the approaches advocated
in sections 2.3 and 2.4.
Informal Presentation. A water tank contains some water that leaks con-
tinuously at a certain constant speed v2. In order to prevent the water level to
become smaller than a certain minimal value tm, a pump can be turned on in
order to pour some water in the tank at a certain constant speed, so the resulting
speed of leaking and pouring water is v1. When the pump is on, it can be turned
off in order for the water level to remain under a certain maximal value tM .
The purpose of the monitoring is to guarantee that the water level will always
be situated within the interval [tm, tM].

238 W. Su, J.-R. Abrial, and H. Zhu

In the example described in [10], the water-level is sensed continuously: this
is an ideal situation. In the model described here, we are more practical: we
suppose that the water level is detected periodically only (every other t_sen
seconds) by a sensor. Moreover, we also suppose, as in [10], that the pump takes
a certain time, t_act seconds, when activated (or deactivated), in order to be
physically effective. The just defined
framework is shown in the following figure
where one can see the environment made
of the pump and the sensor and the con-
troller taking decisions about the status
of the pump depending on the informa-
tion sent to it by the sensor:

Preliminary Study. As already stated, the main invariant of this system is
that the water level L in the tank is always situated within the interval [tm, tM].
Every other t_sen seconds, the controller is waken up by the sensor with the
current level L in the tank. Given the status of the pump (on or off), the
controller has to take a decision: doing nothing, or changing the status of the
pump so that the level will remain within the prescribed interval at the next
sensor awakening. Suppose the pump is on, then in t_sen seconds the water
level will be L+ v1 ∗ t_sen. If this quantity is smaller than or equal to tM , then
we can do nothing. But if this quantity is greater than tM , we have to change
the status of the pump. However, as the pump is "lazy" (it take t_act seconds to
react), we have to check the next water level against tM −v1∗ t_act, not against
tM . We have a similar situation when the pump is off . In this case, we have to
turn it on when the quantity L − v2 ∗ t_sen is smaller than tm + v2 ∗ t_act.

It should be noted that the constants of this system, namely tM , tm, v1, v2,
t_sen, and t_act should obey certain constraints. First of all, they must all be
positive quantities with tm smaller than tM . Second, t_act must be smaller than
t_sen so that the pump action can make sense. Finally, we have the feeling that
the system cannot work if the sampling t_sen is too big. In fact, if the detected
level is L and if we have L + v1 ∗ t_sen > tM but also L − v2 ∗ t_sen < tm,
then no decision can be taken by the controller. This happens in the case where
tM − tm < (v1+ v2)∗ t_sen. In other words, in order to strictly avoid this case,
the sampling time t_sen has to be such that t_sen ≤ tM−tm

v1+v2 .

Defining Some Generic Sets and Constants. We start the formal devel-
opment by defining the constants previously mentioned. To begin with, we can
avoid writing the two axioms t_act < t_sen and tM − tm � (v1 + v2) ∗ t_sen.
In this way, we can figure out where these constraints are indispensable in the
proofs. We also defined the set P of pump status: {on, off }.
Formal Model. The formal model is made of three variables L, PUMP , and
pump. The first two variables denote the physical values of the water level and
the physical status of the pump. The last variable denotes the status of the pump
as ordered by the controller. PUMP and pump are not always identical: this is
due to the delay between the command issued by the controller and the effective

Complementary Methodologies for Developing Hybrid Systems with Event-B 239

physical status of the pump in the environment. A last technical variable, phase,
with value 1 or 2, denotes the "place" where we are in the simulated model: either
in the controller (phase = 1) or in the environment (phase = 2). Besides the
typing of the variable, we have two main invariants that are the followings:

inv1: phase = 1 ⇒ PUMP = pump
inv2: L ∈ tm .. tM

There are 4 controller events for deciding what should be the next status of the
pump. Next are the two events for deciding what to do when the pump is on:

decide_1
when

phase = 1
pump = on
L + v1 ∗ t_sen ≤ tM − v1 ∗ t_act

then
phase := 2

end

decide_2
when

phase = 1
pump = on
L + v1 ∗ t_sen > tM − v1 ∗ t_act

then
phase := 2
pump := off

end

We have similar events for deciding what to do when the pump is off . In the
environment, we have also four events. Here are the events corresponding to
the pump receiving the command on together with the response made by the
environment (the water level L):

env_1
when

phase = 2
pump = on
PUMP = on

then
phase := 1
L := L + v1 ∗ t_sen

end

env_2
when

phase = 2
pump = on
PUMP = off

then
phase := 1
PUMP := on
L := L − v2 ∗ t_act + v1 ∗ (t_sen − t_act)

end

The maintenance proof of the first invariant is easy. The invariance proof of the
second invariant is more problematic. For instance, the proof of inv2 by event
env_1 fails with the following sequent that is impossible to prove:

pump = on, PUMP = on, phase = 2 � L + v1 ∗ t_sen ≤ tM

By applying the simple technique of invariant discovery developed in section 2.3,
we add the following invariant inv3 (and by analogy the invariant inv4):

inv3: pump = on ∧ PUMP = on ∧ phase = 2 ⇒ L + v1 ∗ t_sen ≤ tM

inv4: pump = off ∧ PUMP = off ∧ phase = 2 ⇒ tm ≤ L − v2 ∗ t_sen

240 W. Su, J.-R. Abrial, and H. Zhu

After this, our two failing proofs were discharged but, of course, the proofs of
the new invariants failed. We apply similar techniques to prove them and so on.
After introducing four new invariants in this way, we reached the fixpoint and all
proofs were discharged. In the proofs of these new invariants, we found that the
two axioms t_act < t_sen and tM − tm � (v1+v2)∗ t_sen were indispensable.

Refinement. It is possible to refine several times the previous model (not done
here) in order to separate the pump and the sensor in the environment and then
apply the approach of section 2.1.

Proof. The overall proof effort of the Rodin platform for this example is the
following: 77 proof obligations were generated and proved automatically, except
4 of them that were proved interactively.

Matlab Simulation. In the Matlab simulation, we use the following parame-
ters: tm = 1, tM = 16, t_sen = 5, t_act = 2, v1 = 1, v2 = 2. This parameter
are coherent with axioms: t_act < t_sen and tM − tm � (v1 + v2) × t_sen.
We build a model in Stateflow which is an exact translation of the formal devel-
opment. The time is continuous but the water level is discrete (modified every
other t_sen seconds). The corresponding Matlab output can be seen in the first
diagram below where the x-axis shows the time and the y-axis shows the value
of water level. In order to analyze the continuous behavior of the water level,
we refine this model with continuous linear change. The output can be seen in
the second diagram below. It is interesting to compare these diagrams. In the
second diagram, the water level goes higher (point C) and lower (point D) than
in the first one (points A and B), but still between 1 and 16. It is due to the
fact that the pump only reacts after t_act second to the command sent by the
controller, so the water level continues to augment (with speed 1) or diminish
(with speed 2) for t_act (2 seconds) .

A

B

A

B

C

D

3.3 Mutual Exclusion

This example contains the development of Fischer’s mutual exclusion algorithm.
We could not find the paper by Fischer where this algorithm would have been
introduced (if it ever existed), but it is studied in many occasions in the litera-
ture. We take its definition from [11]. The purpose of this example is to illustrate
part of the tasking design pattern introduced in section 2.1 and also the guard
and invariant discoveries presented in section 2.3.

Informal Presentation. We have a number of processes that want to enter in
an exclusive way a certain piece of code called the "critical section". For that

Complementary Methodologies for Developing Hybrid Systems with Event-B 241

purpose, a variable, x, is shared by all these processes. Each process (named
according to a distinct positive number i) executes the protocol shown on the
left of the figure below. The statements in angle brackets are supposed to be
atomic. Double brackets are used around modifications of the variable x: it means
that such statements are strictly atomic (only one writer and no reader). Single
brackets are used around reading of the variable x: it means that several processes
can read x simultaneously (but no writing). The statement x := i takes a certain
time a to be executed: this is indicated by prefixing x := i with the statement
delay(a). After modifying x, we have to wait for a further delay b. To the right of
the figure, the protocol is re-written with a number of addresses prefixing each
instruction: these addresses will be used in the formal developments.

repeat
await < x = 0 >;
<< delay(a);

x := i >>;
delay(b);

until < x = i >
critical section;
<< x := 0 >>;

repeat
1 : await x = 0;
2 : delay(a);
3 : x := i;
4 : delay(b);
5 : untilx = i
6 : critical section;

x := 0;

We suppose that a is smaller than b and we want to prove that no more than
one process can be in the critical section at a time.

Initial Model. In this initial model, we do not introduce the delays a and
b. We shall thus prove the mutual exclusion property by introducing "cheating
guards" in some events. In order to simplify matters, we suppose that we have
two processes only, named 1 and 2. We only define the variable x ∈ {0, 1, 2} and
two addresses phases, phase1 and phase2, corresponding to each processes. Each
of them can take a value between 1 and 6. The main property to prove is thus the
following: phase1 �= 6∨ phase2 �= 6: both processes cannot be simultaneously in
the critical section where the phases are equal to 6. Next are the various events
for process 1. Similar ones can be defined for process 2. Each event corresponds to
one "instruction" of the protocol. As can be seen, we define the guard predicate
in the event end_delay1. This guard will be the condition guaranteeing mutual
exclusion. It will be made precise at the end of this section.

entering_protocol1
when

x = 0
phase1 = 1
phase2 �= 3

then
phase1 := 2

end

start_writing1
when

phase1 = 2
phase2 �= 3

then
phase1 := 3

end

end_writing1
when

phase1 = 3
then

x := 1
phase1 := 4

end

end_delay1
when

phase1 = 4
predicate

then
phase1 := 5

end

242 W. Su, J.-R. Abrial, and H. Zhu

entering_cs1
when

phase1 = 5
x = 1
phase2 �= 3

then
phase1 := 6

end

leaving_cs1
when

phase1 = 6
then

x := 0
phase1 := 1

end

failing_to_enter_cs1
when

phase1 = 5
x �= 1
phase2 �= 3

then
phase1 := 1

end

Rather than defining the mutual exclusion property as an invariant, we use some
weaker invariant conditions, namely:

inv1: phase1 = 6 ⇒ x = 1 inv2: phase2 = 6 ⇒ x = 2

Then the mutual exclusion property phase1 �= 6 ∨ phase2 �= 6 can be proved
as a simple theorem. In order to prove the maintenance of inv1 and inv2, we
use again the technique of section 2.3 and discover that the following additional
invariants are needed:

inv3: (phase2 = 5 ∧ x = 2) ∨ phase2 = 6 ⇒ phase1 �= 2 ∧ phase1 �= 3
inv4: (phase1 = 5 ∧ x = 1) ∨ phase1 = 6 ⇒ phase2 �= 2 ∧ phase2 �= 3

And now, in order to prove the invariants with events end_delay1 and end_delay2
we found (using again the technique of section 2.3) that the guard named "pred-
icate" in the event end_delay1 should be x = 1 ⇒ phase2 �= 2 ∧ phase2 �= 3,
and a similar one in the event end_delay2. In other words, in the case of the
event end_delay1, the process 2 should not be entering the writing instruction
for x. This is to be taken care when x is 1 only. This is easy to understand:
should this guard be missing then process 2 could enter the critical section (with
x = 2) while process 1 is still in it.

Refinement. Our task in this refinement is clear. The mutual exclusion prop-
erty has been proved in the abstraction thanks to the introduction of a "cheating"
guard (x = 1 ⇒ phase2 �= 2 ∧ phase2 �= 3) in the event end_delay1 and a simi-
lar one in event end_delay2. It remains now for us to remove this cheating guard
and simply replace it by the fact that the delay b is over. For this, we follow
partly the design pattern defined in section 2.3: we introduce two new variables
working1 and working2 for handling the delays in both processes. Only events
start_writing, end_writing and end_delay are then modified as follows:

start_writing1
when

phase1 = 2
phase2 �= 3

then
phase1 := 3
working1 := a

end

end_writing1
when

phase1 = 3
working1 = 0

then
x := 1
phase1 := 4
working1 := b

end

end_delay1
when

phase1 = 4
working1=0

then
phase1 := 5

end

Complementary Methodologies for Developing Hybrid Systems with Event-B 243

It remains now for us to introduce the Click event defined in section 2.3 for
advancing time in this mathematical simulation:

Click
any w where

{working1, working2} \ {0} �= ∅
w = min({working1, working2} \ {0})
"negation of the disjunction of the guards of other events"

then
working1 := max({0, working1 − w})
working2 := max({0, working2 − w})

end

In order to prove the correct refinement of the event end_delay, we have to prove
that the concrete guards of end_delay for both processes are stronger than those
of the corresponding abstractions, that is:

phase1 = 4 ∧ working1 = 0 ⇒ (x = 1 ⇒ phase2 �= 2 ∧ phase2 �= 3)
phase2 = 4 ∧ working2 = 0 ⇒ (x = 2 ⇒ phase2 �= 2 ∧ phase2 �= 3)

Again, these proofs failed and we have to use the technique of section 2.3 to
introduce more technical invariants. This time, it required a little more new
invariants than in the abstraction. In fact, seven new invariants were needed
before reaching the fixpoint. Since we strengthen the guard, we have also to
prove that we have not ended in a possible deadlock. It was easy to prove the
deadlock freeness theorem (the disjunction of all guards is true).

Proof. The overall proof effort of the Rodin platform for this example is the
following: 291 proof obligations were generated and all proved automatically.

Matlab Simulation. In the Matlab simulation diagrams below, time is on the
x-axis whereas phases are in the y-axis. Each process is in a separate diagram.

In the first Matlab simulation, we have a = 2 and b = 4, that is a < b. We can
see the effective mutual exclusion: process 1 is in the critical section between A
and B (phase1 = 6) while process 2 is not (phase2 = 1) during the same time
span.

A B B

A B B

244 W. Su, J.-R. Abrial, and H. Zhu

In the second Matlab simulation, we have a = 4 and b = 2, that is a ≥ b. Here
we can see that mutual exclusion is not achieved. Process 1 and process 2 can
be simultaneously in the critical section between C and D (phase1 = 6 and
phase2 = 6).

C D

C D

3.4 Sensors

This example is taken from [16] and [6]. It is described in [6] by means of an
algorithm dealing with the tasking features of ADA: tasks (with priority and
preemption), rendez-vous, and delays. The purpose of this example is to illustrate
the full design pattern introduced in section 2.1.

Informal Presentation. This system is made of two sensors sampling some
data from a certain environment. These sensors are connected to an "integrator"
that periodically sends an information to a robot. This information is elaborated
by the integrator from the data collected by both sensors. This can be illustrated
on this figure

For a more precise description of this system, we quote the following paragraph
from [6]: "Each sensor constructs a reading and sends it to the integrator. Since
the environment is constantly changing, the sensor reading expires if not ac-
cepted [by the integrator] within a certain time and a new reading is immedi-
ately constructed. When the data has been sent successfully [from a sensor to
the integrator], the sensor sleeps for a certain time.The integrator accepts the
readings of the two sensors in either order and then computes a command to
the robot. To make matters more difficult, there is a proximity requirement: the
[two] readings used [by the integrator] to construct a command must have been
received within a bounded interval." Notice that the reading of each sensor, the
integrator acceptance from a sensor, and the integrator computation of the com-
mand for the robot take certain times. Here is a precise specifications of all these
timing constraints (unit is 100 micro seconds):

Complementary Methodologies for Developing Hybrid Systems with Event-B 245

sensor1 expires 40 sensor sleeping 60 integrator accepting 9 .. 10
sensor2 expires 80 sensor 1 reading 5 .. 11 integrator computing 36 .. 56
proximity expires 100 sensor 2 reading 15 .. 20

As additional requirements, we suppose that the task related to the first sensor
has a greater priority than that related to the second sensor. Moreover, the first
one can preempt the last one. Finally, the task computing the robot command
in the integrator is supposed to have a lower priority than those of the sensors.
Likewise, the integrator task can be preempted by sensor tasks.

Defining some Generic Sets and Constants. The formal development starts
with the definition of the set D of data acquired by the sensor in the environment
and the set S of signals sent to the robot. We also formalize the computation
made by the integrator by means of a total function cmp belonging to S×S→D.

Initial Model. The initial, most ab-
stract, model has just one variable,
signal, of type S and a single event Com-
pute defined as indicated in the right. As
can be seen, in this inital model we do not
take account of the sensors: we suppose
that the integrator can access directly to
the environment.

Compute
any d1 d2 where

d1 ∈ D
d2 ∈ D

then
signal := cmp(d1 	→ d2)

end

First Refinement. In the first refinement, we are more precise. We introduce
both sensors. Each of them has its own buffer (read1 and read2, of type D).
The connection with the integrator is made through two internal buffers (acq1
and acq2 of type D). We show below some events dealing with the first sensor
reading information from the environment (event sensor1) and being connected
with the integrator (event acquire1). Similar events are defined for the second
sensor:

sensor1
any d where

d ∈ D
then

read1 := d
end

acquire1
begin

acq1 := read1
end

Compute
refines

Compute
with

d1 = acq1
d2 = acq2

then
signal := cmp(acq1 	→ acq2)

end

Here we have connected the sensors to the integrator but we have not synchro-
nized yet the sensors with the integrator as required by the informal presentation.
This will be done in the next refinement.

Second Refinement. In this refinement, we make more precise the connection
of the sensors with the integrator. We now require that the integrator computes

246 W. Su, J.-R. Abrial, and H. Zhu

the signal to the robot with data that have been collected by both sensors in
the same round. We also introduce the possible expiration of sensors and of the
integrator. For this, we introduce a boolean variable in each sensor (s1 and s2).
When s1 is true, it means that the first sensor has collected a new data that has
not yet been sent to the integrator. Finally, we introduce the non-determinacy of
the integrator: it can connect the sensor task in any order (sensor1 then sensor2
or the converse).

sensor1
any d where

d ∈ D
s1 = FALSE

then
read1 := d
s1 := TRUE

end

sensor2
any d where

d ∈ D
s2 = FALSE

then
read1 := d
s2 := TRUE

end

Compute
when

e = 3
then

signal := cmp(acq1 	→ acq2)
e := 0

end

acquire11
refines

acquire1
when

s1 = TRUE
e = 0

then
acq1 := read1
s1 := FALSE
e := 1

end

acquire22
refines

acquire2
when

s2 = TRUE
e = 1

then
acq2 := read2
s2 := FALSE
e := 3

end

acquire21
refines

acquire2
when

s2 = TRUE
e = 0

then
acq2 := read1
s2 := FALSE
e := 2

end

acquire12
refines

acquire1
when

s1 = TRUE
e = 2

then
acq1 := read1
s1 := FALSE
e := 3

end

As can be seen the integrator has an "address counter", e, able to take four
different values: 0,1,2, and 3. In this refinement, we also introduce possible ex-
pirations for the sensors or the integrator. For the moment, such expiration are
rather simple and abstract (we do not explain yet why the sensors or the inte-
grator expire):

sensor1_expires
when

s1 = TRUE
then

s1 := FALSE
end

sensor2_expires
when

s2 = TRUE
then

s2 := FALSE
end

expires_1
when

e = 1
then

e := 0
end

expires_2
when

e = 2
then

e := 0
end

Third Refinement. In this last refinement, we take account of the various
timing and priority constraints described in the informal requirement. For this,
we use and follow exactly the development of the design pattern made in section
2.1. Room is lacking here to describe in detail the corresponding development.

Animation. We used the AnimB animator of the Rodin Platform and were
able to reproduce exactly the following flow of control described in [6]:

Complementary Methodologies for Developing Hybrid Systems with Event-B 247

The Integrator task corresponds either to the rendez-vous between the sensors
and the integrator or the computation task of the integrator. The 60 delays in
the bottom of the diagram denote the sleeping times of the sensor. In point A,
we can see that sensor 1 expires (after 40 seconds) because it was not able to
connect to the (busy) integrator. After expiration, sensor1 restarts immediately.
From times 128 to time 224, we can see (the dashed lines) how the integrator is
preempted by sensors 1 and 2 and how sensor 2 is itself preempted by sensor 1.

Proof. The overall proof effort of the Rodin platform for this example is the
following: 171 proof obligations were generated and proved automatically, except
8 of them that were proved interactively.

4 Conclusion

In this paper, we presented a methodological framework for developing linear
hybrid systems where time is handled by means of various clocks recording task
working or sleeping times. Our approach was illustrated with four different ex-
amples that were developed using Event-B, the Rodin Platform (examples were
fully proved) and also Matlab. The connection between Event-B and Matlab is
extremely interesting: we intend to develop a plug-in for the automating trans-
lation from the former to the latter. We think that more examples have to be
made within this framework so that more design patterns could be developed
thus making the engineering of hybrid systems very systematic for industrial
applications.

Acknowledgement. This work was partly supported by the Danish National
Research Foundation and the National Natural Science Foundation of China
(Grant No. 61061130541) for the Danish-Chinese Center for Cyber Physical
Systems, also supported by National Basic Research Program of China (No.
2011CB302904), National High Technology Research and Development Program
of China (No. 2011AA010101 and No. 2012AA011205), National Natural Science
Foundation of China (No. 61021004), and Shanghai Leading Academic Discipline
Project (No. B412).

248 W. Su, J.-R. Abrial, and H. Zhu

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University press (2010)

2. http://www.event-b.org
3. Abrial, J.-R., Su, W., Zhu, H.: Formalizing Hybrid Systems with Event-B. In: Der-

rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene,
E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg (2012)

4. Abrial, J.-R., Hoang, T.S.: Using Design Patterns in Formal Methods: An Event-B
Approach. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 1–2. Springer, Heidelberg (2008)

5. Hoang, T.S., Furst, A., Abrial, J.-R.: Event-B Patterns and Their Tool Support.
In: SEFM 2009 (2009)

6. Corbett, J.C.: Modeling and Analysis of Real-Time Ada Tasking Programs. In:
IEEE Real-Time Systems Symposium (1994)

7. Back, R.J., Kurki-Suonio, R.: Distributed Cooperation with Action Systems. ACM
Transaction on Programming Languages and Systems 10(4), 513–554 (1988)

8. Back, R.-J., Petre, L., Porres, I.: Generalizing Action Systems to Hybrid Sys-
tems. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer,
Heidelberg (2000)

9. Back, R.J., Cerschi Seceleanu, C., Westerholm, J.: Symbolic Simulation of Hybrid
Systems. In: APSEC 2002 (2002)

10. Alur, R., et al.: The Algorithmic Analysis of Hybrid Systems. Theoretical Com-
puter Science 138, 3–34 (1995)

11. Lamport, L.: A fast mutual exclusion Algorithm. ACM Transactions on Computer
Systems (1987)

12. Lin, W., Wu, M., Yang, Z., Zeng, Z.: Exact Safety Verification of Hybrid Systems
Using Sums-Of-Squares Representation. CoRR 2011 (2011)

13. Ratschan, S., She, Z.: Safety Verification of Hybrid Systems by Constraint Propa-
gation Based Abstraction Refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005.
LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)

14. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing Invariants for Hybrid
Systems. Formal Methods in System Design, SSM04b 2008 (2008)

15. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT 2011 (2011)

16. Gerber, R., Lee, I.: A layered approach to automating verification of real-time
systems. IEEE Transaction on Software Engineering (1992)

17. Lewerentz, C., Lindner, T. (eds.): Formal Development of Reactive Systems. LNCS,
vol. 891. Springer, Heidelberg (1995)

18. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
In: STTT 2008 (2008)

19. Ogata, K., Futatsugi, K.: Some Tips on Writing Proof Scores in the OTS/CafeOBJ
Method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning,
and Computation. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

http://www.event-b.org

A Temporal Logic with Mean-Payoff Constraints

Takashi Tomita1, Shin Hiura2, Shigeki Hagihara1, and Naoki Yonezaki1

1 Tokyo Institute of Technology, Tokyo, Japan
{tomita,hagihara,yonezaki}@fmx.cs.titech.ac.jp

2 NS Solutions Corporation, Tokyo, Japan

Abstract. In the quantitative verification and synthesis of reactive sys-
tems, the states or transitions of a system are associated with payoffs, and
a quantitative property of a behavior of the system is often characterized
by the mean payoff for the behavior. This paper proposes an extension of
LTL that describes mean-payoff constraints. For each step of a behavior
of a system, the payment depends on a system transition and a temporal
property of the behavior. A mean-payoff constraint is a threshold con-
dition for the limit supremum or limit infimum of the mean payoffs of
a behavior. This extension allows us to describe specifications reflecting
qualitative and quantitative requirements on long-run average of costs
and the frequencies of satisfaction of temporal properties. Moreover, we
develop an algorithm for the emptiness problems of multi-dimensional
payoff automata with Büchi acceptance conditions and multi-threshold
mean-payoff acceptance conditions. The emptiness problems are decided
by solving linear constraint satisfaction problems, and the decision prob-
lems of our logic are reduced to the emptiness problems. Consequently,
we obtain exponential-time algorithms for the model- and satisfiability-
checking of the logic. Some optimization problems of the logic can also
be reduced to linear programming problems.

Keywords: LTL, automata, mean payoff, formal verification, decision
problems, specification optimization, linear programming.

1 Introduction

Research on the formal verification and synthesis of reactive systems has focused
on the qualitative properties of behaviors (e.g., “undesirable properties never
hold” and “some properties hold infinitely often”). Linear Temporal Logic [19]
(LTL), which is a subset of the class of ω-regular languages (i.e., languages recog-
nized by finite-state automata such as Büchi automata and Rabin automata), is
widely used to describe such properties. For LTL specifications, several model-
and realizability- [18] checkers (e.g., SPIN [21] and Acacia+ [1], respectively)
have been provided.

Alternatively, as an approach for describing quantitative properties, quantita-
tive languages [15,17,12,2,11] have recently been proposed. A quantitative lan-
guage is a function that gives a value in a certain ordered range to each word.1

1 It is a Boolean language if the range is Boolean.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 249–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

250 T. Tomita et al.

In the models of these languages, a payoff (or weight/cost/reward) is associated
with transitions or states. Some quantitative attributes of a system behavior
(e.g., the long-run average cost and the frequency of being in unexpected states)
can be characterized as certain values pertaining to the mean payoff of the be-
havior. In quantitative synthesis [14,7,13,10], a program or strategy is optimized
for such a value in the ordered range.

Alur et al. proposed a multi-threshold mean-payoff language [2], as a tractable
Boolean language for describing quantitative aspects of behaviors. This language
is recognized by a payoff automaton with a multi-threshold mean-payoff accep-
tance condition. A payoff is a real vector associated with a transition of the
automaton. It accepts a word over a run satisfying the mean-payoff acceptance
condition, given by a Boolean combination of threshold conditions (i.e., inequal-
ities relating a constant threshold and the maximum or minimum value of the
interval of a certain coordinate projection of accumulation points of mean payoffs
of the run). The closure property under Boolean operations and the decidability
of the emptiness problem for the language have been proved in [2]. However, the
languages are incompatible with ω-regular languages, and cannot capture qual-
itative fairness, such as “a certain property holds infinitely often”. Boker et al.
proposed LTLlim [8], which is an extension of LTL with path-accumulation as-
sertions (mean-payoff assertions). In a manner analogous to the multi-threshold
mean-payoff languages, a path-accumulation assertion LimSupAvg(v) ≥ c (resp.
LimInfAvg(v) ≥ c) is a threshold condition; i.e., an inequality relating a constant
c and the limit supremum (resp., limit infimum) of mean payoffs for v, where v
is a numeric variable whose value depends on the state of a system. They also
presented a model-checking algorithm for LTLlim against quantitative Kripke
structures (in other words, multi-dimensional weighted transition systems). In
this algorithm, model-checking is modified to the emptiness problem in [2], con-
sidering the Büchi condition reflecting an LTL portion of a specification. Con-
sequently, LTLlim allows us to check whether a system satisfies a specification
which reflects both qualitative and quantitative requirements. However, mean-
payoff assertions are almost meaningless for satisfiability-checking, because either
a combination of assertions is inconsistent according to algebraic rules or there
exists a trivial variable assignment for which the assertions are true.

This paper is aimed to develop a temporal logic that can describe both qual-
itative and quantitative properties, and can be used as a verifiable specification
language for realizability-checking and synthesis. We propose LTLmp, which is
an extension of LTLlim with a payment for satisfying temporal properties. In
this logic, for each step of a behavior of a system, the payoff depends not only
on a system transition but also on a temporal property of the behavior. Con-
cretely, a payment t consists of free variables v1, . . . , vn (for associating with
the transitions of a system), characteristic variables 1ϕ1 , . . . ,1ϕm for formulae
ϕ1, . . . , ϕm in the logic (i.e., each 1ϕi = 1 if ϕi holds at the time, and other-
wise 1ϕi = 0), and algebraic operations. The mean-payoff formula has a form
MP(t) ∼ c (≡ LimSupAvg(t) ∼ c) or MP(t) ∼ c (≡ LimInfAvg(t) ∼ c) for a

A Temporal Logic with Mean-Payoff Constraints 251

payment t and ∼∈ {<,>,≤,≥}. LTLmp can represent the quantitative proper-
ties; e.g., “the frequency of satisfying ϕ is bounded below by 0.1” is represented
by MP(1ϕ) > 0.1, and “the long-run average cost is bounded above by 3” is
expressed by MP(6 · 1¬on∧Xon + 4 · 1on +5 · 1on∧X¬on) < 3 if the operating cost
is 4 and additional costs for booting and shutdown are 6 and 5, respectively. In
addition, we can check the satisfiability of specifications with such meaningful
mean-payoff constraints that have no free variable.

We reduce the decision problems of this logic to the emptiness problems of
payoff automata Büchi conditions and with multi-threshold mean-payoff con-
ditions. This type of emptiness problem can be also decided by a part of the
algorithm in [8]. However, the complexity of that algorithm is roughly estimated
to be exponential with respect to the size of the state space of the automaton.
Therefore, we develop an algorithm for the emptiness problems of the automata,
by reducing these problems to linear constraint satisfaction problems (LCSPs).
In terms of LCSPs, the difference between the two algorithms is explained as
follows: in their algorithm, the solution region is computed explicitly for finding
some solutions, whereas our algorithm captures the region implicitly via linear
constraints, and then finds the solutions. With this reduction, the emptiness
problem of an automaton is decidable in polynomial time for the state space
of the automaton. As a result, we obtain exponential-time algorithms for the
model- and satisfiability-checking of the logic.

An additional advantage of this reduction is that some optimization problems
concerning LTLmp specifications can be solved via linear programming (LP)
techniques, which are widely used and well-studied optimization methods. For
example, maximization/minimization problems for the limit supremum MP(t)
(or limit infimum MP(t)) of the mean payoff for a payment t, which is subject to
a specification described in LTLmp, are reduced to LP problems. Consequently,
we can analyze performance limitations under specifications. We conjecture that
this specification optimization method can be applied to realizability-checking
as well as optimal synthesis for specifications described in the logic.

Related Work. [12,2,11] introduced quantitative languages focusing on mean-
payoff properties. The multi-threshold mean-payoff language [2] and LTLlim [8]
have been proposed as Boolean languages for describing mean-payoff proper-
ties. A multi-threshold mean-payoff language can represent threshold mean-
payoff properties and some qualitative properties. LTLlim is an LTL extension
with threshold mean-payoff assertions for payoffs associated with transitions of
a model. LTLlim can be used as a specification language for model-checking.
However, the mean-payoff assertions are almost meaningless for satisfiability-
checking. This paper introduces LTLmp, which is an extension of LTLlim with
payments for satisfying temporal properties. LTLmp can represent quantitative
properties which are meaningful for satisfiability-checking.

In existing methods [14,7,13,10] for the quantitative synthesis, a program
(resp., strategy) is synthesized from a partial program or deterministic automa-
ton (resp., Markov decision process or game). A probabilistic environment is

252 T. Tomita et al.

often assumed [14,13,10], and a synthesized program (or strategy) is optimal in
the average case. The notion of probability is also introduced in quantitative ver-
ification. Probabilistic temporal logics [16,4,5] (and their reward extensions [6,3])
are often used as specification languages, and some probabilistic model-checking
tools (e.g., PRISM [20]) have been provided. However, the decidability of their
satisfiability problems is an open question.2 This paper provides an optimiza-
tion method of LTLmp specifications, and we conjecture that our approach to
the specification optimization can be applied to optimal synthesis for temporal
logic specifications in which quantitative properties are described.

Previously, we introduced a probabilistic temporal logic, with a frequency
operator that can describe quantitative linear-time properties pertaining only to
conditional frequencies of satisfaction of temporal properties [22]. By contrast,
LTLmp is a non-probabilistic linear-time logic with mean-payoff formulae. A
payment for a mean-payoff formula can be flexibly described. Therefore, the
mean-payoff formulae can be used to represent linear-time properties pertaining
not only to conditional frequencies, but also to other types of frequencies, such
as long-run average costs. (However, the semantics of the mean-payoff formulae
are incompatible with those of the frequency operator.)

Organization of the Paper. In Section 2, we introduce the syntax and se-
mantics of LTLmp, which is an extension of LTLlim with payments for satisfying
temporal properties. In Section 3, we provide definitions and related notions of
payoff automata that accept words over runs satisfying both Büchi conditions
and multi-threshold mean-payoff conditions. In addition, we develop an algo-
rithm for the emptiness problems of the automata, in which the problems are
reduced to LCSPs. In Section 4, we show how to construct an automaton that
recognizes a given LTLmp formula, and how to reduce the decision problems of
LTLmp to the emptiness problems of the automata. We also show that some
optimization problems of LTLmp specifications can be solved by LP methods.
Our conclusions are stated in Section 5.

2 LTL with Mean-Payoff Constraints

In this section, we introduce the syntax and semantics of LTLmp, which is an
extension of LTLlim [8] with payments for satisfying temporal properties. In
LTLlim, an assertion has the form either LimSupAvg(v) ∼ c or LimInfAvg(v) ∼ c
for a variable v associated with transitions of the system. In comparison, in
LTLmp, a payment for each step of a behavior of a system depends not only
on a transition of the system, but also on a temporal property of the behavior.
An assertion in LTLmp has the form either MP(t) ∼ c (≡ LimSupAvg(t) ∼ c)
or MP(t) ∼ c (≡ LimInfAvg(t) ∼ c), for a payment t consisting of free variables
for associating with transitions of the system, characteristic variables associated
with temporal properties of the behavior, and algebraic operations.

2 For the qualitative fragment of Probabilistic CTL [16], the satisfiability problem is
decidable [9].

A Temporal Logic with Mean-Payoff Constraints 253

First, we define the syntax of LTLmp. In the following discussion, we fix the
set AP of atomic propositions.

Definition 1 (Syntax). LTLmp over a set V of free variables is defined induc-
tively as follows:

ϕ ::= p | MP(t) ∼ c | MP(t) ∼ c | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ
t ::= v | 1ϕ | t+ t | − t | t · t | c · t

where p ∈ AP , v ∈ V , ∼ ∈ {<,>,≤,≥} and c ∈ R.

The operatorsX andU are standard temporal operators representing “next” and
“until”, respectively. Intuitively, Xϕ means that “ϕ holds in the next step”, and
ϕ1Uϕ2 means that “ϕ2 holds eventually and ϕ1 holds until then”. A payment
t consists of free variables v1, . . . , vn ∈ V , characteristic variables 1ϕ1 , . . . ,1ϕm

for formulae ϕ1, . . . , ϕm, and algebraic operators (+,− and ·). The major differ-
ence between LTLmp and LTLlim is the existence of characteristic variables. A
characteristic variable 1ϕ for a formula ϕ represents a payment for satisfying the
property ϕ; i.e., 1ϕ = 1 if ϕ holds at the given time, and otherwise 1ϕ = 0. The
satisfaction of ϕ at a given time depends on a temporal property of the present
and future. In this sense, a characteristic variable is bounded. A free variable v
is used for associating with transitions of a system, and an LTLmp formula is a
sentence if it has no free variable. Intuitively, MP(t) and MP(t) give the limit
supremum and limit infimum, respectively, of the mean payoff for t. The formu-
lae MP(t) ∼ c and MP(t) ∼ c are called mean-payoff formulae, and are simple if
t is constructed without characteristic variables for mean-payoff formulae.

We allow common abbreviations of normal logical symbols (tt ≡ ϕ ∨¬ϕ and
ff ≡ ¬tt), and connectives (ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

and ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)), and standard temporal operators
(�ϕ ≡ ttUϕ and �ϕ ≡ ¬�¬ϕ). Intuitively, �ϕ (resp., �ϕ) means that “ϕ
eventually (resp., always) holds”. We also use c instead of c · 1tt, for short.

LTLmp can represent a combination of qualitative properties described in
classical LTL and quantitative properties given by mean-payoff formulae. We
present some simple examples of quantitative properties.

Example 1 (Conditional frequency). A mean-payoff formula for the payment
t = (c1 · 1ϕ1 − c2 · 1¬ϕ1) · 1ϕ2 can represent a property pertaining to the condi-
tional frequency of satisfaction of ϕ1 under the condition ϕ2, where c1, c2 > 0.
Our previous work [22] focused on the conditional frequencies of satisfying tem-
poral properties and introduced a new binary temporal operator to describe
only this type of property. For ϕ1 = Xresponse and ϕ2 = request, the formula
MP(t) > 0 means that “the occurrence frequency of requests is not negligible
(i.e., MP(1request) > 0) and the limit infimum of the conditional frequency of
responding to requests in the next step is greater than c2

c1+c2
”.

Example 2 (Long-run average costs). Usually, a cost is associated with an event,
which has a corresponding proposition. A property of the long-run average of

254 T. Tomita et al.

event-based costs is expressed as a mean-payoff formula for a payment t =∑
ci ·1pi , where pi is a proposition representing the occurrence of an event ei and

ci is the cost for the event ei. For example, MP(t) ≤ 5 means that “the long-run
average of costs obeying t is bounded above by 5”. In addition, switching costs
for pi are described by the characteristic variables 1pi∧X¬pi and 1¬pi∧Xpi .

Next we define the semantics of LTLmp.

Definition 2 (Semantics). For an infinite word σ = a0a1 · · · ∈ (2AP)ω, an
LTLmp formula ϕ over a set V of free variables, and an assignment α : V → Rω,
the satisfaction relation |= is defined inductively as follows:

σ, α, i |= p⇔ p ∈ ai,
σ, α, i |= ¬ϕ⇔ σ, α, i �|= ϕ,

σ, α, i |= ϕ1 ∨ ϕ2 ⇔ σ, α, i |= ϕ1 or σ, α, i |= ϕ2,

σ, α, i |= Xϕ⇔ σ, α, i + 1 |= ϕ,

σ, α, i |= ϕ1Uϕ2 ⇔ ∃j ≥ i.(σ, α, j |= ϕ2 and ∀k ∈ [i, j).σ, α, k |= ϕ1),

σ, α, i |= MP(t) ∼ c⇔ lim supn→∞
1

n+1 ·
∑n

m=0[[t]]
α
σ(i+m) ∼ c,

σ, α, i |= MP(t) ∼ c⇔ lim infn→∞ 1
n+1 ·

∑n
m=0[[t]]

α
σ(i+m) ∼ c,

[[v]]ασ (i) = α(v)[i] for v ∈ V, [[1ϕ]]
α
σ(i) =

{
1 if σ, α, i |= ϕ,

0 otherwise,

[[t1 + t2]]
α
σ(i) = [[t1]]

α
σ(i) + [[t2]]

α
σ(i), [[−t]]ασ(i) = −[[t]]ασ(i),

[[t1 · t2]]ασ(i) = [[t1]]
α
σ(i) · [[t2]]ασ(i), [[c · t]]ασ(i) = c · [[t]]ασ(i),

where, for an infinite sequence x = x0x1 · · · ∈ Rω of real numbers, we denote by
x[i] the i-th element of x.

We omit i and/or α from σ, α, i |= ϕ if i = 0 and/or V = ∅.
The semantics of mean-payoff formulae are expressed by the limit supremum

or limit infimum, and hence, for any word and assignment, the truth-value of a
mean-payoff formula is either always true or always false. In a manner analogous
to LTLlim, a formula ϕ with a mean-payoff subformula ψ is equivalent to a
formula (ϕ[ψ/tt]∧ψ)∨ (ϕ[ψ/ff]∧¬ψ). Furthermore, any payment over LTLmp

can be represented in the form
∑

(ci · 1ϕi ·
∏
vij). Therefore, we can restrict

the syntax of LTLmp, without loss of generality, to the form
∨
(ϕi ∧

∧
ψij),

where each ϕi is a classical LTL formula (not necessarily conjunctive), each
ψij is a simple mean-payoff formula, and each payment for ψij is of the form∑

(cijk ·1ϕijk
·
∏
vijkl). We call such a form a mean-payoff normal form (MPNF).

An LTLmp formula ϕ with n mean-payoff formulae can be transformed, at worst,
into an equivalent MPNF formula with 2n disjuncts, where each distinct has one
LTL formula ϕi (|ϕi| ≤ |ϕ|) and n simple mean-payoff formulae.

3 Multi-threshold Mean-Payoff Büchi Automata

In [8], model-checking for an LTLlim formula is modified to the emptiness prob-
lem of a multi-dimensional payoff automaton with a multi-threshold mean-payoff

A Temporal Logic with Mean-Payoff Constraints 255

condition [2], considering the Büchi condition reflecting the LTL portion of the
formula. In this paper, we define payoff automata with both Büchi conditions
and multi-threshold mean-payoff conditions. Such automata are called multi-
threshold mean-payoff Büchi automata (MTMPBAs). In Subsection 3.1, we in-
troduce definitions and concepts related to the automata. The decision problems
of LTLmp can be reduced to the emptiness problems of the automata, and it can
be solved via the part of the algorithm in [8], but with a high complexity. In
Subsection 3.2, we develop an algorithm for solving the emptiness problem, using
a different approach with lower complexity than that of [8].

3.1 Definitions

In this subsection, we introduce the definitions of the payoff systems and MTMP-
BAs, together with some concepts related to them.

A payoff system is a multi-dimensional weighted transition system. It is used
as a model in quantitative verification.

Definition 3. A d-dimensional payoff system PS is a tuple 〈Q,Σ,Δ, q0,w〉,
where Q is a finite set of states, Σ is a finite alphabet, Δ ⊆ Q × Σ × Q is a
transition relation, q0 ∈ Q is an initial state, and w : Δ → Rd is a weight
function that maps each transition to a d-dimensional real vector. We denote by
w[i] the i-th coordinate function of w; i.e., w(δ) = 〈w[1](δ), . . . ,w[d](δ)〉.

For a transition δ = 〈q, a, q′〉 ∈ Δ, we denote by pre(δ) the pre-state q, post(δ) the
post-state q′, and letter(δ) the letter a. A finite run r on Δ is a finite sequence
δ0 · · · δn ∈ Δ∗ of transitions such that post(δi) = pre(δi+1) for 0 ≤ i < n. A
finite word σ (= word(r)) over a finite run r = δ0 · · · δn is a finite sequence
letter(δ0) · · · letter(δn) ∈ Σ∗ of letters. A (d-dimensional) finite trace τ is a finite
sequence of (d-dimensional) real vectors. We denote by payoffw(r) the trace
w(δ0) · · ·w(δn) of payoffs, and by mpw(r) the trace w(δ0) · · · (1

n+1

∑n
i=0 w(δi))

of mean payoffs, over a finite run r = δ0 · · · δn for a d-dimensional weighted
function w. Infinite runs, words and traces are defined in a manner analogous
to the finite case. We denote by run(Δ) the set of finite or infinite runs on Δ,
and by run(PS) the set of infinite runs starting from the initial state q0 and
belonging to run(Δ). A finite run r = δ0 · · · δn ∈ run(Δ) is cyclic if pre(δ0) =
post(δn). A state q is reachable from q′ on Δ if q = q′ or there exists a finite
run δ0 · · · δn ∈ run(Δ) such that pre(δ0) = post(δn). A subgraph 〈Q′, Δ′〉 is a
strongly connected component (SCC) on PS if Δ′ ⊆ Δ ∩ Q′ × Σ × Q′, and for
any two states in Q′, one is reachable from the other on Δ′.

q1q0q2

A/〈0, 0〉
A/〈0, 0〉

A/〈1, 0〉
A/〈1, 0〉

B/〈1, 1〉

C/〈0,−1〉

Fig. 1. Example 3

Example 3. Consider the payoff system PS =
〈Q, 2{p0,p1}, Δ, q0, w〉, where Q = {q0, q1, q2},
A = ∅, B = {p0}, C = {p1}, Δ =
{δ1, . . . , δ6}, δ1 = 〈q0, A, q1〉, δ2 = 〈q1, A, q1〉,
δ3 = 〈q1, B, q0〉, δ4 = 〈q0, A, q2〉, δ5 =
〈q2, A, q2〉, δ6 = 〈q2, C, q0〉, w[1](δ) = 1 if
δ ∈ {δ1, δ2, δ3} and otherwise w[1](δ) = 0,

256 T. Tomita et al.

and w[2](δ3) = 1, w[2](δ6) = −1 and w[2](δ) = 0 if δ ∈ {δ1, δ2, δ4, δ5}
(Fig. 1). Consider runs r1 = (δ1δ3)

1δ4δ6(δ1δ3)
2δ4δ6(δ1δ3)

3δ4δ6 . . . and r2 =

(δ1δ3)(δ4δ
22−2
5 δ6)(δ1δ

23−2
2 δ3)(δ4δ

24−2
5 δ6) Then, the trace of payoffs over r1 is

(〈1, 0〉〈1, 1〉)1〈0, 0〉〈0, -1〉(〈1, 0〉〈1, 1〉)2〈0, 0〉〈0, -1〉(〈1, 0〉〈1, 1〉)3〈0, 0〉〈0, -1〉 . . ., and
the trace of mean payoffs over r1 converges to the point 〈1, 1/2〉. The trace of

payoffs over r2 is 〈1, 0〉2−1〈1, 1〉〈0, 0〉22−1〈0, -1〉〈1, 0〉23−1〈1, 1〉〈0, 0〉24−1〈0, -1〉 . . .,
and the trace of mean payoffs over r2 has the set of accumulation points3

{〈x, 0〉|1/3 ≤ x ≤ 2/3}.

Next, we define an MTMPBA which is a payoff system with two acceptance
conditions F and G on Büchi fairness and mean payoffs, respectively. We capture
a quantitative attribute of a run r via the set of accumulation points of the trace
mpw(r) of mean payoffs over r. Then, a mean-payoff acceptance condition G is
given by a Boolean combination of the threshold conditions for the maximum or
minimum value of the i-th projection of the set of accumulation points.

Definition 4. An MTMPBA A is a tuple 〈Q,Σ,Δ, q0,w, F,G〉 (or 〈PS, F,G〉
for a payoff system PS = 〈Q,Σ,Δ, q0,w〉), where
– F ⊆ Q is a Büchi acceptance condition given by a set of final states,
– G : 2R

d → Bool is a multi-threshold mean-payoff acceptance condition such
that G(X) is a Boolean combination of threshold conditions of the form
either max πi(X) ∼ c or minπi(X) ∼ c for ∼∈ {<,>,≤,≥}, c ∈ R and the
i-th projection πi.

The concepts of MTMPBAs are defined in a manner analogous to those of payoff
systems. We denote by Acc(τ) the set of accumulation points of a trace τ . Note
that, for an infinite run r ∈ run(A), the maximum (resp., minimum) of the
set πi(Acc(mpw(r))) is equal to the limit supremum (resp., limit infimum) of
the trace mpw[i](r). A threshold condition is universal if it has the form either
maxπi(·) < c, maxπi(·) ≤ c, minπi(·) > c, or min πi(·) ≥ c; i.e., it asserts that
“all” accumulation points of the i-th coordinate trace of mean payoffs over a run
satisfy the inequality. Otherwise, it is existential; i.e., it asserts that “some” of
the accumulation points satisfy the inequality.

An infinite run r ∈ run(A) is accepted by A if both the Büchi acceptance
condition F (i.e., a certain state q ∈ F occurs infinitely often on r) and the mean-
payoff acceptance condition G(Acc(mpw(r))) hold. An infinite word σ ∈ Σω is
accepted by A if there exists a run r such that σ = word(r) and r is accepted
by A (i.e., A is an existential MTMPBA in a strict sense). A language L ⊆ Σω

(resp., an LTLmp sentence ϕ) is recognized by A if, for all σ ∈ Σω, σ is accepted
by A ⇔ σ ∈ L (resp., σ |= ϕ). A language recognized by an MTMPBA with
Δ : Q×Σ → Q and F = Q is called a multi-threshold mean-payoff language [2].
Therefore, the class of languages recognized by MTMPBAs is the superclass of
ω-regular languages and of multi-threshold mean-payoff languages.

3 A point x ∈ Rd is an accumulation point of a trace x0x1 · · · ∈ (Rd)ω if, for any open
set containing x, there are infinitely many indices i1, i2, . . . such that xi1 ,xi2 , . . .
belong to the open set.

A Temporal Logic with Mean-Payoff Constraints 257

Example 4. Consider the MTMPBAsA1 = 〈PS, {q0},minπ1(·) ≥ 1/2∧minπ2(·)
≥ 0〉 and A2 = 〈PS, {q0},maxπ1(·) > 1/2 ∧ minπ2(·) < 0〉, where PS is the
payoff system of Example 3. Both runs r1 and r2 in Example 3 satisfy the Büchi
condition {q0}. The traces of mean payoffs over r1 and r2 have the respective sets
{〈1, 1/2〉} and {〈x, 0〉|1/3 ≤ x ≤ 2/3} of accumulation points. Thus A1 accepts
r1, but rejects r2, and A2 rejects both r1 and r2.

Regarding the closure properties of the class of languages recognized by MTMP-
BAs, the following theorem holds. (The proof is omitted from this paper.)

Theorem 5. The class of languages recognized by MTMPBAs is closed under
union and intersection.

3.2 Emptiness Problems

An algorithm for the emptiness problems of multi-threshold mean-payoff lan-
guages has been proposed in [2]. An algorithm for the emptiness problems of
MTMPBAs has also been proposed as a part of a procedure for the model-
checking of LTLlim [8], and is based on the algorithm of [2]. The decision prob-
lems of LTLmp can be reduced to the emptiness problems of MTMPBAs (see
Section 4), and hence can be decided by the algorithm of [8]. However, the com-
plexity of that algorithm is exponential with respect to the size of the state space
of the automaton.

In this paper, we reduce the emptiness problems of MTMPBAs to linear con-
straint satisfaction problems (LCSPs), which can be solved by linear program-
ming (LP) methods. For an MTMPBA, the existence of an accepting run can
be inferred from the existence of some sets of cyclic runs. Then, the solution of
each LCSP is associated with a set of cyclic runs, and a set of solutions indicates
the existence of an accepting run on the automaton.

Lemma 6. Let A = 〈Q,Σ,Δ, q0,w, F,G〉 be a d-dimensional MTMPBA, where
G(·) =

∧
1≤i≤d minπi(·) ∼i 0. The following statements are equivalent.

– There exists an accepting run on A.
– There exists a reachable (and maximal) SCC 〈Q′, Δ′〉 on A such that (i) F ∩
Q′ �= ∅ and (ii) there exists a non-negative solution x for linear constraints
(1)-(4), and the following conditions also hold:

(ii-a) for each existential threshold condition of the form minπi(·) ≤ 0, there
exists a non-negative solution x for linear constraints (1)-(4) and (5),

(ii-b) for each existential threshold condition of the form minπi(·) < 0, there
exists a non-negative solution x for linear constraints (1)-(4) and (6),

where x is a |Δ′|-dimensional vector, xδ is the element of the vector x associated
with δ ∈ Δ′ and the linear constraints are:∑

δ∈Δ′ xδ ≥ 1, (1)∑
δ∈Δ′ s.t. post(δ)=q xδ =

∑
δ∈Δ′ s.t. pre(δ)=q xδ for each q ∈ Q′, (2)∑

δ∈Δ′ w[j](δ) · xδ ≥ 0 for each j such that ∼j is ≥, (3)

258 T. Tomita et al.∑
δ∈Δ′ w[j](δ) · xδ ≥ 1 for each j such that ∼j is >, (4)∑
δ∈Δ′ w[i](δ) · xδ ≤ 0, (5)∑
δ∈Δ′ w[i](δ) · xδ ≤ −1. (6)

Proof. Let n be the number of existential threshold conditions in G, and fix a
reachable SCC S = 〈Q′, Δ′〉 on A.

First, consider a solution x for the linear constraints (1) and (2). If x is an
integer vector, each variable xδ can be interpreted as the number of occurrences
of the transition δ on runs. With this interpretation, x implies the existence ofm
cyclic finite runs r1, . . . , rm ∈ run(Δ′). This is because the linear constraint (1)
implies the existence of runs with positive length, and the linear constraint (2)
implies that, for each state, the number of incoming transitions is equal to the
number of outgoing transitions. Here, we shall denote by WMx(w) the weighted
mean (

∑
δ∈Δ′ xδ ·w(δ))/

∑
δ∈Δ′ xδ of w with respect to x (in this sense, x and

w are “weight” and “data” vectors, respectively). If m = 1, there exists a trivial
run r0(r1)

ω ∈ run(A), since S is reachable. The trace mpw(r0(r1)
ω) of mean

payoffs over this run converges on WMx(w). It is equal to the mean payoff of
r1, and is independent of the prefix r0. Otherwise, there exists a larger cyclic
finite run of the form r1r

′
1 · · · rmr′m ∈ run(Δ′), since S is a SCC. Then, we can

obtain a run r0(r1r
′
1 · · · rmr′m)((r1)

2r′1 · · · (rm)2r′m) · · · ∈ run(A). The trace of
mean payoffs over the run also converges on WMx(w) (i.e., the mean payoffs of
r1, . . . , rm). With this type of LCSP, given a solution x and a constant c ≥ 1, the
scalar product c · x is also a solution. Therefore, even if x is a real vector, there
still exists a run in run(A) such that the ratio of the occurrence of transitions
on r asymptotically approaches that of x.

Next, consider a solution x of the linear constraints (1), (2) and
∑

δ∈Δ′ w[k](δ)·
xδ ≥ 0 (resp.,

∑
δ∈Δ′ w[k](δ)·xδ ≥ 1,

∑
δ∈Δ′ w[k](δ)·xδ ≤ 0, and

∑
δ∈Δ′ w[k](δ)·

xδ ≤ −1). In a manner analogous to the first case, if a solution exists, there ex-
ists a run r ∈ run(A) such that minπk(Acc(mpw(r))) ∼k 0 holds, where ∼k is
≥ (resp., >, ≤ and <). This is because the k-th coordinate WMx(w[k]) of the
weighted mean with respect to x is greater than or equal to 0 (resp., greater
than 0, less than or equal to 0, and less than 0). Otherwise, there is no run
satisfying the threshold condition minπk(·) ∼k 0 on S. Hence, there exists a
solution x of linear constraints (1)-(4) (and either (5) for min πi(·) ≤ 0 or (6)
for minπi(·) < 0) iff there exists a run rx ∈ run(A) such that rx satisfies all
universal threshold conditions in G (and either minπi(·) ≤ 0 or minπi(·) < 0).

Accordingly, if n = 0, the condition (ii) holds iff there exists a run satisfy-
ing G. Otherwise, the condition (ii) holds iff there exist runs rxθ1

, . . . , rxθn
∈

run(A) corresponding to solutions xθ1 , . . . ,xθn for existential threshold condi-
tions θ1, . . . , θn in G. The trace of mean payoffs over rxθk

converges on the point
WMxθk

(w), and G({WMxθ1
(w), . . . ,WMxθn

(w)}) holds. This is because each of
the runs satisfies all of the universal threshold conditions in G, and each of the
existential threshold conditions is satisfied at least by one of the runs. There-
fore, we can construct a run such that the trace of mean payoffs over the run
comes arbitrarily close to every accumulation point WMxθk

(w) infinitely often.
Consequently, the condition (ii) holds iff there exists a run satisfying G.

A Temporal Logic with Mean-Payoff Constraints 259

In addition, if such a run exists and condition (i) holds, there exists a run
such that both F and G hold [8]. Hence, there exists an accepting run on A iff
there exists a SCC on A satisfying the conditions (i) and (ii). �

Note that we can assume, without loss of generality, that (a) each coordinate is
referred to by just one threshold condition, since the duplication of the coordi-
nates of a weight function w does not change the recognizing language, and (b)
a threshold condition has the form minπi(·) ∼ 0, since any threshold condition
can be represented in this form via an affine transformation of w.

Therefore, the emptiness problems of MTMPBAs can be reduced to LCSPs.

Theorem 7. The emptiness problem of an MTMPBA is decidable in exponen-
tial time.

Proof. Let A = 〈Q,Σ,Δ, q0,w, F,G〉 be an MTMPBA, Gi the i-th disjunct of
a DNF formula

∨
Gi equivalent to G, and wi the affine transformation of w for

Gi, where each coordinate is referred to by just one threshold condition in Gi,
and each Gi has the form

∧
minπj(·) ∼ 0.

The language recognized by A is empty iff the language recognized by the
MTMPBAAi = 〈Q,Σ,Δ, q0,wi, F,Gi〉 is empty for all Gi. For Gi and reachable
(and maximal) SCC Sik on Ai, each LCSP in Lemma 6 can be solved by LP
methods in polynomial time for |Sik| and |G|. We must solve O(|G|) LCSPs to
decide whether Sik satisfies the condition (i) and (ii) in Lemma 6. Therefore,
the emptiness problem of Ai can be solved in polynomial time for |Q| and |G|.

In general, the number of disjuncts of a negation-free DNF formula equivalent
to G is exponential in |G|. Hence, the complexity of the emptiness problem is
polynomial in |Q| and exponential in |G|. �

The algorithm of [8] computes explicitly a counterpart to the solution region
for the linear constraints (1) and (2). The complexity is linear in the number of
simple cyclic finite runs on an automaton, and that number is roughly estimated
to be exponential in |Q| [8]. In comparison, our algorithm captures the region
implicitly, and solutions can be found in polynomial time for |Q|.

Example 5. Consider the MTMPBA A′
2 = 〈Q, 2{p0,p1}, Δ, q0, w′, {q0},minπ1(·)

< 0 ∧minπ2(·) < 0〉, obtained by affine transformation of the MTMPBA A2 =
〈Q, 2{p0,p1}, Δ, q0,w, {q0},maxπ1(·) > 1/2∧minπ2(·) < 0〉 of Example 4, where
w′[1](δ) = −w[1](δ) + 1/2 and w′[2](δ) = w[2](δ) for δ ∈ Δ. Trivially, the SCC
〈Q,Δ〉 is reachable and maximal, and has a final state q0. A′

2 has two existential
threshold conditions, and hence we must solve two LCSPs to decide whether
A′

2 (and also A2) is empty. For a non-negative vector 〈xδ1 , . . . , xδ6〉, the linear

constraints are: (1)
∑6

k=1 xδk ≥ 1, (2) xδ1 = xδ3 , xδ1 + xδ4 = xδ3 + xδ6 and
xδ4 = xδ6 , (6-1) − 1

2 (xδ1 +xδ2 +xδ3)+
1
2 (xδ4 +xδ5 +xδ6) ≤ −1 for minπ1(·) < 0,

and (6-2) xδ3 − xδ6 ≤ −1 for minπ2(·) < 0. As a result, 〈1, 0, 1, 0, 0, 0〉 and
〈0, 0, 0, 1, 0, 1〉 (for example) turn out to be solutions for {(1), (2) and (6-1)} and
{(1), (2) and (6-2)}, respectively. These vectors are indicative of the sets {δ1δ3}
and {δ4δ6} of single cyclic run. Therefore, we can construct an accepting run on

A2; e.g., (δ1δ3)
22(δ4δ6)

22
2

(δ1δ3)
22

3

(δ4δ6)
22

4

. . ..

260 T. Tomita et al.

4 Decision and Optimization Problems of LTLmp

In this section, we present algorithms for the decision and optimization problems
of LTLmp.

In a manner analogous to the decision problems of classical LTL, we can reduce
the decision problems of LTLmp to the emptiness problems of automata, which
recognize LTLmp formulae. First, we show how to construct such an automaton
from a given LTLmp sentence.

Lemma 8. For an LTLmp sentence ϕ, there exists an MTMPBA recognizing ϕ.

Proof. Consider a future-independent payment t of the form
∑
ci ·1ψi (i.e., tem-

poral operators do not appear in every ψi). We can easily translate t into an
alphabetic weight function wt(δ) =

∑
letter(δ) satisfies ψi

ci, for δ ∈ Δ. Thus, the

MTMPBA A = 〈{q0}, 2AP , {q0} × 2AP × {q0}, q0,wt, {q0},minπ1(·) > c〉 rec-
ognizes the formula MP(t) > c. For a simple mean-payoff formula for such a
payment in another form, we can construct a recognizing MTMPBA in a simi-
lar way. Therefore, we can construct an MTMPBA recognizing a given LTLmp

sentence ϕ if ϕ has no future-dependent variable, since any LTLmp formula can
be represented in MPNF and Theorem 5 holds. The size of an MPNF formula
equivalent to ϕ is at worst linear in |ϕ| and exponential in the number n of
mean-payoff formulae in ϕ. Hence, the size of the resulting automaton is at
worst exponential in |ϕ| and n.

Next, consider an LTLmp sentence ϕ with m future-dependent characteristic
variables 1ψ1 , . . . ,1ψm . Then, we can obtain another LTLmp sentence ϕ′, which
has fresh predictive propositions p1, . . . , pm as follows:

ϕ′ = ϕ[ψ1, . . . , ψm/p1, . . . , pm] ∧
∧

1≤j≤m �(pj ↔ ψj).

This sentence ϕ′ has no future-dependent variable, and preserves the behavioral
characteristics represented by ϕ. Therefore, we can obtain an MTMPBAAϕ that
recognizes ϕ, by eliminating p1, . . . , pm from an MTMPBA Aϕ′ that recognizes
ϕ′. The size of the resulting automaton is at worst exponential in also m. �

Example 6. Consider the following LTLmp formulae ϕ1, . . . , ϕ4: ϕ1 = ¬p0 ∧¬p1,
ϕ2 = �((¬p0 ∨ ¬p1) ∧ ((p0 ∨ p1) → X(¬p0 ∧ ¬p1))), ϕ3 = ��(p0 ∨ p1) and
ϕ4 = MP(1ψ1) ≥ 1/2 ∧MP(1p0 − 1p1) ≥ 0, where ψ1 = (¬p0 ∧ ¬p1)Up1. The
MTMPBA A1 in Example 4 recognizes the LTLmp sentence

∧
1≤i≤4 ϕi, and A1

or an MTMPBA equivalent to it can easily be obtained from the sentence. Intu-
itively, ϕ1 represents the outgoing transitions 〈q0, A, q1〉 and 〈q0, A, q2〉 from the
initial state q0 of A1, ϕ2 represents the transition relation of A1, and ϕ3 and ϕ4

represent the Büchi and mean-payoff acceptance conditions of A1, respectively.
The nondeterminism of the transitions 〈q0, A, q1〉 and 〈q0, A, q2〉 on A1 is caused
by the future-dependent payment 1ψ1 .

4

4 Even if we consider multi-threshold mean-payoff “Rabin” automata, there is no de-
terministic automaton that recognizes the sentence

∧
1≤i≤4 ϕi. (The proof of this

fact is omitted from this paper.) However, some future-dependent payments (e.g.,
1Xp for p ∈ AP) do not exhibit this result.

A Temporal Logic with Mean-Payoff Constraints 261

In a manner analogous to the classical LTL model-checking, the model-checking
of an LTLmp formula ϕ against a payoff system PS can be reduced to the empti-
ness problem of a synchronized product of PS and an automaton recognizing
¬ϕ, considering the proper variable assignment. In this paper, we define the
satisfaction relation between a payoff system and an LTLmp formula as follows.

Definition 9 (PS |= ϕ). Let PS = 〈Q, 2AP , Δ, q0,w〉 be a d-dimensional payoff
system, and let ϕ be an LTLmp formula over a set V of free variables, where the
free variables are indexed and |V | = d. In addition, we assume that the i-th
free variable vi is associated with the i-th coordinate of w; i.e., we employ the
assignment αw,r such that αw,r(vi) = payoffw[i](r) for an infinite run r on PS.

We define the satisfaction relation PS |= ϕ by word(r), αw,r |= ϕ for all
r ∈ run(PS).

A little trick is required to assign traces of payoffs over a run of PS to free
variables in ϕ on the synchronized product. Then, we reduce the model-checking
to the emptiness problem.

Theorem 10. The model-checking for an LTLmp specification against a payoff
system is decidable in exponential time.

Proof. Let PS = 〈Q, 2AP , Δ, q0,w〉 be a payoff system, ϕ an LTLmp formula over
a set V of free variables, ϕi the i-th disjunct of an MPNF formula

∨
ϕi equivalent

to ¬ϕ, ψij the j-th simple mean-payoff formula in ϕi,
∑

(cijk · 1ϕijk
·
∏
vijkl)

the payment for ψij , w[ijkl] a coordinate function of w associated with the free
variable vijkl , and n the number of mean-payoff formulae in ϕ.
PS |= ϕ iff the language LPS,ϕi is empty for all ϕi, where LPS,ϕi is a set of

words over runs r ∈ run(PS) such that word(r) satisfies ϕi under the assignment
of each trace payoffw[ijkl](r) of payoffs over r to the corresponding free variable
vijkl in ϕi. Therefore, we construct MTMPBAs recognizing such languages, and
decide whether PS |= ϕ by checking the emptiness of them.

Then, we show how to construct such MTMPBAs. First, we construct an
MTMPBA Aϕ′

i
= 〈Qi, 2

AP , Δi, qi0,wi, Fi, Gi〉 that recognize ϕ′
i = ϕi[v/0 for all

free variable v ∈ V]. We assume that the j-th coordinate function wi[j] of wi

is associated with the payment for ψij , and predictive propositions for future-
dependent characteristic variables are still annotated on the automaton. Next, we
construct a synchronized product PS⊗Aϕi = 〈Q×Qi, 2

AP , Δ′
i, 〈q0, qi0〉,w′

i, Q×
Fi, Gi〉 of PS and Aϕi , considering the proper variable assignment as follows:

Δ′
i = {〈〈q1, q′1〉, a, 〈q2, q′2〉〉|〈q1, a, q2〉 ∈ Δ, 〈q′1, a, q′2〉 ∈ Δi},

w′
i[j](〈〈q1, q′1〉, a, 〈q2, q′2〉〉) = wi[j](〈q′1, a, q′2〉)

+
∑

a satisfies ϕijk
(cijk ·

∏
w[ijkl](〈q1, a, q2〉)).

We use annotated predictive propositions to check whether the letter a satisfies
ϕijk if ϕijk has temporal operators. The automaton PS⊗Aϕi recognizes LPS,ϕi.

The automaton PS ⊗Aϕi has |Q| · |Qi| states and a conjunctive mean-payoff
acceptance condition Gi, where |Qi| = O(2|ϕ|) and |Gi| = O(n). The emptiness

262 T. Tomita et al.

problem for PS ⊗Aϕi can be solved in polynomial time for |Q| · |Qi| and |Gi|,
since Gi is conjunctive (Theorem 7). The number of disjuncts of an MPNF
formula equivalent to ¬ϕ is exponential in n, and hence the complexity of the
model-checking is polynomial in |Q| and exponential in |ϕ| and n. �

Our algorithm can accomplish the model-checking of LTLmp with much less com-
plexity than the algorithm of [8], which is roughly estimated to be exponential
in |Q|, doubly exponential in |ϕ|, and triply exponential in n.

In a manner analogous to the classical LTL satisfiability problem, we can reduce
the satisfiability problem for an LTLmp sentence ϕ to the non-emptiness problem
of an automaton recognizing ϕ.

Theorem 11. The satisfiability problem of an LTLmp sentence is decidable in
exponential time.

Proof. An LTLmp sentence ϕ with n mean-payoff formulae is satisfiable iff an
MTMPBA that recognizes ϕ is not empty. By Theorem 7 and Lemma 8, the
satisfiability problem is decidable in exponential time for |ϕ| and n. �

We can eventually reduce the satisfiability problem of LTLmp to LCSPs, which
can be solved by LP methods. Therefore, some optimization problems of LTLmp

can be also solved by LP methods.

Theorem 12. The maximization/minimization problem for a mean-payoff ob-
jective (MP(t) or MP(t)), which is subject to an LTLmp sentence, is solvable in
exponential time.

Proof. Let θ be an objective (MP(t) or MP(t)), ϕ an LTLmp sentence, ϕi the i-th
disjunct MPNF formula

∨
ϕi equivalent to ϕ, and n the number of mean-payoff

formulae in ϕ.
The optimal value for θ, which is subject to ϕ, can be obtained as the optimal

value in the set of values optθ(ϕi), where optθ(ϕi) is the optimal value for θ,
which is subject to ϕi.

Such optθ(ϕi) can be found by using an MTMPBA At
ϕi
, which recognizes

ϕi and has an additional coordinate associated with t. For a disjunct ϕi, At
ϕi

can be obtained by a construction similar to that used in Lemma 8. Let wt be
the weight function of this additional coordinate, and let Gi be a mean-payoff
acceptance condition of At

ϕi
, where Gi has the form

∧
minπj(·) ∼ 0 and m

existential threshold conditions pi1, . . . , pim (m ≤ |Gi| ≤ n).
Then, optθ(ϕi) is obtained as the optimal value in a set of values optθ(At

ϕi
, Sik)

for reachable SCC Sik on At
ϕi
, where Sik satisfies the condition (i) and (ii) in

Lemma 6 and optθ(At
ϕi
, Sik) is the optimal value for θ, subject to ϕi on Sik.

If Sik satisfies the condition (i) and (ii), we obtain optθ(At
ϕi
, Sik) as follows:

– If (a)m = 0 or (b) the problem is the maximization ofMP(t) or the minimiza-
tion of MP(t), optθ(At

ϕi
, Sik) is the maximized/minimized weighted mean

WMx(wt) of wt with respect to the solution x, where x is subject to all uni-
versal threshold conditions in Gi on Sik (i.e., the linear constraints (1)-(4)
in Lemma 6).

A Temporal Logic with Mean-Payoff Constraints 263

– Otherwise, optθ(At
ϕi
, Sik) is the minimum/maximum value in the set of the

maximized/minimized weighted means WMxik1
(wt), . . . ,WMxikm

(wt) of wt

with respect to the solutions xik1, . . . ,xikm, where each xikl is subject to all
universal threshold conditions in Gi and pil on Sik (i.e., the linear constraints
(1)-(4), and either (5) or (6) depending on pil in Lemma 6).

If (a) holds, optθ(At
ϕi
, Sik) is trivially optimal for ϕi on Sik. Otherwise, note

that each pil asserts that “some” accumulation points of mean payoffs over a
run satisfy the inequality. Therefore, if (b) holds, optθ(At

ϕi
, Sik) is obtained in-

dependently from pi1, . . . , pim. Otherwise, optθ(At
ϕi
, Sik) is given by the mini-

mum/maximum value in the set of the maximized/minimized weighted means
WMxik1

(wt), . . . ,WMxikm
(wt) for pi1, . . . , pim. Each optimization problem for

the weighted mean is a linear fractional programming problem (LFPP), which
can be solved by LP methods in polynomial time for |Sik| and n.

The basic flow of the optimization on At
ϕi

is similar to that of the emptiness
problem of an MTMPBAAϕi recognizing ϕi. Instead of each LCSP in the empti-
ness problem, we solve the corresponding LFPP in the optimization. Hence, the
complexity of the optimization problem is exponential in |ϕ| and n. �

Therefore, we can analyze performance limitations under given qualitative and
quantitative specifications described in LTLmp. LP and related techniques can be
also applied to other optimization problems (e.g., maximization/minimization
problems for the limit supremum or limit infimum of the ratio of the mean
payoffs for two payments) and multi-objective optimization problems, as in [14].
We conjecture that this LP-based approach for specification optimization can
effectively be applied to optimal synthesis for temporal logic specifications.

5 Conclusions and Future Work

In this paper, we introduced LTLmp, which is an extension of LTL with mean-
payoff formulae. A mean-payoff formula is a threshold condition for the limit
supremum or limit infimum of the mean payoffs pertaining to a given payment.
This extension allows us to describe specifications that reflect qualitative and
quantitative requirements on long-run average costs and frequencies of satisfy-
ing temporal properties. Moreover, we introduced multi-threshold mean-payoff
Büchi automata (MTMPBAs), which are payoff automata with Büchi accep-
tance conditions and multi-threshold mean-payoff acceptance conditions. Then,
we developed an algorithm for solving the emptiness problems of MTMPBAs,
by reducing the problems to linear constraint satisfaction problems. The deci-
sion problems of the logic can be reduced to the emptiness problems, and hence
we obtained exponential-time algorithms for model- and satisfiability-checking
of the logic. An additional advantage of the reduction is that some optimiza-
tion problems for specifications described in the logic can be solved by linear
programming methods in exponential time.

Future work will be devoted to a detailed analysis of the determinizability of
automata that recognize sentences described in mean-payoff extensions of LTL

264 T. Tomita et al.

and to developing the realizability-checking and quantitative synthesis methods
of the extensions.

References

1. Acacia+, http://lit2.ulb.ac.be/acaciaplus/
2. Alur, R., Degorre, A., Maler, O., Weiss, G.: On Omega-Languages Defined by

Mean-Payoff Conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504,
pp. 333–347. Springer, Heidelberg (2009)

3. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-Time Rewards Model-Checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying Continuous Time Markov
Chains. In:Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276.
Springer, Heidelberg (1996)

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

6. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the Logical Character-
isation of Performability Properties. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)

7. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Syn-
thesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

8. Boker, U., Chatterjee, K., Henzinger, T., Kupferman, O.: Temporal specifications
with accumulative values. In: LICS 2011, pp. 43–52 (2011)

9. Brázdil, T., Forejt, V., Kret́ınský, J., Kucera, A.: The satisfiability problem for
probabilistic ctl. In: LICS 2008, pp. 391–402 (2008)

10. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantita-
tive Synthesis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

11. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages. In: Kaminski,
M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg
(2008)

13. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and Synthe-
sizing Systems in Probabilistic Environments. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

14. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov Decision Processes with
Multiple Objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

15. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Com-
puter Science 380(1-2), 69–86 (2007)

16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

http://lit2.ulb.ac.be/acaciaplus/

A Temporal Logic with Mean-Payoff Constraints 265

17. Kupferman, O., Lustig, Y.: Lattice Automata. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp.
179–190 (1989)

19. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)
20. PRISM, http://www.prismmodelchecker.org/
21. SPIN, http://spinroot.com/spin/
22. Tomita, T., Hagihara, S., Yonezaki, N.: A probabilistic temporal logic with fre-

quency operators and its model checking. In: INFINITY 2011. EPTCS, vol. 73,
pp. 79–93 (2011)

http://www.prismmodelchecker.org/
http://spinroot.com/spin/

Time Constraints with Temporal Logic

Programming�

Meng Han, Zhenhua Duan��, and Xiaobing Wang

Institute of Computing Theory and Technology, and ISN Laboratory
Xidian University, Xi’an 710071, P.R. China

xdhanmeng@163.com, {zhhduan,xbwang}@mail.xidian.edu.cn

Abstract. This paper presents an approach for the real-time extension
of Projection Temporal Logic (PTL) and the corresponding program-
ming language, Timed Modeling, Simulation and Verification Language
(TMSVL). To this end, quantitative temporal constraints are employed
to limit the time duration bounded on a formula or a program. First, the
syntax and semantics of TPTL formulas are defined and some logic laws
are given. Then, the corresponding executable programming language
TMSVL is presented. Moreover, the operational semantics of TMSVL is
formalized. Finally, an example of modeling and verification is given to
show how TMSVL works.

Keywords: temporal logic, real-time system, programming language,
modeling, verification.

1 Introduction

Real-time systems play an important role in our modern society. They are used
in many safety critical systems such as aircrafts, traffic controllers, military com-
mands and control systems and so on. It is critical to ensure the correctness of
such systems. Testing is an effective means for ensuring high reliable software
quality in engineering practice. However, real-time systems always depend on
external environment with many uncertainties existing. Therefore, it is difficult
to ensure the correctness and reliability of safety critical real-time systems. Al-
ternatively, formal engineering method is a combination of strictly mathematical
approaches and practical engineering approaches which can be used to model,
simulate and verify real-time systems.

Temporal logic (TL) was proposed for the purpose of specification and verifi-
cation of concurrent systems, and had been widely applied in verifying systems
of software engineering and digital circuits. Projection Temporal Logic (PTL)
[6,7,9] is an interval-based temporal logic, which is a useful formalism for rea-
soning about period of time with hardware and software systems. The Modeling,

� This research is supported by the NSFC Grant No. 61003078, 61133001, 60910004,
and 973 Program Grant No. 2010CB328102, and ISN Lab Grant No. ISN1102001.

�� Corresponding author.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 266–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Time Constraints with Temporal Logic Programming 267

Simulation, and Verification Language (MSVL)[10,11,9] is an executable subset
of PTL and can be used to model, simulate and verify concurrent systems. To
do so, a system is modeled by an MSVL program and a property of the sys-
tem is specified by a Propositional Projection Temporal Logic (PPTL) formula.
Thus, whether or not the system satisfies the property can be verified with the
same logic framework. However, since PTL has no metric for describing abso-
lute time, only the specification of qualitative temporal requirements is allowed.
Thus, MSVL could not be used to model a realistic real-time system with some
circumstances. Therefore, we are motivated to extend PTL and MSVL so that
absolute time constraints can be used for describing real-time systems.

The main contributions of this paper are as follows: 1. a time duration is de-
fined to constraint a formula in a time interval, which is based on an explicit time
variable; then, PTL is extended to timed PTL (TPTL) with the time duration;
2. the programming language Timed MSVL (TMSVL) based on TPTL is devel-
oped, which can be used for modeling, simulation, and verification of real-time
systems; 3. the operational semantics of TMSVL is also formalized to strictly
describe the meaning of TMSVL programs; based on the operational semantics,
the interpreter for TMSVL has been developed recently.

The rest of the paper is organized as follows. In the next section, Projection
Temporal Logic and the programming language MSVL are briefly introduced.
In section 3, the syntax and semantics of TPTL are presented and some derived
formulas and logic laws are also provided. The programming language TMSVL
and its operational semantics are defined in section 4. In section 5, as a case
study, a video on demand application of real-time systems is modeled and some
properties of the system are verified using TMSVL in detail. Some related works
are compared in section 6. Finally, conclusions are drawn in section 7.

2 Preliminaries

2.1 PTL

Syntax. Let Π be a countable set of propositions, and V be a countable set
of typed static and dynamic variables. Terms e and formulas p of the logic are
defined as follows:

e ::= v | © e | -©e | beg(e) | end(e) | f(e1, . . . , em)
p ::= π | e1 = e2 | P (e1, . . . , em) | ¬p | p1 ∧ p2 | ∃v : p | © p |

(p1, . . . , pm) prj p | (p1, . . . , (pi, . . . , pl)
⊕, . . . , pm) prj p

where v is a static or dynamic variable, and π is a proposition. In f(e1, . . . , em)
and P (e1, . . . , em), where f is a function and P is a predicate. It is assumed
that the types of the terms are compatible with those of the arguments of f
and P . A formula (term) is called a state formula (term) if it does not contain
any temporal operators (i.e., ©, -© and prj), otherwise it is a temporal formula
(term).

Semantics. A state s is a pair of assignments (Ivar , Iprop) which, for each
variable v ∈ V gives s[v] = Ivar [v], and for each proposition π ∈ Π gives

268 M. Han, Z. Duan, and X. Wang

s[π] = Iprop[π]. Each Ivar[v] is a value of the appropriate type or nil (unde-
fined), whereas Iprop[π] is true or false. An interval σ=〈s0, s1, . . .〉 is a non-empty
(possibly infinite) sequence of states. It is assumed that each static variable is
assigned the same value in all the states over σ. The length of σ, denoted by |σ|,
is defined as ω if σ is infinite; otherwise it is the number of the states in σ minus
one. The concatenation of a finite interval σ= 〈s0, . . . , st〉 with another interval
σ′=〈s′0, . . .〉 (may be infinite) is denoted by σ · σ′ and σ · σ′=〈s0, . . . , st, s′0, . . .〉.
To have a uniform notation for both finite and infinite intervals, we will use
extended integers as indices. That is, we consider the set N0 of non-negative
integers with added ω, Nω = N0 ∪ {ω}, and extend the standard arithmetic
comparison operators (=, < and ≤) to Nω, by setting ω = ω and n < ω, for all
n ∈ N0. Furthermore, we define & as ≤ −{(ω, ω)}. To simplify definitions, we
will denote σ as 〈s0, . . . , s|σ|〉, where s|σ| is undefined if σ is infinite. With such
a notation, σ(i..j) (for 0 ≤ i & j ≤ |σ|) denotes the sub-interval 〈si, . . . , sj〉 and
σ(k) (for 0 ≤ k & |σ|) denotes 〈sk, . . . , s|σ|〉 .

To define the semantics of the projection operator we need an auxiliary oper-
ator. Let σ = 〈s0, s1, . . .〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such
that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ|. σ↓(r1, . . . , rh) = 〈st1 , st2 . . . , stl〉, (t1 < t2 <
... < tl). The projection of σ onto r1, . . . , rh is the interval, called projected in-
terval, where t1, . . . , tl are obtained from r1, . . . , rh by deleting all duplicates. In
other words, t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh.
For example 〈s0, s1, s2, s3, s4, s5〉↓(0, 2, 2, 2, 3, 4, 4, 5) = 〈s0, s2, s3, s4, s5〉 .

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where
σ = 〈s0, s1, . . .〉 is an interval and i, j, k ∈ Nω are integers such that i ≤ k & j ≤
|σ|. Intuitively, we use (σ, i, k, j) to mean that a term or formula is interpreted
over a subinterval σ(i..j) with the current state being sk. Then, for every term
e, the evaluation of e relative to I, denoted by I[e], is defined by induction on
terms in the following way:

I[v] = sk[v] = Ikvar[v] if v is a variable

I[f(e1, . . . , em)] =

{
I[f](I[e1], . . . , I[em]) if I[eh]
= nil for all 1 ≤ h ≤ m
nil otherwise

I[©e] =

{
(σ, i, k + 1, j)[e] if k < j
nil otherwise

I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k
nil otherwise

I[beg(e)] = (σ, i, i, j)[e]

I[end(e)] =

{
(σ, i, j, j)[e] if j
= ω
nil otherwise

The satisfaction relation for formulas, |=, is inductively defined as follows.

1. I |= π iff sk[π] = Ikprop[π] = true.
2. I |= P (e1, . . . , em) iff and I[eh]
=nil I[P](I[e1],. . ., I[em])= true, for all 1≤h≤m.
3. I |= e1 = e2 iff I[e1] = I[e2].
4. I |= ¬p iff I
|= p.
5. I |= p ∧ q iff I |= p and I |= q.
6. I |=©p iff k < j and (σ, i, k + 1, j) |= p.

Time Constraints with Temporal Logic Programming 269

7. I |= ∃v : p iff (σ′, i, k, j) |= p for some σ′ v
= σ.

8. I |= (p1, . . . , pm) prj p iff there are k = r0 ≤ r1 ≤ . . . ≤ rm ≤ j
such that (σ, i, r0, r1) |= p1 and (σ, rl−1, rl−1, rl) |= pl for all 1 < l ≤ m
and (σ′, 0, 0, |σ′|) |= p for σ′ given by :
• if rm < j then σ′ = σ↓(r0, . . . , rm)·σ(rm+1..j)

• if rm = j then σ′ = σ↓(r0, . . . , rh) for some 0 ≤ h ≤ m.
9. I |= (p1, . . . , (pi, . . . , pl)

⊕, . . . , pm) prj p iff one of following cases holds:
• 1 ≤ i ≤ l ≤ m and there exists an integer n ≥ 1 and
I |= (p1, . . . , (pi, . . . , pl)

(n), . . . , pm) prj p, or
• 1 ≤ i ≤ l = m, j = w and there exist infinitely many integers
k = r0 ≤ r1 ≤ . . . ≤ rk ω and limk→∞ rk = ω such that
(σ, i, r0, r1) |= p1 and (σ, rx−1, rx−1, rx) |= px for all 1 ≤ x ≤ i− 1 and
(σ, ri+t(l−i+1)+n−1, ri+t(l−i+1)+n−1, ri+t(l−i+1)+n) |= pi+n, for all

t ≥ 0 and 0 ≤ n ≤ l − i, and σ↓(r0, r1, . . . , rh, ω) |= p for some h ∈ Nω.

A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, 0, |σ|) |= P .
A formula P is called satisfiable if σ |= P for some σ. A formula P is valid,
denoted by |= P , if σ |= P for all σ. A formula p is equivalent to another formula
q, denoted by p ≡ q, if |= �(p↔ q).

The abbreviations true, false, ∨, → and ↔ are defined as usual. In particular,
true ≡ p ∨ ¬p and false ≡ p ∧ ¬p for any formula p. We also use the following
abbreviations:

empty
def
= ¬© true skip

def
= ©empty p ; q

def
= (p, q) prj empty

♦p def
= true ; p

⊙
p

def
= empty ∨©p �p def

= ¬♦¬p
more

def
= ¬empty x := e

def
= ©x = e ∧ skip fin(p)

def
= �(empty→ p)

p+
def
= (p⊕) prj empty p∗ def

= (p�) prj empty halt(p)
def
= �(empty↔ p)

keep(p)
def
= �(¬empty→ p) p||q def

= p ∧ (q ; true) ∨ q ∧ (p ; true)

(p1, . . . , (pi, . . . , pl)
�, . . . , pm) prj p

def
= (p1, . . . , ε, . . . , pm) prj p∨

(p1, . . . , (pi, . . . , pl)
⊕, . . . , pm) prj p

A number of logic laws of PTL can be found in [6,7].

2.2 Modeling, Simulation and Verification Language

MSVL is an executable subset of PTL and used to model, simulate and verify
concurrent systems. In addition, the variables within a program can refer to their
previous values.
Syntax As an executable subset of PTL, MSVL consists of expressions and
statements. Expressions can be regarded as PTL terms, and statements as PTL
formulas. The arithmetic expression e and boolean expression b of MSVL are
inductively defined as follows:

e ::= n | x | ©x | -©x | e0 op e1(op ::= +| − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x is a variable. The elementary statements in MSVL
are defined as follows:

270 M. Han, Z. Duan, and X. Wang

1. Assignment x = e 2. P-I-Assignment x⇐ e 3. Conjunction p ∧ q
4. Selection p ∨ q 5. State Frame lbf(x) 6. Termination empty
7. Always �p 8. Local variable ∃x : p 9. Sequential p ; q
10. Next ©p 11. Interval Frame frame(x) 12. Projection (p1,. . ., pm) prj q

13. Parallel p ‖ q def
= p ∧ (q ; true) ∨ q ∧ (p ; true)

14. Conditional if b then p else q
def
= (b→ p) ∧ (¬b→ q)

15. While while b do p
def
= (b ∧ p)∗ ∧�(empty→ ¬b)

16. Await await(b)
def
= (frame(x1) ∧ . . . ∧ frame(xh)) ∧�(empty↔ b)

where xi ∈ Vb = {x|x appears in b}

where p1, . . . , pm, p and q stand for programs of MSVL. The assignment x = e,
x⇐ e, empty, lbf(x), and frame(x) can be regarded as basic statements, and the
others composite ones; frame(x) means that variable x always keeps its old value
over an interval if no assignment to x is encountered.

Normal Form. Since PTL formulas are interpreted over intervals and MSVL is
a subset of PTL, programs should be executed over a sequence of states which is a
marked feature of MSVL programming. So execution of programs is implemented
by reduction since a program can be reduced to two parts: present and remain.
That fact can be illustrated by the normal form of programs given in [13].

Definition 1 (Normal Form of MSVL program). An MSVL program q is
in Normal Form if

q
def
=

k∨
i=1

qei ∧ empty ∨
h∨

j=1

qcj ∧©qfj
where 0 ≤ k ≤ 1, h ≥ 0, k + h ≥ 1 and the following hold: qfj is an internal
program in which variables may refer to the previous states but not beyond the
first state of the current interval over which the program is executed; each qei
and qcj is either true or a state formula of the form p1 ∧ . . . ∧ pm (m ≥ 1) and
each pl (1 ≤ l ≤ m) is either (x = e) with e ∈ D, x ∈ V , or px or ¬px.

Theorem 1. For each MSVL program p there is a program p′ in Normal Form
satisfying p ≡ p′

Theorem 1 tells us that for any MSVL program p there is a program q in the
Normal Form such that p ≡ q. The proof of the theorem can be found in [6,7].

3 Timed Projection Temporal Logic

3.1 Syntax

TPTL is an extension of PTL. With TPTL, the time is discrete and linear and
the time domain is Nω. We only care about future time instants.
Π is still used as a countable set of propositions, and V is a countable set of

typed static and dynamic variables. term e and formula p of PTL are defined as
before, except for two newly added variables T and Ts. The Time duration D
and TPTL formulas tp are inductively defined as follows:

Time Constraints with Temporal Logic Programming 271

e ::= v | © e | -©e | beg(e) | end(e) | f(e1, . . . , em) | T | Ts
p ::= π | e1 = e2 | P (e1, . . . , em) | ¬p | p1 ∧ p2 | ∃v : p | © p |

(p1, . . . , pm) prj p | (p1, . . . , (pi, . . . , pl)
⊕, . . . , pm) prj p

D ::= (e1, e2)
tp ::= Dp | Dtp | tp1 ∧ tp2 | tp1 ∨ tp2 | (tp1, . . . , tpm) prj tp |

(tp1, . . . , (tpi, . . . , tpl)
⊕, . . . , tpm) prj tp

In a time duration D, e1 and e2 are the starting time and the ending time of the
D respectively. Dp and Dtp mean that a D can be used to limit either PTL or
TPTL formulas.

3.2 Semantics

With TPTL, we still use the quadruple I = (σ, i, k, j) as an interpretation. An
interpretation of the term e is the same as before. The newly-added terms can
be interpreted as, like variables, I[T] = sk[T] and I[Ts] = sk[Ts] respectively.
However, they have some special properties: Ts is a framed variable and always
has a positive value while T increases monotonously as follows:{

∀k(0 ≤ k < |σ| → sk+1[T] = sk[T] + sk[Ts]) if the interval is finite
∀k(k ≥ 0→ sk+1[T] = sk[T] + sk[Ts]) if the interval is infinite

The satisfaction relation (�) of Dp can inductively be defined as follows:
I |= (t1, t2)p (resp. tp) if there exists l1, l2 such that k ≤ l1 l2=j and

sl1 [T]=I[t1] and sl2 [T]=I[t2] and (σ, i, l1, l2) |= p (resp. tp)

Note that, in the interpretations, in order to distinguish between the time
terms and ordinary terms, we use ti to represent a time term. Consequently,
(t1, t2) represents a time duration D. The other structures tp1 ∧ tp2, tp1 ∨ tp2,
(tp1, . . . , tpm) prj tp and (tp1, . . . , (tpi, . . . , tpl)

⊕, . . . , tpm) prj tp have the same
interpretations as before. Formula (t1, t2)p (resp. (t1, t2)tp) means that the time
duration (t1, t2) imposes time restrictions onto PTL or TPTL formula p (resp.
tp). This also indicates that formula p (resp. tp) is interpreted from starting time
T = t1 to ending time T = t2.

Theorem 2. Let I be an interpretation, and tp, tq TPTL formulas. If I |= tq
implies I |= tp, then I |= tq → tp.

Corollary 1. Let σ be an interval (or a model). If σ |= tq implies σ |= tp, then
σ |= tq → tp.

In order to avoid an excessive number of parentheses, we use the precedence
rules defined in [6]. Further, time duration can be regarded as a special unary
operator and its priority is between = and ∧.

For convenience, in what follows, we use p, q or r (possibly with subscripts) to
represent a TPTL formula or a PTL formula, w a state formula, lp a PTL for-
mula, and tp or tq a TPTL formula when there is no explicit declaration. p and
q stand for (possibly empty) sequences of formulas: p1, . . . , pm and q1, . . . , qn.

3.3 Derived Formulas and Logic Laws

Formulas Derived from Duration Derivatives. Formulas derived from du-
ration derivatives are constrained by time durations whose starting time or end-
ing time is special terms, i.e., T , end(T) or©T . At a state, these derived formulas

272 M. Han, Z. Duan, and X. Wang

are equivalent to the elementary formulas when time related terms are replaced
by the values of the special terms in the time durations. However, it is difficult
to evaluate T in general with programming. If a formula’s starting time is T , it
is treated as starting at the current state; whereas, if a formulas’s ending time is
end(T), it terminates at the last state of the interval. Thus, a formula bounded
with time duration (T, end(T)) is not subject to any time constraints and it can
be seen as a time independent formula. In this way, any PTL formula p can be
treated as a special TPTL formula (T, end(T))p. As a result, the set of PTL
formulas can be viewed as a subset of TPTL formulas. The meanings of those
derived formulas are given as follows.

1. I |= (t, end(T))p iff (σ, i, l, j) � p for k ≤ l j and sl[T] = I[t]
2. I |= (T, t)p iff (σ, i, k, l) � p for k ≤ l = j and sl[T] = I[t]
3. I |= (©T, t)p iff (σ, i, k + 1, j) � (T, t)p
4. I |= (T, end(T))p iff (σ, i, k, j) � p
5. I |= (©T, end(T))p iff(σ, i, k + 1, j) � (T, end(T))p

The Abbreviations in TPTL. There are also some useful abbreviations below:

lp
def
= (T, end(T))lp 〈t1, t2〉lp def

= (t1, t2)♦lp [t1, t2]lp
def
= (t1, t2)�lp

(ε)p
def
= (T, T)p p ; q

def
= (p, q) prj empty p+

def
= (p⊕) prj empty

p∗ def
= (p�) prj empty p||q def

= p ∧ (q ; true) ∨ q ∧ (p ; true)

(p, (pi, . . . , pl)
�,q) prj p

def
= (p, empty,q) prj p∨(p, (pi, . . . , pl)⊕,q) prj p

Theorem 3. Let p, q be any formulas in PTL or TPTL, and (t1, t2) a time
duration. Thus, p ≡ q if and only if (t1, t2)p ≡ (t1, t2)q.

Logic Laws

Theorem 4. Let p, q be any formulas of TPTL, t, ti be time terms, i ∈ N.
T ≤ ti ≤ ti+1. The following laws all hold.

L1. p ≡ (T, end(T))p L9. (t1, t2)p ∧ (t1, t2)q ≡ (t1, t2)(p ∧ q)
L2. empty ≡ (ε)empty L10. (t1, t2)p ∨ (t1, t2)q ≡ (t1, t2)(p ∨ q)
L3. (t1, t3)(t2, t3)p ≡ (t2, t3)p L11. (t1, t2)p ∧ T = t1 ≡ (T, t2)p
L4. (T, t)© p ≡ (©T, t)p L12. (T, t)w ≡ (ε)w ∨ w ∧ (©T, t)true
L5. (ε)w ≡ w ∧ empty L13. (t, end(T))(p ∧ empty) ≡ (t, t)(p ∧ empty)
L6. (ε)empty ; p ≡ p L14. (t, end(T))p ∧ (t1, t2)q ≡ (t, t2)p ∧ (t1, t2)q
L7. (t, t)(p ∧ empty) ≡ (t, t)p L15. (t1, end(T))(t2 , t3)p ≡ (t1, t3)(t2, t3)p
L8. (©T, t)p ⊃ more L16. (p, (ε)w, p,q) prj q ≡ (p, w ∧ p,q) prj q
L17. (t1, t2)© p ∧ T = t1 ≡ T = t1 ∧ (T + Ts, t2)p
L18. (t1, t2)w ∧ T = t1 ≡ T = t1 ∧ ((ε)w ∨ w ∧ (T + Ts, t2)true)
L19. (t1, t3)p ∧ (t2, t3)q ≡ (t1, t3)((t1, t3)p ∧ (t2, t3)q)
L20. (t1, t2)p ; (t3, t4)q ≡ (t1, t4)((t1 , t2)p ; (t3, t4)q)
L21. (p,p) prj (t1, t2)q ∧ t1 > T ≡ p ; (p prj (t1, t2)q) ∧ t1 > T
L22. (p,p) prj (©T, t)q ≡ p ∧more ; p prj (T, t)q ∨ p ∧ empty ; p prj (©T, t)q
L23. (©T, t1)p prj (©T, t2)q ≡ (©T, t1)p ; (T, t2)q

L24. ((©T, t1)p1,p) prj (©T, t2)q ≡ (©T, t1)p1 ; p prj (T, t2)q
L25. Assuming p0 ≡ pm+1 ≡ empty:

p prj (©T, t)q ≡
m−1∨
t=0

((p0 ∧ . . . ∧ pt) ∧ empty ; pt+1 ∧more ; (pt+2, . . . , pm+1) prj (T, t)q)

∨ ((p0 ∧ . . . ∧ pm) ; (©T, t)q)

Time Constraints with Temporal Logic Programming 273

Theorem 5. The following logic laws in PTL which only contain the operators
; , prj, ∧, ∨, + and ∗, are valid in TPTL.

L26. r ; (p ∨ q) ≡ (r ; p) ∨ (r ; q) L33. p∗ ≡ empty ∨ (p ; p∗) ∨ (p ∧�more)
L27. (p ∨ q ; r) ≡ (p ; r) ∨ (q ; r) L34. q prj empty ≡ q
L28. w ∧ (p ; q) ≡ (w ∧ p) ; q L35. p prj empty ≡ p1 ; . . . ; pm
L29. p+ ≡ p ∨ (p ; p+) L36. (p, empty,q) prj q ≡ (p,q) prj q
L30. p+ ≡ p ∨ ((p ∧more) ; p+) L37. p prj (p ∨ q) ≡ (p prj p) ∨ (p prj q)
L31. p+ ∧ empty ≡ p ∧ empty L38. (w ∧ p,p) prj q ≡ w ∧ ((p,p) prj q)
L32. p prj q ≡ p ∧ q L39. p prj (w ∧ q) ≡ w ∧ (p prj q)
L40. (p, p ∨ r,q) prj q ≡ ((p, p,q) prj q) ∨ ((p, r,q) prj q)

4 Timed-MSVL

TMSVL is an executable subset of TPTL and also an extension of MSVL
[10,11,8]. The arithmetic expression e and boolean expression b of TMSVL are
the same as in MSVL. By the law p ≡ (T, end(T))p in logic, all of the MSVL
statements can be used in TMSVL without changing their meaning. As a result,
TMSVL can do whatever MSVL does.

4.1 Syntax and Semantics

In TMSVL, an expression e can be treated as a term and a statement p can be
viewed as a formula in TPTL. There are ten elementary statements as follows:

1. MSVL statement lp 2. Time limit (t1, t2)tp
3. Conjunction tp1 ∧ tp2 4. Selection tp1 ∨ tp2
5. Sequential tp1 ; tp2 6. Point (ε)tp
7. Projection (tp1, . . . , tpm) prj tp 8. Conditional if b then tp1 else tp2
9. While loop while b do tp 10. Parallel tp1 ‖ tp2

Seven of them are constructs inherited from MSVL, which are conjunction(∧),
selection(∨), chop(;), projection(prj), conditional statement, while loop and par-
allel (||); MSVL statements can directly be used without changing their meaning;
the other two statements indicate the statements under a time duration limita-
tion or a point time constrains respectively.

Like MSVL, the execution of a TMSVL program P is to find an interval on
which P can be satisfied. A program is executed either successfully or failed,
depending on true or false being eventually reduced. There is difference between
MSVL and TMSVL. In MSVL, a statement can be treated as a program. For a
TMSVL program P , it consists of two parts: a clock generator clock(eT , eTs) and
TMSVL statement q. Thus, each TMSVL program has the form clock(eT , eTs)∧q.
clock(eT , eTs) is defined by the elementary statements below:

clock(eT , eTs)
def
= T =eT ∧ (¬pTs→Ts=eTs) ∧ frame(Ts) ∧ keep(©T =T+Ts)

which means that the value of T equals to the value of terms eTs at the current
state. Since Ts is a framed variable, whenever Ts = e is encountered, proposition
pTs is set to true and Ts has the value e at the current state. If there is no
assignment to Ts in the program, by using the minimal model semantics, pTs is
forced to be false, and thus Ts has the value eTs at the current state. At the next
state, the value of T is the sum of eT and the current value of Ts.

274 M. Han, Z. Duan, and X. Wang

Theorem 6. Let p be a TMSVL statement and P ≡ clock(eT , eTs) ∧ p be a
TMSVL program, and e′Ts is an expression produced by p. Then we have

P ≡ T =eT ∧ Ts=e′Ts ∧ pTs ∧)clock(eT + e′Ts, e
′
Ts) ∧ p ∨

T =eT ∧ Ts=eTs ∧ ¬pTs ∧)clock(eT + eTs, eTs) ∧ p

4.2 Normal Form of Programs

Normal Form is of great importance to reduce programs over intervals. The
Normal Form of TMSVL programs is a bit different from that of MSVL.

Fact 1. Let p be a TMSVL statement. There exists a time duration (t1, t2) such
that p can be translated to the form (t1, t2)q.

Definition 2 (normal form of TMSVL programs). A TMSVL program
P ≡ clock(eT , eTs) ∧ (t1, t2)p is in Normal Form if

P ≡
(k∨

i=1

(ε)pei

)
∨
(h∨

j=1

pcj ∧©clock(eT + e′Ts, e
′
Ts) ∧ (t, t2)pfj

)
where k+h ≥ 1, and the following holds: qfj is a general TMSVL statement. qei
and qcj are state formulas of the form, T = eT ∧ Ts= e′Ts ∧ x1= e1 ∧ . . . ∧ xm=
em ∧ pT ∧ ˙pTs ∧ ˙px1 ∧ . . .∧ ˙pxm. If t1 > T , t= t1, otherwise t=T+Ts (i.e., ©T).
Theorem 7. Let P be a TMSVL program. There is a program Q in Normal
Form such that P ≡ Q.

4.3 Operational Semantics of TMSVL

The Operational semantics of MSVL have been studied in [13]. Since we extend
MSVL to TMSVL, the operational semantics of TMSVL should be reconsidered.

To execute a program P is really to find an interval to satisfy the program P .
The execution of a program P consists of a series of reductions over a sequence
of states, i.e., an interval. The reduction process is divided into two phases: one
for state reduction and the other for interval reduction.

Configuration. Here we still use the concept of configuration in [13] to il-
lustrate the operational semantics of TMSVL. A configuration regarding a pro-
gram P is a quadruple (P, σi−1, si, i), where P is a framed program, σi−1 =
〈s0, . . . , si−1〉(i > 0) a model which records information of all states, si the cur-
rent state at which P is being executed and i a counter for counting the number
of states in σi−1. When a program is terminating, it is reduced to true and the
state is written as Ø. So the final configuration is cf = (true, σ,Ø, |σ|+ 1).

State Reduction. We first introduce semantic equivalence rules to normalize
a program, and then specify the transition rules within a state to deal with the
current assignment and catch the minimal models. All of these rules form a state
reduction system. Because data structures, arithmetical expressions and boolean
expressions of MSVL and TMSVL are all identical, so transition rules provided
in [13] can be used to solve assignments and capture the minimal model with
TMSVL [11]. In order to transform a program into its new normal form, we need
semantic equivalence rules for the state reduction of TMSVL. These rules consists

Time Constraints with Temporal Logic Programming 275

of the existing rules given in [13], and new logic equivalence rules presented
in section 3.3. These equivalence rules alter the form of P in a configuration
(P, σi−1, si, i) without changing the other three elements.

Example 1. The state reduction for program P
def
= clock(0, 1) ∧ (1, 2)�(x=1)

P ≡ clock(0, 1) ∧ (1, 2)�(x=1)
≡ T =0 ∧ ¬pTs ∧ Ts=1 ∧©clock(1, 1) ∧ (1, 2)�(x=1)
≡m pT ∧ T =0 ∧ ¬pTs ∧ Ts=1 ∧©clock(1, 1) ∧ (1, 2)�(x=1)

P ≡m Q means P equals to Q under the minimal model [6]. From the reduction,
we have s0 = {pT , Ts = 1,¬pTs, T = 0}, s0 represents the current state.

Interval Reduction. Once all of variables and propositions involved in the cur-
rent state have been set, the remained subprogram is of the form©clock(eT , eTs)∧
(t1, t2)p or (ε)empty. This means that the reduction of the program needs move
to the next state or stop. We have two interval transition rules to describe the
two situations:

Tr1 (©clock(eT , eTs) ∧ (t1, t2)p, σi−1, si, i)
→ (clock(eT , eTs) ∧ (t1, t2)p, σi, si+1, i+ 1) (if t1 > T)

Tr2 (©clock(eT , eTs) ∧ (t1, t2)p, σi−1, si, i)
→ (clock(eT , eTs) ∧ (T, t2)p, σi, si+1, i+ 1) (if t1 is © T)

Tr3 ((ε)empty, σi−1, si, i)→ (true, σi,Ø, i+ 1)

Rule Tr1 and Tr2 are useful for dealing with ©clock(eT , eTs) ∧ (t1, t2)p while
rule Tr3 is helpful for reducing (ε)empty. The execution of (©clock(eT , eTs) ∧
(t1, t2)p, σi−1, si, i) means that clock(eT , eTs)∧(t1, t2)p or clock(eT , eTs)∧(T, t2)p
requests to be executed at the next state si+1, according to Tr1 or Tr2 and
current state si needs to be appended to model σi−1. So i, the number of states
in σi−1, needs to be increased by one. The execution of ((ε)empty, σi−1, si, i) is
simple. State si is appended to σi−1 and the final configuration (true, σi,Ø, i+1)
is reached. In this way, if a program is eventually reduced to true, then an interval
which satisfies the program is obtained. Thus, σi = σi−1 · 〈si〉 is the model of
the program.

Example 2. Using the interval transition rules, we can continue with the re-
duction of the subprogram in Example 1.

By the Tr1, we know that at the second state the program needs to be reduced
is P 1

f ≡ clock(1, 1) ∧ (1, 2)�(x=1). After the state reduction, we have

P 1
f ≡m ¬pTs ∧ pT ∧ px ∧ Ts=1 ∧ T =1 ∧ x=1 ∧©clock(2, 1) ∧ (2, 2)�(x=1)
Thus, s1 = {¬pTs, Ts = 1, pT , T = 1, px, x = 1}, and by the Tr1, we obtain

P 2
f ≡ clock(2, 1) ∧ (2, 2)�(x = 1)

After the state reduction, P 2
f ≡m ¬pTs ∧ Ts = 1 ∧ px ∧ pT ∧ T = 2 ∧ x =

1 ∧ (ε)empty. Then, s2 = {¬pTs, Ts = 1, pT , T = 2, px, x = 1}. By the Tr3, the
model of program P is obtained, σ = 〈s0, s1, s2〉.

276 M. Han, Z. Duan, and X. Wang

5 Applications

5.1 Description of Real-Time Systems

Safety, Liveness and Periodicity. Safety means something “bad” will never
happen and liveness is meant by something “good” will eventually happen.
MSVL statements can easily be used to specify these qualitative properties in
terms of �lp and ♦lp while TMSVL statements are able to describe quantified
safety and liveness by using time constraints [t1, t2]lp and 〈t1, t2〉lp.

Periodicity is also an important property in real-time systems. The statement,
while (true) do (T, T + n)p, can be used to describe some events (like p) occur
periodically by a period of time n.

Interrupts. Interrupt handing is a frequently met problem in real-time pro-
gramming. When an interrupt occurs, perhaps caused by a device requiring
event, the running program is suspended and execution begins on the appropri-
ate interrupt service routine. When the service routine finishes, the execution of
the interrupted program resumes. This is just the kind of behavior conducted by
the temporal projection statement. The execution of the interrupt service occurs
between two consecutive states of the interrupted program.

In the statement (p1, · · · , pm) prj q, p1; · · · ; pm and q are started at the same
time but may terminate at different time points. A statement (p�) prj q means
that at each beginning of the execution of p, a reduction of q is executed, and
q may terminate at any state, but p is still executed repeatedly. However, the
statement (p�, r ∧ ε) prj (q ; r ∧ ε)∧ halt(r) prevents the repetitive execution of
p when q terminates; r is a proposition used to mark the end of q.

q

p p

skip skip skip skip

skip skip skip skip

Fig. 1. Construction of the formula q when b do p

For convenience, we write q when b do p to mean that whenever the boolean
expression b is true, the execution of q is interrupted by p.

q when b do p
def
= ((if b then p else skip)�, r ∧ ε) prj (q ; r ∧ ε) ∧ halt(r)

Interrupt handling is easily described by q when b do p. How it works is
illustrated in figure 1.

Timeout. Sometimes it is necessary to limit the time spent waiting for a par-
ticular condition to become true or to terminate the program when time is out
ignoring the status of its execution. Time out is a problem often occurred in
real-time programming. If clock(e1, e2) ∧ p ≡ c ∧ p is a deterministic program, a
timeout time constraint is defined as follows:

c ∧ (t1 @ tm)p
def
= c ∧ (t1, tm) p1c ∧ (t2, tm)p2c ∧ . . . ∧ (tm, tm)(pme ∨ pmc)

where t1, . . . , tm are the time values of m consecutive states respectively, pic rep-
resents a state formula after the state reduction when T = ti (1 ≤ i ≤ m); pme

Time Constraints with Temporal Logic Programming 277

represents a terminal state formula when T = tm. They can be defined induc-
tively below.

Let P be a deterministic TMSVL program, and according to definition 2 we
know that clock(t1, eTs1) ∧ p can be transformed to Normal Form

clock(t1, eTs1) ∧ p ≡ c0 ∧ p0f ≡ (ε)pe ∨ pc ∧©clock(t2, eTs2) ∧ (t2, t)pf
Then,p1e ≡ pe, p1c ≡ pc, p1f ≡ (t2, t)pf , c

1 ≡ clock(t2, eTs2).
Suppose cn ∧ pnf ≡ (ε)qe ∨ qc ∧©clock(tn, eTsn) ∧ (tn, t)qf , 0 ≤ n < m. Then

we have pn+1
e ≡ qe, pn+1

c ≡ qc, pn+1
f ≡ (tn, t)qf ,c

n+1 ≡ clock(tn, eTsn).
A timeout related to a deterministic program is easily defined using (t1@tm)p,

which means that statement p would be terminated, when T = tm.

Theorem 8. clock(e1, e2)∧p ≡ (ε)p1e∨p1c∧©clock(e′1, e′2)∧p1f , and ti, ti+1(1 ≤
i ≤ m − 1), p1e, p

1
c and p1f are defined as the above. The following formulas are

valid.
clock(e1, e2) ∧ (t1 @ t1)p ≡ clock(e1, e2) ∧ (t1, t1)(p

1
e ∨ p1c)

clock(e1, e2) ∧ (ti @ tm)p ≡ clock(e1, e2) ∧ (ti, tm)(p1c ∧ (ti+1 @ tm)p1f)

A nondeterministic program can be written to the form clock(e1, e2) ∧ p ≡
k∨

i=1

clock(eT , eTs) ∧ qi, clock(eT , eTs) ∧ qi is a deterministic program. Thus, we

can use the definition of timeout constraint on a deterministic program to define
timeout on a nondeterministic program as follows:

clock(e1, e2) ∧ (t1@tm)p ≡
k∨

i=1

clock(eT , eTs) ∧ (t1@tm)qi

Delay. With TMSVL, the time duration constrains the formula in a rigorous
way, and time delay is usually allowed. We assume that the finishing time of a
statement p is after t1 and can be delayed until after tm. It means statement p
starting from now on and ending between T + t1 and T + tm. Since the time
increment Ts might be changed by a programmer, it is impossible to predicate
the time values at states between two time points. Suppose Ts is not changed
during the execution of p; thus we can solve the problem. Then we define a delay
time constraint as follows:
{t1, tm}pdef

= t=Ts∧keep(©Ts= t)∧
(
(T, T+t1)p∨. . .∨(T, T+ti)p∨. . .∨(T, T+tm)p

)
where ti = t1 + (i− 1) ∗ Ts and 1 ≤ i ≤ m.

Timeout after Delay. We can also define a new time constraint called the
timeout after the time delay:

{t1, tm}pdef
= t=Ts∧keep(©Ts= t)∧

(
(T, T+t1)p∨. . .∨(T, T+ti)p∨. . .∨(T@T+tm)p

)
where ti = ti + (i− 1) ∗ Ts and 1 ≤ i ≤ m. The formula {t1 @ tm}p means that
statement p is either terminated within the time duration (T + t1, T + tm) or
forced terminated immediately after tm time units.

5.2 A Video-On-Demand System

An interactive video-on-demand (VOD) system allows users to access video ser-
vices, such as movies, electronic encyclopedia, interactive games, and educational

278 M. Han, Z. Duan, and X. Wang

videos from video servers on a broadband network. To model, simulate and verify
these types of complicated systems by means of TMVSL, we present a simplified
VOD system for specification and verification using the technique proposed in
this paper in the following.

Requirement
– A video application provides movies to users.
– On users selecting a movie, the application turns to the loading status and

sends a request to the server for the resource, and then waits for a response.
– Once the server receives a request, the selected movie would be sought out

and a connection with the application could be set up within 2 to 3 seconds.
– If the application receives the answer in 3 seconds, the movie starts otherwise

the application is timeout.
– Operation of pause is admitted during the playing.
– The application quits automatically when a movie has been played to the

end.

Modeling. Before modeling, time variables and some other variables need to
be initialized in terms of a program P0:

P0
def
= clock(0, 1) ∧ frame(req1, req2,movID, remtime,appstate, serstate,

MovT ime[5], conOK, stop) ∧ req1 = 0 ∧ req2 = 0 ∧movID = −1
∧remtime = 0 ∧MovT ime[5] = (3, 4, 4, 6, 2)

where req1 and req2 are used to send requests to the application and the server
respectively, movID to send the movie ID; remtime is the remaining time of
the playing movie; appstate and serstate represent states of the application and
server respectively; array MovT ime[5] records the movies information in the
server; conOK means if the connection between application and server is OK;
stop is used to send a signal of pause; frame(X) is used to declare that the
variables in X are framed.

The application can be modeled by a TMSVL program P1 as shown below:

P1
def
= while(true)

do{await(req1 = 1) ; req2 := 1 ;
{0@3}{ while(!conOK) do appstate := ‘loading’ } ;
if(conOK)
then{appstate := ‘playing’ ;

{while(remtime > 0)
do{remtime := remtime− Ts ∧ appstate := ‘playing’}

}when(stop = 1) do
{ appstate := ‘pause’ ;

await(stop = 0) ;
appstate := ‘playing’}

} } ;
appstate := ‘ready’ ∧ req1 := 0 ∧ stop := 0 ∧movID := −1 ; empty}

The server can be modeled by a TMSVL program P2 presented below:

Time Constraints with Temporal Logic Programming 279

s0’ s1’ s2’ s3’

s4−1’
s5−1’

s4−2 ’
s5−2’

s6−1’ s7−1 ’

s6−2’
s7−2’

s8’

s9’

Fig. 2. NFG of program P : A node represents a state reduction, and an arc represents
an interval transition. s′i(s

′
i = si−{T = eT }) on the arrows represents the states before

transition and an infinite path means a model of the system P

P2
def
= while(true)

do{serstate := ‘waiting’ ∧ conOK := 0 ∧ req2 := 0 ; await(req2 = 1) ;
if (movID >= 0 ∧movID <= 4)
then {2, 3}{ next serstate = ‘connecting’∧

next remtime = MovT ime[movID] ; conOK := 1 }
else empty}

The operations of a user can be described by a TMSVL program P3:

P3
def
= while(true) do { (T, T + 10){ next req1 = 1 ∧ next movID = 4 } }

As a result, the whole system can be modeled by a TMSVL program P ≡
P0 ∧ (P1 ‖ P2 ‖ P3).

Verification. Suppose the property to be verified is defined by a TPTL formula
ϕ. To verify whether P satisfies ϕ amounts to proving program P implies ϕ. In
other words, we have to prove |= P → ϕ. To do so, firstly, the program P can
be reduced by its operational semantics step by step; then we can capture the
set M of all models conducted by P from its Normal Form Graph (NFG) [11].

Here, we omit the tedious process of the reduction and show the result in
table 1 which lists the values of the related variables in the beginning at sev-
eral states of the models. During the reduction, there are loops in the NFG
and the state s10k+i is the same as si (0 ≤ k, 0 ≤ i ≤ 9) except for the time
value. Thus, in table 1, it is not necessary for us to present all states in the NFG.

Table 1. variable’s value at each state in model σ

T state req1 req2 serstate appstate conOK movID remtime · · ·
0 s0 0 0 waiting ready 0 -1 0 · · ·
1 s1 1 0 waiting ready 0 4 0 · · ·
2 s2 1 1 waiting loading 0 4 0 · · ·
3 s3 1 1 connecting loading 0 4 2 · · ·
4 s4−1 1 1 connecting loading 1 4 2 · · ·
4 s4−2 1 1 connecting loading 0 4 2 · · ·
5 s5−1 1 0 waiting playing 0 4 2 · · ·
5 s5−2 1 1 connecting loading 1 4 2 · · ·
6 s6−1 1 0 waiting playing 0 4 1 · · ·
6 s6−2 1 0 waiting playing 0 4 2 · · ·
7 s7−1 0 0 waiting ready 0 -1 0 · · ·
7 s7−2 1 0 waiting playing 0 4 1 · · ·
8 s8 0 0 waiting ready 0 -1 0 · · ·
9 s9 0 0 waiting ready 0 -1 0 · · ·
10 s10 0 0 waiting ready 0 -1 0 · · ·
11 s11 1 0 waiting ready 0 4 0 · · ·

· · ·

280 M. Han, Z. Duan, and X. Wang

We can verify the properties like ϕ1 and ϕ2 below:

ϕ1
def
= �(serstate = ‘connecting’→ appstate = ‘loading’)

ϕ2
def
= (〈T, T + 10〉(appstate = ‘playing’ ∧movID = 4))+

Note that, as a matter of fact, property ϕ1 is a safety property which can also
be specified by LTL and CTL while property ϕ2 is a full regular property (here
a Kleen closure property) which LTL and CTL are both failed to define it.

6 Related Work

In the past three decades, many researchers have explored temporal representa-
tion of real-time systems. There are many real-time logics including LTLC[15],
MTL[4], RTCTL[16], TPTL[3], TCTL[17], TRIO[20] and so on. However, none
of these logics can be used as a programming language except TRIO. Their
primary functions are specification and verification of real-time systems.

The model of timed automata for real-time systems was first proposed by
Alur and Dill[14]. A timed automaton is a finite-state automaton equipped with
a finite set of clocks which can hold non-negative real values. It is structured as
a directed graph whose nodes are modes(control locations) and whose arcs are
transitions. In practice, a real-time system is usually described as a set of process
timed automata, each representing the behavior of an autonomous process. There
are also some verification tools for timed systems based on timed automata, like
UPPAAL which can be used to verify the property specified by CTL. However,
timed automata are not executable, so they cannot be used as a programming
language and are not capable of doing simulation directly.

Temporal logic formulas can also be used to describe system behaviors. In
such frameworks, the system descriptions, including the models for systems and
environments, and the properties are all in the same language, which facilitates a
proof system established and makes the verification easier. The existing temporal
logic programming languages like XYZ/E, TLA and TRIO can be used to model
a real-time system.

XYZ/E [21] is an executable temporal logic language put forward by ZS. Tang.
XYZ/RE extended the temporal operator $©, $♦, $�, $U , $W in XYZ/E in or-
der to make them capable to express the real time lower limit (l) and upper limit
(u). Thereby, it gets the corresponded form of the real time operator: $©{l, u},
$♦{l, u}, $�{l, u}, $U{l, u}, $W{l, u}. XYZ/RE adopts time constraints in an
intuitive way which makes it easy to understand. However, because its underly-
ing logic is un-timed LTL, the sequential statement and the loop statement suffer
from high expression complexity. Meanwhile, users have to repeatedly reset the
time limitation of a statement in order to meet the consistency requirement.

Temporal Logic of Actions (TLA)[18] does not have a quantitative treating
of time. In[19] Abadi and Lamport show how to introduce a distinguished state
variable now with a continuous domain to represent the current time. There is no
meaning for the notion of the ‘next state’. In stead, prime (’) is used to represent
values of variables in a new state. TLA formulas can be expressed in terms of

Time Constraints with Temporal Logic Programming 281

familiar mathematical operators (such as ∧) plus three new ones: ′ (prime), �,
and ∃. This makes TLA satisfy the fairness and more concise. However, this also
makes it difficult to describe the duration of an action and the interval between
two actions.

TRIO[20] is an extension of FOL (First Order Logic), and TRIO introduces
a quantitative notion of time by adopting a single basic modal operator, called
Dist. The simplest formula Dist(p, d) means that proposition p holds at a time
instant exactly d time unites from the current one; notice that this formula may
refer to the future, if d>0, or to the past, if d<0, or even to the present time if
d=0. Since the adoption of time points instead of intervals, it leads to increasing
complexity. For instance, as for basic formula (t1, t2)♦p in TPTL, in TRIO the
formula Dist(∀t′(0<t′<t2−t1 → Dist(p, t′)), t1) represents the same meaning.

7 Conclusion

In this paper, we have extended the temporal logic PTL with time constraints
and proposed a real-time programming language TMSVL used for modeling, sim-
ulation and verification of real-time systems. Further, the operational semantics
of TMSVL has also been formalized. Based on the semantics, a prototype of
TMSVL has been developed recently. In the future, we will further formalize an
axiom system of TMSVL so that theorem proving approach can be conducted
to verify real-time systems. Moreover, we plan to develop a model checker for
TMSVL in order to verify real-time systems by means of the model checking
approach. Finally, as case studies, we will model, simulate and verify practical
examples to exam our approach proposed in this paper.

References

1. Melliar-Smith, P.M.: Extending interval logic to real time systems. In: Proceedings
of the Conference on Temporal Logci Specification, UK, pp. 224–242. Springer
(April 1987)

2. Razouk, R., Gorlick, M.: Real-time interval logic for reasoning about executions of
real-time programs. SIGSOFT Softw. Eng. Notes 14(8), 10–19 (1989)

3. Alur, R., Henzinger, T.A.: A really temporal logic. In: Proceedings of the 30th
IEEE Conference on Foundations of Computer Science. IEEE Computer Society
Press, Los Alamitos (1989)

4. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

5. Mattonlini, R., Nesi, P.: An Interval Logic for Real-Time System Specification.
IEEE Trans. Softw. Eng. 27, 208–227 (2001)

6. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for
Temporal Logic Programming. PhD Thesis, University of Newcastle upon Tyne
(1996)

7. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing
(2006)

8. Duan, Z., Koutny, M.: A Framed Temporal Logic Programming Language. Journal
of Computer Science and Technology 19, 341–351 (2004)

282 M. Han, Z. Duan, and X. Wang

9. Duan, Z., Koutny, M., Holt, C.: Projection in Temporal Logic Programming. In:
Pfenning, F. (ed.) LPAR 1994. LNCS (LNAI), vol. 822, pp. 333–344. Springer,
Heidelberg (1994)

10. Duan, Z., Yang, X., Koutny, M.: Semantics of Framed Temporal Logic Programs.
In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 356–370.
Springer, Heidelberg (2005)

11. Duan, Z., Yang, X., Koutny, M.: Framed Temporal Logic Programming. Science
of Computer Programming 70(1), 31–61 (2008)

12. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press
(1986)

13. Yang, X., Duan, Z.: Operational semantics of Framed Tempura. J. Log. Algebr.
Program. 78(1), 22–51 (2008)

14. Alur, R., Dill, D.: Automata for Modeling Real-Time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

15. Kwon, Y., Agha, G.: LTLC: Linear Temporal Logic for Control. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 316–329. Springer, Heidelberg
(2008)

16. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal rea-
soning. Real-Time Systems 4, 330–352 (1992)

17. Alur, R., Courcoubetis, C., Dill, D.L.: Model checking for real-time systems. In:
Proc. IEEE Fifth Symp. Logic in Computer Science, pp. 414–425 (1990)

18. Lamport, L.: The temporal logic of action. ACM Transations on Programming
Languages and Ssystems 16(3), 872–923 (1994)

19. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16(5), 1543–1571 (1994)

20. Ghezzi, C., Mandrioli, D., Morzenti, A.: TRIO: A logic language for executable
specifications of real-time systems. The Journal of Systems and Software 12(2),
107–123 (1990)

21. Tang, Z.S.: Temporal Logic Program Designing and Engineering, vol. 1. Science
Press, Beijing (1999)

Stepwise Satisfiability Checking Procedure

for Reactive System Specifications by Tableau
Method and Proof System

Yoshinori Neya and Noriaki Yoshiura

Department of Information and Computer Science, Saitama University
255, Shimo-ookubo Urawa-ku, Saitama City, Japan

Abstract. Open reactive systems are systems that ideally never ter-
minate and are intended to maintain some interaction with their envi-
ronment. Temporal logic is one of the methods for formal specification
description of open reactive systems. For an open reactive system spec-
ification, we do not always obtain a program satisfying it because the
open reactive system program must satisfy the specification no matter
how the environment of the open reactive system behaves. This prob-
lem is known as realizability and the complexity of realizability check is
double or triple exponential time of the length of specification formula
and realizability checking of specifications is impractical. This paper im-
plements stepwise satisfiability checking procedure with tableau method
and proof system. Stepwise satisfiability is one of the necessary condi-
tions of realizability of reactive system specifications. The implemented
procedure uses proof system that is introduced in this paper. This proof
system can accelerate the decision procedure, but since it is imcomplete
it cannot itself decide the realizability property of specifications. The ex-
periment of this paper shows that the implemented procedure can decide
the realizability property of several specifications.

Keywords: Reactive System, Temporal Logic, Realizability.

1 Introduction

Open reactive systems, such as operating systems or elevator control systems,
are systems that ideally never terminate and are intended to maintain some
interaction with their environment and provide services. Open reactive system
behavior depends on this interaction [4]. In reactive systems, events are divided
into output events and input events. Output events are controlled or gener-
ated by reactive systems and input events are generated by the environment
such as users of reactive systems. Input events cannot be controlled by the
system [5].

Temporal logic is one of the methods of describing open reactive system spec-
ifications. One of the advantages of temporal logic is to prove several properties
of the specifications. Given an open reactive system specification, which is a

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 283–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 Y. Neya and N. Yoshiura

temporal logic formula, satisfiability of the formula only guarantees possibility
of synthesizing a reactive system that satisfies a reactive system specification for
some environment behavior. However, it is necessary to synthesize a system that
satisfies the specification for all environment behaviors; suppose that there are
finite sets I and O of input and output events. An open reactive system program
is a function f : (2I)∗ → 2O that maps finite sequences of input event sets into
an output event set. Since an environment generates infinite sequences of input
event sets, the function f generates infinite sequences of 2I∪O during interaction
between an open reactive system and an environment.

The function f is a synthesized program satisfying a specification φ if and
only if φ is always true for all infinite sequences generated by the function f
and the environment behavior. The realizability problem is to determine, given a
specification φ which is a temporal logic formula, whether there exists a program
f : (2I)∗ → 2O such that all of infinite sequences generated by f satisfies φ for
any infinite sequence of input events made by the environment.

There are two kinds of temporal logic, linear and branching temporal logic.
For the realizability problem of branching time temporal logic, there are sev-
eral studies [1,5,8]. In these studies, computation tree and automata theory are
used and especially, the realizability decision problems for CTL and CTL∗ are
2EXPTIME-complete and 3EXPTIME-complete [5]. There are also several stud-
ies for linear time temporal logic [7]. In a few years, the realizability for Metric
Temporal Logic have been studied [2,6]. Metric Temporal Logic is a linear time
timed temporal logic which extends linear time temporal logic with timing con-
straints on Until operator. Realizability of a specification described by Metric
Temporal Logic is undecidable and that of Safety-MTL, which is a subset of
Metric Temporal Logic, is undecidable if a certain kind of restriction is not
added.

In previous studies on realizability of open reactive system specification de-
scribed by several kinds of temporal logic, a main focus is on decidability of
realizability and not on speed of deciding realizability. Automata theory has
been used in almost all studies to give decision procedure of realizability. In or-
der to decide the properties of realizability, using automata theory is effective,
however, it is insufficient to decide realizability of a specification fast. There are
several researches that are related with implementation of realizability decision
[14]. Tableau method is important for realizability decision and there are several
researches that are related with tableau fast construction [15].

The aim of this paper is to develop fast realizability decision procedure, but
complexity of realizability decision shows that implementation of decision proce-
dures is impractical. Thus, this paper implements a decision procedure of step-
wise satisfiability, which is one of necessity conditions of realizability. Many of
actual reactive system specifications are stepwisely satisfiable but not realiz-
able [12]. This paper introduces a proof system for realizability to develop a
fast decision procedure. This proof system can decide unrealizability of several
specifications. The decision procedure that is implemented in this paper consists

Stepwise Satisfiability Checking Procedure 285

of tableau method and proof system. Thus, the decision procedure can decide
realizability of several specifications fast.

This paper is organized as follows. Section 2 explains open reactive system
and section 3 explains temporal logic that is used for describing specifications.
Section 4 shows tableau based decision procedure and section 5 introduces a
proof system for realizability of reactive system specifications. Section 6 explains
implementation of the stepwise satisfiability decision procedure and section 7
shows the results of the experiment. Section 8 concludes this paper.

2 Open Reactive System

This section provides a formal definition of an open reactive system, based on
references [8]. Let A be a finite set. A+ and Aω denote the set of finite sequences
and the set of infinite sequences over A respectively. A† denotes A+ ∪ Aω. Se-
quences in A† are indicated by â, b̂, · · ·, sequences in A+ by ā, b̄, · · · and sequences
in Aω by ã, b̃, · · ·. |â| denotes the length of â and â[i] denotes the i-th element of
â. If B is a set whose elements are also sets, ‘	’ is defined over B† ×B† by

â 	 b̂ = â[0] ∪ b̂[0], â[1] ∪ b̂[1], â[2] ∪ b̂[2], · · · .

Definition 1. An open reactive system RS is a triple RS = 〈X,Y, r〉, where

– X is a finite set of input events produced by the environment.
– Y (X ∩ Y = ∅) is a finite set of output events produced by the system itself.
– r : (2X)+ → 2Y is a reaction function.

A subset of X is called an input set and a sequence of input sets is called an
input sequence. Similarly, a subset of Y is called an output set and a sequence
of output sets is called an output sequence. In this paper, a reaction function
corresponds to an open reactive system program.

Definition 2. Let RS = 〈X,Y, r〉 be an open reactive system and â = a0, a1, · · ·
∈ (2X)† be an input sequence. The behavior of RS for â, denoted behaveRS(â),
is the following sequence:

behaveRS(â) = 〈a0, b0〉, 〈a1, b1〉, 〈a2, b2〉, . . . ,

where for each i (0 ≤ i < |â|), bi = r(a0, . . . , ai) ∈ 2Y .

3 Specification

This paper uses propositional linear-time temporal logic (PLTL) as a specifica-
tion language for open reactive systems.

286 Y. Neya and N. Yoshiura

3.1 Syntax

A PLTL formula is defined as follows:

– An atomic proposition p ∈ P is a formula.
– If f1 and f2 are formulas, f1 ∧ f2, ¬f1 f1Wf2 are formulas.

This paper uses ”Weak until operator” (W). This paper also uses abbreviation;
�f1 ≡ f1W(f2 ∧ ¬f2), AWB ≡ ¬(¬AW¬B) and ∨, →, ↔ and � are the usual
abbreviations.

3.2 Semantics

This subsection defines the semantics of PLTL formula on the behaviors. Let P
be a set of events and P be a set of atomic propositions corresponding to each
element of P . 〈σ, i〉 |= f denotes that a formula f over P holds at the i-th state
of a behavior σ ∈ (2P)ω. 〈σ, i〉 |= f is recursively defined as follows.

– 〈σ, i〉 |= p iff p′ ∈ σ[i] (p ∈ P is an atomic proposition corresponding to
p′ ∈ P)

– 〈σ, i〉 |= ¬f iff 〈σ, i〉 �|= f .
– 〈σ, i〉 |= f1 ∧ f2 iff 〈σ, i〉 |= f1 and 〈σ, i〉 |= f2.
– 〈σ, i〉 |= f1Wf2 iff (∀j ≥ 0) 〈σ, i + j〉 |= f1 or

(∃j ≥ 0) (〈σ, i + j〉 |= f2 and ∀k(0 ≤ k < j) 〈σ, i + k〉 |= f1).

σ is a model of f if and only if 〈σ, 0〉 |= f . We write σ |= f if 〈σ, 0〉 |= f . A formula
f is satisfiable if and only there is a model of f . For example, behaveRS(ã) |= ϕ
means that a behavior made by the reactive system RS receiving the input
sequence ã is a model of ϕ.

3.3 Specification

A PLTL-specification for an open reactive system is a triple Spec = 〈X ,Y, ϕ〉,
where

– X is a set of input propositions that are atomic propositions corresponding
to the input events of the intended open reactive system, i.e. the truth value
of an input proposition represents the occurrence of the corresponding input
event.

– Y is a set of output propositions that are atomic propositions corresponding
to the output events of the intended open reactive system, i.e. the truth
value of an output proposition represents the occurrence of the corresponding
output event.

– ϕ is a formula in which all the atomic propositions are elements of X ∪ Y.
This paper writes Spec = 〈X ,Y, ϕ〉 just as ϕ if there is no confusion. Finally,
the following defines the realizability of open reactive system specifications [8].

Definition 3. An open reactive system RS is an implementation of a spec-
ification ϕ if for every input sequence ã, behaveRS(ã) |= ϕ. A specification is
realizable if it has an implementation.

Stepwise Satisfiability Checking Procedure 287

3.4 Stepwise Satisfiability

Reactive system specifications can be divided into several classes. This subsec-
tion explains the class of stepwise satisfiability specifications. This property is
introduced in references [9]. Throughout this subsection ã, ā and b̃ denote an
infinite input sequence, a finite input sequence and an infinite output sequence
respectively. Also, r denotes a reaction function. For simplicity the interpretation
representing a behavior is denoted by the behavior itself. Stepwise satisfiability
is defined as follows:

Definition 4. A reactive system RS preserves satisfiability of ϕ if and only if
∀ā∃ã∃b̃(behaveRS(ā)(ã 	 b̃) |= ϕ). ϕ is stepwisely satisfiable if and only if there
is a reactive system which preserves the satisfiability of ϕ.

If ϕ is stepwisely satisfiable, there is a reactive system RS = 〈X,Y, r〉 which
preserves the satisfiability of ϕ. For any input event sequence, the reactive system
RS can behave with keeping a possibility that ϕ is satisfied even though RS
actually does not satisfy ϕ. The following shows two examples of specification
to explain stepwise satisfiability.

EXAMPLE 1. Satisfiable but not stepwisely satisfiable specifications.

1. req1 → �res.
2. req2 → �¬res.

req1 and req2 are input propositions and res is an output proposition. This
example shows that a specification is not stepwisely satisfiable if it could require
conflicting responses at the same time.

EXAMPLE 2. Stepwisely satisfiable but not realizable specification.
This example shows a part of a simple lift specification. In the specification

below, an output proposition Move is intended to show when the lift can move.
Open means that the lift door is open, and Floori means that the lift is on the
i-th floor. An input proposition Bopen represents the request “open the door”
and Bi represents the request “come or go to the i-th floor.”

1. �(¬Move ∧ Floori → FlooriW Move)
(if Move is not true when the lift is at the i-th floor, stay there until Move
holds)

2. �(Open→ ¬Move)
(if the door is open, do not move)

3. �
(
¬Bopen∧(¬MoveWBopen)→ (¬OpenW (Bopen∧ (OpenW ¬Bopen))))

(if Move is not true, open the door while Bopen holds)
4. �(Bi→ �Floori)

(if asked to come or go to the i-th floor, eventually arrive at the floor)

Bopen and Bi are input propositions and the other propositions are output
propositions. If Bopenwill be true forever after some state where both ¬Move
and Floori hold, and Bj(�=i)will be true after this state, �Floorj could never

288 Y. Neya and N. Yoshiura

be satisfied. This example shows that a specification is not realizable if for some
infinite input sequence a �-formula has no opportunity to hold. This exam-
ple shows that a specification is not stepwisely satisfiable if it could require a
response depending on the future sequences of requests.

4 Decision Procedure

This section gives the decision procedure of stepwise satisfiability, which was
given in [12]. This procedure is sound and complete. This procedure is based on
the tableau method for PLTL [9].

4.1 Tableau Method

A tableau is a directed graph T = 〈N,E〉 constructed from a given specification.
N is a finite set of nodes. Each node is a set of formulas. E is a finite set of
edges. Each edge is a pair of nodes. n2 is reachable from n1 in a tableau 〈N,E〉
if and only if 〈n1, a1〉, 〈a1, a2〉, · · · 〈ak, n2〉 ∈ E.

Definition 5 (Decomposition Procedure). A decomposition procedure takes
a set S of formulas as input and produces a set Σ of sets of formulas.

1. Put Σ = {S}.
2. Repeatedly apply one of steps (a) – (e) to all the formulas fij in all the sets

Si ∈ Σ according to the type of the formulas until no step will change Σ. In
the following, f1W∗f2 and ¬(f1W∗f2) are called marked formula. The marks
represent that the marked formulae have been applied by the decomposition
produce.

(a) If fij is ¬¬f , replace Si with the following set: (Si − {fij}) ∪ {f}.
(b) If fij is f1 ∧ f2, replace Si with the following set: (Si −{fij})∪ {f1, f2}.
(c) If fij is ¬(f1 ∧ f2), replace Si with the following two sets:

(Si − {fij}) ∪ {¬f1}, (Si − {fij}) ∪ {¬f2}.
(d) If fij is f1Wf2, replace Si with the following two sets:

(Si − {fij}) ∪ {f2}, (Si − {fij}) ∪ {f1,¬f2, f1W∗f2}.
(e) If fij is ¬(f1Wf2) replace Si with the following two sets:

(Si − {fij}) ∪ {¬f1,¬f2}, (Si − {fij}) ∪ {f1,¬f2,¬(f1W∗f2)}.

Definition 6. A node n of a tableau 〈N,E〉 is closed if and only if one of the
following conditions is satisfied:

– n contains both an atomic proposition and its negation.
– n contains an eventuality formula 1 and all reachable unclosed nodes from n

contain the same eventuality formula.
– n cannot reach any unclosed node.

1 An eventuality formula is a formula of the form ¬(f1Wf2).

Stepwise Satisfiability Checking Procedure 289

The following describes the tableau construction procedure that repeatedly uses
the decomposition procedure. The tableau construction procedure takes a PLTL
formula ϕ as input and produces a tableau T = 〈N,E〉. In the procedure, a
function temporal(n) is used and defined as follows.
temporal(n) = {f1Wf2 | f1W∗f2 ∈ n} ∪ {¬(f1Wf2) | ¬(f1W∗f2) ∈ n}

Definition 7 (Tableau Construction Procedure). The tableau construction
procedure takes a formula ϕ as input and produces a tableau of ϕ.

1. Put N = {START, {ϕ}} and E = {〈START, {ϕ}〉} (START is the initial
node).

2. Repeatedly apply steps (a) and (b) to T = 〈N,E〉 until T no longer changes.
(a) (decomposition of states) Apply the following three steps to all the nodes

ni ∈ N to which these steps have not been applied yet.
i. Apply the decomposition procedure to ni (Σni is defined to be the

output of the decomposition procedure)
ii. Replace E with (E ∪ {〈m,m′〉|〈m,ni〉 ∈ E and m′ ∈ Σni})
−{〈m,ni〉|m ∈ N},

iii. Replace N with (N − ni) ∪Σni .
(b) (transition of states) Apply the following two steps to all the nodes ni ∈

N to which these steps have not been applied yet.
i. Replace E with E ∪ {〈ni, temporal(ni)〉}.
ii. Replace N with N ∪ {temporal(ni)}.

In [10,11], it is proved that a formula is satisfiable if and only if the initial node
START of the tableau of the formula is unclosed. Thus, the following procedure
decides the satisfiability of the formula ϕ.

Definition 8 (Tableau Method). The following procedure decides whether a
formula ϕ is satisfiable.

1. By Tableau Construction Procedure, construct a tableau of a formula ϕ
2. If the tableau of the formula ϕ is unclosed, it is concluded that the formula ϕ

is satisfiable. Otherwise, it is concluded that the formula ϕ is unsatisfiable.

4.2 Decision Procedure for Stepwise Satisfiability

This subsection describes the decision procedure of stepwise satisfiability. In the
decision procedure it is important to to make a tableau deterministic by a set
of input and output propositions. At the beginning, some functions are defined
for a deterministic tableau.

Definition 9. Let T = 〈N,E〉 be a tableau. The function next(n) maps a subset
of N to a subset of N , where n is a subset of N .

The function next(n) is defined as follows:
next(n) ≡

⋃
n∈n{n′ | 〈n, n′〉 ∈ E}

The function atm and atm map an element of N to a set of atomic proposi-
tions. The function atm and atm are defined as follows:

290 Y. Neya and N. Yoshiura

atm(n) ≡ {f | f ∈ n and f is atomic formula.}
atm(n) ≡ {f | ¬f ∈ n and f is atomic formula.}
For an element of N , the function atm and atm are defined as follows:
atm(n) ≡

⋃
n∈n{f | f ∈ n and f is atomic formula.}

atm(n) ≡
⋃

n∈n{f | ¬f ∈ n and f is atomic formula.}
Suppose that a ⊆ P and next(n)/a is defined as follows:
next(n)/a ≡ {n|n ∈ next(n), atm(n) ∩ a = ∅ and atm(n) ∩ (P − a) = ∅}

Next, a deterministic tableau is defined.

Definition 10 (Deterministic tableau). Let 〈N,E〉 be a tableau of specifica-
tion ϕ. 〈N , E〉 is a deterministic tableau of ϕ and a set P of atomic propositions
if and only if the following conditions are satisfied.

– N is a set of tableau node sets, that is N ⊆ 2N .
– Every element of N is not an empty set.
– E is a set of 〈n1, a,n2〉 such that n1,n2 ∈ N and a ⊆ P .
– If 〈n′, a,n〉 ∈ E, a ∩ atm(n) = ∅ and (P − a) ∩ atm(n) = ∅
– If 〈n1, a,n2〉 ∈ E, for n ∈ n2, there is n′ ∈ n1 such that 〈n′, n〉 ∈ E.

The following defines a procedure for constructing a deterministic tableau that
is used in the decision procedure of stepwise satisfiability.

Definition 11 (Tableau Deterministic Procedure). The following proce-
dure constructs a deterministic tableau T = 〈N , E〉 of specification of ϕ and a
set P of atomic propositions.

1. Construct tableau 〈N,E〉 of ϕ by the tableau construction procedure.
2. Set N = {{START }} and E = ∅.
3. Repeat the following step until T no longer changes.

For n ∈ N and a ⊆ P , if next(n)/a �= ∅, add next(n)/a into N and
〈n, a, next(n)/a〉 into E, where next(n)/a ≡ {n ∈ next(n) | a ∩ atm(n) =
∅, (P − a) ∩ atm(n) = ∅}.

By using a deterministic tableau, it is possible to decide whether there is a re-
active system RS of ϕ such that RS behaves for an input event at any time, or
whether there is an infinite output event sequence for any infinite input event
sequence. However, it is impossible to decide satisfiability of ϕ using a determin-
istic tableau and to check the satisfiability of ϕ requires to examine each part of
a tableau included in the deterministic tableau.

Definition 12 (Decision Procedure of Stepwise Satisfiability).

1. By the tableau deterministic procedure, construct a deterministic tableau
〈N , E〉 of specification ϕ and a set X ∪ Y of input and output propositions.

2. Repeat the following operation until 〈N , E〉 no longer changes.
For n ∈ N and a ⊆ X , if there are no n′ ∈ N and b ⊆ Y such that
〈n, a ∪ b,n′〉 ∈ E, delete n from N . Delete elements such as 〈n, c,n′〉 or
〈n′, c,n〉 from E.

3. If N is not an empty set, this procedure determines that ϕ is stepwisely
satisfiable. Otherwise, this procedure determines that ϕ is not stepwisely sat-
isfiable.

Stepwise Satisfiability Checking Procedure 291

5 Proof System

This section gives a proof system for unrealizability of open reactive system
specification. This proof system is a sequent-style natural deduction. Before giv-
ing several formal definitions, this section informally explains the meanings of
sequent and several symbols. This proof system uses sequent Γ,Δ† � W where
Γ is a set of input proposition formula Δ† is a set of mark formulas such A† and
W is a formula. If Δ† is an empty set, this sequent denotes that there exists an
open reactive system RS such that for each sequence ã of output event sets, if
ã |=

∧
Γ (

∧
Γ is a conjunction of all elements of Γ), behaveRS(ã) |=W ; if Δ† is

not an empty set, this sequent denotes that there exists an open reactive system
RS such that for each sequence ã of output event sets, if ã |=

∧
Γ and if there

exists V such that ã |= V and V † ∈ Δ†, behaveRS(ã) |=W .
To check a specification ϕ requires to make a proof that begins with � ϕ

and whose conclusion is contradiction. While constructing a proof, several input
formulas (a formula consisting of input propositions) move from the right side
to left side of sequent. If the formulas on the right side of a sequent is contra-
diction and the formulas on the left side are satisfiable, it is concluded that ϕ is
unrealizable. If there are several marked formulas on the left side, it is necessary
only to check whether all unmarked formulas and one of marked formulas are
satisfiable, even if a set of marked formulas are inconsistent. The marked formu-
las represent the input formulas which can hold in one of possible future states,
therefore, a set of the marked formulas can be inconsistent. On the other hand,
unmarked formulas must be satisfiable in the same state such as current state
or future state. This is a reason why the proof system uses mark. The example
proof in section 5.2 helps to understand this reason. The following gives formal
definitions.

Definition 13. A† is defined to be mark formula where A is a formula. Δ† is
defined to a set of marked input formulas where Δ† = {A† | A ∈ Δ}.

Definition 14. Γ,Δ† � W is defined to be sequent where Γ is a set of input
formulas, Δ† is a set of marked input formulas and W is a formula.

A sequent Γ,Δ† �W holds with respect to an open reactive system RS if and
only if the following condition holds.

– In the case that Δ† is an empty set, for each sequence ã of output event sets,
if ã |= Γ , behaveRS(ã) |=W .

– In the case that Δ† is not an empty set, for each sequence ã of output event
sets, if there is V ∈ Δ such that ã |= Γ ∪ {V }, behaveRS(ã) |=W .

Definition 15. The inference rules are defined as follows. In the inference rules,
X,X1, X2, . . . are formulas consisting of only input propositions and A,B,C are
arbitrary formulas; a temporal formula is defined to be a formula including tem-
poral operator such as �, �, W and ©. The proof system in this paper uses

292 Y. Neya and N. Yoshiura

”Next operator”, but it is not defined in the syntax of PLTL. This paper defines
next operator (©) as usual.

Γ,Δ† � A ∧ B

Γ,Δ† � A
∧E1

Γ,Δ† � A ∧B

Γ,Δ† � B
∧E2

Γ1, Δ
†
1 � A Γ2,Δ

†
2 � B

Γ1, Γ2,Δ
†
1,Δ

†
2 � A ∧B

∧I

Γ,Δ† � A ∨B

[Γ,Δ† � A]
....

Γ1,Δ
†
1 � C

[Γ,Δ† � B]
....

Γ2,Δ
†
2 � C

Γ1, Γ2,Δ
†
1,Δ

†
2 � C

∨E�
Γ,Δ† � A

Γ,Δ† � A ∨B
∨I1

Γ,Δ† � B

Γ,Δ† � A ∨ B
∨I2

Γ1,Δ
†
1 � A Γ2,Δ

†
2 � ¬A

Γ1, Γ2,Δ
†
1,Δ

†
2 � ⊥

⊥I
Γ,Δ† � ⊥
Γ,Δ† � A

⊥E

Γ,Δ† � AWB

Γ,Δ† � B ∨A ∧ ¬B ∧©(AWB)
W1

Γ,Δ† � ¬(AWB)

Γ,Δ† � (¬A ∧ ¬B) ∨ (A ∧ ¬B ∧©¬(AWB))
W2

Γ,Δ† � A

Γ,Δ† � ♦A
♦I

Γ,Δ† � A

�Γ,Δ† � �A
�I�

Γ,Δ† � X

Γ,Δ†,¬X � ⊥
LM1

Γ,Δ†,�©X

Γ,Δ†,©¬X† � ⊥
LM2��

Γ,Δ†, X1 ∨X2 � A

Γ,Δ†, X1 � A
∨LE1

Γ,Δ†, X1 ∨X2 � A

Γ,Δ†, X2 � A
∨LE2

Γ,Δ†,¬(X1 ∨X2) � A

Γ,Δ†,¬X1,¬X2 � A
∨LE3

Γ,Δ†, X1 ∧X2 � A

Γ,Δ†, X1, X2 � A
∧LE1

Γ,Δ†,¬(X1 ∧X2) � A

Γ,Δ†,¬X1 ∨ ¬X2 � A
∧LE2

Γ,Δ†, X1WX2 � A

Γ,Δ†, X2 ∨X1 ∧ ¬X2 ∧©(X1WX2) � A
WL1

Γ,Δ†,¬(X1WX2) � A

Γ,Δ†, (¬X1 ∧ ¬X2) ∨ (X1 ∧ ¬X2 ∧©¬(X1WX2)) � A
WL2

Γ,Δ†,¬¬X � A

Γ,Δ†, X � A
DNLE

Γ,Δ†, X � A

Γ,Δ†,�X � A
�LI

Γ,Δ†, X,X � A

Γ,Δ†, X � A
CL

Γ,Δ†,¬©X � A

Γ,Δ†,©¬X � A
¬LN

� Hypotheses Γ,Δ† � A and Γ,Δ† � B are discarded by using ∨E.
�� There is no hypothesis or all hypotheses are of the form �A.

Definition 16. A proof beginning with formula ϕ is defined to be a sequence
S1, S2 . . . Sn of sequent satisfying the following conditions.

1. ”Implication” is expressed by ”not” and ”disjunction”, that is, A→ B have
to be converted into ¬A ∨B.

2. Every Sk (1 ≤ k ≤ n) is one of the following
– � ϕ
– an assumption, which should have been discarded by inference rule ∨E

in Definition 15.

Stepwise Satisfiability Checking Procedure 293

– a conclusion of an inference rule in Definition 15 where the premises of
the inference rule must be in Sl(1 ≤ l ≤ k).

3. Sk (1 ≤ k ≤ n) is a sequent Γ,Δ† � A satisfying following.

– If Δ is empty, Γ is consistent.

– If Δ is not empty, there exists a formula V such that V ∈ Δ and Γ ∪{V }
is consistent.

Sn is defined to be a conclusion of a proof S1, S2 . . . Sn.

The definition of proof uses concept of consistency of a set of formulas; it is
undesirable in the definition of proof system. However, this proof system decides
realizability but not satisfiability and realizability is considered to be meta con-
cept rather than satisfiability. It follows that it is allowable to use consistency
check in the proof system. Implementation of this proof system does not always
have to check consistency.

Let us explain the outline of how to prove unrealizability of a formula ϕ; we try
to make a proof beginning with formula ϕ. If a sequent Γ,Δ† � ⊥ is a conclusion
of a proof and Γ ∪ {V } is satisfiable for some element V of Δ, it is concluded
that ϕ is unrealizable; in the case that Δ is an empty set, if Γ is satisfiable, it is
concluded that ϕ is unrealizable. The following gives this definition.

Definition 17 (Unrealizability Decision). Suppose that a sequent Γ,Δ† � ⊥
is a conclusion of a proof beginning with ϕ. In the case that Δ† is not an empty
set, if Γ ∪ {V } is satisfiable for some element V of Δ, it is concluded that ϕ is
unrealizable; in the case that Δ is an empty set, if Γ is satisfiable, it is concluded
that ϕ is unrealizable.

5.1 Soundness

This subsection proves soundness of the realizability proof system

Theorem 1. If the proof system decides that ϕ is unrealizable, ϕ is unrealizable.

Theorem 1 is proved by induction on the structure of proof, in which the following
lemma is used.

Lemma 1. Suppose that S1, S2 . . . Sn is a proof beginning with ϕ. If there exists
an open reactive system RS satisfying the following conditions, the sequent Sn

holds with respect to RS.

– behaveRS(ã) |= ϕ for each sequence ã of output event sets.

– If Sk is a hypothesis that is not discarded, Sk holds with respect to RS.

Proof of Lemma 1: This lemma is proved by induction on the structure of
proof. This paper shows induction step of inference rule LM because of space
limitation. All induction step proofs are shown by the same way.

294 Y. Neya and N. Yoshiura

– LM1
By induction hypothesis, Γ,Δ† � X holds with respect to RS satisfying the
conditions of Lemma 1. Suppose that Δ is not empty. By the definition,
for each sequence ã of output event sets, if there exists V ∈ Δ such that
ã |= Γ ∪ {V }, behaveRS(ã) |= X . For each sequence ã of output event sets,
if there exists V ∈ Δ such that ã |= Γ ∪ {¬X,V }, behaveRS(ã) |= ¬X
because X consists of input propositions; it follows that behaveRS(ã) |= ⊥.
This lemma can be also proved in the case that Δ is empty.

This lemma can be proved in the case of the other inference rules similarly.

Now, Lemma 1 proves Theorem 1. Suppose that unrealizability decision decides
that a formula ϕ is unrealizable. The definition of unrealizability judgment ob-
tains a conclusion Γ,Δ† � ⊥ in a proof beginning with ϕ, and there is V ∈ Δ
such that Γ ∪ {V } is satisfiable in the case that Δ† is not empty, and Γ is sat-
isfiable in the case that Δ† is empty. By Lemma 1, if there is an open reactive
system such that � ϕ holds with respect to RS, Γ,Δ† � ⊥ holds with respect to
RS. However, there exists a sequence ã of input event sets such that ã |= Γ ∪{V }
(Γ if Δ† is empty) for some element V of Δ. By the definition of sequent, there
should be an open reactive system RS such that behaveRS(ã) |= ⊥, however,
there is not such an open reactive system RS; it is inconsistent. By reductio ad
absurdum, there is no an open reactive system RS which � ϕ does not hold with
respect to, and ϕ can prove to be unrealizable.

5.2 Proof Examples

This subsection shows several proof examples of realizability proof system de-
scribed in the previous section. In the following, x, x1, x2, · · · represents input
propositions and y, y1, y2, · · · represents output propositions. Figure 1 gives sev-
eral inference rules of in order to show examples easily. These inference rules can
be derived from those of Definition 15.

Γ,Δ† � �A

Γ,Δ† � A
�E

Γ,Δ† � X ∨ A

Γ,Δ†,¬X � A
LM3

Fig. 1. Additional inference rules

1. �(x1 → y) ∧�(x2 → ♦¬y)
This formula is not realizable because if x2 are true at some point and x1 is
always false, y is always true while ¬y have to be true at some future point.
We start the following proof by �(¬x1 ∨ y) and �(¬x2 ∨ ♦¬y) which are
equal to �(x1 → y) ∧ �(x2 → ♦¬y).

� �(¬x1 ∨ y)

� ¬x1 ∨ y
�E

¬¬x1 � y
LM3

x1 � y
DNLE

�x1 � �y
�I

� �(¬x2 ∨ ♦¬y)
� ¬x2 ∨ ♦¬y �E

¬¬x2 � ♦¬y LM3

x2 � ♦¬y DNLE

x2 � ¬�y
(Abbreviation)

�x1, x2 � ⊥ ⊥ I

Stepwise Satisfiability Checking Procedure 295

2. x1Wx2 ↔ y
This formula is not realizable; when x1 and ¬x2 are true, the truth value of
y depends on the future truth values of x1 and x2. Suppose that an open
reactive system makes y true at first time. If ¬x1 and ¬x2 are true at next
time, this formula does not holds at first time because x1Wx2 is false and y
is true. On the other hand, suppose that an open reactive system makes y
false at first time. If x2 are true at next time, this formula does not holds at
first time because x1Wx2 is true and y is false.

After an open reactive system decides a truth value of y, the environment
of the open reactive system can behave in order to this formula become false.
To prove unrealizability of such formulas uses the inference rule LM2. The
proof in Figure 2 begins with x1Wx2 ∨ ¬y and ¬(x1Wx2) ∨ y, which are
equal to x1Wx2 ↔ y. All formulas in the left side of the conclusion sequent
are inconsistent because ¬©x1Wx†2 and ¬©¬(x1Wx2)

† are included. How-
ever, this proof system deals with marked formulas separately and checks
satisfiability of only following two sets of formulas:

{¬x2,¬(¬x2 ∧ ¬x1),¬©x1Wx2} and {¬x2,¬(¬x2 ∧ ¬x1),¬©¬(x1Wx2)}

Each of these two sets is consistent, but these two sets suggest that in some
future any system behaviors will be inconsistent to satisfy x1Wx2 ↔ y.
This proof has several inference rules that can deduce unrealizability of a
specification based on this inconsistency.

� x1Wx2 ∨ ¬y

[� x1Wx2]

� x2 ∨ x1 ∧ ¬x2 ∧©x1Wx2

W1

¬x2 � x1 ∧ ¬x2 ∧©x1Wx2

LM3

¬x2 �©x1Wx2

∧E2

¬x2,¬©x1Wx
†
2

� ⊥
LM2

¬x2,¬©x1Wx
†
2

� ¬y

⊥ E

[� ¬y]

¬x2,¬©x1Wx
†
2

� ¬y

∨E
� ¬(x1Wx2) ∨ y

[� ¬(x1Wx2)]

� ¬x2 ∧ ¬x1 ∨ ¬x2 ∧ x1 ∧©¬(x1Wx2)

W2

¬(¬x2 ∧ ¬x1) � ¬x2 ∧ x1 ∧©¬(x1Wx2)

LM3

¬(¬x2 ∧ ¬x1) �©¬(x1Wx2)

∧E2

¬(¬x2 ∧ ¬x1), ¬©¬(x1Wx2)
† � ⊥

LM2

¬(¬x2 ∧ ¬x1), ¬©¬(x1Wx2)† � y

⊥ E

[� y]

¬(¬x2 ∧ ¬x1), ¬©¬(x1Wx2)† � y

∨E

¬x2,¬(¬x2 ∧ ¬x1),¬©x1Wx
†
2
,¬©¬(x1Wx2)

† � ⊥
⊥ I

Fig. 2. The proof of x1Wx2 ↔ y

6 Implementation

This section gives the implementation of stepwise satisfiability checker based on
the tableau method and the proof system described in the previous section. The
tableau based decision procedure of stepwise satisfiability takes too much time.
Thus, the following stepwise satisfiability checking procedure checks realizability
of a specification in creating nodes of tableau; proof system checking of unreal-
izability and creating tableau are performed simultaneously. If the proof system
proves unrealizability of a specification, the stepwise satisfiability of checking
procedure can decide unrealizability of the specification fast without creating

296 Y. Neya and N. Yoshiura

tableau. In the following, an element n of N of deterministic tableau 〈N , E〉 is
interpreted as formula

∨
n∈n

∧
f∈n f .

Definition 18 (Stepwise Satisfiability Checking Procedure). This pro-
cedure checks stepwise satisfiability of ϕ.

1. Check unrealizability of ϕ by the proof system within a predefined time or
memory.

2. If the proof system decides unrealizability of ϕ, this procedure ends and de-
cides that ϕ is unrealizable.

3. Create tableau T = 〈N,E〉 of ϕ.
4. Let T = 〈N , E〉 be a tableau where N = {{START }} and E = ∅
5. Repeat the following step if N has the an element n such that 〈n, a,n′〉 �∈ E.

Otherwise, this procedure decides that ϕ is stepwisely satisfiable.

(a) For each a ⊆ P , if next(n)/a �= ∅, check unrealizability of a formula
of next(n)/a by the proof system. If the proof system does not decide
that a formula of next(n)/a is unrealizable, add next(n)/a into N and
〈n, a, next(n)/a〉 into E, where next(n)/a ≡ {n ∈ next(n) | a∩atm(n) =
∅, (P − a) ∩ atm(n) = ∅}.

(b) For n ∈ N and a ⊆ X , if there are no n′ ∈ N and b ⊆ Y such that
〈n, a ∪ b,n′〉 ∈ E, delete n from N . Delete elements such as 〈n, c,n′〉 or
〈n′, c,n〉 from E.

(c) If {START } �∈ N , this procedure decides that ϕ is unrealizable.

This procedure is different from the tableau based stepwise satisfiability decision
procedure. Before adding a new node of deterministic tableau This procedure
checks unrealizability of it by proof system. The usage of proof system can omit
cost of deterministic tableau and reduce the size of deterministic tableau. This
implementation uses MiniSat for satisfiability checking [3,13].

7 Experiment

This section evaluates the implemented stepwise satisfiability checker by exper-
iments. This experiments uses the following PC in which OS is Vine Linux 4.1,
CPU is Intel(R) Pentium(R) Dual-Core CPU E5200 2.50GHz and memory size
is 4GB. In the following, x, x1, x2, . . . are input propositions and y,y1, y2, . . .
are output propositions.

(1) The following formulas appear in Section 5.2 They are unrealizable [12].

1. �(x1 → y) ∧ �(x2 → ¬y)
2. �(x1 → y) ∧ �(x2 → ¬y)
3. (x1Wx2)→ y) ∧ (y → (x1Wx2)
4. (♦x→ y) ∧ (y → ♦x)
5. (�x→ ♦y) ∧ (♦y → �x)

The result of the stepwise satisfiability checker is that all formulas are unre-
alizable. It takes less than one second and the proof system decides unreal-
izability of these formulas in the procedure.

Stepwise Satisfiability Checking Procedure 297

(2) The following temporal formula is a specification of a three floor elevator
control system. The proposed procedure cannot decide that specification
is stepwisely satisfiable or unrealizable because checking this specification
requires a large size of deterministic tableau.

�((y1 ∧ ¬y2 ∧ ¬y3) ∨ (y2 ∧ ¬y1 ∧ ¬y3) ∨ (y3 ∧ ¬y1 ∧ ¬y2))
�(x1 → (♦y1 ∧ y7W(y1 ∧ y7))) ∧ �((y1 ∧ y7)→ (y5 ∧ y1Wy4))
�((y1 ∧ y4)→ (¬y7Wx1)) ∧ �((y1 ∧ ¬y7)→ ¬y5))
�((y1 ∧ y9)→ ¬(¬y2Wy3)) ∧ �((x2 → ♦y2) ∧ ¬y8W(y2 ∧ y8))
�((y2 ∧ y8)→ (y5 ∧ y2Wy4)) ∧ �((y2 ∧ ¬y8)→ ¬y5)
�((y2 ∧ y4)→ (¬y8Wx2)) ∧ �(x3 → (♦y3 ∧ (y9W(y3 ∧ y9))))
�((y3 ∧ y9)→ (y5 ∧ y3Wy4)) ∧ �((y3 ∧ ¬y9)→ ¬y5)
�((y3 ∧ y4)→ (¬y9Wx3)) ∧ �((y3 ∧ y7)→ ¬(¬y2Wy1))
�(y5 → (¬y4W¬y5)) ∧ �(¬y5 → (y4Wy5))
�(y5 → ♦y10) ∧ �((x4 ∧ ¬y10)→ y6)
�(y10 → ¬y5) ∧�((x5 ∧ ¬y6)→ ¬y5) ∧�((y6 ∧ ¬y4)→ y5)

(3) Within 1 second, this procedure can check unrealizability of the specification
that is obtained by exchanging input and output propositions in the previ-
ous specification. This fast decision depends on the proposed proof system.
Although this result does not seem inconsistent with the result of (2), the
result of (3) does not directly deduce the property of (2).

(4) The specification of (2) is difficult for unrealizability or stepwise satisfiability
check. Some parts of the previous specification are checked in this experi-
ment.

�((y1 ∧ ¬y2 ∧ ¬y3) ∨ (y2 ∧ ¬y1 ∧ ¬y3) ∨ (y3 ∧ ¬y1 ∧ ¬y2))
�(x1 → (♦y1 ∧ y7W(y1 ∧ y7))) ∧ �((y1 ∧ y7)→ (y5 ∧ y1Wy4))
�((y1 ∧ y4)→ (¬y7Wx1))

This procedure decides that this formula is stepwisely satisfiable in 2567
seconds.

8 Conclusion

This paper proposed a proof system of unrealizability of open reactive system
specification and proved soundness of the proof system. This proof system can
decide unrealizability of a specification fast, but it cannot always decide unre-
alizability. This paper implemented stepwise satisfiability checking procedure,
which consists of the tableau method and the proof system. This stepwise sat-
isfiability checking procedure can decide that a specification is unrealizable or
that a specification is stepwisely satisfiable. This procedure is incomplete for un-
realizability checking or stepwise satisfiability checking. However, this procedure
can decide the property of specification realizability. The experiment showed
that the procedure can decide very fast that several specifications are unrealiz-
able or stepwisely satisfiable. One of the future works is to improve the decision
procedure for unrealizability or stepwise satisfiability.

298 Y. Neya and N. Yoshiura

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Specifications of
Reactive Systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M.
(eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller Synthesis for MTL Specifications.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464.
Springer, Heidelberg (2006)

3. Eén, N., Mishchenko, A., Sörensson, N.: Applying Logic Synthesis for Speeding Up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007)

4. Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and
Models of Concurrent Systems. NATO Advanced Summer Institutes, vol. F-13,
pp. 477–498 (1985)

5. Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open Systems in
Reactive Environments: Control and Synthesis. In: Palamidessi, C. (ed.) CONCUR
2000. LNCS, vol. 1877, pp. 92–107. Springer, Heidelberg (2000)

6. Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic. In: Pro-
ceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, pp.
188–197 (2005)

7. Pnueli, A., Rosner, R.: On the Synthesis of an Asynchronous Reactive Module. In:
Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)

8. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proc. 16th Ann.
ACM Symp. on the Principle of Programming Languages, pp. 179–190 (1989)

9. Mori, R., Yonezaki, Y.: Derivation of the Input Conditional Formula from a Reac-
tive System Specification in Temporal Logic. In: Langmaack, H., de Roever, W.-P.,
Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 567–582.
Springer, Heidelberg (1994)

10. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. North-Holland, Amsterdam
(1990)

11. Wolper, P.: Temporal Logic can be more expressive. Informaition and Control 56,
72–93 (1983)

12. Yoshiura, N.: Decision Procedures for Several Properties of Reactive System Spec-
ifications. In: Futatsugi, K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS,
vol. 3233, pp. 154–173. Springer, Heidelberg (2004)

13. The MiniSat Page, http://minisat.se/
14. Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In:

Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

15. Duer-Luts, A.: LTL translation improvements in Spot. In: The 5th International
Workshop on Verification and Evaluation of Computer and Communication Sys-
tems (2011)

http://minisat.se/

Equational Abstraction Refinement

for Certified Tree Regular Model Checking

Yohan Boichut1, Benoit Boyer4, Thomas Genet2, and Axel Legay3

1 LIFO - Université Orléans, France
2 IRISA - Université Rennes 1, France

3 INRIA - Rennes, France
4 VERIMAG - Université Joseph Fourier, France

Abstract. Tree Regular Model Checking (TRMC) is the name of a fam-
ily of techniques for analyzing infinite-state systems in which states are
represented by trees and sets of states by tree automata. The central
problem is to decide whether a set of bad states belongs to the set of
reachable states. An obstacle is that this set is in general neither regular
nor computable in finite time.

This paper proposes a new CounterExample Guided Abstraction Re-
finement (CEGAR) algorithm for TRMC. Our approach relies on a new
equational-abstraction based completion algorithm to compute a regular
overapproximation of the set of reachable states in finite time. This set is
represented byR/E-automata, a new extended tree automaton formalism
whose structure can be exploited to detect and remove false positives in an
efficientmanner. Our approach has been implemented in TimbukCEGAR,
a new toolset that is capable of analyzing Java programs by exploiting an
elegant translation from the Java byte code to term rewriting systems.
Experiments show that TimbukCEGAR outperforms existing CEGAR-
based completion algorithms. Contrary to existing TRMC toolsets, the
answers provided by TimbukCEGAR are certified by Coq, which means
that they are formally proved correct.

1 Introduction

Infinite-state models are often used to avoid potentially artificial assumptions on
data structures and architectures, e.g. an artificial bound on the size of a stack
or on the value of an integer variable. At the heart of most of the techniques
that have been proposed for exploring infinite state spaces, is a symbolic repre-
sentation that can finitely represent infinite sets of states. In this paper, we rely
on Tree Regular Model Checking (TRMC) [19,31], and assume that states of the
system are represented by trees and sets of states by tree automata. The tran-
sition relation of the system is represented by a set of rewriting rules. Contrary
to approaches that are dedicated to specific applications, TRMC is generic and
expressive enough to describe a broad class of communication protocols [4], vari-
ous C programs [16] with complex data structures, multi-threaded programs [34],
cryptographic protocols [26,28,5], and Java [13].

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 299–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 Y. Boichut et al.

In TRMC, the central objective is to decide whether a set of states repre-
senting some state property belongs to the set of reachable states. An obstacle
is that this set is in general neither regular nor computable in a finite time.
Most existing solutions rely on computing the transitive closure of the transi-
tion relation of the systems through heuristic-based semi-algorithms [31,4], or
on the computation of some regular abstraction of the set of reachable states
[19,16]. While the first approach is precise, it is acknowledged to be ineffective
on complex systems. This paper focuses on the second approach.

The first abstraction-based technique for TRMC, Abstract Tree Regular Model
Checking (ATRMC), was proposed by Bouajjani et al [17,15,16]. ATRMC com-
putes sequences of automata by successive applications of the rewriting relation
to the automaton representing the initial set of states. After each computation
step, techniques coming from predicate abstraction are used to over-approximate
the set of reachable states. If the property holds on the abstraction, then it also
holds on the concrete system. Otherwise, a counter-example is detected and
the algorithm has to decide if it is a false positive or not. In case of a spuri-
ous counter-example, the algorithm refines the abstraction by backward prop-
agation of the set of rewriting rules. The approach, which may not terminate,
proceeds in a CounterExample Guided Abstraction Refinement fashion by suc-
cessive abstraction/refinement until a decision can be taken. The approach has
been implemented in a toolset capable, in part, to analyse C programs.

Independently, Genet et al. [24] proposed Completion that is another tech-
nique to compute an over-approximation of the set of reachable states. Comple-
tion exploits the structure of the term rewriting system to add new transitions
in the automaton and obtain a possibly overapproximation of the set of one-step
successor states. Completion leads to a direct application of rewriting rules to
the automaton, while other approaches rely on possibly heavy applications of
sequences of transducers to represent this step. Completion alone may not be
sufficient to finitely compute the set of reachable states. A first solution to this
problem is to plug one of the abstraction techniques implemented in ATRMC.
However, in this paper, we prefer another solution that is to apply equational
abstraction [33]. There, the merging of states is induced by a set of equations
that largely exploit the structure of the system under verification and its cor-
responding TRS, hence leading to accurate approximations. We shall see that,
initially, such equations can easily be derived from the structure of the system.
Later, they are refined automatically with our procedure without manual in-
tervention. Completion with equational abstraction has been applied to very
complex case studies such as the verification of (industrial) cryptography pro-
tocols [26,28] and Java bytecode applications [13]. CEGAR algorithms based on
equational-abstraction completion exist [11,12], but are known to be inefficient.

In this paper, we design the first efficient and certified CEGAR framework
for equational-abstraction based completion algorithm. Our approach relies on
R/E-automata, that is a new tree automaton formalism for representing sets
of reachable states. In R/E -automata, equational abstraction does not merge
states, but rather links them with rewriting rules labeled with equations.

Equational Abstraction Refinement for Certified TRMC 301

Such technique is made easy by exploiting the nature of the completion step.
During completion steps, such equations are propagated, and the information
can be used to efficiently decide whether a set of terms is reachable from the set
of initial states. If the procedure concludes positively, then the term is indeed
reachable. Else, one has to refine the R/E-automaton and restart the process
again.

Our approach has been implemented in TimbukCEGAR. (T)RMC toolsets re-
sult from the combination of several libraries, each of them being implemented
with thousands of lines of code. It is thus impossible to manually prove that
those tools deliver correctly answers. A particularity of TimbukCEGAR is that
it is certified. In order to ensure that the whole set of reachable states has been
explored, any TRMC technique needs to check whether a candidate overapprox-
imation B is indeed a fixed point, that is if L(B) ⊇ R∗(L(A)). Such check has
been implemented in various TRMC toolsets, but there is no guarantee that it
behaves correct. In [20], a checker for tree automata completion was designed and
proved correct using the Coq [9] proof assistant. Any automaton B that passes
the checker can be claimed to formally satisfy the fixed point. TimbukCEGAR
implements an extension of [20] for R/E-automata, which means that the tool
delivers correct answers. Our TimbukCEGAR is capable, in part, of analyzing
Java programs by exploiting a elegant translation from the Java bytecode to
term rewriting systems. Experiments show that TimbukCEGAR outperforms
existing CEGAR-based completion algorithms by orders of magnitude.

Related Work. Regular Model Checking (RMC) was first applied to compute
the set of reachable states of systems whose configurations are represented by
words [18,14,22]. The approach was then extended to trees and applied to very
simple case studies [4,19]. Other regular model checking works can be found
in [2,3], where an abstraction of the transition relation allows to exploit well-quasi
ordering for finite termination. Such techniques may introduce false positives;
a CEGAR approach exists for the case of finite word [1], but not for the one
of trees. Learning techniques apply to RMC [38,39] but trees have not yet been
considered. We mention that our work extends equational abstractions [33,37]
with counter-example detection and refinement. We mention the existence of
other automata-based works that can handle a specific class of system [34].
CEGAR principles have been implemented in various tools such as ARMC [35]
or SLAM [7]. Those specific tools are more efficient than our approach. On the
other hand, RMC and rewriting rules offers a more general framework in where
the abstraction and the refinements can be computed in a systematic manner.

Structure of the Paper. Section 2 introduces the basic definitions and con-
cepts used in the paper. TRMC and Completion are introduced in Section 3.
R/E-automata are introduced in Section 4. A new completion procedure is then
defined in Section 5. Section 6 proposes a CEGAR approach for TRMC and
Completion. Section 7 presents TimbukCEGAR. Section 8 concludes the pa-
per and discusses future research. Due to space constraints proofs are reported
in [10].

302 Y. Boichut et al.

2 Background

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [6,21,30]). Let F be a finite set of
symbols, each associated with an arity function, and let X be a countable set of
variables. T (F ,X) denotes the set of terms and T (F) denotes the set of ground
terms (terms without variables). The set of variables of a term t is denoted
by Var(t). A substitution is a function σ from X into T (F ,X), which can be
uniquely extended to an endomorphism of T (F ,X). A position p for a term t is
a word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if t ∈ X
and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} otherwise. If
p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes the
term obtained by replacement of the subterm t|p at position p by the term s.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X), l �∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear
(resp. right-linear) if each variable of l (resp. r) occurs only once in l. A TRS R
is left-linear if every rewrite rule l→ r of R is left-linear. A TRS R is said to be
linear iff R is left-linear and right-linear. The TRS R induces a rewriting relation
→R on terms as follows. Let s, t ∈ T (F ,X) and l → r ∈ R, s→R t denotes that
there exists a position p ∈ Pos(s) and a substitution σ such that s|p = lσ and
t = s[rσ]p. The reflexive transitive closure of →R is denoted by →∗

R and s→!
R t

denotes that s →∗
R t and t is irreducible by R. The set of R-descendants of a

set of ground terms I is R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗
R t}. An equation

set E is a set of equations l = r, where l, r ∈ T (F ,X). The relation =E is the
smallest congruence such that for all substitution σ we have lσ = rσ. Given a
TRS R and a set of equations E, a term s ∈ T (F) is rewritten modulo E into
t ∈ T (F), denoted s →R/E t, if there exist s′ ∈ T (F) and t′ ∈ T (F) such that
s =E s′ →R t′ =E t. Thus, the set of R-descendants modulo E of a set of ground
terms I is R/E

∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s→∗
R/E t}.

Let Q be a finite set of symbols with arity 0, called states, such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations. A transition is a rewrite rule c→ q,
where c is a configuration and q is state. A transition is normalized when
c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q . A ε-transition is
a transition of the form q → q′ where q and q′ are states. A bottom-up nonde-
terministic finite tree automaton (tree automaton for short) over the alphabet
F is a tuple A = 〈F ,Q ,QF , Δ〉, where QF ⊆ Q , Δ is a set of normalized
transitions and ε-transitions. The transitive and reflexive rewriting relation on
T (F ∪Q) induced by all the transitions of A is denoted by →∗

A. The tree lan-
guage recognized by A in a state q is L(A, q) = {t ∈ T (F) | t→∗

A q}. We define
L(A) =

⋃
q∈QF

L(A, q).

3 Tree Regular Model Checking with Completion

We first introduce Tree Regular Model Checking (TRMC), a tree automata based
framework to represent possibly infinite-state systems. In TRMC, a program is

Equational Abstraction Refinement for Certified TRMC 303

represented by a tuple (F ,A,R), where F is an alphabet on which a set of terms
T (F) can be defined; A is the tree automaton representing a possibly infinite
set of configurations I, and R is a set of term rewriting rules that represent a
transition relation Rel. We consider the following problem.

Definition 1 (Reachability Problem (RP)). Consider a program (F ,A,R)
and a set of bad terms Bad. The Reachability Problem consists in checking
whether there exists a term of R∗(L(A)) that belongs to Bad.

For finite-state systems, computing the set of reachable terms (R∗(L(A))) re-
duces to enumerating the terms that can be reached from the initial set of con-
figurations. For infinite-state systems, acceleration-based methods are needed
to perform this possibly infinite enumeration in a finite time. In general, such
accelerations are not precise and the best one can obtain is an R-closed approx-
imation A∗

R. A tree automaton A∗
R is R-closed if for all terms s, t ∈ T (F) such

that s→R t and s is recognized by A∗
R into state q then so is t. It is easy to see

that if A∗
R is R-closed and L(A∗

R) ⊇ L(A), then L(A∗
R) ⊇ R∗(L(A)). A wide

range of acceleration techniques have been developed, most of them have been
discussed in Section 1. Here, we focus on Completion [24], whose objective is to
computes successive automata A0

R = A,A1
R,A

2
R, . . . that represent the effect of

applying the set of rewriting rules to the initial automaton. To compute infinite
sets in a finite time, each completion step is followed by a widening operator.
More precisely, each application of R, which is called a completion step, consists
in searching for critical pairs 〈t, q〉 with s →R t, s →∗

A q and t �→∗
A q. The idea

being that the algorithm solves the critical pair by building from Ai
R, a new

tree automaton Ai+1
R with the additional transitions that represent the effect

of applying R. As the language recognized by A may be infinite, it is not pos-
sible to find all the critical pairs by enumerating the terms that it recognizes.
The solution that was promoted in [24] consists in applying sets of substitu-
tions σ : X
→ Q mapping variables of rewrite rules to states that represent
infinite sets of (recognized) terms. Given a tree automaton Ai

R and a rewrite
rule l → r ∈ R, to find all the critical pairs of l → r on Ai

R, completion uses a
matching algorithm [23] that produces the set of substitutions σ : X
→ Q and
states q ∈ Q such that lσ →∗

Ai
R
q and rσ �→∗

Ai
R
q. Solving critical pairs thus

consists in adding new transitions: rσ → q′ and q′ → q. Those new transitions
may have to be normalized in order to satisfy the definition of transitions of tree
automata (see [23] for details). As it was shown in [24], this operation may add
not only new transitions but also new states to the automaton. In the rest of the
paper, the completion-step operation will be represented by C, i.e., the automa-
ton obtained by applying the completion step to Ai

R is denoted C(Ai
R). Observe

that when considering right-linear rewriting rules, we have that C is precise, i.e.
it does not introduce in Ai+1

R terms that cannot be obtain from Ai
R by applying

the set of rewriting rules. Observe also that if the system is non left-linear, then
completion step may not produce all the reachable terms. Non left-linear rules
will not be considered in the present paper.

The problem is that, except for specific classes of systems [23,25], the automa-
ton representing the set of reachable terms cannot be obtained by applying a

304 Y. Boichut et al.

finite number of completion steps. The computation process thus needs to be
accelerated. For doing so, we apply a widening operator W that uses a set E
of equations1 to merge states and produce an R-closed automaton that is an
over-approximation of the set of reachable terms, i.e., an automaton A∗

R,E such
that L(A∗

R,E) ⊇ R∗(L(A)). An equation u = v is applied to a tree automaton
A as follows: for all substitution σ : X
→ Q and distinct states q1 and q2 such
that uσ →∗

A q1 and vσ →∗
A q2, states q1 and q2 are merged. Completion and

widening steps are applied, i.e., Ai+1
R,E = W(C(Ai

R,E)), until a R-closed fixpoint
A∗

R,E is found. Our approximation framework and methodology are close to the
equational abstractions of [33]. In [27], it has been shown that, under some as-
sumptions, the widening operator may be exact, i.e., does not add terms that
are not reachable.

Example 1. LetR = {f(x)→ f(s(s(x)))} be a rewriting system, E = {s(s(x)) =
s(x)} be an equation, and A = 〈F ,Q ,QF , Δ〉 be a tree automaton with QF =
{q0} and Δ = {a→ q1, f(q1)→ q0}, i.e. L(A) = {f(a)}.
The first completion step finds the following critical pair:
f(q1)→∗

A q0 and f(s(s(q1))) �→∗
A q0. Hence, the completion

algorithm produces A1
R = C(A) having all transitions of A

plus {s(q1)→ q2, s(q2)→ q3, f(q3)→ q4, q4 → q0} where

s(s(q1))

A1
R ∗
��

s(q1)

∗ A1
R

��
q3 q2

q2, q3, q4 are new states produced by normalization of f(s(s(q1)))→ q0. Applying
W with the equation s(s(x)) = s(x) on A1

R is equivalent to rename q3 into q2. The
set of transitions of A1

R,E is thus Δ ∪ {s(q1)→ q2, s(q2)→ q2, f(q2)→ q4, q4 →
q0}. Completion stops on A1

R,E that is R-closed, and thus A∗
R,E = A1

R,E .

Observe that if the intersection between A∗
R,E and Bad is not empty, then it does

not necessarily mean that the system does not satisfy the property. Consider
a set Bad = {f(s(a)), f(s(s(a)))}, the first term of this set is not reachable
from A, but the second is. There is thus the need to successively refine the R-
closed automaton. The latter can be done by using a CounterExample Guided
Abstraction Refinement algorithm (CEGAR). Developing such an algorithm for
completion and equational abstraction is the objective of this paper.

4 R/E-Automata

Existing CEGAR approaches [17,15,16,11] check for spurious counter examples
by performing a sequence of applications of the rewriting rules to A∗

R,E . To
avoid this potentially costly step, we suggest to replace the merging of states by
the addition of new rewriting rules giving information on the merging through
equations. Formally:

Definition 2 (R/E-automaton). Given a TRS R and a set E of equations,
an R/E-automaton A is a tuple 〈F ,Q ,QF , Δ∪εR∪εE〉. Δ is a set of normalized

1 Those equations have to be provided by the user. In many cases, they can be pro-
duced when formalizing the problem in the TRMC framework [37]. The situation is
similar for the predicates used in [17,15,16].

Equational Abstraction Refinement for Certified TRMC 305

transitions. εE is a set of ε-transitions. εR is a set of ε-transitions labeled by
, or conjunctions over predicates of the form Eq(q, q′) where q, q′ ∈ Q, and
q → q′ ∈ εE.

Set εR is used to distinguish a term from its successors that has been obtained
by applying one or several rewriting rules. Instead of merging states according
to the set of equations, A links them with epsilon transitions in εE . During the
completion step, when exploiting critical pairs, the combination of transitions in
εE generates transition in εR that are labeled with a conjunction of equations
representing those transitions in εE . In what follows, we use →∗

Δ to denote the
transitive and reflexive closure of Δ. Given a set Δ of normalized transitions,
the set of representatives of a state q is defined by Rep(q) = {t ∈ T (F)|t→∗

Δ q}.

Definition 3 (Run of a R/E-automaton A).

– t|p = f(q1, . . . , qn) and f(q1, . . . , qn)→ q ∈ Δ then t
�−→A t[q]p

– t|p = q and q → q′ ∈ εE then t
Eq(q,q′)−−−−−→A t[q′]p

– t|p = q and q
α−→ q′ ∈ εR then t

α−→A t[q′]p

– u
α−→A v and v

α′
−→A w then u

α∧α′
−−−→A w

Theorem 1. ∀t ∈ T (F ∪Q), q ∈ Q , t
α−→A q ⇐⇒ t→∗

A q

A run
α−→ abstracts a rewriting path of→R/E . If t

α−→ q, then there exists a term
s ∈ Rep(q) such that s→∗

R/E t. The formula α denotes the subset of transitions
of εE needed to recognize t into q.

Example 2. Let I = f(a) be an initial set of terms, R = {f(c) → g(c), a → b}
be a set of rewriting rules, and E = {b = c} be a set of equations. We build A
an overapproximation automaton for R∗(I), using E.

Thanks to ε-transitions, the automaton A repre-
sented in Fig. 1 contains some information about
the path used to reach terms using R and E. Each
state has a representative term from which others
are obtained. The equality b = c is represented by
the two transitions qc → qb and qb → qc of εE ,
taking into account that b and c are the repre-
sentatives terms for states qb and qc, respectively.
Consider now State qc, Transition qb → qc indi-
cates that the term b is obtained from Term c by
using the equality. Conversely, Transition qc → qb
leads to the conclusion that Term c is obtained
from Term b.

qf qg

f(qa) g(qc)

qa qb qc

a b c

Eq(qc, qb)

$

=

=

Fig. 1. Automaton A

306 Y. Boichut et al.

The transition qb → qa denotes that the term b is a descendant of a by rewriting.

Using Definition 3, the runs f(c)
Eq(qc,qb)−−−−−−→ qf indicates that to obtain f(c)

from f(a) – the representative term of qf – we used the equality b = c, which
is obtained from qc → qb. We indeed observe f(a) →R f(b) =E f(c). If we
now consider the transition qg → qf we labeled the transition with the formula
Eq(qc, qb). To reach g(c) from f(a), we rewrite f(c). We have seen this term is
reachable thanks to the equivalence relation induced by b = c. By transitivity,
this equivalence is also used to reach the term g(c). We thus label the transition

of εR to save this information. We obtain the run g(c)
Eq(qc,qb)−−−−−−→ qf . We observe

that the transition qb → qa is labeled by the formula , since b is reachable
from a without any equivalence. By congruence, so is f(b) from f(a). The run

f(b)
�−→ qf denotes it.

We now introduce a property that will be used in the refinement procedure
to distinguish between counter-examples and false positives.

Definition 4 (A well-defined R/E-automaton). A is a well-defined R/E-
automaton, if :

– For all states q of A, and all terms v such that v
�−→A q, there exists u a

term representative of q such that u→∗
R v

– If q
φ−→ q′ is a transition of εR, then there exist terms s, t ∈ T (F) such that

s
φ→A q, t

�→A q′ and t→R s.

The first item in Definition 4 guarantees that every term recognized by using
transitions labeled with the formula , is indeed reachable from the initial set.
The second item is used to refine the automaton. A rewriting step of →R/E

denoted by q
φ−→ q′ holds thanks to some transitions of εE that occurs in φ. If we

remove transitions in εE in such a way that φ does not hold, then the transition

q
φ−→ q′ should also be removed.
According to the above construction, a term t that is recognized by using at

least a transition labeled with a formula different from , can be removed from
the language of the R/E -automaton by removing some transitions in εE . This
“pruning” operation will be detailed in Section 6.

5 Solving the Reachability Problem with R/E-Automaton

In this section, we extend the completion and widening principles introduced
in Section 3 to take advantage of the structure of R/E−automata. We con-
sider an initial set I that can be represented by a tree automaton A0

R,E =

〈F ,Q0,QF , Δ
0〉, and transition relation represented by a set of linear rewriting

rules R. In the next section, we will see that the right-linearity condition may
be relaxed using additionnal hypotheses. We compute successive approximations
Ai

R,E = 〈F ,Q i,Qf , Δ
i∪εiR∪εiE〉 from A0

R,E using Ai+1
R,E = W(C(Ai

R,E)). Observe

that A0
R,E is well-defined as the sets ε0R and ε0E are empty.

Equational Abstraction Refinement for Certified TRMC 307

5.1 The Completion Step C

Extending completion to R/E -automaton requires to modify the concept of crit-
ical pair and so the algorithm to compute them. A critical pair for a R/E-

automaton is a triple 〈rσ, α, q〉 such that lσ → rσ, lσ
α−→Ai

R,E
q and there is no

formula α′ such that rσ
α′
−→Ai

R,E
q. The resolution of such a critical pair consists

of adding to C(Ai
R,E) the transitions to obtain rσ

α−→C(Ai
R,E) q. This is followed

by a normalization step Norm whose definition is similar to the one for classical
tree automata.

Definition 5 (Normalization). The normalization is done in two mutually
inductive steps parametrized by the configuration c to recognize, and by the set
of transitions Δ to extend. Let QΔ

new be a set of (new) states not occurring in Δ.⎧⎪⎨⎪⎩
Norm(c, Δ) = Slice(d,Δ), for one d s.t. c→∗

Δ d, with c, d ∈ T (F ∪ Q)
Slice(q,Δ) = Δ, q ∈ Q

Slice(f(q1, . . . , qn),Δ) = Δ ∪ {f(q1, . . . , qn)→ q}, qi ∈ Q and one q ∈ QΔ
new

Slice(f(t1, . . . , tn),Δ) = Norm(f(t1, . . . , tn), Slice(ti,Δ)),∃ti ∈ T (F ∪Q) \Q

Definition 6 (Resolution of a critical pair). Given a R/E-automaton A =
〈F ,Q ,Qf , Δ ∪ εR ∪ εE〉 and a critical pair p = 〈rσ, α, q〉, the resolution of p on
A is the R/E-automaton A′ = 〈F ,Q ′,Qf , Δ

′ ∪ ε′R ∪ εE〉 where
– Δ′ = Δ ∪ Norm(rσ,Δ \Δ0);

– ε′R = εR ∪ {q′ α−→ q} where q′ is the state such that rσ →Δ′\Δ0
q′;

– Q ′ is the union of Q with the set of states added when creating Δ′.

Note that Δ0, the set of transitions of A0
R, is not used in the normalization pro-

cess. This is to guarantee that A′ is well-defined. The R/E-automaton C(Ai
R,E)

is obtained by recursively applying the above resolution principle to all critical
pairs p of the set of critical pairs between R and Ai

R,E .
The set of all critical pairs is obtained by solving the matching problems l� q

for all rewrite rules l→ r ∈ R and all states q ∈ Ai
R,E. Solving l�q is performed

in two steps. First, one computes S, that is the set of all pairs (α, σ) such that

α is a formula, σ is a substitution of X
→ Q i, and lσ
α−→ q. The formula α is a

conjunction of Predicates Eq(q′, q′′) that denotes the used transitions of εE to
rewrite lσ in q, in accordance with Definition 3. Due to space constraints the
algorithm, which always terminates, can be found in [10].

Second, after having computed S for l � q, we identify elements of the set
that correspond to critical pairs. By definition of S, we know that there exists a

transition lσ
α−→Ai

R,E
q for (α, σ) ∈ S. If there exists a transition rσ

α′
−→Ai

R,E
q,

then rσ has already been added to Ai
R,E . If there does not exist a transition of

the form rσ
α′
−→Ai

R,E
q, then 〈rσ, α′, q〉 is a critical pair to solve on Ai

R,E. The

following theorem shows that our methodology is complete.

Theorem 2. If Ai
R,E is well-defined then so is C(Ai

R,E), and ∀q ∈ Q i, ∀t ∈
L(Ai

R,E , q), ∀t′ ∈ T (F), t→R t′ =⇒ t′ ∈ L(C(Ai
R,E), q).

308 Y. Boichut et al.

Example 3. Let R = {f(x) → f(s(s(x)))} be a set of rewriting rules and
A0

R,E = 〈F ,Q ,QF , Δ
0〉 be a tree automaton such that QF = {q0} and Δ0 =

{a → q1, f(q1) → q0}. The solution of the matching problem f(x) � q0 is

S = {(σ, φ)}, with σ = {x→ q1} and φ = ,. Hence, since f(s(s(q1))) �
�−→A0

R,E
q0,

〈f(s(s(q1))),,, q0〉 is the only critical pair to be solved. So, we have C(A0
R,E) =

〈F ,Q1,QF , Δ
1 ∪ ε1R ∪ ε0E〉, with:

Δ1 = Norm(f(s(s(q1))), ∅) ∪Δ0 = {s(q1)→ q2, s(q2)→ q3, f(q3)→ q4} ∪Δ0,

ε1R={q4 �−→ q0}, since f(s(s(q1)))→Δ1\Δ0 q4, ε
0
E=∅ andQ1={q0, q1, q2, q3, q4}.

Observe that if C(Ai
R,E) = Ai

R,E , then we have reached a fixpoint.

5.2 The Widening Step W

Consider a R/E -automaton A = 〈F ,Q ,Qf , Δ ∪ εR ∪ εE〉, the widening consists
in computing a R/E -automaton W(A) that is obtained from A by using E.

For each equation l = r in E, we consider all pair (q, q′) of distinct
states of Q i such that there exists a substitution σ to obtain the
following diagram. Observe that

=−→A, the transitive and reflexive
rewriting relation induced by Δ∪εE , defines particular runs which
exclude transitions of εR. This allows us to build a more accurate
approximation. The improvement in accurary is detailed in [27].

lσ
E

=A

��

rσ

=A
��

q q′

Intuitively, if we have u
=−→A q, then we know that there exists a term

t of Rep(q) such that t =E u. The automaton W(A) is given by the tuple
〈F ,Q ,Qf , Δ ∪ εR ∪ ε′E〉, where ε′E is obtained by adding the transitions q → q′

and q′ → q to εE (for each pair (q, q′)).

Theorem 3. Assuming that A is well-defined, we have A syntactically included
in W(A), and W(A) is well-defined.

Example 4. Consider the R/E-automaton C(A0
R,E) given in Example 3.

Using Equation s(s(x)) = s(x), we compute A1
R,E =

W(C(A0
R,E)). We have σ = {x
→ q1} and the following

diagram.We then obtain A1
R,E = 〈F ,Q1,Qf , Δ

1∪ε1R∪
ε1E〉, where ε1E = ε0E ∪{q3 → q2, q2 → q3} and ε0E = ∅.

s(s(q1))
E

=C(A0
R,E)

��

s(q1)

=C(A0
R,E)

��
q3 q2

Observe that A1
R,E is a fixpoint, i.e., C(A1

R,E) = A1
R,E.

6 A CEGAR Procedure for R/E-Automata

LetR be a TRS, I be a set of initial terms characterized by the R/E−automaton
A0

R,E and Bad the set of forbidden terms represented by ABad. We now complete
our CEGAR approach by proposing a technique that checks whether a term is
indeed reachable from the initial set of terms. If the term is a spurious counter-
example i.e. a counter-example of the approximation, then it has to be removed

Equational Abstraction Refinement for Certified TRMC 309

from the approximation automatically, else one can deduce that the involved
term is actually reachable.

Let Ak
R,E = 〈F ,Qk,Qf , Δ

k ∪ εkR ∪ εkE〉 be a R/E-automaton obtained after k

steps of completion and widening from A0
R,E and assume that L(Ak

R,E)∩Bad �=
∅. Let SAk

R,E∩ABad
be a set of triples 〈q, q′, φ〉 where q is a final state of Ak

R,E ,

q′ is a final state of ABad and φ is a formula on transitions of εkE and such
that for each triple (q, q′, φ), the formula φ holds if and only if there exists

t ∈ L(Ak
R,E , q) ∩ L(ABad, q

′) and t
φ−→Ak

R,E
q. Note that SAk

R,E∩ABad
can be

obtained using an intersection based algorithm defined in [10]. We consider two
cases. First, as Ak

R,E is well-defined, if φ = ,, we deduce that t is indeed a reach-
able term. Otherwise, φ is a formula whose atoms are of the form Eq(qj , q

′
j), and

t is possibly a spurious counter-example, and the run t
φ−→Ak

R,E
q must be re-

moved. Refinement consists in computing a pruned version P(Ak
R,E, SAk

R,E∩ABad
)

of Ak
R,E .

Definition 7. Given an R/E−automaton A = 〈F ,Q ,QF , Δ0 ∪ Δ ∪ εR ∪ εE〉
and a set of terms specified by the automaton ABad, the prune process is defined
by

P(A, SA∩ABad
) =

⎧⎪⎪⎨⎪⎪⎩
P(A′, SA′∩ABad

) if SA′∩ABad
�= ∅ and with

A′ = Clean(A, SA∩ABad
)

A if SA∩ABad
= ∅ or there exists t ∈ Bad

s.t. t
�−→A qf and qf ∈ QF .

where Clean(A, SA∩ABad
), consists of removing transitions of εE until for each

〈qf , q′f , φ〉 ∈ SA∩ABad
, φ does not hold, i.e., φ =⊥ with qf , q

′
f respectively two

final states of A and ABad.

To replace Predicate Eq(q, q′) by ⊥ in φ, we have to remove the transition q → q′

from εE . In addition, we also have to remove all transitions q
α−→ q′ ∈ εR, where

the conjunction α contains some predicates Eq(q1, q2) whose transition q1 → q2
has been removed from εE . In general, removing Transition q → q′ may be
too rough. Indeed, assuming that there also exists a transition q′′ → q of εE ,
removing the transition q → q′ also avoids the induced reduction q′′ → q′ from
the automaton and then, unconcerned terms of q′′ are also removed. To save
those terms, Transition q′′ → q′ is added to εE , but only if it has never been
removed by a pruning step. This point is important to refine the automaton with
accuracy. The prune step is called recursively as inferred transitions may keep
the intersection non-empty.

Theorem 4. Let t ∈ Bad be a spurious counter-example. The pruning process

always terminates, and removes all the runs of the form t
φ−→ q.

310 Y. Boichut et al.

Example 5. We consider the R/E-automaton A of Example 2. It is easy to see

that A recognizes the term g(c). Indeed, by Definition 3, we have g(c)
Eq(qc,qb)−−−−−−→

qf . Consider now the rewriting path f(a) →R f(b) =E f(c) →R g(c). If we
remove the step f(b) =E f(c) denoted by the transition qc → qb, then g(c)
becomes unreachable and should also be removed. The first step in pruning A
consists thus in removing this transition. In a second step, we propagate the
information by removing all transition of εR labeled by a formula that contains
Eq(qc, qb). This is done to remove all terms obtained by rewriting with the
equivalence b =E c. After having pruned all the transitions, we observe that the
terms recognized by A are given by the set {f(a), f(b)}.

Let us now characterize the soundness and completness of our approach.

Theorem 5 (Soundness on left-linear TRS). Consider a left-linear TRS
R, a set of terms Bad, a set of equations E and a well-defined R/E−automaton
A0. Let A

∗
R,E be a fixpoint R/E-automaton of P(A′, SA′∩ABad

) and A′ = W(C(Ai))
for i ≥ 0. If L(A∗

R,E) ∩Bad = ∅, then Bad ∩R∗(L(A0)) = ∅.

Theorem 6 (Completeness on Linear TRS). Given a linear TRS R, a
set of terms Bad defined by automata ABad, a set of equations E and a well-
defined R/E−automaton A0. For any i > 0, let Ai be the R/E−automaton
obtained from Ai−1 in such a way: Ai = P(A′, SA′∩ABad

) and A′ = W(C(Ai−1)).

If Bad∩R∗(L(A0)) �= ∅ then there exists t ∈ Bad and j > 0 such that t
�→Aj qf

and qf is a final state of Aj.

This result also extends to left-linear TRS with a finite set of initial terms (car-
dinality of Rep(q) is 1 for all state q of A0).

Theorem 7 (Completeness on Left-Linear TRS). Theorem 6 extends to
left-linear TRS if for any state q of A0, the cardinality of Rep(q) is 1.

7 Implementation, Application and Certification

Our approach has been implemented in TimbukCEGAR that is an extension of
the Timbuk 3.1 toolset [29]. Timbuk is a well-acknowledged tree automata li-
brary that implements several variants of the completion approach. TimbukCE-
GAR consists of around 11000 lines of OCaml, 75% of which are common with
Timbuk 3.1. TimbukCEGAR exploits a BDD-based representation of equation
formulas through the Buddy BDD library [32].

A particularity of TimbukCEGAR is that it is certified. At the heart of any
abstraction algorithm there is the need to check whether a candidate over-
approximation B is indeed a fixed point, that is if L(B) ⊇ R∗(L(A)). Such check
has been implemented in various TRMC toolsets, but there is no guarantee that
it behaves correctly, i.e., that the TRMC toolset gives a correct answer. In [20], a
checker for tree automata completion was designed and proved correct using the
Coq [9] proof assistant. As such, any TRMC toolset that produces an automa-
ton B that passes the checker can be claimed to work properly. TimbukCEGAR

Equational Abstraction Refinement for Certified TRMC 311

implements a straightforward extension of [20] for R/E-automata, which means
that the tool delivers provably correct answers. In what follows, we describe how
Java programs can be analyzed using our approach. Both Timbuk and Tim-
bukCEGAR are available at http://www.irisa.fr/celtique/genet/timbuk/.

In a french initiative called RAVAJ [36], we have defined a generic certified
verification chain based on TRMC. This chain is composed of three main links.
The two first links rely on an encoding of the operational semantics of the pro-
gramming language as a term rewriting system and a set of rewrite rules. The
third link is a TRMC toolset, here TimbukCEGAR. With regards to classical
static analysis, the objective is to use TRMC and particularly tree automata
completion as a foundation mechanism for ensuring, by construction, safety of
static analyzers. For Java, using approximation rules instead of abstract domains
makes the analysis easier to fine-tune. Moreover, our approach relies on a checker
that certifies the answer to be correct.

We now give more details and report some experimental results. We used
Copster [8], to compile a Java .class file into a TRS. The obtained TRS mod-
els exactly a subset of the semantics2 of the Java Virtual Machine (JVM) by
rewriting a term representing the state of the JVM [13]. States are of the form
IO(st,in,out) where st is a program state, in is an input stream and out an
output stream. A program state is a term of the form state(f,fs,h,k) where
f is current frame, fs is the stack of calling frames, h a heap and k a static
heap. A frame is a term of the form frame(m,pc,s,l) where m is a fully qual-
ified method name, pc a program counter, s an operand stack and t an array
of local variables. The frame stack is the call stack of the frame currently being
executed: f. We consider the following program:

class List{
List next;
int val;
public List(int elt, List l){

next= l;
if (elt<0) val= -elt;
else val= elt;

}
public void printSum(){

List l= this;
int sum= 0;
while (l != null){

sum= sum+l.val;
l= l.next;

}
System.out.println(sum);

}}

class TestList{
public static void main(String[] argv){

List ls= null;
int x= 0;
while (x!=-1) {

try {x= System.in.read();}
catch(java.io.IOException e){};
ls= new List(x,ls);

}
ls.printSum();

}
}

Let us now check that the sum output by the program can never be equal to
zero, for all non-empty input stream of integers. The TRS generated by Copster
has 879 rules encoding both the JVM semantics and the bytecode of the above
Java program. Note that, this example is bigger than those generally used by
other TRMC techniques. The complete TRS is available with TimbukCEGAR
distribution. Initial terms are of the form IO(s,lin,nilout) where s is the

2 Essentially basic types, arithmetic, object creation, field manipulation, virtual
method invocation, as well as a subset of the String library.

http://www.irisa.fr/celtique/genet/timbuk/

312 Y. Boichut et al.

initial JVM state, lin is a non-empty unbounded list of integers and nilout is
the empty list of outputs. Starting from this initial set of terms, completion is
likely to diverge without approximations. Indeed, the program is going to allocate
infinitely many objects of class List in the heap and, furthermore, compute an
unbounded sum in the method printSum. In the heap, there is one separate heap
for each class. Each heap consists of a list of objects. For instance, in the heap
for class List, objects are stored using a list constructor stackHeapList(x,y).
Thus, to enforce termination we can approximate the heap for objects of class
List using the following equation stackHeapList(x,y)=y. The effect of this
equation is to collapse all the possible lists built using stackHeapList, hence
all the possible heaps for class List. The other equations are succ(x)=x and
pred(x)=x for approximating infinitely growing or decreasing integers.

By using those equations, TimbukCEGAR finds a counterexample. This is due
to the fact that, amongst all considered input streams, an input stream consist-
ing of a list of 0 results into a 0 sum. The solution is to restrict the initial lan-
guage to non-empty non-zero integer streams. However, refinement of equations is
needed since succ(x)=xand pred(x)=xput 0 and all the other integers in the same
equivalence class. Refining those equations by hand is hard, e.g. using equations
succ(succ(x))=succ(x) and pred(pred(x))=pred(x) is not enough to elimi-
nate spurious counterexamples.After 334 completion steps and 4 refinement steps,
TimbukCEGAR is able to complete the automaton and achieve the certified proof.
The resulting automaton produced by the tool has 3688 transitions which are pro-
duced in 128s. Then, it can be Coq-certified in 17017s. The memory usage for the
whole process does not exceed 531Mb. One of the reasons for which certifying au-
tomata produced by TimbukCEGAR takes more time than for Timbuk 3.1 is that
the checker has to normalize epsilon transitions ofR/E-automata. This is straight-
forwardbutmay cause an explosion of the size of the tree automaton to be checked.
However this can be improved a lot by defining a specific Coq-checker for R/E-
automata. It is worth mentioning that the TRS produced by Copster from Java
programs are left-linear but not right-linear. Hence, our soundness theorem ap-
plies but not the completeness theorem, since the TRS is not right-linear and the
initial language is not finite. However, here completion steps do not introduce spu-
rious counter examples. Some other examples of application can be found in [10].
Those experiments show, in particular, that the overhead due to the use of R/E-
automata in completion can be limited thanks to BDDs. As a consequence, Tim-
bukCEGAR performances are similar to those of Timbuk 3.1 when no refinement
is performed, and TimbukCEGAR outperforms the other knownCEGAR comple-
tion implementation when refinement is needed.

8 Conclusion

We have presented a new CounterExample Guided Abstraction Refinement pro-
cedure for TRMC based on equational abstraction. Our approach has been im-
plemented in TimbukCEGAR that is the first TRMC toolset certified correct.
Our approach leads, in particular, to a Java program analyzer starting from code

Equational Abstraction Refinement for Certified TRMC 313

to verification. Unlike most of existing works, our method works with the Java
semantics itself rather than with some abstract model that is statically or even
manually derived from the code. One additional feature is that the complete
verification is certified by an external proof assistant. We are convinced that our
work open news doors in application of RMC approaches to rigorous system de-
sign. One challenge for future work is definitively to consider non left-linear TRS
– a formalism that can be used to model cryptographic protocols. In [25,26,28,5],
it has been shown that an extension of the completion algorithm can lead to a
powerful verification toolset for cryptographic protocols. However, this existing
setting is still lacking an abstraction refinement procedure to be made fully au-
tomatic. On the one side, the theoretical challenge is thus to extend the CEGAR
completion to non left-linear TRS. On the other side, the technical challenge is
to extend the Coq checker to handle non left-linear TRS and R/E -automata, in
order to improve the Coq-checking time. Tackling those two goals will allow us
to propose the first certified automatic verification tool for security protocols, a
major advance in the formal verification area.

Acknowledgements. Thanks to F. Besson for his help in integrating Buddy.

References

1. Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.:
Constrained Monotonic Abstraction: A CEGAR for Parameterized Verification.
In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 86–101.
Springer, Heidelberg (2010)

2. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-
State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

3. Abdulla, P.A., Ben Henda, N., Delzanno, G., Haziza, F., Rezine, A.: Parameterized
Tree Systems. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.)
FORTE 2008. LNCS, vol. 5048, pp. 69–83. Springer, Heidelberg (2008)

4. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Simulation-Based Iteration of Tree
Transducers. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 30–44. Springer, Heidelberg (2005)

5. Avispa – a tool for Automated Validation of Internet Security Protocols,
http://www.avispa-project.org

6. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

7. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology Transfer of Formal Methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004)

8. Barré, N., Besson, F., Genet, T., Hubert, L., Le Roux, L.: Copster homepage
(2009), http://www.irisa.fr/celtique/genet/copster

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer (2004)

http://www.avispa-project.org
http://www.irisa.fr/celtique/genet/copster

314 Y. Boichut et al.

10. Boichut, Y., Boyer, B., Genet, T., Legay, A.: Fast Equational Abstraction Refine-
ment for Regular Tree Model Checking. Technical report, INRIA (2010),
http://hal.inria.fr/inria-00501487

11. Boichut, Y., Courbis, R., Héam, P.-C., Kouchnarenko, O.: Finer Is Better: Ab-
straction Refinement for Rewriting Approximations. In: Voronkov, A. (ed.) RTA
2008. LNCS, vol. 5117, pp. 48–62. Springer, Heidelberg (2008)

12. Boichut, Y., Dao, T.-B.-H., Murat, V.: Characterizing Conclusive Approximations
by Logical Formulae. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945,
pp. 72–84. Springer, Heidelberg (2011)

13. Boichut, Y., Genet, T., Jensen, T., Le Roux, L.: Rewriting Approximations for Fast
Prototyping of Static Analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)

14. Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large (Extended
Abstract). In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
223–235. Springer, Heidelberg (2003)

15. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking. ENTCS 149(1), 37–48 (2006)

16. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree
Model Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006)

17. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

18. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

19. Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 539–554. Springer, Heidelberg
(2002)

20. Boyer, B., Genet, T., Jensen, T.: Certifying a Tree Automata Completion Checker.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 523–538. Springer, Heidelberg (2008)

21. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008)

22. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. Journal of Logic and
Algebraic Programming (JLAP) 52-53, 109–127 (2002)

23. Feuillade, G., Genet, T., Viet Triem Tong, V.: Reachability Analysis over Term
Rewriting Systems. Journal of Automated Reasonning 33(3-4), 341–383 (2004)

24. Genet, T.: Decidable Approximations of Sets of Descendants and Sets of Normal
Forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer,
Heidelberg (1998)

25. Genet, T.: Reachability analysis of rewriting for software verification. Université
de Rennes 1, Habilitation (2009)

26. Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 271–290. Springer,
Heidelberg (2000)

27. Genet, T., Rusu, R.: Equational tree automata completion. JSC 45 (2010)
28. Genet, T., Tang-Talpin, Y.-M., Viet Triem Tong, V.: Verification of Copy Protec-

tion Cryptographic Protocol using Approximations of Term Rewriting Systems.
In: WITS 2003 (2003)

http://hal.inria.fr/inria-00501487

Equational Abstraction Refinement for Certified TRMC 315

29. Genet, T., Viet Triem Tong, V.: Timbuk 2.0 – a Tree Automata Library.
IRISA/Université de Rennes 1 (2001),
http://www.irisa.fr/celtique/genet/timbuk/

30. Gilleron, R., Tison, S.: Regular tree languages and rewrite systems. Fundamenta
Informaticae 24, 157–175 (1995)

31. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic Model Check-
ing with Rich Assertional Languages. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 424–435. Springer, Heidelberg (1997)

32. Lind-Nielsen, J.: Buddy 2.4 (2002), http://buddy.sourceforge.net
33. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. TCS 403,

239–264 (2008)
34. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of Multithreaded Dynamic

and Recursive Programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 254–257. Springer, Heidelberg (2007)

35. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

36. Ravaj: Rewriting and Approximations for Java Applications Verification,
http://www.irisa.fr/celtique/genet/RAVAJ

37. Takai, T.: A Verification Technique Using Term Rewriting Systems and Abstract
Interpretation. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 119–133.
Springer, Heidelberg (2004)

38. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using Language Inference to
Verify Omega-Regular Properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005)

39. Vardhan, A., Viswanathan, M.: LEVER: A Tool for Learning Based Verification.
In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 471–474. Springer,
Heidelberg (2006)

http://www.irisa.fr/celtique/genet/timbuk/
http://buddy.sourceforge.net
http://www.irisa.fr/celtique/genet/RAVAJ

SMT-Based False Positive Elimination
in Static Program Analysis

Maximilian Junker1, Ralf Huuck2, Ansgar Fehnker2, and Alexander Knapp3

1 Technische Universität München, Munich, Germany
junkerm@in.tum.de

2 NICTA, University of New South Wales, Sydney, Australia
{ansgar.fehnker,ralf.huuck}@nicta.com

3 Universität Augsburg, Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract. Static program analysis for bug detection in large C/C++ projects typ-
ically uses a high-level abstraction of the original program under investigation.
As a result, so-called false positives are often inevitable, i.e., warnings that are
not true bugs. In this work we present a novel abstraction refinement approach
to automatically investigate and eliminate such false positives. Central to our ap-
proach is to view static analysis as a model checking problem, to iteratively com-
pute infeasible sub-paths of infeasible paths using SMT solvers, and to refine our
models by adding observer automata to exclude such paths. Based on this new
framework we present an implementation of the approach into the static analyzer
Goanna and discuss a number of real-life experiments on larger C code projects,
demonstrating that we were able to remove most false positives automatically.

1 Introduction

Static program analysis of industrial size C/C++ programs for the detection of quality
as well as security bugs has had some considerable success in the recent years. A num-
ber of software tools and companies [23,12] resulted from theoretical advances and
increased computing power, leading to the detection of complex source code defects
with minimal effort from the side of the developers.

However, static analysis techniques are based on approximations of the original
source code semantics. As such, the results of static analyzers might contain spurious
warnings, i.e., false positives. The task of assessing the validity of tool warnings falls
back to the developer. But with the increasing complexity of the bugs that those tech-
niques can uncover, this assessment is getting more and more difficult. In large software
projects developers may be forced to spend a lot of time reconstructing a warning of a
static analysis tool just to discover that the claimed bug is not real. Therefore, it is vital
for static analysis tools not only to find many complex bugs, but also to assure that the
majority of those are not false positives.

Unlike static program analysis, traditional software model checking has established
methods in dealing with abstractions and false positives, which are referred to as spu-
rious counter-examples. One particular prominent method is counter-example guided

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 316–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SMT-Based False Positive Elimination in Static Program Analysis 317

abstraction refinement (CEGAR) [6]. In the world of static program analysis, how-
ever, there is no good notion of automatic iterative refinement. Moreover, CEGAR ap-
proaches typically refine in each iteration the whole program/function under consider-
ation and re-run the analysis on the new model, which can often be costly.

In this work we adopt some ideas from such established techniques, but take a sig-
nificantly different approach. The individual key insights and contributions are:

1. We define static program analysis problems in terms of syntactic model checking
problems. In this context a bug is a violation of a syntactic model checking formula
resulting in a counter-example.

2. We symbolically evaluate the feasibility of such a counter-example on a low-level
program semantics using an SMT solver. If the counter-example path is infeasible
we compute slices of this path that are the cause for its infeasibility and we construct
an observer automaton that excludes all paths with the same cause.

3. Unlike in CEGAR we do not refine the whole model, but only add the observer
automaton to the original model. We repeat the procedure until either all counter-
examples are eliminated or a bug is found that could not be eliminated.

We evaluate our approach by applying it to a number of case studies from the NIST SA-
MATE program [23] and show that most of the relevant false positives can be efficiently
removed using the proposed method.

Outline. In Sect. 2 we give a high-level introduction and overview of our model check-
ing approach to static analysis as well as the ideas of the refinement loop using observers
to exclude infeasible paths. We provide more details on computing infeasible sub-paths
in Sect. 3 and on the construction of the observers for language refinement in Sect. 4.
This is followed by large scale experiments in Sect. 5. Related work is discussed in
Sect. 6. Finally, we conclude with an outlook to future work in Sect. 7.

2 Syntactic Model Checking and Language Refinement

In this section we describe our model checking approach to static program analysis and
explain the key concepts of our false-positive elimination procedure. The idea of using
model checking for static program analysis has first been introduced by Steffen and
Schmidt [24], discussing how data flow analysis problems can be expressed in modal
μ-calculus. This has later been expanded and further developed in [18,8,19].

The main idea is to abstractly represent a program (or a single function) by its control
flow graph (CFG) annotated with labels representing propositions of interest. Example
propositions are whether memory is allocated or freed in a particular location, whether
a pointer variable is assigned null or whether it is dereferenced. In this way the pos-
sibly infinite state space of a program is reduced to the finite set of locations and their
propositions.

The annotated CFG consisting of the transition system and the (atomic) propositions
can then be transformed into the input language of a model checker. Static analysis
bug patterns can be formulated in a temporal logic and evaluated automatically by the
model checker. As the annotated CFG discards most of the program semantics apart

318 M. Junker et al.

void foo() {
l0 : int x, *a;
l1 : int* p = malloc(sizeof(int));

for(l2 : x = 10; l3 : x > 0; l7 : x--) {
l4 : a = p;
l5 : if(x == 1)

l6 : free(p);
}

}

l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

Fig. 1. Example of an annotated CFG for a function foo. The locations are also annotated in the
listing.

from the annotations and reduces a program to its syntactical structure the approach is
called syntactic model checking [13].

To illustrate the approach, we use a contrived function foo shown in Fig. 1. It works
as follows: First a pointer variable p is initialized and memory is allocated accordingly.
Then, in a loop, a second pointer variable a is assigned the address saved in p. After
the tenth assignment p is freed and the loop is left.

To automatically check whether the memory allocated for p is still accessed after
it is freed (a use-after-free in static analysis terms) we define atomic propositions for
allocating memory mallocp, freeing memory freep and accessing memory usedp, and
we label the CFG accordingly. The above check can now be expressed in CTL as:

AG(mallocp ⇒ AG(freep ⇒ AG¬usedp))

This means, whenever memory is allocated, after a freep there is no occurrence of a
usedp. Note that once a check has been expressed in CTL, the proposition can be gener-
ically pre-defined as a template of syntactic tree patterns on the abstract syntax tree
of the code and determined automatically. Hence, it is possible to automatically check
a wide range of programs for the same requirement. However, since our approach for
false-positive elimination is based on checking path-infeasibility, we are restricted to
formulas that allow linear counter-examples.

2.1 False-Positive Detection

Model checking the above property for the model depicted in Fig. 1 will find a violation
and return a counter-example. The following path denoted by the sequence of locations
is such a counter-example: l0, l1, l2, l3, l4, l5, l6, l7, l3, l4, l5.

However, if we match up the counter-example in the abstraction with the concrete
program, we see that this path cannot possibly be executed, as the condition x == 1

SMT-Based False Positive Elimination in Static Program Analysis 319

Fig. 2. Parallel composition of observers with original model

cannot be true in the first loop iteration and, therefore, l5 to l6 cannot be taken. This
means, the counter-example is spurious and should be discarded. We might get a dif-
ferent counter-example in the last loop iteration . . . , l5, l6, l7, l3, l4, l5. But again, such a
counter-example would be spurious, because once the condition x == 1 holds, the loop
condition prevents any further iteration.

To detect the validity of a counter-example we subject the path to a fine-grained
simulation using an SMT solver. In essence, we perform a backward simulation of the
path computing the weakest precondition. If the precondition for the initial state of the
path is unsatisfiable, the path is infeasible and the counter-example spurious.

2.2 Observer Computation

Once we identified a counter-example as being spurious we know that this particular
path is infeasible, but that does not mean that there are no other counter-examples for
the same property. Therefore, we need to rerun the check on a refined model to see if
there are other counter-examples. To get a refined model we construct a set of observer
automata that have the following properties:

1. The observers can be run with the original abstract model, but they restrict the ab-
stract model by excluding the previously computed infeasible paths.

2. The observers are based on the minimal infeasible sub-paths of a counter-example.
This means, we do not need to encode each infeasible path individually, but only
the set of statements that are unsatisfiable. As an example consider the assignment
x = 10 and the condition x == 1. Any path through these two statements, and not
modifying x in between, will be infeasible. Hence, an observer monitoring the sub-
path can be sufficient for ruling out many paths simultaneously.

Figure 2 schematically illustrates the idea of running the original model with a set of
observers each representing a minimal reason for paths being infeasible. We require that
in the newly composed model no observer can reach its final state, i.e., all infeasible
sub-paths are excluded.

2.3 Refinement Loop

After constructing the observers based on the infeasible sub-paths, the original abstract
model can be rerun to see if there are other possible counter-examples. The full path
refinement loop is presented in Fig. 3. The refinement loop successively constructs new
observers for new infeasible paths and extends the original model accordingly. There
are two termination conditions: Firstly, we terminate whenever no bug in a program is
found, i.e., there is no counter-example in the (extended) model. Secondly, we terminate

320 M. Junker et al.

Fig. 3. Counter-example guided path refinement loop

when a path cannot be discharged as infeasible. There are two reasons for the latter:
Either we found a genuine bug or our program semantics encoded in the SMT solver
does not model certain aspects that are necessary to dismiss a path.

There are a few things worth noting: As we will see in the subsequent section we
cover a wide variety of aspects in the C semantics including pointer aliasing. However,
some constructs such as function pointers are not taken into account. In our experience,
these program constructs are rarely the cause of false positives. Moreover, in the worst
case we have to construct one observer for each infeasible path and there might be an
exponential number of infeasible paths w.r.t. the number of conditional statements in
a program. In practice, we found the number of required observers to be quite small.
For most real-life cases the abstraction refinement loop terminates after two or three
iterations.

2.4 A Word on SMT Solvers

In general, SMT solving tackles the satisfiability of first-order formulae modulo back-
ground theories. The approach presented in this paper is largely independent of the
particular SMT solver used. However, in order to represent our semantic model of C,
we require a minimum set of theories including uninterpreted functions, linear integer
arithmetic and the theory of arrays, and we consider the SMT solver to support infeasi-
ble core computation.

Using additional theories (such as bit-vectors) can improve the overall precision of
the presented approach for a potential penalty in runtime. We discuss the results with
the given sets of theories in Sect. 5.

3 Computing Reasons for Infeasible Paths

For the path reduction refinement loop we have to identify infeasible paths. Moreover,
we are interested in a small sequence of statements that explains why a path is infeasi-
ble. Such an explanation will allow us to exclude all paths with that infeasible sequence
of statements. For instance, in the path through l0, l1, l2, l3, l4, l5, l6, l7, l3, l4 of foo in
Fig. 1 not all statements are contributing to it being infeasible, but only l2 : x = 10

SMT-Based False Positive Elimination in Static Program Analysis 321

and (l5, l6) : x == 1. We call the sequence of edges (l2, l3), (l3, l4), (l4, l5), (l5, l6) an
infeasible sub-path.

Next, we explain how to detect infeasible paths in a C program by means of satisfi-
ability checking of weakest preconditions using an SMT solver. Moreover, we provide
a strategy to efficiently compute an infeasible sub-path from an infeasible path, which
enables the construction of an efficient observer.

3.1 Detecting Infeasible Paths

For checking the feasibility of a path we first collect the sequence of statements in
that path along the CFG. Moreover, we encode branching decisions along that path
as assertions in the sequence of statements, resulting in a straight-line program. Next,
we compute the weakest precondition for this straight-line program. The SMT solver
might return that the weakest precondition is unsatisfiable, i.e., that the path cannot be
executed and, therefore, is infeasible. In the following we provide the basic ideas for
modeling program statements, their semantics and the representation in an SMT solver.
The details of the underlying semantics and the memory model can be found in [21].

Path programs. Computing the straight-line program corresponding to a path through
the CFG amounts to collecting the sequence of assignments and function calls taken on
the path. Additionally, assert statements record what must be true at a point of execution
to follow the path through control-flow statements, like taking the then-branch of an if.
For example, the path (l2, l3), (l3, l4), (l4, l5), (l5, l6), (l6, l7) of the CFG of foo in Fig. 1
is represented by the path program

x = 10; assert(x > 0); a = p; assert(x == 1); free(p);

More formally, a path program is a sequence of statements s containing expressions e.
A statement can be e1 = e2; for assignments, assert(e); for checking a (boolean) con-
dition and f (e1, . . ., en); respectively e0 = f (e1, . . ., en); for function calls
(optionally assigning the return value). In our approach, an expression may be almost
any valid C-expression [20] including pointers and using structs. Currently, how-
ever, we do not support function pointers, and string literals are treated as fresh pointer
variables. We make the simplifying assumption that identifiers such as program vari-
ables and field names of structs are globally unique.

Weakest precondition. The set of states from which a path program can be executed
without violating any assertion is given by the weakest precondition of the path program
w.r.t. the trivial postcondition true. Generally, the weakest precondition wp(p, ψ) of a
path program p w.r.t. a condition ψ on states is given by a condition ϕ which is satisfied
by exactly those states from which an execution of p terminates in a state satisfying
ψ. In particular, wp(assert(e);, ψ) is equivalent to e ∧ ψ, indeed asserting that e must
already hold.

The computed formula wp(p, true) characterizing successful executability of p will
be handed to an SMT solver for checking unsatisfiability. However, we will not always
be able to represent executability faithfully in terms of a full C-semantics, but may

322 M. Junker et al.

have to use safe approximations. These approximations have to ensure (under certain
assumptions) that the unsatisfiability of wp(p, true) implies that p is not executable.

In particular, our definition of wp is based on a simple memory model that allows
a good precision even in the presence of variable aliasing and basic pointer arithmetic.
The memory model is similar to the one described by Burstall [5]. The main idea is to
have a separate store, represented by a separate variable, for each primitive data type.
We use a simple type system consisting of primitive types like integers and pointer types
as well as struct-like composite types. Each store is again segmented into partitions,
one for each field of a struct and a distinguished partition for data that is not part
of a struct. The rationale behind this kind of model is that by introducing logical
structure such as distinct memories we achieve the property that certain aliasing is not
possible, such as aliasing between variables of different types or between different fields
of a struct. Properties that we do not get by construction are enforced by axioms. An
example for such an axiom is that local variables do not alias.

The memory model can be easily encoded in a language for SMT solvers. In our
experiments we used the theory of arrays [25]. The theory provides two operations:
access(m, a) (sometimes called read or select) to access the value of an array m at
location a and update(m, a, v) (sometimes called write or store) to get a version of
m that is updated at location a with value v . Using the theory of arrays, the memory
model can be represented as an array with tuples (containing a partition name and a
position) as indices.

To illustrate the use of the memory model in the wp-semantics we consider a simple
assignment x = v, where the value of local variable x of type τ is assigned the value of
a local variable v, also of type τ . The wp-semantics in this case is

wp(x = v, ϕ) = ϕ{Mτ
→ update(Mτ , loc(x), v)} ∧ v = access(Mτ , loc(v))

where Mτ is the memory variable for τ and loc is a function mapping a variable name
to a location (i.e. partition and position).

A limitation with regard to the definition of wp are function calls. We currently do not
consider the true effect of called functions, but approximate the effect by assuming that
only those locations in the memory are touched that are explicitly passed as a pointer.
An exception in this regard is the malloc function. As it is central to handle pointers
sufficiently precise we use axioms to specify its semantics. An example for such an
axiom is that malloc always returns fresh memory locations, which are not aliased
with any other. On the other hand, no special axioms are needed for free, ignoring
whether its argument points to allocated memory. More details on the wp-semantics
can be found in [21].

Infeasible Paths. Based on the weakest precondition semantics, infeasibility follows
naturally as: A path through the CFG is called infeasible if wp(p, true) for its corre-
sponding path program p is unsatisfiable.

For example, the path (l2, l3), . . . , (l6, l7) from above is infeasible since

wp(x = 10; assert(x > 0); a = p; assert(x == 1); free(p);, true)

is unsatisfiable due to incompatibility of x = 10 and x == 1. Next, we explain how to
identify shorter sub-paths capturing the relevant causes for infeasible paths.

SMT-Based False Positive Elimination in Static Program Analysis 323

3.2 Computing Infeasible Sub-paths

The general idea of this work is to create observers to exclude infeasible paths in static
program analysis. We would like, however, to avoid to generate one observer for each
path, but instead to identify smaller sub-paths that capture unsatisfiable inconsistencies.
Excluding these sub-paths might exclude a wider set of paths passing through those
fragments and, as a result, one observer will be able to exclude many infeasible paths
at once. For instance, the path (l2, l3), . . . , (l6, l7) above shows that with respect to
infeasibility it is irrelevant how an execution reaches l2 : x = 10 and how it continues
after (l5, l6) : assert(x == 1);: Due to the incompatibility of x = 10 and x == 1 on
that path, any path containing (l2, l3), (l3, l4), (l4, l5), (l5, l6) as a sub-path is infeasible.

Generally, let us say that path π′ is a sub-path of path π and π includes π′ if π is of
the form π0 π

′ π1 for some (possibly empty) paths π0 and π1. This leads to:

Proposition 1. Every path including an infeasible sub-path is infeasible.

Thus, if we find an infeasible sub-path in a path from a counter-example, we can exclude
all paths that include this sub-path. We can compute the infeasible sub-paths by com-
puting the unsatisfiable sub-formulae of the weakest precondition. In order to match
sub-formulae and sub-paths we split the weakest precondition into named conjuncts
each of which corresponds to a statement in the considered path (see [21] for details).

SMT solvers usually can be instructed to deliver an unsatisfiable sub-formula. It is
advantageous to identify small unsatisfiable sub-formulae leading to short infeasible
sub-paths, thus allowing to exclude potentially more paths. However, finding all mini-
mal unsatisfiable sub-formulae requires exponentially many calls to the SMT solver in
the worst case (for algorithms see, e.g., [9] and [22]). We therefore heuristically enu-
merate unsatisfiable sub-formulae using the solver and employ an exponential algorithm
only to minimize these [21].

4 Observer Construction and Refinement

In this section we formally define how to construct observers based on sub-paths. More-
over, we show how to compose the observers with the original model in a refinement
loop for eliminating false positives.

In short, for the observer construction we view a CFG as a finite automaton that
accepts paths as sequences of edges through the CFG as words. From an infeasible
sub-path we construct an “observing” finite non-deterministic automaton. The language
of this observing automaton is the set of paths which include the infeasible sub-path.
We consider the synchronous product of the CFG automaton and the complemented
observing automaton, where synchronization is on the shared alphabet, i.e., the edges.
This product automaton accepts exactly those paths as sequences of edges that do not
show an infeasible sub-path.

4.1 Representing Programs as Automata

We rely on the conventional notion of a finite (non-deterministic) automaton M = (A,
S ,T , I ,F) consisting of an alphabet A, a finite set of states S , a transition relation

324 M. Junker et al.

l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

(l0, l1)

(l1, l2)

(l2, l3)

(l3, l4)

(l4, l5)

(l5, l6)

(l5, l7)

(l6, l7)

(l3, l8)

(l7 ,l3)

Fig. 4. CFG automaton for the function foo. The dashed edges represent an infeasible sub-path.

T ⊆ S × A × S , a set of initial states I ⊆ S , and a set of final states F ⊆ S . The
words accepted by M are denoted by L(M). We write M × N for the synchronous
product of the finite automata M and N over the same alphabet; then L(M × N) =
L(M) ∩ L(N) holds. The finite automaton yielding language complement is denoted
by M c, i.e., L(M c) = A∗ \ L(M) where A is the alphabet of M .

A CFG can naturally be regarded as such a finite automaton with the states being the
locations. For the alphabet we choose pairs of locations(l , l ′), i.e., making the edges of
the CFG “observable”. The transition relation of the automaton just follows from the
CFG. All the states are both initial and final to capture arbitrary sub-paths in the CFG.

Definition 1 (CFG Automaton). For a CFG with locationsL and edges E ⊆ L×L, its
corresponding CFG automaton is the finite automaton given by (E ,L,T ,L,L), where
the alphabet is the set of edges E , the states are the locations L, the transition relation
is T = {(l , (l , l ′), l ′) | (l , l ′) ∈ E}, and all states are both initial and final.

The words accepted by a CFG automaton correspond exactly to the paths as se-
quences of control-flow edges through the CFG. Therefore, we will also call these ac-
cepted words “paths”. The CFG automaton for the function foo is shown in Fig. 4.

A CFG automaton can also be directly used for model-checking, as the annotations
of the CFG such as mallocp can be interpreted as predicates over its states. For foo we
would define mallocp ≡ l1 or usedx ≡ l3 ∨ l5.

4.2 Computing Observers from Counter-Examples

If the model checking procedure yields a counter-example as a path through a CFG
automaton, which is infeasible, we want to exclude this path in further model checking
runs. In fact, the notion of infeasible sub-paths allows us to exclude all paths that include
some infeasible sub-path due to Prop. 1. Consider, for example, the CFG automaton in
Fig. 4. The dashed edges represent an infeasible sub-path π = (l5, l6), (l6, l7), (l7, l3),

SMT-Based False Positive Elimination in Static Program Analysis 325

(l3, l4) of an infeasible counter-example reported by the model checker. We can not
only exclude π but also a path that represents a two-fold loop iteration and then contin-
ues as before. On the other hand, we cannot exclude a path that has (l5, l7) instead of
(l5, l6), (l6, l7).

For a sub-path π accepted by the CFG automaton, we construct an automaton that
accepts exactly those paths π′ for which π is a sub-path. We define:

Definition 2 (Observer). Let P be a CFG automaton with alphabet E and let π =
e1 . . . ek be a path accepted by P . The CFG observer automaton Obs(E , π) is the au-
tomaton (E , SObs ,T , S0,F), where

– SObs is the set of states {s1, . . . , sk−1} ∪ {Init, Infeasible}.
– T ⊆ SObs × E × SObs is the transition relation. A triple (s , e, s ′) is in the relation

if and only if one of the following holds:
1. s = Init and s ′ = Init and e �= e1
2. s = si and s ′ = si+1 and e = ei+1 and 1 ≤ i ≤ k − 2
3. s = sk−1 and s ′ = Infeasible and e = ek
4. s �= Infeasible and s ′ = s1 and e = e1
5. s = si and s ′ = Init and e ∈ E \ {e1, ei+1} and 1 ≤ i ≤ k − 1
6. s = Infeasible and s ′ = Infeasible

– S0 = {Init} is the set of initial states.
– F = {Infeasible} is the set of final states.

The rationale for the particular choice of the observer’s components is as follows: The
states mirror how much of π has already been observed on a run without interruption.
When the observer is in state Init, nothing has been observed at all or a part of π has been
observed, but then the sequence was interrupted. If the observer is in state Infeasible the
whole path π has already been observed, which means no matter how the program
model continues, the current run already represents an infeasible path. If the automaton
is in state si , we know π has been observed until and including ei . The transition relation
reacts to an edge on the run:

1. As long as the initial edge e1 of π has not been observed, the observer needs to stay
in Init.

2. If the observer has already observed the first i edges of π and now observes the next
edge ei+1 it proceeds one step further, as long as ei+1 is not the last edge of π.

3. If the situation is as in (2) but ei+1 is the last edge of π, the observer transitions to
Infeasible.

4. It may happen that the observer already is in state sj when another sequence of π
starts. Intuitively, π is interrupted by itself. Therefore the observer may transition to
s1 as soon as it observes e1, even if it is currently in some sj .

5. If the sequence is interrupted in a different way, the observer returns to Init.
6. As soon as the observer is in state Infeasible, it remains there forever.

Example 1. We illustrate the observer construction with our running example. Regard-
ing the CFG automaton of the function foo, a path containing the sub-path π = (l5, l6),
(l6, l7), (l7, l3), (l3, l4) is infeasible. The constructed observer automaton is depicted in

326 M. Junker et al.

Init s1 s2 s3 Infeasible
(l5, l6) (l6, l7) (l7, l3) (l3, l4)

(l5, l6)

(l5, l6)

Fig. 5. Observer automaton for infeasible path of Example 1. Unlabeled edges mean “any other”.

Fig. 5. As soon as it observes the sequence π it enters the state Infeasible and remains
there forever. If the sequence is interrupted, it either returns to Init or, if the interruption
equals (l5, l6) as the first edge of π, it returns to s1. Hence, as long as the observer is
not in state Infeasible the sequence π has not been observed completely. As Infeasible is
the only accepting state, the observer only accepts paths that contain π, i.e., infeasible
paths.

Let π denote a path accepted by a CFG automaton P with the alphabet E of control-
flow edges and let P(π) be the set of paths in E∗ including π. By construction, we have
P(π) = L(Obs(E , π)), that is, the words accepted by Obs(E , π) are exactly the paths
including π. Furthermore,

L(P ×Obs(E , π)c) = L(P) ∩ L(Obs(E , π)c) =

L(P) ∩ (E∗ \ L(Obs(E , π))) = L(P) ∩ (E∗ \ P(π)) .

Thus by applying Prop. 1, that all paths including an infeasible sub-path are infeasible,
we get

Proposition 2. Let P be a CFG automaton P with alphabet E and let π be an infea-
sible path of P . Then the CFG automaton resulting from the synchronous product of P
and Obs(E ,w)c excludes the infeasible paths that include π.

4.3 Implementing Observers

The observer is in general non-deterministic. Computing the complement of a non-
deterministic automaton would involve first creating its deterministic equivalent, which
can have exponential size compared with the non-deterministic automaton. We avoid
directly constructing the complement of the observer and instead implement the com-
plementation by adding a fairness constraint in the model checker [14]. The fairness
constraint in our case forbids that the observer enters state Infeasible. Although fair
CTL model checking is more complex than regular CTL model checking, it works well
in our experiments, as the next section shows.

5 Experiments

In this section we report on the implementation of the aforementioned false-positive
elimination techniques as well as on analysis results from representative, large code

SMT-Based False Positive Elimination in Static Program Analysis 327

bases. All the experimental data has been obtained from projects and benchmarks pro-
vided by NIST and the Department of Homeland Security for the 2010 and 2011 Static
Analysis Tool Exposition (SATE) [23]. The experiments show that the proposed solu-
tion provides a significant decrease in false positives while only moderately increasing
the overall runtime.

5.1 Implementation

We implemented a prototype of the SMT-based path reduction approach in our static
analysis tool Goanna1. Goanna is a state-of-the-art static analysis tool for bug detection
and security vulnerability analysis of industrial C/C++ programs. Currently, Goanna
supports around 150 classes of different checks ranging from memory leak detection
and null -pointer dereferences to the correct usage of copy control in C++ as well as
buffer overruns.

The Goanna tool itself as well as the new false -positive elimination procedure is
implemented in the functional programming language OCaml. For the infeasible path
detection in our experiments we used the Z3 SMT solver [10], as it provides an OCaml
interface which allowed quick prototyping using Goanna.

5.2 Experimental Evaluation

As representative test beds for our experiments we chose the two main open source
projects from the NIST SATE 2010 and 2011 exposition: Wireshark 1.2.9 and Dove-
cot 2.0 beta6. Wireshark is a network protocol analyzer consisting of around 1.4MLoc
of pure C/C++ code that expand to roughly 16MLoc after pre-processing (macro ex-
pansions, header file inclusion etc.). Dovecot is a secure IMAP and POP3 server that
consists of around 170KLoc of pure C/C++ code expanding to 1.25MLoc after prepro-
cessing. We experimented with other in-house industrial code of different sizes as well
and obtained very similar results as for the two mentioned projects.

The evaluation was performed on a DELL PowerEdge SC1425 server, with an Intel
Xeon processor running at 3.4GHz, 2MB L2 cache and 1.5GB DDR-2 400MHz ECC
memory.

False-Positive Removal Rates. As mentioned earlier, Goanna performs a source code
analysis for around 150 classes of checks. However, not all checks are path-sensitive,
i.e., some checks only require tree-pattern matching, and of those checks that are path-
sensitive not all are amenable to false path elimination. The reasons are as follows: Cer-
tain path-sensitive checks such as detecting unreachable code already state that there
is no path satisfying a certain requirement. Hence, removing infeasible paths will not
change the results. A similar example is having no path where a free() occurs af-
ter a malloc() and alike. The results below only include checks where false path
elimination can alter the analysis results.

The false-positive elimination results for Wireshark and Dovecot are summarized
in Table 1. For Wireshark, our original Goanna implementation detected 98 relevant

1 http://www.nicta.com.au/goanna

http://www.nicta.com.au/goanna

328 M. Junker et al.

Table 1. False Positive Detection Rate for Wireshark and Dovecot

Wireshark 1.2.9 Dovecot 2.0 beta6

lines of code 1, 368, 222 167, 943
after pre-processing 16, 497, 375 1, 251, 327
number of functions 52, 632 5, 256
issued warnings 98 75
false positives removed 48 38
% removed warnings 49.0% 50.6%
correctly identified false positives 48 (100%) 38 (100%)

Table 2. Runtime Performance for False-Positive Elimination

Wireshark 1.2.9 Dovecot 2.0 beta6

total running time (no timeout) 8815s 1025s
time spent in refinement loop 1332s (15%) 302s (29.5%)
% of time in SMT 10.5% 12.2%
% of time in model checking 87.5% 86.3%
number of Goanna timeouts 12 1
number of SMT loops exceeding (20) 11 3
number of SMT solver timeouts 0 5

path-sensitive issues. Running Goanna with the new SMT-based false path elimination
approach removed 48 issues. This means, around 49% of the produced warnings were
eliminated fully automatically. We manually investigated all of the removed warnings
and were able to confirm that these were indeed all false positives.

The results for Dovecot are very similar to the Wireshark results. The original im-
plementation raised 75 warnings and we were able to automatically identify 38 of those
warnings as false positives. This means, the number of warnings was reduced by 50.6%.
Again, all the automatically removed warnings were confirmed false positives.

For both projects, we investigated the remaining issues manually in detail. There
were several remaining false positives for various reasons: Due to the incompleteness
of the procedure, e.g., missing further knowledge about functions calls, a path could not
be identified as infeasible. Another reason is that we imposed a loop limit of 20 refine-
ment iterations. Sometimes this limit was reached before a warning could be refuted.
This happened 11 times in Wireshark, but only 3 times in Dovecot. As a side note, as
discussed in [15], there are in general various reasons for false positives and often addi-
tional context information known to the developer is the key for refuting false positives.
Moreover, it is worth noting that for path-insensitive checks (e.g., pattern matching) the
number of false positives tends to be much lower or even zero.

Run-time Performance. The runtime results for the experiments are shown in Table 2.
For the experiment we introduced timeouts both in Goanna as a whole as well as the
SMT solver. For Goanna including the SMT path reduction loop an upper limit of 120s
per file was set and in the SMT solver of 2s per solving. Moreover, we limited the
maximum depth of SMT loops by 20. The timeouts, however, were only triggered very
sporadically: Goanna timeouts occurred 12 times in Wireshark and once in Dovecot,

SMT-Based False Positive Elimination in Static Program Analysis 329

which in both projects accounts for roughly 0.02% of all functions. Loop limits were
reached similarly often and SMT timeouts occurred never in Wireshark and 5 times in
Dovecot. In the remainder the analysis results are based on all non-timeout runs.

As shown in Table 2 the overall runtime for Wireshark was around two and a half
hours, for Dovecot around 17min. In Wireshark for checks that can be improved through
false path elimination around 15% of the runtime was spent in the SMT refinement loop.
For the same objective the overhead in Dovecot was slightly higher with around 30%.

Interestingly, the vast majority of the overhead time is spent in the repeated model
checking procedure rather than the SMT solving. Although the additional observers in-
crease the state space in theory, the reachable state space will always be smaller than
in the original model, since the observers constrain the set of reachable states. We have
since then identified unnecessary overheads in our model checking procedure that should
reduce the overall runtime in the future. However, given the value of a greatly reduced
number of false positives, which can otherwise cost many engineering hours to iden-
tify, we believe that a run-time overhead of 15%–30% is already acceptable in practice;
especially, if it equates to around 22min in over one million lines of C/C++ code.

6 Related Work

Counter-example based path refinement with observers for static program analysis has
been introduced by Fehnker et al. [14]. This work was based on using interval abstract
interpretation to refute infeasible paths. While fast, it was limited to simple root causes
for infeasible paths and much less precise than the SMT approach in this work. On
the other hand, the application of predicate abstraction in conjunction with on-demand
refinement has long been present in the CEGAR [6] approach and is used in many
software model checkers such as SLAM [17] and BLAST [4,3]. This approach refines
the whole model iteratively instead of eliminating sets of paths and using observers to
learn from it. To an extent, a comparison of both approaches is still missing given their
origin from different domains, namely static analysis and software mode checking.

The detection of infeasible paths and its use for program analysis has been explored
by other authors, as well. Balakrishnan et al. [2] use this technique in the context of
abstract interpretation. Delahaye et al. [11] present a technique how to generalize in-
feasible paths, but they have not investigated its use in static analysis. Yang et al. [26]
propose the use of SMT solvers to remove infeasible paths by Dynamic Path Reduc-
tion. However, the work only addresses programs without pointers employing standard
weakest precondition and it is not aimed at false-positive elimination. Harris et al. [16]
describe a way to do program analysis by enumerating path programs. In contrast to
our work they are not in a model-checking setting and their approach is not driven by
counter-examples.

Finally, there are many examples of using SMT solvers in the realm of software
model checking, e.g., as reasoning engine for bounded model checking [1,7].

7 Conclusions and Future Work

We have introduced a novel approach to reducing false positives in static program anal-
ysis. By treating static analysis as a syntactical model checking problem, we make static

330 M. Junker et al.

analysis amenable to an automata-based language refinement. Moreover, unlike tradi-
tional CEGAR approaches we create observer automata that exclude infeasible sub-
paths. The observers are computed based on a weakest precondition semantics using an
SMT solver. We have shown that the approach works very well in practice and detects
many relevant false positives.

Future work will further explore the limits of false-positive removal. We plan to
investigate if more expensive SMT theories will lead to more false-positive removals
or if, in fact, there are hardly any cases where this is necessary. Also, we will focus on
further comparison with existing software model checking approaches and investigate
if we can “out-source” some false-positive removal directly to a software model checker
without much runtime penalty.

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded Model Checking of Software Using SMT
Solvers Instead of SAT Solvers. Int. J. Softw. Tools Techn. Transf. 11(1), 69–83 (2009)

2. Balakrishnan, G., Sankaranarayanan, S., Ivančić, F., Wei, O., Gupta, A.: SLR: Path-
Sensitive Analysis through Infeasible-Path Detection and Syntactic Language Refinement.
In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 238–254. Springer, Hei-
delberg (2008)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic Predicate Abstraction of C
Programs. In: Proc. 2001 ACM SIGPLAN Conf. Programming Language Design and Imple-
mentation (PLDI 2001), pp. 203–213. ACM (2001)

4. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

5. Burstall, R.: Some Techniques for Proving Correctness of Programs which Alter Data Struc-
tures. Mach. Intell. 7, 23–50 (1972)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Re-
finement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169.
Springer, Heidelberg (2000)

7. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for Em-
bedded ANSI-C Software. In: Proc. 24th IEEE/ACM Int. Conf. Automated Software Engi-
neering (ASE 2009), pp. 137–148. IEEE (2009)

8. Dams, D.R., Namjoshi, K.S.: Orion: High-Precision Methods for Static Error Analysis of C
and C++ Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 138–160. Springer, Heidelberg (2006)

9. de la Banda, M., Stuckey, P., Wazny, J.: Finding All Minimal Unsatisfiable Subsets. In:
5th Int. ACM SIGPLAN Conf. Principles and Practice of Declarative Programming (PPDP
2003), pp. 32–43. ACM (2003)

10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

11. Delahaye, M., Botella, B., Gotlieb, A.: Explanation-Based Generalization of Infeasible Path.
In: Proc. 3rd Int. Conf. Software Testing, Verification and Validation (ICST 2010), pp. 215–
224. IEEE (2010)

12. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques for Formal
Software Verification. IEEE Trans. CAD Integ. Circ. Syst. 27(7), 1165–1178 (2008)

13. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model Checking Software at
Compile Time. In: Proc. 1st Joint IEEE/IFIP Symp. Theoretical Aspects of Software Engi-
neering (TASE 2007), pp. 45–56. IEEE (2007)

SMT-Based False Positive Elimination in Static Program Analysis 331

14. Fehnker, A., Huuck, R., Seefried, S.: Counterexample Guided Path Reduction for Static Pro-
gram Analysis. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Composition-
ality, and Correctness. LNCS, vol. 5930, pp. 322–341. Springer, Heidelberg (2010)

15. Fehnker, A., Huuck, R., Seefried, S., Tapp, M.: Fade to Grey: Tuning Static Program Analy-
sis. In: Proc. 3rd Int. Wsh. Harnessing Theories for Tool Support in Software (TTSS 2009),
pp. 38–51. UNU-IIST (2009)

16. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program Analysis via Satisfia-
bility Modulo Path Programs. In: Proc. 37th ACM SIGPLAN-SICACT Symp. Principles of
Programming Languages (POPL 2010), pp. 71–82. ACM (2010)

17. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer, Heidel-
berg (2003)

18. Holzmann, G.J.: Static Source Code Checking for User-Defined Properties. In: Proc. 6th
World Conf. Integrated Design and Process Technology (IDPT 2002). SDPS (2002)

19. Huuck, R., Fehnker, A., Seefried, S., Brauer, J.: Goanna: Syntactic Software Model Check-
ing. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS,
vol. 5311, pp. 216–221. Springer, Heidelberg (2008)

20. ISO/IEC. ISO/IEC 9899:2011 Information Technology – Programming Languages – C. ISO,
Genève (2011)

21. Junker, M.: Using SMT Solvers for False Positive Elimination in Static Program Analysis.
Master’s thesis, Universität Augsburg (2010),
http://www4.in.tum.de/˜junkerm/publications/thesis.pdf

22. Liffiton, M.H., Sakallah, K.A.: On Finding All Minimally Unsatisfiable Subformulas. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg
(2005)

23. Okun, V., Delaitre, A., Black, P.E. (eds.): Report on the Third Static Analysis Tool Exposition
(SATE 2010). SP-500-283, U.S. Nat. Inst. Stand. Techn. (2011)

24. Schmidt, D.A., Steffen, B.: Program Analysis as Model Checking of Abstract Interpretations.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer, Heidelberg (1998)

25. Stump, A., Barrett, C., Dill, D., Levitt, J.: A Decision Procedure for an Extensional Theory
of Arrays. In: Proc. 16th Ann. IEEE Symp. Logic in Computer Science (LICS 2001), pp.
29–37. IEEE (2001)

26. Yang, Z., Al-Rawi, B., Sakallah, K., Huang, X., Smolka, S., Grosu, R.: Dynamic Path Reduc-
tion for Software Model Checking. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS,
vol. 5423, pp. 322–336. Springer, Heidelberg (2009)

http://www4.in.tum.de/~junkerm/publications/thesis.pdf

Predicate Analysis with Block-Abstraction

Memoization�

Daniel Wonisch and Heike Wehrheim��

University of Paderborn, Germany
wehrheim@upb.de

Abstract. Predicate abstraction is an established technique for reduc-
ing the size of the state space during verification. In this paper, we ex-
tend predication abstraction with block-abstraction memoization (BAM),
which exploits the fact that blocks are often executed several times in
a program. The verification can thus benefit from caching the values
of previous block analyses and reusing them upon next entry into a
block. In addition to function bodies, BAM also performs well for nested
loops. To further increase effectiveness, block memoization has been in-
tegrated with lazy abstraction adopting a lazy strategy for cache refine-
ment. Together, this achieves significant performance increases: our tool
(an implementation within the configurable program analysis framework
CPAchecker) has won the Competition on Software Verification 2012
in the category “Overall”.

1 Introduction

In recent years, software model checking has become an effective technique for
software verification. This success is due to the tight integration of elaborate
program analysis and model checking techniques, and the recent advances in
SMT solving. Software model checking tools like SLAM [1], BLAST [9], ARMC
[23], SATABS [13] or F-Soft [20] are used to analyze industrial size programs.
Still, scalability is one of the major issues and the driving force for research in
this area.

A large number of today’s software model checkers employ abstraction con-
cepts in their analysis, more precisely predicate abstraction [16]. Predicate ab-
straction builds an abstract representation of a program in which the basic con-
trol flow is maintained and the concrete states are replaced by predicates on
states. The level of abstraction needed for a particular analysis is incrementally
determined, starting with a coarse abstraction which is then refined based on
computed (possibly spurious) counter examples. Elaborate techniques like lazy
abstraction [19] and Craig interpolation [18] help to keep the abstraction small,
the former by adding new predicates to relevant program positions only and the
latter by computing a parsimonious set of new predicates.

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

�� Corresponding author.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 332–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Predicate Analysis with Block-Abstraction Memoization 333

Predicate abstraction techniques often represent abstractions in the form of
an abstract reachability tree (ART). An ART can be seen as an unfolding of
the control flow graph in which nodes describe program locations together with
abstract states (evaluations of predicates) and edges correspond to statements
(or possibly blocks) of the program. Statements which can be reached several
times during program execution will appear several times in the ART. This
approach has two drawbacks. On the one hand, the effect of these statements
on the abstract state needs to be recomputed every time they are seen during
the unfolding, even though they might modify the abstract state in the same
way. On the other hand, the ART might get rather huge due to these repeated
occurrences of statements. This is in particular the case when we have statements
belonging to (a) functions being called several times, or (b) nested loops.

In this paper, we propose block-abstraction memoization (BAM) which over-
comes both of these drawbacks. Block-abstraction memoization considers entire
blocks of statements, for instance bodies of functions or loops. During construc-
tion of the ART, BAM computes a separate ART for each block. These “block
ARTs” only refer to locally relevant variables. A block ART acts as a cached
value of a block’s behavior. The main ART just gets a “block” edge for the
entire block. Whenever the same block is reached again, the already explored
block behavior stored in the block ART can be reused - given that the current
abstract state projected onto the block’s locally relevant variables is the same.

To further increase the effectiveness, BAM is integrated with lazy abstraction.
Lazy abstraction uses different precisions (predicate sets) at different abstract
states. Combined with block-abstraction memoization the challenge is to deter-
mine when, where, and how to refine a cached block abstraction. For this, we
have decided – after experimentation with several approaches – to employ a lazy
strategy: already cached block abstractions are only refined where needed, i.e.,
when touched by a counter example and only on the path of the counter example
in the ART. This necessitates rebuilding of blocks ARTs at some places, how-
ever, the performance decrease by this reconstruction is in almost all case studies
more than outruled by the performance gain of faster abstraction refinement.

The idea of summarizing the input-output behaviour of procedures with re-
spect to certain relevant information is an established technique in static analysis
and has also been studied for model checking (e.g. Bebop [4], Yogi [15]). With
respect to lazy abstraction, only [15] integrates summaries with a lazy technique,
however, without refining summaries.

We implemented our approach within the configurable program analysis frame-
work CPAchecker [10], which carries out a predicate analysis using lazy ab-
straction. We evaluated our approach on the benchmark C programs of the
Competition on Software Verification 2012 [8], which we won in the category
“Overall” [26]. This convincingly demonstrates the usefulness of BAM, not just
for specific programs with lots of functions, but for a broad range of C programs
from a standard benchmark set.

334 D. Wonisch and H. Wehrheim

2 Preliminaries

In the following we briefly introduce the preliminaries needed to understand
the presented technique. As we implemented our approach within the program
analysis frameworkCPAchecker, we use the formalism of configurable program
analysis (CPA) [6] for the presentation of our technique, however largely eliding
those parts referring to CPAchecker’s configuration and precision adjustment
features. Instead we focus on the part necessary for explaining our own approach.

Concrete Semantics of Programs. For the sake of presentation we consider pro-
grams to be written in a simple imperative programming language with assign-
ments and assumes operation as only possible statements, and variables that
range over integers only. The left of Figure 1 shows our running example of a
program consisting of three nested loops. In the program each loop increments
a respective counter variable twice. After the execution of all loops it is asserted
that the counting variables of the loops are indeed 2. We assume that //do

something inside the innermost loop does not refer to i and j. This is of course
unrealistic; the example is merely chosen for didactic purposes. Note that the
experimental results show that our technique also works quite well for standard
C benchmark programs.

Formally, a program P = (A, l0, lE) is represented as control-flow automaton
(CFA) A, a start location l0, and an error location lE. A CFA A = (L,G) consists
of a set of (program) locations L and a set of edgesG ⊆ L×Ops×L that describe
possible transitions from one program location to another by executing a certain
operation op ∈ Ops. The right of Figure 1 shows the control-flow automaton of
program NESTED (dotted rectangles denote blocks; see next section).

l0: int i=2, j=2, k=2;

l1: i = 0;

l2: while(i < 2) {

l3: j = 0;

l4: while(j < 2) {

l5: k = 0;

l6: while(k < 2) {

//do something

l7: k++;}

l8: j++;}

l9: i++;}

l10: assert(i==2 && j==2 && k==2)

i < 2

j < 2

!(j<2)

!(k<2)

i:=2, j:=2, k:=2

i:=0

!(i<2)

k:=0

j:=0

l

l

l

l

l
k < 2
6

l
l

l 9

2

1

7
10

l

l8

j:=j+1

4

5

3

!(i==2 &&
j==2 &&
k==2) k==2)

(i==2 && j==2 &&

k:=k+1

i:=i+1

l0

lE

Fig. 1. Program NESTED and its control-flow automaton with 3 blocks

Predicate Analysis with Block-Abstraction Memoization 335

A concrete data state c : X → Z of a program P is a mapping from the set
of variables X of the program to integer values. The set of all concrete data
states in a program P is denoted by C . A set of concrete data states, also called
region, can be described by a first-order predicate logic formula ϕ. We write
�ϕ� := {c ∈ C | c |= ϕ} for the set of concrete data states represented by some
formula ϕ. Furthermore, we write γ(c) for the representation of a concrete data
state as formula (i.e. �γ(c)� = {c}).

A tuple (l, c) of a location and a concrete data state of a program is called
concrete state. The concrete semantics of an operation op ∈ Ops is defined in
terms of the strongest postcondition operator SPop(·). Intuitively, the strongest
postcondition operator SPop(ϕ) of a formula ϕ wrt. to an operation op is the
strongest formula ψ which represents all states which can be reached by op from
a state satisfying ϕ. Formally, we have SPx:=expr(ϕ) = ∃x̂ : ϕ[x �→x̂] ∧ (x =
expr[x �→x̂]) for an assignment operation x := expr and SPassume(p)(ϕ) = ϕ ∧ p
for an assume operation assume(p) (assume(·) omitted in figures).

We write (l, c)
g→ (l′, c′) for concrete states (l, c), (l′, c′) and edge g := (l, op, l′),

if c′ ∈ �SPop(γ(c))�. We write (l, c) → (l′, c′) if there is an edge g = (l, op, l′)
such that (l, c)

g→ (l′, c′). A concrete state (ln, cn) is reachable from a location l0
and a region r, denoted by (ln, cn) ∈ Reach({l0}× r), if there is a concrete data
state c0 ∈ r such that (l0, c0) → (l1, c1) → . . . → (ln, cn) for some intermediate
concrete states (l1, c1), . . . , (ln−1, cn−1). Sometimes we like to explicitly refer
to a CFA A when talking about the set of reachable states, which we denote
as ReachA(·). Furthermore, we say a location l′ is reachable in a program P =
(A, l0, lE) if there is a concrete state (l

′, c′) ∈ Reach({l0}×C). Finally, a program
P = (A, l0, lE) is safe if lE is not reachable in P .

Predicate Abstraction. Let P be a set of quantifier-free predicates over program
variables. A predicate formula ϕ is a boolean combination of predicates from P .
A precision for formulas PS ⊆P is a finite subset of P with which a predicate
formula can be constructed. A precision for programs π : L → 2P maps each
program location to a precision for formulas. The boolean predicate abstraction
of a formula ϕ wrt. precision PS, denoted by (ϕ)PS , is the strongest boolean
combination of predicates from PS such that (ϕ)PS is implied by ϕ. Boolean
predicate abstractions of region formulae of a program form the abstract data
states of a predicate analysis. Here, we assume this abstraction to be computed
by some standard approach like those given in [16,3,21].

3 Block-Abstraction Memoization

Our technique of block-abstraction memoization (BAM) can be seen as one in-
stance of a configurable program analysis with dynamic precision adjustment
(CPA+) [6]. While we only present BAM here, it can easily be used together
with other features of CPAchecker like for instance block encodings. We first
of all describe the basic algorithm for computing the set of abstract reach-
able states and then describe the block memoization technique. Our CPA+

336 D. Wonisch and H. Wehrheim

Algorithm 1. (Part of) CPA+ algorithm for BAM = (D,Π,�, stop).
Input: an initial abstract state e0 ∈ E with precision π0 ∈ Π , where E denotes the

set of elements of the semi-lattice of D
Output: a set of reachable abstract states
1: waitlist := {(e0, π0)}; reached := {(e0, π0)};
2: while waitlist
= ∅ do
3: pop (e, π) from waitlist;

4: for each e′ with e
π� e′ do

5: if ¬stop(e′, {e | (e, ·) ∈ reached}, π) then
6: waitlist := waitlist ∪ {(e′, π)};
7: reached := reached ∪ {(e′, π)};
8: return {e | (e, ·) ∈ reached}

BAM = (D,Π,�, stop) is a tuple consisting of an abstract domain D, a set of
precisions Π , a transfer relation � and a termination check stop.

– The abstract domain D = (C, E , �·�) is defined by a set of concrete states C,
a semi-lattice E = (E,,,�,), and a concretization function �·� : E → 2C .
The semi-lattice E = (E,,,�,) consists of a set of abstract states E,
a top element , ∈ E, a partial order � ⊆ E × E, and a join operation
	 : E × E → E. The concretization function maps abstract states to the
respective set of concrete states they represent. For the BAM analysis an
abstract state e ∈ E is a pair (l, ψ)1, where l is a location and ψ is a
predicate formula. We have �(l, ψ)� = {l} × {c ∈ C | c |= ψ}.

– The set of precisions Π determines possible precisions of the abstract do-
main. In case of BAM we have Π = L → 2P: a location is assigned a set
of predicates. In an abstract state (l, ψ) with precision π, the formula ψ is
built over π(l).

– The transfer relation � ⊆ E×G×E×Π determines which abstract states
e′ ∈ E can be reached from e ∈ E by some edge g ∈ G of the CFA wrt.
precision π ∈ Π . This is the part where our block memoization technique
comes into play. We will describe it below when the basic algorithm is clear.

– The termination check stop : E × 2E × Π → B checks whether a given
abstract state e ∈ E with precision π ∈ Π is already “covered” by a given
set of abstract states R ∈ 2E . In our analysis it is simply checked whether
there is e′ ∈ R such that e � e′.

Algorithm 1 shows the overall algorithm that computes an overapproximation
of the set of reachable states of a program by constructing an abstract state
space. It takes an initial abstract state e0 and an initial precision π0 as input,
maintains a waitlist of abstract states not explored yet, and a set reached of

1 In the implementation, an abstract state is a quadruple containing additional in-
formation for e.g. the block encodings of CPAchecker, which we however omit
here.

Predicate Analysis with Block-Abstraction Memoization 337

already computed abstract states2. The algorithm also implicitly constructs the
abstract reachability tree (ART) referred to in the introduction: the abstract
states with precisions in reached are the nodes of the ART and we have an
edge between two nodes (e, π) and (e′, π) if e π� e′. We write BAMA(e0, π0) to
describe the set of states returned by this algorithm when started on a CFA A.
We say a location l is reachable in the abstraction of a program P = (A, l0, lE)
wrt. initial precision π0, if there is some abstract state e = (l, ·) such that
e ∈ BAMA((l0, true), π0). The lazy abstraction and abstraction refinement tech-
nique used in CPAchecker and also our own approach is not shown here (see
Section 4 for a treatment of lazy abstraction).

The interesting part is now the definition of the transfer relation �. The
basic idea of BAM is to consider blocks as whole entities for which we separately
compute abstract reachability trees which we store and re-use whenever we get
to the same block again. Consider again program NESTED of Figure 1. If we
construct the ART for this program using the predicates {i = 0, i = 1, i = 2, j =
0, j = 1, j = 2, k = 0, k = 1, k = 2} we see that e.g. location l5 is visited four
times during construction of the ART. At each visit the abstract states only
differ in the valuation of the outer loop variables i and j. Instead of computing
the abstraction of the innermost block all over again, we would ideally like to
do it only once, cache the obtained results, and re-use it when we visit l5 next
time.

Thus the transfer relation needs to distinguish two cases. The first, standard
case occurs when the abstract state e = (l, ψ) does not represent the start of a
block. In this case, we compute the abstract successor e′ = (l′, ψ′) wrt. an edge
g = (l, op, l′) and precision π as ψ′ = (SPop(ψ))

π(l′), i.e., the boolean abstraction
of the strongest postcondition of ψ wrt. operation op. In the other case, we have
to compute an ART for the block or use a cached block ART. To see how this
works we first of all need to define blocks. Intuitively, a block B is a (connected)
subgraph of the CFA.

Definition 1. A block B = (L′, G′) of a CFA A = (L,G) consists of a set of
locations L′ ⊆ L and a set of associated edges G′ = {(l1, op, l2) ∈ G | l1, l2 ∈ L′}
such that for all l1, l2 ∈ L′ there is a path from l1 to l2 or l2 to l1 formed by
edges in G′ only.
A block B has a set of input locations In(B) := {l | l ∈ L′ ∧ ∃(lprev, op, l) ∈ G :
lprev /∈ L′} and a set of return locations Out(B) := {l | l ∈ L′ ∧ ∃(l, op, lsucc) ∈
G : lsucc /∈ L′} ∪ {lE | lE ∈ L′}.

When partitioning the CFA A into blocks, we require that the partition is nested
or disjoint, meaning that for blocks B = (L,G), B′ = (L′, G′) we have L∩L′ = ∅,
L ⊂ L′, or L′ ⊂ L. Besides this, we do not impose any restrictions for the user-
defined partition of the CFA into blocks. In Figure 1 we see a partition of the
control flow automaton into three blocks, the inner two comprising the two inner

2 This algorithm is taken from [6], but we have elided all those parts referring to the
different adjustment options and just have taken the part of interest for BAM.

338 D. Wonisch and H. Wehrheim

loops, the outer one the whole program. When the dotted lines cut across nodes,
these are part of the block.

Given a partition into blocks, we need to describe how the abstract reachabil-
ity trees for the blocks are computed. Basically, we use the same algorithm for
blocks as for the whole CFA, however, we might change (weaken) the precision
when computing block ARTs. This is useful because (a) a block might not use
some of the current predicates at all, and (b) it enhances the possibilities for
re-use when the same block occurs in different subgraphs of the ART with dif-
ferent precisions. Assume for an abstract state e = (l, ψ) with precision π that e
is the start of a block. Instead of computing the block ART with respect to π(l),
we now only compute it for the relevant predicates of the block B, denoted by
Preds(B, π(l)). Intuitively, it contains only those predicates of π(l) which might
be changed or referred to in the block. Analyzing a block only wrt. a set of rel-
evant predicates involves two operations. First, we have to reduce (i.e., weaken)
the abstract state e’s predicate formula to the relevant predicates. Second, we
have to expand (i.e., strengthen) the resulting abstract states such that then all
predicates are taken into account again.

As an example consider the inner most block of the CFA of program NESTED.
Its input location is l5 and its return location is l8. Assume that we reach location
l5 during the analysis in an abstract state e = (l5, (i = 0∧ j = 0∧ k = 0)) while
working with the set of predicates PS = {i = 0, i = 1, i = 2, j = 0, j = 1, j =
2, k = 0, k = 1, k = 2} (possibly after many refinements). The relevant predicates
for the innermost block are {k = 0, k = 1, k = 2} only (the inner loop does not
refer to i nor j). Thus we can weaken the predicate formula in e to k = 0 (by
existentially quantifying over all irrelevant predicates). The analysis (algorithm
BAM) is started for the block with this reduced abstract state and gives us an
abstract state (l8, k = 2) for the return location. The predicate formula in here
now needs to be expanded: we need to take the conjunction of k = 2 with the part
of the old predicate that we removed during reduction, i.e. i = 0 ∧ j = 0. Again
the latter is obtained by existential quantification, this time over the relevant
predicates of the block ((∃(k = 0) : i = 0 ∧ j = 0 ∧ k = 0) ≡ (i = 0 ∧ j = 0)).

Definition 2. Let e = (l, ψ) be an abstract state, l an input location of a block
B = (L′, G′), π a precision. Let Preds(B, π(l)) = {q1, . . . , qm} the set of relevant
and π(l) \ Preds(B, π(l)) = {p1, . . . , pn} the set of irrelevant predicates of the
block B wrt. π(l). Then

reduce(e, {p1, . . . , pn}) := (l, ∃p1, . . . , pn : ψ) .

Let furthermore E be some set of abstract states reached by analyzing block B.
Then

expand(E, e, {q1, . . . qm}) := {(l′, ϕ′) | (l′, ϕ) ∈ E ∧ ϕ′ = (∃q1, . . . , qm : ψ) ∧ ϕ} .

With these definitions at hand we can define the transfer relation for the case
when the abstract state e = (l, ψ) is an input location of a block B = (L′, G′).
Assume that we are given an edge g = (l, op, l′) i.e., l ∈ In(B), and we have

Predicate Analysis with Block-Abstraction Memoization 339

precision π. Let π′ := {l′
→ PS′ | l′ ∈ L′ ∧ PS′ = Preds(B, π(l′))} be the
precision π reduced to the relevant predicates of B. Then the successor states of
e are all those states e′ = (l′, ψ′) with l′ ∈ Out(B) and

e′ ∈ expand(BAMB(reduce(e, π(l) \ Preds(B, π(l))), π′), e, P reds(B, π(l)))

Although not explicitly modeled, we actually expect the recursive calls to BAM
to be cached (block caches). In the cache we store the analysis results of blocks
for reduced abstract states and precisions. Hence, if we notice that we have
already done the same analysis for the block before, we do not recompute it but
reuse the cached result. The fact that we first of all reduce the predicate formula
allows us to re-use results even if the abstract states differ. This is key to the
performance improvement achieved by BAM.

Assuming soundness of the computation of relevant predicates our BAM anal-
ysis is also sound. A computation of relevant predicates is said to be sound if
the interpretation of predicates classified as irrelevant for some block B cannot
change due to an execution of B (otherwise expand could introduce unsound
information).

Definition 3. A computation of relevant predicates Preds(·, ·) is sound iff for
every block B, every set of predicates PS ⊆P, and all p ∈ PS \ Preds(B,PS)
we have

∀c ∈ In(B)× C : ∀c′ ∈ ReachB({c}) : c |= p ⇐⇒ c′ |= p.

We can now show that our analysis indeed detects all reachable error states
(proof not given due to lack of space).

Theorem 1. Let P = (A, l0, lE) be a program with CFA A = (L,G) that is
partitioned into blocks. Let Preds(·, ·) be a sound computation of relevant pred-
icates.
If the error location lE is reachable in P then lE is also reachable in every ab-
straction of P .

As we see here, the analysis is sound for any precision that we might start with,
as long as the computation of relevant predicates is sound. Yet, in practice, we
do not only want the computation of relevant predicates to be sound but also
to be precise. That is, the interpretation of predicates classified as irrelevant for
some block B should not alter the control-flow of B. If we for example consider
a predicate p that occurs in an if-condition as irrelevant, an analysis of the
block will explore both branches of the if-clause, whereas a precise computation
of relevant predicates will consider p as relevant and thus will possibly only
analyze one of the branches of the if-clause.

4 Lazy Abstraction

Lazy abstraction comes into play when applying refinements. Refinements need
to be applied when the precision used for the analysis was too coarse to prove

340 D. Wonisch and H. Wehrheim

Fig. 2. Example ART as constructed by Algorithm 1

the absence of error states, i.e., when spurious counter examples are found. As
running example for this section, consider the ART shown in Figure 2. In the
figure, grey circles denote arbitrary abstract states, black circles denote abstract
states in the error location, and white circles denote abstract states in a safe
location (i.e., locations from which the error location is clearly not reachable
anymore). Blocks are indicated by dotted rectangles. The dashed waitlist line
in the figure indicates which abstract elements are currently in the waitlist of
the BAM algorithms (Algorithm 1). In this case, we stopped the algorithm(s),
because an error state, namely e2, was found.

The refinement process now works as described in Algorithm 2. First of all,
a counter example (path from e0 to e2 in our example) is constructed (line 1)
and checked for spuriousness (line 2). These are standard procedures which the
model checker performs. If the counter example is not spurious, we found a
valid counter example and can report this to the user (line 3). Otherwise, if the
counter example is spurious, we can conclude that our analysis was too imprecise
and we have thus have to refine it such that the spurious counter example is
ruled out (line 4-14). To this end, in case of predicate abstraction, we have to
find additional predicates. Which predicates are actually needed to rule out the
spurious counter example can be determined by e.g. Craig interpolation [18].
In case of lazy refinement, these newly found predicates need to be added to
the subtree of the ART where the spurious counter example was found in. For
example, in our figure the counter example analysis may report that we shall
rebuild the subtree starting with element e7 and using some new precision πnew
to rule out the previously found counter example.

For our algorithm we consider the counter example analysis as a black box that
returns a “cut” element ecut (with its surrounding block Bcut and corresponding
precision πcut) from which on we shall rebuild the ART with an also supplied
new precision πnew (line 5). Note that in case of BAM we actually do not have a
single overall ART but rather one ART for each distinct block, abstract element,
and precision combination. Thus, to rebuild the subtree starting with ecut, we
have to remove ecut in the ART corresponding to (Bcut, ecut, πcut) (line 9-10) and

Predicate Analysis with Block-Abstraction Memoization 341

Algorithm 2. Lazy refinement algorithm

Input: an error element eerr in some block Berr with precision πerr, a cache cache :
B × E ×Π → ART , where B is the set of blocks,
a waitlist for each ART waitlist : ART → 2E×Π

Output: ce := ((B0, e0, π0), . . . , (Berr, eerr, πerr)) if a real counter example was found,
updated waitlist and ARTs otherwise.

1: ce := find path((Berr, eerr, πerr), cache);
2: if ce is not spurious then
3: return ce; //Real counter example found
4: //Analysis was too imprecise; adapt precision
5: ((Bcut, ecut, πcut), πnew) = new precision(ce);
6: (B, e, π) := (Bcut, ecut, πcut);
7: while B
= nil do
8: //outermost block not yet left
9: art := cache(B, e, π);
10: remove subtree(art, e); //inplace remove subtree starting with e
11: waitlist(art) := waitlist(art)∪{(e, πnew)}; //rebuild subtree with new precision

12: (B, e, π) := last caller(B, ce, ecut); //node where B was called last before ecut
13: πnew := π; //precision of outer blocks kept
14: return waitlist; //ARTs got altered inplace

re-add the element with the new precision πnew to the waitlist corresponding to
the ART (line 11). Moreover, we have to make sure that the block edge that was
used in the outer block gets updated. To this end, we also remove the calling
abstract element from the next outer block in a loop till the outermost block
was reached (line 7-13).

Referring to our running example, we remove the subtree starting with ecut :=
e7 in the ART for block Bcut := B1 and add (e7, πnew) to the waitlist (for
this ART). Afterwards, to update the block edge used at e6, we also remove
the subtree starting with e6 from the ART for block B0 and add e6 with its
corresponding precision to the waitlist again.

This concludes the basic refinement algorithm. We yet want to emphasize two
important design decisions that turned out to be most efficient in our benchmarks
and that are reflected in the algorithm. First, whenever we have to rebuild a
cached ART of a block B we do so without updating other occurrences of the
same cached ART in other parts of outer ARTs. For example, assume that the
very same cached ART for B1 is used for all occurrences of B1 in Figure 2. Then,
when rebuilding the subtree starting with, e.g., e7, we modify the one and only
cached ART for B1, but only update the block edge used at e6. This makes sense
as we thereby avoid looking into subtrees again that were already proven to be
safe (e.g., the branch to e1). Second, we refine the ARTs of blocks in-place, i.e.,
without keeping a copy of the non-refined ART. This may leave “holes” in the
ART. For example, after the refinement of block B1 there is no ART cached
anymore that would explain the (block) edge from e8 to e9 in the ART of B3.
If we are lucky, we will not need this information anymore during the further

342 D. Wonisch and H. Wehrheim

analysis, namely if we find out that the subtree is safe. Otherwise, if we find the
error location in the subtree, we need to reconstruct the information (see below).

To complete the refinement process, we are left to treat two special cases.
First, when constructing a counter example to the given error location, we may
encounter the “holes” mentioned above. We handle this special case by simply
rebuilding the subtree starting with (Bk, ek, πk) as done for (B, e, π) in lines 6-
13 in Algorithm 2, where (Bk, ek, πk) is the last element of the counter example
that could be constructed without running into “holes”. This forces the CPA
algorithm to use the refined ART for the block, which may already rule out the
error. If this is not the case, we further refine the refined ARTs as described
in Algorithm 2. Thus, in our example, when resuming the BAM algorithm and
finding the error state below e4, we rebuild the subtree starting with e8. Since
the cache at this point only contains a refined ART for block B1, this refined
ART will also be used during rebuilding the subtree. Note that the same holds
for the very right branch: when the algorithm proceeds with this branch it will
use the refined ART for block B1 at abstract element e10.

The second special case that needs to be considered in the refinement process
may be caused by precision loss of BAM in presence of non-cube abstraction:
if, for example, we have a block consisting only of the assignment b = b ∗ 3 and
an initial non-cube abstraction (a = 1 ∧ b = 1) ∨ (a = 2 ∧ b = 2), our BAM
algorithm might identify a as irrelevant for the block and reduce the abstraction
to b = 1∨ b = 2. Executing the only block statement will lead to an abstraction
b = 3 ∨ b = 6 which gets expanded to (b = 3 ∨ b = 6) ∧ (a = 1 ∨ a = 2). While
this abstraction is sound, it is also clearly less precise than (a = 1∧b = 3)∨ (a =
2∧ b = 6), which we get when analyzing the block directly, without using BAM.
This impreciseness has be considered in the refinement process, as it may cause
the process to fail to rule out certain spurious counter examples. We treat this
special case as follows. First of all, we can detect it by simply memorizing the
last handled counter example. If we encounter the same counter example during
refinement, we apparently failed to rule it out. Second, to avoid running into the
same counter example for a third time, we alter the Preds(B, ·) function for each
block B in the counter example in such a way that it considers all predicates
occurring in the abstractions of the respective abstract elements of the respective
block in the counter example as relevant for the future. This effectively disables
BAM for this counter example (reduce and expand will have no effect) and thus
guarantees that the same counter example cannot be encountered again.

5 Experimental Results

We implemented our approach in the program-analysis tool CPAchecker [10]
based on the Adjustable-Block Encoding (ABE) [7] predicate analysis. To de-
termine the set of relevant predicates of a block, our implementation currently
considers those predicates as relevant that reference a variable occurring in the
block (no aliasing assumed). For the partition of the CFA into blocks, we consider
(automatically detected) loop bodies and function bodies as blocks.

Predicate Analysis with Block-Abstraction Memoization 343

Table 1. Benchmark results of CPAchecker with block-abstraction memoization in
comparison to classic CPAchecker with large-block encoding. Best runtime results
are written in bold letters.

CPAchecker with LBE CPAchecker with BAM
Program #ref. Mem. Runtime #ref. Mem. Runtime

steps max total MC CEA steps max total MC CEA

cdaudio simpl1 BUG 544 632m 17.5 11.2 4.27 122 287m 10.1 7.07 1.52
floppy simpl3 BUG 100 140m 5.37 3.34 1.01 55 89m 3.95 2.03 0.93
floppy simpl4 BUG 225 255m 7.82 4.91 1.63 84 135m 5.23 2.95 1.20
kbfiltr simpl2 BUG 123 67m 3.97 2.15 0.77 30 46m 2.49 1.08 0.46
cdaudio simpl1 555 633m 17.7 11.3 4.44 113 270m 9.21 6.10 1.43
diskperf simpl1 269 537m 14.0 8.59 4.29 101 171m 7.14 4.53 1.40
floppy simpl3 121 153m 6.47 4.11 1.32 66 132m 5.81 3.45 1.38
floppy simpl4 294 405m 9.27 5.90 2.09 101 211m 7.44 4.42 1.50
kbfiltr simpl1 30 37m 2.09 0.97 0.25 14 31m 1.76 0.55 0.22
kbfiltr simpl2 111 90m 3.81 2.07 0.67 26 34m 2.46 1.08 0.40

cdaudio.BUG 406 672m 19.6 12.6 3.93 93 259m 10.3 5.63 1.85
diskperf.BUG 190 457m 15.7 9.63 4.45 73 225m 6.40 3.36 1.62
floppy.BUG 390 297m 14.2 7.81 4.18 97 237m 8.02 3.76 2.06
kbfiltr.BUG 121 118m 4.96 2.47 1.10 30 64m 3.41 1.34 0.74
parport.BUG 2253 998m 120 61.3 20.7 189 552m 15.8 7.97 4.64
cdaudio 610 680m 27.5 17.6 6.43 110 348m 14.0 7.89 2.61
diskperf 246 490m 19.2 11.5 5.61 86 284m 7.91 4.75 1.76
floppy 785 334m 27.0 14.2 9.75 124 300m 11.0 6.18 2.31
parport 2634 1071m 158 90.6 25.0 255 751m 29.3 18.8 6.24

mgpd-bluetooth-btmrvl 34 1028m 27.1 23.8 1.16 18 153m 6.96 3.94 0.70
mgpd-gpu-drm-i915-i915 20 1468m 51.4 39.4 1.53 9 369m 14.3 1.28 1.28
mgpd-net-pppox 8 31m 2.38 0.75 0.14 13 42m 2.76 0.93 0.43
mgpd-atm-eni out of memory 13 479m 9.97 5.91 0.48
mgpd-block-drbd-drbd out of memory 6 207m 12.6 0.99 0.26
mgpd-block-paride-pt out of memory 12 378m 10.5 2.60 6.21
mgpd-hwmon-it87 out of memory 3 107m 4.84 1.87 0.10
mgpd-net-atl1c-atl1c out of memory 11 492m 13.2 8.27 0.67
mgpd-net-sis900 out of memory 24 378m 10.9 6.86 0.65
mgpd-scsi-megaraid out of memory 11 539m 14.9 9.07 0.34
mgpd-staging-et131x-et131x out of memory 4 432m 11.9 5.85 0.18
mgpd-video-aty-aty128fb out of memory 28 1461m 32.3 3.24 26.9

nested 1 6 8 22m 1.14 0.19 0.04 8 18m 1.31 0.24 0.05
nested 2 6 14 33m 2.32 1.24 0.16 14 34m 1.72 0.53 0.26
nested 3 6 22 129m 11.8 8.94 2.02 29 35m 5.10 1.00 3.15
nested 4 6 30 107m 216 129 86.4 85 130m 147 1.95 144
nested 5 6 out of memory timeout (>15min)

344 D. Wonisch and H. Wehrheim

Using this configuration we submitted our implementation to the 1st Intl.
Competition on Software Verification (held at TACAS 2012). With a total score
of 280 points we won the competition in the category “Overall” [26]. In the
following we report on some results of our implementation when compared to
CPAchecker without BAM on benchmark programs of the competition as
well as on our constructed NESTED programs (nested n m for n nested loops
each counting to m). Please refer to [8] for a comparison with other verification
tools. All experiments were performed on a 64bit Ubuntu 11.04 machine with
4GB RAM, an Intel i5 CPU with 2.53GHz, and OpenJDK 6 64-Bit Server VM
(build 20.0-b11, IcedTea6 1.10.2)3. Table 1 shows an excerpt of the results of our
benchmarks.

In the table, we provide the number of refinements needed, the maximum
amount of heap space occupied, and the total runtime of the verification al-
gorithm when using CPAchecker with or without BAM (in both cases we
configure ABE as Large-Block Encoding (LBE) [5], i.e., to compute abstractions
at loops and functions). Moreover, we further partition the total runtime into
time spent for model checking (MC) and for counter example analysis (CEA;
this includes building the counter example, determining whether it is spurious
or not, and computing interpolants to receive additional predicates that rule out
the spurious counter example). All runtimes are given in seconds.

As expected, the time spent on model checking is reduced dramatically for the
NESTED programs. With only four nested loops we already achieve a speed-up
in model checking of more than factor 50 by using BAM. Note that the length
of the counter examples grows exponential with the number of nested loops.
Since the predicate analysis with BAM has to construct these counter examples
as well during refinement, it also suffers from an exponential blowup, leading
overall speed-up of less than factor two.

More interestingly, using BAM for the NT-drivers (first two blocks in the ta-
ble) we gain an overall speed-up of about factor three. Clearly, the success of the
technique relies strongly on the structure of the given programs. Hence, on some
examples the overall speed-up is even about factor ten, while on other example
the speed-up is almost non-existent. Yet, the technique never imposes any sig-
nificant overhead. Also it can be noticed that even the memory consumption is
lower in average when using BAM. This reduction in memory consumption can
be explained by the reduced size of the ART.

Finally, the third block of programs in Table 1 shows the result for a set of 64bit
Linux device drivers. As it turns out, for this benchmark set, BAM can drastically
improve the efficiency of CPAchecker. That is, with BAM all nine programs,
for which the analysis failed without BAM, can now be efficiently verified as safe.
This set of examples therefore shows that due to its increase in efficiency BAM al-
lows to successfully analyze programs that were not possible to analyze without.

3 BAM is fully incorporated into CPAchecker. To rerun the experiments just down-
load the source code of CPAchecker 1.1 (http://cpachecker.sosy-lab.org/) and
run CPAchecker configured with “predicateAnalysis-lbe” and “predicateAnalysis-
abm”, respectively, on the benchmark programs.

http://cpachecker.sosy-lab.org/

Predicate Analysis with Block-Abstraction Memoization 345

This is also reflected on the complete benchmark set of the software verification
competition: with BAMCPAchecker is able to correctly analyze 211 of 277 pro-
grams, whereas without BAM (and using LBE)CPAchecker can only correctly
analyze 167 of 277 programs4.

6 Conclusion

In this paper we presented block-abstraction memoization, a modular approach
for model checking (predicate) abstract state spaces. The approach relies on a
user-defined adjustment of blocks for the modularization of the analysis. For each
block a set of relevant predicates is computed to speed-up the analysis of the blocks
and to efficiently cache intermediate analysis results. We implemented our tech-
nique into the program verification tool CPAchecker and showed on basis of a
given benchmark set that our technique indeed speeds up the verification task.

Related Work. As already indicated in the introduction, the idea of block
summarizations is not new. Summarizations are used for the analysis of heap
structures [2,14], finite state machine specifications [12], and program termina-
tion [25]. In the following we compare our work to those approaches which we
consider conceptually closest to ours.

The work closest to our technique is the paper of Ball and Rajamani [4]. In the
paper the underlying technique of the boolean program model checker Bebop is
described. Bebop is part of the SLAM framework [1], which implements an eager
(i.e. non-lazy) counter example guided (predicate) abstraction refinement cycle
for C-programs. In [4] the interprocedural dataflow algorithm of Reps et al. [24]
is generalized and transferred to boolean programs. This involves the use of sum-
marizations that reflect the in- and output behavior of functions. However, this
technique is only used in an eager framework and for functions only.

Adjustable-Block Encoding [7] is a technique that allows a predicate analysis
to compute predicate abstractions only at user-defined locations. Large-Block
Encoding [5] is a special case of ABE that computes abstractions only at loop
heads and function calls. In [5] LBE is shown to be vastly more efficient than
Single-Block Encoding, i.e., the computation of predicate abstractions after each
operation. Basically, ABE and LBE are orthogonal concepts to BAM and can
thus, in principle, be freely combined with BAM. As we however only define the
reduce and expand operation on abstract elements with a predicate abstraction,
we currently require ABE to be configured such that an abstraction is computed
at the start and end of each block (as defined by BAM). In practice, it further-
more has turned out that configuring ABE to compute an abstraction only at
the start and end of a block yields the best performance.

The approach of the tool SLAB [11] will in some cases also consider blocks or
functions as entities of which no further detailed analysis is necessary. Instead of

4 Measured using a scoring schema as defined by the Competition on Software Verifi-
cation 2012 CPAchecker with BAM yields 282 points on our machine, compared to
206 points when only using LBE.

346 D. Wonisch and H. Wehrheim

starting with the CFA of a program, [11] starts with a very coarse abstraction
only distinguishing initial and error states. Nodes for particular locations are
only introduced when needed, and thus locations inside functions might not be
explicitly represented. However, there is no notion of re-use of already explored
parts, blocks occurring several times will also be analyzed several times.

In [15] Godefroid et al. describe a verification approach that is based on the
combination of a may and must analysis, using a SLAB alike predicate abstrac-
tion for the may analysis and dynamic test generation for the must analysis.
They use function summaries in both analyses and show how the analyses com-
plement each other to yield better function summarizations. In their approach
function summaries are however immutable and not subject to any refinement.
Thus, although employed in a lazy framework, Godefroid et al. did not face
similar challenges in the refinement process as we discussed in Section 4.

Future Work. For the future we want to look at more sophisticated static
analyses for the computation of relevant predicates of a block. This is especially
required for programs with pointer-aliasing. Also, we want to look for other block
partitions than just loop bodies and function bodies. For example, it may be
beneficial to skip definitions like localVar := someGlobalVar at the beginning
of blocks for loop and function bodies, because this may reduce the amount of
relevant predicates of the block and thereby lead to more cache hits.

Looking on how we defined BAM in the CPAchecker framework, we also
believe that the technique can, in principle, be generalized to work on top of
arbitrary CPAs like e.g. explicit state analysis or shape analysis [6]. Such a
generalization of the technique would allow us to combine different CPAs, as
done in CPAchecker, while still benefiting from the modular BAM approach.

Finally, an interesting application of our technique is proof-carrying code
([22]). The idea here is that BAM can be used to construct more compact proofs
for programs than with classical (lazy) predicate analysis as done in [17].

Acknowledgement. We would like to thank Philipp Wendler for his extensive
help with the integration of BAM into CPAchecker.

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology Transfer of Formal Methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004)

2. Ball, T., Hackett, B., Lahiri, S.K., Qadeer, S., Vanegue, J.: Towards Scalable Modu-
lar Checking of User-Defined Properties. In: Leavens, G.T., O’Hearn, P., Rajamani,
S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 1–24. Springer, Heidelberg (2010)

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

4. Ball, T., Rajamani, S.: Bebop: A Symbolic Model Checker for Boolean Programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

Predicate Analysis with Block-Abstraction Memoization 347

5. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M., Sebastiani, R.: Software model
checking via large-block encoding. In: FMCAD 2009, pp. 25–32. IEEE (2009)

6. Beyer, D., Henzinger, T., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: ASE 2008, pp. 29–38. IEEE Computer Society (2008)

7. Beyer, D., Keremoglu, M., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: FMCAD 2010, pp. 189–197 (2010)

8. Beyer, D.: Competition on Software Verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

9. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: The software model checker
BLAST. STTT 9, 505–525 (2007)

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

11. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Fun-
dam. Inform. 89(4), 369–392 (2008)

12. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. IEEE Transactions on Software Engineering 30(6), 388–402 (2004)

13. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

14. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure
summaries for heap manipulating programs. SIGPLAN Not. 46, 567–577 (2011)

15. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: Compositional must program
analysis: unleashing the power of alternation. SIGPLAN Not. 45, 43–56 (2010)

16. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

17. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-Safety Proofs for Systems Code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002)

18. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 232–244. ACM (2004)

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70 (2002)

20. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
Bounded Model Checking for Software Verification. Theoretical Computer Sci-
ence 404, 256–274 (2008)

21. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast Predicate Ab-
straction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 424–437.
Springer, Heidelberg (2006)

22. Necula, G.C.: Proof-carrying code. In: POPL 1997, pp. 106–119. ACM, New York
(1997)

23. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

24. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, pp. 49–61. ACM, New York (1995)

25. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop Summariza-
tion and Termination Analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

26. Wonisch, D.: Block Abstraction Memoization for CPAchecker (Competition Con-
tribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
531–533. Springer, Heidelberg (2012)

Heuristic-Guided Abstraction Refinement

for Concurrent Systems

Nils Timm, Heike Wehrheim, and Mike Czech

Department of Computer Science, University of Paderborn, Germany
{nils.timm,wehrheim,mczech}@mail.upb.de

Abstract. Predicate abstraction is an established technique in software
verification. It inherently includes an abstraction refinement loop succes-
sively adding predicates until the right level of abstraction is found. For
concurrent systems, predicate abstraction can be combined with spotlight
abstraction, further reducing the state space by abstracting away certain
processes. Refinement then has to decide whether to add a new predi-
cate or a new process. Selecting the right predicates and processes is a
crucial task: The positive effect of abstraction may be compromised by
unfavourable refinement decisions. Here we present a heuristic approach
to abstraction refinement. The basis for a decision is a set of refinement
candidates, derived by multiple counterexample-generation. Candidates
are evaluated with respect to their influence on other components in the
system. Experimental results show that our technique can significantly
speed up verification as compared to a naive abstraction refinement.

1 Introduction

Predicate abstraction [1] is one of the most promising techniques for reducing
the complexity of software model checking. It proceeds by generating an abstract
state space of the system to be analysed. In this abstraction, concrete states of
the system are mapped to abstract states over a finite set of predicates. If the
abstraction turns out to be too coarse for verification, abstraction refinement
incrementally adds new predicates in order to arrive at a level of abstraction
where the property of interest can be proven. Abstraction refinement is typically
based on the extraction of new predicates from spurious counterexamples (error
paths that are only feasible in the abstraction, but not in the concrete system)
– either by computing weakest preconditions [4,2] or by interpolation [11].

For concurrent systems composed of many processes, predicate abstraction
can be combined with spotlight abstraction [18,14]. Here a so-called spotlight is
set on certain processes, whereas the rest of the system is kept in the shade. Now,
classical predicate abstraction is applied to the processes in the spotlight, while
the shade processes are summarised into one approximative process, i.e. they
are nearly completely abstracted away. This generally enables a verification of
concurrent systems on very small abstractions, in particular when the property to
be checked is local to some processes. However, such abstractions may also be too
coarse for a definite result in verification, and thus, may necessitate refinement.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 348–363, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Heuristic-Guided Abstraction Refinement for Concurrent Systems 349

The spotlight principle adds a new facet to iterative abstraction refinement.
In every refinement step a new predicate can be added to the abstraction or an
additional process can be drawn from the shade into the spotlight. Furthermore,
it remains to decide which particular predicate or process to select. The selec-
tion of the ’right’ processes and predicates for refinement is the crucial part of
the overall procedure. Naive decisions, even when guided by spurious counterex-
amples, often lead to an unnecessary blow-up of the state space. Typically, a
spurious counterexample hints to a large set of processes and predicates that are
potentially relevant for a definite result in verification. Hence, adding the whole
set to the abstraction may introduce a considerable amount of redundancy or
may even cause the model checker to run out of memory. On the contrary, select-
ing one arbitrary (e.g. the first discovered) element may guide the refinement
in unfavourable directions. An example would be the complete unrolling of a
loop by iteratively adding all possible predicates over the loop variable – though
adding a certain process (possibly affecting the loop variable) might immediately
reveal a definite answer in verification.

In this paper, we introduce a heuristic-guided abstraction refinement frame-
work for verifying concurrent systems. The idea of using heuristics in model
checking has already been explored in directed model checking [6,12]. Therein,
the exploration of the state space is based on heuristic search strategies in order
to find counterexamples of minimal length. In contrast, we aim at minimising
the size of the final abstraction on which a definite result in verification can be
obtained. The use of heuristics for the purpose of abstraction refinement has
also been employed in [9,10] for the verification of hardware designs, however,
not building on a predicate abstraction framework but on abstractions making
sets of input variables invisible.

Our approach uses predicate abstraction combined with spotlight abstraction
and is based on three-valued model checking [15]. Hence, the outcome of a verifi-
cation run can be true, false or unknown. Definite results can be directly trans-
ferred to the original system; only unknown necessitates abstraction refinement.
In the latter case, our model checker returns an unconfirmed counterexample
– a potential error path with unknown transitions and predicates. These ’un-
knowns’ point to a set of refinement candidates : unconsidered predicates and
shade processes that might help to resolve some uncertainty in the unconfirmed
counterexample. In order to enlarge the set of refinement candidates, we em-
ploy multiple counterexample-generation. The candidates are then evaluated in
terms of their usefulness for guiding abstraction refinement towards a definite
result in verification. This heuristic evaluation is based on an abstraction depen-
dence analysis which measures the dependencies between each candidate and
the rest of the abstraction. We present a heuristic framework for selecting the
presumably ’best’ candidate for refinement. The fully automatic approach has
been implemented on top of our model checking tool 3Spot. Experiments on
checking CTL [3] properties (safety and liveness) of concurrent systems show
that our heuristic-guided abstraction refinement significantly outperforms naive
refinement approaches in both size of the final abstraction and verification time.

350 N. Timm, H. Wehrheim, and M. Czech

2 Basics

We start with a brief introduction to the systems that we consider in our work.
A concurrent system Sys consists of a fixed number n of non-uniform processes
Proc1 to Procn composed in parallel: Sys = ‖ni=1 Proci . It is defined over a
set of variables Var = Vars ∪

⋃n
i=1 Vari where Vars is a set of shared vari-

ables and Var1, . . . ,Varn are sets of local variables associated with the processes
Proc1, . . . ,Procn , respectively. Variables either have a basic type (bool , int) or
an array type (int → bool , int → int). The state space of a system corresponds
to the set SVar of all possible valuations of the variables. Given a state s ∈ SVar

and an expression e over Var , then s(e) denotes the valuation of e in s .
In our approach, we particularly focus on concurrent systems with asyn-

chronous message passing, also referred to as message passing systems. We there-
fore introduce finite-length communication channels based on circular buffers.
Such channels can be modelled using a set of basic variables and an array:

Definition 1. An asynchronous communication channel of length m ∈ N+ and
type t ∈ {bool , int} is given by a tuple c = (bufferc , rearc , frontc, fullc , emptyc)
where

– bufferc : array [m] of t
an array representing the channels content,

– rearc , frontc : int
pointer variables for the rear and front elements,

– fullc , emptyc : bool
Boolean variables indicating whether the channel is full or empty.

The initial configuration of a channel c is denoted by the expression

rearc = 0 ∧ frontc = 0 ∧ ¬fullc ∧ emptyc ,

hence c is initially empty.

As we can see, message passing systems can be straightforwardly incorporated
into our general notion of concurrent systems: The set of channel-related vari-
ables just corresponds to the set Vars of shared variables. We assume that in our
message passing systems shared variables are solely channel-related, and thus,
all other variables are local. Hence, inter-process communication can only be es-
tablished by sending and receiving messages through channels. As an example,
consider the following system:

c : channel [2] of int

Proc1 ::

[
1 : send(c, e)
2 : End

]
‖ Proc2 ::

[
1 : receive(c,x)
2 : End

]

In this message passing system we have a channel c of length 2 and type int .
Process Proc1 sends the expression e to the channel whereas Proc2 receives a
value from c and stores it in some local variable x . Our channels pass messages
in first-in, first-out manner. Moreover, sending to full channels and receiving on
empty channels will cause busy waiting.

Heuristic-Guided Abstraction Refinement for Concurrent Systems 351

We formally represent processes Proci as control flow graphs (CFGs) Gi =
(Loci , δi) where Loci is the set of control locations and δi ⊆ Loci ×Op × Loci is
a transition relation labelling edges with operations from a set Op:

Definition 2. Let Var = {x1, . . . , x|Var |} be a set of variables. The set of oper-
ations Op on these variables consists of all statements of the form assume(e) :
x1 :=e1, . . . , x|Var | :=e|Var | where e, e1, . . . , e|Var | are expressions over Var.

Thus, every operation consists of a guard and a compound assignment. For
convenience, we sometimes just write e instead of assume(e). Moreover, we omit
the assume part completely when the guard is true. The CFGs for the processes
in Figure 1 – and particularly the semantics of the communication statements
send(c, e) and receive(c, x) – are given by

1

2

assume(¬fullc) :
bufferc := bufferc{rearc ← e},
emptyc := false,
rearc := rearc + 1 mod 2,
fullc := (rearc + 1 mod 2 = frontc)

assume(fullc) : skip

skip

1

2

assume(¬emptyc) :
x := bufferc[frontc],
fullc := false,
frontc := frontc + 1 mod 2,
emptyc := (rearc = frontc+1mod2)

assume(emptyc) : skip

skip

where skip denotes the empty assignment.
A concurrent system given by n single control flow graphs G1, . . . ,Gn can

be modelled by one compound CFG G = (Loc, δ) where Loc = ×n
i=1 Loci . In

every combined location (l1, . . . , ln) ∈ Loc one enabled transition from a process
is non-deterministically selected. Transitions are additionally labelled with the
identifiers of the associated processes (i.e. δ ⊆ Loc ×Op × [1..n]× Loc).

Control flow graphs enable us to model concurrent systems formally. However, for
an efficient verification we additionally need to reduce the models’ state space
complexity. Therefore, we follow an approach based on predicate abstraction.
In common approaches (e.g. [1]) the original system is overapproximated by a
Boolean abstraction, and thus, only universal system properties are preserved.
This may lead to spurious counterexamples in verification. Here, we employ a
three-valued abstraction [15] with a third truth value unknown. Such an abstrac-
tion is an approximation in the sense that all definite results (true, false) in
verification can be transferred to the original system. Hence, there are no spuri-
ous counterexamples. Only unknown results necessitate abstraction refinement.
In this case a so-called unconfirmed counterexample is returned – a potential
error path in the abstract system with some ’unknowns’.

In our abstract systems operations do not refer to concrete variables but to
predicates over variables. Thus, every concrete operation op is approximated by
an abstract operation

opa ≡ assume(pe) : p1 :=pe1, . . . , p|Pred| :=pe|Pred|

where Pred = {p1, . . . , p|Pred|} is a set of atomic predicates over Var , and
pe, pe1, . . . , pe|Pred| are expressions over Pred .

352 N. Timm, H. Wehrheim, and M. Czech

Our abstraction framework is based on a three-valued domain: the valuation
of a predicate in a state s can be true, false or ⊥, i.e. unknown. Unknown is in
fact a valid truth value as we operate with the Kleene logic K3 [8]. We use ⊥ to
model the loss of information due to abstraction. Logical expressions over Pred
often take the three-valued form choice(a, b) for Boolean expressions a, b with
the following semantics:

s (choice (a, b)) =

⎧⎨⎩
true if s(a) is true
false if s(b) is true
⊥ else

This lets us define an approximation relation & on logical expressions. A three-
valued expression pe := choice(a, b) over Pred approximates a Boolean expres-
sion e over Var iff a logically implies e and b logically implies ¬e. The approx-
imation can be extended to operations as follows:

opa & op ≡ pe & e ∧
∧|Pred|

i=1 pei & wpop(pi)

where op and opa are defined as before and wpop(pi) is the weakest precondition
of the predicate pi with respect to the operation op. wpop(p) is a predicate
expression denoting the set of all states s such that op executed in s results in
a state where p holds.

Now, given a concurrent system Sys and a set of atomic predicates Pred =
{p1, . . . , p|Pred|}, then we can derive an abstract system Sysa that approximates
Sys via calculating weakest preconditions and approximating them by three-
valued expressions over Pred . The original control flow is not affected by pred-
icate abstraction. Hence, an abstract process Proca approximates a concrete
process Proc if they have isomorphic CFGs and the operations in Proca approx-
imate the corresponding ones in Proc.

As a computational model for our systems we use fair three-valued Kripke struc-
tures. A three-valued Kripke structure extends a classical Kripke structure by a
three-valued domain for transitions and labellings of states. The logical basis for
this is the aforementioned Kleene logic K3. Furthermore, our Kripke structures
are enriched by fairness constraints.

Definition 3. A fair three-valued Kripke structure over a set of atomic predi-
cates AP is a 4-tuple K = (S ,R,L,F) where

– S is a set of states,
– R : S × S → {true,⊥, false} is a total three-valued transition relation,
– L : S ×AP → {true,⊥, false} is a three-valued function labelling states with

atomic predicates,
– F ⊆ P(R−1({true,⊥})) is a set of fairness constraints where each constraint

is a set of non-false transitions and F ∈ F requires that every fair path takes
infinitely often a transition from F.

A path π of a Kripke structure K is an infinite sequence of states s0s1s2 . . . with
R(si , si+1) ∈ {true,⊥}; πi denotes the i-th state of π, Πs denotes the set of all

Heuristic-Guided Abstraction Refinement for Concurrent Systems 353

paths starting in s ∈ S whereas Π fair
s denotes the set of all fair paths starting

in s ∈ S .
A concurrent system can be represented as a Kripke structure as follows:

Definition 4. Let Sys = ‖ni=1 Proci be a concurrent system given by a com-
pound CFG G = (Loc, δ). Moreover, let Pred be a set of predicates over the
system variables Var. The corresponding Kripke structure is K = (S ,R,L,F)
over AP = Pred ∪ {Proci@j | i ∈ [1..n], j ∈ Loci} with

– S := Loc × SVar ,
– R(〈l , s〉 , 〈l ′, s ′〉) :=∨n

i=1

(
δ (l , op, i , l ′) ∧ s(e) ∧ s ′(v1) = s(e1) ∧ . . . ∧ s ′(v|Var |) = s(e|Var |)

)
where op = assume(e) : v1 :=e1, . . . , v|Var | :=e|Var |,

– L(〈l , s〉 , p) := s(p) for any p ∈ Pred,

– L (〈l , s〉 ,Proci@j) :=

{
true if li = j
false else

where li is the location of Proci in the combined location l ,
– F :=

{
{(s , s ′) ∈ R−1

i ({true,⊥})}i∈[1..n]

}
for each process Proci a fairness set Fi with all associated transitions.

Note that the set AP is explicitly extended by propositions of the form Proci@j ,
referring to the processes’ program counters. As long as we consider concrete
systems, the obtained Kripke structures will be actually two-valued. The Kripke
structure semantics for abstract concurrent systems straightforwardly follow
those for concrete systems.

For specifying properties of three-valued Kripke structures we use the computa-
tional tree logic (CTL) [3]:

Definition 5. Let AP be a set of atomic predicates and p ∈ AP. The syntax
of CTL is given by

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | EXψ | AXψ | EFψ |
AFψ | EGψ | AGψ | E [ψUψ] | A[ψUψ].

The validity of a CTL formula ψ in a state s of a Kripke structure K is denoted
by [K , s |= ψ].

Definition 6. Let K = (S ,R,L,F) be a three-valued Kripke structure over AP,
p ∈ AP and ψ ∈ CTL. Then the evaluation of ψ in a state s of K , [K , s |= ψ],
is inductively defined as follows

[K , s |= p] := L(s , p)
[K , s |= ¬ψ] := ¬ [K , s |= ψ]
[K , s |= ψ ∨ ψ′] := [K , s |= ψ] ∨ [K , s |= ψ′]
[K , s |= EXψ] :=

∨
s′∈S R(s , s ′) ∧ [K , s ′ |= ψ]

[K , s |= EGψ] :=
∨

π∈Πfair
s

∧
i∈N

[K , τi |= ψ]

[K , s |= E [ψUψ′]] :=
∨

π∈Πfair
s

∨
i∈N

(
[K , πi |= ψ′] ∧

∧
0≤j<i [K , πj |= ψ]

)
(The remaining CTL operators can be derived by the usual dualities.)

354 N. Timm, H. Wehrheim, and M. Czech

Since we operate in a three-valued domain, the evaluation of a CTL formula on
a Kripke structure may yield true, false or unknown. The latter case may occur
when the abstraction is too coarse, i.e. the set of predicates is not sufficiently
large enough, and thus, some three-valued expressions evaluate to ⊥. In the
next section we will see how the third truth value unknown may also arise due
to spotlight abstraction.

3 Spotlight Abstraction

Predicate abstraction is a powerful technique in cutting down the state space of
systems with large-domain variables. However, in concurrent systems the space
complexity furthermore exponentially grows with the number of processes com-
posed in parallel. We therefore combine predicate abstraction with spotlight ab-
straction [14] – a specific abstraction technique for concurrent systems, where
a spotlight is set on certain processes of interest while the remaining ones are
kept in the shade. Now, classical predicate abstraction is applied to the processes
in the spotlight whereas shade processes are summarised into one approxima-
tive component ProcShade . This process neglects the original control flow of the
processes in the shade. Instead it approximates operations on shared variables
occurring in shade processes by continuously modifying predicates over those
variables. Due to the approximative character of ProcShade and the inherent loss
of information about the shade processes, predicates might be set to unknown.
For illustration, consider the following example:

c : channel [1] of int

Proc1 ::

⎡
⎣ loop forever[

1 : send(c, e)
2 : Progress

]⎤
⎦ ‖n

i=2
Proci ::

⎡
⎣ loop forever[

1 : receive(c,xi)
2 : Progress

] ⎤
⎦

In this system we have n processes communicating via channel c. To validate
the liveness property AG(AF Proc1@Progress) (i.e. whether process Proc1 will
continuously reach the Progress location) it is sufficient to just take Proc1 and
Proc2 into the spotlight, and to construct an abstract system over the predicates
emptyc and fullc . The processes Proc3, . . . ,Procn can be summarised into the
following shade component (CFG representation):

ProcShade :: emptyc := choice(false,¬emptyc), fullc := choice(fullc ∨ ¬emptyc, false)

Generally, a spotlight abstraction of a concurrent system Sys = ‖ni=1 Proci
is defined by a set of spotlight processes Spot(Proc) ⊆ Proc, where Proc =
{Proc1, . . . ,Procn}, and a set of spotlight predicates Spot(Pred) ⊆ Pred , where
Pred is the set of all atomic predicates over the system variables. We refer to the
overall spotlight as Spot = Spot(Proc) ∪ Spot(Pred). The corresponding shade
is characterised by the complementary sets Shade(Proc) = Proc \ Spot(Proc)
and Shade(Pred) = Pred \ Spot(Pred), and moreover, Shade = Shade(Proc) ∪
Shade(Pred). Three-valued spotlight abstraction now can be applied to concur-
rent systems according to the following definition:

Heuristic-Guided Abstraction Refinement for Concurrent Systems 355

Definition 7. Let Sys = ‖ni=1 Proci be a concurrent system and Pred the set of
all predicates over the system variables. Moreover, let Spot be a given set of spot-
light processes and predicates. Then the abstract system Sysa = ‖Proci∈Spot(Proc)

Procai ‖ ProcShade approximates Sys iff

– for every Proci ∈ Spot(Proc): Procai approximates Proci ,
– ProcShade is a CFG with one location and a single loop labelled with an

abstract operation opa over Spot(Pred) such that all concrete operations op
that occur in shade processes are approximated by opa .

This is the basic definition of three-valued spotlight abstraction, taken with
slight changes from [14] (in the original approach every spotlight predicate that
is modified in the shade is just set to unknown in opa). For our message passing
systems, we sometimes use an enhanced approach to spotlight abstraction: In-
stead of summarising the shade into a single approximative component ProcShade
we introduce multiple components Proc1Shade , . . . ,Proc

m
Shade , each approximating

only a subset of shade processes (e.g. only processes that communicate on a par-
ticular channel). In this way, we are able to preserve more concrete behaviour in
every shade component and thus, to obtain more definite results in verification.

The following theorem, adapted from our previous work [14], relates the veri-
fication results of concrete and abstract systems for corresponding states. Given
two labelling functions L and La over a set of atomic predicates AP , then we
say, a concrete state s and an abstract state sa correspond to each other if both
states refer to the same control flow locations and the labelling of s is more
definite than the labelling of sa , i.e. ∀ p ∈ AP : La(sa , p) ≤K3 L(s , p)1.

Theorem 1. Let Sys = ‖ni=1 Proci be a concurrent system, Spot the set of spot-
light predicates and processes, and Sysa = ‖Proci∈Spot(Proc) Procai ‖ ProcShade
the corresponding abstract system. Moreover, let K = (S ,R,L,F) be the Kripke
structure representing Sys, and K a = (Sa ,Ra ,La ,Fa) the Kripke structure rep-
resenting Sysa . Then for any two corresponding states s ∈ S and sa ∈ Sa and
for any CTL formula ψ over the predicates in Spot or locations of spotlight pro-
cesses the following holds:

[K a , sa |= ψ] ≤K3 [K , s |= ψ]

Hence, spotlight abstraction enables us to check temporal logic properties of
concurrent systems on (usually very small) abstract models. Definite results
(true, false) can be transferred to the original systems. However, due to our
three-valued domain we might also obtain an unknown result; i.e. the current
abstraction might be not precise enough. In the next section we will see how
imprecise abstractions can be iteratively refined under heuristic guidance.

4 Heuristic-Guided Refinement

Checking temporal logic properties on three-valued spotlight abstractions might
yield the truth value ⊥, which indicates that it is uncertain whether the desired

1 Here ’≤K3 ’ denotes the information order of the Kleene logic K3 with ⊥ ≤K3 true,
⊥ ≤K3 false and true, false incomparable.

356 N. Timm, H. Wehrheim, and M. Czech

property holds for the original system or not. In this case our model checker ad-
ditionally returns an unconfirmed counterexample – a potential error path with
some unknown transitions or predicates. This path provides hints about which
details of the original system are required for obtaining a definite verification
result, but missing in the current abstraction; e.g. assume conditions that are
not contained in the set of spotlight predicates, or shade processes that commu-
nicate on relevant channels. These missing details indicate possible refinement
steps. For illustration we consider the following system where several processes
communicate via channel c, but only Proc1 attempts to communicate via d :

c,d : channel [1] of int

Proc1 ::

⎡
⎢⎢⎢⎢⎢⎣

1 : receive(c,x)
2 : receive(d,y)
3 : if(x < y)
4 : Error

else
5 : End

⎤
⎥⎥⎥⎥⎥⎦ ‖

n

i=2
Proci ::

⎡
⎣ . . .
send(c, ei)
. . .

⎤
⎦ ‖m

j=n+1
Procj ::

⎡
⎣ . . .
receive(c,zj)
. . .

⎤
⎦

Model checking the safety formula AG ¬(Proc1@Error) on the initial abstrac-
tion2 given by Spot(Proc) = {Proc1} and Spot(Pred) = ∅ yields the following
unconfirmed counterexample, annotated with refinement candidates :

Proc1@1

¬emptyc

Proc1@2

¬emptyd

Proc1@3

x < y

Proc1@Error
⊥ ⊥⊥

Now, a naive approach to refinement would be to add all candidates (¬emptyc ,
¬emptyd , x < y) to the abstraction. However, for larger counterexamples this
might lead to an unnecessary blow-up of the state space, since refinement can-
didates can not only be atomic predicates, but also entire processes. Alterna-
tively, a single candidate can be chosen in each refinement step. But this choice
should be done with care. Imprudent decisions may guide the refinement in un-
favourable directions; e.g., always selecting the first candidate when checking
our safety property would first add the predicate ¬emptyc and then iteratively
all processes Proc2, . . . ,Procm to the abstraction. The candidate ¬emptyd would
not be considered until it is validated that there is always a trace from location
1 to 2 in Proc1. However, ¬emptyd is the crucial predicate here: There is no
process in our example system that ever sends a message to channel d . Hence,
adding ¬emptyd to our initial abstraction would already reveal that location 3
is not reachable, and we can deduce that AG ¬(Proc1@Error) holds.

In this section we show how abstraction refinement, i.e. selecting the ’most
promising’ candidate, can be enhanced by heuristic guidance. In some cases
it might be advisable to consider more than one unconfirmed counterexample;
particularly when the generated counterexample only reveals a single candidate.
For illustration consider again our example system and the liveness property
AF (Proc1@End). Model checking this formula on the aforementioned abstrac-
tion yields the unconfirmed counterexample shown below in (a). As we can see,

2 In our approach, the initial abstraction is always given by the processes and predi-
cates referenced in the temporal logic formula.

Heuristic-Guided Abstraction Refinement for Concurrent Systems 357

there is only one candidate (emptyc) and therefore no possibility for heuristic
decisions. By disregarding the ⊥-self-loop at location 1 for further unconfirmed
counterexamples in the same abstraction, we obtain the additional counterex-
ample shown in (b). Hence, we can enlarge the set of refinement candidates by
generating several counterexamples for each abstraction level. In our approach,
we perform this multiple counterexample-generation via excluding ⊥-transitions
that occurred in already discovered unconfirmed counterexamples.

Proc1@1(a)

emptyc

⊥ Proc1@1(b)

¬emptyc

Proc1@2

emptyd

⊥⊥

Let us now consider an abstraction of a concurrent system, given by sets Spot
and Shade, for which checking some temporal logic property yields unknown.
Then by multiple counterexample-generation we can derive a set of refinement
candidates Candidates ⊆ Shade. Now, the basis of our heuristic-guided refine-
ment framework is the abstraction dependence graph (ADG):

Definition 8. Let Sys = ‖ni=1 Proci be a concurrent system with a spotlight
abstraction given by the sets Spot and Shade. Moreover, let ψ be a temporal logic
formula that evaluates to ⊥ on this abstraction, and let Candidates ⊆ Shade be
a set of refinement candidates derived from unconfirmed counterexamples. Then
the corresponding abstraction dependence graph is a tuple ADG = (V ,D) where

– V = Spot ∪ Candidates ∪ Shade(Proc)︸ ︷︷ ︸
⊆Shade

is the set of vertices,

(note that V can also be repartitioned into subsets of Proc and Pred)
– D ⊆ V ×V is a dependence relation.

Hence, the vertices of the abstraction dependence graph correspond to the ele-
ments of Spot and (a finite subset of) Shade. The ADG represents dependencies
between the abstractions’ components (processes as well as predicates), and thus
can guide us in selecting promising refinement candidates. For computing the
dependence relation D (and later our heuristic evaluation function) we introduce
the following sets for each vertex v ∈ V :

– Def (v) : set of shared variables/channels defined (modified) in v,
(note that Def (v) = ∅ if v corresponds to a predicate)

– Ref (v) : set of shared variables/channels referenced in v,
– In(v ,V ′) : set of incoming edges into v from vertices in V ′ ⊆ V ,
– Out(v ,V ′) : set of outgoing edges from v into vertices in V ′ ⊆ V .

Now let v , v ′ ∈ V , v �= v ′ be a pair of vertices, then

D (v , v ′) ≡ v ∈ Proc ∧ ∃ x (x ∈ Def (v) ∧ x ∈ Ref (v ′))
∨ v ∈ Pred ∧ v ′ ∈ Proc ∧ ∃ x (x ∈ Ref (v) ∧ x ∈ Ref (v ′)) .

If the relation D(v , v ′) holds for a pair v , v ′ ∈ V then we say: v ′ depends on v ,
or conversely: v affects v ′.

358 N. Timm, H. Wehrheim, and M. Czech

Dependencies of particular interest are those between individual candidates
and the spotlight. A candidate that affects a large number of spotlight compo-
nents is likely a beneficial choice for refinement. Adding it to Spot would feed
our abstraction with new details that are relevant for many spotlight processes
and predicates. Thus, this choice might guide us closer to a definite result in
verification. Contrary, a candidate with lots of dependencies within the shade
might be a costly choice. By selecting such a candidate for refinement we would
introduce several new dependencies between the spotlight and the shade, i.e.
several new unknowns in our abstraction.

The abstraction dependence graph corresponding to our running example
(with Spot(Proc) = {Proc1}, Spot(Pred) = ∅, ψ = AF (Proc1@End) and the
candidates derived from the two unconfirmed counterexamples (a) and (b)) is
shown below:

Spot Shade

Proc1

Candidates

emptyc

¬emptyc

emptyd

Proc2

.

.

.

Procm

Here, we have two candidates: emptyc
3 and emptyd . Now a very simple heuristic

evaluation function h : Candidates → N with respect to benefits and costs of
possible refinement steps would be

h(v) = |Out(v , Spot)|︸ ︷︷ ︸
benefit(v)

− |In(v , Shade)|︸ ︷︷ ︸
cost(v)

i.e. for a candidate v we compute the number of outgoing edges into the spotlight
minus the number of incoming edges from the shade. The refinement procedure
selects the candidate with the best evaluation value: arg maxv∈Candidates h(v).
Hence, in our example emptyd is chosen due to fewer (no) dependencies within
the shade. The subsequent verification run on the refined abstraction already
reveals a definite result and refutes the liveness property AF (Proc1@End).

This example illustrates that even with simple heuristic evaluation functions
we can guide the refinement in expedient directions, and thus obtain definite
verification results on very small abstract models. Nevertheless, in the refinement
framework used in our experiments we follow an enhanced approach to heuristic
guidance. In particular, we construct abstraction dependence graphs extended
with weighted edges and vertices. Edge weights allow us to comprise quantitative
aspects of dependence; e.g. in terms of the number of variables/channels that are

3 We can regard ¬emptyc as a redundant candidate, since it is just a Boolean expres-
sion over emptyc . However, in our enhanced heuristics used in our experiments we
also consider factors like the number of occurrences as a candidate for each predicate.

Heuristic-Guided Abstraction Refinement for Concurrent Systems 359

shared between pairs of processes. We moreover consider transitive dependencies
in our heuristic decisions: Chains of dependencies within the shade contribute
to the costs of a candidate, as well as direct dependencies. By vertex weights
we express benefits and costs apart from dependence: A beneficial aspect of a
refinement candidate is, e.g., the number of occurrences as a candidate in the
generated set of counterexamples, whereas the size of a candidate (for processes:
the number of its control flow locations) is a cost factor. A detailed description
of the heuristics that we use in our experiments can be found in the next section.

5 Experimental Results

We have implemented our heuristic approach to abstraction refinement on top of
our three-valued model checking tool 3Spot. In our experiments we compare four
abstraction refinement heuristics. The first two heuristics are fairly naive: We
generate one unconfirmed counterexample and then select the first encountered
candidate (1Cex-1stCand), or alternatively, all candidates (1Cex-allCand)
for refinement. In fact, 1Cex-1stCand is the ’heuristic’ that we employed in
our previous work [14]. In our advanced heuristics we use an evaluation function
for selecting the presumably best candidate, once for a single counterexample
(1Cex-bestCand) and once with multiple counterexample-generation (nCex-
bestCand):

1Cex-1stCand generate one unconfirmed counterexample
select first candidate for refinement

1Cex-allCand generate one unconfirmed counterexample
select all candidates for refinement

1Cex-bestCand generate one unconfirmed counterexample
select best candidate v for refinement wrt. the evaluation function
h (v) = (occurrence (v) + linkingSpot (v))︸ ︷︷ ︸

benefit(v)

− (linkingShade (v) + size (v) + redundancy (v))︸ ︷︷ ︸
cost(v)

nCex-bestCand generate N unconfirmed counterexamples (if existing)
select best candidate for refinement wrt. the evaluation function h

As it can be seen, the evaluation function h that we use in our advanced heuristics
is composed of five sub-functions:

– For a candidate v the function occurrence(v) returns the number of occur-
rences as a candidate in the current set of unconfirmed counterexamples
(note that a candidate can also occur several times in one counterexample).

– linkingSpot(v) yields a value that characterises the linking factor of v with
the spotlight; the linking factor incorporates the number of spotlight pro-
cesses that are affected by the candidate, as well as the number of vari-
ables/channels that are shared between the candidate and each spotlight
process:

linkingSpot(v) =
∑

v ′∈Spot(Proc) (Dw (v , v ′) + 0.5 ·Dw (v ′, v))

Here Dw is a quantitative extension of the dependence relation D . Dw (v , v
′)

returns the number of variables/channels defined in v and referenced in v ′.

360 N. Timm, H. Wehrheim, and M. Czech

– Accordingly, linkingShade(v) specifies the linking factor of v with the shade.
In linkingShade(v) we incorporate the number, distance and size of shade
processes that – possibly transitively, through other processes – affect the
candidate; processes with a more indirect impact on the candidate (wrt. the
vertex distance in the abstraction dependence graph) are weighted less:

linkingShade(v) =
∑

v ′∈Shade(Proc)
size(v ′)

distance(v ′,v)

Here distance(v ′, v) returns the length of the shortest path from v ′ to v
within the shade.

– The size of a candidate process corresponds to the number of predicates
that are required to encode its control flow; the size of an atomic predicate
is simply one.

– By the function redundancy(v) we counter a problem that frequently occurs
when verifying concurrent systems with large-domain loop variables: The
loop is completely unrolled by abstraction refinement, i.e. all possible pred-
icates over the loop variable are added to the spotlight – though adding a
certain process might already suffice to show termination of the loop. We
solve this problem as follows: The more predicates over a distinct variable
are in the spotlight, the higher we set the redundancy value (and hence the
cost) of any candidate predicate over the same variable. Thus, a process af-
fecting a loop variable eventually will have a better heuristic evaluation than
new predicates over this variable. In this way, we can avoid the complete un-
winding of loops for several verification tasks. redundancy(v) is defined for
predicate candidates only:

redundancy(v) = |{v ′ ∈ Spot(Pred) | Ref (v) ∩ Ref (v ′) �= ∅}|

For our experiments, we have enriched the heuristic evaluation function with
additional weights for every sub-function. Here, we put particular emphasis on
occurrence(v) on the benefit-side and linkingShade(v) on the cost-side.

In our case study, we consider multiple-resource allocation via message pass-
ing. We look at systems with two classes of processes: allocators and customers.
Each allocator manages the allocation of a single resource (though there may
be more than one allocator per resource type), whereas every customer requests
several resources before entering its critical section Crit. Moreover, allocators
that provide a resource A can in turn be customers of a resource B, i.e. they have
to acquire B first in order to provide A. This causes a high degree of transitive
dependencies in our systems. Allocators and customers communicate via mes-
sage passing, i.e. each resource type is associated with a distinct tuple of chan-
nels. The customers’ individual resource demands and the orders of requests are
randomly generated. Hence, our systems are non-uniform with respect to depen-
dencies. The systems are parameterised in the number of resources, customers
and allocators. We check the CTL liveness formula AG(AF(Custi@Crit)) for a
randomly selected customer. A simple example of a multiple-resource allocation
system with one customer and k allocators (resp. resources) is shown below:

Heuristic-Guided Abstraction Refinement for Concurrent Systems 361

requestR1, releaseR1, . . . , requestRk , releaseRk : channel [1] of int

Cust1 ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever⎡
⎢⎢⎢⎢⎢⎢⎢⎣

send(requestR1, 1)
. . .
send(requestRk , 1)
Crit
send(releaseR1, 1)
. . .
send(releaseRk , 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
‖k

i=1
Alloci ::

⎡
⎣ loop forever[

receive(requestRi, xi)
receive(releaseRi, xi)

] ⎤
⎦

Our experiments were performed on a 2.40 GHz Core 2 Duo Windows system
with 3 GB memory. The results of our benchmark are shown in the table below.
For small systems, where it is inevitable to take all processes and (predicates
over) resources into the spotlight4, the naive heuristics slightly outperform our
advanced ones in verification time. The overhead when using 1Cex-bestCand
and 2Cex-bestCand is caused by the additional computations (abstraction
dependence graph, multiple counterexamples) for selecting the best refinement
candidate. However, for larger systems (2 resources and more) this additional
computations pay off: The verification under 2Cex-bestCand can be accom-
plished on significantly smaller abstractions. For the systems with 4 and 8 re-
sources, we see that the advanced heuristics clearly outperform the naive ones in
both size of the abstraction and verification time. With our advanced heuristic
2Cex-bestCand we are even successful and fast when verification under the
other heuristics runs out of memory (OOM).

System Abstraction
heuristic resources customers allocators |Spot(Proc)| |Spot(Pred)| time

1Cex-1stCand 1 2 1 3 1 0.74s
2 5 3 6 1 6.94s
3 6 4 6 1 8.83s
4 8 8 − − OOM
8 15 10 − − OOM

1Cex-allCand 1 2 1 3 1 0.67s
2 5 3 5 2 7.06s
3 6 4 5 4 195s
4 8 8 5 4 307s
8 15 10 − − OOM

1Cex-bestCand 1 2 1 3 1 1.39s
2 5 3 5 2 16.4s
3 6 4 6 2 27.3s
4 8 8 5 4 83.9s
8 15 10 − − OOM

2Cex-bestCand 1 2 1 3 1 1.67s
2 5 3 3 2 6.47s
3 6 4 3 2 6.52s
4 8 8 3 2 8.55s
8 15 10 4 3 57.5s

As we can see, our advanced refinement heuristic 2Cex-bestCand enriches our
spotlight abstraction framework by great savings in both size of the final abstrac-
tion and verification time. We achieved similarly good results for checking safety
(AG¬(Custi@Crit∧Custj@Crit)) of multiple-resource allocation systems, and
also for verifying concurrent systems with shared variables instead of channels.

4 In small systems usually all processes are relevant for the checked property, and thus,
a definite result is not possible without all these processes being in the spotlight.

362 N. Timm, H. Wehrheim, and M. Czech

6 Conclusion

In this paper we have introduced a heuristic-guided abstraction refinement frame-
work for verifying concurrent systems. Though spotlight abstraction generally
enables the verification of concurrent systems on very small abstract models,
the detection of an adequate spotlight is a non-trivial task. The positive effect of
abstraction is often compromised by bad refinement decisions: The refinement
may be guided in unfavourable directions or the spotlight may be unnecessarily
enlarged by redundant components. We have observed these drawbacks in our
experiments under the naive refinement approach [14]. However, if there exists a
small subset of system components which is sufficiently large for a definite result
in verification, then this set will most likely be discovered by our novel approach
to fully automatic abstraction refinement under advanced heuristic guidance. The
only prize to pay is to generate multiple counterexamples and to perform addi-
tional dependency computations, which are the basis for heuristically selecting
the best refinement candidate in every iteration. Finally, this allows us to exploit
the full potential of spotlight abstraction for many verification tasks. We believe
that our heuristic approach is universally helpful for verifying concurrent sys-
tems via spotlight abstraction. Nevertheless, as future work we intend to develop
particular heuristics for different types of temporal logic properties, in order to
further improve the performance of verification. Moreover, we plan to extend
our approach to parameterised verification of classwise symmetric systems [17].

Related Work. The idea of using heuristics in model checking has received a
lot of attention in research. In directed model checking (e.g. [6,12]) heuristics are
employed to guide the exploration of the state space in order to obtain coun-
terexamples of minimal length. In contrast, our approach aims at minimising the
size of the abstraction on which the property of interest can be proven. Abstrac-
tion refinement under heuristic guidance has been considered in [10] and [9] for
verifying hardware designs. Their framework is not based on predicate abstrac-
tion but on variable hiding. Moreover, their heuristics aim at finding a minimal
solution for the state separation problem [10], resp. maximising the number of
spurious counterexamples that can be ruled out in one refinement step [9]. Using
heuristics for the verification of concurrent systems has also been considered in
[16]. Therein, heuristics for automatically selecting constraints that rule out in-
feasible interleavings in a FLAVERS [16] model are presented. The heuristics are
based on the system, the property, and other constraints that have to be selected
manually. Hence, their approach is neither fully automatic nor integrated into an
iterative, counterexample-based refinement framework. Another work related to
ours is that of Fecher and Shoham [7] who define heuristics for local refinement
in the context of lazy abstraction: New predicates are only locally added, i.e. at
single abstract states. Their approach is not tailored to concurrent systems and
they do not report experimental results which hampers a comparison with our
method. However, the combination of heuristic-guided spotlight abstraction and
lazy abstraction is another interesting direction for future research.

Finally, our work is related to other state space reduction techniques for con-
current systems. Approaches based on symmetry reduction [5,13] exploit the

Heuristic-Guided Abstraction Refinement for Concurrent Systems 363

uniform structure of parameterised systems in order to obtain smaller abstrac-
tions. These reductions are not applicable to non-uniform systems (composed of
heterogeneous processes). Our approach focuses on finite-state concurrent sys-
tems but does not restrict the systems to be uniform. In fact, we exploit informa-
tion about potentially non-uniform system structures for our heuristic decisions.

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. SIGPLAN Not. 36(5), 203–213 (2001)

2. Ball, T., Podelski, A., Rajamani, S.K.: Relative Completeness of Abstraction Re-
finement for Software Model Checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 158–172. Springer, Heidelberg (2002)

3. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACMTPLS 8, 244–263 (1986)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

6. Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

7. Fecher, H., Shoham, S.: Local abstraction-refinement for the mu-calculus.
STTT 13(4), 289–306 (2011)

8. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1-3), 113–131 (1994)

9. Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.Y.: Multiple-
Counterexample Guided Iterative Abstraction Refinement: An Industrial Evalua-
tion. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 176–191.
Springer, Heidelberg (2003)

10. He, F., Song, X., Gu, M., Sun, J.: Heuristic-guided abstraction refinement. Comput.
J. 52(3), 280–287 (2009)

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL 2004, pp. 232–244. ACM, New York (2004)

12. Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.:
Using Predicate Abstraction to Generate Heuristic Functions in UPPAAL. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChart IV. LNCS (LNAI), vol. 4428, pp.
51–66. Springer, Heidelberg (2007)

13. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1/2), 41–75 (1996)

14. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-Valued Spotlight Abstractions.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009)

15. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. Inf.
Comput. 206, 1313–1333 (2008)

16. Tan, J., Avrunin, G., Clarke, L.: Heuristic-based model refinement for flavers. In:
ICSE 2004, pp. 635–644 (2004)

17. Timm, N., Wehrheim, H.: On Symmetries and Spotlights – Verifying Parameterised
Systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 534–548.
Springer, Heidelberg (2010)

18. Wachter, B., Westphal, B.: The Spotlight Principle. In: Cook, B., Podelski, A.
(eds.) VMCAI 2007. LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

More Anti-chain Based Refinement Checking�

Ting Wang1, Songzheng Song2, Jun Sun3, Yang Liu2, Jin Song Dong2,
Xinyu Wang1,��, and Shanping Li1

1 College of Computer Science and Technology, Zhejiang University
{qdw,wangxinyu,shan}@zju.edu.cn

2 National University of Singapore
{songsongzheng@,tslliuya@,dongjs@comp.}nus.edu.sg

3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Refinement checking plays an important role in system verification. It
establishes properties of an implementation by showing a refinement relationship
between the implementation and a specification. Recently, it has been shown that
anti-chain based approaches increase the efficiency of trace refinement check-
ing significantly. In this work, we study the problem of adopting anti-chain for
stable failures refinement checking, failures-divergence refinement checking and
probabilistic refine checking (i.e., a probabilistic implementation against a non-
probabilistic specification). We show that the first two problems can be signifi-
cantly improved, because the state space of the product model may be reduced
dramatically. Though applying anti-chain for probabilistic refinement checking is
more complicated, we manage to show improvements in some cases. We have in-
tegrated these techniques into the PAT model checking framework. Experiments
are conducted to demonstrate the efficiency of our approach.

1 Introduction

Model checking has established itself as an effective technique for system verification.
It works by exhaustively searching through the state space in order to show that an im-
plementation model, in certain modeling language, satisfies a property. Properties are
often specified using temporal logic formulae such as CTL or LTL, in other words, a
language different from the modeling language. An alternative approach is called re-
finement checking. Different from temporal-logic based model checking, refinement
checking shows a refinement relationship between two models in the same language,
one modeling an implementation and one modeling a specification. If the specifica-
tion satisfies certain property and the refinement relationship is strong enough to pre-
serve the property, we imply that the property is satisfied by the implementation. A
variety of refinement relationships have been defined, which preserve different classes
of properties. For instance, safety can be verified by showing a trace refinement rela-
tionship. Combination of safety and liveness is verified by showing a stable failures

� This research is sponsored in part by NSFC Program (No.61103032) and 973 Program
(No.2009CB320701) of China.

�� Corresponding author.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 364–380, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

More Anti-chain Based Refinement Checking 365

refinement relationship if the system is divergence-free or otherwise by showing a
failures-divergence refinement relationship. The readers are refer to [12] for a discus-
sion on the expressiveness of different refinement.

Refinement checking has been traditionally used to verify CSP [11]. The success of
the FDR refinement checker [1], which supports fully automatic checking of the above-
mentioned refinement relationships, evidences the usefulness of refinement checking.
Recently, Sun et al. extended the idea of automated trace refinement checking to prob-
abilistic systems [14], which we refer to as probabilistic refinement checking in this
work1. The idea is that, given a probabilistic implementation model (which has the se-
mantics of a Markov Decision Process) and a non-probabilistic specification model,
probabilistic refinement checking calculates the probability of the implementation ex-
hibiting traces of the specification model. This is useful as, for instance, if the spec-
ification model captures desired system behaviors, the result is the probability of the
implementation behaving ‘well’.

Due to the non-determinism in the specification, refinement checking often relies
on the classic subset construction approach. The subset construction is used to build a
deterministic finite-state automaton (DFA) from the specification, which is in general
a non-deterministic finite-state automaton (NFA). Next, refinement checking works by
computing the synchronous product of the implementation and transforming the prob-
lem into a reachability analysis problem in the product. In the worst case, the resultant
DFA could have exponentially more states than the original NFA. As a result, refine-
ment checking suffers from state space explosion. Recently, Wulf et al. proposed an
approach (for solving the language universality problem and trace refinement checking)
named anti-chain [16]. It has been shown that this approach outperforms the previous
ones significantly. The key point of anti-chain based approaches is that the complete
subset construction and computing the complete state space of the product are avoided.
Given that the existing approaches for checking other refinement relationships are all
based on the subset construction, it is only naturally to investigate whether anti-chain
can be used for better performance as it did for trace refinement checking.

In this work, we study three kinds of refinement checking, in particular, stable fail-
ures refinement, failures-divergence refinement and probabilistic refinement checking.
The problem is non-trivial as we need to formally prove that anti-chain works with sta-
ble failures semantics and failures-divergence semantics. Furthermore, it is complicated
for probabilistic refinement checking as omitting parts of the product would affect the
probability. We make the following technical contribution. Firstly, we show that anti-
chain can be readily used to improve stable failures refinement and failures-divergence
refinement. Secondly, we show that anti-chain can be used to improve probabilistic re-
finement checking in some particular cases, using an iterative probability calculation
method. Lastly, we implement the technique in the PAT model checker [13] and show
improvement over existing approaches (significant for stable failures refinement and
failures-divergence refinement).

Related Works. This work is related to research on anti-chain based model checking.
Wulf et al. proposed the anti-chain based approach for checking the language univer-
sality and trace refinement of NFA [16]. It has been shown that the anti-chain based

1 Probabilistic refinement has been used by different researchers to mean different things.

366 T. Wang et al.

approach may outperform the standard ones by several orders of magnitude. Their fol-
lowing works show that significant improvements can also be brought to the model
checking problem of LTL by using anti-chain based algorithms [8, 17]. Later Abdulla
et al. improved the approach through exploiting a simulation relation on the states of
NFA [2]. Remotely related are anti-chain based methods for solving other problems,
e.g., the LTL realizability and synthesis problem [7, 10] and the universality and lan-
guage inclusion problem of tree automata [2, 6]. In our work, we focus on stable failures
refinement, failures-divergence refinement and probabilistic refinement checking.

Organization. Section 2 reviews trace refinement and anti-chain based trace refinement
checking. Section 3 presents algorithms for anti-chain based stable failures refinement
checking and failures-divergence refinement checking. Section 4 shows that anti-chain
can be used to improve probabilistic refinement checking (with a non-probabilistic
specification model). Lastly, Section 5 concludes the paper.

2 Background

In this section, we review previous work on anti-chain based trace refinement checking.

2.1 Trace Refinement

Let Σ be a set of event names; τ denote an invisible event; and Στ denote Σ ∪ {τ}.

Definition 1 (LTS). A labeled transition system (LTS) is a tuple L = (S , init ,Act ,T)
where S is a set of states; init ∈ S is an initial state; Act ⊆ Στ is a set of events and
T : S ×Act × S is a labeled transition relation.

For simplicity, (s , e, s ′) ∈ T is sometimes written as s
e→ s ′. An LTS is deterministic

if and only if for all s ∈ S and s ∈ Στ , if s
e→ u and s

e→ v , then u = v . We
write enable(s) to denote the set {e | ∃ s ′. s e→ s ′}. We write u � v if there exists
a finite sequence of states 〈s0, s1, · · · , sn〉 such that si

τ→ si+1 for all i and u = s0
and v = sn . We write u

e� v if u � u ′ and u ′ e→ v ′ and v ′ � v . A finite sequence
of events 〈e0, e1, · · · , en〉 is a trace of L if and only if there exists a sequence of state
〈s0, s1, · · · , sn〉 such that si

ei� si+1 for all i and s0 = init . The traces of L are denoted
as traces(L).

Definition 2 (LTS Synchronous Product). Let Li = (Si , initi ,Acti ,Ti) where i ∈
{1, 2} be two LTSs such that τ �∈ Act2. The synchronous product of L1 and L2, writ-
ten as L1 × L2, is an LTS L = (S , init ,Act ,T) such that S = S1 × S2; init =
(init1, init2); Act = Act1 ∪ Act2; and T is the minimum labeled transition relation
satisfying the following conditions.

– If (s1, τ, s ′1) ∈ T1, ((s1, s2), τ, (s ′1, s2)) ∈ T for all s2 ∈ S2;
– If (s1, e, s ′1) ∈ T1 and (s2, e, s

′
2) ∈ T2 and e �∈ τ , ((s1, s2), e, (s ′1, s ′2)) ∈ T .

Notice that all events except τ are to be synchronized by the two LTSs.

More Anti-chain Based Refinement Checking 367

Definition 3 (Trace Refinement). Let Li where i ∈ {1, 2} be two LTSs. L1 trace-
refines L2 if and only if traces(L1) ⊆ traces(L2).

The standard approach for trace refinement is based on the subset construction. That is,
the specification LTS2 is transformed into trace-equivalent deterministic LTS without
τ -transitions through the process of determinization. Let L = (S , init ,Act ,T) be an
LTS. The determinized LTS of L is det(L) = (S ′, init ′,Act ′,T ′) where S ′ ⊆ 2S is a
set of sets of states, init ′ = {s | init � s}; Act ′ = Act \ {τ} and T ′ is a transition
relation satisfying the following condition: (N , e,N ′) ∈ T ′ if and only if N ′ = {s ′ |
∃ s : N . s

e� s ′}. Notice that states which can be reached via the same trace are
grouped together in det(L).

Given an implementation L1 and a specification L2, the standard trace refinement
checking is to construct (often on-the-fly) the product L1 × det(L2) and then try to
construct a state of the product (s1, s2) (where s1 is a state of L1 and s2 is a set of states
in L2) such that s2 is an empty set. Such a ‘co-witness’ state is called a TR-witness
state. In the worst case, this algorithm has a complexity exponential in the number of
states of L2.

2.2 Trace Refinement Checking with Anti-chain

It has been shown that trace refinement checking based on anti-chain offers significantly
better performance [16]. Given two LTSs L1 and L2, the anti-chain method explores a
‘simulation’ relation in L1 × det(L2). Given any two states (s1, s2) and (s ′1, s

′
2) of

L1 × det(L2), let (s ′1, s ′2) ≤ (s1, s2) denote s1 = s ′1 and s2 ⊆ s ′2.

Proposition 1. If (s ′1, s
′
2) ≤ (s1, s2) and (s1, s2)

e→ (u, v), then there exists (u ′, v ′)
such that (s ′1, s

′
2)

e→ (u ′, v ′) and u ′ = u and v ⊆ v ′. �

By the above proposition, it can be readily shown that a TR-witness state is reachable
from (s ′1, s ′2) implies that a TR-witness state must be reachable from (s1, s2). As a
result, if (s1, s2) has been explored, we can skip (s ′1, s

′
2).

Formally, an anti-chain is a set A of sets such that x �⊆ y and y �⊆ x for all x ∈ A
and y ∈ A, i.e., any pair of sets in A are incomparable. An anti-chain supports two
operations. One is to check whether it contains a subset of a given set. let x be the given
set, we denote x 	 A if and only if there exists y ∈ A such that y ⊆ x . The other is to
add a given set x in A. A
 x is defined as {y | y ∈ A ∧ x �⊆ y} ∪ {x}, i.e., A
 x
contains x and all sets in A which is not a superset of x . Obviously, an empty set is an
anti-chain by definition.

Algorithm 1 shows the anti-chain based algorithm. In an abuse of notation, we
write (s ,X) 	 A to denote that the set ({s} ∪ X) 	 A; and A
 (s ,X) to denote
A
 ({s}∪X). The algorithm works as follows. After initialization, the algorithm pops
one state (impl , spec) fromworking and adds it to the set antichain , and then generates
all successors of the state and adds them to working unless (impl ′, spec′) 	 antichain
is true, till the stack working is empty or a TR-witness state is found. We remark that
antichain keeps to be an anti-chain during this algorithm, because line 5 and line
13 guarantee there are no subsets or supersets of the new added state in the updated
antichain . Soundness of the algorithm can be referred to in [2] [16].

368 T. Wang et al.

Algorithm 1 Trace Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 � s});
2: let antichain := ∅;
3: while working
= ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain
 (impl , spec);
6: for all (impl , e, impl ′) ∈ T1 do
7: if e = τ then
8: spec′ := spec;
9: else

10: spec′ := {s ′ | ∃ s ∈ spec. s
e� s ′};

11: if spec′ = ∅ then
12: return false;
13: if (impl ′, spec′) 	 antichain is not true then
14: push (impl ′, spec′) into working ;
15: return true;

s1’s1’

s2’s2’ s3’s3’

s4’s4’

s5’s5’

s6’s6’

s7’s7’

s8’s8’

s9’s9’

s10’s10’

[get.0.1] [get.1.0]

[get.0.1]
[get.1.1]

eat.1

[put.1.0]
[put.1.1]

[get.1.0]
[get.0.0]

eat.0

[put.0.1]

[put.0.0]

1s1
eeat.1eat.1

(a) LTS L1(a) LTS L1

(b) LTS L2(b) LTS L2

s1, {s1’, s2’, s3’, s4’, s5’, s8’}s1, {s1’, s2’, s3’, s4’, s5’, s8’}

s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}

s1, {s1’, s2’, s3’, s4’, s5’, s6’, s7’, s8’}s1, {s1’, s2’, s3’, s4’, s5’, s6’, s7’, s8’}

Anti-ChainAnti-Chain

eat..00eat.0

s1, {s1’, s2', s3’, s4', s5', s6', s7', s8'}s1, {s1’, s2', s3’, s4', s5', s6', s7', s8'}

s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’} s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}

s1, {s1’, s2’, s3’, s4’, s5’, s6’, s7’, s8’}s1, {s1’, s2’, s3’, s4’, s5’, s6’, s7’, s8’}

(c) a run of Algorithm 1 while checking traces(L1) traces(L2)(c) a run of Algorithm 1 while checking traces(L1) traces(L2)

eat.0eat.0

eat.0eat.0

eat.11eat.1

eeaat.11eat.1

eat.1eat.1 eat.0eat.0

Fig. 1. Trace Refinement Checking Algorithm with Anti-Chain

Theorem 1. [16] Algorithm 1 returns true if and only if traces(L1) ⊆ traces(L2). �

Example 1. Figure 1 shows a simple example of dining philosopher [11] to demon-
strate how Algorithm 1 works. The problem is summarized as N philosophers sit-
ting around a round table with a single fork between each pair, and each philoso-
pher requiring both neighboring forks to eat. The LTS L2 in Figure 1 (b) shows the
complete state graph of the system with two philosophers. The invisible events is de-
noted as [event], i.e., [get .0.1] means that the hidden event is philosopher 0 getting
the right fork which is represented as 1. Note that checking traces(L1) ⊆ traces(L2)
is to confirm whether every philosopher can eat. From Figure 1 (c) we can see that
the search does not continue from the state (s1, {s ′1, s ′2, s ′3, s ′4, s ′5, s ′8, s ′9, s ′10}) because
{s ′1, s ′2, s ′3, s ′4, s ′5, s ′8} ⊆ {s ′1, s ′2, s ′3, s ′4, s ′5, s ′8, s ′9, s ′10}. In this case, Algorithm 1 gener-
ates 3 states which are labeled with Anti–Chain , while the classical algorithm based
on subset construction generates 7 states. �

More Anti-chain Based Refinement Checking 369

Algorithm 2 Stable Failures Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 � s});
2: let antichain := ∅;
3: while working
= ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain
 (impl , spec);
6: if refusals(impl)
⊆ refusals(spec) then
7: return false;
8: for all (impl , e, impl ′) ∈ T1 do
9: if e = τ then

10: spec′ := spec;
11: else
12: spec′ := {s ′ | ∃ s ∈ spec. s

e� s ′};
13: if spec′ = ∅ then
14: return false;
15: if (impl ′, spec′) 	 antichain is not true then
16: push (impl ′, spec′) into working ;
17: return true;

3 Failures/Divergence Refinement Checking with Anti-chain

In this section, we demonstrate that anti-chain can be used to improve stable failures
refinement checking and failures-divergence refinement checking.

3.1 Stable Failures Refinement Checking

Let L = (S , init ,Act ,T) be an LTS. Given a state s ∈ S , s is stable if τ �∈ enable(s).
Given a stable state s , the refusals of s , written as refusals(s), is defined as {X |
∃ s ′. s � s ′ ∧ τ �∈ enable(s ′) ∧ X ⊆ Σ \ enable(s ′)}. The failures of L, written as

failures(L), is defined as {(tr ,X) : Σ∗ × 2Σ | ∃ s . init tr� s ∧ X ∈ refusals(s)}
where init

tr� s denotes that there exists a run 〈s0, e0, s1, e1, · · · , en , sn+1〉 such that
s0 = init and sn+1 = s and tr = 〈e0, e1, · · · , en〉.

Definition 4 (Stable Failures Refinement). Let Li where i ∈ {1, 2} be two LTSs. L1
refines L2 in stable failures semantics if and only if failures(L1) ⊆ failures(L2).

The existing stable failures refinement checking algorithm [1] works by searching for
a state (x , y) of L1 × det(L2) such that y = ∅ or refusals(x) �⊆ refusals(y). Such a
state is called a SFR-witness state. In the following, we extend Algorithm 1 for stable
failures refinement checking. Given a set states x , we write refusals(x) to denote {r |
∃ s ∈ x . r ∈ refusals(s)}. The algorithm is shown in Algorithm 2.

Lemma 1. For every state (s1, s2) of L1 × det(L2), for all (s1, s ′2) in the product, if
s ′2 ⊆ s2, then a SFR-witness state is reachable from (s1, s2) implies a SFR-witness state
is reachable from (s1, s

′
2).

370 T. Wang et al.

s1s1 s2s2

s1’s1’ s2’s2’

s1, {s1’}s1, {s1’}

s1, {s1’, s2’}s1, {s1’, s2’} s2, {s2’}s2, {s2’}

s1, {s1’, s2’}s1, {s1’, s2’} 2, {s1’, s2’}s2, {s1’, s2’}

2, {s1’, s2’}s2, {s1’, s2’} s1, {s1’, s2’}s1, {s1’, s2’}

s2, {s1’, s2’}s2, {s1’, s2’} s1, {s1’, s2’}s1, {s1’, s2’}

Anti-ChainAnti-Chain

(a) LTS L1(a) LTS L1

(b) LTS L2(b) LTS L2
(c) a run of Algorithm 2 while checking failures(L1) failures(L2) (c) a run of Algorithm 2 while checking failures(L1) failures(L2)

aa

aa

aaa aaa

aa

bb

bbb

aa aa

aa aa

aa

bb

a, ba, b

a, ba, b

aaa

Fig. 2. Stable Failures Refinement Checking Algorithm with Anti-Chain

Proof: By induction. The base case is that (s1, s2) is a SFR-witness state, then s2 =
∅ or refusals(s1) �⊆ refusals(s2). Because s ′2 ⊆ s2 by assumption, refusals(s ′2) ⊆
refusals(s2). Then we have s ′2 = ∅, or refusals(s1) �⊆ refusals(s ′2). Thus, (s1, s ′2) is a
SFR-witness state. Next, we prove the induction step. Assume that (s1, s2) satisfies the
condition, i.e., for any state (s1, s

′
2) such that s ′2 ⊆ s2, a SFR-witness state is reachable

from (s1, s2) implies a SFR-witness state is reachable from (s1, s
′
2). Let (x , y) be a state

of the product such that (x , y)
e→ (s1, s2). For all (x , y ′) such that y ′ ⊆ y , we can get

(x , y ′) e→ (s1, s
′
2) such that s ′2 ⊆ s2. Therefore, the induction step holds by induction

hypothesis. Thus, the lemma is true. �

Theorem 2. Algorithm 2 returns true if and only if failures(L1) ⊆ failures(L2).

Proof For a state S of L1 × det(L2), define Dist(S) ∈ N ∪ {∞} as the length of
the shortest SFR-witness trace from S (if a SFR-witness state is not reachable from
S , Dist(S) = ∞). For a set of states States , if States = ∅, Dist(States) = ∞,
otherwise, Dist(States) = minS∈States Dist(S). The predicate SFR(States) is true
if and only if all the states in States are not SFR-witness states. Then the correctness of
Algorithm 2 can be proved using the two invariants below. The invariants can be proved
in a very similar way to [2].

1. ¬SFR(antichain ∪ working)⇒ ¬SFR({(i , {s | init2 � s}) | i ∈ init1}).
2. ¬SFR({(i , {s | init2 � s}) | i ∈ init1})⇒ Dist(antichain) > Dist(working).

Because the number of state is finite and all states are only visited once, Algorithm 2
eventually terminates. Algorithm 2 returns false only if the state spec′ is an empty set
on line 13, or (impl , spec) satisfies the condition refusals(impl) � refusals(spec) on
line 6. The former case has been proved in Algorithm 1. In the latter case, (impl , spec)
is a SFR-witness state, and hence SFR(antichain ∪ working) is false. By invariant 1,
L1 cannot refine L2 in stable failures semantics. Algorithm 2 returns true only when
working is empty, which implies that Dist(antichain) > Dist(working) is not true.
By invariant 2, L1 refines L2 in stable failures semantics. �

Example 2. If Algorithm 2 is applied to the example presented in Figure 1, the re-
duction remains the same as for trace refinement checking (from 7 states to 3 states).
We show another example with some counterexamples, as shown in Figure 2. Notice

More Anti-chain Based Refinement Checking 371

that the refusal set of s2 is {b}, and s1, s
′
1, s

′
2 do not refuse any event. Then the two

states with bold circles are SFR-witness states. Since {s ′1} ⊆ {s ′1, s ′2}, the search does
not continue from the state (s1, {s ′1, s ′2}). We can see that a SFR-witness state which
is reachable from (s1, {s ′1, s ′2}) is also reachable from (s1, {s ′1}) after the pruning of
states. In this case, Algorithm 2 generates 3 states which are labelled with Anti–Chain ,
while the classical algorithm may generate 4 states before finding a SFR-witness state.
Moreover, Algorithm 2 may find a shorter witness trace than the classical algorithm. �

3.2 Failures-Divergence Refinement Checking

In the following, we show how to adopt anti-chain for failures-divergence refinement
checking. Let L = (S , init ,Act ,T) be an LTS. Given a state s , s diverges if and only
if s can performance an infinite number of τ -transitions. A trace tr is divergent, written
as div(tr), if and only if there exists a prefix pre of tr or tr itself such that init

pre� s
and s diverges. We write divergences(L) to be {tr | div(tr)}.
Definition 5 (Failures-Divergence Refinement). Let Li where i ∈ {1, 2} be two
LTSs. L1 refines L2 in failures-divergence semantics if and only if divergences(L1) ⊆
divergences(L2) and failures(L1) ⊆ failures(L2).
In the following, we extend Algorithm 2 for failures-divergence refinement checking.
The algorithm is shown in Algorithm 3. Given a set of state x , we say that x diverges
if there exists s ∈ x such that s diverges. Like in the existing failures-divergence re-
finement checking algorithm [1], the idea is to search for a FDR-witness state (x , y) of
L1 × det(L2) such that y = ∅ or refusals(x) �⊆ refusals(y) or x diverges but not y .

Lemma 2. For every state (s1, s2) of L1 × det(L2), for all (s1, s ′2) in the product, if
s ′2 ⊆ s2, then a FDR-witness state is reachable from (s1, s2) implies a FDR-witness
state is reachable from (s1, s

′
2).

Proof: By induction. The base case is that (s1, s2) is a FDR-witness state, then s2 = ∅
or refusals(s1) �⊆ refusals(s2) or s1 diverges and s2 does not. Because s ′2 ⊆ s2 by
assumption, refusals(s ′2) ⊆ refusals(s2) and if s ′2 diverges, so does s2. Thus, (s1, s ′2) is
a SFR-witness state since s2 = ∅ implies s ′2 = ∅; refusals(s1) �⊆ refusals(s2) implies
refusals(s1) �⊆ refusals(s ′2); and s2 not divergent implies that s ′2 does not diverge
either. Next, we prove the induction step. Assume that (s1, s2) satisfies the condition.
Let (x , y) be a state of the product such that (x , y)

e→ (s1, s2). For all (x , y ′) such that
y ′ ⊆ y , we can get (x , y ′) e→ (s1, s

′
2) such that s ′2 ⊆ s2. Therefore, the induction step

holds by induction hypothesis. Thus, the lemma is true. �

Theorem 3. Algorithm 3 returns true if and only if divergences(L1) ⊆ divergences(L2)
and failures(L1) ⊆ failures(L2).
Proof Define Dist(S) ∈ N ∪{∞} as the length of the shortest FDR-witness trace from
a state S of L1 × det(L2)(if a FDR-witness state is not reachable from S , Dist(S) =
∞). Given a set of states States , if States = ∅, Dist(States) = ∞, otherwise,
Dist(States) = minS∈States Dist(S). The predicate FDR(States) is true if and only
if all the states in States are not FDR-witness states. The correctness of Algorithm 3
can be proved similarly as for Algorithm 2, using the following two invariants.

372 T. Wang et al.

Algorithm 3 Failures-Divergence Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 � s});
2: let antichain := ∅;
3: while working
= ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain
 (impl , spec);
6: if impl diverges then
7: if spec does not diverge then
8: return false;
9: else

10: if refusals(impl)
⊆ refusals(spec) then
11: return false;
12: for all (impl , e, impl ′) ∈ T1 do
13: if e = τ then
14: spec′ := spec;
15: else
16: spec′ := {s ′ | ∃ s ∈ spec. s

e� s ′};
17: if spec′ = ∅ then
18: return false;
19: if (impl ′, spec′) 	 antichain is not true then
20: push (impl ′, spec′) into working ;
21: return true;

1. ¬FDR(antichain ∪ working)⇒ ¬FDR({(i , {s | init2 � s}) | i ∈ init1}).
2. ¬FDR({(i , {s | init2 � s}) | i ∈ init1})⇒ Dist(antichain) > Dist(working).

�

Example 3. We use the example shown in Figure 3 to demonstrate how algorithm 3
works. The state s2 in LTS L1 has a self-loop labeled with τ . The two states with bold
circles are FDR-witness states now. Since {s ′1} ⊆ {s ′1, s ′2}, the search does not continue
from the state (s1, {s ′1, s ′2}). We can see that a FDR-witness state which is reachable
from (s1, {s ′1, s ′2}) is also reachable from (s1, {s ′1}) after pruning the states. �

3.3 Implementation and Evaluation

The proposed algorithms have been adopted in the Process Analysis Toolkit (PAT) [13].
PAT is designed for systematic validation of distributed/concurrent systems using state-
of-the-art model checking techniques. In the following, we evaluate the performance
of the algorithms using a range of real-life parameterized systems. All the systems are
embedded in the PAT package and available online. The data is obtained with Intel(R)
Core(TM) i7-2640M CPU at 2.80GHz and 8GB RAM.

The pairs of LTSs (one as implementation and one as specification) are generated
from different systems or same systems with different parameters. The systems include
a multi-valued register simulation system with one reader or multiple readers [4], an
implementation of concurrent stack with or without linearization point [15], a mail-
box system [3], a system of scalable nonzero indicator [9] and the dining philosopher

More Anti-chain Based Refinement Checking 373

s1s1 s2s2

s1’s1’ s2’s2’

s1, {s1’}s1, {s1’}

s1, {s1’, s2’}s1, {s1’, s2’} s2, {s2’}s2, {s2’}

s1, {s1’, s2’}s1, {s1’, s2’} 2, {s1’, s2’}s2, {s1’, s2’}

2, {s1’, s2’}s2, {s1’, s2’} s1, {s1’, s2’}s1, {s1’, s2’}

s2, {s2’}s2, {s2’} s1, {s1’, s2’}s1, {s1’, s2’}

Anti-ChainAnti-Chain

(a) LTS L1(a) LTS L1

(b) LTS L2(b) LTS L2 (c) a run of Algorithm 3 while checking
failures(L1) failures(L2) and divergences(L1) divergences(L2)
 (c) a run of Algorithm 3 while checking
failures(L1) failures(L2) and divergences(L1) divergences(L2)

aa

aaa

aaa

aaa

bb

bb

aa aa

aaa

aa

bb

a, ba, b

a, ba, b

Fig. 3. Failures-Divergence Refinement Checking Algorithm with Anti-Chain

0
10
20
30
40
50
60
70
80
90

100

0 30000 60000 90000 120000 150000

TR-Antichain
TR-Non Antichain

0
10
20
30
40
50
60
70
80
90

100

0 30000 60000 90000 120000 150000

SFR-Antichain
SFR-Non Antichain

0

20

40

60

80

100

120

140

0 20000 40000 60000 80000

FDR-Antichain
FDR-Non Antichain

Fig. 4. Refinement Checking Results of Concurrent Stack Implementation

problem [11]. In total about 300 pairs of LTS were generated to compare the anti-chain
algorithms and the classical ones for all three kinds of refinement checking.

Figure 4 shows the statistics of a typical example, i.e., the concurrent stack, from
which we can see significant performance improvement. In the figure, the horizontal
axis is the sum of the sizes of the two LTSs for refinement checking, and the verti-
cal axis is the execution time (in seconds) of the corresponding algorithm. Each point
shows the checking time for a pair of LTSs. We can see that for all three kinds of refine-
ment checking, anti-chain based algorithms offer significantly better performance. The
complete experimental results, with the refinement checking assertions always being
valid, are summarized in Table 1. Notice that if the pair of LTSs are equivalent in terms
of traces or failures or failures-divergence, we can perform the refinement checking in
both directions. This is shown in the table using two columns⊆ and ⊇. A few cases are
marked as ‘––’ as the result is false, which are discussed later. Furthermore, ‘unknown’
means either out of memory or running for more than 30 minutes. It can be observed
that the speedup differs for different systems. In most cases, the anti-chain approach
has a much better performance than the classical one, e.g., in the concurrent stack lin-
earization point implementation, it is 30.28 times faster for stable failures refinement
checking and 12.16 times faster for failures-divergence refinement checking. Moreover,
the larger the system is, the larger the speedup is. In some cases, anti-chain can not re-
duce the number of states at all simply because the specifications are deterministic. In
some cases (e.g., SNZI), although anti-chain reduces the number of states, the bene-
fit is not significant enough to overcome the computational overhead of the anti-chain
operations defined in section 2.2.

374 T. Wang et al.

Table 1. Testing on Refinement Checking Assertions which are valid

System Size

Trace Stable Failures Failures-Divergence
(Speedup) (Speedup) (Speedup)

⊆ ⊇ ⊆ ⊇ ⊆ ⊇
Multi-valued Register 0-10000 2.21 1.42 2.32 1.63 3.48 1.46

Simulation with 10000-100000 4.54 2.14 4.45 2.09 6.61 1.73
1 Reader and 1 Writer 100000-700000 6.74 2.88 6.64 2.92 unknown 2.59
Multi-valued Register 0-10000 2.17 1.49 1.99 1.45 3.33 1.43

Simulation with 10000-100000 3.32 2.05 3.32 2.11 3.55 1.70
Multiple Readers 100000-700000 6.45 2.68 6.14 2.72 unknown 3.16

Concurrent 0-10000 1.48 1.85 1.63 1.72 2.26 1.60
Stack 10000-100000 1.70 3.72 1.71 3.71 2.71 3.22

Implementation 100000-200000 1.62 5.90 1.56 6.44 2.85 4.96
Concurrent Stack 0-10000 0.75 5.33 –– 5.99 –– 2.70

Linearization Point 10000-30000 0.84 13.94 –– 14.11 –– 5.00
Implementation 30000-60000 0.91 30.37 –– 30.28 –– 12.16

Mailbox 0-700000 1.13 1.54 1.11 1.61 1.39 1.01
SNZI 0-50000 0.89 2.45 0.93 2.42 1.03 1.14

Dining Philosopher 0-50000 0.99 1.14 –– 1.02 –– 1.17

Table 2. Testing on Refinement Checking Assertions which are invalid

System Size
Trace Trace Stable Failures Stable Failures Failures-Divergence Failures-Divergence

With AC(s) W/o AC(s) With AC(s) W/o AC(s) With AC(s) W/o AC(s)
Multi-valued 3175 0.10 0.42 0.09 0.43 0.44 2.88

Register 24655 1.52 12.12 1.71 12.02 9.78 146.95
Simulation with 117288 3.92 136.37 3.57 138.50 48.52 985.24
Multiple Readers 194455 22.11 294.71 21.51 299.21 180.91 unknown

In presence of counterexamples, anti-chain based algorithms may find the counterex-
ample more quickly. The verification results with the register example (with multiple
readers), shown in Table 2 (‘Anti-Chain’ and ‘Without’ are denoted as AC and W/o
for short), evidences that anti-chain finds the counterexample more quickly in all three
kinds of refinement checking. Nonetheless, we remark that because the algorithms are
on-the-fly, whether the counterexample is found earlier depends on the searching order
and sometimes anti-chain based algorithms may be slower if a ‘wrong’ order is taken.

4 Probabilistic Refinement Checking with Anti-chain

In this section, we show that anti-chain can be used to improve a particular kind of
probabilistic refinement checking, i.e., the implementation is given as an MDP and the
specification is given as an NFA.

4.1 MDP and Probabilistic Model Checking

Given a set of states S , a distribution is a function μ : S → [0, 1] such thatΣs∈S μ(s) =
1. Let Distr(S) be the set of all distributions over S . A Markov Chain is a tupleM =
(S , init ,Act ,Pr) where S is a countable set of states; init ∈ S is an initial state; Act
is a set of events; and Pr : S × Act × S → [0, 1] is a labeled transition probability
function such that for all state s ∈ S , ∃ e ∈ Act , Σs′∈SPr(s , e, s

′) = 1, and ∀ e ′ �=

More Anti-chain Based Refinement Checking 375

e, Σs′∈SPr(s , e, s
′) = 0. Notice that Markov Chains are deterministic as there is only

one event (and one distribution) at each state.
A sequence of alternating states and events π = 〈s0, e0, s1, e1, · · · , en , sn+1〉 is a

path of M if Pr(si , ei , si+1) > 0 for all i . The probability of executing π from s0,
written as Pr(M, π), is Pr(s0, e0, s1) × Pr(s1, e1, s2)× · · · × Pr(sn , en , sn+1). It is
often also interesting to find out the probability of reaching a certain set of states (e.g.,
what is the probability of reaching the state of system failure?). Given a set of target
states G , the probability of reaching any state in G from a starting state s0, written as
Pr(M, s0,G), is the accumulated probability of all paths from s0 to any state in G ,
which can be calculated systematically [5]. Given a path π, we define trace(π) to be
the sequence of visible events in π. We write Pr(M, s0, tr) to denote the probability of
exhibiting a trace tr from state s0, which is the accumulated probability of all paths π
from s0 such that trace(π) = tr . Given a set of traces Tr , the probability ofM exhibit-
ing any trace in Tr from state s0 is the accumulated probabilityΣtr∈TrPr(M, s0, tr).

Different from Markov Chains, an MDP can express both probabilistic choices and
non-determinism. An MDP is a tuple D = (S , init ,Act ,Pr) where S is a set of
system states; init ∈ S is the initial system configuration2; Act is a set of actions;
Pr : (S × Act)→ Distr(S) is a transition probability function such that for all states
s ∈ S and a ∈ Act : Σs′∈SPr(s , a, s

′) ∈ {0, 1}. Notice that there could be multi-
ple events at any state. A transition of the system is written as s

e→ μ where μ is a
distribution. A path of M is a sequence of alternating states, events and distributions
π = 〈s0, e0, μ0, s1, e1, μ1, · · ·〉 such that s0 = init and si

ei→ μi and μi(si+1) > 0 for
all i . Given a path π, we define trace(π) to be the sequence of visible events in π.

Intuitively speaking, given a system configuration, firstly an event and a distribution
is selected non-deterministically by the scheduler, and then one of successor states is
reached according to the probability distribution. A scheduler is a function deciding
which event and distribution to choose based on the execution history. With a scheduler
δ, we effectively obtain a Markov Chain fromD, written asDδ. Note that with different
scheduling, the probability of reaching a state or exhibiting a trace may be different.
The measurement of interest is thus the maximum and minimum probability. Given
a set of target states G and an MDP D, the maximum probability of reaching any
state in G from state s0 is defined as Pmax (D, s0,G) = supδ Pr(Dδ, s0,G). Note that
the supremum ranges over all, potentially infinitely many, schedulers. Accordingly, the
minimum is written as Pmin(D, s0,G). Similarly, we define the maximum probability
of exhibiting a trace in a set Tr by D from s0.

Pmax (D, s0,Tr) = supδ(Σtr∈TrPr(Dδ, s0, tr))

Accordingly, the minimum is written as Pmin(Dδ, s0,Tr).

Example 4. The following shows a simple example MDP.

2 This is a simplified definition. In general, there can be an initial distribution.

376 T. Wang et al.

s0start s1

s2

s3
α, 1

α, 0.5

α, 0.5

β, 1

where s0 is the initial state and s2 is a target state. For simplicity, we omit the self-
loop of s2 and s3. s1 has two distributions, following two actions α and β. If s1 non-
deterministically chooses α, then it has equal probability to transfer to s2 or stay in s1;
and if β is chosen, it will transfer to s3 with probability 1. �

Definition 6 (Refinement Probability). Let D = (S , init ,Act ,Pr) be an MDP; L be
an LTS. The maximum probability of D trace-refining L is Pmax (D, init , traces(L)).
The minimum is Pmin(D, init , traces(L)).

Intuitively, the probability ofD refines L is the probability ofD exhibiting a trace of L.
As we mention earlier, the probability may vary due to different scheduling.

Definition 7 (MDP and LTS Synchronous Product). LetD = (Sd , initd ,Actd ,Prd)
be an MDP; L = (Sl , initl ,Actl ,T) be an LTS such that τ �∈ Actl . The synchronous
product of D and L, written as D × L, is an MDP (S , init ,Act ,Pr) such that S =
Sd × Sl ; init = (initd , initl); Act = Actd ∪ Actl ; and Pr is defined as follows.

– If (s1, τ, μ) ∈ Prd , then ((s1, s2), τ, μ
′
) ∈ Pr for all s2 ∈ Sl such that for all

s ′1 ∈ Sd , μ′
((s ′1, s2)) = μ(s ′1);

– If (s1, e, μ) ∈ Prd and (s2, e, s
′
2) ∈ T , then ((s1, s2), e, μ

′
) ∈ Pr such that for all

s ′1 ∈ Sd , μ′
((s ′1, s

′
2)) = μ(s ′1).

A state (s1, s2) of the productD×L is a TR-witness state if and only if s2 = ∅. In [14],
we show that the refinement probability can be calculated systematically by (1) building
the deterministic LTS det(L); (2) computing the synchronous product ofD and det(L);
(3) calculating the maximum/minimum probability of reaching any TR-witness state.

Theorem 4. Let D = (Sd , initd ,Actd ,Prd) be an MDP; L = (Sl , initl ,Actl ,T). Let
G be the set of TR-witness states of D × det(L).

– Pmax (D, initd , traces(L)) = Pmax (D × det(L), (initd , initl),G)
– Pmin(D, initd , traces(L)) = Pmin(D × det(L), (initd , initl),G) �

Based on the above theorem, the probabilistic refinement checking problem is reduced
to a probabilistic reachability problem, which can be solved by two standard methods.
One is by solving a linear program. That is, we firstly associate a variable xs to each
state s in P to represent the probability of reaching any target state from s ; then we
construct a linear program which constraints the value of every xs using a set of linear
inequalities, based on the probability transition function; and lastly, we solve the lin-
ear program to get the maximum/minimum value of each xs . Notice that the solution
of state (initd , initl) is the refinement probability. The other is to iteratively approxi-
mate the probability through graph traversing. Notice that for systems having large state

More Anti-chain Based Refinement Checking 377

space, it is impractical to store the entire linear program and solve it directly, therefore
the iterative calculation approach is more widely used in probabilistic verification. As a
result, in this paper we just focus on this approach.

Example 5. In the following, we show how the iterative calculation method works using
the simple example shown in Example 4. That is, the maximal probability from initial
state s0 to accepting state s2 is calculated step by step. Assume pk

i is the maximal
probability of si after the k -th iteration. Starting from the target state s2, in k -th iteration
we update the probability of states which could reach s2 in exact k steps. Obviously,
p0
0 = p0

1 = 0. As pk
2 = 1 and pk

3 = 0 for any k , k is ignored in these two states. In the
1st iteration, only p1 can be updated, and p1

1 = max{0.5 × p0
1 + 0.5 × p0

2 , 1 × p0
3} =

max{0.5, 0} = 0.5.; in the 2nd iteration, both p0 and p1 can be updated. It is trivial to
show p2

0 = p1
1 = 0.5, and p2

1 = max{0.5×p1
1+0.5×p1

2 , 1×p1
3} = max{0.75, 0} = 0.75.

Iteratively, p0 and p1 in the long run can be calculated. A user-defined threshold is
usually necessary to terminate the calculation, according to the desired precision. �

4.2 Anti-chain Based Approach

Now we introduce how anti-chain can be used to speed up the iterative calculation
approach, by first introducing a lemma.

Lemma 3. Let D = (Sd , initd ,Actd ,Prd) be an MDP; L = (Sl , initl ,Actl ,T). Let
P be D × det(L). Let G be the set of TR-witness states of P . For all state (u1, v1) and
(u2, v2) of P s.t. (u2, v2) ≤ (u1, v1), Prmax (P , (u1, v1),G) ≥ Prmax (P , (u2, v2),G)
and Prmin(P , (u1, v1),G) ≥ Prmin(P , (u2, v2),G).

Proof The above can be proved with an induction. The base case is that (u2, v2) is in
G . By definition, (u1, v1) must be in G and therefore the lemma holds. Next, we show
the induction step. Assume that (u ′

2, v
′
2) satisfies the lemma above. For every distribu-

tion μ2 from (u2, v2), by Definition 7, there must exist a distribution μ1 from (u1, v1)
and for every state (u ′

2, v
′
2), there exists (u ′

1, v
′
1) such that μ2((u

′
2, v

′
2)) = μ1((u

′
1, v

′
1))

and (u ′
2, v

′
2) ≤ (u ′

1, v
′
1). By induction hypothesis, we have Prmax (P , (u ′

1, v
′
1),G) ≥

Prmax (P , (u ′
2, v

′
2),G) and Prmin(P , (u ′

1, v
′
1),G) ≥ Prmin(P , (u ′

2, v
′
2),G). Thus we

have Prmax (P , (u1, v1),G) ≥ Prmax (P , (u2, v2),G) and Prmin(P , (u1, v1),G) ≥
Prmin(P , (u2, v2),G). Therefore, we conclude that the lemma holds. �

Compared to probabilistic reachability calculation for a general MDP, the above lemma
gives us additional information, which can be potentially useful in speeding up the
calculation. In the following, we discuss how we can make use of the information so as
to improve the probabilistic refinement checking using the iterative calculation method.

The first step is building the product MDP meanwhile finding the target states, which
is shown in Algorithm 4. The implementation and specification are defined in Defini-
tion 7. Different from the non-probabilistic cases, the state space cannot be reduced in
the probabilistic models; instead, we define a function sub of the product state s satis-
fying s .sub = {t | t ∈ S ∧ s ≤ t}, where S is the state space of the product MDP.
Then the refinement checking is reduced to probabilistic reachability of a set of target
states, denoted by Target . During the iterative calculation, whenever the probability of

378 T. Wang et al.

Algorithm 4 Building MDP in Probabilistic Refinement Checking with Anti-chain
1: let working be a stack containing a pair (initd , {s | initl � s});
2: let visited := {(initd , {s | initl � s})}; let Target = ∅; ;
3: while working
= ∅ do
4: pop (impl , spec) from working ;
5: for all (impl , e, μ) ∈ Prd do
6: if e = τ then
7: spec′ := spec;
8: else
9: spec′ := {s ′ | ∃ s ∈ spec. s

e� s ′};
10: for all impl ′ ∈ Sd do
11: if μ(impl ′) > 0 ∧ (impl ′, spec′)
∈ visited then
12: push (impl ′, spec′) into working ;
13: visited := visited ∪ (impl ′, spec′);
14: if spec′ = ∅ then
15: Target := Target ∪ (impl ′, spec′);
16: for all (impl ′, spec′′) ∈ visited do
17: if (impl ′, spec′′) ≤ (impl ′, spec′) then
18: (impl ′, spec′′).sub.Add(impl ′, spec′);
19: else if (impl ′, spec′) ≤ (impl ′, spec′′) then
20: (impl ′, spec′).sub.Add(impl ′, spec′′);
21: return true;

state s is updated, e.g., to p, according to lemma 3, all states in s .sub whose proba-
bility is less than p could be set to p directly. This could speed up each iteration and
potentially improve probabilistic refinement checking.

Now we evaluate whether the above method is indeed beneficial. The proposed prob-
abilistic refinement checking algorithm has also been implemented in PAT. We evaluate
it using a modified system based on the implementation of a distributed concurrent
stack example [15]. Probabilistic choices are used to model a concurrent stack model
composed by two processes, so as to capture the situation in which the communication
between different processes fails from time to time. Failures do exist in real world cases
and the experiments results are summarized in Table 3.

Table 3. Experiments: Probabilistic Concurrent Stack Implementation

System Size
Verification Time (s) #States Involved in Iterations

W/o AC With AC Gain W/o AC With AC Gain
K = 2 20600 2.74 2.21 19.3% 4.2M 3M 28.6%
K = 3 45584 15.98 12.04 24.6% 18.6M 11.7M 37.1%
K = 4 86704 48.72 37.50 22.6% 55.5M 36.2M 34.8%
K = 5 117408 123.9 80.83 34.9% 130.7M 76.3M 41.6%
K = 6 231440 271.2 182.6 32.7% 272.1M 160.7M 40.9%
K = 7 342544 511.1 340.3 33.5% 515.2M 298.8M 42.0%

More Anti-chain Based Refinement Checking 379

We compare the efficiency of the implementation with and without (W/o) Anti-chain
(AC) using several cases. K means length of the stack; Size indicates the number of
states in the whole system; #States Involved in Iterations represents the total number of
states involved in the iterative calculation. For example, a state s updates its probability
in two iterations, then #States should increase two. From the experiments, we can see
that the anti-chain approach could reduce the total number of states accumulated during
the calculation, through dynamically updating states’ probability based on the subset
relation sub. This speeds up the verification around 29%. We remark that the gains here
are not as significant as the non-probabilistic cases, because the state space cannot be
reduced; however, in some cases, it does shorten the verification time.

5 Conclusion

In this work, we proposed to adopt anti-chain approach to improve stable failures re-
finement, failures-divergence refinement and probabilistic refinement checking. These
algorithms have been implemented in model checking framework PAT, and some ex-
periments based on benchmark systems demonstrated the dramatic improvement of the
verification efficiency of our method. To our best of knowledge, we are the first to in-
vestigate anti-chain approaches for these refinement checking.

As for future work, we are trying to extend anti-chain based refinement checking
approach in real-time system; meanwhile, we are exploring the refinement relation be-
tween probabilistic models, which may also benefit from anti-chain based method.

References

1. Roscoe, A.W.: Model-checking CSP, ch. 21. Prentice-Hall (1994)
2. Abdulla, P.A., Chen, Y.-F., Holı́k, L., Mayr, R., Vojnar, T.: When Simulation Meets An-

tichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174.
Springer, Heidelberg (2010)

3. Aguilera, M.K., Gafni, E., Lamport, L.: The Mailbox Problem. In: Taubenfeld, G. (ed.) DISC
2008. LNCS, vol. 5218, pp. 1–15. Springer, Heidelberg (2008)

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, 2nd edn. The Oxford University Press (2004)

5. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)
6. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-Based Universality

and Inclusion Testing over Nondeterministic Finite Tree Automata. In: Ibarra, O.H., Raviku-
mar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for Omega-Regular
Games with Imperfect Information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
pp. 287–302. Springer, Heidelberg (2006)

8. Doyen, L., Raskin, J.F.: Antichains for the automata-based approach to model checking.
Logical Methods in Computer Science 5(1:5), 1–20 (2009)

9. Ellen, F., Lev, Y., Luchangco, V., Moir, M.: SNZI: Scalable nonzero indicators. In: PODC,
pp. 13–22. ACM (2007)

10. Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)

380 T. Wang et al.

11. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
12. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Aspects of Comput-

ing 17(2), 93–112 (2005)
13. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

14. Sun, J., Song, S., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong, J.S.,
Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer, Heidelberg (2010)

15. Treiber, R.K.: Systems programming: Coping with parallelism. Technical report, IBM Al-
maden Research Center (1986)

16. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for
Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

17. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative Algorithms for
LTL Satisfiability and Model-Checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)

An Analytical and Experimental Comparison
of CSP Extensions and Tools

Ling Shi1, Yang Liu2, Jun Sun3, Jin Song Dong1, and Gustavo Carvalho4

1 SoC, National Univ. of Singapore
{shiling,dongjs}@comp.nus.edu.sg
2 Temasek Lab, National Univ. of Singapore

tslliuya@nus.edu.sg
3 ISTD, Singapore Univ. of Technology and Design

sunjun@sutd.edu.sg
4 Centro de Informática, UFPE, Brazil

ghpc@cin.ufpe.br

Abstract. Communicating Sequential Processes (CSP) has been widely applied
to modeling and analyzing concurrent systems. There have been considerable ef-
forts on enhancing CSP by taking data and other system aspects into account. For
instance, CSPM combines CSP with a functional programming language whereas
CSP# integrates high-level CSP-like process operators with low-level procedure
code. Little work has been done to systematically compare these CSP extensions,
which may have subtle and substantial differences. In this paper, we compare
CSPM and CSP# not only on their syntax, but also operational semantics as well
as their supporting tools such as FDR, ProB, and PAT. We conduct extensive ex-
periments to compare the performance of these tools in different settings. Our
comparison can be used to guide users to choose the appropriate CSP extension
and verification tool based on the system characteristics.

1 Introduction

Communicating Sequential Processes (CSP) [3], a prominent member of the process
algebra family, has been designed to formally model concurrent systems. It represents
system behavior in terms of processes constituted by a rich set of compositional opera-
tors. CSP also provides algebraic laws such that equivalence of process expressions can
be rigorously established. It has been applied to a variety of safety-critical systems [25].

With the increasing size and complexity of concurrent systems, it becomes clear
that CSP has its limitations in modeling systems with non-trivial data structures (e.g.,
array) or functional aspects. To solve this problem, many considerable efforts on en-
hancing CSP have been made. The most noticeable is CSPM [15], a machine-readable
dialect of CSP, combining CSP with a functional programming language. Recently,
CSP# (Communicating Sequential Programs) [22] has been proposed to integrate high-
level CSP-like process operators with low-level program constructs such as assign-
ments and while loops. Although these languages support CSP-like modeling notations
and can deal with similar types of concurrent systems, there are subtle and substan-
tial differences between them. For example, concurrency is captured differently; CSPM

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 381–397, 2012.
© Springer-Verlag Berlin Heidelberg 2012

382 L. Shi et al.

only supports synchronous channel communications, while CSP# supports both syn-
chronous/asynchronous channels and shared variables. In addition, those differences
can lead to different verification capabilities empowered by their respective analysis
tools, i.e., FDR (Failures Divergence Refinement) [10] and ProB [6] for CSPM , and
PAT (Process Analysis Toolkit) [23] for CSP#. Little work has been conducted to pro-
vide a comprehensive investigation of these CSP extensions so as to help users choose
appropriate languages/tools for various systems from the perspectives of modeling and
verification needs.

In this work, we systematically compare CSPM and CSP# in terms of three aspects,
i.e., language syntax, operational semantics, and reasoning power of their supporting
tools. Firstly, we show the syntactic differences, followed by comparing the operational
semantics. We also discuss the transformation between CSPM and CSP# models. Sec-
ondly, we characterize various reasoning techniques and verifiable properties of FDR,
ProB and PAT, respectively. Next, we explore the strengths and limits of the languages
and tools by modeling and verifying nine systems, each of which is designed to show
particular features of the languages or the tools. Lastly, we investigate reasons behind
the experiment results; particularly, the semantic differences between CSPM and CSP#
lead to different state spaces and optimizations in model checking.

We believe that the comparison is useful for the following reasons. Firstly, our com-
parison may guide users to select an appropriate modeling language. The decision
depends on system features (e.g., shared variables, etc.) and properties to prove (e.g.,
compositional refinement checking, etc.). Secondly, our analysis of languages that are
designed for concurrent systems in terms of simplicity and expressiveness (e.g., com-
munications via channels or shared memory) can act as a reference in designing new
programming languages of concurrent systems. Thirdly, the translation discussed in the
paper can help users to change their models between CSPM and CSP#, and hence to uti-
lize different reasoning power of their respective reasoning tools. Lastly, our experiments
with FDR, ProB, and PAT provide qualitative analysis of tool capability/efficiency.

2 CSPM vs. CSP#: Syntax

CSPM enriches CSP with an expression language that is based on functional founda-
tions. It mainly uses event synchronization to specify concurrent systems, and supports
operators like linked parallel P [c < − > c′]Q in which two different channels c and c′

from processes P and Q respectively run synchronously. CSP# not only inherits event
synchronization and compositional process constructs from CSP, but also supports ad-
ditional features like asynchronous channel communication, imperative programs, etc.
In this section, we elaborate the differences between these two languages in terms of
their syntax. Table 1 shows common CSP, CSPM and CSP# process definitions, where
P (and Q) is a process with an optional list of parameters; a is an event name; A and
A′ are sets of event names and channel expressions; b is a Boolean expression; c and c′

are channel names; e is an expression; x and x ′ are variables; and V is a set of accepted
values. We illustrate the detailed differences from two perspectives.

Data Perspective CSPM supports functional paradigm, where process parameters can
take in processes, functions, and channels. This is not available in CSP# which adopts

An Analytical and Experimental Comparison of CSP Extensions and Tools 383

Table 1. Similar Syntax among CSP, CSPM and CSP#

CSP CSPM CSP# Description
STOP STOP Stop deadlock
SKIP SKIP Skip termination
CHAOS CHAOS(A) - chaotic process
a → P a → P a → P event prefixing
c!e → P

c?x?x ′ : V !e → P
c!e → P channel

c?x → P c?[b]x → P communication
P � Q P [] Q P [∗] Q external choice
P % Q P |∼| Q P <> Q internal choice
P ; Q P ; Q P ; Q sequential composition
P

∖
A P

∖
A P

∖
A hiding

x := e - x := e assignment
P � b � Q if b then P else Q if b then P else Q conditional choice

P ‖ Q
P [| A |]Q
P [A || A′]Q P ‖ Q parallel composition
P [c < − > c′]Q

P ||| Q P ||| Q P ||| Q interleaving
P 'Q P/\Q P interrupt Q interrupt

imperative paradigm, although this limitation may be resolved partially through ‘clever’
modeling. For instance, a CSPM concrete process System = P(Sys1, Sys2) associated
with an abstract process P(P1,P2) = a → P1 [] b → P2 can be translated to a
CSP# concrete process System = a → Sys1 [∗] b → Sys2, here Sys1 and Sys2 are
processes. However, it may not be possible to specify abstract process behavior (e.g.,
process P in this example) in CSP#, whose parameters are processes.

CSPM enables rich data expressions such as sequences, sets, Boolean, tuples, and
lambda calculus. It also allows users to define data types using the reserved word
“datatype”. CSP# directly supports integers, Boolean, array of integers or Boolean. In
addition, it supports user-defined data types and corresponding operations using imper-
ative languages like C#1, C, or Java. Functions can be declared in CSPM following the
functional paradigm, while in CSP#, they are encoded as processes or defined as static
C# methods (which can be invoked via method call in CSP# models).

A channel in CSPM is declared with an explicit type. Values communicated through
a channel must be in their type range; otherwise, an error is reported at run time by FDR
and ProB. Moreover, CSPM is dynamically typed in FDR, namely, there is no way to
declare the types of functions and variables (process parameters), while ProB can type
check the CSPM models in a dynamic or (optional) static way [7]. In contrast, CSP#
is weak typed (a.k.a. loose typing) and therefore no type information is required when
declaring a variable or channel. Channels are declared with its name and buffer size.
If the buffer size is 0, then it is declared as a synchronous channel, otherwise it is an
asynchronous channel. The process parameters and channel input variables can take in
values with different types at different time. As long as there is no type mismatch (e.g.,

1 C# is the best supported language in PAT and used as the representative language in this paper.

384 L. Shi et al.

using an integer as a guard condition), the execution can proceed; otherwise, invalid
type casting exception is raised at run time.

Process Perspective. One big difference is that CSP# directly supports shared variables.
Unlike CSPM which excludes assignments of shared variables [10], CSP# treats assign-
ments as an important modeling feature. In CSP#, an event can be associated with an
imperative program, which is executed atomically together with the occurrence of the
event. For instance, an event associated with a program (referred to as a data operation)
is written as a{prog} → P where prog is the program and a is an event name. We re-
mark that a shared variable can be modeled as a process parallel to the one that uses the
variable (see [3] and [17]). Recently, shared variable analyzer (SVA) [17], a front-end of
FDR, has been developed to convert programs (like C programs) with shared variables
into CSPM models, in which shared variables are modeled as variable processes; read-
ing from/writing to those shared variables are carried out over channels. We illustrate
the modeling of shared variables in Section 3.

Asynchronous channels, as a popular and practical type of communication mech-
anism for networked systems, are directly supported in CSP#. Given an asynchronous
channel ac with a positive buffer size, ac!e → P evaluates expression e with the current
variable valuation, puts the value into the tail of the respective buffer for ac and then
behaves as P . In contrast, ac?x → P (and ac?[b]x → P) gets the top element from
the respective buffer, assigns it to variable x and then behaves as P (the latter further
constrains the received data to satisfy the Boolean condition b). Buffers store messages
in a first-in-first-out (FIFO) order. Notice that asynchronous channels in CSP# are simi-
lar to those supported in Promela [4]. Although asynchronous channels are not directly
supported in CSPM , they can be modeled as buffer processes by event synchronization,
which will be shown in Section 3.

In CSPM , users are required to indicate synchronized events in three kinds of parallel
compositions, which are, sharing (P [| A |]Q), alphabetized parallel (P [A ‖ A′]Q),
and linked parallel (P [c ↔ c′]Q). On the other hand, CSP# supports only alphabetized
parallel composition and frees users from specifying explicit alphabets of processes in
parallel; a sophisticated procedure [22] calculates automatically a default alphabet of a
process which is the set of events that constitute the process expression. Nevertheless,
this procedure may not work when an event name consists of global variables or process
parameters which change through recursive calls; in such a case, users need to specify
the alphabet of a process. Notice that in order to avoid data race, data operations are not
a part of the alphabet and therefore are never synchronized.

In CSP#, an event can have the name tau to represent the invisible event τ in event
prefixing or data operations, e.g., tau → Stop or tau{prog} → Stop. With the support
of tau event, users can avoid using hiding operator to explicitly hide some visible events
by naming them tau . External and internal choices are supported in both languages.
Moreover, CSP# allows general choice P []Q in which the choice is resolved by any
event. This operator is more like the CCS + operator, which can be resolved by a τ
event performed by either process. Nonetheless, the general choice operator can be
simulated in CSPM [14].

Besides the common conditional choice, CSP# copes with two additional types of
conditional choices to facilitate modeling: atomic conditional choice ifa b {P} else {Q}

An Analytical and Experimental Comparison of CSP Extensions and Tools 385

and blocking conditional choice ifb b {P}. With the former, the checking of condition
b is to be conducted atomically with the occurrence of the first event in P or Q . The
latter is blocked when b is unsatisfied.

Both CSPM and CSP# define Boolean guard b&P and [b]P respectively; process
waits until condition b becomes true and then behaves as P . Replicated process oper-
ators, such as replicated external/internal choices, replicated parallel and interleaving,
are also supported in both languages. Chaotic process (CHAOS(A)), event renaming
(P [[c ← c′]]), and untimed timeout (P [> Q) defined in CSPM are not directly handled
in CSP#. We discuss how to model these features using CSP# operators in Section 3.

So far we have shown the syntactic differences between CSPM and CSP#. Both
CSPM and CSP# support dedicated syntax which is unavailable in the other. Some
special syntax operators in one can be indirectly achieved in the other. For instance,
the CHAOS process in CSPM can be defined in CSP# using choices and event prefixing
(discussed in the next section). Nonetheless, it is not always trivial to support some ded-
icated syntax operators such as shared variables in CSPM and channel communications
in CSP# (which can involve multiple processes).

3 CSPM vs. CSP#: Operational Semantics

Operational semantics describes the sequences of computational steps that a model can
take. We illustrate the operational semantics of CSPM and CSP# in the form of labeled
transition systems (LTS). An LTS is 3-tupleL = (S , init ,→) where S is a set of system
configurations; init ∈ S is an initial system configuration and→: S ×Σ ∪ {�, τ}×S
is a labeled transition relation. Note that Σ ∪ {�, τ} is the event space where Σ is the
set of visible events,� denotes a successful termination, and τ is an invisible event.

A system configuration S in CSPM is a pair of processes and environment where
the latter maps variable identifiers to values such as data, processes, or a distinguished
error configuration. In CSP#, S is composed of two components (V ,P) where V maps
variable names (or channel names) to values (or sequences of items in buffers), and P
is a process expression. The operational semantics of a process construct is depicted
by associated firing rule(s). CSPM and CSP# share very similar firing rules for some
process constructs like interrupt [15,19,22]. We elaborate subtle differences in the op-
erational semantics of six process constructs; the complete description of all different
process constructs can be found in our technical report [21]. Note that CSPM process
constructs like P in the firing rules below include the environment, same as [15].

SKIP Process SKIP means termination; namely, � takes place followed by doing
nothing, as captured by Stop in CSP#, whereas this is denoted by a special process
term Ω in CSPM . For simplicity, we use prefix M to refer to CSPM firing rules (e.g.,
M skip), and # for CSP# (e.g., # skip) in the following.

[M skip]

SKIP
�→ Ω

[# skip]

(V , Skip)
�→ (V , Stop)

Notice that in both CSPM and CSP#, � may only be the last event of a trace. The
semantic difference shown above thus will not result in different verification results in

386 L. Shi et al.

FDR, ProB and PAT2. Nonetheless, it should be noticed that this difference leads to a
different semantics for parallel composition as we show later.

CHAOS Process CHAOS in CSPM denotes the most non-deterministic process.

[M c1]

CHAOS(A)
τ→ STOP

a ∈ A
[M c2]

CHAOS(A)
a→ CHAOS(A)

CHAOS(A) is not directly supported by CSP# because of two main reasons. First, users
have to specify all the events in set A to model CHAOS, whereas CSP# is designed
to free users from specifying events associated with processes (if possible). Second,
CHAOS is more useful in the failures/divergence checking, whereas CSP# models fo-
cus more on states/LTL checking. CHAOS(A) can be manually captured in CSP# by
constructing an equivalent process including all events. For example, let set A contains
events a and b, one way to model CHAOS(A) process in CSP# can be as follows.

CHAOS A = tau → Stop [] a → CHAOS A [] b → CHAOS A

Channel communication. Channel communications are crucial in concurrent systems
and they are classified into two types: synchronous and asynchronous. CSPM directly
supports the former, whereas CSP# supports both. Both languages have their own oper-
ational semantics to interpret channel communications, which is elaborated below. The
transformation of channel communication between CSPM and CSP# is discussed later.

A general format to express a channel communication is cf → P , where c is a
channel name, f a sequence of communication fields, and P a process with the scope of
the prefix. A communication field can be an output (by !e where e is an expression), an
unconstrained input (by ?x where x is a variable), or a constrained input (by ?x : V in
CSPM where V is a value range, and by ?[b]x in CSP# where b is a Boolean condition).

In CSPM , channels are synchronous and communications are achieved by means of
event synchronization. Specifically, assume the type of data communicated over channel
c is T , c!e → P outputs a communication c.v where v is the value of e and v ∈ T ,
and c?x → P accepts an input of the form {c.v | v ∈ T}; c?x : V → P imposes
an additional constraint for c.v , namely, v ∈ V . As a channel can be associated with
a sequence of communication fields in CSPM , multi-part communications involving
multiple data transfers can occur within a single action. For instance, c?x : V !e → P
engages communications of the form {c.v ′.v | v ′.v ∈ T ∧ v ′ ∈ V } where v is a
value of e. The firing rule of the CSPM channel communication is presented below,
where function comms(cf) returns the set of communications described by cf and
function subs(a, cf ,P) returns a process whose identifier in process P bounded by cf
is substituted by event a.

a ∈ comms(cf)
[M com]

cf → P
a→ subs(a, cf ,P)

2 Except deadlock-freeness checking; namely, a process is deadlock free iff it satisfies the
deadlock-freeness assertion in FDR and ProB, whereas it has to satisfy both deadlock-freeness
and nontermination assertions in PAT.

An Analytical and Experimental Comparison of CSP Extensions and Tools 387

In CSP#, a channel is defined as a buffer which stores messages in a first-in-first-
out (FIFO) order. Channels are synchronous when their buffer sizes are zero, in which
case communications are realized by the hand shaking mechanism. Channels are asyn-
chronous when their buffer sizes are bigger than zero, and their communications are
achieved by the message passing mechanism. Sending and receiving multiple messages
at one time are supported in both synchronous and asynchronous communications. In
addition, the data type of the messages are untyped in CSP#. We show below the firing
rules of CSP# for channel communications.

– A synchronous communication occurs when both processes c!e → P and c?x →
P (or c?[b]x → P) can be executed simultaneously and the messages passed match
(and condition b is true); event c.v is transferred where v is the value of e with the
latest valuation eva(V , e). In the following firing rule which is associated with
parallel composition (the case for interleaving is similar), process Q [eva(V , e)/x]
replaces x with the new value v .

(V , c!e → P)
c!eva(V ,e)→ (V ,P), (V , c?[b]x → Q)

c?[b]x→ (V ,Q),

(V ∧ x = eva(V , e)) ⇒ b
[# par1]

(V , c!e → P ‖ c?[b]x → Q)
c.eva(V ,e)→ (V ,P ‖ Q[eva(V , e)/x])

– An output process ac!e → P , whereac is an asynchronous channel, is enabled if
the associated buffer is not full. The process first evaluates e and then pushes the
value into the tail of respective buffer for ac (denoted by function app(V , ac!e)),
followed by the execution of P .

ac is not full in V
[# out]

(V , ac!e → P)
ac!eva(V ,e)→ (app(V , ac!e),P)

– A constrained input process ac?[b]x → P is enabled if the associated buffer size
is not empty and b is valid with the latest valuation (denoted by function top(ac)).
The process pops (denoted by function pop(V , ac?x)) and assigns the top element
from the buffer to x , followed by the execution of P . Note that the checking of b is
unnecessary for an unconstrained input process.

ac is not empty in V ∧ (V ∧ x = top(ac)) ⇒ b
[# in]

(V , ac?[b]x → P)
ac?top(ac)→ (pop(V , ac?x),P [top(ac)/x])

Example 1. We exemplify below how CSP# captures CSPM multi-part synchronous
channels and how CSP# asynchronous channels are represented in CSPM . The event-
like channel communication in CSPM can be modeled as alphabetized event-based syn-
chronization in CSP#. We capture the channel communication by expanding the channel
values according the type values. Specifically, an output process c!e → P is translated
to a process c.e → P in CSP#, and an input process is transformed into a CSP# model

388 L. Shi et al.

which enumerates all possible communications using the general choices ([]) to com-
bine relevant event prefixing processes. Taking the following CSPM model of a vending
machine (VM) as an example,

1. datatype Drink = Sprite | Coke | Tea | Coffee
2. channel offer : Drink

3. VM = offer?x : diff (Drink , {Coffee})→ VM

where process VM can perform any communication in the form {offer .x | x ∈
diff (Drink , {Coffee}) ∧ x ∈ Drink}; function diff (Drink , {Coffee}) restricts that
a vending machine can offer any drink except coffee. This VM can be captured by the
following CSP# process where all possible communications are explicitly specified.

VM = offer .Sprite → VM [] offer .Coke → VM [] offer .Tea → VM

An asynchronous channel in CSP# can be modeled as a CSPM process which rep-
resents the FIFO buffer by sending/receiving messages to/from other processes. We
provide such a CSPM process below, where a sequence is defined in process Buffer to
store the message in the FIFO order and rcv and snd are channels.

1. Buffer(c, 〈 〉,N) = rcv?c?x → Buffer(c, 〈x〉,N)

2. Buffer(c, s 〈a〉,N) = #s < N − 1&rcv?c?x → Buffer(c, 〈x〉 s 〈a〉,N)

3. [] snd !c!a → Buffer(c, s,N)

In the above Buffer process, line 1 describes the situation where the buffer is empty,
namely, only receiving messages from other process is allowed. Lines 2 and 3 depict
message receiving and sending when the buffer is not full. This Buffer process can
be used to run in parallel with other process, say P , to perform asynchronous channel
communication; for instance, a communication over an asynchronous channel ac with
buffer size 2 can be modeled as P [snd ↔ rcv , rcv ↔ snd]Buffer(ac, 〈 〉, 2). We
remark that asynchronous channel can be regarded as a special kind of shared variable,
which is discussed in the next section; the way that asynchronous channels are modeled
in CSPM is similar to handle shared variables in CSPM later.

Shared variables. Shared variables are important in modeling shared resources. Vari-
ables in Hoare’s CSP processes are local and disjoint. We elaborate below how shared
variables are supported by CSP# directly and CSPM indirectly.

CSP# uses shared variables to model data states and operations in a procedural style.
The operations are modeled as terminating sequential programs in the form a{prog} →
P , where programs prog can contain local variables3, if-then-else statements, while
loops, the invocation of external libraries written in C#/Java (through the reflection
techniques). The execution of the programs is atomic together with the occurrence of
associated events. In the following firing rules, function upd(V , prog) returns a mod-
ified valuation function according to the particular semantics of the program; in prog ,
both shared and local variables can be used and updated.

[# dataOp]

(V , a{prog}4 → P)
a→ (upd(V , prog),P)

3 The scope of local variables is within prog , and they are not stored in valuation function V .
4 Event a can also be an invisible event, denoted as tau , then the transition event becomes τ .

An Analytical and Experimental Comparison of CSP Extensions and Tools 389

Shared variables can be modeled in CSPM indirectly as discussed in [17]. To be specific,
a shared variable is represented by a variable process which is executed concurrently
with other user processes which invoke the variable. Variable processes are modeled
as read/write operations, and hence user processes can read from/write to the shared
variables by CSPM synchronous communication. For example, the following processes
Var(v , val) and Var A(j , v , val) execute together as a variable process to denote a
shared variable v , where val is the value of v and j denotes a unique id of a user
process which invokes v . The constraint that only one process is allowed to read/write
v is specified in Var A which is triggered by event start at?j !v from Var .

1. Var(v , val) = read?i !v !val → Var(v , val)

2. [] write?i !v?x → Var(v , x) [] start at?j !v → Var A(j , v , val)

3. Var A(j , v , val) = read .j !v !val → Var A(j , v , val)

4. [] write.j !v?x → Var A(j , v , x) [] end at?j !v → Var(v , val)

Example 2. The following CSP# model and CSPM model represent the same sys-
tem which sums three process parameters, where the processes are selected non-
deterministically from three processes. In the CSP# model below, sum and count are
shared variables with initial value 0, and their updates are executed atomically with the
occurrence of event add in process P(i).

1. var count = 0; var sum = 0;
2. P(i) = [count < 3]add{sum = sum + i ; count = count + 1; } → P(i);
3. System() = ||| i : {1..3}@P(i);

In the CSPM model, the shared variables sum and count are modeled as variable pro-
cesses Var(sum, 0) and Var(count , 0). In addition, process P(i) is defined (lines
2 to 4) by a sequence of variable access events (e.g., events start at !i !count and
end at !i !count for count).

1.datatype VarDt = count | sum T = {1..3} Range = {0..10}
2. P(i) = start at !i !count → read !i?count?x → x < 3 & add

3. → start at !i !sum → read !i?sum?y → write!i !sum!(y + i)

4. → write!i !count !(x + 1) → end at !i !sum → end at !i !count → P(i)

5. Processes() = ||| i : {1..3}@P(i)

6. Variables() = Var(count , 0) ||| Var(sum, 0)

7. SharedEvent = {read .t .v .val , write.t .v .val , start at .t .v , end at .t .v |
8. t ← T , v ← VarDt , val ← Range}
9. System() = Variables() [| SharedEvent |] Processes()

As shown above, CSP# allows users to specify shared variables and their operations in
a way similar to imperative programming languages, which allows users to see variable
states at each simulation step. In contrast, CSPM supports shared variables by the means
of auxiliary processes and events; the additional operations may result in more system
states during model checking, as shown later in our experiments.

Parallel composition. The firing rules of parallel composition P ‖ Q in CSPM

and CSP# are similar except the way of handling the � event. Both languages require

390 L. Shi et al.

distributed termination: process P ‖ Q terminates if both P and Q terminate. This
requirement is satisfied in CSP# by the following firing rule.

(V ,P)
�→ (V ,P ′), (V ,Q)

�→ (V ,Q′)
[# par2]

(V ,P ‖ Q)
�→ (V ,Stop)

In addition, CSPM allows the termination of a paralleled process to be independent of
its associated process. Firing rules [M par1] below describes that the termination of P
involves an invisible event τ and P becomes Ω; operator ‖

X

is a general form of three

kinds of parallel operators in CSPM .

P
�→ P ′

[M par1]

P ‖
X

Q
τ→ Ω ‖

X

Q

[M par2]

Ω ‖
X

Ω
�→ Ω

The firing rule forQ is similar to [M par1]. When both processes becomeΩ, the paral-
lel process terminates under the firing rule [M par2]. Notice that the verification results
especially on non-terminating checking of parallel composition in CSPM and CSP# are
the same although the former needs two more steps. Parallel processes involving syn-
chronous channels in CSP# have been discussed early in Section 3 (by the firing rule
[# par1]). Parallel processes involving asynchronous channels execute independently
and their firing rules can be found in our technical report [21].

Renaming. CSPM supports renaming which renames a visible event when an associated
process is running, shown in the rule [M r3]. In theory, event renaming P [[R]] can
be represented in CSP# by a process Q which is almost the same as P except the
visible event from relation R being replaced. However, modeling the renaming process
manually in CSP# may not be easy when the renaming relation is complicated, and it
may lead to larger (LOC) specifications.

P
τ→ P ′

[M r1]

P [[R]]
τ→ P ′[[R]]

P
�→ P ′

[M r2]

P [[R]]
�→ Ω

P
a→ P ′, a R b, a, b ∈ Σ

[M r3]

P [[R]]
b→ P ′[[R]]

Discussion We have identified differences between CSPM and CSP# in terms of their
operational semantics, and also discussed some possible translations between these two
languages, especially their channel communications. Through the analysis, we can draw
some general guidelines of their modeling features: CSPM ’s adoption of functional
paradigm and support of more primitives such as CHAOS and renaming provide an ap-
proach to specify concurrent systems like this, starting with an abstract model first, then
refining it to more concrete one. CSP# supports more primitives for modeling different
forms of communication (e.g., message passing), and it is feasible to specify concrete
system behaviors which require hand shaking, message passing and shared resources.
In term of expressiveness, it can be shown that CSPM and CSP# are equivalent as both
CSPM and CSP# process can be transformed into a normal form, which involves event-
prefixing, internal choice and recursion only [15].

An Analytical and Experimental Comparison of CSP Extensions and Tools 391

4 Verification Tool Support

CSPM is supported by FDR which is designed primarily for refinement checking in
terms of trace, failures, divergences, refusals and revivals. ProB was initially designed
as an animator and model checker for B method [1], and recently it supports CSPM with
improvements on static type checking and associative tuples [7]; ProB integrates type
checking, animation and model checking together. CSP# is supported by PAT which
is an extensible framework for system modeling, simulation and verification. PAT im-
plements a number of model checking techniques catering for different properties such
as LTL properties and refinement checking. In the following, Section 4.1 illustrates the
verification capabilities of FDR, ProB (for CSPM) and PAT (only its CSP module),
including properties supported and their model checking techniques; Section 4.2 inves-
tigates the efficiency of the three tools.

4.1 Verification

FDR, ProB and PAT support the analysis of many common properties such as dead-
lock, livelock, determinism, and refinement checking which includes trace, failure and
failures/divergences refinement. In addition, FDR supports two additional refinement
models: the refusal testing model and the revivals model [10]. PAT supports additional
properties like reachability analysis, i.e., if a system can reach a bad state (e.g., array
overflow).

Model checking LTL properties is common in practice. Although it is not directly
supported in FDR, the relationship between refinement checking and LTL model check-
ing has been studied (e.g., [16,11]). Particularly, Leuschel et al. [8] applied an emptiness
test in a refinement between an unexpected specification and a process; the process is
a synchronization of the implementation and a CSP process for an LTL formula. This
approach has to deal with the high complexity of synchronization in FDR, and the pro-
cess to construct CSP processes from LTL formulas is arduous. Lowe [9] used a refusal
testing model to conduct the refusal refinement between a CSP process which denotes
an LTL formula and its implementation; those supported LTL formulas exclude opera-
tors eventually (-), until (U), and negation. In contrast, ProB and PAT support various
LTL formulas and analysis directly. Moreover, these formulas can constrain both states
and events, and be analyzed under five types of fairness assumptions [23] in PAT.

FDR, ProB, and PAT all provide basic model checking techniques such as breadth
first search and (bounded) depth first search. In addition, PAT implements the anti-
chain approach in which the complete subset construction and computing the complete
state space of the product are avoided for checking refinement. Further, PAT applies
Loop/SCC searching algorithm for LTL verification under fairness assumptions. To
cope with the problem of state space explosion during verification, FDR and PAT de-
velop their own reduction techniques. To be specific, FDR proposes a hierarchical com-
pression approach consisting of six methods to process an LTS representing a CSPM

model [10,15,17]: enumerations, strongly node-labeled bisimulation, τ -loop elimina-
tion, diamond elimination, normalization, and factoring by semantic equivalence. On
the other hand, PAT deploys three techniques. First, using the atomic sequence con-
struct (denoted by atomic{P}), where a sequence of statements in a process executes

392 L. Shi et al.

as one super-step without any inference, to realize simple partial order reduction (POR).
Second, applying POR dedicated to refinement checking to not only τ transitions but
also visible events (in some case which is not supported in FDR [23]). Last but not
least, providing process counter abstraction for parameterized systems under fairness
against LTL formulas [24]. We remark that the implementation of FDR’s hierarchical
compression methods for CSP# in PAT is nontrivial due to shared variables supported
in CSP#. For instance, a τ event in CSP# may update shared variables and therefore the
event cannot not be pruned for compression.

4.2 Experiment

In this section, we evaluate the efficiency of FDR, ProB and PAT by verifying nine
benchmark systems. The experiments with FDR and ProB are performed on an Intel�

CPU E6550 (2.33 GHz) PC with 4GB memory running on 32-bit Linux. PAT is exper-
imented with the same PC but on a 32-bit Windows.

We conduct five sets of experiments5. The first set investigates the performance of
refinement checking, by verifying the same model and assertion with different reduc-
tion techniques. The results are shown in Table 2, where N is the number of processes.
Column State shows the number of visited states, and column Time(s) records run-
ning time of the verification in seconds. Value “-” in a cell denotes that the experi-
ment is aborted due to either memory overflow or execution time exceeding two hours.
For readers/writers (R/W) models, although FDR applies some dedicated compression
techniques, PAT has better performance. For dining philosopher (DP) models, FDR
performs extremely well because of the strategy discussed in [18]. However, other ex-
periments show that this strategy may not be as efficient for other models. For Milner’s
cyclic scheduler (MCS), PAT is comparable to FDR in terms of the number of states per
second. FDR processes the LTS by applying its compression methods, whereas PAT ap-
plies a simple reduction method, i.e., using the keyword atomic to give higher priority to
local events which are not synchronized, not updating any variable and not mentioned
in the property.

The second set compares the performance of three model checkers on solving puz-
zles, inspired by work in [12]. The CSPM and CSP# models for these puzzles make
the best use of their modeling power: CSP# specifies the puzzles using shared vari-
ables, which are solved by PAT through reachability analysis, whereas CSPM mod-
els the puzzles using multi-part event synchronization, which are solved by FDR and
ProB through trace refinement. In addition, FDR simulates a bounded DFS algorithm
by searching the divergence of a new system, in order to find a smaller counterexample.
The new system P ′, like a watchdog, can only perform up to N events of the target
implementation process P , and then performs an infinite number of events [12]. This
approach can be used provided that the target process P is loop-free. Table 3 shows
the performance results, where column FDR-Div records the results of states and time
using this algorithm; value N .A. means there is no model with divergence checking to
solve the puzzle. From Table 3, we can observe that the divergence checking approach

5 All models are available at www.comp.nus.edu.sg/˜pat/compare.

www.comp.nus.edu.sg/~pat/compare

An Analytical and Experimental Comparison of CSP Extensions and Tools 393

Table 2. Experiment results on refinement checking

Model N Property
FDR ProB PAT

State Time(s) State Time(s) State Time(s)

R/W 6 P [T= S 8 0.024 61365 125.94 9 0.04
R/W 200 P [T= S 202 1.434 - - 203 0.11
R/W 500 P [T= S 502 19.651 - - 503 0.057
R/W 1000 P [T= S 1002 156.162 - - 1003 0.108
DP 6 P [F= S 1 0.06 14510 82.42 1762 0.174
DP 8 P [F= S 1 0.071 - - 22362 2.995
DP 12 P [F= S 1 0.104 - - - -

MCS 20 P [FD= S 40 0.043 - - 60 0.114
MCS 50 P [FD= S 100 0.086 - - 150 0.143
MCS 100 P [FD= S 200 0.246 - - 300 0.53

Table 3. Experiment results on solving puzzles

Model N
FDR FDR-Div ProB PAT

State Time(s) State Time(s) State Time(s) State Time(s)

Solitaire 26 4048216 46.303 1 0.169 - - 11950 5.356
Solitaire 29 28249254 387.737 1 0.217 - - 104395 54.681
Solitaire 32 - - 1 5.318 - - 10955 5.301
Solitaire 35 - - 1 377.297 - - 443230 279.454
Knight 5 508450 3.522 1 0.037 - - 4256 0.29
Knight 6 - - 1 15.399 - - 129269 9.143
Knight 7 - - 1 94.713 - - 77238 6.754
Hanoi 6 729 0.052 N.A. N.A. 1667 57.84 5775 0.416
Hanoi 7 2187 0.086 N.A. N.A. 4969 196.5 92680 6.837
Hanoi 8 6561 0.181 N.A. N.A. 14853 660.59 150918 11.524

can be used in the solitaire and chess knight tour models. However, this approach can-
not always significantly improve the performance, because it depends on the searching
order. Moreover, it is costly to check if a system is loop-free or not, which is the premise
for applying this approach. PAT solves the two puzzles in a reasonable time, and it is
faster in the knight example than FDR and FDR-Div. For the hanoi puzzle, FDR has a
better performance because the compression techniques it uses can effectively reduce
the state space.

The third set explores the performance of FDR and PAT on verifying two models
which involve shared variables. The first example is a concurrent stack which allows
multiple readers to access the shared variable at the same time, but only one writer to
update the value; readers cannot access the shared variable in the latter case. The mod-
eling of shared variables in CSPM follows the approach discussed in Section 3. Results
of this example in Table 4 show that PAT performs better than FDR for checking trace
refinement (P[T=S), and this is because PAT uses DFS with anti-chain algorithm in the
trace refinement. This algorithm is effective when the specification is non-deterministic.
Here, N is the number of processes and ConcurrentStack ∗ 2 in the Model column
means that the stack size is 2. The second example is the Peterson algorithm. We obtain

394 L. Shi et al.

Table 4. Experiment results on shared variables

Model N Property
FDR PAT

State Time(s) State Time(s)

Concurrent Stack*2 3 P [T= S 453456 3.833 10860 1.023
Concurrent Stack*2 4 P [T= S - - 189920 75.915
Concurrent Stack*2 5 P [T= S - - 693828 293.382

Peterson 3 mutual exclusion 1011 1.192 3257 0.105
Peterson 4 mutual exclusion 105493 20.067 104686 3.776
Peterson 5 mutual exclusion 14810779 387.645 5722863 294.005

Table 5. Experiment results on LTL checking

Model N Property Result
FDR ProB PAT

State Time(s) State Time(s) State Time(s)

RW 6 �!error true 8 0.023 122722 104.8 15 0.059
RW 200 �!error true 202 1.455 - - 403 0.086
RW 500 �!error true 502 19.901 - - 1003 0.071
RW 1000 �!error true 1002 154.33 - - 2003 0.148
DP 6 ��eat .0 false N.A. N.A. 2420 1.11 166 0.019
DP 8 ��eat .0 false N.A. N.A. 13312 1.75 256 0.024
DP 12 ��eat .0 false N.A. N.A. - - 460 0.049

the CSPM model from the shared variable analyzer (SVA) [17]. To be fair, the CSP#
model is specified at the same level of granularity as the CSPM model. The results show
that PAT performs better. This is because local events associated as atomic statements
in CSP# reduce the states significantly, whereas CSPM model defines additional events
to represent reading/writing operations of shared variables. Although these additional
events can be hidden as internal events to apply existing compression techniques in
FDR, the effect is minor because the type range of reading/writing channels and opera-
tions over different variables can easily lead to state space explosion.

The forth set explores the performance on verifying LTL properties. We adopt the
approach proposed by Lowe [9] to construct a CSPM process for the LTL formula and
use FDR to perform the refusal refinement checking. As this approach cannot deal with
operator eventually (�), we ignore the checking of property ��eat .0 in FDR. Table 5
indicates that PAT performs better than FDR and ProB. Notice that property ��eat .0
can be verified to be true using PAT under the strong or global fairness assumption.

Last but not least, we conduct a case study on translating CSPM model to CSP#
through a real world problem, namely, the battery monitor component of the elevator con-
trol system described in [5]: the CSPM specification is translated from the battery mon-
itor Simulink diagram, and the CSP# model is translated from the CSPM model. Then
we analyze the Simulink diagram, using the Simulink simulator, to determine which
output the battery monitor should produce for every given input. Thus, to assess if both
models describe the same behaviour, we compose each one with parallel observers. We
noticed that both CSPM and CSP# models provide the same output value for all rel-
evant scenarios. Although both models were reviewed by CSPM and CSP# special-
ists, a formal proof of equivalence will be provided in our future work. Besides this

An Analytical and Experimental Comparison of CSP Extensions and Tools 395

Table 6. Experiment results on battery monitor

Property Result
FDR PAT

State Time(s) State Time(s)

Deadlock-free True 2700 0.286 2700 0.748
Livelock-free True 2700 0.296 2700 3.723

analysis, we also checked basic properties like deadlock freeness and divergence free-
ness. The comparison was performed as a controlled experiment and we ran each asser-
tion 30 times. By applying common statistics testing methods (particularly, Shapiro Wilk
and Mann-Whitney U [20]) to experiment data, we can state that the difference between
PAT and FDR performance is large. From Table 6, we can observe that the visited states
in FDR and PAT are the same, and performance of these two tools is similar using the
same verification algorithm. Note that the time for deadlock-freeness property in PAT
consists of time for deadlock and non-terminating checking. We have not included ProB
in this comparison as it is unable to recognize the CSPM syntax for this example.

Discussion We have explored the supporting tools of CSPM and CSP#, namely, FDR,
ProB and PAT, by comparing their model checking techniques and analyzing their ver-
ification capabilities through nine benchmark systems. Our exploration leads to the fol-
lowing four general and practical rules for choosing these tools. First, FDR can be the
best candidate when powerful built-in compression techniques are applicable in refine-
ment checking. Second, PAT is a better choice to verify properties of models which
involve shared variables. Third, to verify LTL properties, we can use ProB for CSPM

models or FDR for some model where LTL formula can be verified by refusal checking,
and PAT for CSP# model. Lastly, PAT may be a better option to handle models where
atomic reductions are applicable (e.g., readers/writers and Peterson algorithm).

5 Conclusion

In this work, we presented a comprehensive comparison of CSPM and CSP#, and their
supporting tools FDR, ProB and PAT. We explored their modeling features from the
view of their syntax and operational semantics. We also investigated the reasoning
power of CSPM and CSP# in terms of the capability and efficiency of their supporting
tools. Our work can guide users to select and assess appropriate modeling languages
and reasoning tools for specifying and verifying concurrent systems. 1) CSPM may
be more suitable to model systems with abstract behavior, and systems which involve
multi-part event synchronization. On the other hand, CSP# could be a better candidate
to handle systems which implement hand shaking or message passing communication
mechanisms, and systems which need shared variables. 2) To perform the refinement
checking, the decision relies on the reduction techniques which are more applicable
(compression methods in FDR, atomic reduction in PAT) to the models. To verify LTL
properties, we can use ProB for CSPM models or FDR for some model (discussed in
Section 4), and PAT for CSP# models. Lastly, PAT may be a better option to verify
systems with shared variables.

396 L. Shi et al.

As for related work, Carvalho et al. have made an initial step to explore the differ-
ences between CSPM and CSP# [2]. They compare the two languages from the data
and behavioral aspects. Our work here substantially extends their step by considering
an in-depth and a wider range of comparisons; for instance, we investigate their in-
trinsic differences from the operational semantics aspect. Roscoe has briefly described
tools which can animate, analyze, and verify CSP models6; these tools include FDR,
ProB, PAT, ARC [13] and so on. He introduces these tools with strengths and limits
from a high level. Our work can be considered as a concrete guideline for these tools,
in particular, FDR, ProB for CSPM , and PAT for CSP#, with intensive experiments.

The comparison of FDR, ProB and PAT so far has been focusing on the classical
model checking techniques. In the future, we plan to extend the comparison to other
techniques such as SAT-based FDR and BDD-based PAT. Proofs of the semantic equiv-
alence of the translations and implementations of the translators are also our goals.

Acknowledgment. The authors would like to thank Bill Roscoe for the review and
suggestions on benchmarks for FDR, Michael Leuschel for the help on using ProB, and
Augusto Sampaio, Alexandre Mota and Tarciana Dias for the valuable comments.

References

1. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University Press,
New York (1996)

2. Carvalho, G.H.P., Dias, T., Mota, A., Sampaio, A.: Analytical comparison of refinement
checkers. In: SBMF, pp. 61–66 (2011)

3. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
4. Holzmann, G.: Spin model checker, the: primer and reference manual. Addison-Wesley Pro-

fessional (2003)
5. Jesus, J., Mota, A., Sampaio, A., Grijo, L.: Architectural Verification of Control Systems

Using CSP. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 323–339. Springer,
Heidelberg (2011)

6. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

7. Leuschel, M., Fontaine, M.: Probing the Depths of CSP-M: A New FDR-Compliant Valida-
tion Tool. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 278–297. Springer,
Heidelberg (2008)

8. Leuschel, M., Massart, T., Currie, A.: How to Make FDR Spin LTL Model Checking of CSP
by Refinement. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 99–118.
Springer, Heidelberg (2001)

9. Lowe, G.: Specification of communicating processes: temporal logic versus refusals-based
refinement. Form. Asp. Comput. 20(3), 277–294 (2008)

10. Formal Systems (Europe) Ltd.: Failures-Divergence Refinement - FDR2 User Manual (ver-
sion 2.91)

11. Murray, T.: On the limits of refinement-testing for model-checking CSP. Form. Asp. Com-
put., 1–38 (2011)

12. Palikareva, H., Ouaknine, J., Roscoe, A.W.: Faster FDR counterexample generation using
SAT-solving. ECEASST 23 (2009)

6 The description is at http://www.cs.ox.ac.uk/ucs/CSPtools.html.

http://www.cs.ox.ac.uk/ucs/CSPtools.html

An Analytical and Experimental Comparison of CSP Extensions and Tools 397

13. Parashkevov, A.N., Yantchev, J.: ARC - a tool for efficient refinement and equivalence check-
ing for CSP. In: ICA3PP, pp. 68–75 (1996)

14. Roscoe, A.W.: CSP is Expressive Enough for Pi (2010)
15. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR (1997)
16. Roscoe, A.W.: On the expressive power of CSP refinement. Form. Asp. Comput. 17, 93–112

(2005)
17. Roscoe, A.W.: Understanding Concurrent Systems. Springer-Verlag New York, Inc. (2010)
18. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M., Scatter-

good, J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Din-
ing Philosophers for Deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G.,
Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995)

19. Scattergood, B.: The Semantics and Implementation of Machine-Readable CSP. PhD thesis,
University of Oxford (1998)

20. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 3(52) (1965)

21. Shi, L.: An Analytical and Experimental Comparison of CSP Extensions and Tools. Techni-
cal report, NUS (2012), http://www.comp.nus.edu.sg/˜pat/compare

22. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for system
modeling and verification. In: TASE, pp. 127–135 (2009)

23. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

24. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair Model Checking with Process
Counter Abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123–139. Springer, Heidelberg (2009)

25. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Practice and
experience. ACM Comput. Surv. 41(4) (2009)

http://www.comp.nus.edu.sg/~pat/compare

Symbolic Model-Checking of Stateful Timed CSP
Using BDD and Digitization�

Truong Khanh Nguyen2, Jun Sun1, Yang Liu3, and Jin Song Dong2

1 ISTD, Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 School of Computing, National University of Singapore
{truongkhanh,dongjs}@comp.nus.edu.sg

3 Temasek Lab, National University of Singapore
tslliuya@nus.edu.sg

Abstract. Stateful Timed CSP has been recently proposed to model (and verify)
hierarchical real-time systems. It is an expressive modeling language which com-
bines data structure/operations, complicated control flows (modeled using com-
positional process operators adopted from Timed CSP), and real-time require-
ments like deadline and within . It has been shown that Stateful Timed CSP is
equivalent to closed timed automata with silent transitions, which implies that
the timing constraints of Stateful Timed CSP can be captured using explicit tick
events, through digitization. In order to tackle the state space explosion problem,
we develop a BDD-based symbolic model checking approach to verify State-
ful Timed CSP models. Due to the rich language features, BDD-based system
encoding and verification is highly nontrivial. In this work, we show how to sys-
tematically encode Stateful Timed CSP models in BDD. Our approach consists of
two steps. The first step is to identify maximum primitive components of a given
system and then generate finite state machines (FSMs) from them, applying a set
of symbolic firing rules. These FSMs are then encoded in the standard way. The
second step is to compose the encoded components using a set of BDD-based
compositional functions. The proposed method has been implemented in the PAT
model checker. It supports properties like reachability, linear temporal logic, etc.
The effectiveness of our technique is evaluated with benchmark systems.

1 Introduction

Real-time systems are a class of systems whose correctness depends on the time at
which events occur. Examples of real-time systems ranges from simple timed protocols
(like Fischer’s protocol) to large complex embedded systems (like signaling systems
for high-speed trains). The reactions of these systems must obey all of the timing con-
straints. In other words, these systems must produce responses not only correctly but
also with exact timing. Any violation of these constraints may cause damages and risk
the human lives. Therefore it is immediately clear that verification real-time systems is
a crucial phase in the design of real-time systems.

� This research is partially supported by TRF project ‘Research and Development in the Formal
Verification of System Design and Implementation’.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 398–413, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 399

Timed automata are an extension of finite-state automata equipped with finitely many
real-valued clock variables to keep track of time. They are often used to model real-time
systems. In timed automata, transitions and states may be labeled with clock constraints.
Clock constraints labeled with states, called state invariant, limit the amount of time that
may be spent at that state. Clock constraints labeled with transitions, called transition
guard, must hold for the transition to be taken. To specify properties, a real-time invari-
ant of CTL, e.g., Timed CTL (TCTL, for short) has been proposed.

Efficient automatic model-checking algorithms for real-time systems have been ob-
tained in recent years. Note that traditional model checking algorithms could not be
applied directly to real-time verification because time factors are modeled as continu-
ous and real-value variables. Zone abstraction [4], which groups clock valuations using
a convex constraint [4], has emerged as a popular approach and has been employed by
tools like UPPAAL. Other approaches have also been proposed, especially for a subset of
timed automata, which can be digitized (i.e., closed timed automata [5]). For instance,
Lamport [10] argued that model checking of real-time systems can be really simple if
digitization is adopted. Digitization translates a real-time verification problem to a dis-
crete one by using clock ticks to represent time elapsing explicitly. The advantage of
digitization is that the techniques which are developed for classic automata verification
can be applied without the added complexity of zone operations. Though digitization
does not preserve the continuous-time semantics of time-automata, it was proved to be
sound for a large class of verification problems [5].

Stateful Timed CSP has been recently proposed, as a complementary language to
timed automata, to model (and verify) hierarchical real-time systems. It is an expres-
sive modeling language which combines data structure/operations, complicated control
flows (modeled using compositional process operators adopted from Timed CSP), and
real-time requirements like deadline and within. In [21], it has been show that zone ab-
straction can be applied to Stateful Timed CSP by dynamically creating/deleting clocks.
Unsurprisingly, however, state space explosion remains as a huge challenge. In [19], it
has been show that Stateful Timed CSP is equivalent to closed timed automata with
silent transitions, which implies that the timing constraints of Stateful Timed CSP can
be captured using explicit tick events, through digitization. In this work, inspired by on
previous work on combining BDD and digitization [3,13], we develop a BDD-based
symbolic model checking approach to verify Stateful Timed CSP. Due to the rich lan-
guage features, BDD-based system encoding and verification is highly nontrivial.

The contribution of the work is threefold. Firstly, we develop a systematic way of
encoding Stateful Timed CSP. A Stateful Timed CSP process can be encoded by two
ways: using FSMs and using compositional functions. Primitive components are trans-
lated to FSMs based on the Stateful Timed CSP semantics. These FSMs are encoded
in BDD and then composed gradually by a rich set of compositional functions. Sec-
ondly, we support a range of model checking algorithms. For instance, we are able to
verify LTL with the assumption of non-Zenoness. While checking whether or not an
execution is zeno is difficult for zone approaches [22,6], in digitization, an execution
of a digitized system is non-Zeno if and only if it contains infinitely many clock ticks.
Therefore a digitized system is non-Zeno if time advances at least one time unit in all
its cycles. In other words, non-Zenoness assumption can be supported by requiring all

400 T.K. Nguyen et al.

cycles to contain at least one tick transition. Lastly, we implement our approach in the
PAT model checker [20] and evaluate the performance of BDD-based symbolic model
checking with zone-based approaches with a number of systems. We show that our ap-
proach complements the zone abstraction approach [21] and offers significantly better
performance in a number of cases.

Related Work. After the timed automata were introduced in [1], many tools and tech-
niques are proposed, for example, Different Bounded Matrices [4], Clock-Restriction
Diagrams [24], and Difference Decision Diagram [12]. Our work was inspired by the
digitization which was proposed in [5,10]. However the difference in our symbolic tech-
nique is the use of tick transitions to represent explicitly the timing constraints instead of
the use of clock variables. Based on this, a BDD encoding library for digitized systems
was developed [14]. This paper presents the extension which only focus on verification
of Stateful Timed CSP. Our approach is similar to the two-level approach used in FDR
[16]. Basically FDR exploits a hybrid high-/low-level approach for calculating the op-
erational semantics of a process. The low level comprises all true recursions while in
the high level, processes are composed by parallel composition, hiding and renaming.
Identifying low-level processes in FDR is the same as finding the maximum primitive
components in our approach. However the ways to tackle the state space explosion in
FDR and in our approach are different. In the compiling process on high-level called
super compiling of FDR, a single LTS is built on-the-fly from other LTSs based on the
calculating a set of rules. In contrast in our approach, maximum primitive components
are combined by BDD-based compositional functions. Our work in this paper extends
the works in [16] because while two-level approach is used to verify un-timed systems,
our approach is able to verify real-time systems.

2 Stateful Timed CSP

In this section, we briefly introduce the syntax and the semantics of Stateful Timed CSP
processes. The readers are referred to [19] for a complete list of syntax and semantics.
Let the label a describe the name of events which are not tick and can be either an
external event, a termination event � or an internal event tau , the label c describe
channel name and tick denote the passage of one time unit.

A Stateful Timed CSP model is a 3-tuple (Var , σ0,P0) where Var is a set of finite-
domain global variables; σ0 is the initial valuation of Var (which maps one variable to
one value only) and P0 is a process. A process is a block of computations, which can
be defined under Backus-Naur form as Fig. 1.

Process Stop could not make any progress and must still be in the same state after any
time period has elapsed. Process Skip is ready to terminate and becomes Stop. However
some time may elapse before this termination. Process Event Prefixing a → P prepares
to engage the event a and behaves as P afterward. Similar to Skip, delay on this event
may occur. Urgent Event Prefixing a � P , on the other hand, requires event a to occur
as soon as it is enabled. Process Data Operation Prefixing a{program} → P performs
the program with the event a. Note that program can include from simple assignments
to complicated sequential structures like if , while and is executed atomically with the

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 401

P = Stop | Skip – primitives
| a → P – event prefixing
| a � P – urgent event prefixing
| a{program} → P – data operation prefixing
| if(b){P} else {Q} – conditional choice
| P | Q – general choice
| P \ X – hiding
| P ; Q – sequential composition
| P ‖ Q – parallel composition
| c?{program} → P | c!{program} → P – Channel Input/Output
| Q – process referencing
| Wait [d] – delay*
| P timeout [d]Q – timeout*
| P interrupt [d]Q – timed interrupt*
| P within[d] – timed responsiveness*
| P deadline[d] – deadline*

Fig. 1. Stateful Timed CSP Process Constructs

event. Process Conditional Choice, defined as if(b){P} else {Q} will behave as P or
as Q based on the evaluation of the expression b. Process Unconditional Choice P |
Q offers an (unconditional) choice between P and Q1. Sequential composition P ; Q
behaves asP untilP terminates and then behaves asQ immediately. ProcessP\X hides
occurrences of events inX from the environment. In other words, any event inX engaged
byP becomes invisible event τ . Parallel composition of two processesP andQ is written
as P ‖ Q , where P and Q may communicate via event synchronization (following CSP
rules [7]) or shared variables. Notice that if P and Q do not communicate through event
synchronization, then it is written as P‖|Q , which reads as ‘P interleave Q’. In addition
to multi-party synchronization based on event names, Stateful Timed CSP also provides
pairwise synchronization via channel communications. Transitions labeled with channel
input (or channel output) of a process can not be taken on its own but must be matched by
transitions labeled with corresponding channel output (channel input) of another process
running in parallel with it. A process may be given a name, written as P =̂ Q , and then
referenced through its name. Recursion is allowed by process referencing.

In addition to two traditional timed process constructs Delay (Wait), and Timeout
(timeout) from Timed CSP, Stateful Timed CSP includes three new process constructs
Time Interrupt (interrupt), Timed Responsiveness (within) and Deadline (deadline).
This extension allows us to capture common real-time system behavior patterns easily
(all timed process constructs are marked with * in Figure 1). Let d ∈ R+. Process
Wait [d] idles for exactly d time units before terminating. Process P timeout [d]Q im-
poses a constraint on the process P to engage the first visible event within d time
units. Otherwise after d time units, process Q takes the execution control. In process
P interrupt [d]Q , if P terminates before d time units, P interrupt [d]Q behaves ex-
actly as P . Otherwise, P interrupt [d]Q behaves as P until d time units and then Q

1 For simplicity, we omit external and internal choices [7] in the discussion.

402 T.K. Nguyen et al.

takes over. In contrast to P timeout [d]Q , P may engage in multiple visible events be-
fore it is interrupted. Process P within[d] requires process P to engage an visible event
with in d time units. In process P deadline[d], P must terminate within d time units,
possibly after engaging in multiple visible events. Notice that a timed process construct
is always associated with an integer constant d which is referred to as its parameter.

Example 1. We use Fischer’s mutual exclusion protocol [9] to illustrate system model-
ing using Stateful Timed CSP. The protocol is designed to guarantee mutually exclusive
access to a critical section among competing processes P(i) where i ∈ [1..n] is the
unique identifier of that process. Each process P(i) executes the following algorithm
where lock is a shared variable, and initialized with the value 0:

repeat
await(lock = 0);
lock := i
delay

until (lock = i);
critical section;
lock := 0;

Note that await (cond) is an abbreviation for while (¬ cond) do skip and delay corre-
sponds to an explicit delay statement. The role of the delay statement is that it guaran-
tees while it delays itself, other processes after passing the await statement must finish
the assignment lock := i . The correctness of the protocol depends on the assumptions
about the time taken to read and write to the shared variable lock , and the delay length.
It was shown that the mutual exclusion is guaranteed if the upper bound a on the time
taken at the assignment lock := i is less than the lower bound b on the delay length. Be-
cause other reading and writing statements to the shared variable lock is not important,
we will not impose any timing constraint on them. The protocol can be modeled as a
Stateful Timed CSP model (Var , σ0,Fischer) where Var = {lock} and σ0(lock) = 0
and process Fischer is defined as: P(1)‖| · · · ‖|P(n) where

P(i) =̂ if (lock = 0){
(setLock{lock := i} → Skip) deadline[a];
Wait [b];
if (lock = i){

Critical(i)
}else{

P(i)
}

};
Critical(i) =̂ enter → exit{lock := 0} → P(i);

Process Fischer is the Interleave composition of P(1)‖| · · · ‖|P(n). Each process P(i)
has an unique identifier described as i . As we can see in the model, timing constraints
on each operation can be translated straightforwardly using the set of timed process con-
structs. For example, (setLock{lock := i} → Skip) deadline[a] imposes a constraint

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 403

on the event setLock , i.e., it must occur within a time units. The delay statement which
delays at least b time units can be expressed as Wait [b]. Note that after waiting exactly
b time units in Wait [b], the process P(i) behaves as the process if(lock = i){· · ·}.
Since we do not put any constraint on this process, it can idle as long as it wants. There-
fore in total the process P(i) can delay at least b time units before entering the critical
section. �

There are two approaches to verify Stateful Timed CSP. One is based zone abstrac-
tion, which has been proposed in [19]. The other is through digitization, since it has
been proved that Stateful Timed CSP is equivalent to some variant of closed timed au-
tomata [19]. On one hand, while zone abstract works well in many examples, its com-
plexity is exponential in the number of clocks and its performance in practice can be
strongly related to ratio of constants appearing in the clock constraints. For instance, in
the Leader Algorithm (which has a very small maximal constants of clock constraints),
Uppaal’s execution time is strongly dependent on the ratio MsgDelay/Period [10].
Specifically for ratios greater than 0.6, Uppaal easily runs out of memory. On the other
hand, though digitization suffers from large clock upper bounds (which imply a large
number of tick events), it is not affected by the ratio of the constants. Furthermore,
some problems like the non-Zenoness checking problem are much easier with digitiza-
tion. We thus proposed an approach complementary to the zone abstraction approach
in [19], using BDD and digitization to verify Stateful Timed CSP.

3 BDD Encoding

In this section, we show how we systematically encode Stateful Timed CSP processes
in BDD. There are two ways. One is to generate an FSM for each Stateful Timed CSP
process and encode the FSM in the standard way. The other is to define a set of BDD
compositional functions according to the process construct semantics and then encode
Stateful Timed CSP processes into BDDs directly without the FSM construction. Both
have their own advantages and therefore are used in different cases.

We remark that Stateful Timed CSP is expressive enough so that a process expression
generated by the operational semantics may be unbounded. For example, define P0 =
e → (P0‖|Pnew) which forks a processPnew every time e occurs. The resultant process
therefore may contain unboundedly many copies of Pnew . In this work, we assume that
a process always has a bounded length, following [17,15].

3.1 Encoding Stateful Timed CSP Processes with FSMs

An FSM is a tupleM = (Var , S , init ,Act ,T) such that Var is a set of finite-domain
variables; S is a finite set of control states; init ∈ S is the initial state; Act is the
alphabet of events and channels; and T is a labeled transition relation. A transition label
is of the form [guard]evt{prog}where guard is an optional guard condition constituted
by variables in Var ; evt is either an event name, a channel input/output or the special
tick event (which denotes 1-unit elapsed time); and prog is an optional transaction, i.e.,
a sequential program which updates global/local variables. A transaction (which may

404 T.K. Nguyen et al.

s0 s1

s2

s3

s4s5s6

[lock = 0] setLock{lock := i}

setLock{lock := i}

[lock ≠ i]

tick

tick

tick

tick

[lock = i] enter

exit {lock := 0}

tick

tick

Fig. 2. The FSM of Process P(i)

contain program constructs like while-do) associated with a transition is to be executed
atomically. A non-atomic operation can be broken into multiple transitions. A transition
is possible if the guard is true given current valuation σ of Var . Moreover a transition
labeled with channel input/output can not occur by itself but must be synchronized with
the transition labeled with corresponding channel output/input.

The operational semantics of Stateful Time CSP allows us to interpret Stateful Time
CSP processes as FSMs. For example, we can manually draw the FSM shown in Fig. 2
for the process P(i) of Fischer’s protocol in the Example 1 with a = 1 and b = 2.
However translating from a Stateful Time CSP process to an FSM in general is not
trivial. In this following, we show how to systematically build the corresponding FSM
from a Stateful Timed CSP process. This approach relies on symbolic firing rules, which
are different from concrete firing rules in [21] as variables valuations are irrelevant.
Specifically the symbolic firing rules are used to generate the whole control flow of a
certain process. In other words, the valuation of variables and the effect of transactions
are ignored at this step, but they will be considered when transactions are encoded
in BDD. For instance, the symbolic firing rule of process Data Operation Prefixing
Q = b{x := x + 1} → R says that at the process Q , if the transition labeled with
b{x := x +1} is taken, it will behave as R. In contrast concrete firing rules say, e.g., at
the process Q , suppose the current value of x is 0, then after the transition is taken, it
will be have as R and the value of x becomes 1. The concrete firing rules, therefore, are
used to generate on-the-fly the whole state space explicitly. So different uses of firing
rule are suitable for different purposes. In this work, symbolic firing rules are used to
generate the corresponding FSM systematically and effectively. Our symbolic firing
rules follow the form in [18]:

antecedent 1
· · ·
antecedent n

[side condition]
conclusion

The conclusion can be deduced if all the antecedents are true and the side condition is
also true. In the case where antecedents or side condition are missing, they are considered

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 405

(a → P)
a−→ P (a → P)

tick−→ (a → P)

P0
[g]a{p}−−−−−→ P ′

0
[a
= �]

P0‖|P1
[g]a{p}−−−−−→ P ′

0‖|P1

P1‖|P0
[g]a{p}−−−−−→ P1‖|P ′

0

P0
tick−→ P ′

0

P1
tick−→ P ′

1

P0‖|P1
tick−→ P ′

0‖|P ′
1

P0
[g0]�{p0}−−−−−−→ P ′

0

P1
[g1]�{p1}−−−−−−→ P ′

1

P0‖|P1
[g0∧g1]�{p0; p1}−−−−−−−−−→ P ′

0‖|P ′
1

P0
[g0]c?{p0}−−−−−−→ P ′

0

P1
[g1]c!{p1}−−−−−−→ P ′

1

P0‖|P1
[g0∧g1]c{p0; p1}−−−−−−−−−→ P ′

0‖|P ′
1

P1‖|P0
[g0∧g1]c{p0; p1}−−−−−−−−−→ P ′

1‖|P ′
0

[t ≥ 1]

Wait [t]
tick−→Wait [t − 1] Wait [0]

τ−→ SKIP

P0
a−→ P ′

0

P0 within[t]
a−→ P ′

0

P0
τ−→ P ′

0

P0 within[t]
τ−→ P ′

0 within[t]

P0
tick−→ P ′

0
[t ≥ 1]

P0 within[t]
tick−→ P ′

0 within[t − 1]

Fig. 3. Sample Symbolic Firing Rules

as vacuously true. A number of conclusions which can be drawn from the same set of
antecedents and side condition can be grouped below the line one after the other.

The FSM generation procedure basically works as follow. Each process P is mapped
with a state in the FSM called ‘state P ’ and this state is also the initial state of that
process’s FSM. There is a transition labeled with [guard]evt{prog} from state P to

state P ′ when the relation P
[guard]evt{prog}−−−−−−−−→ P ′ can be deduced from the rules. The

symbolic firing rules are applied until there is no new state generated. In the following,
we present the sample symbolic firing rules of Event Prefixing, Interleave, Delay, and
Timed Responsiveness process constructs.

– Given any process Event Prefixing a → P , there is a transition labeled with event
a from the state a → P to the state P . In addition, there is a transition label with
event tick looping at the state a → P . For the events marked as urgent, this looping
transition labeled with event tick is not available. It forces the process to engage
the event without any delay.

406 T.K. Nguyen et al.

– Based on rules of process Interleave, all of the subprocesses in the Interleave com-
position must synchronize with the termination� and tick events. Moreover chan-
nel in transition labeled with c? from one process can be combined with channel
out transition labeled with c! from another process to be promoted as c. When
transitions are synchronized, we constraint transactions of these transition are not
conflict and the execution order of transactions are not important. Other events oc-
cur interleave. In addition in the symbolic firing rules of this process and also of
other processes, tick transitions are never attached with any guard condition and
any transaction. They are simple as a direct sequence of the use tick transitions to
explicitly represent the timing constraints. This simplicity helps us to have more
optimal BDD encoding of the tick transitions.

– Tick transitions are used to track the passage of one time unit in the symbolic firing
rules of process Delay Wait [t]. Specifically there is a transition labeled with tick
from the state Wait [t] to state Wait [t − 1]. After delaying itself, it will behave as
SKIP by the τ transition from state Wait [0] to state SKIP .

– The last three rules are the symbolic firing rules of process construct Timed Re-
sponsiveness P0 within[t]. These rules are self-explanatory. Tick transitions are
used to track the passage of time. Unless a visible event is engaged, the timed re-
sponsiveness condition is not resolved.

Example 2. Process P(i) of Fischer’s protocol in the Example 1 is used again as illus-
tration. However for simplicity all the states are renamed to s0, · · · , s6 and we will ex-
plain the FSM generation procedure starting at process Critical(i) whose correspond-
ing state is the state s5. According to the firing rules of process Event Prefixing in Fig.
3, in the FSM of the process P(i), there is a transition labeled with [lock = i]enter
from the state Critical(i) (state s5) to state exit{lock := i} → P(i) (state s6), and a
transition labeled with tick looping at the state of process Critical(i) (state s5). Then
by applying those firing rules again for the process exit{lock := i} → P(i), there is
another transition labeled with exit{lock := i} from the state exit{lock := i} → P(i)
(state s6) back to the state P(i) (state s0), and a transition labeled with tick looping at
the state exit{lock := i} → P(i) (state s6). The FSM generation procedure is stopped
because there is no new state created. �

Before giving explanation how to encode an FSM, we will briefly describe how to en-
code a finite set. Essentially given any finite set X , encoding X is to enumerate ele-
ments of X in binary and represent them as Boolean functions. Therefore to encode
X , we need n boolean variables x0, · · · , xn−1 where n = .log2 |X |/. Then each ele-
ment in X is mapped with a bit vector (x0, · · · , xn−1) by an injective encoding function
fX : X → {0, 1}n . Note that this mapping is fixed throughout the BDD encoding. For
instance, encoding the set of four elements X = {a, b, c, d} requires two boolean vari-
ables x0 and x1. The encoding functions fX is defined as fX (a) = (0, 0), fX (b) = (0, 1),
fX (c) = (1, 0), and fX (d) = (1, 1). As a result the predicate of the subset Y = {a, b}
is ((x0, x1) = fX (a) ∨ (x0, x1) = fX (b)). For simplicity we will use the label x to
denote the bit vector (x0, · · · , xn−1). Therefore the predicate of the subset Y can be
rewritten shortly as (x = fX (a) ∨ x = fX (b)). Using this technique, we can encode
the set of states and the set of event names and channel names in an FSM. Moreover we

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 407

can also encode all the data types whose domain is finite, e.g., boolean, integer, array
of booleans, and array of integers. To encode transitions, each variable x in

−→
V ∪−→v has

another copy called x ′ which denotes the variable x’s value after the transition.
The BDD encoding of an FSM, referred to as a BDD machine, is a tuple B =

(
−→
V ,−→v , Init ,Trans ,Out , In,Tick).

−→
V is a set of unprimed Boolean variables encod-

ing global variables, event names and channel names, which are fixed for the whole
system before encoding.−→v is a set of variables encoding local variables and local con-
trol states; Init is a formula over

−→
V and −→v encoding the initial valuation of the vari-

ables. Trans is the encoding of transitions excluding synchronous channel input/output
and tick-transitions. Out (In) is the encoding of synchronous channel output (input).
Note that transitions in Out and In are to be matched by corresponding transitions in
In and Out respectively from the environment and are thus separated from the rest of
the transitions. Tick is also the encoding of transitions labeled with tick . Then the final
transition function of an FSM is taken from Trans and Tick . In other words, it can
engage an action or idle one time unit. We still calculate Out and In and separate them
from Trans and Tick because transitions from Out and In can be useful if they are
synchronized.

Let BDD machine B = (
−→
V ,−→v , Init ,Trans ,Out , In,Tick) be the encoding of an

FSMM = (Var , S , init ,Act ,T) where

–
−→
V = V1 ∪ Events where V1 and Events = {event0, · · · , eventn−1} are the sets
of boolean variables to encode global variables and the alphabet Act respectively.
Let event denote the bit vector (event0, · · · , eventn−1).

– −→v = v1 ∪ States where v1 and States = {state0, · · · , statem−1} are the sets
of boolean variables to encode local variables and the set of states S respectively.
Similarly let state denote the bit vector (state0, · · · , statem−1). Moreover for any
global or local variable x , let the same label x denote the corresponding bit vector
of boolean variables to encode that variable. Note that these labels x are different.
The former x is the variable declared in the model while the latter x is a shorthand
for a bit vector in the BDD encoding functions.

– Init = (state = fS (init))
– Trans =

∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct (e) ∧ progbdd ∧ state ′ =

fS (s1)) for all transitions from state s0 to state s1 labeled with [g]e{prog} (where
e �= tick). For simplicity, we skip how we encode guard expression g to gbdd and
program block prog to progbdd . Interested readers can refer to [13].

– Out =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct (e) ∧ progbdd ∧ state ′ =

fS (s1)) for all transitions from state s0 to state s1 labeled with a synchronous chan-
nel output e, guarded with g and attached with transaction prog .

– In =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct (e) ∧ progbdd ∧ state ′ = fS (s1))

for all transitions from state s0 to state s1 labeled with a synchronous channel input
e, guarded with g and attached with transaction prog .

– Tick =
∨
(state = fS (s0) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s1)) for all tick

transitions from state s0 to state s1.

Example 3. The BDD machine B = (
−→
V ,−→v , Init ,Trans ,Out , In,Tick) of the FSM

in Fig. 2 is as follow:

408 T.K. Nguyen et al.

–
−→
V = Lock ∪{event0, event1} where Lock is the set of boolean variables to encode
the shared variable lock .

– −→v = {state0, state1, state2}. Note that the process parameter i in the definition
of P(i) is constant and is replaced with its value before the encoding. In the below
encoding functions of Trans and Tick , we still keep i to show generally how all
processes P(i) in the Fischers’ protocol are encoded.

– Init = (state = fS (s0))

– Trans = (state = fS (s0) ∧ lock = 0 ∧ state ′ = fS (s1))
∨ (state = fS (s1) ∧ event ′ = fAct (setLock) ∧ lock ′ = i ∧ state ′ = fS (s3))
∨ (state = fS (s2) ∧ event ′ = fAct (setLock) ∧ lock ′ = i ∧ state ′ = fS (s3))
∨ (state = fS (s5) ∧ lock �= i ∧ state ′ = fS (s0))
∨ (state = fS (s5) ∧ lock = i ∧ event ′ = fAct(enter) ∧ state ′ = fS (s6))
∨ (state = fS (s6) ∧ event ′ = fAct (exit) ∧ lock ′ = 0 ∧ state ′ = fS (s0))

– Out = In = false

– Tick = (state = fS (s0) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s0))
∨ (state = fS (s1) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s2))
∨ (state = fS (s3) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s4))
∨ (state = fS (s4) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s5))
∨ (state = fS (s5) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s5))
∨ (state = fS (s6) ∧ event ′ = fAct (tick) ∧ state ′ = fS (s6)) �

3.2 Encoding Stateful Timed CSP Processes with Compositional Functions

By using the approach presented in the last section, in theory we can translate any
Stateful Timed CSP process to an FSM and encoding it. However we do not apply that
approach to generate the FSM of parallel processes. Because in the FSM of a parallel
composition, the numbers of states and transitions grow exponentially with the number
of subprocesses running in parallel. Especially it becomes completely redundant when
guards and transactions of the transitions in a certain sub-process are encoded to BDD
many times. For example, if we apply the FSM generation procedure to the process
P1‖|P2, suppose the state of that FSM is of the form (s1, s2) where s1, and s2 are
states in the FSMs of P1 and P2 respectively. For any transition t from state s1 to
s ′1 in the FSM of P1, there is a corresponding transition from state (s1, s2) to state
(s ′1, s2) in the FSM of P1‖|P2. Obviously the guard and the transaction of the transition
t will be encoded m times where m is the number of states in the FSM of P2. These
overheads make encoding of parallel processes with FSMs inefficient. Therefore we
provide compositional functions to encode parallel processes without translating it to
FSMs. As a result, compositional functions for all kinds of processes are required to be
provided because after using the compositional function, the FSM is no longer available
and only compositional functions can be used.

In the following, we will show how to encode two kinds of Stateful Timed CSP
processes: Interleave and Timed Responsiveness processes with compositional func-
tions. We fix two BDD machines Bi = (

−→
V ,−→v i , Initi ,Transi ,Outi , Ini ,Ticki), i ∈

{0, 1}, which are the encoding of processes Pi . −→v 0 and −→v 1 are disjoint and
−→
V is al-

ways shared. Symbolic firing rules of Interleave and Timed Responsiveness process

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 409

constructs in Fig. 3 can be refered to follow the compositional encoding. Interested
readers can refer to [13] for the complete list.

Interleave: Process Interleave can contains 2 or more subprocesses running in parallel.
Different from process Parallel these processes are only synchronized in termination
event � (still has pairwise synchronization in channel communication like Parallel).
Let B = (

−→
V ,−→v , Init ,Trans ,Out , In,Tick) be the BDD machine encoding of the

Interleave composition of two processes P0 and P1 such that:

– −→v = −→v 0 ∪ −→v 1;
– Init = Init0 ∧ Init1.
– Trans =

∨
i∈{0,1}[(Transi ∧ event ′ �= fAct (�) ∧ −→v 1−i = −→v ′

1−i) ∨ (Ini ∧
Out1−i) ∨ (Transi ∧ Trans1−i ∧ event ′ = fAct (�))]. Trans includes 3 kinds of
transitions: local transitions from each component, synchronous channel commu-
nication and synchronous termination transition. (−→v 1−i = −→v ′

1−i) denotes that the
local variables of B1−i are unchanged.

– In =
∨

i∈{0,1}(Ini ∧ −→v 1−i = −→v ′
1−i)

– Out =
∨

i∈{0,1}(Outi ∧ −→v 1−i = −→v ′
1−i)

– Tick = Tick0 ∧ Tick1

Within: In P0 within[t] process, process P0 is forced to engage a visible event within
the given t time units. Let B = (

−→
V ,−→v , Init ,Trans ,Out , In,Tick) be the BDD ma-

chine encoding of P0 within[t] where

– −→v = −→v 0 ∪ {clk}, −1 ≤ clk ≤ t records the number of elapsed time units so far
and clk = −1 indicates an visible action is engaged.

– Init = (Init0 ∧ clk = 0)
– Trans = clk ≤ t ∧ Trans0 ∧ [(event �= fAct(τ) ∧ clk ′ = −1) ∨ (event ′ =
fAct (τ) ∧ clk ′ = clk)]

– In = clk < t ∧ In0 ∧ clk ′ = −1
– Out = clk < t ∧ Out0 ∧ clk ′ = −1
– Tick = Tick0 ∧ [(clk ≥ 0 ∧ clk < t ∧ clk ′ = clk + 1) ∨ (clk = −1 ∧ clk ′ =
−1)]

Note that a channel communication is clearly a visible event. Thus if channel commu-
nication occurs, variable clk is assigned -1 to mark the happening of that visible event.

As we can observe, except parallel processes, encoding processes with composi-
tional functions is not as optimal as with FSMs. Unlike encoding with FSMs, many
auxiliary variables are introduced in the encoding with compositional functions to con-
trol the flow, for example, clk variable in Timed Responsiveness to record the number
of elapsed time units. Therefore our strategy for encoding a Stateful Timed CSP pro-
cess is to find its maximum primitive components which can be translated to FSMs and
then encode these FSMs as BDD machines. Identifying the maximum primitive com-
ponents is straightforward because maximum primitive components are the maximum
components whose definitions do not contain Parallel/Interleave process construct. Fi-
nally these BDD machines are composed to achieve the final BDD machine of the given
process. For instance, in Example 1, the identified maximum primitive components are

410 T.K. Nguyen et al.

n processes P(i) where i ∈ {1, · · · , n}. Next, FSMs translated from these subpro-
cesses are encoded as BDD machines, which are then composed using the Interleave
compositional function to generate the BDD encoding of the process Fischer .

3.3 Limitations on BDD Encoding

Stateful Timed CSP is too expressive to be fully encoded. Consequently there are some
Stateful Timed CSP processes which are not possible to be encoded. Firstly processes
having varying parameters are not supported. An example of processes having a varying
parameter is P(i) = a → P(i + 1). The reason of this limitation is because of the
update of the parameter i := i + 1 when the process starts to behave as P again.
This update must be done somewhere before the process behaves as P again. There
are two possible ways to deal with this, one is to attach the parameter updates on the
immediately precedent event (in this example it is the event a), another is to create a
separate transition to update the process parameters. However both ways have problems
which may change the semantics of the defined process. In the first way, these parameter
updates could conflict with each other at the precedent event. An illustration of this
problem is Q = a → (P(1) | P(2)) where after event a, there is a choice between
P(1) and P(2). Therefore we have two conflict updates of the process parameter i of
process P , i := 1 and i := 2. In the second way, by introducing new transitions which
updates process parameters, there is a question on the semantics of these transitions,
specifically whether these transitions can resolve the choice. If these transitions do not
resolve the choice, in the last example, two transitions which update i := 1 and i := 2
respectively can happen before the choice is resolved. This is similar to the problem in
the first way where there are conflicts between these parameter updates. On the other
hand, if these transitions can resolve the choice, suppose that in the last example, P(1)
could not engage any event while P(2) can, then the process can take the transition
which updates i := 1 and resolve the choice in favor of the process P(1). After that
the process becomes deadlock. However this could not happen because since P(1) is
deadlock, the choice must be resolved in favor of P(2).

Secondly encoding with compositional functions could not be applied to recursive
processes, e.g., P = a → P . Based on the Stateful Timed CSP semantics, encoding
with compositional function is used to achieve the encoding of a process based on
the known encodings of subprocesses. Therefore it is obvious that using compositional
functions on a process whose definition has a reference call to itself is not possible and
will create an infinite recursive calls of the compositional functions.

In summary there are two restrictions on BDD encoding of Stateful Timed CSP. One
restriction is that processes must have constant parameters. However there is a small
number of models requiring varying parameters. Moreover global variables can be used
to alleviate the restriction. By promoting each varying process parameter with a corre-
sponding global variable and manually attaching the update of those global variables to
the suitable events, an equivalent model can be achieved. The other restriction is that
compositional encoding is not available for recursive processes and yet this restriction
is inevitable. Remember that introducing compositional functions is to optimize the en-
coding of the parallel process which is the main cause of the state space explosion.
After the use of compositional functions, only encoding by compositional functions is

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 411

possible. However in our experience often the recursive processes do not contain paral-
lel composition. Consequently these processes can be encoded using FSMs.

4 Implementation and Evaluation

Our technique has been implemented as part of the PAT framework [20]. It is based
on the CUDD package, with about thirty classes and thousands of lines of C# code.
The implementation includes two parts: encoding and verification. The encoding part
has functions to generates the FSM from Stateful Timed CSP processes. The advantage
of our technique is that the FSM generation procedure is very simple, yet systematical
and efficient. For each process construct we only need to define what transitions can be
taken from that process and then these transitions are added from the state of the current
process. This procedure is called recursively in subsequent processes. In addition to the
FSM generation procedure, the encoding part also contains a function to encode an
FSM and a set of compositional functions for all process constructs. The second part
is the verification which supports a range of properties, e.g., reachability and deadlock
analysis or LTL. Verification of LTL is based on a symbolic implementation of the
automata-based approach [8,23]. By using digitization technique, verification of real
time system, specifically Stateful Timed CSP becomes feasible. Digitization translates a
real-time verification problem to a discrete one by using clock ticks to represent elapsed
time. Therefore the current model checking algorithm for concurrent systems can be
applied without the added complexity of zone operations. Moreover verification of LTL
with non-Zenoness assumption can also be supported by converting the non-Zenoness
assumptions as justices conditions (weak fairness) [8]. In the following, we evaluate
our technique in verification Stateful Timed CSP by comparing its performance with the
zone-based approach in PAT in many examples. All models are available online [13].
The test bed is a PC with Intel Core 2 Duo E6550 CPU at 2.33GHz and 3GB RAM.

According to the experiment results in Table 1, in the verification of three mu-
tual exclusion protocols Fischer’s protocol [9], AT92 [2], and LTS92 [11], BDD-based
approach consistently outperforms Zone-based approach. BDD-based approach is not
only faster but also uses less memory than Zone-based approach. For instance, in Fis-
cher protocol of 6 processes, zone-based approach takes more than 1000 seconds and
215 MBs while BDD-based takes only 6 seconds and 101 MBs. Moreover zone-based
approach runs out of memory with Fischer protocol of 7 processes, yet BDD-based
approach can verify the protocol of up to 12 processes. However in the verification of
Train Controller, zone-based approach is much better than BDD-based approach. For
instance, in the Railway Controller with 6 trains, zone-based approach only takes 4
seconds and 18 MBs but BDD-based approach takes 905 seconds and 1458 MBs. The
reason for this considerable change in performance of BDD-based approach is because
of two issues. First the size of BDDs is very sensitive to large clock values. In this
benchmark, we set the maximal clock constant to small values, e.g., 4 for Fischer’s pro-
tocol and 3 for others. Second the size of BDDs is also very sensitive with the FSMs of
processes. After examining many examples, we find that there are some models where
it is difficult to fully take advantage of the data-sharing capability of BDDs. This is
the reason why although we have reduced the maximal clock constants to a very small

412 T.K. Nguyen et al.

Table 1. Compare Zone-based Approach and BDD-based Approach

Model #Processes Zone BDD
Time (s) Memory (MB) Time (s) Memory (MB)

Fischer 5 44 19 2 43
Fischer 6 1283 215 6 101
Fischer 7 x x 17 231
Fischer 12 x x 1112 1353
AT92 3 7 26 1 22
AT92 4 770 524 2 36
AT92 5 x x 14 163
AT92 8 x x 2880 1684
LS92 4 2 13 1 24
LS92 5 1292 76 1 35
LS92 6 x x 3 57
LS92 15 x x 996 1406

Railway Controller 5 1 10 51 650
Railway Controller 6 4 18 905 1458
Railway Controller 7 24 18 x x
Railway Controller 8 201 557 x x

value, the BDD-based approach’s performance is still much poorer than zone-based ap-
proach in the Railway Controller example. In contrast if data-sharing occurs a lot in
BDDs, the efficiencies of BDD would be higher. This can be shown when we increase
the maximal clock constants of the first three protocols up to 20, BDD-based approach
still outperforms zone-based approach. Specifically BDD-based approach can verify
Fischer’s protocol of 10 processes, AT92 of 5 processes and LTS92 of 8 processes. In
summary there are some models where zone-based approach performs well while there
are other models where BDD-based approach performs well. This experiment shows
that these two approaches complements each other.

5 Conclusion

We have illustrated our approach to verify Stateful Timed CSP by using BDD and dig-
itization. We have also presented how Stateful Timed CSP processes are systematically
encoded with FSMs and compositional functions. Furthermore our experiments show
that there is no superior approach but these approaches have different but complemen-
tary advantage.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126,
183–235 (1994)

2. Alur, R., Taubenfeld, G.: Results about Fast Mutual Exclusion. In: IEEE Real-Time Systems
Symposium, pp. 12–22 (1992)

Symbolic Model-Checking of Stateful Timed CSP Using BDD and Digitization 413

3. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-Based Verification of Real-Time
Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 122–125.
Springer, Heidelberg (2003)

4. Dill, D.L.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

5. Henzinger, T.A., Manna, Z., Pnueli, A.: What Good Are Digital Clocks? In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

6. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient Emptiness Check for Timed
Büchi Automata. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 148–161. Springer, Heidelberg (2010)

7. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Computer Sci-
ence. Prentice-Hall (1985)

8. Kesten, Y., Pnueli, A., Raviv, L.-O.: Algorithmic Verification of Linear Temporal Logic Spec-
ifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443,
pp. 1–16. Springer, Heidelberg (1998)

9. Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Trans. Comput. Syst. 5(1), 1–11
(1987)

10. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul, W. (eds.)
CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

11. Lynch, N.A., Shavit, N.: Timing-Based Mutual Exclusion. In: IEEE Real-Time Systems
Symposium, pp. 2–11 (1992)

12. Møller, J.B.,Hulgaard,H.,Andersen,H.R.:SymbolicModelCheckingofTimedGuardedCom-
mands Using Difference Decision Diagrams. J. Log. Algebr. Program. 52-53, 53–77 (2002)

13. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: BDD-based Discrete Analysis of Timed
Systems (2012), http://www.comp.nus.edu.sg/%7Epat/bddlib

14. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved BDD-Based Discrete Analysis
of Timed Systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
326–340. Springer, Heidelberg (2012)

15. Ouaknine, J., Worrell, J.: Timed CSP = Closed Timed Safety Automata. Electrical Notes
Theoretical Computer Science 68(2) (2002)

16. Palikareva, H., Ouaknine, J., Roscoe, B.: Faster FDR Counterexample Generation Using
SAT-Solving. ECEASST 23 (2009)

17. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M., Scattergood,
J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining
Philosophers for Deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G.,
Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995)

18. Schneider, S.: Concurrent and Real-Time Systems: The CSP Approach. Wiley (2000)
19. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, E.: Modeling and Verifying Hierarchical

Real-time Systems using Stateful Timed CSP. TOSEM (to appear, 2012)
20. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

21. Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP Using Implicit Clocks
and Zone Abstraction. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 581–600. Springer, Heidelberg (2009)

22. Tripakis, S.: Verifying Progress in Timed Systems. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS,
vol. 1601, pp. 299–314. Springer, Heidelberg (1999)

23. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verifica-
tion. In: LICS, pp. 332–344. IEEE Computer Society (1986)

24. Wang, F.: Symbolic Verification of Complex Real-Time Systems with Clock-Restriction Di-
agram. In: FORTE, pp. 235–250 (2001)

http://www.comp.nus.edu.sg/%7Epat/bddlib

Annotations for Alloy: Automated Incremental

Analysis Using Domain Specific Solvers

Svetoslav Ganov, Sarfraz Khurshid, and Dewayne E. Perry

Electrical and Computer Engineering,
University of Texas at Austin, Austin TX 78712, USA

svetoslavganov@utexas.edu, {khurshid,perry}@ece.utexas.edu

Abstract. Alloy is a declarative modeling language based on first-order
logic with sets and relations. Alloy problems are analyzed fully auto-
matically by the Alloy Analyzer. The analyzer translates a problem for
given bounds to a propositional formula for which it searches a satisfying
assignment via an off-the-shelf propositional satisfiability (SAT) solver.
Hence, the performed analysis is a bounded exhaustive search and in-
creasing the bounds leads to a combinatorial explosion.

We increase the efficiency of the Alloy Analyzer by performing in-
cremental analysis via domain specific solvers. We introduce annotations
that define data types, operations on these data types, and bindings from
data types to domain specific solvers. This meta-data is utilized to au-
tomatically partition a problem into sub-problems and opportunistically
solve independent sub-problems in parallel using dedicated constraint
solvers. We integrate dedicated Integer and String constraint solvers into
Alloy’s SAT based backend. Experimental results show that using ded-
icated solvers and exploiting independent sub-problems provide better
efficiency and scalability; for the chosen subjects, our technique enables
up to an order of magnitude speed-up.

1 Introduction

Alloy [1] is a declarative modeling language based on first-order logic with sets
and relations. It has been successfully used for identifying problems in semantic
models and algorithms [11], detecting anomalous scenarios in security-critical
systems [19], automated test generation [14], modeling software architecture [5],
etc. Alloy problems are analyzed fully automatically by the Alloy Analyzer. The
analyzer translates a problem for given bounds to a propositional formula for
which it searches a satisfying assignment via an off-the-shelf propositional sat-
isfiability (SAT) solver. Hence, the performed analysis is a bounded exhaustive
search and increasing the bounds leads to a combinatorial explosion.

However, performing analysis within given bounds only guarantees that the
obtained results are valid within these bounds. Therefore, increasing the bounds
of the analysis would strengthen the confidence in the obtained results. To enable
reasoning for increased bounds we focus on improving the speed of Alloy’s SAT
based backend by exploiting two key ideas: (1) a problem can be decomposed

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 414–429, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysis for Alloy via Domain Specific Solvers 415

into sub-problems which can be solved incrementally and potentially in parallel;
and (2) domain specific solvers enable faster evaluation of problems in their
target domain.

The first key idea is that when an Alloy model is translated to SAT, an
opportunity to perform a more efficient incremental analysis is not exploited.
Incremental reasoning enables reducing the space searched by the solver [17]
and enables tackling independent sub-problems in parallel, thus improving per-
formance due to better utilization of contemporary multi-core architectures. For
example, generating a binary tree may be performed by generating the structure
and using this partial solution to solve in parallel the independent sub-problems
of generating the keys, the size, and the parent relationship. To address this we
employ an incremental technique for solving Alloy formulas [17], where one solu-
tion to a formula provides a partial solution to another formula, which can then
be solved more efficiently. We improve this technique by recursively decomposing
the problem into the sub-problems, as opposed to decomposing it into only two
sub-problems, and opportunistically solve independent sub-problems in parallel.

The second key idea is that when an Alloy formula is translated for the SAT
solver, domain specific knowledge is lost, thus an opportunity to take advantage
of the problem domain is not exploited. Domain specific solvers are designed for
tackling special classes of problems using special representations, and algorithms
[6][12]. For example, finding whether two String variables can be equal is faster by
getting the intersection of two automatons than by exploring the cross product of
all possible values for the two variables. To address this we introduce annotations,
an easy-to-use and unobtrusive facility to embed meta-data for mapping Alloy
signatures to data types, Alloy predicates to operations on these data types, and
bind data types to domain specific solvers. This enables us to opportunistically
solve a predicate that depends only on variables of a single data type via the
dedicated constraint solver mapped to this data type.

The benefit of our approach is three-fold: (1) incremental analysis limits the
search space explored by the solver; (2) opportunistically solving independent
sub-problems in parallel improves utilization of system resources; and (3) domain
specific solvers are more efficient for problems in their target domain. Experi-
ments show our technique enables better performance and scalability than a
SAT-based approach.

This paper makes the following contributions:

– Incremental analysis with parallel reasoning about independent
sub-problems. We perform incremental analysis of an Alloy problem by
recursively decomposing it into sub-problems. We identify likely independent
sub-problems and solve them in parallel if they are indeed independent.

– Domain specific solver integration via annotations. We introduce an-
notations that define data types, operations on these data types, and bind-
ings from data types to domain specific solvers. This enables reasoning about
when to use a domain specific solver and how to translate Alloy formulas to
the language of that solver.

416 S. Ganov, S. Khurshid, and D.E. Perry

– Dedicated solvers for Alloy. We support a dedicated Integer and a ded-
icated String constraint solver integrated into Alloy’s SAT based backend.

– Implementation. We implement our approach into a custom build of the
Alloy Analyzer.

– Evaluation. We evaluate our approach using small but complex Alloy mod-
els, including a model from the standard Alloy distribution. Empirical results
show our approach provides up to an order of magnitude speed-up over Al-
loy’s purely SAT-based analysis.

2 Background

In this section we provide background knowledge about Alloy [1] and declarative
slicing [17] for incrementally analyzing Alloy models in the context of a binary
search tree example.

2.1 Alloy

An Alloy model s can be represented as a triple < r, s, b >, where r is the set of
relations in s, and b is the bound on the universe of discourse. An instance, i.e.
a solution, i satisfying an Alloy model is a function from the set of relations r
to a power set of tuples 2T where each tuple consists of indivisible atoms, i.e.,
i : r→ 2T . Hence, an instance gives the set of tuples that valuate every relation.
The canonical form of an Alloy model is ∧pi, for i = 1, ..., n, where each pi is an
arbitrary formula.

2.2 Alloy Model - Binary Search Tree Example

A binary search tree is a node-based data structure where: (1) each node has
at most two children–left and right–whose parent is the given node; (2) the left
sub-tree rooted at a given node contains keys less than the key of that node; (3)
the right sub-tree rooted at a given node contains keys greater than the key of
that node; and (4) the left and right sub-trees are also binary search trees; In
Fig. 1 is depicted the Alloy model for a binary search tree.

First, we declare the entities contained in the model. A node (line 3) has: (1)
at most one left child (line 4); (2) at most one right child (line 5); (3) at most
one parent (line 6); and (4) a key (line 7); A binary tree (line 9) has: (1) at most
one node as its root (line 10); and (2) a size (line 11);

Next, we specify the relationships between the model entities to reflect the
properties of the data structure. A binary search tree is Acyclic (line 13), which
is for every node reachable from the root performing zero or more traversals
(line 14): (1) at most one node is visited following the left and right relations
in reverse direction (line 15); (2) a node cannot be reached by following one or
more times the left and right relations beginning from that node (line 16); and
(3) the left and right nodes are disjoint (line 17);

Analysis for Alloy via Domain Specific Solvers 417

1 module BinarySearchTree
2
3 sig Node {
4 left:lone Node,
5 right:lone Node,
6 parent:lone Node,
7 key:Int
8 }
9 sig BinarySearchTree {

10 root:lone Node,
11 size:Int
12 }
13 pred Acyclic(t:BinarySearchTree) {
14 all n:t.root.*(left+right) {
15 lone n.~(left+right)
16 n !in n.^(left+right)
17 no n.left & n.right
18 }
19 }
20 pred Parent(t:BinarySearchTree) {
21 all n,n’:t.root.*(left+right) | n in n’.(left+right) => n’ = n.parent
22 no t.root.parent
23 }
24 pred Search(t:BinarySearchTree) {
25 all n:t.root.*(left+right) {
26 all n’:n.left.*(left+right) | int n’.key < int n.key
27 all n’:n.right.*(left+right) | int n.key < int n’.key
28 }
29 }
30 pred Size(t:BinarySearchTree) {
31 int t.size = #(t.root.*(left+right))
32 }
33 pred BinarySearchTree(t:BinarySearchTree) {
34 Acyclic[t] && Parent[t] && Search[t] && Size[t]
35 }
36 run BinarySearchTree exactly 1 BinarySearchTree, exactly 3 Node

Fig. 1. Alloy model of a binary search tree

The nodes in the binary search tree have a Parent property (line 20), which
is: (1) every node reachable from the root performing zero or more traversals
is the parent of its left and right children (line 21); and (2) the root has no
parent (line 22);

A binary search tree contains data satisfying the Search (line 24) property,
which is for every node reachable from the root performing zero or more traver-
sals (line 25): (1) every descendant reached by following the left and right rela-
tions of its left child zero or more times has a lesser key (line 26); and (2) every
descendant reached by following the left and right relations of its right child zero
or more times has a greater key (line 27);

A binary search tree has a Size property (line 30), which is the cardinality of
the nodes reached from its root by performing zero or more traversals of the left
and right relations (line 31).

In order for a data structure to be a BinarySearchTree (line 33) it has to
satisfy the Acyclic, Parent, Search, and Size predicates (line 34).

Finally, we request from the analyzer to find an instance by specifying bounds
on the cardinality of atoms (line 36). Upon running this command the analyzer
tries to find valuations to the relations such that the predicate declaring a binary
search tree evaluates to true, which is an instance that satisfies the model exists.

418 S. Ganov, S. Khurshid, and D.E. Perry

1 // free variables: {root, left, right}
2 all n:t.root.*(left+right) | lone n.~(left+right)
3 // free variables: {root, left, right}
4 all n:t.root.*(left+right) | n !in n.^(left+right)
5 // free variables: {root, left, right}
6 all n:t.root.*(left+right) | no n.left & n.right
7 // free variables: {root, left, right, parent}
8 all n,n’:t.root.*(left+right) | n in n’.(left+right) => n’ = n.parent
9 // free variables: {root, parent}

10 no t.root.parent
11 // free variables: {root, left, right, key}
12 all n:t.root.*(left+right) {
13 all n’:n.left.*(left+right) | int n’.key < int n.key }
14 // free variables: {root, left, right, key}
15 all n:t.root.*(left+right) {
16 all n’:n.right.*(left+right) | int n.key < int n’.key }
17 // free variables: {root, left, right, size}
18 int t.size = #(t.root.*(left+right))

Fig. 2. Normalized form of the constraints in the binary search tree model

2.3 Declarative Slicing - Binary Search Tree Example

Declarative slicing [17] in the context of an Alloy model in a canonical form - ∧pi,
for i = 1, ..., n, where each pi is an arbitrary formula - is to partition an Alloy
model s into a base slice sb and a derived slice sd. The base and the derived slices
consist of disjoint subsets of the model constraints. The base slice is derived via a
slicing criterion c which is a subset of the model relations r, i.e. c ⊆ r. The base
slice contains the constraints that involve only relations in the slicing criterion,
i.e., sb : ∧qi for i = 1, . . . ,m, where each qi ∈ {p1, . . . , pn} and free variables∩
predicate variables(qi) ⊆ c. The rest of the model constraints belong to the
derived slice, i.e. sd : ∧di for i = 1, . . . , t, where each di ∈ {p1, . . . , pn} and
free variables∩predicate variables(di) �⊆ c. Once the model is partitioned into
a base and a derived slice, a solution for the base slice is extended into a solution
for the entire model.

The first step in the declarative slicing technique is model normalization dur-
ing which composite constraints (e.g. nested quantified formulas) are partitioned,
i.e. the model is translated to a canonical form. The normalized form of the bi-
nary search tree model from Section 2.2 is presented in Fig. 2.

The second step is choosing an optimal slicing criterion, since more than one
such may exist, by using each possible slicing criterion to analyze the model for
a smaller bounds and based on some metrics selecting the one that is likely to
provide the most significant speed up. The possible slicing criteria are ordered
under set containment where each slicing criterion represents a free variable
combination from some model constraints. The possible slicing criteria for the
binary search tree are presented in Fig. 3.

The third step is solving the problem for the desired bounds using the optimal
slicing criterion from the previous step. It is possible that a solution for the base
slice cannot be extended to a solution for the entire problem since the derived
slice may additionally constrain the relations in the slicing criterion. Therefore,
all possible solutions for the base slice are attempted to be extended to a complete

Analysis for Alloy via Domain Specific Solvers 419

{root, left, right, size, parent, key}

{root, left, right, size} {root, left, right, key} {root, left, right, parent}

{root, left, right} {root, parent}

�

���������

���������

���������� �

���������

Fig. 3. Partially ordered set of slicing criteria

solution. If a solution for the entire problem is found, the problem is reported
consistent, otherwise the problem is declared inconsistent for the given bounds.

3 Our Approach

In this section we present our approach for incremental analysis of Alloy problems
via domain specific solvers.We exploit two key observations: (1) a problem can be
decomposed into sub-problems which can be solved incrementally and potentially
in parallel; and (2) domain specific solvers enable faster evaluation of problems
in their target domain.

3.1 Incremental Analysis with Parallel Reasoning

When an Alloy model is translated to SAT, an opportunity for a more efficient
incremental analysis is not exploited. Previous work [17] introduced an approach
to decompose the problem into a base and a derived slice, and extend a solution
for the base to one for the entire problem. This approach improves traditional
analysis but there are two areas for enhancement: (1) the problem is partitioned
only into two sub-problems; and (2) the two sub-problems are solved sequentially.

Instead of partitioning the problem into two sub-problems, as the declarative
slicing technique presented in Section 2.3, we partition the problem into mul-
tiple sub-problems. We apply the partitioning procedure for declarative slicing
recursively. We select the smallest slicing criterion, i.e. the criterion with the
minimum number of free variables, and partition the problem into a base and a
derived slice. Then we select the next smallest slicing criterion and partition the
derived slice from the previous step into a base and a derived slice. We repeat
the procedure until the slicing criterion includes all free variables.

Recall that the possible slicing criteria for declarative slicing can be envisioned
as a partially ordered set under set containment which is represented as a join-
semi-lattice. We use that partially ordered set of slicing criteria to construct a
dependency graph G = (V,E) with a set of vertices V and a set of edges E as
follows: (1) add a vertex vi ∈ V for every slicing criterion ci where i ∈ (1, . . . , n);
and (2) add a directed edge eij ∈ E from the vertex representing criterion ci
to the vertex representing criterion cj if the slicing criterion cj is the smallest
slicing criterion that contains ci, i.e. ci < cj ∧ �ck : ci < ck < cj → eij = (vi, vj)

420 S. Ganov, S. Khurshid, and D.E. Perry

c1 c2

c3 c4 c5

c6

c1 = {root, left, right}
c2 = {root, parent}
c3 = {root, left, right, size}

c4 = {root, left, right, key}
c5 = {root, left, right, parent}
c6 = {root, left, right, size, parent, key}

Fig. 4. Slicing criteria dependency graph

where i �= j �= k and i, j, k ∈ (1, . . . , n). The dependency graph for the binary
search tree from Section 2.2 is shown in Fig. 4.

Once we have constructed the dependency graph, we perform a topological
sort of the nodes in that graph to obtain an ordering of the slicing criteria used
for incremental analysis. For example, a topological ordering of the nodes in
the dependency graph from Fig. 4 is the sequence < c1, c2, c3, c4, c5, c6 >. This
slicing criteria sequence is used to incrementally analyze the model.

We slice the model based on the first slicing criterion from the sequence, i.e.
select constraints that involve only relations from the slicing criterion. Then we
solve the constraints in the slicing criterion. If a solution is found, we slice the
model based on the second slicing criterion. Before solving the constraints for
current base we set the relations in these constraints to valuations we found in
the previous step (e.g. we set a partial solution). We now solve the constraints.
This procedure is repeated until a solution for the entire problem is found or we
determine that the problem is inconsistent.

Since the constraints in the current iteration may constrain relations whose
valuations were found in a previous one (e.g. such relations were under con-
strained in the previous iteration), it is possible that a solution for these con-
straints cannot be found. In such a case we backtrack to the sub-problem we
solved in the previous iteration for which we try to find another solution which
is then propagated to the current sub-problem and a new attempt to solve the
current sub-problem is made. In case no solution for the previous sub-problem
can be extended to a solution for the current one, we declare the previous sub-
problem inconsistent and try to backtrack to the sub-problem preceding it. If no
solution for the first sub-problem can be extended to a solution for the entire
problem, we declare the problem inconsistent.

Note that a subsequence of slicing criteria in the topologically sorted sequence
may share no common relations. In such a case we solve the sub-problems for
each slicing criterion in parallel. It is also possible that a subsequence of slicing
criteria share common relations but none of the predicates that belong to their
corresponding slices imposes constraints on the common relations. Hence, sub-
problems resulting from slicing the model based on a subsequence of independent,
i.e. with no edge in the dependency graph, slicing criteria may be independent.

Analysis for Alloy via Domain Specific Solvers 421

1 Solution solve (Problem problem) {
2 // Try solving potentially parallel problems.
3 List bases = getParallelBases (problem);
4 Solution solution = solveParallel (bases);
5 if (solution.isValid()) {
6 Problem slice = problem - bases;
7 if (slice == null) {
8 return solution;
9 }
10 slice.setPartialSolution(solution);
11 solution = solve (slice);
12 if (solution.isValid()) {
13 return solution;
14 }
15 }
16 // Try extending a base solution to a full one.
17 Problem base = getBase (problem);
18 Problem slice = problem - base;
19 for (Solution solution in solveAll (base)) {
20 if (slice == null) {
21 return solution;
22 }
23 slice.setPartialSolution(solution);
24 solution = solve (slice);
25 if (solution.isValid()) {
26 return solution;
27 }
28 }
29 return Solution.INVALID;
30 }

Fig. 5. Incremental analysis with parallel
reasoning algorithm

1 module Integer
2
3 . . .
4
5 @datatype(solver="IntegerSolver")
6 sig integer {
7 value: int
8 }
9

10 @operation(name="lessThan")
11 pred integerLessThan(lhs, rhs: int) {
12 lhs.value < rhs.value
13 }
14
15 . . .
16

Fig. 6. Sample of the Annotated Integer
module

1 for (BinaryTree t:eval(BinaryTree)) {
2 for (Node n:eval(t.root.*(left+right))) {
3 for (Node n’:eval(n.root.*(left+right))) {
4 IntVar lhs = Solver.newVar(
5 t.name() + n’.name());
6 IntVar rhs = Solver.newVar(
7 t.name() + n.name());
8 Solver.lessThan(lhs, rhs);
9 }
10 }
11 }

Fig. 7. Constraint translation for a dedi-
cated Integer solver

In such a case we try to solve such sub-problems in parallel for small bounds
and, in case we succeed, we solve the sub-problems in parallel for the current
bounds. The described algorithm is presented in Fig. 5.

In particular, for the binary search tree model our algorithm performs an in-
cremental analysis based on the following slicing criteria
c1 → c2 → parallel(c3, c4, c5)→ c6, where the predicates corresponding to slic-
ing criteria c3, c4, and c5 are solved in parallel. Note that our algorithm on Fig. 5
is doing a best effort for solving as many sub-problems as possible in parallel. In
case the solutions for the parallel sub-problems are conflicting (due to additional
constraints on the common relations), we perform systematic exploration of each
slicing criterion one at a time.

3.2 Dedicated Solver Integration via Annotations

When an Alloy problem is translated to propositional logic, domain specific
knowledge is lost. However, knowledge about the problem domain creates an
opportunity of using domain specific solvers–solvers designed for tackling special
classes of problems via special representations and algorithms. Performing an
incremental analysis of an Alloy model creates an opportunity for employing
domain specific solvers for relevant sub-problems, i.e. slices. This opportunity has

422 S. Ganov, S. Khurshid, and D.E. Perry

been recognized by previous work on declarative slicing [17]. However, there are
three limitation of this work that we address: (1) there is no generic mechanism
for integrating domain specific solvers into the Alloy engine; (2) a mechanism
for determining when a domain specific solver can be used is lacking; and (3)
analysis only with an Integer domain specific solver has been presented.

We introduce annotations that define data types, operations on these data
types, and bindings from data types to domain specific solvers. These annota-
tions allow us to determine when to use a given domain specific solver as well as
facilitates the translation from Alloy to the language of the specialized solver.

The @datatype annotation can be placed only on a signature definition and
specifies a mapping from an Alloy signature to a domain specific data type.
This annotation has one attribute, solver, that specifies which solver to use
for reasoning about constraints over the annotated signature (the data type is
inferred by the solver). We also define an annotation @operation that can be
placed only on a predicate and specifies to which domain specific operation to
map the predicate (the solver is inferred from the type of the arguments). An
annotated model for an Integer type which serves as a wrapper around the built-
in int to enable annotation is presented in Fig. 6.

We use the meta-data from the annotations and evaluation of an expression
against a given instance (solution) supported by Alloy’s backend Kodkod [16]
to determine whether a domain specific solver may be used for solving the con-
straints in the currently analyzed slice and how to translate these constraints to
the language of the dedicated solver. We illustrate this with an example.

Assume we already have a solution of a binary search tree with three nodes for
the previous slicing criterion {root, left, right} and the current slicing criterion
is {root, left, right, key} for which we have set the partial solution from the
previous slice. We traverse the constraints in the current slice, and for each of
them: first check via an evaluation whether it is already satisfied and, if not, what
free variables it constrains. If all unsatisfied constraints constrain free variables
of the same type, we can use the dedicated solver specified in the @datatype
annotation, otherwise we fall back to SAT. In the example, all constraints for
slicing criterion {root, left, right, key} constrain only the free variable key which
is of type Integer annotated to use the IntegerSolver. Hence, we can use the
dedicated Integer constraint solver.

Now we have to translate the constraints in the slice to the language of the
solver. Without loss of generality consider the constraint one t : BinaryT ree &&
all n : t.root. ∗ (left+ right){all n′ : n.left. ∗ (left+ right) | integerLessThan
(n′.key, n.key)} (added declaration of t for clarity and changed key to our custom
Integer type). We evaluate the variable t from declaration one t : BinaryT ree
which returns {BinaryT ree$0}. Hence, for some binary tree in this set the con-
straint must hold. We next evaluate the variable n from the next declaration
n : t.root. ∗ (left+ right) for every t which returns {Node$0, Node$1, Node$2}.
Follows evaluation of the variable n′ from the next declaration n′ : n.left. ∗
(left+ right) for every n which returns {Node$1, Node$2}, {Node$2}, {}. Now
we have identified all nodes whose keys are constrained and we can use them

Analysis for Alloy via Domain Specific Solvers 423

to construct a problem in the domain of the Integer solver. We add a variable
for the key of each node and a constraint for every pair on nodes constrained
by integerLessThan(n′.key, n.key). Note that the predicate integerLessThan
is mapped to the lessThan domain specific operation. A translation of the con-
straint to the language of the Integer constraint solver is presented in Fig. 7. For
solving integer constraints we use Choco [4].

In addition to the dedicated Integer constraint solver we provide a special-
ized solver for String constraints. Similarly, we define a custom module for the
String data type to which we apply the corresponding annotations. Since ex-
isting off-the-shelf String solvers [6][12] do not support multi-variable problems,
we have implemented a String constraint solver that supports multi-variable
problems with binary constraints. We use recursive backtracking search with
constraint propagation, via the AC-3 [13] algorithm, applying the minimal re-
maining values and degree heuristics to guide the search. We use finite state
automata [3] to represent variable domains and performing operations on them.

Adding other solvers can be done similarly to the Integer and String ones. An
Alloy module, i.e. a model file, with operation mappings has to be written and a
JAR file with the solver implementation has to be deployed. No changes to the
Alloy source are required. Hence, we provide a general mechanism for adding
domain specific solvers to the Alloy’s SAT based backend.

4 Evaluation

We have evaluated our approach on several data structure models with Integer
and String data and a P2P protocol model. Each model was analyzed with
the conventional Alloy Analyzer (4.1.10) and a version that incorporates our
technique. We report analysis results in terms of solving time for given bounds
and maximal bounds reached within reasonable time.

The evaluation system was a laptop with an Intel i7 M620 2.67GHz processor,
4GB of RAM running Ubuntu 10.04 Lucid. For all experiments the analyzer was
set to use 4096MB of memory and 65536K maximal stack size. All tests were
run on a cold VM to avoid just-in-time compilation or cache skewing the results.

An analysis command takes as arguments a bund for each signature, recall
the command for the binary search tree model in Fig 1 (line 46). We have set
these parameters as follows: (1) the bound for the signature representing the
modeled data structure or state for the protocol was always one; and (2) the
bound for the signature representing nodes of the data structure or the protocol
was incrementally increased.

We have also evaluated our technique on a model of the Chord P2P protocol [2]
which is one of the sample models posted on the Alloy home page. Note that
the model does not incorporate Integer or String constraints which precludes the
use of multiple solvers. However, the model can be analyzed incrementally. The
results of our analysis are presented in Table 5 and Fig. 12. The data in the ta-
ble and the figure are arranged similarly to the ones for already presented data
structures. Note that our technique is twice as fast for ten nodes as opposed

424 S. Ganov, S. Khurshid, and D.E. Perry

Table 1. Sorted linked list with Integer data

Node count 2 4 6 8 10 12 14 16 20 30

Standard Analyzer (ms) 111 335 896 2401 15695 58307 124335 N/A N/A N/A

Incr. SAT solver (ms) 202 372 822 1251 1743 2460 4197 4131 52256 252572

Incr. multi-solver (ms) 327 412 781 1244 1251 1760 3179 2971 46817 234658

Table 2. Sorted linked list with String data

Node count 2 4 6 8 10 12 14 16 20 24

Standard Analyzer (ms) 1763 3276 7293 69851 147406 294445 N/A N/A N/A N/A

Incr. SAT solver (ms) 2158 2702 6168 4688 4738 19822 81546 58312 160286 N/A

Incr. multi-solver (ms) 673 984 1358 1515 2280 2516 3841 6602 92722 183440

Table 3. Binary search tree with Integer data

Node count 2 4 6 8 10 20 30 40

Standard Analyzer (ms) 116 322 1174 8724 N/A N/A N/A N/A

Incr. SAT solver (ms) 260 414 1076 1522 2546 9400 59527 N/A

Incr. multi-solver (ms) 368 422 990 1317 1534 4935 29297 166369

Table 4. Binary search tree with String data

Node count 2 4 6 8 10 20 30 40

Standard Analyzer (ms) 2307 5571 14206 127185 1241175 N/A N/A N/A

Incr. SAT solver (ms) 2464 3422 5181 6422 24150 94048 N/A N/A

Incr. multi-solver (ms) 1069 1424 1752 2090 2815 13389 40847 1020314

Table 5. Chord P2P protocol

Node count 2 4 6 8 10

Standard Analyzer (ms) 15 89 792 7739 127987

Incr.SAT solver (ms) 52 122 708 5736 60139

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 4 6 8 10 12

Ti
m

e (
m

s)

Number of nodes

Standar d
Incremental

(a) Standard vs incr. multi-solver

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 5 10 15 20 25 30

Ti
m

e (
m

s)

Number of nodes

Standar d
Incremental

(b) Incr. SAT vs incr. multi-solver

Fig. 8. Sorted linked list with Integer data

to the standard analysis. This example demonstrates that, even if employing
multiple solvers is not feasible due to the model nature, performing incremental
reasoning leads to an improvement in terms of analysis speed.

Our results indicate that for small bounds our incremental multi-solver anal-
ysis is as fast as the standard Alloy Analyzer but, as the bounds grow, the gains

Analysis for Alloy via Domain Specific Solvers 425

 0

 50000

 100000

 150000

 200000

 250000

 300000

 2 4 6 8 10 12

Ti
m

e (
m

s)

Number of nodes

Standar d
Incremental

(a) Standard vs incr. multi-solver

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 2 4 6 8 10 12 14 16 18 20

Ti
m

e (
m

s)

Number of nodes

Incremental SAT solver
Incremental multi-solver

(b) Incr. SAT vs incr. multi-solver

Fig. 9. Sorted linked list with String data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 3 4 5 6 7 8

Ti
m

e (
m

s)

Number of nodes

Non-incremental
Incremental

(a) Standard vs incr. multi-solver

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25 30

T
im

e
(m

s)

Number of nodes

Incremental SAT solver
Incremental multi-solver

(b) Incr. SAT vs incr. multi-solver

Fig. 10. Binary search tree with Integer data

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 3 4 5 6 7 8

Ti
m

e (
m

s)

Number of nodes

Standar d
Incremental

(a) Standard vs incr. multi-solver

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 2 4 6 8 10 12 14 16 18 20

Ti
m

e (
m

s)

Number of nodes

Incremental SAT solver
Incremental multi-solver

(b) Incr. SAT vs incr. multi-solver

Fig. 11. Binary search tree with String data

of using our technique become significant. This can be explained with the lin-
early growing costs of problem translation and multi-solver initialization which
is amortized over an exponentially growing search space. Our approach is almost
two orders of magnitude faster (except for the binary search tree with Integer

426 S. Ganov, S. Khurshid, and D.E. Perry

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 3 4 5 6 7 8 9 10
Ti

m
e (

m
s)

Number of nodes

Standar d
Incremental

Fig. 12. Chord P2P protocol model - standard vs incremental SAT

data and the Chord P2P model) for the bounds reachable by the standard ana-
lyzer. Further, even if a model is not suitable for employing multiple solvers, it
can be solved incrementally, increasing analysis speed.

In Table 1 are presented the results for a sorted linked list with Integer data.
The first row is the number of nodes, the second row is solving time via the
standard Alloy Analyzer, the third row is solving time via incremental analysis
using a SAT solver, and the fourth row is solving time via incremental analysis
using multiple solvers. Note that for certain scopes no results are reported be-
cause either the analysis took more than thirty minutes or the solver ran out of
memory. In Fig. 8(a) is presented the improvement in terms of solving time for
incremental multi-solver analysis as opposed to the standard Alloy Analyzer and
in Fig. 8(b) is depicted the improvement in terms of solving time for incremental
multi-solver as opposed to incremental SAT analysis. We are using Bezier curves
in all figures to depict smoothened trends rather than local fluctuations.

We present results for a sorted linked list with String data (Table 2, Fig. 9(a),
Fig. 9(b)), a binary search tree with Integer data (Table 3, Fig. 10(a), Fig. 10(b)),
and a binary search tree with String data (Table 4, Fig. 11(a), and Fig. 11(b))
similarly to the ones for a sorted linked list with Integer data.

5 Related Work

This paper introduces annotations for Alloy models that define data types, op-
erations on these data types, and bindings from data types to domain specific
solvers. We utilize this information to automatically partition the problem into
multiple sub-problems. We also employ this meta-data to determine when to use
a dedicated solver as well as to facilitate translation of the solved sub-problem
into the language of the domain specific solver. Additionally, we integrate an
Integer constraint solver and a String constraint solver into Alloy’s backend.

In a recent publication [8] we have proposed the idea of using annotations in
Alloy for guiding problem partitioning. In particular, explicitly specifying the
priority of a predicate as well as the solver to be used for its analysis. In the
current work we present an approach to automatically partition the problem into

Analysis for Alloy via Domain Specific Solvers 427

multiple sub-problems some of which are solved opportunistically with domain
specific solvers. In this paper we introduce annotations that define data types,
mapping operations on such types to their domain specific counterparts, and
mappings from data types to dedicated constraint solvers.

Incremental solving for Alloy models, where a solution to one formula is fed
as a partial solution to solve another formula, was introduced by Uzuncaova et
al. [17,18] in the context of test input generation for software product lines. This
work partitioned the problem into two sub-problems while our technique aims
to maximize the number of partitions. Further, this work does not specify an
algorithm for determining when it is possible to use a dedicated solver and we
provide such a technique. This work solves the two sub-problems in sequence but
we try to opportunistically parallelize analysis of independent sub-problems. We
also have introduced a dedicated String constraint solver for Alloy.

The second author co-authored a recent paper [10] that introduces mixed con-
straints, which are written using a combination of a declarative language (Alloy),
and an imperative language (Java). It supports annotating def-use sets of vari-
ables to facilitate solving of mixed constraints using different solvers, where each
solver is designed for constraints written using one particular paradigm. Mixed
constraints offer a complementary approach to this paper. They facilitate writ-
ing of constraints using a combination of declarative and imperative paradigms,
whereas this paper focuses on efficient solving of models written purely in Alloy,
hence does not require learning a new notation.

Parallel analysis of Alloy models was first proposed in [15]. This work explores
providing a parallel SAT solver with Alloy specific enhancements by partitioning
the propositional formula among parallel SAT solvers. In contrast, we partition
the problem into sub-problems before it has been translated to propositional
logic enabling the use of domain specific solvers. We also identify sub-problems
that may be solved in parallel, some via a SAT solver.

An example of extending Alloy’s syntax to describe dynamic properties of
systems via actions is presented in [7]. The actions enable specifying dynamic
properties of execution traces as dynamic logic specifications. Our technique is
similar with respect to extending the Alloy syntax with new semantic features
and implementing automated analysis of the latter. While this work focuses on
adding constructs for specifying dynamic behavior, we embed meta-data in a
standard Alloy model to achieve scalable and efficient analysis.

An approach of using SAT Modulo Theories solver (SMT) for analyzing Alloy
specifications is presented in [9]. The SMT solver does not replace the Alloy SAT-
based back-end, rather complements it by potentially detecting if a formula is
a tautology, a capability the Alloy Analyzer is lacking. This does not require
finitizing the values for each relation. Similarly, we introduce a set of dedicated
solvers for augmenting Alloy’s analysis backend. However, we are using domain
specific solvers and perform an incremental analysis. Our technique is to partition
the problem and solve it in finitized bounds with specialized solvers.

428 S. Ganov, S. Khurshid, and D.E. Perry

6 Conclusion

We increase the efficiency of the Alloy Analyzer by performing an incremen-
tal analysis via domain specific solvers. We introduce annotations that define
data types, operations on these data types, and bindings from data types to
domain specific solvers. This meta-data is utilized to opportunistically solve a
sub-problem using a dedicated constraint solver. Our technique automatically
partitions the problem into sub-problems and opportunistically solves indepen-
dent sub-problems in parallel. We integrate a dedicated Integer constraint solver
and a String constraint solver in Alloy’s SAT based backend.

We have evaluated our approach on selected data structure models with both
Integer and String data and one P2P protocol. Our technique achieves a sub-
stantial increase in analysis speed, thus enabling us to reach greater bounds. We
believe that annotations have an important role to play in analysis of declarative
programs as well as in the context of other analyzers such as model checkers and
theorem provers.

Acknowledgement. This work was funded in part by the National Science
Foundation under Grant Nos. IIS-0438967, CCF-0828251, CCF-0845628, and
AFOSR grant FA9550-09-1-0351.

References

1. Alloy Analyzer 4 (March 2011), http://alloy.mit.edu/alloy4/
2. Alloy model of Chord (May 2011),

http://alloy.mit.edu/community/files/chord.pdf

3. Automaton library (March 2011), http://www.brics.dk/automaton/
4. Choco constraint solver (March 2011), http://www.emn.fr/z-info/choco-solver/
5. Auguston, M.: Software architecture built from behavior models. SIGSOFT Softw.

Eng. Notes 34(5), 1–15 (2009)
6. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-

pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

7. Frias, M.F., Galeotti, J.P., López Pombo, C.G., Aguirre, N.M.: DynAlloy: upgrad-
ing Alloy with actions. In: Proceedings of the 27th International Conference on
Software Engineering, ICSE 2005, pp. 442–451. ACM, New York (2005)

8. Ganov, S., Khurshid, S., Perry, D.: A case for Alloy annotations for efficient in-
cremental analysis via domain specific solvers. In: 26th IEEE/ACM International
Conference on Software Engineering, Lawrence, Kan, USA (2011)

9. El Ghazi, A.A., Taghdiri, M.: Relational Reasoning via SMT Solving. In: Butler,
M., Schulte,W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011)

10. Khalek, S., Narayanan, V., Khurshid, S.: Mixed constraints for test input gener-
ation - an initial exploration. In: 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 548–551 (November 2011)

11. Khurshid, S., Jackson, D.: Exploring the design of an intentional naming scheme
with an automatic constraint analyzer. In: Proceedings of the 15th IEEE Interna-
tional Conference on Automated Software Engineering, ASE 2000 (2000)

http://alloy.mit.edu/alloy4/
http://alloy.mit.edu/community/files/chord.pdf
http://www.brics.dk/automaton/
http://www.emn.fr/z-info/choco-solver/

Analysis for Alloy via Domain Specific Solvers 429

12. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA 2009, pp. 105–116. ACM, New York
(2009)

13. Mackworth, A.K., Freuder, E.C.: The complexity of some polynomial network con-
sistency algorithms for constraint satisfaction problems. Artif. Intell. 25(1), 65–74
(1985)

14. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of
Java programs. In: Proceedings of the 16th IEEE International Conference on
Automated Software Engineering, ASE 2001 (2001)

15. Rosner, N., Galeotti, J.P., Lopez Pombo, C.G., Frias, M.F.: ParAlloy: Towards
a Framework for Efficient Parallel Analysis of Alloy Models. In: Frappier, M.,
Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977,
pp. 396–397. Springer, Heidelberg (2010)

16. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

17. Uzuncaova, E., Khurshid, S.: Constraint Prioritization for Efficient Analysis of
Declarative Models. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
310–325. Springer, Heidelberg (2008)

18. Uzuncaova, E., Khurshid, S., Batory, D.S.: Incremental test generation for software
product lines. IEEE Trans. Software Eng. 36(3), 309–322 (2010)

19. Woodcock, J., Aydal, E.G., Chapman, R.: The Tokeneer experiments. In: Roscoe,
A., Jones, C.B., Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare.
History of Computing, pp. 405–430. Springer, London (2010)

State Space c-Reductions of Concurrent Systems

in Rewriting Logic�

Alberto Lluch Lafuente1, José Meseguer2, and Andrea Vandin1

1 IMT Institute for Advanced Studies Lucca, Italy
2 University of Illinois in Urbana-Champaign, USA

Abstract. We present c-reductions, a simple, flexible and very general
state space reduction technique that exploits an equivalence relation on
states that is a bisimulation. Reduction is achieved by a canonizer func-
tion, which maps each state into a not necessarily unique canonical rep-
resentative of its equivalence class. The approach contains symmetry
reduction and name reuse and name abstraction as special cases, and ex-
ploits the expressiveness of rewriting logic and its realization in Maude to
automate c-reductions and to seamlessly integrate model checking and
the discharging of correctness proof obligations. The performance of the
approach has been validated over a set of representative case studies.

1 Introduction

Taming state space explosion is one of the key challenges for effective model
checking analysis. Bisimulation-based state space reductions are particularly at-
tractive, because they never generate spurious behaviors. This is because tem-
poral logic properties are preserved by bisimulations. Therefore, an LTL, CTL,
or CTL∗ formula holds on a bisimilar reduced system iff it holds in the orig-
inal system. A particular example are symmetry reductions which have been
extensively studied [1] and are used in model checkers (from the seminal works
on Murphi to extensions of Spin, Uppaal, Prism, etc.) and other verification
tools such as SAT solvers or planners. Developing and applying such state space
reduction techniques is still a challenging task: (i) automatic detection of system
regularities like symmetries is not trivial and thus often delegated to the sys-
tem designer; (ii) their exploitation is sometimes done by enriching the system
description language (e.g. scalarset datatypes in [2, 3]), so that the user is re-
quired to learn new primitives; (iii) the implementation of state space reduction
techniques has to be combined (both theoretically and practically) with the rest
of the techniques and algorithms implemented in the model checker, and often
this integration effort has to be repeated for every new version, improvement
or technique; and (iv) checking correctness of the reductions is not easy and
requires reasoning techniques (e.g. theorem proving) that may not be integrated
in the model checking framework, or part of the user’s skills. Indeed, problem

� Work supported by NSF Grant CCF 09-05584, AFOSR Grant FA8750-11-2-0084
and the EU Project ASCENS.

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 430–446, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

State Space c-Reductions of Concurrent Systems in Rewriting Logic 431

(iv) means that in order to correctly model check a formula in a reduced system
it must be a correct reduction of the original system, which requires discharging
proof obligations. The problem, however, is that most model checkers lack the-
orem proving support (within the same framework) for discharging such proof
obligations, so that the checking task is usually left to the user and may never
be done, decreasing the confidence that can be placed on the verification.

Research Questions. In addressing problems (i)–(iv) above, our work asks
and provides answers to the following research questions: (1) Can symmetry
reductions be generalized to reductions requiring only that the bisimulation is
an equivalence relation? (2) Can model checking support for such bisimulation-
based reductions be provided in a way that does not require any changes to
the underlying model checker, yet with high performance? (3) Can the system
description language be kept likewise unchanged? (4) Can the specifications of
reduced systems be automatically generated from those of the original systems?
(5) Can model checking and theorem proving be seamlessly integrated for such
reductions, so that correctness proof obligations are explicitly generated and can
be semi-automatically discharged by appropriate tools?

Our Contributions. We answer question (1) in the affirmative by proposing
the notion of c-reduction, based on the idea of providing a canonizer func-
tion that computes a not-necessarily unique representative of the equivalence
class of states defined by the bisimulation. This notion is quite flexible, since
unique canonical representatives, although maximally space-efficient, can be
time-inefficient. Furthermore, it is fully general : it subsumes various reduction
techniques such as symmetry reduction, name reuse and name abstraction; and
it can be applied to any Kripke structure. Questions (2) and (3) are answered
in the affirmative: no such changes are needed (moreover, in [8] we report on
performance experiments showing that c-reductions can achieve drastic state
space reductions). Question (5) is answered by proposing rewriting logic [4] as
an efficiently executable logical framework supported by a high-performance tool
(Maude [5]) and having a formal tool environment where both LTL model check-
ing and the discharging of correctness proof obligations for c-reductions are
seamlessly integrated and partially automated. In fact, our answer to question
(5) takes the form of a formal methodology, which breaks proofs of correctness
into smaller, manageable proof subtasks. Many of the steps in our methodol-
ogy apply to any c-reduction, but some of them are directly tailored to sym-
metry reductions. As we gain more experience, we plan to extend all steps of
our methodology to arbitrary c-reductions. Question (4) is answered in our cur-
rent prototype for a very wide class of concurrent systems, namely, object-based
concurrent systems, and takes the form of a theory transformation that automat-
ically maps the original system into the desired c-reduction of it.

We have evaluated our approach over a set of examples by considering the
ease of defining reduction strategies, the effectiveness of the correctness checks,
and the performance of the resulting reductions. Compared to previous work,
we have observed performance gains in some cases (including previous imple-
mentations of symmetry reductions in Maude [6]), and a great flexibility in the

432 A. Lluch Lafuente, J. Meseguer, and A. Vandin

definition of reductions, which allows us to subsume a wide range of reductions
including permutation and rotation symmetries, name reuse and name abstrac-
tion, which have interesting applications (e.g. implementation of the operational
semantics of languages with dynamic features such as resource allocation). The
usefulness of our proof methodology has also been evaluated through a case
study. A preliminary version of our tool is available for download [7].

Synopsis. Sect. 2 offers the necessary background. Sect. 3 presents c-reductions
in a generic way, focusing on Kripke structures. Sect. 4 describes the realiza-
tion of c-reductions in rewriting logic, highlighting the theoretical results, and
the reasoning and verification mechanisms and tools underlying our methodol-
ogy for specifying and verifying c-reductions. Sect. 5 covers related work and
conclusions.1

2 Preliminaries

We will use a simple running example of a banking system2 of concurrent objects
of the same class (accounts) having a natural number as attribute (their balance),
and body-less messages (one dollar transfers) for them. The behavior of objects
is governed by a simple rule: a message m for an object i can be consumed by
object i to increment its balance by one. The system exhibits a clear symmetry:
all objects are instances of the same class and have the same behaviour.

Systems like this (and of course more sophisticated ones) can be easily specifi-
cied as theories of rewriting logic [4], which can be specified as Maude [5] modules
to be executed and analyzed within the Maude framework.

Definition 1 (rewrite theory). A rewrite theoryM is a tupleM = (Σ,E ∪
A,R, φ) where Σ is a signature, specifying the basic syntax (function symbols)
and type infrastructure (sorts, kinds and subsorting) for terms, i.e. state descrip-
tions; E is a set of (possibly conditional) equations, which induce equivalence
classes of terms (and are used to specify functions), and (possibly conditional)
membership predicates, which refine the typing information; A is a set of axioms
which also induce equivalence classes of terms, i.e. equational axioms describ-
ing structural equivalences between terms, like associativity and commutativity;
R is a set of (possibly conditional) non-equational rules, which specify the local
concurrent transitions in a system whose states are E ∪A-equivalence classes of
ground Σ-terms; and where φ : Σ → Pfin(N) is a frozenness map, assigning to
each function symbol f of arity n a subset φ(f) ⊆ {1..n} of its frozen argument
positions, i.e. positions under which rewriting with rules in R is forbidden.

In our example we can define a theory (a Maude module) BANK whose signa-
ture Σ includes sorts for messages (Message), objects (Object), their identifiers

1 Interested readers are referred to [8] which includes complementary material: the
formal proofs ([8, Sect. A]), a performance evaluation with literature benchmark ([8,
Sect. B]), and a full description of our case study ([8, Sect. C,D]).

2 Indeed, it is a simplification of the model of a bank account system described in [5].

State Space c-Reductions of Concurrent Systems in Rewriting Logic 433

and attributes as natural numbers (Nat), configurations (Configuration) and
states (State), and operators that allow us to represent an object i with at-
tribute x as a term < i | x >, a message for object i as a term credit(i), an
empty configuration (of objects and messages) by none, and the multiset union
of configurations by juxtaposition, obeying associativity and commutativity as
axioms. The operator { } wraps an entire configuration c as a state {c}. Rules
rl { < i | x > credit(i) c1 } => { < i | s(x) > c1} , and rl { < i |

x > credit(i) } => { < i | s(x) > } model the above described behavior
of objects. Informally, one of these rules applies to states containing an object
< i | x >, a message credit(i) for it, and (possibly) a subconfiguration c1.3

If such a match is found, the state can be replaced by the term on the right-
hand side of the rule (after applying the substitution of the match), resulting in
a state without the message and where object i increments its balance with the
successor operator s.

For the sake of simplicity, we assume that the system under study is described
by a rewrite theoryM = (Σ,E ∪ A,R, φ) whose rules are “topmost” for a des-
ignated kind [State] of states. We also assume that an operator { } is used
to enclose states so that all rules in R have that operator as their top opera-
tor in their left-hand sides. These assumptions are already quite general: they
can cover, for example, object-based concurent systems. We further assume that
M has good executability properties, i.e. that E is sufficient complete, (ground)
confluent and terminating modulo A (that is, that the equational part correctly
defines functions), and R is coherent with E modulo A [5] (that is, that apply-
ing equations to evaluate functions does not interfere with the application of the
rules that specify system transitions). Moreover, unless we state the contrary,
all extensions of M that we shall define will be required to be ground conflu-
ent, ground terminating, and sufficiently complete w.r.t. the same signature of
constructors asM. Fortunately, the standard Maude tools offer automatization
support for checking such properties. Our running example satisfies all these
conditions.

We consider the well-known semantic domain of Kripke structures for rewrite
theories, suitable for state space exploration problems like model checking.

Definition 2 (Kripke structure). A Kripke structure K is a tuple K = (S,→
, L,AP) such that S is a set of states,→ ⊆ S×S is a transition relation between
states, and L : S → 2AP is a labelling function mapping states into sets of atomic
propositions AP (i.e. observations on states).

The Kripke semantics of a rewrite theory has State-sorted terms as states and
one-step rewrites between State-sorted terms as transitions. The labelling func-
tion is defined by Boolean predicates specified equationally in the rewrite theory.
As proved in [9], any computable Kripke structure, even an infinite-state one,
can be obtained from an executable rewrite theory using only a finite signature
Σ, and finite sets E of equations, A of axioms and R of rules.

3 The second rule is needed since we treat the fact that none is an identity for union
equationally rather than axiomatically.

434 A. Lluch Lafuente, J. Meseguer, and A. Vandin

Definition 3 (Kripke semantics of rewrite theories). Let M = (Σ,E ∪
A,R, φ) be a rewrite theory with a designated state sort State, and a set AP ∈
Σ of Boolean state predicates equationally defined in E. The Kripke structure
associated to M is KM = (TState/E∪A,→, L,AP) such that TState/E∪A are all
State-sorted states, → is defined as {[u] → [v] | M � u →1

R,State v} (i.e.
transitions are one-step rewrites between E ∪ A equivalence classes of State-
terms in M), and L is such that p ∈ L(s) iff p(s) =E∪A true.

We will consider bisimulation as the key semantic equivalence.

Definition 4 (bisimulation). Let K = (SK ,→K , LK , APK), H = (SH ,→H ,
LH , APH) be two Kripke structures, and let ∼ ⊆ SK ×SH be a relation between
SK and SH . We say that ∼ is a bisimulation between K and H iff for each two
states s ∈ SK and s′ ∈ SH such that s ∼ s′ we have that: (i) LK(s) = LH(s′);
(ii) s →K r implies that there is a state r′ s.t. s′ →H r′ and r ∼ r′; and (iii)
s′ →H r′ implies that there is a state r s.t. s→K r and r ∼ r′.
The notion of bisimulation can be lifted to rewrite theories in the obvious way.We
shall focus on bisimulations such that the relation ∼ is an equivalence relation,
which includes the case of bisimulations induced by symmetries, i.e. when two
states are bisimilar if they belong to the same class of symmetric states.

For instance, suppose that the initial state of our example is {< 0 | 0 > < 1

| 0 > credit(0) credit(1)}. We have then two possible transitions (given by
the application of the rules governing the system), leading respectively to states:
{< 0 | 1 > < 1 | 0 > credit(1)} and {< 0 | 0 > < 1 | 1 > credit(0)}.
These two states are syntactically different but they are symmetric, i.e. equal up
to the permutation of object identifiers.

Indeed, equivalence classes of symmetric states can be conveniently defined as
the orbits of a group action (permutations in our example), which yield symmetry
reductions as a special case of our approach. We hence recall here some basic
notions about groups and group actions.

Definition 5 (group basics). A group is a tuple G = (G, •, e, ()−1) where G
is a set of elements, • : G ×G → G is a binary associative operation, e ∈ G is
an identity (i.e. ∀f ∈ G.f • e = e • f = f), and ()−1 is an inverse operator (i.e.
∀f ∈ G.f • f−1 = f−1 • f = e).

Let G be a group and H ⊆ G be a subset of G. The group generated by
H denoted 〈H〉 is defined as the closure of H under the inverse and product
operators ()−1 and • of G. In general 〈H〉 will be a subgroup of G, but if 〈H〉
coincides with G, then H is said to generate G and its elements are called
generators.

Let G be a group and A be a set. An action of G on A is a monoid homo-
morphism �·� : G → [A → A], that is, �f • g� = �f� ◦ �g�, where f ◦ g denotes
function composition in (A→ A), and �e� = idA, with idA the identity on A.

Notable examples are permutation and rotation groups, which capture typical
symmetries introduced by process replication in concurrent systems. Generators
define groups in a concise manner, e.g. transpositions and single rotations for

State Space c-Reductions of Concurrent Systems in Rewriting Logic 435

permutation and rotation groups, respectively. The action of a group on the
states of a Kripke structure implicitly defines an equivalence relation.

Definition 6 (equivalence induced by a group action). Let S be a set
of states, G be a group and �·� be the action of G on S. Then the equivalence
relation ∼G induced by G on S is defined by: s ∼G s′ ⇔ ∃f ∈ G.�f�(s) = s′.

Group actions can be defined in rewriting logic with equations of the form
[[f]](t) = t’ where f denotes a group element (typically a generator) and
t, t’ are State-sorted terms. For instance, in our running example, the appli-
cation of object identifier transpositions i<->j can be defined (by structural
induction) with the equations:

eq [teq1] : [[i<->j]]({c1}) = {[[i<->j]](c1)} .

eq [teq2] : [[i<->j]](none) = none .

eq [teq3] : [[i<->j]](c1 c2) = ([[i<->j]](c1)) ([[i<->j]](c2)) .

eq [teq4] : [[i<->j]](< k | x >) = < [[i<->j]](k) | x > .

eq [teq5] : [[i<->j]](credit(k)) = credit([[i<->j]](k)) .

eq [teq6] : [[i<->j]](i) = j .

ceq [teq7] : [[i<->j]](k) = k if (i != k) /\ (j != k) .

For example, the unconditional (eq) rule teq 4 defines the application of a
transposition [[i<->j]] to an object (< k | x >) as the object obtained by
transposing its identifier. Equations teq6 and teq7 take care of transposing
identifiers. A symmetric version of teq6 is not needed since <-> is commutative.
Equation teq7 is conditional (ceq): it applies when teq6 is not applicable.

3 C-Reductions for Kripke Structures

We introduce the idea of canonical reductions, abbreviated c-reductions as a
generic means to reduce a Kripke structure K by exploiting some equivalence
relation ∼ on the states of K which is also a bisimulation on K (i.e. between
K and itself). In Sect. 4 we will explain how c-reductions are specified, proved
correct, and used for model checking in rewriting logic.

We start by defining canonizer functions, which are used to compute for a
given state a (not necessarily unique) canonical representative of its equivalence
class, modulo some equivalence relation which is also a bisimulation (e.g. a canon-
ical permutation of the identifiers of processes with identical behavior).

Definition 7 (canonizer functions). Let K = (S,→, L,AP) be a Kripke
structure, and let ∼ ⊆ S × S be a an equivalence relation which is a bisimu-
lation on K. A function c : S → S is a ∼-canonizer (resp. strong ∼-canonizer)
iff for each s ∈ S we have s ∼ c(s) (resp. s ∼ c(s), and s ∼ s′ → c(s) = c(s′)).

Canonizer functions are used to compute smaller but semantically equivalent
(i.e. bisimilar) Kripke structures by applying canonizers after each transition.
Strong canonizers provide unique representatives for the equivalence classes of
states and, hence, more drastic space reductions. That is, for two different but

436 A. Lluch Lafuente, J. Meseguer, and A. Vandin

equivalent states s ∼ s′ they provide the same canonical representative (i.e.
c(s) = c(s′)). Typical examples of strong canonizers for equivalence classes are
functions based on enumeration strategies [10] which generate the complete set
of states of the equivalence class and then apply some function over it (e.g.
based on a total ordering of the states). For instance, in our running example,
an enumeration canonizer just generates all states that result from permuting
(symmetric) processes in all possible ways and then selects one according to
some total order (e.g. the lexicographic order of the description of states). In
particular, for a state {< 0 | 1 > < 1 | 0 > credit(1)} the enumeration will
produce its whole orbit: { {< 0 | 1 > < 1 | 0 > credit(1)}, {< 0 | 0 > <

1 | 1 > credit(0)}}. Then the canonizer would assign the least state of the set
according to some total order, e.g. “identifier first, balance second” which would
provide {< 0 | 0 > < 1 | 1 > credit(0)} as representative. Canonizers can
be obtained in more efficient and smarter ways as shown in Sect. 4.4, e.g. with
local search strategies [10] that repeatedly apply transpositions until the least
state is reached. Instead, a non-strong (or weak) canonizer can provide different
representatives for equivalent states. That is, it might be the case that c(s) �=
c(s′) even though s ∼ s′. Weak canonizers provide weaker state space reductions,
but they often enjoy advantages over strong canonizers: in some cases they are
easier to be defined and analyzed, and their computation can be much more
efficient in terms of runtime cost. Such heuristic canonizers can be found for
instance in [11, 3], where the rough idea is to consider an ordering of the states
that only depends on part of the state description. The resulting ordering relation
is partial and the representative of a state is computed as one of the least states
of the ordering.

The reduction of the state space is obtained by applying the canonizer to
states after a transition. This is what we call a c-reduction.

Definition 8 (c-reduction of a Kripke structure). Let K = (S,→, L,AP)
be a Kripke structure, and let c : S → S be a ∼-canonizer function for some
equivalence relation ∼ ∈ S×S which is a bisimulation on K. We call the Kripke
structure K/c = (S, (→; c), L,AP) the c-reduction of K, where the composed
transition relation →; c is defined by →; c = {(s, c(r)) ∈ S2 | s→ r}.
An important result is then that a c-reduction is bisimulation preserving.

Theorem 1 (∼-preservation). Let K = (S,→, L,AP) be a Kripke structure,
let ∼ be an equivalence relation on S that is a bisimulation on K, and let c be
a ∼-canonizer function. Then ∼ is a bisimulation relation between K and K/c.

4 Correct c-Reductions in Rewriting Logic

We now describe a methodology for specifying, proving correct, and analyzing c-
reductions in rewriting logic. In this methodology, correctness proofs and model
checking verification are supported by tools in the Maude formal environment
such as the Maude LTL Model Checker [12], Invariant Analyzer [13], Inductive
Theorem Prover [14] and Church Rosser and Coherence Checker [15].

State Space c-Reductions of Concurrent Systems in Rewriting Logic 437

M.E

���
���

���

���
��� ���
���

��� ���
�����
��

���
�� ���

(i)

��

M.R

���
(v)

�
�

�
�

��	
 �

��

(iii)
��

M.AP

��� ��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���

��

(ii) ��

M+G

��

���
��

(iv)

		

M/G

M

 (vi) ��M/c M+ c���

Fig. 1. Modules and steps

We assume that there is some regularity
inM that we try to exploit by defining an
equivalence (bisimulation) relation ∼ on
states to ease the analysis ofM. We also
assume that the specificationM satisfies
the assumptions in Sect. 2 and is conve-
niently structured (see Fig. 1) into a core
equational part (M.E), and its extension
with state predicate functions that define
the atomic propositions (M.AP) and be-
havioral rules (M.R). Such modular struc-
ture is very natural and easy to achieve, and facilitates our methodology. Fig. 1
schematizes our methodology by identifying the main theories (or modules), their
incremental construction via extensions (triple arrows) or refactoring (dashed ar-
rows), and the modules involved in each step (dotted arrows). In particular, our
methodology consists in the following steps: (i) specify and verify the equivalence
relation ∼; when the equivalence ∼G is induced by a group G, specify the group
action that induces ∼G in a moduleM+G and verify that it is indeed a group
action (Sect. 4.1) which ensures ∼G to be an equivalence relation; (ii) verify that
∼ preserves the state predicates AP (Sect. 4.2) by analyzing their invariance un-
der an auxiliary theoryM/G that models group actions; (iii) verify that ∼ is a
bisimulation (Sect. 4.3) by checking a coherence-like property between the rules
of M.R and those of M/G; (iv) define a canonizer c in a module M + c and
show it to be a ∼-canonizer (Sect. 4.4); (v) build the c-reduction M/c of M
(Sect. 4.5), and (vi) useM/c for model checking analysis purposes. Our methol-
ogy then ensures that any CTL* property ϕ holds on M/c if and only if it
holds onM, sinceM/c has been proved to be a correct c-reduction ofM, and
therefore bisimilar toM.

Some of the above steps are independent or apply at different levels of abstrac-
tion, so that they act as building blocks to be re-used as needed. For instance,
verifying a c-reduction strategy does not require performing all the verification
steps if it is based on a state equivalence that has been already proven to be cor-
rect. In practice, bisimulation relations and their canonizers need not be defined
and proven correct for every system, as there will be classes of systems for which
they can be specified once and for all. In such cases, one can define c-reductions
as theory transformations for wide classes of examples corresponding, for in-
stance, to certain permutation groups, or to other useful equivalence relations
besides the symmetry reduction case. In Maude this can be done by exploiting
reflection, so that the c-reduction is automatized as a function at the metalevel,
possibly after checking some proof obligations. Our current prototype [7] applies
some generic c-reductions to any object-based module.

Even though in some of the steps of our methodology we focus on c-reductions
based on group actions, the c-reduction technique, in particular steps (v-vi), is
more general and allows arbitrary canonizers. We focus on group actions to
illustrate the ideas and the semi-automatic correctness checks (steps (i)-(iv))

438 A. Lluch Lafuente, J. Meseguer, and A. Vandin

with a simple example. More substantial examples can be found in [7]; several
of them are mentioned, together with detailed performance experiments and
comparisons with other tools and methods in [8, Sect. B].

4.1 Specifying and Verifying Group Actions

We give a simple method to equationally specify group actions and verify their
correctness in terms of a set H of generators only, without having to explicitly
define the group G generated by H . The key ideas, explained in detail in [8,
Sect. E], consist on: (a) “uncurrying” the desired group action function �·� :
G −→ (State→ State) as a function �·� : G × State −→ State; (b) choosing
a subset H ⊆ G that generates G as a monoid; and (c) specifying the inverse
i(g) = g−1 of each generator g ∈ H as a product of generators by a function
i : H → H∗, where H∗ is the free monoid on the alphabet H .

The trick is that, after equationally specifying steps (b) and (c), G needs not
be explicitly defined : it is enough to specify the action of the generators by a
function �·� : H × State→ State, which extends uniquely to a monoid action
�·� : H∗ × State → State satisfying for each u ∈ State, g ∈ H , w ∈ H∗ the
recursive equations: �ε�u = u and �wg�u = �w�(�g�u). Then it is easy to prove
(see [8, Sect. E]) that the only possible group action �·� : G × State → State

extending �·� : H × State→ State exists if and only if the following equalities
hold for each generator g and each state u: �g�(�g−1�(u)) = �g−1�(�g�(u)) = u.
Then G needs not be explicitly specified, because we can safely replace G by the
group H∗/i = H∗/{g · i(g) = ε | g ∈ H}, so that ∼G=∼H∗/i, and the group
action �·� : G × State→ State can be replaced by the simpler monoid action
�·� : H∗ × State→ State.

The following definition captures (a) and (b), where we assume that H has
been equationally specified by a new sort H , and then H∗ has been specified by
instantiating a parameterized module List [X] to the instance List [H].

Definition 9 (group pre-action specification). Let M = (Σ,E ∪ A,R, φ)
be the rewrite theory under study with designated State sort. A group pre-action
on M is an equational theory M +G = (Σ ∪ ΣG, E ∪ EG ∪ A, ∅, φ) which is a
protecting extension of the equational part ofM,M.E, where ΣG and EG extend
the equational theoryM.E with a sort H, a sort H∗ of lists of elements in H (i.e.
the module List [H] is protected inM+G), a function �·� : H×State→ State

recursively extended to a monoid action �·� : H∗× State→ State as explained
above, and a function i : H → H∗.

The proof obligations that need to be verified to show that a group pre-action is
a group action are as follows:

Proposition 1 (correctness criteria for group actions). Let M + G =
(Σ ∪ΣG, E ∪EG ∪A) be a group pre-action onM. Then in the inital algebra of
M+G the function �·� : H×State→ State uniquely extends to a group action
of H∗/i on State if and only if the following two equations hold inductively in
such an initial algebra: (i) (∀g : H,u : State) �g�(�g−1�(u)) = u, and (ii)
(∀g : H,u : State) �g−1�(�g�(u)) = u.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 439

Using the above implicit definition method and checking the correctness cri-
teria in the above proposition one can equationally define group actions and
prove their correctness by inductive equational reasoning. In particular, this can
be done for any group action of interest, defining symmetries between states,
including the full and rotation symmetries that have been identified and thor-
oughly studied in the past. Note that sometimes (e.g. transpositions) i(g) = g,
so that i needs not be defined explicitly, because it is the identity function. The
action function �·� : H × State→ State can be very easily specified in Maude,
by topmost equations relating two State-sorted terms of the form [[g]]({t})
= {t’}, for (patterns of) elements g ∈ H .

Inductively showing that the equations (i) and (ii) in Proposition 1 are sat-
isfied can usually be done easily by structural induction on the algebraic struc-
ture of states. For instance, to check that in our running example full sym-
metries yield a group action, all we have to do is to prove the equality �i ↔
j�(�i ↔ j�({t})) = {t}, i.e. that applying the same transposition of i and j
(denoted i ↔ j) twice amounts to applying the identity. This proof can be
done by structural induction on State-sorted terms. For instance, to show that
the property holds in the general case (i.e. [[i<->j]] ([[i<->j]] ({c1 c2}))
= {c1 c2}), we apply the equations implementing the group action (namely
teq1, teq3) to obtain {[[i<->j]] ([[i<->j]] (c1)) [[i<->j]] ([[i<->j]]

(c2))} = {c1 c2} and conclude the proof by applying induction.4

Once proved thatM+G correctly specifies a group action, we can conclude
that the induced relation on states ∼G is actually an equivalence relation. In our
example, we have an equivalence relation induced by object permutations.

4.2 Checking that ∼ Preserves Atomic Predicates

To prove that the equivalence ∼G induced by the action of group G preserves
the atomic propositions AP we proceed as follows. First, we define a rewrite
theoryM/G for the sole purpose of analysis. The theoryM/G is a protecting
extension ofM+G that introduces some rewrite rules to “move” inside orbits.

Definition 10. LetM+G = (Σ∪ΣG, E∪EG∪A, ∅, φ) be the theory specifying
the action of a group G with generator H ⊆ G on the states of a theory M =
(Σ,E∪A,R, φ). Then, the theoryM/G is defined asM/G = (Σ∪ΣG, E∪EG∪
A,RM/G, φ), where RM/G = {{t} => [[g]]({t})) | g ∈ H}.

In words, we replace the rules ofM by rules that move from a state u to a state
v obtained by applying a generator to u. If H is infinite, RM/G is also infinite.
However, in practice we can often find a finitary reformulation of RM/G, because
RM/G can often be expressed very concisely using patterns for the elements in H .
For instance, the module BANK/PERMUTATION of our running example contains
just two rules: rl { < i | x > < j | y > } => { [[i<->j]] (< i | x >

< j | y >) } and rl { < i | x > < j | y > c1 } => { [[i<->j]] (< i

| x > < j | y > c1) } to model transitions transposing two arbitrary objects.

4 For the full proof see [8, Sect. C].

440 A. Lluch Lafuente, J. Meseguer, and A. Vandin

It is easy to see (by the properties of the generators of a group) that two states
are reachable inM/G if and only if they are in the same orbit, i.e. that for any
two states u, v we have the equivalence: u ∼G v ⇔ u →∗

RM/G
v. Therefore,

proving that a predicate p ∈ AP is preserved by ∼G, i.e. that for each pair of
states u, v ∈ TStateE/A

u ∼G v implies p(u) = p(v), is equivalent to proving that
p is stable under M/G, i.e. M/G |= (p ⇒ �p), where � denotes the always
operator of LTL.

To prove stability we need only to focus on the positive equations defin-
ing when p holds, which we assume are of the form p({t}) = true, or
p({t}) = true if cond, with cond a condition. In our example, the predicate
some-message characterizing states in which there is at least one message around
for some existing object is defined by the equations eq some-message(< i |

x > credit(i)) = true and eq some-message(< i | x > credit(i) c1)

= true.
Under the assumptions that: (i) the constructors ofM.E are free modulo the

axioms A, and (ii) the terms t in predicate equations p({t}) = true, and the
left-hand sides of rules inM/G are constructor terms, we can use the results in
[16] to reduce provingM/G |= (p⇒ �p) to the following proof obligations:

Proposition 2 (predicate preservation through stability). LetM/G the
auxiliary rewrite theory of Definition 10 and M satisfy assumptions (i)–(ii)
above. and let p be an atomic proposition defined in M.AP by positive equa-
tions of the form described above. Then, p is preserved by ∼G iff for each rule
{t’} => {t’’} ∈ RM/G, each equation p({t}) = true in M.AP , and each
A-unifierϑ5, we can prove p({ϑ({t’’}}) = true.

Proposition 2 is very useful in practice, since we can use the Invariant Ana-
lyzer [13, 16] (InvA) to automate a good part of the effort of proving stabil-
ity, leaving the remaining proof obligations for the Maude inductive theorem
prover [14]. For example, the above mentioned proposition can be shown to be
invariant under object permutations by InvA in a fully automatic way.

4.3 Checking that ∼ is a Bisimulation

Once the state relation ∼ we want to exploit has been shown to preserve the
atomic propositions of interest, we have to check that ∼ is a bisimulation.

{θ(t)}
M/G

��

M
�� {θ(t’)}
M/G ∗��

{θ(t’’’)} M
�� {w}

In the case of an equivalence relation∼G induced by
a group G, proving that ∼G is a bisimulation amounts
to showing joinability of suitable “critical pairs” be-
tween the state transition rules {t} => {t’} in the
rule setM,6 and the rules {t’’} => {t’’’} ofM/G.
Indeed, bisimulation is ensured if we prove that for all ground A-unifiers θ be-
tween t and t’’ and each corresponding critical pair denoted with ordinary
arrows in the diagram on the right, there is a rule R giving us a one-step rewrite
{θ(t’’’)} →M {w} for which we can prove: {θ(t’)} →∗

M/G {w}.
5 Mappings of variables into non-necessarily ground terms such that ϑ(t’) =A ϑ(t).
6 The case of conditional rules in M is analogous, using conditional critical pairs.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 441

Proposition 3 (correctness of bisimulation by joinability). Let M be
the rewrite theory under study, with an action of the group G. Then ∼G is a
bisimulation betweenM and itself iff for all rules {t} => {t’} in RM, all rules
{t’’} => {t’’’} inM/G, and all ground A-unifiers θ between t and t’’ there
is a state {w} such that {θ(t’)} →∗

M/G {w} and {θ(t’’’)} →M {w}.

The above proposition requires considering the set of all ground A-unifiers which
may be infinite. Fortunately, we can instead use A-unifiers with variables and, in
particular, the most general ones. Since each ground A-unifier is an instance of a
most general one, if we can prove the conditions in Proposition 3 for the finite set
of most general A-unifiers, then we have proved bisimilarity. However, using the
most general A-unifiers may not always automatically prove bisimilarity: some
inductive joinability proof obligations may still be left.

That is, the use of most general A-unifiers yields the following sound and easy
method to automate the proof. First, we use the Maude A-unification command
to find the most general A-unifiers ϑ between {t} and {t’’}, respectively the
left-hand-sides of each rule {t} => {t’} ofM, and each rule {t’’} => {t’’’}
of M/G (after a renaming of variables to ensure that they have no variables
in common). Second, for each such A-unifier ϑ we can use the Maude search
command to determine all possible 1-step rewrites {ϑ(t’’’)} →M {w}. Note
that for each ground instance s of {ϑ(t’’’)} the obtained rewrite steps corre-
spond to some of the possible transitions outgoing from state s. Last, we can use
the search command again to check if at least one of such obtained terms {w}
can also be reached from {ϑ(t’)} inM/G. For example, applying this method
to our running example yields six unifiers in the first step, each requiring one
reachability check that is efficiently solved by the search command of Maude.
Proposition 4 summarizes the method.

Proposition 4 (soundness of the bisimulation check). Let M be the
rewrite theory under study and ∼G an equivalence on states induced by the ac-
tion of a group G. Then ∼G is a bisimulation between M and itself if for each
rule {t} => {t’} in M, rule {t’’} => {t’’’} in M/G, and most general
A-unifier ϑ between t and t’’, there is one state {w} with {ϑ(t’’’)} →M {w}
for which we can show {ϑ(t’)} →∗

M/G {w}.

4.4 Defining and Verifying Canonizer Functions

The next step is to define canonizer functions c : State→ State in a protecting
extensionM+c of the rewrite theoryM under study. Note that in order to define
c we may need to define some auxiliary functions (e.g. the ordering relations used
in symmetry reduction to determine orbit representatives).

Definition 11 (c-extension of a rewrite theory). LetM = (Σ,E∪A,R, φ)
be the rewrite theory under study. A c-extension ofM is a protecting extension
of M of the form M + c = (Σ ∪ Σc, E ∪ Ec ∪ A,R, φc) where c ∈ Σc with
c : State→ State, and φc extends φ by making all functions in Σc frozen.7

7 Imposing frozenness on the operators of Σc is needed for the result of [8, Lemma 1].

442 A. Lluch Lafuente, J. Meseguer, and A. Vandin

Many candidate canonizers may exist for a given bisimulation ∼, each leading
to different results in terms of the size of the reduced state space and compu-
tational performance. In any case, all canonizer functions must preserve ∼, i.e.
they must be ∼-canonizers. This may require some theorem proving but it can
be relatively easy to check in most cases, since we can use the equations Ec and
show that each one preserves ∼.

For example, in the case of local reduction strategies [10] for symmetries based
on a group G with generators H ⊆ G, the equations Ec defining c are of the
form c({t}) = c([[g]]({t})) if [[g]]({t})<{t} with g ∈ H, < defining
an ordering relation on states, plus an equation c({t})={t} [owise] to deal
with the case when none of the previous equations is applicable, that is, when
there is no way to transform a state into a smaller equivalent one by applying a
generator (or inverse of a generator). Since such equations define c in terms of
group actions or of the identity function when all conditions fail, preservation of
the equivalence ∼G induced by G is immediate by the very definition of c.

Examples of local search strategies are implemented in our prototype tool [7].
In our running example, we can define such a canonizer as follows:

ceq c({ < i | x > < j | y > c1 })

= c({ [[i<->j]](< i | x > < j | y > c1) })

if i < j /\ x < y .

eq c({c1}) = {c1} [owise] .

A very similar situation is that of enumeration strategies [10], where canonizers
are defined as c({t}) = min{[[f]]({t}) | f ∈ G}. Again, preservation of ∼G

by c follows from the very definition of c. Indeed, for all states u, c(u) will be
necessarily of the form �g1 • g2 • · · · • gn�(u), with each gi being a generator. We
call the equation format described above group application form.

Proposition 5 (group application ∼G canonizers). Let M be the rewrite
theory under study, ∼G the state equivalence induced by a group action, M/G
as in Definition 10, and M + c a c-extension of M such that the equations of
Ec defining c are in group application form. Then, c is a ∼G-canonizer.

In practice, when specifying ∼G-canonizers in the above form, all we have to
check are the executability properties of the equations of M + c: termination,
(ground) confluence and sufficient completeness, plusM protected inM+c, for
which we can use the standard Maude tools.

Note that proving ground confluence of c is not sufficient to show that c is a
strong canonizer. It may still be the case that for some two states u, v such that
u ∼ v we have that c(u) �= c(v). For example, in the case of equivalences ∼G

induced by a group G generated by H ⊆ G as a monoid, to prove that c is a
strong canonizer we also need to show that for all group elements in g ∈ H and
states s we have c(s) = c(�g�(s)). It is easy to see that if this holds, an inductive
argument allows us to conclude c(s) = c(�f�(s)) for all f ∈ G and hence for any
two equivalent states s ∼G s′ = �f�(s). Of course, there are cases in which no
check is needed. For instance, it is well-known that enumeration strategies yield
strong canonizers, while local strategies are not strong in general.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 443

4.5 Defining c-Reductions

The next step is defining a c-reduction ofM as a rewrite theoryM/c. This is
very useful, since then no changes to a model checker are needed to support c-
reductions : we just model checkM/c. We show thatM/c can be easily obtained
by applying a theory transformationM
→M/c defined as follows.

Definition 12 (c-reduction of a rewrite theory). Let M + c = (Σ ∪
Σc, E ∪ Ec ∪ A,R, φc) be a c-extension of M = (Σ,E ∪ A,R, φ) for which c

is a ∼-canonizer of an equivalence bisimulation ∼. We then call M/c = (Σ ∪
Σc, E∪Ec∪A,Rc, φc) a c-reduction ofM, where Rc = {t => c(t’) if cond |
(t => t’ if cond) ∈ R}.
M/c is very much like M, except that each rule t => t’ if cond in R, is
transformed into a rule t => c(t’) if cond, i.e. into a rule where the canon-
izer function c is applied to the right hand side to ensure that canonization is
performed after each system transition. For our running example we obtain, e.g.
a rule: rl { < i | x > credit(i) c1 } => c({ < i | s(x) > c1 }).

This transformation is supported by our prototype [7] for the class of object-
based rewrite theories. Our transformation exploits Maude reflective features: it
is defined by a function that manipulates the meta-representation of the input
theory to be c-reduced.

For some rules in M/c it may be more efficient not to apply the canonizer
after each step. For instance, if we know that the corresponding rule inM will
always result in a canonical state we can save the time of applying the canonizer.

It is trivial to show that M/c is a c-reduction by construction, and in
particular that KM/c = KM/c. It can also be shown that it has good exe-
cutability properties. By the properties required for Ec, it inherits all the prop-
erties of the equational part of M, namely sufficient completeness, confluence
and termination modulo A. Moreover, it can be shown that M/c is coherent
modulo A.

Theorem 2 (executability ofM/c). LetM be the rewrite theory under study,
and let M/c be as in Definition 12. If M + c has good executability properties,
thenM/c also has good executability properties.

The above theorem means that we can use M/c for model checking analysis.
For example, in our running example we can use the Maude LTL model checker
to successfully verify the property ♦�¬some-message (“eventually there will be
no more messages forever”) efficiently. If we explore the whole state space of our
running example using the Maude reachability analyzer we can check that the
state space of the c-reduced system is drastically smaller than that of the original
system. For instance, if we choose an initial state with 4 empty accounts with 4
messages for each, the original state space has 625 states, while the c-reduced
one has only 70.

This is just a simple example: the performance experiments reported in [8,
Sect. B] include examples taken from the literature where the applied c-reductions
provide drastic gains and allow analyzing systems whose original state spaces is
too large to be effectively analyzed.

444 A. Lluch Lafuente, J. Meseguer, and A. Vandin

5 Related Work and Conclusions

Related Work. We briefly comment on some interesting related approaches
besides the ones already mentioned. A complementary line of research focuses on
automatic symmetry detection, proposed for some model checkers, e.g. SPIN [10]
and ProB [17]. Our approach does not forbid (though does not yet provide)
automatically detected symmetries but focuses on user-definable ones, providing
a methodology to check their correctness, with the main advantage being that
we rely on tools and techniques used to perform the verification of the system
itself. A related work is reported in [18] where formal methods are used to prove
the soundness of the reduction techniques of [17].

Interesting are as well other state space reduction techniques, in particular
those already proposed in the setting of rewriting logic and Maude, such as
partial order reduction [19], and equational abstraction [20]. The closest one
is [20], where abstractions are defined equationally. The main difference with
our approach is in the kind of behavioral equivalence considered: equational ab-
stractions yield simulations while we focus on bisimulations. With respect to [19]
our approach is orthogonal and we are hence investigating how to combine them
to improve the efficiency of rewriting-logic based interpreters of programming
languages, in particular those with primitives for dynamic memory allocation.

Conclusions. We have presented c-reductions, a general bisimulation-based re-
duction technique that exploits canonizer functions whenever a bisimulation is
an equivalence relation. The main differentiating features with respect to other
state space reduction techniques are: (i) no changes to the underlying model
checker are required, and reductions are defined using the original system de-
scription language; (ii) model checking and correctness proofs for the reduction
are seamlessly integrated and supported by tools; (iii) semi-automation: both
for applying the reduction and for checking their correctness; and (iv) general-
ity: it subsumes in a uniform way symmetry reduction as well as other kinds of
reductions (e.g. name reuse and name abstraction).

We have presented the basic concepts, described some typical classes of reduc-
tions, and illustrated how they can be analyzed. Our methodology performs a
series of incremental steps Sect. 4.1–4.5, which include checking that the equiv-
alence relation is a bisimulation and that the reduction strategies preserve such
equivalence relation. Even if not presented here, we have performed a set of
experimental results (see [8, Sect. B]) were we have observed a comparable per-
formance with respect to symmetry reduction extensions of mature tools such
as SPIN and performance gains with respect to previous implementations of
symmetry reduction in Maude [6].

The flexibility of our approach has allowed us to define a wide range of re-
ductions. Beyond the classical permutation and rotation symmetries, we have
considered some simple cases of name reuse and name abstraction, which are
crucial to deal with the infinite state spaces of systems with dynamic allocation
of resources. Indeed, compared to the approach presented in [3, 11] we are able to
treat a wider class of systems, where identifiers of symmetric objects can appear

State Space c-Reductions of Concurrent Systems in Rewriting Logic 445

as pointers in attributes of other objects, and with wider classes of symmetries
such as rotational ones. Similar remarks can be made about [6], with respect to
which we offer a wider class of reduction strategies and better performance.

Even though we have emphasized reductions based on group actions, the c-
reduction approach is more general and accepts any possible canonizer function.
Correctness proof methods fully covering the general case should be developed
in future work. A preliminary version of our tool is publicly available [7].

References

1. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated
formal verification. Symmetry 2, 799–847 (2010)

2. Hendriks, M., Behrmann, G., Larsen, K., Niebert, P., Vaandrager, F.: Adding
Symmetry Reduction to Uppaal. In: Larsen, K.G., Niebert, P. (eds.) FORMATS
2003. LNCS, vol. 2791, pp. 46–59. Springer, Heidelberg (2004)

3. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric SPIN. International Journal
on Software Tools for Technology Transfer 4, 92–106 (2002)

4. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Rodŕıguez, D.E.: Combining techniques to reduce state space and prove strong
properties. In: WRLA. ENTCS, vol. 238(3), pp. 267–280 (2009)

7. C-Reducer, http://sysma.lab.imtlucca.it/tools/c-reducer
8. Lluch Lafuente, A., Meseguer, J., Vandin, A.: State space c-reductions of concur-

rent systems in rewriting logic (2012), Full version, eprints.imtlucca.it/1350
9. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. Journal of

Logic and Algebraic Programming 79, 103–143 (2010)
10. Donaldson, A.F., Miller, A.: A Computational Group Theoretic Symmetry Reduc-

tion Package for the SpinModel Checker. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 374–380. Springer, Heidelberg (2006)

11. Bošnački, D., Dams, D., Holenderski, L.: A Heuristic for Symmetry Reductions
with Scalarsets. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp.
518–533. Springer, Heidelberg (2001)

12. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker
and Its Implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS,
vol. 2648, pp. 230–234. Springer, Heidelberg (2003)

13. The Maude Invariant Analyzer Tool (InvA),
http://camilorocha.info/software/inva

14. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. Journal
of Universal Computer Science 12, 1618–1650 (2006)

15. Durán, F., Meseguer, J.: A Church-Rosser Checker Tool for Conditional Order-
Sorted Equational Maude Specifications. In: Ölveczky, P.C. (ed.) WRLA 2010.
LNCS, vol. 6381, pp. 69–85. Springer, Heidelberg (2010)

16. Rocha, C., Meseguer, J.: Proving Safety Properties of Rewrite Theories. In: Corra-
dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011)

17. Spermann, C., Leuschel, M.: ProB gets nauty: Effective symmetry reduction for B
and Z models. In: TASE, pp. 15–22. IEEE Computer Society (2008)

446 A. Lluch Lafuente, J. Meseguer, and A. Vandin

18. Turner, E., Butler, M., Leuschel, M.: A Refinement-Based Correctness Proof of
Symmetry Reduced Model Checking. In: Frappier, M., Glässer, U., Khurshid, S.,
Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 231–244. Springer,
Heidelberg (2010)

19. Farzan, A., Meseguer, J.: Partial order reduction for rewriting semantics of pro-
gramming languages. In: WRLA. ENTCS, vol. 176(4), pp. 61–78 (2007)

20. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theoretical
Computer Science 403, 239–264 (2008)

A Practical Loop Invariant Generation

Approach Based on Random Testing, Constraint
Solving and Verification

Mengjun Li�

School of Computer, National University of Defense Technology,
Changsha, China

mengjun_li1975@yahoo.com.cn

Abstract. Loop invariants play a major role in software verification.
Based on random testing, constraint solving and verification, this paper
presents a practical approach for generating equality loop invariants.
More importantly, we present a practical verification approach of loop
invariant based on finite difference technique. This approach is efficient
since the constraint system is linear equational system. The effectiveness
of the approach is demonstrated on examples.

Keywords: Loop Invariant Generation, Random Testing, Finite
Difference.

1 Introduction

A key problem in automatic software verification system is the inference of loop
invariants. A loop invariant is an assertion that is valid before and after each
loop iteration. Dynamic approach provides ways to discover likely invariants
rapidly. In a nutshell, the dynamic approach consists in testing candidate invari-
ant templates against several program runs, the invariant templates that are not
violated in any of the executions are retained as likely invariants. In dynamic
approach, these provided invariant templates are all linear.

In this paper, we present a practical approach for generating equality loop
invariants using random testing, constraint solving and verification. Given a
template of equality loop invariants, by sufficiently random testing the given
loop, a linear equation constraints system on the unknown coefficients in the
template is established, by solving the equation system, a likely loop invariant
is generated, and its validity is verified by computing its finite differences over
all program transitions.

In our approach, the likely loop invariants is discovered firstly and their va-
lidity is verified secondly, these two steps are disconnected. With this strategy
the constraints system generated is a linear equation system, they can be solved

� This work was supported by the National Natural Science Foundation of China
(Grant Nos. 60703075, 90718017).

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 447–461, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

448 M. Li

n=0;
f=1;
while(f≤N)
{
n=n+1;
f=n*f;
}

Fig. 1. Program factorial.c

efficiently. Our approach differs from other template-based related work, where
discovering loop invariants and verifying their validity are integrated, and non-
linear constraints system is generated. Since many template-based techniques
require solving non-linear constraints, their applicability is limited by the lack
of efficient algorithms for solving such constraints.

More importantly, we present a practical verification approach of equality
loop invariant based on finite difference technique. With this verification ap-
proach, we can prove f − n! = 0 is a loop invariant of the program factorial.c in
Figure.1. Note that f − n! = 0 is not a polynomial loop invariant, to the best of
our knowledge, our work is the first to generate non-polynomial loop invariant.

The rest of this paper is structured as follows: section 2 presents some prelimi-
nary definitions, section 3 introduces our approach on a typical example, section
4 presents a practical verification approach of equality loop invariant based on
its finite difference over all program transitions and presents the algorithm for
automated generating loop invariants, the results of our experiments are shown
in section 5, section 6 discusses the related work, and section 7 concludes this
paper.

2 Preliminaries

Let x1, · · · , xn be program variables, and let x = (x1, · · · , xn).

Definition 1. (Assignment Transition)An assignment transition τ is an assign-
ment of the form x := (f1(x), · · · , fn(x)), where x = (x1, · · · , xn), and f1, · · · , fn
are n functions over program variables x1, · · · , xn.

An assignment transition τ : x := (f1(x), · · · , fn(x)) can be rewritten to an
assertion x′1 = f1(x), · · · , x′n = fn(x), where xi and x′i(1 ≤ i ≤ n) are the pre-
and post- variables of the transition τ , respectively.

In this paper, we focus on the multipath program defined as follows:

Definition 2. (Multipath Program)For variables x = (x1, · · · , xn), a multipath
program with m paths has the form shown in Figure.2, where x0 expresses the
initial value of x, and f j

i (1 ≤ i ≤ n, 1 ≤ j ≤ m) are functions over program
variables x1, · · · , xn.

A Practical Loop Invariant Generation Approach 449

x := x0

while true do
τ1 : x := (f1

1 (x), · · · , f1
n(x))

or
...
or

τm : x := (fm
1 (x), · · · , fm

n (x))
od

Fig. 2. multipath program

The program model in [7] and [8] is also the multipath program.

Definition 3. (Loop Invariant). For a multipath program shown in Figure.2, a
loop invariant is an assertation E(x) = 0 that satisfies the following conditions:

(1) initial condition : E(x0) = 0
(2) iterative condition : the Hoare triple {E(x) = 0}(τ1| · · · |τm)∗{E(x) = 0}holds.

where | denotes the alternation operator, and ∗ denotes the kleene closure oper-
ator in regular expression theory.

In the above definition, τ1| · · · |τm denotes non-deterministic choice between
τ1, · · · , τm, and (τ1| · · · |τm)∗ denotes the set of finite words over the alphabet Σ =
{τ1, · · · , τm}. For convenience, the notation {E(x) = 0}(τ1| · · · |τm)∗{E(x) = 0}
is abused, which denote that {E(x) = 0}w{E(x) = 0} holds for each word w
over the alphabet Σ = {τ1, · · · , τm}.

Intuitively, E(x) = 0 is a loop invariant if and only if the conditions below
are satisfied:

(1) E(x) = 0 is valid for the initial values of the loop variables. Namely, E(x) is
0 whenever x are evaluated at x0. Thus, E(x) = 0 holds at the entry of the
loop.

(2) E(x) = 0 is valid after arbitrary many execution of τ1, · · · , τm in any order,
starting in a state in which the initial values of the loop variable x are x0.
Thus, E(x) = 0 is preserved by any execution of the multipath program.

Definition 4. (Finite Difference). The finite difference of a likely loop invariant
E(x) = 0 over an assignment transition τ is the expression E(x′)−E(x), denoted
by ΔτE(x), where τ gives the value of x′ in terms of x.

Definition 5. The finite difference tree (FDT) of a likely loop invariant E(x) =
0 with respect to transitions T = {τ1, · · · , τm} is defined as follows:

(1) The root is E(x) and the leaves are values 0;
(2) If the tree contains a non-leaf node F (x), then F (x) has m child nodes

Δτ1F (x), · · · , ΔτmF (x).

450 M. Li

Definition 6. Let T be a finite difference tree of a likely loop invariant E(x) = 0
with respect to transitions T = {τ1, · · · , τm}, a node F (x) in T is called a zero

node if F (x) =
∑k

j=0 pj(x)Fj(x), where Fj(x)(j = 0, · · · , k)) is the ancestor node
of F (x) and each Fj(x) satisfies that Fj(x0) = 0(j = 0, · · · , k), each pj(x)(j =
0, · · · , k) is an arbitrary function over variables x1, · · · , xn.

Definition 7. The decidable finite difference tree(DFDT) of a likely loop invari-
ant E(x) = 0 with respect to transitions T = {τ1, · · · , τm} is the finite difference
tree of E(x) with respect to transitions T = {τ1, · · · , τm} with zero nodes as
leaves.

The height of a DFDT is the longest path to a leaf. A finite DFDT is a decidable
finite difference tree with finite height.

For the program factorial.c in Figure.1, the FDT the DFDT of the likely loop
invariant f − n! = 0 with respect to the transition τ : (n, f) = (n+ 1, f ∗ n) are
presented in Figure.3. Note that n(f − n!) is a zero node, although the FDT is
infinite, the DFDT is finite.

f − n!

n(f − n!)

(n2 + n+ 1)(f − n!)
...

(a)The FDT of f − n! = 0

f − n!

n(f − n!)

(b)The DFDT of f − n! = 0

Fig. 3. The FDT and the DFDT of f − n! = 0

3 Motivation Example

We illustrate our approach using the example program cubicroot.c shown in
Figure.4.

The imperative loop implements an algorithm for computing the cubic root
r for a given integer number a, we guess a loop invariant template c1 + c2a +
c3r+c4r

2+c5r
3+c6x+c7s = 0 , where ci(i = 1, · · · , 7) are unknown coefficients.

Then how to decide whether the above loop has a loop invariant in this form or
not, and how to compute the values of the unknown coefficients ci(i = 1, · · · , 7)?

By the definition of loop invariant, all the values of a, r, x, s at the exit of the
loop satisfy the template, for instance, if we have a = 0 at the entry of the loop,
then we have a = 0, x = 0, r = 1, s = 13

4 at the exit, since the values of a, r, x, s
at the exit satisfy the template c1 + c2a+ c3r + c4r

2 + c5r
3 + c6x+ c7s = 0, we

have c1 + c3 + c4 + c5 +
13
4 c7 = 0.

A Practical Loop Invariant Generation Approach 451

x=a;
r=1;
s= 13

4
;

while(x-s>0)
{
x=x-s;
s=s+6*r+3;
r=r+1;
}

Fig. 4. Program cubicroot.c

Sampling m copies ai, ri, xi, si(i = 1, · · · ,m) of values of a, r, x, s, a linear
equation system as follows will be obtained:

⎛⎜⎝1 a1 r1 r21 r31 x1 s1
...

...
...

...
...

...
...

1 am rm r2m r3m xm sm

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5
c6
c7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
With the knowledge of linear equation system, among all the vectors 〈1, ak, rk, r2k,
r3k, xk, sk〉(k = 1, · · · ,m), if there exist l(l > 7) vectors 〈1, aij , rij , r2ij , r

3
ij
, xij , sij 〉

(j = 1, · · · , l) are linear independent, the linear equation system has no solutions.
If there exist seven vectors 〈1, aij , rij , r2ij , r

3
ij , xij , sij 〉(j = 1, · · · , 7) are linear in-

dependent, then the solutions of all the unknown coefficients ci(i = 1, · · · , 7) are
0. And if there exist l(1 ≤ l < 7) vectors 〈1, aij , rij , r2ij , r3ij , xij , sij 〉(j = 1, · · · , l)
are linear independent, then the solutions of the linear equation system are lin-
ear combination of n− l linear independent vectors.

The above observation indicates that if there exist l(l ≥ 7) linear inde-
pendent vectors 〈1, aij , rij , r2ij , r

3
ij
, xij , sij 〉(j = 1, · · · , l) among all the vectors

〈1, ak, rk, r2k, r3k, xk, sk〉(k = 1, · · · ,m), the above loop has no loop invariant in the
form c1+c2a+c3r+c4r

2+c5r
3+c6x+c7s = 0. If there exist l(1 ≤ l < 7) vectors

〈1, aij , rij , r2ij , r
3
ij
, xij , sij 〉(j = 1, · · · , l) are linear independent, then the linear

equation system has solutions, replace the unknown coefficients ci(i = 1, · · · , 6)
in the template c1 + c2a+ c3r+ c4r

2 + c5r
3 + c6x+ c7s = 0 with their solutions,

we obtain a likely loop invariant. Since not all values of a, r, x, s are sampled,
the likely loop invariant may not be a real loop invariant.

We use random testing technique to automatically sample values of a, r, x, s. In
random testing technique, the pseudo random numbers are generated as inputs
of programs. For the program cubicroot.c, we utilize the Mathematica program
cubicroot.m in Figure.5. to random testing and discover likely loop invariants .

In cubicroot.m, the variable sample denotes the number of the generated
pseudo random inputs, and the variable counter denotes the sampling

452 M. Li

number of values of program variables, array1, array2, array3 and array4 are
arrays recording the values of a, x, s, r respectively,RandomInteger[{imin, imax}]
is a function used to generate a pseudo-random integer number in the range
[imin, imax], Table[expr, {i, imax}] is a function used to generate a list of values
of expr when i runs from 1 to imax, Solve[eqns, vars] is a function used to solve
an equation or a set of equations for the variables vars.

In Table 1, the solutions of the linear equation system induced by different
samples are listed. From Table 1, we find the solutions are all equal when the
sampling number counter ≥ 5:

C1 = − 1
4C6 − 1

4C7, C2 = −C6, C3 = 3
4C6

C4 = − 3
2C6 − 3C7, C5 = C6

, where C6, C7 are free variables. Replace the unknown coefficients ci(i = 1, · · · , 7)
in the template c1+c2a+c3r+c4r

2+c5r
3+c6x+c7s = 0 with the stable solution,

we obtain the likely loop invariant C6(− 1
4−a+

3
4r−

3
2r

2+r3+x)+C7(− 1
4−3r2+

s) = 0. Note that C6, C7 are free variables, then − 1
4 − a+

3
4r−

3
2r

2 + r3 + x = 0
and − 1

4 − 3r2 + s = 0 are both likely loop invariants.
Since the likely loop invariant may not be a real loop invariant, further we

Table 1. Solutions

Counter Solutions

4 C1 = − 149328
263

C5 +
597049
1052

C6 − 1
4
C7, C2 = − 6

263
C5 − 257

263
C6,

C3 = − 54307
263

C5 − 216439
1052

C6, C4 = − 6510
263

C5 +
12231
526

C6 − 3C7

5 C1 = − 1
4
C6 − 1

4
C7, C2 = −C6, C3 = 3

4
C6,

C4 = − 3
2
C6 − 3C7, C5 = C6

6 C1 = − 1
4
C6 − 1

4
C7, C2 = −C6, C3 = 3

4
C6,

C4 = − 3
2
C6 − 3C7, C5 = C6

50 C1 = − 1
4
C6 − 1

4
C7, C2 = −C6, C3 = 3

4
C6,

C4 = − 3
2
C6 − 3C7, C5 = C6

100 C1 = − 1
4
C6 − 1

4
C7, C2 = −C6, C3 = 3

4
C6,

C4 = − 3
2
C6 − 3C7, C5 = C6

verify the validity of the likely loop invariants − 1
4 − a+

3
4r −

3
2r

2 + r3 + x = 0
and 1

4 + 3r2 − s = 0. By theorem 1 in section 4, to be real loop invariants, the
likely loop invariants − 1

4 − a+
3
4r−

3
2r

2 + r3 +x = 0 and 1
4 +3r2− s = 0 should

have finite DFDTs.
The finite DFDTs of − 1

4 − a+
3
4r−

3
2r

2 + r3 + x = 0 and 1
4 +3r2 − s = 0 are

presented in Figure 6. By theorem 1, both − 1
4 − a+

3
4r −

3
2r

2 + r3 + x = 0 and
1
4 + 3r2 − s = 0 are loop invariants.

4 Automated Generation of Loop Invariants

Based on the DFDT, the following theorem presents a practical verification
approach for verifying the validity of a likely loop invariant.

A Practical Loop Invariant Generation Approach 453

sample=5;
counter=5;
array1=Array[aValue,counter];
array2=Array[xValue,counter];
array3=Array[sValue,counter];
array4=Array[rValue,counter];
l=1; n=1;
While[n≤sample,
a=RandomInteger[{1, 1000}];
x=a;
r=1;
s=13/4;
While[x-s>0,
x=x-s;
s=s+6*r+3;
r=r+1;
If[l≤counter,

Part[array1,l]=a;
Part[array2,l]=x;
Part[array3,l]=s;
Part[array4,l]=r;
l=l+1,
Break[];];];

If[l>counter,Break[];];
n=n+1];

m=Table[C1+C2*Part[array1,j]+C3*Part[array4,j]+C4*Part[array4,j]̂2
+C5*Part[array4,j]̂3+C6*Part[array2,j]+C7*Part[array3,j]==0,j,counter];
solutions=Solve[m,{C1,C2,C3,C4,C5,C6,C7}];

Fig. 5. Program cubicroot.m

− 1
4
− a+ 3

4
r − 3

2
r2 + r3 + x

1
4
+ 3r2 − s

0
(a)The DFDT of − 1

4
− a+ 3

4
r − 3

2
r2 + r3 + x = 0

1
4
+ 3r2 − s

0

(b)The DFDT of 1
4
+ 3r2 − s = 0

Fig. 6. The DFDTs of the program cubicroot.c

Theorem 1. For a multipath program shown in Figure.2, if there exists a finite
DFDT T of E(x) = 0 with respect to transitions T = {τ1, · · · , τm} and E(x0) =
0, then E(x) = 0 is a loop invariant.

Proof. We simultaneously prove that: for each node F (x) in T , F (x) = 0 is a
loop invariant. We first prove that for a non-leaf node F (x), F (x) = 0 is a loop
invariant.

454 M. Li

We prove the initial condition F (x0) = 0 holds firstly. If F (x) is not a leaf,
then it is an ancestor node of some leaf, then F (x0) = 0.

Secondly, we assume that F (x) = 0 holds after n(n ≥ 0) times execution of
τ1, · · · , τm in any order, and we prove that F (x) = 0 holds after (n+ 1)(n ≥ 0)
times execution of τ1, · · · , τm in any order. If F (x) is not a leaf and τi is executed,
then F (x′) − F (x) = G(x), where G(x) is the child of F (x). If G(x) is not
a leaf, since G(x) = 0 and F (x) = 0 by the assumption, then F (x′) = 0.

If G(x) is a leaf, then G(x) is a zero node, G(x) =
∑k

j=0 pj(x)Fj(x), where
Fj(x)(j = 0, · · · , k)) is the ancestor node of G(x), by the assumption, both
F (x) = 0 and Fj(x) = 0(j = 0, · · · , k) hold, then F (x′) = 0 holds. In both cases,
the iterative condition {F (x) = 0}τi{F (x) = 0} holds.

We conclude that: for each non-leaf node F (x), F (x) = 0 is a loop invariant.

If F (x) is a leaf, then F (x) =
∑k

j=0 pj(x)Fj(x), where Fj(x)(j = 0, · · · , k))
is the ancestor node of F (x), since each Fj(x) = 0 is a loop invariant, then
F (x) = 0 is a loop invariant.

Since E(x) is the root of T , particularly, E(x) = 0 is a loop invariant. �	

By theorem 1 and the DFDT in Figure.3, f − n! = 0 is a loop invariant of the
program factorial.c.

The algorithm for automated generation of loop invariants is described in
Figure.7. In Figure.7, the function randomSampling(P, varList, n) denotes the
multipath program P is random tested n times, and the sampled values of pro-
gram variables in varList are stored in the array valueArray, the function
generatingLinearSystem(valueArray, η) denotes the linear equation constraint
system Ψ is established with the sampling values valueArray and the template
η, the function solvingLinearSystem(Ψ) denotes the linear equation constraint
system Ψ is solved and the solution is P∗, if the solution is 0(denoted by P∗ = 0)
or Ψ has no solution(denoted by P∗ = NULL), then the algorithm reports no

input
P : a multipath program;
η : invariant template with parameters P
h : a threshold

begin
repeat

valueArray := randomSampling(P, varList, n)
Ψ := generatingLinearSystem(valueArray,η)
P∗ := solvingLinearSystem(Ψ)
if P∗ = 0 or P∗ = NULL

return “no invariant for given template”
n++;

until P∗ is stable
if isV alidInvariant(P, η[P∗/P], h) = true
return “invariant:” η[P∗/P]

end

Fig. 7. Algorithm for automated generation of loop invariants

A Practical Loop Invariant Generation Approach 455

invariants for the given template, otherwise the validity of the likely equality loop
invariant η[P∗/P] will be verified by calling isV alidInvariant(P, η[P∗/P], h), if
η[P∗/P] is a real loop invariant, then it is returned as output.

The algorithm for verifying the validity of the likely loop invariant E(X) = 0

isV alidInvariant(P,E(X) = 0, h)
input

P : a multipath program;

E(X) = 0 : a likely loop invariant
h : a threshold

begin

if E(X) has an l(l ≤ h)-height DFDT
return true

else
return false

end

Fig. 8. Algorithm for automated verification of loop invariants

is described in Figure.8. According to theorem 1, the validity of loop invariant is
verified by checking if E(X) has an l(l ≤ h)-height DFDT, when E(X) has an
l(l ≤ h)-height DFDT, the algorithm decides E(X) = 0 is a real loop invariant,
when E(X) = 0 has no l(l ≤ h)-height DFDT, the algorithm decides E(X) = 0
is not a real loop invariant.

5 Experimental Results

We evaluate our approach by generating equality loop invariants for those imper-
ative programs tested in [8]. For each program, we have written a Mathematica
program like cubicroot.m in Figure.5. Provided correct invariant templates and
sufficiently random testings, the likely loop invariants generated by the written
Mathematica programs are all real loop invariants. The validity of all the likely
loop invariants are verified manually. The experimental results are listed in Table
2, the time taken for generating likely loop invariants are listed in the column
labeled by time. The experiment is implemented on a laptop having Intel(R)
Core(TM) M620 2.67GHz CPU and 3G memory.

Except the square root algorithm (Dijkstra,1976), all the tested algorithms in
[8] that could be found by us are tested in the experiment. We now briefly de-
scribe the benchmark programs from Table 2. In most cases, we sample the values
of the program variables after each loop iteration, for the Hardware Integer Divi-
sion algorithm, we sample the values of program variables at the exit of the loop,
because the program variables q and r in the given template are assigned values
at the exit of the loop. In most cases, we use RandomInteger[{1, 1000}] to gener-
ate random inputs for tested programs, for the Fermat’s factorization algorithm
and the Factoring Large Numbers algorithm, we use RandomPrime[{3, 1000}]

456 M. Li

to generate random inputs, because these two programs require the odd integers
as inputs.

The likely loop invariants are verified real loop invariants by checking if there
exists finite DFDTs. For most likely loop invariants, their finite differences over
all transitions are zero, in these cases, it is easily to verify the likely loop invari-
ants are real loop invariants.

For the Wensleys algorithm program, whose multipath program abstraction
is described in Fig.9., the DFDTs of the likely loop invariants are described in
Fig.10. By theorem 1 , the likely loop invariants are real loop invariants.

(a, b, d, y) =: (0, Q
2
, 1, 0)

while true do
τ1 : (b, d) := (b

2
, d
2
)

or
τ2 : (a, y, b, d) := (a+ b, y + d

2
, b
2
, d
2
)

od

Fig. 9. Abstraction of the Wensley’s algorithm program

a−Qy

�
�

�

�
�
�

0 b− dQ
2

�
�

�

�
�
�

− 1
2
(b− dQ

2
) − 1

2
(b− dQ

2
)

(a)DFDT of a−Qy = 0

ad− 2by

�
�

�

�
�
�

− 1
2
(ad− 2by) − 1

2
(ad− 2by)

(b)DFDT of ad− 2by = 0

b− dQ
2

�
�

�

�
�
�

− 1
2
(b− dQ

2
) − 1

2
(b− dQ

2
)

(c)DFDT of b− dQ
2

= 0

Fig. 10. some DFDTs of the Wensley’s algorithm program

For the Extended GCD algorithm program, whose multipath program ab-
straction is described in Fig.11., some DFDTs of the likely loop invariants are
described in Fig.12. By theorem 1 , both the likely loop invariants are real loop
invariants.

The results shown in Table 2 demonstrate that our technique can be utilized
to generate equality loop invariants efficiently.

A Practical Loop Invariant Generation Approach 457

(a, b, p, q, r, s) =: (x, y, 1, 0, 0, 1)
while true do

τ1 : (a, p, r) := (a− b, p− q, r − s)
or

τ2 : (b, q, s) := (b− a, q − p, s− r)
od

Fig. 11. Abstraction of the Extended GCD algorithm program

−b+ qx+ sy

�
�

�

�
�
�

0 a− px− sy

�
�

�

�
�
�

−b+ qx+ sy 0

(a)DFDT of −b+ qx+ sy = 0

a− px− sy

�
�

�

�
�
�

−b+ qx+ sy 0

�
�

�

�
�
�

0 a− px− sy

(b)DFDT of a− px− sy = 0

Fig. 12. some DFDTs of the Extended GCD algorithm program

6 Related Work

Many different approaches have been developed for inferring loop invariants.
These approaches include:

(i)techniques based on abstract interpretation such as [1][2].
(ii)template-based techniques, such as [3][5][6].
(iii)algebraic techniques such as [7][8][10][11][12].
(iv)dynamic methods such as [13][14][15][16].
We discuss each of these four classes in more detail below.

Abstract Interpretation Techniques. Abstract interpretation is, roughly, a
symbolic execution of programs over abstract domains that over-approximates
the semantics of loop iteration. These techniques usually require a fixed point
calculation. And some sophisticated widening and refinement techniques are em-
ployed to capture a precise over-approximation of fixed points. These techniques
efficiently discover linear invariants, such as ±x ≤ c(Intervals), x−y ≤ c(DBMs),
ax+by ≤ c (where a, b ∈ {−1, 0, 1}, and c is an integer)[2], and a1x1+· · ·anxn ≤
c (where a1, · · · , an and c are integers)[1].

Template-Based Techniques. Given an input template (i.e., parameterized
form of invariant) provided by the user, template-based techniques find values
for the parameters such that these instantiated templates correspond to induc-
tive invariants. A method for generating linear invariants is proposed in [3].

458 M. Li

Table 2. Experimental Results

Example Templates Result time(s)

Division
(Dijkstra,1976)

c1 + c2rem+ c3quo.y c4(−rem− quo.y 0.003

+c4x = 0 +x) = 0

Integer Square Root
(Kirchner,1999)

c1a+ c2r
2 + c3r c4(− 1

2
a+ 1

2
r2 − 1

2
r 0.005

+c4x+ c5 = 0 +x) = 0

Integer Square Root
(Knuth,1998)

c1 + c2k + c3j
+c4j

2 + c5m = 0
c3(−1− 2k + j) + c5(
− 1

4
j2 +m− k − 3

4
) = 0

0.01

Integer Cubic Root
(Knuth,1998)

c1 + c2a+ c3r + c4r
2

+c5r
3 + c6x+ c7s = 0

c6(− 1
4
− a+ 3

4
r

− 3
2
r2 + r3 + x) + c7(

− 1
4
− 3r2 + s) = 0

0.006

Sum of Powers n5

(Petter,2004)
c1x+ c2y + c3y

2 + c4y
3

+c5y
4 + c6y

5 + c7y
6 = 0

c7(−6x− 1
2
y2 + 5

2
y4

+3y5 + y6) = 0
0.02

Wensly’s algorithm
(Wegbreit,1974)

c1b+ c2dQ+ c3a+
c4Qy + c5ad+ c6by = 0

c2(−2b+ dQ)+
c4(− 1

2
a+Qy)+

c6(−ad+ by) = 0
0.09

LCM-GCD computation
(Dijkstra,1976)

c1ab+ c2ux+ c3vy c3(−2ab+ ux+ vy) 0.006

+c4 = 0 = 0

Extended GCD
(Knuth,1998)

c1ps+ c2qr + c3+
c4b+ c5qx+ c6sy+
c7a+ c8px+ c9ry+
c10x+ c11as+ c12br+
c13y + c14bp+ c15aq = 0

c3(−ps+ qr + 1)+
c6(−b+ qx+ sy)+
c9(−a+ px+ ry)+
c12(x− as+ br)+
c15(y − bp+ aq) = 0

0.014

Fermat’s factorization
(Knuth,1998)

c1N + c2r + c3u+ c4u
2

+c5v + c6v
2 = 0

c6(4N + 4r + 2u
−u2 − 2v + v2) = 0

0.005

Square Root
(Zuse,1993)

c1q
2 + c2pr + c3a = 0 c3(−q2 + 2pr + a) = 0 0.003

Binary Product
(Knuth,1998)

c1ab+ c2xy + c3z = 0 c3(−ab+ xy + z) = 0 0.006

Binary Product
(Rodriguez-Carbonell
and Kapur,2007b)

c1abp+ c2q + c3xy = 0 c3(−abp− q + xy) = 0 0.006

Binary Division
(Kaldewaij,1990)

c1A+ c2bq + c3r = 0 c3(−A+ bq + r) = 0 0.005

Hardware Integer
Division

(Manna,1974)

c1y2 + c2x2y3 + c3x1y3
+c4y1y3 + c5x2y3y4 = 0

c2(−y2 + x2y3)+
c5(−x1y3 + y1y3+
x2y3y4) = 0

0.001

Hardware Integer
Division

(Sankaranaryanan,2004)

c1y2 + c2x2y3 + c3y1y3
+c4y2y4 + c5y3x1+
c6x1 + c7r + c8x2q = 0

c2(−y2 + x2y3) + c5(
−y1y3 − y2y4 + y3x1)
+c8(−x1 + r + x2q) = 0

0.009

Factoring Large
Numbers

(Knuth,1998)

c1d
2q + c2rd+ c3rpd+

c4dq + c5r + c6n = 0
c6(

1
4
d2q − 1

4
rd+ rpd

+ 1
2
dq − 1

2
r + n) = 0

0.009

A Practical Loop Invariant Generation Approach 459

Given an invariant template with undetermined coefficients, they obtain a set of
non-linear constraints by Farkas lemma. The solutions to the constraints system
yield the invariants. In [4], linear invariant templates (possibly disjunctive) and
a set of second-order constraints are harnessed. The second-order constraints are
converted to conjunctive normal form and reduced to first-order constraints by
Farkas lemma. A satisfiability solver is employed for the first-order non-linear
constraints to yield invariants. In [5], polynomial equality templates are used. By
imposing that the template is invariant, they obtain a system of non-linear con-
straints by means of the Gröbner basis computation algorithm, and solving the
constraints to yield invariants. In [6], the polynomial invariant generation prob-
lem is reduced to solving semi-algebraic systems and invariants are obtained by
solving the semi-algebraic systems with the computer algebra tools DISCOVER
and QEPCAD.

Algebraic Techniques. For programs with affine assignments, an precise in-
terprocedural method for computing bounded degree polynomial equalities in-
variants has been proposed in [10]. They also propose a technique for discovering
all the bounded degree polynomial invariants of programs with polynomial as-
signments and disequality guards in [11].

In [7], it is first shown that the set of polynomial loop invariants has the al-
gebraic structure of an ideal, based on this connection, a fixed point procedure
using operations on ideals and Gröbner basis constructions is proposed to find
all polynomial invariants of simple loops. And it is proved that the fixed point
procedure terminates in at most m + 1 iterations, where m is the number of
program variables.

P-solvable loops are a family of imperative loops, for which test conditions
in the loop and conditional branches are ignored, and the value of each pro-
gram variable is expressed as a polynomial of the initial values of variables,
loop counter, and some new variables where there are algebraic dependencies
among the new variables. For P-solvable loops, a method for generating polyno-
mial equality invariants is proposed and proven to be complete for some special
cases[8]. In the approach, recurrence relations expressing the value of each pro-
gram variable at the end of any iteration are formulated and solved exactly to
yield the closed form for each loop variable. Loop counters are eliminated by
Gröbner basis methods to yield invariants.

Dynamic methods. More recently, dynamic techniques have been applied to
invariant inference. The Daikon approach of Ernst et al. [13] showed that dy-
namic inference is practical and sprung much derivative work (e.g., [14][15][16]
and many others). Just like testing is quite effective and useful in practice, dy-
namic invariant inference is efficacious and many of the likely invariants are
indeed sound.

7 Conclusions

We have presented a practical approach that generates equality loop invariants
using random testing, constraint solving and verification. The main advantage

460 M. Li

of the approach is that it produces linear equation constraints system, and the
approach has no resort to Gröbner basis computing, recurrence relation solving,
or fixed point computation, it is thus applicable to a broad class of imperative
programs.

The main drawback of the method is that it requires the user to specify the
shape of the desired loop invariants.

References

1. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL 1978, pp.
84–96. ACM Press, Tucson (1978)

2. Mine, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

3. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Us-
ing Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

4. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: Gupta, R., Amarasinghe, S.P. (eds.) PLDI 2008, pp. 281–292. ACM Press,
Tucson (2008)

5. Sankaranaryanan, S., Sipma, H.B., Manna, Z.: Non-Linear Loop Invariant Gen-
eration using Gröbner Bases. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp.
318–329. ACM Press, Venice (2004)

6. Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating Polynomial Invariants with
DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer,
Heidelberg (2007)

7. Rodriguez-Carbonell, E., Kapur, D.: Generating All Polynomial Invariants in Sim-
ple Loops. J. of Symbolic Computation 42(4), 443–476 (2007)

8. Kovács, L.: Automated Invariant Generation by Algebraic Techniques for Impera-
tive Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler Uni-
versity Linz (2007)

9. Kovács, L.: Aligator: A Mathematica Package for Invariant Generation (System
Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 275–282. Springer, Heidelberg (2008)

10. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 330–341. ACM Press, Venice
(2004)

11. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

12. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally Analyzing Polynomial
Identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
50–67. Springer, Heidelberg (2006)

13. Michael, D.E., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discover-
ing likely program invariants to support program evolution. IEEE Transactions of
Software Engineering 27(2), 99–123 (2001)

A Practical Loop Invariant Generation Approach 461

14. Csallner, C., Tillman, N., Smaragdakis, Y.: DySy: dynamic symbolic execution for
invariant inference. In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) ICSE 2008, pp.
281–290. ACM Press, Leipzig (2008)

15. Perkings, J.H., Ernst, M.D.: Efficient incremental algorithms for dynamic detection
of likely invariants. In: Taylor, R.N., Dwyer, M.B. (eds.) SIGSOFT FSE 2004, pp.
23–32. ACM Press, Newport Beach (2004)

16. Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written
and automatically inferred contracts. In: Rothermel, G., Dillon, L.K. (eds.) ISSTA
2009, pp. 93–104. ACM Press, Chicago (2009)

ConSMutate: SQL Mutants for Guiding

Concolic Testing of Database Applications

Tanmoy Sarkar, Samik Basu, and Johnny S. Wong

Department of Computer Science, Iowa State University
{tanmoy,sbasu,wong}@iastate.edu

Abstract. Database applications are built using two different program-
ming language constructs: one that controls the behavior of the applica-
tion, also referred to as the host language; and the other that allows the
application to access/retrieve information from the backend database,
also referred to as the query language. The interplay between these two
languages makes testing of database applications a challenging process.
Independent approaches have been developed to evaluate test case qual-
ity for host languages and query languages. Typically, the quality of test
cases for the host language (e.g., Java) is evaluated on the basis of the
number of lines, statements and blocks covered by the test cases. High
quality test cases for host languages can be automatically generated using
recently developed concolic testing techniques, which rely on manipulat-
ing and guiding the search of test cases based on carefully comparing the
concrete and symbolic execution of the program written in the host lan-
guage. Query language test case quality (e.g., SQL), on the other hand,
is evaluated using mutation analysis, which is considered to be a stronger
criterion for assessing quality. In this case, several mutants or variants of
the original SQL query are generated and the quality is measured using
a metric called mutation score. Higher mutation score indicates higher
quality for the test cases. In this paper we present a framework, called
ConSMutate, which guides concolic testing using mutation analysis for
test case generation for database applications. The novelty of the frame-
work is that it ensures that the test cases are of high quality not only
in terms of coverage of code written in the host language, but also in
terms of mutant detection of the queries written in the query language.
We present a prototype implementation of our technique and show its
advantages using two non-trivial case studies.

Keywords: Database Applications, Automatic Test Case Generation,
Concolic Testing, Mutation Analysis.

1 Introduction

Background. Automated test case generation techniques have been proposed
and developed to minimize human effort in testing. Existing approaches [9,17,18]
for test case generation often use block or branch coverage of the application as a
primary criterion for ensuring the quality of the generated test cases. Test cases

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 462–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ConSMutate: SQL Mutants for Guiding Concolic Testing 463

achieving high block or branch coverage certainly increases the confidence on the
quality of the application under test; however, coverage cannot be argued as a
sole criterion for effective testing. Specifically, test cases generated solely on the
basis of coverage criteria may not catch simple errors in application logic; e.g.,
errors may occur due to incorrect usage of relational operators (e.g., < instead
of ≤, = instead of ==).

In such scenarios, mutation testing [15] has been proven effective for assessing
the quality of the generated test inputs. In mutation testing, the original pro-
gram is modified slightly based on typical programming errors (such as those
mentioned above). The modified version is referred to as the mutant. Each mu-
tant is evaluated against the set of test cases to determine if it can be distin-
guished from the original program by the test results. If so, the mutant is said to
be killed. The quality of the test cases is measured by a metric called mutation
score-defined as the ratio between the number of mutants killed and the total
number of non-equivalent mutants (mutants which are not semantically iden-
tical to the actual program). High mutation score implies that that test cases
can be used to identify and gain valuable insights to the existence of typical
programming errors.

Driving Problem. Typically, test case generation relies on ensuring a high
degree of (code, block or branch) coverage, and mutation testing is performed
separately. If the mutation score of the generated test cases is low, new test
cases are generated and mutation analysis is performed again. This results in
unnecessary delay and overhead in identifying the high quality test cases, where
quality is attributed to both coverage and mutation scores.

In this paper, we propose and develop a test case generation technique which
addresses the above problem.

Our Solution. We present a framework, ConSMutate, capable of automatically
generating high quality test cases for database applications. It relies on Concrete
and Symbolic execution of the application program written in host language
(language in which the database application is coded) and usesMutation analysis
of database-queries written in embedded language to guide the generation of
high quality of test cases. At its core, our framework uses Pex [19], a state-
of-the-art dynamic symbolic execution engine (DSE),1 to generate test inputs
for an application program with high code coverage. For every new test case,
we measure the mutation score of the test case. If the mutation score of the
test case is below the pre-specified threshold, our framework analyzes the path
constraints (necessary for coverage) and mutation-killing constraints (necessary
for high mutation score), and uses a constraint solver to automatically identify
a new test case with high quality.

Contributions: The contributions of our work are summarized as follows:

1. To the best of our knowledge, this is the first approach that combines cov-
erage analysis and mutation analysis in automatic test case generation for

1 Our framework is not tightly coupled to the Pex engine; any engine that is based on
concolic testing can be deployed in our framework.

464 T. Sarkar, S. Basu, and J.S. Wong

database applications which involve two different languages: host language
and embedded query language.

2. The impact of our proposed framework is that it reduces the overhead of
high quality test case generation by avoiding test cases with low coverage
and low mutation scores.

3. We evaluate the practical feasibility and effectiveness of our proposed frame-
work by applying it on two real database applications. We compare our
method against Pex [19], a white-box testing tool for .NET from Microsoft
Research, and show that our method generates test cases with higher code
coverage and higher mutation score compared to the ones generated by Pex.

Organization. The rest of the paper is organized as follows. Section 2 presents
a simple example that is used to motivate our work and is used to discuss the
salient aspects of our technique. Section 3 discusses existing work related to our
work. Section 4 constitutes the main body of our paper and discusses in detail
the proposed technique. Section 5 presents empirical evaluation of our technique
followed by future avenues of research in Section 6.

2 Motivating Example

Consider the pseudocode in the above procedure chooseCoffee. It represents
a typical database application; it takes as two input parameters x and y, creating
different query string depending on the valuation of the parameters which guides
the control path in the application. Assume that one of the database tables
coffees contains three entries as shown in Table 1.

Pex generates three test cases, e.g., (0, 0), (11, 0) and (11, 2), taking into
consideration the branch conditions in the application program. The first and
the second values in the tuple represent the valuations of x and of y respectively.
These test cases cover all branches present in the program. However, as the

Algorithm 1. Sample Pseudocode for Database Application

1: procedure chooseCoffee(x, y)
2: String q = “ ”;
3: if x>10 then
4: y++;
5: if y≤ 2 then
6: q = “SELECT cof name FROM coffees WHERE price =” + y + “;”;
7: else
8: q = “SELECT cof name FROM coffees WHERE price ≤” + y + “;”;
9: end if
10: end if
11: if q != “ ” then
12: executeQuery(q);
13: end if
14: return;
15: end procedure

ConSMutate: SQL Mutants for Guiding Concolic Testing 465

Table 1. Table coffees

cof name sup id price
Colombian 101 1
French Roast 49 2
Espresso 150 10

database is not taken into consideration for the test case generation, the test
cases are unlikely to kill all mutants corresponding to the query being executed.
For instance, the test case (11, 0) results in the execution of the query generated
at Line 6.

The executed query

SELECT cof name FROM coffees WHERE price = 1

generates the result Colombian using the coffees table. A mutant of this query

SELECT cof name FROM coffees WHERE price ≤ 1

is generated by slightly modifying the “WHERE” condition in the query (mim-
icking typical programming errors). The result of the mutant is also Colombian.
That is, if the programmer makes the error of using the equal-to-operator in the
“WHERE” condition instead of the intended less-than-equal-to operator, then
that error will go un-noticed if test case (11, 0) is used. Note that there exists
a test case (11, 1) which can distinguish both the mutants from the original
query without compromising branch coverage. We will show in section 4 that
our framework successfully identifies such test cases automatically.

3 Related Work

In recent years, automatic generation of test cases for database application
[9,14,18] has attracted much attention from researchers. There are two main
approaches: generating database states from scratch [9,18] and using existing
database states [14]. The objective of both these approaches is to achieve high
branch coverage.

The above techniques do not consider mutation analysis (also known as muta-
tion testing) as a way to measure the quality of the test cases. However, mutation
testing has been argued to be an effective indicator of quality of test cases [3].
Also, [14] has shown that mutation testing can be superior to common code
coverage in evaluating the quality of test cases.

Mutation testing [8] is a fault-based testing approach. In mutation testing a
large number of alternative programs called mutants is generated by transform-
ing the original code using a set of pre-defined rules (mutation operators) that are
developed to introduce simple syntactic changes based on errors that program-
mers typically make or to force common testing goals. Each mutant is executed
with the test data, and when it produces a different end result (strong mutation
testing [7]) or a different intermediate state (weak mutation testing [10]), the mu-
tant is said to be killed. A test case is said to be effective if it kills some mutants

466 T. Sarkar, S. Basu, and J.S. Wong

that have not yet been killed by any of the previously executed test cases. Some
mutants always produce the same output as the original program, so no test case
can kill them. These mutants are said to be equivalent mutants. After executing
a test set over a number of mutants, the mutation score is defined as the ra-
tio between dead mutants and the number of non-equivalent mutants. Mutation
testing was primarily developed for programming languages like Fortran and
Ada [22]. For database application, SQL mutation operators have been devel-
oped [20] and coverage criteria of isolated SQL statements [21] have been defined
separately. Mutation Analysis is not only used in code-based testing approaches
(white-box testing), but it is also extensively used in formal model-based testing
approaches [1,13]. These approaches are proven to be effective where formal ver-
ification is not feasible and are able to distinguish whether an implementation
refines a faulty specification. Jia and Harmen [11] present a detailed analysis and
valuable insights of current development trends in mutation testing.

In contrast to the above techniques, our proposed method aims to combine the
coverage criteria and mutation analysis in such a way that test cases with high
coverage and high mutation score are generated automatically. The primary chal-
lenge addressed in our work is the consideration of database applications where
the coverage criteria depends on the application language while the mutation
score relies only on the embedded query language.

In this work, we have assumed that a sample/test database table is provided
a priori; therefore, the highest achievable mutation score depends on the ade-
quacy/completeness of the database table. For instance, an empty database table
is unlikely to help in generating test cases with high mutation score (results to
all queries may be empty). It should be noted that a large number of works
[4,5,6,12] are concentrated on identifying the “sufficient” database table for gen-
erating test cases with high mutation score for the database queries. Our work is
orthogonal to these works; however, our method can directly benefit from their
results.

4 ConSMutate Test Case Generator for DB-Applications

Figure 1 presents the ConSMutate framework. It has two main modules, Appli-
cation Branch Analyzer and Mutation Analyzer. The Application Branch An-
alyzer takes the program under test and the sample database as inputs, and
generates test cases and the corresponding path constraints. It uses Pex [19], a
dynamic symbolic execution engine (other engines like concolic testing tools [17]
can also be used), to generate test cases by carefully comparing the concrete and
symbolic execution of the program. After exploring each path, the Mutation An-
alyzer module performs mutation quality analysis using mutation score. If the
mutation score is low, Mutation Analyzer generates a new test case for the same
path whose quality is likely to be high. The steps followed in our framework for
generating test cases are presented in the following subsections.

ConSMutate: SQL Mutants for Guiding Concolic Testing 467

Fig. 1. Framework for ConSMutate

4.1 Generation of Test Cases and Associated Path Constraints
Using Application Branch Analyzer

In the first step, the framework uses the Application Branch Analyzer module
to generate a test case value v and the associated path constraints. It results in
a specific execution path constraint (say, pc) of the application, which in turn
results in a database query execution (if the path includes some query). The
executed query is referred to as the concrete query qc and the same without the
concrete values (with the symbolic state of the input variable) is referred to as
the symbolic query qs. The path constraints refer to the conditions which must
be satisfied for exploring the execution path in the application.

Going back to the example in Section 2, Application Branch Analyzer (Pex
in our case) generates a test case v = (11, 0), i.e., x = 11 and y = 0. This results
in an execution path with path constraints pc = (x > 10) ∧ (y+1 ≤ 2). It also
results in a symbolic query and a corresponding concrete query:

Symbolic qs: SELECT cof name FROM coffees WHERE price = ys
Concrete qc: SELECT cof name FROM coffees WHERE price = 1

where ys is related to program input y as ys = y + 1 at line 6 (see the example
program in Section 2).

4.2 Deployment of Mutation Analyzer

After exploring a path of the program under test, ConSMutate forwards pc, qc,
qs and v to Mutation Analyzer to evaluate the quality of the generated test case
in terms of mutation score.

4.2.1 Generation of Mutant Queries
In Mutation Analyzer, the obtained concrete query qc is mutated to generate sev-
eralmutants qm(s). Themutations are done using pre-specifiedmutation functions
in theMutant Generation module.

It is generally agreed upon that a large set of mutation operators may gener-
ate too many mutants which, in turn, exhaust time or space resources without

468 T. Sarkar, S. Basu, and J.S. Wong

Table 2. Sample mutant generation rules and mutant killing-constraints

Mutation Rule Original Mutant Mutant Killing-constraint
Relational Operator Replacement C1 α C2 C1 β C2 ((C1 α C2) ∧ ¬(C1 β C2))
(ROR),α, β ∈ ROR and α �= β ‖

(¬(C1 α C2) ∧ (C1 β C2)))
Logical Operator Replacement C1 α C2 C1 β C2 (C1 α C2) �= (C1 β C2)
(LOR),α, β ∈ LOR and α �= β
Arithmetic Operator Replacement C1 α C2 C1 β C2 (C1 α C2) �= (C1 β C2)
(AOR),α, β ∈ AOR and α �= β

offering substantial benefits. Offutt et al. [16] proposed a subset of mutation
operators which are approximately as effective as all 22 mutation operators of
Mothra, a mutation testing tool [8]. They are referred as sufficient mutation
operators. In our context, we are specifically focused on SQL mutants. We have
identified six mutation operators by comparing SQL mutation operators devel-
oped in [20] with the sufficient set of mutation operators mentioned in [16]. We
refer to these six rules as the sufficient set of SQL mutation operators, sufficient
to identify logical errors present in the WHERE and HAVING clauses.

ConSMutate uses these mutation operators in generating mutants. It should
be noted here that new mutation operators can be considered and incorporated
in mutation generation module in ConSMutate as and when needed. Table 2
(first three columns) presents three such mutation generation rules for relational,
logical and arithmetic operators. Going back to the example in section 2 one of
the mutants of the symbolic qs is

qm: SELECT cof name FROM coffees WHERE price ≤ ys

In the above transformation, α is “=” (equality relational operator) and β is “≤”
(less-than-equal-to relational operator) as per the rule in the first row, second
and third columns of Table 2.

4.2.2 Identification of Live Mutants
Using the test case under consideration, the live mutants are identified. Live
mutants are the ones whose results do not differ from that of the concrete query
in the context of the given database table. The above mutant qm is live under
the test case v = (11, 0) as it results in a concrete query

SELECT cof name FROM coffees WHERE price ≤ 1

Recall that ys = y + 1 and y = 0 for the test case (11, 0) when the query
is constructed in Line 6 (see program in Section 2). The above query and the
concrete query qc produce the same result for the given database table (Table 1).
Therefore, qm is live under the test case (11, 0).

4.2.3 Generation of Mutant Killing Constraints
A new set of constraints θ is generated in Mutant Killing Constraint Generation
module in two steps:

ConSMutate: SQL Mutants for Guiding Concolic Testing 469

1. Generation of constraint from queries

– the symbolic query qs and its concrete version qc
– the live mutants (qm’s) computed in the previous step
– the concrete and symbolic state of the program inputs which is affected

by the test cases

2. Incorporation of path constraints (pc) to ensure the same path is explored
and therefore the same set of queries are executed

Generation of Constraint from Queries. We proceed by capturing the
concrete and symbolic queries executed in the path explored by the given test
case. This is done using Pex API methods PexSymbolicValue.ToString(..)

and GetRelevantInputNames(..). We decompose concrete and symbolic query
using a simplified SQL parser and get their WHERE conditions, which we assume
to be in conjunctive normal form.

Identification of Query Conditions. We then identify the conditions that resulted
in a mutant query and their relationship with the test inputs (or program inputs).
We refer to the conditions obtained from the original query as the original query-
condition and, likewise, the conditions obtained from the mutant query as the
mutant query-condition.

For the concrete versions of the original and the mutant query-condition,
we identify the satisfiable valuations of the database attribute. For instance, in
our running example, the original query-condition is price = 1 and the mutant
query-condition is price ≤ 1. We query the database to find one valuation of
price which satisfies these conditions. Note that the same valuation of price
will satisfy both the conditions as we are considering the live mutants. In our
running example, the original query-condition and the mutant query-condition
are satisfied when the value of price is set to 1 (see Table 1).

Using the above and the symbolic versions of the original and the mutant
query-conditions, we identify the relationship between the valuations of database
attributes and the test inputs. For instance, in our running example, the original
symbolic query-condition is price = ys and the mutant symbolic query-condition
is price ≤ ys. We also know that ys is set to y + 1 (y is one of the test in-
puts) and price is set to 1. Therefore, the relationship between the valuations
of the database attribute price and the test input y is 1 = y + 1 in the original
query-condition and 1 ≤ y+1 in the mutant query-condition. We will use these
relationships/conditions for generating the mutant killing constraint; we refer to
them as the original input-condition and the mutant-input condition.

Identification of Mutation Points. The original and the mutant input-conditions
are compared to identify the mutation point (the point at which the original
input-condition and the mutant input-condition differ). Depending on the mu-
tation point, a corresponding mutant killing constraint rule is triggered.

For complex conditions, ConSMutate uses a binary search algorithm to iden-
tify the mutation point. As an example, the original condition (C1 ≤ C2) ∧
(C3 ≤ C4) can have a mutant (C1=C2) ∧ (C3 ≤ C4). ConSMutate first looks at
the outmost level and finds that the logical operators remain the same for both

470 T. Sarkar, S. Basu, and J.S. Wong

of these expressions. It recursively looks at the left and right sub-conditions of
these expressions and identifies the mutation point. In this case the mutation
point is at left-hand side i.e., (C1 ≤ C2) and (C1=C2).

Identifyication of Mutant Killing Constraints for Conditions: Finally, for the
original input-condition and its mutant, a mutant killing constraint is generated
following the rules in Table 2. Satisfaction of the mutant killing constraint results
in an assignment to the test inputs which satisfies (resp. does not satisfy) the
original input-condition and does not satisfy (resp. satisfies) the mutant input-
condition. For instance, for our running example, the mutant killing constraint
is [(1 = y + 1) ∧ (1 �≤ y + 1)] ∨ [(1 �= y + 1) ∧ (1 ≤ y + 1)] (using ROR rule from
Table 2).

Incorporation of Path Constraints. We extract path constraints (pc) from
Pex and conjunct them with the mutant killing constraint generated above to
construct θ. This is necessary to ensure that any satisfiable assignment of test
inputs results in exploration of the same execution path. In our running example,
the path constraint is (x > 10) ∧ (y + 1 ≤ 2). The conjunction result will be θ
as shown below.

θ : (x > 10) ∧ (y + 1 ≤ 2) ∧
[((1 = y + 1) ∧ (1 �≤ y + 1)) ∨ ((1 �= y + 1) ∧ (1 ≤ y + 1))]

4.3 Deployment of Constraint Solver: Finding Satisfiable
Assignment for θ

The constraint θ is checked for satisfiability to generate a new test case. We
use the SMT solver named Yices2 for this purpose. Other high performance
constraint solvers like Z33 can be used in the constraint solver module (Figure 1).
If θ is satisfied, then certain valuations of the inputs to the application are
identified, which is the new test case v′. This new test case v′ is guaranteed to
explore the same execution path as explored due to test case v. Furthermore,
some mutants that were left “live” by v are likely to be “killed” by v′. Therefore,
it is necessary to check whether v′ indeed kills the live mutants; if not, SMT
solver is used again to generate a new satisfiable assignment for θ (including the
negation of the previously generated value), which results in a new test case v′′.
This iteration is terminated after certain pre-specified times (e.g., 10) or after
all live mutants are killed (whichever happens earlier). It should be noted that if
the live mutant is equivalent to the original query in the context of the database
table, then no new test case can differentiate between the mutant and the original
query. Therefore, we use a pre-specified limit to the number of iterations after
which we terminate the process.

Going back to our running example, when the SMT solver generates a satisfi-
able assignment x = 11, y = 1 for the mutant killing constraint θ (see above), the

2 http://yices.csl.sri.com/
3 http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

ConSMutate: SQL Mutants for Guiding Concolic Testing 471

Table 3. Mutants and results for test case (11, 1)

Query Concrete Query Result
qc SELECT cof name FROM coffees WHERE price = 2 French Roast
qm SELECT cof name FROM coffees WHERE price ≤ 2 Colombian,

French Roast

new test case v′ = (11, 1) successfully kills the live mutant qm by distinguish-
ing its result from the original query result, as shown in Table 3. The above
steps (starting from Section 4.1) are iterated to generate new test cases that
explore different execution paths of the program. This iteration continues until
all possible branches are covered following the method used by Pex.

4.4 Correctness Criteria of ConSMutate

Theorem 1. For any path explored by a test case t0 with path constraint pc, if
the symbolic query executed along the path is qs and if the live mutant is qm, the
set of satisfiable assignments for the mutant killing constraint θ as obtained by
ConSMutate is a superset of the test cases that can kill the mutant.

Proof. A test case can be viewed as a mapping of variables (inputs to programs)
to values. We will denote this mapping as t : [x̄
→ v̄], where t is a test case, x̄ is
an ordered set of inputs/variables and v̄ is an ordered set of valuations4.

We prove the above theorem by contradiction. We assume that there exists a
test case t that can kill the mutant qm; however it is not a satisfiable assignment
for θ, denoted by t �|= θ.

As the test case t can kill the mutant qm, it must satisfy the path constraint pc,
which is necessary to explore the path where the original query qs is generated and
executed. Recall that θ contains a conjuct pc. Therefore, t �|= θ1, where θ = pc ∧ θ1.

Next, let us consider the construction of θ1. WLOG, consider that there is
one mutation point in the WHERE clause of qs and qm. Let the WHERE clause be
dbvar R x, where dbvar is a database variable, R is a relational operator and x
is an input to the program (x can be a program variable dependent indirectly
on the program input). Let the mutant qm has the WHERE clause transformed by
altering R to R′. The original test case t0 results in the valuation of x for which
the WHERE clauses of qs and qm, i.e., dbvar R x and dbvar R′ x, produces the
same set of results.

Therefore, θ1 = θ11 ∨ θ12, where

θ11 = (v0 R x) ∧ ¬(v0 R′ x)
θ12 = ¬(v0 R x) ∧ (v0 R′ x)

and t0 : [x
→ v0].
As per our assumption, t �|= θ1, i.e., t �|= θ11 and t �|= θ12. In other words, for

t : [x
→ v], both

4 When the ordered set contains one variable, we denote test case t as t : [x �→ v]

472 T. Sarkar, S. Basu, and J.S. Wong

(v0 R v) ∧ ¬(v0 R′v)
¬(v0 R v) ∧ (v0 R′v) (1)

evaluate to false.

Case-Based Argument: Consider that R is the equality relation =. Let the
mutation rule result in R′ equal to �= relation. It is immediate that at least one
of the formulas in Equation 1 must be satisfiable (specifically the second formula
must be satisfiable when R is = relation). Therefore, our assumption that t is
not a satisfiable assignment of θ is contradicted.

Next consider that the mutation rule resulted inR′ to be ≤ relation. Note that
dbvar = v0 and dbvar ≤ v0 in the WHERE clause of the original and the mutant
queries, respectively, produced equivalent/ indistinguishable results for the test
case t0; on the other hand, dbvar = v and dbvar ≤ v in the WHERE clause of the
original and the mutant queries, respectively, produced non-equivalent/indisting-
uishable results for the test case t. As v �= v0 (in which case the test cases will
become identical), there are two possibilities: v < v0 and v0 < v.

If v < v0, then the WHERE clause conditions dbvar ≤ v would have produced
results equivalent to the ones produced by dbvar = v. This is because dbvar ≤ v0
and dbvar = v0 produce equivalent results. However, as t can kill the mutant, the
results produced by the valuation v for the original and the mutant clauses must
be different. Therefore, v < v0 does not hold. Proceeding further, v0 < v implies
that the second formula in Equation 1 is satisfied, which leads to contradiction
of our assumption that t does not satisfy θ.

Similar contradictions can be achieved, and the theorem statement can be
proved for other operations. �	

5 Preliminary Results

5.1 Evaluation Criteria

ConSMutate can utilize any DSE-based test generation tools (e.g., Pex [19] in
.NET applications) to generate high quality test cases for database applications,
where quality is attributed to both high coverage criteria and high mutation
score. We evaluate the benefits of our approach from the following two perspec-
tives:

1. What is the percentage increase in code coverage by the test cases generated
by Pex compared to the test cases generated by ConSMutate in testing
database applications?

2. What is the percentage increase in mutation score of test cases generated
by Pex compared to the ones generated by ConSMutate in testing database
applications?

We first run Pex to generate test cases (different valuations for program inputs)
for methods with embedded SQL queries in two open source database applica-
tions. We record the mutation score and code coverage percentage achieved by

ConSMutate: SQL Mutants for Guiding Concolic Testing 473

Table 4. Method names and corresponding Program Identifiers

UnixUsage RiskIt
Program Identifier(s) Method(s) Program Identifier(s) Method(s)
1 courseIdExists 10 getOneZipcode
2 courseNameExists 11 filterMaritalStatus
3 getCourseIDByName 12 filterZipcode
4 getCourseNameByID 13 getValues
5 isDepartmentIdValid
6 isRaceIdValid
7 getDeptInfo
8 deptIDExists

Pex. Next we apply ConSMutate to generate test cases for the same methods
and record the corresponding mutation score and code coverage statistics. The
experiments are conducted on a PC with a 2GHz Intel Pentium CPU and 2GB
memory running the Windows XP operating system.

5.2 Evaluation Test-Bed

Our empirical evaluations are performed on two open source database appli-
cations: UnixUsage5 and RiskIt6. UnixUsage is a database application where
queries are written against the database to display information about how users
(students), who are registered in different courses, interact with the Unix sys-
tems using different commands. The database contains 8 tables, 31 attributes,
and over a quarter million records. RiskIt is an insurance quote application which
makes estimates based on users’ personal information, such as zipcode. It has a
database containing 13 tables, 57 attributes and over 1.2 million records7. Both
applications are written in Java with backend Derby. To test them in the Pex
environment, we convert the Java source code into C# code using a tool called
Java2CSharpTranslator8. Since Derby is a database management system for Java
and does not adequately support C#, we retrieve all the database records and
populate them into Microsoft Access 2010. We also manually translate those
original database drivers and connection settings into C# code.

Table 4 presents the methods in each of the test applications. The program
identifiers 1–8 and 10–13 will be used to present our results in the rest of the
sections.

5.3 Summary of Evaluation

Figure 2 shows the results of our evaluation. The graph compares the perfor-
mances of Pex and ConSMutate in terms of achieving quality. The x-coordinates
in the graph represent the Program Identifiers for different methods for Unix-
Usage and RiskIt as mentioned in table 4. The y-axis represents the Quality(%)
in terms of Block Coverage and Mutation Score achieved by Pex and ConSMu-
tate for various program identifiers.

5 http://sourceforge.net/projects/se549unixusage
6 https://riskitinsurance.svn.sourceforge.net
7 http://webpages.uncc.edu/~kpan/coverageCriteria.html
8 http://sourceforge.net/projects/j2cstranslator/

http://sourceforge.net/projects/se549unixusage
https://riskitinsurance.svn.sourceforge.net
http://webpages.uncc.edu/~kpan/coverageCriteria.html
http://sourceforge.net/projects/j2cstranslator/

474 T. Sarkar, S. Basu, and J.S. Wong

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

50

100
Q

ua
lit

y
(%

)

 Program Identifier

 Block Coverage (ConSMutate)
 Block Coverage (Pex)
 Mutation Score (ConSMutate)
 Mutation Score (Pex)

UnixUsage RiskIt

Fig. 2. Comparison between Pex and ConSMutate in terms of quality

5.3.1 Evaluation Criterion 1: Coverage Benefit
Figure 2 (points shown in square) demonstrates the block coverage achieved by
Pex and ConSMutate for both of the applications. Although Pex has achieved
good block coverage as expected, ConSMutate has successfully achieved more
than 10% improvement in coverage in case of various methods (program identi-
fiers in figure 2). The reason for this is that Pex cannot generate sufficient pro-
gram inputs to achieve higher code coverage, especially when program inputs are
directly or indirectly involved in embedded SQL statements. ConSMutate does
not suffer from this drawback, as it considers database states and the results of
generated queries and their execution results.

5.3.2 Evaluation Criterion 2: Mutation Score Benefit
Figure 2 (points shown in triangle) also demonstrates the mutation score achieved
by Pex and ConSMutate for the test applications. The mutation score of test
cases generated by ConSMutate is always higher than the mutation score of test
cases generated by Pex. The increase in mutation score ranges from around 10%
to 50%. We can see less increase in mutation score for methods like getCourse-
NameByID, getDeptInfo in Unix-Usage (program identifiers 4 and 7 in figure 2).
Manual inspection reveals the fact that the improvement in mutation score is
less for methods where the number of generated mutants are fewer than other
methods.

The mutation scores achieved by ConSMutate are sometimes less than 100%,
because the test cases generated by ConSMutate are likely to kill mutants and
therefore may not be always successful. Figure 2 presents the mutation score
achieved by ConSMutate by just performing constraint solving once (see Sec-
tion 4.2). If the mutant is not killed by the test case obtained after one iteration
of constraint solving, additional iterations of constraint solving can be done.

ConSMutate: SQL Mutants for Guiding Concolic Testing 475

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Program Identifier

 Execution Time (Consmutate, UnixUsage)
 Execution Time (Pex, UnixUsage)
 Execution Time (Consmutate, RiskIt)
 Execution Time (Pex, RiskIt)

Fig. 3. Execution time comparison between Pex and ConSMutate

In our evaluation we do not eliminate equivalent mutants. We calculated mu-
tation score as the number of mutants killed divided by total number of generated
mutants. Note that there are a number of equivalent mutants for most of the
cases and if we exclude these equivalent mutants, ConSMutate could achieve
even higher mutant-killing ratios. Manual inspections show that the mutation
scores achieved by ConSMutate are less than 100% because of the existence of
equivalent mutants and because the database tables provided are not always
sufficient to kill all the mutants.

5.4 Execution Time Overhead

As ConSMutate involves the database and utilizes a constraint solver for gener-
ating high quality test cases, there is obviously a penalty in terms of execution
time. In this section, we show that the execution time overhead is not pro-
hibitively large and therefore ConSMutate can be used effectively for test case
generation for practical applications.

Figure 3 compares the execution times of Pex and ConSMutate. The x-
coordinates in the graph represent the different Program Identifiers for Unix-
Usage and RiskIt as mentioned in Table 4. The y-axis represents time. For
UnixUsage, the execution time of ConSMutate is approximately 1.3 times that
of Pex. The increase in time is due to multiple mutant query execution and
subsequent comparison of the large result sets returned by them from the back-
end database (more than 0.25 million records for UnixUsage). Multiple mutant
executions are required in our framework in order to identify live mutants.

In the case of RiskIt, the increase in database size is five-times more than Unix-
Usage. As a result, the total execution time increases by five times (maximum

476 T. Sarkar, S. Basu, and J.S. Wong

for method identified by program 13). Optimizing multiple query execution is
an open research problem and several research works in this area [2,23] propose
effective techniques which can reduce the total execution time by a considerable
amount. Incorporating such techniques in our framework is not in the scope of
our current objective but can be done easily to further improve the execution
time.

6 Conclusion and Future Work

In this paper, we have proposed a framework called ConSMutate that com-
bines coverage analysis and mutation analysis in automatic test case generation
for database applications using a given database state. Our initial experiments
show the effectiveness and practical applicability of the approach. Moreover, our
framework is generic, and therefore new coverage-based and mutation genera-
tions techniques can be easily incorporated and evaluated in the framework.

Killing SQL mutants depends partially on choosing the right test cases and
partially on the current database state. Since the framework relies on identify-
ing important control-path constraints of the application and the constraints for
killing mutants, the constraint generated so far may result in a satisfiable as-
signment that will not be able to kill all the mutants. However, during test case
generation, ConSMutate captures the relationship between the database vari-
ables present in the queries and the program inputs. This can help to generate a
new constraint, table constraint, which is the acceptable set (or range) of values
for the program inputs with respect to the given database state.

As an extension of our current work, we plan to investigate the role of table
constraints in conjunction with path constraints and mutant killing constraints
to identify new test cases. This new expression will allow the constraint solver
to identify test cases whose likelihood of killing mutant is higher. Also, we plan
to investigate the insights provided by these constraints and develop a tech-
nique which will help in obtaining the necessary and sufficient database states
for generating test cases with pre-specified (even 100%) coverage and mutation
scores.

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Efficient mutation killers in
action. In: ICST, pp. 120–129 (2011)

2. Andrade, H., Kurc, T., Sussman, A., Saltz, J.: Optimizing the execution of mul-
tiple data analysis queries on parallel and distributed environments. IEEE Trans.
Parallel Distrib. Syst. 15(6), 520–532 (2004)

3. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for
testing experiments? In: ICSE, pp. 402–411 (2005)

4. Binnig, C., Kossmann, D., Lo, E.: Reverse query processing. In: Chirkova, R.,
Dogac, A., Özsu, M.T., Sellis, T.K. (eds.) ICDE, pp. 506–515. IEEE (2007)

5. Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I., Weyuker, E.J.: An
AGENDA for testing relational database applications. Softw. Test., Verif. Re-
liab. 14(1), 17–44 (2004)

ConSMutate: SQL Mutants for Guiding Concolic Testing 477

6. Chays, D., Shahid, J., Frankl, P.G.: Query-based test generation for database ap-
plications. In: Giakoumakis, L., Kossmann, D. (eds.) DBTest, p. 6. ACM (2008)

7. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11(4), 34–41 (1978)

8. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Trans. Software Eng. 17(9), 900–910 (1991)

9. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: Rosenblum, D.S., Elbaum, S.G. (eds.) ISSTA, pp. 151–162. ACM
(2007)

10. Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Trans.
Software Eng. 8(4), 371–379 (1982)

11. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)

12. Khalek, S.A., Elkarablieh, B., Laleye, Y.O., Khurshid, S.: Query-aware test gener-
ation using a relational constraint solver. In: ASE, pp. 238–247. IEEE (2008)

13. Krenn, W., Aichernig, B.K.: Test case generation by contract mutation in spec#.
Electr. Notes Theor. Comput. Sci. 253(2), 71–86 (2009)

14. Li, C., Csallner, C.: Dynamic symbolic database application testing. In: Babu, S.,
Paulley, G.N. (eds.) DBTest. ACM (2010)

15. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test
data generation. Softw., Pract. Exper. 29(2), 167–193 (1999)

16. Offutt, A.J., Rothermel, G., Zapf, C.: An experimental evaluation of selective mu-
tation. In: Basili, V.R., DeMillo, R.A., Katayama, T. (eds.) ICSE, pp. 100–107.
IEEE Computer Society/ACM Press (1993)

17. Sen, K.: Concolic testing. In: Stirewalt, R.E.K., Egyed, A., Fischer, B. (eds.) ASE,
pp. 571–572. ACM (2007)

18. Taneja, K., Zhang, Y., Xie, T.: MODA: Automated test generation for database
applications via mock objects. In: Pecheur, C., Andrews, J., Nitto, E.D. (eds.)
ASE, pp. 289–292. ACM (2010)

19. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

20. Tuya, J., Cabal, M.J.S., de la Riva, C.: Mutating database queries. Information &
Software Technology 49(4), 398–417 (2007)

21. Tuya, J., Cabal, M.J.S., de la Riva, C.: Full predicate coverage for testing sql
database queries. Softw. Test., Verif. Reliab. 20(3), 237–288 (2010)

22. Voas, J.: Software fault injection: Growing “safer” systems. In: IEEE Aerospace
Conf., vol. 2, pp. 551–561 (February 1997)

23. Weng, L., Çatalyürek, Ü.V., Kurç, T.M., Agrawal, G., Saltz, J.H.: Optimizing
multiple queries on scientific datasets with partial replicas. In: GRID, pp. 259–266.
IEEE (2007)

Demonic Testing of Concurrent Programs

Scott West, Sebastian Nanz, and Bertrand Meyer

ETH Zürich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Testing presents a daunting challenge for concurrent pro-
grams, as non-deterministic scheduling defeats reproducibility. The prob-
lem is even harder if, rather than testing entire systems, one tries to test
individual components, for example to assess them for thread-safety. We
present demonic testing, a technique combining the tangible results of
unit testing with the rigour of formal rely-guarantee reasoning to pro-
vide deterministic unit testing for concurrent programs. Deterministic
execution is provided by abstracting threads away via rely-guarantee
reasoning, and replacing them with “demonic” sequences of interfering
instructions that drive the program to break invariants. Demonic testing
reuses existing unit tests to drive the routine under test, using the exe-
cution to discover demonic interference. Programs carry contract-based
rely-guarantee style specifications to express what sort of thread inter-
ference should be tolerated. Aiding the demonic testing technique is an
interference synthesis tool we have implemented based on SMT solving.
The technique is shown to find errors in contracted versions of several
benchmark applications.

1 Introduction

The spread of multicore architectures has established concurrent programming
as an increasingly indispensable part of software development, and causes an in-
creasing need for suitable development tools. Of particular importance to indus-
trial applications is support for debugging and testing of concurrent programs;
such support is difficult to provide, however, because of the unpredictability and
irreproducibility of thread scheduling, which makes interference between threads
very difficult to discover. These difficulties have not stopped successful research
into concurrent testing tools, e.g. [12,23,19,14,25]. The focus of this work is to
address both the difficulty in finding concurrency bugs, while keeping the process
reproducible and modular.

Modularity and reproducibility are, in particular, difficult challenges, as con-
current programs appear to be inherently non-modular and non-deterministic:
independent threads carefully manipulate shared-data to work towards a com-
mon goal (multiplying a matrix, serving a web-page, etc.). To overcome these
challenges, demonic testing as prescribed in this paper takes regular unit-testing
of routines and contracts, such as preconditions, and uses them to determine
whether a routine will fail in a concurrent setting. A high-level visualization can
be seen in Figure 1, where the program-state is exported during testing to a

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 478–493, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Demonic Testing of Concurrent Programs 479

Fig. 1. Finding dynamic interference

constraint-based synthesis tool along with a precondition. If the synthesis tool
can violate the precondition with the actions of another thread, this indicates
that the routine is vulnerable to interference.

The overall process of demonic testing can be seen in Figure 2. Given a set of
classes and one of their routines s chosen for testing, we perform:

– Class-to-domain transformation: collect all supplier classes for the rou-
tine s, and convert them to an abstract domain description for synthesis
tool.

– Routine instrumentation: instrument the routine s to serialize the state.

These two steps produce a domain description and an instrumented routine
which are passed to the remaining two modules of the system:

– Testing tool This component runs the instrumented version of s with rele-
vant test cases. Test cases may for example be obtained from an automatic
testing tool, such as AutoTest [18].

– DemonL (synthesis) tool This component takes the domain description
as input and dynamic state of s recorded by the testing tool and produces
sequences of interfering actions.

If the demonL tool finds interference for a test case, the interfering instructions
are given. If no such interference can be found then the test succeeds.

An evaluation of the technique shows that it can successfully catch 7 out of
8 selected bugs of the concurrency bug collection [6], which include known bugs
in major applications, such as Apache and MySQL – entirely without threads.
The implementation of the technique is available [11,7].

The remainder of this paper is structured as follows. In Section 2 an overview
of the approach and a running example are introduced. The overall technique
is described in detail in Section 3, including the foundational concepts and the
transformation of classes into the language of the demonL. We evaluate the
technique in Section 4. Discussion on related work follows in Section 5, and we
conclude in Section 6.

480 S. West, S. Nanz, and B. Meyer

Fig. 2. Overview of the system architecture

2 Example Testing Run

To provide intuition for the demonic testing technique, this section introduces
the running example.

The technique works with any language that can carry contracts, including
C# (.NET code contracts) [5], Java (JML) [15], D, and Eiffel [17]; in the following
we use the Eiffel syntax. Routine contracts in Eiffel are specifications in the form
of pre- and postconditions as part of require and ensure clauses, respectively.
The old keyword indicates that the value following it will be considered from
the pre-state of the routine execution.

To apply the technique to non-Eiffel programs, a first step of translation into
Eiffel is currently required. This requirement is a property of our current setup,
not an intrinsic limitation of the method of demonic testing introduced in this
article, which can be applied to any language supporting contracts.

Example. The Eiffel class IDLE_COUNTER in Figure 3 represents a collection of
idle workers. The idle-counter can increase and decrease the number of idle
workers. The wait_for_idle routine will decrease the number of idle workers
if there are any, otherwise it waits on a condition variable until there are more
idle threads. The objective is to test the routine wait_for_idle for usage in a
concurrent setting.

Demonic testing uses the dynamic state at a given program point to analyze
statically whether concurrent interference at that point could cause a fault, see
Figure 1. We consider a fault to exist if the next instruction to be executed could
have its precondition violated due to other threads modifying shared state. Part
of the response from the static analysis is a sequence of instructions that would

Demonic Testing of Concurrent Programs 481

class IDLE_COUNTER
feature
num_idlers: INTEGER
increment
do . . . end

decrement
require
non_zero: num_idlers > 0

do . . .
ensure
num_idlers = old num_idlers - 1

end
end

wait_for_idle
do
if num_idlers = 0 then
mutex.lock
if num_idlers = 0 then
-- release locks on mutex
-- and wait on condition
non_zero.wait (mutex)

end
mutex.unlock

end
decrement

end

Fig. 3. Work distribution example

move the program into a state that would cause a fault. These instructions
represent other threads that may give rise to a failure in the program.

Example. While running a unit-test of the wait_for_idle routine in Figure 3,
the tool instruments the routine wait_for_idle with calls to the synthesis tool.
For a given test case, the tool reports whether or not interference could be found
that will lead to a failure of the routine. In this example, the tool reports that
an extra call to decrement immediately before the existing call to decrement

will cause a violation.

There are two ways to respond to a warning by this method: either to modify the
behaviour of the program so that it is not vulnerable to this kind of interference,
or to refine the specification and only allow certain interference. In the case of
Figure 3, synchronization instructions could be introduced to prevent concurrent
access of the shared data.

Example. The developer can express that the interference found in Figure 3 does
not occur by limiting the interference that can be generated. For example, the
restriction could be: num_idlers >= old num_idlers. This specification disal-
lows the environment from removing idle workers; upon retesting no violations
are reported.

3 Demonic testing

This section presents the founding concepts and implementation of demonic
testing as well as the approach to handling common synchronization primitives
in a thread-free and modular way.

Demonic testing takes classes annotated with traditional contracts and rely-
specifications and uses static analysis in combination with the state from runtime
to indicate where there may be errors due to concurrent executions.

482 S. West, S. Nanz, and B. Meyer

3.1 Application of Rely-Guarantee Reasoning

The rely-guarantee formalism [13] provides a framework to express and reason
about interference in concurrent programs. The interaction between a compo-
nent and its environment is included in the component’s specification, allowing
compositional reasoning about concurrent programs.

The formalism proposes an extension of the usual Hoare logic specification
(P,Q) of a routine s with precondition P and postcondition Q, to a four-tuple
(P,R,G,Q) which additionally contains a rely-condition R and a guarantee-
condition G. The new conditions are binary predicates on states and describe
the state changes that the environment (other threads) is allowed to make. A
routine s satisfies its specification if, starting in a state satisfying P , under
environmental interference adhering to R, s only makes state changes allowed
by G, and finishes in a state satisfying Q.

The demonic testing approach uses a subset of the rely-guarantee concepts,
namely the rely-conditions and the notion of stability, to specify interference
generation for concurrent programs. The rely-specifications are manually added
to the method under test, expressed as a postcondition with the tag rely. The
rely tag indicates that this is only for demonic testing.

The concept of stability allows us to ascertain whether a routine can operate
correctly in spite of the interference described by the rely-specification. Formally,
the stability of a state-predicate p with respect to a rely-condition R is given as:

stable(p,R) ≡ ∀σ, σ′. p(σ) ∧R(σ, σ′)→ p(σ′)

With the notion of the rely-condition one can express the goal of the testing
strategy in the following terms: given the rely-condition R of a routine s un-
der test, try to create interference that would drive the program to violate the
precondition pre of some call in the body of s.

Example. In the running example, we have the following stability formula for
the precondition of decrement:

num idlers(σ(this)) > 0 ∧ num idlers(σ′(this)) ≥ num idlers(σ(this))→
num idlers(σ′(this)) > 0

Demonic testing distinguishes itself from other techniques of program verification
by the usage of a dynamic program state to reduce the need for program speci-
fication. The goal given to the demonL tool is merely the negation of the stable
predicate, ∃σ, σ′. p(σ) ∧ R(σ, σ′) ∧ ¬p(σ′). In demonic testing, this is formula
simplified by two assumptions:

1. that the routine is correct without interference, and
2. that the test-cases driving the routine constitute the inputs on which it is

expected to work correctly.

The first point allows us to assume p(σ), the second allows us to remove σ as a
quantified expression, as it is given by the dynamic state. This leaves solving only

Demonic Testing of Concurrent Programs 483

∃σ′. Rσ(σ
′) ∧ ¬p(σ′), where Rσ is the rely condition specialized to the concrete

program state. Since the rely condition is specialized, it doesn’t have to handle
cases that never arise in normal program execution; this lowers the amount of
required annotation. Additionally, there is no specification required for typically
difficult to specify cases, such as loop variants and invariants.

3.2 The Domain Description Language

Program synthesis constructs a program that satisfies a given specification.
Demonic testing uses program synthesis to construct interference, actions per-
formed by other threads, which indicates errors in concurrent programs.

Facilitating the demonic testing approach are a language and tool: demonL.
In the same spirit as the verification language Boogie [2], demonL serves as an
intermediate language to express the allowable types of interference. The input
to the tool consists of two parts: a domain and a goal.

The domain language is as follows:

Domain ::= [TypeDecl | ProcDecl]∗
TypeDecl ::= type ident {Decl∗}
Decl ::= ident : ident
ProcDecl ::= ident(Decl∗)[: ident]? Pre? Post?
Pre ::= require TaggedExpr∗

Post ::= ensure TaggedExpr∗

TaggedExpr ::= tag : Expr
Expr ::= op Expr | Expr op Expr | Call
Call ::= ident(Expr∗)

where op can be the common infix and prefix operators, with the addition of an
old prefix operator.

To specify the desired initial and final states the following goal language is
used, sharing the same expression and declaration syntax as the domain format.

Goal ::= Decl∗ InitialState FinalState
InitialState ::= initial Expr∗

FinalState ::= final Expr∗

type Idle Counter {num idlers: Integer}
increment (this: Idle Counter)
. . .

decrement (this: Idle Counter)
require
non zero: this.num idlers > 0

ensure
this.num idlers = old this.num idlers − 1

Domain specification

this: Idle Counter

initial
not (this = null) and
this.num idlers = 1

final
not (this.num idlers > 0)

Goal specification

Fig. 4. The IDLE_COUNTER class in demonL

484 S. West, S. Nanz, and B. Meyer

Example. Figure 4 shows a program written in demonL, corresponding to the
class IDLE_COUNTER in Figure 3.

The domain describes the state through data structures, functions on the state,
as well as procedures that transform the state. Procedures and functions are
described with pre- and postconditions. The goal describes the entities in the
system and constraints on the initial state and final state. The final state relates
the initial and goal states through the use of old operator, which references the
values in the initial state.

DemonL constructs an initial state that satisfies the initial constraints, a series
of actions, and a final state that is the result of the actions applied in order, and
also satisfies the final-state constraints.

Example. To find the possible interference that could be used to destabilize
Figure 3, the goal specification found in Figure 4 is used. The goal specifica-
tion contains the negation of the precondition of the decrement operation, here:
this.num_idlers <= 0. However, if the goal includes the rely-condition restrict-
ing the interference to only non-decreasing effects on the number of idle workers,
then the program is correct under the rely assumption.

final
this.num idlers >= old this.num idlers and
not (this.num idlers > 0)

Again we can see the same shape stability criterion, ∃σ′. Rσ(σ
′) ∧ ¬p(σ′).

3.3 Class Transformation

We assume an input (Eiffel) class C has three components: Cname, Cattrs, and
Croutines. Cname denotes the name of the class. The attributes of the class, Cattrs,
are denoted by a : t to indicate an attribute a that has type t. Every routine
s in Croutines has a name, denoted by sname. Also, every routine can have a pre-
and postcondition, denoted by spre and spost.

The translation function to convert class files into demonL domains (see Fig-
ure 2) is shown in Table 1. Note that the presentation of this translation function
uses a pattern-matching style, with the function matching arguments in a top-
down fashion.

– Attributes, along with the class name, are transformed into a datatype in
demonL.

– Routines are transformed using feat directly into demonL procedures with
pre- and postconditions.

The result of a function is denoted by having equality on the Result value, for
example Result = 2 * x. Argument-list transformation of routines and func-
tions explicitly includes the normally implicit self-reference in object-oriented
programs. The translation of expressions is largely straightforward, with the
target of a call moving to the first argument of the call, to coincide with the
argument-list transformation.

Demonic Testing of Concurrent Programs 485

Table 1. Translation function

trans(C) = {feat(C, f) | f ∈ Cfeatures} ∪ {data(C)}
data(C) = type Cname { Cattrs }

feat(C, f) = fname(args(C, fargs))
require expr (fargs, fpre)
ensure expr(fargs, fpost)

args(C,as) = (this : Cname) :: as

expr(args, x.f(as)) = f(expr (args, x), expr (args,as))
expr(args, e1 op e2) = expr (args, e1) op expr (args, e2)

expr(args, op e) = op expr(args, e)

expr (args, v) =

{
v if v ∈ args

this.v otherwise

Example. An example of this translation process can be seen by examining how
Figure 3 is translated to Figure 4.

3.4 Routine Instrumentation

As part of the technique, the routine under test must be instrumented (see
Figure 2). The instrumentation augments the program execution so it is able
to encode the dynamic state of the program for demonL. This procedure is
straight-forward.

3.5 The demonL Tool

The output of the tool is the sequence of actions, and their arguments, that
bring the program from the initial to the final state. Given the specifications
in Figure 4, this would be a call to decrement. If the underlying SMT solver
reports that the constraints are unsatisfiable, this indicates that no sequence
of actions could be found. To avoid long synthesis times, the tool constructs
sequences bounded by number of instructions and number of unique references
for each user-constructed type.

However, because of the constraint-based nature of the encoding, first the tool
solves the interference problem in a single step with no actions to constrain the
transformation. This is equivalent to a proof of instability. If the tool determines
that interference is possible then it tries to obtain the sequence of actions. If, even
without constraints, it cannot find interference then interference is impossible
no matter the actions or bounds given to the tool. This means that demonL’s
determination of the absence of interference is not limited by the inability of the
tool to construct a sequence of appropriate instructions.

Having an intermediate language and tool offers substantial advantages to
the application of the demonic technique: separating the complexity of encoding
the verification conditions from the task of routine instrumentation, and the
possibility to target more than one source language and and more than a single

486 S. West, S. Nanz, and B. Meyer

solver in the back-end. The current technology choices for demonL are Eiffel as
a source language to be translated to demonL, and Yices [9] as the SMT solver.

DemonL is similar to planning tools. In particular it allows the movement from
an initial state to a final state by a series of actions. However, the specification of
the initial state and the actions are permitted to be weaker than generally allowed
by planning tools that use languages such as the Planning Domain Definition
Language (PDDL) [16]. Where PDDL only allows the effect of an action to
be expressed using certain atomic-terms our tool has no such restriction: any
expression can be used to describe the effect of an action. For example, where a
PDDL domain would require a post-condition such as attribute = 5, demonL
is able to deal with with post-conditions such as attribute > 3. DemonL also
does not assume determinism of the actions. These qualities are important when
representing program specification, which are typically incomplete.

DemonL is available for download from [7].

3.6 Handling Synchronization Primitives

The use of threads to construct concurrent programs inherently exhibits two
types of effects:

– the necessary, where a thread contributes a result to another thread, and
– the incidental, which are side-effects of necessary actions, and are also mod-

ifications to shared state.

When we consider concurrent applications as a combination of necessary and
incidental effects, the necessary aspect of concurrency can be seen as a depen-
dency, and the incidental aspect can be seen as interference. One thread depends
on another to provide a computational result in a shared memory location. In
threaded programs, these dependencies are made explicit by a mutex’s lock, or
a condition variable’s wait routine.

When unit-testing a class or method, it is common to provide stub methods
or objects in the place of dependencies. For example, a full database connection
may be replaced with one containing only a small fixed selection of data.

Although mutexes, semaphores, and condition variables carry no explicit in-
variants, their usage in programs is almost always accompanied by an implicit
invariant related to a resource. Consequently, they can have meaningful post-
conditions that we can use to create stubs to test concurrent programs without
requiring threads. They merely need to be replaced with normal function calls
that ensure the same postcondition.

Example. Assume a simple producer/consumer-style program, such as that given
in Figure 5. The call to cond_var.signal in the produce routine has the pre-
condition that the number of products is greater than zero. The counterpart in
the consume routine, the call to cond_var.wait, has the same post-condition:
product > 0.

To create a stub for the call to cond_var.wait, replace the implementation
of wait on the condition variable with

Demonic Testing of Concurrent Programs 487

produce
do
product := product + 1
if product = 1 then
cond_var.signal

end
end

consume
do
if product = 0 then
cond_var.wait

end
product := product - 1

end

Fig. 5. Producer/consumer coordination

wait do product := product + 1 end

The new wait satisfies the invariant for the condition variable, and requires no
other thread to work. The corresponding stub for signal would similarly have
product > 0 as a precondition and an empty body.

4 Experimental Evaluation

It is essential for a testing technique to be judged by its reaction to bugs that
occur in real software. For this purpose, we use a selection of bugs from a con-
currency bug database [26,6] to determine if demonic testing can detect and help
form fixes for the faults. No particular criteria was used to select bugs from the
database, besides striving for an overall diversity of faults. All experiments were
carried out on an Intel Q6600 2.4GHz with 4GB of RAM.

4.1 Conversion from Source Programs

All of our test cases are extracted from real projects and translated into Eiffel.
Since well-known concurrent applications with specifications are rare, we slice
the non-essential elements from well-known code then convert it to Eiffel and add
contracts. This is also done to enable the analysis of bugs from many languages,
while minimizing the differences due to language features. To see an example
of this process, the original Apache C-code for the running example is given in
Figure 6. The main differences are the removal of the recycled pool functionality,
and the removal of the explicit return-value checking of concurrency primitive
(locks, condition variable) operations that is typically handled by exceptions in
languages that support them.

4.2 Results

Table 2 lists the collection of concurrency bugs that we use to perform our
evaluation; the first seven are from the bug database, with the last being a
well-known Java standard library bug. All bugs have been replicated using the
demonic testing technique, with the exception of MySQL #169, as explained in
the discussion at the end of the section. Inspired by the AutoTest approach, work
initially began using Eiffel as the source language; to broaden the scope of the
evaluation we translated bugs from multiple other languages. These examples
are available for download [7].

488 S. West, S. Nanz, and B. Meyer

apr_status_t ap_queue_info_wait_for_idler
(fd_queue_info_t *queue_info,
apr_pool_t **recycled_pool)

{
apr_status_t rv;
*recycled_pool = NULL;
if (queue_info->idlers == 0) {
rv = apr_thread_mutex_lock(
queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
return rv;

}
if (queue_info->idlers == 0) {
rv = apr_thread_cond_wait(
queue_info->wait_for_idler,

queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
apr_status_t rv2;

rv2 = apr_thread_mutex_unlock(
queue_info->idlers_mutex);

if (rv2 != APR_SUCCESS) {
return rv2;

}
return rv;

}
}
rv = apr_thread_mutex_unlock(
queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
return rv;

}
}
apr_atomic_dec32(&(queue_info->idlers));

... recycling of data structures
}

Fig. 6. Original wait_for_idle routine from Apache

Table 2. Bug collection

Annotation
Program/Bug Bug type LOC Lock Simple Complex Time (s)

1 Apache #21285 Atomicity violation 125 0 4 0 0.982
2 Apache #25520 Data-race 101 0 2 0 0.124
3 Apache #45605 Data-race 227 1 4 0 0.217
4 MySQL #169 Atomicity violation 69 – – – –
5 MySQL #644 Data-race 124 0 3 1 0.939
6 MySQL #791 Data-race 113 0 1 0 0.139
7 pBZip2 Order violation 168 1 1 0 2.289
8 Java Vector Data-race 70 0 2 0 0.032

The time taken to generate interference, or determine that none exists, was
measured for the bugs that were successfully tested. The average time taken
was 100ms for each request to demonL. This time is different from the times in
Table 2, as each time in the table may include many requests to demonL.

The rest of this section analyzes the effort required to write the necessary
program contracts, the conversion process, and concludes with a discussion of
the notable properties of the technique.

4.3 Annotation Complexity

In any approach which requires the addition of specification via program an-
notation, the burden that this annotation places on the programmer is highly
relevant. Although difficult to measure objectively, we place the annotations into
three categories:

– Lock – a rely-annotation denoting that a lock protects some shared data
from change by another thread.

Demonic Testing of Concurrent Programs 489

– Simple – a non-concurrency-related program annotation stating a property
of the program that is either a non-null check for a reference, or a linear
equation.

– Complex – a non-linear expression, or a frame condition that is necessary to
limit the scope of an operation.

Table 2 collects the types of annotations required in the test cases. These are
the types of annotations required for demonic testing to give the correct cause of
the bug in the full program in the cases of Apache, MySQL, and pBZip2. In the
Java vector implementation one of many possible causes is given, as it is part of
a library.

4.4 Discussion

The Apache bug #45605 example is notable due to the the double-check present
in the wait_for_idle routine. Separate tools exist to classify some data-races
as “potentially benign” [20]; the double-check pattern is benign and difficult for
pure data-race checkers to deal with. Demonic testing does not require any sec-
ondary approaches to accomplish this: the determination of benign vs. malignant
data-races is based on the program contracts.

The only bug from our test set which could not be discovered using demonic
testing came from MySQL bug #169. The reason is that the invariant of the
program could not be expressed without either ghost variables or artificially
adding more data.

Incorrectly stated rely conditions will lead to both false-positives and false-
negatives, as these essentially form an axiom of the routine to which they belong.
However, as in Table 2, all rely conditions required were of a very plain type,
merely indicating that a certain lock protects some shared state.

The bounded synthesis done by demonL may affect the results by not consider-
ing interference from sequences of instructions that exceed the bound. However,
this bound concerns the search for instruction sequences; there is also an initial
unbounded-verification that demonL performs to determine the stability before
trying to synthesize interference. The worst case is that the tool is unable to find
the sequence of actions but still reports whether interference is possible. All bugs
our evaluation examined required only single-action interference to become ev-
ident. This suggests that many concurrent bugs manifest themselves with little
prompting; and that causing errors to present themselves in threaded executions
is difficult due to scheduling rather than maintaining very complicated invariants.

This experimental method is limited by the number and selection of exam-
ples, it is possible that drawing on a larger pool of examples would offer greater
insight into the properties of demonic testing. However, the small sample size
is mitigated by the wide variety of types of concurrency bugs. Although every
effort was made to make a faithful reproduction of the programs in the tar-
get language, there is the possibility transcription errors while moving between
different programming languages.

490 S. West, S. Nanz, and B. Meyer

5 Related Work

The idea of using routine specifications to discover concurrency errors is not
unique to demonic testing. The Colt tool [24] for Java also uses this approach.
However, their approach is less general, relying hard-coded specification of the
existing Java concurrent collection classes. Demonic testing is more generic as
it works with user-supplied classes and specification, and as well allows finer-
grained control of what constitutes an error through the usage of rely-conditions.

A common practice for testing of concurrent programs is load or stress test-
ing. This frequently proves to be ineffective as in typical testing environments
interleavings might only change marginally from one test run to the other. To
force different interleavings, Edelstein et al. [10] present the ConTest tool, which
combines a technique for deterministic replay of concurrent programs [4] with a
heuristic for varying thread schedules by seeding sleep calls at synchronization
points in the program.

Dynamic model checking [12,19,25] provides a more systematic approach by
systematically exploring all possible thread interleavings. The search is stateless
in that it provides a specialized scheduler that runs the program in its real ex-
ecution environment, and hence can avoid storing concrete program states. The
main problem is to overcome state explosion, which makes brute-force exhaustive
search infeasible for large applications. Techniques such as partial order reduc-
tion as employed in the VeriSoft tool (Godefroid [12]) or preemption bounding
(giving priority to schedules with fewer preemptions) in the CHESS tool (Musu-
vathi et al. [19]) can mitigate the effects of state space explosion only to a small
degree. Wang et al. [25] propose a heuristic where ordering constraints learned
from successful runs are used to guide the selection of interleavings for future
runs. All of the above works focus on varying thread interleavings to produce
undesired behaviour. Demonic testing differs from this approach by considering
the routines in a program and finding sequences which lead to the violation of a
program invariant, avoiding an exhaustive search of interleavings.

A number of works use combinations of dynamic and symbolic analyses to
improve testing of concurrent programs. Sen and Agha [23] use a combination
of concrete and symbolic execution, termed concolic execution, to test multi-
threaded Java programs with the tool jCUTE. Symbolic execution produces
input values that guide the concrete execution to alternate paths; concrete exe-
cution guides the symbolic computation along a concrete path to concretize any
values that cannot be handled by a constraint solver. Besides producing alternate
input values, their technique also systematically generates thread schedule vari-
ations such that potentially all causal structures of a concurrent program can be
explored. Sen [22] introduces RaceFuzzer, an algorithm which uses race warnings
from race detection tools to create problematic interleavings during testing in
order to eliminate false positives automatically. Park et al. [21] propose CTrig-
ger, a testing tool to expose atomicity violation bugs. The tool analyzes traces
to find unserializable interleavings then these interleavings are explored during
testing to expose bugs. Kundu, Ganai, and Wang [14] present a framework that
combines conventional testing with symbolic analysis. A test harness invokes the

Demonic Testing of Concurrent Programs 491

program with random test values. Concrete traces are relaxed into concurrent
trace programs, which capture all linearizations of events that respect the con-
trol flow of the program. The concurrent trace programs are then symbolically
verified. All these techniques combine in some way the dynamic execution of
programs with symbolic computation and verification, and most closely resem-
ble the work presented in this paper. However, they, like all other related work
shown, are not able to achieve truly modular testing of concurrent software; they
all depend on multithreaded executions or traces.

Contracts have been used successfully in unit testing of sequential software [18],
where they can provide test oracles and filter inputs for random testing. Araujo
et al. [1] evaluate the use of contracts in a concurrent setting, based on an ex-
tension of the JML [15] contract semantics. They found contracts as test oracles
effective in finding and diagnosing concurrency-related faults on an industrial
case study in Java/JML. In contrast to this work, demonic testing emphasizes
the use of contracts also for symbolic analyses, in addition to test oracles.

Rely-guarantee reasoning has been applied in testing of concurrent programs.
Dingel [8] uses the state exploration tool VeriSoft [12] for rely-guarantee verifi-
cation of C/C++ components. The component code is executed in parallel with
an environment which generates initial states, monitors the component execu-
tion, and generates responses. If a program step is found to violate one of the
guarantees, a flaw is found. Blundell et al. [3] use labelled transition systems to
model the behaviour of components, whereas demonic testing works directly on
source code. Assumptions on the model-level are used as environments in which
individual components are executed. The execution results in traces which are
in turn checked against the guarantees of the model. Failure of a check suggests
an incompatibility between a model and its implementation.

6 Conclusion

Until recently, the testing of concurrent systems has generally been regarded as
inferior to static approaches. The realization that purely static reasoning also
faces problems of scalability or precision when applied to concurrent systems has
led to a more pragmatic assessment, leaving testing its due place, as evidenced
by the approaches reviewed in the previous section.

Unlike many of these approaches, which are only suitable for testing entire
systems, demonic testing can be applied to the important problem of unit test-
ing for concurrent programs. Through its combination of dynamic and symbolic
techniques, demonic testing provides two significant benefits over other propos-
als. First, it leverages available testing tools for sequential programs, which it
uses as an essential part of its architecture. Second, instead of searching the
state space of thread interleavings, demonic testing uses program synthesis as a
constructive means to find problematic thread interference. If a test fails, a test
case and a problematic sequence of interactions is available for analysis.

492 S. West, S. Nanz, and B. Meyer

Acknowledgments. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291389,
the Hasler Foundation, and ETH (ETHIIRA). Earlier work has also benefited
from grants from the Swiss National Foundation and Microsoft (Multicore award).

References

1. Araujo, W., Briand, L., Labiche, Y.: On the effectiveness of contracts as test ora-
cles in the detection and diagnosis of race conditions and deadlocks in concurrent
object-oriented software. In: Proc. ESEM 2011. IEEE Computer Society (2011)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Blundell, C., Giannakopoulou, D., Pǎsǎreanu, C.S.: Assume-guarantee testing. In:
Proc. SAVCBS 2005. ACM (2005)

4. Choi, J.-D., Srinivasan, H.: Deterministic replay of Java multithreaded applica-
tions. In: Proc. SPDT 1998, pp. 48–59. ACM (1998)

5. Code contracts (2011),
http://research.microsoft.com/en-us/projects/contracts/

6. Collection of Concurrency Bugs (2011),
http://www.eecs.umich.edu/~jieyu/bugs.html

7. Demonic test case downloads (2011),
http://se.inf.ethz.ch/people/west/demonic-cases/

8. Dingel, J.: Computer-assisted assume/guarantee reasoning with VeriSoft. In: Proc.
ICSE 2003, pp. 138–148. IEEE Computer Society (2003)

9. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

10. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for
testing multi-threaded Java programs. Concurrency and Computation: Practice
and Experience 15(3-5), 485–499 (2003)

11. EVE project (2011), https://svn.eiffel.com/eiffelstudio/branches/eth/eve/
12. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Proc.

POPL 1997, pp. 174–186. ACM (1997)

13. Jones, C.B.: Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University (June 1981)

14. Kundu, S., Ganai, M.K., Wang, C.: Contessa: Concurrency Testing Augmented
with Symbolic Analysis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 127–131. Springer, Heidelberg (2010)

15. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes 31,
1–38 (2006)

16. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL: The planning domain definition language. Technical Report
CVC TR-98-003, Yale Center for Computational Vision and Control (1998)

17. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)

http://research.microsoft.com/en-us/projects/contracts/
http://www.eecs.umich.edu/~jieyu/bugs.html
http://se.inf.ethz.ch/people/west/demonic-cases/
https://svn.eiffel.com/eiffelstudio/branches/eth/eve/

Demonic Testing of Concurrent Programs 493

18. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. IEEE Computer 42, 46–55 (2009)

19. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing Heisenbugs in concurrent programs. In: Proc. OSDI 2008, pp.
267–280. USENIX Association (2008)

20. Narayanasamy, S., Wang, Z., Tigani, J., Edwards, A., Calder, B.: Automatically
classifying benign and harmful data racesallusing replay analysis. ACM SIGPLAN
Notices 42(6), 22–31 (2007)

21. Park, S., Lu, S., Zhou, Y.: CTrigger: Exposing atomicity violation bugs from their
hiding places. In: Proc. ASPLOS 2009, pp. 25–36. ACM (2009)

22. Sen, K.: Race directed random testing of concurrent programs. In: Proc. PLDI
2008, pp. 11–21. ACM (2008)

23. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

24. Shacham, O., Bronson, N.G., Aiken, A., Sagiv, M., Vechev, M.T., Yahav, E.: Test-
ing atomicity of composed concurrent operations. In: Proc. OOPSLA 2011, pp.
51–64 (2011)

25. Wang, C., Said, M., Gupta, A.: Coverage guided systematic concurrency testing.
In: Proc. ICSE 2011, pp. 221–230. ACM (2011)

26. Yu, J., Narayanasamy, S.: A case for an interleaving constrained shared-memory
multi-processor. In: Proc. ICSA 2009, pp. 325–336. ACM (2009)

Towards Certified Runtime Verification

Jan Olaf Blech1, Yliès Falcone2, and Klaus Becker1

1 fortiss GmbH, Munich, Germany
{blech,becker}@fortiss.org

2 Université Grenoble I, Grenoble, France
ylies.falcone@ujf-grenoble.fr

Abstract. Runtime verification (RV) is a successful technique to mon-
itor system behavior at runtime and potentially take compensating ac-
tions in case of deviation from a specification. For the usage in safety
critical systems the question of reliability of RV components arises since
in existing approaches RV components are not verified and may them-
selves be erroneous.

In this paper, we present work towards a framework for certified RV
components. We present a solution for implementations of transition
functions of RV monitors and prove them correct using the Coq proof
assistant. We extract certified executable OCaml code and use it inside
RV monitors. We investigate an application scenario in the domain of
automotive embedded systems and present performance evaluation for
some monitored properties.

1 Introduction

Behavioral guarantees are an important prerequisite for using embedded sys-
tems in safety critical environments. Runtime verification [HG05, PZ06, FFM09,
BH11] (RV) has become an important technique to monitor a system’s behavior
at runtime and take compensating actions in case of deviation from a specifi-
cation. In RV, a system is typically extended with instrumentation code that
communicates with a monitor. The monitor may be realized as an external pro-
gram, the monitor is then referred as an outlined monitor. Once an abnormal
behavior is detected, the monitor tries to bring the system into a fail-safe state
using some feedback loop. This increases the confidence to handle system errors
appropriately when the system is running, and, helps discovering them during
testing.

Going one step beyond classical RV: for achieving an even higher level of
confidence the question of whether an RV system itself has been implemented
correctly arises. We address this question in this paper. In particular we guaran-
tee that runtime-monitors do indeed monitor the desired specification and show
the practicability of these runtime monitors for regular properties expressed with
regular expressions.

The described approach targets OCaml based runtime monitors and their
verification using the Coq proof assistant [Coq12]. Coq based runtime monitors

T. Aoki and K. Tagushi (Eds.): ICFEM 2012, LNCS 7635, pp. 494–509, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Certified Runtime Verification 495

can be extracted as OCaml code and verified in the Coq environment. In the
context of this paper, the code that is verified and extracted out of Coq is said
to be certified.

Our approach is suitable for regular expression based properties in the embed-
ded systems domain. As an analyzed and implemented example we are discussing
properties that can be monitored while analyzing the traffic on a bus structure.
This paper aims to demonstrate that certified runtime verification is feasible
and can be used in safety-critical application domains. More precisely, this pa-
per features the following contributions:

– Verified runtime monitors automatically generated out of Coq and a method
to verify regular expression based monitors.

– An OCaml based framework for runtime monitoring and its evaluation.
– An experimental application for monitoring properties inspired by needs

from the automotive embedded systems domain. Furthermore, we present
a description of the ingredients of a certified RV system and dependencies
between different RV components.

The main focus of the experimental application shall demonstrate the possibility
to integrate the approach for real applications in the embedded systems domain
especially in the automotive area. We are not at the stage of deploying a concrete
application in a car. Many parameters are not fixed yet, e.g., the embedded
devices and the exact type of bus. For this reason we evaluate some aspects of
the approach using standard hardware in this paper, but mention the constraints
for real applications in the automotive area.

Paper Organization. This paper is structured as follows. Related approaches are
discussed in Section 2. Section 3 introduces guiding examples from the auto-
motive domain that are regarded throughout this paper. Prerequisites including
definitions on RV correctness are described in Section 4. Our OCaml based run-
time monitors are introduced in Section 5. Section 6 describes runtime monitor
formalization, and correctness proofs. An evaluation including a study on the in-
tegration of our Coq based code is presented in Section 7 and Section 8 features
a conclusion and ideas for future work.

2 Related Approaches

Runtime Verification principles. Over more than a decade, the field of runtime
verification has produced many frameworks dedicated to the verification of the
behavior of monolithic programs w.r.t. user-defined specifications. From an ab-
stract point of view, most of these approaches proceed as follows. Two inputs are
needed: a user-defined specification characterizing some desired or proscribed be-
havior, and an implementation to be runtime-checked. The (abstract) events of
this specification are related to the (concrete) events of the program. An instru-
mentation technique is then used to observe the execution of these events when
the program is executed. The so-called monitor is generated from the specifica-
tion. A monitor is a decision procedure for the specification: it is fed by events
coming from the program and indicates specification fulfillment or violation.

496 J.O. Blech, Y. Falcone, and K. Becker

RV implementations. Many tools have been proposed as implementations of the
existing runtime verification frameworks. A large effort is the Java-MOP line
of work conducted by Rosu et al. (see [MJG+11] for an overview). Java-MOP
uses as input specifications which can be written in different formalisms (e.g.,
LTL, regular expression, context-free grammars). Java-MOP allows to generate
an AspectJ aspect that instruments the underlying program (using weaving) and
embeds the (automatically generated) monitor. Besides its genericity, Java-MOP
is also efficient as demonstrated by experimentation.

On the other hand, a series of tools and approaches are based on the (less
efficient) paradigm of rewriting. These approaches focus on expressiveness of the
specification formalism (rather than the runtime efficiency). A major effort in
this regard is the endeavor conducted by Barringer and Havelund with the tools
Eagle [BGHS04], RuleR [BGHS04, BRH10], LogScope [BGHS10], and Trace-
Contract [BH11]. Eagle handles LTL formulae as input and uses the techniques
of progression that was proposed earlier in planning. RuleR is a more general
system where specifications are directly encoded as a set of rewrite rules. This
confers RuleR the ability to handle very expressive specifications. From an ab-
stract point of view, LogScope can be seen as a variant of RuleR internally
using state-machines. TraceContract is an embedding of LogScope in the Scala
programming language (as an internal domain-specific language).

In addition to these two major research endeavors there are the tools Trace-
Matches [AAC+05], JLO [SB06], and LARVA [CPS09]. TraceMatches is an ex-
tension of AspectJ allowing to write regular expressions over pointcuts. JLO
allows to generate monitors from LTL formulae where events are AspectJ point-
cuts. Finally, LARVA allows to monitor different specification formalisms such as
Lustre and duration calculus. LARVA translates specifications into the so called
dynamic event timed automata and then uses AspectJ to weave the monitor.

Bridging the gap between formalized requirements, monitor specifications and
assuring these properties for an implementation at runtime is addressed in the
MaC framework [LKK+99, KVL+99].

Formal Treatment. As for the formal verification part of the work, a summary of
usages of RV for certification has been proposed by Rushby [Rus08]. Additional
ideas for monitoring systems in the context of certification are stated in [SH11].
Up to our knowledge, we are the first who have actually realized and evalu-
ated certified RV monitors. Moreover, none of the previous tools or framework
contains a certified subset. The presented verification technique, explicitly es-
tablishing a simulation relation that captures characteristics between property
and states of a monitor in Coq, is similar to one of the authors work on compiler
verification [BG11].

3 Guiding Examples

Figure 1 presents an abstract view on a guiding example from the embedded
automotive system domain. There are sensors, a control unit and an actuator

Towards Certified Runtime Verification 497

unit

sensor 1 actuator

control RV
monitor

sensor 2 sensor 3

bus

Fig. 1. An example bus

connected to a bus with with some timing guarantees1. The control unit receives
data from the sensors and processes them. Based on this, the actuator receives
messages from the control unit. Sensor 1 is mandatory, while the other sensors
are optional and can be added later.

The monitor observes the bus. In particular, we are interested whether the
communication with actuator and sensor conforms to a given specified protocol.
If the protocol is violated, the monitor notices this and can trigger a handling
for this problem. However, the error-handling itself is not part of the monitor.
Different kinds of errors due to hardware failures (e.g., bit-shifts, packet loss) or
software errors can occur and need to be detected.

The bus features a time signal every 10 ms. The fact that reasonable data is
sent on the bus by either a sensor, the actuator, or the control unit is abstracted
into events.

In a real system, the first sensor might be a manual control providing a user
interface for a functionality that is realized as an actor, while the two other
sensors might analyze the environment to improve the service quality. With
the advent of real-time operating systems that provide some timing and non-
interference guarantees for parallel execution (e.g., PikeOS [KW]) it becomes
possible to execute the control unit and the monitor in parallel even on the
same processor core. The rate of arriving events is typically in the lower ms
range, while an operating system’s context switch can be typically done in a few
μs.

A special feature of the given example is the ability to add and remove com-
ponents to the IT system of a car during runtime, including connecting and
disconnecting them from a bus. It is especially crucial that some core system
behavior is preserved – and runtime monitored in this process. Two example
applications and properties are regarded in the scope of this paper.

3.1 A Rain-Sensor Application

A Rain-Sensor senses whether it is raining and determines the rain intensity. It
sends the calculated intensity value to a Wiper-Controller, which analyses the
value and sends control values to a Wiper-Actuator. Communication is done us-
ing the bus. The communication between system components is shown in Fig. 2.

1 cf. existing bus systems used in the automotive area with timing guarantees in the
embedded domain: FlexRay [FRay05], TTEthernet [SKS10] or TTP [Kop93].

498 J.O. Blech, Y. Falcone, and K. Becker

Fig. 2. Example application

For the given example we have realized the communication between sensor and
controller in the following way: The Rain-Sensor encodes the rain intensity in
10 single event bits, followed by a parity event bit P . Each event can be either
0 or 1. The parity bit is included to be able to recognize if one bit of the event
stream flips during transmission. The more 1s are sent, the higher is the rain in-
tensity. After this sequence of 11 events has been sent, the next sequence is sent,
transmitting a new value of rain intensity. The corresponding regular expression
is: 1(1)n(0)m0P such that n+m = 8 and P ∈ {0, 1}.

The regular expression is checked by a monitor. In addition to this, the mon-
itor checks the parity bit P . If the number of previous 1s was odd (n was even)
P shall be 1. In addition, the monitor can check another consistency condition
that the rain-intensity (number of 1s) in two succeeding sequences should only
change by an amount of at most 2. This consistency condition reflects that the
rain amount is unlikely to change much in the very short time interval of 10 ms.
For instance, the sequence 11100000001 can be followed by 11111000001, but
not by 11111111000.

Regarding the communication between controller and actuator: The controller
counts the number of 1s (denoted #1) received from the Sensor per sequence
(without counting the parity) and sends a control value C ∈ {0, 1, 2} to the
actuator after each sequence. If 0 < #1 ≤ 2 : C := 0; if 3 ≤ #1 ≤ 6 : C := 1;
otherwise C := 2. The value of C denotes the speed of the wiper. For instance,
if there is no rain #1 = 1 and C = 0 denote that the wiper is off.

Due to the constraint that #1 change at most by 2 in two succeeding se-
quences, the sequence of sent control values C is also constrained. After C was
0, C cannot become 2, but only 0 or 1. Assuming that C = 0 is the start and
end state, the possible sequences of C can by expressed by 0+(1+(2+1+)∗0+)∗.
This can be verified during runtime by a second monitor.

The monitors observe if both the sequence of received values by the controller
and the sequence of sent control values are valid.

In addition to properties specified by regular expressions, here we also ob-
serve behavior that is not specified in the regular expression itself: we check the
”maximal rain-intensity variation by two” property between two signals and the
parity bit. Such properties are checked by our monitors and can be specified
in Coq and generated out of the Coq specification. However, only the regular
expression part is verified. It is important for us, that our framework supports
monitors that are able to observe additional constraints – thus, these monitors
are more restrictive than the regular expression. This enlarges the monitor but

Towards Certified Runtime Verification 499

S1

ErrorState2State1
TT

S1

Fig. 3. Automaton for property 1

since these aspects may be less critical they do not have to be verified. In the
given example, however, it would be possible to specify the extra constraints by
large regular expressions.

3.2 Timing-Properties

Our bus systems typically features some time events. This is used to evaluate
properties requiring that certain signals arrive in certain time intervals. The bus
systems features the following events:

Σ = {tick(T), actuator(A), sensor 1(S1), sensor2(S2), sensor3(S3)}

We assume the requirement that between two time ticks (10 ms interval) there
is at least one sensor1 event and the actuator status should be updated. Fur-
thermore, either sensor2 or sensor3 should send a message event between two
ticks.

The formalization of the previous requirement is ensured by the conjunction
of the three following properties expressed with regular expressions:

1. φ1 = (S1 + T.S1)
∗.(T + ε)

2. φ2 = (A+ T.A)∗.(T + ε)

3. φ3 = ((S2 + S3) + T.(S2 + S3))
∗.(T + ε)

When abstracting from the other events, the first property can be realized by
an automaton as depicted in Fig. 3.

4 Prerequisites

We now introduce prerequisites for our RV framework: a formalization of the
notions of correctness of RV and the minimal concepts of regular expressions
used to state properties.

4.1 A Formalization of RV Basics

In our RV scenario we distinguish a syntactical representation (e.g., the source
code) of a system s, its instrumentation sI and the syntactical representation of
a monitor m. The instrumentation may modify the source code of a system.

500 J.O. Blech, Y. Falcone, and K. Becker

– Assuming that an operational semantics can be assigned to s and that a
system state of typeΣs and concrete events of typeΣc can be observed during
runs associated with this semantics. The semantics of s is given by a function
σ returning a set of traces in (Σs × Σc)

∗. The Σc events abstract system
states. The motivation for distinguishing system states and concrete events
is that system states represent all important information to determine the
control flow and important actions of the system. Concrete events explicitly
specify observable system behavior.

– The semantics of sI is given by another function – for simplicity it is also
denoted σ returning a set of traces. Each trace has the type:

(Σs ×Σc × (Σa ∪ {ignore}))∗

Each trace element comprises a tuple of a system state, two corresponding
events of system events in Σc and their instrumented counterparts in Σa ∪
{ignore}. In the case of ignore no abstract corresponds to a concrete one.
In the deployed RV system this is used to reduce communication overhead
between the instrumented system and the monitor.

– Monitors are defined as state transition systems comprising monitor states
mStates and a transition function mStep : (mStates ×Σa)→ (mStates × bool)
taking a monitor state and an abstract event and returning a new (updated)
monitor state and a verdict.
In addition to this, the monitor comprises code for communicating with the
instrumented system and calling mStep.

– The semantics of m with sI running in parallel is denoted: sI ||m.
The semantics is given by another function – for simplicity it is also denoted
σ as a set of traces, each trace comprising tuples of four components. A trace
has the type: (Σs ×Σc × (Σa ∪ {ignore})× bool)∗
Traces comprise system states Σs, concrete events Σc, their instrumented
counterparts Σa ∪ {ignore} and truth values returned by the monitor.

Traces of systems. Our correctness definitions use the projection of sets of traces
(e.g., given by one of the σ functions) to the Σ∗

s parts (denoted Ts for a set of
traces of tuples T). Furthermore, we need projections for the Σ∗

c andΣ∗
a (denoted

Tc and Ta for a set of traces of tuples T). The event ignore is omitted in this
projection. A projection for sets of the bool∗ parts of traces of tuples (denoted
Tb for a set of tuples of traces T) is also needed.

The fact that a system s can generate a trace t (t ∈ σ(s)) is denoted s(t).
Likewise we introduce the notations sI(t) and (sI ||m)(t) and projections (σ(sI))c
and (σ(sI ||m))c to restrict sets of traces to the Σ∗

c parts. The fact that a monitor
m accepts a trace ta is denoted m(ta). In the case of safety properties this means
that its output trace contains only true.

Correctness of instrumentation. It is possible that the instrumentation or run-
ning the monitor in parallel with the instrumented system does change the se-
mantics of the original system due to side effects. Thus, we require a definition

Towards Certified Runtime Verification 501

of correct instrumentation and monitor integration with respect to the uninstru-
mented system. This correctness definition is done by checking equality of sets
of (projected) sets of traces.

Absence of side-effect of instrumentation is defined as:

σ(s)s = σ(sI)s ∧ σ(s)c = σ(sI)c

Furthermore, the instrumentation is responsible for abstracting concrete events.
Abstract and concrete events shall correspond to each other using an abstraction
function ψ : Σc → (Σa ∪ {ignore}). Thus, we require that applying ψ to the Σc

component in a tuple in each trace is equal to the Σa ∪ {ignore} component.
Correctness of instrumentation is defined as the conjunction between absence

of side-effects and the correspondence of concrete and abstract events.

Correctness of monitor integration Correctness of monitor integration requires
a correct instrumentation and the following conditions:

– The monitor does not pose any side-effects on the instrumented system:
σ(sI)s = σ(sI ||m)s ∧ σ(sI)c = σ(sI ||m)c ∧ σ(sI)a = σ(sI ||m)a

– The monitor is not affected by side-effects:
∀ t ∈ (Σs ×Σc × (Σa ∪ {ignore})× bool)∗ . σ(sI ||m)b(t) iff m(ta)

Monitor correctness. Correctness of a monitor mϕ is defined with respect to a
property ϕ. When a trace t fulfills a property ϕ, we note it ϕ(t). Thus, monitor
correctness is defined as: ∀ ta ∈ Σ∗

a . ϕ(ta) = mϕ(ta)

Combined correctness properties. An RV system sI ||mϕ is considered correct
with respect to a property ϕ iff: 1) the instrumentation is done correctly, 2) the
monitor has been integrated correctly, and 3) the monitor is correct with respect
to ϕ.

In addition, it has to be ensured that the system is a correct deployment and
compilation of sI ||mϕ which is not in the scope of this paper.

4.2 Regular Expressions

Regular expressions are defined as an inductive datatype ΦΣa parameterized
with a set of (abstract) events Σa. In our Coq formalization they comprise
constructors for atoms, concatenations, disjunctions, the star and plus operators,
and the epsilon (corresponds to an empty list of events) and empty expressions
(corresponds to nothing). Furthermore, we have defined abbreviations to ease
the specification like concatenating n-times the same (sub-)regular expression to
each other.

Semantics of regular expressions. The semantics of a regular expression is defined
in the usual way, by associating a regular expression φ with a function that
indicates whether a list of events el is in the language described by φ. We note
φ(el) when this is the case. We define an equivalence relation 0 over regular
expressions φ, φ′ that describe languages over the same vocabulary Σ:

502 J.O. Blech, Y. Falcone, and K. Becker

verdict

monitor state transition function

loop structure

event abstraction

OS / POSIX API

OS runtime environment

hardware / environment

Operating System

realized in OCaml

Coq environment

monitor specification

extraction

feedback

Fig. 4. Our RV monitoring environment

∀ el ∈ Σ∗. φ(el) = φ′(el) iff φ 0 φ′

This partitions syntactical representations of regular expressions into semantic
equivalence classes.

Accepting an event. When comparing a regular expression φ to a list of events,
it is helpful to define an operator that returns a modified regular expression that
captures the effect of having consumed an event e. For this reason, we define the
/ operator that has the following property:

∀ e el . φ(e :: el) iff φ/e(el)

where e :: el is the OCaml notation for the concatenation of an event e to a list of
events el. Note that, for space reasons, we do not give the full formal definition
specifying how this is achieved for regular expressions, but this is part of our
Coq formalization.

5 OCaml Based RV Monitors

Our RV framework distinguishes between an instrumented system and monitors.
Outlined monitors observe the system behavior by using information provided
by the instrumented system.

Towards Certified Runtime Verification 503

Figure 4 shows the environment in which our RV monitors are deployed. RV
monitors are relatively small pieces of software and are in this work realized as
a state-transition function which performs transitions of the internal monitor
state. This state-transition function is called from a loop structure over and over
again, thereby consuming behavioral events from the system and emitting an
overall system status value to indicate possible deviations from an acceptable
system behavior. The events received by the RV monitor are originating from
abstraction functions which observe, e.g., a stream from a Posix socket. This
stream can contain concrete events which are originating from the instrumented
system. Here, the monitor functionality is realized in OCaml. Communication
with the rest of the system and the environment is done using the operating
system API.

While we generate the state transition functions for our RV monitors out of
Coq specifications which are verified in the Coq environment, the state transition
functions have to be embedded into a monitor environment which takes care of
the monitor’s communication with the system, as shown in Fig. 4.

The OCaml part of the monitor is divided into three parts:

– A generic part, that takes care of the Posix based communication with the
environment and is the same for all of the monitors targeted in this paper.

– A verified state transition generated out of Coq and all depending definitions.
– A file that realizes glue code for the interaction between the generic part and

the generated state transition function. Naturally this file has to be adapted
for each individual monitor. It contains abstractions (cf. Section 4.1), e.g.,
of network packets to events. The abstractions can be verified optionally.

6 Certified Monitors with Coq

We describe how we obtain certified monitors using Coq: the formalization of a
monitor, of regular expressions, monitor extraction and the correctness proofs.

6.1 Formalization of Monitor Correctness in Coq

We have adapted an existing library (definitions, morphisms and lemma) for
handling regular expressions in Coq in order to work with our definitions of
events 2. Small adaptations were necessary since the original library only handles
regular expressions of a particular String type.

We define the following artifacts in Coq:

– Possible events as abstract data types.
– States of monitors as data types and state transition functions written in a

functional style.
– The regular expression that specifies the correctness property.
– The statement that the monitor corresponds to the regular expression, using

simulation.
2 Available at http://coq.inria.fr/pylons/contribs/view/RegExp/v8.4 by
Takashi Miyamoto.

http://coq.inria.fr/pylons/contribs/view/RegExp/v8.4

504 J.O. Blech, Y. Falcone, and K. Becker

OCaml program extraction. Due to the functional nature of our monitors, they
can be extracted using the Coq commandRecursive Extraction. The resulting
extraction provides a state-transition function and definitions of the used data-
types and possible auxiliary functions. Extraction follows the Coq definitions.
This means that our choice of datatypes can influence the performance of moni-
tors. If non-performant definitions are used (e.g., a definition of natural numbers
as abstract datatype using 0 and successor constructors) non-performant imple-
mentations will be generated.

6.2 Verification of a Monitor with Respect to a Regular Expression

We describe the verification of a monitor with respect to a regular expression in
Coq. We establish monitor correctness and assume a state transition function of
the internal state of the monitor (cf. Section 4):

mStep : (mStates ×Σa)→ (mStates × bool).

To verify monitor correctness for a property φ, we first establish a simulation
relation R between states (mStates) and regular expressions of type Φ – each
alphabet of events instantiates a parameterized type of regular expressions; log-
ically this results in an distinguishable types for each alphabet – with φ ∈ Φ:

R : mStates × Φ→ bool

The relation performs a check on the semantic correspondence of states using the
0 relation on regular expressions (see Section 4.2). Finding regular expressions
corresponding to a state is done using Arden’s Lemma [Ard61]. The proof is
done using an induction. The initial case is resolved by using (1). The induction
step is proven using the property (2) described below. The following items have
to be proven:

1. The first property that is proven states that the initial state of mStep and φ
are in the simulation relation. This is the basis for proving that m accepts
the same lists of events as specified by φ.

2. We prove the following property (step-relation correspondence) using the
implication −→:

∀ m m′ : mStates φ φ′ : Φ e : Σa b : bool .
mStep(m, e) = (m′, b) −→ φ′ = φ/e −→ R(m,φ) −→
R(m′, φ′)

It states: for a regular expression φ and a state m in the simulation relation
R, the succeeding state m′ after processing one event e and a succeeding
regular expression φ′ are in the simulation relation again. φ′ corresponds to
accepting (using the / operator) the same event e on φ. A Coq formalization
of this property is shown in Fig. 5. We use s, s’ to indicate states of type
StatesAutomaton1. The message alphabet has type MAa1. The =R= is a rela-
tion denoting equivalent regular expressions. derive realizes the / operator.

Towards Certified Runtime Verification 505

Lemma step_correspondence :

forall (e : MAa1) (s s’ : StatesAutomaton1) (r r’ : RegExp MAa1),

s’ = (fst(A1Step s e)) ->

r’ =R= derive MAa1 dec_MAa1 e r ->

regexp_states_rel_a1 s r ->

regexp_states_rel_a1 s’ r’.

Fig. 5. Coq formalization of step-relation correspondence

Our correctness criterion for safety invariants states that each finite prefix
of event streams (our regular expressions typically work on potentially infinite
streams) will only result in non-error states iff the regular expression gets non
empty. We prove a stronger property first which implies the correctness criterion
and requires that all encountered states and the acceptance state of the regular
expressions are in the relation.

Non-safety properties are characterized by the fact that finite prefixes of a
trace do not have to fulfill the property even if the entire trace does. It remains
possible to prove an adequate simulation relation, and, based on this derive that
at least in distinct states a property holds using the method described above.

Example relation. An example relation for the property checked by the automa-
ton from Fig. 3 associates states to their corresponding regular expressions:

S1 ((S1 + T.S1)
∗.(T + ε)

S2 ((S1.(S1 + T.S1)
∗.(T + ε)) + ε

ERROR (Empty

Figure 6 shows the same simulation relation in Coq. The events and states have
slightly different names to make them usable together with other automata in the
same file. In addition, we also have defined some abbreviations to make the look
of constructors Star, Atom, Eps closer to the mathematical notations during the
interactive proofs. It can be seen that regular expressions used inside the relation
can become larger than the original property. In case of wrong relations, however,
we will not be able to establish an overall correctness proof. Thus, the size of
the relation does not enlarge the trusted computing base of our approach.

6.3 Verification of Abstractions

It is convenient to deliver only certain events to a monitor. For this reason, we have
introduced abstraction functions in Section 4.We verify abstractions by specifying
them in Coq and proving the required properties, e.g., for an abstraction function
abs and an abstract event ea and a set of possible concrete events Σc:

∀ ec : Σc . ec = specification of concrete events −→ ea = abs(ec)

Proofs are straightforward. The extraction of OCaml code from Coq has to take
into account that datatypes are sometimes defined in a different way in Coq and
OCaml. For instance, integers are defined using native processor arithmetics in
OCaml, but are realized as an inductive datatype in Coq.

506 J.O. Blech, Y. Falcone, and K. Becker

Definition regexp_states_rel_a1

(s : StatesAutomaton1) (r : RegExp MAa1) : Prop :=

match s , r with

| A1S1 , x => ((Star MAa1

((Atom MAa1 S_a1) || ((Atom MAa1 T_a1) ++ (Atom MAa1 S_a1))))

++ ((Atom MAa1 T_a1) || Eps MAa1)

) =R= x

| A1S2 , x => (((Atom MAa1 S_a1 ++

Star MAa1

(Atom MAa1 S_a1

|| (Atom MAa1 T_a1 ++ Atom MAa1 S_a1)))

++ (Atom MAa1 T_a1 || Eps MAa1)) || Eps MAa1)=R= x

| A1SError , x => Empty MAa1 =R= x

end.

Fig. 6. Simulation relation in Coq

7 Evaluation

We evaluate our approach with respect to three criteria that are used in a first
step aiming to assess the feasibility of certified RV in an industrial context:
proving effort, integration into a bus simulator and performance of monitors.

Proving effort for regular expression based monitors. For proving a new regular
expression based monitor correct, one has to establish a relation comprising
states and corresponding regular expressions. The main effort is the proof of
step-relation correspondence which requires a case distinction on possible states
and events (|states| × |events| different cases). Each case essentially requires
some rewriting of equivalent regular expressions to prove the correspondence.
This can require several lines of proof code for each event. Automation using
tactics might be possible, but require some clever rewriting strategies which we
have not developed currently. The other parts of the proofs are either relatively
easy or can be reused (are generic) with some adaptations.

Generation of monitors from Coq specifications. We have generated monitor
state-transition functions out of our verified Coq formalizations. Coq allows the
extraction of executable state-transition functions. Extraction works recursively,
so all required types and depending functions are also extracted from their Coq
specifications.

Integration of monitors into a bus simulator. We have demonstrated the ap-
plicability of our approach by an implementation of a bus simulator for the
Rain-Sensor scenario from Section 3.1. The Rain-Sensor senses the rain inten-
sity, sends the intensity value to a Wiper-Controller, which analyses the value
and sends control values to a Wiper-Actuator. The example application is im-
plemented in C++ using BSD Sockets for communication over UDP/IP. Only
the Wiper-Controller is monitored. The communication between the controller
and its monitor is based on Unix pipes. This solution can be used with any Posix

Towards Certified Runtime Verification 507

compatible protocol. For example ethernet based bus implementations that fulfill
real-time constraints (e.g., [SKS10]).

Performance evaluation of OCaml based monitors. We have built an experi-
mental setup to evaluate the performance of certified monitoring code. A trace
generator creates multiple traces and send them to a certified monitor for anal-
ysis. Since the performance of the embedded hardware we are aiming at is still
subject to change, we have conducted the experiments on different standard ma-
chines: Machine 1 is a Macbook Pro i7 at 2GHz, Machine 2 is a Pentium D at
3GHz, Machine 3 is Machine 2 down-clocked at 850MHz. Results are given in
Table 1. In each cell, the indicated result (in seconds) is obtained by taking the
mean value after a hundred executions. The table shows five properties. The
first column shows the property under consideration. The entry |tr.| denotes
the length of the traces sent to the monitor. The entry no mon (resp. mon)
denotes the execution time in seconds when the trace is not monitored (resp.
is monitored) by the certified monitors. The entry ovhd indicates the overhead
induced by the monitor on the original system: mon - no mon

no mon . The entry kevt/s
indicates the throughput of the monitor, i.e., how many thousands of events it
can handle in a second. The timing properties are taken from Section 3.2. The
monitors φ4 and φ5 monitor the rain-intensity as explained in Section 3.1.

Timings in Table 1 clearly substantiate our claim that the performance of
certified runtime monitors is good. The overhead induced by the monitoring code
on the initial system is negligible. This is due to the performance of the optimized
code generated by the OCaml compiler. The throughput of the monitors is also

Table 1. Performance evaluation of certified monitors

φ |tr.| Machine 1 Machine 2 Machine 3

no mon mon ovhd kevt/s no mon mon ovhd kevt/s no mon mon ovhd kevt/s

φ1 104 .7055 .7056 .00022 438.94 .7119 .7119 0 75.98 2.3357 2.3357 0 81.69

105 1.9884 1.9920 .0019 5.6453 5.6453 0 18.585 18.585 0

106 14.599 14.599 0 55.061 54.451 .0027

φ2 104 .7047 .7047 0 449.76 .7093 .7138 0 73.28 2.1986 2.2474 .03077 75.52

105 2.0095 2.0095 0 5.6589 5.6469 .0027 17.5597 17.898 .0318

106 14.387 14.436 .003588 54.48 54.690 0.00405

φ3 104 .7050 .7051 .00022 445.79 .712 .7167 .00816 77.88 2.2309 2.2882 .03402 74.79

105 2.0981 2.1032 .00267 5.6476 5.6738 .00539 17.465 18.207 .057

106 14.507 14.517 .00125 54.48 54.789 0

φ4 104 .7054 .7054 0 441.73 .7085 .7136 .00895 77.16 2.234 2.3109 .04426 73.85

105 2.1334 2.1338 .00036 5.6778 5.6778 0 17.524 18.077 .041

106 14.343 14.343 0 54.974 54.974 0

φ5 104 .7047 .7051 .0064 450.32 .7093 .7127 .00652 74.07 2.1978 2.2261 .02127 78.92

105 2.0754 2.0762 .00057 5.6273 5.6273 0 17.724 17.827 .01723

106 14.502 14.502 0 54.729 54.809 0.00204

508 J.O. Blech, Y. Falcone, and K. Becker

very satisfactory. Actually, the similar performance results observed on Machine
2 and Machine 3 made us notice that the throughput of the monitor is actually
not limited by the monitoring code but by the performance of the OS primitives
used to establish communication between the system and the monitors. Note
that, for traces of length 106, some erratic measures were taken on Machine 3,
probably because of down-clocking. Thus, we could not report reliable numbers.

8 Conclusion and Future Work

We presented work towards certified RV by means of higher-order theorem
provers. In particular, we have demonstrated the feasibility to generate OCaml
based runtime monitors out of verified Coq formalizations. We have demon-
strated the deployment in a bus simulator. Furthermore, we have presented a
performance evaluation of OCaml based monitors in general. Our properties can
be checked in an acceptable time and it seems feasible to deploy the demon-
strated solutions in industrial domains. The shown aspects are an important
prerequisite for demonstrating the feasibility for large scale applications.

Despite being sufficient for the sketched property monitoring of bus messages,
the properties regarded in this paper are relatively small and simple. As an
academic goal future work should extend the expressiveness and also regard
more complex properties. More particularly, it would be of great interest to
be able to extract monitoring code for parametric properties, i.e., properties
featuring parameterized events taking values at runtime. Recent advances [RC12]
in runtime verification that give a semantics to these properties will certainly
help. Furthermore, as a goal with a strong engineering focus we want to deploy
monitors on real embedded hardware and industrial demonstrators as a next
step. Dynamic aspects like adding or removing components during runtime and
the impact on monitors are other aspects.

References

[AAC+05] Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S.,
Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding
trace matching with free variables to AspectJ. SIGPLAN Notices (October
2005)

[Ard61] Arden, D.N.: Delayed-logic and finite-state machines, pp. 133–151. IEEE
(1961)

[BGHS04] Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime
Verification. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 44–57. Springer, Heidelberg (2004)

[BGHS10] Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log
files. Journal of Aerospace Computing, Information, and Communication
(2010)

[BH11] Barringer, H., Havelund, K.: TraceContract: A Scala DSL for Trace
Analysis. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
57–72. Springer, Heidelberg (2011)

Towards Certified Runtime Verification 509

[BRH10] Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time
monitoring: from EAGLE to RuleR. Journal of Logic and Computation
(June 2010)

[BG11] Blech, J.O., Grégoire, B.: Certifying compilers using higher-order theorem
provers as certificate checkers. Formal Methods in System Design (2011)

[CPS09] Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-
time Java programs (tool paper). In: Software Engineering and Formal
Methods (SEFM 2009), pp. 33–37. IEEE Computer Society (2009)

[Coq12] The Coq development team. The coq proof assistant reference manual v8.4
(2012), http://coq.inria.fr

[FFM09] Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime Verification of Safety-
Progress Properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 40–59. Springer, Heidelberg (2009)

[FRay05] FlexRay communications system protocol specification version 2.1,
FlexRay Consortium (May 2005)

[HG05] Havelund, K., Goldberg, A.: Verify Your Runs. In: Meyer, B., Woodcock,
J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg
(2008)

[KW] Kaiser, R., Wagner, S.: The PikeOS Concept: History and Design. SysGO
AG White Paper, http://www.sysgo.com

[KVL+99] Kim, M., Viswanathan, M., Lee, I., Ben-Abdellah, H., Kannan, S., Sokol-
sky, O.: Formally Specified Monitoring of Temporal Properties. In: Euro-
pean Conference on Real-Time Systems (ECRTS) (1999)

[Kop93] Kopetz, H.: TTP - A time-triggered protocol for fault-tolerant real-time
systems. In: Fault-Tolerant Computing. IEEE (1993)

[LKK+99] Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime
Assurance Based On Formal Specifications. In: International Conference
on Parallel and Distributed Processing Techniques and Applications, Las
Vegas (1999)

[MJG+11] Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the
MOP runtime verification framework. International Journal on Software
Tools for Technology Transfer (2011)

[PZ06] Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via
Testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 573–586. Springer, Heidelberg (2006)

[RC12] Rosu, G., Chen, F.: Semantics and Algorithms for Parametric Monitoring.
Logical Methods in Computer Science (2012)

[Rus08] Rushby, J.: Runtime Certification. In: Leucker, M. (ed.) RV 2008. LNCS,
vol. 5289, pp. 21–35. Springer, Heidelberg (2008)

[SKS10] Steinbach, T., Korf, F., Schmidt, T.C.: Comparing time-triggered Ether-
net with FlexRay: An evaluation of competing approaches to real-time
for invehicle networks. In: 8th IEEE International Workshop on Factory
Communication Systems (2010)

[SB06] Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proc. of the
5th Int. Workshop on Runtime Verification, RV 2005. ENTCS, vol. 144(4).
Elsevier (2006)

[SH11] Sridhar, M., Hamlen, K.W.: Flexible in-lined reference monitor certifica-
tion: challenges and future directions. In: Programming Languages meets
Program Verification. ACM (2011)

http://coq.inria.fr
http://www.sysgo.com

Author Index

Abrial, Jean-Raymond 230
Allwein, Gerard 182

Barnett, Granville 38
Basu, Samik 462
Becker, Klaus 494
Birattari, Mauro 54
Blech, Jan Olaf 494
Bobot, François 167
Boichut, Yohan 299
Boyer, Benoit 299
Brambilla, Manuele 54
Büttner, Fabian 198

Cabot, Jordi 198
Carvalho, Gustavo 381
Chin, Wei-Ngan 5
Cofer, Darren 2
Czech, Mike 348

Dong, Jin Song 214, 364, 381, 398
Dorigo, Marco 54
Duan, Zhenhua 266

Egea, Marina 198

Falcone, Yliès 494
Fehnker, Ansgar 316
Feng, Xinyu 22
Filliâtre, Jean-Christophe 167
Fu, Ming 22

Ganov, Svetoslav 414
Genet, Thomas 299
Gjondrekaj, Edmond 54
Gogolla, Martin 198

Hagihara, Shigeki 249
Han, Meng 266
Harrison, William L. 182
Hasan, Osman 119
Hiura, Shin 249
Hong, Ali 151
Hsiung, Pao-Ann 214
Huuck, Ralf 316

Johnsen, Einar Broch 71
Junker, Maximilian 316

Khosravi, Ramtin 135
Khurshid, Sarfraz 414
Knapp, Alexander 316

Le, Duy-Khanh 5
Legay, Axel 299
Li, Mengjun 447
Li, Shanping 364
Lin, Shang-Wei 214
Liu, Yang 214, 364, 381, 398
Liu, Yijing 151
Lluch Lafuente, Alberto 430
Loreti, Michele 54

Meseguer, José 430
Meyer, Bertrand 478
Mhamdi, Tarek 119
Mu, Chunyan 103

Nanz, Sebastian 478
Neya, Yoshinori 283
Nguyen, Truong Khanh 398

Ogata, Kazuhiro 87

Perry, Dewayne E. 414
Pinciroli, Carlo 54
Procter, Adam 182
Pugliese, Rosario 54

Qin, Shengchao 38
Qiu, Zongyan 151

Sarkar, Tanmoy 462
Schlatte, Rudolf 71
Shi, Ling 381
Shostak, Robert E. 4
Song, Songzheng 364
Su, Wen 230
Sun, Jun 214, 364, 381, 398

Tahar, Sofiène 119
Tapia Tarifa, Silvia Lizeth 71
Teo, Yong-Meng 5

512 Author Index

Thi Thanh Huyen, Phan 87
Tiezzi, Francesco 54
Timm, Nils 348
Tokoro, Mario 1
Tomita, Takashi 249

Vandin, Andrea 430
Varshosaz, Mahsa 135

Wang, Ting 364
Wang, Xiaobing 266
Wang, Xinyu 364

Wehrheim, Heike 332, 348
West, Scott 478
Wong, Johnny S. 462
Wonisch, Daniel 332

Yang, Xiaoxiao 22
Yonezaki, Naoki 249
Yoshiura, Noriaki 283

Zhang, Yu 22
Zhu, Huibiao 230

	Title
	Preface
	Organization
	Table of Contents
	Invited Speech
	Toward Practical Application of FormalMethods in Software Lifecycle Processes
	Formal Methods in the Aerospace Industry:Follow the Money
	References

	Applying Term Rewriting to Speech Recognitionof Numbers

	Concurrency
	Variable Permissionsfor Concurrency Verification
	Introduction
	Motivating Example
	Programming and Specification Languages
	Variable Permissions for Safe Concurrency
	Verification Rules
	Inferring Variable Permissions
	Eliminating Variable Aliasing

	Discussion
	Applicability of the Proposed Variable Permissions
	Phased Accesses to Shared Variables

	Experimental Results
	Related Work
	Conclusion
	References

	A Concurrent Temporal Programming Modelwith Atomic Blocks
	Introduction
	Temporal Logic
	Projection Temporal Logic
	Framing Issue

	Temporal Logic with Atomic Blocks
	The Logic PTL
	Support Framing in Atomic Interval Formulas

	Temporal Programming with Atomic Blocks
	Expressions and Statements
	Semi-normal Form
	The Interleaving Semantics with Atomic Blocks

	Examples
	Related Works and Conclusions
	References

	A Composable Mixed Mode ConcurrencyControl Semantics for Transactional Programs
	Introduction
	Programming Model
	Programming Language
	Program Text Preprocessing
	Preliminaries
	Thread Command Semantics
	Program Move Semantics
	Properties

	Java Memory Model
	Correctly Synchronised Programs
	Execution Semantics

	Related Work
	Summary
	References

	Applications of Formal Methods to New Areas
	Towards a Formal Verification Methodologyfor Collective Robotic Systems
	Introduction
	A Collective Robotics Scenario
	Formal Foundations of the Verification Approach
	Specification of the Robotics Scenario
	Stochastic Specification and Analysis
	Concluding Remarks
	References

	Modeling Resource-Aware VirtualizedApplications for the Cloud in Real-Time ABS
	Introduction
	Abstract Behavioral Specification with Real-Time ABS
	Modeling Timed Behavior in ABS
	Modeling Deployment Architectures in Real-Time ABS

	Resource Management and Cloud Provisioning
	Case Study: The Montage Toolkit
	The Problem Description
	A Model of the Montage Workflow in Real-Time ABS
	Simulation Results

	Related Work
	Conclusion
	References

	Specification and Model Checking of the Chandy and Lamport DistributedSnapshot Algorithm in Rewriting Logic
	Introduction
	The Chandy and Lamport Algorithm
	Maude
	System Specification of the Algorithm
	Basic Data Used
	Observable Components and (Meta) Configurations
	State Transitions for Underlying Systems and the Algorithm

	Model Checking of Reachability Properties
	Related Work
	Conclusion
	References

	Quantity and Probability
	Quantitative Program Dependence Graphs
	Introduction
	Preliminaries
	Program Dependence Graph
	Random Variables and Programs
	Information Entropy

	The Semantics and Program Dependences
	The Abstract Syntax
	Semantic Domains
	The Semantics

	Quantitative Program Dependence Graph
	Reducing QPDG by Slicing for Flow Analysis
	Reducing QPDG
	Applying to Quantified Flow Analysis

	Conclusions
	References

	Quantitative Analysis of Information FlowUsing Theorem Proving
	Introduction
	Measure, Integration and Probabilities
	Measures of Information Leakage
	Radon-Nikodym Derivative
	Kullback-Leibler Divergence
	Mutual Information and Entropy
	Conditional Mutual Information

	Degrees of Information Leakage
	Information Leakage Degree
	Conditional Information Leakage Degree

	Application
	Related Work
	Conclusions
	References

	Modeling and Verification of Probabilistic ActorSystems Using pRebeca
	Introduction
	Related Work
	Preliminaries
	Rebeca
	Markov Decision Process

	pRebeca
	Syntax
	Semantics

	Model Checking pRebeca
	Case Study

	Conclusion and Future Work
	References

	Formal Verification
	Modular Verification of OO Programs with Interfaces
	Introduction
	Interfaces and Verification: Basics
	VeriJ: An OO Language with Specifications
	Verification Framework
	An Example
	Related Work and Conclusion
	References

	Separation Predicates: A Tasteof Separation Logic in First-Order Logic
	Introduction
	Motivating Example
	Separation Predicates
	Inductive Definitions
	An Axiomatization of Footprints
	Mutation Axioms
	Implementation

	A Case Study: Composite Pattern
	The Problem
	Code and Specification
	Proof

	Function Footprints
	Related and Future Work
	References

	The Confinement Problemin the Presence of Faults
	Introduction
	Effect Systems and Monads
	The Confinement Calculus
	Isolation Kernels in Confinement Calculus
	Mechanizing the Logic in Coq
	Related Work
	Conclusions
	References

	Modeling and Development Methodology
	Verification of ATL TransformationsUsing Transformation Models and Model Finders
	Introduction
	Running Example
	Transformation Models for ATL
	An Algorithm to Derive Transformation Models for ATL
	Validity of the Translation

	Employing Model Finders to Verify ATL Transformations
	Verification Using UML2Alloy
	Scalability

	Related Work
	Conclusion and Future Work
	References

	Automatic Generation of ProvablyCorrect Embedded Systems
	Introduction
	Related Work
	Preliminaries
	Design and Synthesis Flow
	Modeling
	Scheduling
	Formal Verification
	Implementation Mapping
	Automatic Code Generation

	Case Studies
	Conclusion and Future Work
	References

	Complementary Methodologiesfor Developing Hybrid Systems with Event-B
	Introduction
	Methodological Approach
	Design Patterns for Linear Hybrid Systems
	Using Matlab
	Invariant and Guard Discoveries with the Rodin Platform
	Introducing Sensors and Actuators for Refining Ideal Systems

	Examples
	Press
	Water Tank
	Mutual Exclusion
	Sensors

	Conclusion
	References

	Temporal Logics
	A Temporal Logic with Mean-Payoff Constraints
	Introduction
	LTL with Mean-Payoff Constraints
	Multi-threshold Mean-Payoff Büchi Automata
	Definitions
	Emptiness Problems

	Decision and Optimization Problems of LTLmp
	Conclusions and Future Work
	References

	Time Constraints with Temporal LogicProgramming
	Introduction
	Preliminaries
	PTL
	Modeling, Simulation and Verification Language

	Timed Projection Temporal Logic
	Syntax
	Semantics
	Derived Formulas and Logic Laws

	Timed-MSVL
	Syntax and Semantics
	Normal Form of Programs
	Operational Semantics of TMSVL

	Applications
	Description of Real-Time Systems
	A Video-On-Demand System

	Related Work
	Conclusion
	References

	Stepwise Satisfiability Checking Procedure for Reactive System Specifications by TableauMethod and Proof System
	Introduction
	Open Reactive System
	Specification
	Syntax
	Semantics
	Specification
	Stepwise Satisfiability

	Decision Procedure
	Tableau Method
	Decision Procedure for Stepwise Satisfiability

	Proof System
	Soundness
	Proof Examples

	Implementation
	Experiment
	Conclusion
	References

	Abstraction and Refinement
	Equational Abstraction Refinementfor Certified Tree Regular Model Checking
	Introduction
	Background
	Tree Regular Model Checking with Completion
	R/E-Automata
	Solving the Reachability Problem with R/E-Automaton
	The Completion Step C
	The Widening Step W

	A CEGAR Procedure for R/E-Automata
	Implementation, Application and Certification
	Conclusion
	References

	SMT-Based False Positive Eliminationin Static Program Analysis
	Introduction
	Syntactic Model Checking and Language Refinement
	False-Positive Detection
	Observer Computation
	Refinement Loop
	A Word on SMT Solvers

	Computing Reasons for Infeasible Paths
	Detecting Infeasible Paths
	Computing Infeasible Sub-paths

	Observer Construction and Refinement
	Representing Programs as Automata
	Computing Observers from Counter-Examples
	Implementing Observers

	Experiments
	Implementation
	Experimental Evaluation

	Related Work
	Conclusions and Future Work
	References

	Predicate Analysis with Block-AbstractionMemoization
	Introduction
	Preliminaries
	Block-Abstraction Memoization
	Lazy Abstraction
	Experimental Results
	Conclusion
	References

	Heuristic-Guided Abstraction Refinementfor Concurrent Systems
	Introduction
	Basics
	Spotlight Abstraction
	Heuristic-Guided Refinement
	Experimental Results
	Conclusion
	References

	More Anti-chain Based Refinement Checking
	Introduction
	Background
	Trace Refinement
	Trace Refinement Checking with Anti-chain

	Failures/Divergence Refinement Checking with Anti-chain
	Stable Failures Refinement Checking
	Failures-Divergence Refinement Checking
	Implementation and Evaluation

	Probabilistic Refinement Checking with Anti-chain
	MDP and ProbabilisticModel Checking
	Anti-chain Based Approach

	Conclusion
	References

	Tools
	An Analytical and Experimental Comparisonof CSP Extensions and Tools
	Introduction
	CSPM vs. CSP#: Syntax
	CSPM vs. CSP#: Operational Semantics
	Verification Tool Support
	Verification
	Experiment

	Conclusion
	References

	Symbolic Model-Checking of Stateful Timed CSPUsing BDD and Digitization
	Introduction
	Stateful Timed CSP
	BDD Encoding
	Encoding Stateful Timed CSP Processes with FSMs
	Encoding Stateful Timed CSP Processes with Compositional Functions
	Limitations on BDD Encoding

	Implementation and Evaluation
	Conclusion
	References

	Annotations for Alloy: Automated IncrementalAnalysis Using Domain Specific Solvers
	Introduction
	Background
	Alloy
	Alloy Model - Binary Search Tree Example
	Declarative Slicing - Binary Search Tree Example

	Our Approach
	Incremental Analysis with Parallel Reasoning
	Dedicated Solver Integration via Annotations

	Evaluation
	Related Work
	Conclusion
	References

	State Space c-Reductions of Concurrent Systemsin Rewriting Logic
	Introduction
	Preliminaries
	C-Reductions for Kripke Structures
	Correct c-Reductions in Rewriting Logic
	Specifying and Verifying Group Actions
	Checking that Preserves Atomic Predicates
	Checking that is a Bisimulation
	Defining and Verifying Canonizer Functions
	Defining c-Reductions

	Related Work and Conclusions
	References

	Testing and Runtime Verification
	A Practical Loop Invariant Generation Approach Based on Random Testing, ConstraintSolving and Verification
	Introduction
	Preliminaries
	Motivation Example
	Automated Generation of Loop Invariants
	Experimental Results
	Related Work
	Conclusions
	References

	ConSMutate: SQL Mutants for GuidingConcolic Testing of Database Applications
	Introduction
	Motivating Example
	Related Work
	ConSMutate Test Case Generator for DB-Applications
	Generation of Test Cases and Associated Path Constraints Using Application Branch Analyzer
	Deployment of Mutation Analyzer
	Deployment of Constraint Solver: Finding Satisfiable Assignment for
	Correctness Criteria of ConSMutate

	Preliminary Results
	Evaluation Criteria
	Evaluation Test-Bed
	Summary of Evaluation
	Execution Time Overhead

	Conclusion and Future Work
	References

	Demonic Testing of Concurrent Programs
	Introduction
	Example Testing Run
	Demonic testing
	Application of Rely-Guarantee Reasoning
	The Domain Description Language
	Class Transformation
	Routine Instrumentation
	The demonL Tool
	Handling Synchronization Primitives

	Experimental Evaluation
	Conversion from Source Programs
	Results
	Annotation Complexity
	Discussion

	Related Work
	Conclusion
	References

	Towards Certified Runtime Verification
	Introduction
	Related Approaches
	Guiding Examples
	A Rain-Sensor Application
	Timing-Properties

	Prerequisites
	A Formalization of RV Basics
	Regular Expressions

	OCaml Based RV Monitors
	Certified Monitors with Coq
	Formalization of Monitor Correctness in Coq
	Verification of a Monitor with Respect to a Regular Expression
	Verification of Abstractions

	Evaluation
	Conclusion and Future Work
	References

	Author Index

