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Abstract. In this paper we propose and discuss a game-theoretic frame-
work for (a) evaluating security vulnerability, (b) quantifying the corre-
sponding Pareto optimal vulnerability/cost tradeoff, and (c) identifying
the optimal operating point on this Pareto optimal frontier. We discuss
our framework in the context of a flow-level model of Supply-Demand
(S-D) network where we assume a sophisticated attacker attempting
to disrupt the network flow. The vulnerability metric is determined by
the Nash equilibrium payoff of the corresponding game. The vulnerabil-
ity/cost tradeoff is derived by assuming that “the network” can reduce
the security vulnerability at the cost of using more expensive flows and
the optimal operating point is determined by “the network” preferences
with respect to vulnerability and cost. We illustrate the proposed frame-
work on examples through numerical investigations.

1 Introduction

Since achieving complete security is typically an unattainable task, a realistic
approach to survival is effective security vulnerability (risk) management. Effec-
tive security vulnerability management schemes should be able to (a) quantify
security vulnerability and cost of security, (b) determine the set of feasible (vul-
nerability, cost) operating points and the corresponding (Pareto) optimal fron-
tier representing the best achievable vulnerability/cost tradeoff, and (c) identify,
given specific user security and cost preferences, the optimal operating point on
this tradeoff curve.

The challenge in determining such schemes resides in the difficulty of esti-
mating the security risk posed by a strategic adversary attempting to exploit
system vulnerabilities as opposed to conventional risk management situations of
reliability or fault tolerance models which are based on assumption of random
failures with predetermined probabilities. This paper attempts to address this
issue by proposing and discussing a game theoretic framework. Employing game
theory allows us to capture the strategic nature of all parties (attackers and
defenders). We illustrate our approach by considering the security vulnerability
problem in a flow-level model of Supply-Demand (S-D) network.

In the proposed approach, we model “conceptual” game(s) between a network
manager/operator (defender) and a strategic attacker. The network manager’s
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goal is to insure uninterrupted transport of goods by choosing a feasible flow
and the adversary attempts to disrupt the flow by attacking a link. We model
this situation as a 2-player game and use the attacker’s Nash equilibrium payoff
to define a vulnerability metric.

We combine this vulnerability metric with the fact that each feasible flow has
a (different) cost to derive the vulnerability/cost tradeoff. For that we assume
that the network manager can reduce vulnerability at the cost of using more
expensive flows. The maximum vulnerability corresponds to the case where the
manager can choose only minimum cost flows (MCF). The minimum vulnera-
bility is achieved when the network operator can choose among all feasible flows
(i.e., even the most expensive ones). We derive the vulnerability/cost tradeoff
by considering all ’costs’ in between.

The vulnerability/cost of security tradeoff curve is the frontier separating
the feasible region of (vulnerability, cost) pairs to the infeasible region. Once
this frontier is drawn, the next question is finding the optimal operating point.
The optimal operating point depends on the “network” utility function which
specifies the “network” preferences with respect to vulnerability and cost. Using
an illustrative example, we show how this optimal point can be computed for a
given S-D network.

Related Work. The problem of security cost/benefit tradeoff has previously
been considered in the literature. Gordon et.al. [4] use a version of ALE (an-
nual loss expectation) to propose an economic model that determines the op-
timal amount to invest in security. The paper [12] by Tiwari and Karlapalem
studies cost/benefit tradeoffs for information security assurance in terms of the
defender’s investment as well as the attacker’s opportunity. The paper by Alexan-
der J. McNeil [10] discusses a risk measurement model based on extreme value
theory (EVT). Extreme events occur when a risk takes values from the tail of
its probability distribution: i.e., rare events. All these approaches assume that
failures are due to random events (faults) and according to a predetermined
probability distribution. This assumption is justified in situations where failures
occur because of natural disaster, machine breakdown, human error etc. How-
ever, when failures are due to the action of a strategic adversary, this assumption
is no longer appropriate. In the present paper, we use game theory to model the
strategic nature of both the attacker and the defender. In our framework, failure
probabilities are derived from the attacker’s Nash equilibrium strategy.

Attempts to quantify security vulnerability also include the NIST Common
Vulnerability Scoring System (CVSS)[11]. The CVSS is an expert’s opinion-
based system that gathers scores for different aspects of security, quantifies the
scores, and combines them in an equation that outputs a metric for vulnerability.
Other attempts to measure vulnerability are by Symantec, McAfee, IBM, and
Microsoft. Although all these reports provide some ideas about security vulner-
ability, they are all subjective and often lack solid (first principle-based) ground.
The game theoretic approach proposed in this paper provides a principled and
analytical way to analyze vulnerability.
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In a very recent paper, Anderson et. al. [1] have presented a framework for a sys-
tematic study and analysis of the costs of cybercrime. They classify the costs of
cybercrime into direct losses, indirect losses, and defense cost. Direct losses quan-
tify the losses, damage, or user suffering felt by the victim as a consequence of an
attack. Direct losses also include the attack reward obtained by the criminal. In-
direct losses measure the effects of attacks on reputation, consumer trust, missed
business opportunity etc. Defense cost is the monetary equivalent of prevention ef-
forts. Put in their framework, our quantification of vulnerability reflects bothdirect
losses (the loss seen by the network manager when a link is successfully attacked)
as well as criminal’s revenue (the willingness of an attacker to attack a link).

This paper is organized as follow. The next section presents our game theoretic
framework to analyze vulnerability. We discuss our framework in the context of
supply-demand (S-D) network which we introduce in subsection 2.1. Then, we
present our assessment of vulnerability and our derivation of the vulnerabil-
ity/cost tradeoff in subsection 2.2. The game theoretic model and the analysis
of its Nash equilibrium are respectively introduced in subsections 2.3 and 2.4.
We discuss the implications of our framework in section 3. The paper ends with
concluding remarks in section 4.

2 Game Theoretic Framework

It is widely known that security is not free. A minimal effort in security results in
an unacceptably high vulnerability. This is very well understood and it explains
the billions of dollars spent every year on prevention and protection of systems.
On the other hand, there is no such thing as absolute security. “We have to build
our systems on the assumption that adversaries will get in” as put by Debora
Plunkett, head of the NSA’s Information Assurance Directorate. Furthermore,
independently of the amount of effort spent, one can never guarantee complete
security. In this situation, the real challenge is to determine how much effort is
needed to achieve an adequate level of security?

To answer to this question, security experts must derive effective security
vulnerability/risk management schemes that are able to quantify security vul-
nerability and the cost of security and determine the interplay between the two:
i.e., the vulnerability/cost of security tradeoff. Once this tradeoff curve is drawn,
and given the vulnerability/cost preferences of the system under consideration,
one can compute the optimal operating point on that curve.

Next, we propose and discuss a game theoretic framework for security vulner-
ability assessment and mitigation. We first propose a quantification of the cost
of security (or direct losses using the terminology defined in [1]), then, solving
an imaginary 2-player between the defender of the system and the attacker, we
derive a metric for security vulnerability, finally, by combining the two, we derive
the vulnerability/cost of security tradeoff. We then use an illustrative example
to show how to compute the optimal operating point.

The framework considered here applies to the generic security/availability
problem discussed in [6] under the notion of Blocking Games. The notion of
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blocking games has been used in [8], [7] and [9] in a situation where the defender
chooses a spanning tree and the attacker picks a link. In this paper we use
the results of blocking games to develop a framework for analyzing security
vulnerability/cost tradeoff in the particular context of supply-demand (S-D)
networks. The next subsection is an introduction on S-D networks.

2.1 Supply-Demand Networks [2]

We assume that the topology of a supply-demand network is given by a directed
graph G = (V ,A), with |A| = m is the cardinality of A. Links (edges) are
considered to be able to carry goods. We use the notation a = (x, y) to designate
the directed link (x, y). When the end nodes x and y need to be specified, we
use (x, y) for the link, otherwise, we use the notation ′a′ to designate the link.

Let some nonempty subset S ⊆ V be the “source” nodes, and some nonempty
subset T ⊆ V be considered as “terminal” nodes, where S ∩ T = ∅. With each
node x ∈ S we associate a nonnegative number s(x), the “supply” at x, and
with each node x ∈ T we associate a nonnegative number d(x), the “demand”
at x. Throughout the paper, we assume, without any loss of generality, that the
total demand is equal to the total supply

∑

x∈S

s(x) =
∑

x∈T

d(x) = Δ. (1)

In general, each link a is associated with some capacity c(a) which corresponds to
the maximum amount of goods that can be carried through a. By un-capacitated
network, we mean one for which c(a) = ∞ for all links a. A capacitated network
is one where links have finite capacity.

Definition 1. A feasible flow for this network is a function f : A → R+ that as-
sociates to each edge a = (x, y) ∈ A a nonnegative number f(x, y) ≥ 0 verifying
the following:

f(x,V)− f(V , x) = s(x) for all x ∈ S (2)

f(V , x)− f(x,V) = d(x) for all x ∈ T (3)

f(x,V)− f(V , x) = 0 for all x /∈ S ∪ T (4)

f(x, y) ≤ c(x, y) for all (x, y) ∈ A, (5)

In other terms, a feasible flow is an assignment of values to the links that satisfies
the conservation of flows at each node and the capacity constraint at each link.

Throughout, we use the following notations for arbitrary X ⊆ V and Y ⊆ V :

f(x,V) =
∑

{y∈N |(x,y)∈A}
f(x, y), (X,Y ) = {(x, y) ∈ A|x ∈ X, y ∈ Y }

g(X,Y ) =
∑

(x,y)∈(X,Y )

g(x, y), and h(X) =
∑

x∈X

h(x).
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Remark 1. In this paper, all data (i.e. supplies and demands) are assumed to be
integers. We are interested in the finite list of all integral feasible flows which
we denote F . We use f = [f(a1), f(a2) . . . , f(am)] to denote a generic feasible
flow. In general, there is an exponential number of flows; and in most cases an
exhaustive search is needed to list all feasible flows. Later we will see that to
compute the minimum vulnerability (metric) introduced in this paper, one does
not need to list all feasible flows.

In this paper, we assuming that all feasible flows are computed and we (abu-
sively) use the same F to denote the flow-link matrix whose rows are indexed
by feasible flows f and whose columns are indexed by the links a of the network,
with F [f, a] = f(a): the amount that flow f assigns to link a. This matrix will
serve as a payoff matrix for the quasi-zero-sum game defined later.

2.2 Security Cost and Vulnerability/Cost Tradeoff

In general, each link a = (x, y) ∈ A of the network is associated with a given cost
that the network manager incurs by sending a unit of goods through a = (x, y).
This cost can be thought of as the delay associated with the link, the distance
between the two ends, the operation/maintenance cost, or in general the total
effort needed to move a unit of good from node x ∈ V to node y ∈ V .

Letting w(a) be the cost of sending a unit of goods through link a and f(a)
the amount of goods that flow f carries over a, f(a)w(a) is the total cost of flow
f associated with link a. The total cost of flow f can then be written as

w(f) =
∑

a∈A
f(a)w(a). (6)

We assume throughout this paper that the costs w(a) are fixed and given.
In a non-adversarial environment, the network operator/managerwould choose

a feasible flow of minimum cost to operate the network. In an adversarial environ-
mentwhere an attacker strategically chooses the edge to attack, it is no longer obvi-
ous how the network manager should choose a feasible flow. Indeed, if the network
manager were to always choose the minimum cost feasible flow (MCF) (assuming
that it is unique�), the attacker could target one link of this MCF to disrupt the
transport. Hence, such choice could result to maximally vulnerable transport in-
frastructure. On the other hand, if the manager chooses randomly among a set of
feasible flows, an attack becomes less likely to succeed: i.e., the network is less vul-
nerable to attacks. However, choosing in a bigger set of feasible flows implies ad-
ditional cost to the network manager. We set this cost as a proxy for the cost of
security and use it to quantify the vulnerability/cost of security tradeoff.

To quantify such tradeoff, we proceed as follows. We assume that the network
manager has a “maximum cost” b that he can afford: i.e the network operator
can choose any feasible flow with total cost w(f) ≤ b; where minf (w(f)) ≤ b ≤
maxf (w(f)). For instance, if b = minf (w(f)) (the minimum cost of a feasible
flow), the network manager can only choose a minimum cost feasible flow (MCF)

� If there are more than one MCF, the attacker can still launch a very targeted attack.
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and b = maxf (w(f)) corresponds to the case where the operator can randomly
choose among all feasible flows. We let F (b) = {f : w(f) ≤ b} and we (abusively)
use F (b) to also denote the matrix whose rows correspond to f ∈ F (b).

For each maximum cost b, we setup a (conceptual) 2-player game between
the network manager and a strategic adversary, where the manager chooses a
feasible flow from F (b) to operate the network, while the attacker targets a link.
The details of the game are described in the next subsection. We use the “value”
of the game to define a metric for vulnerability to attack (VtA) associated with
b (in Section 2.4) and (numerically) analyze the VtA as a function of b.

When b = maxf (w(f)), a closed-form characterization of the (minimum
achievable) VtA exists and is provided in Section 3.2 for both un-capacitated
and capacitated networks. For general value of the maximum cost b, such closed-
form characterization is difficult to obtain. In this case, one can use tools such
as the Gambit solver [3] in order to solve the game and compute the VtA.

2.3 Game Model

For each value of the maximum cost b, we setup an imaginary game between
a “defender” (the network manager) and an attacker. The network manager
chooses a feasible flow from the collection F (b) = {f : w(f) ≤ b} to move a
total of Δ units of goods from set S to set T . The attacker wants to prevent the
maximum amount of goods to reach the terminals by selecting an link to attack.
When link a is successfully attacked, the amount of goods it carries (f(a)) is
lost (by the defender). The attacker pays a cost μ(a) to successfully disrupt the
flow on link a. She also has the option of not attacking. Hence, if flow f ∈ F (b)

is selected by the defender and link a is attacked, the defender loses f(a) and
the attacker gets a net attack gain of f(a)−μ(a). If the attacker decides to not
launch an attack, there is no gain to her and no loss to the defender.

We model this interaction as a 2-player game and assume the idealized��

case where all the information about the game is known to all players– the
network topology, the amount of goods to be moved Δ, the costs of oper-
ation/maintenance w(f), and the costs of attack c(a). We are mainly inter-
ested in mixed strategy equilibria where the defender chooses a distribution
{α ∈ R

N
+ | ∑f∈F(b) α(f) = 1} over the collection of feasible flows F (b), while

the attacker picks a distribution {β ∈ R
m
+ | ∑a∈A β(a) = 1} over the set of

links A. The defender wants to minimize the expected loss L(b)(α,β) and the
attacker wants to maximize max(0, R(b)(α,β)), where R(b)(α,β) is her expected
net gain. L(b)(α,β) and R(b)(α,β) are defined below.

L(b)(α,β) =
∑

f∈F(b)

α(f)
∑

f∈A
β(a)f(a), (7)

R(b)(α,β) =
∑

f∈A
β(a)

⎛

⎝
∑

f∈F(b)

α(f)f(a)− μ(a)

⎞

⎠. (8)

�� A more realistic model assumes limited knowledge for both players. Although the
analysis will be more involved, the same framework can be applied.
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We assume that if the attacker decides to not launch an attack, she chooses
an imaginary link a∅ with probability β(a∅) = 1, and any other real link with
probability β(a) = 0.

Remark 2. – Notice that the maximum cost ’b’ is used to “parameterize” the
games: for each b, there is a different game. We are interested in analyzing
the network’s vulnerability to attack (VtA) (introduced in the next section
and denoted as θ∗(b)) as a function of b. We particularly discuss the case
b = maxf (w(f)) (when all feasible flows can be chosen) which corresponds
to the minimum achievable VtA.

– The operation/maintenance costs (w(a)) are chosen once and fixed in the
entire paper. As a consequence, the costs of flows (w(f)) are fixed. With
this, the collections F (b) are well defined and form an increasing sequence
(as b increases).

– The reader should be advised that the use of Game Theory in this paper is
not meant to capture the actual active interaction between a defender who
“dynamically” chooses a feasible flow and an attacker who “dynamically”
tries to disrupt the transport of goods. Game Theory is rather used here as
a modeling tool to study network vulnerability in adversarial environment.

2.4 Nash Equilibrium Theorem

The Nash equilibrium theorem was established in Gueye et. al. [5, Chap. 4] using
the theory of Blocking Pairs of Polyhedra. In this paper, we consider polyhedra
(introduced shortly) associatedwith integer flows and, hence, reduce the discussion
of the Nash equilibrium theorem below to the context of feasible flows.

Recall that F (b) is used to denote both set F (b) = {f1, f2, ..., fk(b)} as well as
the matrix whose rows correspond to fi, i = 1, . . . , k(b), fi = [fi(a1), . . . , fi(am)].
Here, k(b) denote the cardinality of F (b). From now on, we mainly consider the
matrix interpretation. The flow polyhedron PF(b) associated with F (b) is defined
as the vector sum of the convex hull of the rows (f1, f2, . . . , fk(b)) of F (b) and
the nonnegative orthant:

PF(b) = conv.hull (f1, f2, . . . , fk(b)) + R
m
+ . (9)

The blocker bl(PF(b)) of the flow polyhedron PF(b) is the polyhedron defined as:

bl(PF(b)) =

⎧
⎨

⎩y ∈ R
m
+ :

∑

f∈A
x(a)y(a) ≥ 1 ∀ x ∈ PF(b)

⎫
⎬

⎭ . (10)

Now, letω be a vertex (i.e., an extremepoint) of bl (PF(b)).Wewriteω = (ω(a), a ∈
A) and letω(A) =

∑
f∈A ω(a).Note thatω(a) ≥ 0 for alla ∈ Aandω(A) > 0� � �;

so that βω = ( ω(a)
ω(A) , a ∈ A) is a probability distribution on A. We call it the

probability distribution associated to ω. Finally, let us define θ(b)(ω) as

� � � This is because the blocker bl(PF(b) ) is not empty, and does not contain the all-zero
vector–the origin (PF(b) is not empty).
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θ(b)(ω) :=
1

ω(A)

⎛

⎝1−
∑

f∈A
ω(a)μ(a)

⎞

⎠ . (11)

θ(b)(ω) is the expected attack reward associated with ω if the attacker were to

choose a link to attack according to the distribution β = ( ω(a)
ω(A) , a ∈ A). 1

ω(A)
is the loss seen by the defender.

We call the vertex ω critical if

θ(b)(ω) = θ∗(b) := max
ω̃∈bl (PF(b) )

(
θ(b)(ω̃)

)
. (12)

We call θ∗(b) the network’s vulnerability to attack (VtA) associated with the
maximum cost b. We discuss this choice of vulnerability metric in Section 3.1. In
the context of the S-D network considered in this paper, the entries of a vextex
ω are indexed by the links of the network. The support of a vector ω is the set
of indices (i.e., links) a for which ω(a) > 0. The support of critical vertex is said
to form a critical subset of links.

The Nash equilibrium theorem [5, Chap. 4] gives a characterization of the
players’ strategies and the attacker’s maximum net attack gain θ∗(b) in any
Nash equilibrium.

Theorem 1 (Gueye et. al. 2011).

1. If the maximum gain is negative (θ∗(b) < 0), the attacker will not launch
an attack and the defender randomly chooses a feasible flow according to a
distribution α(b)∗ that satisfies

ᾱ(b)∗(a) :=
∑

f∈F(b)

f(a)α(b)∗(f) ≤ μ(a). (13)

2. If the gain is nonnegative (θ∗(b) ≥ 0), an equilibrium strategy for the attacker
is to always launch an attack that focuses only on edges belonging to critical
subsets. Her randomized strategy is a convex combination of the probability
distributions induced by the critical vertices as

β(b)∗(a) =
∑

ω∈C
πωβω(a); (14)

where each ω ∈ C is a critical vertex, πω ≥ 0 and
∑

ω∈C πω = 1. The
defender’s equilibrium is such that:

{
ᾱ(b)∗(a)− μ(a) = θ∗(b) for all a ∈ A such that β(b)∗(a) > 0.

ᾱ(b)∗(a)− μ(a) ≤ θ∗(b) for all a ∈ A.
(15)

In every Nash equilibrium of the game, the attacker’s expected net attack
gain achieves the maximum of θ∗(b), and the defender’s expected loss has
the form

∑
ω∈C πω/ω(A), for the same π introduced above.

3. If the attack cost μ = 0, any equilibrium strategy for the attacker can be
written as a convex combination of some βω’s where each ω ∈ C is a critical
vertex and the defender’s equilibrium strategies verify (15) (with μ = 0).
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3 Discussions

The implications of the NE theorem are discussed in this section. The vulnerabil-
ity to attack (VtA) as well as the attacker and defender’s strategies are analyzed
in subsection 3.1 then we discuss the minimum achievable vulnerability of the
network by considering the particular case of b = maxf (w(f)) in subsection 3.2.
In subsection 3.3 we use the VtA metric to study the vulnerability vs cost of
security tradeoff.

3.1 Vulnerability to Attack (VtA) and Critical Subsets of Links

The vulnerability metric (θ∗(b)) proposed in this paper reflects both the loss
seen by the network manager when a link fails (due to attack) as well as the
willingness of an attacker to attack a link (i.e., the cost of attacking a link) (see
equation (11)). This is a desirable feature for a vulnerability metric because no
rational adversary will launch an attack if the expected net attack reward is less
than zero. On the other hand, links with high loss (i.e., high volume of traffic)
and low cost of attack are very attractive to adversaries.

Also, θ∗(b) is maximized (and is the same) at any equilibrium of the game (in
general different Nash equilibria might have different payoffs for a given player).
This implies that the vulnerability metric is uniquely defined once the parameters
of the games are set. Furthermore θ∗(b) is closely dependent to the parameters of
the network. θ∗(b) is derived from a vertex of the blocker polyhedron (bl (PFb)),
which is solely dependent on the topology of the network and the amount of
goods to move from the sources to the terminals (and of course on the maximum
cost b and the costs of attack μ).

It is interesting to make the “distinction” between the loss seen by the defender
when a link is attacked ( ¯α(b)∗(a)) and the link’s criticality (ᾱ(b)∗(a)−μ(a)). Once
the defender chooses a particular flow f , the loss he sees whenever a link a fails
is equal to the amount of goods that flow f carries over the path containing
a. The defender chooses a flow such that the amount of goods carried over any
critical link is minimized (as we will see later). The criticality of a link indicates
the net gain an attacker receives by attacking the link; hence, how much the link
is attractive to the attacker. It depends not only on the loss of a link, but also
on the cost of attacking the link. The vulnerability metric θ∗(b) corresponds to
the criticality of the most critical links.

In order to achieve such maximum vulnerability, the attacker has to focus
only on links that are critical, according to the strategies given by equation (14).
Notice that, as for the vulnerability metric, the attacker’s strategy is closely
dependent to the parameters of the network. This indicates that a sophisticated
attacker would analyze the topology of the network to decide which links to attack.
This contrasts with conventional reliability models where the failure probability
of a link is chosen without any consideration of the structure of the graph.

The defender’s equilibrium strategy α(b) can be interpreted as the best way to
choose a feasible flow in the presence of a strategic adversary. In fact, as a best re-
sponse to the attacker’s strategy, α(b) minimizes the overall expected loss. Each
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entry α(b)(f) of the distribution vector is an indication about the potential loss
associated to using flow f– whenever α(b)(f) = 0 choosing feasible flow f implies
high expected loss due to an attack. Since α(b) is a best response to the attacker’s
strategy, all flows f with α(b)(f) > 0 have the same (minimum) expected loss.

When there is no attack cost, the probability distribution α is such that
the links with highest overall expected loss correspond to the most critical ones.
When attacking requires a relatively substantial effort the maximum expected
net attack reward can be negative θ∗(b) < 0. In this case the defender chooses
the distribution α such that the attacker has no incentive to attack. Such a
choice can be seen as a deterrence tactic for the defender.

3.2 Minimum Vulnerability

In this section we assume that the defender’s maximum cost b = maxf (w(f)) (so
that he can choose among all feasible flows) and illustrate the NE theorem for
both un-capacitated and capacitated networks. In this case, we can give closed-
form characterizations for ω, βω , θ(ω), and θ∗(maxf (w(f))) (which we just
denote θ∗). Notice that b = maxf (w(f)) corresponds to the minimum achievable
VtA of the network (the network operator can use all resources available to him).

The following theorem by Fulkerson and Weinberger [2] describes the flow
polyhedron PF and characterizes the vertices of its blocker bl(PF ) in the case
when b = maxf (w(f)).

Theorem 2 (Fulkerson and Weinberger [2]). Let F be the matrix of inte-
gral feasible flows in a capacitated S-D network G = (V ,A) with integral-valued
supply, demand and capacity functions, respectively s(·), d(·), and c(·). Then the
polyhedron PF is described by

PF =

{
x ∈ R

|A|
+ |

∑

a∈F⊆(X,X̄)

x(a) ≥ d(X̄)− s(X̄)− c(F̄ ), for all X ⊆ V

and any F ⊆ (X, X̄) such that d(X̄)− s(X̄)− c(F̄ ) > 0

}
.

(16)
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(a) c < ∞, µ = 0
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(b) c < ∞, “low” µ > 0
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(c) c < ∞, “high” cost µ > 0

Fig. 1. Example of S-D network with different attack cost
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F̄ is the complement of F in (X, X̄) (the set of edges from X to X̄).
The vertices of the blocker bl(PF ) are given by the essential vectors (i.e.,

vectors that do not dominate a convex combination of the others) of the set of
{ωX,F }X⊆V,F⊆(X,X̄) defined by the pairs

(
(X, X̄), F

)
, for every X ⊆ V and

every F ⊆ (X, X̄) verifying d(X̄)− s(X̄)− c(F̄ ) > 0, as follow:

ωX,F (a) =
1

d(X̄)− s(X̄)− c(F̄ )
1a∈F . (17)

The theorem indicates that vertices of the blocker polyhedron correspond to
pairs ((X, X̄), F ) where X ⊆ V is a cut-set of the graph of the network, and
F ⊆ (X, X̄). More precisely, they correspond to pairs that verify the “excess
demand property”: d(X̄)− s(X̄)− c(F̄ ) > 0.

The quantity d(X̄)− s(X̄)− c(F̄ ) can be interpreted as follow. d(X̄)− s(X̄)
is the excess demand in X̄ that every feasible flow has to compensate. This
compensation can be done using links in F and in F̄ , for any F ∈ (X, X̄). If
each link a ∈ F̄ carries its maximum possible flow (c(a)) and there is still a
remaining deficit (d(X̄) − s(X̄) − c(F̄ )), then links in F have to be used to
compensate this remaining deficit. Any feasible flow should send over the links
in F an amount of flow at least equal to the deficit d(X̄)− s(X̄)− c(F̄ ).

Remark 3. Notice that the theorem describes the flow polyhedron and its blocker
for general capacitated network. When the network is un-capacitated (i.e., c(a) =
∞ for all links) the condition d(X̄) − s(X̄) − c(F̄ ) > 0 is satisfied only when
F = (X, X̄), implying F̄ = ∅ and c(F̄ ) = 0. The excess demand property also
becomes d(X̄) − s(X̄) ≥ 1 (because we have integer flows). In this case the
discussion below can be repeated for F = (X, X̄).

From (17), we have that

ωX,F (A) =
∑

a∈A
ωX,F (a) =

|F |
d(X̄)− s(X̄)− c(F̄ )

. (18)

The distribution associated with the pair ((X, X̄), F ) (via ωX,F ) is given by

βX,F (a) =
1

|F |1a∈F ; (19)

which is uniform over F . This implies that all links belonging to the same critical
subset are attacked with the same probability (independently of the attack cost
on each link). The expected attack reward θ(X,F ) associated with X and F
(defined in (11)) is equal to

θ(X,F ) =
d(X̄)− s(X̄)− c(F̄ )− μ(F )

|F | . (20)

The equation above is quite intuitive. In fact, each feasible flow has to compen-
sate the excess demand in X̄ by sending a total amount of d(X̄)− s(X̄)− c(F̄ )
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over the edges in F ⊆ (X, X̄). By randomly attacking one of these links with
the uniform probability βX,F in (19), the expected reward for the attacker is(
d(X̄)− s(X̄)− c(F̄ )

)
/|F | and the expected attack cost is equal to μ(F )/|F |.

Hence, the quantity above represents the average net attack reward that the
attacker gets per link of F .

A critical subset of links has the form F ⊆ (X, X̄) where the pair ((X, X̄), F )
satisfies the excess demand property and achieves the maximum vulnerability to
attack (VtA) given by

θ∗ = max
X⊆V, F⊆(X,X̄):

d(X̄)−s(X̄)−c(F̄ )>0

(
d(X̄)− s(X̄)− c(F̄ )− μ(F )

|F |
)
. (21)

Remark 4. For un-capacitated S-D network, the vulnerability to attack (VtA)
can be simplified to

θ∗ = max
X⊆V,

d(X̄)−s(X̄)≥1

(
d(X̄)− s(X̄)− μ(X, X̄)

|(X, X̄)|
)
. (22)

Computing this VtA can be shown to be equivalent to a minimization of the
form minX⊆V

(
ρ|(X, X̄)|+ μ(X, X̄) + g(X)

)
, where g(X) := d(X)− s(X). The

function g(·) is a modular. Hence, using techniques of (sub)modular function
minimization (as in [8, Section 4]), one can derive a polynomial algorithm to
compute a critical subset. For the general capacitated network, the reduction to a
(sub)modular function minimization is less obvious because the maximization is
over the pairs ((X, X̄), F ). Authors are studying a generalization of the definition
of submodular functions that can be applied to pairs.

Figures (1) show examples of networks with their minimum achievable vulner-
ability θ∗ and the corresponding critical subsets (shown in dotted and dashed-
dotted lines) for different attack cost vectors. The cost of attack and the capacity
are shown by the number next to the link: the first number (left) is the attack
cost and the second (right) the capacity. In example (1(a)), the costs of attacking
the links are all equal to zero. There are two critical subsets of links. The first
one (dashed-dotted line) corresponds links {(S, n1), (S, n2)}. The second one is
the singleton (n2, T1). The corresponding VtA is θ∗ = 2. When the attacker
targets critical subset (n2, T1), the attack is deterministic while an attack to the
critical subset {(S, n1), S, n2)} is randomized and uniform. In example (1(b)),
there is a positive attack cost μ that is relatively low. The VtA θ∗ = 1 is still
positive and the attacker will uniformly target at random one of the critical
links (n2, T1) or (n4, T2). Example (1(c)) is one where the attack costs are high
enough to result to a negative VtA (θ∗ = −0.5). The figure shows the (critical)
subsets that achieve this maximum (but negative) VtA. In this case, an attack
will not be launched.

3.3 Vulnerability to Attack Cost of Security Tradeoff

In this subsection, we study the vulnerability/cost of security tradeoff. For that,
we compute the vulnerability to attack (VtA) θ∗(b) for each value of the maximum
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Fig. 2. Vulnerability/Cost of security tradeoff and optimal operating points (V ∗, b∗)
for un-capacitated and capacitated S-D networks

cost b, minf (w(f)) ≤ b ≤ minf (w(f)). When b = maxf (w(f))), we have shown
that the VtA (θ∗ := θ∗(maxf (w(f))) can be characterized in closed-form. For a
generalF (b), such characterization is very involved. In fact, a concise description of
the polyhedronPF(b) and of the vertices of its blocker does not exist for an arbitrary
collection F (b) (to the best knowledge of the authors) . One can use techniques
described in [13, Chap. II.1] to characterize PF(b) and identify the vertices of its
blocker, or directly solve the game (using numerical methods). In this paper, we
use the Gambit [3] solver to compute the value of θ∗(b) as a given b.

We illustrate our approach using the example of the S-D network depicted
in Figure (2(a)). The amount of goods to be moved from the single source to
the single destination is assumed to be equal to 4 (units of goods). We consider
both an un-capacitated and a capacitated network (the links’ capacities are
given by the numbers next to the links). We consider the case of the most
powerful attacker whose cost of attack is equal to zero (μ = 0). Figure (2) shows
the vulnerability/cost of security tradeoff curves for the un-capacitated (star ’*’
curve) and the capacitated network (plus ’+’ curve).

The tradeoff curves show two distinct regions. Initially, the vulnerability to
attack (VtA) θ∗(b) rapidly decreases as a maximum cost b increases. From this,
we can infer that in this region a small investment in randomness (i.e., security)
has very high returns for the network manager. This first region corresponds to
a small interval of values of b; hence a small subset of feasible flows. Then, the
curve settles at the minimum possible vulnerability: once in this region security
investment has very low returns. This second region corresponds to a large in-
terval of values of the maximum cost b (hence a large subset of feasible flows).
These two observations imply that to achieve the minimum possible vulnerabil-
ity, the network manager has to randomly choose from a relatively small subset
of feasible flows. This is a very desirable feature because choosing from the set
of all feasible flows–which is of exponential size–can be very demanding (both in
computational time and in storage).
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The vulnerability/cost of security tradeoff curve is the frontier that separates,
for a given network, the feasible region R from the infeasible region R̄. Once
it is determined, the next question is finding the optimal operating point on
this frontier. Apparently, the optimal operating point depends on the specific
“network” preferences with respect to the vulnerability V = θ∗(b) and maximum
cost b. These preferences can be quantified by the “network” utility function
U(V, b). In general, the optimal operating point is determined by solving a 2-
dimensional max{U(V, b) : (V, b) ∈ R} optimization problem which, in this case,
can be reduced to a one-dimensional optimization (because of V = θ∗(b)), and
can be written as (V ∗, b∗) = (θ∗(b∗), b∗) where

b∗ ∈ argmin
b:(θ∗(b),b)∈R

U(θ∗(b), b). (23)

Figure (2(b)) shows the optimal operating points for the un-capacitated and
capacitated networks assuming a network utility function of the form U(V, b) =
2.6V 1.4 + 0.01b1.4.

4 Conclusion

In this paper, we use a Game Theoretic approach to derive a vulnerability to
attack metric for (un-capacitated and capacitated) supply-demand networks and
use this metric to compute the vulnerability/cost of security tradeoff. The metric
reflects both the loss seen by the network when a link fails (due to attack) as
well as the willingness of an attacker to attack a link (i.e., the cost of attacking a
link). It also can be used to determine the most critical links in the network. The
vulnerability/cost of security tradeoff curve shows a first (relatively small) region
with high returns in security investment, followed by a (relatively large) region
where investment in security has very low returns. This curve is the frontier
that separates the feasible region of (vulnerability,cost) pairs from the infeasible
region. Once it is determined, the optimal operating point can be computed
by considering the “network” utility function. In this paper, we illustrate this
process using a numerical example.
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