
Contractual Agreement Design

for Enforcing Honesty in Cloud Outsourcing

Robert Nix and Murat Kantarcioglu

The University of Texas at Dallas,
500 W Campbell Rd,
Richardson, TX 75080

{rcn062000,muratk}@utdallas.edu

Abstract. To save time and money, businesses and individuals have
begun outsourcing their data and computations to cloud computing ser-
vices. These entities would, however, like to ensure that the queries they
request from the cloud services are being computed correctly. In this pa-
per, we use the principles of economics and competition to vastly reduce
the complexity of query verification on outsourced data. Instead of build-
ing a specialized computation system for verifying the result of a single
outsourced query, we rely on a second, non-colluding data outsourcing
entity, whose services are required only a miniscule fraction of the time.
Using a game theoretic model, we show that given the proper incentive
structure, we can effectively deter dishonest behavior on the part of the
data outsourcing services with a very small expected cost increase. We
then prove that the incentive for an outsourcing service to cheat can be
reduced to zero under this structure.

Keywords: game theory, data outsourcing, contracts, query
verification.

1 Introduction

As the amount of data that we generate increases, so does the time and effort
necessary to process and store the data. With an increase in time and effort
comes an increase in monetary cost. To this end, many have turned to outsourc-
ing their data processing to “the cloud.” Cloud computing services are offered
by many large companies, such as Amazon, IBM, Microsoft, and Google, as well
as smaller companies such as Joyent and CSC. For example, Google [5] recently
launched the Google BigQuery Service, which is designed for exactly this pur-
pose: outsourced data processing. The distributed nature of these cloud services
shortens data processing time significantly. In addition, these cloud services pro-
vide a massive amount of data storage.

In a perfect world, these cloud providers would impartially devote all the
computation necessary to any task paid for by the subscribers. In such a world,
the querying process would look like figure 1 (minus the verifier), where the
subscriber outsources the data D to the cloud, sends queries (Q), and the cloud

J. Grossklags and J. Walrand (Eds.): GameSec 2012, LNCS 7638, pp. 296–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing 297

does the necessary calculations and returns the result (Q(D)). However, a cloud
provider is a self-interested entity. Since it is very difficult for the users of the
cloud to see the inner workings of the cloud service, a cloud provider could
“cut corners,” delivering a less accurate or incomplete computation result which
would take fewer system resources to compute. This would, of course, save com-
putational resources for the provider, provided the subscriber was unable to tell
a false result from a true one. Because of this, query verification, or the assurance
of query result correctness, has been identified as one of the major problems in
data outsourcing [17].

Fig. 1. Data Outsourcing with Verification

Many techniques have been developed and employed for query verification.
In figure 1 above, the subscriber sends a query to the outsourcing service, and
receives a response. Query verification would then be another process where the
subscriber determines if the response is, in fact, the result of the query. The ver-
ification process may belong to the owner, or it may be another process entirely.
In any case, the verifier aims to make sure that the outsourced server responded
correctly. These verification techniques range from simple to extremely com-
plex, and generally rely on the subscriber storing some sketch of the data (much
smaller in size), or some cryptographic protocols. Such protocols do a good job
verifying the data, but are often slow, or only work with specific types of queries.
Many of them assume that the subscriber knows which queries he will execute
in advance, so that a sketch can be created for each one. None of these, however,
consider the heart of the problem: the self-interest of the parties.

The problem of data outsourcing, and the resultant query verification, is fun-
damentally a problem of incentives. A cloud subscriber wants to get the result
of his queries accurately and efficiently, with as low a cost as possible. A cloud
provider, however, is most concerned about the profitable use of its computing
resources. These incentives can be at odds with each other. The natural way of
analyzing competing incentives is to use game theory. An interaction between
parties is cast as a game, where players use strategy to maximize their gains.
The gains from an interaction can be offset artificially by contracts, which can
be enforced by law. These adjustments can make actions which were once prof-
itable, such as “cutting corners” in a calculation, less profitable through the use

298 R. Nix and M. Kantarcioglu

of penalties. The contracts, therefore, aim not to detect whether a cloud provider
is cheating, but to remove the incentive for the provider to cheat altogether.

We propose a game theory-based approach to query verification on outsourced
data. We model the process of querying outsourced data as a game, with con-
tracts used to enforce behavior. Data outsourcing does not take place in a vac-
uum. Service Level Agreements (SLAs) exist for all types of cloud services[12],
and are enforceable contracts in court. Thus, we can augment the SLA with
an incentive structure to encourage honest behavior. Using a very simple query
verification technique, we show that even the threat of verification is enough to
deter cheating by a cloud provider.

We consider the case where multiple, non-colluding cloud providers exist. Non-
colluding means that the cloud providers do not share information. We believe
this is realistic, since cloud providers are competing entities and do not wish to
share data with their competitors. In this scenario, we show that without the
use of special verification techniques, a data owner can guarantee correct results
from rational cloud providers, while incurring an additional cost that is only a
small fraction of the overall computation cost.

Our contributions can be summarized as follows:

– We develop a game theoretic model of query verification on outsourced data.
– We show that the model has an equilibrium where the cloud provider behaves

honestly.
– Finally, we show that our incentives can improve the expected runtime of

any query verification method, making it extremely flexible.

Our paper does not consider the privacy of the outsourced data (similar to [2]).
However, any privacy-preserving technique for outsourcing data could still be
used in our framework. The use of our game theoretic techniques will not affect
the privacy-preserving properties of such schemes.

2 Related Work

Several works have outlined query verification methods. The vast majority of
these works focus on specific types of queries. Some focus only on selection
[1,3,8,18,20], while others focus on relational queries such as selection, projection,
and joins [11,10]. Still others focus only on aggregation queries like sum, count,
and average [6,19,21]. Some of these processes [16,21] require different verification
schemes for each type of query, or even each individual query, requiring that the
subscriber knows which queries will be asked in advance.

Many of the aforementioned schemes require complex cryptographic protocols.
Some encrypt the data itself, relying on homomorphic schemes to allow the
cloud provider to perform the computation [4,19]. A homomorphic operation will
always be less efficient than the operation on the unencrypted data, rendering the
overhead of these protocols greater by orders of magnitude. Others, such as [16],
rely on relatively simpler cryptographic primitives, like secure hash functions.
To maintain integrity, our scheme will also use hash functions. Our verification

Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing 299

framework is, however, simpler than these cryptography-based protocols, and can
be used to improve the expected runtime of any of these verification schemes.

The work of Canetti, Riva, and Rothblum [2] also makes use of multiple
outsourcing services for query verification. However, they make use of all the
services all the time, and require a logarithmic number of rounds to ensure
verifiability of computation. In addition, they assume that at least one of the
cloud providers is in fact honest. We, in contrast, do not assume that any provider
is honest, merely that they are rational (meaning that the provider wishes to
maximize his profits), and we only use additional providers a fraction of the
time. In addition, we only require one round of computation.

3 Cryptographic Background

In order to maintain the integrity of our outsourced data, we will need to em-
ploy some basic cryptographic primitives. We will need to employ a scheme that
allows the owner to make sure that tuples he receives from the server are le-
gitimate, and were not added or altered by the server. We can use a simple
message authentication code protocol known as HMAC [13] (Hash-based Mes-
sage Authentication Code) to do this. HMAC requires the use of cryptographic
hash functions.

A cryptographic hash function or one-way hash function is a function mapping
a large, potentially infinite, domain to a finite range. This function is simple to
compute (taking polynomial time), but is difficult to invert. Equivalently, we
can say that, for a cryptographic hash function f , it is difficult to find an x and
y such that x �= y and f(x) = f(y). Examples of cryptographic hash functions
include MD5 [15], SHA-1, and SHA-256 [9].

The HMAC system creates a keyed hash function from an existing crypto-
graphic hash function. Let m be the message for which we wish to create a code,
and k be the key we wish to use. Let f be our cryptographic hash function, and
let its required input size be n. If k has a length smaller than n, we pad k with
zeroes until it has size n. If k is larger, we let k be f(k) for the purposes of
calculating the HMAC function. We define the HMAC function as follows:

HMAC(m, k) = f((k ⊕ outpad)||f(k ⊕ inpad)||m)

where outpad and inpad are two constants which are the length of f ’s block size
(in practice, 0x5c...5c and 0x36...36, respectively).

Given a messagem and its HMAC value h, if we have the key k, we can simply
check to see if HMAC(m,k) matches h. If it does, then the probability that the
message is not legitimate (i.e., fabricated or altered) is negligible. Someone who
does not have the key k, however, will be unable to compute HMAC(m,k), and
will therefore be unable to forge a correct message.

Some more sophisticated methods of verifying data exist, such as Merkle hash
trees[7], which allow larger and smaller granularities of the message to be au-
thenticated without authenticating the rest. These other methods of verification
could be used to ensure data integrity if desired. In practice, any method of

300 R. Nix and M. Kantarcioglu

ensuring data integrity once it is in the hands of the outsourced servers will
suffice. We will use the simple HMAC protocol to do this. Data integrity will be
a critical component of our second solution.

4 The First Solution

We consider the case where multiple non-colluding cloud providers exist. This
means that the parties do not exchange strategies and do not exchange informa-
tion. Since multiple providers exist, our strategy will be to choose two of them,
checking the results of one against the other. We model the query verification
process as a game. The game has the following characteristics:

Players (3): the Data Owner(O), and two outsourced servers (S1 and S2).
Actions : The data owner begins the game by selecting a probability α, and

declares this probability to the servers. He then sends the query (Q) to one of
the two servers, with equal probability. With probability α he also sends the
query to the other server. If server Si receives the query, they then respond to
the query with either Q(D), that is, the query result on the database D, or
Q′

i(D) which is some result other than Q(D). We apply the subscript i to Q′ to
indicate that one player’s method of cheating is different from the other players’
method of cheating. We denote the honest action as h, and the cheating action
as c. These actions are depicted in figure 4.

Information: Data Owner O has given his database D to S1 and S2, with
an HMAC message authentication code appended to each tuple. Any message
authentication scheme would work here, but its purpose and only effect is that
it maintains the integrity of the data. This means that the servers cannot alter
any tuples and cannot add any tuples without being detected. The players have
entered into an agreement (a contract) before the game, and the contents of this
contract are known to all players. The contract could contain the probability
α. We assume that no updates are to be made to the database once they are
outsourced (they are outsourced purely for the purposes of querying).

Payoffs: The owner recieves the information value of the results received, given
by Iv(Q), whereQ is either Q(D) orQ′

i(D), minus the amount paid to the servers
P (Q). The servers recieve this payment, minus the cost of computing the query,
C(Q). For simplicity’s sake, we assume that both outsourcing services have the
same cost of computation and receive the same payment for the query. The logic
below easily applies to the case where costs are different, but this assumption
simplifies the equations involved. These payoffs are additionally adjusted by the
aforementioned contract. We assume the reservation utility of all parties is zero,
and if any party declines the contract, then none of the parties participate.

We assume that Iv(Q(D)) ≥ (1 + α)P (Q) and P (Q) ≥ C(Q). If this were
not the case, then the game would not be individually rational without some
outside subsidies (that is, some player’s expected payout would be less than
zero). In essence, we want to ensure that the data owner would want to pay
(1+α)P (Q) to receive the result, and the cloud provider would accept P (Q) for
the computation. To do this, we make sure that the value that the data owner

Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing 301

places on the query is at least the expected payment, and the cost to the cloud
providers is no more than the amount they would be paid. No one takes a loss
on the transaction.

We now present two contracts, both of which provide simple solutions to the
above game in which neither server has incentive to cheat. The first is very
simple and requires no additional computation. The second is intuitively more
fair, and thus more likely to be accepted in a real world scenario. Both contracts,
however, would be accepted by rational players. It should be noted that both of
these contracts are loosely based on the results from Auditing Game II and III
in [14].

Fig. 2. The Two-Cloud Query Verification System

Contract 1. If the owner asks for query responses from both servers, and the
results do not match, both servers pay a penalty of F to the owner, and return
the money paid for the computation P (Q) as well.

Theorem 4. The above game with contract 1 has an individually rational,
incentive compatible equilibrium in which the servers behave honestly.

Proof : Let C(Q′
i) be the cost of computing Q′

i for Si. Note that, because S1

and S2 do not collude, S1 does not know Q′
2, and S2 does not know Q′

1. The
only function both know for sure is Q. Without additional knowledge, we can
assume that the probability that Q′

1(D) = Q′
2(D) is negligible. For a player to

even consider returning Q′
i instead of Q, we must have C(Q′

i) ≤ C(Q), since
a player will not cheat if they do not gain anything from it. We also assume
that Iv(Q

′
i(D)) < 0 < Iv(Q(D)), since not only is the false result not what

the owner asked for, but also appears to be the true result if not verified. If
the wrong answer is believed to be correct, this would lead to wrong decisions,
and ultimately, financial loss, on the part of the owner. Now, we can define the
expected payoffs to each player, where uP (x, y) is the expected utility for player
P when S1 takes action x and S2 takes action y. Note that, in these equations
and throughout the rest of the paper, we omit the argument D from Q, since
D is fixed. We begin with O. If both players are honest (equation 1), O recieves
the value of the information gained from the query, minus the expected payment
for the calculation, 1 + α times P (Q). If one player is dishonest (equations 2
and 3), then with probability α, O detects this and gets both the honest and

302 R. Nix and M. Kantarcioglu

the dishonest result and the fine F from both players. With probability 1 − α,
he does not detect this, and gets either the correct value or the incorrect value
with equal probability. In the event that both players cheat (equation 4), they
are once again caught with probability α, but in this case, when they are not
caught, O receives only bogus values. This results in the following equations:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q) (1)

uO(h, c) = α(2F + Iv(Q) + Iv(Q
′
2)) (2)

+ (1 − α)(
1

2
(Iv(Q) + Iv(Q

′
2))− P (Q))

uO(c, h) = α(2F + Iv(Q) + Iv(Q
′
1)) (3)

+ (1 − α)(
1

2
(Iv(Q) + Iv(Q

′
1))− P (Q))

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2)) (4)

+ (1 − α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

For the servers, if both servers are honest (equations 5 and 8), they receive the
payment for the query, minus the cost of the query, provided they are selected
to perform the calculation. This selection probability is why the equations below
contain 1

2 . Otherwise, they gain nothing and lose nothing. If one player is dis-
honest, that player (equations 7 and 10), regardless of whether the other player
is honest, with probability α is caught, and loses the fine F . With probability
1 − α, the player is not caught, and gains the payment P (Q), minus the cost
of computing his cheat, C(Q′

i), if he is chosen for the computation. If a player
is honest while the other player is dishonest (equations 6 and 9), that player
similarly is punished with probability α, but invests a cost of C(Q) instead of
C(Q′

i) in the computation. This gives us the following equations:

uS1(h, h) =
1

2
(1 + α)(P (Q) − C(Q)) (5)

uS1(h, c) =
1

2
(1− α)(P (Q) − C(Q))− αF (6)

uS1(c, h) = uS1(c, c) =
1

2
(1− α)(P (Q) − C(Q′

1))− αF (7)

uS2(h, h) =
1

2
(1 + α)(P (Q) − C(Q)) (8)

uS2(c, h) =
1

2
(1− α)(P (Q) − C(Q))− αF (9)

uS2(h, c) = uS1(c, c) =
1

2
(1− α)(P (Q) − C(Q′

2))− αF (10)

We can now find the α for which the expected value for S1 is less when he cheats
than when he is honest, assuming S2 is honest. By symmetry, this will be the
same for S2. Thus, we set:

Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing 303

1

2
(1 − α)(P (Q)− C(Q′

1))− αF ≤ 1

2
(1 + α)(P (Q) − C(Q))

LetH represent the quantity P (Q)−C(Q), andH ′ represent the quantity P (Q)−
C(Q′

1). Distribute the (1 + α) and (1− α) to get:

1

2
(H ′)− α

2
(H ′)− αF ≤ 1

2
(H) +

α

2
(H)

Rearranging and combining terms, we get:

1

2
(C(Q)− C(Q′

1)) ≤ αF + αP (Q)

+
α

2
(C(Q)− C(Q′

1))

Let G represent the quantity C(Q)−C(Q′
1), that is, the amount the server would

gain from cheating. Substituting this in and factoring out an α, we get:

1

2
G ≤ α(F + P (Q) +

1

2
G)

Multiplying through by two, we get:

G ≤ α(2F + 2P (Q) +G)

And, solving for α,

G

2F + 2P (Q) +G
≤ α (11)

Since we can define F to be whatever we want in the contract, we can make
this minimum α value arbitrarily small. If α is at least this much, then S1 (and
by symmetry, S2) has no incentive to cheat. If S2 is not honest, then S1 has no
incentive to be honest, but the payout is less for both (much less, if F is large).
Therefore, the best outcome is for both players to behave honestly.

Now, we need to show that choosing α is incentive compatible for O. Given
that both players are honest, O’s utility is given as:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q)

which, by our assumption, is greater than or equal to zero. Thus, it is individually
rational for O. If α is increased, it merely decreases this value, so O has no
incentive to increase α. If we decrease α, then S1 and S2 will see cheating as the
more profitable choice, and will begin cheating. This leads to:

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2))

+ (1 − α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

304 R. Nix and M. Kantarcioglu

Now, since our α is less than our prescribed value in equation (11), F is bounded
above by G

α − 2P (Q)−G. Because of this, as α approaches zero, the first term
of the above equation decreases. The second term is negative (as Iv(Q

′
1) and

Iv(Q
′
2) are less than zero), and gets worse as α approaches zero. Thus, if α is

less than our prescribed value, O expects to lose value from cheating. So, O has
no incentive to deviate from α = G

2F+2P (Q)+G .

Now, in practice, O does not know G. Thus, he must choose the smallest
α that he knows he can use. Since P (Q) ≥ C(Q) ≥ G, O can choose α =

P (Q)
2F+2P (Q)−P (Q) = P (Q)

2F−P (Q) .

Now, based on the above analysis, it is clear that a cheater will gain less than
an honest player when the value of α is chosen as above, regardless of whether
the other player is honest. Thus, S1 and S2 have no incentive to cheat, and this
is incentive compatible for these players as well.

Now, quickly, a note on individual rationality: O has expected payout of
Iv(Q)− (1 + α)(P (Q). If this is greater than the reservation utility (zero), then
the contract is individually rational for O. By our initial assumption about the
value of the query, this is true. S1 and S2, in equilibrium, have an expected
payout of 1

2 (1+α)(P (Q)−C(Q)). Again, by the above assumption, this is true.
As this is both incentive compatible and individually rational for all players,

this contract creates the best possible equilibrium where S1 and S2 do not cheat,
andO pays only (1+α) times the price of a single computation (where α is small).

��

5 A More Intuitively Fair Solution

Now, it might seem unfair to punish both players when only one player cheats.
The rational player would see the above contract as completely fair, but humans
are not always completely rational. Thus, we also examine a contract which
identifies the cheater and punishes only the cheater.

Contract 2. If the owner asks for query responses from both servers, and the
results do not match, the owner performs a potentially costly audit of the compu-
tation. Each server whose result does not match the result given by the owner’s
process pays a fine F to the owner.

Theorem 5. The above game under contract 2 also has an equilibrium where
both servers remain honest.

Proof : Let all variables be defined as above, and let c(A(Q,Q′
1, Q

′
2)) represent

the cost of auditing the computation. The payout functions associated with this
contract are as follows:

We begin with O. If both players are honest (equation 12), O recieves the
value of the information gained from the query, minus the expected payment for
the calculation, 1 + α times P (Q). If one player is dishonest (equations 13 and
14), then with probability α, O detects this and gets both the honest and the
dishonest result and the fine F from the dishonest player. In this case, he also
pays for a costly audit (c(A(Q,Q′

1, Q
′
2)) to determine which player cheated. With

Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing 305

probability 1 − α, he does not detect this, and gets either the correct value or
the incorrect value with equal probability. In the event that both players cheat
(equation 15), they are once again caught with probability α, and both pay the
fine. However, O only recieves false values, and still pays for the audit. This
results in the following equations:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q) (12)

uO(h, c) = α(F + Iv(Q) + Iv(Q
′
2)− c(A(Q,Q′

1, Q
′
2))) (13)

+ (1− α)(
1

2
(Iv(Q) + Iv(Q

′
2))− P (Q))

uO(c, h) = α(F + Iv(Q) + Iv(Q
′
1)− c(A(Q,Q′

1, Q
′
2))) (14)

+ (1− α)(
1

2
(Iv(Q) + Iv(Q

′
1))− P (Q))

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2)− c(A(Q,Q′

1, Q
′
2))) (15)

+ (1− α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

For the servers, if both servers are honest (equations 16 and 19), they receive the
payment for the query, minus the cost of the query, provided they are selected
to perform the calculation. This selection probability is why the equations below
contain 1

2 . Otherwise, they gain nothing and lose nothing. If one player is dis-
honest, that player (equations 18 and 21), regardless of whether the other player
is honest, with probability α is caught, and loses the fine F . With probability
1− α, the player is not caught, and gains the payment P (Q), minus the cost of
computing his cheat, C(Q′

i), if he is chosen for the computation. In this case,
if a player is honest while the other player is dishonest (equations 17 and 20),
the player is not punished, and therefore receives exactly the same payment as
if both players were honest. This gives us the following equations:

uS1(h, h) =
1

2
(1 + α)(P (Q) − C(Q)) (16)

uS1(h, c) =
1

2
(1− α)(P (Q) − C(Q)) (17)

uS1(c, h) = uS1(c, c) =
1

2
(1− α)(P (Q) − C(Q′

1))− αF (18)

uS2(h, h) =
1

2
(1 + α)(P (Q) − C(Q)) (19)

uS2(c, h) =
1

2
(1− α)(P (Q) − C(Q)) (20)

uS2(h, c) = uS1(c, c) =
1

2
(1− α)(P (Q) − C(Q′

2))− αF (21)

We can now find the α for which the expected value for S1 is less when he cheats
than when he is honest, assuming S2 is honest. By symmetry, this will be the
same for S2. Thus, we set:

306 R. Nix and M. Kantarcioglu

1

2
(1 − α)(P (Q)− C(Q′

1))− αF ≤ 1

2
(1 + α)(P (Q) − C(Q))

This inequality is exactly the same as in theorem 4. Thus, letting G represent
the quantity C(Q)− C(Q′

1), we get:

G

2F + 2P (Q) +G
≤ α (22)

Since we can define F to be whatever we want in the contract, we can make
this minimum α value arbitrarily small. If α is at least this much, then S1 (and
by symmetry, S2) has no incentive to cheat. If S2 is not honest, then S1 has no
incentive to be honest, but the payout is less for both (much less, if F is large).
Therefore, the best outcome is for both players to behave honestly.

Now, we need to show that choosing α is incentive compatible for O. Given
that both players are honest, O’s utility is given as:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q)

which, by our assumption, is greater than or equal to zero. Thus, it is individually
rational for O. If α is increased, it merely decreases this value, so O has no
incentive to increase α. If we decrease α, then S1 and S2 will see cheating as the
more profitable choice, and will begin cheating. This leads to:

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2)− c(A(Q,Q′

1, Q
′
2)))

+ (1− α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

As in theorem 4, the first term of this equation decreases as α tends to zero
(regardless of c(A(Q,Q′

1, Q
′
2)), and the second term is negative. Thus, as α de-

creases, O’s expected payout decreases. Therefore, O has no incentive to adjust α
up or down, and this α is incentive compatible for O. The arguments in theorem
4 for the incentive compatibility of the servers and the individual rationality of
both players continue to apply in this case. Thus, the contract is both incentive
compatibile and individually rational for all parties involved. ��

The audit process mentioned above could be done in several ways. The sim-
plest, although most expensive, of these would be for the owner to retrieve all
the data, then perform the query himself. Obviously, this defeats the purpose of
data outsourcing. Based on the fact that the outsourced data uses some message
authentication codes to keep the data from being modified, we can improve this.
First, for selection queries, if one player fails any MAC checks, then they are ob-
viously cheating. If one player returns fewer results than the other, then they are
also obviously cheating. For aggregate queries, we can have each source return
the tuples which were selected for the aggregation process. We can then check
to see if the aggregate query result matches the values returned by the server.
Finding a tuple set that matches a false query result might prove incredibly dif-
ficult if the false query was not generated from a sample. We can also apply the

Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing 307

same techniques used for selection queries, noting that the cloud that returns
fewer tuples must be cheating (provided all tuples returned are authenticated).
Essentially, for a given query, we end up asking the providers to “show their
work,” or face consequences.

Note the generality of this result. In contrast with many other results, it
works for any query on any database (with the caveat that the query is
deterministic), and it works in only one round of computation.

5.1 Conclusions

In summary, by thinking about the problem of query verification from a dif-
ferent perspective, namely, that of an economist, we can drastically reduce the
computation required to ensure that the result asked for is the result received.
Using the game-theoretic framework outlined here, we show that using a mul-
tiple servers, contracts can be designed that will ensure that results obtained
from an outsourced computation service are genuine, while requiring only a
fractional increase in cost. This is, of course, in contrast to most methods of
query verification, which rely on complicated security technologies. The various
query verification technologies that are out there are still quite useful, however.
Specialized verification methods which take up very little space work well for
common queries. They are, however, not generic and can rely on some expensive
operations. The outside-the-box approach of using a redundant data service for
verification vastly simplifies this process, and incurs a minimal cost.

5.2 Future Work

In the future, we will consider a similar auditing mechanism using only a sin-
gle cloud service. This mechanism will use both a costly full audit and a less
costly partial audit to achieve minimal cost. We also will consider the use of
other verification methods in a framework such as ours, and how they can be
improved through the use of incentives. Finally, we also wish to consider the
effect of accidental errors. The steepness of the penalties involved in this project
could lead more risk-averse players to balk at the contract. Nevertheless, a ra-
tional, risk-neutral player will have no problems with these contracts, and will
be incentivized to check for errors before reporting results.

Acknowledgements. This work was partially supported by Air Force Of-
fice of Scientific Research MURI Grant FA9550-08-1-0265, National Institutes
of Health Grant 1R01LM009989, National Science Foundation (NSF) Grant
Career-0845803, and NSF Grant 0964350.

References

1. Atallah, M., Cho, Y., Kundu, A.: Efficient data authentication in an environment
of untrusted third-party distributors. In: IEEE 24th International Conference on
Data Engineering, pp. 696–704. IEEE (2008)

308 R. Nix and M. Kantarcioglu

2. Canetti, R., Riva, B., Rothblum, G.: Practical delegation of computation using
multiple servers. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, pp. 445–454. ACM (2011)

3. Chen, H., Ma, X., Hsu, W., Li, N., Wang, Q.: Access Control Friendly Query Veri-
fication for Outsourced Data Publishing. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 177–191. Springer, Heidelberg (2008)

4. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

5. Google. Google bigquery service (2011)
6. Haber, S., Horne, W., Sander, T., Yao, D.: Privacy-preserving verification of ag-

gregate queries on outsourced databases. Technical report, Citeseer (2006)
7. Merkle, R.: Secrecy, authentication and public key systems (1979)
8. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-

sourced databases. ACM Transactions on Storage (TOS) 2(2), 107–138 (2006)
9. National Institute of Standards and Technology. FIPS 180-2, secure hash standard,

federal information processing standard (FIPS), publication 180-2. Technical re-
port, Department of Commerce (August 2002)

10. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data, pp. 407–418. ACM (2005)

11. Pang, H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic
databases. Proceedings of the VLDB Endowment 2(1), 802–813 (2009)

12. Patel, P., Ranabahu, A., Sheth, A.: Service level agreement in cloud computing.
In: Cloud Workshops at OOPSLA (2009)

13. F. Pub. 198, the keyed-hash message authentication code (hmac). Federal Infor-
mation Processing Standards Publication, 198 (2002)

14. Rasmusen, E.: Games and information: An introduction to game theory. Wiley-
blackwell (2007)

15. Rivest, R.: The md5 message-digest algorithm (1992)
16. Sion, R.: Query execution assurance for outsourced databases. In: Proceedings of

the 31st International Conference on Very Large Databases, pp. 601–612. VLDB
Endowment (2005)

17. Sion, R.: Secure data outsourcing. In: Proceedings of the 33rd International Con-
ference on Very large Databases, pp. 1431–1432. VLDB Endowment (2007)

18. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proceedings of the 33rd International Conference on Very Large Databases, pp.
782–793. VLDB Endowment (2007)

19. Xu, J., Chang, E.: Authenticating aggregate range queries over multidimensional
dataset. Technical report, Cryptology ePrint Archive, Report 2010/050 (2010)

20. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join process-
ing in outsourced databases. In: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pp. 5–18. ACM (2009)

21. Yi, K., Li, F., Cormode, G., Hadjieleftheriou, M., Kollios, G., Srivastava, D.: Small
synopses for group-by query verification on outsourced data streams. ACM Trans-
actions on Database Systems (TODS) 34(3), 1–42 (2009)

	Contractual Agreement Design for Enforcing Honesty in Cloud Outsourcing
	Introduction
	Related Work
	Cryptographic Background
	The First Solution
	A More Intuitively Fair Solution
	Conclusions
	Future Work
	References

