
Chapter 3
Basic Theory of Piezotronics

Abstract Using the basic transport equations, this chapter gives the theory of
charge transport in piezotronic devices. Besides presenting the formal theoret-
ical frame work, analytical solutions are presented for cases like the metal–
semiconductor contact and p–n junction under simplified conditions. Numerical
calculations are given for predicting the current–voltage characteristics of a general
piezotronic transistor: metal–ZnO nanowire–metal device. This study is important
for understanding the working principle and characteristics of piezotronic devices,
but also for providing guidance for device design.

Due to the coupling of piezoelectric and semiconducting properties, nano/micro-
wires of piezoelectric semiconductor have been used as basic building blocks for
fabricating various innovative devices, such as nanogenerators [1–3], piezoelectric
field effect transistors [4], piezoelectric diodes [5], piezoelectric chemical sensors
[6], and piezo-phototronic devices [7, 8]. Take a ZnO nanowire as an example.
When a tensile strain is applied along the nanowire that grows in the c-axis di-
rection, piezoelectric charges are created at its two ends, forming a piezoelectric
potential inside the nanowire. This potential tunes the contact of the nanowire with
the electrodes by changing the height of the local Schottky barrier, thus, the trans-
port behavior of the charge carriers in the nanowire is controlled/tuned by the exter-
nally applied strain. This is the piezotronic effect. Electronics fabricated by using
the inner-crystal piezopotential as a “gate” voltage to tune/control the charge trans-
port behavior across a metal–semiconductor interface or a p–n junction is named
piezotronics, which is different from the basic design of CMOS field effect transis-
tor, and it has applications in force/pressure triggered/controlled electronic devices,
sensors, MEMS, human–computer interfacing, nanorobotics and touch-pad tech-
nologies.

In this chapter, we present a fundamental theoretical framework of piezotron-
ics for understanding and quantitatively calculating the carrier transport behavior
in the devices [9]. We first give some analytical solutions for ZnO piezoelectric
p–n junction and metal–semiconductor (M–S) contact under simplified conditions,
which are useful for understanding the piezotronic behavior in general. Further-
more, using the FEM, the characteristics of a piezotronic transistor, ZnO nanowire
metal–semiconductor–metal (M–S–M) structure, are simulated. The theoretical re-
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Fig. 3.1 Schematic of (a) an
n-channel MOS FET and
(b) a semiconductor nanowire
FET; schematic of a
piezotronic transistor with
tensile strain (c) and
compressive strain (d), where
the gate voltage that controls
the channel width is replaced
by a piezopotential that
controls the transport across
the metal–semiconductor
interface [9]

sults establish the basic physics for understanding the observed experimental results
from piezotronic devices and guiding future device design.

3.1 Piezotronic Transistor vs. Traditional Field Effect Transistor

In order to illustrate the basic concept of piezotronics, we first start from a tra-
ditional metal oxide semiconductor field-effect transistor (MOS FET). For an n-
channel MOS FET (Fig. 3.1(a)), the two n-type doped regions are the drain and
source; a thin insulator oxide layer is deposited on the p-type region to serve as
the gate oxide, on which a metal contact is made as the gate. The current flowing
from the drain to source under an applied external voltage VDS is controlled by the
gate voltage VG, which controls the channel width for transporting the charge car-
riers. In analogy, for a single channel FET fabricated using a semiconductor NW
(Fig. 3.1(b)), the drain and source are the two metal electrodes at the two ends, and
a gate voltage is applied at the top of the NW or through the base substrate.

A piezotronic transistor is a metal–NW–metal structure, such as Au–ZnO–Au or
Ag–ZnO–Ag as shown in Fig. 3.1(c) and (d) [9]. The fundamental principle of the
piezotronic transistor is to control the carrier transport at the M–S interface through
a tuning at the local contact by creating a piezopotential at the interface region in the
semiconductor by applying a strain. This structure is different from the CMOS de-
sign as stated in follows. First, the externally applied gate voltage is replaced by an
inner-crystal potential generated by piezoelectric effect, thus, the “gate” electrode is
eliminated. This means that the piezotronic transistor only has two leads: drain and
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source. Secondly, the control over channel width is replaced by a control at the inter-
face. Since the current transported across a M–S interface is the exponential of the
local barrier height at the reversely biased case, the ON and OFF ratio can be rather
high due to the non-linear effect. Finally, a voltage controlled device is replaced by
an external strain/stress controlled device, which is likely to have complementary
applications to CMOS devices.

When a ZnO NW device is under strain, there are two typical effects that may
affect the carrier transport process. One is the piezoresistance effect because of the
change in band gap, charge carrier density and possibly density of states in the con-
duction band of the semiconductor crystal under strain. This effect is a symmetric
effect on the two end contact and has no polarity, which will not produce the function
of a transistor. Piezoresistance is a common feature of any semiconductors such as
Si and GaAs and is not limited to the wurtzite family. The other is the piezoelectric
effect because of the polarization of ions in a crystal that has non-central symme-
try, which has an asymmetric or non-symmetric effect on the local contacts at the
source and drain owing to the polarity of the piezopotential. In general, the nega-
tive piezopotential side raises the barrier height at the local contact of metal n-type
semiconductor, possibly changing a Ohmic contact to a Schottky contact, a Schot-
tky contact to an “insulator” contact; while the positive piezopotential side lowers
the local barrier height, changing a Schottky contact to an Ohmic contact. But the
degree of changes in the barrier heights depends on the doping type and doping
density in the NW. The piezoelectric charges are located at the ends of the wire,
thus they directly affect the local contacts. The piezotronic effect is likely limited
to the wurtzite family such as ZnO, GaN, CdS and InN. It is important to point out
that the polarity of the piezopotential can be switched by changing tensile strain to
compressive strain. Thus, the device can be changed from a control at source to a
control at drain simply by reversing the sign of strain applied to the device.

3.2 Effect of Piezopotential on Metal–Semiconductor Contact

When a metal and a n-type semiconductor forms a contact, a Schottky barrier (SB)
(eφSB) is created at the interface if the work function of the metal is appreciably
larger than the electron affinity of the semiconductor (Fig. 3.2(a)). Current can only
pass through this barrier if the applied external voltage is larger than a threshold
value (φi ) and its polarity is at the metal side positive (for n-type semiconductor).
If a photon excitation is applied at the interface, the newly generated electrons in
conduction band tend to move away from the contact, while the holes tend to move
close to the interface toward the metal side. The accumulated holes at the interface
modify the local potential profile, so that the effective height of the Schottky barrier
is lowered (Fig. 3.2(b)), which increases the conductance.

Once a strain is created in a semiconductor that also has the piezoelectric prop-
erty, a negative piezopotential at the semiconductor side effectively increases the
local SB height to eφ′ (Fig. 3.2(c)) [10], while a positive piezopotential reduces
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Fig. 3.2 Energy band
diagram for illustrating the
effects of laser excitation and
piezoelectricity on a Schottky
contacted
metal–semiconductor
interface. (a) Band diagram at
a Schottky contacted
metal–semiconductor
interface. (b) Band diagram at
a Schottky contact after
exciting by a laser that has a
photon energy higher than the
bandgap, which is equivalent
to a reduction in the Schottky
barrier height. (c) Band
diagram at the Schottky
contact after applying a strain
in the semiconductor. The
piezopotential created in the
semiconductor has a polarity
with the end in contact with
the metal being low [10]

the barrier height. The role played by the piezopotential is to effectively change the
local contact characteristics through an internal field depending on the crystallo-
graphic orientation of the material and the sign of the strain, thus, the charge carrier
transport process is tuned/gated at the metal–semiconductor (M–S) contact. Con-
sidering the change in piezopotential polarity by switching the strain from tensile
to compressive, the local contact characteristics can be tuned and controlled by the
magnitude of the strain and the sign of strain [11]. Therefore, the charge transport
across the interface can be largely dictated by the created piezopotential, which is
the gate effect. This is the core of piezotronics.

On the other hand, if we excited a MS contact by photons that have an energy
larger than the bandgap of the semiconductor, electron-hole pairs are generated at
the vicinity of the contact. The presence of free carriers at the interface can effec-
tively reduce the Schottky-barrier height. Therefore, piezopotential can increase the
local barrier height, while laser excitation can effectively reduce the local barrier
height. The two effects can be applied in a complementary way for controlling the
charge transport at the interface. This is a coupling between piezoelectricity and
photon excitation.
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Fig. 3.3 Energy band diagram for illustrating the effect of piezoelectricity on a p–n junction that
is made of two materials of similar bandgaps. The band diagrams for the p–n junction with and
without the presence of piezoelectric effect for the four possible cases are shown using dark and
red curves, respectively. The bandgap for the n-type and p-type are assumed to be about equal. The
effect of reversal in polarity is presented [10]

3.3 Effect of Piezopotential on p–n Junction

When a p-type and a n-type semiconductors form a junction, the holes in the p-
type side and the electrons in the n-type side tend to redistribute to balance the local
potential, the interdiffusion and recombination of the electrons and holes in the junc-
tion region forms a charge depletion zone. The presence of such a carrier free zone
can significantly enhance the piezoelectric effect, because the piezo-charges will be
mostly preserved without being screened by local residual free carriers. As shown
in Fig. 3.3(a), for a case that the p-type side is piezoelectric and a strain is applied,
local net negative piezo-charges are preserved at the junction provided the doping is
relatively low so that the local free carriers are not enough to fully screen the piezo-
charges. The piezopotential tends to raise the local band slightly and introduce a
slow slope to the band structure. Alternatively, if the applied strain is switched in
sign (Fig. 3.3(b)), the positive piezo-charges at the interface creates a dip in the lo-
cal band. A modification in the local band may be effective for trapping the holes
so that the electron-hole recombination rate can be largely enhanced, which is very
beneficial for improving the efficiency of an LED [12]. Furthermore, the inclined
band tends to change the mobility of the carriers moving toward the junction.
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By the same token, if the n-type side is piezoelectric, a similar band structure
change can be induced from the piezoelectric effect, as shown in Figs. 3.3(c), (d).
The band structure modification at the interface/junction by piezoelectric charges
introduces some fundamental changes to the local band structure, which is effective
for controlling the device performance.

For a p–n junction made of two materials with distinctly different bandgaps, local
piezo-charges can also significantly affect the band profile, as shown in Fig. 3.4 [13],
so that the transport of the charge carriers across the interface will be significantly
modified. Take the case shown in Fig. 3.4(e) as an example: the barrier height at
the interface as created by band misalignment can be reduced so that the electrons
can be effectively transported across the interface. For the case of Fig. 3.4(f), the
height and width of the barrier at the interface are increased by piezo-charges. As
for the case presented in Fig. 3.4(b), the local trapping of holes can be significantly
increased, which may be beneficial for LED. But for the case in Fig. 3.4(a), it may
have negative effect on LED efficiency. Therefore, the presence of piezo-charges at
the junction can be useful for some optoelectronic processes.

3.4 Theoretical Frame of the Piezotronic Effect

Since a piezotronic transistor involves a semiconductor that is piezoelectric, the fun-
damental governing equations for both semiconductor and piezoelectric theories are
required. The basic equations for piezotronics are electrostatic equations, current–
density equations, and continuity equations, which describe the static and dynamic
transport behavior of the charge carriers in semiconductors [14–16], as well as the
piezoelectric equations, which describe the piezoelectric behavior of the material
under dynamic straining [18].

The Poisson equation is the basic equation for describing the electrostatic behav-
ior of charges:

∇2ψi = −ρ(r)
εs

(3.1)

where ψi is the electric potential distribution and ρ(r) is the charge density distri-
bution, εs is the permittivity of the material.

The current–density equations that correlate the local fields, charge densities and
local currents are

⎧
⎪⎨

⎪⎩

Jn = qμnnE + qDn∇n,

Jp = qμppE − qDp∇p,

Jcond = Jn + Jp

(3.2)

where Jn and Jp are the electron and hole current densities, q is the absolute value
of unit electronic charge, μn and μp are electron and hole mobilities, n and p are
concentrations of free electrons and free holes, Dn and Dp are diffusion coefficients
for electrons and holes, respectively, E is the electric field, and Jcond is the total
current density.



3.4 Theoretical Frame of the Piezotronic Effect 57

Fig. 3.4 Energy band diagram for illustrating the effect of piezoelectricity on a heterostructured
p–n junction. The band diagrams for the p–n junction with and without the presence of piezoelectric
effect for the eight possible cases are shown using dark and red curves, respectively. The effect of
reversal in polarity is also presented [13]

The charge transport under the driving of a field is described by the continuity
equations.
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⎧
⎪⎪⎨

⎪⎪⎩

∂n

∂t
= Gn − Un + 1

q
∇ · Jn,

∂p

∂t
= Gp − Up − 1

q
∇ · Jp

(3.3)

where Gn and Gp are the electron and hole generation rates, Un and Up are the
recombination rates, respectively.

The piezoelectric behavior of the material is described by a polarization vector P.
For a small uniform mechanical strain Sik , the polarization P vector is given in terms
of strain S as

(P)i = (e)ijk(S)jk (3.4)

where the third order tensor (e)ijk is the piezoelectric tensor. According to the con-
ventional theory of piezoelectric and elasticity, the constituting equations can be
written as

{
σ = cES − eTE,

D = eS + kE
(3.5)

where σ is the stress tensor, E is the electric field, D is the electric displacement, cE

is the elasticity tensor, and k is the dielectric tensor.

3.5 Analytical Solution for One-Dimensional Simplified Cases

In practical device modeling, the above basic equations can be solved under specific
boundary conditions. For simplicity of illustrating the basic physics, we consider an
one-dimension piezotronic device with ideal Ohmic contacts at the source and drain.
This means that the Dirichlet boundary conditions of the carrier concentration and
electrical potential will be applied at the device boundaries. The strain is applied
normal to the M–S interface without introducing shear strain.

3.5.1 Piezoelectric p–n Junctions

The p–n junctions are most fundamental building blocks in modern electronic de-
vices. Shockley theory provides the basic theory of current–voltage (I–V ) char-
acteristics of the p–n junctions. For better understanding about piezoelectric p–n
junction, we describe the physics of the semiconductor using Shockley theory. For
simplicity, we assume that the p-type region is non-piezoelectric and the n-type re-
gion is piezoelectric. Considering that ZnO grows along the direction of c-axis, the
positive charges are created at the n-type side of the p–n junction by applying a
compressive stress along the c-axis. For convenience in using piezoelectric theory,
the piezoelectric charges are considered as surface charge at the bulk piezoelectric
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Fig. 3.5 Piezoelectric p–n
junction with the presence of
piezoelectric charges at
applied voltage V = 0
(thermal equilibrium).
(a) Piezoelectric charges,
acceptor and donor charges
distribution; (b) electric field;
(c) potential distribution and
(d) energy band diagram with
the presence of piezoelectric
charges. Dashed lines
indicate electric field,
potential and energy band in
the absence of piezoelectric
charges, and the solid lines
are for the cases when a
piezopotential is present at
the n-type side

material, because the region within which the piezoelectric polarization charge dis-
tributes is much smaller than the volume of the bulk crystal, so it is reasonable to
assume that the piezoelectric charges are distributed at a surface of zero thickness.
But such an assumption is not valid for nanodevices and even microdevices. We
assume that the piezoelectric charges distribute at the interface of the p–n junction
within a width of Wpiezo (Fig. 3.5(a)).

We use an abrupt junction model, in which the impurity concentration in a p–n
junction changes abruptly from acceptor NA to donor ND , as shown in Fig. 3.5(a).
The electrons and holes in the junction region form a charge depletion zone, which
is assumed to have a box profile. We first calculate the electric field and potential
distribution inside the p–n junction. For one-dimensional device, the Poisson equa-
tion (3.1) reduces to

−d2ψi

dx2
= dE

dx
= ρ(x)

εs

= 1

εs

[
qND(x) − qn(x) − qNA(x) + qp(x) + qρpiezo(x)

]

(3.6)
where ND(x) is the donor concentration, NA(x) is the acceptor concentration, and
ρpiezo(x) is density of polarization charges (in units of electron charge). WDp and
WDn are defined to be the depletion-layer widths in the p-side and the n-side, re-
spectively. The electric field is then obtained by integrating the above equations, as
shown in Fig. 3.5(b):

E(x) = −qNA(x + WDp)

εs

, for −WDp ≤ x ≤ 0, (3.7a)

E(x) = −q[ND(WDn − x) + ρpiezo(Wpiezo − x)]
εs

, for 0 ≤ x ≤ Wpiezo, (3.7b)
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E(x) = −qND

εs

(WDn − x), for Wpiezo ≤ x ≤ WDn. (3.7c)

The maximum field Em that exists at x = 0 is given by

|Em| = q(NDWDn + ρpiezoWpiezo)

εs

. (3.8)

The potential distribution ψi(x) is (as shown in Fig. 3.5(c))

ψi(x) = qNA(x + WDp)2

2εs

, for −WDp ≤ x ≤ 0, (3.9a)

ψi(x) = ψi(0) + q

εs

[

ND

(

WDn − x

2

)

x + ρpiezo

(

Wpiezo − x

2

)

x

]

,

for 0 ≤ x ≤ Wpiezo, (3.9b)

ψi(x) = ψi(Wpiezo) − qND

εs

(

WDn − Wpiezo

2

)

Wpiezo + qND

εs

(

WDn − x

2

)

x,

for Wpiezo ≤ x ≤ WDn. (3.9c)

Thus, the built-in potential ψbi is given by

ψbi = q

2εs

(
NAW 2

Dp + ρpiezoW
2
piezo + NDW 2

Dn

)
. (3.10)

Equation (3.10) presents the change in built-in potential as a result of piezoelec-
tric charges due to tensile or compressive straining that defines the sign of the local
piezoelectric charges. It is apparent that the piezopotential can change the semicon-
ductor energy band relative to the Fermi level.

Next, we analyze the current–voltage characteristics of a piezoelectric p–n junc-
tion by using Shockley theory, which models an ideal junction based on four as-
sumptions: (1) a piezoelectric p–n junction has an abrupt depletion layer; (2) piezo-
electric semiconductors are nondegenerate so that the Boltzmann approximation
applies; (3) the injected minority carrier concentration is smaller than the majority-
carrier concentration so the low-injection assumption is valid; and (4) no generation-
recombination current exists inside the depletion layer, and the electron and hole
currents are constant throughout the p–n junction. If the width of the piezo-charges
is much less than the width of the depletion zone, e.g., Wpiezo � WDn, the effect of
piezoelectric charges on ZnO energy band is considered as a perturbation. The total
current density can be obtained by solving (3.2):

J = Jp + Jn = J0

[

exp

(
qV

kT

)

− 1

]

(3.11)

where the saturation current

J0 = qDppno

Lp

+ qDnnpo

Ln

,
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pno is the thermal equilibrium hole concentration in n-type semiconductor and npo

is the thermal equilibrium electron concentration in p-type semiconductor, and Lp

and Ln are diffusion lengths of electrons and holes, respectively. The intrinsic carrier
density ni is given by

ni = NC exp

(

−EC − Ei

kT

)

(3.12)

where NC is the effective density of states in the conduction band, Ei is the intrinsic
Fermi level, and EC is the bottom edge of the conduction band.

For the simple case in which the n-type side has an abrupt junction with donor
concentration ND , and locally pn0 � np0, we have J0 ≈ qDppno

Lp
, where pno =

ni exp(
Ei−EF

kT
), the total current density is given by

J = J0

[

exp

(
qV

kT

)

− 1

]

= qDpni

Lp

exp

(
Ei − EF

kT

)[

exp

(
qV

kT

)

− 1

]

. (3.13)

If JC0 and EF0 are defined to be the saturation current density and the Fermi
level with the absence of piezopotential,

JC0 = qDpni

Lp

exp

(
Ei − EF0

kT

)

. (3.14)

According to (3.9a)–(3.9c), and (3.10), the Fermi lever EF with the presence of
piezopotential is given by

EF = EF0 − q2ρpiezoW
2
piezo

2εs

. (3.15)

Substituting (3.14) and (3.15) into (3.13), we obtain the current–voltage charac-
teristics of the piezoelectric p–n junction [9]:

J = JC0 exp

(
q2ρpiezoW

2
piezo

2εskT

)[

exp

(
qV

kT

)

− 1

]

. (3.16)

This means that the current transported across the p–n junction is an exponential
function of the local piezo-charges, the sign of which depends on the strain. There-
fore, the current to be transported can be effectively tuned or controlled not only by
the magnitude of the strain, but also by the sign of the strain (tensile vs. compres-
sive). This is the mechanism of the p–n junction-based piezotronic transistor.

3.5.2 Metal–Semiconductor Contact

The M–S contact is an important component in electronic devices. Similar to our
analysis to the piezoelectric p–n junction, the M–S contact can be simplified in the
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Fig. 3.6 Ideal
metal–semiconductor
Schottky contacts with the
presence of piezoelectric
charges at applied voltage
V = 0 (thermal equilibrium).
(a) Space charges
distribution; (b) electric field
and (c) energy band diagram
with the presence of
piezoelectric charges. Dashed
lines indicate electric field
and energy band in the
absence of piezoelectric
charges, and the solid lines
are for the cases when a
piezopotential is present in
the semiconductor

charge distribution as shown in Fig. 3.6(a) in the presence of a Schottky barrier. The
semiconductor side is assumed to be n-type, and the surface states and other anoma-
lies are ignored for simplification. Under straining, the created piezo-charges at the
interface not only change the height of the Schottky barrier, but also its width. Dif-
ferent from the method of changing the SBH by introducing dopants at the semicon-
ductor side, the piezopotential can be continuously tuned by strain for a fabricated
device.

There are several theories for the M–S Schottky contact, including thermionic-
emission theory, diffusion theory and thermionic-emission-diffusion theory. Al-
though the diffusion model is taken as an example for clearly describe the mech-
anism of piezotronic effect in this paper, the presented methodology also applies to
thermionic-emission and thermionic-emission-diffusion model, etc.

The carrier transport in M–S contact is dominated by the majority carriers. The
current density equation (3.2) can be rewritten as

J = Jn = qμnnE + qDn

dn

dx
(3.17)

where

E = dψi

dx
= dEc

dx
.

According to the diffusion theory by Schottky, the solutions under forward bias
(metal is positive bias) can be obtained as [15]

Jn ≈ JD exp

(

−qφBn

kT

)[

exp

(
qV

kT

)

− 1

]

(3.18)
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where

JD = q2DnNC

kT

√
2qND(ψbi − V )

εs

exp

(

−qφBn

kT

)

is the saturation current density. We define JD0 is the saturation current density in
the absence of piezoelectric charges:

JD0 = q2DnNC

kT

√
2qND(ψbi0 − V )

εs

exp

(

−qφBn0

kT

)

(3.19)

where ψbi0 and φBn0 are built-in potential and Schottky-barrier height in the ab-
sence of piezoelectric charges. In our case, the effect of piezoelectric charge can be
considered as a perturbation to the conduction-band edge EC . The change in effec-
tive Schottky-barrier height induced by piezoelectric charges can be derived from
the potential distribution equations (3.9a)–(3.9c), and (3.10):

φBn = φBn0 − q2ρpiezoW
2
piezo

2εs

. (3.20)

Thus, the current density can be rewritten as

Jn ≈ JD exp

(
q2ρpiezoW

2
piezo

2εskT

)[

exp

(
qV

kT

)

− 1

]

. (3.21)

This means that the current transported across the M–S contact is an exponen-
tial function of the local piezo-charges, the sign of which depends on the strain.
Therefore, the current to be transported can be effectively tuned or controlled by
not only the magnitude of the strain, but also by the sign of the strain (tensile vs.
compressive). This is the mechanism of the piezotronic transistor for M–S case.

3.5.3 Metal–Wurtzite Semiconductor Contact

We now expand the result received in Sect. 3.4 for a special case of metal–wurtzite
semiconductor contact, such as Au–ZnO or Ag–ZnO. For the ZnO nanowire grown
along c-axis, the piezocoefficient matrix is written as

(e)ijk =
⎛

⎝
0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎞

⎠ .

If the created strain is strain s33 along the c-axis, the piezoelectric polarization can
be obtained from (3.4) and (3.5):

Pz = e33s33 = qρpiezoWpiezo. (3.22)
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Fig. 3.7 The current–voltage characteristics of an ideal metal–semiconductor Schottky contact in
the presence of piezoelectric charges. (a) Current–voltage curves at various strain from −1 % to
1 %; (b) relative current density as a function of strain at a fixed forward bias voltage of 0.5 V

The current density is

J = JD0 exp

(
qe33s33Wpiezo

2εskT

)[

exp

(
qV

kT

)

− 1

]

. (3.23)

It is clear that the current transported across the M–S interface is directly related
to the exponential of the local strain, which means that the current can be tuned on
or off by controlling strain.

For numerical calculation, the material constants are piezoelectric constants
e33 = 1.22 C/m2 and relative dielectric constant is εs = 8.91. The width of the piezo-
charges is Wpiezo = 0.25 nm. The temperature is T = 300 K. Figure 3.7(a) shows
the calculated J/JD0 as a function of the externally applied voltage V across the
M–S interface as a function of the strain, clearly demonstrating its tuning effect on
the transported current. When the external voltage is fixed at V = 0.5 V at forward
bias, J/JD0 decreases when the strain changes from −1 % to 1 % (Fig. 3.7(b)). The
theoretical result agrees qualitatively with our previous experiments. For reverse
bias case, the dominant voltage dependence is mainly due to the change of Schottky
barrier in our model.

3.6 Numerical Simulation of Piezotronic Devices

3.6.1 Piezoelectric p–n Junctions

The analytical solutions for one-dimensional simplified cases provide qualitative
guidance for understanding the mechanism of how the piezopotential tunes/controls
the carrier transport behavior. For a general case, the basic equations of piezotronic
device can be solved numerically. For example, with considering the recombination
of carriers in the depletion layer, we demonstrate the basic numerical method for
simulating piezoelectric p–n junction.
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Fig. 3.8 (a) Schematic of a piezotronic ZnO nanowire p–n junction; (b) calculated current–voltage
curves; (c) distribution of holes and (d) distribution of electrons at a fixed forward bias voltage of
0.8 V across the p–n junction under various applied strain (−0.09 % to 0.09 %) [9]

We first study the DC characteristics of the p–n junction with uniform strain. The
piezoelectric charge distribution is obtained by numerically solving (3.4) and (3.5).
Then the electrostatic equation, the convection and diffusion equations, and con-
tinuity equations are solved using the COMSOL software package. The electrical
contacts at the ends of the p–n junction are assumed to be ideal Ohmic contacts, the
Dirichlet boundary conditions are adopted for the carrier concentration and elec-
trical potential at the device boundaries [19]. Figure 3.8(a) shows a sketch of a
piezotronic nanowire p–n junction to be used for the calculation.

In order to have a reasonable comparison to a p–n junction diode, the dopant
concentration function n can be approximately descried using Gaussian functions:

N = NDn + NDnmaxe
−( z−l

ch
)2 − NAp maxe

−( z
ch

)2
(3.24)

where NDn is the n-type background doping concentration due to the presence of
intrinsic defects, NDnmax is the maximum donor doping concentration and NAp max
is the maximum acceptor doping concentration, l is the length of ZnO nanowire,
ch controls the spreads width of the doping concentration. N is assigned to have a
negative value in p-type region and a positive value in n-type region.

There is no external optical excitation in our model so that the electron and
hole generation rates Gn = Gp = 0. For electron-hole recombination, there are two
important recombination mechanisms, including band-to-band recombination and
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trap-assisted recombination (named Shockley–Read–Hall recombination). Band-to-
band recombination describes the energy transition from conduction band to the
valence band by a radiation process (photon emission) or by transfer to another free
electron or hole (Auger process). The Shockley–Read–Hall recombination is a gen-
eral recombination process by traps in the forbidden band gap of the semiconductor.
Taking it as an example in our model, the Shockley–Read–Hall recombination is
given by

Up = Un = USRH = np − n2
i

τp(n + ni) + τn(p + ni)
(3.25)

where τp and τn are the carrier lifetimes. Thus, the basic semiconductor equations
(3.1) and (3.3) are rewritten as

⎧
⎪⎨

⎪⎩

εs∇2ψi = −q(p − n + N + ρpiezo),

−∇ · Jn = −qUSRH,

−∇ · Jp = −qUSRH.

(3.26)

For boundary conditions in contact with a metal electrode, the electrostatic po-
tential is a constant. We assume infinite recombination velocity and no charge at
the contact. Under an applied voltage, the electrostatic potential at the electrode
is the potential corresponding to the quasi Fermi level plus the applied voltage V .
The electrostatic potential and carrier concentrations at the electrode are given by
[14–17, 20]:

ψ = V + q

kT
ln

( N
2 +

√

(N
2 )2 + n2

i

ni

)

, (3.27a)

n = N

2
+

√
(

N

2

)2

+ n2
i , (3.27b)

p = −N

2
+

√
(

N

2

)2

+ n2
i . (3.27c)

Thus, we can calculate the above equations to obtain the boundary conditions of
the electrostatic potential and carrier concentrator at the electrode.

In our simulation, we choose ZnO as the piezoelectric semiconductor material.
The length and radius of the nanowire device are 100 nm and 10 nm, respec-
tively. The p-type is assumed non-piezoelectric here so that it is not restricted to
the wurtzite family. For simplicity, we neglect the difference in band gap between
the p-type semiconductor and ZnO. The length of the p-type is 20 nm and the
length of n-type ZnO is 80 nm. The relative dielectric constants are κr⊥ = 7.77
and κr

// = 8.91. The intrinsic carrier density is ni = 1.0 × 106 cm−3. The elec-

tron and hole mobilities are μn = 200 cm2/V s and μp = 180 cm2/V s. The car-
rier lifetimes are τp = 0.1 µs and τn = 0.1 µs. The n-type background doping con-
centration is NDn = 1 × 1015 cm−3. The maximum donor doping concentration
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is NDnmax = 1 × 1017 cm−3 and the maximum acceptor doping concentration is
NAp max = 1 × 1017 cm−3. The control constant ch = 4.66 nm. The temperature is
T = 300 K. The piezoelectric charges are assumed to distribute uniformly at the two
ends of the n-type segment within a region of 0.25 nm, as represented schematically
by red and blue colored zones in Fig. 3.8(a). For easy of labeling, a z-axis is defined
in Fig. 3.8(a), with z = 0 representing the end of the p-type. The p–n junction is
located at z = 20 nm along the axis. The n-type ends at z = 100 nm.

The current–voltage curves at various strains are shown in Fig. 3.8(b). As for
the negative strain (compressive strain) case in our model, the positive piezoelectric
charges are at the p–n interface side, which attract the electrons to accumulate to-
ward the p–n junction, resulting in a reduced built-in potential adjacent to the p–n
junction. Thus, the corresponding saturation current density increases at a fixed bias
voltage. Alternatively, for the positive strain (tensile strain) case, negative piezo-
electric charges are created adjacent to the p–n interface, which attract the holes
to the local region, resulting in an increase in the built-in potential and dropping
in saturation current. Figure 3.8(c) show the distribution of hole concentrations at
various strains from −0.08 % to 0.08 % at an applied voltage of V = 0.8 V, clearly
displaying the effect of piezoelectric charges on the hole distribution. Under ten-
sile strain, the hole concentration shows a peak right at the p–n junction interface
where the negative piezoelectric charges accumulate. When a compressive strain
is applied, the local positive piezoelectric charges push the holes away from the
p–n junction, resulting in a disappearance of the peak. Correspondingly, Fig. 3.8(d)
shows the electron distribution in the device at various strains from −0.08 % to
0.08 % at V = 0.8 V, showing a slight tendency of increasing. Since the right-hand
electrode is an Ohmic contact (z = 100 nm), the carriers fully screen the piezo-
electric charges at the contact. The electron concentration is rather low adjacent
to the p–n junction. The piezoelectric charges at the p–n interface dominate the
transport process. Therefore, the piezotronic effect is the result of tuning/controlling
the carrier distribution by the device by the generated piezoelectric charges at the
two ends.

Using our model, we also studied the DC characteristics and the carrier concen-
tration distribution at various doping concentrations. The strain is fixed at −0.08 %
and the n-type background doping concentration NDn is set to be 1 × 1015 cm−3.
By choosing NDnmax = NAp max and increasing NDnmax from 1 × 1016 to 9 ×
1016 cm−3, the corresponding calculated current–voltage curves are plotted in
Fig. 3.9(a). When the width of the depletion zone is fixed, the built-in potential
increases with ND max. Therefore, the threshold voltage increases, which pushes the
“take off” point of the I–V curve moving it to higher voltage. Then, by assum-
ing NDnmax = NAp max = 1 × 1017 cm−3 and increasing NDn from 5 × 1013 to
1 × 1015 cm−3, the I–V curve shows little change, as shown in Fig. 3.9(b). The
numerical results indicate that the DC characteristics depend on the distributions of
donors and acceptor doping concentration in our model. Furthermore, the distribu-
tions of holes and electrons at an applied voltage of 0.8 V are shown in Figs. 3.9(c)
and 3.9(d), respectively.
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Fig. 3.9 (a) Calculated piezoelectric p–n junction current–voltage curves at various maximum
donor doping concentration and maximum donor acceptor doping concentration; (b) calculated
current–voltage curves at various n-type background doping concentration; (c) and (d) distributions
of hole and electron concentrations along the length of the device at an applied forward voltage
of 0.8 V at various maximum donor doping concentrations and maximum donor acceptor doping
concentrations, respectively [9]

3.6.2 Piezoelectric Transistor

The M–S–M ZnO nanowire devices are the typical piezoelectric transistor in our
experimental studies. Using FEM, we solved the basic equations of the M–S–M
ZnO nanowire device with the applied strain along the nanowire length direction
(c-axis). There are many types of M–S–M ZnO nanowire device, including differ-
ent types of M–S contact and doping profile, etc. M–S contact can be fabricated as
Ohmic contact or Schottky contact. The doping profile can be approximated as a
box profile or a Gaussian distribution profile, etc. Our calculations are done based
on a device model that has the following device property assumptions: the surface
states in ZnO are ignored; the electrostatic potential are constants at the end elec-
trodes; the nanowire is n-type without p-type doping; the doping concentration N is
approximately descried using a Gaussian function; and, at equilibrium, the electron
concentration at the metal contact is unaffected by the transported current; infinite
recombination velocity and no charge at the contact. Although the M–S–M ZnO
nanowire devices model is taken as a simplified model for clearly describing the
mechanism of piezopotential tuning to carrier transport process, the basic principle
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also applies to more complex cases, such as different surface states, arbitrary doping
profiles and different piezoelectric semiconductor materials, etc.

Using the COMSOL software package, the piezoelectric equations (see (3.4))
are solved first. Then, the electrostatic equation, the convection and the diffusion
equations are solved with the piezoelectric charge distribution provided. The doping
concentration function N is approximately descried using a Gaussian function:

N = NDn + NDnmaxe
−( z−l

ch
)2

. (3.28)

The boundary conditions of the electrostatic potential at the electrode can be
given by

ψ = V − χZnO − Eg

2
+ q

kT
ln

( N
2 +

√

(N
2 )2 + n2

i

ni

)

(3.29)

where the electron affinity χZnO of ZnO is 4.5 eV, and its band gap Eg is 3.4 eV.
We assume the carrier concentration at the electrode to be the same as the value
at thermal equilibrium. The boundary conditions of the carrier concentration at the
electrode can be given by (3.27b).

We calculated the DC transport property of a M–S–M ZnO nanowire device
with the presence of piezoelectric charges with the applied strain from −0.39 %
to 0.39 %. Figure 3.10(a) shows the sketch of a piezotronic ZnO nanowire device.
We choose l = 50 nm, which is half the length of the nanowire. The current–voltage
curves are shown in Fig. 3.10(b). At negative strain (compressive strain), the positive
and negative piezoelectric charges are at the left-hand and right-hand M–S contacts,
respectively (as shown in Fig. 3.10(a)), which lower and raise the local Schottky-
barrier heights at the corresponding contacts. When an external voltage is applied
with the left-hand contact at positive bias, the dominant barrier that dictates the
current–voltage curve is the reversely biased contact at the right-hand, at which the
local barrier height is raised by piezoelectric charges. Thus, the transported current
is lowered in comparison to the case of strain-free device. Alternatively, at positive
strain (tensile strain) case and under the same biased voltage, by the same token,
the I–V curve is largely determined by the M–S contact at the right-hand, which
has a lowered barrier height, resulting in an increase in transported current in com-
parison to the strain-free case. The device displays ‘ON’ state at 0.39 % strain, and
is ‘OFF’ at −0.39 % strain. Therefore, the piezopotential acts as a ‘gate’ voltage
to tune/control the current of piezoelectric transistor at the M–S interface and the
device can be switched “ON” and “OFF” by switching the applied strain, which is
the piezotronic FET.

Figure 3.10(c) shows the electron concentration along the device at an applied
voltage V = 0.8 V. When an external voltage is applied, the piezoelectric charges
affect the peak height and position of the electron concentration distribution. With
an increase in strain without applying bias voltage, not only the magnitude of the
peak of the electron concentration increases, but also the position of the peak shifts
from 44.2 to 55.8 nm when the strain varies from −0.39 % to 0.39 %, as shown in
Fig. 3.10(d).
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Fig. 3.10 (a) Schematic of piezotronic ZnO nanowire transistor; (b) calculated current–voltage
curves of the device at various applied strain (−0.39 % to 0.39 %); electron distribution in the
semiconductor segment (c) at a forward voltage of V = 0.8 V and (d) at V = 0 [9]

Furthermore, we study the DC characteristics and the carrier concentration with
various doping concentration. In order to investigate how the variance of maximum
donor doping concentration and maximum donor acceptor doping concentration
affects the DC characteristics, we fix the strain at −0.08 % and the n-type back-
ground doping concentration NDn of 1 × 1015 cm−3. When NDnmax is increased
from 1 × 1016 to 9 × 1016 cm−3, the current increases as well (Fig. 3.11(a)). By fix-
ing NDnmax = NAp max = 1 × 1017 cm−3, the current rises with increasing of NDn

from 1 × 1013 to 1 × 1015 cm−3 (Fig. 3.11(b)). The numerical results indicate that
the DC characteristics depend on the doping concentration in the piezoelectric tran-
sistor. The distribution of electrons at an applied voltage of 0.8 and 0.0 V are shown
in Figs. 3.11(c) and (d), respectively.

3.7 Summary

We have presented the theoretical frame of piezotronics by studying the charge
transport across the metal–semiconductor contact and p–n junction with the in-
troduction of piezopotential [9]. The analytical solutions derived under simplified
conditions are useful for illustrating the major physical pictures of the piezotronic
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Fig. 3.11 Calculated transport characteristics of a piezotronic ZnO nanowire transistor. (a) Piezo-
electric M–S–M nanowire transistor current–voltage curves at various maximum donor doping
concentrations; (b) current–voltage curves at various n-type background doping concentrations;
calculated electron distribution in the device at various maximum donor doping concentrations (c)
at a forward bias of V = 0.8 V and (d) V = 0

devices, and the numerical calculated results are meant for understanding the trans-
port characteristics of the piezotronic transistors in a practical case. The theory pre-
sented here not only establishes the solid physical background of piezotronics, but
also provides theoretical support for guiding the experimental design of piezotronic
devices.
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