
A Model of the Visual Dorsal Pathway

for Computing Coordinate Transformations: An
Unsupervised Approach

Flavio Mutti1, Hugo Gravato Marques2, and Giuseppina Gini3

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
mutti@elet.polimi.it

2 University of Zurich, Institute for Informatics, AI Lab, Zurich 8050, Switzerland
hgmarques@gmail.com

3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
gini@elet.polimi.it

Abstract. In humans, the problem of coordinate transformations is far
from being completely understood. The problem is often addressed using
a mix of supervised and unsupervised learning techniques. In this paper,
we propose a novel learning framework which requires only unsupervised
learning. We design a neural architecture that models the visual dorsal
pathway and learns coordinate transformations in a computer simula-
tion comprising an eye, a head and an arm (each entailing one degree
of freedom). The learning is carried out in two stages. First, we train a
posterior parietal cortex (PPC) model to learn different frames of refer-
ence transformations. And second, we train a head-centered neural layer
to compute the position of an arm with respect to the head. Our results
show the self-organization of the receptive fields (gain fields) in the PPC
model and the self-tuning of the response of the head-centered population
of neurons.

1 Introduction

A coordinate transformation (CT) is the capability to compute the position of
a point in space with respect to a specific frame of reference (FoR), given the
position of the same point in another FoR. The way the mammal brain solves
the problem of CTs has been largely studied. Nowadays it is fairly well known
from lesion studies [10] that the main area involved in this type of computation
is the Posterior Parietal Cortex [1] [6].

The computation of CT seems to exploit two widespread properties of the
brain, namely, population coding [7], and gain modulation [2] [9]. Population
coding is a general mechanism used by the brain to represent information both
to encode sensory stimuli and to drive the body actuators. The responses of an
ensemble of neurons encode both sensory or motor variables in such a way that
can be further processed by the next cortical areas, e.g. motor cortex. There
are at least two main advantages of using a population of neurons to encode
information: robustness to noise [7] and the capability to approximate nonlinear
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transformations [8]. Gain modulation is an encoding strategy for the amplitude
of the response of a single neuron that can be scaled without changing the
response selectivity of the neuron. This modulation, also know as gain field, can
arise from either multiplicative or nonlinear additive responses [2] [3].

Several computational models of the PPC address the problem of CTs using
three-layer feed-forward neural networks (FNNs) [11], recurrent neural networks
(RNNs) [9], or basis functions (BFs) [8]. The FNNs and the BFs models are
trained with supervised learning technique whereas the RRNs model uses a mix
of supervised and unsupervised approaches to train the neural connections, en-
coding multiple FoRs transformation in the output responses.

It is worth noting that gain modulation plays an important role in the com-
putation of the coordinate transformations but it is still unclear if this property
emerges in the cortex from statistical properties of the afferent (visual) informa-
tion. Recently, [5] shows evidence to support that gain fields can arise through the
self-organization of an underling cortical model called Predictive Coding/Biased
Competition (PC/BC) . It demonstrates that the gain modulation mechanism
arises through the competition of the neurons inside the PC/BC model, and
comments on the feasibility of such system to compute CTs.

These computational models of the PPC could be particularly suitable for the
robotics community to solve the well-known problem of CT. In the recent past,
an architecture was proposed that explicitly includes a PPC model composed
by a set of radial basis functions trained with supervised learning techniques
[4]. However, most of the approaches in robotics address the problem of FoR
transformation inside the more general sensorimotor mapping approach, without
explicitly exploit the features of PPC models [6].

Following these ideas, we present a biologically inspired model for CTs. First
we describe the training of a PPCmodel with an unsupervised learning approach;
and second we introduce the computation of the arm position with respect to the
head position. We hypothesise that gain modulation mechanisms can emerge in
the PPC neurons, and that basis functions, encoding parallel CTs, can emerge
after the training phase. The main contributions of this paper are: first to show
an unsupervised approach to the learning of sensorimotor mapping; second to
exploit the synergy between a biologically inspired neural network and the pop-
ulation coding paradigm; and third to introduce quantitative evaluation of the
sensorimotor mapping performance.

This paper is organized as follows. In Section 2 we design the neural network
model that performs the implicit sensorimotor mapping, in Section 3 we present
the performed experiments and in Section 4 we derive our conclusions.

2 Model

In this section we present the neural model used for computing CTs between an
arm and the head FoR. We define a simple mechanical structure composed by
an eye, a head and an arm with the same origin. We assume the same origin
because the fixed translations among these FoRs can be neglected due to their



An Unsupervised Model of the Visual Pathway for Computing CTs 241

rx

ex

PPC layer Head-centered

Eye position

Retinal position

ex

rx

ax

Eye Head
Arm

Fig. 1. (Left pane) Body definition composed by an eye, a head and an arm with the
same origin. (Right pane) Neural Network model. The first layer encodes the sensory
information into a neural code, the second layer models the posterior parietal cortex
and it performs the multi sensory fusion and the third layer encodes the arm position
with respect to the head frame of reference.

known contribution in the computation of the CTs (Figure 1, left pane). The
eye position is defined by the angle ex with respect to the head FoR, the retinal
stimuli position of the arm is defined by the angle rx with respect to the eye
FoR; the head-centered position of the arm is defined by ax = rx + ex angle (see
Figure 1, left pane). The neural architecture is divided in three layers: the first is
composed by two populations of neurons which represent the information of the
retinal position of the arm, rx, and the eye position with respect to the head, ex.
The second is composed by PPC population of neurons that encode the position
of the arm in different FoRs. The third is a population of neurons that encodes
the arm position with respect to the head FoR.

The first layer of the network model receives as input the eye position with
respect to the head FoR (ex) as well as the arm position with respect to the
retinal FoR (rx). We define the eye angle ex in degrees and the retinal position
of the target rx both in degrees and in pixels (see Section 3). These numeric
values are encoded in a population coding paradigm, where a given sensor value is
represented as a population of neural responses [8]. The response of a population
neuron is defined as a Gaussian as follows:

ni = A exp

(
− (v − μi)

2

2σ2

)
(1)

where ni is the response of neuron i, μi is the neuron preferred sensor value, v
is the numeric input angle (in degrees), and σ is the standard deviation of the
Gaussian.

The PPC layer is based on the Predictive Coding/Biased Competition model
(PC/BC) proposed in [5]. The model is trained with a unsupervised approach
that is based on Hebbian learning. The system equations are:

s = x� (ε2 + ŴT y) y = (ε1 + y)⊗W s (2)

where s is the internal state of the PC/BC model, x = [n0, . . . , nL+M ] is the
neural population input vector defined by M retinal neurons and L neurons
encoding the eye position, W is the weight matrix, Ŵ is the normalized W ,
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y is the output vector of the PPC layer, and ε1, ε2 are constant parameters;� and
⊗ indicate element-wise division and multiplication respectively. These equations
are evaluated iteratively for a certain number of time steps; after a certain period
of time, y and e values reach a steady state. The internal state s is self-tuned
and represents the similarity between the input vector x and the reconstruction
of the input ŴT y (s ≈ 1 indicates an almost perfect reconstruction).

The unsupervised training rule is given by:

W = W ⊗ {1 + β y(sT − 1)} (3)

where β is the learning rate. This training rule minimizes the difference between
the population responses x and the input reconstruction WT y; the weights in-
crease for s > 1 and decrease for s < 1.

Let’s consider the output vector y = [y0, . . . , yT ] as the population responses
of the PPC model. Each neuron response yi should be compatible with the gain
modulation paradigm, according to the experimental results of [5], in such a way
that the response exhibit a multiplicative behaviour, as a function of both eye
and retinal positions. The weight matrix, which encodes the response properties,
is internal to the PPC model and the training phase is independent with respect
to the unsupervised training phase that will involve the head-centered network
layer.

The population of neurons associated to the head-centered frame of reference
deals with the estimation of the arm position ax given the eye angle ex and
the projection of the arm in the retina rx. The synapses between the PPC
layer and head-centered frame are trained with an Hebbian learning, taking into
account the arm position, ax. Estimating ax means identifying the maximum
response inside a population of neuron that encodes ax with the population
coding paradigm. The head-centered population responses are given by h =
K y, where y is the output vector of the PPC model, K is the weight matrix
representing the fully-connected synapses between the PPC model and the head-
centered layer and h is a vector that contains the population responses, encoding
the estimated ax. The dimension of h depends on the granularity of the ax
encoding. The training phase is performed using Hebbian learning:

K = K + δ h pTa δ =
1

N
(4)

where pa is the vector that contains the proprioceptive population responses
encoding ax, and δ is the learning rate depending by N , the number of samples.

3 Experimental Results

In this section we present the results obtained in two experiments; in the first
experiment we train and analyse the network where either the eye angle and
the retinal position are encoded in degrees and in the second experiment we
introduce a simple camera model to encode the retinal information in pixels.
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The training phase is carried out in two steps: (1) train the PPC layer and (2)
train the head-centered layer. The PPC layer is trained following the method
described in Section 2 (Equation 3) and the synapses between the PPC and
head-centered layer are trained using Hebbian learning as described in Section
2 (Equation 4).

In the first experiment, we encode both rx and ex in degrees and for the
PPC layer, we use the same parameter values as in [5]. The y consists of a
64-element vector with a range for the sensors values defined as follows: rx ∈
[−30◦, 30◦], ex ∈ [−30◦, 30◦], ax ∈ [−60◦, 60◦]. We encode the sensory input
with a population of 61 neurons with a gaussian response and with a standard
deviation σ = 6◦. The σ value is chosen taking into account the experiment
described in [5] whereas the neuron preferred values are equally distributed inside
the range value.

After the training of the PPC layer, we train the head-centered layer with a
population of 121 neurons, defining h as a 121-elements vector. With 121 neu-
rons representing ax the coding resolution (1◦) can be analytically derived. The
standard deviation of the neuron responses associated to the arm position ax
is equal to 6◦. The population of neurons, encoding the proprioceptive position
of the arm, has the same number of neurons of the head-centered layer (121)
and each neuron has the same standard deviation (6◦). The proprioceptive re-
sponses vector pa drives the Hebbian learning for the head-centered neural layer
(Equation 4).

Figure 2 shows the analysis of the trained network: top left pane shows the
responses of the trained network that represents the arm position ax with re-
spect to the head frame of reference. The red solid line represent the response
for ax = 20◦, the green dashed-dot line represent the response for ax = 0◦ and
the blue dash line represent the response for ax = −20◦. Top right pane shows
the error distribution (in degrees) of the estimated ax with respect to the arm
position, the eye position and the retinal position respectively. The solid lines
represent the mean error and the dashed lines represent the standard deviation
limits. The error distributions are quite similar and, in general, the error is quite
low with a global mean error equal to 1.93◦ with a global standard deviation
equal to 1.89◦. Bottom left pane shows the receptive field after the training
phase of the PPC layer: it is shown the global shape of the gain modulation. As
expected, the curves shapes are compatible with the gain modulation paradigm,
supporting the evidence that an unsupervised method can effectively learn a
multiplicative behaviour. Bottom right shows the contours at half the maximum
response strength for the 64 PPC neurons: it is worth noting the different color
of the contours that represent different level of activations. A qualitative analysis
points out that the population responses are stronger where the correspondent
neuron receptive fields are slightly overlapped. Moreover, the PPC neurons re-
ceptive fields almost cover the whole subspace in the ex-rx plane, indicating that
there is at least a neuron firing for each combination of ex and rx.
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Fig. 2. Experimental results with rx in degrees.(Top left) It shows the responses of the
trained network that represents the arm position ax with respect to the head frame
of reference for −20◦,0◦ and 20◦, respectively. (Top right) The error distribution (in
degrees) of the estimated ax with respect to the arm position, the eye position and the
retinal position respectively. The solid lines represent the mean error and the dashed
lines represent the standard deviation limits. (Bottom left) It represents a receptive
field after the training phase of the PPC layer. (Bottom right) Contours at half the
maximum response strength for the 64 PPC neurons.

In the second experiment we investigate a more realistic scenario where the
retinal position is a pixel position in the image plane. We just consider only the
horizontal component of the image position of the arm. To compute the real ax
value we exploit some geometrical constraints, given by the camera model. In
the specific:

ax = ex + tan−1

(
rx
f

)
[◦] (5)

where rx is the retinal position in pixels of the arm and f is the focal length of
the camera. For our purposes, we choose a focal length equal to 120 pixels that
represents a camera with a open lens of about 140◦.

The PPC layer contains 64 neurons but the input range are rx ∈ [−320, 320],
ex ∈ [−25◦, 25◦], ax ∈ [−94◦, 94◦] where rx is defined in pixels; it follows that
we suppose to have a image plane with an horizontal component that has a size
equal to 641 pixels. The range of ax follows the maximum value that the ax can
reach. We use 101 and 51 neurons to represent rx and ex, respectively. We use
the standard deviation σ of gaussian representing rx equal to 60 pixels. Also in
this case the standard deviation of the proprioceptive neurons encoding ax is
equal to 6◦.
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Fig. 3. Experimental results with rx in pixels.(Top left) It shows the responses of the
trained network that represents the arm position ax with respect to the head frame
of reference for −20◦,0◦ and 20◦, respectively. (Top right) The error distribution (in
degrees) of the estimated ax with respect to the arm position, the eye position and the
retinal position respectively. The solid lines represent the mean error and the dashed
lines represent the standard deviation limits. (Bottom left) It represents a receptive
field after the training phase of the PPC layer. (Bottom right) Contours at half the
maximum response strength for the 64 PPC neurons.

Figure 3 shows the results from the analysis of the trained network. The overall
performance is lower than that obtained in the previous experiments: the top
right pane shows the error distribution with respect to the arm, eye and retinal
position, respectively. In this set of experiments, during the PPC learning, the
system is able to learn PPC receptive fields that are compatible, in a qualitative
way, with the gain modulation principle (see Figure 3, bottom left pane). The
bottom right pane shows the receptive fields distribution in the space rx-ex where
we have the same qualitative features of the previous experiment. The estimation
of ax has a global mean error equal to 3.36◦ with a global standard deviation
equal to 2.90◦.

4 Conclusions

This work described an unsupervised approach to learn coordinate transforma-
tions. The results show how the system is able to correctly compute the position
of a target with respect to the stable head frame of reference knowing only the
projection of the target onto the image plane and the eye position with respect
to the head. Further experiments are foreseen to validate the model for more
realistic scenarios, trying the method on a real robotic system and extending
the model for complex physical architectures.
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