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Abstract. A honeypot is a decoy computer system used in network se-
curity to waste the time and resources of attackers and to analyze their
behaviors. While there has been significant research on how to design
honeypot systems, less is known about how to use honeypots strategi-
cally in network defense. Based on formal deception games, we develop
two game-theoretic models that provide insight into how valuable should
honeypots look like to maximize the probability that a rational attacker
will attack a honeypot. The first model captures a static situation and
the second allows attackers to imperfectly probe some of the systems
on the network to determine which ones are likely to be real systems
(and not honeypots) before launching an attack. We formally analyze
the properties of the optimal strategies in the games and provide linear
programs for their computation. Finally, we present the optimal solu-
tions for a set of instances of the games and evaluate their quality in
comparison to several baselines.

Keywords: honeypots, game theory, network security, deception.

1 Introduction

Society increasingly depends on information technology and computer networks
to deliver vital information and services. Protecting these systems and the infor-
mation they contain is a growing priority, even as they become more attractive
targets for criminal activity. Cybercriminals are highly motivated and devote
large efforts to launching sophisticated attacks, requiring network administrators
to adopt increasingly sophisticated countermeasures to protect their networks.
Honeypots are one of these countermeasures that provide a unique set of benefits
for network defense. Falling costs for deploying honeypots and improved virtu-
alization technologies are likely to lead to increased use of honeypots, including
systems with many honeypots on a single network.
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A honeypot is a computer system placed on a network explicitly in order to
attract the attention of an attacker. It does not store any valuable data and
it thoroughly logs everything that happens in the system. Honeypots help to
increase the security of computer systems in two ways [1]: (1) The presence
of honeypots wastes the attacker’s time and resources. The effort an attacker
spends to compromise a honeypot and learn that it does not contain any use-
ful information directly takes away time and resources that could be used to
compromise valuable servers. (2) Moreover, once the attacker compromises a
honeypot, the network administrator can analyze all of the attacker’s actions
in great detail, and use the information obtained to better protect the network.
For example, specific security holes used in an attack can be patched, and new
attack signatures added to antivirus and intrusion detection systems. Attacks
on honeypots can also serve as an “early warning” system for administrators,
providing more time to react to attacks in progress.

For these reasons, the network administrators using honeypots try to maxi-
mize the probability that the attacker attacks a honeypot and not a real server.
However, with an increasing use of this technology, attackers have started to
consider the existence of honeypots during their attacks and take steps to avoid
attacking them. For example, once they gain access to a system, they can use
multitude of methods to probe the system and rule out the possibility that they
are in a honeypot before they continue with their attack (e.g., [2]). To be effective
against more sophisticated attackers, honeypots must be sufficiently disguised
that they are not obvious (i.e., they cannot simply present the most vulnerable
possible target). This leads us to analyze using honeypots from an adversarial
perspective, where network administrators reason about the strategies of the
attackers and vice versa.

Game theory is a formal framework developed to analyze interactions between
multiple decision makers. In this paper, we present two novel game-theoretic
models of adding honeypots to a network and the following target selection by
the attacker. The first model combines a resource allocation game and a decep-
tion game, and is designed to answer basic question about how many honeypots
a defender should use, and how they should be configured. In particular, we con-
sider the possibility that honeypots can be configured to look like real targets
of varying importance, offering new ways to deceive an attacker. The second
model extends the first one to add the capability for an attacker to strategi-
cally probe targets before launching an attack to determine whether they are
likely to be honeypots or real servers. Both models are formulated as zero-sum
extensive-form imperfect-information games, and we provide linear programs for
computing the optimal strategies of the players (i.e., the network administrator
and the attacker) in both cases.

We solve the linear programs using a state-of-the-art optimization toolkit
(CPLEX ). This provides greater scalability than previous models [3] that were
solved using Gambit[4], allowing us to analyze the models in greater detail.
These previous models found simple uniform randomization strategies to be op-
timal for honeypot placement. However, ourmodels show richer andmore complex
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strategies arenecessarywhenwegeneralize the assumptions to includenon-uniform
server values and sophisticated attackers with probing capabilities. Our empirical
evaluation shows that the game-theoretic strategies are significantly better in re-
ducing the expected harm of the attacks and they allow using a larger numbers of
honeypots more efficiently than two heuristic approaches.We also test our strate-
gies against simple heuristic attackers, in addition to optimal ones. Based on the
analysis of the optimal game-theoretic strategies, we provide recommendations to
the network administrators applying honeypots in their networks.

The next section explains the relation of the presented research to the previous
work. In Section 3, we introduce the basic model without probing, we analyze its
properties and present the solution LP. In Section 4, we introduce the possibility
of probing. The evaluation and analysis of the optimal strategies for a set of
instances of the models is presented in Section 5 and we conclude the paper in
Section 6.

2 Related Work

Many software packages for creating honeypots and analyzing attackers’ behavior
are available through the honeynet project website1. This paper does not focus
on the technical aspects of creating honeypots, so we do not review this line
of research here. An extensive introduction to the practices and technological
challenges of applying honeypots is available in [1]. We focus our review on more
closely related work that applies game theory to honeypots.

2.1 Honeypots and Game Theory

There are relatively few papers that explore using game theory for creating and
deploying honeypots. They can be divided into two categories. One models the
interaction within a honeypot during an ongoing attack. The other models the
situation before the actual attack, when the attacker selects a target.

In the first category, game theory is used to optimize the information learned
about the attacker’s strategies by modeling the progress of the attack. In [5] the
authors give the defender the option to block the action, or let it be executed,
while the attacker can either retry, continue, or stop the attack. In [6] the de-
fender models the attack as a movement on a graph and tries learn the attacker’s
strategy by making some of the graph nodes more desirable using simulated user
activity.

The approach presented in this paper belongs to the second category, in which
the game theory is used to optimize the probability that the attacker will attack
a honeypot and not a real system. In [3], the authors model situations similar
to the ones we model in this paper. However, their model is simpler and results
in simple, uniform strategies. They analyze the problem of allocating the real
servers and honeypots to the space of IP addresses. However, the attacker can-
not distinguish between individual servers and honeypots, so the only meaningful

1 www.honeynet.org

www.honeynet.org


204 R. Ṕıbil et al.

strategy the attacker can use is to attack a random server. Only if the defender
gives the attacker some hint based on the address of the servers, e.g., by assign-
ing the honeypots to the lowest IP addresses, a rational attacker can deviate
from a random strategy. Therefore, a rational defender also allocates addresses
randomly. In reality, however, not all computers in the network are identical to
the attacker. In our model, we consider the importance of the computers, which
make the optimal strategies non-trivial and much harder to compute.

In the second part of [3] as well as in [7], the authors give the attacker the
option of probing the servers before the attack. The result of a probe is whether
the server is real or a honeypot, but the authors assume that the result is fully
determined by the defender and not the reality. This implies that the probe
results are only useful if the defender voluntarily discloses some information to
the attacker. A rational defender uses uniform random probe results and the
attacker ignores them. A more realistic assumption is that the defender can
successfully deceive the attacker only with certain probability. Otherwise, his
probe will identify the real nature of the server. In this paper, we consider this
generalization and it results to non-trivial strategies for both players.

2.2 Related Game Theoretic Models

A similar task to the honeypot selection is the deployment of false targets in war-
fare as studied in [8] (among many others). Targets are identically valued as in [3].
The defender selects the number of fake targets to deploy, for which he has to pay
from a resource pool that he also has to use for the protection of genuine targets.
The attacker chooses the number of targets to attack. However, the attacker is also
limited by his own resource pool, and may possibly be able to attack only a single
target as in our case. The paper focuses on a proper resource allocation between
protection and defense, not the protection strategy, which is uniform. Our focus is
on protection strategies taking values of targets into account.

The game theoretic models presented in this paper are a special case of
imperfect-information extensive-form games (EFG) with chance nodes. The state-
of-the-art algorithm for solving these games optimally is the mathematical pro-
gram for sequence-form representation of the games [9]. More efficient algorithms
can be found for sub-classes of EFGs with special structure. Two such subclasses
are the Bayesian Stackelberg games [10] and signaling games [7]. As in our game
models, these games include hidden information available only to one of the
players, however, this information modifies only the payoffs of the players and
not the applicable actions. In our games, the hidden information defines the
applicable actions as well, which makes the techniques developed for Bayesian
Stackelberg games inapplicable.

A less studied class of games that are most closely related to our models
are deception games. A formal deception game was first formulated as an open
problem in [11]. One player is given a vector of three random numbers from uni-
form distribution on unit interval. It changes one of the numbers to an arbitrary
number from the interval and presents the modified vector to the second player.
The second player chooses one position in the vector and receives as its reward



Game Theoretic Model of Strategic Honeypot Selection 205

the number that was originally on that position. The open question stated in
the paper is whether there is a better strategy than randomly choosing one
of the positions. This question was answered in [12] and a few similar questions
about various modifications of the model were published in the next years, but
the results generally apply only to the specific game formulations and they do
not present the complete strategies to play the game.

3 Honeypot Selection Game

The Honeypot Selection Game models a situation where an attacker is deciding
which server in a computer network to attack. However, the administrator has
added a set of honeypots to the network, and wants to configure them to maxi-
mize the probability that the attacker chooses to attack a honeypot rather than a
real computer. There are two basic kinds of honeypots. A low interaction honeypot
is relatively simple, and therefore it can be added to the network at a low cost [13],
but even a simple probing by the attacker will reveal it is not a real system. A high
interaction honeypot is much more expensive to create and maintain. In order to
make it believable, authentic user activity and network traffic has to be simulated.
Therefore, high interaction honeypots are a limited resource and it is important
to optimize their deployment. We focus on the latter category in this paper.

One of the important features of real-world networks is that they have many
different types of servers with different configurations (available services, hard-
ware, etc.). Some categories of servers are more important than others, both to
the owner of the network and as targets for the attacker. For example, a database
server containing valuable customer information would be of a very high value,
while a standard desktop computer acting as a server may have a relatively low
value. To model this, we assume that each server in the network can be classi-
fied into one of a few categories of importance, which can be assigned a numeric
value that represents the gain/loss associated with a successful attack. One of
the decisions that the defender makes when deploying honeypots on a diverse
network is how to disguise the honeypots – in other words, which category of
server should each honeypot be designed to look like?

We represent a configuration of the network by a vector of values representing
the apparent importance of each server. The defender knows the values of each
of the real servers in the network, and is able to extend the vector of values by
adding honeypots. For each honeypot, the defender is able to select the value of
the server that will be observed by the attacker (by configuring the honeypot to
emulate servers of that category). We assume that both players have knowledge
of the typical configurations of the network, so both players know the distribution
of values in the network. For any configuration, the players can calculate the
probability that the configuration is the actual configuration of the network. We
also assume that the defender uses a fixed number of honeypots to add to the
network, and that the attacker knows the number of honeypots (but not their
assigned values). This is a worst case assumption about the attacker, and the
model could be generalized to allow for imperfect information about the number
of honeypots, though it makes the problem more difficult to solve.
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Consider the following example. The network has two servers, which have
importance values 4 and 3. The administrator has one honeypot to deploy, and
needs to decide how to configure it, which corresponds to assigning a value in
our model. He could assign it a value of 5 to make it appear very attractive
(e.g., by making it appear that contains valuable data and exposing obvious
vulnerabilities). The attacker observes the unordered vector of values by doing
a scan of the network, including the value of the honeypot: (5,4,3). A näıve
attacker might attack the server with the highest value (5), therefore attacking
the honeypot. However, a sophisticated attacker might reason that this is “too
good to be true” and choose instead to attack the next best server, with a value
of 4. If the attacker chooses a real server to attack, he obtains a reward and the
network administrator is penalized. If the attacker chooses to attack a honeypot,
he does not obtain any reward and possibly is penalized for disclosing his attack
strategy. We model the game as a zero-sum game, so a gain for one player is
a loss for the other. While this may not always be the case, it allows for faster
solution methods and can provide a solution with guaranteed quality against
any (not necessarily rational) opponent. From this example, we can see that the
defender’s goal is to somehow convince the attacker to selecting a honeypot, and
that assigning all honeypots the maximal value may not be the optimal strategy.

3.1 Formal Definition of the Honeypot Selection Game

The Honeypot Selection Game (HSG) is a two-player zero-sum extensive-form
game with imperfect and incomplete information.

Definition 1. The Honeypot Selection Game (HSG) is defined by the tuple
G = (d, a, n, k, D, p, I, χ, A, u):

– d, a are the players in the game called the defender and the attacker;
– n is the number of real servers;
– k is the number of honeypots;
– D is a set of importance values;
– p : Dn → [0, 1] is the probability of each configuration of real servers;
– I is a set of all attacker information sets (I ∈ I, I ⊆ Dn+k = Ds);
– χ : Dn → P(I) is a function that provides a set of possible actions for the

defender, which appends a set of honeypot values to the observed x ∈ Dn;
– A is a union of all possible attacker actions for all y ∈ I;
– u : Dn × I ×A → R

+ is the expected utility function for the attacker (−u
is the utility function for the defender), defined if the second parameter is in
χ(x) with x being first parameter.

Nature starts by randomly choosing the network configuration x ∈ Dn according
to a known probability distribution p. The defender learns the value x and
chooses values for the k honeypots to apply. The defender can insert honeypots
anywhere in vector x, creating a vector y of length s = n+k, which is presented
to the attacker. The attacker then chooses one server to attack from y. If he
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(a) (b)

Fig. 1. (a) The game tree of a Honeypot Selection Game rendered by Gambit [4] with
one real server, one honeypot and a domain {1, 2}. Light gray edges are random choices,
white edges are defender’s actions and black edges the attacker’s actions. Server values
corresponding to actions are above the branches, while probabilities are under them.
(b) The same game with grouped attacker’s actions.

attacks a real server i, he obtains the reward yi from y = (y1, . . . , yi, . . . , ys). If
he attacks a honeypot the attacker obtains a reward of 0.

Extensive form games are usually represented as game trees. An example of
a small HSG with one real server (n = 1), one honeypot (k = 1) and two impor-
tance values (D = {1, 2}) is shown in Figure 1(a). The root node of the game is
a chance node with two outcomes representing the nature. In the example, two
configurations are possible and the distribution p depicted below the branches is
uniform. In each possible real configuration (i.e., child of the root), the defender
chooses to add a set of honeypots to the network and defines the information set
the attacker will be in (χ). In the example, the defender can add one honeypot
with a value 1 or 2. The possible attacker information sets are I = {11, 12, 22}.

We assume that the ordering of the vector is arbitrary and contains no infor-
mation, so (12) and (21) are equivalent. The tree nodes in the same information
set are connected by dashed line. In each information set, the attacker can at-
tack one of the servers, which is the set of actions A. In the example, in the top
information set (11), the attacker can choose the first server with importance 1
or the second server with importance 1. One of them is real, but they are indis-
tinguishable, so the expected payoffs for either is u(1, 11, ∗) = 1

2 . In the middle
information set, the attacker can choose to attack the server with a value 1 or
2. In the top node of the information set, he can gain 0 or 1, in the bottom, he
can gain 0 or 2, but he cannot distinguish between these two nodes, and must
use the same strategy in both.

3.2 Solution of the Game

A strategy of a player in a game defines what action the player performs in any
situation that can occur in the game. A solution of a game is a set of strategies,
one for each player, that satisfies some notion of optimality. We will search for
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the solution in form of a behavioral strategy[9], i.e., a strategy that prescribes a
probability distribution over all possible actions in each possible situation. For
the defender in our game, this means determining the probability of using each
combination of available honeypot values for each possible configuration of the
real part of the network. We allow mixed strategies (i.e., randomized strategies),
since they generalize pure strategies and allow for strategic deception in adver-
sarial games. The goal of the defender is to maximize his expected payoff, which
in a zero-sum game corresponds to minimizing the attacker’s expected payoff.
A pair of strategies that achieves these maximal/minimal expected payoffs is a
Nash equilibrium of the game.

3.3 Properties of the Honeypot Selection Game

We present some useful properties of the HSG game. Our analysis provides
intuition about meaningful strategies by identifying sets of dominated actions.
Removing these dominated strategies also allows us to reduce the size of the
game and improve scalability of solution methods.

Lemma 1. If the attacker sees a vector of values y ∈ Ds, then he has a strategy
that guarantees payoff

m(y) = max
S⊆{1,...,s}

U(S,y), where U(S,y) =

∑
i∈S yi −

∑
max(k,y)

|S| . (1)

The function max(k,y) takes k maximum values from y.

Proof. U(S,y) is the lower bound on the value of the attacker’s strategy that
uniformly randomizes over the targets in S, which is met if the most important
targets in the set are honeypots. The attacker can choose the best S with the
information he has available and obtain m(y). ��
Lemma 2. The maximizing S from Lemma 1 does not contain any index of a
server with a value lower than m(y).

Proof. If m(y) ≤ 0 the lemma holds trivially so WLOG |S| > k. For contra-
diction assume the maximizing S contains index j, such that yj < m(y). Then
m(y) = U(S,y) ⇒ (|S| − 1)m(y) = (

∑
i∈S\{j} yi −

∑
max(k,y)) + yj −m(y)

⇒ m(y)−U(S \{j},y) = (yj−m(y))/(|S|−1) < 0. Hence m(y) < U(S \{j},y)
which contradicts with S being maximizing. ��
Corollary 1. Attacking a target with a value lower than m(y) can never appear
with non-zero probability in any attacker’s optimal strategies.

Proof. If any attacker’s strategy attacks a server j with yj < m(y) with positive
probability then the strategy can be modified to attack the set S from the
Lemma 1 with uniform probability anytime is it supposed to attack j. This
increases the expected payoff of the strategy, which contradicts its optimality. ��
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Corollary 2. If the defender receives a vector x ∈ Dn of real targets, it does
not have to consider honeypots with value lower than m(x).

Proof. If the defender uses honeypots that do not make it to the set S in com-
puting m(x ∪ h) then m(x ∪ h) = m(x). If some of them are present in S,
m(x ∪ h) ≥ m(x). Either way, the attacker presented by y = x ∪ h would not
consider attacking a target with value below m(x) by Corollary 1. ��

Grouping of Server Values. We also suggest a more compact representation
of the game. Since we assume that the attacker cannot distinguish between the
servers of the same value, we reduce the number of the actions available to the
attacker in each information set I ∈ I to the number of different values in
the observed configuration y. To do this we create groups of servers that have
identical importance values (and are therefore indistinguishable). The expected
value for choosing any server from that group is computed by assuming that the
attacker actually chooses uniformly among members of the group, some of which
may be real and some honeypots. Recall the example from Figure 1(a), where
the attacker could not distinguish between the real server and the honeypot,
both valued 1. We limit the attacker to one action for this information set, with
the expected value of 1

2 . The reduced game tree is in Figure 1(b).

3.4 Solution Using Linear Programming

We compute a Nash equilibrium of the game in behavioral strategies using a lin-
ear program (LP) based on the state-of-the-art method for imperfect-information
extensive-form games – a sequence-form LP (e.g., see [9]). The sequence-form
utilizes a compact representation of imperfect-information extensive-form games
with perfect recall termed sequences [14,15], where one sequence for a player rep-
resents an ordered list of actions for the player from the root to some node in
the game tree. In the following we use the term compatibility of sequences – we
say that two sequences (one for each player) are compatible, if a step-by-step
execution of all the actions in the sequences is a valid course of play. The behav-
ioral strategies can be represented as a probability of executing some sequence
conditioned on the opponent playing a compatible sequence. We present two
different LP formulations for finding the optimal strategies for the attacker and
the defender, assuming in each case that the opponent plays a best response.

Defender’s Linear Program. The LP for computing the defender’s strategy
is as follows. There are two types of variables: (1) vI ∈ R

+ represents an expected
value of a subgame assigned to each information set of the attacker I ∈ I, and
(2) variables pdx

I
∈ [0, 1] represent the probability of the defender choosing set I

(adding a specific honeypots) for each possible real configuration of the network
x ∈ Dn. Furthermore, u denotes the utility function of the attacker that defender
minimizes, and χ−1(I) : I �→ P(Dn) denotes an inverse function that maps an
information set to a set of possible configurations of the real part of the network.
Finally, px denotes the probability of network configuration x.



210 R. Ṕıbil et al.

min
v,d

∑

I∈I
vI (2a)

vI ≥
∑

x∈χ−1(I)

u(x, I, aIi )pdx
I

∀I ∈ I, ∀aIi action applicable in I (2b)

∑

I∈χ(x)

pdx
I
= px ∀x ∈ Dn (2c)

The program minimizes the utility of the attacker by searching for the optimal
strategy of the defender pdx

I
. These variables are constrained by (2c) in order to

represent valid probabilities of sequences played by the defender, conditioned on
the other players playing compatible sequences (both nature and the attacker).
Finally, the attacker chooses the optimal solution in each information set I.
Hence, the expected value vI is maximized for all possible configurations and
actions of the attacker in constraints (2b).

Attacker’s Linear Program The LP for computing the optimal strategy for
the attacker is similar – the attacker is maximizing its utility value through prob-
abilities for each action paI

i
∈ [0, 1] in each information set I, while the defender

selects an optimal action minimizing the expected utility value at each informa-
tion set corresponding to each network configuration x in constraints (3b).

max
v,a

∑

x∈Dn

pxvx (3a)

∀I ∈ I assume the attacker can perform actions {aI1, . . . , aIm} :

∑

i∈{1,...,mI}
u(x, I, aIi )paI

i
≥ vx ∀I ∈ I, ∀x ∈ χ−1(I) (3b)

∑

i∈{1,...,mI}
paI

i
= 1 (3c)

Size of the Linear Programs The size is exponential with |y| = s in both
constraints and variables. This follows from the upper bound of the number of
attacker’s information sets, |I|, which is at most equal to |D|s. The exponen-
tial size of the programs currently limits the applicability of this approach to
large computer networks. In this paper, we focus on the validation of the pro-
posed model and we leave further solution computation optimization to future
research. Moreover, if the instance is too large, good strategies can be computed
using approximation algorithms, like CFR, instead of LP. The optimal solutions,
however, provide better grounds for our initial analysis.
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4 Honeypot Selection Game with Probes

In this section we extend the basic model from the previous section by allowing
the attacker to analyze the observed servers to learn, whether they are real
servers or honeypots. The main idea of the model with probes is that the attacker,
prior to the actual attack, can use probes to try to discover the true nature of
servers, whether a probed server is real (denoted R), or a honeypot (HP).

We assume that the attacker can use a limited number of probes, and that
the results of the probes are stochastic. The first assumption reflects the limited
time and resources the attacker typically has for the attack before being exposed.
The second assumption models the fact that the attacker cannot be perfectly
sure if the server is a honeypot or not, even after gathering some information
through probing.

4.1 Formal Definition of Honeypot Selection Game with Probes

The formal definition of Honeypot Selection Game with Probes (HSGp) follows:

Definition 2. The HSGp is defined by the tuple G = (Γ , q, IE , Ap, Aa, ψ, u):

– Γ = (d, a, n, k, D, p, I, χ, A, u) is a basic HSG;
– q is the number of probes to be performed by the attacker;
– IE is a set of all attacker information sets, I ⊆ IE ;
– Ap is a set of all possible attacker probing actions;
– Aa is a set of all possible attacker attacking actions (not the same as A,

because of probed servers, explained in this section);
– ψ : {R,HP}i ×Ap

i+1 → [0, 1]; ∀i ∈ {0, . . . , q− 1} is a function that assigns
the probability of a probe result being R, based on the history of probing
decisions and observations;

– u′ : Dn × I × (Ap
q,Aa) × {R,HP}q → R

+ is the expected utility function
for the attacker (−u for the defender). The observations are necessary, be-
cause the servers of the same value are indistinguishable as explained in this
section.

In order to define ψ, we assume that results of probing a single fixed server are
independent and identically distributed to simplify the mathematical expression
(though in principle the model is not restricted to this). The probability that
a probe to a server that is either R or HP returns either result R or HP is
fixed and does not change with repeated attempts. We denote these probabilities
α(R|R) – the probability of R when probing a real server – and α(HP |HP ) – the
probability of HP when probing a honeypot. The complementary probabilities
for false positives and false negatives (misidentification) follow from these.

Figure 2 shows part of a game tree for an instance of honeypot selection game
with probes. The attacker chooses a server to probe in its information set (12),
followed by chance nodes representing the uncertain results of the probes. The
probability values for the chance nodes that determine the results of the probes
are given according to the function ψ. Although we assume that the probe results
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Fig. 2. One root information set with observed values 1 and 2 for the attacker including
subtrees for the node from the set. R and HP are the outcomes of probes.

from a fixed server are independent from each other and they are determined by
the parameters α, the probabilities in the game tree depend on the path in the
tree that lead to them. In the following section we describe a methodology for
computing ψ based on α and observations.

4.2 Probabilities of the Chance Nodes after Probing Outcomes

The probing model also handles a set of servers of a single value as indistinguish-
able. Probing a server distinguishes it from, but the rest remains indistinguish-
able. Each of these servers has a probability of being real, at first depending only
on the number of honeypots among them. The probing modifies these probabil-
ities and directly affects ψ. Let us describe the methodology for defining the ψ
function more formally. We focus on a single set of servers sharing the same im-
portance value φ. We base our notation on previous definitions: kφ is the number
of honeypots, nφ is the number of real servers, sφ = kφ + nφ is the total.

The prior probability of the i-th server with value φ being real is p(i). The
ordering is drawn at random uniformly to make sure that it cannot be exploited.
We denote p(i|o, b) as the posterior probability of the i-th server being real after
a sequence of observations o = (o1, . . . , ol) and probing actions b = (b1, . . . , bl)
with l as the l-th probe. The ψ function value, the probability of an outcome,
for the first probe of the attacker (examining server i) can be calculated as
ψ(∅, i) = p(R) = p(R|i)p(i) + p(R|¬i)p(¬i).

Based on the outcome we can update the probabilities p(i) for servers in φ. We
can use the Bayes rule to calculate p(i|R) for the probed server. For any other
server j �= i, the probability of being real after the first probing can be calculated
as p(j|o1, b1) = p(j|i)p(i|o1, b1) + p(j|¬i)p(¬i|o1, b1); where p(j|i) represents the
probability of server j being real if server i is real without any observations
calculated as p(j|i) =

nφ−1
sφ−1 , and p(j|¬i) representing the case, where i is not
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R. However, this rule becomes difficult to express concisely, with the increasing
amount of probes, because calculating p(j|i, ol+1o, bl+1b) becomes very difficult.

To see why this is the case, let us denote each of the possible assignments
of real servers and honeypots for φ by characteristic vectors c ∈ {R,HP}sφ .
Let us put each of the vectors into groups that have honeypots and real servers
in the same places for all probed locations. For example, the first server was
probed and yields two groups of characteristic vectors, one with a honeypot as
the first server, and one with a real server as the first server. Each newly probed
server subdivides the groups further. Each subdivided group requires a separate
Bayesian update. There will be at most 2sφ groups, each representing a single
characteristic vector per group.

To exactly calculate all the probabilities p(i|ol+1o, bl+1b) after (l+1)-th probe,
we consider all characteristic vectors that are compatible with the current in-
formation set in the game tree. Each game situation has a list of probabilities
of being true assigned to each of the characteristic vectors for each of the im-
portance values. The probability p(i|o, b) can be calculated by summing over
probabilities of characteristic vectors with a real server at the i-th position:

p(i|o, b) =
∑

c∈S

p(c|o, b), S = {c|∀c ∈ {R,HP}sφ ; ci = R} (4)

With the i.i.d. assumption, the updates are based on Bayes’ Rule. Vector c is
the characteristic vector, whose probability is being updated after probing bl+1.

p(c|ol+1o, bl+1b) =

⎧
⎪⎨

⎪⎩

α(ol+1|R)p(c|o,b)
p(ol+1o|bl+1b,o)

, iff cbl+1
= R

α(ol+1|HP )(1−p(c|o,b))
p(ol+1o|bl+1b,o)

, iff cbl+1
= HP

(5)

The updated vector of probabilities is used in the subtree of the node.

Grouping with Probes. We can reduce the number of actions for the attacker
by grouping all servers of the same importance value that have not been probed
yet. These are treated identically as the “next server to be probed”. They have
the same outcomes and same probabilities of being real, so we do not break the
interpretation of the game. Every time a new server is probed, it is differentiated
from the rest of the servers in the group. This approach keeps a fixed ordering,
which the defender still cannot influence.

Properties of HSGp. There is an opportunity for further pruning in the HSGp
besides creating groups. In the final decision node of the attacker, we can replace
a set of attacks on the servers of a same importance with a single attack that
represents an attack on the server with the largest probability of being real.
Among all the servers of the same importance value, the one with the highest
probability being real (in the node) has the highest expected utility and the
observations from probes would also lead the attacker to see it as such; hence,
this strategy is dominant and will be selected by a rational attacker.
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4.3 Solution Using Linear Programming.

The linear program calculating the solution is an extension of the linear program
presented in Section 3.4. The extension treats the chance nodes as defender’s
choice nodes with a fixed strategy. However, it is still necessary to provide con-
straints for the weighted values for the attacker’s choice nodes for probes.

In order to improve readability we denote fin(IE) to be a set of all infor-
mation sets where the attacker chooses the server to attack. Σa,c,I refers to
compatible sequences of attacker’s actions and chance node outcomes for I, one
of the starting information sets for the attacker. Function orgn(I) returns the
first information set of the attacker encountered on the path in the game tree
to I. Exta(σa) returns the shortest extension to sequence σa ∈ Σa, where Σa is
the set of all possible sequences of attacker’s actions. By the shortest extension
we mean sequence σa with a single, valid attacker action appended to its end. In
the program, we also use IE(σa) as a function that returns a set of information
sets reached by the attacker after executing sequence of actions σa.

min
v,d

∑

I∈I
vI (6a)

vI ≥
∑

x∈χ−1(orgn(I))

−u′(x, I, σa, σe)pdx
I

∀I ∈ fin(IE), ∀(σa, σe) ∈ Σa,e,I (6b)

vI(σa) ≥
∑

I′∈I(Exta(σa))

vI′ ∀σa ∈ Σa (6c)

∑

I∈χ(x)

pdx
I
= px ∀x ∈ Dn (6d)

The defender aims to minimize the expected utilities of the attacker’s best re-
sponse. We define u′ as u′(x, I, σa, σe) = φpe(σe)pt(φi), where pt(φi) is the
probability of the i-th server in the φ-valued set being real in the final decision
node t, while pe(σe) is the probability of the outcomes of the observations that
led to the final information set.

Inequality (6b) provides constraints that maximize the attacker’s expected
utility in the level just above the one with terminal nodes. The second inequal-
ity (6c) provides constraints that maximize over the expected value of the sub-
trees of attacker’s probing decisions by summing over the expected value of each
possible probing. The final inequality (6d) makes sure that the probabilities of
defender’s actions form a valid probabilistic distribution.

Due to space limits, we omit the attacker’s LP. The difference between the
HSG program and HSGp is in the addition of new constraints that make sure
that the probabilities of attacker’s sequence are valid in each node, including the
chance nodes. The “variables” for chance node probabilities are fixed in each of
the chance nodes for each probing outcome. Due to the sequence of q decisions
of the attacker, the size of the linear program is exponential in q (and also in s
as is the basic HSG).
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5 Evaluation of Computed Strategies

In this section we provide experiments and analysis of the behavior of the models
with varying parameters. The goal is to identify key characteristics of the game,
and compare the quality of the game-theoretic solution to baseline strategies.
Finally, we want to derive general principles from the results in order to give
the network administrators some rules of thumb for placing the honeypots in a
computer network. All of the results are computed using the LP formulations
described earlier with CPLEX 12.1.

5.1 Experimental Settings

In our experiments we fix the number of real servers, n = 5, and the importance
values D = {1, . . . , 4}. The number of honeypots is k ∈ {0, . . . , 5}. The size
of these games is plausible for a small computer network. We use two different
probability distributions over the possible network configurations x, a uniform
distribution and a power-law Yule-Simon distribution with parameter ρ = 1.
The Yule-Simon distribution reflects a common situation in computer networks
with relatively few high-valued targets, and a larger number of less significant
targets. For our domain with four values the probabilities from this distribution
are in increasing importance order: (0.6250, 0.2083, 0.1042, 0.0625).

As baselines for comparison with the game-theoretic strategies we introduce
two methods for each player: (1) Random strategy, in which the player always
selects a uniform random action in each information set, and (2) Maximum
strategy, which uses a greedy heuristic always attacking/adding targets with the
maximal observed value2.

Our first set of results compares the payoffs of our baseline strategies and the
game-theoretic strategies from two different perspectives. First, we evaluate the
guaranteed utility of the different defender’s strategies, and then we compare
the quality of the attacker’s strategies against the defender’s Nash equilibrium
(NE ) strategy. The guaranteed utility of a strategy σ is the payoff for the strategy
when the opponent plays a best response to σ. We calculate the guaranteed
utility using the linear program for the game-theoretic solution, but with fixed
probabilities for the defender’s actions (and vice versa for the attacker).

Our second set of results shows the details of the optimal defender’s strategies,
i.e., the probability that a honeypot with a specific value will be actually deployed
in a computer network. We present the results about honeypot likelihood in
two different ways: (1) the probability that at least one honeypot of the given
value is used by the defender, and (2) the portion of honeypots assigned to
each value. In the first case we marginalize over the probabilities of defender’s
actions that add a honeypot of this value, weighted by the network configuration
probabilities. For the second case we marginalize over all defender’s actions and
weight each component by the number of honeypots of this value added by the
action, as well as by the network configuration probabilities. We then renormalize

2 Maximal expected value in the case of HSGp, with the same greedy rule for probing.
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the probabilities (divide by k) so the proportions sum to 1. For example, if an

action dxI adds three honeypots of value 4, its component in the sum is
3p(dx

I )
k .

5.2 Basic HSG

Game Values. The results for the game values are presented in Figure 3, first
row. In Figure 3(a) we show the guaranteed utility of the defender’s NE, Random,
and Maximum strategies. The results show that the Maximum strategy gains al-
most no benefit from more than one honeypot, while the Random strategy shows
a small gain. The NE is clearly stronger than the two baselines and significantly
increases the defender’s utility as the number of honeypots increases.

Figure 3(b) shows the quality of attacker’s strategies against the defender’s NE
strategy (attacker prefers higher values). The Random strategy performs better
with more honeypots, and almost matches the other two strategies when n = k.
This suggests that the defender’s strategy is effectively making it impossible for
the attacker to distinguish between the servers based on value. From k = 0,
Maximum strategy has exactly the same payoff as the NE strategy, implying
that it is part of the support set that the NE strategy randomizes over.

The second pair of subfigures (3(c), (d)) shows the game values for the Yule-
Simon distribution. For both the guaranteed utility of defender’s strategies and
the payoffs of the attacker’s strategies against the NE, the progression is nearly
identical with an increasing number of honeypots. The values are smaller overall,
which reflects the lower frequency of high-valued servers. The only exception is
the Random strategy, which improves slightly more than the other strategies,
though the NE strategy is still better. The overall similarity of results indicates
that the choice of distribution does not have a strong effect on the results.

Defender’s Strategy Analysis. The plots in Figure 4, first row, show how
the defender chooses to assign values D ∈ {1, . . . , 4} to the honeypots. Each line
represents one of the four possible values.

Figure 4(a) shows the probability that at least one honeypot of the given value
is used by the NE strategy. We see that it is very rare to use any honeypot 1,
as there is little gain from protecting these servers. With few honeypots this is
also the case for value 2, but with increased number of honeypots the number 2s
becomes more significant. In Figure 4(b), we present the expected proportion of
honeypots in the network that have each value. The proportions tend to slightly
converge as the number increases, with probabilities of lower valued honeypots
increasing, while the probabilities of the higher values decrease. The stability is
interesting, as it suggests that network administrators can use the same basic
selection ratio over a range of possible amounts of honeypots.

In Figures 4(c) and (d) we show the results under Yule-Simon distribution.
The increase in probability of using at least one lower-valued server, primarily
at the expense of value 4, is caused by the higher probability they have and
therefore the defender protects them more. A slight convergence can be seen
here as well, but the portions show less difference than in Figure 4(b).
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Fig. 3. For all figures n = 5, h = {1, . . . , 5}, D = {1, . . . , 4}. For (a), (b), (c), (d) q = 0
(HSG). (a) Guaranteed values of defender’s strategies. (b) Values of the attacker’s strat.
against Nash strategy NE. (c) Game values under the Yule-Simon distribution of the
R server values with ρ = 1. (d) Values of the attacker’s strat. vs. NE under Y-S. –
For (e), (f), (g), (h) q = 3 (HSGp). (e) Guaranteed values of defender’s strategies. (f)
Values of the attacker’s strat. vs. NE. (g) Game values for the under Y-S. (h) Values
of the attacker’s strat. vs. NE under Y-S.

5.3 HSG with Probes

Next, we present results for the model with probes HSGp. Our set of parameters
is α(R|R) = 0.9, α(HP |HP ) = 0.7, with q = 3. The probability α(R|R) models
the assumption that it is unlikely for an R server to behave as an HP. The
α(HP |HP ) assumes that it is slightly less likely to correctly identify an HP.

The attacker’s Random strategy uniformly probes the servers and then uni-
formly chooses a server to attack. The attacker’s Maximum strategy assumes a
uniform prior probability of any server being real, regardless of the defender’s
strategy. The strategy probes according to the current highest expected value,
conditioned by the observations and probings. After all probes have been used,
the server with the maximal expected value is attacked. While this strategy is
strategically simple, it has high memory requirements for evaluation because it
needs to keep a separate probability vector for each possible plan. The missing
data point for k = 5 honeypots in Figures 3(f) and (h) is the result.

Game Values. The results for the game values are presented in Figure 3,
second row. There is an almost linear decrease in attacker’s utility in Figure 3(e),
which contrasts with the results for q = 0, especially for the NE strategy (see
Section 5.2). The almost-linearity is present also in the attacker’s strategies
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Fig. 4. For all figures n = 5, h = {1, . . . , 5}, D = {1, . . . , 4}. For (a), (b), (c), (d) q = 0
(HSG). (a) Probability of use of HP values under uniform distribution of R values. (b)
The expected portion HP values, uniform. (c) Probability of use of HP values under
Yule-Simon distribution of the R values with ρ = 1. (d) The expected portion of HP
values, Y-S. – For (e), (f), (g), (h) q = 3 (HSGp). (e) Probability of use of HP values,,
uniform. (f) The expected portion of HP values, uniform. (g) Probability of use of HP
values, Y-S. (h) The expected portion of HP values, Y-S.

in Figure 3(f). The Maximum strategy compares reasonably well with the NE
strategy for the attacker. The Random strategy performs much worse than the
other two. These two observations support the use of NE attacker’s strategy.

Results under both distributions (Figures 3(e), (f) and 3(g), (h)) are very
similar. The only difference, apart from the shift towards 0 for the same reason
as in HSG, is that Random and Maximum strategies have exchanged places in
Figures 3(e) and 3(g). With q = 0, the Random strategy is better thanMaximum,
not with q = 3. Intuitively higher values need to be protected more, because a
probe result gives R the attacker a high confidence that the server is real.

Defender’s Strategy Analysis Most of the observations for q = 0 hold for
q = 3 as well. One exception is that the leveling out of value 3 in Figure 4(b)
is not present in Figure 4(f). Comparing figures from the first row of Figure 4
(q = 0) with the second row (q = 3), we can see that with the increased amount
of probes, the highest valued 4 is more preferred. We speculate that the reason
for this might be the increased chance of the attacker of discerning honeypots
from R servers. The selected values for α(•|•) give high probability of a server
being observed as R, if it is R (α(R|R)), while a slightly lower probability for a
HP observed as a HP (α(HP |HP )). This could explain why probabilities for 3s
do not level out (Figure 4(f)), as opposed to the q = 0 case (Figure 4(b)).
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6 Conclusion

We introduce new game-theoretic models for analyzing honeypot configuration
problems in network security. These models significantly extend previous work
in this area, and provide new insights into non-trivial strategies for using hon-
eypots effectively in network security. Our model shows that honeypots should
not always be configured to look like the most or least valuable servers in a net-
work, but instead the optimal strategy is randomized and distributes honeypots
that look like different types of servers on the network. This becomes increas-
ingly important as networks move towards using a larger number of honeypots
as ways to deceive and attract the attention of attackers. This is shown in our
empirical results as we see that the Nash equilibrium strategies have a stronger
performance relative to baselines as the number of available honeypots increases.

The first model we present is a type of deception game, where the defender
tries to disguise honeypots in a network so that the attacker will choose to attack
honeypots instead of real servers. Our second model extends this by including
probing actions for the attackers, who can try to distinguish honeypots from real
servers before actually launching an attack. The probes are noisy, so the attacker
still needs to act with imperfect information in these models. We present linear
programming models for solving both of these classes of games.

We study the behavior of both of our models empirically, using heuristic
baseline strategies for both players. We also vary the assumption about the dis-
tribution of importance values on the network. The Nash equilibrium strategies
in our models significantly outperform the baseline strategies, regardless of the
distribution of values of real servers in the network. We also studied the structure
of the equilibrium strategies in these games, which shows that honeypot values
in both cases should be distributed across the space of possible configurations.
As the number of honeypots increases, there is a change in the strategies, with
the optimal strategies placing greater weight on lower values.

Our analysis shows that there are important strategic issues that must be
investigated to maximize the efficiency of honeypots in network security, par-
ticularly as the purpose of honeypots evolves from learning about attackers to
actively deceiving and delaying attackers. It is not sufficient to consider only the
technical issues involved in honeypot design, but also the strategic issues about
how they should be used.
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