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Preface

With the rapid development of multiple technologies, from the Internet to mobile
phones and cameras, visual data are now widely available in huge amounts, and
great variety, bringing significant opportunities for novel processing of visual
information as well as for commercial applications.

The Computational Visual Media Conference 2012 (CVM 2012) was the first
in a new conference series, providing a major international forum for exchang-
ing novel research ideas and significant practical results both underpinning and
applying visual media. The primary rationale for this new conference series is
to bring together cross-disciplinary research which amalgamates aspects of com-
puter graphics, computer vision, machine learning, image processing, video pro-
cessing, visualization, and geometric computing. Original research topics in this
area consider, inter alia, the classification, composition, retrieval, synthesis, and
understanding of visual media.

Although CVM 2012 was a new conference, it attracted broad attention from
researchers worldwide. A total of 81 submissions were made, of which 33 full pa-
pers were accepted. The conference took place during November 8–10, 2012, in
Tsinghua University, Beijing, China, and was co-sponsored by ACM SIGGRAPH,
the China Computer Federation and Tsinghua University.

We are grateful to all the authors, Program Committee members, and paper
reviewers for their contributions, as well as to those individuals who helped to
organize the conference.

Special thanks are given to the 973 Program of China (2011CB302200) and the
National Natural Science Foundation of China (61120106007) for their support.

Shi-Min Hu
Ralph R. Martin
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Identifying Shifted Double JPEG Compression Artifacts
for Non-intrusive Digital Image Forensics

Zhenhua Qu1,3, Weiqi Luo2,�, and Jiwu Huang1

1 School of Information Science and Technology, Sun Yat-Sen University, Guangzhou, China
2 School of Software, Sun Yat-Sen University, Guangzhou, China

3 Guangdong Research Institute of China Telecom, Guangzhou, China
qzhua3@gmail.com, weiqi.luo@yahoo.com, isshjw@mail.sysu.edu.cn

Abstract. Non-intrusive digital image forensics (NIDIF) aims at authenticating
the validity of digital images utilizing their intrinsic characteristics when the ac-
tive forensic methods, such as digital watermarking or digital signatures, fail or
are not present. The NIDIF for lossy JPEG compressed images are of special
importance due to its pervasively use in many applications. Recently, researchers
showed that certain types of tampering manipulations can be revealed when JPEG
re-compress artifacts (JRCA) is found in a suspicious JPEG image. Up to now,
most existing works mainly focus on the detection of doubly JPEG compressed
images without block shifting. However, they cannot identify another JRCA –
the shifted double JPEG (SD-JPEG) compression artifacts which are commonly
present in composite JPEG images. In this paper, the SD-JPEG artifacts are mod-
eled as a noisy 2-D convolutive mixing model. A symmetry verification based
method and a first digit histogram based remedy method are proposed to form
an integral identification framework. It can reliably detect the SD-JPEG artifacts
when a critical state is not reached. The experimental results have shown the
effectiveness of the proposed framework.

1 Introduction

Digital images have been pervasively used as evidences in many applications. Their
credibility has become increasingly important yet also challenging to establish for the
abusive use of modern digital image editing software, such as Photoshop and GIMP.
Digital signature and digital watermarking are the typically used techniques to ensure
the image content trustworthy. These methods need additional processing at the time of
data creation, such as signature generation and watermarking embedding, for facilitat-
ing tampering detection at a later time. In many forensic cases, however, the provider
himself is the fraudster. Image inspectors cannot depend on these active methods since
the side information for detection is not available, for instance, most images on the Web.
The demands from practical use, therefore, have urged the researchers to reconsider the
image authentication problem from a different perspective.

Recently, many non-intrusive digital image forensics (NIDIF) methods have been
proposed by researchers. In NIDIF, the image provider is untrusted and the authentica-
tion is performed on the inspector side solely based on the image data. By analyzing the

� Corresponding author.

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 Z. Qu, W. Luo, and J. Huang

disturbance or violation of some intrinsic characteristics of original images, the NIDIF
can detect tampered or fake digital image content in many forms. Many characteristics
have been used for the purpose of image forensics, for example, lighting consistency
[7], color filter array (CFA) interpolation [1], fixed pattern noise(FPN) [4], and cam-
era response function (CRF) [11]. However, due to the intricate mathematical nature of
these problems, each method works under some preconditions and there is currently no
universal solution for all tampering conditions.

JPEG re-compression artifacts (JRCA), one kind of such characteristics can be uti-
lized to detect tampering in JPEG images. When tapering a JPEG image, we have to
decode it into spatial domain, and then modify some regions within the image, and fi-
nally re-compress it as a JPEG file. So once JRCAs were found in a JPEG image, the
image is highly suspected to be modified and is untrustworthy. Currently, researches
have focused on addressing the so-called Double JPEG Compression Problem, which
entails identifying images that suffered from lossy JPEG compression twice without
block shifting. Lukáŝ et al. [9] use neural network to estimate the primitive quantization
table coefficients. Popescu et al. [12] utilized the periodical artifacts of the re-quantized
blockwise discrete cosine transform (BDCT) coefficient histograms. Fu et al. [5] con-
tributed a generalized Benford’s Law model of the BDCT coefficients. He et al. [6] use
the artifact to identify JPEG image splicing. However, when the fraudster simply shift
or crop the JPEG image with several rows or columns before recompression, all the
mentioned methods would fail. In this paper, therefore, we will focus on the detection
of JPEG recompressed images with block shifting.

This work is originated from our previous studies [10,13]. In this paper, we ana-
lyze the SD-JPEG problem, and then proposed an identification framework. We found
that the SD-JPEG problem can be modeled as a noisy 2-D convolutive mixing model
(CMM) and the solution has a blind source separation (BSS) essence. However, it can-
not be well handled with conventional BSS methods, such as independent component
analysis (ICA), since the noisy here is often too strong. By utilizing a cyclosymmetry
property of the independent value maps (IVM) of ordinary JPEG (Ord-JPEG, i.e. com-
pressed only once) images , we managed to overcome this problem. But it also results
a few undetectable conditions (UDC). They need to be further treated with a remedy
scheme. With the shifted distance(s-dist), obtained as a by-product of this identification
framework, one can also reveal some image manipulation histories, such as cropping,
copy-paste or both, of a suspicious JPEG. The effectiveness of this method is evidenced
with extensive experimental results.

2 Modeling the SD-JPEG Compression

Illustrated in Fig. 1, the SD-JPEG compression process generates an SD-JPEG image
in three steps: 1) Decompress an Ord-JPEG into the spatial domain; 2) Crop/shift the
resulting image with Δx columns and or Δy rows; 3) Re-compress it into a JPEG file.

It can be formulated as a 2-D CMM as follows:

Ŝm,n =
1∑

i=0

1∑
j=0

AΔy,iSm−i,n−jA
T
Δx,j + Êm,n (1)
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RecompressDecompress

JPEG image

Crop

SD-JPEG image�

�
DCT Domain

DCT Domain

y�

x�

Fig. 1. Gernerating an SD-JPEG image with s-dist=(Δx,Δy)

where Sm,n and Ŝm,n are the input and output M × M BDCT coefficient blocks re-
spectively. Êm,n is the quantization noise of the secondary JPEG compression.

{AΔx,0,AΔx,1,AΔy,0,AΔy,1}

are called a set of mixing matrices determined by the s-dist (Δx,Δy) and the BDCT
transform matrix. In practice, the multiplications of these matrices are done implicitly
by the JPEG compression. Equation (1) indicates that an output block Ŝm,n is a lin-
ear mixture of four input blocks {Sm,n,Sm,n+1,Sm+1,n,Sm+1,n+1} overlapped by it.
Then the identification of SD-JPEG image can be defined as

Definition 1 (SD-JPEG). A JPEG image is identified as SD-JPEG if and only if its
s-dist is not (0, 0)

As to identify SD-JPEG, one needs to reveal the s-dist or more specifically de-mix the
mixture by estimating its mixing matrices. This is the essence of BSS.

3 A Framework for Identifying SD-JPEG Images

The proposed identification framework includes two complementary methods. Firstly, a
questionable JPEG image is examined with an ICA-based identification method. If the
image is identified as SD-JPEG, the identification process is over and one can further
estimate the s-dist to identify the type of image editing. Otherwise, the image is treated
with a first digit histogram based method to check out if the s-dist is in one of the three
non-trivial UDCs.

3.1 ICA-Based Identification Method

In our previous work [13], we proposed an ICA-based identification method which is
able to detect SD-JPEG in most conditions. It works by firstly generating an IVM from
the BDCT coefficients of the image, and then calculating a RAVM (relative asymmetric
value map) from the IVM’s cyclosymmetricity , and finally 13 discriminative features
are extracted from the RAVM to train an SVM classifier to automate the identification
process. For details of this method please refer to [13].
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The above method [13] adopted kurtosis as the objection function. We found that
the selection of the objection function is a key issue that influences the identification
accuracy of our method. As the fourth order statistics, kurtosis is sensitive to out lies,
and thus is not a robust measure of the non-Gaussianity of the distribution. In this work,
we further improved the method by adopting a more robust entropy-based objective
function. Inspired by the famous InfoMax algorithm [2], we use the entropy objective
function here as to more distinctively captures the sparse histogram. The entropy of a
BDCT subband s is defined as:

J (s) =
∑
i

h (i) log h (i) (2)

where h(i) is the i-th bin of the hitogram of BDCT coefficients. Here the discrete en-
tropy is used to approximately calculate the continuous entropy.

We calculate the IVM with this new objective function, and keep the other steps the
same as before. With some intrinsic characteristics of natural images, we can prove
that the cyclosymmetry property of IVM will hold as well. Due to page limitation, the
detailed derivations will not be presented in this paper. This new implementation can
significantly improve the performance of the ICA-based method, and the experimental
results are given in section 4.

For the same reason, the formulas used for estimating the s-dist would usually work
better than the method [13]. By comparing the s-dist estimated from the image regions
that correspond to a foreground object under suspicion and its background respectively,
we can identify at least three major types of image manipulation methods. For example,
if the foreground and the background have the same s-dist other than (0, 0), the image
can be generally judged as a “cropping” manipulation, otherwise, when the two s-dists
are inconsistent, a “splicing” manipulation is detected. In particular, the condition in
which either of the two inconsistent s-dists is not (0, 0) cannot be well handled by most
of existing methods.

3.2 Handling the Undetectable Conditions

There are a totally four UDCs as indicated by their s-dist, that is (0, 0), (0, 4), (4, 0) and
(4, 4). Because if an Ord-JPEG image is re-compressed with one of these special s-dists,
the cyclosymmetry of the IVM will not be violated. It will be identified as Ord-JPEG
in the symmetry verification scheme and need special treatments here. The UDCs can
be classified into two types. Firstly, when the s-dist is (0, 0), this refers to double JPEG
mentioned in Section 1. It can be identified by several existing methods [5,12]. Thus,
it is a trivial UDC and will not be discussed here. The other three conditions are non-
trivial cases. Each of them occurs with a probability of 1/64 = 1.56% if the shifting
was performed randomly. However, they demand more effects than the detectable s-
dists. Here we proposed a learning-based approach to detect SD-JPEG in the non-trivial
undetectable conditions. By training a classifier with the histograms of Ord-JPEG and
SD-JPEG images, we can use the classifier for judgment. However, doing this will result
a very high dimension feature set by concatenating the all 63 AC BDCT coefficient
histograms each with approximately 200 bins which is also computationally intractable
with many modern classifiers.
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To bring down the feature dimension while maintaining its discriminative power, we
adopt a learning-based approach with the FDH [8] derived from the famous First Digit
Law or “Benford’s Law” [5]. It simply counts the coefficients with their first digits to
form a histogram with only nine bins. It has been shown that for a wide variety of “or-
dinary” distributions, e.g., the exponential family, the resulting FDH can be fitted with
a generalized function [5]. On the contrary, an “abnormal” distribution with multiple
plumbs resulting by SD-JPEG, will cause irregular rises and falls in the FDH.

For a given JPEG image, we try every UDC s-dist to de-mix it. With each of the de-
mixed AC components, we obtain one FDH. And then these 63 FDHs are concatenated
as one feature vector that is fed to a classifier. Non-linear regression based statistical
classifiers, such as the RBF kernel SVM [3] used here, can implicitly fitted these his-
tograms to a generalized function. In addition, a binary judgment can be given by adap-
tively weighting these fitting errors. The benefit of this method is that one does not need
to have any explicit knowledge of the distribution of the SD-JPEG BDCT coefficients.

4 Experimental Results

In our experiments, the test image database [10] includes 1000 uncompressed TIFF im-
ages taken by a Panasonic DMZ-FZ30 digital camera with indoor and outdoor scenes.
The performance in detectable and undetectable conditions is evaluated separately with
the two methods mentioned in Section 3.1 and Section 3.2. The image sizes are ranging
from 640×480 to 600×1200, and QF1, QF2 ∈ [60, 65, ..., 95]. A pair of Ord-JPEG and
SD-JPEG is generated from each image with strict consistency in their image contents.
In the experiments, the primary quality factor QF1 and and s-dist are chosen with uni-
form distributions. The SVM classifier is trained with half of them and tested with the
other half. This process is repeated 5 times to obtain the average results.

Figure 2(a) shows the performance of detectable conditions with the symmetry ver-
ification scheme. Figure 2 (b–d) shows the classification accuracy for three UDCs. It
is observed that for those images with a fixed size, the identification performance of
SD-JPEG is mainly depended on the three parameters: the s-dist (Δx,Δy), the primary
quality factor QF1, and the secondary quality factor QF2. And the detection accuracy
will become better with increasing image sizes.

A fraudster will always prefer to “wipe out” the artifacts caused by the primary com-
pression so as not to raise any suspicion. Intuitively, there should be a critical state for
QF2. For example, if the secondary compression is weaker than the primary one, say
QF2 > QF1, more traces will be preserved and it will be fully detectable. In contrast,
because the secondary compression is stronger than the former one, it might have com-
pletely removed the traces of the first compression and make the re-compressed image
unidentifiable in any sense. Therefore, when a QF1 is specified, we are greatly con-
cerned about whether there exist some QF2, in which the re-compressed image will be
identified as an Ord-JPEG image.

Figure 3 shows how the classification performance would vary with different combi-
nation of QF1 and QF2 both for detectable and undetectable condition. It is evident that
there is a “cliff” where the performances begin to deteriorate quickly. This figure also
shows, however, that the critical state is NOT at QF1 = QF2. For example, in Fig. 3(a),
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Fig. 2. The classification performance in detectable and three non-trivial UDCs. (a) symmetric
verification method (b–d) FDH method with three UDCs (4, 0), (0, 4), (4, 4).

when QF2 = 60 the performance does not begin to deteriorate until QF1 = 75. In
addition, this bias will be smaller with a larger QF2. A similar condition is also ob-
served in Fig. 3(b). This indicates that an SD-JPEG image is still identifiable even if the
secondary compression is slightly stronger than the primary one.

We also measured the goodness of the estimation of s-dist. It is measured by the
average shifted distance error (ASDE).

ASDE = mean

(√
(x̂−Δx)

2
+ (ŷ −Δy)

2

)
(3)

where (x̂, ŷ) and (Δx,Δy) are the estimated and ground truth s-dist, respectively. Table
1(a) and Table 1(b) show the ASDE of the condition when QF1 ≤ QF2 and QF1 >
QF2 respectively. As shown, when QF1 ≤ QF2 nearly all the s-dists are correctly
estimated. This suggests that the s-dist can be revealed without error when the critical
state is not reached. However, when QF1 > QF2, and there would be estimation errors.
The estimation errors are relatively large in the location near the four UDCs.
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Fig. 3. The classification accuracy curves decline suddenly with the increase of QF1 at a specified
QF2. (a) ICA-based method for detectable condition. (b) FDH-based method for the UDC with
s-dist=(0, 4).

Table 1. (a)The ASDE of QF1 ∈ [50 . . . 80] and QF2 = 75. (b)The ASDE of QF1 ∈ [80 . . . 95]
and QF2 = 75.

(a)
����Δy

Δx
0 1 2 3 4 5 6 7

0 NA 0.00 0.00 0.03 NA 0.01 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 NA 0.00 0.00 0.00 NA 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b)
����Δy

Δx
0 1 2 3 4 5 6 7

0 NA 1.63 2.00 2.52 NA 1.85 1.45 1.50
1 1.42 1.16 1.43 1.93 2.01 1.52 1.17 0.91
2 1.60 1.48 1.50 2.08 1.91 1.51 1.34 1.06
3 2.55 1.70 1.90 2.24 2.82 1.77 1.75 1.74
4 NA 2.34 2.41 2.92 NA 2.50 2.22 2.24
5 2.70 2.04 2.02 2.33 2.88 2.21 1.97 1.64
6 1.90 1.54 1.57 2.50 2.22 1.61 1.38 1.24
7 1.50 1.18 1.37 2.09 1.94 1.56 1.18 0.87

5 Conclusion

In this paper, we proposed a method to identify the shifted and re-compressed JPEG
image blocks. We extend our previous work [13] in two aspects. Firstly, an entropy-
based function is used to more distinctively capture the abnormal BDCT coefficient
histograms of SD-JPEG image. Secondly, an FDH based method is provided as a rem-
edy for the three non-trivial UDCs that were undetectable in our previous approach.

One limitation of the proposed method is that the exhaustive search scheme can
only deal with pixel-wise shifting. However in some image editing software, the shift-
ing can be conducted in sub-pixel level which would result in a continuous space for
searching the de-mixing matrices. Based on the same reason, rotated or scaled JPEG
re-compression is also not detectable here. It would be interesting but challenging to
determine whether there exist continuous optimization based methods that can learn
these parameters without the restriction of limit number of s-dist. These topics will be
addressed in future works.
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Abstract. Recently, device storage capacity and transmission bandwidth require-
ments are facing a heavy burden on account of massive internet images. Gener-
ally, to improve user experience and save costs as much as possible, a lot of
internet applications always focus on how to achieve the appropriate image re-
compression. In this paper, we propose a novel framework to efficiently cus-
tomize image recompression according to a variety of applications. And our new
framework has been successfully applied to many commercial applications, such
as web portals, e-commerce, online game and so on.

Keywords: Massive Internet Images, Image Recompression, Image Quality
Assessment.

1 Introduction

Along with the development of network and multimedia techniques, more and more
information on internet is demonstrated and propagated in the form of picture. The
rapid growth number of images and their increasing quality make a heavy burden on
the device storage capacity and transmission bandwidth requirements. Therefore, it’s
very important to sufficiently reduce the file size of images and meanwhile efficiently
achieve the recompression customization for different applications. For decades, a lot of
methods have been effectively proposed for image compression, which can reduce the
file size of images without severely affecting their quality, such as JPEG standard [1],
JPEG2000 standard [2], and other techniques [3,4]. Most of images on internet belong
to JPEG image format due to its higher compression quality and efficiency. Therefore,
we can mainly focus on how to recompress the massive JPEG images in order to further
reduce their file size. On the other hand, image recompression also aims to preserve their
perceptual quality using image quality assessment (IQA), which can accurately evaluate
the quality performance of image compression. We can employ objective assessment to
automatically evaluate recompression results and also organize subjective evaluation to
verify and adjust recompression settings.

In this paper, we present a novel framework that can not only sufficiently reduce the
file size without perceptual quality loss but also efficiently customize image recompres-
sion for different applications based on massive internet images. Moreover, we have
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applied our new framework to many commercial applications such as web portals, e-
commerce, online game and so on. After a brief review of related work in the next
section, we elaborate our novel recompression framework and its six main components
in Section 3 and Section 4. Then, several representative applications are introduced in
Section 5.Finally, the conclusion and discussion about this paper are given in Section 6.

2 Related Work

Image Compression. For still image compression, the Joint Photographic Experts
Group (JPEG) [1] standard has been established by ISO (International Standards
Organization) and IEC (International Electro-Technical Commission). Recently, many
techniques have been introduced into the context of image compression. Based on
image inpainting techniques, [5] proposed an image compression framework towards
visual quality rather than pixel-wise fidelity. Machine learning based approaches [4,6]
have been proposed to do lossy image compression. These approaches learn a model
from a few representative pixels and predicts color on the rest of the pixels.

Image Quality Assessment. Image quality assessment(IQA) plays a fundamental role
in the design and evaluation of imaging and image processing systems, such as those
for compression, enhancement, restoration, etc. Subjective evaluations are considered
to be the most reliable way to assess image quality. A significant effort has been done in
the field of subjective image quality assessment [7,8]. There are also standards on sub-
jective evaluation of image quality [9,10]. Although subjective evaluations are reliable
to assess image quality, in practice they are usually too cumbersome, time-consuming,
expensive; most importantly they cannot be incorporated into automatic systems that
adjust themselves in real-time based on the feedback of output quality.

The interest in objective image quality assessment has been growing at an accelerated
pace over the past decade [11,12].The goal of research in objective IQA is to develop
quantitative measures that can automatically predict the quality of images or videos
in a perceptually consistent manner. We focus on the full-reference IQA in this paper.
Zhou Wang et al. in [13] reviewed advantages and disadvantages of MSE and reviewed
emerging alternative signal fidelity measures. One recently proposed approach to image
fidelity measurement, which may also prove highly effective for measuring the fidelity
of other signals, is the SSIM index [11]. If the type of distortions are known, then the
design of full-reference IQA is quite straightforward. Based on the artifacts that will
introduced by JPEG image coder, Tamar Shoham et al. in [14] proposed a perceptual
image quality measure called BBCQ (Block-based Coding Quality) which is composed
of three components.

3 Overview

Figure 1 provides an overview of our framework. First of all, we estimate the source
compression level of an input image, and initialize its target compression level. Sec-
ondly, we combine those two compression levels to compute a re-coding matrix and
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Fig. 1. Our new framework can be described for customized image recompression, which in-
cludes six main components: initialization, image re-coding, quality measure, pipeline control,
subjective evaluation, and custom service

generate a new compression result. Thirdly, we measure the perceptual similarity be-
tween the input image and the new result using BBCQ.Fourthly, its output can be con-
trolled into three available pipelines: (a) update the target compression level; (b) return
the final recompression result; (c) change into the subjective evaluation. Fifthly, guided
by each different application, we organize the corresponding subjective evaluation and
obtain its assessment report. At last, based on the report, we customize the whole re-
compression for each application by setting up a series of appropriate parameters.

4 Customized Recompression

In this section, we describe our new framework for customized recompression in detail,
which includes six main components: initialization, image re-coding, quality measure,
pipeline control, subjective evaluation, and custom service.

Initialization. For reducing the iteration number and improving the efficiency of re-
compression, we focus on how to initialize an appropriate target compression level
according to a customized application. Given a series of its default parameters, we first
analyze the relationship between the compress level and the BBCQ’s similarity score.
As shown in Figure 2, we observe more than 5,000 internet images and construct a per-
ceptual similarity prior, i.e., the Quality-Score distribution of one image can be fitted
by a partial Gaussian Distribution Function, which is defined as:

Q(s) =
k√
2πσ

exp{− (s− μ)2

2σ2
}, (1)

where s is the BBCQ’s similarity score; Q(s) is the compression quality factor, also
known as Q factor in the Independent JPEG Group (IJG) [15]; μ and σ is the mean
and standard deviation of the Quality-Score distribution, μ is fixed to 1.0; k is a scaling
factor. If two pairs of Quality-Score are provided, we can subsequently compute σ and
k, which are unknown in Equation 1. According to an important observation: when
s is 1.0, Q(s) approximates to the source compression level of input image, we can
efficiently avoid one of those two pairs by estimating its compression quality from the
source image. Given the quantization matrix of the source image Ms and the baseline
matrix Mb, Q(1) can be estimated as:

Q(1) ≈ min
q

∑
i

|Mq(i)−Ms(i)|
Mb(i)

, (2)



12 S. Ding et al.

Fig. 2. Quality-Score fitting. The Quality-Score distribution of one image can be fitted by a par-
tial Gaussian Distribution Function; after two pairs of Quality-Score (s1 = 1.0, q1 = 95)
and (s2 = 0.8406, q2 = 50) are initialized, we can predict the target compression level
q = Q(0.9) = 74 by using Equation 1; based on the quality score threshold st = 0.9 and
the initialized compression level q = 74, we can continuously update the target compression
level until its optimal level q∗ = 80.

(a) q=75 (b) q=50 (c) q=48

Fig. 3. Nonmonotonicity of the IJG quality rating scale. (a) is a JPEG image with quality level
equals to 75; we recompress (a) to quality level 50, and obtain (b); (b) has considerable visual
grainy artifacts. However, recompress (a) to quality 48, the grainy artifacts will disappear. Com-
paring with (b), (c) is perceptually much closer to (a).

where q is the compression quality and Mq is its quantization matrix based on Mb.
Moreover, given Q = 50, we can compute another pair (s2, Q(s2) = 50) by BBCQ.
After obtaining two pairs of Quality-Score, we can produce the corresponding target
compression levels for the different applications. As shown in Figure 2, after two pairs
of Quality-Score (1.0, 95) and (0.8406, 50) are initialized, we can predict the target
compression level q = Q(0.9) = 74 by using Gaussian Function.

Image Re-coding. Many experiments have shown that the IJG quality rating scale is
not perceptually monotone[16]. An example is shown in Figure 3. This nonmonotonic-
ity in the IJG quality rating scale can bring bad effects to our system, since part of our
framework such as initialization, and pipeline control require a monotonicity between
quality and perceptual score. H. H. Bauschke et al. [16] report a novel heuristic for
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(a) source image (b) q=80 (c) q=55 (d) q=15

Fig. 4. JPEG images with different compression level

requantizing JPEG images by incorporating the Laplacian distribution of the AC dis-
crete cosine transform (DCT) coefficients with an analysis of the error introduced by
requantization. Here, we modify the Quantization matrix QM using heuristic algorithm
proposed in [16]. Denote QMo and QMq to be the quantization matrix of the input
image and the target quantization matrix, respectively. We want to modify QMq based
on QMo to obtain a new quantization matrix QMn which is closed to QMq in order
to requantize the input image. Denote the corresponding element of QMo, QMq and
QMn by moij , mqij and mnij . The new mnij is constructed as follows: First compute
k = �mqij/moij�. Then define

mnij =

{
moij if k = 0;

k ·moij if k > 0.
(3)

Using Equation 3, we obtain a new quantization matrix QMqn and compress the input
image with this quantization matrix.

Quality Measure. For a new recompression image, we further measure its recompres-
sion quality by a block-based coding quality method (BBCQ), which can evaluate the
degradation in image quality compared to the original image [14]. As shown in Figure
4, we compress the original image Figure 4(a) into different compression levels Figure
4(b), Figure 4(c), Figure 4(d) with quality 80, 55, 15 and their corresponding BBCQ’s
scores 0.8986, 0.8479, 0.6677. Obviously, when compressing the original image with
a lower quality, the compressed image will has more visual grainy artifacts, and the
coding block grid is more visible.

Pipeline Control. After obtaining the recompression result and its quality score, we
can control them into three available pipelines according to the different requirements,
which aim to update the target compression level, return the final recompression result
or change into the subjective evaluation.

(a) Update the Target Compression Level: As shown in Figure 2, given a quality
score threshold st, we can initialize a target compression level Q(st). We next recode
the source image with the compression level q = Q(st), compute its BBCQ’s score
S(q) and compare it with the threshold. If S(q) > st, update the target compression
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(a) (b) (c)

Fig. 5. Subjective evaluation tool. The left button is used to choose this picture as the impaired
one; and the right is used to switch among images. (a), (b) and (c) are three different pages
corresponding to source image, gray image and the recompressed image. The gray image is used
to eliminate human vision residuals.

level q = q − w, and repeat the above operations until S(q) < st; If S(q) < st,
update the target compression level q = q + w, and repeat the above operations until
S(q) > st. Finally, we can assume a local linear relationship and find out the optimal
target compression level q∗. Based on q∗ we can get our final recompression result.

(b) Change into the Subjective Evaluation: Here, we collect the recompression
results and organize the subjective evaluation in order to fix a series of appropriate
recompression parameters, which can guarantee the recompression quality and mean-
while meet the bandwidth and storage requirements of different applications.

Subjective Evaluation. In order to evaluate the performance of our recompression
system and guide each different application to reach its own compression level, we
perform standardized subjective image quality assessment based on [9,10].In our
framework for perceptually lossless compression, assessing thresholds of different
application is required. Forced-Choice Double-Stimulus (FCDS) method [9] which was
specifically designed for assessing thresholds of visibility is suitable for this task. In our
framework, the testing were performed using identical Microsoft Windows worksta-
tions. As shown in Figure 5, a web-based interface showing the image to be compared
and a Java button applet for choosing the impaired one was used. On the other hand,
subjective assessment methods, such as Double Stimulus Impairment Scale (DSIS)
[10], can be used to evaluate the perceptual quality of images by computing the mean
opinion scores (MOS) from human ratings. In our framework of high compression
levels we take this subjective evaluation to evaluate the perceptual quality of the output
images. In our testing, observers are asked to rank the quality of the recompressed
image using a standard 5 step impairment scale, as shown below: 5 - imperceptible,
4 - perceptible, but not annoying, 3 - slightly annoying, 2 - annoying, 1 - very annoying.

Custom Service. On basis of the subjective evaluation, we can provide the appropriate
custom service for each different application. First of all, for a new application, we try to
find a similar application from a database in which a lot of operational applications are
recorded completely. Secondly, we extract a series of parameters from the similar appli-
cation info to initialize the whole recompression. Thirdly, after image recompression,
we achieve the subject evaluation to verify the effectiveness of recompression parame-
ters. Fourthly, according to the assessment report, we iteratively adjust the parameters
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Table 1. Framework performance of offline service for perceptually lossless compression on
three applications

Applications Total
images
number

Running
time (s)

Average
running
time(s)

Original to-
tal file size

Total file
size after
compres-
sion

Compression
ratio(%)

Yixun e-commerce 305988 16527.04 0.054 13.67 GB 7.24 GB 47.067
Huyu online game 207428 16410.02 0.079 9.54 GB 7.40 GB 22.420
Tencent AdCenter 2752 245.12 0.089 142.26 MB 111.93 MB 21.319

until the assessment report can meet the application requirements. Finally, we finish the
custom service for the application and write its info into the database.

5 Representative Applications

The customized recompression framework introduced in the previous section can be
used to effectively reduce the file size of images for a wide variety of applications.
In fact, we have applied our customized recompression framework to a number of
applications, such as web portals, e-commerce, and online game. Table 1 shows the
performance of our customized recompression framework for perceptually lossless
compression on three typical applications. The second row of table 1 shows that the
compression ratio of our framework applying to Yixun e-commerce is up to 47.067%.
However, the compression ratios in the third row and the fourth row are not that high as
the compression ratio in the second row. This is mainly because that the input images
of these two applications have already been highly compressed. Both average running
time are less than 0.1 second that indicates the efficiency of our framework.

6 Conclusion and Discussion

In this paper, a novel customized recompression framework for massive internet images
was proposed. Using a prior knowledge on compression level and perceptual quality
score, the efficiency of our framework are guaranteed by predicting a exact initial com-
pression level for our iterative recompression. Application based subjective evaluations
effectively customize the most appropriate recompression for each different applica-
tions by finding a trade-off between image file size and image perceptual quality.

Moreover, our framework only takes JPEG images as inputs, but there are still many
PNG, BMP, or GIF pictures on the Internet. In the future, we plan to further generalize
our framework so that it can handle more images with different image formats.
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Jiao Tong University. This work is also partially funded by the National Basic Research
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Abstract. In augmented reality, it is required to sense the changing of
the light condition for achieving illumination consistency. In this paper,
we build up the decomposition equation of basis images of static scenes
for this purpose. It is proved that the basis images are invariants of the
scene, which is the global illumination effects of a distributed light source
with unit power, and it is unnecessary to assume that the reflectance of
appearance of objects in scenes is ideal diffuse. Our method can also be
applied in image understanding and compressing.

Keywords: basis image decomposition, illumination invariants, global
illumination.

1 Introduction

In Augmented Reality, many application requires to achieve photo-realistic ef-
fects when integrating virtual objects into a real scene. However, due to the com-
plexity and diversity of dynamic changing illumination such as outdoor scenes,
it is still a challenge to sense the changing of the light condition.

The appearance of a scene is decided by its geometry, reflectance, texture as
well as light source, and should obey the rules of global illumination model [1].
Therefore, illumination plays an important role in images, and it is also desired
to analyze illumination component from images in many other applications, espe-
cially the invariants. In computer vision or pattern recognition, the illumination
effects often become interferer of image understanding, thus it is strongly desired
to be removed or decreased. For compression of surveillance image sequences,
the illumination may be the most important component with variation in a time-
lapse image set, and therefore is desired to separate the invariance components.
In all these areas, Augmented Reality has special requests on the understanding
of light environments, such as online real-time, and high precision.
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For a photo image, its lighting condition may be very complex, such as outdoor
scenes. The basis image decomposition then plays an important role to estimate
light condition changes. Aiming for Augmented Reality application in outdoor
scenes, Liu et al. [2] proposed first a light parameter estimation method for
outdoor scenes without any knowledge about geometry and reflectance, in which
the concept of basis images of the sunlight and skylight is proposed and resolved
by a linear decomposition model from images with different weather condition
but the same sun position. However, the reflectance of the objects are supposed
to be diffuse, and the distribution of the light source is uniform. Although the
concept has been proposed, it is not properly explained and resolved.

Image decomposition is an important topic for image understanding. For im-
age decomposition in early stage, intrinsic images are separated from single im-
ages [3,4], or multiple images [5,6]. Recently, data collection and surveillance
of webcams raised the problems to decompose the image set of outdoor scenes
captured in a whole day into different factors of shading [7,8], in which [8] is
for fine day only, and [8] for variety of weather, with the limitation of only the
diffuse material in the scenes. For sensing the light parameters, basis images are
fundamental since we need invariants of a scene about illumination.

The global illumination model of outdoor scenes is quite simple [9]. The dom-
inate light in landscapes is the sunlight and the skylight, and the skylight is
distributed on the sky dome. However, since both the sunlight and skylight are
far away from the scenes, the light condition are considered all the same in the
scene. We do not consider any other man-made light sources.

In this paper, aiming for Augmented Reality, we build up a decomposition
equation of basis images with consideration of global illumination, which are
the illumination invariants of a static scene. This equation has no limitations on
object reflectance, and also does not require the distribution of the light source
to be uniform.

2 Previous Model

The global illumination of any scenes could be modeled by Kajiya’s rendering
equation [1]. The pixel values of an obtained image are those radiance transferred
to image RGB level by CCD of a camera [10], which are investable up to scale.
Therefore, the following process is performed in radiance space.

The rendering equation states that the images we viewed are from either emis-
sion of the direct light source, or reflection of light sources and inter-reflection of
all scenes. There are different formula of this equation, and we use the following:

L(x, ω, λ, t) = E(x, ω, λ, t) +
∫
Ω
ρ(x, ω′, ω, λ)S(x, ω′)L(x, ω′, λ, t)cosθ(x, ω′)dω′,

(1)
where x is an observed point, λ denotes the wavelength of the light, t is time, ω
and ω′ are reflection and incident ray direction, respectively, E(x, ω, λ, t) is the
emission light intensity, Ω is the sphere or hemi-sphere of the incident light, and
ρ(x, ω′, ω) is the BRDF at point x from direction ω′ to ω, and S(x, ω′) is occlusion
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function, L(x, ω′, λ, t) is the incident light at x from direction ω′, θ(x, ω′) is angle
between the incident light and the normal at point x. This equation expresses
multiple inter-reflection among surfaces through BRDF, which means that the
light arrived at the camera may be reflected arbitrary times in the scenes.

Liu et al. [2] once proposed a decomposition model of basis images, by ignor-
ing the inter-reflection among objects, and assuming the sky light is uniformly
distributed with linear HDR function, they get a linear decomposition equation
as follows:

I = E ·C (2)

where I stand for the input images captured by a fixed camera, E stands for the
sunlight and the skylight radiance, and C is the images of the direct lighting
without inter-reflectance and defined as following:

Csun(x, λ, t) =
∫
Ωsun

ρ(x, ω′, ω, λ)S(x, ω′, ω)cosθ(x, ω′)dω′

Csky(x, λ, t) =
∫
Ωsky

ρ(x, ω′, ω, λ)S(x, ω′, ω)cosθ(x, ω′)dω′, (3)

where ω is removed as a parameter in Csun and Csky due to fixed camera and
geometry in the scene. This model is unsuitable for the cases of inter-reflection
and non-diffuse surface. In this paper, we derive the decomposition model from
another aspect.

3 Linear Decomposition Model

3.1 Global Illumination Model with Inter-Reflection

We consider only the landscape scenes without emission of any man-made light.
Based on the rendering equation, we haveE(x) = 0 for all pixels of object surface.
A global illumination model should include all layers of inter-reflectance of light in
the scene. We will show that the linearity is kept for the global illumination model
if the radiance distribution of an area light source is up to scale.

The rendering equation express the inter-reflection with a recursive light trans-
fer. An equivalent expression is to classify the collect rays according to layers
of the inter-reflectance. The first layer of illumination is from the direct light
source, and then those illuminated surfaces become light sources of the second
layer of inter-reflection, and so on. The inter-reflectance is infinitely processed.
Therefore, it is accumulated via infinite inter-reflectance:

L(x, ω, λ, t) =
∑∞

k=0 L
(k)(x, ω, λ, t) (4)

where k denote the order of the inter-reflection of light, Lsun(x, ω, λ, t) and
Lsky(x, ω, λ, t) consist of all orders of the inter-reflection of light source, respec-
tively. More in detail, according to rendering equation we have for each layer of
inter-reflection:

L(0)(x, ω, λ, t) = E(x, ω, λ, t)
......

L(k+1)(x, ω, λ, t) =
∫
Ω
ρ(x, ω′, ω, λ)S(x, ω′)L(k)(x, ω′, λ, t)cosθ(x, ω′, ω)dω′.

(5)
Fromthese equations,we can derive the linear property of decomposition equation.
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3.2 Linearity of Global Illumination

The input images are captured at a fixed viewpoint of an outdoor scene. For the
moment, we assume that the scene is static, the reflectance of scene points is
not limited to Lambertian, and the irradiance of any scene point is entirely due
to natural light.

We assume that all the geometry terms, including geometry model of the
scene, the camera position and orientation, the distribution of all the light source,
are determined. If the distribution of the light source is constant, and we only
tune the scale, that is:

E′(x, ω, λ, t) = α(λ)E(x, ω, λ, t) (6)

We use inductive method to prove the radiance of any layer (for k = 0, 1, . . .) of
inter-reflection will be multiple by α(λ). For k = 0, we can obtain from Eq. 5
that:

L′(0)(x, ω, λ, t) = α(λ)E(x, ω, λ, t) = α(λ)L(0)(x, ω, λ, t) (7)

Suppose that it is true for k:

L′(k)(x, ω, λ, t) = α(λ)L(k)(x, ω, λ, t) (8)

Due to linearity of Eq. 5 on radiance of light source, we can get from Eqs. 4, 5,
and 8:

L′(k+1)(x, ω, λ, t) =
∫
Ω ρ(x, ω′, ω, λ)S(x, ω′)L′(k)(x, ω′, λ, t)cosθ(x, ω′, ω)dω′

=
∫
Ω
ρ(x, ω′, ω, λ)S(x, ω′)α(λ)L(k)(x, ω′, λ, t)cosθ(x, ω′, ω)dω′

= α(λ)L(k+1)(x, ω′, λ, t)
(9)

Therefore, we can have:

L′(x, ω, λ, t) =
∑∞

k=0 L
′(k)(x, ω, λ, t)

= α(λ)
∑∞

k=0 L(k)(x, ω, λ, t)
= α(λ)L(x, ω, λ, t)

(10)

The above equation show that: if the light distribution keeps constant and only
the radiance scale is tuned, then the illuminated scene is also tuned by the same
scale.

input images sunlight basis images skylight basis image

=lsun× +lsky×

Fig. 1. The image decomposition model
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3.3 Decomposition Equation of Basis Images

A natural scene is reasonable to be separated into two part according to light
sources: one is lit by the sunlight, and another is lit by the skylight.

It is also reasonable to suppose that the distribution of the skylight source
keeps unchanged all day long, and the scaled sunlight distribution only depends
on the position of the sun, or time. We define the normalized radiance distribu-
tion of the sunlight and skylight along direction ω at time t, respectively, as:

Ĕsun(x, ω, λ, t) = Esun(x, ω, λ, t)/
∫
Ω Esun(x, ω, λ, t)dω

Ĕsky(x, ω, λ, t) = Esky(x, ω, λ, t)/
∫
Ω
Esky(x, ω, λ, t)dω

(11)

It is easy to prove that Ĕsun(x, t) and Ĕsky(x, t) are with unit radiant exitance:∫
Ω
Ĕsun(x, ω, λ, t)dω = 1∫

Ω Ĕsky(x, ω, λ, t)dω = 1
(12)

With these normalized lighting environment, we denote the global illumination
radiance of the scene as L̆sun(x, ω, λ, t) and L̆sky(x, ω, λ, t). The viewing direction
of basis images is decided by photometry, therefore the incident direction ω is
fixed, and we can denote the basis images as:

Bsun(x, λ, t) = L̆sun(x, ω, λ, t)

Bsky(x, λ, t) = L̆sky(x, ω, λ, t)
(13)

When the radiance of the sunlight and skylight changes, they only tune the
scale, respectively. Any daylight light condition can be represented by a linear
combination of the sunlight and skylight distribution:

E(x, ω, λ, t) = lsun(λ, t)Ĕsun(x, ω, λ, t) + lsky(λ, t)Ĕsky(x, ω, λ, t) (14)

Due to linearity of the illumination effects of the sunlight and skylight, we define
basis images of the sunlight and skylight as the global illuminated results of
scenes by the sunlight and skylight with unit radiant exitance of light source.
Therefore, the sampling images can be rewritten as the superimposing of the
illumination results of the sunlight and skylight:

L(x, λ, t) = lsun(λ, t)Bsun(x, λ, t) + lsky(λ, t)Bsky(x, λ, t) (15)

in which lsun(λ, t) is the measure of sunlight radiance coefficients arriving at
time t, lsky(λ, t) is the measure of the radiance coefficients of the skylight at t,
Bsun(x, λ, t) and Bsky(x, λ, t) are respectively defined as the global illuminated
results of scenes by the sunlight and skylight with unit radiant exitance. Our
decomposition model is described as Fig. 1.

From Eq. 15, any view of a scene is a linear combination of basis images,
and the coefficients are a kind of measurement of intensity of the light sources.
However, for photogrammetry, we can only recover the intensity up to scale. The
exposure and aperture of the camera are unnecessary to be considered in our
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decomposition model. We use a linear corresponding function of HDR, and we
can rewrite Eq.15 to a linear equation of decomposition as the following:

μI = � ·B (16)

where I is a tensor that consists of the sampling images, � is the tensor of vectors
of the light coefficients, and B is a tensor that consists of the basis image vectors,
μ is a coefficient for photometry, which is calibrated when virtual objects are
inserted. Since � is up to scale, we ignore μ and absorb it into � in the following.

4 Decomposing Basis Images from a Sequence of Images

Our input images are captured at a fixed viewpoint of an outdoor static scene,
based on which basis images can be obtained by minimizing a quadratic energy
function. We optimize the following equation for decomposing the basis images:

arg min
Bsun(x,λ,t),Bsky(x,λ)

∑

x,λ,t

(I(x, λ, t)− lsun(λ, t)Bsun(x, λ, t)− lsky(λ, t)Bsky(x, λ))
2

(17)

The optimization of the above function is very unstable, and lsun(λ, t) and lsky(λ, t)
are also unknown. We start from the shadowed areas of the sunlight that are de-
tected by k-means clustering.With the mean image serving as the initialization of
the skylight basis image, we can resolve the lsky(λ, t) and the skylight basis image
from Eq.17. After that the sunlight intensity and basis images can be computed
easily, the result is then used to update the shadow function. The above proce-
dures can be iterated to progressively refine the results. In the whole process the
sky region is excluded from the computation through a mask image, which is easy
to be produced because both the camera and the scene are static.

5 Experiment Results

In our experiments, we use a series of outdoor scene images captured every
5 seconds per frame at a fixed viewpoint by Cannon SX110, and the original
resolution is 1600 × 1200, and then is resized to 640 × 480. The algorithm is
implemented on a computer with a Core E7500 2.93GHz CPU, and 3.21GB of
RAM. The running time is about 200 seconds for 1080 images totally.

In Fig. 2, the first row is the source image taken in our campus, the second row
is the reconstruct images of our algorithm, and the third row is the error images
of the two images above. From the error images we can see, the reconstructed
error of most pixels is below 5 gray level obviously, and the pixels with error
more than 15 gray level are mostly dynamic objects, like the people or the car
on the road. From another aspect, we can use the error images to detect the
dynamic objects. The RMS error of each RGB channel of all the three scenes we
examined is within 3.3 grey levels, from which we can see that the results of our
theory is correct.
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Fig. 2. The top row shows the 10, 256, 436, 726 and 1069 frame from the original
sequence, the middle row is the reconstruction of our model. The third row is the
absolute error marked by different colors standing for different error ranges, where the
black areas stand for the pixels whose absolute error is below 5 pixels, similarly, blue
areas stand for the error range of 5 to 10 pixels, green areas stand for the error range
of 10 to 15 pixels, and the red areas stand for the range of other else.

(b)(a)

Fig. 3. (a) The sunlight basis image containing the effect of the mirror reflection; (b)
the amplification figure of the red rectangle of (a)

The advantage of our algorithm is that we do not have any limitation on
the reflectance. We can deal with the mirror reflection. Fig. 3 shows the mirror
effect in the sunlight basis image. On the road, we can see the clearly reflection
projection effect of the green mirror of the building.

6 Conclusion

In this paper, we have proposed a decomposition equation with consideration of
global illumination of static outdoor scenes. As the main light source of outdoor
scenes is sunlight and skylight, by using the global illumination model without
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any limitation on reflectance, we proved that an image is represented as the
linear combination of the sunlight basis image and the skylight basis image,
which are invariants of the scene that is illuminated by the sunlight and skylight
with unit energy, respectively. Experimental results demonstrate the effectiveness
and correctness of our algorithm.
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Intrinsic Image Decomposition with Local Smooth
Assumption and Global Color Assumption
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Abstract. Intrinsic images, which describe independent characteristics of
scenes, are very useful in many different fields. But it is difficult to get them
because the problem is extremely ill-posed. Smooth assumption is widely used
in many methods, but pixels in plain areas and in edge areas are not well distin-
guished. We improve this assumption by adding a weight to every pixel in the
image so that the smoothness is measured accordingly. There are always large
error in dark areas in previous methods due to the enlarged inaccuracy there. We
proposed a global assumption to solve this problem. The results show that the
performance is greatly improved by using our method.

Keywords: intrinsic image, smooth assumption, color line assumption.

1 Introduction

Every single image is a combination of many characteristics. In order to get independent
characteristics of images, the concept of Intrinsic images is introduced in [1]. Every im-
age can be decomposed into a reflectance image and an illumination image. Reflectance
image shows the original color of the objects in the scene while illumination shows the
lighting condition and how the surfaces reflect light.

By using intrinsic images, interplay between different characteristics can be perfectly
avoided. Therefore, works which suffer from this interplay benefit a lot. Reflectance
image can be used in re-coloring, re-texturing[2], and segmentation. Illumination image
can be used in re-lighting[2], inter-reflection acquisition[3] and so on.

However, intrinsic image decomposition is severely ill-posed because two images
are required while only one image is given. Denote the input image as I and reflectance
image as R and illumination image as L. Then the relation of the three images is:

I = R · L (1)

Here, I ∈ R3 and R ∈ R3 and L ∈ R.
In this paper, two assumptions are used. The first assumption is the smoothness of the

illumination and reflectance. The smooth assumption is used in many previous methods
but the probability of smoothness of each pixel is not introduced. We introduce weights
into this assumption. The second assumption is a global assumption based on global
color distribution and over-segmentation. In previous methods, error in dark area is
usually larger than that in light area. We proposed an assumption based on color line[4]
to solve this problem. Over-segmentation is used to handle the few outliers.
� Corresponding author.
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2 Related Works

[5] and [6] estimate intrinsic images from a fixed-viewpoint image sequence captured
under changing illumination. [7] extends [5] so that Internet images with similar view-
point can be used to get reflectance for colorization. Methods using machine learning
such as [8] train a model of reflectance and illumination edges from a training set to
classify the edges of input images.

Some methods introduce one or more assumptions as priors for every input image.
[9], [10] and [11] used a local assumption that reflectance is piece-wise constant while
illumination is smooth. Another local assumption is that pixels having same(similar)
chromaticity have the same(similar) reflectance locally. Methods using this assumption
include [10], [12] and [13].

Global clues are also important to get high quality intrinsic images. [10] assume the
global sparsity of reflectance color. [12] assume areas with same texture of chromaticity
have same reflectance.[11] over-segment the input image and assume similar reflectance
within every single segmentation.

Recently, some method, such as [2] and [13], introduced user interaction as prior
and get better results. [14] uses a method very different from most other methods. It
retains intrinsic images by retrieving the 3-D structure of the 2-D image. [15] designs
an ingenuous approach to get a dataset of intrinsic images of 16 objects and they are
widely used in many methods. We also use this dataset.

3 Our Approach

3.1 Overview

Our method mainly consists of two parts. The first part is an improvement of the as-
sumption of the smoothness of illumination image and reflectance image. We add a
weight to every pixel according to their gradient in the input image to control the prob-
ability of smoothness of every pixel distinguishingly. The second part tackle with the
problem of hight inaccuracy of dark area. This problem is not taken into considera-
tion in previous methods. We use an assumption based on the observation that pixels
with the same color locate on the same color line[4]. Outliers are handled using over-
segmentation. The two assumptions are local and global assumption respectively and
we use them together to get impressive result.

In our approach, the images is processed in log domain. Denoting by I, R, L the
logarithms of I,R,L, Equation(1) turns into:

I = R+ L (2)

3.2 Local Assumption of Weighted Smoothness

Smooth assumption can be implemented by minimizing the following energy term:

ELs(L) =
∑
p∈I

∑
q∈N(p)

||L(p)− L(q)|| (3)



Intrinsic Image Decomposition 27

(a) (b)

Fig. 1. Weight is influenced by edge and intensity

N(p) denotes the four neighbours of pixel p.
Reflectance image has a similar property. For example, in Figure 1,reflectance gra-

dients of points in area A are smooth. But in area B, gradients of points near the edge
are not smooth. [9] constrains reflectance smoothness the same as illumination:

ERs(R) =
∑
p∈I

∑
q∈N(p)

||R(p)−R(q)|| (4)

But the difference between edge and plain areas is not revealed in Equation(4).
[11] identify the edges by a method proposed by [15] and a different action is taken

in edge areas. However, edges are identified in the first place so that any error in this
step will lead to larger errors in following steps.

We consider improving this assumption by introducing weight into Equation(4).
Weights of points in area A should be big to ensure the smoothness, while weights
of points in area B should be small. We take the same action on illumination. A big
weight in reflectance implies a small weight in illumination and vice versa.

Assume p and q are adjacent points, then ||L(p)−L(q)|| is the illumination gradient
and ||R(p) − R(q)|| is the reflectance gradient. If ||I(p) − I(q)|| is small, it is highly
probable that the reflectance will be smooth. So a big weight is given to point p. On the
contrary, if ||I(p)− I(q)|| is big, weight of point p should be small. The weights of illu-
mination are given contrary to reflectance weights. Then Equation(3) and Equation(4)
are improved into:

ELs(L) =
∑
p∈I

∑
q∈N(p)

c1 ∗ ||I(p)− I(q)|| · ||L(p)− L(q)|| (5)

ERs(R) =
∑
p∈I

∑
q∈N(p)

c2 ∗ (maxw − ||I(p)− I(q)||) · ||R(p)−R(q)|| (6)

maxw denotes maxi∈I,j∈N(p)||I(i) − I(j)|| to ensure the weights of reflectance are
greater than 0. c1 and c2 are parameters to “stretch” the weight to a wide range.

However, the intensities of the same points in lightness and in darkness are differ-
ent, so the weights of the same point will be different according to the equations above
because the weight is determined by I . For example, in Figure 1(a), points near edge
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B and edge C should have same weight of smoothness because they are the same edge
actually, but the weights are obviously different according to Equation(5) and Equa-
tion(6). In Figure 1(b), a pair of adjacent points are drawn in the color RGB space
under two different illuminations. It can be proved that ||I(p)−I(q)||

||I(p)|| = ||I(p′)−I(q′)||
||I(p′)|| . So

the equations above should be modified to avoid the influence of lighting condition.

ELs(L) =
∑
p,q

c1 · ||I(p)− I(q)|| · ||L(p)− L(q)||
||I(p)|| (7)

ERs(R) =
∑
p,q

c2 · (maxw − ||I(p)− I(q)||) · ||R(p)−R(q)||
||I(p)|| (8)

The assumption of weighted smoothness of illumination and reflectance can be used
either independently or together with other assumptions, but it is recommended to use
it with the global assumption we will propose in section 3.3.

3.3 Global Assumption Based on Color Line and Over-Segmentation

The chromaticity C(p) of a pixel p is defined as follow:

C(p) =
I(p)

||I(p)|| (9)

Ideally, the three channels of color in original image and in reflectance image should be
proportional. This is determined by Equation(1) and is used as hard constrain of most
previous methods. However, as discovered in [4], this is not absolute due to inaccuracy
or some other reasons. Usually, the difference is small and can’t cause large error, but
it can be seen from Equation(10) that, in the dark area of the image, small errors are
enlarged because of a division to a small intensity value.

Inspired by [4], we use the color line found in I to constrain pixels in the image
and allow pixels of dark area not follow Equation(2) strictly. In the first step, we use
the method proposed in [4] to find color lines of the input image. Then, all points in
the image are classified to the nearest color line. If the distances from a point to all
found color lines are larger than a threshold, then we mark this point to be unclassified.
The pixels belong to the same color line are considered to have the same color. That
means, their reflectance values are close and the illuminations of every two points are
proportional with the distance to the origin(not (0,0,0) but the origin determined by the
color line we have just found). These are constrained by minimizing:

ERl(R) =
∑
l

∑
p∈l

∑
q∈l

||R(p)−R(q)|| (10)

ELl(L) =
∑
l

∑
p∈l

∑
q∈l

||L(p)− L(q)− (D(p) −D(q))|| (11)

where l denote every color line we found in the first step and D(p) denotes the distance
between p and the new origin. The new origin is the first intersection point of the line
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and three coordinate plane. As the number of pixels in an image is too large, it costs too
much time calculating every two pixels. In fact, every two pixels are proportional means
that all pixels are proportional, so we can calculate one pixel with all other pixels only.
But in order to increase robustness, we use a set of pixels that appear frequently(i.e.,
have a high density in the RGB space) in the original image. The equations turn to be:

ERl(R) =
∑
l

∑
p∈l

∑
q∈S(l)

||R(p)−R(q)|| (12)

ELl(L) =
∑
l

∑
p∈l

∑
q∈S(l)

||L(p)− L(q)− (D(p)−D(q))|| (13)

where S(l) denotes the small set of pixels which appear in input image frequently on
color line l.

There may be some points which are classified to a line that is different from all
surrounding points due to inaccuracy or anti-aliasing. To remove these outliers, we
perform over-segmentation on the input image. Every segmentation is assigned to the
color line which most pixels in this segmentation belong to.

Finally, Equation(2) is true in most bright area, but in dark areas, that equation may
not be obeyed strictly. So we allow a little bias in those area. We use the energy term
below:

Ebias(L,R) =
∑
p∈I

w(p) · ||L(p) +R(p)− I(p)|| (14)

w(p) is the weight controlling the error range. It can be designed diversely but we found
the following simple function is sufficient in practice:

w(p) =

{
0.001 ||I(p)|| < th

1 otherwise
(15)

th is the threshold determining the dark area.
The final energy function we want to minimize is:

E(L,R) = w1 ·ELs(L) + w2 ·ERs(R) +w3 · ELl(L) + w4 ·ERl(R) +Ebias(L,R)
(16)

w1 to w4 are weights controlling the importance of the four constrains respectively.

4 Result

We run our algorithm on the dataset of [15] so that the result can be compared with
ground truth and other methods which also use this dataset. Figure 2 shows some images
we used.

Figure 3 shows two results only using the weighted smoothness assumption. We can
see that this assumption works well on images without large cast shadow. But because
this assumption is flexible, it can easily combined with other assumptions to get better
result which will be shown later.
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Fig. 2. Original images

Fig. 3. Results with only weighted smoothness assumption

In Figure 4, we show that we solved the problem of high inaccuracy in dark area. In
original image(Figure 4(a)), there is inaccuracy in dark area already, but it is so small
that we can’t identify it. However, it can be obviously seen that the dark area(right
side) is different from light area(left part) in chromaticity image(Figure 4(b)) because
it is enlarged by Equation(10). Previous methods such as [10] do not take this problem
into consideration, so the dark area of their results(Figure 4(c)) is still hight inaccurate.
Figure 4(d) is our result in which Equation(2) is constrained absolutely, so it has the
similar problem with Figure 4(c). Figure 4(e) is our final result. We can see that the
problem in dark area is perfectly solved.

Some results of Figure 2 are shown in Figure 5, and the parameters of them are
shown in Table 1.

Since our algorithm bases on color lines, better result of color lines usually leads to
better intrinsic images. In our experiments, all color lines are extracted automatically
and they are good enough to get good intrinsic images. But it is possible that good
color lines can’t be extracted in complex images. In these cases, user can get color lines
manually by assign arbitrary pixel to a color line.

Table 1. Parameters of results in Figure 5

image w1 w2 w3 w4 c1 c2
cup 10 0.08 0.8 10 2 2

phone 1 0.008 8 5 5 5
sun 10 0.08 8 10 5 2



Intrinsic Image Decomposition 31

(a) Original (b) Chromaticity (c) Result of [10] (d) Our result
with constrain

(e) Final result

Fig. 4. Solving the problem of inaccuracy in dark area

Fig. 5. Results

5 Conclusion

In this paper, we proposed a method to decompose an image into illumination and
reflectance intrinsic images. First, our method improved the local assumption that il-
lumination is smooth and reflectance is piecewise smooth by adding weights for every
pixel. This improvement can be used in previous methods to replace their own smooth
assumption to enhancing their performance. Moreover, we developed an global assump-
tion according the observation that pixels of the similar reflectance in the input image
appear on a same color line in the RGB space[4]. This assumption solved the prob-
lem that in dark area, the reflectance often deviate ground truth obviously, which are
not considered in previous methods. The two assumptions are combined together to
produce impressive results which show the effectiveness of out method.
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Abstract. This paper describes a novel algorithm for image segmentation within
the framework of evolutionary game theory. Beyond the pairwise model, our
objective function enables exploration on larger patches by introducing clique
probability, and enforcing pixels within clique be assigned the same label. By
combining the Public Goods Game, our algorithm can efficiently solve the multi-
label segmentation problem. Experiments on challenging datasets demonstrate
that our algorithm outperforms the state-of-art. We believe that this algorithm
can be extended to many other labeling problems.

Keywords: segmentation, evolutionary game theory, Public Goods Game.

1 Introduction

In recent years, with the emergence of discrete optimization, many low-level computer
vision problems, i.e., segmentation, are solved via energy minimization algorithms,
such as graph cuts [1, 2], allowing us to perform approximate inference on graphical
models, e.g., by maximizing a posterior probability on Markov Random Fields. Within
this framework, one usually seeks the labeling L that minimizes the energy

E(L) =
∑
p∈P

Dp(Lp) + λ
∑

(p,q)∈N

Vp,q(Lp, Lq) (1)

Here, Dp measures individual label-preference of pixel p, and Vp,q encourage spatial
coherence by penalizing discontinuities between neighboring pixel pairs p and q. λ is
a parameter controls strength of smoothness. Yet, the assumption that the energy is
represented in terms of unary and pairwise potentials severely restricts the representa-
tional power of the model, as it is too local to capture rich statistics of natural scenes.
More recently, solving energies with higher-order cliques [3–12] has received lots of
attention. Although many methods have been proposed, the energy forms are simple
and are within the framework of the pairwise model, which is far behind the need of
effectively describing the underlying problem. Here we provide a new method to solve
higher-order energy in the perspective of evolutionary game theory. Consider a m-label
problem, with each pixel j in clique C be assigned a label Lj ∈ {1, ...,m}. Assume
LC represents label of clique C, we then define pCk = p(LC = Lk) the probability that
clique C is assigned label Lk. More specifically, suppose the total number of pixels in

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 33–42, 2012.
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C is N , the number that pixels being labeled Lk is pCk ·N . In fact, our objective is to en-
force pixels within each clique to take the same label, which is achieved by maximizing
the total clique probability.

The Public Goods Game (PGG) [13] is a widely-used model describing an N -person
game, which provide us a natural link between the higher-order clique with the group.
In a typical PGG, up to N players can choose either to cooperate or defect. Cooperators
each invest a certain amount c into the public good, whereas defectors do not con-
tribute. The total contribution is then multiplied by an enhancement factor r and then
equally distributed to all the players. Hence, each defector would get net benefit rkc/N
providing k out of N players choose to cooperate, while that for cooperators should
be reduced by the cost of contribution c. Simple reasoning tells us that an individual
defecting ends up getting a higher payoff than cooperating in any given mixed group.
However, each player gets the possibly maximal payoff had all players cooperated. The
best choice for individual and that for the group conflicts with each other, giving rise to
the dilemma. Previous work found that the underlying network topology can promote
cooperation [14–16]. One rationale behind this phenomenon is that cooperators form
clusters on graphs [17], thus they can easily spread their strategies to the surround, pro-
moting and sustaining cooperation in the entire population. This explanation provides
a new view to the task of image segmentation, where labels of pixels and strategies of
players are connected, and each of the segmented part would correspond to one cluster
of cooperators in a non-cooperative game.

A complete game includes the following four aspects, namely players, strategies,
payoff function, and strategy updating rule. Generally speaking, players would choose
the strategy that can maximize their own payoff. Simulation of a typical evolutionary
procedure base on spatial PGG goes like this. For simplicity, we consider a population
of size h × w on a regular lattice (Monte Carlo neighborhood), with each node locates
an individual, and links represent possible interacting relationships. In spatial settings,
each focal individual together with her direct neighbors defines a group and play one
PGG. Initially, half proportion of the population is randomly assigned to be cooperators
and the remaining defectors. Whenever playing PGG, an individual would participate
in her own group, as well as each of the neighboring groups. The accumulated payoff
for each player decides which strategy to choose in the next round following common
practice that, individuals obtaining higher payoff are more likely to disseminate their
strategies. The evolutionary process goes for a finite number of times until the fraction
of cooperation in the population maintains stable.

Contributions of this paper includes:

– We propose a novel objective function to the problem of multi-label segmentation,
which contains a higher-order clique term that is able to enforce pixels within each
clique to take the same label.

– The proposed objective function can be solved via PGG with high efficiency .

The remainder of this paper is arranged as follows. Sec. 2 describes related work. And
Sec. 3 presents details of the PGG-based segmentation algorithm. Experimental results
and analysis are shown in Sec. 4. And concluding remarks are drawn in the end.
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2 Related Work

Diversity has intensively studied on how to promote cooperation in PGG. Santos
et al. [13] explored diversity by considering the limited resource one possesses. Wang
et al. [18] studied diverse contribution in finite populations, and [19, 20], from another
perspective, studied evolutionary dynamics on diverse distribution. However, Watts [21]
argued that population structure is often more complex than a single graph can describe.
Following this, Ohtsuki et al. [22] experimented the idea of two different graphs that
players play games according to interaction graph, while the strategy updating is pre-
scribed by replacement graph. More recently, Li et al. [23] proposed a selective in-
vestment scheme where the investment graph is dynamically changed. Our approach
is more related to [23]. However, instead of imposing spatial selective investment, we
here adopt selective investment among different graphs. Specifically, we propose to
solve the an m-label segmentation problem via games played on m identical networks,
with each pixel in the image denotes a player, and one player would simultaneously
play m independent classical PGGs on each of the graphs. We define one graph a layer,
so player i assigned label Li would cooperate on the corresponding layer; she would
also defect on all the other layers. Consequently, player i gets m payoffs at one time
step, no matter what strategy she takes. When update, player i becomes cooperator on
the layer with the highest payoff. In our model, diverse investment is also considered by
combining color differences, which encourages segmentation boundaries be consistent
with image edges.

3 PGG-Based Segmentation

We are now introducing the proposed PGG-based segmentation method. To make our
approach clearer, we would first simplify the model without diverse distribution, which
is in accordance with the traditional game of fair distribution. For an m-label segmen-
tation problem, the input of our algorithm includes the image to be segmented, as well
as m labeling preferences. The output is labeling of the input image.

Consider a population of constant size h × w locates on a 2D grid in the image co-
ordinate. A regular graph with average degree n × n is employed to characterize the
population structure. We define n the clique size. Thus the direct neighbors of player i
consist of individuals locating on a n × n patch centered at i, with each n × n patch
denotes a clique, or a group in the language of game theory. In this scenario, we would
design m parallel games played on m separate layers, with each layer consisting the
same population and spatial structure. Initially, each player on layer l is randomly as-
signed a strategy of whether cooperate or defect, where cooperation on layer l means
the player is assigned label l. Whenever playing the game, player i would invest a cer-
tain amount to her direct neighbors, including herself, if she cooperates; otherwise for
a free-rider of investing none.

In a classical PGG, each group benefits (r−1)kc, where k is the number of coopera-
tors. One group would benefit more with more players cooperate (e.g. increasing k) for
a fixed enhancement factor r. In our model, we define qi,l as the probability that clique
Ci, which is centered at player i, of being labeled l. When qi,l = 1, all players cooper-
ate on layer l; and none for the case of qi,l = 0. It is obvious that, in order to enforce
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pixels within Ci to take the same label, qi,l is expected to approach either 1 or 0. On the
other hand, qi,l → 1 means more cooperators are involved, resulting in higher payoff
for each clique. In this perspective, our objective can be expressed as maximization of
the total group payoff

max
L

U =
∑
Ci

∑
Li

ϕLi

Ci
(2)

Here U is the payoff of all players, and L is strategy distribution within the population.
ϕLi

Ci
is payoff of group Ci on layer Li that

ϕLi

Ci
= (r − 1) · qi,Li

∑
j∈Ci

wj,i,Li (3)

The amount wj,i,Li that cooperator j invests to neighbor i on layer Li depends on the
corresponding labeling preferences pj,Li from the input, as well as color difference to
the investee, denoted as

wj,i,Li = pj,Li(θ + e−η‖imi−imj‖2) (4)

where imi is color value of pixel i. The parameter η controls strength of intensity
changes, and θ weights between individual label preference and the smoothness. This
equation is analogous to the unary and smoothness term in pair-wise energy in graph
cuts. And we could deduce that, after evolution, cooperators would form clusters around
the corresponding salient regions with similar color.

In a non-cooperative game, players would make decisions independently to maxi-
mize their own payoff. So total group payoff in Eqn. 2 can in turn be approximated by
maximizing the total accumulate payoff of each player i that

max
L

U =
∑
i

∑
j∈ci

{
r

∑
k∈cj ,Lk=Li

wk,j,Lk

N
− wi,j,Li} (5)

Lk = Li means player k cooperates on layer Li in i’s group. N is the group size. The
significance behind this equation is that, the accumulate payoff for player i is derived
from all her neighboring groups centered at j ∈ Ci, deducting her investment wi,j,Li

to group j. On the right side of Eqn. 5, the first term is a clique term describing how
the neighboring groups influence the focal player, and the second term is an unary term
showing labeling preference of player i. Note that smoothness control is also included
in our formulation described in Eqn. 4.

Eqn. 5 can be solved by maximizing the payoff of each player. We define payoff of
player i being labeled l as

πl
i = max

l

∑
j∈ci

{
r

∑
k∈cj ,Lk=l

wk,j,l

n
− wi,j,l} (6)

This equation is used in the evolutionary process, where player i would choose to co-
operate on the layer with the highest payoff.
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In a more complex situation where distributing diversity is considered, the amount
that group j allocates to player i is inverse proportional to the color difference between
the corresponding pixels. In this way, players locating at salient regions with similar
color are expected to get higher payoffs, and penalty is adopted on strong image edges.
Thus, the payoff of player i is calculated as

πl
i = max

l

∑
j∈ci

{
∑

k∈cj,Lk=l

r · si,j · wk,j,l − wi,j,l} (7)

where

si,j =
e−η|imj−imi|∑

k∈cj

e−η|imj−imk| (8)

The color constraint on distribution is similar to that of diverse investment scheme.
However, difference is that the investment represents individual behavior whereas dis-
tribution acts as group behavior. In experiment, we find that stronger color constraint
on investment did better on locating segmentation boundaries at image edges. Note that
when η = 0, this formulation degenerates to Eqn. 6 of fair distribution.

To optimize max
L

U =
∑
i

πLi

i , the evolution goes like this. At each time step, players

play the game on each of the m layers and get separate payoffs. When strategy update,
player i learns to cooperate on layer k if the payoff is higher than that of the other layers.
This new strategy is then used in the next round of the game. Eqn. 9 shows the updating
rule of player i on layer l

Sl
i(t+ 1) =

{
C πl

i(t) > πk
i (t), ∀k �= l

D otherwise
(9)

where πl
i(t) denotes the accumulate payoff at time step t, and Sl

i(t + 1) the strategy
of player i on layer l in the next round. C,D are strategies of whether cooperate or
defect. Finally, player i with strategy C is assigned label l. In the language of game
theory, payoff denotes fitness of the strategy, thus, it is reasonable for strategies with
higher payoff to survive. This procedure is repeated until the evolutionary stable state is
reached. In our case, evolutionary stable state is defined that the proportion that players
change their strategies below a threshold.

To better interpret our method, we show the metaphor in Tab. 1 revealing the con-
nection between the classical energy function and our PGG-based objective function.
In general, the underlying graph in the energy is a 4-neighbor regular lattice. The unary
term provides information of label-preference of each pixel, and the binary term penal-
izes neighboring pixels of taking different labels. The clique term in the energy encour-
ages pixels within clique take the same label. After optimization, each pixel is assigned
a label under global minimum. On the contrary, for a PGG-based objective function,
players play the game on a graph. In this paper, we consider a regular graph of aver-
age degree n × n. Note that an energy minimization algorithm, i.e., graph cuts, can
also optimize the function under such high-clustered graph. However, the spatial and
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Table 1. Metaphor between pairwise energy and our PGG-based objective function

PGG-based objective function Energy function

Nodes Players Pixels

Edges Direct neighbors Direct neighbors

Label Strategies Pixel labels

Higher order N -person PGG Clique term

Objective Maximum payoff Minimum energy

temporal consumption is inconceivable, especially for images with high resolution. In
our PGG-based method, each player plays with her n × n direct neighbors, including
herself, so information of both label-preference and smoothness constraint is explored
within a wider scope, which is superior compared with the 4-neighbor restrictions. As
evolution on PGG explores how the strategy evolves, similarly, we are now studying
how the labeling evolves during segmentation. So at evolutionary stable state, the strat-
egy set is equal to the labeling set, which is obtained via maximize the total payoff.
In fact, in our formulation, the higher order clique is not limited to a neighborhood of
size n× n. Because player i in group Ci would benefit not only from her direct n× n
neighbors, but also from other neighboring groups centered at j ∈ ci. So theoretically,
player i can at most explore information in her 2n× 2n neighborhood.

4 Experimental Results and Discussion

To test our algorithm, we implement it on the Berkeley Segmentation Dataset [24],
where slight human interactions are needed. We also apply our proposed algorithm on
urban scenes using Leuven dataset [25] and the Google Street View dataset [26]. In the

(a) (b)

Fig. 1. (a) F-measure for each image. The red square shows performance of our method, and blue
star for graph cuts with optimal λ = 0.5. (b) Time consumption versus increasing clique size.
The red square shows performance of our method, and blue star for graph cuts.
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latter case, we aim at segmenting the scene from geometric inconsistency base on ver-
tical assumption. The labeling preference can be obtained using temporal projections
from the simplified 3D model, and regions that defy the vertical assumption would re-
sult in strong color inconsistency. We also extend this work to 3-label segmentation,
by introducing a reflective model. We tolerant a narrow band to distinguish reflective
inconsistency from geometric inconsistency, based on the observation that geometric
inconsistency can be eliminated when the accurate geometry is reached. Thus, for the
3-label case, we design to segment the scene from the background, geometric incon-
sistent objects under Lambertian assumption, and the reflective surfaces. Because of
the limitation of color inconsistency on temporal projections, in our experiments, the
dynamic regions and objects out of the narrow band are also considered to belong to
reflective inconsistency category.

4.1 Quantitative Evaluation

For a quantitative evaluation of the proposed method, we use the Berkeley Segmenta-
tion Dataset [24] of up to 60 images, where human segmentation are used as ground
truth. In graph cuts based segmentation, the parameter λ has great effect on the final
results. So it may spend a significant amount of time for the user to search for the best
segmentation with the most suitable parameter. In our experiment, we tested different λ
and choose the one with the optimal performance (e.g. the highest average F-measure).
Fig. 1(a) shows F-measure of each image, suggesting that our algorithm outperforms
graph cuts over about 2/3 of these images. And we would gain 0.28% of F-measure
on average compared with graph cuts. Fig. 2 shows some of the segmentation results.

Fig. 2. Experimental results from the Berkeley Segmentation Dataset. Each colum displays one
scene. The first row is the input image with user label, where red denotes foreground pixels and
blue. The second row is the segmentation results using graph cuts, and our results are shown in
the third row.
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Table 2. Computational complexity

Image ID GC, 3× 3 PGG, 11× 11 PGG (3-label), 11× 11

Leuven 0300 43.492s 35.318s 41.235s

Leuven 1856 43.489s 57.991s 21.371s

Pittsburgh 09858 115.222s 121.384s 115.799s

Pittsburgh 13335 120.053s 84.177s 167.716s

Fig. 3. Experimental results. The first and second rows are from Leuven data set of images #0300
and #1856. The remaining rows are from Pittsburgh data set of images #09858 and #13335.
The first column is the rectified input image. The following columns are results using graph cuts,
PGG-based 2-label segmentation and PGG-based 3-label segmentation. The red regions are the
segmented objects with geometric inconsistency, and the blue areas denotes reflective inconsistent
regions.
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All the experiments are done under clique size of 5. While graph cuts is superior on
segmenting thin structures, we argue that our method can also achieve similar results
if we set a smaller clique size. Experimentally, larger clique sizes would help smooth
the segmentation result, while smaller ones may sensitive to noise. So the role of clique
size is somehow similar to the smoothness control parameter λ in pair-wise energy.

For computational efficiency, Fig. 1(b) shows the average time (on both building
the underlying graph and processing of the core algorithm) for different methods with
increasing clique sizes. All of our experiments ran on an Intel(R) Core(TM)2 Duo CPU,
with 3GB available RAM. And on average, our method is faster than graph cuts, while
the acceleration is slower when clique size grows.

4.2 Extension on Urban Scenes

Fig. 3 shows our segmentation results on urban scenes. Compared with graph cuts,
the PGG-based segmentation result is more like a segmentation from human drawing
that the segmenting boundary is smoother and is more natural. Resolution of the input
images are 288× 360 for Leuven data set and 905× 640 for Pittsburgh data set. Tab. 2
shows computational time of our method using 11 × 11 clique compared with graph
cuts of 3× 3 clique. While graph cuts can also be implemented using larger cliques, the
temporal and spatial consumption is significant that a common machine cannot handle.
From Tab. 2, our computing time on 11 × 11 clique is comparable to 3 × 3 clique of
graph cuts.

5 Conclusion

In this paper we proposed a novel algorithm to segment the image within the framework
of evolutionary game theory. Our optimization method can efficiently solve energies
with higher order clique to the problem of multi-label segmentation via PGG. Given
an image and the corresponding segmentation cues, our algorithm is able to do the
segmentation efficiently. We tested our approach on several challenging scenes. Both
quantitative and qualitative experiments show that our algorithm outperforms the state-
of-art. And we believe this method is generic and can be used to solve many other
labeling problems.
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Abstract. This paper presents a novel method to simultaneously
estimate the clothed and naked 3D shapes of a person. The method needs
only a single photograph of a person wearing clothing. Firstly, we learn a
deformable model of human clothed body shapes from a database. Then,
given an input image, the deformable model is initialized with a few
user-specified 2D joints and contours of the person. And the correspon-
dence between 3D shape and 2D contours is established automatically.
Finally, we optimize the parameters of the deformable model in an itera-
tive way, and then obtain the clothed and naked 3D shapes of the person
simultaneously. The experimental results on real images demonstrate the
effectiveness of our method.

Keywords: human shape, deformable model, shape-from-contours.

1 Introduction

We address the problem of estimating a person’s detailed 3D shape from a single
image of that person wearing clothing. In this case, both the clothed and naked
human shapes can serve the task of computer graphics and vision. However, most
existing techniques on human shape estimation rely on multi-view images, and
are insufficient and difficult to constrain a 3D body shape from a single image.
Although some methods study the problem of estimating detailed body shape
from a single image, they are not meant to deal with clothing, but mainly naked
or minimally dressed humans.

Therefore, a practical method must recover a representation spanning varia-
tion in subject shape, pose and clothing. So we exploit a parametric deformable
3D shape model. This work is based on the SCAPE model, characterizing human
body shape using a low-dimensional shape subspace learned from range scans of
humans. The parameters of SCAPE can be directly estimated from contours but
has been restricted to people wearing tight-fitting clothing. In the case of the
clothed person, the exploited model must be sensitive to clothing which obscures
the naked human shape.

Hence, beyond previous work we construct a database spanning variation of
70 poses[2], 111 subjects (56 men and 55 women)[9] and 7 kinds of clothes. The
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exploited model is learned from this database, derived by the non-rigid surface
deformation, and consists of various low-dimension parameters.

Central to our method is a learned human shape model. Given an input image
and the user-specified clothing type, the parameters of the model are initialized
and optimized with a few given 2D joints and contours of the person. Then the
clothed and naked 3D shapes of the person can be obtained simultaneously.

In summary, the main contributions of our proposed method include: simul-
taneously estimating the clothed and naked 3D shapes of a person from a sin-
gle image, and learning a deformable clothed human shape model consisted of
low-dimension parameters.

2 Related Work

Pose from Monocular Images. Several researchers explore various data-
driven methods[6] to reduce the pose ambiguity, and these methods work well
only for a small amount of training data. Recently, Wei and Chai[13] combine
the user’s inputs with the prior embedded in millions of pre-recorded human
poses, which enables a naive user to pose a 3D full-body character quickly and
easily. We follow this method to initialize the pose estimation for our method.

3D Deformable Human Body Models.Human-specific models[1,2,9,8,5] are
strong prior in many methods, and can be used to estimate body shapes from
images or videos[11,7,4,8,5,3]. Among most human body models, variations in
body shape and pose are explained by parameters. Then new shapes or poses
can be generated with specific parameters.The well-know SCAPE model[2] en-
codes these two variation in uncorrelated parameters. We extend this method to
clothing-related variation for fitting the contours of clothed people.

Body Shape from Images. Guan et al.[7] present the first solution to esti-
mate pose and body shape from a single image. Kraevoy et al.[10] present a
shape-from-contour method for general 3D shapes by fitting a given template
to the contours in an iterative way. These two solutions both focus on naked or
minimally clothed people.

Chen et al.[5] infer the detailed 3D shape from a single contour using a prob-
abilistic generative model. They model the pose variation and shape variation
from 3D meshes in an unsupervised way. Meanwhile, Leonid et al.[11] predict
body shape and pose by training a mixture of experts model which directly maps
the parameters of SCAPE model to contours. In both methods, the estimated
shapes don’t fit the contours well with inaccurate poses. Bălan and Black[4] es-
timate the detailed 3D body shape of clothed people with multi-view images,
combining constraints among pose to recover the body shape under clothing.

3 Overview

We present a clothed human shape model to fit the contours of the target person,
and simultaneously estimate both clothed and naked human shapes from a single
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Fig. 1. Pipeline of our method. We first learn a deformable clothed human model from
three kinds of 3D shape database in (a). Given an input image (b), initial pose (c)
and contours (d) of the target person are estimated in semi-automatic way. We use the
deformable model to fit the contours and get a pair of 3D human shapes (e)(f)(g) of
the target person. (e) and (f) are the clothed and naked human shapes, respectively.
(g) is another view of (e) and (f).

image withmoderate amount of user inputs. The Pipeline of ourmethod is given in
Figure 1. Our method includes a learning phase and a fitting phase: in the learning
phase, we extend the SCAPE method[2] and learn a deformable clothed human
model from three types of 3D body database. The model is derived by the non-
rigid surface deformation, and consists of 3 kinds of control parameters, including
pose, body shape and clothes type. In the fitting phase, we estimate the optimal
parameters and generate a clothed shape which matches the contours well. Mean-
while, a naked shape is created with only the pose and body shape parameters.

4 Learning the Deformable Model

We extend the SCAPE[2] and learn a deformable clothed human body model
from three types of 3D shape database. Following the same phase of SCAPE, our
method learns the non-rigid pose-dependent and body-shape-dependent defor-
mation parameters. Then, we learn the clothing-related parameters for different
kinds of clothes. The learned model can be deformed in pose, body shape and
clothing type with corresponding control parameters: θ, β and γ.

Training Database. The training data for SCAPE includes a pose database
containing 70 poses of one person, and a body shape database containing 111
people in a similar pose. A canonical standing pose is chosen to be the template
mesh T , and all other meshes are brought into full correspondence with the
template mesh using a mesh registration technique[2].

Furthermore, we expand the original training data with clothed human shape
database. For each type of clothes, we select a pair of high-quality human
models {Pnaked, Pclothed} as reference from POSER. Each mesh Mnaked in the
body shape database is aligned with Pnaked and deformed to Mclothed using the
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deformation transfer algorithm[12]. Our clothed shape database contains 7 types
of clothes for each instance body shape.

Deformation Processing. Given an instance mesh M in the database, the
main idea is to deform the template mesh T to M and learn the deformation
parameters. Let vk,1, vk,2, vk,3 be the vertices of the k − th triangle face of T ,

Ek,j = vk,j − vk,1, and Ẽk,j = ṽk,j − ṽk,1, j = 2, 3 for the k − th face in M , b be
the body part associated with the k − th face, we define:

Ẽk,j = Rb ∗ Ck ∗ Sk ∗Qk ∗ Ek,j (1)

where Ck, Sk, Qk are 3∗3 liner transformation matrix for the k−th triangle, rep-
resenting clothing-related deformation, body-shape-dependent deformation and
pose-dependent deformation separately. Rb is the 3 ∗ 3 rotation matrix of the
body part b. We learn Qk, Sk and extract associated parameters {α,U, μ} for
pose-dependent deformation function Qα(θ) and body-shape-dependent defor-
mation function SU,μ(β) using the same techniques as Anguelov et al. did. We
refer the readers to[2] for further details.

Clothing-Related Deformation Learning. We learn a set of coefficients for
each type of clothes in the database. Given an instance mesh M with clothes
type γ, we extract the clothing-related deformation C by solving:

argmin
C

Nk∑
k=1

3∑
j=2

∥∥∥RkCkSkQkEk,j − Ẽk,j

∥∥∥2 (2)

where Ek,j are edges of the template mesh, and Ẽk,j are the corresponding edges
of the instance mesh M . The body-shape deformation S is already obtained
since M has a corresponding naked shape in the shape database. Meanwhile,
the absolute rotation matrix of the template and the T -pose are also known
values, which determine Q and R. Therefore, this problem can be solved by
using a straightforward least-squares optimization.

To simplify the fitting phase, we assume that the clothing deformation is only
related with body shape for specific clothes type γ. To predict the transformation
matrices Ck as a function of (β, γ), we learn a regression function Ck

η,μ(β, γ) for
each triangle. The regression coefficients are learned by solving:

η∗k = argmin
ηk

N∑
i=1

∥∥∥ηkβi + φk − Ci
k

∥∥∥ (3)

where Ci
k is the k − th clothing-related transformation matrix of the i − th

instance mesh in the clothed shape database, Ci
k is the vector form of Ci

k, βk

is a 9 ∗ length(β) vector, βi is the body shape parameters of the corresponding

mesh in the body shape database, φk is mean value of the vector Ci
k over the N

instances mesh with γ. Given a new β, Ck can be predicted as the matrix form
of ηkβ + φk.

So far, given a set of parameters (θ, β, γ), we can create a 3D clothed shape
mesh efficiently.
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5 Model Fitting

Given an input image of a subject wearing clothing, a pair of 3D human shapes
{Mclothed,Mnaked} can be estimated for the subject by model fitting. We get
the initial parameters (θ, β, γ)0 of the deformable model semi-automatically: a
3D initial pose θ0 is recovered with the state-of-the-art IK algorithm[13], β0 is
set to the mean body shape, and the clothes type is chosen by the user. We
follow the foreground segmentation of[7], and perform pose fitting and body-
shape fitting iteratively to get the optimal parameters (θ, β)∗ automatically.
Finally, we generate a pair of estimated models {Mclothed,Mnaked} for further
deformation.

5.1 Pose Fitting

Given the parameters (θ, β, γ)i, we generate a clothed 3D human shape M and
update θi while fixing other parameters. The updating strategy includes two
steps. Firstly, the optimal correspondence set {(cp, vp)|p = 1...Np} between the
image contours and the vertexes of M are determined, where cp is a 2D point on
the contours, and vp is a 3D vertex of M . We follow the HMM base matching
algorithm of[10], and use distance, normal vector and continuity as matching
cues. However, we restrict that vp should be a visible “edge vertex” which has
at least one invisible neighbour vertex. Secondly, we update the pose parameters
R(θ) to encourage a small distance between cp and vp. To avoid non-liner rotation

operations, we use the standard approximation Ri+1 ≈ (I + t̂ )Ri, where t̂ is the
skew matrix of twist t with small values.

Since we know the matrices R, C, S and Q, vertexes V of the target mesh
are linearly dependent with twist t, and we can find the optimal t∗ efficiently by
solving:

argmin
t

∑Np

p=1 ‖cp − F (vp)‖2 + wt ‖t‖2

s.t. V ∗ = argmin
V

∑∥∥∥(I + t̂ )RCSQEk,j − Ẽk,j

∥∥∥2 (4)

where F (·) projects the 3D vertexes onto a 2D image point in a weak projection

model, the term
∑Np

p=1 ‖cp − F (vp)‖2 encourages a small distances between the

corresponding points, the term ‖t‖2 penalizes large change of limb rotation, and
wt =1 in all our experiments. Then we update Ri+1 = tmRi , where tm is the
matrix form of t, and update pose-dependent matrices Q with Ri+1.

5.2 Shape Fitting

We keep (θ, γ) unchanged and update the shape parameters β. We follow the
same matching step in pose fitting processing to get a new correspondence set
and optimizing β by solving:
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Fig. 2. Our fitting method is robust for various poses. (a)(e) Input image. (b)(f)
Clothed shapes overlay. (c)(g) Estimated naked shapes. (d)(h) Naked shapes in T
pose. Note the estimated body shapes are coincident with each other.

argmin
β

∑Np

p=1 ‖cp − F (vp)‖2 + wβ ‖β‖2

s.t. V ∗ = argmin
V

∑∥∥∥RC(β, γ)S(β)QEk,j − Ẽk,j

∥∥∥2 (5)

where wβ = 0.01, C(β, γ) and S(β) are regression functions learned in previous
section. We drop out the term C(β, γ) in the first iteration to get a good initial
guess for β, thus vertexes V are linearly dependent on β and the problem can be
solved efficiently. Then we run the optimization with the Levenberg-Marquardt
algorithm. The optimization converges quickly due to a good initial guess.

We repeat the pose fitting step and shape fitting step until the residual error
is smaller than a fixed threshold. Typically the fitting phase converges in several
iterations.

6 Experimental Results

In this section the performance of our method have been evaluated in a number of
experiments. We use the proposed method to estimate clothed and naked shapes
for each input image, which come from the internet and hand-held cameras. All
the experiments are done on a 3.0 GHz Intel Core 2 Duo with 2 GB RAM. Typical
initialization step needs about 5 minutes for a user to click joint positions and
assist the segmentation. The optimization step takes about 1 minute for each
input image.

The difference between contours of heavily clothed subject and the real body
shape presents challenges for body shape estimation. Our method benefits a lot
from the clothing template and gives a pair of reasonable estimated models (as
shown in Figure 1).

Figure 2 shows that our method is robust to different poses. Given two input
images of the same person in different poses, we estimate two pairs of models
separately. The naked shapes are placed in T pose for comparison and we rescale
them to match the actual height of the subject. We find that the estimated
naked shapes are coincident with each other. The mean distance of corresponding
vertexes is 0.67 cm, and the arm span difference is 0.93 cm.
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In Figure 3, we present an application to change clothes of the estimated
subject. The pair of body shapes are estimated from the input monocular image
at first, then we simply change the clothing-related parameters while fixing the
parameters of body shape and pose. New models are created for each kind of
clothes while the original pose and body shape are kept. All the models also can
be used for animation.

Fig. 3. Changing clothes and animation. (a) Input image with clothed shape overlay.
(b) Clothed and naked shapes. (c) Redressed shapes of the subject. (d) Redressed
shapes in new poses.

Figure 4 presents the results estimated from a monocular image with our
method and straightforward SCAPE model. Note how well our estimated clothed
shape matchs the target person, and the straightforward result is much fatter
than the desired body shape for the clothing reason.

Fig. 4. Comparison with straightforward solution using SCAPE model. (a) Input im-
age. (b) Input image overlaid by the our estimated clothed shape. (c) Estimated naked
body shape. (d) Another view of clothed shape and naked shape. (e) Input image
overlaid by the SCAPE model in (f). (g) Another view of (f).

7 Conclusions and Future Work

We present a novel method to simultaneously estimate 3D clothed and naked
human shapes from a single image. The key of our method is to learn the clothing-
related deformation for variation of body shapes. A characteristic of our method
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is that the estimated clothed shape matches the subject very well, even for a
heavily dressed subject. Our experiments show that the method can estimate
both the clothed and naked human shapes of dressed subject, and is robust to
pose difference. In future work, we aim to extend our method to video, which
promises to impose a set of new challenges.

Acknowledgements. This work was partially supported by NSFC (60933006),
863 Program(2012AA 011504 & 2012AA02A606), and ITER (2012GB102008).

References
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Abstract. An important role of image color is the conveyer of emotions (through
color themes). The colorization is less useful with an undesired color theme, even
semantically correct, which has been rarely considered previously. In this paper,
we propose a complete system for the image colorization with an affective word.
We only need users to assist object segmentation along with text labels and give
an affective word. First, the text labels along with other object characters are
jointly used to filter the internet images to give each object a set of semantically
correct reference images. Second, we select a set of color themes according to
the affective word based on art theories. With these themes, a generic algorithm
is adopted to select the best reference for each object. Finally, we propose a hybrid
texture synthesis approach to colorize each object. Our experiments show that the
results of our system have both the correct semantics and the desired emotions.

Keywords: Image colorization, affective word, color theme.

1 Introduction

Color can enhance the rich expressive force of an image. A wonderful colorization not
only gives a grayscale image good visual sense, but also endows it with much richer
semantic meaning. The interaction based colorization method need users to manually
specify scribbles and their colors [1]. To reduce this manual labor, some works focus on
example based colorization which uses an existing color image for colorization [2–5].
However, these methods need a reliable reference image with both the similar contents
and the same style for transfer. Sometimes choosing such a reference image is not an
easy task. To avoid this problem, Chia et al. introduced a nice system to semantically
colorize an image recently [6]. Using a semantic label, it automatically selects the most
suitable references from the Internet. This approach provides a more friendly interface
for non-experienced users, as it does not need to manually choose a proper reference.

The image color is the main conveyer of emotions through the color themes (tem-
plates of colors), which is convinced by various psychological studies [7–9]. Images
with the same contents and the different color themes may have totally different emo-
tions. So a proper colorization can also give the images much richer emotions. And the
colorization with an undesired color theme is less useful, even if it is semantically cor-
rect. However, all the above methods do not consider the emotional aspect of coloriza-
tion. Although semantically correct results may be produced by utilizing the internet

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 51–58, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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images [6], these results could not be affective enough, especially when the user wants a
precise control on the target emotion. Semantic and richly affective colorization results
can much better express the artistic conception and greatly improve the visual quality.

In this paper, we propose a novel framework to affectively colorize a grayscale image
with consideration of the semantics at the same time. As far as we know, it is the first
colorization system which considers both the semantics and the affective aspect. The
input is a grayscale image and an affective word. Based on the art theories, we adopt
the image-scale space to build the relation between affective words and color themes.
For each object in the input image, a set of the internet images is downloaded and
filtered. We propose a selection method based on the generic algorithm to efficiently
select the semantically suitable reference images which also meets the desired emotion.
We also offer a patch match based approach for the object level colorization.

2 Related Work

We have reviewed the work related to our colorization framework, which includes the
colorization and the color composition in art theories.

2.1 Colorization

Colorization methods can be divided into interaction based methods and example based
methods. Interaction based methods need users to give some colored scribbles on the
grayscale image, and colors are automatically propagated to the remain pixels based
on local similarities to complete the colorization process [1]. Since the users need con-
siderable interactions, it is hard for non-professionals to select proper colors and draw
approximate scribbles. Example based colorization methods usually do not require user
interactions. Using some color images, these methods automatically colorize a given
grayscale image [10, 2]. Recent methods borrow the ideas from machine learning to
predict the correspondences between the reference color image and the input grayscale
image [5, 4]. All these methods require users to find reference images with similar con-
tents and appropriate appearance, which is usually a difficult task.

With the rapid development of the Internet, data driven processing is attracting more
attentions than before. To find the suitable reference images, Chia et al. [6] proposed
to filter the internet images, which shared the similar framework as Sketch2Photo [11].
This method is a nice supplementary for the example based colorization, and can also
be used as a preprocessing step of these methods. However, it ignores the emotional
appearance aspect when filtering, which is the main consideration in this paper.

2.2 Color Composition in the Art Theories

Color composition is the color distribution of an image and the key element for the
artistic feeling [7]. Artists often use a set of colors called a color theme to represent
the color composition. The most commonly used color themes are 3-color themes and
5-color themes, which are templates of three and five colors respectively. The rational
study of color themes is a hot field in computer vision and graphics recently. Daniel
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Cohen-Or et al. applied the existing aesthetical color harmony models to harmonize
images [12]. P. O’Donovan et al. studied the color compatibility of 5-color themes from
large datasets [13]. However, the emotional aspect of color themes is often ignored.

Kobayashi systematicly studied the relationship between color themes and emotions
based on the psychophysical investigations [8, 9], which has already been successfully
used in graphic design. In [8], it maps 1,170 3-color themes to 180 affective words,
such as romantic, elegant, etc. Furthermore, the relation between 490 5-color themes
and 180 affective words is built in [9]. An affective space called image-scale is used
in [8, 9] to quantitatively describe the emotions. The space has two dimensions includ-
ing warm-cool and hard-soft. Fig.1 illustrates a few examples of color themes and the
corresponding affective words in this space.

Fig. 1. Examples of color themes and the corresponding affective words in the image-scale space

3 Overview

The overall pipeline of our system is illustrated in Fig.2. The input is a grayscale image
and an affective word which is used to express the emotion, such as romantic, intense,
serious, etc. (a). The grayscale image is first semi-automatically segmented into objects
by a graphcut based segmentation technique [14]. The user labels each object with a
text label by which we download and filter a set of images from the Internet, and each
object is given a set of candidate references (b). According to the affective word, a set
of color themes are selected from a database built using on-line communities by means
of the image-scale space (c). To select the best reference for each object, we design a
hybrid energy function to balance various requirements mainly including the similarity
between the references and the input objects as well as the conformity of the references
with the candidate color themes. And a generic algorithm is adopted to optimize the
energy (d). Finally, we use a patch match based approach (a hybrid texture synthesize)
for object-level colorization to get the final result (e).
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Fig. 2. Pipeline

4 Reference Image Selection

4.1 Object Filtering

To start our framework, we rely on a semi-automatic approach to segment the input
grayscale image into multiple objects. The user roughly gives strokes to specify the
objects, and a graphcut based segmentation [14, 15] is used to finally segment the image.
To fully utilize the internet images, each object is manually labeled by a semantic text.

We first download a large set of pictures (about 500-1000) from the Internet such
as Google Image Search and Flickr for each label. The salient region is automatically
extracted from each downloaded image by applying the method called global contrast
based salient region detection [16]. Then as same as the contour consistency filtering
in [11], we select the images whose salient regions are similar to the outer contour of
the grayscale image object with shape context descriptors [17]. In addition, we allow
for the shape deformation. The shape context matching cost and the affine registration
are summed up to get the overall score. This score is used to rank the extracted salient
regions, and the top 50− 100 objects are retained for further reference image selection
(Section 4.3).

4.2 Color Theme Selection

Color Theme Database Construction. We construct a color theme database with
400,000 color themes. Each color theme ti is labeled with an affective vector ai =
(wci, hsi) in the image-scale space, where wci and hsi are the values of the warm-cool
axis and the hard-soft axis respectively. For details on the affective word-color theme
relationship modeling, readers can refer to our recent work [18].
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For each input affective word, it is first automatically labeled with an affective vector.
If the word is in the set of the 180 words [8], it has the affective vector. If not, we calcu-
late the semantic similarities between it and the 180 words by the HowNet knowledge
system [19], which is a bilingual general knowledge database describing the relations
between concepts and attributes. The affective vector of the word is the weighted av-
erage value of M (M = 5) most similar words. NT (NT = 100 in our experiments)
candidate color themes nearest to the affective vector are selected.

4.3 Generic Algorithm Based Reference Image Selection

Even with the above rough filtering, choosing the appropriate reference images is still
a difficult problem. Generic algorithm is adopted to select the most approximate ref-
erence image for each object. Here we call a set of all these object-reference corre-
spondences a solution. Formally, the problem can be formalized as follows: There is
a set of objects O = {o1, o2, ...on}, and each object oi has a set of candidate ref-
erence images Ri = {ri,1, ri,2, ..., ri,ti}. In order to achieve an optimized solution
f : oi → Ri, i = 1, 2, ...n, we design a comprehensive energy G measuring the suit-
ability of the solution, and the goal is to calculate argminfG(f).

The energy function considers the consistency with both the original input grayscale
image and the given emotion. To formalize the energy, we rewrite it as

G(s) = Gs(s) +Ga(s) (1)

where Gs(s) =
∑

iEs(oi, ri), s = {r1, r2, ..., rn} is a solution. Es is an energy mea-
suring the suitability of a single object-reference pair, and Ga(s) measures the affective
suitability of a solution.

Es = θ1Ess + θ2Esh + θ3Esc (2)

where Ess is the shape context matching cost which is calculated in the object filter-
ing (Section 4.1). Esh is the histogram matching cost which is defined as the distance
between the two histograms. Esc measures the consistency between the color theme ex-
tracted from the reference image and the candidate color themes (refer to Equation 3).
θ1, θ2 and θ3 are used to balance the above factors. In our experiments, θ2, θ3 are usually
set to 1. If the object is semantic sensitive (eg. orange, horse, etc.), θ1 can be set to 1.
On the other hand, for the objects such as sofa/furniture which are semantic insensitive,
θ1 can be set smaller, e.g. [0.1, 0.2].

Ga(s) is the affective suitability measurement which is the consistency between the
color theme of the solution and the candidates, and is defined as

Ga(s) = D
M
min
i=1

D(themeo, themei) (3)

where D is a constant to normalize Ga to [0, 1]. themei = {ci1, ci2, ..., cim} is one of
the M candidate themes where cijs are colors in the HSV color space and themeo is
the theme extracted from the colorized image using K-means. D(·, ·) is the distance
between two themes, which is defined as
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D(theme1, theme2) = min
p∈P

m∑
i=1

d(c1p(i), c
2
i ) (4)

where P is the set of permutations of 1, 2, ...m and d(·, ·) is the Euclidean distance.

5 Object Colorization

We use a patch match based colorization method. In order to better understand our
method, we first introduce some basic concepts. The example based colorization is
essentially a correspondence finding problem. That is, given a grayscale image A and
its reference color image B, our task is to find a function U : A → B, and then each
pixel in A can take the corresponding color in B. For convenience, here we use the term
“image” to refer to previous “object”. Though an “object” has an irregular shape rather
than a rectangle, the coloring step shares nearly the same operation flow.

Our colorization can be considered as a process of grayscale guided texture synthesis,
and can also be thought of as a hybrid of image correspondence finding and classical
texture synthesis. To measure the quality of a colorization, we conceptually minimize
the following energy function:

E =
∑
i∈A

(e1(i, U(i)) + e2(i, U(i))) (5)

where i is the pixel iterating over image A. e1 measures the consistency of two local
patches with centers i and U(i) respectively, noting that B needs to be grayed for the
gray comparison. This term is mainly used in the image correspondence finding algo-
rithms. While the first term considers the grayscale correspondence, the second term e2
measures the quality of the synthesized colors which is also the main energy term in
texture synthesis.

As in [20], we simply use a randomized initialization. For each point i in image A,
we randomly select a point ui in image B, that is U(i) = ui.

The optimization of E is essentially a labeling problem, which is NP-hard. Here we
use an iterative process similar to PatchMatch [20], which is also commonly used in
the texture synthesis algorithms. In each iteration, we consider to update each point i
in image A in the scan-line order. We consider the correspondence set S from point i,
point i’s neighbors and points chosen randomly and select the one with the minimal
error:

U(i) = min
u∈S

e1(i, u) + αe2(i, u) (6)

Note that we increase the energy term e2 gradually, as it is not reliable in the first few
iterations. In our experiments, we use 6 iterations and let α be 0, 0, 0, 0.15, 0.2, 0.2
respectively.

6 Experiments

We have implemented our system on a machine with two quad-core 2.26GHZ CPUs.
We apply 10 iterations in the generic algorithm based reference selection, and the al-
gorithm terminates within 1 minute. The colorization step takes less than half a minute
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Fig. 3. Colorization results

for a 1024 × 768 image. We also manually setup a small knowledge base indicating
some objects which do not have common shapes, such as the floor, the sky, etc. They
are usually used as backgrounds. We do not extract the salient regions from them and
use the full images as references.

We have validated the system with various input examples. Fig. 3 shows the main
results. The first column shows the input grayscale images as well as the segmentations
and the corresponding labels. We achieve two different colorization results through op-
tionally giving two affective words. The second column gives the words and the corre-
sponding color themes. The third column demonstrates the colorization results and the
last column shows the selected references. The colorization results well conform to the
given affective words. And they are generally semantic as the selected objects usually
belong to the same class.

7 Conclusions

We have proposed a novel system of the image colorization with an affective word.
Using a generic algorithm, it unifies both the affective requirement and the semantics.
It gives users a convenient and flexible interface to perfectly colorize a grayscale image.
Experiments also convinced the effectiveness of our system.
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Semantic Image Clustering

Using Object Relation Network

Na Chen and Viktor K. Prasanna
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Abstract. This paper presents a novel method to organize a collection
of images into a hierarchy of clusters based on image semantics. Given
a group of raw images with no metadata as input, our method describes
the semantics of each image with a bag-of-semantics model (i.e., a set of
meaningful descriptors), which is derived from the image’s Object Rela-
tion Network [5] - an expressive graph model representing rich semantics
for image objects and their relations. We adopt the class hierarchies in a
guide ontology as different levels of lenses to view the bag-of-semantics
models. Image clusters are automatically extracted by grouping images
with the same bag-of-semantics viewed through a certain lens. With a se-
ries of coarse-to-fine lenses, images are clustered in a top-down hierarchi-
cal manner. In addition, given that users can have different perspectives
regarding how images should be clustered, our method allows each user
to control the clustering process while browsing, and thus dynamically
adjusts the clustering result according to the user’s preferences.

1 Introduction

Image clustering is an important tool in processing large collections of images.
The goal of image clustering is to organize a large set of images into clusters,
such that images within the same cluster have similar meaning. Image clustering
provides high-level summarization of large image collections, and thus has many
useful applications. For example, clustered web image search results and image
repositories are more convenient for users to browse. In addition, the efficiency of
image search in large image database can be significantly improved by retrieving
clustered image groups rather than individual images.

Many research efforts tackle the complicated problem of image clustering by
solving three subproblems. Given a collection of images, first, a set of features are
extracted from each image as its description. The features can be low-level visual
features (e.g., [17,7,13]), web context features (e.g., [3,11,18]), or region-based
features such as the well-known bag-of-words model [15,2,12]. Second, a cluster-
ing algorithm (e.g., k-means, NCut, kNN) is applied based on certain distance
measurements defined in the feature space, to split the image collection into
multiple clusters. Finally, each cluster is labeled with either a text description
or a representative image.

Although the previous research succeeds in many applications, we notice two
major limitations. First, current visual feature based clustering methods usually

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 59–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



60 N. Chen and V.K. Prasanna

use local features that do not have semantic meanings. Thus, given two images,
there is no significant correspondence between their semantic distance and their
visual feature distance. These methods risk grouping images with different se-
mantics into the same cluster, which is unsatisfactory from the perspective of
human users. Although supervised machine learning approaches can be intro-
duced to reduce the gap between local visual features and image semantics, they
may fail when dealing with specific semantics. E.g., they can hardly tell the
semantic difference between the ball-playing scenes in Figure 1 left column.

The second limitation of the current image clustering methods is that they
usually act as a black box to users, who has no control of the clustering perfor-
mance. However, we observe that different users can have very different purposes
of clustering. E.g., a user focused on ball types wants to group the top two im-
ages in Figure 1 together since both of them contain a soccer ball, while a user
targets at person types wants to group the bottom two images together as they
are both about athletes. Thus, users should have control of the image clustering
process.

We present a novel image clustering method to address the above two issues.
Our approach is based on Object Relation Network (ORN) [5], a graph model
representing informative and consistent semantics for objects and their rela-
tions in an image (e.g., Figure 1 middle column). Given an ORN automatically
generated for each image, we propose an image feature model named bag-of-
semantics, which contains a set of semantic descriptors for the image based on
its ORN (e.g., Figure 1 right column). Since the ORN is derived from a guide
ontology, the class hierarchies in the guide ontology can serve as different levels
of lenses to view the bag-of-semantics model. In particular, a lens consists of a
set of ontology classes that can be distinguished under it. For example, viewed
from a coarse lens involving only Person and Ball nodes, the bag-of-semantics
models for all three images in Figure 1 become the same set {Person,Ball}. In
contrast, viewed through a finer lens involving Basketball and Soccer ball, the
semantic difference in ball types between the bottom image and the other two
images can be easily identified. Therefore, we cluster images by grouping images
with the same bag-of-semantics viewed through a certain lens. We achieve hi-
erarchical image clustering by going top-down through the class hierarchies in
the guide ontology (and thus a series of coarse-to-fine lenses). In addition, user
preferences in clustering can be captured by choosing different lenses at certain
levels (e.g., splitting Person into subclasses and splitting Ball into subclasses
lead to different clustering results for images in Figure 1). Finally, each image
cluster is labeled with its bag-of-semantics under the corresponding lens.

Given that our method is built on some prior work, we state our original
contributions as follows:

1. We propose a bag-of-semantics model to describe images for the image clus-
tering problem. The model explicitly reveals the semantics of an image. Thus,
our clustering algorithm is guaranteed to group semantically-similar images
into the same cluster.
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Fig. 1. Images and their bag-of-semantics descriptions automatically generated from
our system. ORNs are shown in the middle as intermediate results.

2. We present a top-down hierarchical image clustering algorithm by viewing
the bag-of-semantics model through levels of lenses with different semantic
granularities, based on the class hierarchies in the guide ontology.

3. We are the first to enable user control in the image clustering problem. We
provide a mechanism for users to browse through the image collection and
make intuitive adjustment to the clustering results.

2 Related Work

Pioneer image clustering research [17,7,13] extracts low level visual features from
input images, and applies different clustering algorithms based on these visual
features. These algorithms include distance based clustering [17], Ncut [7], lo-
cality preserving clustering [19], and agglomerative clustering [13]. In particular,
trees are suggested to be a natural organization of clusters [7]. But in these pio-
neer efforts, there is no correspondence between the cluster tree and the structure
of image semantics.

For web images, textual context is believed to be a useful addition to the
visual features. Co-clustering approaches are introduced to integrate visual fea-
tures and multiple context features such as surrounding text [3,11], links [3,18],
and attributes of various data objects [18]. In addition, Jing et al. [14] identify
semantic clusters related to a given query, and assign the result images to the
clusters. These methods work well for specific web applications, but lose gen-
erality and accuracy when dealing with images with limited or irrelevant web
context.
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In computer vision, image categorization targets at labeling images with one
of a number of predefined categories [6]. Instead of directly using low level visual
features (e.g., colors and textures), intermediate representations are frequently
introduced to capture image semantics. For example, the well-known bag-of-
words model [15,2,12] describes an image as a bag of visual codewords and
provides various measurements of image similarity. Another popular intermedi-
ate representation consists of image regions created from segmentation. With
this representation, the image categorization problem can be formulated as a
multiple-instance learning (MIL) problem by viewing an image as a bag of in-
stances [6,1,16].

Although these image categorization methods share some similarities with our
approach, we are the first to exploit the relations between objects in images. By
exploring the relations between image objects, our bag-of-semantics model can
express concrete semantics such as ”basketball player” and ”soccer player”. In
addition, we are the first to enable user control in the clustering process.

3 Bag-of-Semantics Model

We model an image as a collection of semantic descriptors for both static image
objects and the binary relations between them. In particular, we adopt Object
Relation Network (ORN) [5] to capture image semantics. ORN is a graphical
model that links objects in an image through meaningful relations (Figure 1
middle column). Guided and constrained by a guide ontology, ORN represents
the most probable meaning of the objects and their relations, by assigning each
graph node to the most probable class in the guide ontology. Therefore, an
image can be described by the ontology class assignments in the ORN, e.g.,
Figure 1 right column. This image description model captures the semantics of
both objects and their relations, and thus we call it bag-of-semantics.

This hierarchical structure of the semantic descriptors is very useful in our
image clustering method, because it can describe an image with semantics from
very general level to very specific level. Clustering is achieved by grouping images
with the same semantics under certain semantic granularity. In the next section,
we formally define lenses to control the semantic granularity and present our
hierarchical image clustering algorithm based on the bag-of-semantics model.

4 Image Clustering

4.1 Lenses

Lenses characterize the semantic granularity for the bag-of-semantics model. We
define a lens as a set of ontology classes L ⊆ G, where G is the node set of the
guide ontology. Viewed through a lens L, a semantic descriptor s is regarded as
its closest ancestor in L, denoted as sL.

Intuitively, L determines the ontology classes that can be distinguished by
the lens. The coarsest lens contains only three general classes, i.e., Object, O-
O Relation, and Object Collection. With this lens, every semantic descriptor is
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mapped to one of the general classes. Little difference can be found between
the descriptors. On the contrary, under a fine lens containing many specific se-
mantic concepts such as Basketball and Soccer Ball, the corresponding semantic
descriptors (e.g., the balls in Figure 1) are expressed with specific concepts and
distinguished accordingly.

4.2 Image Clustering with Lenses

Viewed through a lens L, the bag-of-semantics S(I) of an image I are expressed
as set SL(I) = {sL|s ∈ S(I)}. Two images with the same bag-of-semantics
expression SL(I) = SL(J) are indistinguishable under the lens L. We thus group
images with the same bag-of-semantics expression under a certain lens into the
same cluster.

At first glance, this clustering algorithm may produce as many as 2|L| clusters
since SL(I) ⊆ L and there are 2|L| possible subsets of L. However, since ORNs
are created following the semantic constraints in the guide ontology, many of L’s
subsets do not have feasible ORNs, and thus the image clusters corresponding
to these subsets are empty.

4.3 Hierarchical Clustering

We propose a top-down hierarchical image clustering algorithm by going through
a series of coarse-to-fine lenses. We start with the coarsest lens containing only
the general classes and cluster images accordingly. With more specific semantic
concepts added to the lens, we divide each cluster into sub clusters according
to the refined lens. In particular, we take advantage of the class hierarchies of
the guide ontology G. In each lens refinement step, we adopt a split operator to
a class node f in L that has not been split. The split operator adds f ’s child
class nodes in G to L, and divides the image clusters according to the refined
lens. The hierarchical image clustering algorithm stops when there are sufficient
number of clusters.

The pseudo code of the automatic hierarchical image clustering algorithm is
shown in Algorithm 1.

4.4 User Control in Image Clustering

Since the bag-of-semantics model carries rich semantics of images, user prefer-
ences can be captured by choosing different coarse-to-fine paths for the lens. We
design a user control mechanism that allows each user to modify the sequence
of class nodes to be split. Figure 2 shows an example of a clustering process
controlled by a user who is interested in various relations.

In our implementation, the image clustering system first applies the automatic
clustering algorithm (Algorithm 1) to generate an initial cluster hierarchy for the
user to browse through. In each lens refinement step, the user has the option
to participate and choose a class node he thinks to be the most important. Our
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Algorithm 1: Hierarchical Image Clustering

Input: Image collection I with bags-of-semantics S(I) = {S(I)|I ∈ I}, guide
ontology G

Output: Image clusters C = {Ci}
Initialization: L,F ← {visible general classes}
C ← clusters of I generated using L
while F �= ∅ and |C| < δ do

find f ∈ F with the smallest depth in G

find f ’s visible child node set Childv(f) in G

F ← F
⋃

Childv(f) \ {f}
if Childv(f) �= ∅ then

L ← L
⋃

Childv(f)
foreach Ci ∈ C do

divide Ci into sub clusters using L
replace Ci in C with its sub clusters

Cluster hierarchy Class added 
to the lens

Class split

Object
O-O relation

O-O relation
P-B relation

InteractHold
Throw

Kick
Head

Non-interact
P-B relation

{ object } Ø

{ object, hold }
{ object, 

non-interact }{ object, kick }

Fig. 2. Different choices of lens result in different cluster hierarchies. Lenses are cho-
sen to cluster images according to relation types and person types in (A) and (B)
respectively.

system splits the specified node, finds clusters based on the refined lens, then
applies Algorithm 1 to update the subsequent cluster hierarchy that is used for
further browsing. Finally, each image cluster is labeled with its bag-of-semantics
under the corresponding lens.

5 Experimental Results

The dataset used in our experiment contains over 28,000 images from
VOC2011 [9] and ImageNet [8]. We randomly choose 2,000 images for the train-
ing process of ORN generation. Our guide ontology contains class hierarchies
and constraints for 6 generic object classes (Person, Bicycle, Motorbike, Horse,
Chair, Ball) and their relation classes. We adopt the detectors in [10] to perform
object detection.
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{ cyclist, ride, 
bicycle }

{ basketball 
player, throw,
basketball }

{ motorcyclist, 
ride, motorbike }

{ person, 
ride, horse }

{ soccer player, 
head,

soccer ball }

Fig. 3. Several “good” clustering results obtained by using very fine lenses, i.e.splitting
subclasses of Person class and all the relation classes. Each row includes example images
and the label of a cluster.

Figure 3 illustrates several “good” results produced by our automatic clus-
tering algorithm, obtained by splitting subclasses of Person class and all the
relation classes. These result clusters demonstrate that our clustering algorithm
has successfully classified semantically-similar images into the same cluster, even
though the visual features of some images are quite different from each other.

More results and discussions are available in [4].

6 Conclusion

We presented a hierarchical image clustering method that groups semantically
similar images into the same cluster. We proposed a bag-of-semantics model to
describe the semantic features of images. Viewed through a series of coarse-to-fine
lenses, images with the same bag-of-semantics under a certain lens are clustered
in a top-down hierarchical manner. Our method allows each user to control the
clustering process while browsing, and dynamically adjusts the clustering result
according to his purpose.
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Abstract. In this paper, we propose a novel solid representation called gradi-
ent solids to compactly represent solid textures, including a tricubic interpolation
scheme of colors and gradients for smooth variation and a region-based approach
for representing sharp boundaries. We further propose a novel approach to di-
rectly synthesize gradient solid textures from exemplars. Compared with existing
methods, our approach avoids the expensive step of synthesizing the complete
solid textures at voxel level and produces optimized solid textures using our rep-
resentation. This avoids significant amount of unnecessary computation and stor-
age with comparable quality to the state of the art.

1 Introduction

Solid textures represent color (or other attributes) over 3D space and are naturally suit-
able for modeling solid objects. Due to the extra dimension, solid textures represented
as attributes sampled at regular 3D grids are extremely expensive to synthesize and
store. To provide sufficient resolution in practice, a typical solution is to synthesize only
a small cube (e.g. 1283), and tile the cube to cover the 3D space. However, tiling may
cause undesirable visual repetition and is possible only when the solid textures have
no interaction with the underlying objects, and thus cannot respect any model features
or user design intentions. To address this, previous approaches [1,2] synthesize solid
textures on demand; however, handling high-resolution solid textures is still expensive.

Wang et al. [3] extend image vectorization to solid textures, which requires voxel-
level solid textures as input and inherits similar advantages as image vectorization, such
as being compact and resolution independent. It remains costly as raster solid textures
need to be synthesized first. In this paper, we instead propose a novel approach to di-
rectly synthesize vectorized solid textures from exemplars. Inspired by gradient meshes
in image vectorization [4], we propose a novel gradient solid representation that uses a
tricubic interpolation scheme for smooth color variations within a region, and a region-
based approach to represent sharp boundaries with separated colors. We treat solid tex-
ture synthesis as optimizing control points of gradient solids to produce synthesized
solids with similar sectional images as given exemplars. Compared with traditional
solid texture synthesis, we have far less control points than voxels, leading to a much
more efficient algorithm. To the best of our knowledge, this is the first algorithm that
synthesizes vector solid textures directly from exemplars.
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Fig. 1. High-resolution gradient solid texture synthesis. From left to right: the input exemplar, the
synthesized gradient solid texture, a closeup and internal slices.

2 Related Work

Our work is closely related to example based texture synthesis and vector images/textures.
Early work on solid texture synthesis focuses on procedural approaches [5,6]. Since

rules are used to generate solid textures, very little storage is needed. However, only
restricted classes of textures can be effectively synthesized and it is inconvenient to
tune the parameters. Exemplar-based approaches do not suffer from these problems, and
thus received more attention. 2D non-parametric texture synthesis algorithms have been
extended to solid texture synthesis [7,8,9]. These algorithms are generally expensive
due to the extra dimension. To synthesize high resolution solid textures, Dong et al. [1]
propose an efficient synthesis-on-demand algorithm based on deterministic synthesis
of certain windows from the whole space [10] necessary for rendering, based on the
fact that only 2D slices are needed at a time for normal displays. This work is extended
in [2] that introduces user-provided tensor fields as guidance for solid texture synthesis.

Jagnow et al. [11] propose an algorithm based on stereological analysis which pro-
vides more precise modeling of solid textures. However, their approach only works for
restricted types of solid textures with well separable pieces. Lapped textures have been
extended to synthesize 3D volumetric textures [12]. 3D volumetric exemplars instead
of 2D image exemplars are needed as input.

Different from raster images, vector graphics use geometric primitives along with
attributes such as colors and their gradients to represent the images. Recent work pro-
poses automatic or semi-automatic approaches to high-quality image vectorization us-
ing quadrilateral gradient meshes [4,13] or curvilinear triangle meshes for better feature
alignment [14]. Diffusion curves [15] model vector images as a collection of color diffu-
sion around curves. Some works consider combining raster images with extra geometric
primitives [16,17,18] to obtain benefits such as improved editing and resizing.

Vector graphics have recently been generalized to solid textures [3,19]. Wang et
al. [3] propose an automatic approach to vectorize the given solid textures using a Ra-
dial Basis Function(RBF)-based representation. This approach relies on raster solids as
input, thus an expensive raster solid texture synthesis algorithm is needed if only 2D
exemplars are given. Diffusion surfaces [19] generalized from diffusion curves [15] are
also used to represent vector solids; their focus however is user design of solids rather
than automatic generation.
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Fig. 2. Algorithm pipeline of gradient solid texture synthesis

We propose a novel algorithm that synthesizes gradient solids directly from 2D ex-
emplars, leading to an efficient algorithm in both computation and storage that produces
high quality solid textures by bypassing intermediate bitmap solid synthesis and subse-
quent bitmap-to-vector conversion.

3 Gradient Solid Representation

We give details of the gradient solid representation, allowing efficient representation of
smooth regions and regions with boundaries.

We first consider representing regions with smoothly varying colors. We use an
n×n×n grid of control points with axes u, v, w to represent the solid textures. At each
control point (i, j, k), we store a feature vector f including r, g, b color components and
additional feature channels such as the signed distance [20]. In addition, the gradients of
f , i.e. df

du ,
df
dv ,

df
dw are also stored allowing flexible control of variations in 3D space. 3D

tricubic interpolation with gradients [21,22] is used to obtain the feature vector f̃ for any
voxel inside the grid. Similar tricubic interpolation has been used in isosurface extrac-
tion from volumetric data for visualization [23]. Assume that p = 1, 2, . . . , 8 represents
the 8 control points in the cube that covers the voxel and assume second or higher order
derivatives of f to be zero, f̃ at parameter (u, v, w) (0 ≤ u, v, w ≤ 1) can be evaluated
as f̃(u, v, w) =

∑3
i,j,k=0 aijku

ivjwk. All the 64 coefficient vectors aijk are weighted

sums of 32-dimensional vectors V = (· · · f (p), df (p)

du , df (p)

dv , df (p)

dw · · · ). Using the integer
weights given in [22], C1 continuity over the whole volume is guaranteed.

The geometric positions of control points in our representation are fixed, however,
these points still carry other attributes such as color and gradients which control the ap-
pearance of the solids. Assuming the displacement between adjacent control points is
d, the geometric position of the control point (i, j, k) is (id, jd, kd). The displacement
determines the number of voxels located within each cube of the control grid. In all of
our experiments we use d = 4 which means that the number of control points is roughly
1
64 = 1.56% of voxels. This simple representation has several significant advantages.
For any fixed point with known parameter (u, v, w), since uivjwk can be pre-computed,
the expensive evaluation can be reduced to a weighted sum of elements in V .

Representing Region Boundaries. If the texture contains sharp boundaries that need
to be preserved, a feature mask image is often used in texture synthesis as an additional
component (other than color) to better preserve structures. Similar to previous work
both in 2D and 3D textures [20,3], we assume regions can be separated using a binary
mask. To represent the boundary in the solid textures, we also use a signed distance
field stored at the same regular n × n × n grid. We store both the signed distance d̄
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and its gradients dd̄
du , dd̄

dv and dd̄
dw and use the same tricubic interpolation to calculate the

interpolated signed distance d̃ at each voxel. The sign of d̃ indicates which side of the
regions in the binary mask this voxel belongs to. For each control point that is adjacent
to at least one cube with both positive and negative distances, two feature vectors fP

(positive distance) and fN (negative distance) and their gradients are stored.

4 Gradient Solid Texture Synthesis

Our algorithm synthesizes gradient solid textures directly from 2D exemplars, which
may include optional binary masks (if sharp boundaries exist between regions). In ad-
dition, a smooth tensor field may be given to specify the local coordinate systems the
exemplar images align with [2]. We use an optimization based approach to synthesize
gradient solid textures, with local patches aligned to the field if given. The algorithm
pipeline is summarized in Fig. 2, which involves several key steps: initialization, itera-
tive optimization and final gradient solid refinement. We simply start from a randomized
initialization. For each control point, we randomly select a pixel from the exemplar im-
age, and assign the feature vector at the pixel to the control point. All the gradients are
initialized to zero. During the optimization process, a coarse-to-fine strategy is used.

4.1 Optimization-Based Synthesis

Optimization is the key step in our gradient solid texture synthesis pipeline. It involves
iterations of two alternating steps, namely choosing optimal patches from exemplars
that best match the current representation and updating the representation to better ap-
proximate the exemplar patches. Unlike traditional texture optimization, we optimize
the feature vectors in the control points of the gradient solids. New challenges exist due
to the different nature of the representation.

Finding Matched Patches From Exemplars. We first identify those local patches from
the exemplars that best match the current gradient solid. These patches will then be used
to improve the representation. Since gradient solids have much sparser control points
than voxels, we randomly choose a small number NC of check points within each cube
of the grid (NC = 3 is used in the paper). At each check point, we sample three orthog-
onal planes each with N × N samples (denoted as sx, sy and sz respectively) which
are evaluated based on our representation (as illustrated in Fig. 3). A fast approximate
evaluation based on first-order Taylor expansion at the closest control point is used in
the intermediate synthesis to significantly improve the performance without visually
degrading the quality.

We then find three local patches from exemplars that best match these sampled patches.
If all the three slices are equally important, we use three independent searches as [8].
Many practical solid textures are anisotropic and it is not possible to keep all three slices
well matched with a single exemplar image. In such cases, it is known that matching two
slices instead of three may lead to better results [8]. We propose a new approach that
takes crossbar consistency into account, which works best when two slices are matched.
Crossbars are those voxels shared by two or three slices (see Fig. 3) and inconsistent
crossbars may result from independent best searches. For computational efficiency, we
first search for the patchEx from exemplars that best matches sx, as usual. We then search
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Fig. 3. Illustration of crossbars
Fig. 4. Results without (left) and with
(right) crossbar matching

for the patchEy that best matches sy from a set ofN1 candidates with the most consistent
crossbar voxels as Ex. If three slices are matched, we similarly search for the best match
Ez of sz from a set of N2 candidates with the most consistent crossbars as Ex and Ey .
N1 = 20 and N2 = 50 are used for all the experiments. This leads to improved synthe-
sis results with better structure preservation (see Fig. 4). To speed up the computation,
a PCA projection of the matching vectors is used, which effectively reduces dimensions
from hundreds to 10-20 while keeping most of the energy.

Representation Update. Each matched patch at every check point gives N ×N sam-
ples, which will be used to update the gradient solid representation. To efficiently col-
lect samples, we conceptually build a bucket for each voxel in the grid that holds all
the samples located in the voxel. After considering check points in all the cubes, each
bucket may end up with none or a few samples. For buckets with more than one sample,
in order to determine the feature vector, simply averaging all the samples in the bucket
tends to produce blurred voxels. To avoid this, we propose a novel approach to first
identify the color clusters from the given exemplar and only averages samples that be-
long to dominant clusters. Our representation itself is compact and during the synthesis
process, only a small active front of buckets needs to be preserved, thus allows high
resolution solids to be synthesized in full.

After obtaining the average feature vector for any bucket with at least one sample,
we assign each non-empty bucket to the closest control point. The feature vector as
well as gradients of the control point are updated by minimizing the fitting error in the
least-squares sense. For a particular control point, assuming s buckets are related with
relative coordinates dut, dvt, dwt and feature vector ft (1 ≤ t ≤ s), we find fc, fc

du , fc
dv ,

fc
dw that minimize

EC =

s∑
t=1

∣∣∣∣∣∣∣∣fc + fc
du

dut +
fc
dv

dvt +
fc
dw

dwt − ft

∣∣∣∣∣∣∣∣2 . (1)

This can be considered as a local first-order Taylor expansion of our representation
which can be efficiently solved by small linear systems. This approximation is sufficient
for intermediate computation and we use the accurate evaluation only in the final stage.

4.2 Gradient Solid Representation Refinement

As the final step, we further optimize the gradient solid representation to better repre-
sent the synthesized gradient solids.



72 G.-X. Zhang, Y.-K. Lai, and S.-M. Hu

Region Separation. For solids with sharp region boundaries that need to be preserved,
we differentiate regions with positive and negative signed distances for the computa-
tion of control point parameters during representation update. For each control point,
we compute positive parameters (fP and gradients) using samples with positive signed
distance. Similarly, samples with negative signed distance contribute to negative param-
eters (fN and gradients).

Control Point Optimization. To further improve the quality, instead of fitting with first
order approximation, we minimize the fitting error between all the sample values and
those evaluated using the gradient solid representation. For a sample point with sampled
feature vector f̂i located in the cube ci with corner control points collected as Vi and
parameter (ui, vi, wi), the evaluated feature vectors f̃ are linear functions of Vi, denoted
as f(Vi;ui, vi, wi). We minimize the following quadratic energy

ĒC =

#samp∑
i=1

‖f̃i − f̂i‖2 =
#samp∑
i=1

‖f(Vi;ui, vi, wi)− f̂i‖2, (2)

where #samp is the number of sample points. Minimization of ĒC leads to a sparse
linear system. As we have a good estimation from the previous approximation, the linear
system can be effectively solved by a few iterations.

Fig. 5. Synthesized high-resolution solids following given directional fields with our algorithm:
‘vase’, ‘horse’, ‘tree’ and ‘dinopet’ with synthesized solids, close-ups and internal slices

5 Results and Discussions

We carried out our experiments on a computer with 2×Quad-Core 2.26GHz CPU and
NVIDIA GTS 450 GPU.

Our algorithm directly synthesizes more compact and resolution-independent gradi-
ent solid textures from 2D exemplars. Solids with comparable quality to the state of
the art can be synthesized, as shown in Figs. 1 and 5. As for other CPU-based algo-
rithms that focus on synthesizing full solids of a 1283 cube, the typical reported times
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have been tens of minutes, e.g. [8] uses 10-90 minutes (without tensor fields) and [24]
(a CPU-based implementation similar to [1] with direction fields considered) reported
about 30 minutes with a single core. For easier comparison, we consider gradient solids
with equivalent raster resolution. Our current CPU-based implementation, after about
10 seconds preprocessing of the input exemplar (which is the same for arbitrarily sized
output volumes), takes only 13 seconds. Even counting the different performance of
CPUs, our algorithm is over 10 times faster. Due to the compactness in representation,
we can synthesize high-resolution solid textures in full. Examples with about 512 sam-
ples in the longest dimension take 3-7 minutes. Region separation is not needed if the
input texture does not contain sharp boundaries, as the ‘vase’ and ‘tree’ examples in
Fig. 5. In these examples, the binary mask is used only as part of the feature vector,
not for region separation. The ‘tree’ example shows that our synthesis algorithm can
be generalized to synthesize solids with different exemplars covering different spaces,
mimicking the real structure of a tree.

While our current synthesis implementation is CPU-based, gradient solids are ren-
dered in real-time using the GPU. For each visible pixel, we obtain the interpolated
texture coordinate using the vertex shader and evaluate the color using the fragment
shader; the colors and gradients at control points are stored as textures for efficient
GPU access. For solid textures with binary masks, the relevant set of feature vectors is
used based on the evaluated signed distance.

Limitations. Although we can represent sharp boundaries with regions, similar to [3]
using a single distance field we cannot in general recover sharp boundaries if more
than two regions touch. Additional distance fields may be used in such situations. Our
method may not reproduce textures with large amount of high-frequency details in the
synthesized solids well. Nevertheless, we have demonstrated that our method works
well on a variety of textures throughout the paper. Our representation is particularly
suitable for solid textures having dominantly smooth color variations within each ho-
mogeneous region, as assumed by virtually all the vectorization methods.

6 Conclusions and Future Work

In this paper, we propose a novel gradient solid representation for compactly represent-
ing solids. We also propose an efficient algorithm for direct synthesis of gradient solid
textures from 2D exemplars. Our algorithm is very efficient in both computation and
storage, compared with previous voxel-level solid texture synthesis methods and thus
allows high-resolution solid textures to be synthesized in full. Our current implemen-
tation of the synthesis algorithm is purely CPU based. The algorithm is highly parallel
and we expect to implement this on the GPU to further improve the performance.
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Abstract. In this paper, we present a robust and efficient mesh denoising algo-
rithm which preserves high-resolution details very well. Our method is a three-
stage algorithm. Firstly, we modify a robust density-based clustering method and
apply it to the face neighborhood of each triangular face to extract a subset of
neighbors which belong to the same cluster as the central face. Because the faces
within the extracted subset are not distributed across high-resolution details, we
filter the central face normal iteratively within this subset to remove noise and
preserve such details as much as possible. Finally, vertex positions are updated
to be consistent with the filtered face normals using a least-squares formulation.
Experiments on various types of meshes indicate that our method has advantages
over previous surface denoising methods.

Keywords: Mesh Denoising, High-Resolution Details, Face Neighborhood,
Normal Clustering, Normal Filtering.

1 Introduction

A large portion of models are generated from finely scanned data of real 3D objects.
However, noise from various sources is inevitably involved in this process. Such noise
can severely impair the usability of mesh models. Therefore, denoising algorithms
are required to improve the quality of the reconstructed meshes. With the progress
of laser scanning technology, more and more high-resolution details of the physical
models can be captured. High-resolution details present in noisy mesh models make
denoising more challenging, because such signal cannot be easily distinguished from
noise.

In this paper, we propose a mesh denoising method that can effectively preserve
high-resolution details. Our method has two phases, face normal filtering and ver-
tex reconstruction from filtered face normals. We perform normal filtering for trian-
gle faces. Since there might be multiple high-res surface segments in a neighborhood,
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for each face, our algorithm extracts a subset of faces in the neighborhood that belong
to the same high-res segment as the central face. We call this subset uncluttered sub-
neighborhood (USN). Normal filtering only occurs within the USN. This strategy can
both remove noise and preserve the shape of the high-res local surface segment. Final
vertex positions of the denoised mesh are reconstructed from the filtered face normals
following a least-squares formulation.

In the remainder of the paper we first review previous work on mesh denoising before
we present the method for computing USNs, filtering face normals and updating vertex
positions in Section 3. In Section 4, we show experimental results.

2 Related Work

Many mesh smoothing methods have been proposed in the past[1–7]. Fleishman et al. [8]
and Jones et al. [9] successfully extended the bilateral filter from image processing[10]
to mesh denoising. These two methods consider the underlying geometry of a mesh as a
single surface. Because of this, high frequency details, such as creases and corners, will
be inevitably blurred, though at a much slower rate.

Hildebrandt and Polthier [11] introduced a prescribed mean curvature (PMC) flow
to remove noise while preserving sharp geometric features. Other two-stage feature-
preserving mesh denoising methods[12–15] have also been proposed. More recently,
Fan et al. [16] have introduced a mesh denoising algorithm based on sub-neighborhoods.
It considers a mesh surface piecewise smooth, and a sharp feature is the intersection of
multiple smooth surface regions. This method can well preserve sharp features most of
the time. However, it needs to classify vertices into three categories, and such classifica-
tion is not very reliable. Furthermore, at sharp features, such as sharp edges and corners,
vertex normals cannot be reliably defined.

3 The Algorithm

A triangle mesh M is a piecewise linear surface consisting of triangular faces with
shared edges and vertices. The mesh geometry can be denoted by the tuple (V,E, F ),
where V = {v1, . . . ,vn} is the set of vertices, E = {(vi,vj)|vi,vj ∈ V } is the set of
edges and F = {(vi,vj ,vk)|vi,vj ,vk ∈ V } is the set of triangular faces. The normal
of triangular face Fi is denoted as ni, and we denote the neighborhood of face Fi as Ni

which is the collection of triangular faces near Fi. Since our algorithm extracts an USN
from Ni, we denote it as subNi. The one-ring neighborhood of vertex vi is denoted
as Nv

i , and the one-ring face neighborhood of the vertex, faces sharing vertex vi, is
denoted as Nf

i . ΔFi denotes the edges bounding face Fi.

3.1 Uncluttered Sub-neighborhood Extraction

Traditional Euclidean distance based clustering algorithms would be problematic since
sometimes face normals across a feature may happen to be closer to each other than
normals in the same smooth local region, as illustrated in Fig. 1, where point a is easily
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Fig. 1. Illustration of a typical scenario. There is a shallow discontinuity between point a and
point b, while point c lies on the same smooth surface segment as point a. On the right, the three
normals are mapped to a unit circle. The distance between the normals of point a and point b is
smaller than that between the normals of point a and point c.

classified in the same cluster as point b using Euclidean distance between their normals.
Even worse, since surface normals are corrupted with noise as well.

To overcome the limitations of Euclidean distance, We quantify the distance between
two normals by defining a shared nearest neighbor (SNN) similarity. For each pair of
normals, ni and nj , if the distance between the two normals is less than r, that is
||ni − nj ||2 < r, the SNN similarity between them is defined as:

similarity(ni,nj) = size(NN(ni) ∩NN(nj)), (1)

where NN(x) = {y| ‖y − x‖ < r}. Since the SNN similarity reflects local config-
uration of the points on the Gaussian sphere, it is relatively insensitive to variations in
density.

A SNN similarity graph is constructed to describe the similarities among all face
normals in the neighborhood. We assign a link strength/weight to each edge which rep-
resents the similarity between the two nodes of the edge. Since many pairs of normals
have zero SNN similarity, the resulting graph is very sparse.

In a SNN similarity graph, SNN density is defined by the number of connected neigh-
bors with a link strength equal to or greater than Eps. Nodes in regions with either a
high or low density typically have a relatively high SNN density, while nodes in regions
where there is a transition between different densities have a low SNN density.

The points that have an SNN density greater than MinPts are further defined as
core points. Every subset of connected core points define a distinct cluster in the final
result. All non-core points that have no link weight larger than Eps are eliminated. A
border point, which is defined as a non-core and non-noise point, is assigned to the
cluster where its nearest core point belongs.

There are two special cases where we directly take Ni as subNi. The first one is
NN(ni) = Ni, which means that all the normals do not differ too much from ni. This
case makes our denoising algorithm work very efficiently by avoiding the relatively
expensive clustering algorithm in neighborhoods.The second one is ni is classified as
an outlier, we take the entire neighborhood as its uncluttered sub-neighborhood in order
to remove noise quickly.
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3.2 Surface Normal Filtering

Once we have obtained the sub-neighborhood, subNi, normal filtering can be much
simpler yet more effective than that in previous work [12, 17, 14]. We update the normal
ni as the normalized weighted average of the normals in subNi:

n
′
i =

∑
nj∈subNi

nj g(‖ni − nj‖)
‖∑nj∈subNi

nj g(‖ni − nj‖)‖ (2)

where g(x) is the weighting function, which can be any suitable non-negative mono-
tonically decreasing function for x ≥ 0. We choose a simpler RMQ-type function,
g(x) = 1

(1+x2) , which is fast to evaluate and performs well in all our experiments.

3.3 Vertex Position Updating

Since the three edges of a triangular face, Fm, should be perpendicular to the face
normal, nm, the corresponding triangle vertices vi,vj ,vk can be updated after the
face normal nm has been filtered and demised. The orthogonality condition yields the
following family of simultaneous linear equations:⎧⎪⎨⎪⎩

n
′
m · (vi − vj) = 0

n
′
m · (vj − vk) = 0

n
′
m · (vk − vi) = 0

(3)

The vertex positions can be updated as

v
′
i = vi + λ

∑
vj∈Nv

i

∑
(vi,vj)∈ΔFm

n
′
m(n

′
m · (vj − vi)) (4)

where λ > 0 is the iteration step size.By taking the average valence of a vertex on a
triangle mesh into account, λ can simply be 1/18 according to [15].

(a) (b) (c) (d) (e) (f)

Fig. 2. A comparison of denoising results between our method and other feature-preserving meth-
ods on the real laser-scanned PALM model. The second row shows a locally zoomed view. Note
that our result has the deepest skin wrinkles among all denoised results. (a) Original noisy model.
(b) Fleishman et al. [8]. (c) Hildebrandt and Polthier [11]. (d) Sun et al. [15]. (e) Fan et al. [16].
(f) Our method.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. A comparison of denoising results between our method and other feature-preserving meth-
ods on the TURTLE model with Gaussian noise (σ = 0.15 mean edge length) added. The bottom
row shows a zoomed view of the leg, which clearly shows that our method better preserves sur-
face details. (a) Original model. (b) Noisy model. (c) Fleishman et al. [8]. (d) Hildebrandt and
Polthier [11]. (e) Sun et al. [15]. (f) Fan et al. [16]. (g) Our method.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. A comparison between our method and other feature-preserving methods on the FAN-
DISK model with Gaussian noise (σ = 0.2 mean edge length) added. The bottom row shows a
zoomed view of the shallow discontinuity on the model. (a) Original model. (b) Noisy model. (c)
Fleishman et al. [8]. (d) Hildebrandt and Polthier [11]. (e) Sun et al. [15]. (f) Fan et al. [16]. (g)
Our method.

4 Experimental Results

In this section, we demonstrate our experimental results which shows the advantages of
our method.

4.1 Denoising Results

Our experiments were carried out on generic meshes captured by laser scanners(Figs. 2),
large meshes with synthetic noise (Figs. 3), CAD models with synthetic noise (Figs. 4).

In Figs. 2, we perform comparisons between our method and other feature-preserving
denoising methods [8, 11, 15, 16]. The results there indicate that our method causes less
blurring at high-resolution surface details than other methods. We have also performed
similar comparisons over large meshes with synthetic noise. Figs. 3 clearly demonstrate
that our method better preserves surface features than other methods.
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We have also compared our method with recent feature-preserving denoising meth-
ods on the very typical CAD model in Fig. 4a, which contains edges, corners and a
shallow discontinuity. Most of the methods keep edges and corners well, but only the
method of Fan et al. [16] and our method successfully preserve the shallow disconti-
nuity. Compared with the method in [16], our method spends much less time (Tab. 1),
while achieving a higher-quality result.

We use the L2 vertex-based mesh-to-mesh error metric in our numerical compar-
isons:

Errorv =
√
1/(3

∑
k∈F

Ak)
∑
i∈V

∑
j∈Nf

i

Ajdist(x′
i,M)2 (5)

where dist(x′
i,M)is the L2 distance between a new vertex x′

i and a triangle of a ref-
erence mesh M which is closest to x′

i. Table 2 shows errors measured in this metric
for various algorithms. We can see that our denoised result is closest to the original
noise-free model, which is consistent with the visual results.

Table 1 gives a comparison of running times among a few recent methods. From
these two tables, we can see the running time grows with the number of vertices and

Table 1. Timing comparison with other methods (timing in seconds)

Model Fandisk Palm Turtle
Figure 4 2 3
#Vertices 25,894 46,565 134,057
#Faces 51,174 92,054 267,931

Fleishman et al.
0.197 0.361 1.149

[8]
PMC

4.010 8.345 23.3301
[11]
Sun et al.

0.201 0.398 1.118
[15]
Fan et al.

2.975 4.773 13,349
[16]
Our method 0.582 1.154 1.872

Table 2. L2 error comparison

Model Fandisk Turtle
Figure 4 3
#Verices 25,894 134,057
#Faces 51,174 267,931

Fleishman et al. [8] 2.197 1.774
PMC [11] 1.117 1.822
Sun et al. [15] 1.031 1.831
Fan et al. [16] 0.975 1.743
Our method 0.892 1.675
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faces. Table 1 shows that our algorithm requires a little longer time than that of Sun et
al. [15] and a much shorter time than that of Fan et al. [16]. In summary, our method
can quickly generate high-quality denoised results.

5 Conclusions

We have presented a robust and efficient mesh denoising algorithm that preserves high-
resolution details and shallow discontinuities very well. In our algorithm, we apply a
revised density-based clustering method to a neighborhood of every face to extract a
subset of neighboring faces which belong to the same cluster as the central face. By
filtering the central face normal only within this subset, our method can preserve details
while removing noise. Finally, vertex positions are updated to be consistent with the
filtered face normals using a least-squares formulation. Experiments on various types
of meshes indicate that our method has advantages over previous surface denoising
methods.

Acknowledgement. This project was funded by the CNSF(61202229).
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on GPU
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Abstract. We present a novel algorithm to partition large 3D meshes for
GPU-based decompression. Our formulation focuses on minimizing the
replicated vertices between patches, and balancing the numbers of faces
of patches for efficient parallel computing. First we generate a topology
model of the original mesh and remove vertex positions. Then we assign
the centers of patches using geodesic farthest point sampling and cluster
the faces according to geodesic distance. After the segmentation we swap
boundary faces to fix jagged boundaries and store the boundary vertices
for whole-mesh preservation. The decompression of each patch runs on
a thread of GPU, we have evaluated its performance on various large
benchmarks. In practice, the GPU-based decompression algorithm runs
more than 48X faster with that on the CPU.

Keywords: Parallel decompression, Mesh segmentation, Connectivity
compression, GPU, Edgebreaker.

1 Introduction

Various algorithms have been proposed to compress 3D meshes in computer
graphics. Also many parallel algorithms have been proposed for accelerating
mesh decompression on GPUs. In this paper, we mainly deal with designing al-
gorithms that can exploit thread-level parallelism of GPUs. We present a novel
mesh connectivity segmentation algorithm that can partition a large mesh into
many patches to match the architecture of GPU for decompressing. Our for-
mulation proves to accelerate mesh decompression significantly while only little
increase of the compressed data. In practice, the GPU-based decompression al-
gorithm runs more than 48X faster than the sequential algorithm on CPU.

2 Related Work

Rossignac’s Edgebreaker [9] and its later improvements gives the best compres-
sion rate for triangle mesh connectivity. However, these mesh algorithms decom-
press through sequential encoding, which cannot be used for random access mesh

� Corresponding author.
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traversal. Topraj [3] proposed the most efficient algorithm that can be used for
random access mesh traversal.

Patch-type segmentation algorithms partition meshes into disk-like patches.
Segmentation algorithms cluster small region with similar attributes into large
regions. There are mainly three schemes: region-growing scheme, hierarchical-
clustering scheme and the k-means based clustering scheme [10]. Categorized
by applications, the features used in mesh segmentation can be curvature [6],
normal [10] and geodesic distance [5], or symmetry [7].

Modern GPUs are regarded as high-throughput processors, which have a the-
oretical peak performance of a few Tera-Flops. The computations on GPUs are
performed simultaneously by executing a large number of threads. GPUs con-
sist of several multi-processors. To fully exploit the computational capabilities
of GPUs, good task decomposition scheme needs to be designed.

3 Mesh Connectivity Segmentation

3.1 Motivation

Because of the limited memory of GPUs and the increasing size of 3D models,
the compression and decompression of certain large 3D models still needs to
be processed in non-random accessed algorithm. Our algorithm partitions 3D
meshes into many patches, which will match the multi-thread architecture of
GPUs. Then we use connectivity compression algorithm to compress each patch,
thus the decompression can be highly accelerated to meet speed priority needs.
The patches after the segmentation will share vertices, which will store more than
the original 3D mesh. So we need to make the result of segmentation contain
less replicate vertices. What’s more, we need to make each patch have balanced
number of faces so that the decompression speed will be optimized.

3.2 Evolution of Topology

Because our segmentation deals only with mesh connectivity, we can simplify
the original mesh into a topology model without vertex positions. The center of
a face is in the geometric center of the equilateral triangle. The distance between
points are defined by geodesic distance of the topology model, we use 1 as the
length of edges for the geodesic distance calculation.

The topology model cannot represent an actual mesh, but it can be use to
judge the relationship among faces and vertices. As Figure 1 shows, the distance
in the topology model is computed by geodesic distance. Given two faces, the
distance between them is defined as the geodesic distance between their centers,
where the center is in the geometric center of the equilateral triangle.

3.3 Center Assignment and Face Clustering

To obtain parallel execution of decompression across different threads of GPU,
the mesh needs to be uniformly segmented so that the number of faces of each
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Fig. 1. The distance in the topology model: The distance is defined by the
geodesic distance between the centers of faces

Fig. 2. Assignment of Centers: Using geodesic farthest point sampling on the topol-
ogy model, 50 points are uniformly positioned on the Armadillo 3D mesh

patch is balanced. If one or more patch has many more faces than the others,
the whole parallel decompression performance will slow down.

The algorithm to assign the centers of the patches is taken directly from
previous works on geodesic remeshing [8]. A uniform sampling of points on a
surface is obtained using a greedy farthest point sampling. A first point is picked
then the geodesic distances to this point are computed. The Fast Marching
algorithm [1] which was presented for finding 2D paths or for 3D extension and
improvements is used to find the farthest point. The farthest point is selected as
the next sampling point, then distance map is updated using a local propagation.
The geodesic farthest points are generated from the distance map respectively.
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The geodesic farthest point sampling procedure runs on the topology model,
after that the sampled points will be refined to its nearest center of face. An
example of center assignment is shown in Figure 2, 50 points are uniformly
distributed on the surface of the Armadillo 3D mesh, these points make the
centers of the following clustering step.

After the assignment of centers of the patches, we can cluster the faces us-
ing the distance between them and the centers. We use the distance defined in
section 3.2, for each face of the model we find the nearest center point.

The clustering procedure can also run in multi-level to make the segmentation
more flexible and accurate. For instance, if we want to partition the mesh into
M patches, we can first assign M*k centers where k is an integer. Then we
can use clustering algorithm such as K-Means or Affinity Propagation [2] to
further cluster the faces which will make higher correctness and quality of the
segmentation. Figure 4 shows a partition example of the lucy 3D model in 50
clusters.

3.4 Postprocess on Boundary Elements

After the clustering step, the mesh is partitioned into several patches. Because
the clustering only considers the distance between the faces and centers, the
patches are likely to have jagged boundary. We need to refine such faces so
that the replicate vertices can be further decreased. The refinement is done by
swapping the cluster of the boundary faces. Figure 3 shows the swap of boundary
faces and the refinement result of jagged boundary.

The goal of our algorithm is to generate mesh that is equivalent to the original
one after parallel decompression, the patches need to connect with each other,
accordingly the overall boundary information needs to be stored. We store the

Fig. 3. Refinement of Faces: The faces on the jagged boundary need to be swapped
in order to reduce replicate vertices
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boundary vertices in a separate array. For each patch of the segmentation, the
boundary vertices are stored in the format of their indices, while the other ver-
tices are stored directly with their vertex coordinates. When parallel decompres-
sion process runs, the boundary vertices are directly indexed, while other vertices
are indexed after a prefix-sum [4] operation. In this situation, the indices of the
boundary vertices will be stored 2 more times, which will make the result mesh
larger than the initial one before segmentation.

4 Implementation and Performance

In this section, we describe our implementation of the compression and decom-
pression on the GPU, and highlight the performance of our algorithm on various
benchmarks. We used Visual C++ for partitioning and later processes. We used
CUDA toolkit 4.0 as the development environment for GPU. We use NVIDIA
Visual Profiler to compute the kernel execution time, the data input/output
time between GPU and host memory. The sequential version of decompression
runs on a standard PC (AMD PhenomII 2.8Ghz CPU with 6 cores).

4.1 Compression

After the connectivity segmentation, the original mesh is partitioned into many
patches. The segmentation result is stored in a specified file format, so that
there are many patches in one file. Then for each patch, we use the Edgebreaker
algorithm to compress its connectivity information.

The Edgebreaker algorithm [9] encodes the connectivity of triangle meshes
homeomorphic to a sphere, produces an op-code describing the topological re-
lation between the current triangle and the boundary of the remaining part of
the mesh. Each triangle of the mesh is visited in a depth-first order using five
different operations called C, L,E, R, and S. Each triangle is labeled according
to the operation that processes it. The resulting CLERS string is a compact
encoding of the connectivity of the mesh.

4.2 Decompression

We use the Edgebreaker decoding algorithm to decompress the compressed mesh
file. The decompression procedure of each patch runs on a single thread of the
GPU. As Figure 4 shows, Edgebreaker runs on each single partition of the Lucy
3D model.

After the decompression procedure, we will use the prefix-sum operator [4]
to mark the vertices, so that different patches and faces of the mesh can be
combined into a whole mesh.

4.3 Performance

We have tested several 3D models for segmentation and decompression, including
the 41.6MB Happy Buddha,the 162MB Dragon and the 428MB Statue model.
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Fig. 4. Edgebreaker Decompression: A large 3D model is partitioned into many
patches, the Edgebreaker algorithm runs parallel on each patch on GPU

Table 1. Comparison: The size of compressed data for the benchmarks using different
segmentation number

Patches Original 512 2048 8192

Happy
(41.6MB)

6.8MB 7.0MB 7.2MB

Happy
(Unprocessed)

6.8MB 7.6MB 8.5MB

Dragon
(162MB)

20.5MB 21.6MB 22.9MB 25.4MB

Statue
(428MB)

44.9MB 47.1MB 49.2MB 52.7MB

As Figure 5 shows, the speedup gets higher when there are more partitions,
we can get up to 48.5X speedup when the Dragon model is partitioned into
8192 patches. Because the unprocessed Happy Buddha is not uniformly parti-
tioned and no jagged boundaries are swapped, the acceleration rate of it is much
lower.

Table 1 shows the size of the compressed data resulting from the sequential
Edgebreaker algorithm, the parallel algorithm with 512, 2048 and 8192 patches.
The result of the unprocessed happy Buddha model is less optimized than the
processed one. For the 3D models segmented into 8192 partitions, there are about
20% increase in the compressed size, this is because each patch has too few faces.
If the patches have tens of thousands of faces, the influence of repeated vertices
can be neglected.
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Fig. 5. Performance: The acceleration rate of the parallel decompression algorithm
on GPU over the sequential algorithm on CPU. (*)Unprocessed Happy Buddha 3D
model

5 Comparison and Analysis

Comparing with the sequential Edgebreaker decompression algorithm, we can
get up to 48X decompressing speedup which can make further benefit for time
sensitive uses.The data upload and download time from GPU to host memory
is relatively a small part of the whole time for large 3D models. However, the
segmentation procedure is relatively slow compared to that of decompression,
we used several minutes to partition and compress these large 3D models.

The size of the compressed data will increase comparing to the sequential
algorithms as there are many replicate boundary vertices whose indices will be
stored twice. But this will go better when the size of each patch grows larger. If
the decompression result is directly be used in GPU, it will get further benefit.
Because the large 3D models are segmented into small patches, the partition
and compression result can be used for out-of-core decompression for computers
that does not have enough GPU memory.

6 Conclusion

We present an algorithm for parallel decompression of mesh connectivity on
GPU. Our formulation focuses on the average segmentation of mesh connec-
tivity for parallel connectivity decompression. Our approach is flexible and the
decompression procedure maps well to commodity GPUs. In practice, our al-
gorithm can improve the performance of mesh decompression on current GPU
architectures.
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Modeling Residential Urban Areas

from Dense Aerial LiDAR Point Clouds
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Abstract. We present an automatic system to reconstruct 3D urban
models for residential areas from aerial LiDAR scans. The key differ-
ence between downtown area modeling and residential area modeling
is that the latter usually contains rich vegetation. Thus, we propose a
robust classification algorithm that effectively classifies LiDAR points
into trees, buildings, and ground. The classification algorithm adopts an
energy minimization scheme based on the 2.5D characteristic of build-
ing structures: buildings are composed of opaque skyward roof surfaces
and vertical walls, making the interior of building structures invisible to
laser scans; in contrast, trees do not possess such characteristic and thus
point samples can exist underneath tree crowns. Once the point cloud
is successfully classified, our system reconstructs buildings and trees re-
spectively, resulting in a hybrid model representing the 3D urban reality
of residential areas.

1 Introduction

Urban modeling from aerial LiDAR scans has been an important topic in both
computer graphics and computer vision. As researchers mainly focus on down-
town areas containing various building structures such as skyscrapers, modern
office buildings, stadiums and convention centers; building reconstruction is be-
lieved to be the core of urban modeling, which has attracted much attention
such as [4,5,8,10,15,18,19,20,21]. In these efforts, trees are usually considered as
an interference to the urban modeling problem, and thus are detected and re-
moved from the input by classification in pre-processing. Existing classification
algorithms apply heuristics or machine learning approaches on point features
including height, intensity, and local geometry information.

However, two new challenges emerge when the urban modeling problem ex-
tends to residential areas. First, as shown in Figure 1(a), vegetation is a major
component of urban reality in residential areas. An urban modeling method for
residential areas should detect and reconstruct both buildings and trees, e.g.,
as we did in Figure 1(b). The second challenge lies in the classification method:
dense LiDAR scans capture the detailed geometry of tree crowns, which may
have similar height and local geometry features as rooftops of residential build-
ings. Figure 2 shows such an example where part of the tree crown shows similar
or even better planarity than part of the rooftop (see closeups illustrating local
points as spheres together with the optimal plane fitted to them). Classification
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(a) Input aerial point cloud (c) Aerial imagery as a reference(b) Our modeling result

Fig. 1. Given (a) a dense aerial LiDAR scan of a residential area (point intensities
represent heights), we reconstruct (b) 3D geometry for buildings and trees respectively.
(c) Aerial imagery is shown as a reference.

A

B

Fig. 2. Local geometry features become unreliable when dealing with residential areas
with rich vegetation. In closeups of (A) a tree crown region and (B) a rooftop region,
points are rendered as spheres while a locally fitted plane is rendered in yellow. Right:
classification results of [18], trees in green, buildings in purple, and ground in dark grey.

algorithms based on local geometry features may fail and produce significant
modeling errors. E.g., Figure 2 right.

To address these two challenges, we present a robust classification method to
classify input points into trees, buildings, and ground. Building models and trees
are created from these points using a state-of-the-art building reconstruction al-
gorithm [19] and a novel leaf-based tree modeling approach, respectively. The
heart of our classification method is a simple, intuitive, but extremely effective
measurement. In particular, we observe that residential buildings usually show
a strong 2.5D characteristic, i.e., they are composed of skywards roofs and ver-
tical walls; both are opaque and thus prevent the laser beams from penetrating
the building structure. Therefore, there is no point sample inside the building
structure. The rooftops (or ground) become the lowest visible surface at a cer-
tain x-y position, as illustrated in Figure 3 left. In contrast, trees, composed of
branches and leaves, do not have this 2.5D structure. With multiple passes of
scanning from different angles, the point cloud captures not only the top surface
of the tree crown, but also surfaces inside and underneath the crown, as shown
in Figure 3 right.
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Second pass

First pass First pass
Second pass

Point samples

Building

Tree

Ground Ground

Fig. 3. While building structures have a 2.5D characteristic, trees do not possess such
property. Dense laser scans may capture surface points under the tree crown (right).

Contributions: To the best of our knowledge, we are the first to address the
urban modeling problem for residential areas with rich vegetation from aerial
LiDAR scans. We specifically list our novelties as follows:

1. We observe the key difference between building structures and trees from the
perspective of the 2.5D characteristic. Based on this observation, we propose
an effective algorithm to classify trees, building roofs, and ground.

2. We propose a complete system for urban reconstruction of residential areas.
A hybrid model containing both 2.5D building models and leaf-based tree
models is generated in an automatic and robust manner.

2 Related Work

Urban modeling from aerial LiDAR is an important topic that has drawn much
attention in both computer graphics and computer vision communities. Recent
research work [8,10,15,18] introduces an automatic urban modeling pipeline in-
volving three key steps: classification detects and removes trees from the in-
put point cloud; segmentation splits individual building roof patches out of the
ground; and building reconstruction focuses on creating compact and accurate
mesh models to represent the geometry of building structures.

Since downtown areas are usually the main target of reconstruction, modern
urban modeling methods emphasize on building structures. For instance, Verma
et al.[15] explore the roof topology graph connecting planar roof patches. La-
farge et al.[4] find the optimal configuration of 3D building primitives using a
RJMCMC sampler. Matei et al.[8] and Poullis and You [10] create building mod-
els adapted to Manhattan-World grammars via different approaches. Zebedin et
al.[17] generate both planar roof patches and surfaces of revolution. Toshev et
al.[14] propose parse trees as a semantic representation of building structures.
Lafarge and Mallet [5] combine primitives and a general mesh representation
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to achieve hybrid reconstruction. Zhou and Neumann develop both data-driven
modeling approaches [19,20] and primitive-based method that supports global
regularities [21].

In urban modeling systems, trees are often recognized as outliers and thus
are classified and removed in the first step. Most of the classification algorithms
rely on point-wise features including height [5,7,11,14] and its variation [2,7,11],
intensity [7,11], and local geometry information such as planarity [5,15,18], scat-
ter [5,14,18], and other local geometry features. Heuristics or machine learning
algorithms are introduced as classifiers based on the defined feature set. To fur-
ther identify individual building roof patches, segmentation is either introduced
in a post-classification step, or combined with classification in the form of energy
minimization such as [5].

Computer graphics and remote sensing communities have made great efforts
in modeling trees from ground LiDAR and imagery, such as [3,6,9,12,13,16]. A
general tree model is broadly adopted in these literatures, composed of skeletal
branches and leaves attached to them. Inspired by these efforts, we propose
leaf-based tree modeling from aerial LiDAR scans.

The 2.5D characteristic of building models is first formally observed
and defined in [19], as “building structures being composed of detailed roofs
and vertical walls connecting roof layers”. Many research efforts exploit this
characteristic to help building reconstruction either implicitly [8,10,15] or ex-
plicitly [5,19,20,21]. Nevertheless, we are the first to introduce the 2.5D char-
acteristic of building structures into the classification problem. We propose a
simple, efficient and effective classification algorithm that gains great accuracy
in residential areas with rich vegetation.

3 Point Cloud Classification

Given an aerial LiDAR point cloud of a residential area as input, the objective
of classification is to classify points into three categories: trees, buildings, and
ground. As mentioned in Section 1 and illustrated in Figure 3, the 2.5D charac-
teristic is the key difference between trees and buildings (or ground). In order
to formulate this concept, we discretize the point cloud by embedding it into a
uniform 2D grid G. In each grid cell c, the point set P (c) is segmented into mul-
tiple layer fragments L(c), using local distance-based region growing. Ideally, a
layer fragment lbuilding ∈ L(c) lying on a 2.5D object (rooftop or ground) must
have the lowest height among all layer fragments in L(c), because the rooftop
(or ground) is always the lowest visible surface to laser beams at a certain x-y
position, as analyzed in Section 1. On the other hand, a tree layer fragment
ltree can exhibit any height. However, as there is usually a ground or rooftop
surface underneath tree samples, ltree is not expected to be the lowest layer
fragment in L(c). Therefore, we check all the layer fragments in each cell, assign
only the lowest layer fragment as non-trees (rooftop or ground), and classify the
rest layer fragments as trees. From an energy minimization perspective, this 2.5D
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characteristic criterion can be quantized with a data energy term Ed(xl) for each
l ∈ L(c) as:

Ed(xl) =

⎧⎨⎩
α if xl = building or ground, and l is not the lowest in L(c)
β if xl = tree, and l is the lowest layer fragment in L(c)
0 otherwise

(1)

where xl is the label of layer fragment l.
To further discriminate building and ground in the energy minimization frame-

work, we introduce elevation of layer fragment e(l) defined as the height differ-
ence between l and the ground elevation at c’s center. Another data energy term
Eg(xl) is defined accordingly:

Eg(xl) =

⎧⎨⎩
γ ·max(1− e(l)

σ , 0) if xl =building

γ ·min( e(l)σ , 1) if xl =ground
0 if xl =tree

(2)

where σ is the normalization factor. Empirically, σ = 6m, as suggested in [5].
With a smooth energy Es(xl1 , xl2) defined over all neighboring layer fragment

pairs (i.e., layer fragments belonging to neighboring cells and satisfying certain
distance criteria), we build a Markov Random Field which leads to an energy
minimization problem over the labeling x of the entire layer fragment set L:

E(x) =
∑
l∈L

(Ed(xl) + Eg(xl)) + λ
∑

(l1,l2)∈N
Es(xl1 , xl2) (3)

where N is the set of neighboring layer fragment pairs, and smooth energy
Es(xl1 , xl2) is defined as characteristic function 1xl1

�=xl2
.

With the energy minimization problem being solved using the well-known
graph-cut method [1], point labels are determined as the label of the corre-
sponding layer fragment. To further construct roof patches from building points,
a region growing algorithm is applied based on certain distance criteria. While
large building patches are adopted as rooftops, small patches are considered as
outliers and removed henceforth.

4 Modeling of Urban Elements

Based on the successful classification of input points, we introduce different
modeling approaches for trees, buildings, and ground respectively.

4.1 Tree Modeling

Modern tree modeling approaches adopt a general tree structure composed of
skeletal branches and leaves attached to them. Tree reconstruction usually begins
with a branch generation algorithm followed by a leaf modeling approach. How-
ever, unlike ground-based laser scans and imagery, aerial LiDAR data captures
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very few samples on branches, making branch generation a difficult task. There-
fore, we choose to directly model tree leaves by fitting surface shapes around
tree points having sufficient neighbors.

In particular, for each tree point p with sufficient neighbors, Principal Com-
ponent Analysis is applied to its neighboring point set N(p) to fit an ellip-
soid. Eigenvectors v0,v1,v2 and eigenvalues λ0, λ1, λ2 of the covariance matrix
represent the axes directions and lengths of the ellipsoid respectively. We em-
ploy the inscribed octahedron of the ellipsoid to represent the local leaf shape
around p. Specifically, an octahedron is created with six vertices located at
{vp ± sλ0v0,vp ± sλ1v1,vp ± sλ2v2}, where vp is the location of p and s is
a user-given size parameter.

A uniform sampling over the tree point set Ptree can be applied to further
reduce the scale of the reconstructed models.

4.2 Building Modeling

We adopt 2.5D dual contouring method [19] to create building models from
rooftop patches through three steps: (1) sampling 2.5D Hermite data over a
uniform 2D grid, (2) estimating a hyper-point in each grid cell, and (3) generating
polygons.

The only challenge in applying 2.5D dual contouring to residential area data
lies in rooftop holes caused by occlusion. To solve this problem, we add a hole-
filling step right after 2.5D Hermite data is sampled from input points. In par-
ticular, we scan the entire 2D grid to detect rooftop holes, and solve a Laplace’s
equation �2z = 0 to fill these holes, where z represents the heights of surface
Hermite samples at grid corners. Existing surface Hermite samples serve as the
boundary condition of the Laplace’s equation.

4.3 Ground Modeling

Ground models can be easily created by rasterizing ground points into a DSM
(digital surface model). Holes are filled via linear interpolation.

5 Experimental Results

Figure 4 shows our urban reconstruction results for a 520m-by-460m residen-
tial area in the city of Atlanta. The input contains 5.5M aerial LiDAR points
with 22.9/m2 resolution. Our algorithm reconstructs 56K triangles for build-
ing models, and 53K octahedrons as tree leaves, in less than two minutes on
a consumer-level laptop. As illustrated in the closeups of Figure 4, our classifi-
cation algorithm successfully classifies points into trees, ground, and individual
building patches (second column). A hybrid urban model is generated by combin-
ing 2.5D polygonal building models and leaf-based tree models (third column).
Aerial imagery is given in the last column as a reference.
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(b)

(b)

(a)

(a)

Input point cloud Classification results Urban reconstruction Aerial Imagery

Fig. 4. Urban models reconstructed from 5.5M aerial LiDAR points for a residential
area in the city of Atlanta

6 Conclusion

In this paper, we address the complicated problem of reconstructing urban mod-
els for residential areas with rich vegetation. We observe the key difference be-
tween buildings and trees in terms of the 2.5D characteristic: while buildings
are composed of opaque skyward rooftops and vertical walls, trees allow point
samples underneath the crown. This feature enables a powerful classification
algorithm based on an energy minimization scheme. By combing classification,
building modeling and tree modeling together, our system automatically recon-
structs a hybrid model composed of buildings and trees from the aerial LiDAR
scan of a residential area. Our experiments demonstrate the effectiveness and
efficiency of our system.
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Abstract. We propose a texture mapping technique that allows user to
directly manipulate texture coordinates of subdivision surfaces through
adding feature correspondences. After features, or constraints, are spec-
ified by user on the subdivision surface, the constraints are projected
back to the control mesh and a Polygon Matching/Embedding algorithm
is performed to generate polygon regions that embed texture coordi-
nates of control mesh into different regions. After this step, some Steiner
points are added to the control mesh. The generated texture coordinates
exactly satisfy the input constraints but with high distortions. Then a
constrained smoothing algorithm is performed to minimize distortions of
the subdivision surface via updating texture coordinates of the control
mesh. Finally, an Iterative Closest Point (ICP)-based deformation algo-
rithm is performed to remove subdivision errors caused by the added
Steiner points.

Keywords: Parameterization, hard constraints, subdivision surfaces,
texture mapping, mesh deformation.

1 Introduction

Texture mapping is widely used in computer graphics. It maps vertices of a given
surface to specified positions on a given texture image. The common way to gen-
erate texture mappings is through a parameterization: a bijection from a texture
space to a surface patch. Some additional requirements are usually needed, such
as minimal angle/area distortions, feature correspondences, etc. Subdivision sur-
faces, serving as a standard for representing detailed, smooth shapes, are used
in both non-real-time applications such as movies and real-time applications
such as computer games. Recent work by He et al. [6] investigated parametriza-
tion directly on subdivision surfaces. However, only angle/area distortions are
taken into account, other fundamental requirements in texture mapping, such
as feature correspondences, are ignored. Our goal is to generate a valid param-
eterization that exactly satisfies a given set of feature correspondences, and to
minimize distortions on the subdivision surface at the same time.

1.1 Related Work

Free Form Parameterization. This class of methods solves parameteriza-
tion problem with no feature correspondences. Different “energy” terms are

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 99–106, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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minimized with different boundary conditions. Uniform Barycentric Coordi-
nates [13] can generate valid parameterization for arbitrary convex shapes with
fixed boundary conditions, but fails to minimize either angle or area distortions.
Harmonic coordinates [3] [14] is another type of barycentric coordinates that
stems from finite element methods, more precisely, from the standard piecewise
linear discretization of the Laplace equation; it generates parameterization with
small angle distortions, given fixed boundary conditions. Least Square Confor-
mal Map(LSCM) [10] is a free boundary approach that minimizes angle distor-
tions without any additional user input. The Local/Global method [11] develops
LSCM and minimizes both angle and area distortions. We refer readers to the
SIGGRAPH course for details [7].

Parameterization with Constraints. This class solves parameterization prob-
lem with feature correspondences. Feature correspondences are handled as soft
constraints or hard constraints. [5] uses a learning theory approach to satisfy
positional constraints. [9] incorporates soft positional constraints into formu-
lation of the parameterization problem: the positional constraints are satisfied
in a least squares sense. However, the constraints may not be satisfied exactly
due to possible great distortions or conflicts among different constraints. [4]
shows that hard constraints can always be guaranteed with introducing extra
(Steiner) points. [8] provides a more robust solution, named MatchMaker, by
automatically partitioning a mesh into several triangle regions, and allowing the
user to set correspondences between the regions and input texture images.

Parameterization on Subdivision Surfaces. Subdivision surfaces, such as
Catmull-Clark subdivision [1] and Loop subdivision [12] are de-facto standards
used in computer graphics. Research on parameterization directly on subdivision
surfaces is, however, only at its beginning. [6] shows that polygon parameteriza-
tion methods produce suboptimal results when applied to subdivision surfaces
and describes how these methods may be modified to operate on subdivision
surfaces. They focus on how to reduce distortions on subdivision surfaces, but
have ignored how to fit feature correspondences.

2 Algorithm Overview

To void possible confusions, we introduce the following notations:

– A control mesh is a mesh to be subdivided.
– The user-input control mesh is denoted by C = {VC ,FC}, where VC is its

vertex set and FC is its face set. The subdivision surface of C is denoted by
D = {VD,FD}, where VD is its vertex set and FD is its face set.

– The control mesh after polygon matching (elaborated below) is denoted
by C∗ = {V∗

C ,F
∗
C}. The subdivision surface of C∗ is denoted by D∗ =

{V∗
D,F∗

D}. Denote T(C∗) to be the texture coordinates of C∗ and T(D∗)
to be the texture coordinates of D∗;

– Control points are user-input hard constraints that map specified vertices on
the control mesh to specified positions on the input texture image. Denote
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(a) (b)

(c) (d)

Fig. 1. Algorithm Pipeline. (a) Input texture and user specified constrained points
on the subdivision surface. (b) The constrained points are projected to the coarse
mesh; Polygon patches are generated and all coarse-mesh triangles are embedded to
corresponding patches with no fold-overs. Steiner points may be added here. (c) A
smoothing scheme is applied on the control mesh to minimizing distortions on the
subdivision surface. (d) A mesh deformation follows to reduce subdivision errors caused
by Steiner points.

the set of Control points to be CP . Denote T(CP ) to be the target positions
on texture images that the constrained points should be mapped to.

– A subdivision matrix is a linear operator that transforms vertices of control
mesh to vertices of subdivision surface. Denote S, S∗ such that:

VD = S ∗VC (1)

V∗
D = S∗ ∗V∗

C (2)

– Angle/Area distortions: Defined exactly as in [6]

As shown in Figure 1, the overall process of our algorithm is as follows:

1. Polygon Matching and Embedding: After the user adds some control
points on both texture image and subdivision surface, the control points are
then projected to control mesh. A polygon matching algorithm similar with
MatchMaker[8] is applied to generate paths among different control points on
both texture image and control mesh. These paths cut up the texture image
and texture coordinates of the control mesh into several convex polygon
regions. Then an embedding algorithm is applied on the control mesh to put
vertices’ texture coordinates into different convex polygon regions with no
foldovers.

2. Constrained Smoothing on Subdivision Surface: The texture coordi-
nates after polygon matching and embedding are valid, but may result in
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high angle distortion and area distortion. Hence, a smoothing scheme, aiming
to minimize distortions on the subdivision surface while preventing foldovers,
is performed to refine the 3D positions of vertices on the control mesh. After
this step, a valid, low-distortion texture mapping can be obtained.

3. Deforming the control mesh: Since Steiner points may be generated
during polygon matching, the mesh topology, which directly affects results
of subdivision surface, may be changed. To keep the subdivision surface of the
modified control mesh close to that of the input control mesh, we introduce
a mesh deformation-based method. After applying mesh deformation to the
modified control mesh, its subdivision surface is reasonably similar to the
input control mesh’s.

3 Parameterizing with Hard Constraints

To produce a parameterization that satisfies user-input control points, either
soft constraints [9] or hard constraints [8] can be applied. Soft constraints, on
the one hand, cannot exactly satisfy all constraints, especially if great distortions
exist or conflicting constraints exist; it can also fail with large sets of constraints,
resulting in an invalid parameterization [8]. Hard constraints, on the other hand,
can always generate valid parameterizations, even with conflicting control points,
through adding Steiner points [4]. In practice, especially when the number of
control points is large, it is common to have conflicts. Thus parameterizing with
hard constraints is our method of choice.

We derive our parameterization method from MatchMaker. However, our goal
is to parameterize subdivision surface, which is sensitive to Steiner points : Dif-
ferent topologies of the control meshe, even with the same geometry shape, will
lead to different subdivision surfaces. Hence, we must keep a minimal number
of Steiner points. In fact, even though our Polygon Matching algorithm greatly
reduces the number of Steiner points, they still have some influence on subdivi-
sions. Such influence will be mitigated through our mesh deformation method,
as is illustrated in Section 5.

Control Points Projection: C∗ is initialized to C. Since control points are
specified by the user on the subdivision surface D, we must first project them to
control mesh C. Keeping track of the topology during the subdivision process,
there are three types of control points after projection: (1). Belonging to the
vertex set of C∗; this type can be added into set CP directly. (2). On an edge of
C∗; then each triangle adjacent the edge should be split into two and the control
point should be added. (3). In a triangle face of C∗; Then the face should be
split into three and the control point should be added.

Initial Guess and Virtual Boundary: Directly following MatchMaker, the
texture coordinates of control mesh C are first generated with the free bound-
ary algorithm LSCM [10], and padded to create a triangulation of a bounding
rectangle. The new vertices and faces are pushed into C∗. The vertices on the
virtual boundary (boundary of the bounding rectangle) are then fixed in all the
following processes.
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Polygon Matching: The goal is to partition region inside the virtual boundary
into several convex polygons with points in CP as polygon vertices. A image line
is the line segment in texture image space connecting two points of T(CP ); A
path is a sequence of vertices (along with their 2D coordinates in the texture
coordinate space) in the control mesh connecting the two points of CP . To make
sure that corresponding image line and path are matched, several tests should
be done:

1. Self Intersection Test: If a path is intersecting with any existing path,
then it is not a legal path.

2. Orientation Test: If a newly added path results in a closed polygon, test its
orientation and the orientation of polygon formed by corresponding image
lines. If the orientations are different, it is not a legal path.

3. Point Inside Region Test: This test ensures that existed path will not
block future paths. If a path divides a closed region into two closed subregions
and there exists a point in CP located in different subregions in texture
image space and texture coordinates space, then it is not a legal path.

4. Convex Polygon Test: This test guarantees that our matching results
in convex polygons only, but not necessarily triangles. Consequently, fewer
paths are generated by our Polygon Matching algorithm than those by
MatchMaker. For each new path, first test whether it is diagonal of an exist-
ing closed convex polygon. If so, the path is not legal.

5. Merge Polygons: After all paths are generated, we merge polygon regions
with the following rule: 1. push all image lines into a list with a random
order; 2. For each image line in order, if its two adjacent convex polygons
can be merged into a big convex polygon, delete it from the list. Perform
this step until the list is no longer changing.

Polygon Embedding: We follow the same procedure as MatchMaker. Note
that the embedding algorithm generates valid parameterization if the input is
convex domains. Thus our Polygon Matching output, which results in convex
polygons, can directly take advantage of the embedding method.

Polygon Smoothing: Described in Section 4.

Post-Processing and Output: Virtual boundaries and redundant faces are
removed. The texture coordinates stored on the control mesh C∗ is our final
mapping result.

4 Constrained Smoothing on Subdivision Surface

Polygon matching and embedding can generate a valid texture mapping, but
the mapping result may not be visually pleasing: Great angle distortions and
area distortions may exist. Our constrained smoothing method can minimizing
distortions of subdivision surface D∗ by updating vertex positions of the control
mesh C∗. We compute the results with the following distortion energy function:
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min
T(C∗)

||HS∗T(C∗))||2, s.t. T(C∗) = T(CP ), (3)

where H is a harmonic map matrix computed using LSCM [10] on subdivision
surface D∗ with fixed boundary(virtual boundary used in Polygon Matching).

Applying Equation 3 with exactly two constrained points and free boundary
conditions will lead to texture mapping with minimal angle distortions. However,
here we have more than two constraints and more importantly, we have to prevent
triangle foldovers during the smoothing precess.We use the iterative Gauss-Seidel
method, with some modifications. At each iteration, for each texture coordinate
tki , we firstly calculate a new coordinate that Gauss-Seidel formula leads to, denote
it by tg, then we update the texture coordinate as tk+1

i = tki + λ(tg − tki ); Where
λ is step size. We use a small default step size: λ = 0.1. After updating texture
coordinate of the vertex, we check its one-ring-neighbor faces, if any of them folds
over, we will not updating its texture coordinate.

5 Mesh Deformation

After the constrained smoothing on subdivision surface, we nearly achieved the
goal–a valid, smooth texture mapping that exactly satisfies our constraints. How-
ever, to obtain such a mapping, we may have to add Steiner points and result
in a modified mesh topology, which can lead to difference (error) between sub-
division surfaces D and D∗. To eliminate, or at least reduce, such errors, we
introduce a mesh deformation scheme, which is widely used in shape modelings
and mesh animations.

We adopt mesh deformation method of [15], combined with an ICP(Interactive
Closest Points) procedure. At each iteration, we firstly find closest points on D
for all vertices on D∗. Any closest distance below a certain threshold will result
in a matched point-pair. Let M be the set of all matched point-pairs. Then we
minimize the following energy function:

min
V̂∗

C

||LS∗V̂∗
C − δ∗(S∗V̂∗

C)||2 + w1

∑
i∈index(CP )

||v̂∗i − v∗i ||2

+w2

∑
i∈index(M)

||S∗
i V̂

∗
C − vdi ||2

(4)

Where L is Laplacian operator matrix of input subdivision surfaceD∗, the cotan-
gent formula [2] can be used to approximate it. v∗i is vertex of control mesh C∗,
vdi is matched point on subdivision surface D, v̂∗i is deformed vertex to be cal-

culated and V̂∗
C is the vector form. S∗

i is the i’th row of matrix S∗. δ∗(S∗V̂∗
C)

is the Laplacian vector of the deformed mesh. w1 and w2 are weights. we set
w1 = 10000 and w2 = 1 by default. Recall that CP is the set of control points.

6 Experiment Results

We ran our tests in a PC with Intel(R) Core(TM) i5-2300 CPU 2.80 GHz,
4.0GB memory, 32 bits OS. Our experiments show convincing evidence that our
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Table 1. Statistics & timing. #Vertices indicates number of vertices in input control
mesh. #SubdivLevel is the levels of subdivision, generally one level leads to 4 times
the number of vertices on the subdivision surface. #Control means number of control
points. #Matching indicates timing for Polygon Matching and Embedding. #Smooth-
ing indicates timing for smoothing on subdivision surfaces. #Deformation means timing
for ICP-Deformation.

Models #Vertices #SubdivLevel #Control #Steiner #Matching #Smoothing #Deformation

Face-Tiger 198 3 17 28 0.064 sec. 0.17 sec. 1.4 sec.

Monkey-Face 338 2 3 0 0.053 sec. 0.18 sec. 0 sec.

Monkey-Boot 114 2 11 6 0.043 sec. 0.20 sec. 0.05 sec.

(a) (b) (c)

Fig. 2. (a) Polygons and texture mappings of Monkey-Boot. (b) Polygons and texture
mappings of Monkey-Face. (c) Rendered result of Monkey King.

technique offers a flexible platform for constrained texture mapping on subdivi-
sion surfaces. Statistics of several experiment results are show in Table 1.

The first model, Face-Tiger, is used to illustrate our algorithm throughout
the paper. The property of this model is that percentage of control points in
the input vertices is high (nearly 10%). This will generally result in a high rate
of Steiner points and the generated subdivision surface will significantly deviate
from the original subdivision surface. Our deformation algorithm successfully
reduces most of the differences.

The second and third models, Monkey-Face and Monkey-Boot, are parts of
the model Monkey King. For this model, distortions are small and quite few
control points are given. Our algorithm generated texture coordinates with quite
few Steiner points. In this situation, a soft constraints method may give similar
results. However, soft constraint method cannot constrain continuities along a
texture seam such as the seam of the boot.

7 Conclusion

In this paper, we present a technique that provides users a simple and efficient
way to manipulate texture coordinates on subdivision surfaces. We implemented
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our technique in an interactive system, allowing user to add/remove/move fea-
ture correspondences on both subdivision surfaces and input texture images and
visualize the generated texture maps interactively. Our system can handle arbi-
trary number of features, producing valid and smooth results robustly.
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7. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: theory and practice.
In: ACM SIGGRAPH 2007 Courses. ACM, New York (2007)

8. Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained tex-
ture maps. ACM Trans. Graph. 22, 326–333 (2003)
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Abstract. Detection of visual saliency is an important issue in many
computer vision tasks. In this paper, we propose a novel regional con-
trast based saliency detection method, generating a saliency map that
enables high contrast between the foreground salient object and back-
ground. Our method mainly integrates four principles, which are based
on psychological evidences, visual research and general observation. In
order to suppress the homogeneous regions, and let the novel regions
stand out, our method computes a region’s saliency value based on the
region’s N closest regions defined in the CIE L*a*b color space. We com-
pared our method with the state-of-the-art saliency detection methods
using a standard publicly available database. Experimental results show
that our method has better performance on yielding higher precision
and recall rates. In the application of image editing, we demonstrate
that using our saliency map as energy map can achieve more appealing
retargeting results with less distortions in the important regions.

Keywords: saliency detection, high contrast, closest regions.

1 Introduction

Human vision system is selecting and focusing on important regions that cap-
ture the attention from a variety of vision inputs every moment. We call such
attracting regions Visual saliency or Visual attention. Saliency detection is an
easy task for human beings while it is hard for automatic vision system. How-
ever, the computation of saliency is of significant importance in many computer
vision tasks [1–3].

After the pioneering work by Itti et al. [4] on the rapid scene analysis, many
saliency detection methods have raised in the following years. These methods
mainly fall into two groups: bottom-up saliency detection and top-down saliency
detection. Our proposed method is the first kind. It follows four basic principles
as follows:

1. Local considerations, like contrast and color.
2. Global considerations, frequently occurred, homogeneous features will be less

salient, while the rare features will be more salient.

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 107–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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3. Human fixation rule, which states that human beings will more likely to
focus their eyes on the center than the surround.

4. High-level considerations, the salient object always possesses smaller area
than the background.

Principle 1 and 2 come up by psychological evidence [5–7], principle 3 is sup-
ported by a recent human vision research [8], and principle 4 is a generally ac-
cepted fact, we demonstrate it on one of the largest publicly available databases.
We implement the four principles in a mathematical way. The formula mainly
integrates four elements: color distance between image regions, area of the image
regions, the distance between the center of the region to the center of the im-
age, and zero setting. Our method firstly uses a segmentation step to partition
the image into multiple regions. In order to let the salient region stand out, a
region’s saliency value is based on the color histogram contrast to its N similar
regions defined in the CIE L*a*b color space. Besides, we introduce a weight
indicating a bias to the center of the image. Moreover, it is generally accepted
that background is always larger than the foreground, we propose a mechanism
that if a continuous, homogeneous region is larger than 50% of the image area,
we regard this region as background and set the saliency value of this region
zero. In addition, in order to make the saliency map more robust, we introduce
the multi-scale mechanism.

2 Similar Region Contrast Based Saliency

In this section, we elaborate our algorithm to realize the principle (1)-(4) pro-
posed in Section 1. Consistent with principle (2), regions that have distinctive
features should obtain high saliency, while those regions with frequently occured
features should obtain low saliency, according to principle (1), we use color to
represent this feature. According to principle (3), the salient object will more
likely to be near the center of the image. Complying with principle (4), a salient
object will not be too big.

This algorithm will be organized as follows (see Figure 1). We first sample the
image into a prescribed size, and segment the image into regions. Then, we define
a Global-based saliency based on principle (1)-(3). Next we adopt a mechanism
based on principle (4) into our algorithm to enhance our saliency, Finally, we
extend our saliency to multi-scale to make the saliency more robust.

2.1 Image Segmentation and Region Histogram Distance

For efficiency, we compute saliency based on region, we segment the input image
into regions using a graph-based image segmentation method [9] like Cheng et
al. [10]. After segmentation, we merge the ajacent regions if they are very similar.

We convert the image into CIE L*a*b color space, and quantize the L, a, b
channel respectively. We quantize the number of L ∈ [0, 100], a, b ∈ [−128, 127]
channel into 10, 15, 15 respectively in this paper. We choose CIE L*a*b color
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Fig. 1. The framework of the proposed method. There are four main steps in our
method: segmenting the image into regions, computing Global-based saliency, setting
the saliency of the region zero whose area is 50% more than the area of the image,
and computing the multi-scale saliency. Note that, after the image segmentation, each
region is represented by a gray value which is set arbitrary in this figure.

space due to its closeness to human vision perception compared to RGB color
space. Then we build a color histogram for each region. Specifically, in our imple-
ment, the histogram of each region consists of 2250 components, each component
denotes a color represented by the combination of the value of L, a, b channel
respectively, we then normalize the histogram to 1.

Here, we use χ2-distance to define the disparity between two histograms, which
is more appropriate than Euclidean distance to compare histogram [11].

In our algorithm, for two region rmi and rmj , we define the χ2-distance as [12],

dχ2(rmi , rmj ) =
d∑

i=1

(rmi − rmj )2

2(rmi + rmj )
(1)

where the multiplication by 1/2 is for the requirement of normalization.

2.2 Global-based Saliency

As mentioned in principle (2), if a region is considered to be salient, it may be
distinctive with other regions, thus may not have many similar regions in the
image. Unlike the salient object, background will always have larger areas and
spread all over the image, so they have more chance to have similar background
regions. Based on this observation, we define a region’s saliency based on the
color contrast to its N similar regions.

We denote a region as rmi , where i denotes the index of a region, i ∈ {1, 2, ..., I},
m denotes the index of scale, m ∈ {m1,m2, ...,mM}.

For a region rmi , we compute dχ2(rmi , rmj ) for each j, and select N similar

regions with the smallest χ2-distance between the two regions’ histogram. Then,
the saliency of region rmi is defined as:

S(rmi ) = wm
i

N∑
j=1

wm
j dχ2(rmi , rmj ) (2)

wm
j means the ratio between the area of rmi and the total area of the N regions.
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According to [8], human photographers tend to place objects of interest in the
center of photographs, and the average saliency map from human eye fixations
denotes a bias to the center of the image, which is close to a Gaussian falloff
weight. Here, wm

i is defined as:

wm
i = exp(−δ · (x2 + y2)

(w/2)2 + (h/2)2
) (3)

where w and h are the width and height of the image respectively, x2 and y2

are the square of average Euclidean distance of all pixels in rmi to the center
of the image. δ controls the decent speed from the center to the surround of
the image. We set δ = 5 in this paper, since it is a moderate parameter. As
for N , we suppose that the number of regions after segmentation and ajacent
region merging is Num, we have done an experiment, varying N from Num/4 to
Num · 2/3, and found the influence of N is very small, but if N is too small, the
number of similar region is not enough to separate the salient object from the
background, in all the experiment below, if Num < 10, we set N = �Num/2�,
otherwise, N = �Num/4�. The reason is that if the Num is too small, we choose
more similar regions to make the saliency map more robust.

2.3 Zero Setting

Through the observation of natural images, it is generally accepted that the area
of salient object is always small compared with background. Even though the
salient object accounts for a large area of the image, it will generally be complex
instead of homogeneous and continuous. We suppose that if the size of a region
after merge is more than 50% of the image size, it is considered to be background
and we set 0 for the saliency of this region,

S(rmi ) =

⎧⎨⎩S(rmi )
area(rmi )∑
j area(rmj ) < 50%

0
area(rmi )∑
j area(rmj ) >= 50%

(4)

2.4 Multi-scale Saliency Enhancement

As we don’t know about the prior knowledge of the size of the salient object, and
the single scale segmentation will not always generate a rational segmentation
result through our experiment. We segment the image into different level of sizes
using different parameters, thus obtain different scales. Let C denote the set of
the scales, i.e., C = {m1,m2, ...,mM}.

We represent each pixel by the set of multi-scale image regions centered at it.
The saliency at pixel i is denoted as the mean of its saliency at different scales:

S̄i =
1

M

∑
m∈C

Sm
i (5)
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Finally, in order to get a more visually satisfactory result, we normalize the
saliency as follows:

S̄i =
S̄i −min(S̄i)

max(S̄i)−min(S̄i)
(6)

3 Experiments

In this section, we tested our method on one of the largest publicly available
standard databases provided by Achanta et al [13]. The experimental method
we use is Segmentation by fixed thresholding as do by Achanta et al. [13] and
Cheng et al. [10]. Firstly, we will do some validation experiments about steps of
our methods.

3.1 Influence of the Number of Scales and Zero Setting

As stated in the segmentation method [9], the author uses a Gaussian filter
to smooth the image slightly before computing the edge weights, and suggest
δ = 0.8, which does not produce any change to the image but helps remove
artifacts. In this paper, we segment the image into regions using different δ to
achieve different segmentation results, thus realize the multi-scale scheme. In this
experiment, we vary M from 1 to 7. From Figure 2, we can see the performance
of our saliency map improved with the increase of M .

As to zero setting, first, we will demonstrate the rationality of zero setting.
According to the analysis of 1000 ground truth of the database, there is no region
whose area is more than 50% of the image in the object, thus no zero setting is
performed in the salient object.

From the contrast between red line and black line in the right curve of Fig-
ure 2, we can see that after adding zero setting, the performance of our method
improves by some degrees.
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Fig. 2. The left curve shows the influence of M , the right curve shows the influence
of zero setting. SRCscale1, SRCscale3, SRCscale5, SRCscale7 represent the saliency
maps that are generated by M = 1, 3, 5, 7 respectively. SRC means the method that
involves Zero Setting. SRCzeroout means the method that without zero setting.
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3.2 Experimental Performance

We compared our method with other 9 state-of-the-art saliency detection meth-
ods on this dataset. Following [13], [10], the choice of these methods is motived
by the following reasons: citation in literature(IT [4], SR [14]), recency(GB [15],
SR [14], AC [16], FT [13], CA [17], HC [10], RC [10]), variety(IT is biologi-
cally motivated, MZ [18] is purely computational, GB is hybrid, SR estimates
saliency in frequency domain, AC and FT output full resolution saliency maps),
and being related to our approach(RC [10]). Qualitative comparison can be seen
in Figure 3. We can seen, the saliency map generated by our method possess a
high contrast between salient object and background.

The quantitative comparison can be seen from the precision and recall curves
in Figure 4. The SRC method we used here is 7 scales. Our method achieves
higher precision and recall rates compared with other methods.

Fig. 3. qualitative comparison of saliency maps. The images from left to right columns
are: original images, saliency maps produced using Achanta et.al [16], Goferman et
al. [17], Achanta et.al [13], Harel et al. [15], Cheng et al. [10], Itti et al. [4], Ma et
al. [18], Cheng et al. [10], Hou et al. [14], Our SRC method.
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Fig. 4. Quantitative comparison between our method and other 9 state-of-the-art
saliency detection methods



Similar Region Contrast Based Salient Object Detection 113

3.3 Content-Aware Image Retargeting

Image retargeting aims at resizing an image by expanding or shrinking the non-
informative regions [1], while protecting the salient regions. The type of energy
function in [1] is gradient magnitude, we replace the gradient magnitude map
in [1] with our saliency map as the energy map, for comparison, we also add two
most recently methods [17] and [10], from Figure 5, we can see that our methods
can achieve the most eye-appealing image retargeting result.

Fig. 5. Comparison of our saliency based seam carving with other methods’ saliency
based seam carvings on natural scene. From left to right, original image, saliency map
of [1], saliency map of [17], saliency map of [10], our saliency map, result of [1], result
of [17], result of [10], our method’s result.

4 Conclusion

In this paper, we propose a novel salient region detection method. This saliency
is based on four principles: low-level observation, global observation, human fixa-
tion observation, high-level observation. We propose an algorithm to realize these
four principles. We did some verification experiments to demonstrate the setup of
our algorithm. We also compared our method with other methods, experimental
results show the superiority of our method. In application, we apply our saliency
map on image retargeting. In the future, we will incorporate some other high level
factors into our saliency map, like human face, pedestrian, vehicle detection.
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Abstract. In this paper, we develop a novel visual saliency based shape
enhancement technique for relief surfaces. It consists of three steps.
Firstly, we calculate the multi-channel salience map of the underlying
shape by combining three feature maps, i.e., the feature map of local
height distribution, normal difference, and mean curvature variation.
Secondly, we manipulate the original relief surface by a salience-domain
shape manipulation function. Finally, we adjust surface normals of the
original shape as the corresponding final normals of the manipulated
surface. The experimental results show that our proposed algorithm can
adjust the shading of the original shape and thus for improving its shape
depiction.

Keywords: Shape Enhancement, Multi-Channel Salience, Salience-
Domain Shape Modeling.

1 Introduction

Relief surfaces are now becoming widely used because of their efficiency for rep-
resenting complex highly detailed models in computer graphics applications [1].
Based on the research on the visual depiction of 3D complex shapes [2–4], artists
and illustrators usually employ the principles of visual perception for guiding the
viewer’s attention to visually salient regions. Due to its efficiency of visual persua-
sion in traditional art and technical illustrations, thevisual saliencyhasbeenwidely
used in saliency-guided 3D shape enhancement for object visualization [5–7].

By incorporating the visual salience measure into the graphics modeling and
rendering, the 3D shape depiction can be enhanced by bringing out its visually
salient features. In fact, in the field of computer graphics, two types of shape
enhancement technique have been proposed.

One type of shape enhancement approach is to adjust the geometric vertex
positions to improve the illustration of 3D complex shapes. Displacement map-
ping [8] is the first technique that represents high frequency geometric details by
adding mesostructure properties to the underlying shapes. The view-dependent
displacement mapping proposed by Wang et al. [9] can synthesize the real 3D

� This is a paper for Computational Visual Media Conference 2012 (CVM2012),
November 08—November 10, 2012, Tsinghua University, Beijing, China.
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highly-detailed geometry by modeling the surface displacements along the view-
ing direction. Building upon the Lee’s mesh saliency measure [4], Kim and Varsh-
ney [7] developed a technique to alter vertex position information to elicit greater
visual attention.

Another type of shape enhancement technique is to enhance the visualization
of 3D complex shapes by perturbing the surface normals or altering reflection
rules based on local surface information. The normal perturbation technique
proposed by Cignoni et al. [10] can enhance the surface features by a simple
high-frequency enhancement operation of the surface normals. Inspired by the
principals for cartographic terrain relief, the exaggerated shading of Rusinkiewicz
et al. [11] locally adjusted the light direction over different areas of the underlying
surfaces to depict the surface relief at grazing angles.

In this paper, owing to the multi-channel salience measure, we develop a
novel visual saliency based shape enhancement technique to exaggerate surface
geometric details of the underlying relief shape. The advantage of our shape
enhancement technique is that it can adaptively alter surface shading to reveal
visually salient features by perturbing the surface normals whilst keeping the
desired appearance unimpaired.

2 Multi-channel Salience Measure of Relief Shapes

As a classical definition of image saliency, Itti et al. [12] calculated the saliency
map by applying center-surround filtering to different multi-scale image fea-
ture maps. Inspired by Itti’s model, Lee et al. [4] presented a computational
framework of mesh saliency based on the multi-scale center-surround filters with
Gaussian-weighted mean curvatures. However, as a local shape descriptor, the
mean curvature can only characterize the differential property in an infinitesimal
neighborhood of the underlying surface.

Here, in order to guide the viewer’s attention to the fine-scale geometric de-
tails and thus exaggerate the visually salient features, we take the multi-channel
salience measure as an input of our shape depiction algorithm. Different from
the previous definitions, our salience definition of complex shapes is based on the
multi-channel scheme, that is, the combination of three different feature maps,
such as the 0-order feature map in terms of local height distribution, the 1-order
feature map in terms of normal difference, and the 2-order feature map in terms
of mean curvature variation.

Given an original complex surface, we can determine the Gaussian-weight av-
erage of three types of varied difference between each vertex and its neighboring
vertices as follows,

ζ∗k (v) =

∑
x∈Nk(v)

δ(v,x)exp[−‖x− v‖2/(2σ2)]∑
x∈Nk(v)

exp[−‖x− v‖2/(2σ2)]
(1)

where Nk means the k-ring neighbors of vertex v, σ is the standard deviation
of the Gaussian filter and it is set as 1.0 in our practice. Thus, the three feature
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maps can be expressed as the absolute difference between the Gaussian weighted
averages of three types of geometric information computed at fine and coarse
scales, that is,

S∗(v) = ‖ζ∗2 (v)− ζ∗1 (v)‖ (2)

In detail, the three feature maps can be calculated by the above equation (1)
and (2) as follows.

– Feature map of local height distribution Sh(v): It can be determined
as Sh(v) = ‖ζh2 (v) − ζh1 (v)‖. Here, the Gaussian-weighted average of the
local height distribution ζhk (v) can be calculated by equation (1) if we take
the varied difference as δ(v,x) = 〈nv,v−x〉. The term nv means the normal
vector of vertex v.

– Feature map of normal difference Sn(v): It can be computed as Sn(v) =
‖ζn2 (v)− ζn1 (v)‖. Here, the Gaussian-weighted average of the surface normal
difference ζnk (v) can be determined by equation (1) if we take the varied
difference as δ(v,x) = �n(v,x). The term �n(v,x) means the normal dif-
ference between vertex v and its neighboring one x, which can be computed

as 1.0−〈nv,nx〉
1.0+‖v−x‖/C . The constant C can be chosen as d/10.0, and d is the diag-

onal length of the bounding box for whole model.
– Feature map of mean curvature variation Sc(v): It can be calculated as

Sc(v) = ‖ζc2(v)− ζc1(v)‖. Here, the Gaussian-weighted average of the surface
mean curvature variation ζck(v) can be computed by equation (1) if we take
the varied difference as δ(v,x) = c(v) − c(x). The term c(v) denotes the
mean curvature at vertex v that is estimated by the Taubin’s method [13].

Finally, similar to the definition of image saliency developed by Itti et al. [12], a
non-linear suppression operator N(·) is adopted to reduce the number of salient
points of the above three feature maps before combining them. It can help the
user to define what makes something unique, and therefore potentially salient
features. For each feature map S∗, we first normalize it to [0.0, 1.0], and then
compute the maximum value M∗ and the average m∗ of the local maxima ex-
cluding the global maximum. The suppression step N(S∗) will multiply S∗ by
the factor (M∗ −m∗)2, that is,

N(S∗)(v) = S∗(v) · (M∗ −m∗)2

The final multi-channel mesh salience S(v) can thus be determined by averaging
all of the three maps after applying the non-linear normalization of suppression
[12], that is,

S(v) =
1

3
N(Sh)(v) +

1

3
N(Sn)(v) +

1

3
N(Sc)(v)

Figure 1 gives our multi-channel salience computation steps for Lion model. The
final multi-channel salience map (see Figure 1(e)) combines three feature maps,
which are in terms of local height distribution (see Figure 1(b)), normal difference
(see Figure 1(c)), and mean curvature variation (see Figure 1(d)) respectively.
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3 Multi-channel Salience Based Shape Enhancement
Technique

Now, guided by the multi-channel salience definition of relief surfaces, a novel
shape enhancement technique is proposed in this section. The original relief
surface is firstly decomposed as the low frequency base surface and the high fre-
quency detail surface. The detail layer is then manipulated by a special salience-
domain enhancement function, and the enhanced surface can finally be obtained
by adjusting its surface normals as the corresponding normals of the manipu-
lated surface. The advantage of our shape enhancement technique is that it can
adaptively alter surface shading to reveal visually salient features by perturbing
the surface normals whilst keeping the desired appearance unimpaired.

(a) (b) (c) (d) (e)

Fig. 1. Multi-channel salience computation steps for Lion model. (a): Original Lion
model; (b),(c),(d): The feature map of local height distribution, normal difference,
and mean curvature variation, respectively; (e) The final combined multi-channel
salience map.

3.1 Shape Decomposition of Relief Surfaces

According to Zatzarinni et al.’s indirect approach [14] of surface relief ex-
traction, the original relief surface S (be represented as the triplet {V |S =
(vS ,NS);E|S;F |S} of vertices V |S, edges E|S, and facets F |S) is composed of
a smooth base surface B ⊂ R3 and a height function h : S → R, that is,

S(v) = B(v) + h(v)NB(v) (3)

where the height function h(v) represents the signed distance from the base
surface B to the surface S along the direction of the base’s unit normal
NB(v). For calculating the height field, normals of the base surface should be
pre-computed via a normal smoothing operation. In practice, we employ the
adaptive and anisotropic Gaussian mesh filtering scheme to estimate the face
normals of base surface proposed by Ohtake et al. [15]. Here, the vertex nor-
mals of base surface can then be calculated as the normalized average of the
normals of the incident faces. Furthermore, by using the estimated vertex nor-
mals {NB(vi), i = 1, 2, ..., n}, the height function h(v) of each vertex v can be
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determined implicitly by the energy minimization step for the relative height
differences of its neighboring vertices along the base surface normals. The reader
can refer to their paper [14] for the technical details to calculate the height
function h(v) of each vertex v.

Now, if taking the estimated relief height distribution of an original surface
S = {V |S = (vS ,NS);E|S;F |S} as input, we can determine the base surface as
B(v) = S(v)−h(v)NB(v). The complex shapes can then be considered as made
up of two layers, i.e., the large features (low frequency base surfaceB(v)) defining
its overall shape, plus small features (high frequency detail surface h(v)NB(v))
accounting for the relief details.

3.2 Salience Based Shape Enhancement Operation

Inspired by the Gaussian high-pass filtering and enhancement filtering used in
traditional image processing tasks [16], our salience-domain shape manipulation
function can be defined asHhp(s) = 1−exp[−(s−s0)

2/(2μ2)], where s0 means the
average of the multi-channel salience of the whole model, and the parameter μ is
the user-defined standard deviation of the Gaussian function (We set μ = 0.001
in all of our experiments). The salience-domain shape enhancement function can
then be expressed as follows:

R(s) = a+ bHhp(s) (4)

Here, Hhp(s) is the Gaussian high-pass shape manipulation function. The two
manipulation parameters (a, b) can control final shape enhancement results. Fi-
nally, the surface normal Nenhance of the enhanced surface can be estimated by
averaging the face normals incident to each vertices.

According to the section 3.1, we decompose the original surface into base layer
and detail layer, and incorporate our multi-channel salience to influence its detail
layer in the manipulated surface as follows.

E(v) = B(v) +R(s(v))h(v)NB(v) (5)

where E(v) represents the manipulated surface, and the R(s(v)) is the user spec-
ified shape manipulation function defined on the multi-channel salience domain.

However, to keep the desired appearance unimpaired, it should be emphasized
that we will enhance the shape depiction of 3D complex surfaces by adaptive
perturbing surface normals. Now, it is easy for us to perturb the original surface
normals, that is, by assigning the final normalNenhance of the above manipulated
surface E(v) to the corresponding original surface vertex. The final enhanced
surface S′ = {V |S′ = (vS ,Nenhance);E|S;F |S} will improve the shape depiction
of the original relief surface.

Figure 2 gives our shape enhancement framework for Lion model. The multi-
channel salience map of Lion model is firstly calculated (see Figure 2(b)) and
the relief height distribution is also extracted (see Figure 2(c)). The enhanced
surface (see Figure 2(d)) can then be obtained in a non-photorealistic shading
scheme.
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(a) (b) (c) (d)

Fig. 2. Our shape enhancement framework. (a) Original Lion model; (b) The multi-
channel salience map of Lion model; (c) The extracted relief height distribution
of Lion model; (d) The shape enhancement result for Lion using manipulation
parameters(a, b) = (3.0, 2.0).

(a) (b) (c) (d)

Fig. 3. Shape enhancement results for Lion model using different manipulation param-
eters. The two manipulation parameters (a, b) are taken as (1.0, 2.0) in (b), (3.0, 2.0)
in (c) and (3.0, 4.0) in (d), respectively.

Furthermore, in our saliency-based shape enhancement scheme, the two ma-
nipulation parameters (a, b) introduced in the salience-domain shape manipula-
tion function R(s) = a+ bHhp(s) will always effect the final shape enhancement
results. Figure 3 shows some shape enhancement results for Lion model using
different manipulation parameters (a, b) respectively, in which the surface details
have been exaggerated whilst keeping the desired appearance unimpaired. Here,
the large parameters a and b will bring out more fine-scale salient geometric
details of the underlying shape and can convey both detail and overall shape as
clearly as possible.

4 Conclusion and Future Work

In this paper, by incorporating our multi-channel salience measure into the
salience-domain shape manipulation operation, we develop a novel visual saliency
based shape enhancement technique to exaggerate surface geometric details of
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the underlying relief shape. The experimental results demonstrate that our pro-
posed algorithm can enhance the surface geometric details effectively and thus
for improving the shape depiction of the relief shape. Here, we have considered
the role of surface salience measure in the context of 3D shape depiction. It will
also be interesting in the future to see how other modeling and rendering tasks
can benefit from our multi-channel salience measure, such as saliency-guided
lighting, saliency-guided remeshing and saliency-based mesh segmentation, etc.
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Abstract. We present a new method of extracting multi-scale salient
features on meshes. It is based on robust estimation of curvature on
multiple scales. The coincidence between salient feature and the scale
of interest can be established straightforwardly, where detailed feature
appears on small scale and feature with more global shape information
shows up on large scale. We demonstrate this multi-scale description
of features accords with human perception and can be further used for
several applications as feature classification and viewpoint selection. Ex-
periments exhibit that our method as a multi-scale analysis tool is very
helpful for studying 3D shapes.

1 Introduction

Due to the fast development of 3D scanning and modeling technology, triangular
meshes are now widely used in computer graphics. Objects with fruitful surface
details can be well captured and constructed into mesh form. The interests in
analyzing the geometric information of meshes are ever increasing. This is the
most important step for a variety of applications in computer graphics, computer
vision and geometric modeling, such as shape retrieval, shape alignment, feature
preserved simplification etc.

In shape analysis, the key is how to define intrinsic features which can well
represent the model’s characteristic. To ensure the intrinsic property, the fea-
tures are often required to be invariant under rigid transformation and uniform
scaling. Moreover, the extracted feature should be discriminative to other mod-
els especially with different type. Based on different feature definition, shape
analysis method can be generally classified into two categories: global and lo-
cal [1]. The former one focuses on describing the entire shape of the model with
a so-called “shape descriptor”. The methodology of 3D statistics like shape dis-
tribution and histogram is usually involved, while local geometric details are not
concerned much. On the other hand, local method defines features based on local
surface properties. Curvature and its related quantities are often used here.

There have been several publications about determining saliency or extract-
ing salient features on meshes in the recent years. [2] defined a measure of mesh
saliency using a center-surround operator on Gaussian-weighted mean curva-
tures. This work incorporates insights from human perception, while the extrac-
tion of interesting feature parts is not their concern. [3] defined salient feature as

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 122–129, 2012.
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(a)

(b) (c) (d)

Fig. 1. Multi-scale salient feature extraction. (a) Grog model; (b) Gaussian curvature
on small and large scales (from top to bottom, similarly hereinafter); (c) Local surface
descriptors on small and large scales; (d) Salient features extracted accordingly.

region with high importance and non-trivial local shapes. They proposed to ex-
tract salient features based on curvature from local fitting, but there is no scale
specialty of features considered here. Shilane et al. [4] presented a novel method
to select regions that distinguish a shape by not only judging the shape itself. It
is based on performing a shape-based search using each region as a query into
a database. This method can reasonably select the regions which successfully
discriminate the model with others, but the precondition is the availability of a
shape retrieval environment. Recently, Chen et al. [5] investigated the so-called
‘schelling points’ on 3D surface. These points have to be manually selected by
the users beforehand on a training data set. Then features can be predicted on
new shapes based on the prior knowledge.

In this paper, we present a method of extracting salient geometric features
on multiple scales. It is more likely to analyze local shape properties, while
global shape information is taken into account when the scale of interest becomes
large (see Fig. 1). Although the definition of salient feature is also based on
curvature and its variance, the curvature estimation is performed in a multi-
scale way. The salient features extracted on different scales represent different
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level of surface details. We show that the scale specialty of salient features can
help us to understand the surface shape more comprehensively.

The rest of the paper is organized as follows: In Section 2, we will describe the
procedure of multi-scale salient feature extraction in detail. Two interesting ap-
plications which benefit from our method will be presented in Section 3. Finally,
we conclude our paper in Section 4 and discuss some of the future work.

2 Multi-scale Salient Feature Extraction

In this section, we present our multi-scale salient feature extraction algorithm
in detail. For the geometric meaning of salient feature, we adapt to use the
definition in [3], where salient feature is defined as compound high-level feature
of non-trivial local shapes. Compared with the features represented per mesh
vertex (cf. [2]), it conveys much more shape information of the local geometry.
In their definition, the criterion of the salient local shape is related to its saliency
and interestingness which is determined by curvature and its variance. However,
the curvature information they used is from local fitting and no scale specialty
is taken into account. In our paper, we propose to extract the salient geometric
feature based on curvature estimated on different scales. In this way, we can
further judge the feature property whether it belongs to the surface detail or it
represents surface more globally.

2.1 Multi-scale Curvature Estimation

Instead of computing curvature based on local quadric fitting, we use multi-scale
curvature estimation in [6]. The principal curvatures and the principal frame are
estimated by principal component analysis (PCA) of local neighborhoods defined
via spherical kernels centered on the given surface. The neighborhood radius r
can be naturally treated as the scale of interest. In this paper, we use PCA of the
ball neighborhood for multi-scale curvature estimation for all examples. Fig. 2
shows the maximal principal curvature of the Asian Dragon model estimated on
two different scales. Note that the scale features are more apparently recognized
on the small scale.

2.2 Local Surface Descriptor Generation

Based on the multi-scale curvature information which has been successfully es-
timated, a sparse set of local surface descriptors (LSD) will be built across the
mesh surface afterwards. Each LSD is a surface point p and its associated quadric
patch that approximate the surface in a local neighborhood of p [3]. This kind of
LSD has many advantages: adaptive to the geometry of the shape, independent
of the underlying triangulation, heavily reduce the complexity of the original
triangle mesh representation and ease of clustering non-trivial salient features.

In [3], the LSD of a surface point p is built based on the geometric error
between the local surface patch and the fitting quadric. However, in our method,
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Fig. 2. Multi-scale maximal principal curvatures on the Asian Dragon model, with two
different kernels centered at one of its horn. The red color depicts the highest curvature
value, blue color is for lowest value.(upper: small scale; bottom: large scale.)

the curvatures are estimated using PCA of local neighborhoods. In this case, the
small shape variance can be neutralized on a large scale (see Fig. 2), which means
the geometry itself can not reflect the change of the scale. So instead of using
vertex coordinates, we build the LSD based on the curvature information, which
is correlated with the scale of interest.

We also use the region-growing technique to iteratively generate the LSDs.
First, we sort all the mesh vertices according to their curvature function value
Curv(p) in descending order. The curvature function can be chosen depending
on the model’s property. Commonly we choose the absolute Gaussian curvature,
and for CAD models, the maximal absolute principal curvature will be used
(see [3]). Then we build the LSDs one by one from the sorted list. For a vertex
p in the list which hasn’t been in any LSD, we extract its associated quadratic
patch in a way different from local fitting.

As discussed in Section 2.1, based on PCA of local neighborhood of a surface
point p, we get three eigenvectors which form its local principal frame on scale
r besides principal curvatures κ1 and κ2. Then we form the paraboloid P : z =
1
2 (κ1x

2 + κ2y
2) in principal frame as the second order approximation of the

surface at p on the given scale. To generate the LSD from p, we greedily involve
its neighbor vertices and integrate the error of Gaussian curvature over the local
area until the prescribed threshold is reached. Suppose q is one of its neighbor,
we can get the local coordinates of q by projecting it into p’s principal frame.
Then we only use the local x, y coordinates qx and qy to compute the Gaussian

curvature K̂q
G of the local osculating paraboloid as in Equ. (1).

K̂q
G =

κ1κ2

[1 + (κ1qx)2 + (κ2qy)2]2
(1)

The error of the Gaussian curvature can then be estimated as the difference
between K̂q

G and Kq
G = κq

1 · κq
2, where κq

1 and κq
2 are the principal curvatures

of q estimated in Section 2.1. Note that in this way, we don’t involve local
z coordinate, this can eliminate the error of LSD caused by the local shape
variance when the scale becomes large.
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12 pt

Fig. 3. Local surface descriptors of Gargoyle model on two different scales. Red is high
curvature function value and blue is low. Zoomed figures show the tiny structure and
starting point of each LSD. (left: small scale; right: large scale.)

In our implementation, for the model less than 100K faces, we use 0.3 of its
largest absolute Gaussian curvature times the average area per-vertex as the
threshold. For large models, we set the ratio to 1.0. After a single LSD with
starting point p is extracted, we assign it with the largest curvature function
value, i.e. Curv(p), as the representative curvature value.

Fig. 3 shows the local surface descriptors of Gargoyle model on two different
scales. We can find the LSDs on small scale follow the surface detail (the ring-
like shape) better, while descriptors representing global curved shape are salient
on large scale (see also zoom-in parts).

2.3 Salient Feature Extraction

The definition of saliency or salient feature is the foundation of distinctiveness
analysis of 3D shapes. Due to its generality and our purpose of extracting multi-
scale salient feature regions, we adapt to use the definition and measurement of
salient feature in [3]. They define salient feature as a cluster of LSDs that locally
describe a non-trivial region of the surface.

For each LSD, we grow a cluster of descriptors by recursively adding its neigh-
boring descriptors until the saliency grade of the clustered feature is maximized.
This greedy process stops when the contribution of a candidate descriptor is in-
significant. The saliency grade of a feature cluster is determined by the curvature
function value of each LSD and its variance over the cluster. We refer readers
to [3] for the details.

When the whole surface has been decomposed into feature clusters, the ones
with high saliency grade will be extracted as salient geometric features. This can
be done by a prescribed threshold of the saliency grade value or the percentage
of salient features among all clusters. Since concave feature is usually generated
by adjacent meaningful convex parts [7], we suppress its saliency grade so that
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(a) (b) (c)

Fig. 4. Feature classification of camel model based on salient feature extraction on
two different scales. (a) the classified salient features with different colors on small
scale; (b) the 2D projection of the salient feature space computed using classical multi-
dimensional scaling; (c) the classified salient features on large scale.

the inherent salient feature can be successfully extracted. The results of salient
feature extraction of Grog model on two different scales can be found in Fig. 1.

3 Results and Discussion

3.1 Multi-scale Feature Classification

Our feature classification is based on multi-scale salient features in Section 2.
The goal is to classify salient features on different scales according to their global
shapes, i.e. the salient features which have similar shape will be grouped into
the same class. We believe this way of multi-scale salient feature extraction and
classification will give us a comprehensive understanding of 3D models.

In our method, we use spin-image [8] as the shape signature for each salient
feature extracted from a 3D model. The resemblance between salient features
is measured by their spin-images. A full distance matrix is generated after-
wards. Then we extract a 2D embedding of the salient feature space using
multi-dimensional scaling [9]. From the feature space, we obtain a meaningful
classification of salient features.

Fig. 4(a) shows the salient feature classification results of Camel model on
small scale. We can see the meaningful body parts like ears, toes, heels, mouth,
tail and joint of front legs are successfully classified as in Fig. 4(b). The classifi-
cation results on large scale of the same Camel model can be found in Fig. 4(c).
The salient features capture more global interesting shape of the surface. Toes
and heels are merged to whole foot features.

3.2 Multi-scale Viewpoint Selection

Based on our multi-scale salient feature extraction, we can do the viewpoint
selection on multiple scales. In our approach, different viewpoint is determined
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Fig. 5. Multi-scale viewpoints selected on two different scales for Gargoyle model (left:
large scale; right: small scale)

by visible surface saliency on different scales. The visual effect is like observing
an object from far to near. On large scale, features with some global shape
information show up, while more details of an object are revealed on small scale.
The intuition behind our approach is that people tend to notice global shape
features of an object at first and then pay attention to more detailed ones. Thus,
our approach helps to provide an informative illustration of a 3D object, with
global and detailed features visible on different scales.

In our method, we define the saliency of a mesh vertex v as S(F )/Size(F ),
where F is the salient feature which contains vertex v, S(F ) is the saliency
grade of F , Size(F ) is the number of vertices that belong to F . For vertex
which doesn’t belong to any salient feature, the saliency value is 0. After that,
we search for the viewpoint which maximizes the sum of saliency of all visible
vertices. To avoid the sharp variance of saliency between neighboring viewpoints,
here we set top 50% feature clusters as salient features.

Fig. 5 shows two optimal salient viewpoints of the Gargoyle model, which
are selected on large and small scale respectively. Note that the two wings of
Gargoyle model are more visible on large scale, while the detailed features (e.g.
the rings) are more attractive on small scale.

3.3 Implementation Details

Our multi-scale salient feature extraction algorithm is implemented in C++ on
a windows platform. In all our experiments, we scaled the models to fit into
a bounding box with maximal length 2. On small scale, the radius of the ball
neighborhood is set to 0.03 and on large scale it is 3 ∼ 4 times larger.

We test our algorithm on an Intel Core2 Duo 2.66GHz computer with 2GB
RAM. For Camel model with 70K triangles, the average cost of salient feature
extraction on a single scale is 38.9s. For Grog model with 200k triangle, the cost
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is 40.5s. The curvature estimation step takes most of the time. On the other
hand, the extraction of local surface descriptors and salient features are much
more efficient due to the greedy approach, these two processes can be done within
5 seconds for all test models.

4 Conclusion and Future Work

In this paper, we presented a new method of multi-scale salient feature extrac-
tion. The salient features extracted on small scale represent the surface detail
while more global interesting salient regions can be extracted on large scale. This
kind of multi-scale description of features accords with human perception from
different scales of interest. We also applied the multi-scale salient feature ex-
traction to feature classification and viewpoint selection, both applications show
that our method as a multi-scale analysis tool is very helpful for studying 3D
shapes.

We want to apply the multi-scale salient feature extraction to a wider usage
like in shape matching, where different models can be compared on different
scales. Models have details in common have more similarity on small scale while
models with similar global features are expected to be matched on large scale.
We believe this kind of multi-scale feature based shape matching is favorable of
further applications like modeling by example and shape retrieval.
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Abstract. Reliable estimation of visual saliency has become an essential
tool in image processing. In this paper, we propose a novel salient region
detection algorithm, superpixel contrast (SC), consisting of three basic
steps. First, we decompose a given image into compact, regular super-
pixels that abstract unnecessary details by a new superpixel algorithm,
hexagonal simple linear iterative clustering (HSLIC). Then we define the
saliency of each perceptually meaningful superpixel instead of rigid pixel
grid, simultaneously evaluating global contrast differences and spatial
coherence. Finally, we locate the key region and enhance its saliency
by a focusing step. The proposed algorithm is simple to implement and
computationally efficient. Our algorithm consistently outperformed all
state-of-the-art detection methods, yielding higher precision and better
recall rates, when evaluated on well-known publicly available data sets.

Keywords: saliency detection, superpixel, global contrast, focusing.

1 Introduction

A profound challenge in computer vision is to make the computer understand
the surrounding scene via image or video. To achieve this goal, three vital tasks
need to be resolved: focusing on the key object, detecting its shape and contour,
and capturing the context information. Therefrom saliency detection technol-
ogy comes into being and provides an alternative methodology. Reliable saliency
estimation breaks down the barrier between the content understanding and un-
derlying characteristics, making the higher level understanding of image possible;
what’s more, it furnishes valuable information for various applications including
content-aware image editing [1] and image restoration [2, 3].

Existing saliency detection algorithms can be broadly categorized into local
and global schemes. Local methods [4–7] estimate the saliency of a particular
image region based on immediate neighborhoods, and tend to produce higher
saliency values near edges instead of uniformly highlighting salient objects.

� This project was supported by NSFC (No. 61020106001 and No. 61202148), Ph.D.
Programs Foundation of Ministry of Education of China (No. 20110131130004), and
Shandong Provincial Natural Science Foundation (No. ZR2011FM031).
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Global methods [8, 9] take contrast relations over the complete image into ac-
count. While these algorithms are more consistent in terms of global structures,
they suffer from the involved combinatorial complexity, hence they are applica-
ble only to relatively low resolution images, or they need to operate in spaces
of reduced dimensionality, resulting in loss of small, potentially salient detail.
FT [10] and SR [11] are the methods based on frequency analysis, which belong
to the global scheme. RC [9] is one of the best existing methods, which simul-
taneously evaluates global contrast differences and spatial coherence. However,
RC cannot boast excellent boundary adherence, mainly because the graph-based
image segmentation preprocessing [13] RC uses cannot do this easily.

In this paper, we propose a superpixel-based global contrast method (SC) to
measure saliency. Our SC method first groups pixels into perceptually meaning-
ful atomic regions, superpixels, via a new superpixel algorithm, hexagonal simple
linear iterative clustering (HSLIC). HSLIC uses hexagon to control superpixel’s
shape and size, and exploits new search mechanism and merge mechanism as
well. Note that superpixels HSLIC generates are more compact, more uniform
in size, and adhere to object boundaries better. Furthermore, it is easy to use
and computationally efficient. Then SC assigns saliency values to superpixels of
high quality above, instead of the huge number of rigid structures of the pixel
grids, simultaneously evaluating global contrast differences and spatial coher-
ence. In this way, our algorithm not only separates the object-of-interest from
its surroundings with excellent boundary adherence, but also makes the saliency
measure sufficiently efficient for real-time applications.

We have extensively evaluated our algorithm on the largest publicly available
benchmark data sets [10], and compared it with nine state-of-the-art methods
[4–12]. The experiments show SC outperformed existing saliency detection meth-
ods, yielding higher precision and better recall rates, while still being simple and
efficient. We also present applications of the extracted saliency maps to segmen-
tations and non-photorealistic rendering.

2 Superpixels Based Global Contrast

Our saliency detection method SC consists of the following three basic steps.

2.1 Superpixels Based Preprocessing

The pixel-based processing is usually inefficient owing to the huge number of pix-
els. In order to reduce computational complexity, we introduce a preprocessing
step based on superpixels.

SLIC approach [14], as one of the best existing methods, clusters pixels in
the combined five-dimensional color and image plane space. It could generate
compact, nearly uniform superpixels efficiently with linear complexity.

DSo =

√
(lk − li)

2 + (ak − ai)
2 + (bk − bi)

2 + m
So

√
(xk − xi)

2 + (yk − yi)
2 (1)
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where DSo is the sum of the color distance in CIELAB color space between two
pixels and the xy plane distance, So is the grid interval, and m controls the
compactness of a superpixel. However, as for SLIC, the arrangement of cluster
centers and the search neighborhood are both squares, which may not be able
to achieve the best effects when we cluster pixels or do saliency detections. So
we propose a new method for generating superpixels, HSLIC, which is memory
efficient, boasts excellent boundary adherence, and improves the performance of
saliency measure. Our algorithm consists of the following steps.

Seeds Initialization. For color images in the CIELAB color space, the clus-
tering procedure begins with an initialization step where K initial seeds are
sampled according to hexagons on a regular grid spaced

√
3s pixels apart, as

illustrated in Fig.1. K, as the only parameter of the algorithm, is the desired
number of approximately equally-sized superpixels. s is the length of side of

hexagonal superpixels, and s =
√
2
√
3N/9K, where N is the number of pixels.

The arrangement of seeds determines the shape of superpixels, so our method
will produce hexagonal superpixels. The well-known honeycomb conjecture [15]
has been proved. This conjecture, put simply, states that the best way to parti-
tion a plane into regions of equal area is with a region that is a regular hexagon.
Hexagonal superpixels have many advantages, such as more balanced adjacency
relations and higher isotropy. Meanwhile, because cells in the foveal region of
retina are packed in nearly perfect hexagons [16], so hexagonal superpixels can
simulate the eyes of human better, and are more suitable for saliency detection.

Besides, edges of our hexagonal superpixels could fit image boundaries better.
In SLIC, as for a superpixel, eight adjacent cluster centers (color, distance) could
affect its shape, in addition to its own. We should pay more attention to the color
attribute when we cluster pixels if we want edges of superpixels to fit edges of
objects better. Simply increasing the weight of color distance in distance measure
function (Eq. (1)) will cause a series of problems, for instance pixels’ cluster may
be scattered. The best solution is to make the distribution of cluster centers more
balanced (in accordance with hexagons).

Searching Matching Pixels Iteratively. We treat the seeds as cluster cen-
ters, then associate each pixel with the nearest cluster center whose search region

Fig. 1. Clustering pixels schematic
diagram of SLIC and HSLIC

Fig. 2. An example of KRF. Left
to right: Input image, basic saliency
map, focal superpixels, saliency change
schematic, and refined saliency map.
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overlaps its location. Since the expected length of side of a hexagonal superpixel
is approximate s, the search for similar pixels is done in a round neighborhood
whose radius is 2s around the superpixel center, as shown in Fig. 1. After this, an
update step adjusts cluster centers to be the mean [l a b x y]T vector of all pixels
belonging to the cluster. And then the L1 norm is used to compute a residual
error E between the new cluster center locations and previous ones. Assignment
and update steps can be repeated iteratively until the error converges.

Note that, we search the best matching pixels from a round neighborhood
rather than a square neighborhood of SLIC. Updating the shortest distance
from the pixel to the cluster centers in the round neighborhood of each cluster
center, could ensure that numbers of pixels we optimize are the same in all
directions, could make the boundary adherence of superpixels more accurate,
and furthermore could deal with the situation of complex edges better.

Besides, at the initial period of HSLIC, as for any seed, the distances between
it and six adjacent seeds are the same, and so do the influence spheres of the
search neighborhoods. In this way, pixels in the flat areas could reach a steady
state with relatively few iterations. But SLIC, with different distances and in-
fluence spheres above, cannot do this. Residual error E of HSLIC drops sharply
in a few iterations, so we use 2 iterations for all the results in this paper.

Enforcing Connectivity. At the end of the clustering procedure, some or-
phaned pixels that do not belong to the same connected component as their
cluster center may remain. To correct for this, SLIC relabels disjoint segment
with the label of the largest neighboring cluster, but both may have a large color
deviation, so we change the merge criterion, relabling small disjoint block with
the label of the closest color neighboring cluster.

Fig. 3 provides a visual comparison of our output against SLIC. We note that
superpixels HSLIC generates are more compact, more uniform in size, adhere to
object boundaries better and have more balanced adjacency relations and higher
isotropy. Moreover, for typical natural images, HSLIC needs O(N) computation
time and is sufficiently efficient for real-time saliency detection.

Fig. 3. Visual comparison of SLIC and HSLIC. Left to right: Input image, superpixels
obtained by SLIC, superpixels obtained by HSLIC, saliency map obtained by SC based
on SLIC superpixels, and saliency map obtained by SC based on HSLIC superpixels.
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Fig. 4. Visual comparison of saliency maps. Left to right: Input image, IT, GB, AC,
MZ, LC, FT, SR, CA, RC and SC.

2.2 Superpixels Based Global Contrast

Contrast is a measure of color difference, but it is influenced by spatial relation-
ship as well. High contrast attracts people’s attention; moreover, high contrast
to its surrounding regions is usually stronger evidence for saliency of a region
than high contrast to far-away regions. Since directly introducing spatial rela-
tionships when computing pixel-level contrast is computationally expensive, we
define the saliency of each superpixel rk instead of pixel simultaneously evalu-
ating global contrast differences and spatial coherence. In this way, we get basic
saliency maps, as illustrated in Fig. 2.

S(rk) =
∑

ri �=rk

√
(lk−li)

2+(ak−ai)
2+(bk−bi)

2√
(xk−xi)

2+(yk−yi)
2

(2)

where the numerator is the color distance in CIELAB space between two su-
perpixels, and the denominator is the xy plane distance. Note that as for a
superpixel, if another superpixel is far away, even if the two have large color
difference, the salient contribution another superpixel to this one is still small.

2.3 Key Region Focusing

The basic saliency map usually highlights more than one region. But when people
view the image, only one region can get their first attention. As the Gestalt law
[17] goes, the region close to the focal point should be more prominent than
that away from. So we propose a new method, key region focusing (KRF), to
highlight the main region, consisting of two basic steps.

At first, we determine the focal superpixels via an adaptive value Tα, while
the adaptive method can adapt to changes of images well.

Tα =
α

K

∑
ri∈R

S(ri) + (1 − α)max
ri∈R

S(ri) (3)

where R is the set of all superpixels in the image, K =| R |. The greater α, the
more focal superpixels. In our implementation, we use K = 300 and α = 0.7.

Then the saliency of each superpixel ri can be reset according to focal super-
pixels. d̄foci(ri) is the sum of Euclidean distances between ri and all the focal
superpixels. We normalize d̄foci(ri) to [0, 1], then recalculate the saliency map.

Ŝ(ri) = S(ri)(1− d̄foci(ri)) (4)

Fig. 2 shows the effect of optimizing the basic saliency map by our KRF method.
It can be seen that KRF only emphasizes the main region of the image, and
further weakens the saliency of small regions and other regions.
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Fig. 5. ( Left and middle )Precision-recall curves for naive thresholding of saliency
maps using 1000 publicly available benchmark images. ( Right ) Precision-recall bars
for our saliency cut algorithm using different saliency maps as initialization.

3 Experimental Comparisons

We compared our algorithm SC with 9 state-of-the-art saliency detection meth-
ods, among which four were local methods (IT [4], GB [5], AC [6], MZ [7]),
and five were global methods (LC [8], FT [10], SR [11], CA [12], RC [9]). Com-
parisons mainly consisted of three aspects: segmentation by fixed thresholding,
saliency cut and non-photorealistic rendering. Fig. 4 shows a visual comparison
of saliency maps obtained by the various methods.

3.1 Segmentation by Fixed Thresholding

We evaluate the performance of our algorithm SC measuring its precision and
recall rate. Set a threshold Tf ∈ [0, 255], then we can get a binary segmentation
of salient region. We vary the threshold Tf from 0 to 255, to reliably compare how
well various saliency detection methods highlight salient regions in images. We
use the largest publicly available database [10] provided by Achanta et al., which
has ground truth in the form of accurate human-marked labels for salient regions.
Fig. 5 shows the precision-recall curves of ten methods. SC is very outstanding
compared to four local methods. Relative to five global methods, SC still has
significant progress compared to the best RC. The precision and recall curves
clearly show that SC outperforms the other nine methods.

3.2 Saliency Cut

The extracted saliency map can be used to assist in object-of-interest segmenta-
tion. Firstly, we binarize the saliency map using an adaptive value Tα (Eq. (3)).
Then we use this binarization result to automatically initialize GrabCut. And
then we iteratively run GrabCut to improve the saliency cut result.

Average precision, recall, and F-Measure are compared over the entire ground-
truth database [10], with the F-Measure defined as:

Fβ =
(1 + β)Precision×Recall

β × Precision+Recall
(5)
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Fig. 6. Left to right: Input image, stylized drawing result, and non-photorealistic ren-
dering result. Effects are produced using lens blur and mosaic pixelate respectively.

We use β = 0.3 to weigh precision more than recall. As can be seen from the
comparison (see Fig. 5-right), saliency cut using our SC saliency maps signifi-
cantly outperforms other methods. Compared with the state-of-the-art results on
this database of RC (Precision = 0.871, Recall = 0.829), our method achieves
better accuracy and integrity (Precision = 0.884, Recall = 0.892).

3.3 Non-photorealistic Rendering

Non-photorealistic rendering (NPR) is the abstraction of the real world. This
technology highlights meaningful parts of an image while masking out unimpor-
tant regions. Inspired by this observation, a number of NPR efforts use saliency
maps to generate interesting effects [1]. However, it is difficult to combine the
saliency detection with various rendering methods one by one. So our strategy is
to restore details of the key object according to the saliency map after rendering.
We define the final non-photorealistic rendering result ÎNPR as,

ÎNPR(pi) = w(pi) · I(pi) + [1− w(pi)] · INPR(pi)

w(pi) =

⎧⎪⎨⎪⎩
0 S(pi) < Tlow,

α · S(pi) Tlow ≤ S(pi) < Thigh,

α · Thigh S(pi) ≥ Thigh.

(6)

where I is the original image, INPR is the stylized drawing result, and w(pi) is
the weight of pixel pi. In our implementation, we use Tlow = 0.2, Thigh = 0.8 and
α = 0.5 with the pixel’s saliency normalized to [0, 1]. Fig. 6 shows NPR results of
lens blur and mosaic pixelate. As can be seen, our NPR method better preserves
details in important image parts while smoothing out others, and generates
interesting effects under the premise of keeping the rendering style consistent.

4 Conclusions and Future Work

We presented a new saliency computation method, namely SC. The SC method
is based on compact and regular superpixels, simultaneously evaluates global
contrast differences and spatial coherence, and generates high quality saliency
maps with relatively low computational cost. We evaluated our method on the
largest publicly available data set and compared our scheme with nine other
state-of-the-art methods. Experiments indicate that the proposed scheme is su-
perior in terms of both precision and recall, while still simple and efficient.
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In the future, we plan to further refine our saliency maps to eliminate artificial
marks and improve visual effects. Also, it is desirable to incorporate higher-level
features such as human faces, symmetry into saliency maps. Finally, it may
be beneficial to detect real time, as thus saliency detection technology can be
broadly used to video processing, rapid scene analysis and other capacious fields.

References

1. Cong, L., Tong, R., Dong, J.: Selective image abstraction. Visual Comput. 27(3),
187–198 (2010)

2. Fu, S., Zhang, C.: Adaptive bidirectional diffusion for image restoration. Sci. China
Inform. Sci. 53(12), 2452–2460 (2010)

3. Fu, S., Zhang, C.: Image denoising and deblurring: non-convex regularization, in-
verse diffusion and shock filter. Sci. China Inform. Sci. 54, 1184–1198 (2011)

4. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid
scene analysis. IEEE T. Pattern Anal. 20(11), 1254–1259 (1998)

5. Harel, J., Koch, C.: Graph-based visual saliency. In: Advances in Neural Informa-
tion Processing Systems 19, pp. 545–552 (2007)

6. Achanta, R., Estrada, F.J., Wils, P., Süsstrunk, S.: Salient Region Detection and
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Abstract. Multi-label classification plays an increasingly significant
role in most applications, such as semantic scene classification. In or-
der to exploit the related information hidden in different labels which is
crucial for lots of applications, it is essential to extract a latent structure
shared among different labels. This paper presents an incremental ap-
proach for extracting a shared subspace on dynamic dataset. With the
incremental lossless matrix factorization, the proposed algorithm can be
incrementally performed without using original existing input data so
that to avoid high computational complexity and decreasing the predic-
tive performance. Experimental results demonstrate that the proposed
approach is much more efficient than the non-incremental methods.

Keywords: Multi-label classification, incremental learning, shared
subspace, singular value decomposition.

1 Introduction

So-called multi-label classification [4] is that multiple labels are associated with
a single object. It plays an increasingly significant role in most applications.
For example, in protein function classification [8], multiple functional labels are
associated with each protein; in text categorization [9], each text document is
assigned to multiple categories. As all the labels share the same input space, the
semantics conveyed by different labels are usually correlated. Hence, to capture
the intrinsic relationships among different labels, it is essential to exploit the
related structures among them.

At present, there are several existing classical algorithms to mine correla-
tion between sets of observed variables, such as CCA (Canonical Correlation
Analysis) [5] and ASO (Alternating Structure Optimization) [6]. These methods
calculate low-dimensional embedding of the input data directed by relevant la-
bel information. In addition, a supervised learning framework based on the least
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squares loss has been proposed in [7] recently, called Shared-Subspace Learning
for Multi-Label Classification (SSLMC) method. The approach seeks a linear
transformation to discover a shared subspace.

However, the above-mentioned algorithms need to use all the input data dur-
ing the learning process. So these methods will face an enormous challenge in the
real-world applications for the following reasons. For one thing, with the rapid
increase in the amount of data, the data may be dispersedly stored in different
places, and hence it is commonly difficult to collect them together simultane-
ously. In addition, many online applications will continuously generate new data
like stream data. Consequently, it is nearly impossible for us to obtain all the
input data before the learning. As a result, this causes an expensively relearn-
ing by way of repeating a whole non-incremental training that involves the new
data and the original existing data. Therefore, low computational complexity
is hardly achieved for the above-mentioned approaches due to the lack of the
scalability.

To overcome the above-mentioned shortcomings, this paper proposes an in-
cremental approach for extracting a shared subspace on dynamic dataset, called
ISSLMC (Incremental Shared Subspace Learning for Multi-Label Classification)
algorithm. This method combines the ideas of SSLMC method with the incre-
mental lossless matrix factorization without using the original existing input
data so that to avoid high computational complexity and decreasing the predic-
tive performance. Experimental results demonstrate that the proposed approach
is much more efficient than the non-incremental methods.

Notation: Let X0 = [x1, · · · , xn]
T ∈ Rn1×d denote the original input data ma-

trix, where n1 is the number of the initial training instances, d is the dimension-
ality of the input space, and xi ∈ Rd is the i-th instance. Y0 = [y1, · · · , yn]T ∈
Rn1×m denotes the label indicator matrix, where m is the number of labels,
yi ∈ Rm is the label vector of the i-th instance, and yij = 1 if and only if xi is
associated with label j, yij = −1 otherwise. X0 = U1Σ1V

T
1 is used to denote the

compact singular value decomposition (SVD) [3] of X0, where rank(X0) = k1,
U1 ∈ Rn1×k1 and V1 ∈ Rd×k1 have orthonormal columns, Σ1 is a k1 × k1 diag-
onal matrix with non-zero singular values of X0 on the principal diagonal. Let
{xi}n2

i=1 ∈ Rd denote a set of the newly-collected input data, where n2 is the num-
ber of the new instances. These data constitute the data matrix XN ∈ Rn2×d.
The corresponding label information is provided by the label indicator matrix
YN ∈ Rn2×m.

2 Brief Review on SSLMC Algorithm

Recently, a supervised learning framework for extracting a shared subspace
among different labels is proposed in [7] as follow:

min
U,V,Θ

‖ X0U − Y0 ‖2F + α ‖ U −ΘTV ‖2F + β ‖ U ‖2F
s.t. ΘΘT = I

(1)
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where U = [u1, · · · , um]T ∈ Rd×m, ul = wl + ΘT vl, V = [v1, · · · , vm]T ∈ Rr×m,
wl ∈ Rd and vl ∈ Rr are the weight vectors, the linear transformation Θ is
common for all labels and it projects the input data onto a low-dimensional
shared subspace, α and β are the regularization parameter, and ‖•‖2F denotes
the Frobenius norm.

The procedure for computing Θ is summarized in Algorithm 1. In the first
step, the computational complexity for the SVD of the n1×dmatrixX0 is O(dn2

1)
assuming d > n1. In the sixth step, the computational complexity for the SVD
of the m × k1 matrix C is O(k1m

2) assuming k1 > m. In the seventh step, the
computational complexity for the QR decomposition of the d×k1 matrix V1DB2

is O(dk21). Because m and k1 are usually both small, the computational cost of
SSLMC algorithm depends mostly on the cost for computing the compact SVD
of the input data matrix X0.

Algorithm 1. Shared-Subspace Learning for Multi-label Classification (SSLMC)

Input: X0 and Y0

Output: Θ
1: Calculate the compact SVD of X0 as X0 = U1Σ1V

T
1 .

2: D1 = (Σ2
1/n+ βI)−1Σ1.

3: D2 = Σ1(Σ
2
1/n+ (α+ β)I)−1.

4: D = (D1D
−1
2 )1/2.

5: W = D−1D1.
6: Calculate the SVD of C = Y T

0 U1W as C = B1ΛB
T
2 .

7: Calculate the QR decomposition of V1DB2 as V1DB2 = QR.
8: Set Θ = QT .

3 The Proposed Algorithm

In this section, we will present our proposed Incremental Shared Subspace Learn-
ing for Multi-Label Classification (ISSLMC) algorithm.

3.1 Incremental Lossless Matrix Factorization

We propose an incremental lossless matrix factorization method to update the
compact SVD of the input data matrix with the newly-collected data. Suppose
that we can obtain an augmented input data matrixM = [XT

0 , X
T
N ]T by inserting

XN into the original input data matrix X0. Further, M can be factorized into

M=

[
X0

XN

]
=

[
U1Σ1V

T
1

XN

]
=

[
U1

I

] [
Σ1V

T
1

XN

]
(2)

by virtue of X0 = U1Σ1V
T
1 , where I ∈ Rn2×n2 is an identity matrix. Assume

the compact SVD [3] of block matrix N = [(Σ1V
T
1 )T , XT

N ]T as

N = H1Λ1G
T
1 (3)
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where rank(N) = k,H1 ∈ R(k1+n2)×k andG1 ∈ Rd×k have orthonormal columns
and Λ1 is an k × k diagonal matrix with non-zero singular values of N on the
principal diagonal. Thereby, M can be factorized into

M=

[
U1

I

]
H1Λ1G

T
1 (4)

The following Lemma 1 shows that Eq.(4) is the compact SVD of M .

Lemma 1. Given an augmented input data matrix M = [XT
0 , X

T
N ]T , the com-

pact SVD of X0 as X0 = U1Σ1V
T
1 , the compact SVD of block matrix N =

[(Σ1V
T
1 )T , XT

N ]T as N = H1Λ1G
T
1 , and I ∈ Rn2×n2 . Define three matrices:

P1=

[
U1

I

]
H1, S1=Λ1, and Q1=G1

Then the compact SVD of M is M = P1S1Q
T
1 .

Proof. Because P1 ∈ R(n1+n2)×k and Q1 ∈ Rd×k have orthonormal columns,
there exists two matrices E ∈ R(n1+n2)×((n1+n2)−k) and F ∈ Rd×(d−k) such
that [P1, E] ∈ R(n1+n2)×(n1+n2) and [Q1, F ] ∈ Rd×d are orthogonal matrices [3,
Chapter 2.5, page 69], that is

I(n1+n2) = [P1, E][P1, E]T and I(n1+n2) = [P1, E]T [P1, E] (5)

Id = [Q1, F ][Q1, F ]T and Id = [Q1, F ]T [Q1, F ] (6)

In addition, according to Eq.(4), M can be further factorized into the product
of three matrices P1, S1, and QT

1 , i.e., M = P1S1Q
T
1 . We use P1, S1, and Q1 to

construct three new matrices:

P =[P1, E], S=

[
S1

0

]
, and QT =[Q1, F ]T

As P1S1Q
T
1 = PSQT , we can obtain

M = PSQT (7)

As P and Q are obviously unitary matrices, they are invertible matrices. Ac-
cordingly, Eq.(7) indicates that M and S are equivalent to each other. Thus M
and S have the same singular values. Since S is a diagonal matrix, the entries on
the principal diagonal of S are its singular values. Hence these entries are also
the singular values of M . So the entries on the principal diagonal of Λ1 are the
non-zero singular values of M . In addition, according to Eq.(7), we can obtain

QTMTMQ = S2 (8)

From Eq.(8), it follows that becauseQ is an unitary matrix,MTM is a Hermitian
matrix, and S2 is a diagonal matrix, the column vectors of Q = [Q1, F ] are
the eigenvectors of MTM . That is to say, the column vectors of Q are the
right singular vectors of M , and the column vectors of Q1 are corresponding
to the non-zero singular values of M . Moreover, in a similar way, the column
vectors of P1 are corresponding to the non-zero singular values of M . Therefore,
M = P1S1Q

T
1 is the compact SVD of M . So the proof is completed. �



142 L. Zhang, Y. Zhao, and Z. Zhu

3.2 The Proposed ISSLMC Algorithm

Following Lemma 1, we propose an Incremental Shared Subspace Learning for
Multi-Label Classification (ISSLMC) algorithm. The computing procedure of
the proposed ISSLMC method can be summarized in Algorithm 2.

Algorithm 2. Incremental Shared Subspace Learning for Multi-label Classification
(ISSLMC)

Input: U1, Σ1, V1, XN , YN , and Y0

Output: Θ
1: Calculate the compact SVD of N = [(Σ1V

T
1 )T , XT

N ]T as N=H1Λ1G
T
1

2: Update Y0=[Y T
0 , Y T

N ]T , U1=[UT
1 , IT ]TH1, Σ1 = Λ1, and V1 = G1.

3: Calculate Θ = SSLMC(U1, Σ1, V1, Y0).

3.3 Analysis of Computational Complexity

In this subsection, we will discuss the computational complexity of the proposed
ISSLMC algorithm in two cases. The first case is aimed at the large sample size
problem, in which the number of the training instances is far greater than the
dimensionality of the input space. The second case is aimed at the small sample
size problem, in which the number of the training instances is far less than the
dimensionality of the input space. As the original input data matrix is typically
not a full row rank matrix, its rank k1 is less than the number of the initial
training instances n1, that is n1 > k1.

For the first case with n1 > k1, we can have d � (k1 + n2) < (n1 + n2). Thus
for the SSLMC algorithm, the computational complexity for the SVD of the
(n1 +n2)× d matrix M is O((n1 +n2)d

2). However, for the ISSLMC algorithm,
the computational complexity for the SVD of the (k1 + n2)× d block matrix N
is O((k1 + n2)d

2). Due to n1 > k1, ISSLMC method has lower time complexity
than SSLMC algorithm in the first case.

For the second case with n1 > k1, we can have d � (n1 + n2) > (k1 + n2).
Hence, for the SSLMC algorithm, the computational complexity for the SVD of
the (n1 + n2) × d matrix M is O(d(n1 + n2)

2). Nevertheless, for the ISSLMC
algorithm, the computational complexity for the SVD of the (k1 +n2)× d block
matrix N is O(d(k1 + n2)

2). Owing to n1 > k1, ISSLMC method has lower
time complexity than SSLMC algorithm in the second case. In addition, because
(n1 + n2)

2 is larger than (k1 + n2)
2, the proposed ISSLMC algorithm is more

suitable for the small-scale samples.

4 Experimental Study

Two experiments are presented in this section. We will evaluate the performance
of the proposed ISSLMC algorithm with other five non-incremental methods,
namely SSLMC, CCA+Ridge, CCA+SVM, SVM, and ASO, where CCA+Ridge
denotes that CCA is performed first before ridge regression [1] and CCA+SVM
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denotes that CCA is performed first before linear support vector machines [2].
The codes of the five non-incremental methods are publicly available at the
website (http://www.public.asu.edu/∼sji03/multilabel/).

4.1 Experimental Setup

The two experiments are conducted on two publicly available multi-label datasets
(http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/), namely mediamill
and rcvlv2. The brief description of the datasets is in Table 1.

Table 1. Statistics of the multi-label datasets

Dataset Dimensionality Total samples

mediamill 120 43907
rcvlv2 47236 30000

In addition, each dataset is separated into a training set, a test set, and an
incremental set, where each subset is constructed by way of random sampling.
We use 5-fold cross-validation to tune the regularization parameters of the six
methods based on AUC (area under the receiver operating characteristic curve)
from the candidate set {10i|i = −6,−5, · · ·, 2} on the training set.

4.2 Experiment A : Performance Evaluation for Large Sample Size
Problem

This experiment is to evaluate the performance of the proposed ISSLMC al-
gorithm for the large sample size problem on mediamill datasets, in which the
training samples account for 20 percent of the original dataset, another 20 per-
cent of the original dataset is used as the incremental data, and the remaining
instances act as the test data. We pick out 100 attributes occurring most fre-
quently from the original dataset such that the number of the training instances
is far greater than the dimensionality of the input space. Fig.1 illustrates the
performance of the six methods with fixed number of dimensions.

0 800 160024003200400048005600640072008000
10

0

10
1

10
2

10
3

10
4

10
5

Number of Incremental Instances

C
om

pu
ta

ti
on

 t
im

e 
(I

n 
se

co
nd

s)

 

 

ISSLMC
SSLMC
CCA−SVM
CCA−ridge
SVM
ASO

(a) computation time

0   
800 

1600
2400

3200
4000

4800
5600

6400
7200

8000

ISSLMC
SSLMC

CCA−SVM
CCA−ridge

SVM
ASO

0

0.2

0.4

0.6

0.8

IncrementMethod

A
U

C

(b) predictive performance

Fig. 1. Comparison of performance with fixed number of dimensions



144 L. Zhang, Y. Zhao, and Z. Zhu

From Fig.1(a), we can observe that the proposed ISSLMC approach is the
fastest and with the increasing amount of the incremental instances the superi-
ority of the proposed ISSLMC algorithm in computational cost is more obvious.
In the aspect of the predictive performance, it can be seen from Fig.1(b) that
despite the unceasing insertion of new samples into the initial training set, the
proposed ISSLMC approach always achieves the same AUC as the SSLMC algo-
rithm. This indicates that no matter what structure the input data matrix has,
no error will be introduced in the proposed ISSLMC algorithm in comparison
with the SSLMC method.

4.3 Experiment B : Performance Evaluation for Small Sample Size
Problem

In this experiment, we will demonstrate the performance of our proposed
ISSLMC algorithm for the small sample size problem. It is to compare the per-
formance of our proposed ISSLMC algorithm and SSLMC method with varied
number of dimension on the basis of the randomly-selected data features on the
rcvlv2 datasets. The first 200 ones of the randomly-selected attributes are used
as the initial data features of the instances. Afterwards, the number of data fea-
tures is increased gradually to 2000. We randomly sample 5 percent of the data
from the original dataset as the training samples and another 1 percent of the
data from the original dataset as the incremental data such that the number of
the training instances is far less than the dimensionality of the input space.

Fig.2 displays the comparison of computational time of the proposed ISSLMC
algorithm and SSLMC approach and the rank of the original input data matrix
with varied number of dimension. In Fig.2(a), the red dashed line indicates the
number of the initial training instances, and hence if a rectangle in the pictures
touches the red dashed line, this means that the original input data matrix is a
full row rank matrix for the corresponding dimensionality of the input space.

We can observe from Fig.2 that if the rank of the original input data matrix
is always less than the number of the initial training instances, the proposed
ISSLMC approach is faster than the SSLMC method. Furthermore, as is exhib-
ited in the Fig.2(b), with the increasing dimensionality of the input space, the
proposed ISSLMC algorithm wins an increasingly predominance over SSLMC
algorithm on condition that the original input data matrix is not a full row rank
matrix.
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5 Conclusion

This paper proposes an Incremental Shared Subspace Learning for Multi-Label
Classification (ISSLMC) approach. With the incremental lossless matrix fac-
torization, the proposed ISSLMC algorithm can be incrementally performed so
that to avoid high computational complexity and decreasing the predictive per-
formance. Experimental results demonstrate that the proposed approach is much
more efficient than the non-incremental methods.
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Abstract. 3D object recognition has attracted considerable research
in computer vision and computer graphics. In this paper, we draw at-
tentions from neurophysiological research that line drawings trigger a
neural response similar to natural color images, and propose a line-
drawing-based 3D object recognition method. The contribution of the
proposed method includes a feature defined for line drawings and a sim-
ilarity metric for object recognition. Experimental results on McGill 3D
shape benchmark show that the proposed method has the best perfor-
mance when compared to five classic 3D object recognition methods.

1 Introduction

3D object recognition has attracted considerable attentions in both computer vi-
sion and neurophysiological research. Many recognition algorithms have
been proposed in computer science and graphics research (e.g., [2,4,6,7,9,10]).
Compared to state-of-the-art computational algorithms for object recognition in
computer science area, human brain still has a distinct advantage in object recog-
nition, i.e., human being can accurately recognize unlimited variety of objects
within a fraction of a second.

In our study, we based on neurophysiological finding that line drawings trigger
a neural activity pattern similar to color natural images [5,14]. The human vision
system (with normal visual acuity and normal color vision) views 3D objects in
the physical environment as color natural images at the retina. However, it is
well known that the natural images are statically redundant. For example, the
results in [5] show that the low level 2D image features used in human vision
system are not specific to the type of stimuli such as color photographs, but
appear to be definitive information sufficient for object recognition. Since line-
drawings capture some essential structure of objects [14], it is interesting to
apply line drawings as a concise and economical representation of the natural
images [12,13].

Line drawing is a set of sparse, simple two-dimensional featured lines, with-
out hatching lines or stippling for shading or tone effects. Line drawings are a
convention of art that even untrained children can easily recognize them. Lines
in line drawings include not only those edges that can be detected by object
silhouette, intensity contrast and color gradients, but also some perceptually
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Fig. 1. Viewpoint distribution over a spherical domain using an interval of 5 degree in
both longitude and latitude. For each viewpoint, a line drawing is generated using the
CLD method [8].

important lines that currently can only be captured by artists in a ambiguous
way. In this paper, we first present a visual circular feature representation using
both excitatory and inhibitory components, to extract distinct information from
line drawings. Then a codebook-based matching method is used for 3D object
recognition.

2 Line Drawing Representation of 3D Objects

Object recognition is to identify an observed object from a set of known labels. In
our study, we represent a set of known 3D objects by a codebook of line drawing
forms. Then, when observing a novel 3D object, we convert the observation into
the same line drawing form and determine its identity by matching the codebook.

Given a viewpoint and viewing direction, a 3D object projects an image on
the retina. To simulate this process, we place the 3D object model by coinciding
the center of gravity with the center of a sphere which bounds the 3D object
(Figure 1). A dense sampling of viewpoints are applied on the spherical surface
in which the sampling density is 5 degree in both longitude and latitude. For each
viewpoint, a standard Lambertian light model is applied to generate a shading
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Fig. 2. A local feature representation of line drawings

image of that object and this shade image is further converted into a line drawing
using the CLD algorithm [8].

If we represent each line drawing by 320×320 pixels, all line drawings sampling
from the surrounding sphere are clearly a 2-manifold point cloud embedded
in a very high-dimensional (more than 100k) feature space. Many dimensional
reduction methods can be applied here and in this study we apply a complexity-
dependent clustering method (presented in the next section) to obtain a small
yet effective representative set of line drawings for each 3D object.

3 Local Circular Feature of Line Drawings

Given a line drawing representation P , let B(P ) be the minimum-area bounding
box of all black pixels in P (Figure 2 left). The Halton’s quasi-random point
sequence is applied to uniformly sample np points in B(P ) (Figure 2 middle).
At each sample point, a circular histogram is established (Figure 2 right), in
which each circular bin has the same difference of radii and the maximal circle
has radius of one fifth of diagonal length of B(P ). The reasons that we use such
a circular feature representation are as follows:

– Random sampling provides a maximal entropy of point locations. For 3D
object models, random sampling on object surfaces has been demonstrated
to be an effective tool [4].

– Circular histogram makes the feature representation rotation invariant and
less sensitive to the shape distortion: this is important since line drawings
are not an accurate form and human used to matching them with elastic
deformation (cf. two horses in Figure 3).

The feature histogram of each sample point has nf bins. In our experiment,
np = 300 and nf = 20 are sufficient to make the proposed recognition method
have a good performance.

Denote ntl be the total number of black pixels fell into the circular histogram.
For each bin, if the number of black pixels fell into the bin is larger than a
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Fig. 3. Three line drawings with sample points and corresponding feature histogram.
The top horse line drawing is converted from projection of 3D object (Figure 1). The
middle horse line drawing is provided by a paid artist. The bottom vegetable line
drawing presents a different object representation. For the feature histograms, the blue
solid bins are activated ones. Hollow bins are not activated.

threshold1, then that bin is activated (akin to neuron firing). We index the bins
1, 2, · · · , nf from innermost to outmost and denote the first activated bin as
bf . Each black pixel in bf corresponds to an angle in polar coordinate and the
average of all angles of all black pixels in bf is denoted by Aaver . We use Aaver

to setup a local coordinate system for the feature histogram h. Each of all later
activated bins (other than the first activated one) has an average angle and we
use this angle as the bin values. Three examples are illustrated in Figure 3. Only
activated bins are involved in the feature matching.

1 The threshold gives a measures of signal intensity and in our experiment we set it
as 5% of ntl.
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For feature histogram matching, due to inaccurate forms of line drawings, it is
desired that a small deformed histogram has a small distance to the original one.
For example, denote ha as the histogram which has nonzero bin values π/2 at
bins 4 and 16, hb has nonzero bin values π/2 at bins 5 and 17, and hc has nonzero
bin values π/2 at bins 4 and 5. Intuitively, ha and hb is similar and should have
small distance value, while the distance between ha and hc should be large.
However, the L2 Euclidean distance L2(ha, hb) = π > L2(ha, hc) =

√
2π/2. In

the proposed computational model, we apply a generalized distance [15]:

D(h1, h2) = hT
1 Mnf×nf

h2 (1)

where Mnf×nf
is a SPD matrix whose elements are

mij =
1

2πσ2
e−(i−j)2/2σ2

, σ = 0.5

Using metric (1), D(ha, hb) = 0.4252 < D(ha, hc) = 1.7834, giving us desired
results. For the three histograms shown in Figure 3, with metric (1), the distance
between two horse line drawings is 209.3710, and the distances of vegetable to
the two horses are 267.0254 and 297.2649, respectively.

Given a set M of 3D known objects, let F be all feature histograms of all
line drawings projected by these 3D objects. We apply the affinity propaga-
tion (AP) method [3] to classify F into m clusters, where the number m is
automatically and optimally determined by the AP method. For each cluster,
its center is selected as a codeword ci and m clusters constitute a codebook
C = {c1, c2, · · · , cm}.

3.1 Similarity Metric for Object Recognition

Recall that for each line drawing projected by a 3D object, np sample points are
sampled in a Halton’s quasi-random sequence and a feature histogram is gener-
ated for each point. Given the codebook C = {c1, c2, · · · , cm}, a line drawing l
can be presented by l = (n1c1, n2c2, · · · , nmcm), n1 + n2 + · · · + nm = np, by
finding the clusters (corresponding to codes) in which the feature histograms of
l fall; e.g., ni means that there are ni feature histograms of l fall into the cluster
represented by the code ci.

Let mj be a 3D model in the database M = {m1,m2, · · · ,mn} and L(mj)
be all line drawings of mj . The frequency of occurrence of the code ci in the
model mj , denoted as fi,j , is the number of times that ci appears in L(mj).
Not all codes in C have equally usefulness for describing a 3D model. Obviously,
the larger fi,j is, the more important the code ci is to the model mj . On the
other hand, if a code cj appears in most or all models in M , then it is less
discriminative than a code that just appears in a few models in M . We thus use
the TF-IDF weight [1]

wi,j =

{
(1 + log fi,j)× log n

ri
if fi,j > 0

0 otherwise
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where wi,j is the weight assigned to the pair (ci,mj), ri is the number of
3D models in M in which a code ci occurs, and n is the total number of
models in M .

Given the codebook C = {c1, c2, · · · , cm} and the TF-IDF weights, a 3D model
mj in M is encoded as a m-vector

C(L(mj)) = (w1,j , w1,j , · · · , wm,j)

Given a query model q, after the same encoding process

C(L(q)) = (w1,q, w1,q, · · · , wm,q),

the models in M are sorted by the similarity value

S(mj , q) =
C(L(mj)) · C(L(q))

‖C(L(mj))‖‖C(L(q))‖ (2)

and the semantic tags in the model that has the largest similarity value are
used for recognizing the query model. Note that in the similarity metric (2),
the encoding vectors are normalized since different models may have different
complexity and thus have the different vector magnitudes.

4 Experiment

In this experiment, we compare the proposed method to two classic methods
(EGI [6] and SPIN [7]) and three state-of-the-art methods (D2 [4], G2 [2], VSKL
[9]). We use McGill 3D Shape Benchmark [11] to test the above methods and
our method. The McGill Benchmark contains articulated and non-articulated
objects. Ten classes are included in articulated objects: they are ants (30), crabs
(30), hands (20), humans (30), octopus (25), pliers (20), snakes (25), spectacles
(25), spiders (31), and teddy (20). The number in the bracket is the number of
models in that class. Nine classes are included in non-articulated objects: they
are airplanes (26), birds (21), chairs (23), cups (25), dinosaurs (19), dolphins
(12), fishes (23), four-limbs (31), and tables (22).

We use the precision and recall (PR) metric to compare the different recogni-
tion methods. Let I be a 3D object in a class Ci of the McGill Benchmark. We
use I as input to get a set of recognized objects R. Ideally, if R is much closer
to Ci, the better recognition performance we obtained. The precision value is

defined as p = |R∩Ci|
|R| and the recall value is defined as p = |R∩Ci|

|Ci| , where |S|
is the cardinality of set S. We rank the recognized objects and define the set R
to be top matched objects with increased set cardinality. We use each of the 3D
objects in the benchmark in turn as input and the final PR curve is the average
of all individual PR curves. The corresponding PR curves of different methods
are summarized in Figure 4. From the data presented in Figure 4, it is clearly
shown that the proposed method has the best recognition performance.
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Fig. 4. The PR curves of five methods (EGI, SPIN, D2, G2, VSKL) and the proposed
method, tested on the McGill 3D Shape Benchmark

5 Conclusions

In this paper, we present a 2D-line-drawing-based 3D object recognition method.
Compared to previous object recognition methods in computer science area,
the proposed model has two distinct characteristics: (1) a concise line drawing
representation is used for 3D object recognition; (2) a codebook defined by a
circular feature representation of line drawings is used for object recognition.
Object recognition performance is tested using the McGill 3D Shape Benchmark
and the comparison among our method and five representative methods shows
that the proposed method has a better performance.
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Abstract. Independent Component Analysis with a soft Reconstruction
cost (RICA) has been recently presented to learn highly over-complete
sparse features even on unwhitened data. However, RICA failed to con-
sider the geometrical structure of the data space, which has been shown
essential for classification problems. To address this problem, we propose
a graph regularized ICA model with Reconstruction constraint for image
classification, called gRICA. In particular, we construct an affinity graph
to encode the geometrical information, and thereby learn a graph regu-
larized over-complete basis which makes sparse representations respect
the graph structure. Experiments conducted on several datasets show
the effectiveness of gRICA for classification.

1 Introduction

Independent Component Analysis (ICA) is an efficient tool for unsupervised
feature learning, which transforms an observed multidimensional random vector
into non-gaussian components statistically as independent from each other as
possible. In order to estimate an ICA model, a general principle is the maximiza-
tion of non-Gaussianity[1]. This is based on the central limit theorem that sum of
non-Gaussian independent random variables is closer to Gaussian than the orig-
inal random variables. Furthermore, sparseness is one form of non-Gaussianity
[2], which is dominant in natural images. Then maximization of non-Gaussianity
is basically equivalent to maximization of sparseness in natural images. Thus,
ICA can be successfully applied to learn sparse representations for classification
tasks by maximizing sparseness[3].

However, there are two main drawbacks to standard ICA. First, ICA is hard
to learn over-complete basis set(i.e., the number of basis vectors is greater than
the dimensionality of input data). Whereas Coates et al.[4] showed that several
approaches with over-complete basis, e.g., sparse autoencoder[5], K-means [4]
and RBM[6], obtain an improvement for the performance of classification. This
puts ICA at a disadvantage compared to these methods. Second, ICA is sensi-
tive to whitening, which is an important preprocessing step in ICA to extract
efficient features. In addition, standard ICA is difficult to exactly whiten high
dimensional data. For example, an input image of size 200×200 pixels could be
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exactly whitened by principal component analysis(PCA), while it has to solve
the eigen-decomposition of the 40,000 × 40,000 covariance matrix.

Both drawbacks are mainly due to the hard orthonormality constraint in
standard ICA. Mathematically, that is WWT = I, which is utilized to prevent
degenerate solution for the basis matrix W where each basis vector is a row of
W. While this orthonormalization cannot be satisfied when W is over-complete.
Specifically, the optimization problem of standard ICA is generally solved by
using gradient descent methods, where W is orthonormalized at each iteration
by symmetric orthonormalization(i.e. W ← (WWT )−1/2W ) which doesn’t work
for over-complete learning. In addition, although alternative orthonormaliza-
tion methods could be employed to learn over-complete basis, they not only are
expensive to calculate but also may arise from the cumulation of errors.

To address the above issues, V. Le et al.[7] replaced the orthonormality con-
straint with a robust soft reconstruction cost for ICA(RICA). Then RICA can
learn sparse features with highly over-complete set even on unwhitened data.
However, this model didn’t take into account the geometrical structure of the
data space, which is essential for classification and clustering problems[8,9]. In
particular, Zheng et al.[9] showed that exploiting the geometrical information
in the data and preserving the local structure invariance could improve the
performance of classification.

Motivated by the graph regularized model[9] for classification, we propose
an unsupervised graph regularized ICA model with Reconstruction constraint,
named gRICA. The gRICA utilizes the local geometrical information of the
data to preserve the local manifold structure. In particular, we firstly build a
k-nearest neighbor graph to encode the geometrical information in the data.
Then, based on techniques from spectral graph theory[10], we incorporate the
graph Laplacian as the structure inconsistency regularizer into the RICA frame-
work to preserve the local manifold structured. This leads to the learned sparse
representations respect the geometrical structure of the data space, and thereby
facilitates classification tasks.

2 A Brief Review of RICA

Since sparseness is one form of non-Gaussianity, maximization of sparseness for
ICA is equivalent to maximization of independence[2]. Given the unlabeled data
set {xi}mi=1 where xi ∈ Rn, the optimization problem of standard ICA[1] is
generally defined as:

minimize
W

m∑
i=1

k∑
j=1

f(Wjxi)

s.t. WWT = I,

(1)

where f(·) is a nonlinear convex function, W ∈ Rk×n is the basis matrix, k is
the number of basis vectors and Wj is j-th row basis vector in W . Additionally,
the orthonormality constraint WWT = I is traditionally utilized to prevent
the basis vectors in W from becoming degenerate. Meanwhile, a good general
purpose smooth L1 penalty is: f(·) = log(cosh(·)) [2].
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However, as above pointed out, the orthonoramlity constraint makes standard
ICA difficult to learn over-complete basis set. In addition, ICA is sensitive to
whitening. These drawbacks restrict ICA to scale to high dimensional data. Con-
sequently, RICA[7] used a soft reconstruction cost to replace the orthonormality
constraint in ICA. Applying this replacement to Equ.1, RICA can be formulated
as the following unconstrained problem:

minimize
W

λ

m

m∑
i=1

||WTWxi − xi||22+f(Wxi), (2)

where parameter λ controls the relative importance of the two terms and Wxi

could be regarded as the sparse representation of sample xi[7]. Swapping the
orthonormality constraint with a reconstruction penalty, the RICA optimiza-
tion problem can be allowed to employ fast unconstrained optimizers (such as
L-BFGS[11]) instead of slower constrained optimizers (e.g., projected gradient
descent) which is generally used to solve the standard ICA optimization prob-
lem. In addition, the reconstruction penalty works well even on the data without
whitening when W is over-complete. However, RICA just simply learned the
over-complete basis set with reconstruction cost without considering the intrin-
sic geometrical and discriminating structure of the data space, which may not
be good enough for classification tasks. Thus, in this work, we focus on learning
a structure preserved over-complete basis for sparse representation.

3 Graph Regularized ICA with Reconstruction
Constraint

As above pointed out, RICA failed to utilize the geometrical structure of the data
space, which is essential to classification tasks[9]. In this Section, we introduce
our graph based ICA model with Reconstruction constraint(gRICA) algorithm
which avoids this limitation by incorporating a structure based regularizer. This
regularizer can be formulated as follows.

3.1 Model Formulation

Given the unlabeled data matrix X = [x1, . . . , xm] ∈ Rn×m where each column
of X is a sample vector, we can construct a nearest neighbor(undirected) graph
G with m vertices. In graph G, each vertex corresponds to a data point, and
edge weight matrix P ∈ Rm×m. If xi is among the k-NN of xj or xj is among the
k-NN of xi, Pij = 1, otherwise, Pij = 0. Additionally, we define graph Laplacian
matrix L = D − P , where D = diag(d1, . . . , dm) is the degree matrix with the

diagonal elements defined as di =
m∑
j=1

Pij .

For convenience, we denote sparse coefficient matrix S = [s1, . . . , sm] ∈ Rk×m

where si = Wxi ∈ Rk as the sparse representation of sample xi with the ba-
sis matrix W ∈ Rk×n. Based on spectral graph theory[10], we transform the
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problem, i.e. preserving the geometrical structure of data for the sparse repre-
sentation, into minimizing the following objective function

1

2

m∑
i,j=1

(si − sj)
2
Pij

=
1

2
(

m∑
i=1

si
2Dii +

m∑
j=1

sj
2Djj − 2

m∑
i,j=1

sisjPij)

= Tr(SLST )

= Tr(WXLXTWT ). (3)

This formulation can be regarded as a kind of dimensionality reduction of co-
efficient matrix S. For convenience, we term Equ.3 as structure inconsistency
regularizer. That is, if two data points xi and xj are close (i.e. Pij is big), the
si and sj should be similar to each other.

By incorporating the structure inconsistency regularizer into the original RICA
model, we can get the following objective function

minimize
W

λ

m
||WTWX −X ||22+f(WX)

+ αTr(WXLXTWT ),

(4)

where λ and α are the scalars controlling the relative contribution of the corre-
sponding terms. Given a test sample, Equ.4 means that the learned basis set can
sparsely represent it while requiring its representation to respect the geometric
structure in the data.

3.2 Norm Ball Projection

Note that if the basis set W is over-complete (k � n), it may reconstruct the
data with only a complete subset of the rows of W while setting the rest to zero.
Thus, to learn an over-complete basis without degenerate(zero) vectors, we have
to enforce each row of W as

||Wi||22 = 1, ∀i = 1 . . . k. (5)

However, Equ.5 results in the optimization problem of Equ.4 have to be solved
by constrained optimizers which are much slower than unconstrained solvers
(e.g., L-BFGS and CG[11]). To utilize L-BFGS/CG to solve this constrained
optimization problem, we employ the L2-norm ball projection as [7]. The main
idea is to map the basis vectors onto the norm ball during each iteration of the
optimization. In particular, we denote Ŵi = Wi/||Wi||22. Furthermore, we have
to take the projection in the gradient computation into account since the sup-
plied gradient vector is employed to evaluate the objective function in L-BFGS
or CG. Specifically, we will backpropagate the gradients through the projection
and thereby considering the projection during the optimization. Therefore, the
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Table 1. Gradient Computation

1. Projection: Ŵij =
Wij√

ε+
∑n

t=1 W2
it

,∀i = 1 . . . k.

2. Calculate the gradient g of Equ.4 with Ŵ .
3. Inverse Projection: gij =

gij√
ε+

∑n
t=1 W2

it

−
Ŵij

∑n
t=1 gitWit

ε+
∑n

t=1 W2
it
.

constrained optimization problem becomes unconstrained. The gradient compu-
tation with inverse projection is described in Table 1 and ε is a small constant
to prevent division by zero.

4 Experiments

In this section, we will firstly introduce the feature extraction for image classifi-
cation. Then, we evaluate the performance of gRICA model for image classifica-
tion on three public databases: Caltech 101[12], CIFAR-10[4] and STL-10 [4]. In
all the experiments, if no specific mentioned, the tuning parameters in gRICA,
i.e. α and λ in the objective function, are verified by cross validation to avoid
over-fitting. The test values for the α and λ are {0.0001,0.001,0.01, 0.1, 1}.

4.1 Feature Extraction for Classification

Given a p×p input image patch (with d channels) x ∈ Rn (n = p×p×d), gRICA
can transform it to a new representation s = Wx ∈ Rk, where p is termed as
the ’receptive field size’. For an image of N × M pixels (with d channels), we
could obtain a (N − p+1)× (M − p+1)(with k channels) feature following the
same setting in [4], by estimating the representation s for each p× p ’subpatch’
of the input image. To reduce the dimensionality of the image representation,
we utilize similar pooling method in [4] to form a reduced 4k-dimensional pooled
representation for image classification. Given the pooled feature for each training
image, we utilize linear SVM for classification.

4.2 Classification on Caltech 101

Caltech 101 dataset consists of 9144 images which are divided among 101 object
classes and 1 background class including animals, vehicles, etc. Following the
common experiment setup[13], we implement our algorithm on 15 and 30 train-
ing images per category with basis size K = 1020 and 10×10 receptive fields,
respectively. Comparison results are shown in Table 2. We compare our classifi-
cation accuracy with ScSPM[13] and LC-KSVD[14]. Table 2 shows that gRICA
outperforms the other competing approaches.
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Table 2. Image classification Accuracy on Caltech 101

Training size 15 30

ScSPM[13] 67.0% 73.2%
LC-KSVD[14] 67.7% 73.6%

RICA[7] 67.1% 73.7%
gRICA 67.3% 74.1%

4.3 Classification on CIFAR-10

The CIFAR-10 dataset includes 10 categories and 60000 32×32 color images
in all with 6000 images per category, such as airplane, automobile, truck and
horse etc. In addition, there are 50000 training images and 10000 testing images.
Specifically, 1000 images from each class are randomly selected as test images
and the other 5000 images from each class as training images. In this experiment,
we utilize the size of basis set to 4000 with 6×6 receptive fields followed by[4]. We
compare our approach with RICA[7] and K-means (Triangle, 4000 features)[4]
etc. Table 3 shows the effectiveness of the proposed gRICA.

Table 3. Test Classification Accuracy on CIFAR-10

Model Accuracy

Improved Local Coord. Coding[15] 74.5%
Sparse autoencoder[4] 73.4%
Sparse RBM[4] 72.4%
K-means (Hard)[4] 68.6%
K-means (Triangle)[4] 77.9%
K-means (Triangle, 4000 features)[4] 79.6%
RICA[7] 81.4%

gRICA 81.9%

4.4 Classification on STL-10

In STL-10, there are 10 classes(e.g., airplane, dog, monkey and ship etc), where
each image is 96x96 pixels and colorful. In addition, this dataset is divided into
500 training images (10 pre-defined folds), 800 test images per class and 100,000
unlabeled images for unsupervised learning. In our experiments, we set the size
of basis set K= 1600 and 8×8 receptive fields in the same manner described
in [7]. Table 4 shows the classification results of the raw pixels[4],K-means [4],
RICA[7] and gRICA.

As can be seen, although RICA tried 10×10 receptive fields and achieved
52.9% on the test set, our algorithm gRICA performs best in all cases. This means
that gRICA implies more discriminative power for classification by preserving
the local invariance.

We also investigate the effects of basis set size on the gRICA algorithm. In
our experiments, we try seven sizes: 50, 100, 200, 400, 800, 1200 and 1600. As
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Table 4. Test Classification Accuracy on STL-10

Model Accuracy

Raw pixels[4] 31.8%
K-means(Triangle 1600 features)[4] 51.5%
RICA(8x8 receptive fields)[7] 51.4%
RICA(10x10 receptive fields)[7] 52.9%

gRICA 53.4%
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Fig. 1. Performance on the STL-10 with varying basis set size and 8×8 receptive fields

shown in Fig.1, the classification accuracy of gRICA continues to increase when
the basis size goes up to 1600.

5 Conclusions

In this paper, we propose a graph regularized ICA model with Reconstruction
constraint, called gRICA. The gRICA can learn an over-complete basis on the
data manifold, and thereby learn the sparse representations consistent with this
manifold. Consequently, gRICA could have more discriminative power than the
original RICA model which only considers the Euclidean structure of the data.
Furthermore, based on norm ball projection, we transform the constrained opti-
mization problem into faster unconstrained problem. The experimental results on
image classification have demonstrated the effectiveness of the proposed gRICA
algorithm.
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Abstract. For the rapid visualization of large-scale forest scene, this paper pro-
poses a real-time recombination method of complex 3D tree model information. 
This method adopts visual attention model and the visual characteristic of tree 
structures, then uses geometry-based and image-based methods to simplify tree 
models and construct a hybrid representation model for the 3D tree models 
based on the visual perception. It reflects the visual perception features of 3D 
tree models that can embody topological semantics in dynamic simulation. Fi-
nally, the method in this paper is applied to the simplification of several tree 
models, and compared with some existing tree model simplification  
methods. The experimental results show that this method can not only preserve 
better visual perception of 3D tree models, but also effectively decrease the  
geometric data of the forest scene, and improve the rendering efficiency and  
real-time walkthrough speed of forest scene. 

Keywords: visual perception, model simplification, 3D trees, real-time recom-
bination, hybrid representation. 

1 Introduction 

Real-time rendering a large-scale forest scene is an extremely challenging problem in 
computer graphics [1]. While modeling large-scale forest scene, tree models with 
abundant details of geometric information are very large and difficult to be rendered 
rapidly [2-3]. So, how to efficiently simplify the complex geometric details and pre-
serve the visual perception of tree models in real time has become a hotspot in the 
research of virtual reality. 

The rest of the paper is organized as follows. The related work is discussed in  
Section 2. Section 3 presents a hybrid representation method for considering visual 
features of tree structure. Then, the view-dependent and real-time recombination me-
thod is described in Section 4. In Section 5 the experimental results are discussed and 
an objective metric is developed to evaluate the quality of the method. Finally, con-
clusions are presented in Section 6. 

                                                           
* Corresponding author. 
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2 Related Work 

The existing simplification methods of tree model include: geometry-based static 
simplification and view-dependent progressive representation. In order to simplify the 
geometric models of a large number of discrete leaves, a foliage simplification algo-
rithm [4] (FSA) was proposed by Remolar. Xiaopeng Zhang proposed a method for 
hierarchical union of organs, introducing the botanical knowledge about leaf phyllo-
taxy and flower anthotaxy [5] (HUO). Then Qingqiong Deng adopted a hybrid poly-
gon/line model to represent leaves according to the morphological characteristics of 
leaves (broad leaf or conifer) in 2010 [6]. In 2011, Guanbo Bao and Xiaopeng Zhang 
proposed a new leaf modeling method that uses the texture to simplify triangular 
mesh models of leaves [7]. The method of geometry-based static simplification is a 
good way to reduce the complexity of tree models. However, the simplified model 
still contains many meshes, which still will be a heavy burden in the rendering  
process of large-scale forest scene. 

Cook et al. proposed a stochastic simplification of aggregate detail [8]. Gumbau 
presented a view-dependent multi-resolution model for the foliage of the trees in 2010 
[9]. The existing method of view-dependent progressive representation can solve the 
hopping problem, but it can’t reflect the visual perception features of 3D tree models 
that can embody topological semantics in dynamic simulation.  

In addition, Hujun Bao et al. presented an image-based approach to simplify tree 
models and reconstruct depth meshes in different LOD levels in 2010 [10]. Baoquan 
Chen et al. presented a lobe-based tree representation for modeling trees in 2011 [11]. 

3 Constructing Hybrid Representation Model of 3D Trees 
Based on Visual Perception 

The hybrid representation method of tree models in this paper adopts triangular mesh-
es to represent the shape of trees and the important visual areas of the crown, and uses 
textures to represent the branches, twigs and the unimportant visual areas of the 
crown. This method not only maintains the importance of visual perception, but also 
meets the integrity expression of 3D tree models.  

3.1 The Partition of Important Visual Areas of Crown 

In partitioning the important visual areas of crown, this method firstly chooses 8  
typical visual perception directions surrounding the model according to the spatial 
structure of tree. Then, it extracts the visual saliency maps from the original images 
with the 8 visual perception directions based on the Itti visual attention model into 
consideration [12-13]. Finally, according to the correlation between visual saliency 
maps and original tree models, the method constructs the important visual areas of the 
crown. The leaves composing the important visual areas of the crown are named as 
important visual leaves in this paper, and the other leaves are named as unimportant 
visual leaves. 
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3.2 Hybrid Representation Method for Considering Visual Features of Tree 
Structure 

Tree usually has certain hierarchical structure and topological form, including trunk, 
main branches, branches, twigs and so on. And the shape of tree is mainly represented 
by the trunk and the main branches. To further compress the amount of tree model 
data and improve rendering efficiency, this paper simplifies the trees structure based 
on the hierarchy of tree models, and prunes the small branches and twigs.  

According to the hierarchy of trees, the branches, twigs and unimportant visual 
leaves are divided into different clusters based on the main branches. The process of 
cluster partition is as follows: 

Firstly, each main branch of tree model is identified, and the geometric centers of 
main branches are calculated. Secondly, the distance between the geometric center of 
each leaf and the geometric center of all main branches are calculated respectively, as 
shown in Equation (1). 

             ( ) ( ) ( )2
33

2
22

2
11),( blblblblcenterdis −+−+−=  (1) 

Where, l is the geometric center point of leaf, and b is the geometric center point of 
main branch. Next, select the main branch for each leaf that gets the minimal

),( blcenterdis . Then, traverse all the unimportant visual leaves of crown to deter-

mine the main branches where each leaf grows. After that, different leaves clusters 
based on main branches are generated. Finally, the textures generated for different 
visual perception directions are used to replace the geometric representation of leaves 
and branches clusters. 

In this paper, 3D meshes are used to represent the overall shape of tree model,  
like trunk and main branches. And geometric leaves culling method is adopted to 
simplify the important visual leaves. The textures are used to represent the branches, 
twigs and unimportant visual leaves, which are not in the region of human visual  
attention. 

4 View-Dependent Real-Time Recombination Method of 3D 
Tree Model for Visual Perception Preserving 

4.1 Dynamic Culling Factors of Leaves 

This paper uses a geometry culling method for the simplification of important visual 
leaves to reduce the number of meshes of crown. For preserving the visual perception 
of pruned leaves, this method adopts the idea of Reference [14-15], and dynamically 
prunes the leaves according to the following culling factors: 

• Distance ( ( )cldis , ): the distance between the geometric centers of leaves and the 

geometric center of crown.  
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comparison are: foliage simplification algorithm [4], stochastic simplification method 
[8] and our method. From the Figure 4, it can be seen clearly that the proposed real-
time recombination method of 3D trees model gives a better performance near the 
visual perception direction.  

5.3 Application in Forest Scene 

In the visualization of forest scene, the system recombines tree models according to 
the positional relation between the viewpoint and trees in real time. Figure 5 shows a 
forest scene, which contains 13 tree models, and the total number of geometric  
patches is 150758. The forest scene rendering frame rate is 13 fps. 

 

Fig. 5. Application in forest scene 

6 Conclusions 

This paper proposes a real-time recombination method of complex 3D tree model 
information for visual perception preserving. This method uses a hybrid representa-
tion method of geometry and image to construct information of 3D tree models based 
on the visual perception features. It realizes the real-time simplification of tree mod-
els, effectively compresses the data of models, and reduces the complexity of scene. 
This method extracts the visual saliency according to the visual attention model, and 
distinguishes the important visual areas of crown. On this basis, it considers the visual 
characteristics of tree structures, and uses both the geometry-based and image-based 
methods to achieve the heterogeneous representation of tree models for their leaves 
and branches. This method not only maintains the hierarchy of trees and visual per-
ception features, but also effectively decreases the geometric complexity of forest 
scene and improves rendering efficiency. 
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Abstract. Spherical mapping is a key enabling technology in modeling
and processing genus-0 close surfaces. A closed genus-0 surface can be
seamless parameterized onto a unit sphere. We develop an effective pro-
gressive optimization scheme to compute such a parametrization, mini-
mizing a nonlinear energy balancing angle and area distortions. Among
all existing state-of-the-art spherical mapping methods, the main advan-
tage of our spherical mapping are two-folded: (1) the algorithm converges
very efficiently, therefore it is suitable for handling huge geometric mod-
els, and (2) it generates bijective and lowly distorted mapping results.

Keywords: Spherical Parametrization, Hierarchical Optimization.

1 Introduction

Spherical parametrization seeks a bijective map f : M → S between a closed
genus-0 surface M and a unit spherical domain S. For a very wide category of
solid models without handles or voids, their boundary surfaces are closed and
genus-0. The sphere is a natural parametric domain for these surfaces, on a sphere
domain their seamless parametric representations can be constructed directly.
A parameterization introducing small metric distortion is desirable. Isometry
(preserving both angle and area) is ideal but usually not possible for a generally
given M . We therefore seek for a map that minimizes either angle distortion, or
area distortion, or a balancing between both of them.

Computing a map on a non-flattened domain, however, is often formulated as
a non-linear optimization problem, and cannot be computed efficiently [6]. For
example, a harmonic spherical map is conformal [2,7]. The resultant mapping is
angle-preserving. However, its area distortion could be very large, especially in
the long and thin protrusion regions (e.g. ears of the Stanford bunny). A map
balancing angle and area distortions is therefore often desirable. Zayer et al. [11]
proposed a Curvilinear Spherical Parametrization which better reduces area-
distortion efficiently. Another state-of-the-art spherical mapping algorithm is
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proposed by Praun and Hoppe [9]. They used the progressive mesh to iteratively
optimize the L2 stretching energy [10] defined piecewise on the mesh of M . Such
a coarse-to-fine solving scheme can effectively overcome the local minima issue
existing in most spherical mapping formulations that aim to minimize angle
and area distortion together. Inspired by this, we also adopt the progressive
simplification and develop a hierarchical optimization scheme. But unlike [9],
we utilize the distortion energy [1] which is shown converged to the continuous
energy. Furthermore, we develop an effective hierarchical optimization scheme
over the mesh (with different resolutions) from both local and global aspects, to
improve the mapping efficiency and efficacy significantly.

We present a hierarchical optimization framework for the spherical paramet-
rization problem. Compared with other state-of-the-art spherical mapping al-
gorithms, our method generates a bijective and lowly-distorted mapping, and
converges efficiently. Therefore, our algorithm can be applied on large geometric
models with complex geometry (e.g. with long branches) robustly.

2 Hierarchical Spherical Parametrization

2.1 Mapping Distortion

The angle distortion per triangle can be measured [4] on the map of each triangle
fT : T → t by ED(T ) = cotα|a|2 + cotβ|b|2 + cot γ|c|2 where T and t are the
triangle of mesh M and its image on the parametric sphere S respectively; α, β, γ
are the angles in T and a, b, c are the corresponding opposite edge lengths in t.

The area distortion can be measured by EA(T ) =
Area(t)
Area(T ) . The integrated (over

the area of parameter triangle t) angle and area distortions of the entire spher-

ical parametrization f : M → S are therefore ĒD(M) =
∑NF

i=1 ED(Ti)Area(ti)

and ĒA(M) =
∑NF

i=1 EA(Ti)Area(ti), where NF is the number of faces in M .
Following the modification proposed by [1], we use formulations in Eqs (1) and
(2) for new distortions, which provide upper bounds of the spherical integrals
and avoid degeneracy during the optimization:

ED(M) =

NF∑

i=1

d−2
i ·ED(Ti)Area(ti), (1)

EA(M) =

NF∑

i=1

d−2
i ·EA(Ti)Area(ti). (2)

where di is the minimum distance from the origin to triangle ti. And the objective
function is their weighted sum:

E = λED(M) + μEA(M) (3)

where λ and μ are parameters balancing angle and area distortions. Area dis-
tortion is a common issue for spherical mapping, leading to under-sampling,
especially for the models with long and thin protrusions, which could cause un-
desirable artifacts in applications. We found that a relatively large weight on
area distortion usually provides stable and desirable mappings; hence in our
experiments, we set λ = 0.1 and μ = 1.0 by default.
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2.2 Algorithm Overview

The distortion energy introduced in Section 2.1 is nonlinear and nonconvex. Gen-
erally, directly optimizing the energy will get trapped in local minima inevitably.
We therefore adopt the progressive mesh [3] to simplify the mesh into coarser
resolutions and solve the optimization hierarchically while we gradually refine
the mesh back to the original tessellation. The progressive scheme is similar to
[9], but our optimization is developed differently and is more efficient and ef-
fective. Given a genus-0 mesh M with n vertices, we first progressively simplify
it to a tetrahedron with 4 vertices, denoted as M4. We then use Mk to denote
the resolution of M with k vertices, and vki to denote the vertex which will split
during the refinement process. vki is a vertex on Mk and it splits into vk+1

i and
vk+1
k+1 (suppose the newly inserted vertex is always given the id k+1) in the new

mesh Mk+1. Based on above definitions, the algorithm pipeline is as follows:

1. Simplify Mn to a tetrahedron M4 using progressive mesh;
2. Map M4 onto a unit sphere domain S4,get f4 : M4 → S4;
3. Following the vertex split order that refines M4 back to Mn, optimize the

spherical mapping fk : Mk → Sk hierarchically.

2.3 Global Hierarchical Optimization

We progressively refine Mk from k = 4, . . . , n, and during each vertex split
vki → {vk+1

i , vk+1
k+1}, we find a locally optimal spherical position as the image

for each of these two vertices vki , v
k+1
k+1 while fixing images of all their one-ring

neighboring vertices. After every η (a constant integer) vertex splits, we optimize
all these newly placed vertices as well as their neighboring vertices.

Ideally, after each split, we can perform a local optimization on images of vki ,
vk+1
k+1 , and all their neighboring vertices until we get to a local optimum. However,
this precise local optimization per every vertex split is relatively expensive and
sometimes not necessary. Therefore, we only conduct the optimization after a
set of vertices are inserted.

2.4 Local Optimization on a Vertex

After the split of a vertex vki , we need to embed the images of the two new
vertices vk+1

i and vk+1
k+1 on the sphere. Here we solve a simple local optimization

to determine valid (non-flipped) spherical locations for them. Later, after each
η vertex splits, we will perform such local optimizations on new vertices and
their neighboring vertices together. When the mapping of a vertex is updated
and the objective energy change is bigger than a threshold, its one-ring vertices
may need to be optimized again. We propagate this local refinement to larger
regions using a priority queue.

We develop a local optimization to find the most suitable spherical embedding
of each vertex through an efficient great-circle search. In this algorithm, we do not
update a vertex’s spherical embedding if the energy reduction is not significant.
A line search mechanism is employed on the great circle of the spherical domain.
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Note even if the initial position introduces flip-over, the energy minimization
would guide the movement of vertex’s spherical image to a valid position free of
flip-over. This local optimization is efficient and will converge within finite steps
(see Section 2.7 for detailed analysis).

2.5 Priority Queue

When optimizing spherical images of the vertices, we iteratively pick a vertex
to do its local optimization. The order of picking vertices is important and it
could greatly affect the result and computation efficiency. Intuitively, we shall
optimize the vertex whose movement potentially reduces the distortion energy
most significantly. Both the magnitude of the first order KKT [8] violation and
the distance the vertex can move are critical for the energy reduction. For exam-
ple, in a region whose spherical mapping shrinks severely, KKT violations of the
objective functions on vertices could be big, but spherical embedding of these
vertices could not move much (since all these spherical triangles are already very
small) before flipover appear. Then moving such vertices may not have high pri-
ority. We therefore use the first order KKT violation magnitude multiplying the
potential moving distance as the key for this priority queue.

Therefore, for the priority queue we adopt the following priority function τ
defined on vi’s spherical image pi:

τ(vi) = ρ(vi) · d (4)

where d is the distance from pi (vi’s image on sphere) to the boundary of its
spherical kernel (see Section 2.6) along the negative gradient direction. And ρ is
the magnitude of the first order KKT optimality violation:

ρ(vi) = ‖∇E(pi)‖
√
1− (

∇E(pi)T · pi
‖∇E(pi)‖ )2 (5)

where ∇E(pi) is the gradient of the objective function E of eq (3) at vertex vi.
Note that the feasibility condition ‖pi‖ = 1 is always guaranteed by the con-
struction. In our experiments, we simply use the average distance from pi to
its spherical one-ring to approximate d. τ(vi) therefore estimates the aforemen-
tioned potential function reduction at vertex vi, measured via the first order
KKT optimality condition violation ρ at pi multiplied by d.

2.6 Spherical Kernel and the Mapping Bijectivity

The spherical kernel can be defined on the spherical polygon formed by the
one-ring neighboring vertices of a vertex vi. It is defined and can be computed
as the intersection of the open hemispheres defined by the spherical polygon
edges. To avoid the flip-over on the spherical parametrization, we shall maintain
a valid spherical embedding. This can be guaranteed if every vertex is inside its
spherical kernel. We generalize the planar kernel computation algorithm [5] onto
the spherical triangle mesh. The computation is efficient and takes O(k), where
k is the number of vertices on the spherical polygon.
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The bijectivity of the spherical mapping can be shown. First, during local
optimization, a non-flipped local region will not be converted into a flipped local
region. Therefore, if we can guarantee the initial spherical embedding during
the entire progressive refinement is valid, then our final parametrization is non-
flipped. Through induction, we can show that a valid initial spherical embedding
can always be constructed during vertex split. (1) After the progressive simplifi-
cation, the mesh is simplified to a tetrahedron M4 with 4 vertices, which can be
embedded on the sphere. (2) Suppose the mesh Mk with k vertices has a valid
spherical embedding, and the next refinement is to do the vertex split from vki
to (vk+1

i , vk+1
k+1), then the spherical kernel for vki is not empty. Then it can be

shown that non-empty spherical kernel regions for vk+1
i , vk+1

k+1 can always be con-

structed [9]. Therefore, a valid spherical embedding for the refined mesh Mk+1

exists and can be used as the initial spherical positions for the next insertion
and refinement. The mapping bijectivity is therefore guaranteed.

2.7 Analyzing Convergence of the Optimization

The first order KKT optimality condition of minE(pi), subject to ‖pi‖ = 1 can
be written as

∇E(pi)− λpi = 0, pTi pi = 1. (6)

where λ ∈ R is Lagrange multiplier associated with the ball constraints.By con-
sidering pT p = 1, which is guaranteed by the algorithm, we have λ = ∇E(pi)

T pi.
Then, the 2-norm residue of the left hand side of the first equation in Eq (6) can
be written as

ρ(vi) = ‖∇E(pi)‖
√
1− (

∇E(pi)T · pi
‖∇E(pi)‖ )2 = 0 (7)

which can be considered as the magnitude of the violation of KKT condition.

(a)[2] (b)[9] (c)[11] (d)Ours

Fig. 1. Comparison of Other Spherical Parametrization Algorithms and Our Method
on the Cow model. (a) is from [2]; (b) is from (b)[9]; (c) is from [11] and (d) is from our
method. EA and ED indicate area distortion and angle distortion. Warmer color, e.g
red, indicates larger distortion; while cooler color, e.g. blue, indicates lower distortion.
The rightmost column shows our results, which exhibits lower angle and area distortion.
Please refer to this paper’s online version for the color-encoding.
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Input [2] [11] Ours
(a) (b)

Fig. 2. (a)Comparison of Other Spherical Parametrization Algorithms and Our
Method on the Head model. The leftmost column is the input model. Our approach
preserves the facial features like eyes, nose, mouth and ears more naturally. (b) Some
results of our approach.

When ρ(vi) is not small, pi is not close to a local minimum. Then, because
the angle between the asymptotic searching directions and the negative gradient
direction of the energy function is an acute angle, the Armijo-type great-circle
back tracking line search will be successful within a finite number of steps and
a sufficient energy value reduction relative to the KKT violation ρ(vi) will be
obtained. This would force the first order KKT violation ρ(vi) goes to zero, since
the energy function value is always bounded above from zero.

Globally, the objective energy is also bounded below, actually nonnegative,
and monotonically decreasing. Furthermore, the great-circle back tracking line
search conditions will prevent the step size getting too small and the energy
will be reduced sufficiently when pi is far away from local minimum. Therefore,
globally, the total energy will decrease relatively rapidly to a minimum value.

The graphs of the total distortion energy per vertex in the optimization are
depicted in Figure 3. In this figure we observe the energy drops severely in the
beginning and the slope of the graph asymptotically goes towards zero with
increasing number of iterations. This indicates our approach finally converges.

(a) Bunny (b) Cow

Fig. 3. Energy (per vertex) with respect to iterations on Bunny and Cow. The y-axis
shows the energy; the x-axis shows the iteration number.
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3 Spherical Parametrization Results

To perform side-by-side comparisons, we have implemented the harmonic spher-
ical mapping [2], curvilinear spherical parametrization [11], and we obtained
mapping results from the progressive spherical parametrization of [9]. We also
parameterize various input models using our algorithm under different weights.
In experiments demonstrated in this section, we use λ = 0.1 and μ = 1.0.

Figure 1 demonstrates the effectiveness of our approach on Cow(11K vertices)
by color-encoding angle and area distortions of the spherical mappings computed
by [2], [11], and [9]. We can see that results of our method in the rightmost
column are in cooler color, and therefore it has lower angle and area distortions.

Figure 2-a demonstrates the results of our approach on the Head (13K ver-
tices) model side by side compared with [2] and [11]. Our approach introduces
smaller angle and area distortions, and hence better preserves the facial features
like eyes, nose, mouth and ears on the sphere. Figure 2-b illustrates some more
mapping results computed by our algorithm.

Table 1. Comparison of Statistics on Bunny

Bunny #V=34K

[2] [11] [9] Ours

#FO 2585 0 3 0

ED 50.8 63.6 78.1 61.4

EA 22.8 25.5 14.0 14.2

T(s) 2397 91 600 58

Cow #V=11K

[2] [11] [9] Ours

#FO 2536 2 0 0

ED 51.2 73.2 117.3 69.9

EA 32.9 23.8 14.4 15.5

T(s) 224 28 420 21

Gargoyle #V=100K

[2] [11] [9] Ours

#FO 6106 9 0 0

ED 51.7 78.8 81.2 81.8

EA 93.6 141.7 41.5 47.7

T(s) 24393 1151.4 1380 193

Table 2. Execution Time of Our Approach on Various Models

Models Cow Frog Bunny Horse David Venus Gargoyle Amardillo Budda

#Vertices 11K 25K 34K 48K 50K 50K 100K 106K 400K

Time(s) 21 48 58 89 111 70 193 250 526

Numerically, the spherical mapping results of Bunny, Cow and Gargoyle, com-
puted by [2], [9] and [11] are compared with our approach in Tables 1. The visu-
alization of ED and EA for Cow is given in Figure 1, where cooler color indicates
less distorted triangle map and warmer color indicates otherwise. Table 2 lists
the running times of our method on 9 models (vertex sizes vary from 11K to
400K). Our experiments (the implementation is not optimized) are conducted
on a desktop with AMD Athlon X2 2.9GHz CPU and 2GB RAM.

4 Conclusion

In this paper, we present an effective spherical mapping algorithm using hier-
archical optimization scheme minimizing angle and area distortions. Compared
with other state-of-the-art spherical mapping algorithms, our method generates
a bijective and lowly-distorted mapping, and converges efficiently.
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Our current spherical parametrization has not considered the preservation of
any features or intrinsic structures of the given geometric model. For example,
for local features such as semantic feature points, it is often desirable if the
parametrization can flexibly control their distributions on the sphere; for global
features such as symmetry, preserving such symmetric structure in its spher-
ical image is also desirable for subsequent geometry processing tasks. These
are currently not integrated in our mapping framework. We will explore the
feature-preserving simplification (e.g. preserving both feature points and sym-
metry structure on the base domain) and consider the optimization satisfying
such constraints.
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Abstract. In this paper, we propose a practical algorithm for extracting curve
skeletons from a 3D shape represented by a triangular mesh. We first construct
an initial skeleton graph by copying the connectivity and geometry information
from the input mesh. We then perform iterative skeletonization over the nodes
of the skeleton graph using coupled processes of graph contraction and surface
clustering. In the contraction step, the skeleton graph is simplified and regular-
ized with surface clustering: mesh vertices are clustered, while the positions of
nodes in the skeleton graph are updated at the same time. Eventually, the skele-
ton graph is automatically simplified to an approximately-centered curve skele-
ton. Our algorithm naturally produces a skeleton-to-surface mapping, making the
output skeletons directly applicable to skinning deformation.

Keywords: curve skeleton extraction, graph contraction, clustering.

1 Introduction

A skeleton is a compact and effective representation of a solid shape [1,2], efficiently
encoding both its geometry and topology. Skeleton extraction has been extensively stud-
ied, and many approaches have been proposed for computing medial structures. In gen-
eral they either find a 2D medial surface [3], or a 1D curve skeleton [1]. In this paper,
we aim to extract an curve skeleton, as it is a more concise representation, with gener-
ally wider application. As well as producing an approximately-centered curve skeleton,
a secondary output is a skeleton-to-surface mapping, which is directly applicable to
skeleton-driven shape deformation (see Figure 1).

Our practical curve skeleton extraction method is based on graph contraction. The
approximate centroidal Voronoi diagram (ACVD) [4] lies at the core of our approach,
as it provides a fast and efficient simplification and clustering algorithm. Although in
the 2D case, the Voronoi diagram can be effectively used as a paradigm for producing
a curve skeleton [5], as Amenta et al. [2,3] pointed out, direct extension of this result
to 3D shapes is not trival: like other Voronoi-based algorithms [3], ACVD produces a
medial surface, rather than a medial curve. Further processing is needed to produce a
curve skeleton.
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Fig. 1. Hand bone model. Left: extracted curve skeleton shown with nodes and edges, and the
associated surfaces clustering. Right: a new configuration obtained by shape deformation driven
by the extracted skeleton.

2 Related Work

Curve skeleton extraction and its applications have been studied both theoretically and
algorithmically. One way of classifying approaches to the problem is as volumetric or
geometric [6], according to whether an interior representation or only a surface rep-
resentation is used. We focus on the most relevant geometric methods; see [1,6] for
detailed reviews.

Direct volumetric approaches are based on thinning [7], producing a curve skeleton
by iteratively removing voxels from the boundary of an object until the required thinness
is obtained. The main volumetric alternative is to use distance-field methods [8,9,10].
The distance field or distance transform [8] is defined for each interior point of a 3D
shape as the smallest distance from that point to the boundary. Other types of fields [9]
generated by functions based on the distance transform can also be used to extract curve
skeletons.

Geometric methods can be applied to objects represented by polygonal meshes or
scattered point sets, e.g. [5,6,11,12,13,14]. A popular class of approach uses the Voronoi
diagram [5,13] generated by the vertices of the 3D polygonal representation, or directly
from a set of unorganized points [3]. Our algorithm is related to these approaches, but
uses the approximate centroidal Voronoi diagram (ACVD) [4] to speed up the Voronoi
computation. More importantly, we aim to produce a curve skeleton rather than the
straightforward medial surface produced by e.g. [3,4].

Laplacian-based contraction was first developed by [6] to find skeletons of mesh
surfaces, then extended for use with point sets [14]. Tagliasacchi et al. [15] proposed
the notion of generalized rotational symmetry axis (ROSA) as a basis for extracting the
skeleton for an oriented point set.

Other geometric methods use differing approaches to produce the curve skeleton.
Several have some similarities with the ideas we present here. Li et al. [11] constructed
a line segment skeleton by edge collapse. Katz and Tal [12] first decomposed a mesh
surface into segments using minimal curvature cues and fuzzy clustering, and then used
this segmentation to construct a skeleton. In the work of [16], curve skeleton extrac-
tion and mesh decomposition processes are simultaneously performed, using approxi-
mate convex decomposition. Our approach is similar to these algorithms in that it uses
a relationship between skeletonization and decomposition. Although we also utilize
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Fig. 2. Four iterations of our coupled graph extraction with surface clustering on a horse model
(a-d). The final skeleton can be refined if necessary to give a more dense sampling (e).

ACVD for surface clustering, i.e. mesh decomposition, the fundamental difference be-
tween these algorithms and ours is that we simultaneously use graph contraction to ex-
tract the skeleton, rather than generating a shape decomposition and then subsequently
extracting the skeleton.

3 Curve Skeleton Extraction Algorithm

Given a triangular mesh, we extract its curve skeleton by graph contraction. We first
provide an overview of our algorithm, and in following sections, we further explain the
main steps, including the graph contraction and surface clustering processes, as well as
an optional skeleton refinement step.

3.1 Overview

Algorithm 1 gives pseudocode for our algorithm. We denote the input mesh by M,
the skeleton graph by G (which is initialized as a direct copy of M), and the surface
clusters by Ω. Initially each vertex of M is put in an independent cluster. The skele-
ton graph and clustering are consistent in the sense that the clustering Ω determines
the graph G, and the mapping from the mesh M to the skeleton G. During iterative
skeletonization, we perform graph contraction coupled with surface clustering. Graph
contraction, running on G, works similar to ACVD [4], but with topological and ge-
ometrical constraints to ensure that the skeleton meets various expectations described
later. This progressively coarsens and contracts the initial graph into a medial structure
of the input mesh. This graph contraction is coupled with a surface clustering process,
which upodates the surface clusters Ω on M. Surface clustering serves both to group
mesh regions, and to provide good node distribution and connectivity of the skeleton
graph for the subsequent graph contraction step. Iteration stops when no contractible
nodes remain. If the user requires a more detailed skeleton and corresponding surface
clusters, an optional refinement process may be used which places additional skeleton
nodes between the ones already determined, and refines the clustering accordingly. As
well as giving denser sampling, this can also help to provide better distributed skeleton
points. Finally, the skeleton graph is contracted into the output curve skeleton. Figure 2
shows several iterations of skeletonization (a-d) and skeleton refinement (e).

Our contraction idea is based on noting that AVCD can simplify the input mesh and
generate a medial structure [4]. ACVD mimics CVD via k-means clustering of mesh
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Algorithm 1 Curve skeleton extraction by graph contraction

Require: A mesh M
Ensure: Its skeleton K and surface clusters Ω = {Ci|i = 1, ..., n}
1: Initialize skeleton graph G from M ;

2: Initialize surface clusters Ω = {Ci|i = 1, ..., NV } ;

3: Nseeds = 200 ;
4: repeat
5: Nseeds = r ×Nseeds ;
6: Graph contraction on G using Nseeds;
7: Surface clustering on Ω;
8: Update contraction and clustering constraints;
9: until (no contractible node in G);

10: K ← G ;

11: Optionally refine skeleton K;
Note: Ci is the ith cluster. NV is the number of vertices of M. r is the cluster reduction
ratio, experimentally set to 0.7. No contractible node in G means that there is no inessential
triangle (explained later) in G.

vertices to coarsen the input mesh. However, if ACVD is used in a straightforward way,
it produces a medial surface-like mesh as the result, Like other popular methods. For
example, Figure 3 shows medial structures for similar hand models computed using typ-
ical Voronoi-based approaches, including the power crust approach [3] and ACVD [4]:
in neither case does a one-dimensional curve skeleton result. Our output is also shown
in Figure 3. We thus have to modify AVCD.

3.2 Graph Contraction Coupled with Surface Clustering

Graph contraction and surface clustering are coupled steps. Each node in the skeleton
graph is placed at the center of mass of its corresponding surface cluster; edges of the
graph are deduced from the adjacency relations of the surface clusters. In each iteration,
we first perform skeleton graph contraction using a subset of the current graph nodes
as seeds. During contraction, graph nodes come from the associated surface clusters
obtained in the last iteration. A contraction of two graph nodes causes their associated

Fig. 3. Hand model medial structure. Left to right: via power crust [3] (image after [3]), via
ACVD [4] and using our approach.
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surface clusters to be merged. The merged surface clusters are then optimized via sur-
face clustering, which updates the skeleton graph (including both nodes and edges) to
agree with the optimized surface clusters. Optimizing the surface clustering adjusts the
contracted graph to provide a better placement of nodes.

To perform skeleton graph contraction, we utilize a revised version of ACVD on G
whihc minimizes the following energy:

FG =

n−1∑
i=0

⎛⎝ ∑
ni∈Cj

ωi||ni − cj ||2
⎞⎠ , (1)

where ni is a graph node within the Voronoi cell Cj with center of mass ci, the weight
of node ni is ωi = 1/

∑
j∈N1(i)

Aij , and N1(i) is the 1-ring neighboring triangles of
node ni while Aij is the area of the corresponding triangle. If a node has no neighboring
triangle, we simply set its weight to 106. Clustering is performed using classical Lloyd
relaxation where we interleave cluster growing and center relocation. The process is
bootstrapped with a set of seed points and the initial clusters associated with each seed
point. The initial clusters are obtained by grass-fire region growing from each seed.
Then in each iteration, we check those boundary edges eij = (ni, nj) whose two end
nodes lie in different clusters: ni ∈ C1 and nj ∈ C2. We then select one of the following
three operations according to which decreases the energy FG most: 1) merge ni into
cluster C2, 2) merge nj into cluster C1 and, 3) keep the current configuration. When
no further update of boundary edges is possible, we finish contraction and move on
to surface clustering. On each iteration the number of seeds reduces by a factor r; we
experimentally take r = 0.7 for all tested models.

Surface clustering works in a similar to the above except that it operates on the orig-
inal mesh. The energy function to be optimised is given later in Equation 2, which has
similar form to Equation 1; both are variations of the basic ACVD definition. Cou-
pled contraction and clustering are iterated until no contractible nodes remain, i.e., all
remaining nodes are selected as seeds and no inessential triangles (see later) remain.

Note that performing ACVD over the skeleton graph only leads to the coarsening
of the graph. In order to eventually make it converge to an approximately-centered
skeleton, we need to add constraints during graph contraction and surface clustering.
Firstly, in order to avoid over-contraction, we add a constraint which prevents extreme
nodes of the skeleton graph from being contracted. Secondly, in order to center the
graph in the interior of the input surface, we constrain the surface clustering to favor an
increase in eccentricity of the center of mass of the resulting clusters.

Eccentricity Control During Surface Clustering. The skeleton should be located as
centrally in the shape as possible. This is achieved by controlling surface clustering, as
the surface clusters determine the positions of the skeleton nodes. To do so, we constrain
the growing direction of each surface cluster. Specifically, surface clustering optimizes
the following energy function:

FG =
n−1∑
i=0

⎛⎝ ∑
ni∈Cj

ωi||ni − cj ||2
⎞⎠+ 1/d2(cj , Cj) (2)
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where d(cj , Cj) is the Euclidean distance from a cluster Cj ’s center of mass cj to the
surface patch of Cj . The second energy term is highly nonlinear. Fortunately, it can be
optimized using Lloyd’s relaxation framework. Specifically, in each iteration of Lloyd’s
algorithm, merging of boundary edges is not only determined by minimization of the
ACVD energy but also by maximization of distance from the current center to the sur-
face cluster; note that an approximate computation of surface distance suffices. In our
implementation, we simply query the closest vertex on the surface mesh using a k-D-
tree and compute the distance as the minimum distance from the center to all 1-ring
neighbouring triangles of the closest vertex. Since skeleton nodes should be located
in the interior of the surface mesh, the point to surface distance should only take into
account interior distance. This is approximately achieved by filtering back-facing trian-
gles (w.r.t. the center) based on normal. Our simple approach to eccentricity control is
merely one possible solution. Other more complicated constraints could be used within
the optimization framework of Lloyd relaxation.

3.3 Skeleton Refinement

After obtaining the skeleton, we can optionally perform geometric refinement to upsam-
ple it by inserting graph nodes into the skeleton graph. Given two neighboring graph
nodes, we extract all mesh edges shared by the two surface clusters of the two nodes to
form a new cluster. We then compute the center of mass of the new cluster and insert
a new node (along with the corresponding surface cluster) in-between the two graph
nodes. The location of the newly inserted node, is locally optimized by minimizing the
energy in Equation 1. However, unlike in Section 3.2, we now perform grassfire grow-
ing where we grow the boundary one ring at a time instead of one triangle at a time.
This is because we hope to keep the cluster in the shape of a ring to avoid introducing
incorrect topology. Figure 2(e) demonstrates the effect of geometric refinement.

4 Results

We next present results of skeleton extraction for various input 3D shapes, and show
how our approach can be used in skeleton-driven shape deformation.

4.1 Capability

Figure 4 demonstrates the capability of our method using eleven 3D shapes. Our method
correctly captures the genus of the input shape and produces an approximately centered
skeleton within each shape. All results shown in this paper were produced with the
same parameter settings given earlier. Our algorithm takes about 1-2 mins to perform
skeletonization for these models, on a PC with an Intel Core2Quad 2.4GHz CPU and
2GB memory.

4.2 Application: Deformation

Perhaps the most widespread application of skeletons is for skeleton-driven deforma-
tion, a key component of skinning animation. We show in Figure 1 that skeletons ex-
tracted with our method, although only approximately-centered, can be used to produce
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Fig. 4. A gallery of results on various input shapes, including Dog, Dancing Children, Wood-
thinker, Fertility, Pegasus, Elk, Neptune, Heptoroid, Raptor, Feline, and Dancer (top left to bottom
right). Our method extracts good quality, approximately-centered, skeletons even for complex
models with high-genus or flat regions.

visually pleasing deformation results. Skinning deformation was performed using the
dual quaternion technique from [17].

5 Conclusions

We have presented a new algorithm for curve skeleton extraction from 3D shapes. Our
algorithm makes use of graph contraction to produce the skeleton and surface cluster-
ing on the input shape. Surface clustering serves to ensure uniformity during skeleton
graph contraction, leading to an approximately-centered skeletonization process. We
also output surface clusters associated with the skeleton, useful in applications such as
skinning deformation.

Several improvements could be made to our algorithm. Graph contraction is guided
by heuristic criteria and we cannot provide a theoretical guarantee on the uniqueness
of the extracted skeletons. Another limitation is that our method may overlook small
geometric protrusions due to the nature of the clustering method. Finally, our method
does not work in 2D, because our surface clustering, which aims to form cylindrical
clusters [15], does not have an analog for 2D contours.
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Abstract. In this paper, we propose a new robust feature extraction
algorithm for 3D models based on principal curvature direction. After
principal curvatures directional fuzzy filtering, it is a good description of
the geometric discontinuity. Compared with of the curvatures value, the
impact of noise on the principal curvature direction is small. Therefore,
feature extraction based on principal curvature direction is more robust
and more accurately.

Keywords: Feature extraction, Integral Invariants, Principal Curvature
Direction.

1 Introduction

Feature takes an important position in reverse engineering CAD; it can improve
the efficiency of reverse modeling and automation degree, improve the precision
of the surface reconstruction, and be beneficial to the innovation of the product
design. Around the core of feature extraction, domestic and overseas scholars
made the research respectively from the different levels of the point, curve, and
surface and so on. The feature point and feature curve can be used to parti-
tion measured data, namely it is used in data partitioning based on surface.
While the extraction of feature surface can not only realize the data partitioning
based on surface, but also finish the construction of the local surface model at
the same time. This paper mainly introduces the extraction methods of feature
point. Feature points are useful in many applications, including segmentation,
metamorphosis, mesh retrieval, deformation transfer, cross-parameterization and
texture mapping. Feature point is mainly reflected in the continuity of the sur-
face. Features detection is primarily according to the given gradient threshold
of curvature change, looking for boundary, fold, tip and other transiliences.
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2 Related Work

At present, the feature point extraction method is mostly based on curvature.
Milroy [1] used Snake algorithm in the 3D OCS (Orthogonal Cross Section)
model application, and used extreme value point of the curvature to define the
feature point. Huy et al. [2] proposed a multi-scale feature extraction algorithm
using a rotation and translation invariant local surface curvature measure known
as the curvedness. Different values of the curvedness of a point are calculated
at multiple scales by fitting a surface to its neighbourhood of different sizes.
Prathap et al. [3] proposed an approach to accurately detect landmarks and
segment regions on face meshes, which is based on 3D point distribution model
(PDM) that is fitted to the region of interest using candidate vertices extracted
from low-level feature maps. In order to characterize the curvature property of
each vertex, two features maps are computed. These features maps are derived
based on the principal curvature values. Fang et al. [4] think the feature points
and feature regions can be expressed via the curvature parameter, and a local
curvature extreme point could be regarded as a feature point. Wu et al. [5]
detected feature point based on local entropy. Local entropy reflects the degree
of dispersion of the mean curvature of all points in the point cloud. In the
large local entropy, the mean curvature of the point is relatively uniform; on the
contrary, the discrete of average curvature will be greater discrete.

Novatnack and Nishino et al. [6] presented a multi-scale corner and edge fea-
tures from 3D meshes. The key idea of this approach is to analyze the geometric
scale variability of a given 3D model in the scale-space of a dense and regular 2D
representation of its surface geometry encoded by the surface normals. In order
to detect salient features in the geometric scalespace, the first- and second-order
partial derivatives of the normal map are derived. Novel corner and edge de-
tectors are then derived using these partial derivatives. Demarsin et al. [7] used
PCA (Principal component analysis) to calculate the normal direction of points,
and feature point is extracted through the changed size of adjacent points.

The SUSAN(Smallest Univalue Segment Assimilating Nucleus) [8] principle
is the basis for algorithms to perform edge detection, corner detection and
structure-preserving image noise reduction. SUSAN method is based on a circu-
lar window in which the center pixel, named nucleus, is the analyzed pixel. In
order to complete the work on the 3D SUSAN operator, Walter et al. [9] pro-
posed an extraction of principal saliency degrees and direction. The homologous
3D operator to a circular pixellized window becomes a voxellized sphere.

3 Multi-scale Curvature Estimated Based on the Integral
Invariants

At first integral invariants were put forward by Manay etc [10] and used for
plane curve matching. They studied the situation integral invariants work on
the planar curve. One of integral invariants is area invariant. In [11], integral
invariants based on the principal component analysis (PCA) was proposed points
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not variables, and used to analyze local properties of the curved surface. The
basic idea is that: the PCA of point set P , i.e., the covariance matrix is:

J(P ) =
∫
P (x− s) · (x− s)

T
dx

where s is its center of gravity.
The principal curvature directions of the surface, or primary components of P ,

can be got through calculating three eigenvectors and corresponding eigenvalues
of the covariance matrix J(P ). Here the neighborhood of a point on surface can
be ball neighborhood, spherical neighborhood, curved surface piece neighbor-
hood and so on. The eigenvalues Mb1, Mb2 (ball neighborhood) and Ms1, Ms2

(spherical neighborhood) meet:

M r
bi =

2π

15
r5 − π

48
(2ki + k1 + k2)r

6 +O(r7) (1)

M r
si =

2π

3
r4 − π

8
(2ki + k1 + k2)r

5 +O(r6) (2)

where i = 1, 2, ki are two corresponding principal curvature values. Using for-
mula (1) and formula (2), principal curvature value of scale r can be defined,
and it approaches to the classic definition when r approaches to 0. At this time,
formula (1) and formula (2) also are used to reverse curvature value.

4 Feature Extraction Based on Principal Curvatures
Direction

After estimated the principal curvature directions by integral invariants, the di-
rections are smoothed through FVM filtering [12]. The generalized vector median
x(δ) is the sample that minimizes the distance metric D(·, ·) between itself and
all others:

x(δ) = argmin
N∑
i=1

D(x, xi)

where D(x, xi) is the angle of vector x and xi.
A vector-based fuzzy membership function was defined, μ(u, v): IRm×Rm �→

[0, 1]. The fuzzy vector median (FVM) is a natural extension of the fuzzy median,
and the output can be defined as:

xFV M =

N∑

i=1

xiRi,(δ)

N∑

i=1

Ri,(δ)

where Ri,(δ) = μ(xi, x(δ)).
We define the curvature direction values to characterize the change of curva-

ture direction for each point, which can be defined as:

Qi =

∑

j∈Neighbori

<ti,1,tj,1>+<ti,2,tj,2>

2k
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where, tj,1 and tj,2 are two principal curvature direction of pi’s k neighborhood
point. Therefore, Qi can reflect the degree of consistency between principal di-
rection and its neighborhood points.

To illustrate the principal curvature directions smoothing process, Figure 1
shows experiments on two model objects with different noise, which is described
the curvature direction value.

(a) (b) (c)

Fig. 1. Curvature map and curvature direction values map. (a)3d model with noise,
(b)Gauss curvatures map, (c) Principal curvature direction values map.

It can be seen from the figure that principal curvature direction after fuzzy
mean filter can effectively extract the model characteristics, which is more robust
to noise and better than curvature graph. Note that the curvature direction
values processed by the FVM are very close to the feature of original model.

For point pi , density function defined for the point of its K-nearest neighbor
data points affect the sum of the function.

F (pi, pj) = e−
||Qpi

−Qpj
||2

2σ2

D(pi) =
1
k

k∑
j=1

F (pi, pj), pj ∈ Nb(pi)

where, Qpi is curvature direction values; the density parameter σ is also called
the window width size. The window width size of σ determines the influence
range of each point.

Determine the density function D(pi) exceeds a set threshold ξ, if D(pi) ≥ ξ,
the point pi is a possible noise point.

Let ti1 and ti2 be the principal curvatures direction of pi. pj is the neighborhood

point. ti1 and ti2 as a benchmark, we computer the cos value between tj1 and ti1,
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tj2 and ti2, that is < ti1, t
j
1 > and < ti2 · tj2 >. Two sequences C1 =

{
c11, c

1
2, ..., c

1
k

}
and C2 =

{
c21, c

2
2, ..., c

2
k

}
are get.

To calculate the standard deviation of C:

σCi =

√
1
k

n∑
j=1

(Ci
j − Ci), Ci = 1

k

n∑
j=1

cij , i = 1, 2

If the standard deviation σC is greater than the set threshold, it can determine
that the distribution of pi nearest point is non-uniform, so pi is a boundary
characteristic point; conversely, you can judge pi is an internal point. The differ-
ence of principal curvature direction between noise point and its neighborhood
is larger, and Ci will be larger. If Ci is greater than the set threshold, pi may
be considered as a noise point.

5 Experiment and Discussion

In geometry, the curvature can completely characterizes the degree of bending of
the surface. Because variance able to represent the degree of deviation of data, so
the curvature variance can reflect the impact of the noise. The larger the variance
and is more sensitive to noise. Constructing a unit sphere and adding some noise,
the curvature of the noise immunity of different algorithms are analyzed. For a
sphere model added noise, figure 2 shows the curvature map of quadric fitting
and integral variable method.

(a) (b)

Fig. 2. Curvature map (a) Quadric Fitting, (b) Integral variable

Table 1 shows the comparison the noise variance among quadric fitting, Taubin
and integral variable. The variance of curvature estimated by integral variable
is the smallest, which is more robust to noise.
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Table 1. Noise variance comparison

Quadric fitting Taubin Integral variable

mean 0.013712 0.159160 0.008029

gauss 0.056238 0.703499 0.006204

Table 2. Principal curvature direction accuracy comparison

noise strength A Quadric Fitting Taubin Integral variable

0 0.766888 0.756622 0.805285

0.005 0.743970 0.756797 0.792268

0.01 0.730486 0.758294 0.780363

0.02 0.712991 0.730826 0.754611

According to the surface parameters equation, we can calculate the accurate
information of the principal curvatures direction, surface normal, curvature etc.
In order to test the robustness of different algorithm, we add different ranges
of noise. Table 2 shows the estimated error of principal curvatures direction
increases with the noise for the implicit surface x · x+ y · y− z = 0. We propose
to add pseudo-random noises on vertex coordinates according to the following
equation: xi = xi + ai · R; where R denotes the average distance from vertices
to object center, and ai is a pseudo-random number uniformly distributed in
interval [−A,A]. The values in the table are the cosine of the angle between
estimated curvature direction and the true direction. It can be seen from the
experiment, the principal curvature direction estimated by integral variable to
be reliable. Especially when the data points with a lot of noise, this performance
is more excellent.

(a) (b) (c) (d)

Fig. 3. Feature points extraction. (a)curvature value, (b) fitting method (c) Taubin
method (d) Integral variable.
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Figure 3 shows the example graph of feature point extraction. If there is no
noise points, the effect of these methods to extract characteristic points are quite
satisfactory. However, the curvature value method introduces a small amount of
non-feature points (fig. 3 (a)); Quadric fitting and Taubin method lost part of
the feature points (fig. 3 (b), (c)).

After the analysis of experimental results for different data, in the case of
noise, curvature-based approach will incorrectly judged some noise points as fea-
ture points, and it is more robust to noise for the method of principal curvature
direction.

6 Conclusions

In this paper, the 3Dmodel feature point extraction algorithm has been improved
to obtain satisfactory results from the experimental results. Integral invariants
based on principal component analysis (PCA) points can estimate robustly prin-
cipal curvature size and direction of each point on curved surface under different
scales. Because the area invariant is unrelated to the coordinate selection and
rigid transformation, it can be regarded as characteristic quantity to measure the
shape of curve in different scale. Experimental results show that the proposed
method can effectively extract the feature points, especially in the case of noise.

Acknowledgments. This work was supported in part by the National Natural
Science Foundation (Grant No: 61173173 and 61272430).
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Abstract. We propose a compact data structure for volumetric meshes
of arbitrary topology and bounded valence, which offers cell-face, face-
edge, and edge-vertex incidence queries in constant time. Our structure
is simple to implement, easy to use, and allows for arbitrary, user-defined
volume cells, while remaining very efficient in memory usage compared
to previous work.

Keywords: 3D mesh data structure, Combinatorial maps, Cell
complex.

1 Introduction

Volumetric meshes are now ubiquitous in solid modeling, physics-based simula-
tion, computational science, and even rendering of translucent materials. How-
ever, the ever-increasing size and complexity of meshes impose undue stress on
both memory access times and usage, especially since mesh size typically grows
as a cubic function of the resolution. A data structure with small memory foot-
print that can efficiently handle queries of incidence and adjacency would thus
benefit a wide range of applications in graphics and scientific computing.

While our data structure is based on the compact, array-based mesh data
structure [1], we provide a simple but generic method for defining volume cell
types, complete the data structure with a list of edges, and improve incidence
queries within each volume cell.
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Fig. 1. From left to right: tetrahedron cell type; prism cell type; a mesh with 3 cells

Related work. We limit our discussion of previous work to closely related 3D
data structures— for a survey of 2D mesh data structures, see, e.g., [2,3]. Note,
however, that the 2D version of our compact combinatorial map data structure
is equivalent to HEDS [1], which is known to be similar in memory usage to a
number of compact implementations of the half-edge data structure.
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In scientific computing, 3D volumes are often assumed to be 3D manifolds.
Thus, a table of mesh element connectivity that maps volume cells to their
corner vertices provides complete information about incidence among vertices,
edges, faces, and volume cells. While this can be sufficient for various geometry
processing algorithms [4, 5], many computational applications require constant-
time incidence queries, which cannot be achieved without auxiliary connectivity
information. This requirement was referred to as comprehensiveness in [1]. To
address this issue, several data structures were proposed to store sufficient adja-
cency information to be comprehensive, e.g. [6–9]. Among these, combinatorial
maps [8] can be extended to generalized d-maps to encode non-orientable man-
ifolds [10], and be compressed [11], but the adjacency information will only be
restored through decompression.

Recently, a number of compact data structures have been proposed. For in-
stance, [12] introduced a method only applicable to simplicial meshes. [1] pre-
sented a compact array-based data structure for 3D orientable manifold cell
complexes. However, while they can produce incident cell representations such
as an edge represented by two vertex indices, it is impossible to find an identifier
for the edge using only the proposed connectivity representation. [13] indepen-
dently developed a similar data structure.

There are a number of libraries providing practical implementations of volume
mesh data structures. [14] already contains an implementation of Combinato-
rial Maps; OpenVolumeMesh [15], released recently, is based on OpenMesh [16],
which stores incidence information for cells with those with one dimension less;
libMesh [17] provides a complete but not comprehensive connectivity descrip-
tion; CGoGN [18] provides an implementation of Generalized Maps. However,
none of these existing implementations are optimized for storage.

Contributions. Our main contributions include:

– a concise local connectivity description of generic 3-cell (volume cell) types;
– an efficient way to store all the combinatorial maps in volume meshes;
– a straightforward way of associating attributes to k-cells (k ∈ {0, 1, 2, 3});
– a constant time complexity access to adjacency information (e.g., face-edge).

Note that unique edge identifiers and the face-edge incidence are the main miss-
ing components in the compact array-based mesh data structures [1], compared
to our implementation.

The rest of the paper is organized as follows. In Sec. 2, we briefly introduce the
combinatorial maps data structure for volume meshes. In Sec. 3, we describe our
compact array-based data structure, and briefly analyze its space complexity.
In Sec. 4, we discuss adjacency queries and typical operations that our data
structures can efficiently handle, before concluding in Sec. 5.

2 Combinatorial Maps

In order to introduce the notion of combinatorial maps, we loosely follow the
notation used in [14] and call k-dimensional cells k-cells. Hence, vertices are 0-
cells, edges are 1-cells, faces are 2-cells, and volume cells (such as tetrahedra,
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prims, etc) are 3-cells. Two cells of different dimensions are defined to be incident
if one is a subset of the other. Two k-cells of the same dimension are adjacent if
they share a common (k−1)-cell.

A combinatorial map describes the incidence and adjacency relations among
cells of the mesh using a basic type of element called dart, and a group of relations
between darts. For an orientable 3Dmanifold, a 3D dart corresponds to a cell tuple
(v, e, f, c), where v is a starting vertex of an edge e that lies in a face f of 3-cell c.
For 2D orientable surfaces, a 2D dart would be the same as the usual half-edge.

An abstract way to define a whole 3D combinatorial map M is to use a 4-tuple
M = (D, β1, β2, β3), with:

– D is a finite set of darts;
– for i = 1, 2, 3, βi : D → D is a mapping;
– β1 is a permutation;
– β2, β3, and β1◦β3 are involutions, i.e., ∀d ∈ D, β2◦β2(d) = d, β3◦β3(d) = d,

and (β1 ◦ β3) ◦ (β1 ◦ β3)(d) = d.

3 Compact Data Structure

3.1 Overview

File format. For a 2D polygonal mesh, the complete connectivity information
can be encoded by a face list, with each entry corresponding to the list of vertices
in the polygon face. However, for a polyhedral mesh, the same list of vertices
can correspond to different polyhedra. For instance, both an octahedron and a
prism have six vertices each. As there are only a handful of 3-cell types in most
3-dimensional meshes used in practice, we opt to describe all the 3-cell types in
the header part of the file, and to describe each polyhedron by an ordered vertex
list and its 3-cell type.

Comprehensive data structure. All low dimensional (≤ 2) relations (β1, β2) map
darts within the same 3-cell. Given the type of a 3-cell, we may assign each dart
in that cell a local id, and the maps among the darts can be precomputed when
the 3-cell type is known. One can easily assemble a global ID for each dart by
(C, d), where C is the global ID of the 3-cell, and d is the local dart ID.

β3 maps a dart in one 3-cellC1 to another dart in an adjacent 3-cellC2. Noticing
the relation among β’s, we only store β3 for one dart in the common 2-cell in C1.
Thus, the size of β3 is reduced to one dart per (C2, C1) pair (also called half-face).

The relation between 3-cells and darts is implicitly given in the way we express
a global ID for each dart (C, d). The mapping from darts to vertices (0-cells) is
implicitly stored in the vertex lists for 3-cells, also called the element connectivity
in array-based methods such as [1], denoted Cv2V below. The map from each
vertex to one of its darts is stored in a table, denoted by V 2D below.

We propose to build a minimal set of additional connectivity tables to provide
these incidence relations crucial to real world applications. We describe them as
optional, since one may only need some of the tables in this set, although at
least one of them is, in many cases, indispensable.
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3.2 Details

To illustrate the detailed actual data structure, we use as a running example
the description of the simple meshes shown in Figure 1, as found in a mesh
file—skipping the list of vertex coordinates since our focus is on connectivity
information. As in the compact array-based half-face data structure (HFDS) [1],
we leverage the fact that there are only a few types of cells typically used in
engineering or graphics applications.

Local information within each 3-cell. Each 3-cell is treated locally as a 2-manifold
cell complex, which can be represented by a local half-edge structure, i.e., a 2D
combinatorial map. For a given type of 3-cell with nv vertices, ne edges, nf faces:

– locally denote each vertex by vi, with i ∈ {0, . . . , nv − 1};
– locally label each face as fm = (vi, vj , vk, . . .), with m ∈ {0, . . . , nf − 1}.
– locally label each of the 2ne darts as ek = (vi, vj), with k ∈ {1, . . . , 2ne};

Darts are indexed starting from 1, as 0 is reserved for boundaries.
The mesh file for Figure 1 would thus contain the following information:

Cell type 0 (tetrahedron):

faces 0:(0,2,1) 1:(0,1,3) 2:(1,2,3) 3:(2,0,3)
darts 1:(0,1) 2:(1,0) 3:(0,2) 4:(2,0) 5:(0,3) 6:(3,0)

7:(1,2) 8:(2,1) 9:(1,3) 10:(3,1) 11:(2,3) 12:(3,2)

Cell type 1 (prism):

faces 0:(0,2,1) 1:(0,1,4,3) 2:(1,2,5,4) 3:(2,0,3,5) 4:(3,4,5)
darts 1:(0,1) 2:(1,0) 3:(0,2) 4:(2,0) 5:(0,3) 6:(3,0) 7:(1,2) 8:(2,1) 9:(1,4)

10:(4,1) 11:(2,5) 12:(5,2) 13:(3,4) 14:(4,3) 15:(3,5) 16:(5,3) 17:(4,5) 18:(5,4)

Cells :
type 0 C0:(1,0,2,6) C1:(3,4,5,7)
type 1 C2:(0,1,2,3,4,5)

In all the tables we list, the information before “:” is for illustration purposes
only, and is thus not stored in memory or files. For each 3-cell type, defining
only the faces would be necessary and sufficient, since we can build the darts
based on faces and give them labels. We then build a lookup table for β1 and β2

of all darts, with 2ne entries and 2ne possible values in the range for each entry.
In our running example, the β1 and β2 tables for 3-cell type 0 are

d 1 2 3 4 5 6 7 8 9 10 11 12
β1(d) 9 3 8 5 12 1 11 2 6 7 10 4
β2(d) 2 1 4 3 6 5 8 7 10 9 12 11

We denote local incidence mappings as follows:

– d2f(d) maps a dart d to its local face ID;
– f2d(f, i) is the i-th dart of the local face f ;
– d2v(d) maps a dart d to its starting vertex.

We use lower (resp., upper) case in the name of a map to denote whether the
index is local (resp., global).
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Global information. We load the connectivity table that contains, for each 3-cell,
the global indices of its vertices. We denote this table by Cv2V (C, v) since it
maps the v-th vertex of 3-cell C to its global index V . Once we have the 3-cell
connectivity, a dart can be globally indexed by an ordered pairD = (C, d), where
C is the global 3-cell ID, and d is the local dart index. Note that instead of using
a local face index with a starting vertex (called anchored half face) as in HFDS,
we use local indices of darts; for the common case of tetrahedron meshes, this
means we can cope with meshes twice as large for the same amount of memory.

To complete incidence and adjacency information in the combinatorial map,
we need to construct β3. We save space by noticing that β3 = β1 ◦β3 ◦β1, which
means that β3(D) can be inferred if β3(β1(D)) is known. Thus, we only store β3

for the first dart in each half face H = (C, f), and denote this additional table
by H2D(C, f). If the application requires the use of boundary darts, their β3 can
be stored in a separate list B2D(B), mapping the first dart of each boundary
face B to its corresponding dart in the 3-cell adjacent to it. We also need to map
from a vertex to one of its darts V 2D(v); but the map from a dart to its starting
vertex is trivially found by D2V (C, d) = Cv2V (C, d2v(d)).

The tables for the 3-cell example are:

β3 C0 f0d3:(2,8) f1d1:(0,0) f2d7:(1,0) f3d4:(2,0)
C1 f0d3:(2,16) f1d1:(3,0) f2d7:(4,0) f3d4:(5,0)
C2 f0d3:(0,8) f1d1:(6,0) f2d7:(7,0) f3d4:(8,0) f4d13:(1,2)

B2D BF0:(0,1) BF1:(0,7) BF2:(0,4) BF3:(1,1) BF4:(1,7) BF5:(1,4) BF6:(2,1) BF7:(2,7) BF8:(2,4)
V2D V0:(0,7) V1:(0,1) V2:(0,4) V3:(1,1) V4:(1,7) V5:(1,4) V6:(0,10) V7:(1,6)

Boundary. The map β3 usually returns an internal dart (C, d) with d > 0. How-
ever, if the opposite is a boundary dart, it will return (B, 0), i.e., the boundary
half-face ID. We carefully choose V 2D so that whether a vertex V is on bound-
ary can be determined by examining β3(V 2D(V )). Darts belonging to boundary
half-face do not need to be explicitly maintained in most cases .

Edge and face incidence information. If we need to use unique edge identifiers, a
table for E2D(E) is maintained to map an edge to one of its darts. We sort the
edges in the E2D table by lexicographic order of their vertices (Vstart, Vend) as-
suming that it always points from the vertex with a smaller index to the one with
a larger index. A backwardmappingD2E can be implemented by a table V 2E(V ),
mapping vertex V to the first edge starting from it. We can avoid sorting the edges
by using a linked list at the cost of storing anothern1 integers.ThemapV 2E would
then be made to map a vertex to a linked list of edges starting from it.

If only half faces need identifiers, (C, f) can be used directly. Otherwise, a
table F2D(F ) is required. Similar to the edge case, we can sort the faces by
their first three vertices, assuming vertices are in ascending order within each
face F . Then the backward mapping D2F can be implemented by V 2F (V ),
mapping vertex V to the first face that has V as its smallest-indexed vertex.

For our running example, the (optional) edge tables are
E2D E0(V0,V1):(0,2) E1(V0,V2):(2,3) E2(V0,V3):(2,5) E3(V0,V6):(0,9) E4(V1,V2):(0,3)

E5(V1,V4):(2,9) E6(V1,V6):(0,5) E7(V2,V5):(2,11) E8(V2,V6):(0,11) E9(V3,V4):(2,13)
E10(V3,V5):(1,3) E11(V3,V7):(1,5) E12(V4,V5):(2,17) E13(V4,V7):(1,9) E14(V5,V7):(1,11)

V2E V0:0 V1:4 V2:7 V3:9 V4:12 V5:14 V6: V7:
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The construction of most tables is straightforward since the mesh connectivity
information is complete.

Spatial complexity. Tetrahedron meshes are the easiest to establish comparisons
between various data structures—for such meshes, we can approximate all k-cell
counts nk as a function of the number of tetrahedra n3 and boundary faces nb—
other mesh types must be analyzed using the count of darts, and its estimated
relation with k-cell numbers. Based on similar assumptions as in [9], we have
for tetrahedron meshes

n0 ≈ 0.175n3, n1 ≈ 1.175n3 + 0.5nb, n2 = 2n3 + 0.5nb.

For the models shown in Table 1, these estimates are very close to the actual
k-cell counts.

In the following analysis, we assume that the lowest four or more bits are
sufficient to encode the local dart index or the local half face index; thus we
need only one integer for (C, d) or (C, f). The memory size required for the
various connectivity tables are listed below:

Table V2XYZ Cv2V H2D V2D B2D
Space 3n0 4n3 4n3 n0 nb

Table(optional) E2D V2E F2D V2F
Space n1 n0 n2 n0

By tallying up these numbers, we find that 8n3 + n0 + nb ≈ 8.175n3 + nb

integers are required for the basic tables, in par with the bare minimal data
structures. Data structures capable of handling generic polytope meshes require
more memory space when used for simplicial meshes, e.g., Dobkin and Laszlo’s
structure [19] would require around 18n3 pointers, while radial-edge, cell-tuple,
and G-map representations, as well as CGAL’s combinatorial map, would use
even more memory.

HFDS [1] uses the same amount of basic space (8.175n3+nb). However, their
encoding of a local dart (anchored face) identifier (C, f, v) uses a separate local
index f for a face within the tetrahedron and a local index v of a vertex within
the face. Thus, it would be less memory efficient when dealing with generic 3-
cells, for example, 3-cells that have 5-edge faces or more. In addition, even in
the common case of tetrahedron meshes, HFDS requires 5 bits for local indices
(f = 0 is reserved for boundary), while we only need 4 bits, enabling us to handle
meshes with 256M 3-cells with a 32-bit integer representation, instead of their
128M limit. Furthermore, and key to runtime efficiency, we provide a simple way
to give edges and faces unique identifiers. This enables constant time incidence
queries, and allows appending attributes to edges and faces, which are important
in simulation and other computational tasks. The HFDS data structure does not
actually provide any means to get unique adjacent edge IDs in constant time.

4 Incidence/Adjacency Queries

As our data structure can be seen as an internal representation of a combinatorial
map, it can directly leverage any implementation of combinatorial maps to get
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Table 1. Actual memory usage for a variety of meshes

model name n0 n1 nb n3 V2XYZ+Connectivity est. Edges included

1mag 95,156 648,969 48,308 529,652 19,858k 18,625k 23,006k
Armadillo 189,919 1,314,767 77,704 1,085,997 39,502k 38,103k 44,634k

david 140,592 965,377 65,402 792,038 29,486k 27,824k 33,334k
dc-wt 550,770 3,819,288 224,024 3,156,497 111,286k 110,742k 125,702k

emd1590 23,419 150,930 19,540 117,736 5,346k 4,175k 6,110k
fertility 341,924 2,385,564 125,450 1,980,912 70,098k 69,438k 79,490k
neptune 358,647 2,498,975 133,476 2,073,588 73,622k 72,695k 83,442k

incidence and adjacency information in constant time. In addition, with integer
IDs, additional attributes associated to vertices, darts, half faces, cells, edges,
and faces, can be directly allocated as arrays with the appropriate sizes, making
them highly efficient and flexible for static meshes. For instance, to map a dart
to a unique edge ID, we find the end vertices (Vstart, Vend) with Vstart < Vend.
We then perform a linear search in E2D starting from V 2E(Vstart), this again
would terminate in constant time.

5 Conclusion

We presented an efficient internal representation of combinatorial maps. All nec-
essary components in combinatorial maps can be implemented in compact form.
Compared to previous work, our data structure can handle arbitrary 3-cell types,
and it provides adjacency and boundary inquiries in constant time. Appending
attributes to cells of any dimension is also straightforward.

One limitation of the compact combinatorial map data structure we described
is its apparent inability to deal gracefully with dynamically changing connectiv-
ity, in particular with possible changes of 3-cell types. (On the other hand, if
3D cells are kept intact as in the case of cutting or merging meshes along faces,
the mesh can be easily modified accordingly.) However, we believe that our data
structure can be readily altered to efficiently handle connectivity changes as well:
one could use pointers instead of integers for the IDs of 3-cells and vertices—and
the last few bits of the pointer can actually be used to encode local dart index as
in the integer case. The linked list version of V 2E will be necessary, increasing
the memory space by n1 = 1.175n3.

Thus, a possible research direction worth exploring is the design of admissible
local connectivity changes (such as edge removal or 2-3 flip) that maintain the
validity of our compact data structure. Compression of neighboring information
(β3) using difference coding after sorting the cells along space-filling curves could
also lead to further reduction of memory usage. Additionally, the extension to
dimension n > 3 could be done by encoding the local connectivity (β1, . . . , βn−1)
of n-cell types, and store only βn.
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Abstract. With the rapid development of Internet and multimedia
technology, cross-media retrieval is concerned to retrieve all the related
media objects with multi-modality by submitting a query media object.
In this paper, we propose a novel method which is dedicate to achieve
effective and accurate cross-media retrieval. Firstly, a Multi-modality Se-
mantic Relationship Graph (MSRG) is constructed by using the semantic
correlation amongst the media objects with multi-modality. Secondly, all
the media objects in MSRG are mapped onto an isomorphic semantic
space. Further, an efficient indexing MK-tree based on heterogeneous
data distribution is proposed to manage the media objects within the
semantic space and improve the performance of cross-media retrieval.
Extensive experiments on real large scale cross-media datasets indicate
that our proposal dramatically improves the accuracy and efficiency of
cross-media retrieval, outperforming the existing methods significantly.

1 Introduction

Cross-media retrieval is coming as a new trend along with the rapid development
of Internet and multimedia technology. Compared with the traditional content-
based multimedia retrieval with single modality, cross-media retrieval is more in
accordance with the user’s experience. Because the modality of query example
and returned results are often different, which is propitious to satisfy the various
requirements of users [6,7].

Traditional content-based multimedia retrieval method generally extract low-
level features of media object, which can be utilized to measure the similarity
among media objects with single-modality [1]. However, it’s difficult to measure
the similarity of media objects with multi-modalities by only exploring low-level
features of different media types, because low-level features of media objects
with multi-modalities can not be computed in an uniform feature space. Thus,
one of the major challenges associated with cross-media retrieval is to find the
semantic correlations among different types of media objects and construct a uni-
form semantic correlation model. In order to solve these issues, we use semantic
concepts as the high-level semantic features to measure semantic correlation
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amongst media objects with multi-modality. Since the media objects of different
modalities, such as text, image and video, generally exist some information of
latent semantic correlation among each other. In addition, semantic concept is
certainly closer to the natural representation of human and benefit to unify the
features of media objects with multi-modality.

For the cross-media retrieval, the other one major challenge is to manage and
retrieve various types of media objects which store in the large scale multimedia
database. When faced with the large scale dataset, most of existing retrieval
methods ignore the retrieval cost of cross-media retrieval, which usually lead to
degrade the performance of cross-media retrieval. Therefore, it is important to
effectively retrieve the results associated with the user request from large scale
multimedia database. Specifically, there is an urgent need of indexing techniques
which can manage the cross-media database and support execution of similarity
queries.

According to the above mentioned, in this paper, we propose a novel method
which is dedicated to solving these difficulties to achieve effective and accu-
rate cross-media retrieval. Firstly, a multi-modality semantic relationship graph
is constructed by using the semantic correlation information of media objects
with multi-modality. Specifically, semantic correlation among media objects with
multi-modality is learned by canonical correlation analysis [5]. Further, all the
media objects are mapped onto an isomorphic semantic space. To manage and
retrieve all the media objects, an efficient indexing MK-tree based on heteroge-
neous data distribution is proposed to manage media objects within semantic
space and improve the performance of cross-media retrieval with the large scale
cross-media database. Finally, we execute the range query to examine the per-
formance of cross-multimedia retrieval.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related work. In section 3, we introduce the construction of Multi-modalities
Semantic Relationship Graph (MSRG) in details. In section 4, we discuss cross-
media retrieval based on MK-tree indexing. In section 5, we present our experi-
ments and results. Finally, we offer our conclusions and describe future work in
Section 6.

2 Related Work

In recent years, the academic community has proposed concept-based multime-
dia retrieval by pooling a set of pre-trained semantic concept detectors which can
be regarded as intermediate descriptors to bridge the semantic gap. The seman-
tic concepts generally cover a wide range of topics which include objects, scenes,
people, events and etc. Some multimedia research communities have put tremen-
dous efforts into manual annotating and releasing a large number of ground truth
annotations, such as TRECVID [2], imageCLEF [3], and LSCOM [4], involving
image or video data complemented with annotations, close-caption information,
or speech recognition transcripts.

The intrinsic problem of Cross-media retrieval is to mine the semantic cor-
relations among the heterogeneous multimedia data. Yang et al.[7] proposed a
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two-level manifold learning method for cross-media retrieval. They first con-
structed three independent graphs for images objects, audio objects and text
objects respectively. According to the graphs, media objects were projected into
three spaces which were then combined to obtain the final data representation
in Multimedia document semantic space. However, the semantic correlations
among heterogeneous multimedia objects were not exploited when constructing
the independent spaces for image, audio and text objects. In addition, the two-
level manifold learning method is very complex and more than 10 parameters
must be simultaneously tuned, making it less applicable in the real applications.

3 Construction of Multi-modalities Semantic
Relationship Graph

As we know from above, in order to effectively address the issues of the het-
erogeneity of media objects with multi-modality, we construct a unified and
compact semantic correlation model. In this section, we describe the main steps
of construction of Multi-modality Semantic Relationship Graph (MSRG). The
details of each step are then explained sequentially.

We consider the problem of cross-media retrieval from a database which con-
tains components of text, image and video, respectively. Each media objects is
represented as a high-level semantic feature vector, such as the text object ti is
denoted as ti = {f ti

1 , f ti
2 , ..., f ti

n }. The representation of image object and video
object is followed by the same way. Furthermore, the MSRG can be represented a
affinity matrix, which indicates the semantic correlation amongst different media
objects.

3.1 Measure Semantic Correlation

Let R be a n-by-n affinity matrix to represent the MSRG, in which rij repre-
sents the semantic correlation among media objects with multi-modality. Here,
semantic correlation among media objects is learned by canonical correlation
analysis [5].

The mathematical formulation of semantic correlation metric is described as
follows. Given arbitrary two types media objects X and Y , denoted as

X = [fX
1 , fX

2 , ..., fX
n ]T , Y = [fY

1 , fY
2 , ..., fY

n ]T (1)

We extract the correlated modes between vectors X and Y by searching for a
set of transformation vector pairs as αi and βi respectively. Then, the maximum
semantic correlation is defined as

ρi = max
αi �=0,βi �=0

αT
i CXY βi√

αT
i CXXαi

√
βT
i CY Y βi

(2)
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where CXY is the cross-covariance matrix of X and Y , CXX and CY Y are auto-
covariance matrix. To maximize the Equation (2), we obtain the partial deriva-
tive of ρi with respect to αi and βi, and set the derivative to be zero. We have{

C−1
XXCXY C

−1
Y Y CYXαi = ρ2iαi

C−1
Y Y CY XC−1

XXCXY βi = ρ2iβi
(3)

By solving the eigenvalue in Equation (3), we obtain the ascending ordered
correlation values {ρ1, ρ2, ..., ρn} and the corresponding transformation vectors,
α = [α1, α2, ..., αn] and β = [β1, β2, ..., βn]. Note that, the semantic correla-
tion values {ρ1, ρ2, ..., ρn} is the pairwise correlation among the high-level se-
mantic features of media objects. As a result, we have ρi = [rij ], such as
ρ1 = [r11, r12, ..., r1n]

T . Then, we obtain the semantic correlation matrix R.

3.2 Media Objects Mapping

In order to efficiently manage and retrieve all the media objects, we need to
map the media objects onto an isomorphic semantic space. As mentioned above,
we derive the semantic correlation of all the media objects from the MSRG. In
this section, we decompose the semantic correlation matrix R and construct an
isomorphic semantic space.

The eigenvalue decomposition of semantic correlation matrix R by calculating

R = OΛOT = O

⎛⎜⎝λ1

. . .

λv

⎞⎟⎠OT , 0 ≤ v ≤ k (4)

where Λ is the diagonal matrix. Its elements of diagonal corresponding to the
eigenvalues of correlation matrix R. O is the orthogonal eigenvector matrix cor-
responding to all the eigenvalue, which is defined by O = (q1, q2, ..., qv)

T . OT

represents the transpose of O. qi is the normalized eigenvectors of semantic cor-
relation matrix R corresponding to the eigenvalue λi.

We denote that (q1, q2, ..., qv)
T is an orthogonal basis vector of semantic space.

Thus, the isomorphic semantic space can be defined as:

SemanticSpace → span(q1, q2, ..., qv)
T

which is a orthogonal space generated by linear combinations of (q1, q2, ..., qv)
T .

4 Cross-Media Retrieval

The cross-media dataset is usually large scale, it is inefficient to retrieve over
large scale cross-media dataset by only using linear scan. In this section, we
propose an efficient indexing MK-tree based on heterogeneous data distribution
to index all the media objects which are mapped onto the isomorphic semantic
space.
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4.1 Data Partition Based on Data Distribution and Key Dimension

MK-tree is a dynamically index structure, which can be used to index large scale
multimedia objects dataset. Specifically, we both consider heterogeneous data
distribution and key dimension to improve the efficiency of data space partition
and reduce the response time of similarity search for various media objects.

As we know, heterogeneous media types have different data distributions. For
example, the set of video data may be normal distribution and the set of text
data may be uniform distribution. In [9], it is confirmed that the optimal query
processing depends not only on the number of objects stored in the database
but also on the underlying data distribution. Therefore, data distribution is an
important factor for influencing query processing.

In an isomorphic semantic space, a key dimension is a dimension that affects
mostly similarity computation. Meanwhile, it is crucial to select the key dimen-
sion for filtering irrelevant data. In addition, a key dimension can be used to
minimize the overlap, and thus avoid a lot of unnecessary path traversals over
the index.

In this paper, data partition of semantic space is performed as follows: (1)
according to heterogenous data distribution, we firstly segment the original se-
mantic space based on key dimension, (2) the partitioned subspace is split by
m-RAD-2 way [8], (3) the subspace is further segmented into twin subspace. An
overview of steps of data partition of semantic space is shown in Figure 1.

Key dimension

(a) (b) (c) (d) (e)

Fig. 1. Overview of data partition with regard to different data distribution in semantic
space. (a) the original isomorphic semantic space. (b) considering heterogenous media
types have different data distribution, partition the original semantic space based on
key dimension. (c)and(d) partitioned subspace is split by m-RAD-2 way. (e) the sub-
space is further partitioned into twin subspace based on key dimension.

4.2 Query Algorithms

In this section, we cover the details of the algorithms on range query. Given a
query object q and a query radius r, the range query starts from the root node
and recursively traverses all the paths in which the objects match the search
condition. The search algorithm is described in algorithm 1.

As shown in algorithm 1, range query begins from root firstly. For all subspaces
in the current space, those subspaces not containing any query result can be
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Algorithm 1: Range-query (N :node, Q:query object, r(Q):query radius)

1: if N is not leaf node then
2: or in N , do:
3: if |d(op −Q)− d(or − op)| ≤ r(Q) + r(or) then
4: compute d(or, Q)
5: if d(or, Q) ≤ r(Q) + r(or) then
6: if key dimV al(Q) ≤ MLmax + r(Q) then
7: range− query(∗lTwinP tr(T lt(or)),Q, r(Q))
8: if key dimV al(Q) ≥ MRmin − r(Q) then
9: range− query(∗rTwinP tr(Trt(or)), Q, r(Q))
10: else
11: if |d(op −Q)− d(xi − op)| ≤ r(Q) then
12: compute d(xi, Q)
13: else
14: if d(xi, Q) ≤ r(Q) then
15: add oid(xi) to the result

filtered according to the property of triangular inequality. If the sub-tree is active
and cannot be filtered, the distance between the querying object and the routing
object is calculated, and further filtering can be done still based on the property
of triangular inequality. Then, filtering based on the key dimension is performed
on the twin nodes. The process is done recursively till the leaf node. In a leaf
node, the results can be obtained by computation and comparison.

5 Experiments

In this section, we report the results of an extensive performance study conducted
to evaluate the proposed methods on large-scale real multimedia datasets.

5.1 Experiments Setup

To test the effectiveness and efficiency of the proposed method: Effective Indexing-
based Cross-media Retrieval(IBCR), we experiment with a large-scale multime-
dia datases. The experimental data includes 2000 texts,35000 images and 5000
video clips. All the experiments are executed on Intel Core2 2.4GHz CPU, 4G
RAM and 500G hard disk.

5.2 Effectiveness of Cross-Media Retrieval Method

Figure 2 illustrates a recall-precision curve for the performance comparisons be-
tween the our approach (IBCR) and CIndex [10]. In [10], the research employ
a one dimension index structure like B+-tree by reduction the dimension of the
original space and the low level features of media object is used to measure the
correlation of heterogenous media types. But the drawback of CIndex is that
drop out some important correlation information when reduction the dimension



208 B. Lu, G. Wang, and Y. Yuan

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pr
ec

is
io

n

Recall

IBCR
Cindex

Fig. 2. Recall vs. Precision

of the data space, and the low level features can not well represent the seman-
tic correlations of heterogenous media objects. In particular, we compares the
average retrieval result (indicates the average precision rate under the average
recall rate) of 20 media objects queries randomly chosen from the multimedia
datasets. From the Figure 2, the retrieval effectiveness of our proposed method
is better than that of CIndex by a large margin.

5.3 Experiments on Range Query

In this section, we discuss the impact of query radius of range query on the
querying CPU time and I/O cost. As shown in Figure 3, we can see the per-
formance of our proposed method is superiority over the CIndex and sequential
scan. At the same time, we considering the average precision of range query, the
accuracy of retrieval by exploring our method is not to change more along with
the larger query radius. Especially, when the query radius is smaller, more twin
nodes in indexing tree can be filtered by the key dimension. The runtime of our
method is averagely four times faster than sequential scan.
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Fig. 3. Analysis of the performance of Range query

6 Conclusion

In this paper, we present a novel and efficient method for cross-media retrieval.
We firstly construct a multi-modality semantic relationship graph (MSRG) by
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exploring the semantic correlation of media objects with multi-modality. Further,
all the media objects within MSRG are mapped onto an isomorphic semantic
space, which used to encapsulate the heterogenous media objects. Finally, an
efficient indexing MK-tree is proposed to manage media objects and effectively
speedup the cross-media retrieval performance for facilitate to cope with the
large scale multimedia datasets. In order to effectively index the heterogenous
media objects, MK-tree partitions the data space based on the different me-
dia data distribution and key dimensions. Extensive experiments on real large
scale multimedia datasets indicate that our proposal dramatically improves the
accuracy and efficiency of cross-media retrieval, outperform existing methods
significantly.
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Abstract. There are millions of mobile phone applications based on location.
Using a photo to precisely locate users location is useful and necessary. However,
real-time location recognition or retrieval system is a challenging problem due to
the really big differences between the query and the dataset in scale, viewpoint
and lighting, or the noise existed in the foreground or background etc. To address
this problem, we design a place recognition system and a new famous buildings
dataset with ground truth labels. By adding a fast geometric image matching pro-
cedure before using RANSAC and applying a relative camera orientation calcula-
tion algorithm to filter the dataset collected from the Internet, we can substantially
improve the efficiency of spatial verification and recognition accuracy.

Keywords: Image Recognition, Confusing Features Detection, Geometric Veri-
fication, Relative Camera Orientation.

1 Introduction

With the popularity of the smartphones, people can get photos anytime and anywhere.
The prevalence of digital photography devices leads to huge volume of images accessi-
ble online which makes it difficult for users to find what they need or are interested in.
For example, when you upload a photo to Flickr, you may want to know who has the
same interest with you; or when you get lost in an unfamiliar place, its helpful to have
an application to find where you are based on the photo you shot in that place. Due to
the big differences between the query and the dataset in scale, viewpoint and lighting,
real-time photo match is a really challenging problem. Besides, not only the dataset we
have but also the query we shot have all kinds of noises which affect the search result
very much. We can see from Fig. 1 (bottom), that’s the standard view of a pinpoint,
however, what we have as the queries are mostly like Fig. 1 (top).

So in this paper, we focus on the difficulties and propose solutions. Considering
the noise existed in the photo, we propose the relative camera orientation calculation
algorithm [1,2] to first filter the dataset, and then in view of immediacy we need in real-
time application, a fast geometric image matching procedure [3,4] is added before using
RANSAC to verify the result. Combining the solutions with existing techniques, we get
a more precise result using the dataset we built which has more than 200K images.

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 210–217, 2012.
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Fig. 1. Example of place recognition images. Given a query image (top), we aim to find an image
shot at the same place as the query from a geotagged database (bottom).

The following of this paper will be organized as follows. In Section 2, we will dis-
cuss the framework of our system, and in Section 3 and 4, confusing feature detection
and spatial verification are discussed in more detail to see how to search the similar
photo more precisely in our system. In Section 5, the experiments will show the effec-
tiveness and efficiency in our system compared with SVM and other methods. Finally,
we summarize results and our work in Section 6.

2 Place Recognition Framework

This section overviews the baseline of place recognition approach based on the bag-of-
words (BoW) model. With a pre-collected dataset, when the query image comes, the
query image features are extracted and each feature is quantized by the visual vocabu-
lary. Then a relative camera orientation calculation algorithm is used to predict whether
it fails in tf-idf retrieval. After a confusing feature detection step, image similarity is
evaluated by calculating the distance between the query vector and each document vec-
tor of the corpus. The spatial verification composed of a fast geometric re-ranking and
RANSAC is applied in the top n most similar results. Further, we use a query expansion
strategy to achieve final visual place recognition results.

Image representation: Detecting the image features in the dataset is the first step. For
the excellent performance of SIFT [5] in invariance to image transformations, we use
it as the feature detector. RootSIFT may be a better choice, which acquires a dramatic
performance boost by replacing the standard Euclidean distance of SIFT descriptors
measuring method with a square root (Hellinger) kernel [6]. A vocabulary of 10K visual
words is generated from a subset of 1000 images (about 2M features) of the image
dataset using a k-means clustering algorithm [7,8].

Retrieval failure prediction: we use a relative camera orientation calculation algorithm
[1,2] to judge whether the query contains a qualified subject. A qualified subject means
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most parts of the subject are not occluded by other objects, such as trees, cars, or bill-
boards, or is just a small part of the whole subject. An unqualified subject often leads
to angle calculation failure. The orientation undetectable queries are likely to have a
mass of confusing features which are the dominating reason for the BoW retrieval fail-
ure. When a possible retrieval failure is predicted, a preprocessing automatic tf-idf fail-
ure recovery [9] is applied before the retrieval scheme. Unfortunately, limited by the
algorithm, we can only predict queries containing EXIF information now [1].

Retrieval Scheme: Similar to [10,9,11], the search engines are based on the corpus
retrieval method. We use the occurrences of virtual word as terms to generate tf-idf
weighted vector and rank the image by the cosine value of angle between the query
vector and each dataset image. The retrieval procedure using inverted files [12] has
been illustrated to perform well on datasets as large as 1M images [10,11]. We remain
up to a maximum of the top 1000 results for the next stage.

Spatial verification: For matching features between image I and J , a kd-tree is created
from the feature extracted from I , then we find the nearest neighbor of each feature
in I from the kd-tree. Using the strategy promoted by Low [5], we search for the two
nearset neighbors in J . After finding matched features, a fast geometric re-ranking [3,4]
is conducted between the image pair (I, J). More details will be discussed in Sec-
tion 4. This process can greatly reduce the number of images needed to be verified
by RANSAC [13,14], or otherwise will spend too much time. Up to 100 verified results
from the fast geometric re-ranking are finally evaluated by the affine homography calcu-
lated from image pairs. After the RANSAC iteration, we compute a maximum of inliers.
If the number of remaining matches (inliers) is less than the threshold (20) [10,11,15],
we consider the image pair is not matched and remove it from the candidate list.

Query expansion: Since images after spatial verification are reliable, it is possible to
expand the original query to form a new more robust query. The query expansion is
put forward by Chum and Philbin and Sivic et al. [10]. It brings a significant boost in
almost all image retrieval approaches up to now [10,16,17].

3 Confusing Features Detection and Avoidance

A problem that image localization often faces is either a query image or dataset con-
tains significant amount of non-informative objects, such as trees, roadblocks etc.. Re-
cent work [11,9] has proposed approaches to remove the confusing feature in the query
image or datasets. In [11] the confusing words are detected by using a sliding window.
When the local confusion score is high, the corresponding region is considered as a con-
fusing part and is removed from the dataset. However, as the confusing part removed,
useful information maybe lose at some special cases (e.g. landscape images). Another
strategy is put forward in [9]. It is a solution to the problem that the retrieval based
on BoW often fails to return expected results when too many visually confusing words
appear in the query tf-idf vector.

If expected images arent included in the results because of the confusing features,
it is called a tf-idf failure [9]. When this situation happens, a re-querying is required
after removing these confusing words and obviously double time will be spent. Our
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approach goes further in two respects: first the query image quality is evaluated, and a
high quality image can be used to promote the dataset, second it can predict a probable
tf-idf failure and thus greatly reduce the cost time and enhance the retrieval efficiency.

Our approach could be separated into two parts: (i) retrieval failure prediction and
(ii) confusing feature removing and tf-idf recovery.

In the retrieval failure prediction part, a relative camera orientation calculation algo-
rithm is adapted. The focal length of each image is extracted from the EXIF information
and the shooting angle is calculated. A query or image from dataset has too many con-
fusers, it is very likely to fail the algorithm. A correct calculated angle needs a proper
max rectangle detected from the image, so we can infer that objects contained in the
image have a clear structure. Empirically, it means that the front of a subject is well
shot. In this work we opt for a simple threshold of the angle precision.

For a query failed to calculate the angle, a tf-idf recovery process is conducted. The
goal of this part is to remove the confusing feature and retrieval the most similar image
to the query in the dataset. To achieve this goal, we compute the query confusion score.
We assume P (w|Q) and P (w) are the distribution of visual words in the query and
the whole dataset. A query confusion score ρ is then measured over the tf-idf vector of
query and dataset. For a visual word w at query we determine the score as:

ρw =
P (w|Q)

P (w)
. (1)

In other words, the score measures the occurrences of visual word between query and
dataset. If the query has abundant confusing features, the score is high which means the
visual word w is probably a confusing word.

After that, we aim at localization improvement by assigning confusing words neg-
ative weights rather than simply remove them from the query. The recovery query is
then matched to dataset with negative weighted confusing word. Thus the new query
avoids the influence of confusing features and the whole scheme is less computationally
expensive than without prediction.

4 Geometrical Consistency Re-ranking

The goal of this stage is to decide whether the returned image from the previous stage
is correct. To find more correct image, we verify the top-ranked image as many as 1000
from the spatial filter. However, this verification is much more time expensive using
RANSAC. A weak geometrical consistency method is proposed in [3,4,18]. It uses a
vocabulary tree to match feature pairs and confirm the matching pairs using the angle,
scale and location information. It has been shown that angle and scale contain more
useful geometrical information.

Unlike [3], we use the approximate nearest neighbors kd-tree to match feature. So
the method is orthogonal to previously used RANSAC and a fast geometric re-ranking
scheme can be well used in conjunction with previous work. We have implemented
a two-stage space verification approach. In the first stage, the goal is to find a small
set of most likely expected candidate images from the top 1000 results of retrieval
scheme. This is achieved by verifying the consistency of the angle, scale and location
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differences. In the second stage, the candidate images are re-ranked by the number of
inliers. In the following we describe details of the two space verification stage.

A fast geometric re-ranking scheme is built upon weak geometrical information from
SIFT. For an image pair (I, J), we use the histogram to represent the angle, scale and
location differences. The angle geometric score (Sa), scale geometric sore (Ss) and
location geometric score (Sl) are formed as follow:

Sa = max
α

( ∑
(m,n)∈M

I

(
2·π·α

c ≤ ai,m − aj,n < 2·π·(α+1)
c

))

Ss = max
α

( ∑
(m,n)∈M

I

(
α
c ≤ log

(
si,m
sj,n

)
< α+1

c

))

Sl = max
α

( ∑
(m,n),(p,q)∈M

I

(
α
c ≤ log

(
dist(li,m,li,p)
dist(lj,n,lj,q)

)
< α+1

c

))
,

(2)

where M is the matched feature set between image I and J , I(·) is the indicator func-
tion, and a, s, l represent the angle, scale and location value of SIFT feature. α/c cor-
responds to the geometric difference and c is a tolerance threshold.

Therefore, the final score (Sf )

Sf = min(Sa, Ss, Sl) (3)

is a reasonable estimate of the geometrical consistency. By using the SIFT geometric,
we can confirm the image pair well and reduce the number of candidate images verified
by hypothesize transformations.

After this stage, using RANSAC we robustly estimate a fundamental matrix in the
small candidate image set. During RANSAC iteration, a normalization step is conducted
to improve robustness [19]. Only images of which the number of inliers is more than 20
are taken into consideration. And remaining images are used for the query expansion.

5 Experiments

A series of experiments have been conducted to evaluate our system we propose. We
have three different kinds of datasets which makes our evaluation more precisely.

5.1 Dataset

We use the Oxford dataset [7], Tsinghua dataset and Bing dataset to evaluate our system.
The first one is a relatively small dataset of 5K collected from Flickr by searching for
the landmarks in Oxford with a ground truth. The second one is the images shot in
Tsinghua which are manually annotated. The last one is a relatively large dataset which
can evaluate our system well. More details can be found below in Table 1.

The Oxford Dataset. The dataset is crawled from Flickr by searching for the landmarks
in Oxford, such as “Cornmarket Oxford” and “Bodleian Oxford”. It includes 5062 high
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Table 1. The number of images for each dataset

Dataset Number of images
Oxford 5,062
Tsinghua 4,012
Bing 209,826

resolution images. This dataset has been manually annotated into 11 landmarks with 4
possible labels: Good, OK, Bad and Junk. More details can be found in [7].

The Tsinghua Dataset. This dataset is shot in Tsinghua University including most fa-
mous spots such as “Tsinghua Gate” and “Lotus Pond”. It consists of 4K high resolution
images with manually annotated.

The Bing Dataset. This dataset is crawled from the Bing image search engine which in-
clude 5 categories: location, people, art, object, and nature. Each category contains 210
sub-categories. The Bing dataset has more than 200K images. So in this large dataset
we can evaluate our system more precisely.

5.2 Experimental Results

We use the above datasets to demonstrate the performance of the system we proposed.
First, extract the image features for each one in the dataset. We use a variant of multi-
scale Hessian regions-of-interest [20] to detect the affine regions. For each of these
regions, a 128-dimensional SIFT descriptor is computed which is vector quantized into
visual words. Then, when given a query image, the highest scoring 1000 images were
returned. Get the mean score from the Average Precision scores as the Mean Average
Precision (MAP). We test the MAP score using 10 query images.

Compared the system we proposed with Vocabulary tree (VT) + SVM and Query
expansion (QE) methods, we get Table 2. As we can see in Table 2, the MAP in our
system boosts significantly compared with VT + SVM and is close to QE results by just
verifying a small set of top candidates.

Besides the outstanding MAP performance in the top n candidate list, our system has
the advantages in the time costing. Instead of directly using the RANSAC algorithm,
we adopt the fast geometric re-ranking method to filter the results which can reduce the

Table 2. Performance comparison. The left column represent the number of used top candidates
for spatial verification.

MAP Time
VT+SVM 0.76 -

QE Ours
MAP Time MAP Time

100 0.924 0.55 0.924 0.24
200 0.942 0.78 0.937 0.49
800 0.944 1.39 0.956 0.81
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processing time greatly. The average time for the three different methods can be seen in
Table 2. As we can see, our method is ahead of others.

6 Conclusion

We have demonstrated a novel system which can perform better in real-time location
recognition or retrieval system. The innovation can be concluded into 3 points: (1) the
efficiency of spatial verification and recognition accuracy have been substantially im-
proved by adding a fast geometric image matching procedure before using RANSAC;
(2) reduce the influence of confusing features in the photos by applying a relative cam-
era orientation calculation algorithm; (3) a large place recognition system is built with
ground truth. The experiments prove that compared with VT + SVM and QE methods,
our system achieves significant improvement both in precision and search time in large
scale applications.
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Joint Lab Research Grant.
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Abstract. Multimedia information has greatly enriched our digital life.
Every day we freely scan and download different media objects on the lo-
cal computer or through the Internet. With the explosion of the
individual-related media data, the need of easily re-locating the visited
media objects becomes more and more urgent. We design and implement
a media retrieval system called M-ReFind that enables users to re-find
the previously accessed media information by relevant contexts. In this
paper, we demonstrate how a user adds associate contexts to the media
objects s/he stores or accesses in daily life and re-finds them by certain
context. We show that M-ReFind supports a convenient context-based
media retrieval experience, allowing users to re-find local, removable or
global media objects more easily.

1 Introduction

With the development of information technology, multimedia data rapidly booms
and greatly enriches our digital life in this information era for its vitality. Be-
yond scanning and downloading the lively media objects, we also frequently look
back for previously visited ones. However, the explosion in the amount of person-
ally accessed multimedia information has made the process of re-finding certain
media targets a time-consuming task. To illustrate, let’s see a real case.

[case 1]I want to recommend a nameless music to my friend which I encountered
in a web page last month at home during a paper writing, but have no idea its
title and also cannot remember its melody clearly.

Information re-finding is often affected by fast content changes and frequently
updated result ranking of the search engines [17]. Currently, techniques of media
retrieval mainly concentrate on content-based keywords. Traditional keyword-
based searching and ranking strategies developed for the general-purpose search
engines may not be applicable. Moreover, sometimes a re-finding request cannot
simply be formulated by content-based keywords. Psychological studies show
that context under which information was accessed in the past can serve as
a powerful cue for information recall, as it is always easier to remember and
formulate [4, 7, 8, 10–12,17]

S.-M. Hu and R.R. Martin (Eds.): CVM 2012, LNCS 7633, pp. 218–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Existing Solutions. Web search and personal information management (PIM)
communities make substantial efforts to improve information recall with con-
textual search [5, 10, 14]. Google’s Web History [1] keeps and classifies users’
web access information including search requests and clicked pages into different
topics such as images, news, etc., It allows users to browse their historically ac-
cessed pages at a selected date or during a different (newest, newer, older, oldest)
time period. Keyword-based searching over the accessed page titles and contents
is also allowed. YouPivot system [9] bookmarks a moment in time, and allows
a user to access all activities that was ongoing at a particular moment rather
than manually keep track of individual files, websites, and bookmarks. SearchBar
tool [15] accommodates user’s recent search topics, queries, results visited, and
notes, which can be re-acquired later. The Contextual Web History tool [18]
employs user’s visiting time and visual appearance of the accessed web pages
to assist web re-visitation. Stuff I’ve Seen system [7] builds an index for what
a person has seen, and uses file type, access date, and author information for
result filtering and sorting. XSearcher desktop search system [4] exploits seman-
tic association/lineage among files to enhance full-text keyword-based search.
The file search tool Connections [16] expands and reorders traditional content-
based search results by the contextual temporal locality information. SEMEX
system [2] enables a user to browse the personal information via semantic asso-
ciations (i.e., AuthoredBy, Cites, AttachedTo, MentionedIn) among data items
as well as objects (i.e., person, publication, and message) on one’s desktop. [12]
proposed a query method to re-find referenced files, given some file items as in-
put, where three types of reference relations (temporal adjacent, inclusive, and
lineage) are exploited. [3] also developed a system to support multi-level associa-
tive retrieval of desktop information. [13] presented a theoretical model of user
context. The context is obtained by multi-sensory knowledge and applied in an
image retrieval system.

Inspired by human memory and its recalling characteristics (memory decay
and reinforcement), [6] developed a context-based re-finding query model upon
a well-organized and evolving context memory. Each context instance in the
personal context memory links to the media objects accessed before. Context in-
stances are organized in a hierarchical, clustering, and associative manner. They
evolve dynamically in life cycles to mimic the amnesia of human memory that
some prominent events can last for very long or even a life long, while the major-
ity will gradually degrade and finally disappear. Memory reinforcement is also
incorporated by adjusting the decay rates of certain well-remembered context
instances. Based on the context memory model, a recall-by-context query model
was built and two algorithms (i.e., cluster-based re-finding and association-based
re-finding) were devised to evaluate context-based re-finding queries upon a per-
sonal database.

Our Contribution. So in this paper, we design M-ReFind, a context-based
media retrieval system that implements and extends the techniques of [6] in the
following three important ways.
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• Since it is often difficult to properly extract and formulate content-based
keywords from media information, we apply the context-based method in [6]
to the media retrieval scenario. Using context, M-ReFind achieves a more
flexible and easy user experience.

• Beyond the single personal relational database, A windows right-button
plug-in and an Internet browser plug-in are embeded into M-ReFind to re-
alize context annotation of local and online media objects respectively.

• While all the parameters influencing context degradation are heuristically pre-
defined in [6], M-ReFind opens the black box of context memory and allows
users to maintain context hierarchies to make the context memory more con-
sistent with users’ memory and hence their context-based re-finding requests.

We will illustrate the overall architecture of M-ReFind in Section 2. Demonstra-
tion scenarios are presented in Section 3. And section 4 discusses several future
work in schedule.

2 Overall Architecture

M-ReFind contains two parts, namely, context annotation and media re-location.

2.1 Context Annotation for Visited Media Information

This part facilitates users to annotate their interesting media files/web pages
with the access context. The local media annotation is realized by a CSharp-
based right-button plug-in on Windows OS. When encountering interesting lo-
cal media files, as shown in Figure 1, the user can click the right mouse button
and select ContextAnnotation operation just like other system-defined opera-
tions(i.e., open file, copy, paste, etc.), which is natural enough without bringing
any learning burden to users.

For web media annotation, a cross-platform Internet browser plug-in is in
service. The user can click the icon of M-ReFind on the tool bar of the web
browser to annotate the current web page with media objects as Figure 2 shows.
To better serve users, the multi-platform web annotation of M-ReFind supports
currently dominating web browsers, such as Microsoft Internet Explorer, Firefox,
Google Chrome and so on.

Responding the user’s operation, the two plug-ins will record the file paths/web
URLs into a personal database and meanwhile provides a pop-up window to
get user-input contextual information. M-ReFind considers three typical kinds
of contextual attributes, namely, access T ime, Place, and concurrent Activity.
The domain of each attribute forms a hierarchy of levels of abstraction. The
access T ime is the current date automatically filled in by M-ReFind. The user
can either manually input Location and concurrent Activity, or select appropri-
ate values from the pre-defined Location and Activity hierarchies, respectively.
M-ReFind allows the user to maintain the contextual hierarchies by inserting,
deleting, or renaming attribute values. For case 1, the user can briefly annotate
that music web page with the following context instance:

[Time: [2011-11-26], Place: Home, Activity: PaperWriting]
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Fig. 1. Local media file annotation

Fig. 2. Web media annotation

M-ReFind organizes user’s context instances into a context memory, possess-
ing a clustering and associative structure with dynamic evolution. Each context
instance is linked to the corresponding accessed media objects via file paths or
URLs stored in the personal database.
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2.2 Context-Based Media Re-location

To re-find previously accessed media files or web pages, the user just indicates
the previous access context via the M-ReFind interface in Figure 3. The user
selects contextual values in the hierarchies to form a context-based query. In
this step, the user can also freely modify the contextual hierarchies to reflect his
memory and preference change.

Fig. 3. Main interface of M-ReFind

M-ReFind ’s context memory manager is responsible to identify those closely
matching context units from the personal context memory, and return the linked
file(s) and web page(s) via theM-ReFind ’s interface. The user can simply double-
click the returned file paths/URLs to re-visit the media objects. M-ReFind en-
sures the smallest yet correct policy for information re-finding. That is, the target
information that the user demands must be in the result set, and the size of the
result is the minimal one.

Organization and Maintenance of Context Memory. Simulating human
memory, the personal context memory is organized into a short-term memory
and a long-term memory. There are two types of long-term context memory:
permanent and general. The former records life-long experiences and is im-
mutable, while the latter will decay. M-ReFind concentrates on the general
long-term context memory (abbreviated as context memory for short). A con-
text memory is a graph CM = (V CC, ECC), where V CC is a set of vertices
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(representing context instance clusters) and ECC is a set of edges on vertices
(representing association relationships of context instances). The clustering of
context instances is based on an instance similarity calculation. Let A1 = time,
A2 = place, andA3 = activity, and let C = (c1, c2, c3) and C = (c′1, c

′
2, c

′
3) be two

context instances. SimI(C,C′) =
√

1
3

∑3
i=1 sim

2(Ai, ci, c′i), where sim(Ai, ci, c
′
i)

is the value similarity of ci and c′i on contextual attribute Ai, which is subject to
their level distance in the contextual hierarchy, as well as their ordering distance
when prompted to the same hierarchical level. When a user modifies a contextual
hierarchy by adding, deleting, or renaming certain contextual attribute values,
the context manager will re-calculate such similarity, hence re-cluster context
instances. Each context instance points to the accessed file paths and web URLs
in the information resource.

Decay and Reinforcement of Context Memory. Like our human memory,
the context memory evolves with time. Each contextual attribute value of a con-
text instance is bounded with a memory retention strength r ∈ [0, 1], determining
the value’s retention/degradation along its contextual hierarchy. The computa-
tion of the retention strength r is subject to the original retention strength, the
decay rate, and the age (i.e., lasting time):

r = r0 · e−λ
√
t

where r0 is the original value of retention strength in [θ1, θ2], λ is the decaying
rate coefficient, t is the age, θmax and θmin are two system-defined thresholds.
An attribute value r will be permanently remembered if r > θ2 and will be
forgotten and discarded when r < θ1.

The context memory also experiences reinforcement by user’s context-based
recalling. In this case, the decay rate of the refreshed contextual attribute value
will be adjusted according to user’s queries and feedbacks. If a contextual at-
tribute value decays too fast, the system will slow down the degradation speed;
and if it decays too slowly, the system will speedup the degradation to catch up
with user’s recalling requests.

Match/Query of M-ReFind. Compared with conventional keyword search of
SQL query, M-ReFind executes its match/query function in a different way. The
user’s query request Q is formulated as a context instance. The personal context
memory CM is the query target. And the query returns a ranked list of matched
context instances as the intermediate query result, whose ranking is based on
simple Euclidean similarity between query Q and context instance C in CM .
The intermediate query result is obtained by the association-based matching
method [6]. Note that Q may or may not exactly match C due to the dynamic
evolution of CM . Three kinds of match between Q and C are considered and
included in the result list, namely, exact match (C is equal to Q), specific match
(C is specific than Q), and general match (C is general than Q).

Linked files or web pages as the final result will then be identified and returned
to the user.
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3 Demonstration

Attendees will be invited to interact with M-ReFind to re-find any media infor-
mation from the local computer or global Internet based on the previous access
context. The demonstration will proceed in two steps.

Annotating media objects. A user will access (scan, download, etc.) several
media files or web pages. Then he can annotate the interesting ones with the
current access context - Place (e.g., Home) and Activity (e.g., PaperWriting).
The Time context will be filled in by the system date (e.g., 2011-10-26 ) automat-
ically. M-ReFind keeps some hierarchical context values for the user to select.
The user can also modify them by inserting, deleting, or changing the contextual
values to reflect his interest and context memorization status.

Re-finding visited media files/web pages. Entering the main interface of
M-ReFind, the user can re-find the previously visited media files/web pages by
inputing the corresponding context information. Sometimes, it is hard for users
to precisely memorize the access context (e.g., [Time: 2011-10-26, Place: Home,
Activity: PaperWriting]), particularly when that information access happened
long time ago. M-ReFind allows the users to input some vague or even missing
contextual values (like [Time: -, Place: Home, Activity: Working]) instead. And
sometimes a user may recall the very precise context information (e.g., [Time:
2011-10-26, Place: Home, Activity: PaperWriting]), while the corresponding
contextual information in the personal context memory has already degraded to
more general ones (e.g., [Time: 2011, Place: Home, Activity: - ]). M-ReFind will
return a superset of the wanted media files/web pages and internally adjust the
decay rates of Time and Activity properly. Once the same contextual information
is reinforced by the user, its decay rate will decrease as well.

For better user experience, we design a top window of M-ReFind floating
on the screen (Figure 2). Clicking it and select the corresponding operations
(Annotate, ReFind, Exit), the user can either annotate the current media object,
enter the main interface of M-ReFind, or exit the top window respectively.

4 Conclusion and Future Work

In this paper, we demonstrateM-ReFind, a context-based media retrieval system
which supports users to contextually annotate interesting media files and web
pages and re-find them by context. Beyond the user artificial annotation, we will
further investigate the automatic machinary annotation. One key is to predict
the retrieval potential of encountered media files and web pages, especially for
web pages containing media objects. We are now making efforts in web page
retrieval prediction. We assume to extract some content features of the accessed
web pages and employ a naive bayes classifier to make prediction. Also, some
machine learning models are also supposed to be as the predictor.
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Abstract. Social Networks have developed so fast recently, and the
most popular one in China is Renren, with 200 million members un-
til 2012. In this study, we propose to determine personality traits based
on Renren status usage behavior. Renren status is a short text published
by the user like micro-blog and is available for all registered users. We ex-
tract behavior features from Renren status, and calculate the correlation
between “Big Five” personality traits and the status usage. More than
two hundred graduate students participated in our experiment. We get
their authorizations to collect their status content using Renren APIs.
Comparing to the classical self-reported personality analysis, we demon-
strate via experimental studies that users’ personalities have a significant
correlation with status usage. Results show that some significant corre-
lations exist between status content and personality type.

Keywords: Personality Traits, SNS Usage, RenRen Status.

1 Introduction

Social Networking Site (SNS) like Facebook and RenRen(http://www.
renren.com) is a part of normal life nowadays. It is reported that China has 370
million registered SNS users in 2011. Currently, RenRen has the largest market
share in China, with 200 million registered users (http://www.iresearch.cn/).
A recent study on Facebook[6] investigated on the correlation between users’
personal profile and personality. It tends to find out the correlation between
personality traits and personal profiles.

Personality uniquely characterizes an individual, and profoundly influences
his/her mental status as well as social behaviors[1]. The trait theory suggests that
individual personalities are composed of broad dispositions[12] (e.g., Cattell’s
16-PF). Currently the mostly influential one is the Big-Five theory[5], which
proposes five basic traits that interact to form human personality. In Big-Five
theory, personality is characterized by agreeableness, conscientiousness, extraver-
sion, neuroticism and openness (e.g.[11]). Agreeableness refers to being help-
ful and cooperative; Conscientiousness is determined by being disciplined and
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achievement-oriented; Extraversion is displayed through a higher degree of so-
ciability and talkativeness; Neuroticism refers to emotional stability and anxiety;
Openness is reflected in a strong intellectual curiosity and novelty[5][4][13][14].

Some empirical studies reported that personality could be a major influencing
variable toward web usage behaviors[8][9], including behaviors on SNSs[15][18].
Therefore, in this paper, we propose to find the correlations between users’ status
usage behavior with their personality traits.

RenRen status is short messages less than 240 words which published by users
to share their attitudes, experiences or moods. The big amount of status have a
strong link to their personality traits. There are also many mood compositions
in status. Status publishing frequency and time distribution can be a hint of
their preferences. This motivates us to do content analysis on status to help us
identify the user’s personality.

The rest of the paper is organized as following: Section 2 will talk about some
related work by other researchers. Then we will show our experiment method and
system in detail in Section 3. Section 4 mainly discusses the experiment results
and some analysis corresponding with comparison between different dataset.
Section 5 concludes our whole work with a discussion on future work.

2 Related Work

Much research work on SNS has been conducted, such as topological
characteristics[19], web community mining[17] and psychology related topic[7].

Orr et al. found that shyness is significantly positively associated with the
time online, and negatively correlated with the number of friends[18]. Meanwhile,
Correa et al. [3] find that openness and extraversion is positively related with
social media usage, while neuroticism associates negatively.

Gosling et al. [7] reported a mapping between personality and SNS online be-
haviors on personality with self-reported Facebook usage and observable profile
information. However, their features are all based on statistical characteristics,
instead of the psychological properties of user.

Chris Sumner et al. [2] find the correlations of users’ Facebook posts activities
and personality traits. They take not only the Facebook usage into account but
also the posts content and emotion. They find that openness is significantly
positively correlated with words to do with negative emotion and anger as well
as traditionally taboo subjects of money, religion and death.

In short, previous SNS personality-related research mostly focus on English
environment. These research investigate the SNS status usage instead of the
status content. The status content contains users’ attitudes, moods and prefer-
ences which may be correlated with personality traits. Facing these weakness,
this study tries to design emotion-related, content-related and preference-related
features and find out the correlations between status content and personality
traits in the Chinese SNS environment.
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3 Methods

We have developed an experimental platform Dao(http://dao.gucas.ac.cn)
where participants can log in by his/her RenRen account, and complete the
experiment online. 335 participants all over China with average age of 23.8 took
part in this study during January and February of 2012. The participant is an
active user, if he has more than 100 friends and at least 50 status published.

At the same time, participants need to complete the 44-question big five
inventory. It providing measures of the five personality dimensions. The platform
downloads RenRen status data and extracts 25 features shown in Tab.1. F is
key number of each feature, symbol “-” denotes “negative” and “+” denotes
“positive”.

Table 1. Features description

F Name Description No. Name Description

1 count status number 2 zz status republishing number
3 word word number of status 4 expression expr. number of status
5 expr1 1-word expr. number 6 exprover2 >2-word expr. number
7 sentence sent. number of status 8 WPS average word per sent.
9 Pstate statements proportion(prop.) 10 Pexclm exclamatory sent. prop.
11 Pques interrogative sent. prop. 12 EWd emotion word count
13 1sts 1st person singular 14 1stpl 1st person plural
15 2nds 2nd person singular 16 2ndpl 2nd person plural
17 3rds 3rd person singular 18 3rdpl 3rd person plural
19 num numeral words count 20 PEW + emotion word number
21 NEW - emotion word number 22 PEvW + evaluation word number
23 NEvW - evaluation word number 24 AWN advocating word number
25 FWN frequency word number

Some users are eliminated since they seldom publish status or just pure
emoticon without any word. After checking qualification, 209 qualified partici-
pants (72 females and 137 males) left. The content of each participant’s Ren-
Ren status is analyzed by using several dictionaries, including the extended
lexicon of TongYiCi CiLin[10], the original TongYiCi CiLin[16], and HowNet
(http://www.keenage.com/). We use six emotion dictionaries with more than
one thousand four hundred key words in total. The whole work flow is depicted
in Fig. 1.

4 Results

We aim to investigate whether users’ RenRen status relates to his/her Big Five
personality Agreeableness (A), Conscientiousness (C), Extraversion (E), Neu-
roticism (N) and Openness (O). In the following result tables, F is the feature
number corresponds to Tab.1

http://dao.gucas.ac.cn
http://www.keenage.com/
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Fig. 1. Flow chart

4.1 Recent Status Analysis

The Pearson correlation is conducted on the Big Five personality traits and users
status within one month (January 13th to February 13th, 2012). The results are
shown in Tab. 2.

Table 2. Pearson correlation matrix of the Big Five personality and recent status

F A C E N O F A C E N O

1 .0026 .0246 -.1525 .1477* .0276 2 -.0002 .0644 .0228 .0141 -.0639
3 -.0152 .0540 -.1797* .1747* -.0151 4 -.0197 .0605 -.1938* .1788* -.0244
5 -.0081 .0480 -.1625* .1624* -.0053 6 -.0244 .0342 -.1579* .1734* -.0338
7 -.0083 .0221 -.1873* .1780* -.0095 8 .0565 .1129* .1124* -.0728 .0191
9 .0558 .0971 .0247 -.0400 .0564 10 .0478 .0207 .0325 .0243 .0903
11 .1324* .0843 -.1031* -.0300 .1249* 12 .0142 .0594 -.1477* .1246* .0176
13 .0003 .0063 -.1781* .1826* -.0034 14 -.0755 -.0291 -.1123* .0925 .0475
15 -.0103 .0500 -.1001* .1615* -.0119 16 .0018 .0516 -.1774* .0566 -.0387
17 -.0323 .0115 -.1039* .1017* -.0091 18 -.0204 .0117 -.1226* .1110* .0210
19 -.0187 .0047 -.1260* .1604* -.0042 20 -.0298 .0300 -.1545* .1673* -.0139
21 .0343 .0418 -.0929 .1246* .0138 22 .0211 .0578 -.1200* .1228* -.0137
23 -.0175 .0409 -.1618* .1602* -.0288 24 .0144 .0652 -.1543* .0921 .0100
25 -.0210 .0204 -.1260* .1643* -.0595

In “recent” status, Agreeableness is positively correlated with the proportion
of interrogative sentence (r = .1324). The more interrogative sentences, the more
agreeable he is and the more friends he would like to make. Conscientiousness is
positively correlated with words per sentence (r = .1129). It means that the more
conscientious, the more likely he would write sentences with multiple words. He
tend to use clauses rather than simple sentences. Extraversion is negatively
correlated with words (r = −.1797) and sentences (r = .1938), suggesting that
the more extravert, the less words in status(r = −.1525). Extroversive people
have a large extent of friends, and are unnecessary to spend much time online.
Results of Neuroticism provides that the more neurotic, the more likely he will
use emotion words (r = .1246) such as “happy”. It positively associated with the
status publishing (r = .1477), words (r = .1744) and sentence (r = .1788). He’d
like to use “I” rather than “we”(r = .1826). Openness is positively correlated
with the proportion of interrogative sentence (r = .1249).
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4.2 Complete-Status Analysis

We also compute Pearson correlations on the Big Five personality traits and the
users’ complete status shown in Tab. 3.

Table 3. Pearson correlation matrix of the Big Five personality and complete-status

F A C E N O F A C E N O

1 .0787 .1043* -.0527 .0906 .1494* 2 .0681 .0162 -.0674 .0103 .0438
3 .1180* .0945 -.0835 .0980 .1409* 4 .1127* .0890 -.0926 .0987 .1283*
5 .1240* .0946 -.0605 .0956 .1600* 6 .0965 .0912 -.0442 .0778 .1782*
7 .0788 .1043* -.1198* .1496* .1013* 8 .0134 .0606 .0755 -.0806 .1773*
9 -.1113* -.0602 .0225 .0348 .0375 10 .0965 -.0307 .0038 .0273 -.0359
11 .0702 .1030* -.0515 -.0047 .1732* 12 .1495* .1066* -.0740 .0957 .1351*
13 .1630* .0950 -.1091* .0653 .0682 14 .1092* .0790 -.0759 .1270* .1629*
15 .0948 .1056* -.1383* .1320* .0932 16 .1207* .1014* -.1365* .0868 .1287*
17 .1258* .0814 -.1069* .0881 .1581* 18 .0303 .0377 .0099 .1344* .1693*
19 .1032* .0708 -.1063* .0766 .1411* 20 .1330* .1278* -.0894 .1049* .1118*
21 .1136* .0769 -.0601 .0833 .1589* 22 .1420* .0977 -.0615 .0894 .1586*
23 .1152* .0832 -.0654 .0884 .1435* 24 .1751* .1508* -.0453 .0493 .1058*
25 .1147* .1193* -.0733 .1041* .1069*

Agreeableness is positively correlated with emotion word count (r = .1495),
1st person singular (r = .1630) and advocating word number (r = .1751). This
suggests that the more emotion word the more agreeable. Agreeable people prefer
“I” to “we” and they tend to use more advocating words showing that they like
to advocate activities. Conscientiousness is positively correlated with positive
emotion word number (r = .1278), advocating word number (r = .1508) and
frequency word number (r = .1193), meaning that the more conscientious, the
more likely he would use optimistic words and advocate activities. Extraversion
is negatively correlated with sentence count of status (r = −.1198), 2nd person
singular (r = −.1383) and 2nd person plural (r = −.1365), suggesting that the
more extravert, the less sentences in his status. People with high extraversion do
not use “you” quite often. Neuroticism is positively correlated with the sentence
count of status (r = .1496), 1st person plural (r = .1270) and 2nd person singular
(r = .1320), providing that the more neurotic, the more likely he publishes more
sentences in status. They tend to use “we” and “you” when talking to others.
Openness is positively correlated with 2-word or more expression number (r =
.1782), average word per sentence (r = .1773) and 3rd person plural (r = .1693).
People with high openness will use longer expressions in their sentences and
have a high proportion in average word per sentence. They tend to use “they”
or “their” in status.

4.3 Comparison

To identify whether complete-status dataset differs from recent status on the cor-
relation, we compare the differences of their Pearson correlations with Big-Five
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traits, and the result is in Tab. 4. From the table, we find that most correla-
tion coefficients change a lot (> 0.05). It means that the correlations rise when
experiment personality traits on complete status than that of “recent” ones. In-
tuitively, personality is stable with respect of time and has little change with
time passing by. It might suggest that we run experiment on the dataset that
consists of user behavior as much as possible.

Table 4. Differences of Pearson correlations between complete and recent status

F A C E N O F A C E N O

1 0.08 ↑ 0.08 ↑ 0.10 ↑ −0.06 ↓ 0.12 ↑ 2 0.07 ↑ -0.05− -0.09 ↓ -0.00− 0.11 ↑
3 0.13 ↑ 0.04− 0.10 ↑ -0.08 ↓ 0.16 ↑ 4 0.13 ↑ 0.03− 0.10 ↑ -0.08 ↓ 0.15 ↑
5 0.13 ↑ 0.05− 0.10 ↑ -0.07 ↓ 0.17 ↑ 6 0.12 ↑ 0.06 ↑ 0.11 ↑ -0.10 ↓ 0.21 ↑
7 0.09 ↑ 0.08 ↑ 0.07 ↑ -0.03− 0.11 ↑ 8 -0.04− -0.05− -0.04− -0.01− 0.16 ↑
9 -0.17 ↓ -0.16 ↓ -0.00− 0.07 ↑ -0.02− 10 0.05− -0.05− -0.03− 0.00− -0.13 ↓
11 -0.06 ↓ 0.02− 0.05− 0.03− 0.05− 12 0.14 ↑ 0.05− 0.07 ↑ -0.03− 0.12 ↑
13 0.16 ↑ 0.09 ↑ 0.07 ↑ -0.12 ↓ 0.07 ↑ 14 0.19 ↑ 0.11 ↑ 0.04− 0.03− 0.12 ↑
15 0.11 ↑ 0.06 ↑ -0.04− -0.03− 0.11 ↑ 16 0.12 ↑ 0.05− 0.04− 0.03− 0.17 ↑
17 0.16 ↑ 0.07 ↑ -0.00− -0.01− 0.17 ↑ 18 0.05− 0.03− 0.13 ↑ 0.02− 0.15 ↑
19 0.12 ↑ 0.07 ↑ 0.02− -0.08 ↓ 0.15 ↑ 20 0.16 ↑ 0.10 ↑ 0.07 ↑ -0.06 ↓ 0.13 ↑
21 0.08 ↑ 0.04− 0.03− -0.04− 0.15 ↑ 22 0.12 ↑ 0.04− 0.06 ↑ -0.03− 0.17 ↑
23 0.13 ↑ 0.04− 0.10 ↑ -0.07 ↓ 0.17 ↑ 24 0.16 ↑ 0.09 ↑ 0.11 ↑ -0.04− 0.10 ↑
25 0.14 ↑ 0.10 ↑ 0.05− -0.06 ↑ 0.17 ↑

4.4 Discussion

We combine “recent” and “complete” tables together in Tab. 5. For each feature
over each personality dimension, if the absolute value of correlation is great
than 0.1 (greater then 0.1 or smaller then −0.1), we mark it ‘+’ and put them
as “recent”/“complete” respectively. The correlation marks are shown in Tab. 5.

“+/+” Features From Tab.5, we find a few double ‘+/+’ features. These
features show a relatively greater correlation with personality traits. Extraver-
sion has a significant correlation with sentence count, 1st person singular, 2nd

Table 5. Correlations on recent and complete status

F A C E N O F A C E N O F A C E N O

1 /+ +/ +/ /+ 2 3 /+ +/ +/ /+
4 /+ +/ +/ /+ 5 /+ +/ +/ /+ 6 +/ +/ /+
7 /+ +/+ +/+ /+ 8 +/ +/ /+ 9 /+
10 11 +/ /+ +/ +/+ 12 /+ /+ +/ +/ /+
13 /+ +/+ +/ 14 /+ +/ /+ /+ 15 /+ +/+ +/+
16 /+ /+ +/+ /+ 17 /+ +/+ +/ /+ 18 +/ +/+ /+
19 /+ +/+ +/ /+ 20 /+ /+ +/ +/+ /+ 21 /+ +/ /+
22 /+ +/ +/ /+ 23 /+ +/ +/ /+ 24 /+ /+ +/ /+
25 /+ /+ +/ +/+ /+



232 S. Bai, R. Gao, and T. Zhu

person, 3rd person singular and the number of numeral words. Neuroticism is
significantly correlated with sentence count, 2nd person singular, 3rd person plu-
ral, positive emotion word and frequency word usage. People with high score in
neuroticism like to use positive emotional words and frequency words(“happy”,
“never”). Openness is significantly correlated with the interrogative sentences
proportion.

“ /+” Features Some ‘ /+’ labeled features will make better sense in the
long run, and have a higher correlation with personality over a long period.
For agreeableness, word and expression count, statement proportion, 1st person,
2nd person plural, 3rd person singular and emotion, evaluation advocating and
frequency usage make more correlation in long period. For conscientiousness,
status and sentence count, 2nd person, positive emotion count, advocating and
frequency word count will get more correlated with personality with time pass-
ing by. For openness, status, word, expression and sentence count, 1st and 2nd
person plural, emotion, numeral, advocating and frequency word count show
more correlation with personality in long time period, meaning that open people
publishes more status in long time period than in short time.

“+/ ” Features There are some ‘+/ ’ features correlated with personality in
recent period. Recent interrogative sentence proportion is significantly related
with agreeableness. The agreeable person may use more interrogative sentences.
Conscientious person may have a high average word per sentence. Their status
will contain more long sentences. Extroverts publish more status and interroga-
tive sentences. They use more “we/they”, more emotional words and advocating
words. People with high score in neuroticism also tend to publish more status,
but they tend to use “I/he/she” instead of “we/they”.

5 Conclusions and Future Work

This study finds the correlation between RenRen status usage and personality
traits. In the long time, agreeableness relates to interrogative sentence count;
conscientiousness has significantly positive correlation with the advocating word
number; extraversion has significantly negative correlation with 2nd person sin-
gular usages; neuroticism has significantly positive correlation with the sentence
count, 1st person singular usage and openness has a positive correlation with pos-
itive evaluation word number. These results help us conduct further research.
Some features correlate with personality in short period, while others prefer to
status over a long period. In the future, we can design more suitable features in
both “recent” and “long-time” aspects. With these strongly personality-related
features, an application that predicts users’ personality will be developed.
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Abstract. KinectFusion is a real time 3D reconstruction system based on a low-
cost moving depth camera and commodity graphics hardware. It represents the
reconstructed surface as a signed distance function, and stores it in uniform volu-
metric grids. Though the uniform grid representation has advantages for parallel
computation on GPU, it requires a huge amount of GPU memory. This paper
presents a memory-efficient implementation of KinectFusion. The basic idea is
to design an octree-based data structure on GPU, and store the signed distance
function on data nodes. Based on the octree structure, we redesign reconstruction
update and surface prediction to highly utilize parallelism of GPU. In the recon-
struction update step, we first perform “add nodes” operations in a level-order
manner, and then update the signed distance function. In the surface prediction
step, we adopt a top-down ray tracing method to estimate the surface of the scene.
In our experiments, our method costs less than 10% memory of KinectFusion
while still being fast. Consequently, our method can reconstruct scenes 8 times
larger than the original KinectFusion on the same hardware setup.

Keywords: Octree, GPU, KinectFusion, 3D Reconstruction.

1 Introduction

3D reconstruction for real scenes is an important research area in computer vision and
computer graphics. For decades, researchers have developed all kinds of methods for
efficient and accurate reconstruction. One popular method reconstructs scenes by fusing
depth maps from different views. Especially, Newcombe et al. [9] and Izadi et al. [6]
proposed KinectFusion, which used a commodity depth camera Kinect[8] to scan and
model the dense surface of a room-size (about 4m× 4m× 4m) scene in realtime. The
algorithm leverages the parallel computing ability of the modern GPU to track the pose
of the Kinect, and fuses the depth map of each frame into a scene volume.

KinectFusion uses a uniformly divided volume, and stores the data of all voxels in
this volume. In a real scene, however, large amount of space is not occupied by the
object’s surface, therefore KinectFusion greatly wastes GPU memory, which hinders
scene reconstruction in larger scale. To solve the problem, we introduce an octree struc-
ture to efficiently store the scene data. Based on the octree, we propose an algorithm
to maintain the octree and integrate depth maps online. Our method sufficiently ex-
ploits the hierarchical structure of the octree and GPU parallelism. We adopt different
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traversal manners in our method to update and trace the octree to achieve optimized per-
formance. When updating the volume, we traverse the octree in a level-order manner to
exploit GPU parallelism. When predicting the scene surface, we traverse the octree in a
top-down way to skip large non-data spaces. Benefit from careful designs, our method
performs better than KinectFusion both in memory and computational efficiency.

2 Related Work

This section introduces the related works on 3D reconstruction and octree construction
on GPU. We only survey works most relevant to this paper.

3D Reconstruction. 3D reconstruction techniques capture scene information by RGB
cameras or depth cameras, and then reconstruct the geometry of the scene.

Lots of researchers capture RGB images of a scene, then utilize structure from mo-
tion (SFM) and multi-view stereo (MVS) to locate cameras and recover a sparse point
cloud of the scene [2,11]. This kind of method is time consuming and unable to ob-
tain dense scene surface. Recently, some studies used RGB sequence to reconstruct the
dense surface [12,13,10] of a small scene (about 1m× 1m× 1m) in real time.

Depth cameras are able to capture a depth map of current scene on each frame.
Leveraging this ability, we can align depth maps to form the whole scene surface. The
most popular method for this task is Iterative Closest Point (ICP)[1]. It was widely used
to register views of depth maps into a global coordinate. With ICP, the KinectFusion
proposed by Newcombe et al. [9] and Izadi et al. [6] leverages depth camera and GPU
to reconstruct a dense surface of a room-size (about 4m×4m× 4m) scene in real time.
Based on the KinectFusion, Whelan et al. [15] proposed a system “Kintinuous” which
supports modeling on unbounded regions by shifting volume and extracting meshes
continuously. This system utilized KinectFusion as a building block, and extended the
ability to support large scale scanning. In contrast to [15], our method improves the
core parts of the KinectFusion, and it can be a building block of large scale scanning
systems like Kintinuous.

Octree Construction on GPU. An octree adaptively splits the space of the scene ac-
cording to the complexity of the scene to use memory efficiently [3]. Though the sim-
plicity of its definition, it is hard to be maintained using parallelism feature of GPU due
to the sparseness of its nodes [16]. Sun et al. [14] built an octree with only leaf nodes to
store volume data and accelerated photon tracing based on the octree. Zhou et al. [16]
constructed a whole octree structure on GPU to accelerate Poisson Reconstruction [7].

3 Overview
The overviews of KinectFusion and our method are shown in Figure 1 left. The Kinect-
Fusion contains four main stages: Surface Measurement, Camera Pose Estimation, Re-
construction Update, and Surface Prediction (see [9,6]). In our method, we adopt the
similar flowchart of KinectFusion. However, to overcome the large memory consump-
tion due to the uniform voxel in KinectFusion, we introduce an octree structure to com-
pactly organize the scene data in our method. Based on the octree, we design new algo-
rithms for Reconstruction Update and Surface Prediction to utilize GPU parallelism.
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Fig. 1. Overview and Data Structure of our method. Left: overview of KinectFusion and improve-
ments of our method. The red dash rectangle indicates the improved parts. Right: illustration of
the octree structure.

In the following sections, we first introduce the octree structure in Section 4, fol-
lowed by Reconstruction Update and Surface Prediction. In Section 7, we describe im-
plementation details and experimental results, after which we give the conclusion.

4 Octree Structure

Our octree structure is stored in arrays of different layers. One array corresponds to one
layer of the octree. As illustrated in Figure 1 right, there are three kinds of layers in our
octree structure: Branch Layer, Middle Layer and Data Layer. All possible nodes in the
branch layer are allocated, and can be randomly accessed. Nodes of other layers are not
fully allocated, which can only be visited by links betweens adjacent layers.

– Branch Layer: The branch layer contains all nodes in its layer. Each node of the
branch layer stores the index idChild of the first child. If the node doesn’t have
children nodes, idChild is set to −1.

– Middle Layer: Nodes in middle layers record both idChild and shuffled xyz
key [16]. The shuffled xyz key of a node at depth D is defined as a bit string:
x1y1z1x2y2z2...xDyDzD, where each 3-bit code xiyizi encodes one of the eight
subregions at depth i. idChild can be used to traverse an octree in the depth-first
manner, while shuffled xyz key can be utilized for the level-order traversal.

– Data Layer: Each node in this layer stores its shuffled xyz key and data of the
scene [9,6]: Signed Distance Field SDF and weight w.

In the data structure, the branch layer is the starting layer, and it is not necessarily the
root layer. We use a symbol OT (T, L) to represent an octree with a branch layer at
depth T , and data layer at depth L. Accordingly, OF (T, L) represents our algorithm
based on OT (T, L). We also denote our algorithm with a n-depth octree as OFn. To
represent the octree structure, we use following arrays to organize above data:

– NodeBuf is a pre-allocated two-dimensional array to store nodes of each level.
The ith node at level L is stored in NodeBuf [L][i].

– IdStart is a pre-allocated one-dimensional array to record the current starting in-
dex of the available buffer of each level, as black arrows shown in right of Figure 1.
The current starting index of level L is recorded in IdStart[L].



A Memory-Efficient KinectFusion Using Octree 237

Algorithm 1. Add Nodes for the Octree at Level L
1: //Step1: Predict whether a node needs further split 16: //Step 2: Scan the split flag array
2: for Node Oi at Level L in parallel do 17: (ScanOut, nNewNodeCount)← Scan(ScanIn,+)
3: if Oi in view frustum
4: vg ← PosFromNode(Oi, L) 18: //Step 3: Assign child index and compute xyz key
5: v ← WorldCoord2CamCoord(vg) 19: for Oi at level L in parallel
6: p ← perspective project vertex v 20: if ScanIn[i] == 1
7: dir ← vg − vcam 21: idx = IdStart[L+ 1] + (ScanOut[i] << 3)
8: sdf =‖ vcam − vg ‖ −D(p, dir) 22: NodeBuf [L][i].idChild = idx
9: if IsSplit(Oi, sdf) and Oi has no child 23: key = Oi.xyzkey

10: ScanIn[i] = 1 24: for k=0 to 7 do
11: else 25: NodeBuf [L+ 1][idx + k].xyzkey = (key << 3) | k
12: ScanIn[i] = 0 26: end for
13: endif 27: end if
14: endif 28: end for
15: end for

29: //Step 4: Update IdStart
30: IdStart[L+ 1]+ = 8 ∗ nNewNodeCount

5 Reconstruction Update Based on Octree

There are two operations in the step of reconstruction update: add nodes for new scene
data, and SDF data update.

5.1 Add Nodes for Octree

To add new nodes for the octree, we adopt a top-down level-order manner to traverse
the octree. We split nodes and assign children indices level by level, starting from the
branch layer and moving towards the data layer, one level at a time. For level L, the
pseudo code of the procedure is listed in Algorithm 1.

At the first step, we predict whether a node needs further split in parallel. For the node
in the view frustum, we calculate the signed distance sdf from its center to the current
depth map (Line 4 to 8). Then, given sdf , we use the function IsSplit (described later)
to predict node splits and mark 1/0 in an auxiliary array ScanIn. At step 2, we take
Parallel Prefix Sum (Scan) [5] with the add operation “+ ” on ScanIn to compute the
unique id of new split nodes. At step 3, we assign index of its first child to the node to
be split. At this step, we also figure out and store the shuffled xyz key of each new child
node according to the shuffled xyz key of its parent node and its relative position in all
eight children. Finally at step 4, we update the index of the first available node in the
memory pool of the child layer.

In the function IsSplit, we assume the scene near the node is approximately a plane.
We denote distance between center of the node and scene surface as sdf , diagonal length
of the node as d, then distances from all points within the node to the surface must be
in [sdf − d/2, sdf + d/2]. Take the further consideration that the distance field stored
in scene volume is in [−U,U ], U is the maximal truncation value. To ensure a correct
split prediction, the node split iff [sdf − d/2, sdf + d/2] intersects with [−U,U ], i.e.
sdf ∈ [−U − d/2, U + d/2].

5.2 Update SDF for Octree

After updating the structure of the octree, the current depth map should be integrated
into the scene volume to update signed distance function. We only need to update the
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Algorithm 2 Surface Prediction
1: for each pixel u in imaging plane in parallel do 18: //estimate position and normal
2: Raydir ← direction of the ray 19: if l == level of the finest layer then
3: g ← first voxel along ray dir in the finest level 20: if zero crossing from gprev to g then
4: Raystep ← 0 21: P ← estimate surface position
5: while voxel g within volume bounds do 22: N ← estimate surface normal
6: //determine the marching step 23: break
7: xyzkey ← Grid2Key(g) 24: end if
8: l ← level of the branch layer 25: end if
9: node ← Key2Node(xyzkey, l, NodeBuf, null) 26: end while

10: while node has children do 27: end for
11: l + +
12: node←Key2Node(xyzkey, l, NodeBuf, node)
13: end while
14: Raystep ← NextStepLen(g, Raydir, node)

15: //march forward
16: gprev ← g
17: g+ = Raydir · Raystep

nodes at the data layer to integrate the depth map. We adopt the similar integration
algorithm as the method in [6] except that we compute positions of data nodes from
shuffled xyz code while [6] directly compute them from their grid indices.

6 Surface Prediction Based on Octree

After structure and data update of the octree, like [9,6], a ray tracer is taken to ray-cast
the scene volume and estimate the scene surface. Algorithm 2 lists the pseudo code.
Each ray marches forward until crossing the object’s surface. Line 6 to 14 determine
the current amount of finest steps to march forward. In Line 7, Grid2Key figures out the
xyzkey. Then in Line 8 to 13, with xyzkey, we adopt a top-down way to find the most
compact octree node holding the position g. The most compact node for g means no
surface data is in the node, so the ray can “bravely” marches across this most compact
node. So in Line 14, we compute the marching step according to the depth (level) of the
most compact node by the function NextStepLen. After marching forward, if the ray
crosses surface, we estimate the position and normal of the hitting points between the
ray and the object’s surface.

The position and normal of the intersection point are estimated in a trilinear interpo-
lation way [9,6]. Normals of points around two sides of the zero-crossing surface can
be calculated by forward/backward differences according to the relative position of the
node of its siblings.

7 Implementation and Experiments

7.1 Implementation Details

We have implemented the whole pipeline of our algorithm in C++ with Nvidia CUDA,
and test it on a desktop computer with an Intel Core2 Duo E7400 2.80GH CPU (use
one core) and a Nvidia GeForce GTX480 graphics card. For the operator Scan, we used
the implementation provided in the highly optimized GPU library CUDPP [4].
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All data data structures are stored in the global memory. For a layer at depth D of an
OT (T, L), the node count N of the GPU memory buffer is as follows:

N =

{
23D, D ≤ T

μ · 23D, D > T
(1)

where μ is proportion to all possible nodes at its depth. In our current implementation,
μ is set to 0.05 for depth no deeper than 9, and 0.03 for depth 10.

7.2 Experiments

This section compares our method with KinectFusion from three aspects: memory con-
sumption, computation time, and reconstruction for large scene.

Memory Comparison. We compare memory consumption between KinectFusion and
our method on a depth map sequence “chairs” (Figure 2). For KinectFusion, we adopt
the 5123 resolution (KF512), and for our method, we test both 9-depth (OF9) and 10-
depth octree (OF10). In this experiment, branch layers of both OF9 and OF10 are set
at depth 7. Figure 2 middle shows the memory consumptions on each frame of “chairs”
with KF512, OF9, and OF10. KF512 cost 512 MB memory constantly, while OF9 and
OF10 increase the memory as the camera scans new parts of the scene. At the begin-
ning, OF9 and OF10 pre-allocate 81.6MB and 362.6MB, respectively. Finally, OF9 uses
55.6M, and OF10 uses 227.4MB. With 5123 resolution, memory consumption of OF9
is 81.6/512 ≈ 15.9% of KF512. With 10243 resolution, KinectFusion will consume
4GB GPU memory, which is ≥ 10 times larger than that of our method. Figure 2 right
gives details of memory consumption of each layer.

Time Comparison. We show time comparisons on a test scene in Figure 3, where OF(7,
9) processes a frame in about 19ms, and OF(7, 10) processes a frame less than 25ms.
They are both faster than KF512. OF(7, 9) gains about 2× speed up on the improved
parts than KF512. This is because KF512 needs to update its all 5123 voxels, while our
method only updates existing nodes, and it can skip large spaces on the ray-cast stage.

Large Scale Scene. Our octree based method efficiently uses memory, and OF10 can
reach a maximal 10243 resolution, which is able to robustly track the camera in a large
scale scene and reconstruct it. We scan an office in a 8m×8m×8m bounding box using
OF10, which captures about 3800 frames of depth maps. The scene data costs 299MB
in 363MB pre-allocated GPU memory, and the extracted mesh from the scene volume
contains 6200K triangle faces and 3400K vertices. As shown in Figure 4, though the
size of the scene is large, the reconstructed model still possesses abundant details.

Fig. 2. Memory comparison of a static scene “chairs”
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Fig. 3. Processing time for a test scene. Left are the Phong-shaded rendering and the normal map
of the test scene, respectively. Right is the processing time on each stage of different methods.

Fig. 4. Reconstruction result of a large scene and two zoom-in parts

8 Conclusion and Future Work

We propose an octree based KinectFusion. Our method represents the scene data in
an octree structure, and maintains this octree by “add node” operations according to
changes of the scene. We also modify KinectFusion to adapt the octree representation
to highly utilize parallelism computation ability of GPU. Experiments show that our
method costs only about 10% memory of original KinectFusion and runs about 2×
faster than original KinectFusion on the improvement parts. Our method can reconstruct
3D scenes 8 times larger than that of KinectFusion.

The system can be extended in several ways. One is to design a more efficient mem-
ory management solution to replace current pre-allocation method. Another possible
improvement may come from the combination of our method and Kintinuous [15]. A
straightforward way is to use our method as a building block in Kintinuous, which may
also involve some modifications both on data structures and the volume shifting algo-
rithm of Kintinuous.
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Abstract. The near zone of heat diffusing machines in an equipment room is 
very critical for the normal functioning of the machines. Current knowledge 
about the near zone of heat diffusing machine is insufficient, causing an 
increasing need for better measuring methods and representation of the air 
temperature distribution. 

We proposed a vision-based measuring technique for visualization of air 
temperatures and air flow patterns over a large area. As a medium, smoke is 
generated in the near zone of heat diffusing machine to make the air flow 
visible. A specialized capturing technique is used to record density distribution 
of the time-varying smoke. We place a few temperature sensors sparsely over 
the volume and combine the outputs of the temperature sensors and density 
information of the smoke to measure the temperature distribute in the space. 
Experiments validate the effectiveness of the proposed method. 

Keywords: Computer graphics, Vision geometry, Air temperature 
measurement, Smoke density. 

1 Introduction and Previous Works 

The aim of this work is to make the air temperature visible. It is very time consuming and 
impractical with traditional techniques to measure air temperatures over large areas in a 
ventilated room and it yields insufficient information with low resolution. It takes either 
many sensors or transfer of single sensor to cover the temperature distribution over a 
large area. Measuring instruments also bring disturbance to the region. 

To overcome the problems and limitation with traditional techniques, some new 
techniques have been developed. Wen-Yuan Tsai et al. [1] come up with an ultrasonic 
air temperature measurement system which can measure the average temperature of 
the environmental air by detecting the changes of the speed of the ultrasound in the 
air. A.Minamide et al. [2] proposed an acoustic computerized tomography methods 
based on Radon transform to measure temperature distribution in rectangular space. 
But these methods based on ultrasonic wave usually require precision instruments and 
complex installation. M.Cehlin et al. [3] developed a vision-based measurement 
system which needs relatively simple installation, but the system introduces 
considerable disturbance to the region and the measurement is limited to 2-D plane 
instead of 3-D volume. 

t of Air
 Temperature Using Smoke as Medium 

Retracted: Vision-Based Measuremen
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We proposed a new measuring technique based on smoke medium, making it 
possible to measure air temperature distribution over a large volume continuously 
without bringing much disturbance to the volume. Our method use smoke as medium 
to visualize the air flow and temperature distribution. We generate smoke near the air 
outlet of the heat diffusing machine. Cooling and ventilation system creates specific 
types of air flow which carries heat and smoke around. So the smoke will spread in 
the same direction as the air flow transmits which provides useful information for 
determining the temperature distribution. We place a few temperature sensors 
sparsely over the volume and combine the outputs of the temperature sensors and 
density information of the smoke to measure the temperature distribute in the space. 

Fig. 1 gives an overview of the system which contains one color CCD camera, one 
smoke generator, one air heater, one 8-chanal thermograph and two arrays of laser 
sources, one red and the other blue. 

 

Fig. 1. The whole setup of the system. Symbol ◇ stands for temperature sensors which are 
fixed sparsely in the volume. 

2 Basic Theory of the Method 

In this section we first discuss a novel approach to capture the volumetric density of 
smoke proposed by Christian Fuchs et al. [4]. (In practice we applied some 
improvement upon it.) We then describe our assumptive model which approximates 
the corresponding pattern between smoke density field and temperature field and 
analyze the air flow field using an optical flow-based method. 

2.1 Recovering Density Field from a Single Image 

Christian Fuchs et al. proposed a new approach to capture the volumetric density of 
smoke instantaneously with a single image [4]. We adopt this method and simplify 
the determination of the phase function using a different method.  

The phase function of smoke medium describes the angular distribution of light 
reflected from a body when illuminated from a specific direction. In 1941 L. C. 
Henyey and J. L. Greenstein introduced a function which, by the variation of one 
parameter, 1 g 1 , ranges from backscattering through isotropic scattering to 
forward scattering [5]. The function is 



Retr
ac

ted

244 Z.-X. Zhao et al. 

 

p θ /                      (1) 

where θ is the angle between the directions of incoming light and scattered light. 
We use two collimated laser bundles as illumination, one red and the other blue. 

Then we recover separate density fields  and  for the red and the blue laser 
bundle. During the capturing process, we determine the phase function by minimizing 
the disparity between the separate density fields recovered from the two laser bundles. 
We estimate the disparity between two density fields   and  stored as 
voxel densities as RMS , ∑

 (2) 

where V corresponding to the set of voxels defined in the measurement volume. 
Due to different scattering properties of the two laser bundles, the camera’s red and 

blue channel might respond differently. So we introduce a scale factor k to balance 
the response of two channels. The best approximated g is obtained by optimizing the 
following objective function 

                     min , ∑  .        (3) 

2.2 Recovering Temperature Field 

Since 3-D smoke density field can be measured with above method, the motion of air 
flow becomes visible. We use an oil-smoke machine to generate smoke near the air 
outlet of the heat diffusing machine, obviously the smoke generated will spread in the 
same direction as the air flow spreads, and the heat is carried away at the same time. 
The further the air moves, the less heat it carries. 

So the corresponding pattern between the density and temperature should be 
positive correlation. We assume that the corresponding pattern could be roughly 
approximated by a polynomial type throughout the volume, and we did a lot of 
experiments to test and modify the assumption. 

2.3 Air Flow Analysis 

A number of previous works use smoke as flow visualization medium [6-8]. 
Generating smoke in the volume makes the air flow visible, so we proposed an optical 
flow-based method to recover air flow field from smoke density field. 

We extend the classical 2-dimentional  Horn-Schunck  [9] optical flow algorithm 
to 3-dimention situation. The flow is formulated as a global energy functional which 
is then sought to be minimized: E   (4) 



Retr
ac

ted

 Vision-Based Measurement of Air Temperature Using Smoke as Medium 245 

 

where , ,  and   are the derivatives of the image intensity values along the x, 
y, z and time dimensions respectively and the parameter  is a regularization 
constant. Larger values of  lead to a smoother flow. This functional can be 
minimized by solving the associated Euler–Lagrange equations. ∆ 0 ∆ 0 ∆ 0 (5) 

In practice the Laplace operator  is approximated numerically using finite 
differences, and may be written as: ∆ , , , , , ,  (6) 

where   , ,  is a weighted average of  calculated in a neighborhood around the 
pixel at location (x, y, z). Since the solution depends on the neighboring values of the 
flow field, it must be repeated once the neighbors have been updated. The following 
iterative scheme is derived: 

 

 

                               7  

where the superscript k+1 denotes the next iteration, which is to be calculated and k is 
the last calculated result. 

3 Experiment System 

We built a set of experiment system to test our ideas in practice. We place 25 5mw 
red laser pointers and 25 5mw blue laser pointers as a 5 5 array on two 60 60 cm  
boards separately to constitute the laser bundles. The two laser bundles are placed 
roughly parallel to each other defining a 100 50 50 cm  measurement volume. 

We use an air heater as the heat diffusing machine. An oil-smoke machine is 
placed near the outlet of the air heater. We select an 8-chanal thermograph which can 
record temperature data in terms of time and save it to computer with USB cable. We 
place 8 temperature sensors sparsely at several typical positions in the measurement 
volume, and the positions of the sensors could be calibrated in a separate step. 

A 1280 960 high-quality color CCD camera is used to capture images of the 
measurement volume. Its placement ensures that no two rays of the same color project 
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to the same location on the image plane. We are thus able to capture images of the 
smoke illuminated by the two bundles using the camera’s red and blue channel 
separately. 

4 Calibration and Capture 

Recovering density field from the image data requires geometric calibration of the 
camera, the laser bundles, and the temperature sensors. We use a planar checkerboard 
pattern to calibrate the pose and intrinsic parameters of the camera using the 
technique of [Zhang 2000] [10]. 

We calibrate each of the laser pointers separately in a similar way to the work 
discussed in [11]. We place a checkerboard at an angle such that it is illuminated by 
the laser to be calibrated and also visible to the camera. We then determine the 
position of a given dot of laser spot in a given frame corresponding to one position of 
the laser line. Moving the checkerboard to another position allows the same dot of 
light to be observed at a different 3D position. Then we calculate the location of the 
laser line by connecting these dots. Here Least-squares method is used to find the best 
fitting. Repeating this for all the laser lines gives the locations of the laser arrays. 

After fixing the temperature sensors, we calibrate the positions of the sensors 
similarly. We place a checkerboard behind the sensor so the sensor lies on the 
checkerboard. The sensors are small enough so that we can still reliably detect the 
corners of the checkerboard pattern. 

We then generate smoke near the outlet of the air heater. A 1280 960 high-quality 
color CCD camera is used to capture images of the smoke illuminated by the laser 
bundles at and the thermograph is used to record temperature data once per second. 
The process continues for 30 seconds. 

5 Experimental Results 

We capture images of the volume for 30 seconds at 15 fps and record the temperature 
data at the same time. We then project the laser lines to image plane to find their 
corresponding location in the image and take samples along the projected lines. We 
extract samples I  from the camera images by marching densely along the 
projections of the rays and taking a sample at each step (we take 2cm in world 
coordination here). As noted before, we need to ensure that the full width of the 
projected laser line is captured. We therefore integrate the contributions to  along a 
small line segment (we take 7 pixels here) perpendicular to the projected ray direction 
and recover density value [12]. Then we low-pass filter the obtained intensity samples 
along each ray in order to reduce noise, yielding about 150 samples per ray. Finally 
we interpolate the data by 3cm  resolution yielding about 6000 interpolated points.  
Captured results are shown in Fig. 2. The reconstructed density field is rendered using 
a Monte Carlo-based rendering method [13]. 
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Fig. 2. Left: red channel of the captured image in which lasers are clearly visible. Right: density 
field reconstructed from the image. 

Then we interpolate the density data at positions of the 8 temperature sensors using 
an approximation method [4] and find the corresponding temperature value in 
recorded temperature data. We put density data and temperature data together in 
rectangular coordinate system getting the D(density)-T(temperature) chart. The points 
are fit with a polynomial curve as shown in Fig. 3. 

 

Fig. 3. D-T charts of 8 sensors in single frame. Polynomial fitting results are drawn in red lines. 
The curves are roughly ascending which means the corresponding pattern between the density 
and temperature is roughly positive correlation. 

Fig. 4 shows D-T charts of single sensor in 20 frames. It’s obvious that the density 
at positions of the sensors is almost invariant during the whole process and 
temperature at position of each sensor is also invariant which means the temperature 
distribution is nearly constant but fluctuating slightly during the 30 seconds test. From 
the image sequence we captured we can also see the density changes slightly. 
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Fig. 4. D-T charts of single sensor in 20 frames. The density and temperature values are almost 
invariant. 

We then apply our 3-D optical flow method on the density field sequence, results 
are shown in Fig. 5. The air flow field could provide useful imformation for infering 
temperature field. We found that there are much more horizontal lines than vertical 
lines, which means the horizontal flow is dominant. 

 

Fig. 5. Optical flow field of the density field sequence, the direction and length of the lines 
stand for the direction and scale of the optical flow respectively 

6 Conclusions 

From the experimental results, we can see that the corresponding pattern between 
density and temperature is roughly compatible with our assumption that the higher the 
density, the higher the temperature. So we could use the polynomial fitting curve to 
roughly determine the temperature at any position in the measurement volume. The 
air flow information could serve as reference or be analyzed with thermodynamics 
and aerodynamics theories. 



Retr
ac

ted

 Vision-Based Measurement of Air Temperature Using Smoke as Medium 249 

 

But this method could only get rough temperature distribution and could introduce 
considerable error. The errors are caused partly by the density measurement approach 
itself as discussed in [4], partly by our assumption that the corresponding  pattern 
here is a constant polynomial pattern. So our work is considered experimental rather 
than practicable. 

References 

1. Tsai, W.-Y., Chen, H.-C., Liao, T.-L.: An ultrasonic air temperaturemeasurement system 
with self-correction function for humidity. Meas. Sci. Technol. 13, 548–555 (2005) 

2. Minamide, A., Wakatsuki, N., Mizutani, K.: Acoustic computerized tomography for 
temperature distribution measurement in rectangular space. Acoustics 08 Paris 

3. Cehlin, M., Moshfegh, B., Sandberg, M.: Measurements of air temperatures close to a low-
velocity diffuser in displacement ventilation using an infrared camera. Energy and 
Buildings 34, 687–698 (2002) 

4. Fuchs, C., Chen, T., Goesele, M., Theisel, H., Seidel, H.-P.: Density estimation for 
dynamic volumes. Computers & Graphics 31, 205–211 (2007) 

5. Henyey, L.C., Greenstein, J.L.: Diffuse radiation in thegalaxy. Astrophys. J. 93, 70–83 
(1941) 

6. Huang, L., El-Genk, M.S.: Heat transfer and flow visualization experiments of swirling, 
multi-channel, and conventional impinging jets. International Journal of Heat and Mass 
Transfer 41(3), 583–600 (1998) 

7. Posner, J.D., Buchanan, C.R., Dunn-Rankin, D.: Measurement and prediction of indoor air 
flow in a model room. Energy and Buildings 35(5), 515–526 (2003) 

8. Cornaro, C., Fleischer, A.S., Goldstein, R.J.: Flow visualization of a round jet impinging 
on cylindrical surfaces. Experimental Thermal and Fluid Science 20(2), 185–203, 66–78 
(1999) 

9. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3) 
(August 1981) 

10. Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Transactions on 
Pattern Analysis and Machine Intelligence (November 2000) 

11. Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. 
ACM Transactions on Graphics 24(3), 812–815 (2005) 

12. Debevec, P., Malik, J.: Recovering high dynamic range radiance mapsfrom photographs. 
In: SIGGRAPH 1997, pp. 369–378 (1997) 

13. Lafortune, E.: Mathematical models and monte carlo algorithms for physcially based 
rendering. Ph.D. thesis, Katholieke University, Leuven, Belgium (1995) 



Intuitive Volume Eraser

Enya Shen1, Zhi-Quan Cheng1,�, Jiazhi Xia2,�, and Sikun Li1

1 School of Computer, National University of Defense Technology, P.R. China
cheng.zhiquan@gmail.com

2 School of Information Science and Engineering, Central South University, P.R. China
xiajiazhi@gmail.com

http://www.computer-graphics.cn

Abstract. We present the intuitive volume eraser, an interactive volume render-
ing tool, to aid direct volume data visualization and Transfer Function (TF) de-
sign. Our system adopts sketch-based editing interface which enables interactive
exploring and editing operations in an intuitive and natural manner. The data fea-
tures can be enlightened interactively as user desired. The editing results are saved
faithfully with the What You See Is What You Get (WYSIWYG) scheme. We also
provide a coupled transfer function editor for users who are used to the traditional
TF editing interface. The result of experiments on various data demonstrates the
effectiveness of the proposed intuitive volume eraser. The comparison of user ex-
perience also shows that our tool outperforms the state-of-the-art approaches in
friendliness and efficacy.

Keywords: volume rendering, sketch-based editing, transfer function.

1 Introduction

Direct volume rendering has been widely used to explore three-dimensional volumetric
data in different fields. In volume rendering, original volumetric data are often converted
to renderable scalar values representing the color and opacity by well-designed mapping
functions to highlight the features. Especially, the color mapping is usually performed
by transfer function (TF) design. Usually, user would like to see interested features
of the original volumetric data. Researchers proposed TF editors to change the color
mapping interactively. The desired parts can be visualized or highlighted by hiding or
erasing the unwanted parts. However, as surveyed by [1], specifying the TF is a tedious
labor work and not intuitive for human perception.

In this paper, we propose an user-friendly volume rendering tool (illustrated by Fig-
ure 1), called as intuitive volume eraser, for interactive exploration and visualization
of the interested features. With the intuitive volume eraser, users can erase/mask unim-
portant or uninterested parts directly. Unlike current eraser tools which are indirect and
inexact, our erasing tool affords exact cues, like position and data value, and predictive
operation. We also provide TF editor for users who are accustomed to the traditional
ways. The TF editor provides direct control of color and opacity values and some other
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Fig. 1. From left to right: the key features of volumetric data are visualized by the volume eraser
in simple way according to user’s intuitive interaction. The operations are aided by useful cues
with precise position, data value and color information.

useful parameters, such as density and brightness. Consequently, users can easily ob-
serve what happens in both volume data space and TF space during erasing operations.
This feature is extremely useful for assisting professional TF definition and helping
novice to explore and visualize their data.

2 Related Work

As the central topic in direct volume rendering, transfer function (TF) has been widely
studied in the last decades [1]. According to the utilization of user-interaction, existing
TF methods could be categorized into three categories, namely automatic, semiauto-
matic and interactive.

To realize automatic TF generation, Zhou and Takatsuka [2] utilized topological at-
tributes derived from the contour tree of a volume. The contour tree assisted to look for
global features in volumetric data by acting as the visual index of volume segments. Ruiz
et al. [3] proposed an automatic approach for TF design without requiring prior knowl-
edge or pre-segmentation information, but need the user provide a target distribution.

Selver et al. [4] proposed a semiautomatic method for initial generation of TFs,
allowing users interact with integrated different features. Correa et al. [5] presented
semiautomatic methods for generating visibility-driven TFs with the aim to maximize
visibility of important features.

Several interactive methods have been proposed to explore volume data more freely.
Wu et al. [6] presented a framework which allows users to integrate multiple features
and delete features in the direct volume rendering results. Tzeng et al. [7,8] developed
an interactive user interface for specifying the classification functions that consist of
users painting directly on sample slices of the volume. With VolumeShop [9], Bruck-
ner et al. proposed an interactive system for direct volume illustration. With sketching,
interested features are displayed without occluding objects. Guo et al. [10] represented
a volume visualization system that accepts direct manipulation through a sketch-based
What You See Is What You Get (WYSIWYG) approach. In our work, we present an
intuitive tool to erase volumetric data directly.
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Fig. 2. The volume eraser pipeline with GPU-based ray casting

3 Volume Eraser

To implement our eraser tool, we use Graphics Processing Unit (GPU) based ray casting
algorithm as shown in Figure 2. The reasons are two-folds: firstly, ray casting is the most
versatile approach for direct volume rendering because of its flexibility in producing
high quality images [1]. Secondly, ray casting is apt to parallel execution on GPU to
obtain high frame rate, which is vital for interactive operations.

The entire GPU based ray casting process of our system includes the following four
steps. Firstly, the source data and color mapping table are acquired by CPU and bound
by GPU as textures [1]. Secondly, a ray is setup according to camera parameters and the
respective pixel position in the screen. Thirdly, the pixel color and opacity is accumu-
lated by stepping along the ray. Finally, the image pixels are displayed on the screen.

Besides the sampling stops required by the rendering system, we also need to collect
stops for eraser. Two kinds of eraser stops are collected correspondingly to two typical
erasing strategies. The first one is the first opacity sampling stops which the ray meets.
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Fig. 3. Screenshot of the intuitive volume eraser tool

The second one is the stop with maximum intensity of all the stops in the ray. As a
result, the voxel having the same value with the selected stop will be erased if eraser
mode is enabled. If a voxel is erased, its opacity in the TF is set to be zero. It is notable
that we only modify the TF without changing the source data.

Fortunately, the required stop information could be collected during the third step of
the accumulation process of ray casting. Our rendering and erasing algorithm could be
computed in a single pass which is crucial to efficiency. In detail, starting from the eye,
the ray comes through certain pixel on the screen and then intersects with the volume.
In the sampling and accumulation stage, we choose equidistant steps to benefit front
to back traversal. The scalar data value is mapped to optical properties by the color
mapping table [1]. The sampling and accumulation proceed along the ray until one of
the following termination conditions satisfied: the accumulated alpha αdst reaches a
specified threshold (here we choose 0.95); the ray has come through the volume; the
number of steps reaches a specified limit (here we use 500). The entire process can be
expressed as following equations [1]:

Cdst = Cdst + (1− αsrc)Csrc (1)

αdst = αdst + (1− αsrc)αsrc (2)

As shown above, we choose opacity-weighted colors [11]. It is worthy to note that the
whole ray casting including conditional stops record is implemented by CUDA with
GPU.

Figure 3 shows the interface of our tool. A set of system control functions, including
setting up new canvas, opening volumetric data file(s), grabbing and saving screenshots,



254 E. Shen et al.

and interaction modes switching, are provided in the top functional area. The parameter
editing area is in the right panel. Users could make use of the transfer function editors
and other parameters to refine their visualization results on the fly. The data are visu-
alized and manipulated in the window area. Like most of interface adopting desktop
metaphor, we take the mouse as the input device. Manipulate functions are assigned to
the left, middle and right button of the mouse. Benefited by the interactive functions,
users could manipulate their data precisely and liquidly. Our GPU-based implementa-
tion effectively supports our proposed two major editing modes:

– Hand Mode: this mode provides a set of fundamental real-time interaction op-
erations, such as rotation, translation and zoom. These operations will result in
re-computation of step 2-4 in GPU which could be computed in real-time.

– Eraser Mode: in this mode, the volumetric data having the same value with the
selected eraser stops will be erased by modifying the transfer function by changing
the opacity of this value to 0.0. It is vital to note that the transfer function is updated
on the fly while user moves their mouse to erase. The erased rendering result will
be displayed in real-time.

Our user interface also provides professional transfer function editors for modifying
color and opacity. As depicted in Figure 3, the screen shot of our transfer function
editors, from top to bottom, includes integrated transfer function editor for modifying
RGBA quadruplets at one fling and four sub-editors for changing red, green, blue and
alpha channel respectively. Providing four editors for components of RGBA quadruplets
has the following two advantages: Users can recognize and distinguish data values of
different colors clearly; More importantly, the data of occluded region can be visible.

4 Results and Discussions

4.1 Results

We implement the intuitive volume eraser using CUDA 4.1 with Qt 4.7.4 on a PC with
Intel 2.80 GHz Core i7 CPU, 12 GB RAM and GeForce GTX 580 graphics card.

As shown by Figure 1, the user could gradually operate intuitive volume eraser to
produce desirable results. It provides users the functionality to visualize the features
directly on volume data space, coupled with the professional transfer function editors.
The main property of the eraser is that all these operations are enlightened with the
real-time updating cues as discussed in the former sections. In addition, an accompany
video also demonstrates the strong functionality of the interactive eraser during volume
data exploration and visualization.

Benefited by the GPU-based ray casting implementation, our eraser is performed
in real-time. The on-the-fly erasing interaction sequences are shown in Figure 5. The
results shown in Figure 4 are achieved in 57 seconds on average for a novice after 5
minutes training. Table 1 illustrates the statistics for these experiments in Figure 4. The
statistics indicate that our tool is natural to use and time-efficient. (the FPS of eraser
mode is still always larger than 100.) The wide range of dataset also suggests that our
tool is broadly applicable.
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Fig. 4. Evaluation: We tested our tool on the volume datasets one by one. each is finished about
57 seconds for a novice on average.

4.2 Limitations

The visual quality of the basic ray casting algorithm suffers from the issue of interval
between sampling stops. Our implementation also effected by this issue. One of our
future work would be making use of the recent advances in ray casting to abate the
artifacts of our rendering. The fast high-quality volume ray casting method and adaptive
sampling could be hopeful candidate.
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Fig. 5. Snapshots of fluent data filtering. Note that the eraser icon in every picture indicates the
position that erasing operation happened. (Top: Fuel; Bottom Left: Silicon; Bottom Right: Hy-
drogen Atom)

Table 1. Intuitive volume eraser statistics, where frame-per-seconds (FPS) is measured on a PC
with Intel 2.80 GHz Core i7 with 12 GB RAM

Dataset Size Idle FPS Interaction FPS
Hand Eraser

Aneurism 256x256x256 195.64 193.50 126.93
Backpack Scan 512x512x373 216.98 207.41 104.45
Bonsai 256x256x256 218.77 217.06 139.61
Boston Teapot 256x256x178 221.21 220.24 153.06
Bucky Ball 032x032x032 232.48 231.03 149.19
Colon Phantom 512x512x442 201.91 191.47 120.48
Colon Prone 512x512x463 220.73 215.19 165.57
Colon Supine 512x512x426 184.40 167.03 123.95
Engine 256x256x128 244.85 232.75 164.69
Foot 256x256x256 202.42 194.62 158.00
Fuel 064x064x064 203.51 195.05 137.71
Head Aneuyrism 512x512x512 186.31 170.42 125.64
Head MRI CISS 256x256x124 189.06 182.88 111.38
Head MRT Angiography 256x320x128 205.81 199.94 125.92
Head MRT Angiography 416x512x112 215.88 195.87 114.90
Hydrogen Atom 128x128x128 203.35 215.76 140.68
Leg of Statue 341x341x093 201.46 195.50 117.33
Lobster 301x324x056 200.07 211.76 150.63
Marschner / Lobb 041x041x041 206.48 220.72 155.47
Neghip 064x064x064 197.95 203.41 137.81
Nucleon 041x041x041 201.62 215.56 149.97
Shockwave 064x064x512 214.17 221.18 143.62
Silicon 098x034x034 212.52 226.06 151.16
Skull 256x256x256 222.23 231.32 147.19
Stented Abdominal Aorta 512x512x174 219.53 233.92 146.38
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5 Conclusions

In the paper, we present an intuitive WYSIWYG volume eraser that accepts direct
sketch on the volume data. Users can explore the data and change the appearance of
the direct volume rendered results. The eraser gives real-time feedback to users during
the interaction. The experiments on various data demonstrate the performance of our in-
tuitive volume eraser. The comparisons of user experience show that our tool provides
more effective and easier-to-use than state-of-art approach for general users.
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References

1. Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C.: Real-Time Volume Graphics. A K
Peters (2006) 1, 2, 3, 4

2. Zhou, J.L., Takatsuka, M.: Automatic transfer function generation using contour tree con-
trolled residue flow model and color harmonics. IEEE Transactions on Visualization and
Computer Graphics 15(6), 1481–1488 (2009) 2

3. Ruiz, M., Bardera, A., Boada, I., Viola, I., Feixas, M., Sbert, M.: Automatic transfer func-
tions based on informational divergence. IEEE Transactions on Visualization and Computer
Graphics 17(12), 1932–1941 (2011) 2

4. Selver, M.A., Guzelis, C.: Semiautomatic transfer function initialization for abdominal visu-
alization using self-generating hierarchical radial basis function networks. IEEE Transactions
on Visualization and Computer Graphics 15(3), 395–409 (2009) 2

5. Correa, C.D., Ma, K.L.: Visibility histograms and visibility-driven transfer functions. IEEE
Transactions on Visualization and Computer Graphics 17(2), 192–204 (2011) 2

6. Wu, Y.C., Qu, H.M.: Interactive transfer function design based on editing direct vol-
ume rendered images. IEEE Transactions on Visualization and Computer Graphics 13(5),
1027–1040 (2007) 2

7. Tzeng, F.-Y., Lum, E.B., Ma, K.-L.: A novel interface for higher dimensional classification
of volume data. In: Proceedings of IEEE Visualization, pp. 505–512 (2003) 2

8. Tzeng, F.-Y., Lum, E.B., Ma, K.-L.: An intelligent system approach to higher-dimensional
classification of volume data. IEEE Transactions on Visualization and Computer Graph-
ics 11(3), 273–284 (2005) 2

9. Bruckner, S., Groller, M.E.: Volumeshop: An interactive system for direct volume illustra-
tion. In: Proceedings of IEEE Visualization, pp. 671–678 (2005) 2

10. Guo, H.Q., Mao, N.Y., Yuan, X.R.: WYSIWYG (what you see is what you get) vol-
ume visualization. IEEE Transactions on Visualization and Computer Graphics 17(12),
2106–2114 (2011) 2

11. Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation for
volume sampling. In: Proceedings of IEEE Symposium on Volume Visualization, pp.
135–142 (1998) 5



Accurate Depth-of-Field Rendering
Using Adaptive Bilateral Depth Filtering

Shang Wu1, Kai Yu1, Bin Sheng1,2, Feiyue Huang3, Feng Gao3, and Lizhuang Ma1,�

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
ma-lz@cs.sjtu.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

3 Tencent Research, Gumei Road 1528, Shanghai, China, 200233

Abstract. Real-time depth of field (DoF) rendering is crucial to realistic image
synthesis and VR applications. This paper presents a new method to simulate the
depth-of-field effects with bilateral depth filtering. Unlike the traditional render-
ing methods that handle the depth-of-field with Gaussian filtering, we develop
a new DoF filter, called adaptive bilateral depth filter, to adaptively postfilter the
pixels according to their depth variance. Depth information is used to focus on the
objects with edge-preserving property. Our approach can eliminate the artifacts
of intensity leakage, which can generate adaptive high-quality DoF rendering
effects dynamically, and can be fully implemented in GPU parallelization.

Keywords: Depth of field, post-processing, GPU, adaptive bilateral depth filter-
ing, virtual reality.

1 Introduction

Depth of field (DoF) is a range of distance around the focus region where the objects
look sharp, which appears in human vision system and camera. It is important to render
DoF for 3D scenes in various applications, including video games and virtual reality
(VR), helping to increase the users’ sense of immersion and to improve users’ depth
perception [1]. Moreover, it can also be used to draw users’ attention to a specific object
in Games or VR. However, the computer graphics usually generate a “too perfect” sharp
image without DoF, due to pinhole camera model.

In order to satisfy the requirement of real-time performance in 3D games and VR ap-
plications, we focus on the postfiltering method. Due to using Gaussian blur to blur each
pixel, most postfiltering methods cause intensity leakage artifacts. This paper presents
a new solution to simulate DoF effect in 3D scenes in real-time, based on GPU. Our
method can reduce the intensity leakage by taking advantage of edge preserving feature
of bilateral filtering; and reduce other artifacts by using adaptive bilateral filter.

The novelties of our approach lie in the following aspects:

– We apply the bilateral depth filtering to the DoF solution and significantly alleviate
the intensity leakage by it.
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– We propose a complete solution to the background rendering by translating the
bilateral depth filtering into adaptive bilateral depth filtering.

The rest of this paper is structured as follows. In section 2 we will introduce previ-
ous works, before discussing our method. Next, we will describe the basic DoF model
(Section 3), and illustrate bilateral depth filter(Section 4). Then, we will illustrate how
to apply adaptive bilateral filtering to render background(Section 5). Finally, we will
show the results (Section 6), before conclusion(Section 7).

2 Previous Work

Barsky divides the different DoF algorithms into two categories: object-space and
image-space [2]. Classic methods are based on object-space, which directly handle the
3D scene. The most famous one is distributed ray tracing [3]. This method can generate
quite realistic result by tracing several rays per pixel, but it is very time consuming.
Later the accumulation buffer[4] developed the performance, using rasterization hard-
ware. but it also has a heavy cost, especially in complex scenes. So those are not suitable
for real-time applications.

Realtime methods are all based on image-space, also called post-processing ap-
proaches. The pioneering work was conducted by Micheal PotmesilETAL. [5]. They
computed the amount of each pixel’s blur, namely diameter of the circle of confusion
(DCoC) using the depth map, and then post-processed the original sharp image to be-
come blur. Later a real-time postprocessing method was developed by Scheuermann and
Tatarchuk [6]. Unfortunately, this approach cannot avoid depth discontinuity artifacts.
In fact, most real-time DoF approaches work in the similar way, using filter to approxi-
mate CoCs at each pixel to achieve rather high performances [7,8,9,10]. Those methods
almost suffer from intensity leakage or depth discontinuity in some degree, because
they only use the information of single image during the post processing. However, our
method uses depth as information into filter to reduce these artifacts.

Since single image is not enough, most methods split the single image into depth
layers to hallucinate missing geometries [11,12,13,14]. Because plenty layers should
be computed, multilayers methods are slower than gathering and cannot meet real-time
requirement for very complex scenes, which are very common in video game and VR
environments. Moreover, combining layer with alpha blending is still such coarse ap-
proximation that only works for separate objects. Although our method is also an ap-
proximation, we can still have the same speed as gathering Methods.

A recent method [15] combines multilayers and multi-view, to acquire high quality.
Unfortunately, this method cost more and more time with the increasing of layers and
views. And the large amount of layers and views are the guarantees for the high quality
of complex scenes. However, our method’s performance would not alter rapidly with
the complexity of scenes.

Bilateral Filtering [16] is developed by Tomasi and Manduchi first in 1994, which
combines the low-pass domain filter and range filter. Later, bilateral filtering has been
used in amounts of applications, especially in de-noising. Zhang and Allebach [17]
proposed the Adaptive bilateral filter(ABF), then De Silva et al. [18] introduced the
depth filter to the ABF. They can achieve great results when used in de-noise or sharpen
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(a) (b)

Fig. 1. A behavior comparison of (a) Gaussian filer and (b) Bilateral depth filter. Yellow rects
and green rects represent pixels from focus region and background, respectively. The center pixel
means the filtered pixel and arrows stand for the direction of intensity flow.

applications while they have never be used in DoF rendering.And adaptive strategy has
been chosen to solve various problems, such as in [19], which apply it to a different
problem edit propagation.

3 Basic Depth of Field Model

Our method is also based on the post-processing of the image rendered from scene,
which is used by most real-time methods. We first get the original image by rendering
the scene and get the depth map of scene using the GPU shader. Then, we compute the
the diameter of CoC (DCoC)of each pixel according to the lens model, and save the
DCoCs as a texture. Finally, we blur per pixel with the bilateral depth filter using the
information of depth map and DCoCs.

3.1 Lens Model

We use the classic lens model proposed by Potmesil and Chakravarty[5]. In this model,
the diameter of CoC (DCoC) of each pixel projected on screen is :

DCoC(p) = |D × f × (fd − depth(p))

fd × (depth(p)− f)
|, (1)

where DCoC(p) is the DCoC of pixel p, D is the diameter of lens, f is the lens focal
length and fd is the depth of focus region.

4 Bilateral Depth Filter

Many gathering methods suffer from intensity leaking because of Gaussian filter. When
a point of background is near the focus region, the intensity of the focused pixels leaks
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(a) (b)

Fig. 2. A comparison of the results generated by (a) Gaussian filer and (b) Bilateral depth filter

to the background pixels by the Gaussian filter because of its isotropy (shown in figure
1(a)). So our goal is to create a filter (shown in figure 1(b)) which has anisotropy near
the edge of depth map.

Bilateral filtering[16] has the edge-preserve feature by using range filtering. Actu-
ally, it is because bilateral filtering is anisotropic near the edge. Usually, bilateral filter
consists of domain and range filters. However, because intensity leakage only occurs in
the boundary between focus region and background, we use depth filter replacing range
filter and use it when pixel’s depth is less than focus distance, as shown in following
formula:

Ĉ(p) =
∑
qεΩp

B(p, q)C(q), Zp > Zf , (2)

where Ĉ(p) is filtered color of pixel p, Ωp is a set of pixels whose distance to pixel p
is less than the radius of CoC of p, and B(p, q) is defined by equation 3, where r−1

p is
a normalization factor, d(p, q) is the distance between p and q, σs and σd are standard
deviations and Zx is the depth of pixel x.

B(p, q) =

⎧⎨⎩ r−1
p exp (−d2(p, q)

2σ2
s

)× exp (− (Zq − Zp)
2

2σ2
d

), qεΩp

0, else (3)

Therefore, this filter behaves like an anisotropic filter as shown in figure 1(b). Figure
2 shows the comparative results generated by Gaussian filter and our bilateral depth
filter. It can be seen that our bilateral depth filter can alleviate intensity leakage artifacts
significantly.

5 Adaptive Bilateral Filter

The bilateral depth filtering can cause a new artifact. In the background area, the edges
are also persevered which should be blur. Figure3(b) shows the artifact. So we make the
bilateral depth filter adaptive to remove this artifact.
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(a) (b) (c)

Fig. 3. A comparison of the results generated by (a) Gaussian filter, (b) Bilateral depth filter and
(c) Adaptive bilateral depth filter

The adaptive bilateral depth filter is to change the equation (3) to (4):

B(p, q) =

⎧⎨⎩ r−1
p exp (−d2(p, q)

2σ2
s

)× exp (− (Zq − Zp − ζp)
2

2σ2
d

), qεΩp

0, else (4)

In the filter, we have three control parameters, including two standard deviations σs ,
σd and offset ζp which controls the center of depth filter. The roles of these parameters
are well described in [17] and [18]. Controlling the parameters appropriately can make
the filter sharpen the edge between the focus and background area while smooth others.

In our method, ζp is computed as

ζp =

{
Zp −MEAN(Ωp), Ωpεfocus

MEAN(Ωp)− Zp, else (5)

where MEAN(Ωp) is the mean value of pixels in Ωp. When Ωp has the pixels in focus
area, we can sharpen the edge by shifting the depth filter away from the mean while
smooth edges among backgrounds by shifting the depth filter towards the mean.

Figure 3 shows the comparison between results of traditional Gaussian filter, bilateral
filter and adaptive bilateral filter.

6 Implementation Results

The proposed DoF approach is developed on 2.6GHz Intel Core(TM) CPU, together
with ATI Radeon HD 5700 GPU and 2G RAM. The GPU programs described above has
adopted OpenGL shader language. In the experimental results, we compare our method
with other postfiltering methods in respect of rendering quality and performance.

Our implementation consists of two stages work, which can be complete in one ren-
dering. In the first stage, we get the color image, depth map and DCoC map of scene
by three GPU shaders respectively. They are all inputted to the second stage as tex-
tures. Then, we apply the adaptive bilateral filter to blur the color image with a pixel
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(a) (b) (c) (d)

Fig. 4. A comparison of background-blurred images. (a) the original image (b) our method (c)
Scheuermann’s method (d)zhou et al.method

(a) (b) (c) (d)

Fig. 5. Results of our method over 4 scenes: (a)fruits,(b)booth,(c)fence,(d)barrels.

shader. And our system also allows users to change the focus region just with simple
interaction.

Other methods include the work of Zhou et al.[9] and Scheuermann[6], which use
separable Gaussian filtering and pre-blur the down-sampled image, respectively.

Rendering Quality. We compare the rendering quality of reducing intensity leakage.
Figure 4 shows the results for ”booth” scene. The intensity leakage artifact only occurs
in the result of Scheuermann’s approach (see figure 4(c)). In respect of background blur
quality, our method generates a real natural image without intensity leakage or other
artifacts. However, the result gotten by Zhou et al.’s method reveal some specific new
artifacts, such as bilinear magnification artifact. Their result looks distorted and blurred
strangely (see figure 4(d)),resulting from the vertical filter. Scheuermann’s cannot ob-
tain the accurate blurring degree. They did not control the blurring level over each pixel
so that the result of theirs looks like a mix of the original image and a much blurred
one.

Finally, figure 5 show the results of our method over 4 different scenes.

Rendering Performance. We compare our method with Zhou et al.’s and Scheuer-
mann’s in respect of frame per second (FPS). Figure 6 shows the charts. Scheuermann’s
is the fast because of its simplicity. And ours is also fast when in small DCoC.
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(a) (b) (c) (d)

Fig. 6. Performance comparison of ours (blue),with Scheuermann’s (red) and zhou et al.’s
(green).The x-axis and y-axis stand for the size of DCoC and the FPS, respectively

7 Conclusion

We propose a new method for rendering DoF effects in virtual environments, which
can produce high-quality rendering result and operate with tiny time and space. So our
method is very suitable to the real-time graphics applications. Moreover, the function of
changing focus region in our method allows the users to determine where to look at in
the environment of game or VR with little interaction. Our bilateral depth filtering ren-
dering approach generates adaptive DoF effects dynamically, and is fully implemented
on GPU.

We will improve this framework to be applicable artists’ use, by defining suitable
parameters for interaction.
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