
Human Action Recognition from RGB-D Frames Based
on Real-Time 3D Optical Flow Estimation

Gioia Ballin, Matteo Munaro, and Emanuele Menegatti

Department of Information Engineering of the University of Padova,
via Gradenigo 6B, 35131 - Padova, Italy

gioia.ballin@gmail.com, {munaro,emg}@dei.unipd.it

Abstract. Modern advances in the area of intelligent agents have led to the con-
cept of cognitive robots. A cognitive robot is not only able to perceive complex
stimuli from the environment, but also to reason about them and to act coher-
ently. Computer vision-based recognition systems serve the perception task, but
they also go beyond it by finding challenging applications in other fields such
as video surveillance, HCI, content-based video analysis and motion capture. In
this context, we propose an automatic system for real-time human action recog-
nition. We use the Kinect sensor and the tracking system in [1] to robustly detect
and track people in the scene. Next, we estimate the 3D optical flow related to
the tracked people from point cloud data only and we summarize it by means of
a 3D grid-based descriptor. Finally, temporal sequences of descriptors are clas-
sified with the Nearest Neighbor technique and the overall application is tested
on a newly created dataset. Experimental results show the effectiveness of the
proposed approach.
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1 Introduction

The challenge of endowing robotic agents with human-like capabilities is currently ad-
dressed by the cognitive robotics research field. In cognitive robotics, the aim is to
create smart agents able to efficiently perform complex tasks in partially observable
environments. In order to achieve real-world goals, a cognitive robot is equipped with
a processing architecture that combine the perception, cognition and action modules in
the most effective way. Then, a cognitive robot is not only able to perceive complex
stimuli from the environment, but also to reason about them and to act coherently. Fur-
thermore, a cognitive robot should also be able to safely interact and cooperate with
humans.

The interaction with humans and the interpretation of human actions and activities
have recently gained a central role in the researchers’ community since the spread of
new robotic devices has reached real-life environments such as offices, homes and ur-
ban environments. In this context, we propose an automatic system for real-time human
action recognition. Human action recognition is an active research area in computer
vision. First investigations about this topic began in the seventies with pioneering stud-
ies accomplished by Johanssons [2]. From then on, the interest in the field grew in-
creasingly, motivated by a number of potential real-world applications such as video
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surveillance, HCI, content-based video analysis and retrieval. Moreover, in recent years
the task of recognizing human actions has gained increasingly popularity thanks to the
emergence of modern applications such as motion capture and animation, video editing
and service robotics.

Our system relies on the acquisition of RGB-D data and exploits the Robot Operating
System [3] as a framework. We use the Microsoft Kinect sensor and the tracking system
described in [4] and [1] to robustly detect and track people in the scene. Next, we
estimate the 3D optical flow of the points relative to each person. For this purpose,
we propose a novel technique that estimates 3D velocity vectors from point cloud data
only, thus obtaining a real-time calculus of the flow. Then, we compute a 3D grid-based
descriptor for representing the flow information within a temporal sequence and we
recognize actions by means of the Nearest Neighbor classifier. We tested this technique
on a RGB-D video dataset which contains six actions performed by six different actors.
Our system is able to recognize the actions in the dataset with a 80% accuracy while
running at a medium frame rate of 23 frames per second.

The remainder of the paper is organized as follows: Section 2 provides a complete
review about the recent advances in human action recognition systems. Section 3 de-
scribes the proposed real-time computation of 3D optical flow, while Section 4 outlines
the data structure used to summarize the estimated flow information. Experimental re-
sults are reported in Section 5 and Section 6 concludes the paper and outlines the future
work.

2 Related Work

Most of the works on human action recognition rely on information extracted from
2D images and videos. These approaches mostly differ in the features representation.
Popular global representations are edges [5], silhouettes of the human body [6] [7] [8],
2D optical flow [9] [10] [11] and 3D spatio-temporal volumes [6] [7] [8] [12] [13]
[14]. Conversely, effective local representations mainly refer to [15] [16] [17] [18] [19]
[20] and [21]. The recent spread of inexpensive RGB-D sensors has paved the way
to new studies in this direction. Recognition systems that rely on the acquisition of
3D data could potentially outperform their 2D counterparts, but they still need to be
investigated. The first work related to RGB-D action recognition is signed by Microsoft
Research [22]. In [22], a sequence of depth maps is given as input to the system. Next,
the relevant postures for each action are extracted and represented as a bag of 3D points.
The motion dynamics are modeled by means of an action graph and a Gaussian Mixture
Model is used to robustly capture the statistical distribution of the points. Recognition
results state the superiority of the 3D silhouettes with respect to their 2D analogous.

Subsequent studies mainly refer to the use of two different technologies: Time of
Flight cameras [23][24] and active matricial triangulation systems, in particular the Mi-
crosoft Kinect [25], [26], [27], [28], [29], [30]. [25][26] represent the first attempt to
exploit skeleton tracking information to recognize human actions. This information is
used to compute a set of features related to the human body pose and motion. Then,
the proposed approach is tested on different classifiers: the SVM classification is com-
pared with both the one-layer and the hierarchical Maximum Entropy Markov Model
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classification. Finally, the dataset collected for testing purposes has been made publicly
available by the authors. As for [25][26], the recently published work by Yang et al.
[27] relies on the acquisition of skeleton body joints. The 3D position differences of
body joints are exploited to characterize the posture and the motion of the observed hu-
man body. Finally, Principal Component Analysis is applied to compute the so-called
EigenJoints and the Näives-Bayes-Nearest-Neighbor technique is used to classify these
descriptors. This work consistently outperforms that of Li et al. [22] while using about
a half their number of frames. A different approach is followed in [28] by Zhang and
Parker, where the popular 2D spatio-temporal features are extended to the third di-
mension. The new features are called 4D spatio-temporal features, where the “4D” is
justified by the 3D spatial components given by the sensor plus the time dimension. The
descriptor computed is a 4D hyper cuboid, while Latent Dirichlet Allocation with Gibbs
sampling is used as classifier. Another work in which typical 2D representations are ex-
tended to 3D is [29]. The authors extend the existing definitions of spatio-temporal
interest points and motion history images to incorporate also the depth information.
They also proposes a new publicly available dataset as test bed. For the classification
purpose, SVMs with different kernels are used.

From the application point of view [25], [26], and [29] are targeted to applications
in the personal robotics field, while [22] and [27] are addressed to HCI and gaming
applications. Finally, [28] and [30] are primarily addressed to applications in the field
of video surveillance. In [30], Popa et al. propose a system able to continuously analyze
customers’ shopping behaviours in malls. By means of the Microsoft Kinect sensor,
Popa et al. extract silhouette data for each person in the scene and then compute moment
invariants to summarize the features.

In [23][24], a kind of 3D optical flow is exploited for the gesture recognition task.
Unlike our approach, Holte et al. compute the 2D optical flow using the traditional
Lukas-Kanade method and then extend the 2D velocity vectors to incorporate also the
depth dimension. At the end of this process, the 3D velocity vectors are used to create
an annotated velocity cloud. 3D Motion Context and Harmonic Motion Context serve
the task of representing the extracted motion vector field in a view-invariant way. With
regard to the classification task, [23] and [24] do not follow a learning-based approach,
instead a probabilistic Edit Distance classifier is used in order to identify which gesture
best describes a string of primitives. [24] differs from [23] because the optical flow is
estimated from each view of a multi-camera system and is then combined into a unique
3D motion vector field.

3 3D Optical Flow

In this section, we propose a novel approach to compute the 3D optical flow as an exten-
sion to the third dimension of the traditional 2D optical flow [9] [10] [11]. Computing
the optical flow with real-time performances is really a challenging problem: traditional
2D approaches involve several computations on every pixel of the input images thus
leading to poor temporal performances. On the contrary, we compute 3D optical flow
only for relevant portions of the overall 3D scene.
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In details, we associate a cluster to each tracked person by means of the underlying
tracking-by-detection system [1]. Such a cluster is defined as a 4D point cloud repre-
senting an individual in the 3D world. The four dimensions represent the 3D geometric
coordinates and the RGB color component of each point. With this information, we esti-
mate the 3D optical flow associated to each identified cluster frame-by-frame. The first
step of this process concerns storing the appropriate information. Indeed, at each frame
F and for each track k, we store two elements: the cluster associated to k at frames F
and F −1. The second step involves matching the two point clouds stored at each frame
in order to find correspondences between points.

3.1 Points Matching

Matching cluster points relative to different time instants represents the true insight
of this work. Since we deal with human motion, we cannot assume the whole person
cluster to undergo a rigid transformation. For this reason, we exploit local matching
techniques.

For each track k, let Ak(F −1) be the cluster associated to k at the frame F −1 and let
Ak(F) the cluster associated to k at the frame F . Let P be a generic point in Ak(F − 1).
If we can find the spatial location of P in Ak(F), then we can also estimate the actual 3D
velocity vector representing the movement of P. In order to find a match between the
points in Ak(F−1) and in Ak(F), a two-way matching algorithm is applied. First, Ak(F)
is kept fixed and for each point in Ak(F − 1) a 1-nearest neighbor search is performed
in order to find a matching point in Ak(F). Next, the same pattern is repeated with
Ak(F − 1) fixed instead of Ak(F). This way, two different vectors of correspondences
are returned, those vectors are then intersected and a final vector of correspondences is
returned. Since clusters have an average of 300 points, kdtrees with FLANN searches
are used to speed-up the computations. Furthermore, searches are driven by both the
3D geometric coordinates of the points and the RGB color information. In Fig. 1, we
show the correspondences estimated while a person is hand waving. In Fig. 1(a) two
consecutive images are shown, while in Fig. 1 (b) the corresponding cluster points are
reported and the points correspondences are drawn in red. In this work, the 3D optical
flow is seen as a set of estimated 3D velocity vectors that are obtained in constant
time from the vector of estimated correspondences by dividing the spatial difference by
the temporal difference. At an implementation level, the computed optical flow can be
stored as an additional field for each point of Ak(F), thus creating an annotated point
cloud.

4 3D Grid-Based Descriptor

In order to recognize human actions from the 3D optical flow estimated in Section
3, first a suitable description for the flow is required. Indeed, the proposed approach
generally returns a different number of velocity vectors in each frame. To achieve a
fixed size descriptor we compute a 3D grid surrounding each cluster in the scene. The
3D grid provides an effective spatial partition of the cluster points. Furthermore, since
each of the 3D velocity vectors is associated to a cluster point by means of an annotated
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(a) RGB frames (b) Cluster points and estimated
correspondences

Fig. 1. Display of two consecutive RGB frames where the tracking output is drawn as a 3D
bounding box (a) and the cluster points relative to the tracked person, together with the estimated
correspondences (b) with regard to the hand waving action

point cloud, the grid provides also a 3D optical flow partition. In this work, the 3D
grid represents the baseline data structure of the flow descriptor and it is defined by a
fixed number of spatial partitions along the three geometric axes. The grid computation
involves three basic steps. The first step is concerned with defining the minimum and
maximum grid bounds along the three dimensions. Bounds are set so that the current
cluster is centered in the grid, even if movements of the upper limbs occur. In the second
step, the bounds of the grid are combined with the spatial divisions in order to define
the minimum and maximum grid ranges associated to each 3D cube of the grid. The last
step is devoted to place the right points into the right 3D cube. In particular, the current
cluster is scanned and each point is put into the right cube based on its 3D geometric
coordinates. We finally choose to have four partitions along the x, y, and z axis. This
choice is justified by our will of keeping separate the right side of the human body from
the left side, while also keeping limited the size of the descriptor. Such a 3D grid is
shown in Fig. 2. The final descriptor is obtained by summarizing the flow information
contained in each grid cube: the 3D average velocity vector is computed for each cube
and all these vectors are concatenated in a column vector.

The 3D grid-based descriptor is calculated frame by frame, for each track k and frame
F . For the classification purpose, we collect a sequence of n 3D grid-based descriptors
and this sequence represents the final descriptor for the action at issue. Since an action
actually represents a sequence of movements over time, considering multiple frames
could potentially provides more discriminant information to the recognition task with
respect to approaches in which only a single-frame classification is performed. In this
work, we set the constant n to 10 and [31] provides a justification to our choice. Since
we do not have the a priori knowledge about the action duration and since each differ-
ent action is characterized by a different temporal duration, interpolation and sampling
techniques are used to create the final descriptor. At the end, the final descriptor is nor-
malized and used for training and testing purposes. Normalization enables to partially
discard the presence of noise in the raw data.
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Fig. 2. Two different views of the computed 3D grid: 4 partions along the x, y and z axis are used

5 Experiments

In order to test the recognition performances of our descriptor we exploited a simple
1-Nearest Neighbor classifier. The test phase involves four main steps. In the first step
we collect single-frame descriptors in the so called final descriptor until 10 frames are
reached. When the 10 frames are exceeded, a window sampling is applied to obtain a
10-frames final descriptor. As a second step, the final descriptor is normalized, while
in the third step we compute a distance between the test descriptor and all the training
examples in the dataset. We used two types of distance function: the Euclidean distance
function and the Mahalanobis distance function. Finally, the label related to the training
descriptor that has the shortest distance to the test descriptor is chosen as predicted
class.

5.1 Dataset and Setup

Our work is mainly targeted to video surveillance applications. Since no public RGB-D
dataset devoted to recognize typical video surveillance actions is currently available,
we collected a new RGB-D dataset in a lab environment in order to test our recogni-
tion system. The dataset contains six types of human actions: standing, hand waving,
sitting down, getting up, pointing, walking. Each action is performed once by six dif-
ferent actors and recorded from the same point of view. We invited the six volunteers to
naturally execute the actions, and we gave no indication to them about how to accom-
plish movements. Each of the segmented video samples spans from about 1 second to
7 seconds.

5.2 Results

This section discusses the experimental results achieved by performing the 1-Nearest
Neighbor classification on 10-frames final descriptors. Tests have been executed by fol-
lowing the leave-one-out approach: first we chose an actor from the dataset to use its
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recordings as test bed, then we trained the classifier with the examples related to the
other five subjects. We collected the classification results related to the unseen actor
with respect to the training samples. Finally, the process has been performed for each
actor in the dataset. Results are provided in the form of confusion matrices and they are
shown in Table 1 and Table 2. Table 1 is related to a Nearest Neighbor classification
obtained by using the Mahalanobis distance, while Table 2 refers to a Nearest Neighbor
classification based on the Euclidean distance computation. We are able to achieve an
accuracy of 80% and a precision of 74% for the Euclidean-based classification, while
we obtain an accuracy of 78% and a precision of 72% for the Mahalanobis-based clas-
sification. We can notice that the Mahalanobis distance led to worse results with respect
to the Euclidean distance, suggesting that the number of training examples was not
enough for computing reliable means and variances. Moreover, the computation of the
covariance matrix and its inverse is costly when dealing with many dimensions. Ex-
periments also show that our application is able to achieve good recognition results for
those actions in which the movement of the entire human body is involved (e.g. getting
up and walking), while fairly good performances are obtained from the recognition of
actions characterized by the upper limbs motion only (e.g. hand waving and sitting).

Table 1. Confusion matrix related to a Nearest Neighbor classification obtained by using the
Mahalanobis distance. In the matrix: STA stands for standing, HAW stands for hand waving,
SIT stands for sitting down, GET stands for getting up, POI stands for pointing and finally WAL
stands for walking.

STA HAW SIT GET POI WAL

STA 0.67 0.17 0.17
HAW 0.17 0.50 0.17
SIT 0.83
GET 0.17 1.00 0.17
POI 0.17 0.17 0.17 0.50
WAL 0.83

Table 2. Confusion matrix related to a Nearest Neighbor classification obtained by using the
Euclidean distance. In the matrix: STA stands for standing, HAW stands for hand waving, SIT
stands for sitting down, GET stands for getting up, POI stands for pointing and finally WAL
stands for walking.

STA HAW SIT GET POI WAL

STA 0.83 0.33 0.17 0.33
HAW 0.50
SIT 0.83
GET 0.17 1.00
POI 0.17 0.67
WAL 1.00
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With regards to temporal performances, we run the application on a notebook
equipped with a 2nd generation Intel Core i5 processor characterized by a processor
speed that ranges from 2.4 GHz to 3 GHz if the Intel Turbo Boost technology is en-
abled. On this working station, the application runs in real-time with a medium frame
rate of 23 frames per second.

6 Conclusions and Future Work

In this paper, we proposed a method for real-time human action recognition for a cog-
nitive robot endowed with a RGB-D sensor. We focused on the features extraction step
and in particular we exploited 3D optical flow information directly extracted from peo-
ple point clouds to obtain a suitable representation of human actions. To this aim we
also proposed a 3D grid-based descriptor to encode the 3D flow information into a
single vector. The estimation of the 3D optical flow field proved to be effective to the
recognition task with a Nearest Neighbor classifier: we achieved an accuracy of 80%
and a precision of 74% on six basic actions performed of a newly collected RGB-D
dataset. Furthermore, the application runs in real-time at a medium frame rate of 23 fps.

As future works, we envision to make the descriptor more discriminant by using
histograms of 3D flow orientation instead of mean flow orientations. Moreover, we
plan to use more sophisticated classifiers and to extend our dataset in order to include
more actions, even in presence of partial occlusion.
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