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Abstract. We present a stochastic two-player zero-sum game between
defender and attacker related to the security of practical steganography.
The defender wants to hide a message in a cover object drawn by na-
ture. The attacker wants to distinguish plain covers from those with a
hidden message. We study the case of n-bit covers, independently but
not identically distributed to allow for variation in the predictability be-
tween parts of the cover. The defender knows the predictability exactly
and chooses k embedding positions. The attacker may obtain side infor-
mation to predict one chosen position of the cover and compare it to the
observed object to make a decision. We present a unique mixed strategy
Nash equilibrium for this game. It turns out that the attacker’s strategy
is independent of the number of hidden bits k.

Keywords: Game Theory, Information Hiding, Steganography,
Security.

1 Introduction

Steganography is the art and science of hiding the very existence of a secret
message by embedding it into inconspicuous cover data, such as image or audio
files. A (minimal) steganographic embedding function takes as input a message
and a key. It outputs a so-called stego object, which is sent to the recipient, who
can extract the hidden message using the shared secret key. Steganalysis, the
countermeasure, tries to detect steganography by deciding whether an observed
object is cover or stego without knowing the secret key.

Prior work has established the following theory. Given a cover distribution
P0 and a fixed embedding function, the distribution of stego objects P1 is com-
pletely determined. Perfect steganography is possible if P0 = P1, and efficient
codes exist to embed a message [12]. For perfect steganography, a computa-
tionally unbounded steganalyst’s chance to make the correct detection decision
is no better than random guessing. If P0 is unknown, but can be sampled ef-
ficiently, then the existence of a cryptographic oneway function is sufficient to
construct an embedding function that achieves P0 ≈ P1 so that computationally
bounded steganalysts have only negligible advantage at the detection decision
[6]. If P0 �= P1, we speak of imperfect steganography and the degree of imper-
fection can be quantified by the Kullback–Leibler divergence (KLD) between P0

and P1 [2]. All practical steganographic embedding functions proposed for real
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cover media belong to the class of imperfect steganography. This is so because
P0 is unknown, arguably unknowable, and therefore it is virtually impossible to
find an embedding function that preserves P0 exactly [1]. Security bounds for
this relevant case of imperfect steganography have been derived mainly under
the strong, yet conservative, assumption that the steganalyst knows P0 [9]. Few
extensions exist for the case where both steganographer and steganalyst have
incomplete knowledge of P0 [8]. All these studies predict and experimentally vali-
date asymptotic detectability bounds, but they contain no constructive elements
on how to design secure embedding functions.

Due to this deficit of actionable theory, engineering efforts to design prac-
tical embedding functions are dominated by heuristics and simulation experi-
ments, often involving machine-learning techniques [10]. One rule of thumb is
to minimize the embedding distortion, reflecting the conjecture that P0 is lo-
cally smooth around the realized cover. The actual measures of distortion vary
between approaches. Another recurring thread is the idea of content-adaptive
steganography. It is based on the observation that most cover sources produce
heterogeneous covers, meaning that if the embedding domain of a cover object is
represented by a fixed sequence of symbols, then different positions exhibit dif-
ferent statistical properties. For example, natural images often consist of smooth
areas and gradients, but also contain some sharp edges or regions with noisy tex-
ture. Because these areas differ in predictability, e. g., in the accuracy of local
statistical models, the steganalyst may find it easier to detect subtle embedding
changes by deviations from the model in more predictable than in less predictable
spots of the cover. To exploit differences in detectability, a content-adaptive em-
bedding function tries to improve steganographic security by concentrating k
embedding changes in less predictable areas of a cover, rather than distributing
them uniformly over all n possible embedding positions [1].

Our contribution is to narrow the gap between theory and practice with a
game-theoretic analysis of the optimal choice of embedding positions in the real-
istic regime where both steganographer and steganalyst have incomplete knowl-
edge of P0. As initially pointed out in [11], game theory is the method of choice
in this regime, because both players have to decide in which positions they hide
or look for evidence of embedding, respectively, in anticipation of the opponent’s
action. The specific contribution of this work is to extend our model in [11] from
the very artificial case of only two positions to covers of size n. Our results here
are constructive in the sense that the equilibrium strategy can be efficiently
computed for any given vector of predictability.

Here is the structure of our paper. The next Section 2 specifies the game setup
and connects it to a specific interpretation of the steganographic communication
model. Section 3 presents the solution of the game, starting with message sizes of
k = 1 bits and generalizing from there. The discussion in Sect. 4 comments on the
applicability of our results for the design of secure practical steganography and
points to alternative interpretations in the broader field of information security.
The final Section 5 concludes with an outlook on open problems.
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2 Problem Definition

Let Alice be the defender (steganographer) and Eve be the attacker (stegan-
alyst). Figure 1 visualizes the steganographic communication model. Function
embed takes as input the secret message, a fresh cover, and the secret key. It
outputs a stego object which is as indistinguishable as possible from covers. The
stego object is communicated over the insecure channel. The recipient listen-
ing at the other end can apply function extract to retrieve the message. We do
not further consider the recipient, but abstract from the necessary coding and
cryptography layers which ensure that the recipient can always extract the mes-
sage correctly. Our game is formulated between Alice, who implements embed,
and Eve, who implements function detect. This function outputs a decision of
whether the observed object is a plain cover or a stego object. Figure 1 differs
from the standard model by allowing Eve to query some side information directly
from the cover. Recall that practical steganalysis can often estimate such side
information from the observed object. Therefore, we will elaborate below why
we require this explicit interaction in our game.

To formalize the role of side information, let the embedding domain of a cover
be a random sequence of n symbols with varying predictability from some kind
of side information. This side information is fully available to Alice and partly
available to Eve. Practical predictors, for instance, exploit spatial correlation
in the local neighborhood of a symbol to estimate its most likely value. We
assume that both players can exactly quantify the predictability1 per symbol
and order the symbols of the embedding domain by increasing predictability.
(Both reordering and potential domain transformations are reversible so that
the object on the communication channel always appears in its original order
and domain.)

Therefore, we consider a vector X = (X0, . . . , Xn−1) of independent random
variables drawn from a binary alphabet C = {0, 1}, with realizations typeset in
lower case, x = (x0, . . . , xn−1). Note that real covers may have a larger alphabet,
but we settle on bits for a clearer notion of predictability. Moreover, practical
embedding functions often work on a vector of binary residuals, such as the
sequence of all least significant bits. The monotonically increasing function f(i) :
{0, . . . , n− 1} → [ 12 , 1] defines the probability of Xi taking its most likely value.
Without loss of generality, let f(i) = P (Xi = 1) for the analysis.

To anchor the two ends of the predictability range, we require f(0) = 1
2 + ε

and f(n − 1) = 1 − ε. We need a strictly positive ε to ensure that we operate
in the imperfect steganography regime. If ε were zero, Alice could embed at
least one bit into x0 without risk of detection. Similarly, if P (Xn−1 = 1) = 1,
embedding into xn−1 would allow detection with certainty.

Alice’s action space is to flip k bits of a given cover realization x to embed
a hidden message. There exist appropriate key-dependent codes ensuring that

1 Our notion of predictability closely corresponds to the detectability profile in [5] or the
adaptivity criterion in [11]. Both concepts can be interpreted as proxies to estimate
the local predictability.
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Fig. 1. Block diagram of steganographic communication system with side information

a message of length k − O(1) can be embedded by changing k cover values
irrespective of their position such that the recipient can extract the message
with the knowledge of a shared secret key (see for example [4]). Alice chooses a
k-sized subset of {0, . . . , n − 1} indicating the embedding positions. Her mixed
strategy action space is a probability distribution a over all k-sized subsets of
{0, . . . , n− 1}.

Eve tries to decide whether an observed bit vector is a cover or a stego object.
We follow the convention in [7] and require that covers and stego objects are
equally likely on the communication channel. This can be modeled by assuming
that nature flips an unbiased coin to decide if Eve sees Alice’s stego object
or a cover drawn from the same cover source available to Alice. Eve’s optimal
decision rule would be a likelihood ratio test using the joint distributions over
all cover and stego objects, P0 and P1. In practice, however, P0 and P1 are
unknown and Eve can only make local decisions for individual symbols using a
local predictor. We stipulate that Eve can use her knowledge about the marginal
distributions of P0 and P1 to make optimal local decisions, although this is
not always the case for practical steganalysis. While our game might be too
optimistic for Eve in this respect, we contrast this by requiring that Eve only
looks at one position. To justify this constraint in the basic model, we must
assume that the side information necessary for prediction is only available for
one position. Therefore, it cannot be estimated from the cover and we must
assume an interactive query mechanisms (see Fig. 1). As a result, Eve’s mixed
strategy action space is a probability distribution e over all n positions for which
she can query side information of variable precision, depending on the position’s
predictability. For all other positions, she cannot tell if P (Xi = 0) > P (Xi =
1) or P (Xi = 0) < P (Xi = 1) in covers. Therefore, she does not gain any
information from including the values at these positions in her decision.

It is obvious that Eve’s task is very hard in this setup, because if k = 1, her
advantage over random guessing is not better than ε even if Alice determinis-
tically embeds in the first symbol. If Alice randomizes her strategy, then Eve’s
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advantage shrinks. If Alice embeds more bits, Eve’s advantage increases because
Alice has to use more predictable (i. e., less secure) positions. Our objective is
to quantify by how much, and if (and where) there is an equilibrium.

The following objective function defines a zero-sum game: Alice tries to in-
crease her security by maximizing Eve’s decision error, whereas Eve tries to
minimize it. We map this to the payoff structure given in Table 1. Note that this
payoff matrix induces an objective function based on the equal error rate. For
practical applications, the payoff matrix might need adjustment to account for
the harm caused by false positive and false negatives, respectively.

Table 1. Payoff for (Eve, Alice)

Reality

Eve’s decision cover stego

cover ( 1,−1) (−1, 1)

stego (−1, 1) ( 1,−1)

Figure 2 (p. 6) summarizes the game for k = 1 in an extensive form graph.
From left to right, first, nature draws a cover from P0, then Alice chooses her
single (because k = 1) embedding position, creating a stego object (black nodes).
A coin flip, invisible to Eve, decides whether she sees the stego or cover object.
Then Eve chooses the position she wants to compare with a prediction to make
her decision, and outputs the decision result (C for cover or S for stego). Shaded
nodes indicate the cases where Eve wins, i. e., she receives positive payoff.

3 Solving the Model

3.1 Preliminaries

We begin by formulating Eve’s local decision rule. Eve observes the probability
f(i) that bit i is 1. Since f(i) is greater than 1

2 , the object is more likely to be a
cover if the observed bit is 1, and more likely to be stego if the observed bit is
0. This constrains Eve’s decision rule based on her observation at position i.

d(i) =

{
cover if xi = 1

stego if xi = 0
. (1)

To simplify the exposition of our equilibrium results, we introduce the notation

f̃(i) = f(i)− 1

2
. (2)

The function f(i) was introduced as the probability of seeing 1 at position i, and
it measures the predictability at position i. The function f̃(i) can be interpreted
as measuring the bias at position i.
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P0 (x0, . . . , xn−1)

embed(x0)

cover object

x0
C

Se(0)

...

...

xn−1
C

S

e(n− 1)
1
2

stego object

x0
C

Se(0)

...

...

xn−1
C

S

e(n− 1)

1
2

a(0)

...

...

embed(xn−1)

cover object

x0
C

Se(0)

...

...

xn−1
C

S

e(n− 1)
1
2

stego object

x0
C

Se(0)

...

...

xn−1
C

S

e(n− 1)

1
2

a(n− 1)

Nature Alice Nature Eve

Cover
generation

Embedding
strategy

Coin
flip

Query Decision

Fig. 2. Extensive form of the game for k = 1. The dashed line indicates Eve’s informa-
tion set. The dark gray nodes represent Eve’s query strategy and the light gray nodes
are the situations in which Eve wins the game.
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Recall that Alice’s mixed strategy space is a probability distribution over size-
k subsets of {0, . . . , n− 1}. For a subset S of k positions, a(S) is the probability
that Alice embeds her bits in these k positions; and we have

∑
S a(S) = 1.

Overloading notation, let us define the projection of Alice’s mixed strategy onto
positions to be the total probability that Alice embeds in position i. Formally,
we define a(i) for i ∈ {0, . . . , n− 1} as

a(i) =
∑

{S:i∈S}
a(S). (3)

If Alice embeds in just one position, then a(i) = a({i}) and
∑n−1

i=0 a(i) = 1. If
Alice embeds k bits, then

n−1∑
i=0

a(i) = k. (4)

Eve’s mixed strategy action space is a distribution over positions. Eve queries
the bias at position i with probability e(i) and decides stego or cover based only
on her observation at position i.

3.2 Game Outcome

We quantify the payoff of Eve and Alice as a function of the bias f̃(i) at each
position, Eve’s mixed strategy e(i), and the projection of Alice’s mixed strategy
onto positions a(i).

Theorem 1 (Game Outcome). If f̃ is the bias function, e is Eve’s mixed
strategy, and a is Alice’s mixed strategy, then the total expected payoff for (Eve,
Alice) is

(
2

n−1∑
i=0

e(i)a(i)f̃(i),−2

n−1∑
i=0

e(i)a(i)f̃(i)

)
. (5)

Proof. First assume that Eve looks only at position i. Under this assumption,
we may determine the probability she wins the game by enumerating all possible
ways the world could be, and adding up the respective probabilities. We may
think of the process as an orderly sequence of events. First, nature chooses
whether Eve sees a cover object or a stego object by flipping an unbiased coin.
The cover object is then instantiated with a realization xi of position i, with
P (Xi = 1) = f(i). If nature chose stego, then Alice flips bit i with probability
a(i). Finally, Eve decides whether the object is cover or stego by looking at her
observed bit. She decides cover if the bit is 1 and stego if the bit is 0. Table 2
records the events, probabilities, and decision outcomes for each possible case.
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Table 2. Game outcome in different states of the world

Value of xi

Reality Cover Observed Probability Eve’s decision Winner

C 1 1 1
2
· f(i) C Eve

C 0 0 1
2
· (1− f(i)) S Alice

S 1 0 1
2
· f(i) · a(i) S Eve

S 1 1 1
2
· f(i) · (1− a(i)) C Alice

S 0 1 1
2
· (1− f(i)) · a(i) C Alice

S 0 0 1
2
· (1− f(i)) · (1− a(i)) S Eve

Legend: C = cover, S = stego

Given that Eve looks only at position i, her probability of winning is

1

2
(f(i) + f(i)a(i) + (1− f(i))(1− a(i))) (6)

=
1

2
(f(i) + f(i)a(i) + 1− a(i)− f(i) + f(i)a(i)) (7)

=
1

2
(1 + 2f(i)a(i)− a(i)) (8)

=
1

2
+ a(i)

(
f(i)− 1

2

)
(9)

=
1

2
+ a(i)f̃(i). (10)

Hence Eve’s total probability of winning is

n−1∑
i=0

e(i)

(
1

2
+ a(i)f̃(i)

)
(11)

=
1

2
+

n−1∑
i=0

e(i)a(i)f̃(i), (12)

and thus Eve’s total expected game payoff is

P(Eve wins) · 1 + P(Eve loses) · (−1) (13)

=

(
1

2
+

n−1∑
i=0

e(i)a(i)f̃(i)

)
· 1 +

(
1

2
−

n−1∑
i=0

e(i)a(i)f̃(i)

)
· (−1) (14)

=2

n−1∑
i=0

e(i)a(i)f̃(i). (15)



Where to Hide the Bits ? 9

The total expected payoff for (Eve, Alice) is thus(
2

n−1∑
i=0

e(i)a(i)f̃(i),−2

n−1∑
i=0

e(i)a(i)f̃(i)

)
. (16)

��

3.3 Nash Equilibria

We now turn our attention to the game’s Nash equilibria.

Hiding One Bit. We start with analyzing the case of k = 1. This simplifies
Alice’s mixed strategy action space to a probability distribution over the set
{0, . . . , n−1}. Recall the convention that a(i) is the probability that Alice embeds
into position i.

Lemma 1 (Exclusion of pure strategies). There is no equilibrium in which
either Alice or Eve assigns zero probability to any i.

Proof. Assume Alice assigns zero probability to position i. Then Eve gains no
advantage from assigning positive probability to position i. Hence, Eve’s best
response would assign zero probability to position i. But then Alice can com-
pletely eliminate Eve’s advantage by assigning probability 1 to position i. So
Alice is not in equilibrium.

Assume Eve assigns zero probability to position i, then Alice can completely
eliminate Eve’s advantage by assigning probability 1 to position i. But then
Eve’s best response would be assign probability 1 to position i. So Eve is not in
equilibrium. ��
It is useful to quantify Eve’s advantage from looking at one position and observ-
ing the bias. The following two definitions facilitate such quantification.

Definition 1 (Eve’s local advantage). Eve’s local advantage at position i is
a(i) · f̃(i).
Definition 2 (Eve’s total advantage). Eve’s total advantage is the weighted

sumover all her local advantages at positions0, . . . , n−1, i. e.,
∑n−1

i=0

(
e(i)a(i)f̃(i)

)
.

Observe that from Theorem 1, Eve’s expected game payoff is exactly twice her
total advantage. Hence we may consider total advantage as a quantity of primary
interest. Eve’s primary objective is to increase her total advantage, while Alice’s
primary objective is to reduce it. Our next lemma characterizes the structure of
possible equilibria in relation to Eve’s local and total advantages.

Lemma 2 (Uniform local advantage condition). A necessary condition for
any equilibrium is that Eve’s local advantage is uniform over i = 0, . . . , n− 1.
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Proof. Suppose Eve’s local advantage is not uniform. Then there is at least one
position i where her local advantage is not as high as it is at some other position
j. I. e., a(i) · f̃(i) < a(j) · f̃ (j). Eve can then strictly increase her total advantage
by setting e(j) = e(j) + e(i) and then setting e(i) = 0. (The resulting difference
in her total advantage will be e(i)(a(j) · f̃(j)− a(i) · f̃(i)), which is positive.) So
the situation is not an equilibrium. ��
This condition can actually be fulfilled, as shown in the next lemma.

Lemma 3 (Existence of Alice’s unique strategy). In any equilibrium, Al-
ice’s strategy to embed one bit is

a(i) =
1

f̃(i) ·∑n−1
j=0

1
f̃(j)

. (17)

Proof. We start with the condition from Lemma 2,

a(i) · f̃(i) = a(j) · f̃(j) ∀ i �= j. (18)

This implies that there is a constant C with a(i) · f̃(i) = C for each i, and hence
a(i) = C

f̃(i)
for some C.

Now by the probability axiom,

n−1∑
i=0

a(i) = 1, (19)

so that
∑n

i=0
C

f̃(i)
= 1, and hence C = 1∑n

i=0 f̃(i)
. It follows that

a(i) = 1
f̃(i)·∑n−1

j=0
1

f̃(j)

. I. e. the two constraints (18) and (19) completely

determine a(i). ��
Lemma 4 (Game outcome in equilibrium). The game’s outcome for (Eve,
Alice) in equilibrium is ⎛

⎝ 2∑n−1
j=0

1
f̃(j)

,
−2∑n−1

j=0
1

f̃(j)

⎞
⎠ . (20)

Proof. Alice’s strategy fixes Eve’s total advantage, which in turn fixes Eve’s
payoff. As Alice has only one candidate strategy in equilibrium, we know Eve’s
total advantage in equilibrium must be

n−1∑
i=0

(
e(i)a(i)f̃(i)

)
=

n−1∑
i=0

⎛
⎝e(i)

f̃(i)

f̃(i)
∑n−1

j=0
1

f̃(j)

⎞
⎠ =

1∑n−1
j=0

1
f̃(j)

, (21)

hence Eve’s payoff in equilibrium is 2∑n−1
j=0

1

f̃(j)

and the result follows. ��
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Turning now to Eve’s strategy, we may construe her objective as preserving her
total advantage.

Lemma 5 (Uniform weighted bias condition). A necessary condition for
any equilibrium is that e(i) · f̃(i) is uniform over i = 0, . . . , n− 1.

Proof. Suppose Alice is playing her unique strategy in equilibrium from Lemma 3
and that (for the sake of contradiction) there exist i �= j with e(i) · f̃(i) <
e(j) · f̃(j). Then Alice can decrease Eve’s total advantage by adopting a new
strategy a∗ with, a∗(j) = 0; a∗(i) = a(i) + a(j); and a∗(r) = a(r) for r �= i, j.

The difference in Eve’s total advantage is

n−1∑
r=0

(
e(r)a∗(r)f̃ (r)

)
−

n−1∑
r=0

(
e(r)a(r)f̃ (r)

)
(22)

= e(i)a∗(i)f̃(i) + wja
∗(j)f̃(i)− (e(i)a(i)f̃(i) + e(j)a(j)f̃(i)) (23)

= e(i)(a(i) + a(j))f̃(i)− (e(i)a(i)f̃(i) + e(j)a(j)f̃ (j)) (24)

= e(i)a(j)f̃(i)− e(j)a(j)f̃(i) (25)

= a(j)(e(i)f̃(i)− e(j)f̃(j)) (26)

< 0.

So Alice would prefer to change strategies, in violation of the equilibrium
condition. ��
Lemma 6 (Existence of Eve’s unique strategy). In any equilibrium for the
one-bit case, Eve’s probability e(i) of looking at position i must be the same as
Alice’s probability of embedding at position i:

e(i) =
1

f̃(i) ·∑n−1
j=0

1
f̃(j)

. (27)

Proof. The formula follows from the uniform weighted bias condition: e(i)·f̃(i) =
e(j) · f̃(j) for all i �= j; and the probability constraint on Eve’s mixed strategy:∑n−1

j=0 e(i) = 1. The argument that these conditions uniquely determine a func-
tion is given in Lemma 3. ��
Theorem 2 (Unique Nash equilibrium). There is a unique Nash equilib-
rium for the one-bit game where Alice embeds in position i with probability

a(i) =
1

f̃(i) ·∑n−1
j=0

1
f̃(j)

, (28)

and Eve observes position i with probability

e(i) =
1

f̃(i) ·∑n−1
j=0

1
f̃(j)

, (29)

and the expected payoff outcome for (Eve, Alice) is

(
2∑n−1

j=0
1

f̃(j)

,− 2∑n−1
j=0

1
f̃(j)

)
.

Proof. See Lemmas 3, 4, and 6. ��
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Hiding k Bits

Lemma 7 (Alice’s k-bit strategy). In any equilibrium, the projection of Al-
ice’s mixed strategy distribution onto singleton subsets satisfies

a(i) =
k

f̃(i) ·∑n−1
j=0

1
f̃(j)

. (30)

Proof. First, any equilibrium must satisfy the uniform advantage condition, as
the logic from Lemma 2 applies also in the k-bit case. Thus we have

a(i) · f̃(i) = a(j) · f̃(j) ∀ i �= j. (31)

Since we also have

n−1∑
i=0

a(i) = k, (32)

the function a(i) is completely determined as a(i) = k
f̃(i)·∑n−1

j=0
1

f̃(j)

. ��

Lemma 8 (Eve’s k-bit strategy). In any equilibrium, Eve’s mixed strategy
distribution is

e(i) =
1

f̃(i) ·∑n−1
j=0

1
f̃(j)

. (33)

Proof. Eve’s strategy must satisfy the uniform weighted bias condition: e(i)· f̃(i)
is uniform in i; as the logic from Lemma 5 still applies in the k-bit case. Since we
also have

∑n−1
i=0 e(i) = 1, these two conditions imply e(i) = 1

f̃(i)·∑n−1
j=0

1
f̃(j)

. ��

Theorem 3 (k-bit Nash equilibria). There is a Nash equilibrium for the
k-bit game where the projection of Alice’s distribution onto singleton positions
satisfies

a(i) =
k

f̃(i) ·∑n−1
j=0

1
f̃(j)

, (34)

and Eve observes position i with probability

e(i) =
1

f̃(i) ·∑n−1
j=0

1
f̃(j)

, (35)

and the expected payoff outcome for (Eve, Alice) is

(
2k∑n−1

j=0
1

f̃(j)

,− 2k∑n−1
j=0

1
f̃(j)

)
.

The equilibrium is unique up to the projection of Alice’s mixed strategy.
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Proof. See Lemmas 7 and 8 for the strategies. For the payoffs, note that Eve’s
advantage in equilibrium is

n−1∑
i=0

(
e(i)a(i)f̃(i)

)
=

n−1∑
i=0

⎛
⎝e(i)

kf̃(i)

f̃(i)
∑n−1

j=0
1

f̃(j)

⎞
⎠ =

k∑n−1
j=0

1
f̃(j)

, (36)

so that Eve’s payoff in equilibrium is 2k∑n−1
j=0

1

f̃(j)

.

��
The following two corollaries are easily observable.

Corollary 1. Eve’s mixed strategy in equilibrium is independent of the number
of embedded bits.

Corollary 2. Eve’s expected payoff in equilibrium increases linearly with the
number of embedded bits.

4 Discussion

4.1 Numerical Examples

Figures 3 and 4 display numerical examples of the equilibrium in our game,
instantiated with the parameters k = 1 and n = 100. The red line shows the
prediction function f(i); note the right hand scale. The gray bars display Al-
ice’s and Eve’s identical optimal strategies (left hand scale). In Figure 3, the
parameter ε is set relatively high and the prediction function f is linear.

Figure 4 is more realistic. It shows a small ε and a non-linear prediction func-
tion f with the majority of positions being relatively well predictable, just like
large homogeneous areas in natural images. Both figures show that the value of
a(0) is at its maximum. This illustrates again the advantage of content-adaptive
embedding over random uniform embedding if the cover source produces het-
erogeneous covers. Nonetheless, the fact that a(i) > 0 for all i suggests that the
steganographer should potentially use every available position and not only the
least predictable ones, unlike what is seen in many practical schemes.

4.2 Adequacy of Eve’s Constraints

We have motivated our game with practical content-adaptive steganography in
heterogeneous covers. Its solution can guide the development of more secure em-
bedding functions and detectors implementing the best response against known
embedding strategies. Our results recover the conclusions of [11] for the imperfect
steganography regime, namely that random uniform embedding is only optimal
in homogeneous covers, and naive adaptive embedding (i. e., deterministically
choosing the k least predictable symbols) is inferior to optimal adaptive embed-
ding, the equilibrium strategy. The extension to n cover symbols presented here
is an important step towards bringing more realism to the model.
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Fig. 3. Equilibrium strategies for ε � 0 and a linear function f
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Fig. 4. Equilibrium strategies for ε ≈ 0 and a non-linear function f

The biggest remaining obstacle (common to [11] and this paper) is the con-
straint that Eve can only look at one position at a time. In fact, all practical
steganalysis methods are constrained to local – possibly suboptimal – decisions,
but their output is an aggregation of local decisions for all positions in the ob-
served sequence. Most known steganalysis methods come to a final decision using
linear aggregation rules of the form,

D(x) =

{
cover for

∑n−1
0 wi · d(xi) > τ

stego else,
(37)

where d : C → {0, 1} is the local decision function, w is a vector of weights,
and τ a decision threshold to adjust the tradeoff between false negatives and
false positives. Unfortunately, even a simple game defining Eve’s action space
as (w, τ) deprives a straightforward analysis. Our theorems do not generalize to
this case because they are based on Eve’s advantage, which corresponds to the
differences in expected values between cover and stego. This translates to the
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difference in means of the distribution of the weighted sum of local decisions,
but Eve’s error rates depend also on higher moments of this distribution. More
precisely, they depend on the quantile functions of the distribution for covers
and stego objects, respectively. If this problem is solved, we can return to the
standard model of steganographic communication as the amount of permissible
side information does not need to be artificially constrained.

4.3 Alternative Interpretation

Although we motivated this game with optimal content-adaptive steganogra-
phy, the underlying information hiding game is general enough to lend itself
to alternative interpretations in the broader field of information security. One
application is keeping secrets in an organization. Suppose Alice leads a big orga-
nization which contains a secret binary state that is extremely sensitive. Think
of innovative companies (“Will the new device be a phone or not?”), central
banks (“Will interest rates change or not?”), or governments (“Will they really
respond to a cyber-attack with conventional warfare?”). In all these cases, Eve,
an outside observer, should not be able to distinguish both possible states. How-
ever, Alice needs a team of size k to work on projects where knowledge of the
state is essential. Her n staff members differ (function f) in their ability to de-
couple their observable behavior from their knowledge of the state, and Eve has
resources to ‘probe’ (observe, eavesdrop, bribe, . . . ) exactly one staff member.
Disregarding other constraints on team building, the solution to our game tells
Alice how to compose her team with minimal risk of leaking the secret state.

4.4 Relation to Adversarial Classification

Our work can be seen as an example for adversarial classification, a term to
the best of our knowledge coined by Dalvi et al. [3], who challenge the common
assumption in data mining that the data generating process is independent of
the data miner’s activity. Instead, the authors study instances where the data
is actively manipulated by an adversary seeking to increase the error rate in
classification problems.

Like our steganographer, an adversary in their model actively manipulates
data generated by nature, and a binary classifier tries to distinguish altered from
unaltered objects, similar to our steganalyst. Their payoff structure is more com-
plicated, including costs for altering and measuring features, respectively. These
costs are offset by utility from successful, respectively erroneous, classifications.

The original work on adversarial classification is presented in a spam detection
scenario, where spammers try to “wear out” a Bayes classifier. Nevertheless, the
framework is presented in general terms, also suggesting other domains and
tasks; but interestingly not steganography.

With theoretical underpinnings in feature-based machine learning theory, ad-
versarial classification may also have the potential to deliver new insights for
learning-based universal steganalysis as well as steganographic algorithms lever-
aging distance metrics in high-dimensional feature space [10].
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5 Concluding Remarks

In this paper, we have formulated the problem of hiding multiple bits in a het-
erogeneous cover sequence as a stochastic two-player zero-sum game between
steganographer and steganalyst. The steganographer chooses the embedding po-
sitions and the steganalyst applies a local decision rule involving side information
to exactly one position. Theorem 3 states the main result: the game has a unique
mixed strategy Nash equilibrium. All relevant properties to implement the equi-
librium strategies can be efficiently computed from the function describing the
heterogeneity in the predictability of cover bits. Corollary 1 stipulates that the
steganalyst’s equilibrium strategy does not depend on the number of embed-
ded bits. This is a handy property for the construction of detectors, where no
knowledge of the hidden message length must be assumed. Corollary 2 states
that if the detector follows the equilibrium strategy, its success rate increases
linearly with the number of embedded bits. This deviates from the square root
law of steganographic capacity, which predicts asymptotically quadratic advan-
tage even for homogeneous covers [9]. The reason for this difference is that our
detector is constrained to a locally optimal decision rule.

While local decisions seem to be a good approximation of what is implemented
in current steganalysis methods, other simplifications in our model may limit its
validity. Most importantly, the constraint on access to side information of one
symbol per cover is restrictive. Also giving the steganalyst perfect knowledge of
the local predictability appears somewhat unrealistic. Practical content-adaptive
embedding functions use different approximations of predictability and, depend-
ing on embedding operation and message length, the steganalyst can often re-
cover this proxy pretty well. To account for the remaining uncertainty, future
extensions of our game could equip the steganalyst with a noisy version of the
true predictability profile. This can be done either by adding an independent
random error term or, more realistically, by conditioning the error on the choice
of embedding positions. Finally, the impact of the assumption of independent
cover symbols needs to be evaluated. It remains to be seen if the useful properties
established above can be maintained in a generalized game.
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