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Abstract. New powerful approach in cognitive modeling and intelligent agent 
design, known as biologically inspired cognitive architectures (BICA), allows 
us to create in the near future general-purpose, real-life computational equiva-
lents of the human mind, that can be used for a broad variety of practical  
applications. As a first step toward this goal, state-of-the-art BICA need to be 
extended to enable advanced (meta-)cognitive capabilities, including social and 
emotional intelligence, human-like episodic memory, imagery, self-awareness, 
teleological capabilities, to name just a few. Recent extensions of mainstream 
cognitive architectures claim having many of these features. Yet, their imple-
mentation remains limited, compared to the human mind. This work analyzes 
limitations of existing extensions of popular cognitive architectures, identifies 
specific challenges, and outlines an approach that allows achieving a “critical 
mass” of a human-level learner. 

Keywords: BICA Challenge, human-level AI, learner critical mass, episodic 
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1 Introduction 

Emergent new field of BICA1 research brings together artificial intelligence, cognitive 
and neural modeling under a new umbrella: the overarching BICA Challenge to create 
a computational equivalent of the human mind [1, 2]. The challenge calls for an ex-
tension of cognitive architectures with new features that should bring them to the 
human level of cognition and learning. The list of these features includes episodic 
memory, theory-of-mind, a sense of self, autonomous goal setting, various forms of 
metacognition, self-regulated and meta-learning, emotional2 and social intelligence, 
and more. Many recently extended popular cognitive architectures are claimed to 
have some or most of these features and capabilities. However, a critical question is 
whether the level of their implementation and usage is adequate to requirements set 

                                                           
1 BICA stands for “biologically inspired cognitive architectures”. The acronym was coined by 

DARPA in 2005 as the name of a program intended to develop psychologically and neurobio-
logically based computational models of human cognition. 

2 While the terms “emotional cognition” and “emotional intelligence” are highly overloaded in 
the literature with controversial semantics, they are used here generically to refer to cognitive 
representation and processing of emotions, moods, feelings, affects, appraisals, etc. 
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by the challenge [2]. The present work addresses this question by examining particu-
lar examples, pointing to problems with existing implementations and setting specific 
challenges for future research. 

Since the onset of cognitive modeling as a research paradigm, attempts are made to 
implement and study complete cognitive agents embedded in virtual or physical envi-
ronments [3]. Computational frameworks used for designing these agents are known 
as cognitive architectures [4-8]. A cognitive architecture is considered “biologically 
inspired” when it is motivated by the organization and principles of biological intelli-
gent systems, primarily, the human brain-mind. From this point of view, the majority 
of modern cognitive architectures belong to the BICA category. E.g., the most popu-
lar cognitive architectures, including ACT-R [9, 10] and Soar [11-14], originated 
from the Allen Newell’s goal to model principles and mechanisms of human cogni-
tion [3], as opposed to the original goal of reproducing human intelligent capabilities 
in artificial intelligence [15] without necessarily replicating their mechanisms, or the 
goal in neuroscience – to understand how the brain works at the neuronal level. 

 
 

 

Fig. 1. Template for comparison of extensions of cognitive architectures. Only components 
within the solid circle belong to the cognitive architecture proper, of which the components 
shown in bold red are typically considered extensions. Virtually all circles may have direct 
connections to the environment (dashed vertical arrows). 



 Extending Cognitive Architectures 43 

 

A certain minimal set of elements including perception, cognition based on stored 
procedures, and action control, is common for all cognitive architectures due to the 
requirement of completeness. In these sense, other features can be regarded as exten-
sions. The focus here is on extensions that are necessary for solving the BICA Chal-
lenge (Figure 1, red; [2]). 

2 State of the Art and Limitations of Extensions: Examples 

2.1 Limited Episodic Memory 

As an example, let us consider the state of the art of episodic memory implementation 
and usage in cognitive architectures represented by the extended Soar [13, 14]. Epi-
sodic memory in Soar is stored as snapshots of contents of working memory taken 
together with contextual metadata. In principle, forms of episodic memory in Soar 
also include prospective memories of intents and plans. Retrieval is possible by acti-
vation of cues or by context. Usage may include many functions [14]: e.g., analysis of 
past episodes and retroactive learning, prediction and guidance in action selection, 
repetition avoidance. 

This broad spectrum of functionality and usage of episodic memory looks much 
better than early implementations; yet many limitations still remain. Unlike human 
episodic memory, episodic memory in Soar does not remain plastic after its forma-
tion, and it is not modified or replicated every time when it is accessed (cf. [16]). 
Also, it mostly represents experiences of the actual past situations of the agent. The 
uniqueness of remembered episodes in many cases appears not critical for their usage: 
merging similar episodic memories may be allowed, which in psychological terms 
means mixing the notions of episodic and semantic memory.  

The rich system of relations among remembered episodes characteristic of human 
memory is missing in these implementation, and as a consequence, strategic retrieval 
mechanisms with step-by-step contextual reinstatement [25, 26] are not implementa-
ble. Episodic memory of imagery is also missing, but is on the list in [14]. 

2.2 Limited Metacognition 

Metacognition is a very broad notion, which in various forms is intimately interleaved 
virtually in all human cognition. It is impossible to address this topic here in detail. 
First, it is important to separate from metacognition anything that is not cognition  
on its own: e.g., internal sensing and autoregulation of the computational process 
(Figure 1, upper-left circle).  

Speaking of metacognition as cognition about cognition, of particular interest are 
functions with known implementations in cognitive architectures, for example, 
Theory-of-Mind reasoning and autonomous goal generation [17, 18]. One general 
limitation of these implementations is that reasoning about goals is driven by a persis-
tent meta-goal, and in this sense amounts to a sub-goal reasoning or planning.  
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Similarly, Theory-of-Mind in artificial intelligence is traditionally understood as a 
system of beliefs about beliefs of others processed from the same first-person mental 
perspective of the agent, in contrast with more rich mental simulations of others’ 
mental perspectives performed by humans [20, 21]. 

2.3 Limited Affective Cognition 

Extended Soar [13, 14] implements emotional intelligence by adding an appraisal 
detector as a separate module, which implements the theory of Scherer. The usage of 
tis module is that it generates one global characteristic (appraisal) of the current state 
of the agent, which can be used as a reward signal in reinforcement learning. 

Limitations compared to human emotional cognition are innumerous; only a few 
examples can be named here. First and foremost, this approach does not allow for 
representation of social (complex) emotions. Secondly, it does not allow for simulta-
neous processing of multiple appraisals and appraisals of mental states of others. 

3 Specific Challenges for BICA Designs: Examples 

The above limitations suggest challenges for new cognitive architecture designs. The 
subset of challenges selected as examples below is not random. They contribute to an 
emergent coherent story that addresses the critical question of the BICA Challenge 
[2]: how to achieve the human learner critical mass? One specific approach is outlined 
in Section 4. 

3.1 Plastic Prospective Episodic Memory 

Episodic memory in humans is not limited to static snapshots of past experiences: it 
also stores imagined future or abstract situations, imagined experiences of others, and 
it is changed every time when it is accessed by mechanisms like reconsolidation and 
multiple trace formation. Many of these features will be critical for the believability 
of the agent and for its autonomous cognitive growth up to a human level. For exam-
ple, remembered dreams of the future may help to generate new goals (see below); re-
evaluating the past based on corrected beliefs may improve self-consistency of the 
agent cognition, and so on. 

One specific challenge for future implementations is to have plastic prospective ep-
isodic memory of the imagined future scenario, in which not only the plan of achiev-
ing the goal, but also the understanding of the goal itself, as well as sub-goals, may 
change in response to new information in a more natural, human-like way. As a pre-
requisite for doing this, a significant first step, e.g., in Soar would be getting a goal 
situation represented in episodic memory as an imagined experience of the agent, 
thereby giving the agent new reasoning capabilities. This format of goal representa-
tion is already the standard for some existing frameworks: e.g., GMU BICA [24]. 
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3.2 Creative Autonomous Goal Generation 

The extension of episodic memory discussed above will allow the agent to reason 
about the goal as a perceived state of the world, questioning own beliefs, applying 
new knowledge and performing mental simulations in that state. The challenge is then 
to enable bootstrapped generation of higher and more complex goals that make sense 
in a given world, starting from a minimal set of innate primitive drives. A successful 
approach will combine many cognitive capabilities discussed in this article.  

With multiple potential goal situations represented as plastic prospective episodic 
memories that are subject to metacognition, the agent will have possibilities of engi-
neering and selection of goals. This process also requires metacognitive reasoning 
about goals. Processes of goal reasoning and goal selection can be automated using 
various approaches [17, 27], and in general rely on a system of values. 

3.3 Human-Level Emotional Intelligence 

Thus, a system of values appears necessary for the agent to be able to generate new 
goals. In order to be human-like, the goal selection process in an agent must be guided 
by a human-level system of values. This is only one aspect of the challenge of achiev-
ing human-level emotional intelligence in artifacts. Another aspect is the necessity for 
an agent to be integrated with human partners in a team, implying the ability to devel-
op mutual relationships of trust, respect, subordination, etc. Complex social emotions 
are inevitably involved in the formation and maintenance of such relationships, which 
means that artifacts should be able to understand, generate, recognize and express 
social emotions. The “understand” part appears to be the hardest at present. 

3.4 Human Learner Critical Mass 

The human learner critical mass challenge is to identify, design and create a minimal 
cognitive architecture with minimal initial knowledge and skills, capable of human-
like learning up to a level that a typical human can achieve in similar settings. The 
learning process does not need to be autonomous and may involve human instruction, 
mentoring, scaffolding, learning from examples, interaction with resources of various 
nature available to humans. The challenge can be further divided into a set of domain-
specific human learner critical mass challenges and a general-purpose human learner 
critical mass challenge, the former being a precondition for the latter. The hypothesis 
is that a solution can be found in a simple form, as opposed to manual implementation 
and integration of all human intelligent capabilities. In this case, interactive learning, 
self-organization and evolution is expected to be among the main techniques used for 
creation of intelligent agents. 

4 Toward Human-Like Intelligent Artifacts 

The above consideration suggests that the challenge of cognitive growth of an artifact 
up to a human level of general intelligence (the human learner critical mass challenge) 
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impinges on the evolvability of goals and values in an artificial cognitive system, 
which in turn requires artificial emotional intelligence. This section introduces a new 
approach to addressing the challenge, based on developing emotional intelligence in 
artifacts [22] and using it together with potential goal enumeration in order to gener-
ate a system of goals. 

4.1 Emotional Extension of the Mental State Framework 

The mental state framework [19] essentially relies on two building blocks: a mental 
state, that attributes specific content of awareness to a specific mental perspective of 
an agent, and a “schema”: the term in this case refers to a specific structure that can 
be used to represent any concept or category. Instances of schemas populate mental 
states. Each instance has a standard set of attributes [24]. 

“Emotional” extension of this framework is based on the introduction of three new 
elements [22]: (i) an emotional state (an attribute of a mental state), (ii) an appraisal 
(an attribute of a schema), and (iii) higher-order appraisal schemas, that can be also 
called “moral schemas”. As the name suggests, these schemas recognize patterns of 
appraisals and emotional states, and are intended to represent complex or social emo-
tions and relationships, including pride, shame, trust, resentment, compassion, jealou-
sy, sense of humor, etc. Available phenomenological data [28] can be used to define 
these schemas – or to map naturally emerging in the architecture new schemas onto 
familiar concepts. 

4.2 Enumeration of Potential Goals 

A useful enumeration of possible, virtually relevant, or potential goals in a given 
world or situation could be the key to goal generation. In order to enumerate possible 
goals in a useful way, one can use a semantic metalanguage [23, 29]: specifically, the 
shared by all languages lexical-conceptual core of semantic primes and their asso-
ciated grammar. Examples of semantic primitives include very basic notions like 
“above”, “big”, “more”, “have”, “inside”, “move”, “see”, “want”, etc. From these 
fundamental notions, generic goal-like notions can be formed, e.g.: “survive”, “satisfy 
desire”, “possess”, “secure”, “dominate”, “have freedom”, “explore”, etc. that can be 
applied to specific objects and situations in various combinations. Therefore, in a 
given setup, a conceptual lattice [31] of potential goals can be generated using the 
fundamental primitives. Then, classification and selection among potential goals 
should be done using a system of values organized in a Maslow hierarchy [30]. 

4.3 Generation of New Values 

Thus, goal selection guided by the system of values requires a human-like system of 
values, and its natural development depends on the agent’s ability to generate  
new values, which can be done by moral schemas, which therefore play the role of a 
“critical element” of the critical mass of a human-level learner. Moral schemas can be  
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innate or emergent. Future studies will estimate this component of the critical mass in 
terms of a minimal subset of moral schemas that enable autonomous development of a 
human-compatible system of values and goals in a given environment. 

5 Discussion 

This paper presented a brief overview of cognitive architecture extensions with ad-
vanced, human-inspired cognitive capabilities, and pointed to the wide gap between 
existing implementations and the human mind. Several examples of specific chal-
lenges in bridging the gap were outlined, that allow us to decompose the BICA Chal-
lenge. Possible approaches to solving some of these challenges were discussed. 

The key question is, which of these biologically inspired advanced features are 
critical, and which may be optional? “Critical” here means critical for acceptance as 
cognitively “equal” minds by humans, and for achieving a human-level learner criti-
cal mass. The analysis of the latter challenge presented here suggests that the critical 
set should include the above examples described as specific challenges, and more. 
Specifically, human-level emotional intelligence appears to be a necessary feature for 
the agent believability and for the sense of co-presence associated with the agent. It is 
also an essential component in self-regulated learning, which is one of the mechan-
isms required for achieving the critical mass: this aspect will be discussed elsewhere. 
As the consideration presented here illustrates, a general approach to solving the out-
lined challenges can be based on the formalism of multiple mental states simulta-
neously present in working memory [19], which therefore appears to be promising. 

5.1 Conclusions 

As a first step toward solving the BICA Challenge, state-of-the-art BICA need to be 
extended to enable advanced cognitive capabilities, including emotional intelligence, 
human-like episodic memory, and the ability to generate new goals and values. Exist-
ing extensions of mainstream cognitive architectures remain limited, compared to the 
human mind. Based on the analysis of these limitations and challenges, it is found here 
that human-level emotional intelligence is a critical component in the human-level 
learner critical mass. A specific approach to achieving the critical mass outlined here 
implies that more complex goals can be generated automatically based on an enume-
rated set of potential goals generated using universal cognitive elements like semantic 
primes, and the rules of goal selection can be based on an evolving system of values 
generated by moral schemas. These findings suggest tasks for future research. 
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