

Lecture Notes in Computer Science 7525
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Paul Groth James Frew (Eds.)

Provenance
and Annotation of Data
and Processes
4th International Provenance
and Annotation Workshop, IPAW 2012
Santa Barbara, CA, USA, June 19-21, 2012
Revised Selected Papers

13

Volume Editors

Paul Groth
VU University Amsterdam
Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
E-mail: p.t.groth@vu.nl

James Frew
University of California
Bren School of Environmental Science and Management
2400 Bren Hall, Santa Barbara, CA 93106-5131, USA
E-mail: frew@bren.ucsb.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34221-9 e-ISBN 978-3-642-34222-6
DOI 10.1007/978-3-642-34222-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949280

CR Subject Classification (1998): I.2.4, H.2.4, H.2.8, H.3.3-5, H.4.1, K.6.m, K.4.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

“Provenance of a resource is a record that describes entities and processes in-
volved in producing and delivering or otherwise influencing that resource. Prove-
nance provides a critical foundation for assessing authenticity, enabling trust, and
allowing reproducibility. Provenance assertions are a form of contextual meta-
data and can themselves become important records with their own provenance.”

This quotation is from the W3C Provenance Incubator Group Final Report
(http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/).

2012 is a watershed year for provenance/annotation research. Under the stew-
ardship of the World Wide Web Consortium, the global community of prove-
nance practitioners is converging on standardized definitions, models, represen-
tations, and protocols for provenance. An infrastructure may soon be in place
that could potentially support universal access to the provenance of online arti-
facts. The time is ripe to explore the implications of ubiquitous provenance.

Provenance is understood to be a critical component of information trustwor-
thiness. Provenance is also increasingly understood to be essential to scientific
reproducibility – the provenance and annotation of a digital scientific artifact
often fulfills the same function that a paper notebook did for earlier laboratory
experiments. In many cases provenance offers the only coherent picture of ad-hoc
digital workflows. Provenance is also a requirement for long-term preservation
of digital information.

The spread of automatic systems for provenance capture and management
will allow provenance to be associated with digital artifacts whose complexity
(e.g., social networks) or volume (e.g., environmental satellite data) would make
manual annotation prohibitive. Furthermore, the availability of large corpora
of provenance records is enabling research into automatic exploration of and
reasoning about provenance.

The Fourth International Provenance and Annotation Workshop (IPAW 2012)
built on the success of previous workshops held in Troy (2010), Salt Lake City
(2008), Chicago (2006, 2002), and Edinburgh (2003). IPAW 2012 was held in
Santa Barbara, California at the Bren School of Environmental Science and
Management at the University of California, Santa Barbara. The 50 attendees
represented both academia and industry, and came from the US, the UK, the
Netherlands, Brazil, and Germany.

In response to our call for papers, we received 49 full paper, poster, and demo
submissions. Full papers received a minimum of 3 reviews and poster and demo
papers received at least 2 reviews. After review, 14 full papers, 4 demo papers,
and 12 poster papers were accepted. Many papers covered classic themes of the
provenance literature including research on provenance for workflow systems,
databases, the web, and applications to science. However, new themes emerged

VI Preface

including the application of network analysis techniques to provenance, as well
as investigating the ability to reconstruct or recreate provenance traces.

In addition to the papers, posters and demos, the workshop had a session pro-
viding updates on related provenance events. Philip E. Bourne from the Skaggs
School of Pharmacy and Pharmaceutical Sciences at the University of Califor-
nia, San Diego gave an outstanding keynote, The Provenance Divide, on the gap
between fundamental provenance research and the demand for provenance in the
biomedical and scientific domains. He encouraged the community to close that
gap.

As with prior IPAW workshops, there were additional events surrounding the
core workshop. A tutorial on the W3C Provenance Working Group’s emerging
specifications for interchanging was attended by 28 participants. Likewise, the
Data Observation Network for Earth (DataONE) organized a meeting on prove-
nance and scientific workflow. Finally, the W3C Provenance Working Group held
their third face-to-face meeting after the conclusion of the workshop. IPAW has
become a nexus in the community not just for communicating results but also
for starting and maintaining collaborations.

IPAW 2012 was a fantastic event driven by an active and engaged community
of provenance researchers facilitated by a beautiful and well-organized venue at
the Bren School. We thank B.J. Danetra and her staff for their support during
the conference, and Kim Fugate for handling conference registration and billing.
We also thank the Program Committee for their thoughtful reviews.

July 2012 Paul Groth
James Frew

Organization

Program Committee

Ilkay Altintas University of California, San Diego
Eddy Banks Lawrence Livermore National Laboratory
Bruce Barkstrom SGA
Khalid Belhajjame University of Manchester
Shawn Bowers Gonzaga University
Remco Chang Tufts University
Adriane Chapman The MITRE Corporation
Paolo Ciccarese Harvard Medical School / Massachusetts

General Hospital
Oscar Corcho Universidad Politécnica de Madrid
Helena Deus Digital Enterprise Research Instutite, NUIG
Kai Eckert Mannheim University Library
Peter Edwards University of Aberdeen
Todd Elsethagen Pacific Northwest National Laboratory
Juliana Freire Polytechnic Institute of New York University
James Frew University of California Santa Barbara
Yolanda Gil Information Sciences Institute, University of

Southern California
Jose Manuel Gomez-Perez Intelligent Software Components (iSOCO) S.A.
Paul Groth VU University Amsterdam
Olaf Hartig Humboldt-Universität zu Berlin
Jan Hidders Delft University of Technology
Jane Hunter University of Queensland
H.V. Jagadish University of Michigan
Qing Liu CSIRO ICT Centre
Shiyong Lu Wayne State University
Bertram Ludäscher UC Davis
Marta Mattoso COPPE – Federal Univ. Rio de Janeiro
Deborah L. McGuinness Tetherless World Constellation, Rensselaer

Polytechnic Institute
Simon Miles King’s College London
Paolo Missier Newcastle University
James Myers CCNI/Rensselaer Polytechnic Institute
Edoardo Pignotti University of Aberdeen
Paulo Pinheiro Da Silva University of Texas at El Paso
Beth Plale Indiana University

VIII Organization

Satya Sahoo Case Western Reserve University
Amit Sheth Kno.e.sis Center, Wright State University
Eric Stephan Pacific Northwest National Laboratory
Kerry Taylor CSIRO ICT Centre
Curt Tilmes NASA GSFC
Jan Van Den Bussche Hasselt University and Transnational

University of Limburg
Jun Zhao University of Oxford

Additional Reviewers

Chen, Yuhui
Dey, Saumen
Dias, Jonas
Koehler, Sven
Koop, David
Lebo, Timothy
McCusker, Jim

Michaelis, James
Nguyen, Vinh
Oliveira, Daniel
Palmer, Doug
Ritze, Dominique
Sarkar, Anandarup

Table of Contents

Documents Databases

SourceTrac: Tracing Data Sources within Spreadsheets 1
Hazeline U. Asuncion

Towards Integrating Workflow and Database Provenance 11
Fernando Chirigati and Juliana Freire

DEEP: A Provenance-Aware Executable Document System 24
Huanjia Yang, Danius T. Michaelides, Chris Charlton,
William J. Browne, and Luc Moreau

The Web

Towards Unified Provenance Granularities . 39
Timothy Lebo, Ping Wang, Alvaro Graves, and
Deborah L. McGuinness

Functional Requirements for Information Resource Provenance on the
Web . 52

Dominic Difranzo, Paulo Pinheiro, and Deborah L. McGuinness

A PROV Encoding for Provenance Analysis Using Deductive Rules 67
Paolo Missier and Khalid Belhajjame

Reconstruction

Declarative Rules for Inferring Fine-Grained Data Provenance from
Scientific Workflow Execution Traces . 82

Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher

Automatic Discovery of High-Level Provenance Using Semantic
Similarity . 97

Tom De Nies, Sam Coppens, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle

Transparent Provenance Derivation for User Decisions 111
Ingrid Nunes, Yuhui Chen, Simon Miles, Michael Luck, and
Carlos Lucena

Jamie P. McCusker, Timothy Lebo, Alvaro Graves,

X Table of Contents

Science Applications

Detecting Duplicate Records in Scientific Workflow Results 126
Khalid Belhajjame, Paolo Missier, and Carole A. Goble

The Xeros Data Model: Tracking Interpretations of Archaeological
Finds . 139

Michael O. Jewell, Enrico Costanza, Tom Frankland,
Graeme Earl, and Luc Moreau

Using Domain-Specific Data to Enhance Scientific Workflow Steering
Queries . 152

João Carlos de A.R. Gonçalves, Daniel de Oliveira,
Kary A.C.S. Ocaña, Eduardo Ogasawara, and Marta Mattoso

Networks

Network Analysis on Provenance Graphs from a Crowdsourcing
Application . 168

Mark Ebden, Trung Dong Huynh, Luc Moreau,
Sarvapali Ramchurn, and Stephen Roberts

Modelling Provenance Using Structured Occurrence Networks 183
Paolo Missier, Brian Randell, and Maciej Koutny

Demonstrations

DEMO: ourSpaces — A Provenance Enabled Virtual Research
Environment . 198

Peter Edwards, Chris Mellish, Edoardo Pignotti,
Kapila Ponnamperuma, Thomas Bouttaz, Alan Eckhardt,
Kate Pangbourne, Lorna Philip, and John Farrington

SOLE: Linking Research Papers with Science Objects 203
Quan Pham, Tanu Malik, Ian Foster, Roberto Di Lauro, and
Raffaele Montella

DEMO: Managing the Provenance of Crowdsourced Disruption
Reports . 209

Milan Markovic, Peter Edwards, David Corsar, and Jeff Z. Pan

Designing a Provenance-Based Climate Data Analysis Application 214
Emanuele Santos, David Koop, Thomas Maxwell,
Charles Doutriaux, Tommy Ellqvist, Gerald Potter,
Juliana Freire, Dean Williams, and Cláudio T. Silva

Table of Contents XI

Posters

Quality Assessment, Provenance, and the Web of Linked Sensor Data . . . 220
Chris Baillie, Peter Edwards, and Edoardo Pignotti

Integrating Text and Graphics to Present Provenance Information 223
Thomas Bouttaz, Alan Eckhardt, Chris Mellish, and Peter Edwards

Exploring Provenance in a Linked Data Ecosystem 226
David Corsar, Peter Edwards, Nagendra Velaga, John Nelson, and
Jeff Z. Pan

Enabling Re-executions of Parallel Scientific Workflows Using Runtime
Provenance Data . 229

Flávio Costa, Daniel de Oliveira, Kary A.C.S. Ocaña,
Eduardo Ogasawara, and Marta Mattoso

Access Control for OPM Provenance Graphs . 233
Roxana Danger, Robin Campbell Joy, John Darlington, and
Vasa Curcin

Improving the Understanding of Provenance and Reproducibility of a
Multi-Sensor Merged Climate Data Record . 236

Hook Hua, Brian Wilson, Gerald Manipon, Lei Pan, and Eric Fetzer

Provenance Tracking in R . 237
Andrew Runnalls and Chris Silles

The Provenance Store prOOst for the Open Provenance Model 240
Andreas Schreiber, Miriam Ney, and Heinrich Wendel

A Comprehensive Model for Provenance . 243
Salmin Sultana and Elisa Bertino

Provenance Representation in the Global Change Information System
(GCIS) . 246

Curt Tilmes

Integrating Provenance into an Operational Data Product Information
System . 249

Stephan Zednik, James Michaelis, and Peter Fox

On Presenting Apropos Provenance for Situation Awareness and Data
Forensics . 250

Jing Zhao, Yogesh Simmhan, and Viktor Prasanna

Author Index . 255

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 1–10, 2012.
© Springer-Verlag Berlin Heidelberg 2012

SourceTrac: Tracing Data Sources within Spreadsheets

Hazeline U. Asuncion

Computing and Software Systems
University of Washington, Bothell

Bothell, WA USA
hazeline@u.washington.edu

Abstract. Analyzing data from multiple sources is a common task in scientific
research. In particular, spreadsheet data is often aggregated from a variety of
sources to identify patterns and synthesize reports. Yet, techniques are lacking
for automatically capturing the provenance of such data within spreadsheet en-
vironments like Excel. We present a novel approach for fine-grained tracing of
tabular data that may have been obtained from files, databases, or the Web. Our
approach provides relevant provenance information at both the micro-level (per
cell) and the macro-level (per sheet). Initial results suggest that our approach is
scalable and beneficial to data analysts.

Keywords: data provenance, spreadsheets, multiple sources.

1 Introduction

Aggregating data from multiple sources is a fundamental operation in data-intensive
domains, including the natural sciences, social sciences, and business. In the eS-
cience domain, raw scientific data may be stored by different instruments in different
file locations or may be obtained from different research organizations. As an exam-
ple, the Jaffe Atmospheric Research Group at UW Bothell analyzes tabular data from
their own field sites as well as published data from the EPA, NOAA, and NASA on a
weekly basis to understand global and regional sources of air pollution.

While methods exist for tracking multiple sources of data in the context of scientif-
ic workflows, databases, and grid computing [5, 6, 7, 11, 14], provenance techniques
are lacking in spreadsheet environments (like Microsoft Excel) which are ubiquitous-
ly used by data analysts and researchers. Because spreadsheet environments are high-
ly interactive, multiple data sets are often merged together into one spreadsheet at
multiple time points. Thus, without provenance it becomes difficult for researchers to
recover the original source(s) of a record. In addition, it is difficult to determine up-
dates to downstream files if a source file has changed or contains an error.

In response to these challenges, we present SourceTrac, a novel approach for trac-
ing multiple sources of data within a spreadsheet. Our approach captures the source
as the users are obtaining data (e.g., from the Web), annotates the immediate source
of each record at the granularity of individual cells, calculates source ancestors of
formulas, and provides mechanisms for connecting a file to parent files as well as

2 H.U. Asuncion

visualizing this provenance data. In this paper, our approach is tailored towards Mi-
crosoft Excel but can be generalized to other environments.

In previous work, we focused on capturing the operations that users perform on a
spreadsheet while analyzing data [2]. This paper, meanwhile, is complimentary since
the focus is on capturing operations that pertain to fine-grained tracking of data
sources.

The rest of the paper is organized as follows. The next section discusses tech-
niques we use to track data sources. Section 3 describes the implementation details of
the SourceTrac tool. Section 4 presents use cases, initial user feedback, and scalabili-
ty measures. Section 5 covers related work. Finally, we conclude with a discussion
of future avenues of research.

2 Provenance Technique

In this section, we delve into the core aspects of our provenance technique for track-
ing sources within spreadsheets.

2.1 Tracking the Source as the User Obtains the Data

To support the tracking of heterogeneous data sources, we capture the data source in
situ, at the time a user obtains the data. Otherwise, retrospectively determining the
source may be difficult, if not impossible. Users also explicitly specify when they
wish to track data sources. This avoids the accidental capturing of sources that are
unnecessary to researchers. Users may obtain data from the Web, a database, or other
tabular files.

There are several ways that sources can be recorded when users obtain data from
the internet. Within Excel, SourceTrac can detect data scraped from the web through
Excel’s “Get External Data From Web” interface. If data is manually copied from a
Web page or if a file is downloaded from a web site, it is also possible to determine
the source by automatically inspecting the immediate history of the user’s web
browser (e.g., Firefox) and obtaining the visited URL (using a traceability technique
[3]). Once the URL is captured, the cells are annotated with this URL.

Figure 1 shows data scraped using the Excel interface (background) which is then
pasted onto a spreadsheet (foreground). After the extracted data has been cleaned up
and formatted, we see that each cell is automatically annotated with the source, shown
as a small red triangle at the top-right of each cell. In this example, the annotation
reveals that the data comes from one source, indicated by “1”, followed by the URL
of the source. The “100” at the end indicates that the data in the cell is 100% derived
from the specified URL.

Another source of data is external files, such as other spreadsheet files or text files.
In this case, we can record the name of the file (including the file path) when the user
copies the data. When the data is pasted onto the spreadsheet, the cells are then anno-
tated with the file name of the source. In principle, it is also feasible to perform prov-
enance tracking as users query a database, using Excel’s facilities. In this case, the

 SourceTrac: Tracing Data Sources within Spreadsheets 3

SQL query would be the recorded source. It is worth noting that once a cell is anno-
tated with a data source, the annotation will remain with the cell even if the user cop-
ies the cell to another sheet.

Fig. 1. Data obtained from the Web are annotated with the URL

Fig. 2. Data sources are annotated at the cell level

2.2 Querying Data Sources at Multiple Levels of Granularity

Since sources, or provenance metadata, are recorded at the cell level, SourceTrac allows
for provenance reporting at multiple levels of granularity: the cell level, the spreadsheet
level, and the file level. At the cell level, individual cells are annotated with the
source. If the data contained within a cell is a function or a calculated formula,
the sources of the dependency cells are indicated. For instance, Figure 2 shows that the
calculated cell is derived from two sources (as indicated by the number 2 at the
beginning of the annotation): two-thirds of the cells which the calculated cell de-
pends on is derived from the file “WHPA1.csv”, while one-third comes from worksheet

4 H.U. Asuncion

“Sheet1” of the file “locTable.xlsx”. These
ratios are based on the number of cell refer-
ences specific to a source and the total num-
ber of cell references. The vertical bar “|” is
used to delimit the sources.

One may also determine the source com-
position for a given spreadsheet. The distri-
bution of data sources can be determined by
scanning through the data cells (i.e., non-
empty cells below the row headings) and
summing up the individual source distribu-
tions for each cell. Figure 3 shows example
worksheet statistics which list the data
sources as well as the percentage of the cells
that belong to each source.

Finally, one can obtain the source dependencies at a file level. This can be
achieved by iterating through the different worksheets in the file and compiling the
source distributions of each worksheet. This information can then be saved as
the metadata of the spreadsheet file. As an example, Figure 4 shows the source of the
current file (“WHPA_process.xlsx”) in the Comments field of the file properties.
Such metadata is useful when researchers need to trace the file to the parent spread-
sheet file (e.g., to check whether the formulas used were correct).

Fig. 4. Data source dependencies at the file level can be annotated within the file’s metadata

Fig. 3. Source statistics can be calculated
at the worksheet level

 SourceTrac: Tracing Data Sources within Spreadsheets 5

2.3 Calculating the Ancestors of the Data

While the previous techniques allows for tracking to the immediate source, there are
situations where tracking the line of source ancestors (across files) is necessary (e.g.,
when an error appears in a descendant spreadsheet). There are two possible ways to
track the ancestors of data within a cell. The first method is by following the back-
ward links from the cell to the immediate source and on to its source until we arrive at
an external root source, which is can be a web URL, a database connection, or another
file with no source annotations.

Another method is to build source trees as the user obtains data from the different
sources. Root nodes are created each time data is extracted externally. Branches are
created each time the extracted data is copied to another file or is inserted via an Ex-
cel “lookup” function across files. Branch nodes contain the filename of the descen-
dant spreadsheet, as well as specific location in the spreadsheet where the data has
been copied or inserted, such as the worksheet name and the range of cells.

Fig. 5. Data sources can be visualized for quick analysis of provenance

If the data is extracted from the web, it is also possible to further query the source
of the published data on the web. This will require the existence of structured meta-
data or a web service that takes in a URL of a data source and outputs the source(s) of
the data. In the event that the data has been obtained from a published source of
another research organization, one can envision the output of the web service to be
another URL, or perhaps another web service that points to yet another published data
source on the web.

6 H.U. Asuncion

Fig. 6. The source ancestry dependency graph can also be visualized

2.4 Visualizing Sources at Different Levels of Granularity

With the ability to query data sources at different levels of granularity, SourceTrac
can also visualize the source information. One approach is to visualize the entire
spreadsheet to allow a user to gain a high level-view of which regions of the spread-
sheet are obtained from which sources. Figure 5 shows that columns B and C, color-
coded in yellow, were obtained from “Sheet1” of the “locTable.xlsx file”, while
column H, color-coded in pink, was obtained from both “WHPA1.csv” and “locTa-
ble.xlsx” and the rest of the columns, color-coded in light blue, were obtained from
“WHPA1.csv”.

One may also be interested in visualizing the ancestors of a cell location. Figure 6
depicts an example where the cell H7 has two source lines due to the fact that H7
contains a formula that depends on two cells which have two separate sources. The
first source is the file, “locTable.xlsx”, which was obtained via the “Get External
Data” interface in Excel. The other source is “WHPA1_process.xlsx” which origi-
nated from a download. Thus, this view allows a user to quickly identify the various
sources of a calculated field.

3 SourceTrac Tool Support

The following sections describe the tool’s design and implementation as well as use
cases of interest to data analysts.

 SourceTrac: Tracing Data Sources within Spreadsheets 7

3.1 Tool Design and Implementation

We designed the SourceTrac tool to be easy to use and accessible, requiring minimal
setup and configuration. To this end, we provide a user interface within the Excel
environment (specifically Excel 2010). The functionalities mentioned in the previous
section are accessible via the Excel ribbon (seen in Figure 1). To set up the tool, users
would simply run an installation file.

SourceTrac also leverages Excel’s interfaces for obtaining data from the Web and
from a database. For example, we use Excel’s XLQueryType property of the Que-
ryTable object to obtain the URL of the source data. SourceTrac automatically de-
termines which sections of the spreadsheet received the data and annotates the cells
with the sources.

We use various means of storing the source annotations. At the cell level, sources
are stored as comments to individual cells. At the file level, sources are stored as a
file property (within the “Comments” metadata field). Users also have the option of
viewing or hiding the cell comment indicator (i.e., the red triangle at the top-right
corner).

The current tool implementation includes most of the capabilities mentioned in the
previous section. Dependency tracking is only partially implemented. We also plan
to integrate the capture of the source URL from the Firefox browser’s history into our
tool.

3.2 Use Cases

We envision the following use cases for SourceTrac. A researcher obtains data pub-
lished on the Web through Excel’s “Get External Data” interface. The researcher
then obtains another data set online by downloading a spreadsheet from a different
URL. The researcher proceeds to combine the two data sets by using an Excel “vloo-
kup” function in the downloaded spreadsheet to get the data from the first file. After
the data has been combined, the researcher adds formulas to the spreadsheet.

At a later point in time, the researcher discovers that the first data set has been cor-
rected by the publishers of the data. The researcher opens the aggregated file,
visualizes the sources, and immediately identifies which regions of the spreadsheet to
update using the SourceTrac tool.

When the researcher decides to publish his results, he proceeds to duplicate his
spreadsheet by pasting the data values and removing the formulas. Sometime later, he
wishes to double-check whether he used the correct statistical formula in his pub-
lished result. Looking at the “Comment” metadata field in the file properties of the
published file, he finds the path to the parent file and verifies that he has indeed used
the correct formula.

4 Evaluation

In this section, we discuss the provenance queries that can be answered by the tool as
well as initial user feedback and a discussion of the tool’s overhead.

8 H.U. Asuncion

4.1 Provenance Queries

The SourceTrac tool can answer the following important provenance queries.

1. Where did the data from this spreadsheet file come from? This query can be ans-
wered in multiple ways. One may view the individual annotations at the cell-level
(Figure 2), or one may choose to look at the worksheet source distribution statistics
(Figure 3). Furthermore, file-level annotation is saved in the “Comment” field in the
file properties (Figure 4).

2. How was the data in this cell derived? Again, one may view the cell annotation,
which would show the sources from which that cell was derived. This query can also
be answered by viewing the ancestor source tree (Figure 6).

3. If a source file changes, which parts of the worksheet need to be updated? This
query can be answered by visualizing sources (Figure 5). If the first source file,
“locTable.xlsx”, has been changed, then one can find (by color) the regions of the
spreadsheet to change.

4. Does my final accuracy in cell H18 depend at all on faulty data source X? One can
look at the cell annotation or the ancestor tree. Moreover, SourceTrac returns the
degree (percentage) to which H18 depends on data source X.

4.2 User Feedback

We have solicited feedback regarding our tool from a senior scientist in the Jaffe At-
mospheric Research Group at the University of Washington, Bothell. This scientist
analyzes data from multiple sources frequently, at least on a weekly basis. A typical
size of his resulting dataset is 30,000 records with 10 to 50 columns. He performs
environmental analyses of data from multiple data sources.

His current approach to tracking sources is naming the spreadsheet based on the
source and manually entering the data sources in another worksheet within the same
file. A drawback to this approach is that there are times where he may forget to doc-
ument the data source. In addition, since he transforms his spreadsheet data into
another spreadsheet by pasting by value, the formulas he used in the original spread-
sheet are not readily available. In order to find this information, he needs to search
through his file system to find the parent file (or the source file) of the text file.

According to the scientist, the tool will allow him to improve his documentation of
the sources. It will also save him a substantial amount of time by avoiding the dupli-
cation of his analysis. Without the tool, if he is unsure of the data source or the ver-
sion of the data source, he would have to re-analyze the source data again to verify his
results. He comments that he is looking forward to using the tool in day-to-day anal-
ysis operations.

4.3 Scalability of Tool

Since we provide a source annotation for each data cell in the spreadsheet, a potential
concern is that the spreadsheet files would become too large in size due to the necessi-
ty to store this additional metadata. However, we find that the space overheads are
reasonable. For an Excel spreadsheet containing 5,000 cells with formulas and
annotations, the file size is only 3.25 times larger than the equivalent spreadsheet

 SourceTrac: Tracing Data Sources within Spreadsheets 9

without annotations. With 10,000 cells, the file size is only 3.69 times larger. With
100,000 cells, the file size is only 4.63 times larger than the corresponding spread-
sheet without annotations. In all these cases, the file size is less than a few mega-
bytes. These numbers suggest that the overhead cost of adding annotations at a cell-
level is reasonable.

5 Related Work

Tracking multiples sources of data has been addressed in different contexts: databas-
es, scientific workflows, grid computing, and web pages. In databases, one technique
analyzes the database query issued to obtain the source of data [6]. Other techniques
include propagating source annotation along with the data [5] or using provenance
polynomials [14]. In the context of scientific workflows, one can show the derivation
path of information [7] and a dataset derivation graph [15] or one can use the notion
of a strong link to connect a workflow instance with the input and derived data [11].
In the context of grid computing, one may track files and processes [12] or use a web
crawler [4]. In the context of the web, multiple data sources may be presented in a
web page. To determine the data sources, one can extract provenance metadata em-
bedded on the page [1, 8].

Within Excel spreadsheets, tracking and visualizing dependent data sources within
a spreadsheet can be performed with Excel’s built-in “Trace Precedents” or “Trace
Dependents” interface [13]. A more intuitive visualization of data sources within a
spreadsheet has also been proposed [9]. Excel also has a built-in mechanism for link-
ing to external data when a formula, chart, pivot table, or object link is created [13].
However, for the usage scenarios of importing data or copying/pasting data into a
spreadsheet, tracking sources is not provided. Another technique can trace the rela-
tionships between spreadsheets, but only at the file level [10].

6 Conclusion

In this paper, we presented SourceTrac, a provenance technique for spreadsheets that
supports capturing data sources in situ, querying data sources at different levels of
granularity, calculating ancestors of data, and visualizing source compositions at dif-
ferent levels of granularity. Preliminary results suggest that this tool has minimal
overhead and is beneficial to data analysts and researchers. There are many potential
directions for future work. An interesting future work is tracking whether the source
data has moved or has been modified. Combining source tracking with provenance
techniques for analyzing data manipulations is also another promising direction to
pursue in the future.

Acknowledgement. The author thanks Alex Dioso for development support and Dan
Jaffe for helpful feedback. Research was supported in part by the University of
Washington Royalty Research Fund No. A65951 and the UWB Collaborative Under-
graduate Research Grant.

10 H.U. Asuncion

References

[1] EXIF, http://www.exif.org/
[2] Asuncion, H.U.: In Situ data provenance capture in spreadsheets. In: Proc. of the 7th In-

ternational Conference on e-Science (2011)
[3] Asuncion, H.U., Taylor, R.N.: Automated Techniques for Capturing Custom Traceability

Links Across Heterogeneous Artifacts. In: Software and Systems Traceability, pp. 129–
146. Springer (2012)

[4] Benabdelkader, A., Santcroos, M., Madougou, S., van Kampen, A.H.C., Olabarriaga,
S.D.: A provenance approach to trace scientific experiments on a grid infrastructure. In:
Proc. of the 7th International Conference on e-Science (2011)

[5] Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management
system for relational databases. VLDB Journal 14 (2005)

[6] Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of Data Prov-
enance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–
330. Springer, Heidelberg (2000)

[7] Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L.,
Oinn, T.: Provenance of e-science experiments - experience from bioinformatics. In: The
UK OST e-Science Second All Hands Meeting (2003)

[8] Groth, P.: ProvenanceJS: Revealing the Provenance of Web Pages. In: McGuinness, D.L.,
Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 283–285. Springer,
Heidelberg (2010)

[9] Hermans, F., Pinzger, M., van Deursen, A.: Supporting professional spreadsheet users by
generating leveled dataflow diagrams. In: Proc. of ICSE (2011)

[10] Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M., Dietterich, T.G.: The life and
times of files and information: A study of desktop provenance. In: Proc. of International
Conf. on Human Factors in Computing Systems, pp. 767–776. ACM (2010)

[11] Koop, D., Santos, E., Bauer, B., Troyer, M., Freire, J., Silva, C.T.: Bridging Workflow
and Data Provenance Using Strong Links. In: Gertz, M., Ludäscher, B. (eds.) SSDBM
2010. LNCS, vol. 6187, pp. 397–415. Springer, Heidelberg (2010)

[12] Malik, T., Gehani, A., Tariq, D., Zaffar, F.: Sketching Distributed Data Provenance. In:
Liu, Q., Bai, Q., Giugni, S., Williamson, D., Taylor, J. (eds.) Data Provenance and Data
Management in eScience. SCI, vol. 426, pp. 85–108. Springer, Heidelberg (2013)

[13] Microsoft Corporation. MS Excel, http://office.microsoft.com/

en-us/excel/

[14] Olteanu, D., Zavodny, J.: On factorisation of provenance polynomials. In: USENIX
Theory and Practice of Provenance (2011)

[15] Osterweil, L.J., Clarke, L.A., Ellison, A.M., Boose, E., Podorozhny, R., Wise, A.: Clear
and precise specification of ecological data management processes and dataset prove-
nance. IEEE Trans. on Automation Science & Engr. 7, 189–195 (2010)

Towards Integrating Workflow

and Database Provenance

Fernando Chirigati and Juliana Freire

Polytechnic Institute of NYU
Computer Science and Engineering Department

fernando.chirigati@gmail.com, juliana.freire@nyu.edu

Abstract. While there has been substantial work on both database and
workflow provenance, the two problems have only been examined in iso-
lation. It is widely accepted that the existing models are incompatible.
Database provenance is fine-grained and captures changes to tuples in
a database. In contrast, workflow provenance is represented at a coarser
level and reflects the functional model of workflow systems, which is
stateless—each computational step derives a new artifact. In this paper,
we propose a new approach to combine database and workflow prove-
nance. We address the mismatch between the different kinds of prove-
nance by using a temporal model which explicitly represents the database
states as updates are applied. We discuss how, under this model, repro-
ducibility is obtained for workflows that manipulate databases, and how
different queries that straddle the two provenance traces can be evalu-
ated. We also describe a proof-of-concept implementation that integrates
a workflow system and a commercial relational database.

Keywords: Workflow Provenance, Database Provenance, Reproducibil-
ity.

1 Introduction

Provenance for digital objects is becoming increasingly important both in in-
dustry and science, not only due to regulations such as HIPAA and Sarbanes
Oxley, but also due the fact that computational scientific results must be repro-
ducible [6]. The area of provenance management has been very active and there
is a rich body of work on different aspects of provenance. Work on database
provenance has focused on techniques to represent provenance for tuples in a
relational database and to propagate provenance through queries [3]. For scien-
tific workflows, there have been proposals that address issues such as capture,
modeling, storage, and querying for provenance information [4,8].

However, an important problem has received much less attention: how to
combine database and workflow provenance. For scientific workflows that interact
with data stored in databases, unless there is a model that combines the different
kinds of provenance, it is not possible to maintain accurate provenance of the
complete process, and consequently, results cannot be reproduced. Consider the

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 11–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

12 F. Chirigati and J. Freire

(a) (b)

Fig. 1. This figure illustrates challenges in reproducing a workflow run when database
access is involved. (a) shows two runs of the same workflow which accesses a database;
because the database has changed in between the two runs, even though the workflows
have the same structure and input data (i.e., input), their results differ—one derives
output and the other derives output’. (b) shows a workflow that, due to its DAG
structure, can have two different execution orderings, and depending on the ordering,
the outputs may also be different.

example shown in Fig. 1a. The workflow on the left receives as input input and
outputs output. One of its modules, ReadDB, consumes data from a database. If
this workflow is executed at a later time, even if it uses the same input, there is
no guarantee that it will produce the same result. In particular, agents that are
external to and not observable by the workflow system may modify the database
in between the executions. This happens even in scenarios where database access
is always observable by the workflow system. For example, Fig. 1b shows a
workflow that both reads from and writes to a database. Note that either ReadDB
or UpdateDB modules can be executed after GetInfo. The workflow has two
possible execution orderings: if ReadDB is executed first (Run 1), it will read the
initial state s1 of the database; otherwise, it will read the state that results from
the changes applied by UpdateDB (Run 2). Depending on the execution order,
the result produced by the workflow might be different, and without information
about how the database changed, the workflow run might not be reproducible.

Combining database and workflow provenance is challenging because of an in-
herent mismatch in the models used to represent them. Workflows adopt a func-
tional, stateless model where each module is a function that receives some input
data and generates a new output: the workflow structure and inputs uniquely
identify the outputs [12]. Databases, in contrast, adopt a stateful model: every
time a transaction commits, there is a new state that reflects the changes ap-
plied in the transaction. Thus, accesses to databases break the stateless (and
deterministic) scientific workflow model.

Towards Integrating Workflow and Database Provenance 13

In this paper, we propose a new model to integrate database and workflow
provenance. To the best of our knowledge, this is the first approach that supports
reproducibility of workflows in the presence of database accesses. This model
was inspired by the observation that transaction temporal databases provide
a suitable abstraction to represent database changes that is compatible to the
execution model of scientific workflows. The key intuition here is that, because
transaction temporal databases keep track of each state of the database by its
transaction time, it is possible to uniquely identify and retrieve each state [9].
Consequently, by recording information about the database states it observes or
generates, a workflow system is able to faithfully reproduce workflow executions
that involve database access. Because our model relies on a temporal model
that is currently supported by commercial relational databases such as Oracle
RDBMS [14] and DB2 [5], it is practical and amenable to implementation. In
fact, we describe how we have implemented this model in the VisTrails system [7]
using the Oracle Total Recall functionality [15].

Besides the ability to accurately reproduce a workflow run, our approach
also supports queries that straddle database and workflow provenance. Because
the provenance information from the different systems is connected, we have a
graph that allows the complete lineage of data artifacts to be computed, e.g.,
the workflow modules that affected a given database relation, or the relation
states that contributed to the derivation of a data product by a workflow. As we
discuss in Section 2, it is also possible to obtain the provenance for individual
tuples and to answer how provenance queries [3].

Related Work. Also with the goal of integrating database and workflow prove-
nance, Acar et al. [1] proposed the use of a common provenance model. Their pro-
posal was motivated by the fact that workflow specifications, unlike databases,
are seldom accompanied by a formal specification, and this, they argue, makes it
difficult to integrate database and workflow provenance. Amsterdamer et al. [2]
proposed a framework to integrate the fine-grained database-style provenace
with workflows that consist of Pig Latin [13] modules. To capture fine-grained
provenance for modules, they translate Pig Latin expressions into nested rela-
tional calculus expressions. We attack an orthogonal problem: our goal is to
connect the two different kinds of provenance so as to support reproducibility.
Our approach makes no assumption about the semantics of workflow modules,
which can be black boxes, and it also does not prescribe the use of a unified
provenance model. Nonetheless, the information captured by our model makes
it possible to answer queries that combine database and workflow provenance.

Outline. The remainder of the paper is organized as follows. We present our
model that integrates workflow and database provenance in Section 2, where
we also discuss how this model supports reproducibility as well as provenance
queries. In Section 3, we describe our prototype that combines VisTrails prove-
nance with Oracle Total Recall. We conclude in Section 4 where we outline
directions for future work.

14 F. Chirigati and J. Freire

2 A Model for Integrating Workflow and Database
Provenance

In this section, we begin by introducing some basic concepts about workflows
and databases, and then formally define our integrated provenance model.

2.1 Background

Stateless Workflows. We assume a dataflow model for workflows. A workflow
is represented as a directed acyclic graph (DAG), where vertices are modules
(functions) that perform computations, and data flows through the edges which
connect modules.

Definition 1. A workflow instance W is described by the tuple (M,C), where
M is the set of modules and C is the set of connections. Each module m ∈ M
is represented by a function fm, such that

fm : DI
m → DO

m (1)

where DI
m is the domain of input values and DO

m is the domain of output values.
Since the definition of fm is unknown, it is considered a black box1. A connection
c ∈ C that connects module m to module n is described as the tuple (m,n, d),
where d corresponds to the data product that flows from m to n and that creates
the dependency between these modules.

In the remainder of the paper, we represent a module m as fm(Im) = < Om >,
where Im represents the input set and Om is the output set of m. For instance,
the workflow presented in the left side of Fig. 1a can be described by the following
functions:

fGetInfo(input) = < output1 >, fReadDB(output1) = < output2 >,
fProcessData(output2) = < output >

Stateful Databases. Transaction temporal databases keep track of the differ-
ent states of a database as tuples are added, deleted or updated. Thus, these
databases have all the necessary elements to support fine-grained provenance
[9,10] and to achieve reproducibility of results [10].

To model transaction temporal relations, we adapt the backlog scheme pro-
posed by Jensen et al. [11]. A backlog is a relation that contains the complete
history of changes in another relation. Any tuple affected by an update is added
to the append-only backlog, and tuples in the backlog are never updated. Back-
logs thus maintain a complete record of modifications in tuples of the database.
Each tuple in the backlog can be uniquely identified by its valid and transaction

1 A module is also associated with a set of parameters whose values may also be used
by fm, and thus contribute to the output of the module. To keep the notation simple,
we do not explicitly show these parameters and their values.

Towards Integrating Workflow and Database Provenance 15

times. In our model, it is sufficient to consider only transaction time. We also
restrict the data manipulation language to the operations select, insert, update
and delete. While to simplify the presentation, we focus on single-relation queries
and transactions; as we discuss below, the model can naturally handle multiple
relations. Similarly, while we assume that separate states are maintained for each
relation, rather than for the whole database, states covering all relations can also
be supported2. This scheme is defined below.

Definition 2. Given a schema � = (K,A) from a transaction temporal relation
R, where K is the tuple identifier and A is the set of attributes for R, the schema
�B of the corresponding backlog relation RB is defined as

�B = (K, A, T, Op, U) , (2)

where T is the transaction time when the tuple was included in the backlog, Op is
the operation applied to the tuple at time T (I for insertion and D for deletion)
and U is the user who managed the operation in the tuple.

When a set of tuples is first inserted into a relation, they are also inserted into
the backlog; the transaction time T when the insertion took place is recorded for
each tuple, and Op is set to “I”. If a tuple is deleted, this tuple is inserted again
in the backlog, but with T set to the transaction time when the deletion was
performed, and Op set to “D”. An update operation is represented by a deletion
followed by an insertion, both with the same transaction time T .

The transaction time corresponds to the timestamp when the transaction was
successfully committed. Consequently, all tuples with the same transaction time
T were inserted in the backlog by the same transaction, i.e., they belong to the
same state of the relation. A state represents a snapshot of a given relation at a
certain time point. Since a new state is created for each successful transaction,
we can uniquely identify a state by the transaction time. Because backlogs are
append-only, they maintain all information needed to reconstruct each database
state, and thus, they provide complete provenance for all tuples.

Definition 3. The tuples in the backlog relation RB represent the sequence of
states S(R) for R:

S(R) = {(S1(R), T1(R)), . . . , (Sn(R), Tn(R))} , (3)

where Ti(R), for 1 ≤ i ≤ n, represent transaction times recorded in RB, and
Si(R) corresponds to the state of R at time i. A state Si(R) is defined as

Si(R) = {tj ∈ RB | time(tj) ≤ Ti(R)} , (4)

where tj is a tuple of RB and time(tj) is the transaction time recorded for tj.

2 In practice, these choices will be determined by the underlying implementation of
the temporal features in the database.

16 F. Chirigati and J. Freire

Note that the indices in the states indicate their order in time. Given the states
Si(R) and Sj(R), and i < j, then Ti(R) < Tj(R). Using this model, besides
being able to identify the states by the transaction times, it is also possible to
identify the differences between two states. Below, we use a concrete example to
illustrate this.

Definition 4. The difference (or delta) between two states Si(R) and Sj(R),
where i < j, is computed as follows:

Δj,i(R) = Sj(R)− Si(R) (5)

Example 1. Consider the following scenario. We have an empty relation Emp. A
transaction that inserts two tuples in Emp is executed and successfully commit-
ted at transaction time 10 by user fchirigati. Then, at transaction time 15, user
jfreire commits a transaction that corrects the job information about employee
Robert. Finally, at transaction time 20, a new tuple is inserted in the relation by
user fchirigati. The backlog which reflects these operations is shown below.

K Name Job T Op U

1 Robert Researcher 10 I fchirigati
2 Claire Assistant Director 10 I fchirigati
1 Robert Researcher 15 D jfreire
1 Robert Research Assistant 15 I jfreire
3 Eric Administrative Director 20 I fchirigati

The set of states S(Emp) corresponds to the different timestamps in the backlog:

S(Emp) = {(S1(Emp), 10), (S2(Emp), 15), (S3(Emp), 20)}

The delta Δ3,1(Emp) between S1(Emp) and S3(Emp) is:

1 Robert Researcher 15 D jfreire
1 Robert Research Assistant 15 I jfreire
3 Eric Administrative Director 20 I fchirigati

2.2 Integrating Workflow and Database Provenance

As discussed in Section 1, a key challenge in integrating database and work-
flow provenance to support reproducibility stems from the inherent mismatch
between the two provenance models. In what follows, we show how this problem
can be addressed for databases which adopt a temporal transaction model. In
order to connect the workflow provenance to the database provenance, we need
to capture information about the database states observed by the workflows.
Given a module m in a workflow instance W that either consumes or modifies
data in a relation R of a transaction temporal database, for each execution of

Towards Integrating Workflow and Database Provenance 17

Fig. 2. In the integrated provenance model, database states observed by the workflow
are recorded in the provenance (dashed arrows represent the database accesses.) To-
gether with the workflow provenance, they not only provide the complete derivation
chain for the workflow results, but also enable result reproducibility.

m, we store, in the provenance, information about the states before and after
the module execution:

fm(Im, [R, Tb(R)]) = < Om, [R, Ta(R)] > (6)

where Tb(R) and Ta(R) are the transaction times of the states of relation R
before and after the module execution, respectively. Since a transaction time
uniquely determines a state, by storing this information, we can retrieve the
state.

If Ta(R) and Tb(R) are the same, it means that m did not modify R. Oth-
erwise, if the transaction times are different, a new state was created, and this
implies that data was being inserted, updated or deleted from R.

To simplify the presentation, so far we have assumed single-relation queries
and transactions. However, it is straightforward to extend the model to work
with multiple relations: transaction times must be stored for all relations used
in a query. For instance, if a module m retrieves data from relations R1 and R2,
states of both relations need to be explicit in the model:

fm(Im, [R1, Tb(R1)], [R2, Tb(R2)]) = < Om, [R1, Ta(R1)], [R2, Ta(R2)] > (7)

Fig. 2 shows an example of the information captured by our model. Both work-
flows (W1 and W2) have modules that manipulate data in relation R. The se-
quence of states for R, which is maintained by the database system, is also shown
in the figure. For instance, modules m12 and m13 of W1 can be represented by
functions

fm12(I12, [R, T1(R)]) = < O12, [R, T1(R)] > (8)

fm13(I13, [R, T1(R)]) = < O13, [R, T2(R)] > (9)

18 F. Chirigati and J. Freire

respectively. Given these functions, we know that m12 only retrieves data from
relation R, since states before and after the execution are the same, and that m13

modifies relation R—a new state is created. In this case, we also know that m13

is responsible for Δ2,1, i.e., the set of changes applied to S1(R) . Note that the
integrated model also exposes parts of the database provenance that, although
not directly observed by the workflows, affect their results. In this example, only
the changes in Δ2,1 are visible to the workflow. Nonetheless, when W2 executes,
m21 reads state S4(R); as state S2(R) was the last one managed by the workflow
system, we know that Δ4,2 (Δ4,3 +Δ3,2) was performed by external agents.

2.3 Enabling Reproducibility

When a workflow manipulates data in a database, to ensure reproducibility, it
is necessary to take into account the database states, since different database
states might lead to different results (see Fig. 1a). In our model, database states
are uniquely identified and made explicit in the provenance as input and output
for the workflow. Because states before the execution of a module are captured
in the provenance, by re-enacting the workflow instance using the stored state,
it is possible to reproduce its results. Consider, for example, workflow W2 of
Fig. 2. Reproducing this workflow instance is possible because we have recorded
the following information:

fm21(I21, [R, T4(R)]) = < O21, [R, T4(R)] >

In this case, if the current state of relation R is not S4(R), module m21 needs
to retrieve data from R as if R were in this state. Because we know that the
transaction time for the original execution was T4(R), we can retrieve the cor-
responding state S4(R). Then, m21 can use this state in its execution, and the
results can be correctly reproduced.

2.4 Querying Provenance

With workflow and database provenance integrated, it is possible to perform
queries that straddle the workflow and database systems. Below, we use examples
to illustrate different queries that are supported by the integrated model.

Lineage of an output. Consider Fig. 2. Using our model, through the set of
workflow connections and links to the database states, we can trace the complete
provenance of output O14, which includes information about both input data I11
and database state S1(R), which is used to produce outputs that are fed into
m14.

lineage(O14) = {W1, I11, [R, T1(R)]}

Another important benefit of our model is that the combined provenance includes
information about changes to the database which may affect the results of the
workflow, even though they may not be directly observed by the workflow system.

Towards Integrating Workflow and Database Provenance 19

Consider for example a query to find the lineage of output O23. Even though the
changes in Δ3,2(R) were performed by agents external to the workflow system,
the set of operations are present in the backlog and can thus be retrieved from the
database. In addition, by following the provenance links, we can also infer that
states S1(R) and S2(R), as well as workflowW1 with input I11, have contributed
to O23.

Lineage of a database state. Consider module m13 in Fig. 2. The function cor-
responding to this module that is stored as provenance is shown in Equation 9.
From this function, we can infer that the output of m13 (O13) depends on its
input (I13) as well as on state S1(R) (T1(R)). Besides, we can also infer that
state S2(R) is derived by this module using input I13 and state S1(R). In this
case, we have the following:

lineage(S2(R)) = {W1, fm13 , I13, [R, T1(R)]}

Note that, as we have both T1(R) and T2(R), we can not only retrieve S1(R)
and S2(R) from S(R), but also Δ2,1(R). Consequently, it is also possible to
construct answers that include fine-grained information about the effect of m13

on relation R. In other words, we know exactly which tuples were inserted,
updated or deleted by m13.

Lineage of a tuple. Using our model, it is also possible to retrieve the lineage
of individual tuples. Given a tuple s inserted in the database by a workflow, we
compute its lineage as follows. First, we search the backlog relation for s. By
using its unique identifier K (Definition 2), a select operation can be performed
in the backlog relation to get the set of transaction times T associated with s.
Then, we search for each transaction time in Ti ∈ T in the set M of the modules
in workflow instance W . If Ti is an output, and not an input, of function fm, it
means that fm created the state identified by Ti, i.e., fm modified s. In this case,
W and fm are included in the lineage of s. We can also retrieve Op from the
backlog relation to know exactly what was the modification that fm performed
in s.

How-provenance. If a workflow module modifies a relation R, using our model,
it is possible to identify exactly which modifications were performed. As we can
retrieve the set Δj,i(R) of modifications from the backlog, we know exactly how
a module modified the relation from Si(R) to Sj(R).

3 Implementation

As a proof-of-concept for our model, we have implemented it using the VisTrails
system [7,16] and the Oracle RDBMS [14]. VisTrails is workflow-based data
exploration system that provides support for provenance. Oracle is a leader in the
relational database market and in their released system, they support temporal
database features. Notably, the Total Recall [15] sub-system makes it possible

20 F. Chirigati and J. Freire

to automatically track every change to the database as well as to query the
historical information. Once the Total Recall option is enabled for a relation
in the database, an append-only history table is created, which keeps track of
the tuple-level changes applied to the relation. Like in the backlog scheme [11],
each change to the relation recorded in the history table is identified by the
transaction time of the modification.

An interesting aspect of Oracle Total Recall is the ability to query in a relation
as of a time in the past. Given an identifier to a time in the past, Total Recall
recovers the state associated with this time so queries can be performed. The
identifier can be either a timestamp or a system change number (SCN), which
is an integer that uniquely maps to a timestamp. Total Recall also allows the
user to query versions of the relation within a time range, which includes all the
modifications that occurred within that range. The syntax of these queries in
SQL is as follows:

SELECT "column_name" FROM "table_name"

AS OF "time"

SELECT "column_name" FROM "table_name"

VERSIONS BETWEEN "time_1" AND "time_2"

Note that querying as of a time in the past is similar to retrieving a state from
S(R) given its corresponding transaction time. Consequently, this syntax can
be used to reproduce previous results. Also, querying between ranges of time is
similar to retrieving the difference between states, i.e., the delta (Δ).

The VisTrails Total Recall Package. To support the integration between
VisTrails and Oracle Total Recall provenance, we have created a Total Recall
package for VisTrails3. This package consists of three modules: DBConnection,
CloseDBConnection and OracleSQLSource. The first two modules are used to
open and close a connection with an Oracle database, respectively. The third one
is the module used to execute commands in the database. We assume that this
module corresponds to the execution of a single transacation.4 When OracleSQL-
Source is executed, it automatically retrieves from the database provenance the
transaction times, represented as SCN, associated with states before and after its
execution (Tb(R) and Ta(R)). This information is then recorded in the workflow
provenance.

So that users can reproduce prior workflow executions, we have extended the
VisTrails provenance exploration interface: a user can select a particular ex-
ecution and request it to be reproduced by clicking on the reproduce button
(see Fig. 3). When users request to reproduce a workflow execution, the pack-
age checks the transaction times for the modules in the workflow that access

3 For more information about package creation in VisTrails, we refer the reader to the
VisTrails’ Users Guide [17].

4 Note that if multiple transactions are required, they can be modeled using multiple
modules.

Towards Integrating Workflow and Database Provenance 21

Fig. 3. Users may request workflows to be reproduced through the VisTrails provenance
exploration interface

(a) (b)

Fig. 4. When the workflow is executed (a), transaction times before and after the exe-
cution are retrieved. If this workflow instance is to be reproduced (b), the transaction
times are detected to be the same, and then, the query is modified so the correct state
can be used.

the database. To simplify the discussion, let us assume there is only one such
module. If Tb = Ta, it means that the transaction only retrieves data from the
relation. For this case, the original query is automatically rewritten: the “AS
OF” construct is used to ensure that the query will be run over the database
state associated with Tb. It is important to note that the query rewrite is trans-
parent to the user. Fig. 4 illustrates this process. The module OracleSQLSource
performs a select operation over the relation mountaineers. When the workflow
is executed (Fig. 4a), transaction times before and after the module execution
are retrieved from the database provenance (Tb = Ta = 19546). When the work-
flow instance of Fig. 4a is reproduced (Fig. 4b), the system first detects that

22 F. Chirigati and J. Freire

both Tb and Ta are the same; then, the module automatically modifies the query
to retrieve the state associated with SCN = 19546.

If Tb < Ta, it means that the workflowmodule modified the relation. In theory,
an approach similar to the read-only queries could be used. However, in practice,
this operation is more complicated and its performance depends on the implemen-
tation of the underlying database system. The reason for this is the fact that, for
the update to be re-applied, the original state must be reconstructed and materi-
alized: all transactions that committed between Ta and Tb must be rolled back. If
there are many such transactions, this operation can be time consuming.

4 Conclusion and Future Work

In this paper, we present a model that integrates database and workflow prove-
nance. Inspired by work on transactional temporal databases, to bridge the gap
between the stateless model of scientific workflow systems and stateful databases,
our model explicitly captures and stores information about the database states
observed by workflows. With this additional information, it is possible not only
to reproduce workflow executions, but also to support lineage queries that go
across provenance information in a database and workflow system. We have also
described a prototype implementation of our model using the VisTrails system
and the Oracle RDBMS. This implementation provides evidence that our ap-
proach is practical.

While this work provides a first step towards a solution to integrate workflow
and database provenance, there are several problems we plan to address in future
work. Notably, we would like to further investigate query languages and interfaces
for querying the integrated provenance, as well as efficient strategies to evaluate
these queries. Our model enables a rich set of queries over the combined prove-
nance. However, some of these queries might be costly to evaluate. Querying the
lineage of a tuple, for instance, can take a long time if we have a large set ofmodules
M in the workflow instance W . This problem is compounded for queries that in-
volve multiple workflow instances. Another potentially interesting aspect to con-
sider are changes to the structure of relations, i.e., the data definition language
(DDL) operations, which are not captured in the backlog scheme.

Acknowledgments. We thank Dieter Gawlick and Venkatesh Radhakrishnan
for insightful discussions on the Oracle Total Recall option and for their guidance
in the implementation of our prototype. We also thank Jan Van den Bussche for
his feedback on our initial ideas for the integrated model.

References

1. Acar, U., Cheney, J., Bussche, J.V.D., Vansummeren, S., Buneman, P., Kwas-
nikowska, N.: A graph model of data and workflow provenance. In: Proceedings of
the USENIX Workshop on the Theory and Practice of Provenance (TaPP), p. 11
(2010)

Towards Integrating Workflow and Database Provenance 23

2. Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T., Stoyanovich, J., Tannen,
V.: Putting lipstick on pig: enabling database-style workflow provenance. Proceed-
ings of VLDB Endowment 5(4), 346–357 (2011)

3. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1(4), 379–474 (2009)

4. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: Proceedings of the ACM SIGMOD, pp. 1345–1350 (2008)

5. A matter of time: Temporal data management in DB2 for z/OS (2010)
6. Fomel, S., Claerbout, J.: Guest editors’ introduction: Reproducible research. Com-

puting in Science & Engineering 11(1), 5–7 (2009)
7. Freire, J., Koop, D., Santos, E., Scheidegger, C., Silva, C.T., Vo, H.T.: VisTrails.

In: The Architecture of Open Source Applications. Lulu.com (2011)
8. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:

A survey. Computing in Science and Engineering 10(3), 11–21 (2008)
9. Gawlick, D., Radhakrishnan, V.: Fine grain provenance using temporal databases.

In: Proceedings of the USENIX Workshop on the Theory and Practice of Prove-
nance (TaPP) (2011)

10. Huq, M.R., Wombacher, A., Apers, P.M.G.: Facilitating fine grained data prove-
nance using temporal data model. In: Proceedings of the International Workshop
on Data Management for Sensor Networks (DMSN). ACM (2010)

11. Jensen, C.S., Soo, M.D., Snodgrass, R.T.: Unifying temporal data models via a
conceptual model. Information Systems 19, 513–547 (1993)

12. Koop, D., Santos, E., Bauer, B., Troyer, M., Freire, J., Silva, C.T.: Bridging Work-
flow and Data Provenance Using Strong Links. In: Gertz, M., Ludäscher, B. (eds.)
SSDBM 2010. LNCS, vol. 6187, pp. 397–415. Springer, Heidelberg (2010)

13. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the ACM SIGMOD, pp.
1099–1110 (2008)

14. Oracle database, http://www.oracle.com/technetwork/
database/enterprise-edition/overview

15. Oracle total recall with oracle database 11g release 2 (2009)
16. The VisTrails Project, http://www.vistrails.org
17. The VisTrails Users’ Guide, http://www.vistrails.org/usersguide

http://www.oracle.com/technetwork/database/enterprise-edition/overview
http://www.oracle.com/technetwork/database/enterprise-edition/overview
http://www.vistrails.org
http://www.vistrails.org/usersguide

DEEP: A Provenance-Aware Executable

Document System

Huanjia Yang1, Danius T. Michaelides1, Chris Charlton2, William J. Browne3,
and Luc Moreau1

1 Electronics and Computer Science, University of Southampton, UK
{hy2,dtm,L.Moreau}@ecs.soton.ac.uk

2 Graduate School of Education, University of Bristol, UK
c.charlton@bristol.ac.uk

3 School of Veterinary Science, University of Bristol, UK
william.browne@bristol.ac.uk

Abstract. The concept of executable documents is attracting growing
interest from both academics and publishers since it is a promising tech-
nology for the the dissemination of scientific results. Provenance is a
kind of metadata that provides a rich description of the derivation his-
tory of data products starting from their original sources. It has been
used in many different e-Science domains and has shown great poten-
tial in enabling reproducibility of scientific results. However, while both
executable documents and provenance are aimed at enhancing the dis-
semination of scientific results, little has been done to explore the inte-
gration of both techniques. In this paper, we introduce the design and
development of Deep, an executable document environment that gener-
ates scientific results dynamically and interactively, and also records the
provenance for these results in the document. In this system, provenance
is exposed to users via an interface that provides them with an alterna-
tive way of navigating the executable document. In addition, we make
use of the provenance to offer a document rollback facility to users and
help to manage the system’s dynamic resources.

1 Introduction

e-Science aims to make available complex computation and analysis to users
via tools that are easy to use and understand. In the context of quantitative
social science, we observe that cutting edge methodological developments are
beyond the reach of some social scientists that might benefit from new and com-
plex analysis tools. The e-Stat project brings together statisticians, social and
computer scientists in a collaboration funded by the UK’s Economic and So-
cial Research Council to build an environment for social scientists that provides
learning pathways to bring these cutting edge developments into their working
practices.

We also observe that traditional paper-based documents come short of meet-
ing the goals of disseminating complex scientific research and that executable

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 24–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DEEP: A Provenance-Aware Executable Document System 25

documents may provide a possible solution. In the e-Stat project, we have devel-
oped Deep(Documents with Embedded Execution and Provenance), a system
that combines document presentation with a computational back-end, thereby
combining the narrative and expository advantages of conventional documents
with the interactive and experimental advantages of computational methods,
allowing researchers to share research findings and techniques and also docu-
ment their research process. Our document reading interface allows users to
explore beyond the document content and examine the dynamically generated
content in detail. This facility allows readers to get a deep understanding of the
computation that a Deep document encapsulates, providing a valuable learn-
ing pathway. Deep is part of the statistical modelling package called Stat-JR[1]
developed during the course of the e-Stat project.

It is vital for Deep to keep track of the computational processes that occur
and the dynamic content that they generate. This information is essential to un-
derstand artifacts created in context and is required in order that results can be
validated, reproduced and reused. This matches the principle of data provenance
models, which represent the information that can help determine the nature and
derivation history of a data product[2]. In Deep, we integrate provenance gen-
eration based on a specialization of the PROV Data Model (PROV-DM)[3]. The
contributions of this work are threefold: firstly, we have designed a provenance
data model to describe the internal behaviour and the resource organization of
our executable document system; secondly, the information expressed according
to this data model is used to provide users with novel resource and document nav-
igation experience; thirdly, provenance information is also used to drive certain
system functions, such as performing execution status checking and document
rollback.

The remainder of this paper is organized as follows: we survey some related
work in Section 2 before extracting the requirements and presenting some basic
system design principles for the e-Stat executable document system in Section
3. We discuss our integration of provenance in the internal data model of Deep
in Section 4. In Section 5, we introduce the system functions that allow render-
ing and navigation of provenance information. The provenance-driven system
functions are presented in Section 6. Finally we conclude our work in Section 7
before discussing our future work.

2 Related Work

Academic papers have always been the primary approach by which research re-
sults are disseminated within the science community. Their shortcomings, how-
ever, are also well recognized as not being able to provide sufficient support for
verification, reproducibility and reuse of the research results that they describe.
With the rapid developments of e-Science, the possibility of making interac-
tive digital publications with more comprehensive information embedded within
them has attracted interest from both academics and science publishers [4]. Bech-
hofer et al. [5] proposed the notion of Research Object (RO), which is defined as

26 H. Yang et al.

an aggregation of essential resources and information relating to experiments and
investigations that helps other people to reproduce and reuse research results.
One of the key motivations of such RO notion is its potential in supporting “rich
publication”. Researchers and publishers who are interested in such notion gath-
ered together in the Beyond the PDF [6] workshop, in which a variety of models,
publishing tools, and impact metrics were introduced. However, most of them
focus on the annotation, linked data and bundling models for static resources,
with no concrete design or development for executable document. In their work
on verifiable computational scientific research, Gavish and Donoho[7] introduce
the notion of identifying computational results via a URL and also establish-
ing public repository services to archive all published results. The authors argue
that proper usage of this notion and service structure will simplify the practice of
reproducible research and executable papers, but no solution is explicitly given
to develop this claim further. The Author-Review-Execute Environment[8] has
a similar notion of linked results, but it locates the results archive on authors’
own machines. This requires that each author maintains a server and installs
the service to expose the data and the execution resources, which raises issues
of security and adoption. The SHARE environment[9] shows more progress by
providing the execution services directly on its server. However, it still has not
achieved an integrated interface for both the paper reading and the executions.
Instead, for accessing the original data and executions, users have to use a sepa-
rate view that just leads to a remote virtual machine with the required execution
environment. The Collage system[10] joins the static content in the documents
with interactive/dynamic components that enable the readers and reviewers to
access original data contained within to validate the results by re-executing the
software that generated them, and to get the document dynamically updated
with the latest results. Compared to other existing systems, Collage provides
a unified, dynamic and interactive document reading interface for an improved
reading experience. However, it lacks the flexibility of supporting multiple exe-
cutions in one document and the ability of navigating the resource structure.

Provenance is well understood in the context of art or digital libraries, where it
refers to the documented history of an art work or a digital object respectively[11].
Provenance has also shown great potential in the e-Science domain, as it provides a
data product’s derivation history, which is crucial information for validating and
reproducing the results[2]. It allows users to understand, verify and even reuse
the data, and thus helps achieve a better level of research reproducibility. For the
past decade, much work has been done to advocate provenance in workflow appli-
cations in various scientific domains[12], where provenance has shown some of its
promising features in leveraging effective dissemination of research results. How-
ever, little has been done to integrate provenance into the field of executable doc-
uments. The authors in [13] propose a provenance based infrastructure to support
the executable document’s life cycle, while in [14] the authors attempt to create
paper publications with provenance embedded in them to describe appropriate
data and results. However, in both these papers, the proposed designs depend
strongly on a specific workflow system for executions and content reading.

DEEP: A Provenance-Aware Executable Document System 27

Some systems hide the complexities of running workflows from the user by
providing easy to use front-ends configured for the the application in mind.
VisMashup [15] allows the creation of custom visualization applications using
VisTrails as the underlying dataflow system. Web applications are a popular
delivery platform such as in the Digital Synthesis Framework[16].

3 Deep Requirements and Design

The requirements for Deep documents and the Deep system, based on the
project scenarios are as follows:

Interactive: Deep documents should provide a compelling, interactive and im-
mersive environment. They should be reactive to user input and authors must
be able to write content that can be tailored to the reader’s inputs.

Interface with Significant Computation: Deep should integrate with ex-
ecution back-ends to perform non-trivial computation. Such integration should
be seamless and maintain the document metaphor.

Exploratory: Deep and documents written for the system should allow the
reader to explore the material assembled within the document and should sup-
port them in understanding the relationships between elements of the document.

Complete Access: the user should be able to view all static and dynamic
resources used and generated the Deep document and not just those those the
author chose to show in the main body of the document. Such material would
help improve the user’s understanding, and provide a valuable resource as their
capability improves.

Dynamic to Static: Deep documents have a variety of uses and we identify a
spectrum of content from dynamic to static. A fully dynamic document would
consist of only dynamic or computational resources - such as an electronic note-
book. A static document, on the other hand, requires no computational backend
as all possible dynamic resources would be contained in the Deep document.
An academic paper would be an example of such a static document. Provenance
included in the document describes the relationships between any contained
dynamic resources and the author would decide what dynamic resources are
included.

3.1 Deep System Design and Overview

The major components of Deep are shown in Figure 1. A Web Browser(1) acts
as the front-end providing a familiar interface to users with a strong linking
and navigation metaphor. HTML is the chosen format for the visual content in
Deep, since we did not want to have to invent a new document and rendering
language. In addition, by using a widely known and used format, authors should
find it easier to write content (because there is a wealth of material available
about writing HTML and they can use a wide range of HTML editing tools).

28 H. Yang et al.

A significant design decision in the system is the relationship between the
visual content and the execution environment. We consider a Deep document
to consist of a collection of resources of different types and uses (for example
static HTML content, a dataset to be used in some computation, a graph that
was created by an execution). This resource-centric approach informs the design
of the interface between Deep and the execution engine. The action of the
user reading a Deep document establishes relevant resources which are made
available to the execution engine, which, in turn, may create new resources. An
“execution environment” provides the container to which resources are made
available in the system. Resources have their own unique identifiers but are
also “bound” into the environment with simple names (“binding names”). The
unique identifiers are used by the system whereas binding names are used by
the authors to anchor dynamic resources into their document as the resources
become available.

The Deep Server component (4 in Figure 1) maintains the execution envi-
ronments and generates notifications when resources are created, removed or
bound into the execution environments. These notifications trigger activities in
the browser front-end for rendering and user interaction, and in the execution en-
gines(9) via the engine API(3) . TheDeep Server uses the Resource Management
component(5) for storage of Deep document files(8), provenance generation(6)
and an RDF store(7) for metadata storage and querying. An HTTP server(2) ex-
poses the Deep Server to the Web Browser and the front-end written in HTML
and Javascript.

Fig. 1. Deep system structure

Figure 2 shows the browser based reading interface showing an example Deep
document from the e-Stat project. The interface consists of navigational ele-
ments: the menubar at the top, the page number lists top and bottom and the
contents list top to the left. The main body of the document shows a number
of paragraphs of static content with dynamic content (in boxes with curved cor-
ners) placed at certain points between them. The first piece of dynamic content
consists of an input widget in which the user can select the explanatory vari-
ables for the statistical model. The remaining items of dynamic content (some

DEEP: A Provenance-Aware Executable Document System 29

Fig. 2. Screenshot of the reader interface displaying a Deep document

30 H. Yang et al.

mathematical notation and a table) have been generated as a result of the user
input. At any time, the user is free to return to the input widget and make a
different selection, and so triggering a new computation, the generation of new
resources and causing the document to update.

There are a range of visual behaviours available to enable the document to
react to the presence of dynamic resources. In this example, when the user first
begins reading, the content below the input box is hidden and is only revealed af-
ter the computation and the dynamic resources are generated. Other behaviours
include hiding content, behaviours that are conditional on expressions and ex-
tracting specific fragments from resources.

Since the Deep reading front-end is a browser, all dynamic resources must
have HTML renderings but they may have other representations such as XML
and CSV to enable exporting of resources and also to facilitate more complex
interface widgets. Alternative rendering front-ends could be implemented by sup-
porting appropriate representations of these dynamic resources and translating
of the static content.

3.2 Deep Document Structure and Reading

Deep documents are structured in two manners: content is grouped into pages
for presentation; and pages are grouped into “activity regions” for execution
purposes. Activity regions have resources associated with them and these re-
sources are only active when the reader is reading a page in that region. This
structure allows authors to have a degree of control over when execution occurs
and also means that Deep documents can have many executions without the
system having to instantiate all resources at once.

When a user reads a Deep document, the system creates a number of struc-
tures to maintain state. A “reading process” is a top level container that de-
scribes the action of reading a document. Within a reading process, the action
of reading an activity region is described by an “activity”. An activity can con-
tain one or more “executions”. Executions are typically triggered by user input.
Multiple inputs by the user result in multiple executions. The representation of
these structures and the mapping to common provenance terms is discussed in
the following section.

4 Provenance Data Model for an Executable Document
System

On the basis of the requirements and the Deep document file structure discussed
in the previous section, we present a provenance data model to describe the
system’s behaviour and resource organization.

Our model is based on PROV [3], a standardization of a number of provenance
vocabularies[17]. As shown in Figure 3, the internal provenance data model con-
sists of two components: the definition component and the runtime component.
The definition component consists of information defined by the author in the

DEEP: A Provenance-Aware Executable Document System 31

Deep document file, which is loaded and stored in Deep’s RDF store when the
file is imported. The information is the Deep document’s descriptive metadata,
which provides the basic information for the document as well as the organi-
zation structure of the static content and resources contained within it. More
specifically, it describes the activity regions contained in the document and the
resources associated with each of them. All the resource files contained in the
Deep document, as well as the file itself and the activity regions contained, are
considered as PROV entities, and are represented as ellipses in Figure 3. One
thing to note is that an activity region is linked to each of its resources via a re-
source binding, which is a ternary relation that also specifies a “binding name”.
This allows an actual resource to be bound with multiple activity regions, but
with different names in each of them to avoid confusion. It also provides a sim-
ple way for Deep document authors to notate the resources and to place the
dynamic content in the document’s HTML content.

Fig. 3. Structure of data defined in Deep document files and provenance recorded
during reading

The runtime component contains the provenance information recorded au-
tomatically during Deep document reading. For this information, three activ-
ity types are defined in an ebook namespace: ReadingProcess, Activity and
EbookExecution. They are subtypes of prov:Activity and represent the read-
ing of an Deep document, the notion of being in an activity region and a specific
execution respectively. The relations isReadingOf and isActivityOf associate
them with appropriate static structures. The PROV wasStartedByActivity re-
lation expresses that the ReadingProcess initiates an Activitywhen the reader

32 H. Yang et al.

enters an activity region and also that an Activity initiates an EbookExecution

as a result of the execution engine having appropriate resources. All types of re-
source consumed by the EbookExecution processes are subtype of prov:Entity,
including ebook:Resource, which is the resource file already defined in the
definition component, and ebook:Input, which is the collection of parame-
ters given by the user during reading. They are all linked to the corresponding
EbookExecution processes with the PROV Usage relation. The ternary relation
is used so that the “binding name” that the resource used in the execution can be
specified. The results generated by EbookExecution are of type ebook:Output,
a subtype of prov:Entity, and are linked to the corresponding EbookExecution
processes with the PROV relation wasGeneratedBy.

Using this model, the system can construct a provenance graph for each read-
ing process created by the user. It is a directed graph that grows as the user’s
reading activity proceeds. As we use a semantic web backend with an RDF store
to persist and query data, such provenance graph is recorded with terms from
the PROV ontology [18].

Fig. 4. Deep document reading activities and the construction of provenance graph

The construction of the provenance graph with respect to the general system
activities involved in reading a Deep document is shown in Figure 4. The asser-
tions of the provenance record are caused by a few key events during reading.
Those events include starting a new reading process, entering an activity re-
gion, triggering an execution and the generation of an execution result. The first
three events are user-triggered events, which cause assertion of prov:Activity
records with corresponding subtypes and prov:wasStartedByActivity records
where appropriate. In the case of triggering an execution, the EbookExecution

instances are also linked to each static resource it consumed with a used relation.

DEEP: A Provenance-Aware Executable Document System 33

The last event, however, is triggered internally when a result is obtained from
the execution engine. The system creates an ebook:Output instance for the re-
sult with a corresponding subtype depending on its nature. For example, an
execution may consume statistical template, dataset and input files to gener-
ate results in the form of figures, tables, code and LaTeX based equations etc.
They are represented in the provenance graph with a URI and an attribute
that points to their file location. Moreover, they are directly connected to the
instance of the ebook:EbookExecution process that generated them by the re-
lation prov:wasGeneratedBy.

With the provenance data model and its implementation, the system is able
to perform automated recording of the provenance graph that describes the
complete system activity and dynamic resource organization within an Deep
document. In the following two sections, we show that by properly presenting or
extracting the required information from the provenance recorded, the system
can enable additional functionality and provide the users with a better reading
experience.

5 Presenting and Navigating Provenance Information -
Exposing Provenance to Support Users

Provenance information recorded in existing provenance-aware systems is usually
linked to the corresponding resource, so that it can be used by itself or other
applications. Whilst this information is traditionally consumed by machines,
we also consider it useful in certain circumstances to expose the provenance to
human users.

InDeep, dynamic resources are generated at many stages in the user’s reading
process. Although an author may write about these dynamic resources in the
body of an document, the user may still need additional information regarding
these resources and the executions that generated them for the following reasons:

– A reader may want to see an overview of the dynamic resources and the
resources used to generate them, either because the document does not go
into enough detail or because a clearer view will help in understanding the
relationships between the various resources;

– The Deep document allows the reader to try out different inputs for the
same execution. As they do so, corresponding dynamic resources embedded
in the Deep document content are updated with the new results. However,
the reader may want to access old results in order to make comparisons;

– Executions triggered by the reading process may generate more outputs than
those that the Deep document author has chosen to show directly in the
document. The reader might be interested in these additional resources.

In order to expose this additional information, we have introduced the “resource
view” into the reading interface. It is accessible from the menu bar at the top of
the reading interface or by clicking on the “About” link next to each dynamic

34 H. Yang et al.

resource embedded in the document content. The resource view, shown in Figure
5, consists of a resource tree view and an information panel, which contains
four tabs displaying the content, information, provenance and export links of a
selected resource.

Fig. 5. The resource tree (left) and the provenance tab (right)

The resource tree shows the resources used in the current reading process
in two categories: ‘Static’ and ‘Runs’. The ‘static’ resources are included in the
Deep document to support the executions. In the context of the statistical appli-
cation these may include statistical model templates (which construct statistical
models), datasets and pre-defined input sets. The ‘Runs’ category lists execu-
tions that have been carried out in the current activity region of the document.
Each of the executions can be further extended to show a sub-tree of all the
resources used and generated allowing the user to gain a deeper understanding
of the dynamic nature of the document. These executions could be those trig-
gered by the author and subsequently included in the Deep document or they
could be executions instigated by the reader. The distinction between the two
is not clear in the resource tree interface (except via the time labels) and needs
improving.

In the information panel, the Content tab displays the actual content of the
resource, whilst the Information tab shows additional metadata associated with
it. The Provenance tab shows the provenance of a resource including its rela-
tionship with the reading process, executions and other resources. The Export
tab allows the user to extract resources from the Deep document in appropriate
formats. The resource view is designed to let the user navigate around the re-
sources in the usual hypertext manner by clicking on links in both the resource
tree and the information and provenance tabs.

The resource view is fully driven by the provenance graph of the current
reading process. This graph is obtained from a provenance service in the backend

DEEP: A Provenance-Aware Executable Document System 35

server by making an HTTP GET request on the provenance URL of a reading
process. When a provenance request is received, the provenance service traverses
the named-graph for the reading process, and builds the provenance graph using
Provpy, a Python-based binding for PROV-DM [3] that we have developed.
The library serializes the provenance graph into PROV-JSON[19]. On the client
side, we have developed a simple JavaScript library “provjs” to parse and query
PROV-JSON graphs and the web application uses it to build the resource tree
and the information and provenance tabs.

6 Provenance-Aware Interactive Reading - Using
Provenance to Drive System Functionality

Many existing provenance-aware systems focus on the ability of automatically
recording and sharing of provenance information (provenance is often just
recorded, and made available as raw data). In Deep, we take this a step fur-
ther by not only exposing provenance information, but also by using it to drive
some system functionality: the Deep document execution status checking and
document rollback.

6.1 Deep Document Execution Status Checking

The document execution status checking is used by Deep to determine whether
a specific computation needs to be performed. By avoiding unnecessary com-
putation, and instead drawing on previously calculated results, Deep is more
responsive to user interaction. The presence of these reusable results arises from
two situations. Firstly, they may be stored in theDeep document file because the
author determined that they were important (for example in a static document
where all the possible dynamic resources have be pre-calculated). Secondly, as a
user reads and interacts with a Deep document dynamic resources are created.
If the user returns to a configuration of inputs that has been explored before,
the dynamic resources generated previously can be reused.

Given the resource-centric design of Deep and execution environment, the
query to determine whether a previous execution can be reused is simply stated
as: given the current set of inputs, is there an existing execution that has exactly
the same set of inputs with exactly the same mapping to bound names. Figure
6 shows the SPARQL query that we generate to determine suitable executions
where we have an prov:Used for each input and the variables cur act region

and input1 to inputN are passed in as parameters to the query. This query
is executed on the named-graph for the current reading process and if there is
a matching execution, the system finds all the outputs for that execution and
reinstates those resources. Essentially, the combination of resource storage and
our provenance information allow us to perform a form of memorization where
the focus is on the needs of the document and is agnostic to the execution engine.
This caching, however, is similar to caching that occurs in some workflow systems
such as the VisTrails Cache Manager[20] in the VisTrails system. Execution

36 H. Yang et al.

status checking is not a frequently triggered activity, so, although performance
of the SPARQL queries has not been observed to be critical, the technique of
finding existing executions by querying using a signature of inputs could be
applied here should the provenance graphs become large (i.e. large numbers of
executions or executions with large numbers of inputs).

SELECT ?exec WHERE { ?exec rdf:type ebook:EbookExecution.

?exec prov:wasStartedByActivity ?activity.

?activity ebook:isActivityOf ?cur_act_region.

?exec prov:used ?input1.

?exec prov:used ?input2.

...

?exec prov:used ?inputN. }

Fig. 6. The SPARQL query used to check for an existing execution

6.2 Deep Document Rollback

The other system function driven by provenance is document rollback. During
the reading of a Deep document, the user can return to parameter input areas
in the document and give different responses. This will trigger new executions
and cause the document content to update with different results. Although the
resource view allows the inspection of individual results from any execution,
the user may prefer to see them in the context of the Deep document content
and therefore wish to revisit a previous execution by returning the state of the
document to that point in time. This is performed purely from the point of
view of the document and document reading infrastructure and is not reliant on
support from the execution engine.

We expose this document rollback facility by allowing the user to click on exe-
cutions in the resource tree shown in Figure 5. In response, Deep must reinstate
all resources that were generated by the relevant execution. These resources are
found by querying the provenance record with a SPARQL query and rebinding
them into the execution environment.

These two facilities of Deep rely on the recording of provenance and the use
of RDF and SPARQL to represent and query it.

7 Conclusion and Future Work

Executable documents have become a promising e-Science technology that aims
to increase comprehension and reproducibility in the dissemination of scientific
results. Data provenance has also shown its potential to enable reproducibility of
research results by providing a uniform description of their derivation history. In
an attempt to bring together these two technologies,Deep integrates provenance
in an executable document system. This paper reported three main contributions

DEEP: A Provenance-Aware Executable Document System 37

in terms of provenance study. Firstly, we have integrated provenance with the
system’s internal data structure by using a specialization of the PROV data
model to describe the behaviour and resource organization of the system. By
recording this provenance for all the dynamic results generated during reading,
Deep is able to provide their full derivation history. Secondly, in terms of the
usage of provenance, we have shown that, in our interface, provenance can be
exposed to and navigated by Deep users. This provides the users with a different
level of understanding of the resource structure, as well as new ways to navigate
the document. Thirdly, we have designed two of Deep’s features, the execution
status checking and the document rollback, to be based fully on provenance.
This demonstrates that data provenance is not just information to be shown to
the reader, but can also be used to drive the system functionality.

Deep provides a framework that could be applicable to a broad range of sci-
entific domains. With the integration of provenance in our Deep documents, we
can tackle issues of verification and reproducibility and our future work will aim
to improve Deep’s infrastructure and functionality to support this. Such work
could be twofold: firstly, we aim to make provenance exportable and transferable
within the Deep document files. This means that a user could generate their
results in the form of an document and disseminate it to other readers. The
provenance carried with the document will help the reader to understand, ex-
amine and even reproduce results for the purposes of validating or reusing them.
Secondly, our use of a unified representation of provenance, means that we could
integrate with other provenance-aware software and provide the user with more
detailed provenance, allowing reproducibility and validation at various levels. In
terms of modelling and implementation, both of those two points may lead to
the notion of provenance accounts being introduced into our system. This would
allow us to bundle provenance generated by different users so that Deep docu-
ments can be distributed multiple times to support collaborative work, and, to
bundle provenance from different components, including third party software,
for better information granularity.

Acknowledgments. This researched was conducted as part of the E-Stat
project, funded by the ESRC (RES-149-25-1084) under the Digital Social Re-
search programme. We wish to thank Richard Parker and our other colleagues at
the Centre for Multilevel Modelling for their input into the design of our system.

References

1. The eStat Project: Stat-JR, http://www.bristol.ac.uk/cmm/research/estat/

2. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

3. Moreau, L., Missier, P.: The PROV Data Model and Abstract Syntax Notation,
http://www.w3.org/TR/prov-dm/ (retrieved March 28, 2012)

4. de Waard, A.: The Future of the Journal? Integrating research data with scientific
discourse. Nature Precedings (713)

http://www.bristol.ac.uk/cmm/research/estat/
 http://www.w3.org/TR/prov-dm/

38 H. Yang et al.

5. Bechhofer, S., Buchan, I., Roure, D.D., Missier, P., Ainsworth, J., Bhagat, J.,
Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides,
D., Owen, S., Newman, D., Sufi, S., Goble, C.: Why linked data is not enough for
scientists. Future Generation Computer Systems (2011)

6. Bourne, P., de Waard, A.: Beyond the PDF Workshop (2011),
http://sites.google.com/site/beyondthepdf

7. Gavish, M., Donoho, D.: A Universal Identifier for Computational Results. Proce-
dia Computer Science 4, 637–647 (2011)

8. Müller, W., Rojas, I., Eberhart, A., Haase, P., Schmidt, M.: A-R-E: The Author-
Review-Execute Environment. Procedia Computer Science 4, 627–636 (2011)

9. Gorp, P.V., Mazanek, S.: SHARE: a web portal for creating and sharing executable
research papers. Procedia Computer Science 4, 589–597 (2011)

10. Nowakowski, P., Ciepiela, E., Hareżlak, D., Kocot, J., Kasztelnik, M., Bartyński,
T., Meizner, J., Dyk, G., Malawski, M.: The Collage Authoring Environment. Pro-
cedia Computer Science 4, 608–617 (2011)

11. PREMIS Working Group: Data dictionary for preservation metadata. Technical
report (2005)

12. Moreau, L.: The Foundations for Provenance on the Web. Found. Trends Web
Sci. 2(2-3), 99–241 (2010)

13. Koop, D., Santos, E., Mates, P., Vo, H.T., Bonnet, P., Bauer, B., Surer, B., Troyer,
M., Williams, D.N., Tohline, J.E., Freire, J., Silva, C.T.: A Provenance-Based In-
frastructure to Support the Life Cycle of Executable Papers. Procedia Computer
Science 4, 648–657 (2011)

14. Bauer, B., Gukelberger, J., Surer, B., Troyer, M.: Publishing provenance-rich sci-
entific papers. In: Procs. TAPP 2011 Theory and Practice of Provenance (2011)

15. Santos, E., Lins, L.D., Ahrens, J.P., Freire, J., Silva, C.T.: VisMashup: Streamlining
the Creation of Custom Visualization Applications. IEEE Trans. Vis. Comput.
Graph. 15(6), 1539–1546 (2009)

16. Myers, J., Marini, L., Kooper, R., McLaren, T., McGrath, R.E., Futrelle, J., Bajcsy,
P., Collier, A., Liu, Y., Hampton, S.: A Digital Synthesis Framework for Virtual
Observatories, Edinburgh, UK (2008)

17. Sahoo, S., Groth, P., Hartig, O., Miles, S., Coppens, S., Myers, J., Gil, Y., Moreau,
L., Zhao, J., Panzer, M., Garijo, D.: Provenance Vocabulary Mappings. Technical
report, W3C Provenance Incubator Group (August 2010)

18. Sahoo, S., McGuinness, D.: The PROV Ontology: Model and Formal Semantics,
http://www.w3.org/TR/prov-o/

19. Huynh, T., Jewell, M., Keshavarz, A., Michaelides, D., Moreau, L., Yang, H.: The
PROV-JSON Serialization, http://users.ecs.soton.ac.uk/tdh/json/

20. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C.T., Vo, H.:
Vistrails: enabling interactive multiple-view visualizations. In: IEEE Visualization,
VIS 2005, pp. 135–142 (October 2005)

http://sites.google.com/site/beyondthepdf
http://www.w3.org/TR/prov-o/
http://users.ecs.soton.ac.uk/tdh/json/

Towards Unified Provenance Granularities

Timothy Lebo, Ping Wang, Alvaro Graves, and Deborah L. McGuinness

Tetherless World Constellation
Rensselaer Polytechnic Institute

Troy, NY, USA
{lebot,gravea3}@rpi.edu, {wangp5,dlm}@cs.rpi.edu

http://tw.rpi.edu

Abstract. As Open Data becomes commonplace, methods are needed
to integrate disparate data from a variety of sources. Although Linked
Data design has promise for integrating world wide data, integrators of-
ten struggle to provide appropriate transparency for their sources and
transformations. Without this transparency, cautious consumers are un-
likely to find enough information to allow them to trust third party
content. While capturing provenance in RPI’s Linking Open Govern-
ment Data project, we were faced with the common problem that only
a portion of provenance that is captured is effectively used. Using our
water quality portal’s use case as an example, we argue that one key
to enabling provenance use is a better treatment of provenance gran-
ularity. To address this challenge, we have designed an approach that
supports deriving abstracted provenance from granular provenance in
an open environment. We describe the approach, show how it addresses
the naturally occurring unmet provenance needs in a family of applica-
tions, and describe how the approach addresses similar problems in open
provenance and open data environments.

Keywords: Data Integration, Transparency, Provenance Granularity,
Derived Abstractions, Provenance of Provenance, Linked Data.

1 Introduction

Open Data is growing in popularity and is freely available for anyone to use
and republish as they wish, with few or no restrictions from copyright, patents
or other mechanisms of control. Open Government Data (OGD) is one rapidly
growing portion of Open Data. Catalyzed in 2009 by the United States and the
United Kingdom, governments from local to national levels are publishing their
data for public use [14,5]. These data are available for personal or commercial use
and offer the potential to increase government transparency and accountability
and create many opportunities for businesses and communities. These data have
the potential to help citizens understand important topics such as pollutants near
their home [18], crimes in their neighborhood [8], public works1, the economy
[3], natural disasters2 [9], and political activities [14].

1 https://recollect.net
2 http://purl.org/twc/lebo/ipaw/2012/od-natural-disasters

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 39–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tw.rpi.edu

40 T. Lebo et al.

Although individual datasets may be interesting on their own, there is a hope
and expectation that combining disparate datasets will lead to even more insight
and value – the whole should be greater than the sum of its parts. Linked Open
Data is becoming a popular method to connect and publish data on the web [10].
One highly cited view3 has grown from twelve to 295 datasets between 2007 and
2011. Each of those 295 datasets ranges in size and comprises many more sub-
sets of data. For example, the TWC-LOGD dataset4 that our group publishes
contains almost 10 billion RDF triples created from thousands of datasets. In ad-
dition, we have cataloged5 more than 710,000 other datasets that can be added.
The Linked Open Data cloud is continuing to grow and already provides infor-
mation about a range of topics including Life Sciences, Government, Scholarly
Publications, Social Media, and E-Commerce.

Unfortunately, current approaches for creating Linked Data present both im-
plicit and explicit challenges around trust of the Linked Data itself. Because
many primary data sources do not publish their material as Linked Data, third
parties are left to independently transform and republish it. As illustrated in
Figure 1, this forces application developers to choose between two sources of
the same content. Although the first option is provided by an authoritative and
recognizable source (usually with deep domain knowledge), this data is often not
uniformly accessible and not linked to other data. Meanwhile, the second option
is uniformly accessible and linked to other datasets, but is not provided by an au-
thoritative source. These third party sources are often experts in technology, but
not the particular subject matter. When consumers require more than a vague
citation for a transformed dataset, the benefits of Linked Data cannot outweigh
the potential risks introduced by a non-authoritative and non-transparent third
party.

One obvious approach that third party aggregators can take is to provide
transparency for the transformations that they perform as well as the sources
used. Application developers would then be able to choose Linked Data instead of
the primary source because its lineage is available for inspection. To demonstrate
this kind of transparency, RPI’s Linking Open Government Data project used
the csv2rdf4lod conversion toolset [17] to capture provenance at each stage of
Linked Data production. But after 18 months of capture, only a fraction of it
has been used in applications.

The pitfall of capturing more provenance than is used is not new. As Chap-
man warns, Don’t just maintain provenance, maintain good provenance [2]. But
as closed provenance systems become open, homogeneous systems become het-
erogeneous, and local coordinations become distributed, how does one know what
good provenance is a priori? Similarly, are there different notions of good prove-
nance in different contexts? With these opening trends, less control of overall
systems, and less knowledge of expected usage contexts, the problem of defining
and maintaining good provenance becomes more challenging. Indeed, Linked

3 http://richard.cyganiak.de/2007/10/lod/
4 http://logd.tw.rpi.edu/twc-logd
5 http://purl.org/twc/links/iogds

Towards Unified Provenance Granularities 41

Transformation / Integration

Primary Source
Transformed

+ Granular Provenance
Application
Developer

Primary Source

C
B

A

?

Fig. 1. Linked Data is often produced by third parties that transform data from var-
ious sources, which introduces a tradeoff between authoritative content and easier to
use linked data. Although provenance enables transparency, excessive granularity may
inhibit its use.

Open Data is an open system not only in the Open Data sense, but also in
the sense of Moreau’s [13] Open Provenance Vision. In the general conversion
scenario that we describe above, many publishers offer primary data, many ag-
gregators convert primary data to Linked Data, many developers choose among
the data for their applications, and many audiences use them. All of these ac-
tivities are performed across the world with loose, if any, coordination.

As systems become more open and information flows across multiple systems,
we need reliable strategies for handling the disparity between what application
developers need and what they get. We believe that framing these strategies
around provenance granularity promises to address these growing challenges. In
this paper, we describe a method to resolve incongruent provenance granularities
using an open system design.

2 Related Work

Granularity is a widely studied problem in provenance. Gibson et al. [7] point
out that the clutter of provenance capture obfuscates the conceptual view of pro-
cesses. This observation parallels the provenance granularity disparity that
our approach offers to address: too many details when fewer statements would
adequately answer the question at hand. Gibson et al. show how user-defined
views along with a high level summary of execution history can improve user
understanding of provenance. ZOOM [1] focuses on user needs by offering prove-
nance of customized granularity to achieve benefits like abstraction, privacy, and
reuse between workflows. We expand on these ideas by showing how summariza-
tions can be derived by third party consumers in an open environment.

Chapman and Jagadish [2] point out that provenance support needs more
than a simple capture-store approach, which is a challenge we address. They also
note that a choice in granularity is required and distinguish between a coarse-
grained file level and a fine grain attribute level. However, the situation we

42 T. Lebo et al.

present here motivates a distinction between coarse and fine granularities about
the file level itself. Finally, while they note the importance of enabling users to
actively view provenance at multiple levels, the approach we present resolves
incongruent granularities between systems themselves. Ikeda and Widom [11]
state that while existing work on provenance primarily focuses on modeling and
capturing, there has been inadequate support for querying and using provenance.
They also propose that provenance be captured at a variety of granularities.
Alternatively, the approach we present here facilitates query and use by providing
a mechanism to derive simpler, more abstract provenance that is more suitable
for particular, possibly unanticipated uses.

Different techniques have been used to model provenance granularities.
Stephan et al. [16] presents a multi-tier provenance model in which each tier
has a unique purpose, different characteristics, and distinct levels of granular-
ity. They use the Open Provenance Model (OPM) to encode their provenance
and disseminate higher level provenance that are abstracted from provenance
captured in different tiers, e.g. instruments used, parameters used, and qual-
ity/confidence level, to produce Value Added Products (VAPs). Ding et al.[4]
propose RDF molecules as a way to handle granularities between a single triple
and an entire graph. RDF molecules are generated by decomposing a graph into
separate sub-graphs. Although this technique can be used to track the movement
of RDF subgraphs across systems, it fails to apply when the graph is abstracted
to new forms.

Other granularity techniques are oriented towards the end user or domain ex-
pert. WDo [15] is a framework for provenance granularity where domain experts
use a graphical interface to specify process composition. Methods are treated as
black boxes at one general level and further described at more specific levels in
terms of how they transform information types. The results are described using
an OWL ontology that extends the Proof Markup Language (PML) ontology
[12]. While this approach is helpful to elicit appropriate abstractions from ex-
perts, its information types do not allow one to specify the detailed structures
that are required for application consumption. Garijo [6] does something similar,
but has the same publisher bias for abstraction instead of enabling third parties
to derive their own abstractions for their own purposes.

3 csv2rdf4lod’s Assertions of Granular Provenance

RPI’s Linking Open Government Data (LOGD) project began collecting prove-
nance on June 25th, 2010 using a strategy to encode provenance that might
be useful to our anticipated applications. One persisting purpose is to enable
transparency for third party transformations when creating well structured and
highly connected Linked Data from various disparate sources. To date, the con-
version automation has recorded more than a half million instances of the major
PML classes (Information, SourceUsage, NodeSet, and InferenceStep) and used
more than 200 InferenceEngines. We continue to reflect on what is there, how
we are using it, and how we can get more value from it. This section provides an

Towards Unified Provenance Granularities 43

overview of the kinds of provenance captured and highlights some patterns that
have worked well throughout the project’s development. The granular, context-
free provenance that we describe here will contrast with the abstract, user-driven
provenance that we describe in the following section.

The Linked Data creation process has four principal stages: retrieval, prepa-
ration, conversion, and publishing.6 While below we list the types of provenance
captured in each, different themes emerge between stages. In the retrieval stage,
it is paramount to distinguish between the materials obtained from the source
and those that the third party integrator has derived from them. In the prepa-
ration stage, it is important to maintain a distinction between results produced
automatically and results produced manually. Finally, in the conversion and
publication stages, it is useful to maintain a distinction between data results
and their provenance, which may change even when the results are identical.

During retrieval, data files are obtained from their primary source. A script
that retrieves a given URL also records the person and user account initiat-
ing retrieval, the URL requested, time requested, HTTP interactions, and the
checksum of the file received. This is perhaps the most critical capture because
it maintains the connection between the local file on disk and the original URL.

During preparation, manually modifying files retrieved from authoritative
sources is avoided because it is error prone and cannot be reliably repeated.
Custom software and manual adjustments are minimized by specifying declara-
tive conversion parameters to a common converter. However, human intervention
may be necessary in some situations. Transparency of any necessary manual ac-
tivity is maintained by storing results separately from their originals, associating
the adjusted files to their predecessors, indicating the type of process applied,
and citing the person and user account reporting the modifications.

Conversion and publishing are automated and is started by software and hu-
man agents. Each activity’s inputs, parameters, and outputs are published at
URLs and are commonly referenced by each actor’s provenance assertions. Tab-
ular data files are converted to RDF by csv2rdf4lod, which records its invocation
time, version and hash, input file, transformation parameters, the person and
user account invoking the conversion, and the generated dump files. Because
metadata typically mentions time, it changes more regularly than the generated
data and is thus stored in separate files. This way, hashes of unchanging data
files can persist through reconversions. Finally, when RDF URLs are loaded into
a triple store’s named graph, provenance of the activity is stored in the same.

4 SemantAqua’s Need for Abstracted Provenance

SemantAqua is one application that uses the provenance captured by csv2rdf4lod
during the stages of Linked Data integration. SemantAqua is a water quality
web portal7 that demonstrates a semantic approach to environmental monitoring

6 http://purl.org/twc/links/ipaw/2012/conversion-stages highlights the princi-
pal provenance captured for an example dataset.

7 http://tw.rpi.edu/web/project/SemantAQUA

44 T. Lebo et al.

[18]. It integrates water test results from different government sources and allows
users to explore results on a map, see their severity, and hypothetically apply
different regulations from different political jurisdictions. One could, for example,
classify water tests taken in a particular state against local state regulations,
federal regulations, or regulations in states that are known to have stricter rules.
SemantAqua introduces a provenance-based search facet that allows the user
to select the data organizations he/she trusts, so that the portal will use only
data from the selected organizations. This is done by restricting queries to only
named graphs that are known to come from the selected organizations.

To achieve this functionality, SemantAqua needs to know the organizations
that are attributed to each named graph. The project considered three different
strategies to address this need. First, SemantAqua could depend on the attri-
bution made by the data integrator, which is done automatically by csv2rdf4lod
using the source identifier chosen by the curator. This assertion, however, may
not be completely accurate and more cautious consumers may demand more de-
tailed justification. For example, data-gov is commonly cited as a source, when
the data is actually provided by specific agencies such as epa-gov or usgs-gov.
Second, the application developer could manually maintain the list of attribu-
tions. This approach is undesirable because it requires additional effort and
cannot be reapplied in other applications. The third approach is to use an auto-
mated abstraction of the granular provenance captured at each stage of the data
integration process. Although this offers the most accuracy and justification for
the attributions, it is not straightforward from the application’s perspective to
determine the connection from the named graph to the organization. Further,
adequate support for this third option was not available prior to this work. To
determine the attribution, software would trace the provenance of the named
graph load, the conversion invocation, any and all preparations performed, and
the retrieval of the original data files provided by the primary source.

Because the first option did not meet application requirements and the third
option was not supported at the time, SemantAqua’s initial prototype con-
structed and maintained a separate graph to provide the abstract provenance
required to support the data source search facet. This custom work took devel-
oper resources away from other portal features and the intermediate solution is
difficult to reuse. A more desirable solution is to build on a reusable framework
that supports abstracted provenance, which we describe next.

5 Deriving Abstractive Provenance

The prior sections describe two example systems that participate in an Open
Provenance Environment. The disparity between application needs and linked
data aggregator services provides one example of incongruent granularity issues
that we anticipate to grow as more systems realize the Open Provenance Vision.

Our strategy is to resolve incongruent provenance granularities that occur
between two systems in an open environment by adding a third, independent
component into the same environment. Figure 2 depicts an independent party

Towards Unified Provenance Granularities 45

D creating a service that abstracts the original provenance in a way that the
application can use with relative ease. The service is available for invocation
by any system and can be called dynamically or accumulated for local use. We
adopt the SADI Semantic Web Services Framework [19] for the design of the
services and apply the DataFAQs linked data evaluation framework8 to accumu-
late results for specific portions of provenance while capturing the provenance of
accumulation. This approach can be applied to resolve incongruences between
any systems that expose their provenance in any RDF vocabulary, including the
PROV-O vocabulary in development by the W3C Provenance Working Group.
The steps to our approach are as follows.

1. Define the type of entity whose provenance is required by the consumer
2. Define the type of provenance required by the consumer
3. Implement and deploy the independent service
4. Optionally find the service based on Steps 1 and 2
5. Accumulate results for the entities of interest, capturing provenance

Retrieval Preparation Conversion Publishing

Primary Source
Transformed

+ Granular Provenance

Abstraction

 Abstracted Provenance

Application
Developer

Audience

Primary Source

C
B

A

D

Fig. 2. In addition to Figure 1’s situation, party D derives abstracted provenance from
party C, which the application developer uses to determine which data to use from C

The first step is to define the type of entity whose provenance is required by the
consumer. In our example from the previous sections, the entity type is a named
graph in a particular SPARQL endpoint. The type of entity whose provenance
is needed will be the topic of a consuming application; whatever an application
or system “discusses” is a potential type of entity about which we may want
provenance. The second step is to define the type of provenance required by the
consumer. In our example, the type of provenance we need for the named graph
is the source organization(s) that should be attributed for providing its contents.
The third step is to implement and deploy the independent service. Because the

8 http://purl.org/twc/id/software/datafaqs

46 T. Lebo et al.

entity type from Step 1 and the provenance type of Step 2 can be described
in RDF using any vocabulary, we use the SADI framework to implement the
service. SADI services accept HTTP POSTs of RDF descriptions and return
additional RDF descriptions of the same instances. In our example, the service
named-graph-derivation accepts RDF descriptions of sd:NamedGraph9 and
returns additional descriptions using the prov:wasAttributedTo relation. The
fourth step to find the service based on Steps 1 and 2 is necessary in cases where
the consumer is not aware of the service. Use of the SADI framework facilitates
this search because SADI services use the myGrid vocabulary to specify their
input and outputs as OWL classes. The final step is to accumulate results for the
entities of interest, capturing provenance of the accumulation. In our example, we
create RDF descriptions of sd:NamedGraphs, HTTP POST them to the service
named-graph-derivation, and store their results in a triple store for query by
applications. Although this accumulation can be performed in a variety of ways,
we use the DataFAQs linked data evaluation framework because it records the
provenance of each service invocation and automatically publishes results.

Applying the five steps above creates an independent collection of abstracted
provenance that is available to the application and other systems. Further, the
provenance collection can be traced to the independent service regardless of
where it has been accumulated. This provenance of provenance enables justifi-
cations for any of the abstract claims. Further, this also means that provenance
is a first class object that can have its own provenance and has no limitations
on the way it can be composed in complex applications.

To illustrate how the five steps can be applied, we show some materials used
to solve our running named graph attribution example. To illustrate the longest
derivation chain of the conversion process, we use an example dataset that be-
gins as a compressed Excel file that is extracted and converted to CSV before
becoming Linked Data. In the first step, we describe the named graph whose at-
tribution we want, which includes the SPARQL endpoint’s URL and the name
of the graph. In the second step, we define the provenance needed by the appli-
cation, which is a sd:NamedGraph with a prov:wasAttributedTo relation. The
results of these two steps are shown in the RDF fragments below. The third step
is to implement named-graph-derivation, a SADI service that accepts the de-
scription from Step 1 and returns the description in Step 2. The service answers
the question, “For a given graph name in a specific SPARQL endpoint, what
agent is responsible for the data it contains?” Figure 3 illustrates the output
of named-graph-derivation. From this graph, one can directly find the attri-
bution by following the prov:wasAttributedTo relations from the #named-graph

node. It also includes the named graph in question, and a derivation chain that
leads from the named graph to the original download URL. The result is an
abstraction of the granular provenance captured throughout all four stages of
conversion. The domain name of the original download is used to name the agent
responsible for the file. Although this usually represents an organization, it could
also represent a person or a specific software agent.

9 See http://prefix.cc/sd http://prefix.cc/prov and http://prefix.cc/moby.

http://prefix.cc/sd
http://prefix.cc/prov
http://prefix.cc/moby

Towards Unified Provenance Granularities 47

Step 1: Describing the named graph for which we want attribution.

:service a sd:Service;

sd:endpoint <http://logd.tw.rpi.edu/sparql>;

sd:availableGraphs [

a sd:GraphCollection, dcat:Dataset;

sd:namedGraph :named-graph;

] .

:named-graph a sd:NamedGraph;

sd:name <http://logd.tw.rpi.edu/source/lebot/dataset/golfers> .

Step 2: Describing the provenance needed.

:named-graph a sd:NamedGraph;

prov:wasAttributedTo <http://graves.cl>;

sd:name <http://logd.tw.rpi.edu/source/lebot/dataset/golfers> .

<http://graves.cl> a prov:Agent .

6 Discussion

Despite the tendency to focus on modeling and collecting provenance, there are
perhaps greater challenges to process and effectively use what has been collected.
The approach we present encourages a separation of interests that permits sys-
tems to continue to collect with the level of granularity that they deem fit, while
contextual applications of the granular provenance may be developed indepen-
dently to provide direct, easily accessible abstractions derived from the original
provenance. A further advantage of deriving abstract provenance from granular
is that the provenance of provenance can be used to provide justifications for any
high level claims, which can increase their trustworthiness. In contrast, directly
asserted abstract records cannot be further justified.

It is important to note that while csv2rdf4lod uses the Proof Markup Language
(PML) to record its provenance, the named-graph-derivation service provides
its abstraction using W3C’s PROV-O vocabulary. We are thus demonstrating
interoperability at a fairly granular level between one relatively long lived prove-
nance interlingua and the emergingW3C vocabulary. More importantly, we show
how our approach can interoperate between two different provenance vocabular-
ies as was envisioned by the W3C provenance incubator group.10 This approach
also helps advance the W3C Provenance Working Group’s objective to enable
provenance interchange.

The approach we present also highlights and motivates an outstanding need
that, if addressed, would provide significant value in an Open Provenance Envi-
ronment. In our example, the Linked Data aggregator C would benefit greatly
if it were informed of any subsequent processing of its data or granular prove-
nance (i.e., what the abstractor D and application developer did). This way,
subsequent visitors to C could be led to derivations that may better suit their

10 http://www.w3.org/2005/Incubator/prov/wiki/

Provenance Vocabulary Mappings

http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings

48 T. Lebo et al.

#collection

http://raw.graves.cl

http://graves.cl

#named-graph#service

prov:Agent

http://logd.tw.rpi.edu/source/lebot/dataset/golfers/version/2012-Mar-17

sd:NamedGraph

datafaqs:Satisfactory

http://logd.tw.rpi.edu/sparql

sd: http://www.w3.org/ns/sparql-service-description#
prov: http://www.w3.org/ns/prov#
datafaqs: http://purl.org/twc/vocab/datafaqs#

sd:namedGraph

a

a

a

sd:name

prov:wasAttributedTo

prov:wasAttributedTo

asd:endpoint

sd:availableGraphs

prov:wasAttributedTo

http://logd.tw.rpi.edu...lebot-golfers-2012-Mar-17.ttl.tgz

http://raw.graves.cl...golfers.xls.zip

http://graves.cl...golfers.xls.zip

http://logd.tw.rpi.edu...golfers.xls.zip

http://logd.tw.rpi.edu/...golfers.xls.csv

http://logd.tw.rpi.edu...golfers.xls

prov:wasDerivedFrom

prov:alternateOf

prov:wasDerivedFrom
prov:alternateOf

prov:wasDerivedFrom

prov:wasDerivedFrom

Key
Web Application Developer's "Question"

"Answer" to Web Application Developer

Derived Intermediate Provenance

pr
ov

:w
as

D
er

iv
ed

Fr
om

prov:wasAttributedTo

Fig. 3. PROV-O description returned by SADI service named-graph-derivation when
given an RDF description of the named graph (blue) for which SemantAqua needed
provenance (green). The service also returns an intermediate level of abstraction (gray)
that can be used to justify the higher level of abstraction. Both the high and inter-
mediate abstractions are derived from the detailed PML provenance about the named
graph, which was provided by the data aggregator C.

Towards Unified Provenance Granularities 49

needs. Similarly, the primary sources would also benefit by being informed about
subsequent uses of their publications (i.e., what aggregator C, abstractor D, and
the application developer did). Consumers should be able to trace provenance in
both directions, not just backward. This kind of information can also be essen-
tial for evaluating each party’s contribution and return on investment. These and
other benefits are lost unless the community establishes so-called “ping-back”
capabilities in standards such as the W3C PROV recommendation.

Future work could lead in several directions. The framework presented could
be used to quantify the interoperability among provenance systems, by building
abstraction services to reflect the representation of one system using alternative
ontological representations. We currently handle PML and PROV-O, but more
could be added. Since PROV-O is an emerging standard, we also expect authors
of many other provenance vocabularies to map to it, thus furthering the goal
of interoperability. Those authors may use the approach we present to achieve
this mapping without interfering with their existing systems. Another direction
could use reasoning to chain SADI services based on their OWL inputs and out-
puts that could lead to some powerful and automated provenance derivations.
This would be particularly useful within the Open Provenance Vision, where
developers will not know all systems available, may require provenance available
in a variety of original representations, but can gather appropriate service de-
scriptions and determine a solution automatically. It would also be interesting to
apply the approach we present to the variety of existing abstraction algorithms,
including those intended for end users. One advantage is that the summary re-
sults would remain as alternative provenance accounts that could be queried,
consolidated, and reused by other systems for other purposes at later times.
This contrasts with the traditional approach where the abstraction remains in
the system and is lost after use.

7 Conclusion

As Open Data grows in popularity, so will the need for and use of Linked Data
principles to integrate disparate sources. However, current integration methods
provide limited support for transparency, thereby minimizing trust of their re-
sults. This causes a tradeoff between authoritativeness and ease of use that needs
to be reconciled before Linked Data can be widely adopted. Linked Open Data
is one environment that requires – and can realize – the Open Provenance Vi-
sion. Using an example from our SemantAqua water quality portal, we show how
incongruent provenance granularities can inhibit the use of provenance between
systems, and argue that this challenge will grow as more systems participate.
We presented an approach and supporting technologies to resolve incongruent
provenance granularities between two systems by adding a third independent
component that derives abstract provenance from granular provenance sources.
We showed how applying this approach fulfilled a real use case that attributes
the source organization for the content in a SPARQL endpoint’s named graph,

50 T. Lebo et al.

which was determined by tracing granular provenance. This same approach can
be applied to resolve other incongruent provenance granularities that we antici-
pate as more systems realize the Open Provenance Vision.

References

1. Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Querying and managing
provenance through user views in scientific workflows. In: Proceedings of the 2008
IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 1072–
1081. IEEE Computer Society, Washington, DC (2008)

2. Chapman, A., Jagadish, H.V.: Issues in building practical provenance systems.
IEEE Data Eng. Bull. 30(4), 38–43 (2007)

3. Craglia, M., Almirall, P.G., Bergadà, M.M., Queraltó Ros, P.: The socio-economic
impact of the spatial data infrastructure of catalonia. Institute for Environment
and Sustainability, Joint Research Centre, European Commission (2008)

4. Ding, L., Peng, Y., Pinheiro da Silva, P., McGuinness, D.L.: Tracking RDF Graph
Provenance using RDF Molecules. Technical report, UMBC (April 2005)

5. Erickson, J.S., Rozell, E., Shi, Y., Zheng, J., Ding, L., Hendler, J.A.: Twc interna-
tional open government dataset catalog. In: Proceedings of the 7th International
Conference on Semantic Systems, pp. 227–229. ACM (2011)

6. Garijo, D., Gil, Y.: A new approach for publishing workflows: abstractions, stan-
dards, and linked data. In: Proceedings of the 6th Workshop on Workflows in
Support of Large-Scale Science, pp. 47–56. ACM (2011)

7. Gibson, T., Schuchardt, K., Stephan, E.: Application of named graphs towards cus-
tom provenance views. In: First Workshop on Theory and Practice of Provenance,
TAPP 2009, pp. 5:1–5:5. USENIX Association, Berkeley (2009)

8. Graves, A.: A case study for integrating public safety data using semantic tech-
nologies. Information Polity 16(3), 261–275 (2011)

9. Hartung, C., Anokwa, Y., Brunette, W., Lerer, A., Tseng, C., Borriello, G.: Open
data kit: Tools to build information services for developing regions. In: Proceedings
of the International Conference on Information and Communication Technologies
and Development, pp. 1–11 (2010)

10. Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space. Syn-
thesis Lectures on the Semantic Web: Theory and Technology 1(1), 1–136 (2011)

11. Ikeda, R., Widom, J.: Panda: A system for provenance and data. IEEE Data Eng.
Bull. 33(3), 42–49 (2010)

12. McGuinness, D., Ding, L., Pinheiro Da Silva, P., Chang, C.: PML 2: A Modular
Explanation Interlingua. In: Proceedings of the AAAI 2007 Workshop on Explana-
tion Aware Computing, vol. 7, pp. 49–55. Knowledge Systems Laboratory, Stanford
University (2007)

13. Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends
in Web Science 2(2-3), 99–241 (2010)

14. Robinson, D., Yu, H., Zeller, W., Felten, E.: Government data and the invisible
hand. Yale Journal of Law & Technology 11, 160 (2009)

15. Salayandia, L., Pinheiro, P., Gates, A.Q.: A framework to create ontologies for
scientific data management. Technical Report UTEP-CS-12-03, University of Texas
at El Paso, El Paso, TX (2012)

Towards Unified Provenance Granularities 51

16. Stephan, E.G., Halter, T.D., Ermold, B.D.: Leveraging the Open Provenance
Model as a Multi-tier Model for Global Climate Research. In: McGuinness, D.L.,
Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 34–41.
Springer, Heidelberg (2010)

17. Lebo, T., Erickson, J.S., Ding, L., Graves, A., Williams, G.T., DiFranzo, D., Li, X.,
Michaelis, J., Zheng, J.G., Flores, J., Shangguan, Z., McGuinness, D.L., Hendler,
J.: Producing and Using Linked Open Government Data in the TWC LOGD Portal.
In: Wood, D. (ed.) Linking Government Data. Springer (2011)

18. Wang, P., Zheng, J.G., Fu, L., Patton, E.W., Lebo, T., Ding, L., Liu, Q., Lu-
ciano, J.S., McGuinness, D.L.: A Semantic Portal for Next Generation Monitoring
Systems. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 253–268.
Springer, Heidelberg (2011)

19. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The Semantic Automated Dis-
covery and Integration (SADI) Web service Design-Pattern, API and Reference
Implementation. Journal of Biomedical Semantics 2(1), 8 (2011)

Functional Requirements for Information

Resource Provenance on the Web

Paulo Pinheiro, and Deborah L. McGuinness

Tetherless World Constellation
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street Troy, NY 12180, USA
http://tw.rpi.edu

Pacific Northwest National Labs
Richland, WA, USA

{mccusj,lebot,gravesa3,difrad}@rpi.edu, paulo.pinheirodasilva@pnnl.gov,

dlm@cs.rpi.edu

http://www.pnnl.gov

Abstract. HTTP transactions have semantics that can be interpreted
in many ways. At a low level, a physical stream of bits is transmitted
from server to client. Higher up, those bits resolve into a message with
a specific bit pattern. More abstractly, information, regardless of the
physical representation, has been transferred. While the mechanisms as-
sociated with these abstractions, such as content negotiation, are well
established, the semantics behind these abstractions are not. We extend
the library science resource model Functional Requirements for Bibli-
ographic Resources (FRBR) with cryptographic message and content
digests to create a Functional Requirements for Information Resources
(FRIR) ontology that is integrated with the W3C Provenance Ontology
(PROV-O) to model HTTP transactions in a way that clarifies the many
relationships between a given URL and all representations received from
its request. Use of this model provides fine-grained provenance explana-
tions that are complementary to existing explanations of web resources.
Furthermore, we provide a formal explanation of the relationship between
HTTP URLs and their representations that conforms with the existing
World Wide Web architecture. This establishes the semiotic relationships
between different information abstractions, their symbols, and the things
they represent.

Keywords: World Wide Web, Information Resources, Data Manage-
ment, multi-level granularity provenance.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 52–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Jamie P. McCusker, Timothy Lebo, Alvaro Graves, Dominic Difranzo,

http://tw.rpi.edu
http://www.pnnl.gov

Functional Requirements for Information Resource Provenance on the Web 53

1 Introduction

The architecture of the World Wide Web [1] defines the relations between URLs,
Resources, and Representations, which is illustrated in Figure 11. However, these
relationships are incomplete, since the content of representations can change over
time and content negotiation can result in different data being transferred. For
example, the temperature reading in a weather report will change regularly, while
different requests for the same weather report can return a variety of formats
such as HTML, XML, RDF, and JSON. The ability to explain what an HTTP
client sees as a result of a transaction and how, exactly, it relates to the URL that
it requested is critical to the understanding of both how information resources2

work on the web and how the provenance of web information resource access
should be represented. We look to library science and provenance models to help
provide these explanations, along with some help from the field of semiotics.

There are many reasons to clarify these semantics. For instance, the content
of an image is more important than its format. Validating that a pathologist re-
viewed a particular image relies on the fact that the pathologist saw a particular
image, not what file format it was saved in. In fact, transcoding of that image
from a database to the client may happen as part of a web application. If it
were possible to identify content regardless of format, our doctor would be able
to make verifiable claims that she not just read data from a particular file, but
that she saw a particular image. Similarly, web site mirroring mechanisms allow
the same content to be available from multiple locations. Content-based identity
of information would allow users to discover alternative locations for data, and
validate that the information is actually the same regardless of source or format.

1.1 A Weather Example

To illustrate some of the issues regarding the relationship between a URL and the
variety of representations that its request may return, we use a weather report
provided by the National Oceanic and Atmospheric Administration’s (NOAA)
National Weather Service. Current weather conditions are provided for locations
across the United States and include fundamental measures such as time, temper-
ature, wind direction, and visibility distance. The latest hourly reports for Boston
are provided in both RSS3 andXML4 formats. Although the service reports that it
updates every hour on the hour, updates occur at unpredictable intervals. In this
particular example, the service updated at 3:00 and 4:00, handled RSS requests
at 3:05 and 4:05, and handled XML requests at 3:10 and 4:10.

1 Copyright c©2004 World Wide Web Consortium, (Massachusetts Institute of Tech-
nology, European Research Consortium for Informatics and Mathematics, Keio Uni-
versity). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

2 Because we consider URLs returning status codes other than 200 to be non-
information resources, they are out of scope in this paper.

3 http://www.weather.gov/xml/current obs/KBOS.rss
4 http://www.weather.gov/xml/current obs/KBOS.xml

54 J.P. McCusker et al.

Fig. 1. The relationships between identi-
fier, resource, and representation from Ar-
chitecture of the World Wide Web

Given the current Web Architec-
ture, what can we say about these two
URLs and the four representations re-
trieved by their request? According
to the AWWW, [1] the two RSS files
represent the referent identified by
the URL, while, because the URL is
different, the XML files represent an-
other referent. That these are alter-
native representations for the same
referent means that we need a more
sophisticated understanding of how
the four files relate to one another and
whether each relates to its URL differ-
ently. How can this be accomplished?
We could compare files, but different
formats would make it impractical to
see their similarities. We could look to
the files’ creation date to learn when
each file was received, but we cannot
know how content has changed over time or if two transactions returned the
same content in different representations. If different clients received the dif-
ferent representations, how can they begin to rationally discuss, compare, and
share their individual representations?

2 Background: Existing W3C Recommendations

This leads us to wonder if there are any other existing semantics defined in W3C
recommendations relating to how URIs, XML entities and RDF resources are
related. This may appear to be a surprising question after years of success of
W3C recommendations. However, the latest recommendations for XML [2] and
RDF/XML [3] do not illuminate the issue. The XML recommendation [2] comes
no closer to the issue than to state the following:

“Attempts to retrieve the resource identified by a URI may be redirected
at the parser level (for example, in an entity resolver) or below (at the
protocol level, for example, via an HTTP Location: header). In the ab-
sence of additional information outside the scope of this specification
within the resource, the base URI of a resource is always the URI of the
actual resource returned. In other words, it is the URI of the resource
retrieved after all redirection has occurred.”

From this definition, one can infer that more than one resource may be returned
for a URL and that the exact nature of this resource can be unpredictable. This
is because an HTTP-based entity resolver implies the ability to return multiple
representations of the same content. Similarly, the RDF/XML recommendation
[3] states that:

Functional Requirements for Information Resource Provenance on the Web 55

“nodes are RDF URI references, RDF literals or are blank nodes. Blank
nodes may be given a document-local, non-RDF URI references identifier
called a blank node identifier. Predicates are RDF URI references and
can be interpreted as either a relationship between the two nodes or as
defining an attribute value (object node) for some subject node.”

but goes no further. An “RDF URI reference” is syntactically described, and
the recommendation further discloses that “RDF URI references are compatible
with the anyURI datatype as defined by XML schema datatypes [4], constrained
to be an absolute rather than a relative URI reference.” Again, this leaves the
recommendation reader without an explanation of what is the meaning of a URI
in an RDF graph.

3 The Semiotics of HTTP URLs

The dereferencing of a URL can be mapped to a semiotic interpretation. For ex-
ample, it is possible to use Ogden and Richards’ Semiotic Triangle [5], a model
of how real world objects are related to symbols and how people think about
those objects from a linguistic perspective. In order to consider HTTP oper-
ations in these terms, it is important to remember that a URL is not only
a symbol but also an address for information about that symbol. For example,
http://www.weather.gov/xml/current obs/KBOS.xml indicates that a web page
can be accessed using the HTTP protocol against the server denoted by the name
www.weather.gov and requesting the document ’/xml/current obs/KBOS.xml’.
The document obtained is a representation (an XML document) of the thing

Fig. 2. AWWW’s URL and Resource correspond to the semiotic triangle’s Symbol and
Referent, respectively. A representation is itself another referent that is not identified
here, but will be elaborated on in Section 4.

56 J.P. McCusker et al.

identified by this URL. Figure 2 illustrates the partial correspondence between
the semiotic triangle and the web architecture.

While a URL is a Symbol that stands for and identifies a Referent Resource,
the correspondence to thoughts (from the Semiotic Triangle) or representations
(from the AWWW) isn’t immediately clear. The major issue is that the doc-
ument retrieved cannot be defined only as a representation of a resource: The
document can be described in terms of either its content or the set of bytes used
to represent it – or both. So, the document needs to be described further. A po-
tential solution is to refine the representation into its constituent identities that
are based on different levels of abstraction. In the next section we will introduce
a model that, when paired with a provenance model, can provide the neces-
sary distinctions to fully satisfy both the semiotic relationships inherent within
HTTP and the means to provide provenance traces for HTTP transactions at
the levels of abstraction that are inherent within the protocol.

4 FRBR and FRIR

Functional Requirements for Bibliographic Resources (FRBR) [6] is a mature
model from the library science community that distinguishes four aspects of an
author’s literary work, ranging from purely concrete to completely abstract. For
instance, FRBR can describe how different copies of the same book, or differ-
ent editions of the book, relate to each other. The most concrete aspect is the
Item – the physical book that exists in the world. Items are singular entities;
making a copy of an Item results in a new Item. Items are exemplars of Manifes-
tations, which represent similar physical structure. For instance, an exact copy
of an Item preserves the original Manifestation. If the copy is inexact, or if the
book is turned into an audio book, then the Manifestation changes. However,
the Expression of the paperback and audio book remains the same, because the
Expression reflects particular content regardless of physical configuration. An
Expression in turn realizes a Work, which is “a distinct intellectual or artistic
creation.” [7] A Work remains the same through different realized Expressions
that result from translation, revision, or any other change. To facilitate discus-
sion, we use the term FRBR stack to refer to a tuple (frbr:Work, frbr:Expression,
frbr:Manifestation, frbr:Item) that represents these four distinct aspects of a re-
source.

Functional Requirements for Information Resources5 (FRIR) extends the use
of frbr:Work, frbr:Expression, frbr:Manifestation, and frbr:Item to electronic re-
sources, and therefore any information resource. Within electronic resources,
a frbr:Work remains a distinct intellectual or artistic creation. A frbr:Work
corresponds to the Resource or Referent in the semiotic framework discussed
above, and is identified by a URL, as was shown in Figure 2. Taken to-
gether, frbr:Expression, frbr:Manifestation, and frbr:Item are all aspects of the

5 http://purl.org/twc/pub/mccusker2012parallel

Functional Requirements for Information Resource Provenance on the Web 57

Representation, and are each Referents in their own rights. Inasmuch as
they can be identified or symbolized, they have symbols that identify them.
frbr:Expression corresponds to a specific set of content regardless of its serial-
ization. For instance, two files would have the same frbr:Expression if they are
the same picture stored in two different formats (e.g., JPG and PNG). Simi-
larly, a spreadsheet stored in both CSV and Excel would still have the same
frbr:Expression. frbr:Manifestations correspond to a specific bit pattern. If a
file is an exact copy of another file, they have the same frbr:Manifestation.
An frbr:Item is a specific copy of information stored somewhere or transmit-
ted through a communication link. If a copy of the frbr:Item is made, it results
in a new frbr:Item.

FRIR also integrates FRBR with the W3C Provenance Ontology (PROV-O)
by declaring frbr:Endeavour to be a subclass of prov:Entity and mapping 14
of 18 frbr:relatedEndeavour subproperties as subproperties of one or more of
prov:wasDerivedFrom, prov:alternateOf, and prov:specializationOf, as shown in
Figure 3.

As part of FRIR we have identified two levels of cryptographically computable
identity: content and message. Conventional message digests such as MD5 or
SHA-1 produce identifiers where the probability of creating the same identifier
using different data is vanishingly small. This corresponds very closely to our
definition of frbr:Manifestation for electronic resources, so we make it possible
to identify frbr:Manifestations using message digests. Similarly, a number of
content digests have been developed for RDF graphs, spreadsheets, images, and
XML documents that provide the same digest hash regardless of any particular
serialization. We use this to computationally identify frbr:Expressions. Further
work on creating content digests will allow us to incrementally improve the
ability to identify common frbr:Expressions. These identifiers fill out the means
by which to identify the representation referents, as shown in Figure 4.

5 Explaining HTTP with FRBR, FRIR, and PROV-O

When explaining what is retrieved from a URL, the URL denotes a single
frbr:Work. We implement these explanations in RDF, which follows the non-
unique naming assumption. That is, unless otherwise specified, two identifiers
can potentially denote the same thing. URLs are perfect examples of this. If a
web site is mirrored, a page on the mirror corresponds to a page on the orig-
inal. Those two pages can be thought of as the same frbr:Work within the
FRBR/FRIR perspective. Content retrieved from URLs can change over time,
but are expected to have a similar sort of coherence as defined by frbr:Work as
“a distinct intellectual or artistic creation.” [7]

HTTP 1.1 [8] introduced content negotiation, which makes it possible to ab-
stract a URL away from any one particular file format. When a client asks an
HTTP server for a mime type at a URL, the server can respond with many
different possible files depending on how the content is negotiated. If the client
asks for plain text, the server will try to find the best way of representing the

58 J.P. McCusker et al.

Subclass Superclass

frbr:Event prov:Activity
frbr:ResponsibleEntity prov:Agent

frbr:Endeavour prov:Entity
nie:DataObject prov:Entity

(a)

Subproperty wasDerivedFrom alternateOf specializationOf

frbr:adaptionOf X
frbr:imitationOf X

frbr:reconfigurationOf X
frbr:transformationOf X

frbr:abridgementOf X X
frbr:arrangementOf X X
frbr:reproductionOf X X
frbr:summarizationOf X X
frbr:translationOf X X

frbr:alternateOf X
frbr:revisionOf X

frir:redirectsToTransitive X

frbr:embodimentOf X
frbr:exemplarOf X
frbr:realizationOf X

(b)

Prefix URI

frbr: http://purl.org/vocab/frbr/core#
frir: http://purl.org/twc/ontology/frir.owl#
prov: http://www.w3.org/ns/prov#
nie: http://www.semanticdesktop.org/ontologies/2007/01/19/nie#

(c)

Fig. 3. (a) Class mappings between FRBR and PROV-O. (b) Property mappings be-
tween FRBR, FRIR, and PROV. PROV super properties are columns and FRBR and
FRIR subproperties are rows. (c) Prefix mappings for (a) and (b).

content of the URL in plain text. This idea of “same content regardless of format”
is built into frbr:Expression. As previously discussed, the bit sequence of a file
aligns very closely with frbr:Manifestation, so we use message digests to express
this. frbr:Items can be files on disk, but they can also be data as streamed over
a network connection. We uniquely identify the data streamed over a particular
HTTP transaction using the combined message digest of the HTTP header and
content. Since the header includes the exact time that the transaction occurred,
the likelihood of a frbr:Item collision is very low. This enables provenance trace
assertions to be applied to individual HTTP transactions without having to store
the entire transaction.

An HTTP GET can be a very simple transaction. A client makes a request to
a server for a particular URL, the server looks up which file corresponds to that

Functional Requirements for Information Resource Provenance on the Web 59

Fig. 4. Relating URIs, Resources, and Representations using FRIR, FRBR, and the
semiotic triangle. URLs are symbols that identify resources, which in semiotics are ref-
erents and considered frbr:Works in FRBR. The representation of that resource is the
content that comes from dereferencing the URL, and is composed of an frbr:Expression,
frbr:Manifestation, and frbr:Item. The proposed content identities create implicit sym-
bols (URIs) for each level of representation. Users can then use the level of abstraction
that suits their task.

URL, and copies it to the network channel in response. The client then copies
the data it sees from the network channel and either saves it to disk or displays
it on screen. Things can become much more complicated on both ends, but
these complications can be explained using current provenance representations,
including the emerging W3C Prov standard [9]. This simple case, however, belies
the subtleties that we discuss above. The following is a formalization of an HTTP
GET request and response composed of common provenance constructs (events,
generated by, used, etc.) that are under development in W3C’s Prov standard:

HTTP GET: The server and client both share an event, the HTTP connection,
which is composed of a request and response. The request is generated by the
client and transmitted to the server. It is itself an Item with a singular FRBR

60 J.P. McCusker et al.

stack. The request is for a specific frbr:Work, and if there are Accept headers
sent, then the request is for a frbr:Manifestation with specific properties
(the file format). The server then uses the request to generate a response,
which is an Item of the URL’s frbr:Work. This frbr:Item only exists on the
network channel, and if the client saves the frbr:Manifestation to disk, it
produces another frbr:Item. The response Item is derived from the server’s
file frbr:Item, and the client’s file frbr:Item is derived from the response
Item. All three items share the same Manifestation, Expression and Work
(the URL).

HTTP POST: A similar explanation can be made for HTTP POST requests,
which send a document as input content. In this case, both request and
response content can be represented as FRBR stacks with no explicitly iden-
tified frbr:Work. Because web servers that handle POST requests derive their
responses from the request, their handling can be formalized as a derivation
edge in a provenance graph using the POST URL as an agent controlling
the transaction process. Two HTTP request methods, PUT and DELETE,
are used specifically to change the value of the frbr:Work by creating a new
frbr:Expression (PUT) or invalidating existing frbr:Expressions (DELETE).

HTTP also provides other request methods to ask for services and information
about a particular resource. These metadata request methods, HEAD and OP-
TIONS, do not provide information resources as discussed, and so are not in the
scope of the paper. Similarly, the HTTP request methods TRACE and CON-
NECT are more functional in nature and deal more with the actual server than
its content and are also outside the scope of this paper.

6 Implementation

We provide an implementation of curl called pcurl.py6 that will record the prove-
nance of an HTTP GET transaction using FRBR7, FRIR8, Nepomuk File On-
tology (NFO)9, PROV-O10, and HTTP-in-RDF11. We show a retrieval of the
HTTP-in-RDF core classes as an example in Figure 5. We use message and
content hashes to generate URIs for frbr:Expressions, frbr:Manifestations, and
frbr:Items to allow for automatic aggregation of endeavors that share the same
hash. Future use of OWL keys and multiple digest algorithms is enabled through
creation of frir:ContentDigest and nfo:FileHash instances. In Figures 6 and 7 we
also show how transcoding and mirroring are represented in the FRIR model.

6 http://purl.org/twc/software/pcurl.py
7 http://purl.org/vocab/frbr/core
8 http://purl.org/twc/ontology/frir.owl
9 http://www.semanticdesktop.org/ontologies/2007/03/22/nfo

10 http://purl.org/twc/page/prov-o
11 http://www.w3.org/TR/HTTP-in-RDF/

Functional Requirements for Information Resource Provenance on the Web 61

Fig. 5. Results of applying pcurl.py to retrieve the weather result example. The HTTP-
in-RDF, FBIR, FRIR, PROV-O, and NFO vocabularies are used to create RDF de-
scriptions of the representation received when the URL is requested. Entities are named
using message and content digests, the HTTP transaction Item is associated to the file
Item, which in turn has a FRBR stack representing all four aspects from the concrete
file to the abstract URL/Referent/Work.

62 J.P. McCusker et al.

reproductionOf

exemplarOf

wasGeneratedBy

reproductionOf

exemplarOf

wasGeneratedBy

has response

used

realizationOf

embodimentOf

has response

wasAttributedTo hadPlan

used

a Item

a Item

a Work

a Request, Activity

a Request, Activity

HTTP 1.1 GET
a Plan

Jim McCusker
a Agent

a Expression

Full-size JPEG Histology
a Manifestation

Thumbnail PNG Histology
a Manifestation

a Response

a Response

Fig. 6. An example of transcoding a histogram image from a large JPEG to a small
thumbnail PNG. The frbr:Expression and frbr:Work are the same across the transcod-
ing, but the frbr:Manifestations and frbr:Items are all distinct. This allows, for instance,
a patient to verify that the low resolution image shown to them is the same content
as the higher resolution image used to actually perform the analysis, even though the
format and sizes are different. This graph was produced using pcurl.py.

Functional Requirements for Information Resource Provenance on the Web 63

reproductionOf
exemplarOf

wasGeneratedBy
reproductionOf

wasGeneratedBy has response

wasAttributedTohadPlan

used

realizationOf

embodimentOf

has response

wasAttributedTohadPlan

used

a Item

a Item

Request to Yale Image Finder
a Activity, Request

a Work

Request to PubMed Central
a Activity, Request

a Expression

Jim McCusker
a Agent

HTTP 1.1 GET
a Plan

a Item, Response

a Response

Full-size JPEG Histology
a Manifestation

Fig. 7. An example of mirroring content between web sites. Here the Yale Image Finder
[10] provides a mirror of an image published at PubMed Central. Since the file is
an exact copy, the frbr:Work, frbr:Expression and frbr:Manifestation align, while the
individual copies are different. This graph was produced using pcurl.py.

64 J.P. McCusker et al.

7 Discussion

Using a four-part FRIR stack to identify web resources makes it possible to do a
number of useful things. For instance, in cases such as the weather report, RSS
feeds and XML files, the same information is conveyed in multiple formats at
different URLs. FRIR naturally expresses this by asserting that the frbr:Works
(the page URL) are owl:sameAs each other. More concrete levels of the FRBR
stack, such as frbr:Manifestation and frbr:Item, however, will be distinct because
of the differing formats and different physical locations of the representations.
The identity between the frbr:Works and frbr:Expressions of these two URLs
can be expressed in semantic site maps so that tools that prefer one format of
data over another can discover which URLs can be accessed without concern for
missing content from varying formats. In fact, we have previously argued that
owl:sameAs has been overextended to assertions in Linked Data [11]. By link-
ing frbr:Works and frbr:Expressions manually while keeping frbr:Manifestations
distinct we provide a means to show exactly how two information resources on
the web relate to each other. Additionally, we have shown how FRIR can be used
to provide clarity to management of Open Government Data (OGD) [12] and
have argued that FRBR constructs can be used to provide a clear description of
sources of information on the web [13].

By formally modeling the description of web retrieval, we can compare the
content received at different levels. In our weather report example, as the weather
changes, so does the data. Two clients may see different data if they access it at
different times. frbr:Works and frbr:Expressions can be used to show that con-
tent has changed, even when accounting for potentially different data formats,
as is the case with the weather (XML vs RSS). Similarly, using content digests
and cryptographic signatures, clients can assert that they have seen specific con-
tent, regardless of format, on a particular web page. This makes it possible for
clients to refer to specific content regardless of format. This is critical for access
to scientific databases. Available information is changing daily and released in
different representations, which is convenient but can hinder experimental re-
peatability. Being able to assert which data was used in an experiment improves
the transparency and veracity of the sciences that take advantage of that data.
Finally, this theory of web information and access provides a way to create con-
sistent provenance assertions about access of web information resources, which
can improve interoperability of provenance statements about access of informa-
tion resources.

8 Conclusion

We have shown how the use of FRBR and FRIR can help to describe the re-
lation between a URL and the representation obtained using HTTP. We have
also shown how this new representation describes a richer set of entities that can
be identified by different elements from FRIR. Thus it is possible to use Con-
tent, Message and Transaction digests to identify the Expression, Manifestation

Functional Requirements for Information Resource Provenance on the Web 65

and Item aspects of the representation. This can lead to a semantically richer
description of an HTTP GET operation that includes provenance about the
information published and transmitted on the web at each level of abstraction.

As future work, there are several paths we may take: In this paper, our focus
has been on URLs that identify information resources. There is also the ques-
tion of what (and how) non-information resources can be described in terms of
FRBR and FRIR. This is particularly interesting when considering the relation-
ships between URL frbr:Works that are associated by HTTP 303 redirections.
Additionally, the solutions we present here are in principle compatible with the
proposed changes to what has been called the HttpRange-14 issue.12 Applying
FRBR and FRIR to address the relationships between a resource, its represen-
tations, and its identifiers in a clear manner can serve as a standard pattern for
the provenance of web resource access, comparison, and integration.

Acknowledgments. The Tetherless World Constellation is partially funded
by grants and/or gifts from DARPA, IARPA, U.S. Department of Energy, Fu-
jitsu, LGS, Lockheed Martin, Microsoft Research, NASA, the National Science
Foundation, and Qualcomm. This research was partially funded by the National
Science Foundation under CREST Grant No. HRD-0734825.

References

1. Jacobs, I., Walsh, N.: Architecture of the World Wide Web, Volume One (December
2011), http://www.w3.org/TR/2004/REC-webarch-20041215/

2. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0, 5th edn. (November 2008),
http://www.w3.org/TR/2008/REC-xml-20081126/

3. Klyne, G., Carroll, J.J., McBride, B.: Resource Description Framework (RDF):
Concepts and Abstract Syntax (February 2004),
http://www.w3.org/TR/2004/

REC-rdf-concepts-20040210/#section-Graph-URIref

4. Biron, P.V., Malhotra, A.: XML schema part 2: Datatypes (May 2001),
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

5. Ogden, C.K., Richards, I.: The meaning of meaning. Trubner & Co., London (1923)
6. Madison, O., John Byrum, J., Jouguelet, S., McGarry, D., Williamson, N., Witt,

M.: Functional requirements for bibliographic records final report. Technical report,
International Federation of Library Associations and Institutions (February 2009),
http://www.ifla.org/VII/s13/frbr/

7. Madison, O., John Byrum, J., Jouguelet, S., McGarry, D., Williamson, N., Witt,
M.: Functional Requirements for Bibliographic Records (February 2009),
http://www.ifla.org/en/publications/

functional-requirements-for-bibliographic-records

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol–HTTP/1.1. Technical report, RFC 2616 (June
1999)

12 http://lists.w3.org/Archives/Public/public-lod/2012Mar/0115.html

http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-Graph-URIref
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-Graph-URIref
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.ifla.org/VII/s13/frbr/
http://www.ifla.org/en/publications/functional-requirements-for-bibliographic-records
http://www.ifla.org/en/publications/functional-requirements-for-bibliographic-records

66 J.P. McCusker et al.

9. Lebo, T., Sahoo, S., McGuinness, D.L., Mike Lang, J., Belhajjame, K., Cheney, J.,
Garijo, D., Soiland-Reyes, S., Zednik, S.: The PROV Ontology: Model and Formal
Semantics (December 2011), http://www.w3.org/TR/prov-o

10. Xu, S., McCusker, J.P., Krauthammer, M.: Yale Image Finder (YIF): a new search
engine for retrieving biomedical images. Bioinformatics 24(17), 1968–1970 (2008)

11. McCusker, J.P., McGuinness, D.L.: Towards identity in linked data. Proceedings
of OWL: Experience and Directions, San Francisco, USA, June 21-22 (2010),
http://www.webont.org/owled/2010/papers/owled2010_submission_12.pdf

12. McCusker, J.P., Lebo, T., Chang, C., Pinheiro da Silva, P., McGuinness, D.: Parallel
Identities for Managing Open Government Data. IEEE Intelligent Systems Open
Government Data Special Issue (2012)

13. McCusker, J.P., Lebo, T., Ding, L., Chang, C., Pinheiro da Silva, P., McGuinness,
D.: Where did you hear that? Information and the Sources They Come From. In:
Proceedings of Linked Science 2011 (2011)

http://www.w3.org/TR/prov-o
http://www.webont.org/owled/2010/papers/owled2010_submission_12.pdf

A PROV Encoding for Provenance Analysis

Using Deductive Rules

Paolo Missier1 and Khalid Belhajjame2

1 Newcastle University,
Newcastle upon Tyne, UK
Paolo.Missier@ncl.ac.uk
2 University of Manchester

Oxford Road, Manchester, UK
Khalid.Belhajjame@cs.man.ac.uk

Abstract. PROV is a specification, promoted by the World Wide Web
consortium, for recording the provenance of web resources. It includes
a schema, consistency constraints and inference rules on the schema,
and a language for recording provenance facts. In this paper we describe
a implementation of PROV that is based on the DLV Datalog engine.
We argue that the deductive databases paradigm, which underpins the
Datalog model, is a natural choice for expressing at the same time (i)
the intensional features of the provenance model, namely its consistency
constraints and inference rules, (ii) its extensional features, i.e., sets of
provenance facts (called a provenance graph), and (iii) declarative recur-
sive queries on the graph. The deductive and constraint solving capability
of DLV can be used to validate a graph against the constraints, and to
derive new provenance facts. We provide an encoding of the PROV rules
as Datalog rules and constraints, and illustrate the use of deductive ca-
pabilities both for queries and for constraint validation, namely to detect
inconsistencies in the graphs. The DLV code along with a parser to map
the PROV assertion language to Datalog syntax, are publicly available.

1 Introduction

Work towards standardization of a model for expressing the provenance of Web
resources has been in progress at the W3C since 2011. The outcome of this com-
munity effort comprises (i) a conceptual data model (PROV-DM) [Mor12a], (ii)
a set of consistency constraints on the model (PROV-C) [Mor12b], (iii) a formal
notation (PROV-N) [Mor12c], and, in the near future, a set-theoretical seman-
tics1. Consequently, implementations of the PROV specification should include
a parser for the language, a constraint analyzer, and a query model (language
and processor) to match the data model. In this paper we propose Datalog as a
natural choice of programming model for a PROV implementation that fits these
requirements. Rooted in first-order logic, Datalog has been popular amongst the

1 All of these components of the specification are still in progress at the time of writing.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 67–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 P. Missier and K. Belhajjame

data management community for a very long time, well past its heyday as a foun-
dation of deductive database theory [CGT90], mostly due to its expressiveness in
capturing formal properties of queries and query rewriting methods [Hal01]. Dat-
alog implementations are becoming popular again, thanks in part to the current
momentum around Answer Set Programming [BET11], a model for declarative
problem solving that is closely related to the Datalog model. Indeed, our proto-
type implementation is based on DLV2, a deductive database system based on
disjunctive Datalog [EGM97] with additional constraint-solving capabilities.

1.1 Contributions and Approach

Our contribution is threefold. Firstly, we provide a (nearly) complete mapping
of PROV constraints to Datalog rules3, and elaborate on the cases where such
mapping is not appropriate. Secondly, we illustrate the expressive power of
declarative rules in expressing significant examples of provenance graph queries,
highlighting the natural fit of recursive rules to graph traversal. Finally, we ap-
ply DLV constraint checking to the problem of validating provenance graphs, for
instance to determine temporal consistency.

Our approach involves (i) translating provenance expressed in the native
PROV notation into a Datalog database, (ii) encoding PROV constraints as
Datalog rules and constraints, and (iii) extending the core set of rules to express
specific query patterns on provenance graphs. The resulting prototype imple-
mentation is available online4.

1.2 Related Work

Datalog has a long history as a theoretical tool in data management. Specif-
ically, in data integration, Datalog has been commonly used as a notation to
analyze and compare existing query rewriting algorithms [Hal01], where recur-
sive Datalog rewritings are essential. Shen et al. [SDNR07] used Datalog rules as
a means of developing information extraction programs. Compared with similar
techniques that use low-level programming languages such as Perl, C++ or Java,
Datalog offers a declarative style along with a powerful mechanism for composing
modules, which can be written by multiple users, into larger programs. Data-
log has also been used in data exchange to specify schema mappings between
heterogeneous schemas [ABR10], and in model translation to transform schemas
from one model to another, for example from Relational to XML [ACG07].

Datalog has also been used in workflow provenance literature by a handful of
researchers, typically as an illustration of queries at a conceptual level [ABC+10].
For example, Cohen et al. [CBD06] chose Datalog as a notation for formally

2 http://www.dlvsystem.com/
3 This mapping reflects the state of the PROV constraints as of June, 2012. Up-to-date
versions of the implementation are maintained online, as indicated here below.

4 at gitHub: http://bit.ly/H0Y15T (code and examples), http://bit.ly/H0YJA8

(PROV-N to Datalog parser), see credits at the end of the paper.

http://www.dlvsystem.com/
http://bit.ly/H0Y15T
http://bit.ly/H0YJA8

A PROV Encoding for Provenance Analysis Using Deductive Rules 69

defining provenance views that take into account the chained and nested struc-
ture of scientific workflows. We note, however, that the role of Datalog in such
proposal is confined to a notation to illustrate provenance queries, as opposed to
an actual query language. In this respect, the proposal by Dey et al. [DZL11] is
closer to our work, in the sense that they use Datalog rules at the core of their
ProPub system for policy-driven selection of public provenance fragments. This
is similar in spirit to our approach, which however is focused on the comprehen-
sive encoding of a set of rules and constraints that are prescribed by a standard
specification. Additionally, we highlight the potential of the constraint-solving
capabilities of the DLV implementation of disjunctive Datalog, which we argue,
will play an important role in provenance analysis and validation.

2 PROV Provenance Graphs as Deductive Databases

We begin by providing an overview of the PROV provenance model by means of
an example, and show how it can be encoded as extensional Datalog programs
in a natural way.

2.1 Example: Collaborative Document Editing

The example presents an account of how a document was collaboratively edited
and published by a group of co-authors, led by Alice and including Bob and
Charlie5. Bob has produced the initial draft-v1, which includes references to
two papers, paper1 and paper2. Alice then left some comments in document
draft-comments, including the recommendation to also consider paper3 in the
next revision. Bob then used the comments to produce draft-v2. At this point
Charlie, who like Bob works for Alice, published the document as Working Draft
WD1, using the publication guidelines pub-guide-v1 issued by the W3C. He, how-
ever, ignored version pub-guide-v2 of those guidelines, which the W3C had
issued as update before the publication process was completed.

A graph depiction of this account of events is shown in Fig. 1, using a
non-prescriptive graphical notation. Three types of nodes appear in the graph,
namely entities, activities, and agents, and arcs represent directed associations
amongst these elements. Node types and their associations are all part of the
PROV specification. Notable relations used in the example include the usage
(used) of an entity by an activity, the generation (wasGeneratedBy) of a new
entity by an activity, the derivation of an entity from another (wasDerivedFrom),
the responsibility of an agent for an activity (wasAssociatedWith), and a “chain
of responsibility” relation, actedOnBehalfOf. Note also that the publication ac-
tivity pub involves the additional plan pub-guide-v1.

The graph also illustrates a more subtle point, namely that Bob was aware
of paper3, although the paper itself was not “consumed” as part of the editing
activity. This is achieved by introducing two entities, Bob-1 and Bob-2, both

5 This example is modified version of one that appeared in early versions of the PROV
specification draft, and is used with permission from the editors.

70 P. Missier and K. Belhajjame

Fig. 1. PROV provenance graph for collaborative document editing

of which specialize the more generic Bob. The reading activity used paper3 and
thus accounts for Bob-2 being “derived from” Bob-1. Thus, Bob-1 and Bob-2

describe two states of the same person, Bob.
The general idea behind PROV is that the graph of relations embodies the

provenance of its entities, for example the genesis of WD1 is obtained by traversing
the graph in the direction of the associations (from the “recent past” back to
the “remote past”), or by querying the graph, for example “who was responsible
for the comments”? Examples of traversal and queries on provenance graphs are
presented throughout the rest of the paper.

2.2 Background: Datalog Basics

In order to make the paper as self-contained as possible, we now briefly recall
the basics of the Datalog model. A complete account of Datalog can be found in
the classic paper, [CGT89]. A Datalog program consists of a set of rules, which
are expressions of the form

L0 : −L1, . . . , Ln (1)

where the Li are literals, i.e., either positive or negated atoms, of the form
p(t1, . . . , tk) where p is a predicate symbol and the terms ti are either constants
or variables. L0 is the head of the rule, the remaining Li form the body of the
rule. A ground literal is one that contains only constants. Rules with a ground

A PROV Encoding for Provenance Analysis Using Deductive Rules 71

literal in the head and empty body are ground facts. The set of ground facts is
referred to as the Extensional Database (EDB), in contrast to the Intensional
Database (IDB) consisting of rules with non-empty body.

The purpose of rules is to derive new facts from existing ones. For example,
the rule:

e n t i t y (X, Attr s) :− agent (X, Attr s) .

(by convention, terms in upper case denote variables) allows for a new fact
entity(x,attrs) to be derived, where x and attrs are constants, pro-
vided there is a substitution of variables Θ = {X/x, Attrs/attrs} such that
Θ(agent(X,Attrs)) is a ground fact (either in the EDB or itself derived). In our
example, the result includes all the agents, i.e. { entity(alice,alice attrs),
entity(bob, bob attrs), . . . }. In a sense, this rule simply defines “specializa-
tion” and has the effect of adding all agents to the EDB as new entities.

In general, a substitution Θ satisfies the body of a rule (1) if the database
contains all of the ground literals Θ(Li). If Θ satisfies the body, the new ground
literal Θ(L0) is added to the database. Note that Θ must substitute for all
variables in the head. This is guaranteed by requiring that the rule be safe, i.e.,
that all variables that appear in the head also appear in the body of the rule6.

2.3 Datalog Encoding of PROV Graphs

The PROV specification includes a formal notation, called PROV-N, for ex-
pressing PROV graphs. Its syntax is so close to that of Datalog ground facts,
that we can safely present fragments of the example above using the latter, with
nearly no loss of information, with a few exceptions as noted below. For example,
the following PROV-N fragment states the existence of entity draftV1, activ-
ity drafting with a start and end time, and the generation of draftV1 by the
drafting activity.

e n t i t y (draftV1 , [" distribution "=" internal " ,
" status"=" draft " , " version"=" 0.1"])

e n t i t y (draftComments)
a c t i v i t y (commenting , comment start , comment end)
used (u1 , commenting , draftV1 , −, comm d1 use) .
wasGeneratedBy(g1 , draftComments , commenting , −, comm dc gen)

The first entity is qualified with an optional set of attributes. Start and end
events can optionally be specified, e.g. for activity, usage (comm d1 use denotes
the time draftV1 begins to be used), and generation (i.e., comm dc gen the time
at which draftComments is complete). In PROV-N, the ’-’ symbol indicates a
null, or unavailable value. u1 and g1 are identifiers for the use and generation
relations, respectively, and can be referenced from other relations.

6 The safety property includes the additional condition that each variable in the body
appears in at least one positive literal.

72 P. Missier and K. Belhajjame

Below is the set of Datalog ground facts for the same fragment:

e n t i t y (draftV1 , dra f tV1Attrs) .
a t t r L i s t (wd1 attrs , " distribution " , " public") .
a t t r L i s t (wd1 attrs , " status " , " draft ") .
a t t r L i s t (wd1 attrs , " release" , " 1.0 ") .
e n t i t y (draftComments , n i l) .
a c t i v i t y (commenting , comment start , comment end , n i l) .
used (commenting , draftV1 , n i l , comm d1 use) .
wasGeneratedBy(draftComments , commenting , n i l , comm dc gen) .

In the mapping from PROV to Datalog, the relation names become predicate
names and the relation arguments simply become terms7. However, there are
a few differences. Firstly, lists of attributes are mapped to a separate predicate
symbol attrList and linked to their parent element by means of a new identifier,
i.e., draftV1Attrs. This makes it easy to write queries that involve attributes.
A Datalog query, or goal, is specified as a conjunction of literals followed by a
question mark8, for example:

e n t i t y (draftV1s , Attr s) , a t t r L i s t (Attrs ,Name, Value) ?

The result of the query includes all ground facts in the EDB that match all the
literals in the goal, for some substitution of the variables in the goals’ literals.
Our example query returns:

d ra f tV1 a t t r s , " distribution " , " internal "
d ra f tV1 a t t r s , " status" , " draft "

The second difference is that, while in PROV events can be expressed using
timestamps, these cannot be used for temporal reasoning, because there is no
assumption that they will have been generated by the same clock. Rather, what
matters for provenance consistency is only the partial order amongst events.
This justifies choosing purely symbolic terms in these examples.

Finally, in this “baseline” mapping we choose not to create new identifiers
(which could be done by means of Skolem functions). As a consequence, each
new relation created by means of a rule cannot be given an identifier, for example,
the following rule generatea a new used relation from the presence of others in
the EDB:

used (A,E1 , n i l , Attr s) :− wasDerivedFrom (E2 , E1 , , Attr s) ,
wasGeneratedBy(E2 , A, Attrs ,) .

Since relation identifiers are optional in PROV, in our implementation we choose
not to use them.

For reference, additional excerpts of the Datalog EDB for our running example
can be found in Appendix A.

3 PROV Constraints as Datalog Rules

In this section we present a selected set of rules that encode PROV constraints,
and show them at work on example queries that are relevant for provenance
graph analysis.

7 The null symbol “-” is not legal in Datalog, and is replaced by “nil”.
8 The question mark at the end is DLV-specific syntax.

A PROV Encoding for Provenance Analysis Using Deductive Rules 73

3.1 Mapping PROV Rules to Datalog Rules and Queries

For the most part, PROV rules are of the form if r1, . . . , rn then r, where the
antecedents ri are relations in the provenance graph, and the consequent r is
a new relation. For example: “If wasDerivedFrom(e2,e1,a,g2,u1) holds, for some
a, g2, u1, then tracedTo(e2,e1) also holds.”9 (in some cases, the rule specifies
both sufficient and necessary conditions for r). In general, there is a natural
mapping of these rules to Datalog, which involves creating a deductive rule with
head r and body r1 . . . rn with suitable variables. For example, the entire set of
traceability constraints is encoded in Datalog as follows 10:

tracedTo (E2 , E1) :− wasDerivedFrom (E2 , E1 , ,) .
tracedTo (E2 , Ag) :− wasGeneratedBy (E2 ,A, ,) ,
wasAssociatedWith (A,Ag , ,) .
tracedTo (Ag2 , Ag1) :− wasGeneratedBy (E2 ,A, ,) , wasAssociatedWith (A, Ag1 , ,) ,

actedOnBehalfOf (Ag2 , Ag1 ,A,) .
tracedTo (E2 , E1) :− wasStartedBy (A,E1 ,) , wasGeneratedBy (E2 ,A, ,) .
tracedTo (E3 , E1) :− tracedTo (E3 , E2) , tracedTo (E2 , E1) .

The first rule states that if entity E2 was derived from E1, then it is also true
that E2 can be traced to E1. Rule (2) states that entity E2 can be traced to agent
Ag if E2 was generated by an activity A, and Ag was associated with (i.e., was
responsible for) A. The last rule states transitivity.

In relational database terms, rules define views over the EDB, which can be
used to derive a new set of database facts, in this case of the form tracedTo(e1,

e2). Given the rules, the simple query computes the “traceability” grap induced
by the EDB given the rules:

tracedTo (E2 , E1) ?

The set of substitutions for E2, E1 returned by DLV in response to the query are
shown in Table 1, along with an explanation for their derivation (note that one
can ask more specific queries where some of the terms are ground, for example
tracedTo(draftV2,E)? for “what is draftV2 traced to?”).

3.2 Limitations of Mapping and Rules as DLV Constraints

We have seen that rules are used to deduce new ground literals from existing
ones. These literals, however, can only contain terms that appear in the body
of the rule. We do not map rules that require the introduction of new con-
stants that represent new nodes in the provenance graph (this is also consistent
with our earlier decision not to mint new identifiers)11. For example, the rule:
wasRevisionOf(new,old,ag) ⇒ ∃e | specializationOf(new,e)
is not mapped, as it entails introducing a new entity e into the provenance graph.

9 Quoting [Mor12a], “A traceability relation between two entities e2 and e1 is a generic
dependency of e2 on e1 that indicates either that e1 may have been necessary for e2
to be created, or that e1 bears some responsibility for e2’s existence.”.

10 Consistent with our earlier choice for mapping PROV relations, we ignore the relation
identifiers g2 and u1.

11 Note however, that some of the rules introduce default values for some of the terms,
typically for attribute-value pairs.

74 P. Missier and K. Belhajjame

Table 1. Substitutions leading to the “traceability” graph induced by the provenance
graph on the running example

substitution rules facts involved
E2/draftV1,
E1/bob 1

(2) wasGeneratedBy(draftV1, drafting, nil, nil),
wasAssociatedWith(drafting, bob 1, nil, waw1 attrs).

E2/draftComments,
E1/alice

(2) wasGeneratedBy(draftComments, commenting, nil, comm dc gen).
wasAssociatedWith(commenting, alice, nil, waw2 attrs).)

E2/draftV2,
E1/draftV1

(1) wasDerivedFrom(draftV2, draftV1, nil, nil)

E2/draftV2,
E1/bob 2

(2) wasGeneratedBy(draftV2, editing, nil, edit d2 gen).
wasAssociatedWith(editing, bob 2, nil, waw3 attrs).

E2/draftV2,
E1/bob 1

(1), (2),
(5)

wasGeneratedBy(draftV2, editing, nil, edit d2 gen).
wasAssociatedWith(editing, bob 2, nil, waw3 attrs).
wasDerivedFrom(bob 2, bob 1, nil, nil).

E2/pubGuidelinesV2,
E1/pubGuidelinesV1

(1) wasDerivedFrom(pubGuidelinesV2, pubGuidelinesV1, nil, nil).

E2/wd1, E1/charlie (2) wasGeneratedBy(wd1, publication, nil, pub wd1 gen).
wasAssociatedWith(publication, charlie, pubGuidelinesV1, nil).

E2/bob 2, E1/bob 1 (1) wasDerivedFrom(bob 2, bob 1, nil, nil).

Also, a few PROV rules either cannot be captured as Datalog rules, or oth-
erwise lead to unsafety. The following PROV rule, for example, states that the
alternateOf relation is anti-symmetric, in terms of an inference that leads to a
new equality amongst entities being introduced in the model:

specializationOf(E2,E1)∧ specializationOf(E1,E2)⇒ E1 == E2. (2)

The new equality in the consequent is problematic, as it cannot be expressed
simply by using the built-in equality predicate ’=’, but instead would require a
new predicate, say equal/2, as in:

equa l (E1 , E2) :− s p e c i a l i z a t i o nO f (E1 , E2) , s p e c i a l i z a t i o nO f (E2 , E1) .

However, one cannot define the semantics of equal in terms of built-in equality,
because a rule of the form

equa l (X,Y) :− X = Y

is not safe. As a consequence, such custom equality cannot be used in conjunction
with built-in equality when computing a model, and thus rule (2) above escapes
our mapping model.

Such rule, however, can be expressed as a constraint. Syntactically, DLV con-
straints are headless rules of the form

: −L1, . . . , Ln. (3)

The models of a program P with such a rule added to it are the models of P
that do not satisfy L1, . . . , Ln. In other words, no model results from a program
where the body of the constraint is satisfied. This can be used to express the
anti-symmetry property above as a constraint, stating that there cannot be two
distinct entities which are each the specialization of the other:

:− s p e c i a l i z a t i o nO f (E3 , E2) , s p e c i a l i z a t i o nO f (E2 ,E3) , E2 != E3 .

A PROV Encoding for Provenance Analysis Using Deductive Rules 75

DLV enforces constraints and will signal that no model can be found for a given
EDB. While this programming approach does not lead to the introduction of new
nodes in provenance graphs, it provides a mechanism for checking the consistency
of existing graphs with very limited programming effort. Examples of constraints
in action are presented in Sec. 4. In the rest of the section we instead present
examples of successful rule mappings along with associated provenance queries.
A summary of all the rule mappings, including the constraints, indexed by the
names given to the rules in [Mor12b], appears in Table B in the Appendix.

3.3 Examples Rules and Queries

Inferring communication amongst activities. The following example illustrates
how Datalog rules can be used to match patterns in the graph, and to find
paths in the graph which connect instances of those patterns. Communica-
tion amongst activities is defined in [Mor12a] as “the exchange of an entity
by two activities, one activity using the entity generated by the other.”. The
wasInformedBy(informed, informant, attrs) relation is used to represent
communication, where informant is the activity that provides an input entity
to the informed activity. [Mor12b] states that a2 was informed by a1, if there
is an entity e that has been generated by a1 and used by a2. Furthermore,
[Mor12b] also states that if e2 was derived from e1, and e2 was generated by
activity a, then one can conclude that a used e1. These two rules are captured
as follows:

wasInformedBy(A2 , A1 , n i l) :− wasGeneratedBy(E, A1 , ,) ,
used (A2 , E, ,) .% (1)

used (A, E1 , n i l , Attr s) :− wasDerivedFrom (E2 , E1 , , Attr s) ,
wasGeneratedBy(E2 , A, Attrs ,) .% (2)

Each of these two rules capture a pattern in the provenance graph. As an ex-
ample, used(editing,draftV1,nil), a relation that is not in the graph, is
derived from (2), and from this, wasInformedBy(editing, drafting) also fol-
lows. From these, one can build upon these patterns by introducing further rules
such as the following, which states that two agents are related through a path
of length n, when they are associated to two activities, one of which is informed
by the other. This provides an informal measure of “distance” amongst agents.
The rule is recursive:

re latedAgents0 (Ag2 , Ag1) :− wasInformedBy(A2 , A1 ,) ,
wasAssociatedWith (A2 ,Ag2 , ,) ,
wasAssociatedWith (A1 ,Ag1 , ,) .

r e latedAgents (Ag2 , Ag1 , 1) :− re latedAgents0 (Ag2 , Ag1) .
re latedAgents (Ag3 , Ag1 , N) :− re latedAgents0 (Ag3 , Ag2) ,

re latedAgents (Ag2 , Ag1 , M) , #succ (M,N) .

The built-in predicate #succ(M,N) is true iff N == M+1. The query:

76 P. Missier and K. Belhajjame

re latedAgents (Ag2 , Ag1 , N) ?

returns, amongst others, the triple (charlie, bob 2, 1), which requires (1) and
(2) for its derivation, and (charlie, bob 1, 3), which indicates that charlie
and Bob are related by means of the entire chain of activities, from drafting to
publication.

Agents’ chains of responsibility. The next rule provides further illustration of
the use of recursion, this time to state that an agent is ultimate responsibility
for an activity, if either she is directly responsible or if another agent has acted
on her behalf in the context of that activity12.:

r e s pon s i b l e (Ag , Act) :− wasAssociatedWith (Act ,Ag , ,) . %(1)
r e s pon s i b l e (Ag , Act) :− s p e c i a l i z a t i o nO f (Ag1 , Ag) ,

r e s p on s i b l e (Ag1 , Act) .%(2)
r e s pon s i b l e (Ag1 , Act) :− actedOnBehalfOf (Ag ,Ag1 , ,) ,

r e s p on s i b l e (Ag , Act) . %(3)

This reveals for example that alice is ultimately responsible for drafting, com-
menting, editing, and publishing. Finally, the following rule uses aggregation, a
feature of DLV with an intuitive syntax, rather than recursion to determine
that alice is at the head of a chain of responsibility (and so is, trivially,
w3c consortium):

headOfChain(Ag) :− wasAssociatedWith (A,Ag , ,) ,
#count{ Ag2 : actedOnBehalfOf (Ag ,Ag2 ,A,)} = 0.

Entities with limited provenance. A final example of simple and potentially useful
pattern query involves finding entities that have been used, but whose generation
is unknown, making for “incomplete” provenance. The next rules makes use of
aggregation for the purpose13:

ungenerated (E) :− used (, E, ,) ,
#count{ A: wasGeneratedBy(E, A, ,)} = 0.

4 Provenance Validation by Constraint Checking

As anticipated in Sec. 3.2, constraints can be used in DLV as a way to map some
of the PROV rules. Here we show constraints at work in two scenarios, both
involving cycles in the graph. The first concerns temporal events, which are
optionally associated with activities and most relations (Sec.2). PROV defines
temporal consistency by means of a number of event ordering rules, from the
simplest: “the start of an activity precedes its end”, to more involved ones:

12 The additional literal specializationOf(Ag1, Ag) in (2) is needed to associate
responsibility to an agent in its abstract form.

13 Note that using negation-as-failure, a potentially more natural formulation, would
result in an unsafe rule, i.e., ungenerated1(E,T,Attrs) :- used(, E, ,), not

wasGeneratedBy(E, A, T,Attrs).

A PROV Encoding for Provenance Analysis Using Deductive Rules 77

“if entity e is generated by a, then its generation time follows the start time of
a”. A provenance graph is temporally consistent if there exists a partial order
amongst events, which satisfies all the temporal rules. Our encoding of these
rules can be found in Appendix B and is based on the temporal precedence
predicate precedes(T1,T2). Precedence is anti-symmetric and transitive:

:− precedes (T1 ,T2) , precedes (T2 ,T1) , T1 != T2 . % anti−symmetry
% t r a n s i t i v i t y
precedes (T1 ,T3) :− precedes (T1 ,T2) , precedes (T2 ,T3) , T1 != T3 .

Query precedes(T1,T2)? returns all partial order relations in the graph. In par-
ticular, temporal inconsistencies in the EDB are detected when no stable model
is found. Fig. 2 shows an example of cyclic graph. Cycles in PROV graphs are in
some cases acceptable, as shown in the temporal logic for the Open Provenance
Model [KMV10]. Indeed in this example, the query returns a valid partial order
(depicted in the bottom part of the figure). However, the program has no model
when the precedence relation: precedes(t u ,a1Start) is explicitly added to
the graph (not shown).

Fig. 2. Example of legal cycle in a PROV graph

Fig. 3. Example of illegal cycle in a PROV graph

In contrast, some cycles in the provenance graph lead to inconsistencies, as
in the example of Fig. 3. Here the cycle consisting of derivation relations is
invalid, as derivation implies a time ordering amongst implicit use and generation
events that accounts for it. Unless we accept to collapse all such events into
one [KMV10], no order is possible.

The following rules are designed to detect these cycles:

78 P. Missier and K. Belhajjame

de r i vab l e (E2 , E1) :− wasDerivedFrom (E2 , E1 , ,) , E1 != E2 . % base case
de r i vab l e (E2 , E1) :− de r i vab l e (E2 , E0) , d e r i vab l e (E0 , E1) . % induct ion
:− de r i vab l e (E2 , E1) , d e r i vab l e (E1 , E2) . % cyc l e cons t ra in t

5 Conclusions

PROV is the emerging W3C recommendation for a provenance data model and
language. We have presented an encoding of PROV provenance graphs and in-
ference rules and constraints as Datalog EDB and IDB, and we have shown how
such encoding leads to intuitive, declarative-style queries on the graphs. Fur-
thermore, we have used the constraint-solving capabilities of the DLV Datalog
engine, which is freely available for non-commercial use, to show automated val-
idation of PROV constraints, i.e., to detect temporal inconsistencies and illegal
cycles in the provenance graph. An implementation of PROV-to-Datalog map-
per is available online14, along with the complete set of Datalog rules and the
examples used in the paper15.

In this work we have not addressed issues of efficient execution of queries
on large graphs, a requirement that often conflicts with the declarative style of
the query language, in the absence of suitable optimizations. Experiments are
underway to test the limits of the DLV implementation. The potential uses in the
provenance setting of disjunctive Datalog, which is typically used in automated
planning applications, is also left for future research.

Acknowledgements. The authors would like to thank the members of the
Provenance Working Group at the W3C for their collective effort on the PROV
specification, and in particular Prof. Luc Moreau for contributing the PROV-to-
Datalog parser.

References

[ABC+10] Acar, U., Buneman, P., Cheney, J., Van Den Bussche, J., Kwasnikowska,
N., Vansummeren, S.: A graph model of data and workflow provenance. In:
Proceedings of the 2nd Conference on Theory and Practice of Provenance,
TAPP 2010, p. 8. USENIX Association, Berkeley (2010)

[ABR10] Arenas, M., Barceló, P., Reutter, J.L.: Datalog as a Query Language for
Data Exchange Systems. In: de Moor, O., Gottlob, G., Furche, T., Sellers,
A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 302–320. Springer, Heidelberg
(2011)

[ACG07] Atzeni, P., Cappellari, P., Gianforme, G.: Midst: model independent
schema and data translation. In: SIGMOD Conference, pp. 1134–1136.
ACM (2007)

[BET11] Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a
glance. Commun. ACM 54(12), 92–103 (2011)

14 http://bit.ly/H0YJA8
15 http://bit.ly/H0Y15T

http://bit.ly/H0YJA8
http://bit.ly/H0Y15T

A PROV Encoding for Provenance Analysis Using Deductive Rules 79

[CBD06] Cohen, S., Cohen-Boulakia, S., Davidson, S.B.: Towards a Model of Prove-
nance and User Views in Scientific Workflows. In: Leser, U., Naumann,
F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 264–279.
Springer, Heidelberg (2006)

[CGT89] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about
Datalog (and never dared to ask). IEEE Transactions on Knowledge and
Data Engineering 1(1), 146–166 (1989)

[CGT90] Ceri, S., Gottlob, G., Tanca, L.: Logic programming and databases.
Springer-Verlag New York, Inc., New York (1990)

[DZL11] Dey, S.C., Zinn, D., Ludäscher, B.: ProPub: Towards a Declarative Ap-
proach for Publishing Customized, Policy-Aware Provenance. In: Bayard
Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809,
pp. 225–243. Springer, Heidelberg (2011)

[EGM97] Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans.
Database Syst. 22(3), 364–418 (1997)

[Hal01] Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4),
270–294 (2001)

[KMV10] Kwasnikowska, N., Moreau, L., Van den Bussche, J.: A Formal Account of
the Open Provenance Model. Technical report, University of Southampton
(December 2010)

[Mor12a] PROV-DM Part I: The PROV Data Model (March 2012),
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm.html

[Mor12b] PROV-DM Part II: Constraints of the Provenance Data Model (March
2012), http://dvcs.w3.org/hg/prov/raw-file/default/
prov-dm-constraints.html

[Mor12c] PROV-DM Part III: The PROV Notation (March 2012),
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-n.html

[SDNR07] Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative infor-
mation extraction using datalog with embedded extraction predicates. In:
VLDB, pp. 1033–1044. ACM (2007)

http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm.html
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm-constraints.html
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm-constraints.html
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-n.html

80 P. Missier and K. Belhajjame

A Excerpts of the EDB for the Running Example

e n t i t y (paper1 , n i l) .
e n t i t y (draftV1 , d ra f tV1 a t t r s) .
e n t i t y (draftComments , n i l) .
e n t i t y (pubGuidelinesV2 , n i l) .
e n t i t y (wd1 , wd1 attr s) .

a t t r L i s t (dra f tV1 attr , " distribution " , " internal ") .
a t t r L i s t (dra f tV2 attr , " distribution " , " internal ") .
a t t r L i s t (wd1 attrs , " distribution " , " public") .

a c t i v i t y (d ra f t i n g , d r a f t s t a r t , d ra f t end , n i l) .
a c t i v i t y (reading , n i l , n i l , n i l) .
a c t i v i t y (commenting , comment start , comment end , n i l) .
a c t i v i t y (ed i t i n g , e d i t s t a r t , ed i t end , n i l) .
a c t i v i t y (pub l i c a t i on , pub start , n i l , n i l) .
a c t i v i t y (gu id e l i n e updat e , n i l , gUpdate end , n i l) .

used (d ra f t i n g , paper1 , n i l , d r p1 use) .
wasGeneratedBy(draftV1 , d ra f t i n g , n i l , d r d1 gen) .
used (commenting , draftV1 , n i l , comm d1 use) .
wasGeneratedBy(draftComments , commenting , n i l , comm dc gen) .

agent (a l i c e , a l i c e a t t r s) .
a t t r L i s t (a l i c e a t t r s , " prov : type " , " prov : Person") .
agent (bob , bob a t t r s) .
a t t r L i s t (bob attr s , " prov : type " , " prov : Person") .
agent (bob 1 , n i l) .
agent (bob 2 , n i l) .
agent (c h a r l i e , c h a r l i e a t t r s) .
a t t r L i s t (c h a r l i e a t t r s , " prov : type " , " prov : Person") .
agent (w3c consortium , w3c a t t r s) .
a t t r L i s t (w3c att r s , " prov : type " , " institution ") .

wasDerivedFrom (draftV2 , draftV1 , n i l , n i l) .
wasDerivedFrom (bob 2 , bob 1 , n i l , n i l) .
wasDerivedFrom (pubGuidelinesV2 , pubGuidelinesV1 , n i l , n i l) .

wasAssociatedWith (d ra f t i n g , bob 1 , n i l , waw1 attrs) .
a t t r L i s t (waw1 attrs , " prov : role " , " author ") .
wasAssociatedWith (commenting , a l i c e , n i l , waw2 attrs) .
a t t r L i s t (waw2 attrs , " prov : role " , " editor ") .

wasAssociatedWith (ed i t i n g , bob 2 , n i l , waw3 attrs) .
a t t r L i s t (waw3 attrs , " prov : role " , " author ") .
actedOnBehalfOf (bob 1 , a l i c e , d ra f t i ng , n i l) .
actedOnBehalfOf (c h a r l i e , a l i c e , pub l i c a t i on , n i l) .

s p e c i a l i z a t i o nO f (bob 1 , bob) .
s p e c i a l i z a t i o nO f (bob 2 , bob) .

A PROV Encoding for Provenance Analysis Using Deductive Rules 81

B Summary of Datalog Rules Implemented for PROV

Constraint name Datalog rule(s)
Activities and Entities are disjoint :- activity(X, , ,), entity(X,).

Event ordering interpretation constraints
Start of activity precedes its end precedes(T1, T2) :- activity(, , T1, T2,).

The generation of an entity always precedes
any of its usages

precedes(T2,T1) :- used(, E, ,T1),
wasGeneratedBy(E, , , T2).

Usage-within-activity

precedes(T2,T1) :- used(, E, ,T1),
wasGeneratedBy(E, , , T2).
precedes(UT, T2) :- activity(A, , T1, T2,),
used(A, , ,UT).

Generation-within-activity

precedes(T1, UT) :- activity(A, , T1, T2,),
used(A, , ,UT).
precedes(T1, GT) :- activity(A, , T1, T2,),
wasGeneratedBy(,A, , GT).

Derivation-usage generation-ordering16 precedes(T1,T2) :- wasDerivedFrom(E2, E1, A,),
used(A,E1, ,T2), wasGeneratedBy(E2, A, , T1).

Detection of extended derivation loops

:- derivable(E2, E1), derivable(E1, E2).
derivable(E2, E1) :- wasDerivedFrom(E2, E1, ,) ,
E1 != E2.
derivable(E2, E1) :- derivable(E2, E0),
derivable(E0, E1).

derivation-generation generation-ordering
precedes(T1,T2) :- wasDerivedFrom(E2, E1, ,),
wasGeneratedBy(E2, , , T2),
wasGeneratedBy(E1, , , T1).

wasInformedBy-ordering
. precedes(ST1, ET2) :- wasInformedBy(A2, A1,),

activity(A1, , ST1, ,),
activity(A2, , , ET2,).

wasStartedBy-ordering
precedes(ST1, ST2) :- wasStartedBy(E2,E1,),
activity(A1, , ST1, ,), activity(A2, , ST2, ,).

wasStartedByAgent-ordering,
wasAssociatedWith-ordering

Not implemented because start and end events for
entities (and agents in particular) are not clearly de-
fined

Structural constraints
Generation-uniqueness :- activity(A1, , , ,), activity(A2, , , ,),

wasGeneratedBy(E, A1, ,),
wasGeneratedBy(E, A2, ,),A1 != A2.

derivation-use used(A,E1, nil ,Attrs) :- wasDerivedFrom(E2, E1,
, Attrs), wasGeneratedBy(E2, A, Attrs,).

Element-specific constraints
Association-agent agent(E, Attrs) :- entity(E, Attrs),

wasAssociatedWith(,E, ,Attrs).

Derivation-implication wasDerivedFrom(E2, E1, A, Attrs) :-
wasDerivedFrom(E2, E1, , Attrs), wasGeneratedBy(
E2, A, ,), used(A,E1, ,).

Transitivity of specialization specializationOf(E3,E1) :-
specializationOf(E3,E2), specializationOf(E2,E1).

Anti-symmetry of specialization :- specializationOf(E1,E2),
specializationOf(E2,E1), E2 != E1.

Symmetry of alternate :- alternateOf(E1,E2), alternateOf (E2,E1), E2 !=
E1.

Derivation implies traceability tracedTo(E2, E1) :-wasDerivedFrom(E2,E1, ,).

Traceability of agent for a generating activity tracedTo(E2, Agent) :-wasGeneratedBy(E2,A, ,),
wasAssociatedWith(A,Agent,).

Traceability of a delegated agent for a gener-
ating activity

tracedTo(Ag2, Ag1) :- wasGeneratedBy(
E2,A, ,), wasAssociatedWith(A,Ag1, ,),
actedOnBehalfOf(Ag2,Ag1,A).

Traceability by starting and generating activ-
ities

tracedTo(E2, E1) :-wasStartedBy(A,E1,),
wasGeneratedBy(E2,A, ,).

Transitivity of traceability tracedTo(E2, E1) :-tracedTo(E3, E2),
tracedTo(E2,E1).

wasStartedBy (only ’if’ part is actionable’) wasStartedBy(A2,A1) :- wasGeneratedBy(E,A1,),
wasStartedBy(A2,E,).

16 Note that this rule only applies if both use and generation are specified.

Declarative Rules for Inferring Fine-Grained

Data Provenance from Scientific Workflow
Execution Traces

Shawn Bowers1, Timothy McPhillips2, and Bertram Ludäscher3

1 Dept. of Computer Science, Gonzaga University
2 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator

Laboratory, Stanford University
3 Dept. of Computer Science, University of California Davis

Abstract. Fine-grained dependencies within scientific workflow prove-
nance specify lineage relationships between a workflow result and the in-
put data, intermediate data, and computation steps used in the result’s
derivation. This information is often needed to determine the quality and
validity of scientific data, and as such, plays a key role in both prove-
nance standardization efforts and provenance query frameworks. While
most scientific workflow systems can record basic information concerning
the execution of a workflow, they typically fall into one of three categories
with respect to recording dependencies: (1) they rely on workflow com-
putation steps to declare dependency relationships at runtime; (2) they
impose implicit assumptions concerning dependency patterns from which
dependencies are automatically inferred; or (3) they do not assert any
dependency information at all. We present an alternative approach that
decouples dependency inference from workflow systems and underlying
execution traces. In particular, we present a high-level declarative lan-
guage for expressing explicit dependency rules that can be applied (at
any time) to workflow trace events to generate fine-grained dependency
information. This approach not only makes provenance dependency rules
explicit, but allows rules to be specified and refined by different users as
needed. We present our dependency rule language and implementation
that rewrites dependency rules into relational queries over underlying
workflow traces. We also demonstrate the language using common types
of dependency patterns found within scientific workflows.

1 Introduction

A key feature of scientific workflow systems is their ability to record workflow ex-
ecution events at runtime, which can be used to establish various types of prove-
nance relationships. Common events that are observed and recorded by workflow
systems include the computational steps that were invoked as part of a workflow
run as well as the data that were input to and output by each step. Record-
ing these types of events in most workflow systems is straightforward, however,
recording detailed provenance dependency relationships presents a number of

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 82–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Declarative Rules for Inferring Fine-Grained Data Provenance 83

challenges. For instance, determining the sequence of computations performed
to produce a data result requires understanding the fine-grained dependencies of
step outputs on step inputs, which generally requires an understanding of how
the underlying computation of the step is performed. While recent approaches [2]
have begun to incorporate so-called “white-box” components into workflows—
i.e., steps implemented in languages from which dependencies can be inferred,
such as SQL and other database manipulation languages—workflow systems typ-
ically treat computation steps as “black-boxes” in which very little is known or
assumed regarding the underlying implementation of steps.

Scientic workflow systems generally adopt one of three approaches for as-
serting provenance dependencies: (1) they rely on workflow computation steps
to declare dependency relationships at runtime (e.g., see [4]); (2) they impose
implicit assumptions concerning dependency patterns from which dependencies
are automatically inferred (e.g., see [9,1,8,13]); or (3) they do not assert any
dependency information at all. Relying on workflow steps to declare provenance
relationships can be problematic, e.g., it requires a well-defined API for record-
ing dependencies and can add considerable overhead to each step (e.g., [3]). Also,
not all computational steps of interest may declare, or declare correctly, the de-
pendencies introduced by executing the step. The use of implicit rules can be
equally problematic. For example, depending on the underlying model of com-
putation employed by a workflow system and the complexity of workflow steps,
establishing implicit rules regarding dependency relationships can often lead to
incomplete and incorrect dependency assertions (e.g., see [3,13]).

Contributions. In this paper, we describe approaches for inferring data de-
pendencies from workflow execution traces based on explicit user-defined rules
as opposed to implicit rules assumed by a workflow system or dependencies
declared by computation steps. We propose a high-level language for express-
ing user-defined dependency rules that can be applied (at any time) to workow
trace events to generate fine-grained dependency information. This approach
takes the burden of determining provenance dependencies off of workflow sys-
tems, and allows rules to be specified and refined by different users (such as
workflow developers) as needed. We present a dependency rule language and a
formal implementation that converts high-level dependency rules into relational
queries over an underlying workflow trace model. We also demonstrate the ex-
pressivity of the language by using the language to define common types of
dependency patterns found within scientific workflows. Our approach is compat-
ible with existing provenance standardization efforts such as OPM [15] and the
W3C Prov effort [18]. In particular, both of these approaches focus on represent-
ing fine-grained data dependencies, and our approach can be used to compute
these dependencies from underlying workflow execution traces.

Organization. This paper is organized as follows. Section 2 describes an ab-
stract, minimal model for describing workflows, workflow traces, and data de-
pendencies. The model is used in Section 3 as the foundation for our declarative
provenance rule language. Section 3 also describes an implementation of our
approach that stores execution traces within a relational schema and converts

84 S. Bowers, T. McPhillips, and B. Ludäscher

source normalize filter sink
y x y x y x

c f f a b

source:1 normalize:1 filter:1 sink:1
y x y x y x

c f f a b
d1

d2 d5 d7

d3 d4 d6 d8

(a)

(b)

source:1 normalize:1 filter:1 sink:1
y x y x y x

c f f a b
d1

d2 d5 d7

d3 d4 d6 d8

(c)

Fig. 1. (a) An example workflow specification, (b) an execution showing the first in-
vocation step of each actor, and (c) the corresponding data dependencies

provenance rules into queries over schema instances. We also give examples of
common dependency patterns and show how these patterns are captured using
the declarative rule language of Section 3. Related work is presented in Section 4
and we summarize our contributions in Section 5.

2 Workflows, Traces, and Dependencies

This section describes a minimal set of observables that must be recorded by a
workflow system to apply the user-defined dependency rules of Section 3. Ob-
servables are defined as part of an abstract model, and a specific (relational)
implementation of the model is given in Section 3. The abstract model is di-
vided into three distinct layers: workflow specifications, workflow traces, and
fine-grained data dependencies.

Figure 1a shows a simple example workflow. In the abstract model, workflows
consist of actors (which define types of steps), actor parameters, and actor chan-
nels. Actor parameters are designated as input, output, or state variables. Actor
inputs receive (or read) data items, outputs produce (or write) data items, and
state parameters maintain data across actor invocations (or “firings”). Actor
channels define dataflow between two actors, connecting one output parameter
of an actor to one input parameter of an actor. Workflow specifications in the
abstract model are defined more formally as follows.

Definition 1. A workflow specification W = (A,P,C, σ) is a 4-tuple consisting
of actor names A, parameter names P , dataflow channels C, and a signature

Declarative Rules for Inferring Fine-Grained Data Provenance 85

function σ : A → 2P×{in,out,state} that maps actors to their corresponding input,
output, and state parameters. Each parameter in the signature of an actor must
have a unique name, i.e., for each actor a ∈ A, if (p, r1) ∈ σ(a) and (p, r2) ∈ σ(a)
then r1 = r2. We often write a.p to refer to the (unique) parameter p of actor a.
Let Ain and Aout be the input and output parameters, respectively, of actors in
W , i.e., Ain = {a.p | a ∈ A∧(p, in) ∈ σ(a)} and Aout = {a.p | a ∈ A∧(p, out) ∈
σ(a)}. The (directed) dataflow channels are defined as the set C ⊆ Aout × Ain

connecting output parameters of actors in A to input parameters of actors in A.

For dependency inference rules, we only assume the presence of actor signatures
(i.e., actor parameters and whether they represent inputs, outputs, or state).
Channels are not required to apply the inference rules, and are included in the
abstract model to provide a more complete view of a workflow specification. The
following example describes the workflow in Figure 1a using the abstract model.

Example 1. Consider the workflow W of Figure 1a in which the first actor reads
data from a file; the second actor produces a normalized value from each value
read (where a and b are the min and max values, respectively); the third actor
performs a low-pass filter (i.e., outputs items received if they are less than a
given cutoff value); and the last actor writes data to a file. Using Definition 1,
this workflow can be represented as follows.

W = (A,C, σ)

A = {source, normalize, filter, write}
C = {(source.y, normalize.x), (normalize.y, filter.x),

(filter.y, sink.x)}
σ(source) = {(f, in), (y, out)}

σ(normalize) = {(x, in), (y, out), (a, in), (b, in)}
σ(filter) = {(x, in), (y, out), (c, in)}

σ(sink) = {(x, in), (f, in)}

Here, source.f gives the filename that data is to be read from, filter.c gives
the cutoff value, and sink.f gives the filename that data is written to.

A trace of a workflow execution in the abstract model consists of a set of actor in-
vocations, called steps, and their corresponding parameter updates (i.e., changes
in parameter values). Thus workflow systems that conform to the model must
be able to observe and must record both invocations and parameter updates,
which are both recorded by the majority of provenance-aware workflow systems
today [5,17,6]. In addition, we require only a relative order on parameter updates
within actor invocations (i.e., order information across actor invocations is not
required), and this information is typically provided by workflow systems using
various forms of timestamps. Workflow execution traces in the abstract model
are defined more formally as follows.

86 S. Bowers, T. McPhillips, and B. Ludäscher

Definition 2. A trace T = (S,U) of a workflow W is a pair consisting of actor
steps S and their corresponding parameter updates U . In particular, S ⊆ A×N

such that for a step s ∈ S, s = (a, i) denotes an invocation step of actor a, which
we typically write as a:i. No ordering constraints are placed on steps, i.e., a:i
may or may not have executed before a:(i+1). Similarly, U ⊆ S × P ×D × N

is the set of parameter updates, where D is the set of data items produced by
the workflow such that an update u = (s, p, d, j) in U denotes the j-th update
of step s = a:i in which the parameter a.p was set to data item d. Updates are
partially ordered for a given step. Further, each update of a specific parameter
in a step must have a unique order, i.e, if (s, p, d1, i) ∈ U and (s, p, d2, i) ∈ U ,
then d1 = d2.

The only constraints placed on an execution trace with respect to a workflow
specification is that all actor updates are for actors and parameters defined in
the corresponding actor signatures. While it is possible to add additional con-
straints, these would largely be based on the computation model employed by an
underlying workflow system. While most workflow systems adopt computation
models based on dataflow, they often have slight differences. Examples include
whether the same data item is allowed to be “written” (i.e., part of an update
to an output parameter) multiple times, the number of data items that can be
passed between actor invocations, and whether workflow channels define “strict”
constraints on data passing (for a non-strict approach see [11]). It may also be
the case that a workflow is not fully specified, or can be adapted during work-
flow execution. Thus, for generality, the abstract model does not presuppose any
particular model of computation. The following example demonstrates how an
execution (shown in Figure 1b) of the example workflow in Figure 1a can be
described in the abstract model.

Example 2. Consider the example workflow execution shown in Figure 1b. This
execution can be represented according to Definition 2 using a trace T as follows.

T = (S,U)

S = {source:1, normalize:1, filter:1, sink:1}
U = {(source:1, f, d1, 1), (source:1, y, d2, 2), (normalize:1, x, d2, 1)

(normalize:1, a, d3, 2), (normalize:1, b, d4, 3), (normalize:1, y, d5, 4)

(filter:1, x, d5, 1), (filter:1, c, d6, 2), (filter:1, y, d7, 3)

(sink:1, x, d7, 1), (sink:1, f, d8, 2)}.

Traces in the abstract model can be mapped to OPM provenance graphs [15].
In particular, actor invocations are similar to OPM processes, data items are
similar to OPM artifacts, updates to input parameters define OPM used

edges, and updates to output parameters define OPM wasGeneratedBy edges.
OPM wasTriggeredBy edges can be obtained as follows. Assume a trace T =
(S,U) of a workflow W = (A,C, σ) such that a1, a2 ∈ A, (p1, out) ∈ σ(a1),
and (p2, in) ∈ σ(a2). A wasTriggedBy edge exists between steps a1:i1 and a2:i2
whenever there exists updates (a1:i1, p1, d, j1) ∈ U and (a2:i2, p2, d, j2) ∈ U .

Declarative Rules for Inferring Fine-Grained Data Provenance 87

Dependency inference rules are used to infer fine-grained lineage dependencies
from a given workflow trace. A lineage dependency is represented in the abstract
model as a directed edge over trace updates. Thus, a dependency graph can be
viewed as a separate graph of lineage edges “superimposed” over a trace (e.g., see
Figure 1c). Fine-grained dependency graphs in the abstract model are defined
more formally as follows.

Definition 3. Data (lineage) dependencies L ⊆ U × U over a workflow trace
T = (S,U) form a directed acyclic dependency graph, where each (u2, u1) ∈ L
states that the update u2 depended on the update u1 (i.e., u1 was a dependency

of u2). We often write u1
ddep←−−− u2 to denote that u2 depended on u1, i.e., that

(u2, u1) ∈ L. The following additional restrictions are placed on dependency
edges in L. Given updates u1 = (s1, p1, d1, t1) and u2 = (s2, p2, d2, t2) in T , if

u1
ddep←−−− u2 then

1. u1 and u2 must be updates of the same step, i.e., s1 = s2;
2. update u1 must occur before update u2, i.e., t1 < t2; and
3. u2 must be either an output or state parameter such that if u2 is an output,

u1 must be an input or state parameter, and if u2 is a state parameter then
u1 can be an input, output, or state parameter, i.e., if W = (A,P,C, σ) is the
workflow corresponding to T where s1 = a:i, (p1, r1) ∈ σ(a), and (p2, r1) ∈
σ(a), one of the following must be true: r2 = out and r1 ∈ {in, state}, or
r2 = state and r1 ∈ {in, out, state}.

Dependencies in L correspond to OPM’s wasDerivedFrom edge. Specifically,
a wasDerivedFrom edge exists from data item d2 to data item d1 whenever

u1
ddep←−−− u2 for u1 = (s, p1, d1, t1) and u2 = (s, p2, d2, t2). The following example

demonstrates how the dependencies in Figure 1c can be represented within the
abstract model.

Example 3. Figure 1c shows the data dependencies introduced by the workflow
execution of Figure 1b. These dependencies can be represented using Definition 3
as follows:

L = {(normalize:1, x, d2, 1)
ddep←−−− (normalize:1, y, d5, 4),

(normalize:1, a, d3, 2)
ddep←−−− (normalize:1, y, d5, 4),

(normalize:1, b, d4, 3)
ddep←−−− (normalize:1, y, d5, 4),

(filter:1, x, d5, 1)
ddep←−−− (filter:1, y, d7, 3),

(filter:1, c, d6, 2)
ddep←−−− (filter:1, y, d7, 3)}.

Finally, we expand the notion of dependency above to consider four different
kinds of possible dependency relationships among updates. First, we define the
set of data items D = Dval ∪ Did to be the union of the disjoint sets of data
values Dval and data identifiers Did (where identifiers correspond, e.g., to OPM
artifacts or “tokens” in the dataflow model [7] that wrap underlying values).

88 S. Bowers, T. McPhillips, and B. Ludäscher

For each data identifier did ∈ Did the function v : Did → Dval gives the value
v(did) of did. We do not assume any additional constraints on the interpretation
of values, where values can be primitive data elements (like numbers or strings)
or references to external data items.

Definition 4. Given a dependency set L, data derivations Lder, value-copy
derivations Lval, and identifier-copy derivations Lid are subsets of L such that

Lid ⊆ Lval ⊆ Lder ⊆ L. If (u2, u1) ∈ Lder (denoted u1
dder←−−− u2) then the

data value of update u1 was involved in the derivation of the data value of up-
date u2. Derivation is a stronger assertion of lineage than dependency alone: if
(u2, u1) ∈ L but (u2, u1) �∈ Lder then the presence of u1 led to the presence of
u2, but the value of u1 was not used in this process. If (u2, u1) ∈ Lval (denoted

u1
dval←−−− u2) then the value of update u2 was copied from the value of update

u1. Similarly, if (u2, u1) ∈ Lid (denoted u1
did←−− u2) then the identifier of up-

date u2 was copied from the identifier of update u1. Thus, if u1
dval←−−− u2 such

that u1 = (s, p1, d1, t1) and u2 = (s, p2, d2, t2) then v(d1) = v(d2). Further, if

u1
did←−− u2 then d1 = d2.

The following example further refines the fine-grained data depenencies shown
in Figure 1c in terms of the types of dependencies they represent.

Example 4. Consider again the dependencies shown in in Figure 1c. In the case
of normalize:1, the update of parameter y was derived from the x, a, and b

values giving:

(normalize:1, x, d2, 1)
dder←−−− (normalize:1, y, d5, 4),

(normalize:1, a, d3, 2)
dder←−−− (normalize:1, y, d5, 4), and

(normalize:1, b, d4, 3)
dder←−−− (normalize:1, y, d5, 4).

Similarly, for filter:1 while the value of y was copied directly from the x value,
it was not derived from (i.e., only depended on) the c value, thus:

(filter:1, x, d5, 1)
dval←−−− (filter:1, y, d7, 3), and

(filter:1, c, d6, 2)
ddep←−−− (filter:1, y, d7, 3).

3 Fine-Grained Data Dependency Rules

This section defines a set of high-level, declarative rules for specifying fine-
grained data dependency patterns. Rules are expressed over actor signatures,
and can be executed over traces to generate dependencies. We first describe the
rule language, then describe a relational implementation of the abstract model
in which Datalog queries are used to implement the patterns defined by the
high-level dependency rules. We then demonstrate the dependency rules using
commonly found types of dataflow actors.

Declarative Rules for Inferring Fine-Grained Data Provenance 89

Table 1. High-level rule language for specifying fine-grained dependencies of actors

Dependency Rule Rule Definition

y depends on x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), and t1 <

t2, then assert u1
ddep←−− u2.

y derives from x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), and t1 <

t2, then assert u1
dder←−− u2.

y derives from value x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,

and v(d1) = v(d2), then assert u2
dval←−− u1.

y derives from id x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,

and d1 = d2, then assert u2
did←−− u1.

y depends on prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,
and there does not exists a u3 = (a:i, x, d, t) such

that t1 < t < t2, then assert u2
did←−− u1.

y derives from prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,
and there does not exists a u3 = (a:i, x, d, t) such

that t1 < t < t2, then assert u2
dder←−− u1.

y derives from value prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 <
t2, v(d1) = v(d2), and there does not exists a
u3 = (a:i, x, d, t) such that t1 < t < t2, then assert

u2
dval←−− u1.

y derives from id prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,
d1 = d2, and there does not exists a u3 =
(a:i, x, d, t) such that t1 < t < t2, then assert

u2
dval←−− u1.

3.1 Dependency Rule Language

The dependency rule language is based on the eight high-level patterns described
in Table 1. Each dependency rule takes the form “s d t in a”, where s is a
source parameter, d is a dependency type, t is a target, and a is an actor.
Given a source y and target x for an actor a, a rule asserts dependencies from
updates of parameters a.y to updates of parameters a.x. We consider four ba-
sic types of dependencies, namely, depends on which establishes a basic depen-
dency, derives from which establishes a derivation, derives from value which
establishes a value-copy derivation, and derives from id which establishes an
identifier-copy derivation. We also consider two dependency qualifiers. The de-
fault qualifier all states that each update of a parameter a.y depended on every
previous update of a parameter a.x within an actor step. The first four depen-
dency rules shown in Table 1 (implicitly) use the all qualifier. Alternatively, the
prev qualifier states that only the most recent update of a.x is a dependency of
a.y for a particular step. The last two rules in Table 1 use the prev qualifier.

3.2 Abstract Model and Dependency Rule Implementation

Here we briefly describe a relational implementation of the abstract model and
an approach for applying dependency rules. In general, dependency rules would

90 S. Bowers, T. McPhillips, and B. Ludäscher

be provided as part of the actor definitions of a workflow or possibly specified and
refined by a workflow developer or end-user. As shown later in this section, each
actor may have multiple dependency rules, in which case each rule is applied (i.e.,
the union of the rules is taken, instead of their intersection). Dependency rules
are used to define a corresponding data-dependency view (or query) over a given
workflow trace, and thus dependencies are decoupled from, i.e., not specified as
part of, the trace itself.

Actor parameter specifications (signatures) are represented using the relation
param(xa, xp, xt), which states that the parameter name xp is defined for the
actor xa and has the type xt ∈ {in, out, state}. Here we do not consider chan-
nels since only actor signatures are required for workflow specifications in the
abstract model.

A workflow trace consists of parameter updates and value definitions. Param-
eter updates are represented using the relation update(xu, xa, xs, xp, xd, xk, xt),
where xu is a unique update identifier, xa is the actor and xs is the actor invoca-
tion id (together denoting the step), xp is the parameter being updated, xd is a
data item where xk is the item type such that xk ∈ {id, val}, and xt is the rel-
ative update order (with respect to the step). Data values are represented using
the relation value(xd, xv), where xd is the data identifier and xv is the value.
As an example, the updates for the filter actor in the trace of Figure 1b would
be represented as the following facts, assuming d5 and d7 are both represented
as the same value v.

update(7, filter, 1, x, v, val, 1),
update(8, filter, 1, c, d6, val, 2),
update(9, filter, 1, y, v, val, 3).

We consider four separate relations for representing dependencies: ddep(u2, u1),
dder(u2, u1), dval(u2, u1) and did(u2, u1), together with the following Datalog
rules for capturing the subsumption hierarchy between the different dependency
types.

ddep(u2, u1) :− dder(u2, u1).

dder(u2, u1) :− dval(u2, u1).

dval(u2, u1) :− did(u2, u1).

Each provenance rule is represented as a fact in the relation
prov rule(xa, xp2, xp1, xt), where xa denotes the actor, xp2 specifies the
target parameter, xp1 specifies the source parameter, and xt is the type of
the dependency. Given a set of prov rule facts, the following Datalog rules
define a program for inferring all explicitly defined dependencies of a trace.
Dependencies are inferred for rules of the form “y depends on x in a” using
the Datalog query:

ddep(u2, u1) :− prov rule(a, y, x, depends on), update(u1, a, s, x, d1, k1, t1),

update(u2, a, s, y, d2, k2, t2), t1 < t2.

Declarative Rules for Inferring Fine-Grained Data Provenance 91

A similar query with depends on replaced by derives from and ddep replaced
by dder is used for the case of “y derives from x in a”. For rules of the form
“y derives from value x in a”, we have three separate cases depending on the
type of data item:

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, v, val, t1), update(u2, a, s, y, v, val, t2), t1 < t2.

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, d1, id, t1), update(u2, a, s, y, d2, id, t2),

value(d1, v), value(d2, v), t1 < t2.

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, v, val, t1), update(u2, a, s, y, d, id, t2),

value(d, v), t1 < t2.

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, d, val, t1), update(u2, a, s, y, v, id, t2),

value(d, v), t1 < t2.

For rules of the form “y derives from id x in a” we use the query:

did(u2, u1) :− prov rule(a, y, x, derives from id),

update(u1, a, s, x, d, id, t1), update(u2, a, s, y, d, id, t2), t1 < t2.

Finally, for rules of the form “y depends on prev x in a” we define the following
two queries:

ddep(u2, u1) :− prov rule(a, y, x, depends on prev),

update(u1, a, s, x, d1, k1, t1), update(u2, a, s, y, d2, k2, t2),

t1 < t2,¬after(u1, t2).

after(u, t) :− update(u, a, s, p, d, k, t1), update(u2, a, s, p, d2, k2, t2),

update(u3, a, s, p3, d3, k3, t), t1 < t2, t2 < t.

where after(u, t) states that an update occurred in the same step and on the
same parameter after u but before t. A similar query is used for rules of the
form “y derives from prev x in a”, again, where depends on is replaced by
derives from and ddep is replaced by dder.

3.3 Dependency Rules for Common Actor Invocation Patterns

Here we provide examples of different types of actor dependency patterns found
within scientific workflow systems (and in particular, those systems supporting
dataflow models of computation [7] such as Kepler [10] and Taverna [14], among
others). For each type of actor we give the corresponding rules for describing the
data dependencies generated by each actor invocation. Our goal is to highlight

92 S. Bowers, T. McPhillips, and B. Ludäscher

the benefits of our approach by showing that for these common types of patterns,
the high-level rules both capture the dependency patterns and are easier (more
concise) to specify than, e.g., the underlying queries implementing the rules.

Transform and Filter. The normalize actor in Figure 1 is an example of a
basic transformer. The following provenance rules capture the dependencies for
the normalize actor, in which each output y is derived from each corresponding
input parameter x, a, and b.

y derives from x in normalize,
y derives from a in normalize,
y derives from b in normalize.

Similarly the filter actor in Figure 1 is an example of a (low-pass) filter. The
provenance rules for filter are

y derives from value x in filter,
y depends on c in filter.

We note that the first rule could also be defined using derives from id if the
actor implementation copies the input identifier to the output parameter (as-
suming this is also supported by the underlying workflow system).

As a simple example of the relational implementation, the above inference
rules for the filter actor would result in the following two facts being asserted
within the prov rule relation.

prov rule(filter, y, x, derives from),
prov rule(filter, y, c, depends on).

Using the example updates of Figure 1b, the queries for dder and ddep given in
the previous subsection together with the above rules would infer the following
dependencies, where in update 7 parameter x was written to (as input to the
invocation), in update 8 parameter c was written to (as input to the invocation),
and in update 9 parameter y was written to (as output to the invocation such
that y receives the value given to x, implying the value satisfied the conditional
value in c).

dval(9, 7),
ddep(9, 8).

Delay. A typical delay actor consists of three parameters: an input x, a state
parameter s, and an output y. The state parameter is set to a default value
at the beginning of the initial invocation. At each invocation, the state value
is copied to the output y, and the input value in x is then copied to the state
parameter s. The current input is output on the next invocation (which, e.g.,
make approaches based on implicit dependency rules problematic). Delay actors
are often used to initiate a loop. The dependency rules for a typical delay actor
are as follows.

Declarative Rules for Inferring Fine-Grained Data Provenance 93

y derives from value s in delay,
s derives from value x in delay.

A similar pattern is to perform a transformation of x at each step. In this case, the
second rule above would be changed from derives from value to derives from.

Sliding Window. A sliding window performs an aggregate operation over an
overlapping, fixed size number of input elements. For each window, an output is
produced. For instance, consider the simple case of a sliding window actor swp
that performs a product over a window size of two (see Figure 2). This actor has
an input parameter x, a state parameter s, and an output parameter y. On each
invocation, s contains the last element of the previous window, x is updated to
the next value, y is then computed from x and s, and then s is updated to the
new value of x. The dependency rules for swp are the following.

y derives from x in swp,
y derives from s in swp,
s derives from x in swp.

Figure 2 shows an example trace and the dependencies inferred from the above
rules.

Monotonic Integer Stream Merge. Often, two dataflow paths within a work-
flow must be merged, and various strategies have been developed for performing
merge operations (e.g., depending on whether order must be preserved, only
unique data items should be output, and so on). Here we consider a simple case
of an order-preserving merge operation, which takes two input data streams rep-
resented by parameters x and y, and produces one output stream represented
by parameter z. The data items arriving on each respective parameter x and y

are assumed to be ordered. On the first invocation of the actor, data items are
read into both x and y, with the smallest value being copied to output param-
eter z and the larger value copied to a state variable s. The actor also records
the input parameter having the smallest value. On subsequent invocations, the
parameter with the smallest previous value is read into, if this value is smaller
than the current state parameter value, its value is copied to z, otherwise the
state value is copied to z (and the next execution will read from the other input
parameter). Assuming that data identifiers are copied between parameters by
the merge actor, the dependency rules can be expressed as follows.

s derives from id x in merge,
s derives from id y in merge,
z derives from id x in merge,
z derives from id y in merge,
z derives from id s in merge,
z depends on x in merge,
z depends on y in merge,
z depends on s in merge.

94 S. Bowers, T. McPhillips, and B. Ludäscher

The depends on rules state that the particular output depended on each param-
eter update (but was derived via a copy from only one of the parameters). If only
data values are copied (as opposed to identifiers), the above rules can be modi-
fied to use derives from value, however, two parameters with the same value
will result in multiple derivations (i.e., either the initial x and y or subsequent
updates of s with x or y).

List Transformer. A list transformer is an instance of a standard map oper-
ation. In particular, given a sequence of tokens on an input parameter x a list
transformer outputs corresponding values on an output parameter y. Consider
the simple case of an add1 actor, which adds one to each element of an input
list, and outputs a list with the modified values. Thus, on a single invocation,
add1 reads multiple values from x and produces multiple values on y. However,
each output value on y is dependent only on the most recently read data item
on x. Thus, the dependency rule for add1 is the following.

y derives from prev x in add1.

List sum. An invocation of the list sum actor computes the sum of a given list
of data items. The actor can be implemented with an input parameter x, state
parameter s, and output parameter y. At the start of an invocation, s is updated
with the default value 0. The actor then reads a value on x, adds it to s, and
stores the result back in s. When all values have been read, the latest value of s
is output on y. Thus, each s value is derived from the previous s value, and the
final output is a copy of the value on s. The dependency rules for list sum are
the following.

s derives from prev s in sum,
s derives from prev x in sum,
y derives from value prev s in sum.

List sum is an instance of a fold function, and the same rules can be used for
list sum implemented via scan, i.e., with intermediate state values also output
on y.

4 Related Work

While many workflow systems provide support for recording workflow trace in-
formation [5,6], systems that provide support for fine-grained data dependencies
employ either implicit rules (e.g., [1,8,14,9]) or rely on actors to declare depen-
dencies (e.g., [11]). Our approach allows for expressing explicit rules (high-level
view definitions) that are independent of the underlying workflow system and
layered over standard execution traces. In [12], explicit rules are also used for
efficiently tracking the provenance of stream-based continuous queries. Three
types of rules are defined: two for specifying sliding windows (via time intervals
and window element size), and another based on data selection queries (e.g.,

Declarative Rules for Inferring Fine-Grained Data Provenance 95

swp:1
x y

s

s

d2 d3

d1

d4

(a)

swp:2
x y

d5 d6

s
d7

swp:1
x y

s

d2 d3

d1

d4

swp:2
x y

d5 d6

s

s
d7

(b)

Fig. 2. Example sliding window product actor swp (with window size 2): (a) two invo-
cations with data items di for i the update order, and (b) inferred dependencies

to assert that certain outputs depend on all inputs having specific attribute
values). Our rules are more generic in that they do not rely on specific data
values and cover a larger class of components than those designed for sliding
window operators. Finally, fine-grained dependencies are automatically inferred
from workflows composed of white-box components in [2] (based on the Pig Latin
language). While we do not assume the presence of white-box actors, our rules
could be used within such an approach to support cases where white-box and
user-defined, black-box functions are used together.

5 Summary

This paper has presented an approach for addressing the problem of determin-
ing fine-grained data dependencies within scientific workflows by decoupling the
specification of dependencies from the “observables” recorded within workflow
execution traces. Our approach defines both an abstract model of observables
and a high-level declarative rule language for specifying detailed dependency pat-
terns. We also demonstrated how the abstract model and rule patterns can be
implemented within a relational framework and provided examples of common
dataflow actors expressed using our rule language. Inferring fine-grained depen-
dencies from workflow execution traces is complementary to existing provenance
standardization efforts such as OPM [15] and the W3C Prov model [18], which
serve as general-purpose representing schemes for provenance information. Our
basic model of provenance assumed and the dependencies generated from the
inference rules presented here are compatible with both the OPM and Prov
models. In this way, our framework could easily be used to produce detailed
provenance information from workflow traces that conforms to the OPM and
Prov representation schemes. Finally, both the model and the inference rule lan-
guage described here are currently being implemented as part of the provenance
framework supported by the RestFlow scientific workflow system [16].

96 S. Bowers, T. McPhillips, and B. Ludäscher

Acknowledgements. This work supported in part through NSF grants IIS-
1118088, DBI-0743429, DBI-0753144, DBI-0960535, and OCI-0722079.

References

1. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance Collection Support in the
Kepler Scientific Workflow System. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

2. Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T., Stoyanovich, J., Tannen,
V.: Putting lipstick on pig: Enabling database-style workflow provenance. PVLDB
5(4) (2011)

3. Anand, M.K., Bowers, S., McPhillips, T.M., Ludäscher, B.: Efficient provenance
storage over nested data collections. In: EDBT (2009)

4. Bowers, S., McPhillips, T., Riddle, S., Anand, M.K., Ludäscher, B.: Kepler/pPOD:
Scientific Workflow and Provenance Support for Assembling the Tree of Life. In:
Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 70–77.
Springer, Heidelberg (2008)

5. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: SIGMOD (2008)

6. Gil, Y., et al.: Examining the challenges of scientific workflows. IEEE Com-
puter 40(12), 24–32 (2007)

7. Lee, E., Parks, T.: Dataflow process networks. Proc. of the IEEE 83(5), 773–799
(1995)

8. Lim, C., Lu, S., Chebotko, A., Fotouhi, F.: Prospective and retrospective prove-
nance collection in scientific workflow environments. In: IEEE SCC, pp. 449–456
(2010)

9. Ludäscher, B., Podhorszki, N., Altintas, I., Bowers, S., McPhillips, T.M.: From
computation models to models of provenance: the rws approach. Concurrency and
Computation: Practice and Experience 20(5), 507–518 (2008)

10. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
currency and Computation: Practice and Experience 18(10) (2006)

11. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for
mere mortals. Future Generation Computer Systems 25(5) (2009)

12. Misra, A., Blount, M., Kementsietsidis, A., Sow, D., Wang, M.: Advances and
Challenges for Scalable Provenance in Stream Processing Systems. In: Freire, J.,
Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 253–265. Springer,
Heidelberg (2008)

13. Missier, P., Paton, N., Belhajjame, K.: Fine-grained and efficient lineage querying
of collection-based workflow provenance. In: EDBT (2010)

14. Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams,
A., Oinn, T., Goble, C.: Taverna, Reloaded. In: Gertz, M., Ludäscher, B. (eds.)
SSDBM 2010. LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)

15. Moreau, L., et al.: The open provenance model core specification (v1.1). Future
Generation Computer Systems 27(6), 743–756 (2011)

16. RestFlow, https://sites.google.com/site/restflowdocs/
17. Simmhan, Y.L., et al.: A survey of data provenance in e-science. SIGMOD Record

34(3) (2005)
18. The W3C Provenance Working Group, http://www.w3.org/2011/prov

https://sites.google.com/site/restflowdocs/
http://www.w3.org/2011/prov

Automatic Discovery of High-Level Provenance

Using Semantic Similarity

Tom De Nies, Sam Coppens, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle

Ghent University - IBBT
Department of Electronics and Information Systems, Multimedia Lab

Gaston Crommenlaan 8 bus 201
B-9050 Ledeberg-Ghent, Belgium

{tom.denies,sam.coppens,davy.vandeursen,erik.mannens,
rik.vandewalle}@ugent.be

Abstract. As interest in provenance grows among the Semantic Web
community, it is recognized as a useful tool across many domains. How-
ever, existing automatic provenance collection techniques are not
universally applicable. Most existing methods either rely on (low-level)
observed provenance, or require that the user discloses formal workflows.
In this paper, we propose a new approach for automatic discovery of
provenance, at multiple levels of granularity. To accomplish this, we de-
tect entity derivations, relying on clustering algorithms, linked data and
semantic similarity. The resulting derivations are structured in compli-
ance with the Provenance Data Model (PROV-DM). While the proposed
approach is purposely kept general, allowing adaptation in many use
cases, we provide an implementation for one of these use cases, namely
discovering the sources of news articles. With this implementation, we
were able to detect 73% of the original sources of 410 news stories, at
68% precision. Lastly, we discuss possible improvements and future work.

Keywords: Provenance, Data Model, Semantic Web, Linked Data,
Similarity, News.

1 Introduction

Nowadays, as interest in provenance grows among the Semantic Web community
[1], media content authors are faced with a dilemma. While they clearly see the
advantages of providing provenance information with their data, the process of
manual annotation is labor intensive and dull work, especially for those without
a technical background [2]. Clearly, there is a need for automated ways to add
provenance to produced content.

Most existing automatic provenance collection techniques in literature either
observe all activity on the target resources (so called observed provenance), or
require that the users specify formal workflows which are used to create and
modify the resources (disclosed provenance) [3]. The first approach often results

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 97–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 T. De Nies et al.

in a low-level view of the provenance associated with a resource, which is not
always suitable (e.g., in the use case described in this paper). The latter approach
requires significant effort from the user, and is not always applicable, since many
creative processes are difficult, if not impossible, to formally describe.

In this paper, we propose a new approach for automatic discovery of prove-
nance from limited information, at multiple levels of granularity. Whereas low-
level provenance denotes the exact change at the finest granularity (e.g., at the
character level), higher-level provenance denotes changes at a coarser granu-
larity (e.g., at the document level). To achieve this, we detect inter-document
derivations, using clustering methods based on semantic similarity, resulting in
provenance complementary to the observed and disclosed kind. We apply the ap-
proach to a specific use case, originated from the news sector. We will attempt
to reconstruct missing provenance, solely based on the content and timing infor-
mation, allowing us to track down the original source of an article.

The paper is structured as follows: first, we explain our interpretation of high-
level provenance, and how this fits into the ongoing standardization efforts of the
W3C Provenance Working Group1. Next, we provide an in-depth explanation of
the proposed approach and describe our use case implementation, which we then
use to evaluate our approach. Before concluding, we discuss the results, followed
by the related and future work.

2 Terminology and Key Concepts

Before describing our proposed approach, we explain our view on high-level
provenance. We also provide a summary of the relevant features of the Prove-
nance Data Model (PROV-DM), currently under development by the W3C
Provenance Working Group.

2.1 High-Level Provenance

In our research, we make the distinction between low-level and high-level prove-
nance. Low-level provenance is the sort of provenance expected from capturing
systems and versioning systems. A typical example is that of a programmer’s
versioning system, where the provenance of each document is stored as a list of
characters that where changed, together with their position in the document. An
example of high-level provenance, at the document level might be: “Document
A is a revision of document B”.

While these types of provenance are certainly important in many cases, for our
research, we aim for a more conceptualized form of provenance, and propose an
intermediary approach. For example: “Document A is a derivation of document
B, with concept ‘Magistrate’ in document A narrowed down to ‘Prosecutor’ in
document B”. We will label this as provenance at the semantic level, providing
more details than at the document level, but remaining high-level, at a coarser
granularity than low-level systems.

1 http://www.w3.org/2011/prov/

Automatic Discovery of High-Level Provenance Using Semantic Similarity 99

In this paper, we will investigate ways to generate high-level provenance, both
at the document level and the semantic level.

2.2 PROV-DM: The Provenance Data Model

Currently, the W3C Provenance Working Group is composing a standard data
model for provenance. In our research, we aim to comply with the latest working
draft of PROV-DM, at the time of writing (WD6, [4]). For a full description of
the data model, we refer to [4]. Below, we provide a brief overview of the concepts
needed for our research.

PROV-DM provides us with 3 essential (core) elements: entities, activities and
agents. Entities can be related to each other, and to activities acting upon them.
For our research, the most important entity-entity relations are derivation,
alternate and specialization. Entity-activity relations are limited to usage
and generation. Throughout this paper, in all figures and examples, the standard
notation specified in [4] is used to specify these relations.

According to PROV-DM, a derivation is anything that transforms an en-
tity into another, that constructs an entity from another, or that updates an
entity, resulting in a new one. However, the underpinning activities and their
associated details are not always known. Therefore, we will make the distinc-
tion between precise and imprecise derivations. When two entities are linked by
a precise-1 derivation, it means they are connected by a single, known activ-
ity, which uses (consumes) one of the entities and generates the other. When
the activity connecting two entities is unknown, but it is certain that they are
connected by a single activity, we obtain an imprecise-1 derivation. For an
imprecise-n derivation, the number of activities interconnecting the two enti-
ties is unknown. Note that while the formal distinction between imprecise and
precise provenance was removed from PROV-DM since the fifth working draft,
the informal distinction is still relevant to the work in this paper, and remains
supported by PROV-DM (all parameters of derivation regarding the involved
activity are optional).

The alternate relation connects two entities that refer to the same thing in
the world, in different environments. For example, ‘fbase:Magistrate’2 is an alter-
nate entity of ‘dbpedia:Magistrate’3. The specialization relation connects two
entities that refer to the same thing in the world, at different levels of abstraction.
For example, ‘dbpedia:Prosecutor’4 is a specialization of ‘dbpedia:Magistrate’.

In additional to these relations, PROV-DM allows to provide provenance of
provenance. Concretely, this means that all provenance entities, activities, agents
and relations can be organized in bundles. A bundle holds the provenance of a
resource, and can have, in turn, its own provenance. This way, it becomes possible
to provide provenance of the provenance, explaining how it was obtained.

A final method that we use to provide organization among entities, is the
collection entity. According to PROV-DM, this is an entity that provides a

2 http://rdf.freebase.com/ns/Magistrate
3 http://dbpedia.org/resource/Magistrate
4 http://dbpedia.org/resource/Prosecutor

100 T. De Nies et al.

structure to some constituents, which are themselves entities, and connected
to the collection by the memberOf relation.

3 Proposed Approach

In this section, we provide an in-depth description of how we aim to discover
provenance derivations, using semantic similarity. While we want to keep our
approach as general as possible, it is necessary to make some assumptions about
the data we will be providing provenance for.

We will assume that the data essentially consists of two types of entities. We
define a document as an entity that is characterized by multiple other entities,
which we will refer to as semantic properties. Both documents and semantic
properties can be modeled as a prov:Entity5, and thus can be connected through
activities and/or entity-entity relations. In our news use case, an example of a
document would be a news article, whereas examples of semantic properties
would be the descriptive metadata annotations of this article. We also assume
that timing information (i.e., date of creation) is available for all documents.

The general goal of our research is to analyze documents to automatically
discover provenance information about them. Since this is very general, we will
narrow it down to 3 subgoals. Starting from a set of documents S, we aim to:

1. Discover high-level imprecise-n and imprecise-1 derivations at a coarse
granularity.

2. Convert these imprecise derivations to high-level precise-1 derivations.
3. Discover additional precise-1 derivations at a finer granularity.

Below, we describe how we achieve these goals.

3.1 Discovering Imprecise Derivations

To discover provenance at the coarsest granularity, we rely on the semantic sim-
ilarity of documents. Since it is safe to assume that revisions of the same docu-
ment are semantically similar to each other, we can assume that in many cases
(unfortunately, not always), the inverse also holds: if documents are very similar
to each other, it is likely that they are also a revision of the same document.

First, we group (or cluster) all semantically similar documents into clusters
Si, so that for all documents doca ∈ Si:

doca ∈ Si ⇔ ∀docb ∈ Si : simD(doca, docb) > Ts (1)

with Ts an empirically determined similarity threshold, and i ∈ {1, 2, ..., N} with
N the number of clusters6. SimD is a similarity metric, which enables semantic
comparison of documents. Note that this similarity metric is interchangeable,
and a more accurate similarity metric will result in better clustering (in our

5 http://www.w3.org/ns/prov-dm/Entity
6 Note that overlap between clusters is possible.

Automatic Discovery of High-Level Provenance Using Semantic Similarity 101

implementation, semantic similarity of documents is based on the comparison
of their semantic properties). To avoid clusters becoming too large, resulting
in poor derivations, all clusters larger than a clustering threshold Tc, are re-
clustered with a higher similarity threshold Ts.

Next, we order all documents in each cluster according to their date of cre-
ation. For each cluster, we assume that the document doc1 that was created
first is the original source of all other documents in the cluster. This means that
we can now connect each document of the cluster to doc1 by an imprecise-n
derivation, as illustrated by Fig. 1(a).

(a) (b)

Fig. 1. Example of how documents doc2, doc3 and doc4 within one cluster are related
(a) to the original source doc1 by imprecise-n derivations, and (b) to each other by
imprecise-1 derivations. We assume that time(doci) < time(docj) ⇔ i < j . Here, doc2
is most similar to doc1, doc3 most similar to doc2 and doc4 most similar to doc1. Even
though doc4 was created after doc3, it was directly derived from doc1.

In order to create imprecise-1 derivations, we take both the inter-document
similarity and timing information into account7. In each set Si, for each docu-
ment doca ∈ Si (with a �= 1), we find the semantically most similar document
docb, and connect them by an imprecise-1 derivation, following Formula 2.

∃docb ∈ Si : (∀k �= a : simD(doca, docb) ≥ simD(doca, dock))
∧

time(docb) < time(doca)

⇒ wasDerivedFrom(doca, docb, [prov : steps = “single”]) (2)

7 Note that simply considering the timing and connecting successive documents with
imprecise-1 derivations is not a correct approach, since multiple revisions can be
based on a single document, regardless of timing.

102 T. De Nies et al.

The direction of this derivation depends on which document was created first.
In Fig. 1(b), we apply this method to the example from Fig. 1(a).

3.2 High-Level Precise Derivations

Precise-1 derivations need to specify an activity, responsible for using the orig-
inal entity, and generating the derived entity. Converting the imprecise-1 deriva-
tions from Sect. 3.1 to precise-1 is done by defining a revision activity for each
imprecise-1 derivation, as illustrated by Fig. 2.

Fig. 2. The imprecise-1 derivation of doc2 from doc1 is converted into a precise-1 deriva-
tion by specifying an activity revision1, which uses doc1 and generates doc2, and is
associated with an agent agent1

Specifying this activity enables us to vary the granularity of the obtained
provenance (see Sect. 3.3), and to model responsibility for the revision, by spec-
ifying an agent, if available. In the best case scenario, this agent is found in
the document’s metadata, as the annotated author or editor. In the worst case,
when no agent can be found, the provenance of the revision can still be asserted,
without an agent. In other cases it might be possible to find the correct agent by
querying other data sources and finding a matching document, with author in-
formation available. However, for this paper, reconstructing this missing author
information would lead us too far.

3.3 Precise Derivations at Finer Granularity

To obtain provenance at a finer granularity, we will use the semantic properties
characterizing the documents. As a document is revised, some of its semantic
properties will change, and others will remain the same. Changes might imply
replacements, generalizations or specializations. Some properties might be omit-
ted from the document, whereas new ones may be added. All of these changes
can be modeled with the PROV-DM model. We start from the coarse-grained
provenance bundle associated with a set of related documents, as generated in
the previous steps, and create a new, fine-grained bundle, enclosing it.

How the semantic properties of a document are identified is dependent on the
type of data, and may vary for each use case. In our use case (as can be seen

Automatic Discovery of High-Level Provenance Using Semantic Similarity 103

in Sect. 4), this is achieved by applying a named entity extraction technique to
the documents. Once the properties are identified, we define a usage activity for
each of them, linking the properties to the document they are used by.

Next, the properties of each document pair related by a precise-1 derivation
are semantically compared. Once again, this comparison is dependent of the
type of data and use case. However, it is important that the comparison can
model replacements, generalizations and specializations. Additionally, we
will model additions and omissions.

In PROV-DM, replacements or synonyms are modeled by the alternateOf
relation. The replaced property pi is used by the revision activity, which gener-
ates the new property pj. Specialization is modeled by the PROV-DM special-
izationOf relation. The more general property pi is used by the revision activity,
which generates the specialized property pj . Generalization is modeled as an
inverse specialization. Addition is modeled by a revision activity that generates
a property pi, but does not use a replaced, specialized or generalized property.
Similarly, omission is modeled by a revision activity that uses a property pi,
but does not generate a replacing, specializing or generalizing property.

Fig. 3. Finer-Grained Precise Derivations (some usage and generation arguments omit-
ted for clarity)

As an example, we consider the coarse-grained bundle associated with two
documents doc1 and doc2, as illustrated by Fig. 2. Suppose we were able to
identify three properties p1, p2, p3 of doc1 and three properties p3, p4, p5 of doc2.
Figure 3 shows the usage activities linking these properties with doc1 and doc2.
When comparing the properties, it was discovered that p4 is a specialized concept
of p2. This is modeled by the usage of p2 and generation of p4 by revision1, and
the specialization relation between p4 and p2. p1 was omitted from the revised
document, which is modeled by the usage of p1 by revision1 and the lack of a
generation of a related property. p5 was added to the revised document, which is
modeled by the generation of p5 by revision1 and the lack of a usage of a related

104 T. De Nies et al.

property. Storing these assertions into a new, fine-grained bundle, encompassing
the original, coarse-grained bundle, provides us with a multi-level view of the
provenance of doc1 and doc2.

4 Use Case: News Versioning

We kept our description of the proposed approach as general as possible, since
it is applicable in many use cases. However, for clarification and evaluation pur-
poses, we will describe a particular use case, originating from the news sector. In
today’s news industry, specification and justification of sources are key factors
for producing high quality journalism. Unfortunately, due to the strong time
constraints inherent to news production, provenance information is often incom-
plete or omitted. The consumers’ need for near-immediate reporting also results
in an abundance of very similar publications by all leading news organizations,
often slightly modified versions of the same article, with limited to no possibility
to determine the original source, or to determine which modifications were made
to the content. This is exactly where our approach fills the gap. By detecting
the derivation of one revision into another, our approach makes it possible to
find the original source of an article, as well as the intermediary revisions. In
this section, we describe how our approach is implemented for this use case.

4.1 Documents and Properties

For the implementation of our approach, we need to identify “documents” and
“properties”, as described in Sect. 3. As documents, we use news stories, provided
in different revisions. A news story starts as an alert, which is then expanded
into a short story, a brief article, and finally a full article (in some cases one or
more of these stages are skipped). The articles are available in several languages,
so multiple brief articles can be derived from one short story, etc.

As semantic properties, we use Named Entities (NEs) associated with the
news stories. These can be manually added, or automatically extracted from the
content. In either case, the NEs are enriched, linking them to unique resources in
the Linked Open Data (LOD) Cloud8. For the implementation of our approach,
the named entities are also modeled as entities in PROV-DM, with each news
article linked to the entities corresponding to the metadata by a usage activity.

4.2 Extracting Properties through Named Entity Recognition

When news articles are not annotated with sufficient descriptive metadata, as
is often the case in real-world scenarios, we need to automatically generate this
metadata ourselves. The availability of accurate metadata associated with the
documents will be beneficial to the resulting provenance.

To achieve this, we use publicly available Named Entity Recognition(NER)
services. These services accept regular text as input, and output a list of linked

8 http://linkeddata.org

Automatic Discovery of High-Level Provenance Using Semantic Similarity 105

NEs, detected in the text. The NERD [5] comparison tools allow us to evaluate
the services and select the most fitting one for our work. For our implementation,
we choose to use OpenCalais9, a well-established, thoroughly tested [6] and freely
available NER service. Note that as OpenCalais does not support Dutch, nor
French at the time of writing, an automatic translation step is performed before
sending the data, using the Microsoft Bing API10.

4.3 Similarity Measure

Traditionally, document similarity is calculated using the Vector Space Model
(VSM), also known as the “bag of words” model. When using this method, doc-
uments are viewed as vectors of Term Frequency - Inverse Document Frequency
(TF-IDF) weights, signifying the importance of each term in the document. We
adapt this approach to work with Named Entities (NEs) instead of words. This
will allow two documents containing similar concepts, but of significantly varying
length, to receive a high similarity score, whereas the classic TF-IDF approach
would yield a lower score, due to the difference in text length.

The similarity measure is calculated as follows. When comparing two docu-
ments A and B, we create two vectors representations a and b of their NEs,
where ai is the weight of NE i in document A (analogous for B), as determined
during the NER step. The similarity between the documents is then calculated
as the cosine similarity of the vectors, given by Formula 3.

SimV SM (A,B) =

∑
i aibi√∑

i a
2
i

√∑
i b

2
i

(3)

When no NEs were detected, we revert to the classic “bag of words” approach,
using TF-IDF weights for every word in the text. Note that the semantic aware-
ness of this similarity metric can be improved (see discussion, Sect. 7).

4.4 Coarse-Grained Provenance through Clustering

As described in Sect. 3.1 and Sect. 3.2, we obtain the first, coarse-grained prove-
nance by clustering sufficiently similar documents together. Using the similarity-
measure in Sect. 4.3, we cluster the total set of news articles into sets of closely
related articles. As shown in [7], clustering with a lower bound on similarity is
an NP-Hard optimization problem. Fortunately, the authors of [7] also provide
a greedy heuristic, SimClus, which we choose to use to cluster our dataset.

The applied algorithm is summarized as follows. The set of possible cluster
centers Spc initially contains all elements (with at least three NE’s, to ensure
accuracy of the similarity measure) of S. We compute the complete similarity
matrix of the dataset S, which is then used to determine a cover-set Su for
each item u ∈ S. Su contains all elements of S covered by u, which means their
similarity to u is above an empirically determined threshold Ts. We now choose
the cluster centers as follows:
9 http://www.opencalais.com

10 http://www.microsofttranslator.com/dev/

106 T. De Nies et al.

1. Choose the item u ∈ Spc with the largest cover-set Su as the next cluster
center (if multiple items are tied, choose the one with the most properties;
if there is still a tie, choose arbitrarily).

2. Remove all elements of Su from Spc.
3. Repeat step 1.

The algorithm terminates when there are no items left to choose as cluster center.
The dataset is now divided into (possibly overlapping) clusters, corresponding
to the cover-sets of each cluster center. As an optimization, clusters with more
items than a predetermined upper bound Tc are clustered again with a higher
similarity threshold Ts. In our implementation, we choose Tc = 10, since news
items rarely have more than ten revisions. For each cluster, we now add the
imprecise-n and imprecise-1 derivations according to the method described in
Sect. 3.1. Next, we construct the activities as in Sect. 3.2, resulting in precise-1
derivations.

4.5 Finer-Grained Provenance

Starting from the coarse-grained provenance bundle from Sect. 4.4, we can create
a finer-grained bundle in the manner described in Sect. 3.3. Note that the seman-
tic properties are already identified in the NER step (see Sect. 4.2). Since these
properties are linked to the LOD Cloud, information regarding synonyms, spe-
cializations and generalizations is available by following (or dereferencing) these
links to popular datasets such as DBPedia, WordNet, Freebase, etc. Synonym re-
lationships include owl:sameAs and skos:exactMatch, whereas examples of links
specifying generalization and specialization are (respectively) skos:broader and
skos:narrower. Using the methods in Sect. 3.3, we create the correct derivations,
usages and generations linked to the revision activities from the coarse-grained
provenance, and create a new, finer-grained provenance bundle, encompassing
the original. In Fig. 4, this is illustrated for one news item.

5 Evaluation

Our evaluation data consists of a set of 410 news stories, corresponding to 100
news items, in up to two different languages (Dutch and French), acquired from
Belga11, a professional Belgian news agency, over the course of one week.

The originally available provenance for the news stories, as specified by the
content provider, is limited to the revision types, original sources and imprecise-n
derivations. The source of a news item is always the earliest news story associ-
ated with that news item (usually an alert or short story). All following stories
about that news item are (directly or indirectly) derived from its source (as an
imprecise-n derivation).

Since there is no formal workflow to describe the creative process of news
production, indisputably correct imprecise-1 derivations are nearly impossible

11 http://www.belga.be

Automatic Discovery of High-Level Provenance Using Semantic Similarity 107

Fig. 4. Example of discovered provenance in the news use case. The news item starts as
an English alert news1, which is then translated into a Dutch alert news2. Soon after
that, a short story news3 is written based on the English alert. Finally, the short story
is revised to a brief story news4, replacing the word “magistrate” with “prosecutor”.

to determine, even for the content providers (which is why our approach is so
useful to them). Therefore, we restrict the evaluation to imprecise-n derivations.

We constructed coarse-grained provenance using the approach described in
Sect. 4, based only on the (enriched) content and timing information of the news
stories in our dataset. We can now compare the detected clusters, sources and
imprecise-n derivations to the original information provided by the news agency.
In Table 1, the results are shown for different initial similarity thresholds Ts.
In the optimal case, with Ts = 0.5, we were able to detect 73% of the origi-
nal news sources, with 68.2% precision. The imprecise-n derivations constructed
from these sources have a precision of 72.3% and a recall of 44.5%.

Table 1. Accuracy of provenance discovery with similarity threshold Ts ∈
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and cluster threshold Tc = 10. psource and rsource rep-
resent the precision and recall of the detected news sources, compared to original
derivations from the dataset

Ts = 0.2 Ts = 0.3 Ts = 0.4 Ts = 0.5 Ts = 0.6 Ts = 0.7 Ts = 0.8

psource 68.0% 67.3% 69.2% 68.2% 64.3% 59.3% 57.7%

rsource 70.0% 68.0% 72.0% 73.0% 72.0% 70.0% 71.0%

pimprecise−n 56.3% 61.6% 67.6% 72.3% 71.5% 57.1% 57.9%

rimprecise−n 45.8% 48.1% 45.2% 44.5% 41.3% 28.4% 26.1%

108 T. De Nies et al.

An explanation for these figures is found when examining the clustered news
stories. In Table 2, it is shown that for nearly all clusters (96% with Ts = 0.5), the
news stories in the cluster all belong to the same original news item. However,
rnewsitem shows that many of the original news items are spread across more
than one cluster, which creates more than one cluster per news item, resulting
in lower overall accuracy of the detected provenance.

Table 2. Percentage pcluster of clusters of which all news stories originally belong to the
same news item and percentage rnewsitem of original news items that were cataloged
into a single cluster

Ts = 0.2 Ts = 0.3 Ts = 0.4 Ts = 0.5 Ts = 0.6 Ts = 0.7 Ts = 0.8

pcluster 83.8% 86.0% 93.3% 96.0% 97.7% 98.0% 100%

rnewsitem 30.0% 37.0% 32.0% 31.0% 26.0% 11.0% 8.0%

The accuracy of the fine-grained provenance depends strongly on the correct-
ness of the detected named entities, and the quality of their links to ontologies
that describe alternates, specializations and generalizations. When processing
the 410 news stories, OpenCalais extracted 722 distinct named entities. Upon
manual evaluation of these NEs we labeled 20 of them as incorrectly detected,
resulting in 97.2% precision. Criteria for labeling a property as incorrectly de-
tected were non-existence (no such concept exists) and incorrect disambiguation
(linked to the wrong resource). These results are consistent with those of a larger
performance analysis of OpenCalais, described in [6]. Of the 722 Named Entities,
47 were automatically linked to a resource in the LOD Cloud by OpenCalais.

6 Related Work

When it comes to automated production of provenance information, several
methods exist. These techniques mostly focus on either observed provenance,
or disclosed provenance[8]. In [3], it is noted that these systems need to cap-
ture all activities, since they do not necessarily understand the semantics of
their observations. Although domain-specific techniques used to reconstruct lost
or missing provenance information do exist, such as in [9] and [10], no generic
solution is available to date.

As shown in [2], provenance produced by these methods is often low-level
and/or too complex for a domain expert (e.g., a journalist) with limited knowl-
edge of computer science. In [11], the need for high level provenance is moti-
vated, and a conceptualization is proposed, namely as a combination of inter-
connected elements including “what”, “when”, “where”, “how”, “who”, “which”,
and “why”. However, a recent survey, [12], shows that high-level knowledge
provenance is still a sparsely researched topic.

Automatic Discovery of High-Level Provenance Using Semantic Similarity 109

7 Discussion and Future Work

The results of our evaluation clearly show that our approach to discover prove-
nance of resources, solely based on their (enriched) content and timing informa-
tion, is feasible and provides the foundations for future work. A better, more
semantically aware similarity measure, such as the one described in [13], is likely
to have a significant impact on the overall accuracy. To accommodate such a
metric, the extracted semantic properties need to be accurately linked to the
Semantic Web. To achieve this in future implementations, additional disam-
biguation and enrichment techniques are being developed to combine with the
available NER services. Finally, even though it would make the approach less
general, it might prove worthwhile considering domain specific information, as
it may significantly improve accuracy and levels of granularity of the discovered
provenance.

In this paper, we illustrated our approach with one specific use case: news
versioning. However, thanks to the general nature of the proposed provenance
discovery method, several other use cases are feasible. Examples of possible ap-
plications include plagiarism detection, provenance of code snippets and the
tracing of information sources used for quotes in online content, such as blogs.
Implementation of one or more of these use cases will allow us to further evaluate
the approach, and provide more meaningful fine-grained provenance assertions.

8 Conclusions

We developed an approach that succeeds in creating provenance derivations for a
large dataset, discovered from a limited amount of information (content and tim-
ing information). Our approach is general enough for adaptation in several do-
mains, and is compliant with the current standard, the Provenance Data Model
(PROV-DM). When adapted to the use case of news versioning, our approach
detected the original source of a news item with 68% precision and 73% re-
call. These results are promising, considering that there are several potential
improvements to be made to the current implementation. Implementing these
improvements is the key to future research in this field, in which additional links
to the Semantic Web and a more semantically aware similarity measure will
further improve the accuracy of the discovered provenance.

Acknowledgments. The research activities in this paper were funded by Ghent
University, the Interdisciplinary Institute for Broadband Technology (IBBT, a
research institute founded by the Flemish Government), the Institute for Pro-
motion of Innovation by Science and Technology in Flanders (IWT), the FWO-
Flanders, and the European Union, in the context of the IBBT project Smarter
Media in Flanders (SMIF). Companies involved are Belga, Concentra, VRT and
Roularta, with project support of IWT.

110 T. De Nies et al.

References

1. Gil, Y., Cheney, J., Groth, P., Hartig, O., Miles, S., Moreau, L., Da Silva, P.P.:
Provenance XG final report. Final Incubator Group Report (2010)

2. Gómez-Pérez, J.M., Corcho, O.: Problem-solving methods for understanding pro-
cess executions. IEEE Computing in Science & Engineering 10, 47–52 (2008)

3. Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.-K., Seltzer, M.I.:
Issues in Automatic Provenance Collection. In: Moreau, L., Foster, I. (eds.) IPAW
2006. LNCS, vol. 4145, pp. 171–183. Springer, Heidelberg (2006)

4. PROV-DM Part 1: The Provenance Data Model, W3C Editor’s Draft (May 29,
2012), http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm.html

5. Rizzo, G., Troncy, R.: NERD: Evaluating Named Entity Recognition Tools in the
Web of Data. In: Workshop on Web Scale Knowledge Extraction, WEKEX 2011
(2011)

6. Iacobelli, F., Nichols, N., Birnbaum, L., Hammond, K.: Finding new information
via robust entity detection. In: Proactive Assistant Agents AAAI Fall Symposium
(2010)

7. Hasan, M.A., Salem, S., Pupacdi, B., Zaki, M.J.: Clustering with Lower Bound
on Similarity. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS, vol. 5476, pp. 122–133. Springer, Heidelberg (2009)

8. Zhao, J., Sahoo, S.S., Missier, P., Sheth, A., Goble, C.: Extending semantic prove-
nance into the web of data. IEEE Internet Computing, 40–48 (2011)

9. Zhao, J., Gomadam, K., Prasanna, V.: Predicting Missing Provenance using Se-
mantic Associations in Reservoir Engineering. In: 2011 Fifth IEEE International
Conference on Semantic Computing, ICSC (2011)

10. Zhang, J., Jagadish, H.V.: Lost source provenance. In: Proceedings of the 13th
International Conference on Extending Database Technology. ACM (2010)

11. Ram, S., Liu, J.: A new perspective on Semantics of Data Provenance. In: First
International Workshop on the Role of Semantic Web in Provenance Management,
SWPM (2009)

12. Moreau, L.: The foundations for provenance on the web. Now Publishers (2010)
13. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G.M., Milios, E.: Informa-

tion retrieval by semantic similarity. International Journal on Semantic Web and
Information Systems (IJSWIS), 55–73 (2006)

http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm.html

Transparent Provenance Derivation for User Decisions

Ingrid Nunes1,2, Yuhui Chen2, Simon Miles2, Michael Luck2, and Carlos Lucena1

1 LES, Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil
{ionunes,lucena}@inf.puc-rio.br

2 Department of Informatics, King’s College London, London, WC2R 2LS, United Kingdom
{yuhui.chen,simon.miles,michael.luck}@kcl.ac.uk

Abstract. It is rare for data’s history to include computational processes alone.
Even when software generates data, users ultimately decide to execute software
procedures, choose their configuration and inputs, reconfigure, halt and restart
processes, and so on. Understanding the provenance of data thus involves un-
derstanding the reasoning of users behind these decisions, but demanding that
users explicitly document decisions could be intrusive if implemented naively,
and impractical in some cases. In this paper, therefore, we explore an approach to
transparently deriving the provenance of user decisions at query time. The user
reasoning is simulated, and if the result of the simulation matches the documented
decision, the simulation is taken to approximate the actual reasoning. The plausi-
bility of this approach requires that the simulation mirror human decision-making,
so we adopt an automated process explicitly modelled on human psychology. The
provenance of the decision is modelled in Open Provenance Model (OPM), al-
lowing it to be queried as part of a larger provenance graph, and an OPM profile
is provided to allow consistent querying of provenance across user decisions.

Keywords: Decision making, explanation, OPM profile, inference.

1 Introduction

Humans are involved somewhere in most software processes, and the decisions they
take are part of an explanation of the processes’ effects. Therefore, as part of prove-
nance information, it would be helpful to know the reasons why decisions were made
as they were, including why a particular option was chosen and why others were not.
While it is plausible to elicit something about a user’s preferences over time, in many
circumstances it is unrealistic to expect them to record the reasons behind every indi-
vidual decision. If a decision is between many alternatives, each with pros and cons,
and is influenced by a combination of different factors, it will not be apparent, just by
knowing the user’s preferences, why the decision was made. Moreover, a complex de-
cision is influenced not just by what a user prefers, but also how they reason over the
alternatives, i.e. psychological processes.

For example, when looking back at the total budget spent attending conferences by
a group in a year, and considering how it might be reduced in subsequent years, it is
relevant to consider why members of the group have chosen particular travel and ac-
commodation options. The preferences of an individual may be apparent by looking
across records from multiple years, but the choices made on a specific trip may be

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 111–125, 2012.
© Springer-Verlag Berlin Heidelberg 2012

112 I. Nunes et al.

based on many attributes of the options available such as price, duration, location and
facilities, and on preferences that do not consistently indicate one option, e.g. desire to
spend little versus preference to share a hotel with a colleague with expensive tastes.
The provenance of the budget spent can be seen as a process involving decisions draw-
ing on many factors, and may be the result of heuristics that do not correspond exactly
with ‘rational’ economic choices.

We wish to answer queries about the provenance of data where that provenance in-
cludes user decisions and the query relates to the reasons for those decisions. We are
concerned with cases where the reasons for a decision are not immediately obvious as
they require a choice between options with multiple attributes with pros and cons. We
assume that, at recording time, the human reasoning is not captured, and instead derive
a plausible explanation as part of the provenance query execution. This explanation is
determined through simulating the user decision process using an automated decision
making technique tailored to account for human psychological heuristics, e.g. prefer-
ring an option with uniformly acceptable attributes to one very good in some regard
and very poor in another. The provenance of the simulated process is recorded. If the
outcome of the decision-making process is the same as happened in reality, then the
simulation provenance provides a plausible explanation of the user reasoning.

This problem is not one that has been tackled in depth in the literature, with notable
exceptions. Naja et al. [10] consider a similar problem of the reasons behind decisions
in a multi-agent simulation of an emergency response domain. They look at how the
states a software agent transitioned through led to the decisions that were made. This is a
comparable but not equivalent problem to our own. That is, they consider how the agent
perceptions and prior actions influenced the decision rather than the reasoning on that
decision itself. Moreover, they track the provenance of the software agent as developed
for the response simulation, rather than trying to create a psychologically-realistic simu-
lation of the decision reasoning. They construct an Open Provenance Model (OPM) [9]
profile for the provenance, but this is specific to the emergency response domain rather
than about decisions in general. Other work concerns the provenance of decisions, but
again concern the gathering of data to inform the decision rather than the decision itself.
For example, Kifor et al. [5] investigate the provenance of organ transplant decisions,
but the decision itself is not modelled, only the observable factors used as input, while
Missier et al. [8] record the quality of inputs to an automated decision, based on user
criteria, to interpret the trustworthiness of the result. In the following sections, we first
define the problem and provide a motivating example, before presenting the overall ap-
proach and its components: an automated decision maker and an OPM profile for user
decisions, to later detail questions that can be answered regarding the human decisions.

2 Explaining User Decisions

We start by articulating the problem to be solved. Broadly, we aim to infer the prove-
nance of user decisions, i.e. what reasoning led to those decisions, that take place within
larger processes for which provenance is recorded. The decisions are choices between
options based on criteria for making that decision, preferences. We assume some knowl-
edge of those options and preferences in inferring the reasoning. The provenance is to
be used to explain the effects of those decisions later in the larger processes.

Transparently Deriving the Provenance of User Decisions 113

2.1 Motivating Example

We will take a use case from the healthcare domain as our a running example.

Background. As part of the drug development process, clinical trials are conducted
with patients by clinical researchers from, for example, pharmaceutical companies.
Where the process of recruiting these patients has traditionally been carried out through
personal meetings between researchers and doctors, automation is being brought to each
stage. Projects such as Electronic Health Records for Clinical Research (EHR4CR)
[3] or Translational Medicine and Patient Safety in Europe (TRANSFoRm) [2] aim
to provide clinical research (CR) platforms that allow researchers to identify and re-
cruit patients, querying their data from hospitals and other clinical data sites in multiple
countries. The trial recruitment process is becoming one in which software processes
are intermingled with human decisions (by researchers, patients, doctors, hospital au-
ditors, etc.). Verified provenance data is critical in this context, due to the regulatory
requirements applied to drug development and clinical trials. However, less strictly de-
fined provenance information is also valuable in helping to refine trial recruitment. New
clinical trials often have to face difficulties recruiting an adequate number of patients
within a limited budget and timescale. A CR platform allows clinical researchers to
design protocol feasibility studies with a set of patient eligibility criteria, send study
queries to distributed clinical information systems, and rapidly get feedback on patient
population numbers at each site and the geographic distribution of eligible patients.
Understanding why a trial has not recruited enough patients means understanding what
decisions were made during the studies and how.

Process. Alex is a clinical researcher with a pharmaceutical company. He is currently
planning a clinical trial for a new drug that targets Haemophilia A. He needs to find sites
for conducting the trial. He designs a study and composes a set of eligibility criteria
for identifying suitable patients. For instance, he specifies inclusion criteria, such as
“male aged between 12 and 65,” “immunocompetent with a CD4+ lymphocyte count >
200/mm3,” and exclusion criteria, such as “platelet count < 75,000/mm3.” He submits
the query to the a CR platform which in turn tries to discover eligible patients in the
UK. After some time, the query result is ready, containing a list of feasible sites and
important site-specific information, such as the number of eligible patients at the site,
per-patient cost, and estimated local R&D approval time (Table 1).

Decision. Alex decides which sites, if any, to recruit from. We assume that deciding to
recruit patients from a site means that all eligible patients are recruited from that site,
e.g. due to an agreement with sites to help them recoup admin costs. It is the provenance
of this decision that we focus on.

Table 1. CR query result example (illustrative only)

Site Number of eligible patients Per-patient cost Approximate local approval time (days)
A 30 £25,000 70
B 27 £22,000 60
C 22 £27,000 45

114 I. Nunes et al.

Preferences. From past experience and the specification of an individual study, the
researcher will have preferences on how to choose trial sites. For instance, if Alex needs
at least 20 patients and accepts up to £600,000 trial cost and up to 80 days approval time,
and is more concerned to reduce approval time than cost, then C is the ideal choice. If
he instead prioritised number of patients recruited, B is preferable. A is discounted as it
exceeds acceptable costs (30 patients x £25,000 = £750,000).

Options. There are eight options given the sites above: none (0), A only (A), B only
(B), C only (C), A and B (AB), A and C (AC), B and C (BC), or all three (ABC).

2.2 Explanations

In order to justify a decision, different granularities of explanation can be given. High-
level explanations either (i) highlight the positive and negatives aspects of chosen and
rejected options [6,7], giving arguments for or against options, or (ii) briefly indicate
how the choice was made, as is typical in Recommender Systems (RSs) [17], e.g. “peo-
ple who bought this product also bought...” However, for complex decisions, it can be
unclear how the decision follows from the preferences known and options available. In
such cases, more of the reasoning process must be exposed. Where option i was chosen
over option j (amongst others), users ask questions such as the following.

– Q1. Are there preferences that compare i and j but did not affect the decision?
– Q2. Were any implicit (unstated) preferences considered?
– Q3. Do the positive aspects of i relative to j compensate its negative aspects?
– Q4. How much better is i to j relative to the trade-offs between i and other options?

3 Overall Approach and Background

In this section, we describe the components and methodology that comprise our ap-
proach, and provide a brief background on two works, which our approach is based on:
the Open Provenance Model (OPM) [9] and a psychologically-inspired decision maker.
The components required to realise our approach are the following.

System-independent provenance model. To form a connected account of provenance,
including user decisions and software processes, we require a model that is system-
independent. Here, we use the OPM.

Decision provenance pattern. We wish our solution to be generic and re-usable, al-
lowing queries of a repeatable form over different decisions. Therefore, the prove-
nance of a user decision should follow an application-independent pattern, ex-
pressed in this paper as a profile of OPM.

Human decision simulator. Most existing automated decision-makers do not attempt
to reflect human decision making, but search for the choice that best matches the
stated preferences. For our simulation, we use an existing decision making ap-
proach [14,15] that explicitly applies heuristics observed in studies of human psy-
chology.

Transparently Deriving the Provenance of User Decisions 115

Explanation from provenance queries. The results of the provenance recording and
decision simulation should be a connected provenance graph. Finally, we need to
provide some means to ask the provenance queries over this graph.

Our overall methodology is composed of six steps, detailed next.

1. As an application executes, an OPM graph is recorded documenting what has oc-
curred in observable software processes.

2. A data item (OPM artifact) denotes a decision made by a user.
3. An automated decision-maker processes the known preferences potentially influ-

encing the decision and set of options chosen between.
4. As the automated decision-maker executes, it documents its operations in OPM

following a pre-defined profile for the provenance of a user decision.
5. If the outcome of the decision maker is the same as the actual decision, the graphs

from steps 1 and 4 are combined to form a single graph.
6. Provenance queries that concern the reasons behind the decision can be executed.

3.1 Open Provenance Model

The Open Provenance Model (OPM) [9] is an abstract provenance model that describes
past occurrences in terms of artifacts, immutable states of data items or physical ob-
jects, processes, actions performed on, using or generating artifacts, and agents, con-
textual entities acting as catalysts for processes. These entities are connected into graphs
with edges from effect to cause, e.g. that a process used an artifact or an artifact was
generated by a process. When depicted visually, as in Figures 1, 2 and 3, ovals denote
artifacts and rectangles denote processes. An edge between an artifact and a process can
include a role identifier, stating the artifact’s function in the process, denoted by brack-
ets after the edge type. Artifacts and processes can be typed by giving an annotation
opm:type=X, where X is a unique type identifier.

To execute a query over an OPM graph, you need to know its structure. Ideally,
queries can be re-used across similar applications, and so OPM profiles are used to
give domain-specific extensions for OPM, allowing the graph structures to be common
within that domain. An OPM profile is defined by (i) a unique global identifier; (ii) an
optional controlled vocabulary for annotations; (iii) optional general guidance to ex-
press OPM graphs; and (iv) optional profile expansion rules. In the following sections,
we describe the key elements of our method: the automated decision maker, and the
OPM profile for user decisions. We then describe how the combined graph would be
queried to answer questions about the reasons behind decisions.

3.2 Psychologically-Inspired Automated Decision Making

The automated decision maker used to simulate the user decisions is described in prior
work [14,15]. As described in the published work, it has been evaluated to ensure it
reflects the decisions that users would make given adequate information on the options.
Here we summarise the key aspects, which are illustrated with a scenario in which a
researcher is looking for an apartment to stay at, and each apartment is described in

116 I. Nunes et al.

terms of the city zone that it is located, distance from university and price. The deci-
sion maker inputs are the user preferences, and the options available, specified in terms
of their attributes. Derived from studies of how users express preferences in practice,
there are seven kinds that can be specified, shown in Table 2. Preferences may apply
only conditionally, where the condition is an expression in terms of attribute values. In
addition, priorities can be expressed either between attributes or between preferences,
so that the attribute/preference is given more weight in the decision making.

Two primary models are then constructed. The Preference Satisfaction Model (PSM)
is a mapping of each attribute of each option to a rating of how much that option is indi-
vidually desired, e.g. considering preferences 4 and 5, an apartment in zone 1 is mapped
to best, while one in zone 2 to prefer (w.r.t. zone). The Options-Attribute Preference
Model (OAPM) states, for each attribute of each option, how it compares to the same
attribute of each other option, either better (+), worse, (−), similar (∼) or inconclusive
(?), e.g. if Ap A is cheaper than Ap B then OAPM [Ap A,Ap B, price] = +. Where
the explicitly stated preferences are insufficient for building these models, the decision
maker will look for preferences implied by those stated. For example, if an upper bound
is given as in preference 1, a goal to minimise this attribute is derived from it.

The relative benefits of options across all attributes are then calculated using prefer-
ences to derive how much an attribute value is better then another, and this cost-benefit
analysis is combined with two principles from psychology on how humans make deci-
sions [16]. The first, extremeness aversion, states that people avoid options that compro-
mise one attribute too much to improve another. For example, an Ap A is 2Km away
from the university and costs £125 per week, Ap B is 2.5Km away and costs £100,
and Ap C is 3Km away and costs £75. The costs of each option is compensated by its
benefits, but people tend to choose Ap B because its attributes are less extreme. The
second, trade-off contrast, indicates that people consider the whole set of options when
evaluating the trade-off between two options, i.e. the scale of differences across avail-
able options influences individual comparisons. Comparing only Ap A and Ap B, it is
difficult to know if paying more £25 compensates being 0.5Km closer to the university,
so people look at this relationship among all the other options to evaluate this particular
one.

Many decision making systems have been proposed over the years, including Ex-
pert Systems (ESs), which capture domain knowledge to make decisions like a domain
expert [11], Recommender Systems (RSs), which recommend options from a (huge)
set based on statistical models [17], and Decision Support Systems (DSSs), which use
decision making models, commonly inspired in economy [4], to make choices [6,7].

Table 2. Preference types

Preference Description Example #
Constraint Specifies the values that attributes must (not) have uni < 4Km 1
Goal Specifies which attributes should be minimised or maximised minimise price 2
Order Specifies where one attribute value is preferred to another zone = 1 > zone = 2 3
Qualifying Preference States how much an attribute value is wanted or needed prefer zone = 1 ∨ 2 4
Rating Preference Specifies which values are best or worst zone = 1 best 5
Indifference Specify where there is no preference between two attribute values zone = 1 ∼ zone = 2 6
Don’t care Specifies where an attribute is irrelevant to the decision don’t care price 7

Transparently Deriving the Provenance of User Decisions 117

For several use cases, it is important to explain how decisions made by these processes
came about. For RS and DSS, explanations focus on indicating the general idea underly-
ing the recommendation (“people that bought this product also bought...”) or indicating
positive and negative aspects of options. While enough in some situations, users some-
times need details to understand why and how an option should be chosen, and merely
exposing the software process or its inputs may be not helpful. ESs typically present the
chain of rules fired to produce a given output. This approach is limited by its specificity:
rules are domain-specific and a huge amount of them are elicited for each ES, and thus
there is no reuse across applications. As we will show in the next section, we present a
generic OPM profile to try to capture the reasoning process enabling detailed questions
to be answered.

4 An OPM Profile for Decision Making

As the decision is simulated by the above decision maker, it records the reasoning in
OPM following a profile. The profile ensures consistency of OPM graphs for deci-
sion reasoning, so allowing reusable queries to be created. We refer to the profile as
the User-Centric Preference-Based Decision (UCPB) profile. A base URI is used for
all types defined, http://www.les.inf.puc-rio.br/, referred to with prefix
ucpb. The profile’s unique identifier is ucbp:Profile. The profile has all optional
elements listed in Section 3 except for expansion rules.

The profile includes a graph template for the provenance of a decision, depicted in
Figures 1 and 2 (split into parts for space reasons). Each artifact or process is given
a URI type annotation, defined in Table 3, so that queries can identify what part of
the reasoning process it represents. Where a subgraph is specific to one option and/or
attribute, that subgraph will be repeated for each option and/or attribute considered, and
the artifact/process type is shown as parametrised, e.g. Extremeness(i).

Note that part of the provenance graph’s value comes from connecting a decision
with only those preferences that were taken into account, i.e. filtering for relevance. The
provenance graph excludes preferences, priorities and weightings that did not influence
the decision, and so a subset of those known of the user.

Figure 1 presents the part of the provenance graph that describes how an option was
selected based on the decision values of options compared to the others. The decision
making process finishes when an option i is selected from a set of options, based on
the decision values of this option with respect to the others and vice-versa. A decision
value, in turn, is the result of the weighted sum of the relative benefits between options,
the trade-off contrast, and the extremeness aversion, the three human processes com-
ponents that the technique simulates. Initially, individual attribute values are analysed
and their differences are evaluated. But, according to the importance of particular at-
tributes, a small difference may be considered very significative. Then, people observe
two other factors, which look at the relationship among attribute values. First, when
an option compromise too much an attribute to compensate another, it is considered an
extreme option, which is in general avoided by people (extremeness aversion). Second,
as people often are not sure when a positive aspect of an option compensates a negative
aspect, they look at this trade-off relationship of all options to make this evaluation,

118 I. Nunes et al.

Table 3. Term definitions

ApplyImplicitPreferences Applies preferences implicitly derived from known user preferences.
AssessAttributeBenefit Assesses the benefit of attribute a of option i w.r.t. option j.
AssessAttributeImportance Builds a partial order of attributes, based on priorities.
AssessAvgTradeOff Assesses the average of the cost-benefit relationship (trade-off) among all options.
AssessDistanceFromBest Calculates the disadvantage of an option attribute w.r.t. the best possible value.
AssessExtremeness Assesses option extremeness (standard deviation of the distance from best of each

attribute).
AssessOptionAttribute Assesses the preference for an option attribute value based on monadic preferences.
AssessOptionDecisionValue Assesses a value that represents how an option is better than another.
Attribute Criterion used to describe an option, which is associated with a attribute domain.
AttributeBenefit Advantage (in percentage points) of the attribute value of option i w.r.t. option j.
AttributeDomain Range of all possible values that can be assigned to an attribute.
AttributeFunction WeightFunction parameterised to calculate attribute weights given an AttributePar-

tialOrder.
AttributeIndifference Priority that states that an attribute a is as important as attribute b.
AttributePartialOrder Partial order among attributes, establishing an importance relationship.
AttributePriority Priority that states that an attribute a is more important than attribute b.
AttributeWeight Weight specified for an attribute, representing its importance.
AVPO Partial order of values of a particular attribute, stands for attribute value partial order.
BuildAttributeValuePartialOrder Builds a partial order of the values of an attribute, based on order preferences.
CalculateAttributeWeight Calculates an attribute weight based on a function and the attribute importance.
CalculateFunctionParameters Calculates the parameters of the WeightFunction based on the AttributePartialOrder.
CompareOptionsAttribute Compares the attribute values of two options, establishing a preference order or in-

difference.
DecisionValue Value (in percentage points) that represents how much an option is preferred w.r.t.

another.
DistanceFromBest Distance from an option attribute value (in percentage points) to the best possible

value.
DontCare Preference that specifies an attribute whose values are irrelevant for the decision.
EvaluateAllOptionBenefits Evaluates the overall benefits of option i w.r.t. option j.
EvaluateExtremenessAversion Evaluates the difference between the extremeness of two options.
EvaluateTradeOffContrast Evaluates the difference between the trade-off of two options and the trade-off aver-

age.
Extremeness Value that indicates (in percentage points) how extremeness an option is.
ExtremenessAversion Value that indicates the benefit of an option for being less extreme than another.
Goal Preference that states the desire of maximising or minimising an attribute value.
Indifference Preference that indicates attribute values that are equally preferred.
ModifierScale Scale that establishes a partial order of the strength of modifiers (performatives or

rates).
MonadicPreference Preference that refers to a single target, and evaluates it with modifiers.
OAPM Options-attribute preference model, states preference between option attribute values.
OrderPreference Preference that indicates that an attribute value is preferred to another.
PreferencePriority Priority that states that a preference is preferred to another.
RelativeBenefit Values that indicates (in percentage points) the advantage of an attribute value w.r.t.

another.
PSM Preference Satisfaction model, associates attribute values of options with a modifier.
SelectOption Selects an option from those available based on decision values.
SelectedOption Option selected from a set.
TradeOffContrast Value that indicates the benefit of an option for having a good trade-off w.r.t another.
TO Trade-off (cost-benefit relationship) between two options.
TOAvg Average of the trade-offs among all options.
WeightEA Weight of the extremeness aversion used in the decision function.
WeightTO Weight of the trade-off contrast used in the decision function.
WeightFunction Parameterised function (e.g. f(x) = logax + b) that is used to calculate attribute

weights.

Transparently Deriving the Provenance of User Decisions 119

Fig. 1. Provenance graph I (prototype)

120 I. Nunes et al.

analysing the trade-off contrast. Options that have a good cost-benefit relationship are
preferred. The trade-off contrast is calculated based on the benefit between an option
with respect to another, which depends on two factors: (i) the weight of a particular
attribute, which is specific for an option, detailed in Figure 2(1); and (ii) the benefit of
a particular attribute, detailed in Figure 2(2). And the extremeness aversion compares
how extreme options are, which is calculated as the standard deviation of the distances
of an option attribute values to those of an option considered best — this is obtained
from the provided preferences, and detailed in Figure 2(3).

Figure 2 details these three parts, whose leafs are preferences, or priorities in case
of attribute weights. Therefore, by following a particular path of the tree beginning in

Fig. 2. Provenance graph II (prototype)

Transparently Deriving the Provenance of User Decisions 121

the selected option one can understand the preference(s) that caused calculated values,
which lead to the choice for that option. Different preferences are treated differently.
Monadic preferences are first used to build the PSM, which in turn is used together
with the remaining preferences to construct the OAPM. This model is later refined by
considering implicit preferences in the explication process.

Returning to our example, as part of the scenario, Alex chose sites B and C (BC).
We simulate the decision based on preferences we believe him to have. Specifically,
Alex has the following goals: (P1) maximise the number of eligible patients recruited;
(P2) minimise costs; (P3) minimise approval time. He further has some qualifying pref-
erences: (P4) want around 50 patients; (P5) accept spending between £1M and £1.2M.
Finally, Alex has a priority: (P6) prioritise number of patients over other attributes.
Taking the eight options and the latter preferences, the decision maker simulates the
decision, recording an OPM graph, an extract of which is shown in Figure 3.

5 Decision Provenance Queries

Given a provenance graph following our profile, queries can be made about the reason-
ing behind a decision. The following are examples, illustrated with our case study. They
make reference to the chosen option i and another option j. To make the queries more
precise, we will use an XPath-like notation, where each step in the path is the type of an
artifact, process or edge, and a parent-child relation denotes that an edge links into or
from an artifact or process. For example, //ucpb:SelectOption/opm:used/*
returns all artifacts used by a ucpb:SelectOption process. The language is for illustration
and is only semi-formal, but is similar to real provenance query languages [1].

Q1. Are there preferences that compare i and j but did not affect the decision? Alex
chose option BC, recruiting 49 patients in total and not, for example, AB, recuiting 57.
Querying the graph will tell us that BC was preferred to AB specifically with regard to
the number of patients, recorded as artifact ucpb:OAPM having value “+”. The graph
further tells us the preference that was the reason for this decision, P4, through a was-
DerivedFrom OPM edge. Preference P1 also concerns this attribute, and was an input
to the process generating the ucpb:OAPM, but was not the reason, so no wasDerived-
From edge exists. This query can be executed by first retrieving all preferences used in
comparing options, //ucpb:CompareOptionsAttribute/opm:used/*, and
then removing all those having a positive result on the chosen option //ucpb:OAPM
[opm:value=‘[BC]=+’]/opm:wasDerivedFrom/*. Those remaining cannot
have influenced the final choice.

Q2. Were any implicit preferences considered? In our example, Alex had preference
P5 stating that a cost higher than £1M and lower than £1.2M is ‘acceptable.’ This is not
necessarily a hard constraint, i.e. a cost lower or higher may still be a valid option, but
values in that range fit in the ‘acceptable’ range of the modifier scale. This explicit pref-
erence also implies a further preference, P7, that values outside of the interval are more
acceptable if closer to it, e.g. £0.9M is closer to being acceptable than £0.8M. However,
in this example, the explicitly stated preferences, including P2, are adequate for making
a comparison of options, so the implicit preference has no effect. This can be seen in the

122 I. Nunes et al.

Fig. 3. CR Provenance Graph (partial)

Transparently Deriving the Provenance of User Decisions 123

provenance graph where ucpb:InferImplicitPreferences does not alter the
comparison value (‘[B,C,patients]=<+>’), B is preferable to C with regards to number
of patients, before and after the process). This query can be executed by detecting any
instances where the OAPM output and input of the implicit preference step are differ-
ent, //ucpb:OAPM[opm:value!=opm:wasGeneratedBy/ //ucpb:Apply
ImplicitPreferences/opm:used/ ucpb:OAPM/opm:value].

Q3. Do the positive aspects of option i relative to option j compensate its negative as-
pects? Alex’s decision making was not necessarily a pure reflection of the positive and
negative attribute differences, but will have been influenced by human psychological
processes. Here we model two known effects described earlier, trade-off evaluation and
extremeness aversion. The influence of these on the eventual decision is weighted in the
simulation (0.25 and 0.15 respectively). The weights may be derived from observations
of Alex, or based on averages across a wider population. We can then ask whether these
psychological processes affected the particular decision. In this case, the benefit of op-
tion BC over C, given value 0.171, was lower than the benefit of C over BC (given
value 0.204, shown in Figure 3 as an artifact used by ucpb:AnalyseTradeOff).
However, the difference between the options is small relative to the differences across
the set (trade-off) and C has a higher rating primarily because one attribute, approval
time, is very good but at the expense of another, eligible patients (extremeness aver-
sion). Because of this, the eventual decision chooses BC. This query can be executed
by checking whether the benefits comparison without trade-off and extremeness aver-
sion, //opm:wasGeneratedBy/ucpb:EvaluateAllOptionBenefits, re-
sults in one option being preferred to another while the inputs to the final selection
//ucpb:SelectedOption/opm:used show the reverse.

Q4. How much better is i to j relative to the trade-offs between i and other options?
The trade-off between two options is always evaluated based on its comparison with
other trade-offs, i.e. what is taken into account is the trade-off contrast. Therefore, in
order to understand the trade-off between two options it is important to allow users
to verify the average of the trade-offs. In Figure 3, it can be observed that the trade-
off (cost-benefit ratio) between options site C only and sites B and C together is 0.787,
which is higher (worse) than the average 0.643. This query can by comparing the partic-
ular trade-off measures, //opm:wasGeneratedBy/ucpb:AnalyseTradeOff,
with the average of those values.

Answers to Q1 and Q2 will refer to attributes, leading to further questions such as
“Why was i’s value for attribute a considered better than j’s?” or “Why was attribute a
more important than b?”

Recording the decision making process that matches a user choice using our profile
also allows generating high-level explanations, mentioned before. Even though they
may not be enough in some cases, mainly when there is the need for a detailed expla-
nation between pros and cons of individual attributes, which is the case of the queries
above, giving an initial high-level explanation may be useful. However, in order to do
so, existing approaches [6,7] need as input attribute weights and values, and therefore a
provenance graph is also needed to generate such explanations. We are currently work-
ing on this direction as well. In order to identify the explanations users expect to receive
as a justification for a choice, we have performed a study on how people justify their

124 I. Nunes et al.

choices [12,13], assuming that given explanations are those they expect to receive. As a
result of this study, we derived guidelines and patterns of explanations, providing guid-
ance on explanations to be generated and the context in which each of them should be
provided. Given this study, we are developing a technique that generates explanations
following derived patterns, taking as inputs a provenance graph built using our proposed
profile.

6 Conclusion

Knowing the reasoning of decisions taken by humans in the context of partially auto-
mated systems is crucial in many domains, such as those that involve design decisions:
clinical trials, software development and civil construction. Nevertheless, it is unreal-
istic to expect that all decisions are justified by users given the time and effort that
this activity requires. Therefore, we presented in this paper an approach that aims at
automating the process of recording humans decisions.

Our approach consists of observing user’s choices in the context of software ap-
plications that support people to manage tasks that involve decision making. With an
automated decision-maker whose goal is to simulate human reasoning, we detect situ-
ations in which a human choice matches that of the decision-maker, whose reasoning
process can be used to justify a human decision. In order to record such explanations, we
based our approach on the Open Provenance Model (OPM), which is a generic model
to represent the provenance of data (or physical objects, ...) and is being adopted as a
pattern to allow the interoperability of systems. We proposed an OPM profile, which
is an extension of this generic model to accommodate the specific artifacts of the auto-
mated decision-maker, and the processes associated with it. Moreover, we showed how
to query provenance graphs built with our profile in order to obtain explanations to jus-
tify choices made based on preferences. Human decision making is very complex, and
therefore there are many decisions that our human decision simulator still cannot re-
produce. Our future work is thus to incorporate to our automated decision-maker other
principles of psychology that can help to explain human decisions.

References

1. Anand, M.K., Bowers, S., Altintas, I., Ludäscher, B.: Approaches for Exploring and Query-
ing Scientific Workflow Provenance Graphs. In: McGuinness, D.L., Michaelis, J.R., Moreau,
L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 17–26. Springer, Heidelberg (2010)

2. Delaney, B., Taweel, A., et al.: Transform: translational medicine and patient safety in Eu-
rope. In: Proceedings of the AMIA 2010 Annual Symposium (2010)

3. Kalra, D., Schmidt, A., Potts, H.W.W., Dupont, D., Sundgren, M., De Moor, G.: Case report
from the ehr4cr project— a european survey on electronic health records systems for clinical
research. iHealth Connections (2011)

4. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-
offs. John Wiley & Sons, Inc., New York (1976)

5. Kifor, T., Varga, L., Vazquez-Salceda, J., Alvarez, S., Willmott, S., Miles, S., Moreau, L.:
Provenance in agent-mediated healthcare systems. IEEE Intelligent Systems 21(6), 38–46

Transparently Deriving the Provenance of User Decisions 125

6. Klein, D.A., Shortliffe, E.H.: A framework for explaining decision-theoretic advice. Artif.
Intell. 67, 201–243 (1994)

7. Labreuche, C.: A general framework for explaining the results of a multi-attribute preference
model. Artif. Intell. 175, 1410–1448 (2011)

8. Missier, P., Embury, S., Stapenhurst, R.: Exploiting Provenance to Make Sense of Automated
Decisions in Scientific Workflows. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008.
LNCS, vol. 5272, pp. 174–185. Springer, Heidelberg (2008)

9. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche, J.V.: The Open
Provenance Model core specification (v1.1). Future Gener. Comput. Syst. 27(6), 743–756
(2011)

10. Naja, I., Moreau, L., Rogers, A.: Provenance of Decisions in Emergency Response Envi-
ronments. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS,
vol. 6378, pp. 221–230. Springer, Heidelberg (2010)

11. Nakatsu, R.T.: Explanatory power of intelligent systems. In: Gupta, J.N.D., Forgionne, G.A.,
Mora T., M. (eds.) Intelligent Decision-making Support Systems. Decision Engineering, pp.
123–143. Springer, London (2006)

12. Nunes, I., Miles, S., Luck, M., de Lucena, C.J.P.: Investigating Explanations to Justify
Choice. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012.
LNCS, vol. 7379, pp. 212–224. Springer, Heidelberg (2012)

13. Nunes, I., Miles, S., Luck, M., Lucena, C.: A study on justifications for choices: Explanation
patterns and guidelines. Tech. Report CS-2012-03, University of Waterloo, Canada (2012)

14. Nunes, I., Miles, S., Luck, M., Lucena, C.: User-centric preference-based decision making.
In: AAMAS 2012 (to appear, 2012)

15. Nunes, I., Miles, S., Luck, M., Lucena, C.: User-centric principles in automated decision
making. In: 21st Brazilian Symposium on Artificial Intelligence (SBIA 2012) (to appear,
2012)

16. Simonson, I., Tversky, A.: Choice in context: Tradeoff contrast and extremeness aversion.
Journal of Marketing Research 29(3), 281–295 (1992)

17. Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In: 23rd Inter-
national Conference on Data Engineering Workshop, pp. 801–810. IEEE (2007)

Detecting Duplicate Records

in Scientific Workflow Results

Khalid Belhajjame1, Paolo Missier2, and Carole A. Goble1

1 School of Computer Science
University of Manchester

Oxford Road, Manchester, UK
{Khalid.Belhajjame,Carole.Goble}@cs.man.ac.uk

2 School of Computer Science
Newcastle University,

Newcastle upon Tyne, UK
Paolo.Missier@ncl.ac.uk

Abstract. Scientific workflows are often data intensive. The data sets
obtained by enacting scientific workflows have several applications, e.g.,
they can be used to identify data correlations or to understand phe-
nomena, and therefore are worth storing in repositories for future ana-
lyzes. Our experience suggests that such datasets often contain duplicate
records. Indeed, scientists tend to enact the same workflow multiple times
using the same or overlapping datasets, which gives rise to duplicates in
workflow results. The presence of duplicates may increase the complexity
of workflow results interpretation and analyzes. Moreover, it unnecessar-
ily increases the size of datasets within workflow results repositories.
In this paper, we present an approach whereby duplicates detection is
guided by workflow provenance trace. The hypothesis that we explore
and exploit is that the operations that compose a workflow are likely to
produce the same (or overlapping) dataset given the same (or overlap-
ping) dataset. A preliminary analytic and empirical validation shows the
effectiveness and applicability of the method proposed.

1 Introduction

Scientific workflows are increasingly used by scientists as a means for specifying
and enacting their experiments. Such workflows are often data intensive [6]. The
data sets obtained by their enactment have several applications, e.g., they can
be used to understand new phenomena or confirm known facts, and therefore
are worth storing (preserving) for future analyzes. For example, such datasets
can be stored in public repositories, and made available from within the linked
data cloud [18], to be browsed, queried, analyzed and used to feed the execution
of other workflows.

Because of the exploratory nature of research investigations, the datasets ob-
tained by workflow executions often contain duplicate data records. (By record,
we mean an instance that is used to feed an input parameter or is generated by
an output parameter.) Indeed, scientists tend to enact the same workflow sev-
eral times using the same or overlapping datasets, which gives rise to duplicates

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 126–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Detecting Duplicate Records in Scientific Workflow Results 127

in workflow results. Typically, the duplicate records generated as a result are
assigned different identifiers by the workflow engine. This yields the following
undesirable outcomes: i)- The analysis and interpretation of workflow results
may become cumbersome and tedious, as it is up to the scientist to identify the
data records that are semantically identical, to eventually draw scientific con-
clusions. ii)- Moreover, the presence of duplicate records unnecessarily increases
the size of datasets within workflow results repositories.

Existing record linkage techniques [9] can be used to detect duplicates in work-
flow results. Consider a workflow wf that has been enacted for many times over
a given period of time, and that the results of the workflow and its constituent
operations were stored. To identify duplicates that were used or generated by
the operations that compose the workflow wf , record linkage techniques can be
applied to those records. Specifically, given the set of records Ri (resp. Ro) that
were used (resp. generated) by a constituent operation op of wf , the records in
Ri (resp. Ro) are compared to detect duplicate records. Comparing all possible
pairs to identify duplicate records in a set R can be expensive when R is large:
the number of record pair comparisons grows quadratically with the number of
records to be matched.

To overcome the above problem, a number of researchers have investigated the
use of blocking methods [1] to reduce the number of record pair comparisons.
The underlying idea of blocking methods is to split the set of records to be
compared into subsets, known as blocks. Two records are compared only if they
belong to the same block. While their effectiveness have been proven, blocking
methods are highly domain dependent. They require some detective work from
the part of a domain expert who identifies the subset of attributes that can
be used for forming blocks or provides training data that can be used to learn
blocking criteria [14,3].

In this paper, we explore and exploit an additional and different source of
information, namely provenance traces collected when enacting workflows, to
guide the detection of duplicates in workflow results. Specifically, we make the
following contributions:

– A method for guiding duplicates detection in workflow results.
Rather than comparing pairwise the data records bound to every opera-
tion parameter within a workflow, we show how the results of record pair
comparisons can be reduced to a subset of operation parameters based on
provenance trace.

– Extension of the method proposed to support collection-based
workflows. We show how the method proposed can be extended to support
duplicate detection in the context of collection-based workflows in which op-
eration parameters can use and/or generate a set of records within a single
operation invocation.

– Validation of the method proposed. We report on the results of an ana-
lytical and empirical validation that shows the effectiveness and applicability
of the method proposed.

128 K. Belhajjame, P. Missier, and C.A. Goble

The paper is structured as follows. We begin by analyzing and comparing related
work to ours (in Section 2). We present the model that we use, for the purposes
of this paper, to define scientific workflows and the provenance trace obtained by
their enactment (in Section 3). We then present the algorithm that we propose
for detecting duplicate records in workflow results (in Section 4). We report
on the results of a preliminary evaluation (in Section 5), and close the paper
discussing our ongoing and future work (in Section 6).

2 Related Work

Research in duplicate record detection has been active for more than three
decades. Elmagarmid et al. [9] conducted a thorough analysis of the literature
in this field. They covered the similarity metrics used for matching individual
record fields, the techniques for comparing records, as well as the systems pro-
viding such capabilities.

As mentioned earlier, the number of record pair comparisons grows quadrati-
cally with the number of records to be matched O�n2�. To improve the efficiency
of duplicate detection, several blocking techniques [1] have been devised. Using
such techniques, the set of records to be compared is subdivided into a set of
mutually exclusive blocks. Two records are compared only if they belong to the
same block. Typically, blocking techniques reduces the number of record pair

comparisons to O�n
2

b �, where b is to the number of blocks [7]. As well as block-
ing, other techniques have been proposed to improve the efficiency of duplicate
detection. Using the Sorted Neighbourhood, for example, the records are sorted
based on a sorting key. Two records are then compared only if they are within
a window of a fixed size w. As a result, the total number of record comparisons
using the Sorted Neighbourhood is O�wn� [1].

The above techniques require user inputs. For example, to use blocking tech-
niques, the user, or domain expert, needs to identify the attributes that can be
used to split the set of records into blocks. Often, this is a trail-and-error task
[17], in which the user examines records attributes, and select the ones that will
(or are expected to) yield good partitioning of the set of records.

To reduce the complexity of this task, some researchers investigated the use
of machine learning techniques [16,10,12]. Generally speaking, using such tech-
niques, the attributes to be used in blocking are selected based on training data,
which take the form of records that are known to be duplicates and other that
are known not to be duplicates, and which are provided by the domain expert.

As well as supervised machine learning techniques, some researchers have in-
vestigated the use of unsupervised machine learning techniques for record link-
age. For example, Michalowski et al. [11] showed how duplicates can be identified
by using secondary sources such as location, phone number, etc. Elfeky et al. [8]
proposed an algorithm that combines both supervised and unsupervised machine
learning techniques to detect duplicate records. Specifically, they use a two-step
process whereby record classes are first identified using clustering, then super-
vised machine learning techniques are applied to classify the records within the
classes identified.

Detecting Duplicate Records in Scientific Workflow Results 129

The method that we present in this paper is not an alternative to the above
techniques. Rather it is complementary: it is meant to further improve the ef-
ficiency of the above duplicate detection methods in the context of workflow
results by exploiting provenance traces to propagate the results of record pair
comparison along the operations parameters that are connected within the work-
flow.

The method we present in this paper can also be useful when the number
of records to be compared is small, as it reduces the need for data preparation
[9] to few operation parameters within the workflow. Indeed, the (raw) records
instances of a given operation parameter are often long complex strings. Con-
sider for example the SearchSimple service operation provided by the DNA
Data Bank of Japan1. The records used as input to such operation are biologi-
cal entries, which takes the form of long strings containing complex information
specifying the accession of the biological entry, its accession number, organism,
motif, cross-references to biological data sources, etc. Moreover, such entries may
be formatted using different representations, e.g., Uniprot, Fasta, IPR. There-
fore, comparing such records based on their textual content may lead to detecting
false duplicates and missing true ones. For example, two records that represent
the same biological entry may be found to be different because they are for-
matted using different representations. On the other hand, two different records
may be found to be identical because they have similar content. To avoid the
above issues, duplicate detection is often preceded by a data preparation phase
stage [9] during which the raw records are parsed to identify individual data
elements and then transformed into structured, uniformly formatted, and there-
fore comparable, records. Since the parameters of the operations that compose
a workflow can be (and are typically) semantically and syntactically different,
data preparation may turn out to be expensive as it potentially requires build-
ing a parser for every operation parameter. The method that we describe in this
paper eases this problem, since data preparation is required only for a subset of
operation parameters within the workflow.

3 Data-Driven Workflows and Provenance Trace

We focus in this paper on the problem of identifying duplicate records that are
used or generated by data-driven workflows. A data driven workflow is a directed
acyclic graph wf � �N,E�. A node �op, Iop, Oop� � N represents an analysis
operation op, which can be implemented as a Java program, a Perl script or
provided by a third party web service, has a set of ordered input parameters
Iop, and has a set of ordered output parameters Oop. The edges are data flow
dependencies specifying how the data records generated by a given operation
are used by the succeeding operation(s) within the workflow. Therefore, an edge
��op, o�, �op�, i�� � E is a pair that connects the output o of the op operation to
the input i� of another operation op�.

1 www.ddbj.nig.ac.jp

130 K. Belhajjame, P. Missier, and C.A. Goble

The execution of workflows gives rise to provenance trace, which we capture
using two relations: transformation and transfer [13]. Consider an operation op
that has n input parameters Iop � �i1, . . . , in�, and m output parameters Oop �
�o1, . . . , om�, we use

�op, �o1, ro1��, . . . , �op, �om, rom��� �op, �i1, ri1��, . . . , �op, �in, rin�� (1)

to denote the transformation relation specifying that the execution of the op op-
eration within a workflow took as input the ordered set of records �ri1 , . . . , rin�,
and generated the ordered set of records �ro1 , . . . , rom�, where rxi denotes
a record that is instance of the input or output parameter xi. For exposi-
tion sake, we use in what follows OutBop � InBop to denote the trans-
formation relation in (1), where InBop denotes the set of input bindings
�op, �i1, ri1��, . . . , �op, �in, rin��, and OutBop denotes the set of output bindings
�op, �o1, ro1��, . . . , �op, �om, rom��.

As well as transformation relations connecting output records to input records
of an operation execution, provenance trace also caters for transfer relations
which specify transfer of records along the edges of the workflow between differ-
ent operations. Specifically, we use:

�op�, �i�, r�� � �op, �o, r�� (2)

to denote the transfer relation specifying that the record r generated by the
output parameter o of the operation op was used to feed the input i� of the
operation op�.

Together, the transformation and transfer relations defined above, are used
to encode provenance trace T obtained by the execution of workflows.

4 Provenance-Guided Detection of Duplicates

In this section, we present a method for identifying duplicate records in workflow
results.

To guide the detection of duplicates, we exploit the following observation.
Consider op an operation that is used within a workflow, and consider that i
and o are respectively an input parameter and output parameter of op. If the
operation op is known to be deterministic, then two records r and r� instances
of the output o are identical if they are generated using the same set of input
bindings, i.e.:

deterministic�op� � �� �OutBop� InBop � T � � �OutB�

op� InBop � T �
s.t. ��op, �o, r�� � OutBop� � ��op, �o, r��� � OutB�

op��

� id�r, r�� (3)

id�r, r�� denotes that two records r and r� are identical.
If the operation op is known to be injective, then two records r and r� that

are instances of the input i are identical if they yield the same set of output
bindings, i.e.:

Detecting Duplicate Records in Scientific Workflow Results 131

injective�op� � �� �OutBop� InBop � T � � �OutBop� InB�

op � T �
s.t. ��op, �i, r�� � InBop� � ��op, �i, r��� � InB�

op��

� id�r, r�� (4)

The above rules can be used to substantially reduce the number of records that
need to be compared for detecting duplicates in workflow results. In particular, if
the operations that compose the workflows are known to be deterministic, then
the records used as input to the workflow as a whole, i.e., those used to feed the
starting operation(s) within the workflow, can be compared. Rule 3 can then be
applied transitively to identify duplicates generated by other operations in the
workflow. On the other hand, if the operations that compose the workflow are
known to be injective, then the records generated by the workflow as a whole, i.e.,
those generated by the last operation(s) w.r.t. to the dataflow, can be compared.
Rule 4 can then be applied transitively to records that are used as input to the
operations within the workflow.

The method that we present in this paper for detecting duplicates assumes
that operations are deterministic. In other words, workflow containing non deter-
ministic operations are outside the scope of this paper. Generally, the operations
that constitute a workflow may not be deterministic. It is nevertheless impor-
tant to study the special case where operation determinism holds, especially that
the empirical evaluation that we will report on in Section 5 suggests that most
analysis operations are deterministic. Note, also, that we will present, later on in
Section 4.1, a technique that can be used to check if a given analysis operation
is deterministic, and therefore can be used to identify the workflows on which
the method we present in this section can be safely applied.

Given the above discussion, we present in what follow an algorithm in which
operations are assumed to be deterministic. The algorithm for detecting dupli-
cates operates as illustrated in Figure 1. In what follow, we present in details
the phases outlines in Figure 1.

Phase 1. Given a workflow wf and the provenance trace T obtained by executing
the workflow wf multiple times, in the first phase the records that are bound to
the input parameters of each of the starting operations are compared to identify
duplicate records. To illustrate this, consider that ops is a starting operation
of the workflow wf , i.e., the input parameters of ops are not associated with
any data links within the workflow wf , consider that i is an input of ops, and
consider that Rops

i is the set of records that are bound with the input i in the
provenance trace T . In the first phase, we compare the records in Rops

i to identify
duplicate records. The techniques used for matching the records are outside the
scope of this paper. Matching techniques such as those provided by the Tailor
[7] and Febrl [4] systems can be used for this purpose. The result of this phase
is a partition of disjoint sets Rops

i � R1 � 	 	 	 � Rn where Ri, 1
 i
 n is a set
of duplicate records.

Phase 2. The sets of input bindings that are used to feed each starting operation
of the workflow wf in the provenance trace T are compared and clustered into
groups of identical sets of input bindings. To illustrate this, consider that the

132 K. Belhajjame, P. Missier, and C.A. Goble

Fig. 1. Process for provenance-guided duplicates detection

starting operation ops has the following input parameters Iops � �i1, . . . , in�,
and consider that IBops is the sets of input bindings that are associated
with the operation ops in the provenance trace T . Two sets of input bindings
�ops, �i1, ri1��, . . . , �ops, �in, rin�� and �ops, �i1, r

�

i1��, . . . , �ops, �in, r
�

in�� in IBops

are identical iff:

 1
 k
 n, id�rik , r
�

ik
�

After comparing the sets of input bindings in IBops , they are clustered into
groups of identical sets of bindings. For example, consider that IBops contains
the following 5 sets of input bindings: IBops � �InB1, . . . , InB5�. The follow-
ing clustering ��InB1, InB2, InB4�, �InB2, InB5�� specifies that the bindings
InB1, InB3 and InB4 are identical, and that the bindings InB2 and InB5 are
identical.

Detecting Duplicate Records in Scientific Workflow Results 133

Phase 3. Given the clustering of the input bindings of the starting operation ops
of the workflow wf , provenance trace T is used to cluster the sets of outputs
bindings of ops into groups of identical sets of output bindings. To do so, we
exploit the clustering of sets of input binding obtained in phase 1. Specifically,
two sets of output bindings OutBop and OutB�

op are identical, and therefore
clustered together if they are obtained using identical input bindings. In other
words, two sets of output binding OutBops and OutB�

ops
of the operation ops

are identical, and therefore grouped into the same cluster, if:

� InBops ,InB
�

ops
� T

s.t. OutBop� InBop � OutB�

op� InB�

op � id�InBops , InB
�

ops
�

where id�InBops , InB
�

ops
� denotes that the sets of bindings InBops and InB�

ops

are identical.

Phase 4. In this phase, the records that are bound to the output parame-
ters of each starting operation ops are identified given the clustering obtained
in phase 3. As an example, consider two sets of output bindings of the op-
eration ops: OutBops � �ops, �o1, ro1��, . . . , �ops, �om, rom�� and OutB�

ops
�

�ops, �o1, r
�

o1��, . . . , �ops, �om, r�

om��. If OutBops and OutBops are in the same
group according to the clustering obtained in phase 3, then the records roi and
r�

oi are identical for 1
 i
 m.

Phase 5. The sets of input bindings that are associated with each op-
eration op that succeeds the starting operations in the workflow wf are
clustered into groups of identical sets of input bindings. To illustrate
this, consider that InBop � �op, �i1, ri1��, . . . , �op, �in, rin�� and InB�

op �
�op, �i1, r

�

i1
��, . . . , �op, �in, r

�

in
�� are two sets of input bindings of the operation

op. InBop and InB�

op are identical, and therefore grouped into the same cluster,
if the records rik and r�

ik
, 1
 k
 n are identical, i.e.,
 1
 k
 n, id�rik , r

�

ik
�.

Phase 6. Just like with the starting operation ops, the sets of output bindings as-
sociated with each of the operations that succeed the operation ops are clustered
into groups of identical sets of bindings (see phase 3).

Phase 7. The set Rop
o of records that are bound to each output parameter o of

a succeeding operation op are partitioned into disjoint sets of identical records.
This phase is similar to phase 4.

Phases 5, 6 and 7 are repeated until treating, i.e., identifying duplicates, in
records that are bound to the output parameters of each of the termination oper-
ations in the workflow wf . By termination operations, we mean operations with
output parameters that are not associated with any data links in the workflow
wf .

In the above algorithm, we make use of rule 3 (in phase 3 and phase 6),
which assumes that operations are deterministic. We can also identify duplicates
by using rule 4 instead, which can be used when the operations that compose

134 K. Belhajjame, P. Missier, and C.A. Goble

the workflow wf are known to be injective. To do so, the algorithm presented
above needs to be modified. Specifically, the algorithm starts by comparing the
records that are produced by the outputs of the termination operations within
the workflow. Then using transitively rule 4, we identify the records that are
bound to the remaining operation parameters in the workflow.

4.1 Verifying the Determinism of Analysis Operations

As mentioned earlier, the algorithm presented assumes that the operations that
compose the workflow are known to be deterministic. If the source code of analy-
sis operations is available, then program analysis techniques [5] can be employed
to verify whether they are deterministic. In practice, analysis operations that are
supplied by third parties often come without source code. For those operations,
we can use the following approach to check whether they are deterministic. Given
an operation op, we select examples values that can be used by the inputs of op,
and invoke op using those values multiple times. We then examine the values
produced by the operation. If the operation produces identical output values
given identical input values, then it is likely to be deterministic, otherwise, it is
not deterministic. Note that we say likely to be deterministic, since an operation
may, in certain corner cases, be deterministic for the examples we selected but
not for the whole space of legal input values. Note that such tests should be per-
formed continuously over time. Indeed, as we shall explain later on in Section
5.2, many analysis operations use underlying data sources in their computation,
and, as a result, updates to those sources may break the determinism of those
operations. Therefore, tests performed for checking the determinism of opera-
tions should be performed over time to determine the window of time during
which the operations in a given workflow remain deterministic.

4.2 Collection-Based Workflows

So far we have considered workflows in which operations take as input an ordered
set of records each instance of a given input parameter and produce a set of
ordered records each is an instance of a given output parameter. In practice,
however, an important class of scientific workflows are collection-based workflows
[13]. The analysis operations that constitute such workflows can have inputs
(resp. outputs) that consume (resp. generate) a set of records instead of a single
record within a single operation invocation.

The algorithm presented in Section 4 needs to be slightly modified to be
able to cater for collection-based workflows. In particular, we need to be able to
identify when two sets are identical (phase 1), and to identify duplicates records
between two sets that are known to be identical (phases 4,7). To illustrate this
consider an operation op with an input i that takes a set of records. Given two
sets of records Ri and Rj that are bound to the operation op in two different
invocations within the provenance trace T , we need to determine whether the
two sets Ri and Rj are identical. To do so, we need to compare the records in
Ri to the records in Rj . The sets Ri and Rj are identical if they are of the same

Detecting Duplicate Records in Scientific Workflow Results 135

size, and there is a bijective mapping map : Ri � Rj that maps each record ri
in Ri to a record rj in Rj such that ri and rj are identical, i.e., id�ri,map�rj��.

Inversely, in phases 4 and 7, given two sets Ri and Rj that are known to be
identical, we need to compare the records in Ri with the records in Rj to find a
bijective mapping map : Ri � Rj that maps each record ri in Ri to an identical
record rj in Rj .

5 Validation

To assess the effectiveness of the method presented in this paper, we performed
two kinds of validation: analytical and empirical.

5.1 What Is the Benefit in Terms of Reducing the Number of
Record Pair Comparisons?

We performed an an analytical analysis to understand the benefit that the
method we described in this paper presents in terms of reducing the search
space that needs to be explored to detect duplicate records. Consider a workflow
wf , the operations of which are known to be deterministic. For simplicity sake,
and without loss of generality, consider that the operations of wf have one input
and one output, and that they are connected in sequence using data links. Let
T be the provenance trace obtained by multiple executions of the workflow wf ,
and consider that n is the number of records that are bound to the input i of the
starting operation ops in the provenance trace T . Consider that the workflow
is composed of nop operations. The number of record pair comparisons needed
without using provenance trace is �nop � 1� �N , where N is the number of of
record pair comparisons needed for a single operation parameter. For example,
if the workflow is composed of two operations op1 and op2 that are connected
in sequence, then we need 3�N record pair comparisons: N for comparing the
records bound to the input of op1, N for comparing the records bound to the
output of op1 and N for comparing the records bound to the output of op2. Note
that we do not need to compare the records bound to the input of op2, since this
input is connected to the output of op2 by a data link, and therefore the set of
records bound to the input of op2 is the same set of records bound to the output
of op1.

Using the method we described in this paper, we need to identify duplicates
only for the starting operations in the workflow. In other words, the number

of record pair comparisons is N . Using blocking techniques N is n2

b , where b
denotes the number of blocks. Notice that that number does not depend on the
number of operations that compose the workflow. To illustrate the benefit our
method can provide, consider the case in which the workflow is composed of 10
operations that have one input and one output, and are connected in sequence.
And consider that 100 records are bound to each operation parameter, and that
blocking techniques split the records associated with each operation parameter
to 5 blocks. Using blocking techniques, without relying on provenance trace,

136 K. Belhajjame, P. Missier, and C.A. Goble

requires 22000 record pair comparisons. This number is reduced to 2000 using
the method presented in this paper. Notice that, the greater the number of
operations that compose the workflow, the greater the reduction in terms of
number of record pair comparisons.

5.2 Are Real-World Analysis Operations Deterministic?

The method we presented in this paper relies on the assumption that the oper-
ations that compose the workflow are deterministic. To have an insight on the
degree to which this assumption holds in practice, we run an experiment using
real world scientific workflows from the myExperiment repository [15]. Specifi-
cally, we selected 15 bioinformatics workflows that cover a wide range of analyzes,
namely biological pathway analysis, sequence alignment, molecular interaction
analysis. (Note that the myExperiment repository contains a large number of
workflows, however, most of the workflows cannot be enacted for several reasons,
notably the unavailability of the services that compose the workflows.) Together,
the workflows we selected are composed of 151 operations. To identify which of
these operations are deterministic, we run each of them 3 times using example
values that were found either within myExperiment or Biocatalogue [2]. We then
manually analyzed the output values of each operation. This analysis revealed
that a small number of operations, namely 5 of 151 are not deterministic. After
examining these 5 operations, it transpires they output URLs of files that con-
tain the actual results of the computation. Note that although the URLs of the
files generated by such operations were different between runs, the contents of
the files were the same. The remaining operations, i.e., 146, generated the same
output given the same input in the 3 invocations, and therefore are likely to
be deterministic. We say likely to be deterministic, since an operation may, be
deterministic for the examples we selected but not for the whole space of legal
input values.

The results of the above experiment are encouraging, as it implies a broad
applicability of the method described in this paper for propagating record pair
comparison results. Note, however, that many of the operations that we analyzed
access and use underlying data sources in their computation. For example, oper-
ations that perform sequence alignment use underlying sequences data sources.
Therefore updates to such sources may break the determinism assumption. This
suggests that the determinism holds within a window of time during which the
underlying sources remain the same, and that there is a need for monitoring
techniques to identify such windows.

6 Conclusions and Future Work

The presence of duplicates in workflow results can hinder the analysis of the
results, specially when the number of workflow executions is large. In this paper,
we described a method that can be used to reduce the number of record pair com-
parisons and the need for data preparation to a subset of the parameters within
the workflow. Preliminary validation of the proposed method is encouraging.

Detecting Duplicate Records in Scientific Workflow Results 137

Our ongoing and future work includes further evaluation. As mentioned in
the previous section, operation determinism may break because of updates to
underlying data sources. In this respect, we are investigating new techniques for
monitoring the determinism of analysis operations over time using test suites
designed for this purpose. The monitoring results can be used to identify the
cases in which the method described in this paper can be safely applied. We
are also investigating ways to deal with the issue of false matches propagation.
If two different records are identified as duplicates, then this may lead to de-
tecting false matches using provenance trace. The same observation applies to
false negatives propagation. If two identical records r and r� are not detected,
then using provenance trace, we will fail in detecting identical records generated
using r and r�. Note also that some true matches may not be identified using
the method we described. In particular, a deterministic, yet not injective, op-
eration within the workflow may output identical records given different input
bindings. Using the algorithm described in Section 4 will not allow detecting
those duplicates. We intend to conduct further evaluation to assess the scale at
which false matches are propagated and true matches are missed. We are also
investigating ways whereby our method can be adapted to alleviate the above
issues, e.g., by running our method multiple times, not only once. Each time dif-
ferent parameters, not only the inputs of the starting operations, are selected as
a starting point, and then cross-validating duplicate detection results obtained
by the different runs. As well as the above, we are investigating ways in which
the method presented can be adapted to identify duplicates across workflows,
and conducting a user study to assess the usefulness of the method in practice.

Acknowledgment. We would like to thank the anonymous reviewers for their
detailed and constructive comments.

References

1. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods
for record linkage. In: Proceedings of the KDD 2003 Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, Washington, DC, pp. 25–27 (2003)

2. Belhajjame, K., Goble, C., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R.,
Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: A Cu-
rated Web Service Registry for the Life Science Community. In: Proceedings of the
Microsoft eScience Conference (2008)

3. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up
record linkage. In: ICDM, pp. 87–96. IEEE Computer Society (2006)

4. Christen, P.: Febrl -: an open source data cleaning, deduplication and record linkage
system with a graphical user interface. In: KDD, pp. 1065–1068. ACM (2008)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 1979, pp. 269–282. ACM, New York (1979)

6. Deelman, E., Chervenak, A.L.: Data management challenges of data-intensive sci-
entific workflows. In: CCGRID, pp. 687–692. IEEE Computer Society (2008)

138 K. Belhajjame, P. Missier, and C.A. Goble

7. Elfeky, M.G., Elmagarmid, A.K., Verykios, V.S.: Tailor: A record linkage tool box.
In: ICDE, pp. 17–28. IEEE Computer Society (2002)

8. Elfeky, M.G., Ghanem, T.M., Verykios, V.S., Huwait, A.R., Elmagarmid, A.K.:
Record linkage: A machine learning approach, a toolbox, and a digital government
web service (2003)

9. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

10. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Min. Knowl. Discov. 2(1), 9–37 (1998)

11. Michalowski, M., Thakkar, S., Knoblock, C.: Exploiting secondary sources for au-
tomatic object consolidation. In: Proceedings of the KDD 2003 Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, Washington, DC, pp. 34–36
(2003)

12. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
AAAI. AAAI Press (2006)

13. Missier, P., Paton, N.W., Belhajjame, K.: Fine-grained and efficient lineage query-
ing of collection-based workflow provenance. In: EDBT, pp. 299–310. ACM (2010)

14. Parag, Domingos, P.: Multi-relational record linkage. In: Proceedings of the KDD
2004 Workshop on Multi-Relational Data Mining, pp. 31–48 (August 2004)

15. De Roure, D., Goble, C.A., Stevens, R.: The design and realisation of the my-
Experiment virtual research environment for social sharing of workflows. Future
Generation Comp. Syst. 25(5), 561–567 (2009)

16. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
KDD, pp. 269–278. ACM (2002)

17. Winkler, W.E.: Approximate string comparator search strategies for very large ad-
ministrative lists. Technical report, Statistical Research Report Series, US Census
Bureau (2005)

18. Zhao, J., Sahoo, S.S., Missier, P., Sheth, A.P., Goble, C.A.: Extending semantic
provenance into the web of data. IEEE Internet Computing 15(1), 40–48 (2011)

The Xeros Data Model: Tracking Interpretations

of Archaeological Finds

Michael O. Jewell1, Enrico Costanza1, Tom Frankland2, Graeme Earl2,
and Luc Moreau1

1 School of Electronics & Computer Science, University of Southampton,
Southampton, United Kingdom, SO17 1BJ

2 Faculty of Humanities, University of Southampton, Southampton, United
Kingdom, SO17 1BF

Abstract. At an archaeological dig, interpretations are built around dis-
covered artifacts based on measurements and informed intuition. These
interpretations are semi-structured and organic, yet existing tools do not
capture their creation or evolution. Patina of Notes (PoN) is an applica-
tion designed to tackle this, and is underpinned by the Xeros data model.
Xeros is a graph structure and a set of operations that can deal with the
addition, edition, and removal of interpretations. This data model is a
specialisation of the W3C PROV provenance data model, tracking the
evolution of interpretations. The model is presented, with operations
defined formally, and characteristics of the representation that are ben-
eficial to implementations are discussed.

1 Introduction

Archaeological practice is focused on the aggregation and interpretation of knowl-
edge. The process begins with the excavation of multiple regions within a trench,
known as ‘contexts’. The finds discovered during excavation are tagged with an
ID and placed into find bags, thus grouping them according to the context in
which they were found. These ‘Find IDs’ are usually unique to sites, with larger
sites sometimes prefixing a non-unique ID with an area code to ensure unique-
ness. Archaeologists also use symbols for different purposes: contexts are circled,
smaller finds are in triangles, soil samples are in diamonds, etc.

The find bags and their contents then become the subject of interpretation
by specialists of different areas of archaeology. For example, skeletal material
may be examined by an osteoarchaeologist, while an environmental archaeolo-
gist may glean information from charcoal and plant remains found at the site.
Measurements by each specialist are recorded and associated with the individual
finds by use of a recording sheet, which is associated with the unique ID on the
find bag. Finally, an expert will examine the aggregated data for the site, and
produce a report based on an interpretation of the data.

During the whole process, individual archaeologists also produce personal in-
terpretations of their work. These may be in the form of handwritten notes,

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 139–151, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

140 M.O. Jewell et al.

diary entries, photographs, or multimedia recordings. At present, there is a di-
vide between this ‘unstructured data’ and the ‘structured data’ recorded by the
specialists on recording sheets. While both types of data may inform the excava-
tion process, the unstructured data is not usually included in the dissemination
of the findings from the site, whereas the structured data is recorded directly
and preserved for analysis. At commercial sites, structured data is of a higher
priority, but the interpretation is still dependent on the prior experience of the
archaeologist.

Structured and unstructured data may influence the recording of structured
data: if, for example, an excavator posits or determines via measurement that a
shard may be part of a larger item, they are likely to take this into considera-
tion when analysing further shards found in the same context. The excavation
approach is also strongly influenced by preliminary examination techniques, in-
cluding geophysics, survey methods, field walking, and the digging of trial pits.

Given the amount of recording that takes place at a dig, it is valuable to
preserve both the structured and unstructured data as interpretations of finds.
This is of use both to students, who could explore how conclusions were reached,
and to other archaeologists, who may reach hypotheses that were not previously
considered. By opening this data up to all of the archaeologists at a dig site,
multiple viewpoints can be created and knowledge accumulated.

Some technologies already exist with the ability to capture finds and notes,
but these have shortcomings. Existing ‘find databases’ (such as ARK[5] and
IADB[9]) let archaeologists record the structured data mentioned earlier, but do
not allow for the creation of interpretations of this data and do not visualise
how knowledge has been built up or altered over time. Wikis provide for the
creation of the unstructured data, and preserve edits, but do not model the fact
that a note may be expanding on knowledge from another note. Users would
have to write the structure into the wiki pages using wiki markup, but this is
not readily exploitable as it is not explicitly designed into the software. There
are also parallels to version control systems, such as SVN and CVS, but these
operate on a per-directory level: several files in a folder that is then committed
to a repository would be seen as having been created at the same time as the
directory.

PoN (Patina of Notes), a web application that allows for the creation and
organisation of structured and unstructured data about archaeological finds,
was designed to address the above issues. Finds are extended with notes in
a manner akin to attaching Post-it notes to an item. This results in a new
‘state of knowledge’: the original find has had extra information added, and
the overall information in the system has grown. Notes can be stacked, thereby
extending prior states of knowledge; alternative stacks can be created; and notes
can be placed bridging multiple entities. By preserving the state of the system
as notes are added, it is possible to see how knowledge has accrued over time,
how structures have grown, and how and why edits have taken place.

This paper describes the Xeros data model that underpins PoN. The model
consists of a graph structure that extends the PROV[8] Provenance Data Model;

The Xeros Data Model: Tracking Interpretations of Archaeological Finds 141

and a set of operations defined to act upon it. This research is detailed in three
contributions:

1. A formal specification of the fundamental operations: extension, edition, and
reduction. Extension allows for the ‘stacking’ of knowledge onto an existing
state of knowledge, or onto a find itself. Edition models a change of content
between two versions of a note or a find. Reduction removes a state from
the data model, but ensures that entities are still preserved when exploring
prior system states.

2. Several properties are required for the PoN system, including the ability to
record asynchronously and the avoidance of locks (to allow a single entity
to be edited by more than one party). These properties are effected in the
data model by commutativity operations (cross-entity completion, post-fact
merging, and pre-fact recall) and idempotence rules.

3. The commutativity operations incur some storage and computation costs.
These are in part unavoidable, to ensure the integrity of the model, but some
may be avoided in order to ease efficiency. An approach to optimisation is
disussed.

2 Related Work

As mentioned previously, some popular archaeological systems already exist.
IADB[9], the Integrated Archaeological Database, manages data throughout the
lifespan of excavation projects, including recording, analysis, and dissemination.
Unique URIs are provided for Finds, Contexts, etc, and these are stored in the
system’s database. ARK[5] provides similar facilities for the collection of archae-
ological data, but allows for more flexible interface control. As the PoN imple-
mentation of Xeros uses URIs, it can augment the IADB software very easily,
while leaving the more specialised data entry to this purpose-built software.

There are also some approaches to add meaning to wikis: Semantic
MediaWiki[6] lets users embed triples into wiki pages, which is especially use-
ful with templated pages (e.g. a Country template may contain a hasCapital
predicate). Alternatively, DBWiki[1] combines the schemas present in existing
databases with wiki functionality, providing versioning on the data entry pro-
cess. It is possible to query for information on a country, and then retrieve the
history and provenance of that data. Neither of these approaches address the
issue of interpretation building, however: to create a new note in these systems
would require the user to explicitly add links to the states of knowledge to which
they were referring.

Some ontologies already address areas of this research: CIDOC CRM[3], an
ontology for concepts and relationships used in cultural heritage documentation,
has been extended to capture the modeling and query requirements regarding the
provenance of digital objects[10]; and the Annotation Ontology[2] is a vocabulary
for annotating electronic documents with various forms of annotations. Xeros
does not intend to replace these approaches: CIDOC artifacts could be treated
as entities, and Annotation Ontology annotations could be used to extend them.

142 M.O. Jewell et al.

Existing provenance models, such as OPM[7] and PROV, offer a very generic
model of provenance. While these are powerful due to their versatility, the models
must be specialised if they are to fit the archaeology representation.

Finally, there are also existing annotation systems for other domains: The
Distributed Annotation System (DAS)[4] allows for the exchange of biological
sequence annotations, and many bioinformatic applications and websites support
the DAS communication protocol.

3 Xeros: Representation and Operations

Xeros allows for the building of interpretations, the edition of entities, and for
the non-destructive removal of states of knowledge using a reduction process.
Users can navigate through the evolution of this knowledge, using completion
operations to suggest interpretations that have not been explicitly created. The
non-destructive nature of the operations means that the processes that have led
to a state of knowledge can always be seen: hence the extension of the PROV
data model.

The data model is defined as a graph structure, consisting of a set of entities
(V) connected by edges (E). All entities have both a positional co-ordinate c̄ with
components (x, e, r) and an index i, allowing them to be uniquely identified
in the model. The positional co-ordinate places the entity in a 3 dimensional
space, with x, e, and r respectively corresponding to the eXtension, Edition,
and Reduction operations that the entity has undergone: hence the name ‘Xeros’.
The displacement vectors for the three operations are shown in Figure 1.

x̄ = (1, 0, 0)

ē = (0, 1, 0)

r̄ = (0, 0, 1)

Fig. 1. Displacement vectors for exten-
sion, edition, and reduction.

new(V, c̄n) = m : ∀p, 0 ≤ p < m,

V (c̄n, p) �= ⊥
V (c̄n,m) = ⊥

Fig. 2. new(V, c̄n). Produces a valid in-
dex i for a co-ordinate that does not con-
flict with an existing co-ordinate.

The index i is required when multiple entities occupy the same positional co-
ordinate. For example, if an entity at position ā is edited twice, the two resultant
entities will have the same position ā+ ē. As a result, the index i is incremented:
the first entity would be at (ā+ ē, 0) and the second at (ā+ ē, 1). A formalization
of this, given a set of vertices V , is provided in Figure 2.

Three Xeros-specific edges may be created by operations on the data model:
isX(ā), isE(ā), and isR(ā). These correspond to the three main operations
that can be performed on entities within the data model: extension, edition,
and reduction (ā being a displacement vector). These edges are subproperties
of wasDerivedFrom in the PROV data model. An s edge is also used, which

The Xeros Data Model: Tracking Interpretations of Archaeological Finds 143

indicates that there is some other relationship between one entity and another
(e.g. ‘hasNote’ between a find entity and a note entity). s must not be one of
the Xeros edges, and it follows that for all s, source(s) �= dest(s). The following
operations focus on the Xeros-specific edges, rather than the s relationship.

3.1 Extension

Extension, denoted by
isX−−→, suggests an addition of information to the system:

the accumulation of knowledge. Figure 3 shows the building up of knowledge via
extension: an entity (in this case, a surface) is extended with a note; this state
of knowledge is then extended with a further note; and later an alternative is
added via an extension to the original entity.

Given an initial entity (e0) and the entity by which it should be extended
(e1), the operation creates an extension entity en that represents the state of
knowledge in which e0 has relationship s with e1. An isX(x̄) edge is added from
en to e0, indicating that en is an extension of e0 with displacement vector x̄, and
the s edge is added from en to e1. The case described above would be achieved
by extending the find entity with a note; extending the resultant en with another
note; then later extending the find entity with a note.

(a) An entity is extended
with Note 1.

(b) The state
of knowledge is
extended with
Note 2.

(c) An alternate inter-
pretation is added.

Fig. 3. The evolution of a state of knowledge via extensions

3.2 Edition

Edition, denoted by
isE−−→, indicates that there has been an alteration of an

entity’s content. In an archaeological context this could be a correction to a
find’s weight, or an alteration to a note’s content. The edit operation (Figure 5)
creates an edition entity en that has an isE(ē) edge to the edited e0.

When a sequence of operations could indicate that the resultant entity is the
same as the original (such as an edit followed by a reversal of that edit), the
fact that the entity has been through two processes is preserved. A link is not
created between the two entities: partly as the more recent entity was created via

144 M.O. Jewell et al.

V (c̄0, i0) = e0

V (c̄1, i1) = e1

Type(e0) = source(s)

Type(e1) = dest(s)

c̄n = c̄0 + x̄

in = new(V, c̄n)

V ′ = V [(c̄n, in) → en]

E′ = E[[((c̄n, in), (c̄0, i0)) → isX(x̄)]]

[((c̄n, in), (c̄1, i1)) → s]

Type′ = Type[en → Type(e0)]

e0

isX(x̄)

sen
e1

Fig. 4. 〈V ′, E′, en〉 = extend(V,E, e0, e1, s, x̄). Extend e0 with e1, creating en. Dashed
edges are created as a consequence of this operation.

V (c̄0, i0) = e0
c̄n = c̄0 + ē

in = new(V, c̄n)

V ′ = V [(c̄n, in) → en]

E′ = E[[((c̄n, in), (c̄0, i0)) → isE(ē)]]

Type′ = Type[en → Type(e0)]

isE(ē)

en

e0

Fig. 5. 〈V ′, E′, en〉 = edit(V,E, e0, ē). Edit e0 to en.

a different process, and partly as detecting the match is not a simple automatic
operation.

The edit operation only takes place on a non-extension entity: the x position
in its positional co-ordinate must be zero. Edits of extension entities indicate
that the target of either its s or isX edges have been altered, and so the original
must be edited to point this edge to a new version. This results in an ‘internal
edit’: these indicate that an edge has been retargeted. For example, cross-entity
completion uses this to show that the s edge has to be retargeted; post-fact
merging and pre-fact recall use this to show that the isX edge has to be retar-
geted. Internal edits therefore occur as a side-effect of completion operations,
rather than directly via an edit operation.

3.3 Reduction

Reduction, denoted by
isR−−→, indicates the removal of a state of knowledge (see

Figure 6). Thus, if a measurement is found to be unnecessary or incorrect, the
state of knowledge indicating that it extended the find can be removed. The state
of knowledge is not deleted from the model: instead, new entities are created to
omit the reduced entity.

The Xeros Data Model: Tracking Interpretations of Archaeological Finds 145

V (c̄x, ix) = ex

V (c̄y, iy) = ey

V (c̄z, iz) = ez

V (c̄0, i0) = e0

V (c̄1, i1) = e1

E((c̄y, iy), (c̄x, ix)) = isX(δā)

E((c̄z, iz), (c̄y, iy)) = isX(δb̄)

E((c̄y, iy), (c̄0, i0)) = s

E((c̄z, iz), (c̄1, i1)) = t

c̄n = c̄z + r̄

in = new(V, c̄n)

d̄ = δā+ δb̄+ r̄

V ′ = V [(c̄n, in) → en]

E′ = E[[((c̄n, in), (c̄z, iz)) → isR(r̄)]]

[((c̄n, in), (c̄x, ix)) → isX(d̄)]

[((c̄n, in), (c̄1, i1)) → t]

Type′ = Type[en → Type(ez)]

t t

ex

ey

e1

isR(r̄)
ez

s
e0

en

isX(δb̄)

isX(δā)

isX(δā+ δb̄+ r̄)

Fig. 6. 〈V ′, E′, en〉 = reduce(V,E, ey , s, e0, ez, t, e1, ex, x̄, r̄, δā, δb̄). Removes the state
of knowledge ey and its associated entity e0 from the knowledge graph.

To achieve this, the reduction operation requires two consecutive extension
entities: the first of these (ey) is removed by reducing the second (ez). After the
operation has been performed the state of knowledge of ey is skipped, as the
reduction of ez (en) extends the root ex directly. The isX weighting is a sum of
the two original extension edges plus a reduction.

Due to the requirement of a second extension, reduction guarantees that the
state of knowledge ey is removed non-destructively. To remove ez needs a slightly
different approach, discussed as future work in Section 6.

3.4 Idempotence

While other systems make use of locking to prevent simultaneous operations on
an entity, these represent alternatives in the Xeros model. If two archaeologists
re-measure a vase, they may get two different measurements, so the two editions
should be preserved. However, there are instances where an extension or edition
may duplicate knowledge already present. Extension and edition idempotence
rules (shown in Figure 7 and 8 respectively) are used to detect these situations
and resolve them. The former holds when two extensions of an entity refer to
the same entity via the same relation: two users adding the same note to the
same find; the latter when two edits of the same entity have the same value: two
users fixing the same spelling mistake in a note.

146 M.O. Jewell et al.

V (c̄0, i0) = e0

V (c̄1, i1) = e1

V (c̄x, ix) = ex

V (c̄y , iy) = ey

E((c̄x, ix), (c̄0, i0)) = isX(x̄)

E((c̄y, iy), (c̄0, i0)) = isX(x̄)

E((c̄x, ix), (c̄1, i1)) = s

E((c̄y, iy), (c̄1, i1)) = s

s /∈ {isX, isE, isR}
c̄x = c̄y

e0

ex ey

s

e1

isX(x̄)

s

isX(x̄)

Fig. 7. Extension Idempotence: ex and ey are states of knowledge with the same entity
e1.

V (c̄0, i0) = e0

V (c̄x, ix) = ex

V (c̄y, iy) = ey

E((c̄x, ix), (c̄0, i0)) = isE(ē)

E((c̄y , iy), (c̄0, i0)) = isE(ē)

value(ex) = value(ey)
c̄x = c̄y

e0

ex ey

isE(ē)isE(ē)

=

Fig. 8. Edition Idempotence: ex and ey are edits of e0 that have the same value

4 Completion

The operations formalized above can be used as is, especially in a single-user
scenario. However, knowledge structures are not shared: if a find has a note
added and that note is then edited, the find will still refer to the old version of
the note; if a find with a note is edited, the updated entity will no longer have
its extension.

To address this, three ‘completion’ operations are defined: cross-entity com-
pletion ensures that an entity is brought up to date if an attached entity is edited;
post-fact merging ensures that prior operations are performed on a newly-edited
entity; pre-fact recall provides a way to infer states of knowledge that may not
have been explicitly stored. These operations can be applied iteratively to the
graph structure.

4.1 Cross-Entity Completion

It is possible that an edited entity may originally have been associated with
another entity via extension. If a find is extended with a note, and that note is
edited, the find should be updated so that it is extended with the new entity

The Xeros Data Model: Tracking Interpretations of Archaeological Finds 147

V (c̄a, ia) = ea

V (c̄b, ib) = eb

V (c̄d, id) = ed

V (c̄1, i1) = e1

E((c̄b, ib), (c̄a, ia)) = isE

E((c̄d, id), (c̄a, ia)) = s

E((c̄d, id), (c̄1, i1)) = isX

V ′, E′, ec = extend(V,E, e1, eb, s, x̄)

V ′′ = V ′[(c̄c, ic) → ec]

E′′ = E′[[((c̄c, ic), (c̄d, id)) → isE]]

ea

eb

ed

ec

isE(ē) isE(ē)

s

s

isX(x̄)

isX(x̄)

e1

Fig. 9. 〈V ′′, E′′, ec〉 = cross(V,E, ea, eb, ed, e1, s, x̄, ē). Given the edit of ea to eb, where
ea is referred to by extension entity ed, create ec to bring the extension up to date.

rather than the original. Semantic and syntactic edits are treated as equal in
this situation: in both cases, the associated entities must be updated to refer to
the edited entity.

Cross-entity completion (see Figure 9) performs this process: assume that
there is an entity e1 that was extended with ea via relationship s, resulting in
an extension entity ed, and that ea was then edited to eb. A completion entity
ec is created via an extension operation on e1 that refers to the edited entity eb
via the same relationship s. Finally, an internal edit is created between the new
extension entity ec and the old ed. As such it is shown that ec is the state of
knowledge in which e1 is extended with the edited entity eb.

4.2 Post-fact Merging

Post-fact merging ensures that the structures in the system are always represen-
tative of the latest operations to have occurred. A simple case is where a find has
had some notes added, and is then edited: without a post-fact merge, the edited
find would not retain the extensions performed earlier. The merge replicates the
extensions onto the edited entity, thus bringing the graph up to date.

The process is also essential for asynchronous operations: it cannot be assumed
that a user will perform an operation on the latest edition of an entity. A find
may have been edited while a user was adding a note, or conversely a note may
have been added while the user was editing the find. As such, any changes need
to be performed on the updates that have occurred between the retrieval of the
graph and the execution of an operation.

Given an entity ea that is edited to eb: if ea is then extended, it follows that
eb may also be extended with the same extension entity. Alternatively, given
an entity ea that is extended and subsequently also edited, it follows that the
edited version should also be extended with the same extension entity. Figure 10
shows the merging operation performing square completion given that an edit

148 M.O. Jewell et al.

V (c̄a, ia) = ea

V (c̄b, ib) = eb

V (c̄d, id) = ed

V (c̄1, i1) = e1

E((c̄b, ib), (c̄a, ia)) = isE

E((c̄d, id), (c̄a, ia)) = isX

E((c̄d, id), (c̄1, i1)) = s

V ′, E′, ec = extend(V,E, eb, e1, s, x̄)

V ′′ = V ′[(c̄c, ic) → ec]

E′′ = E′[[((c̄c, ic), (c̄d, id)) → isE]]

ea

eb

ed

ec

isE(ē) isE(ē)

isX(x̄)

isX(x̄)

s

s

e1

Fig. 10. 〈V ′′, E′′, ec〉 = merge(V,E, ea, eb, ed, e1, s, x̄, ē). Given the extension of ea,
where ea has previously been edited, apply the extension to the edited entity eb.

and extension have occurred on ea (in any order). ec is created as an extension
of the edit entity eb and an edit of the extension entity ed. The merge performs
an extension operation, ensuring that ec also has the correct relation s to e1.

Post-fact merging is most appropriate after edits where semantics are not
altered, as the extensions will likely still apply. In cases where the meaning of
an entity is altered, it may be prudent to either skip the post-fact merging step
(i.e. requiring the user to re-extend the find with any notes) or to allow for
the user to select any entities that should be added via the merge operation.
It may, however, be more interesting to apply all existing extensions, so any
interpretations that are no longer valid become apparent and provoke further
annotations.

4.3 Pre-fact Recall

Pre-fact recall is complementary to post-fact merging: Where post-fact merg-
ing operates on the outer edges of the graph, pre-fact recall works on the inner
structure. If a find is edited and then extended with a note, the structure sug-
gests that there could be a state where the find was extended but not edited.
This allows for the navigation of the graph through different permutations of
operations - valuable for gaining new insights. In contrast to post-fact merging,
pre-fact recall is a non-essential process and so can be determined post hoc. Pre-
fact recall and post-fact merging result in the same graph: only the antecedent
and consequent differ.

Given an entity ec that has been produced as a result of an extension of eb,
which is in turn an edit of ea, a completion entity ed is created that is an extension
of ea. An internal edit edge is also created from ec to ed, hence completing the
square. The formalization and visualisation of this is shown in Figure 11.

The Xeros Data Model: Tracking Interpretations of Archaeological Finds 149

V (c̄a, ia) = ea

V (c̄b, ib) = eb

V (c̄c, ic) = ec

V (c̄1, i1) = e1

E((c̄b, ib), (c̄a, ia)) = isE

E((c̄c, ic), (c̄b, ib)) = isX

E((c̄c, ic), (c̄1, i1)) = s

V ′, E′, ed = extend(V,E, ea, e1, s, x̄)

V ′′ = V ′[(c̄d, id) → ed]

E′′ = E′[[((c̄c, ic), (c̄d, id)) → isE]]

isE(ē)

isX(x̄)
ea

eb

ed

s

s

e1

ec

isE(ē)

isX(x̄)

Fig. 11. 〈V ′′, E′′, ed〉 = recall(V,E, ea, eb, ec, e1, s, x̄, ē). Given the extension of eb,
where eb is an edit of ea, the extension can also be applied to ea.

Naturally, extensions might only be applicable to the edited entity. Pre-fact
recall does not guarantee that recalled entities are semantically valid, so it is
suggested that they only be brought into the persisted state of the system if
approved by a user.

5 Scalability

Completion operations can have a significant impact on graph size and, as inter-
pretations build, an edit may result in many vertices and edges being created.
Figure 12 shows a worked example: A find ea is edited and extended with a note
ec, then the find is edited again. Finally, the note is edited. With core operations,
6 vertices and 5 edges are needed. With post-fact merging and cross-entity com-
pletion this grows to 9 vertices and 14 edges. Adding pre-fact recall, 11 vertices
and 20 edges are used. This requires three cross-entity completion operations,
due to the entity en created in the recall operation: optimised completion uses
only two.

The number of references to an entity is significant: for every reference, 3
edges and an entity are created during cross-entity completion. If pre-fact recall
is dynamically performed, there are fewer references and the overhead is thus
reduced. Similarly, given an extension propagated over a chain of edits via pre-
fact recall or post-fact merging, 2n edges and n vertices are created, where n
is the number of entities preceding (for pre-fact) or following (for post-fact).
If the system only operates on the most recent changes, post-fact has minimal
overhead. The most costly post-fact merging operation would occur due to an
extension at the oldest point in an edit chain.

Xeros therefore provides a flexible approach to building a scalable system: ea-
ger post-fact merging and cross-entity completion minimise storage while ensur-
ing asynchronous operations are handled, and dynamic pre-fact recall provides
for the navigation of potential entities in the system.

150 M.O. Jewell et al.

V1, E1, eb = edit(V0, E0, ea, ē) �

V2, E2, ed = extend(V1, E1, eb, ec, hasNote, x̄) �

V3, E3, en = recall(V2, E2, ea, eb, ed, ec, s, x̄, ē)

V4, E4, ee = edit(V3, E3, eb, ē) �

V5, E5, eo = merge(V4, E4, eb, ee, ed, ec, s, x̄, ē) �

V6, E6, ef = edit(V5, E5, ec, ē) �

V7, E7, eg = cross(V6, E6, ec, ef , ed, eb, s, x̄, ē) �

V8, E8, eh = cross(V6, E6, ec, ef , en, ea, s, x̄, ē)

V9, E9, ei = cross(V6, E6, ec, ef , eo, ee, s, x̄, ē) �

Fig. 12. Operations during a set of edits and extensions. Lines with � are performed
when no completion is used; lines with � are added when post-fact and cross-entity
completion are used; all lines are performed when every completion operation is used.
The diagram shows only the actions on ea for simplicity.

6 Conclusions

This paper has introduced the Xeros Data Model, its operations, and character-
istics. It has been shown that the structure of the model allows for a variety of
efficient storage approaches, and that it is robust against asynchronous opera-
tions.

Future work on Xeros will provide formalisations for the creation of groups
to allow the aggregation of entities, and of the universe: an entity that refers to
the leaves of the graph at a single point in time. Editions of the universe allow
for these ‘snapshots’ to be navigated, and users can roll back to any edition of
the universe. This approach also caters for the deletion of entities that cannot
be removed via reduction: by removing a leaf reference from the universe, the
entity can be omitted from visualisations but still exist in the graph.

An HCI study is also being performed, by way of the PoN web application.
This is underpinned by the Xeros data model, and the system allows archaeolo-
gists to capture their finds and notes in an intuitive manner. Work on PoN will
be further informed by the Xeros model, and requirements in the system will
feed back into the model’s development.

Acknowledgements. This research is funded in part by the EPSRC and AHRC
PATINA project through the RCUK Digital Economy programme
(EP/H042806/1).

References

[1] Buneman, P., Cheney, J., Lindley, S., Müller, H.: DBWiki: a structured wiki for
curated data and collaborative data management. In: SIGMOD Conference 2011,
pp. 1335–1338 (2011)

The Xeros Data Model: Tracking Interpretations of Archaeological Finds 151

[2] Castro, L.J.G., Giraldo, O.X., Castro, A.G.: Using the Annotation Ontology in
semantic digital libraries. In: 9th International Semantic Web Conference, ISWC
2010 (November 2010)

[3] Doerr, M., Ore, C.-E., Stead, S.: The CIDOC conceptual reference model: a new
standard for knowledge sharing. In: Tutorials, Posters, Panels and Industrial Con-
tributions at the 26th International Conference on Conceptual Modeling, ER 2007,
vol. 83, pp. 51–56. Australian Computer Society, Inc., Darlinghurst (2007)

[4] Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., Stein, L.: The distributed an-
notation system. BMC Bioinformatics 2, 7 (2001)

[5] Eve, S., Hunt, G.: ARK: A development framework for archaeological recording.
In: Layers of Perception. Proceedings of the 35th International Conference on
Computer Applications and Quantitative Methods in Archaeology, CAA, pp. 1–5
(April 2007)

[6] Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic
wikipedia. Journal of Web Semantics 5, 251–261 (2007)

[7] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van
den Bussche, J.: The Open Provenance Model core specification (v1.1). Future
Generation Computer Systems (July 2010)

[8] Moreau, L., Missier, P. (eds.) Belhajjame, K., Cresswell, S., Golden, R., Groth, P.,
Klyne, G., McCusker, J., Miles, S., Myers, J., Sahoo, S.: The PROV Data Model
and Abstract Syntax Notation. W3c first public working draft, World Wide Web
Consortium (October 2011)

[9] Rains, M.: Towards a computerised desktop: the integrated archaeological
database system. In: Computer Applications and Quantitative Methods in Ar-
chaeology, pp. 207–210 (March 1994)

[10] Theodoridou, M., Tzitzikas, Y., Doerr, M., Marketakis, Y., Melessanakis, V.: Mod-
eling and querying provenance by extending CIDOC CRM. Distributed and Par-
allel Databases 27, 169–210 (2010), doi:10.1007/s10619-009-7059-2

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 152–167, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Domain-Specific Data to Enhance Scientific
Workflow Steering Queries

João Carlos de A.R. Gonçalves1, Daniel de Oliveira1, Kary A.C.S. Ocaña1,
Eduardo Ogasawara1,2, and Marta Mattoso1

1 COPPE, Federal University of Rio de Janeiro, Brazil
2 CEFET/RJ, Brazil

{jcg,danielc,kary,ogasawara,marta}@cos.ufrj.br

Abstract. In scientific workflows, provenance data helps scientists in
understanding, evaluating and reproducing their results. Provenance data
generated at runtime can also support workflow steering mechanisms. Steering
facilities for workflows is considered a challenge due to its dynamic demands
during execution. To steer, for example, scientists should be able to suspend (or
stop) a workflow execution when the approximate solution meets (or deviates)
preset criteria. These criteria are commonly evaluated based on provenance data
(execution data) and domain-specific data. We claim that the final decision on
whether to interfere on the workflow execution may only become feasible when
workflows can be steered by scientists using provenance data enriched with
domain-specific data. In this paper we propose an approach based on
specialized software components, named Data Extractor (DE), to acquire
domain-specific data from data files produced during a scientific workflow
execution. DE gathers domain-specific data from produced data files and
associates it to existing provenance data on the provenance repository. We have
evaluated the proposed approach using a real bioinformatics workflow for
comparative genomics executed in SciCumulus cloud workflow parallel engine.

1 Introduction

Scientific workflows are used as an abstraction that models and allows for the
management of scientific experiments [1]. Many of these workflows are composed by
activities that invoke computing and data intensive programs. A workflow may
execute for weeks or months, requiring parallel processing in High Performance
Computing (HPC) environments. In order to be evaluated and reproduced by third-
party scientists or teams, provenance data [2] related to all executions of these
workflows has to be captured and organized for further analysis. Capturing
provenance in HPC and distributed environments, such as clouds [3], is a very
important but also a complicated task.

Provenance, or lineage, of a workflow is related to all metadata associated to the
data products generated by a specific workflow execution. Simmhan et al. [4] define
provenance as the “(…) information that helps determine the derivation history of a
data product, starting from its original sources. We use the term data product or

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 153

dataset to refer to data in any form, such as files, tables, and virtual collections (…)”.
Intuitively, provenance data is mainly used for a post analysis of the experiment. This
way, many approaches focus on providing techniques for long-term provenance
management [5–7]. Specialized models and technologies are being proposed to
guarantee the long-term understandability of the preserved data of a workflow.
Semantic Web techniques, such as ontologies and annotations [4,7,8], are used for
adding semantics to data products and to allow the construction of complex queries.

Long-term provenance data is fundamental for enabling reproducibility and
different kinds of post analysis [9–11], but these solutions do not allow for
provenance analysis during the course of a workflow execution. Even though the
workflow execution log could be browsed, this is far from provenance data query.
Our previous works in supporting workflow scientists from bioinformatics [12] and
numerical methods [13] have led us to develop services to query provenance data
during the execution [14]. We define this type of provenance as runtime provenance
data. It means that all derivation history of a data product and the status of all
activities (start time, end time, errors) are available for querying as soon as an activity
executes and data products are generated.

This runtime data analysis is the basis for workflow steering [15]. Our preliminary
experiments in [11] have shown the potential of user steering features in workflows
for tracking, evaluating and adapting the execution of a workflow. Workflow steering
remains an open issue that could support iterative methods, i.e. scientists analyze the
status of the execution and interfere by stopping or changing the space of parameters
to be explored [11]. This steering mechanism allows for optimizing workflow
execution and has gained importance in the last years since HPC environments, such
as clouds, are paid according to the time used. In fact, this is highlighted by Gil et al.
[15] as “a fundamental technology to fully support e-Science”.

Provenance generated during the execution course of a workflow is a rich resource
to support workflow steering. However, runtime provenance data is not sufficient to
support steering mechanisms in workflows. In many cases, the execution has to be
suspended or stopped when the approximate solution meets a preset user criterion.
The final and complex decision on whether to interfere on the workflow or to reduce
the space of parameters to explore, increase or even stop the execution has to be taken
by scientists using domain-specific data. This kind of data, associated to the workflow
provenance data, provides insight for scientists to perform steering actions. These
runtime decisions can be taken based on querying provenance enriched with domain-
specific data. Although there are some initiatives to propose workflow steering using
runtime provenance [16], none of them allows for performing queries using domain-
specific data. In this scenario, the goal is how to provide support for developing
steering capabilities in parallel scientific workflows using runtime provenance
enriched with domain-specific data.

In this paper, we address the problem of querying provenance data enriched with
domain-specific data to provide for steering mechanisms. We contribute with a
software solution for scientists to extract domain-specific data from input and
produced data files (registered in the provenance repository) and use this data to
complement runtime queries on provenance data. This provenance enriched

154 J.C. de A.R. Gonçalves et al.

representation is possible due to Data Extractors (DE), which are software
components that are deployed in SciCumulus, a cloud workflow engine [17].
Although we used SciCumulus as workflow engine in this paper, the proposed
approach can be coupled to other Scientific Workflow Management Systems
(SWfMS) especially when it is not possible to modify the underlying workflow
engine in order to produce the required, richer provenance metadata for the problem
at hand. DE is based on a workflow algebra that uniformly represents workflow data
and it allows for extracting domain-specific data and storing it in the provenance
repository, i.e. a database system, along with information about workflow structure
and execution. As a result, DE is independent of application structures, i.e. scientists
can couple a series of DE to the workflow specification according to their needs.

This paper is organized as follows. In Section 2, we present a motivation workflow
for steering while in Section 3, we describe SciCumulus cloud engine and the
workflow algebraic approach that provides for the uniform underlying data
representation. In Section 4, we detail the proposed approach for enriching
provenance with domain-specific data and, in Section 5, we present experimental
results. In Section 6, we discuss related work. Next, Section 7 presents final remarks.

2 Motivation: Steering for Comparative Genomics Experiments

This section illustrates a computing-intensive parallel workflow scenario in the
comparative genomics bioinformatics domain. We use this example consistently in
the rest of the paper. Comparative genomics is one of many bioinformatics fields that
aim at computationally comparing hundreds of different genomes [18]. Many types of
bioinformatics applications associated to this field, such as multiple sequence
alignment (MSA), homologues detection and phylogenetic analysis are increasing in
scale and complexity [19]. Managing genomic experiments is far from trivial, since
they are computationally intensive and process large amounts of data. One of the
main possible usages of comparative genomics workflows is to use profiles hidden
Markov models (pHMMs) for improving phylogenetic analyses. One example of this
comparative genomics workflow is SciHmm [12]. SciHmm is a parallel workflow
based on a cross-validation procedure [12] to decide which MSA method and
algorithm offer the best quality in the alignments for a phylogenetic analysis
workflow. SciHmm is composed by five main activities: (i) MSA construction, (ii)
pHMM build, (iii) pHMM search against a target database, (iv) cross-validation
analysis and, (v) generation of Receiver-Operating Characteristic (ROC) curves. A
ROC curve is a graphical plot that illustrates the performance of a specific classifier
as its threshold is varied. Each ROC curve is generated by plotting the fraction of true
positives out of the positives versus the fraction of false positives out of the negatives,
at various threshold settings.

However, since SciHmm may execute for several hours or even days, scientists
may need to analyze if a specific execution is producing the expected results before
the workflow finishes. If part of the results is perceived to be under the expectations
(e.g. sequences that belong to different genes are included in the same input

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 155

multi-fasta), scientists may interfere on the execution (e.g. re-executing choosing
specific genes to be processed). These actions certainly spare financial resources and
scientists’ time. One real steering scenario is when scientists are not aware of the
entire content of a produced data file; i.e. an aligned multi-fasta file can be formed by
a huge volume of biological sequences or, in the worst scenario, sequences belonging
to other genes classes. This may lead to incoherent results in ROC curves analysis.
Fig. 1 presents a data compilation of a real scenario where the Sensitivity-Specificity
(i.e. quality analysis parameters of ROC curves) pair value is under the threshold in a
ROC curve and scientists may use this information to interfere (calibrate) in the
execution. Fig. 1 presents an excerpt of a data file produced by hmmsearch
comparison using the pHMM (belongs to the gene 6-phosphogluconate
dehydrogenase) against protozoan genomes from the RefSeq database. In Fig. 1
underlined lines represent sequences that belong to genes different from 6-
phosphogluconate dehydrogenase, which have to be neglected in this case.

Query: i-201103012E4SG6XC1V [M=483]

E-value score Sequence Description

------- ----- -------- -----------

3e-251 838.3 167518822 hypothetical protein [Monosiga brevicollis]

3.5e-206 689.6 66816225 6-phosphogluconate dehydrogenase [Dictyostelium discoideum]

1.5e-153 516.1 290997790 6-phosphogluconate dehydrogenase [Naegleria gruberi]

2.5e-141 475.8 194476751 6-phosphogluconate dehydrogenase [Paulinella chromatophora]

2.6e-141 475.7 224000295 6-phosphogluconate dehydrogenase [Thalassiosira pseudonana]

5.9e-140 471.3 219121442 G6PDH/6PGDH fusion protein [Phaeodactylum tricornutum]

8.3e-139 467.5 221059365 6-phosphogluconate dehydrogenase [Plasmodium knowlesi]

2.2e-133 449.6 124809822 6-phosphogluconate dehydrogenase, put. [Plasmodium falciparum]

1.4e-132 446.9 68076479 6-phosphogluconate dehydrogenase [Plasmodium berghei]

4.2e-67 231.0 84999608 6-phosphogluconate dehydrogenase [Theileria annulata]

1.8e-47 166.3 71032157 6-phosphogluconate dehydrogenase G6PDH [Theileria parva]

1.2e-42 150.4 223997774 predicted protein [Thalassiosira pseudonana]

3.5e-41 145.5 70917327 hypothetical protein [Plasmodium chabaudi]

8.4e-37 131.1 71661909 6-phosphogluconate dehydrogenase [Trypanosoma cruzi]

Fig. 1. An excerpt of the output information of SciHmm

In addition, to get the results presented in Fig. 1, scientists have to discover which
workflow activities have already finished without errors associated with ROC curves
results. For each ROC curve, it is necessary to discover which sequences (hmmsearch
hits in each multi-fasta file) produced these low quality curves and extract domain-
specific data, such as, gene information based on enzyme classification or also
species. In the example of Fig. 1, scientists defined that the analysis is based on 6-
phosphogluconate dehydrogenase; then, all sequences that do not fulfill this premise
have to be excluded (lines underlined). Also, in this particular case, scientists may
need to re-execute SciHmm by splitting the input data file in four parts (i.e. one for
each human pathogens genus (or taxonomic group): Plasmodium, Trichomonas,
Giardia, Toxoplasma, and Trypanosomatids. However, this steering mechanism is

156 J.C. de A.R. Gonçalves et al.

only possible if scientists can query runtime provenance data related to domain-
specific data. In this example, species and genus information are not part of the
provenance data. Following Simmhan et al. definition, provenance is related to data
products lineage and domain-specific data is the content of those data products.

3 SciCumulus Engine and Algebraic Workflow Representation

Since the proposed approach has to be implemented in a system that manages the
parallel execution of workflows while generating runtime provenance data, we have
chosen to use, in the case study, SciCumulus [17]. SciCumulus is an engine that is
designed to distribute scientific workflow activities (or even entire scientific
workflows) dispatched from an SWfMS, such as, VisTrails [21], Taverna [22], into a
cloud environment, e.g. Amazon EC2 [23] to be executed in parallel. SciCumulus
creates and manages several parallel tasks associated to each activity and orchestrates
the execution of these tasks on a distributed set of virtual machines (VMs), thus
forming a virtual cluster. SciCumulus promotes the usage of control components
distributed over several tiers: client tier, distribution tier, execution tier, and data tier.

The client tier is responsible for starting parallel execution of workflow activities
in the cloud. The components of the client tier are deployed in an existing SWfMS.
The distribution tier manages the adaptive execution of parallel activities in cloud
environments by creating and managing parallel activity executions (named tasks)
that contain the program to be executed, its parallel strategy, parameters values and
input data to be consumed. SciCumulus addresses cloud elasticity by providing for
adaptive VM addition and removal [17]. The execution tier is responsible for
invoking executable codes in many VMs in the virtual cluster and to collect
provenance at runtime. As a task execution finishes, it immediately records all
provenance data in the repository. Finally, the data tier contains all repositories of
data used by SciCumulus, including the provenance repository, which is fundamental
for the approach proposed in this paper. It encompasses the provenance repository
that contains fundamental provenance data collected during the course of the
workflow. The data model of this repository is further explained following in this
paper (Section 3). SciCumulus generates runtime provenance data, this way; it is a
serious candidate to provide steering mechanisms.

SciCumulus represents workflows using an algebraic representation proposed by
Ogasawara et al. [24]. This algebra defines its operands as a uniform data
representation consistently used throughout the workflow execution, where all data
(consumed and produced by each activity) is represented as relations (similar to a
database). As in relational algebra, relations are defined as sets of tuples of primitive
types (i.e. integer, float, string, date) and complex types (e.g. a pointer to a data file).
The parameter values for the activities are represented as values (attributes) in a tuple,
whereas the set of tuples composes the relation to be consumed by an activity. This
relation-based representation is a uniform way of introducing new attributes
(representing information extracted from produced data files) to represent domain-
specific data. By using this algebraic representation, SciCumulus can execute
workflows in different domains. In addition, this algebraic representation is
fundamental for the proposed approach since it allows for extract information and
easily add it to the workflow representation.

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 157

4 Enriching Provenance with Domain-Specific Data

Following the definition of Simmhan et al., all provenance data is related to lineage
metadata about a specific data file. In fact, each data file is considered as a “black-box”
by the traditional provenance definition. Commonly represented provenance data is
related to execution time of each activity, input and output files (in the case of
retrospective provenance [2]), and details about software involved in the execution (in the
case of prospective provenance). Although very useful, this provenance data is not
sufficient to provide steering capabilities for scientists. In order to facilitate scientists’
work, we present in this section an approach to extract domain-specific data from
generated data files and use it to enrich provenance data allowing for queries with more
expressivity. First we present Data Extractors (DE) and the adaptations in SciCumulus to
incorporate them in the architecture. Then, we present the data model to represent both
provenance and domain-specific data for an execution of SciHmm workflow.

SciCumulus Data Extractor
For the domain-specific data acquisition, we designed, developed and incorporated
DE into SciCumulus engine. A DE can be implemented as an artificial workflow
activity, which invokes an external program (defined) by scientists that analyzes
produced data files and extracts domain-specific data from it. These programs
encapsulate the domain-specific extraction rules to crawl domain-specific data from
generated files, being a fundamental component of the proposed approach. An
example of a rule implemented by a program is to verify the format types accepted as
input for an activity. In this case, the workflow engine (SciCumulus) generates the
OPM isProducedBy link (querying its provenance repository) between the activity
and data file and the domain contents as depicted in Fig. 2.

MSA

MSA

MdPh Tree

Fasta

Phylip Phylip Phylip

SC

used used used

used

wasGeneratedBy

wasGeneratedBy

wasGeneratedBy wasGeneratedBy

wasDerivedFromwasDerivedFrom wasDerivedFrom

wasComplementOfwasComplementOf wasComplementOf

Fig. 2. An OPM graph generated based on SciCumulus’ provenance repository

This way, SciCumulus allows for a DE to follow the provenance chain and relate
the domain outputs to domain information in the input files. Based on the
identification of domain-specific data files, DE can invoke third-party Web services
to gather domain-specific data from these files. In the case of bioinformatics
workflows, information extracted from data files can be enhanced by querying one of

158 J.C. de A.R. Gonçalves et al.

the several available NCBI databases and services. A DE is placed after each activity
execution in SciCumulus and the program to be invoked is defined at the workflow
specification file (in XML file similar to the one presented on Fig. 3) created by
scientists. Once an activity is executed (and a data file is produced) the DE is invoked
to extract associated domain-specific data. All data is stored using a unified
provenance schema that comprises provenance data (related to activity execution)
associated to domain-specific data. This way, each activity execution in SciCumulus
presents three phases: (a) a data production phase, (b) data extraction phase and, (c)
provenance repository update as depicted in Fig. 3.

Phase (a) invokes a specific program that is part of the workflow. In the case of
SciHmm, HMMER and MAFFT are examples of these programs. Each invocation
consumes an input tuple Tp1 and produces an output tuple Tp2 that indicates the
produced files (using a file pointer in the output tuple). The (b) phase invokes DE and
consumes Tp2 to discover the data files to be processed. It produces a new tuple Tp3,
which now contains a pointer to data files and additional attributes to represent
extracted domain-specific data. The (c) and last phase is also performed by DE and it
is focused on registering domain-specific data (Tp3) in the provenance repository (in
specific schema classes that are explained following in this section).

The DE framework is implemented in Java version 6.31 and can invoke source
codes of different languages. This is possible since the interface, in this case, is a
relation-based file that contains all tuples that were processed or generated. This way,
scientists may invoke programs in Python or Perl, without needing to modify the
workflow engine. This approach follows the Strategy design pattern [25] where
different extraction algorithms can be coupled to SciCumulus as independent
cartridges. These cartridges can be dynamically changed without interference on the
engine code. In this sense, the DE is a workflow-oriented approach for data
manipulation during scientific workflow execution. Other domains can be modeled as
new classes into SciCumulus provenance schema. This schema change is restricted to
the database which is outside SciCumulus engine.

k file e-value score fasta_ID fasta_description taxonomy is_valid

1 gene13.hmmout 3e-251 838.3 16751882
2

6-phosphogluconate
dehydrogenase

Monosiga
brevicollis

True

k file

1 gene13.hmmin

<SciCumulus>
 <database name="scicumulus" server="mp4-5b.dyndns.info" port="5432"/>
 <SciCumulusWorkflow tag="SciEvol" description="MER" exectag="scievol" expdir="/scievol/">
 <SciCumulusActivity tag="MSA" activation="./experiment.cmd" extractor="./extract_msa.cmd" >
 <Relation reltype="Input" name="rel_in_1" filename="input_step_1.txt"/>
 <Relation reltype="Output" name="rel_out_1" filename="output_step_1.txt"/>
 <File filename="experiment.cmd" instrumented="true"/>
 </SciCumulusActivity>
 </SciCumulusWorkflow>
</SciCumulus>

 k file

1 gene13.hmmout

./experiment.cmd ./extract_msa.cmd
Tp1 Tp2

./extract_msa.cmd

Provenance Repository

Tp3

a b

c

Fig. 3. Three phase activity execution

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 159

Coupling Domain-Specific Data to SciCumulus Provenance Model
Since we use a comparative genomics bioinformatics case study (SciHmm workflow),
in which scientists are conducting an experiment to identify protein sequence by
similarity, we have to couple domain-specific classes to the SciCumulus provenance
model in order to store extracted domain-specific data. These classes have to be
modeled and coupled to the provenance model by a computer science expert. This is
our research focus, but, currently, this part of the approach still has to be done
manually. In the case study presented in this paper, several new classes were added to
SciCumulus provenance model. Sequence is one example of these classes. Sequences
in bioinformatics contain biological information about genes, enzymes or other
biological data of interest [12]. This way, sequences, genes, enzymes and organisms
(including organism’s taxonomy, i.e. genus, species, phylum, kingdom, class, family)
are fundamental information to be used when a scientist is evaluating a result using
steering mechanisms, as they represent domain specific terminology. Sequences are
used in genomic comparative analyses to identify homologues sequences of a
determined gene that are going to be used in other bioinformatics domains such as
phylogeny, evolution, o molecular modeling. This way, during the life cycle of
SciHmm we have to associate all these domain-specific data to existing provenance
data. Fig. 4 presents the extended provenance repository using a UML class diagram.
Original SciCumulus provenance classes are represented in white and domain-specific
classes are represented in white inside the dashed line.

In Fig. 4 all information of the original SciCumulus provenance model is captured
by the components in the execution tier of SciCumulus that captures the information
related to the cloud environment. Domain-specific data is captured by DE. This
provenance model is composed by four main parts: (i) elements that represent the
processes executed in the cloud; (ii) elements that represent the artifacts consumed
and produced by a workflow execution, (iii) elements that represent information about
the cloud environment and, (iv) elements that represent domain-specific data.

The elements VirtualMachine, CloudProvider, VirtualMachineType, Account,
SecurityPolice, OperationSystem, Image, InstalledSoftware, and SoftwareOS
represent all data related to the cloud environment. Some other classes represent the
structure of the workflow (Workflow) and its activities (Activity). Each activity is
decomposed in several parallel tasks (Task) which consumes parameter values
(Relation, Field and Value) and data files (DataFile). Since this provenance schema is
based on the OPM recommendation [26], the classes Activity and Task are mapped as
Processes. The class DataFile, Relation and Value are mapped as Artifacts. And class
Account is mapped to an OPM Agent. It is important to highlight that all provenance
data in SciCumulus is generated at runtime, i.e. during workflow execution.

The remaining classes (inside the dashed line in Fig. 4) represent domain-specific
data that was extracted using DE and stored associated to provenance data. Sequence
represents the smallest grain in a comparative genomic workflow. Each sequence is
associated to a specific organism, which is classified using Linnaean taxonomy in

160 J.C. de A.R. Gonçalves et al.

Domain, Kingdom, Phylum, Class, Order, Family, Genus and Specie. All this
domain-specific data is obtained using NCBI Web services using sequence
information extracted from files (Sequence ID). A Sequence_Group represents a set
of sequences of one gene class present in divergent species. Each Sequence_Group is
used as input for SciHmm workflow. Once aligned, each Sequence_Group produces
an MSA which is converted to a phylip format thus producing MSA_Converted.

Hits represent a specific MSA_Converted match with a target database. MSA,
MSA_Converted and Hits may be mapped to OPM Artifact. By coupling this domain-
specific data to SciCumulus provenance data, scientists can perform steering queries
using specific terms of the domain. For example, using the proposed data model,
scientists are able to discover which organisms or species are considered in a specific
ROC curve. If the partial runtime results of the ROC curve are not appropriated, there
is no point to continue the execution, especially in paid public clouds. This type of
query is important since each ROC curve generation need several hours of processing.
If we can reduce total execution time we can spare financial resources in public
clouds. Another trial may split a specific sequence group in different new instances of
the Sequence_Group element and perform the workflow analysis separately. In
addition, scientists are still able to post validate the execution using domain
terminology. All of these features are not possible if domain-specific data is not
available. In this case, all queries should be performed based on the name of data
files. In the next section, we present steering queries using this data model and an
overhead analysis when using DE in a parallel execution.

5 Experimental Results

In this section we present an evaluation of the proposed approach by measuring
performance overheads imposed by the execution of DE and present queries for
steering mechanisms in scientific workflows using runtime provenance data enriched
with domain-specific data. We executed SciHmm workflow in parallel in Amazon
EC2 environment using SciCumulus cloud workflow engine.

Environment and Experiment Setup
There are several types of VMs provided by Amazon EC2, such as micro, large,
extra-large, high CPU extra-large, and Quadruple Extra Large. In the experiment
presented in this paper we have considered just Amazon’s micro types (EC2 ID:
t1.micro – 613 MB RAM, 30 GB of EBS storage only, 1 core). Each instantiated VM
uses Linux Cent OS 5 (64-bit), and it was configured with the necessary software,
libraries like MPJ [27], and the bioinformatics applications. All instances are based on
the same image (AMI ID ami-7d865614) and it was used to execute SciCumulus.
According to Amazon, all VMs were instantiated in the US East - N. Virginia location
and follow the pricing rules of that locality.

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 161

Fig. 4. SciCumulus provenance model enriched with domain-specific data

162 J.C. de A.R. Gonçalves et al.

To execute SciHmm in parallel, our simulations use as input a dataset of multi-
fasta files of protein sequences extracted from RefSeq release 48 [28]. This dataset is
formed by 200 multi-fasta files and each multi-fasta file is constituted by an average
of 10 biological sequences. All provenance data is persisted using PostgreSQL
relational database version 8.4.6 that was configured in a dedicated Amazon EC2
virtual machine.

DE Performance Analysis
In this performance evaluation, we first measured the performance of bioinformatics
programs on a single VM to analyze the local optimization before scaling up the
number of VMs of the virtual cluster. Some of the existing bioinformatics programs
are able to benefit from parallelism in multi-core machines. We measured the
scalability using up to 128 micro-size VMs. Two separate executions of SciHmm
were performed: (i) it runs SciHmm without inserting DE in the workflow (i.e.
traditional). This way, no domain specific information is extracted; and (ii) it uses
SciHmm with DE, which analyzes the produced set of data and extracts domain-
specific information (i.e. using DE). The execution times (in hours) are in Fig. 5.

By analyzing the results we can state that the use of DE in SciHmm introduced a
small overhead in each one of the executions (varying the number of VMs in the
virtual cluster). In average, each DE invocation lasted for 10 seconds. The minimum
overhead was of 4.1% (using 4 cores) between the traditional (without DE) and
improved version (using DE). The maximum overhead imposed by the insertion of
DE was of 7.3% (using 8 cores). Although the execution time increased in all cases
(when using DE), as expected, scientists may choose not to use DE, in case of a well-
known dataset, or keep DE and benefit from additional information to support their
provenance steering queries and avoid useless executions.

Candidate Queries for Workflow Steering in SciHmm
In this subsection, we present a set of queries that are based on provenance and
domain-specific data of a comparative genomic experiment and that are candidate
queries to be used in steering mechanisms since all this information is generated at
runtime in SciCumulus. The first query (Q1) is used for determining which sequences
in available hits do not belong to a specific gene of interest (informed as parameter by
scientists). Q1 allows for analyzing produced hits to remove noisy data during
workflow execution. If some sequence does not belong to the informed gene, it can be
removed from the space of data to be processed in a new re-execution. This way, in
our relational provenance database, Q1 is modeled as the following SQL statement:

SELECT S.NCBI_Ref_Sequence

FROM Task T, Hits H, MSA_CONVERTED M2, MSA M1, SEQUENCE_GROUP SG,

SEQUENCE S, ORGANISM O, SPECIE SP, GENUS G

WHERE T.taskid = H.taskid AND H.msacid = M2.msacid AND M2.msaid =

M1.msaid and M1.sgid = SG.sgid AND SG.sqid = S.sqid AND S.orgid =

O.orgid AND O.spid = SP.spid and SP.genid = G.genid AND T.exitStatus = 0

/* No error */ AND G.genus = “PLASMODIUM”

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 163

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(h
ou

rs
)

Number of virtualized cores

Using DE Traditional

Fig. 5. Performance analysis of DE overhead in SciCumulus

The second query (Q2) is used to determine how many sequences from input data
are annotated as putative, hypothetical, similar, and more other similar annotations
that denote that sequences are not annotated as “true genes”. This value is going to
indicate the quality of the ROC curves produced at the end of SciHmm. Query Q2 can
be performed after the first alignment activity, i.e. when the MSA is produced.
However, these sequences annotated as similar, probably can be included in other
studies to determine relationships between the “true annotated genes”. Scientists are
able to filter undesired data to avoid unnecessary processing by Q2. It is important to
highlight that in both Q1 and Q2 we have to consider only tasks that have not
presented execution errors (based on provenance data). This way, Q2, in our relational
provenance database, is modeled as the following SQL statement:

SELECT COUNT(*)

FROM Task T, Hits H, MSA_CONVERTED M2, MSA M1, SEQUENCE_GROUP SG,

SEQUENCE S

WHERE T.taskid = H.taskid AND H.msacid = M2.msacid AND M2.msaid =

M1.msaid and M1.sgid = SG.sgid AND SG.sqid = S.sqid AND T.status =

“FINISHED” AND T.exitStatus = 0 /* No error */ AND (S.NCBI_Ref_Sequence

LIKE “%PUTATIVE%” OR S.NCBI_Ref_Sequence LIKE “%HYPOTHETICAL%” OR

S.NCBI_Ref_Sequence LIKE “%SIMILAR%”)

6 Related Work

There are several provenance management frameworks proposed in the literature. To
the best of authors’ knowledge, none of them offers support for steering queries based
on runtime provenance enriched with domain-specific data. Runtime queries are
particularly required in big scientific data, being processed in parallel, in HPC

164 J.C. de A.R. Gonçalves et al.

environments. The existing approaches can be grouped in two categories: the first one
deals with provenance data representation enriched with domain specific data and the
second one provides complex and useful provenance queries for scientists.

In the first category, the most similar approach to the one proposed in this paper is
Karma [29], a framework for collecting provenance from heterogeneous workflow
environments. It is based on Web services and there are previous work using Karma
for extracting domain-specific data. Another approach is Provenir [7], which is an
upper-level ontology designed as a model for representing provenance, based on the
ontology´s capability of performing inference for provenance queries. There is also
Janus [30], an extension of the Provenir ontology for modeling domain-specific
provenance data. It is used in Taverna [22], focusing on the semantics of a specific
domain on a provenance graph.

In the second category, Anand et al. [31] propose the effective use of provenance
information represented as fine-grained relationships over nested collections of data.
Due to that, the authors present a provenance model that supports multiple
invocations of the same process. This model allows for multiple processes operating
on the same nested data collection. This feature can be useful in domain-specific
query and thus can be considered as a first step to acquire domain specific
information and associate it to produced provenance data. Gadelha et al. [32]
introduce a set of query patterns that can be identified in provenance queries of
Swift's parallel scripting system [33]. Their provenance management system is
focused on large-scale many-task scientific computations. They developed a data
model following the OPM specification, with extensions that enrich core structural
provenance data, represented as consumption and production relationships between
applications and data sets. Domain-specific data is modeled through free text user
annotation. They contribute by proposing a query interface to leverage SQL syntax.

Although all of these approaches represent a step forward and many of them can be
seen as complementary to our work, none of them provide for provenance data query
at runtime. Thus, they can be helpful in planning the next workflow execution, but
they cannot be used to provide steering mechanisms based on runtime structured
queries. The approach proposed in this paper focus on a different perspective,
extracting runtime domain-specific data from data files and representing them related
to workflow provenance data.

7 Conclusions

Scientific workflows are used to represent the steps of a scientific experiment.
SWfMS manage workflow's programs and data for validating or refuting a scientific
hypothesis. Provenance data is fundamental to allow for validation and reproducibility
of workflows. Although provenance data is mainly used for a post validation and
analysis of the experiment, there are other possible usages such as workflow
execution steering.

In order to provide workflow steering capabilities, it is necessary that provenance
be made available during workflow execution. By steering, scientists may interfere in

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 165

the execution course interrupting or adjusting parameters based on a runtime analysis.
In previous work, we started to provide for provenance data query at runtime [17].
However, scientists cannot decide how to interfere on the execution using provenance
data (activity start time, errors, data files produced) disconnected from domain-
specific data. In many cases, to suspend or stop an execution, scientists have to
analyze if the current solution meets a preset criterion, which is usually based on
domain-specific data. This type of data is not available for runtime querying in related
work.

This paper proposes an approach for extracting domain-specific data from
produced data files and storing them along with provenance data. This allows for
scientists to create queries that can be used as a basis for steering mechanisms, thus
allowing for verifications based on provenance and domain-specific data at runtime.
One of the advantages of our solution is modeling domain-specific data in the same
formalism of the workflow algebra [17] underneath the execution engine. This
algebra allows for a formal control of the execution, providing for the consistent
sequence of the workflow execution, after the scientist's interference. The proposed
approach is promising, since it presents small runtime overhead and allows for
building complex steering mechanisms based on enriched provenance data with
domain-specific data.

Acknowledgments. This work was partially sponsored by CNPq, FAPERJ and
CAPES.

References

[1] Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific
Workflows for Grids, 1st edn. Springer (2007)

[2] Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A
Survey. Computing in Science and Engineering 10(3), 11–21 (2008)

[3] Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2009)

[4] Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM
SIGMOD Record 34(3), 31–36 (2005)

[5] Factor, M., Henis, E., Naor, D., Rabinovici-Cohen, S., Reshef, P., Ronen, S., Michetti,
G., Guercio, M.: Authenticity and provenance in long term digital preservation: modeling
and implementation in preservation aware storage. In: First Workshop on Theory and
Practice of Provenance, Berkeley, CA, USA, pp. 6:1–6:10 (2009)

[6] Groth, P., Deelman, E., Juve, G., Mehta, G., Berriman, B.: Pipeline-centric provenance
model. In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale
Science, Portland, Oregon, pp. 1–8 (2009)

[7] Sahoo, S., Sheth, A.: Provenir ontology: Towards a Framework for eScience Provenance
Management. In: Microsoft eScience Workshop, Pittsburgh, PA, pp. 15–17 (2009)

[8] Wolstencroft, K., Alper, P., Hull, D., Wroe, C., Lord, P.W., Stevens, R.D., Goble, C.A.:
The myGrid ontology: bioinformatics service discovery. Int. J. Bioinformatics Res.
Appl. 3(3), 303–325 (2007)

166 J.C. de A.R. Gonçalves et al.

[9] Crawl, D., Altintas, I.: A Provenance-Based Fault Tolerance Mechanism for Scientific
Workflows. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp.
152–159. Springer, Heidelberg (2008)

[10] de Oliveira, D., Ogasawara, E., Seabra, F., Silva, V., Murta, L., Mattoso, M.: GExpLine:
A Tool for Supporting Experiment Composition. In: McGuinness, D.L., Michaelis, J.R.,
Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 251–259. Springer, Heidelberg
(2010)

[11] Missier, P.: Incremental workflow improvement through analysis of its data provenance.
In: 3rd USENIX Workshop on the Theory and Practice of Provenance (TaPP 2011),
Heraklion, Crete, Greece (2011)

[12] Ocaña, K.A.C.S., Oliveira, D., Dias, J., Ogasawara, E., Mattoso, M.: Optimizing
Phylogenetic Analysis Using SciHmm Cloud-based Scientific Workflow. In: 2011 IEEE
Seventh International Conference on e-Science (e-Science) IEEE e-Science 2011,
Stockholm, Sweden, pp. 190–197 (2011)

[13] Guerra, G., Rochinha, F., Elias, R., Oliveira, D., Ogasawara, E., Dias, J., Mattoso, M.,
Coutinho, A.L.G.A.: Uncertainty Quantification in Computational Predictive Models for
Fluid Dynamics Using Workflow Management Engine. International Journal for
Uncertainty Quantification 2(1), 53–71 (2012)

[14] Ogasawara, E., Oliveira, D., Chirigati, F., Barbosa, C.E., Elias, R., Braganholo, V.,
Coutinho, A., Mattoso, M.: Exploring many task computing in scientific workflows. In:
Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers, MTAGS 2009, Portland, Oregon, USA, pp. 1–10 (2009)

[15] Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny,
M., Moreau, L., et al.: Examining the Challenges of Scientific Workflows.
Computer 40(12), 24–32 (2007)

[16] Dias, J., Ogasawara, E., Oliveira, D., Porto, F., Coutinho, A., Mattoso, M.: Supporting
Dynamic Parameter Sweep in Adaptive and User-Steered Workflow. In: 6th Workshop
on Workflows in Support of Large-Scale Science WORKS 2011, Seattle, WA, USA, pp.
31–36 (2011)

[17] Oliveira, D., Ogasawara, E., Ocaña, K., Baiao, F., Mattoso, M.: An Adaptive Parallel
Execution Strategy for Cloud-based Scientific Workflows. Concurrency and
Computation: Practice and Experience (2011) (online)

[18] Miller, W., Makova, K.D., Nekrutenko, A., Hardison, R.C.: Comparative Genomics.
Annual Review of Genomics and Human Genetics 5(1), 15–56 (2004)

[19] Clark, A.G.: Genomics of the evolutionary process. Trends in Ecology &
Evolution 21(6), 316–321 (2006)

[20] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy
of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424
(2000)

[21] Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: VisTrails:
visualization meets data management. In: SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, pp. 745–747 (2006)

[22] Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.:
Taverna: a tool for building and running workflows of services. Nucleic Acids
Research 34(2), 729–732 (2006)

[23] Amazon EC2, Amazon Elastic Compute Cloud (Amazon EC2) (2010),
http://aws.amazon.com/ec2/

 Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries 167

[24] Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: An Algebraic
Approach for Data-Centric Scientific Workflows. Proc. of VLDB Endowment 4(12),
1328–1339 (2011)

[25] Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

[26] Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The Open
Provenance Model: An Overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008.
LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)

[27] Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like message
passing for Java. Concurrency: Practice and Experience 12(11), 1019–1038 (2000)

[28] Pruitt, K.D., Tatusova, T., Klimke, W., Maglott, D.R.: NCBI Reference Sequences:
current status, policy and new initiatives. Nucleic Acids Research 37(Database issue),
D32–D36 (2009)

[29] Simmhan, Y.L., Plale, B., Gannon, D.: A Framework for Collecting Provenance in Data-
Centric Scientific Workflows. In: ICWS, pp. 427–436 (2006)

[30] Missier, P., Sahoo, S.S., Zhao, J., Goble, C., Sheth, A.: Janus: From Workflows to
Semantic Provenance and Linked Open Data. In: McGuinness, D.L., Michaelis, J.R.,
Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 129–141. Springer, Heidelberg
(2010)

[31] Anand, M.K., Bowers, S., McPhillips, T., Ludäscher, B.: Exploring Scientific Workflow
Provenance Using Hybrid Queries over Nested Data and Lineage Graphs. In: Winslett,
M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 237–254. Springer, Heidelberg (2009)

[32] Gadelha, L., Mattoso, M., Wilde, M., Foster, I.: Provenance Query Patterns for Many-
Task Scientific Computing. In: USENIX Workshop on the Theory and Practice of
Provenance (TaPP), Heraklion, Crete, Greece (2011)

[33] Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu,
I., Stef-Praun, T., Wilde, M.: Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In: 3rd IEEE World Congress on Services, Salt Lake City, USA, pp. 199–
206 (2007)

Network Analysis on Provenance Graphs
from a Crowdsourcing Application

Mark Ebden1, Trung Dong Huynh2, Luc Moreau2,
Sarvapali Ramchurn2, and Stephen Roberts1

1 Department of Engineering Science, University of Oxford,
Oxford, OX1 3PJ, United Kingdom

���������	
���

��������������

����
������������������
�
2 Electronics and Computer Science, University of Southampton,

Southampton, SO17 1BJ, United Kingdom
���������
������
�
���������������

�������������������

Abstract. Crowdsourcing has become a popular means for quickly achieving
various tasks in large quantities. CollabMap is an online mapping application in
which we crowdsource the identification of evacuation routes in residential areas
to be used for planning large-scale evacuations. So far, approximately 38,000
micro-tasks have been completed by over 100 contributors. In order to assist with
data verification, we introduced provenance tracking into the application, and ap-
proximately 5,000 provenance graphs have been generated. They have provided
us various insights into the typical characteristics of provenance graphs in the
crowdsourcing context. In particular, we have estimated probability distribution
functions over three selected characteristics of these provenance graphs: the node
degree, the graph diameter, and the densification exponent. We describe methods
to define these three characteristics across specific combinations of node types
and edge types, and present our findings in this paper. Applications of our meth-
ods include rapid comparison of one provenance graph versus another, or of one
style of provenance database versus another. Our results also indicate that proven-
ance graphs represent a suitable area of exploitation for existing network analysis
tools concerned with modelling, prediction, and the inference of missing nodes
and edges.

1 Introduction

Crowdsourcing is an increasingly popular approach for tasks that computers find too
difficult to solve; the method distributes tasks among human contributors, often through
a website. For instance, citizen-science projects at Zooniverse (www.zooniverse.org)
have managed to enlist hundreds of thousands of volunteer “citizen scientists” to clas-
sify distant galaxies, transcribe historical naval logs, and more. The volunteers con-
tribute data of a quality that is as varied as their backgrounds and expertise. Usually
cross-verification among participants helps to discard inaccurate results, yet challenges
remain in anticipating how different human contributors will behave and in designing a
robust crowdsourcing application.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 168–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.robots.ox.ac.uk/~parg
www.ecs.soton.ac.uk

Network Analysis on Provenance Graphs from a Crowdsourcing Application 169

CollabMap (www.collabmap.org) is an online mapping application in which we
crowdsource the task of identifying residential evacuation routes, with the eventual aim
of helping to plan large-scale evacuations in case of disaster. In an effort to address the
aforementioned human challenges, we introduced provenance tracking into CollabMap,
capturing in detail how contributors trace buildings and draw evacuation routes, and not-
ing the dependencies among their contributions. The resulting provenance graphs allow
us to re-create the situations in which the data were generated and to inspect them for
potential inaccuracies. In order to gain an understanding of the common characterist-
ics of these graphs, here we carry out an analytical study on various network measures
and report our findings. Other researchers have viewed provenance graphs in alternate
ways: Altintas et al. [1] have analysed them as collaboration networks, and Margo et al.
[11] have used them as a basis for node classification. The present work offers a deeper
level of mathematical abstraction, and our contributions are twofold. First, we estimate
probability distribution functions over three selected characteristics of these proven-
ance graphs: the node degree, the graph diameter, and the densification exponent; to
our knowledge we are the first to analyse provenance graphs in this way. Second, we
devise provenance-specific network measures for provenance graphs, to gauge whether
such measures provide a novel insight into provenance graphs, or whether generic net-
work measures are enough. We are also exploring the question of whether provenance
graphs, at least those from crowdsourcing contexts, are suitable candidates for existing
network methods that support graph modelling, prediction, and the inference of missing
nodes and edges.

The remainder of the paper is organized as follows. Section 2 provides a summary
of the CollabMap application, including how it works and how provenance was mod-
elled. In Section 3, we describe a range of techniques to extract characteristics from the
CollabMap provenance graphs. Section 4 reports our main findings, and the paper is
concluded with a discussion in Section 5.

2 CollabMap

In planning the responses to city-wide disaster scenarios, simulating large-scale evac-
uation is a major challenge, owing in part to the lack of detailed evacuation maps for
residential areas. These maps need to contain evacuation routes connecting building
exits to the road network, while avoiding physical obstacles such as walls or fences.
Existing maps do not provide such routes. To our knowledge, automated techniques to
augment current maps with such paths are not available, and direct surveys of city-scale
residential areas are usually infeasible owing to the significant effort required. Against
this background, CollabMap was developed to crowdsource the drawing of evacuation
routes for the public by providing them with two freely available sources of information
from Google Maps: aerial imagery and ground-level panoramic views. During a recent
two-month trial on the website we established, contributors were awarded cash-prize
lottery tickets in proportion to the number of contributions they made. Our ongoing
application has so far produced 5,128 provenance graphs for 37,931 micro-tasks com-
pleted by over 100 contributors.

170 M. Ebden et al.

2.1 CollabMap Workflow

Based on the Find-Fix-Verify pattern [3], we divide the task of identifying evacuation
routes for a single building into smaller activities, called micro-tasks, carried out by
different contributors. We have designed five types of micro-task:

A. Building Identification. The outline of a building is drawn on the map. It serves as
the basis for the other micro-tasks.

B. Building Verification. The building outline is assessed, with a vote of either valid
(+1) or invalid (−1).

C. Route Identification. An evacuation route is drawn, to connect an exit of the build-
ing to a nearby road.

D. Route Verification. The evacuation route is assessed, with a vote of either valid
(+1) or invalid (−1).

E. Completion Verification. The set of evacuation routes is assessed for exhaustive-
ness, with a vote of either complete (+1) or incomplete (−1).

Fig. 1. The CollabMap workflow for identifying evacuation routes of a building

The CollabMap workflow (Figure 1) has two main phases:

Building phase. The outline of a building that has no evacuation route needs to be
drawn (A). The outline is then checked by other contributors, who vote up or vote
down the building outline (B) without seeing others’ votes. If the total score of the

Network Analysis on Provenance Graphs from a Crowdsourcing Application 171

building, defined as the sum of all the votes, reaches +3 then the Building phase
ends and the Evacuation route phase begins. If the score reaches −2, the building
outline is rejected and marked as invalid.

Evacuation route phase. This is the main activity carried out by CollabMap contrib-
utors. The first is permitted only to draw a route (C). Subsequent contributors are
asked to verify routes (D) and are asked whether the set of routes is complete (E);
if it is not, they are invited to draw new routes (C).

In both phases, in order to avoid biases, a contributor is not allowed to verify his or her
own work.

2.2 Recording Provenance

We adopted the Open Provenance Model (OPM) [13] for capturing the provenance of
data generated in the CollabMap application. The micro-tasks in the previous section
generate data of four different types: building outlines, evacuation routes, route sets
(collections of routes belonging to a building), and votes. The classes for these data
types are Building Outline, Route, Route Set, and Vote, respectively (see Figure 2).
In order to keep separate the application-specific data from the provenance-related in-
formation, OPM constructs were recorded in their own classes: Artefact representing
a data entity (via the subject relation), Agent a CollabMap contributor, and Process an
instance of one of the five types of micro-task above.

Fig. 2. The UML class model for CollabMap’s data and provenance classes. Data Product and
Votable are abstract classes.

When a contributor completes a micro-task, this is recorded as a process along with
timing information (namely, how long it takes; see Figure 3 for an example). We also
record the artefacts (equivalently, the corresponding data products) that were gener-
ated by the process (via the wasGeneratedBy relation), and we record which existing
artefacts were shown to the contributor in the micro-task (via the used relation). Own
knowledge of the internal workings of CollabMap also enabled us to assert various

172 M. Ebden et al.

 user2user3

user1

Building Identification 1886 41s

Building3090.0

UpVote3091.0

votedOn

Building Verification 7924 7s

used

DownVote14100.0

votedOnBuilding Verification 26467 3s

used

UpVote41570.0

votedOn

Fig. 3. An example OPM provenance graph recorded by CollabMap showing a building was
drawn and voted on by three different users

direct relations between artefacts (via the hasAnnotation relation in Figure 2): wasDe-
rivedFrom, wasRevisionOf, includes, and votedOn. The last three are special cases of
the wasDerivedFrom relation, and were treated as such in our analyses in subsequent
sections.

2.3 Provenance Graphs

Newman [14] describes four types of network: technological, social, biological, and
informational. Provenance graphs fall into the last category, as they are networks de-
scribing relationships among elements of information. Other examples of informational
networks include those which describe co-authorship of academic articles, semantic
relationships among words, and peer-to-peer exchanges of online content. Using the
vocabulary associated with the collection of relational network data, our CollabMap
provenance graph data are enumerated as opposed to being partial or sampled; that is,
they are collected in an exhaustive manner from the full population. Our population
concerns the totality of the CollabMap data set as of March 2012.

We create a graph G = (V,E), with vertex set V and edge set E . Edges in the present
work are unweighted and directed, but our design is extensible to weighted edges, to
indicate reliability of connection or other probabilistic phenomena. Five edge types are
defined by the OPM: used, wasGeneratedBy, wasControlledBy, wasDerivedFrom, and
wasTriggeredBy. In the current work we recorded all but the last of these, in addition
to all three possible node types: artefacts, processes, and agents. Node type is the only
vertex attribute currently under study in our provenance graphs, but it is possible to
assign additional attributes, either discrete (for example a classification indicating the
level of experience of each agent), or continuous (for example, a probabilistic estimate
of how often an agent errs during the evaluation of route evacuations).

Network Analysis on Provenance Graphs from a Crowdsourcing Application 173

(a) b)

Fig. 4. Provenance graphs for two typical CollabMap tasks, in which artefacts are white, processes
are grey, and agents are black. Vertex size increases with degree logarithmically.

To aid graph visualization in Figure 4, vertices in V are represented as circles col-
oured by node type, and edges in E are represented as straight lines. The graph is drawn
in two-dimensional space, but it is possible to imagine the same information appearing
in three-dimensional space or on another surface. Vertices are situated according to the
Kamada-Kawai free-energy technique in Pajek software [2]. Vertex size is proportional
to log (d + 3), where d is node degree.

The graph in Figure 4(a) contains 54 vertices after 18 processes occurred (18 micro-
tasks), while that in Figure 4(b) contains 59 vertices after the same number of processes
occurred. The maximum number of processes occurring in a given provenance graph
was 70. Figure 5 gives the distribution of provenance graphs over their maximum pro-
cess index; it indicates that the majority of tasks were edited at least seven times, and
288 graphs were edited twenty times or more.

3 Methods

To compare the 5,128 networks with those described in the literature, and to see whether
the characteristics ascertained from network analysis might be useful, we selected a sub-
set of network properties to investigate. We chose three properties that have been used
elsewhere in the analysis of both real and synthetic graphs [10]. They are as follows:

Degree distribution: For many graphs, the degree distribution follows a ‘power law’
such that the number of vertices Nd with degree d is given by Nd ∝ d−γ , where γ > 0
is usually called the power-law exponent. We shall examine the degree distribution
of an entire provenance graph, and subdivide this into several distributions based
on the four edge types and their directionality. In summarizing the information
in such plots, we refer to γ as the degree-distribution power-law exponent (DPE),
calculated according the method of Clauset et al. [5] concentrating on nodes with
high degree.

Diameter: The diameter of a graph is the greatest minimum distance between any two
nodes. Most real-world graphs exhibit relatively small diameter (the “small-world”

174 M. Ebden et al.

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

Processes

N
um

be
r

of
 g

ra
ph

s

Fig. 5. A plot of the number of CollabMap provenance graphs that contained any given number
of processes (micro-tasks)

phenomenon [12]) which tends to stabilize as the number of vertices in a network
grows over time (here, as processes occur). Since CollabMap nodes are separated
by directed edges, thereby preventing some nodes from forming a path to certain
others, strictly speaking the diameter of each graph is infinite; however, by tempor-
arily assuming the edges are undirected, we are able to calculate a diameter and
we record its value after each process (micro-task) occurs. In addition, we return
to the directed graph to calculate a useful variation on graph diameter: Dijkstra’s
algorithm [6] provides the minimum path length separating each pair of nodes, and
we consider the distribution of the cases in which this path length was a finite num-
ber. This distribution determines the maximum finite distance (which we shall refer
to as MFD) from one node type to another. We calculate the values of MFD on
full provenance graphs as well as on the corresponding data-flow graphs — that is,
graphs with only artefacts and wasDerivedFrom edges, with no processes involved.

Densification: As a network evolves over time, it generally becomes denser. This can
be quantified by comparison of the number of edges to the number of nodes, after
each process occurs. The relation between the number of edges E(t) and the number
of vertices N(t) in an evolving network after process t ordinarily obeys the densi-
fication power law, which states that E(t) ∝ N(t)a for some densification exponent
a typically greater than unity [9]. In our provenance graphs, we have chosen to also
specialize this relation by node type and by edge type, noting Pearson’s product-
momentum correlation coefficient in each case. We refer to each coefficient as the
edge-to-node correlation (ENC).

Our descriptions of the above three properties have indicated that many graphs which
have been studied elsewhere in the literature have a degree distribution following a

Network Analysis on Provenance Graphs from a Crowdsourcing Application 175

power law, have small diameter which stabilizes eventually, and become denser over
time in a manner that follows a power law as well. To summarize, our methodology for
analysing these three properties on each provenance graph results in several plots and
includes the following three metrics: DPE, MFD, and ENC.

4 Results and Discussion

We now present the results from the analyses described in the above section for the
provenance graph depicted in Figure 4(a) and for the largest provenance graph. In ad-
dition, we carried out the same analyses for the whole population of 5,128 provenance
graphs recorded by CollabMap and summarize their results here.

4.1 Degree Distribution

Figures 6(a) and (b) plot degree distributions (histograms depicting how many nodes
had a certain number of interconnections) which were typical of those for the proven-
ance graphs under study. The tails (high-degree data) conceivably follow a power law,
although the low-degree data points (here, for node degrees fewer than three) lie below
this trend; this is a pattern observed in many networks elsewhere [15]. The degree-
distribution power-law exponents (DPE) for the data in these two figures were 2.1 and
2.0. Over the 5,128 graphs we examined, the mean DPE was 2.4, with a standard de-
viation of 0.2. In comparison, elsewhere in the literature values tend to fall between
1.4 [15] and 4.3 [5], with the vast majority between 2 and 3 [15]. The full distribution,
given in Figure 6(c), is clearly multi-modal; this is because some of the provenance
graphs under investigation were small, and the calculation of DPE is only reliable for
large graphs. We found that restricting the analysis to graphs with a minimum size of
40 nodes (recognizing that the maximum number of nodes in a graph was 271) led to
the emergence of a peak near DPE = 2.2. In summary, our graphs tended to follow a
power law, and the values of DPE were in the typical range.

10
0

10
1

10
0

10
1

10
2

Node degree

Fr
eq

ue
nc

y

10
0

10
1

10
0

10
1

10
2

Node degree

2 2.2 2.4 2.6 2.8
0

200

400

600

800

1000

1200

DPE

(a) (b) (c)

Fig. 6. (a) Distribution of node degrees for the typical provenance graph shown in Figure 4(a).
(b) A similar distribution for the largest provenance graph. (c) Degree-distribution power-law
exponent (DPE) for all 5,128 provenance graphs.

176 M. Ebden et al.

10
0

10
1

10
0

10
2

10
4

‘used’ in−degree

N
um

be
r o

f a
rt

ef
ac

ts

10
0

10
1

10
0

10
2

10
4

‘wasDerivedFrom’ out−degree

N
um

be
r o

f a
rt

ef
ac

ts

10
0

10
1

10
0

10
2

10
4

‘wasDerivedFrom’ in−degree

N
um

be
r o

f a
rt

ef
ac

ts

10
0

10
1

10
0

10
2

10
4

‘used’ out−degree

N
um

be
r o

f p
ro

ce
ss

es

10
0

10
1

10
0

10
2

10
4

‘wasGeneratedBy’ in−degree

N
um

be
r o

f p
ro

ce
ss

es

10
0

10
1

10
0

10
2

10
4

‘wasControlledBy’ in−degree

N
um

be
r o

f a
ge

nt
s

(a) (b) (c)

(d) (e) (f)

Fig. 7. Degree distributions according to edge type. As the graphs are logarithmic, zeros cannot be
plotted; the number of nodes corresponding to zero in-degree or zero out-degree were as follows:
(a) 45,194; (b) 5,128; (c) 44,390; (d) 5,157; (e) 34; (f) 0.

Figure 7 shows the degree distribution specialized according to edge type. This figure
is probably one of the most useful from a provenance point of view. Since we take
into account the directedness of the graph edges in this particular analysis, we can
differentiate between ‘out-degree’ (the number of edges leaving a node; for example,
the out-degree of a process is incremented for each artefact it becomes connected to via
a used edge) and ‘in-degree’ (the number of edges directed towards a node). In each of
the six distributions, the tails can again be well fitted by a power law, with an exponent
(DPE) ranging from 1.9 to 4.1. Specifically, from Table 1 it is apparent that the values
of DPE in the figure are (a) 2.17, (b) 4.11, (c) 1.86, (d) 3.09, (e) 3.02, and (f) 3.32.

Examining degree distributions by edge type leads to more provenance-specific in-
formation, and we highlight some results here. First, examining the number of processes
versus the wasControlledBy out-degree confirms that each process was controlled by
exactly one agent; the plot is not shown since it contained just this one data point (out-
degree 1, number of processes 37,931); in Table 1 it is noted that this case has “No
power law”. Second, examining the number of processes versus the wasGeneratedBy
out-degree confirms that each artefact was generated by exactly one process. Again the
plot need not be shown; here the single data point was out-degree 1, number of artefacts
58,877. This was a gratifying result, as it is always the case in a single account that
an artefact is generated by a single process/activity (more generally, different accounts
may model what happened from different viewpoints, and the same entity may be re-
corded as generated from two different processes in two accounts). This confirmation
would not be pertinent to normal CollabMap users, but it could be of use to developers

Network Analysis on Provenance Graphs from a Crowdsourcing Application 177

Table 1. Values of the degree-distribution power-law exponent (DPE) for the four types of node
inter-connection, when power laws were observed

used wasGeneratedBy wasControlledBy wasDerivedFrom
in-degree 2.17 3.02 3.32 1.86

out-degree 3.09 (No power law) (No power law) 4.11

wishing to check the accuracy of the implementation of their software. Third, let us
consider the fact that the degree distribution for artefacts is essentially determined by
the number of times an artefact is reused. From the distribution in Figure 7(a), we found
the average in-degree was 0.80, and the conclusion to draw from this is that each arte-
fact was used slightly less than once, on average. Additionally, the range of in-degrees
was 0–35; hence some artefacts were used very heavily while some artefacts were not
used at all. The latter are mostly user votes (over 43,000), which were recorded for data
verification at a later stage and not currently used in any of the micro-tasks. Artefacts
that were used at all were used an average of 3.4 times. Similar analysis applies to the
other plots in Figure 7.

4.2 Graph Diameter

Figure 8 plots the evolution of graph diameter (the maximum separation between any
two nodes) as more and more processes occur. It shows that graph diameter tended to
increase quickly for the first few processes before settling to a stable value. Results over
all 5,128 provenance graphs are shown in Figure 9. Growth is rapid until approximately
the seventh process; thenceforth there is a slow, approximately linear increase in graph
diameter. The plots in their entirety are sub-linear. In comparison, in many graphs the
diameter grows approximately logarithmically with the number of nodes [4], which is
of course another sub-linear pattern, and hence qualitative similarities exist. We have
begun to show that the dynamics of provenance graphs bear some resemblance to those
of other networks in the literature.

0 10 20
0

1

2

3

4

5

6

Process number

D
ia

m
et

er

0 20 40 60
0

1

2

3

4

5

6

Process number

(a) (b)

Fig. 8. Plot of diameter versus process number for (a) a typical provenance graph, and (b) the
largest provenance graph

178 M. Ebden et al.

We have also noted a slight difference, one which is due to the type of expansion
expected of a provenance graph: the number of artefacts in a chain growing with each
process is a complicated function that nonetheless should in many cases contain a small
linear term; this in turn leads to the slightly unusual phenomenon of linear growth after
a certain number of processes occur. More specifically, revisiting the workflow descrip-
tion in Section 2, consider that the provenance graph depicted in Figure 3 (with a dia-
meter of four) has the capacity to expand downwards through, for example, wasRevi-
sionOf edges. If the artefacts downstream are used by processes controlled by agents
who have contributed previously to the task, the diameter will not increase, because
the agents will have high degree and will act as ‘hubs’ keeping all nodes within short
reach of one another. On the other hand, if new agents control the processes using these
downstream artefacts, there is nothing to prevent graph diameter from growing steadily
as more and more downstream artefacts appear. Therefore, the linear growth observed
in Figure 9 after approximately the seventh process is an indication that, among other
things, a fresh supply of agents is readily available, which is the case for crowdsourcing
applications in particular.

Recall from Section 3 that the path length between a pair of provenance nodes is
measured by the number of directed edges to be traversed in order to travel from one
node to another, and the calculation of most path-length data necessitates first ignor-
ing the node pairs with infinite path length between them. Among the remaining node
pairs, the maximal finite distance (MFD) between any two processes in a graph was
between 1 and 13 edges, inclusive, and the mean was 2.73 edges. The usefulness of
this number becomes apparent only when seen in the context of others — namely, the
distance required to go from an artefact to a process. In the latter case, the MFD was
also 2.73, and hence, the separation statistics were identical in these two cases. This
equality is due to the manner in which the CollabMap provenance graphs were created.
Under the OPM, two processes are not connected directly but are linked via artefacts.
The second process, i.e. the one using the intermediate artefact, will have generated
artefacts of its own; hence these artefacts will be separated from the first process by the
same distance (i.e. two edges) that exists between the two processes. This is particular
to CollabMap, because when an artefact is connected to a process via wasGeneratedBy,
and that process uses a second artefact, there is always a wasDerivedFrom link between
the two artefacts. The motif that results (two edges long) is repeated as the provenance
graph grows, and hence for any CollabMap graph the pair of MFD values described
here are always equal to one another. For example, clearly the values are both 2 for the
small graph depicted in Figure 3. In summary, mean separation data can provide a rapid
indication of how the provenance graph model was established initially by its designer.

Similarly, the MFD between two artefacts in a given CollabMap provenance graph
was found to have a mean of 1.74 edges (range: 1–12), and the same can be said for the
distance required to go from a process to an artefact, and for the distance between two
artefacts in the corresponding ‘data-flow graph’ (see Section 3). Again, the separation
statistics were identical in these three cases owing to the manner in which the Col-
labMap provenance graphs were created. The rationale is only a slight variation on the
motif described above, and as a specific example of the phenomenon, in the provenance
graph depicted in Figure 3 the MFD between two artefacts and the MFD going from

Network Analysis on Provenance Graphs from a Crowdsourcing Application 179

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

Process number

G
ra

ph
 d

ia
m

et
er

Fig. 9. Evolution of graph diameter with the number of processes (micro-tasks) that have oc-
curred, for up to 5,128 CollabMap provenance graphs. The solid line indicates the mean, and
the shaded region indicates the point-wise range of values. The number of graphs available for
analysis after each process is given in Figure 5.

a process to an artefact are both equal to 1. In an arbitrary provenance graph outside
of the CollabMap project, there may exist a different relationship among the MFDs
rather than equality; hence, this relationship provides another measure characterizing
the design of a provenance graph model. It is necessary to confirm this by repeating the
calculation of MFDs on provenance graphs from other applications.

4.3 Densification

Figures 10(a) and 10(b) are included to show densification — that is, the manner in
which the number of edges increases with the number of nodes as a graph grows over
time. The two logarithmic plots show only minor deviations from the straight line of
a power law, and this pattern was typical among the provenance graphs we examined.
The densification power-law exponents for these two selected provenance graphs were
1.33 and 1.23, respectively. Over all 5,128 graphs, the mean exponent was 1.31 with a
standard deviation of 0.07, and the range was 1.14–1.59. In comparison, the value seen
in other networks is never less than unity in a connected graph [10] and typically falls
between 1.0 and 1.7 [9]. The full distribution, given in Figure 10(c), is multi-modal
as before; however, we found that restricting the analysis to graphs with a minimum
size of 40 led to the emergence of a single peak around 1.3. This peak is close to, for
example, the value of 1.26 reported by Leskovec et al. [8,9] for a person-to-person re-
commendation network built from data provided by an online retailer, in which nodes
represent users and edges represent recommendations (each time a user purchased a
product, they were given the option to send emails recommending the item to friends).
More generally, that our results fit in the typical range of 1.0 to 1.7 suggests that proven-
ance graphs grow in a manner that has similarities with other graphs. In addition, the
observed standard deviation (0.07) was relatively small, which is related to the fact that
the provenance graphs grew in a structured manner with each micro-task.

180 M. Ebden et al.

10
1

10
2

10
0

10
1

10
2

Number of nodes

N
um

be
r o

f e
dg

es

10
1

10
2

10
0

10
1

10
2

Number of nodes
N

um
be

r o
f e

dg
es

1.2 1.3 1.4 1.5
0

200

400

600

800

1000

1200

Exponent

Fr
eq

ue
nc

y

(a) (b) (c)

Fig. 10. (a) A plot of the number of edges versus the number of nodes in the provenance graph
depicted in Figure 4(a), as it grows. (b) A similar plot for the largest provenance graph. (c) A his-
togram of the densification exponent a, which is a factor influencing the edge-to-node correlation
(ENC), over all 5,128 provenance graphs.

We turn to the values of edge-to-node correlation (ENC), which reflect the densifica-
tion pattern for particular edge types versus particular node types. Table 2 describes the
ENC values among the three node types and the four edge types. In all twelve cases,
high values of ENC were observed, which explains the very good line of fit in Fig-
ures 10(a) and 10(b). Additionally, there is a deterministic, precisely linear relationship
between the number of artefacts and the number of wasGeneratedBy edges, or between
the number of processes and the number of wasControlledBy edges, leading to ENC=1
in either case. This meets with intuition, as each process in CollabMap is linked exactly
once to an agent, and (as stated previously) each artefact is generated by exactly one
process.

Table 2. Edge-to-node correlation (ENC) coefficients between the number of edges and the num-
ber of nodes in a growing graph, averaged over the 5,128 tasks. The three node types are listed
on the left and the four edge types are at the top.

used wasGeneratedBy wasControlledBy wasDerivedFrom
artefact 0.9888 1.0000 0.9929 0.9990
process 0.9948 0.9929 1.0000 0.9894
agent 0.9707 0.9809 0.9807 0.9771

5 Conclusion

In the course of analysing data from a crowdsourcing application, we have highlighted
several graph-theoretic metrics to characterize provenance graphs, including DPE, MFD,
and ENC. Our first key finding is that CollabMap provenance data possess character-
istics similar to those existing in other graphs studied in the literature, including social
networks and the World Wide Web [10]. Our second key finding is that our data set
is amenable to tools more specific to provenance: our metrics can be used to compare

Network Analysis on Provenance Graphs from a Crowdsourcing Application 181

and classify provenance graphs, to help quickly confirm that provenance was recorded
properly, and so on.

The first key finding is important because the similarities we have identified indicate
that provenance graphs represent a suitable area of exploitation for network analysis
tools concerned with modelling, prediction, and inference which exist already in the lit-
erature [7]. For example, since the mid-2000s interest has been growing in ‘community
detection’ — that is, identifying groups of nodes that are more densely linked to each
other than to the rest of the network. Users in CollabMap (represented as agent nodes)
should not form such communities since tasks are assigned at random, and therefore
to the extent that community structure is discerned a pathological case is likely. As an
example of such a case, CollabMap users have the option to forgo a task and move
on to another, thereby allowing them to focus on particular types of task if desired;
hence a group of users could agree among themselves to each skip tasks until they re-
cognized a building or buildings of common interest (for example, in a neighbourhood
they disliked). The user group could then corroborate each others’ bogus building evac-
uation routes. Community-detection algorithms such as those based on non-negative
matrix factorization [16] could help to alert CollabMap designers to inappopriate levels
of community structure within the provenance graph, and thus identify and prevent ill-
intentioned collaboration among users. As another example, elsewhere we are in the
course of developing a link-inference algorithm based on our results here, to assist with
the analysis of incomplete provenance graphs.

The second key finding is important because the set of provenance-specific measures
from network analysis so far is useful in its own right, in verification and classification,
for example. We have shown how degree distributions can be used to confirm proven-
ance graphs were constructed properly, and the plots in Figure 7 illustrate how further
properties in a provenance database can be summarized. Other characteristics we have
calculated are the maximum path lengths separating given types of nodes, and dens-
ification information. In all of the above, the analysis could have been performed on
provenance graphs one at a time rather than on an entire database; a useful application
of doing so would be to assist the principled comparison of one provenance graph with
another. For example, insofar as our metrics are related to completeness and error prob-
ability, they can be used in the process of automated verification of the crowdsourced
evacuation routes (e.g. confirming that the editing processes were likely to reduce errors
acceptably). In machine-learning terminology, the metrics represent the result of ‘fea-
ture extraction’ and as such they have the potential to help learn the differences between
high-error graphs and low-error graphs. In general the metrics are of potential use in fu-
ture software applications which aim to classify tasks based on their provenance graphs.

Acknowledgements. We gratefully acknowledge funding from the UK Research Coun-
cil for project ‘Orchid’, grant EP/I011587/1.

References

1. Altintas, I., Anand, M.K., Crawl, D., Bowers, S., Belloum, A., Missier, P., Ludäscher,
B., Goble, C.A., Sloot, P.M.A.: Understanding Collaborative Studies through Interoperable
Workflow Provenance. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 42–58. Springer, Heidelberg (2010)

182 M. Ebden et al.

2. Batagelj, V., Mrvar, A.: Pajek-program for large network analysis. Connections 21(2), 47–57
(1998)

3. Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman, M.S., Karger, D.R., Crow-
ell, D., Panovich, K., Arbor, A.: Soylent: A Word Processor with a Crowd Inside. In: Artificial
Intelligence, pp. 313–322 (2010)

4. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees.
Proc. Natl. Acad. Sci. USA 99, 15879–15882 (2002)

5. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Re-
view 51, 661–703 (2009)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathem-
atik 1(1), 269–271 (1959)

7. Kolaczyk, E.: Statistical Analysis of Network Data. Springer (2009)
8. Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. In: ACM Con-

ference on Electronic Commerce (2006)
9. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking dia-

meters. ACM Transactions on Knowledge Discovery from Data 1(1), 2 (2007)
10. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker

Graphs: An Approach to Modeling Networks. Journal of Machine Learning Research 11,
985–1042 (2010)

11. Margo, D., Smogor, R.: Using provenance to extract semantic file attributes. In: Proceedings
of the 2nd Conference on Theory and Practice of Provenance, TAPP 2010, p. 7. USENIX
Association, Berkeley (2010)

12. Milgram, S.: The small world problem. Psychology Today 1, 61–67 (1967)
13. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,

S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van den Bussche, J.: The
Open Provenance Model core specification (v1.1). Future Generation Computer Systems
(July 2010)

14. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 58
(2003)

15. Newman, M.: Networks: an introduction. Oxford University Press (2010)
16. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detection using

Bayesian nonnegative matrix factorization. Physical Review E 83(6), 066114 (2011)

Modelling Provenance

Using Structured Occurrence Networks

Paolo Missier, Brian Randell, and Maciej Koutny

Newcastle University, School of Computing Science,
Newcastle upon Tyne, UK

firstname.lastname@cs.ncl.ac.uk

Abstract. Occurrence Nets (ON) are directed acyclic graphs that repre-
sent causality and concurrency information concerning a single execution
of a system. Structured Occurrence Nets (SONs) extend ONs by adding
new relationships, which provide a means of recording the activities of
multiple interacting, and evolving, systems. Although the initial moti-
vations for their development focused on the analysis of system failures,
their structure makes them a natural candidate as a model for express-
ing the execution traces of interacting systems. These traces can then be
exhibited as the provenance of the data produced by the systems under
observation. In this paper we present a number of patterns that make use
of SONs to provide principled modelling of provenance. We discuss some
of the benefits of this modelling approach, and briefly compare it with
others that have been proposed recently. SON-based modelling of prove-
nance combines simplicity with expressiveness, leading to provenance
graphs that capture multiple levels of abstraction in the description of a
process execution, are easy to understand and can be analysed using the
partial order techniques underpinning their behavioural semantics.

1 Introduction

Structured Occurrence Nets (SONs) [KR09, Ran11] are a formalism that pro-
vides a means of recording the activities of a set of interacting, and evolving,
systems. They were initially developed to address problems of validating and syn-
thesizing, and analyzing failures of complex, evolving computer-based systems.
SONs are an extension of Occurrence Nets (ON) [BD87], which are “acyclic Petri
nets that can be used to record execution histories of concurrent systems, in par-
ticular, the concurrency and causality relations between events.” [KK11]. In fact
ONs are suitable for representing the activities of asynchronous systems whose
design is expressed in various different notations, not just Petri Nets; indeed
they have, since their invention in the 1970s, been re-invented, and re-named,
by many different research communities, e.g. as “strand spaces” by security
researchers [KR09], and as “message sequence charts” [HT04] by networking
researchers. Moreover, they can be used for modelling the observed or envis-
aged behaviour of systems whose design is not available, eg. the undocumented
process of papers selection and review associated with some publications.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 183–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

184 P. Missier, B. Randell, and M. Koutny

Fig. 1. Basic graphical ON notation

In this paper we show how SONs provide a suitable formal grounding to
express the provenance of data that is produced or consumed by multiple inter-
acting systems.

Although SONs can be expressed set-theoretically, in this paper we choose to
use a simpler and more immediate graph representation, and completely avoid
formal definitions, which can be found in [KR09]. As shown in Fig. 1, the basic
ON formalism is very simple. Circles represent conditions (i.e. the holding of a
state); an event, represented by a box, can be caused by one or more conditions,
and can result in one or more new conditions. Since the arcs are intended to rep-
resent causality, ONs must be acyclic directed graphs. In addition, well-formed
ONs are defined by two rules, portrayed in the right part of the figure (see Def.
1 in [KR09]): events have at least one incoming arc and one outgoing arc (top
in the figure) and states have at most one input and one output arc (bottom).

Fig. 2 shows a simple ON portraying the execution trace of a process, dur-
ing which information needed to draft a document about some experiment was
acquired. This process may have been pre-defined, but it could also have been
merely observed. It includes several activities, two of which (“verify experimen-
tal results” and “read paper p2”) were concurrent. Labels may be associated to
states, but they have no formal meaning in the model. In this example, ptd, for
“preparing to draft”, indicates an initial state for a sequence of actions that lead
to a new state, “ready to draft”.

An ON is thus simply a means of recording what is observed or believed to have
happened, indicating “what caused what”. It does not in itself indicate “who”
caused a particular event. Rather, the basic formalism implies that thewhole of any

Fig. 2. Simple ON example

Modelling Provenance Using Structured Occurrence Networks 185

given ON represents the (possibly asynchronous) activity of a single un-identified
“system” (whose designmay ormay not have been known). The issue of identifying
the various separate systems that together give rise to some given complex activ-
ity is one that is addressed by SONs, described in more detail in the next section.
Briefly, SONs extend ONs with relationships for describing: (i) communication re-
lationships to specify interactions amongst systems; (ii) behaviour abstraction re-
lationships, which provide a dual view between state and system, whereby a state
that appears in one ON unfolds into a whole system, in which internal activities
that pertain to that state can be made explicit; and (iii) temporal abstraction re-
lationships by which events that appear instantaneous at one level of abstraction,
unfold into complex state-event nets at another level. It is worth noting that the
formal rules that govern these SON relations take into account the subtle compli-
cations that can arise from asynchrony, complications that are not evident in the
relatively simple examples shown in the rest of the paper.

In this paper we show how SONs provide a convenient and intuitive formalism
for representing data provenance, by introducing modelling patterns that make
use of these relationships. A particularly interesting feature exhibited by these
patterns is the uniformity of representation of the evolution of data, and the
evolution of the agents that were responsible for performing the activities. The
ability to represent agents as evolving systems has benefits for decision support
applications based on provenance. For example, one’s provenance-informed judg-
ment on the quality of a document may be affected by the knowledge that the
author was aware of certain papers at the time the document was prepared. This
knowledge is easily encoded by modelling the author as a system characterized
by evolving states, with activities such as “read paper X” that determine state
transitions. We give a simple example of this encoding in Sec. 3.3.

1.1 Benefits and Limitations

Some of the benefits expected from this work include seamless modelling of the
provenance of data, activities, and agents, all at multiple levels of abstraction. In
addition, SONs provide a formal syntax and semantics that will make it possible
to carry out formal validation of provenance graphs, including checking whether
a temporal logic formula is satisfied, or whether a specific state (or set of states)
can ever be reached. This, however, is beyond the scope of this exploratory paper
and is left for future work, as is the analysis of the types of queries supported
by the model.

Implementation issues, including the encoding of SON graphs in machine-
processable form, are being addressed using the WorkCraft platform, developed
by the Asynchronous Systems Laboratory at Newcastle1. Workcraft provides a
flexible, general framework for the visual editing, (co-)simulation and analysis
of a variety of Interpreted Graph Models with a common graph structure, in-
cluding Petri Nets, ONs, gate-level circuits, Static Data Flow Structures and

1 http://www.workcraft.org.

http://www.workcraft.org

186 P. Missier, B. Randell, and M. Koutny

Conditional Partial Order Graphs. Support for SONs that make use of commu-
nications relations has recently been added.

1.2 Related Work

The modelling approach proposed in this paper is alternative to others that have
been proposed recently, including the Karma model [Sim08], Janus [MSZ+10],
PASS [HSBMR08], as well as a few that are typically tied to workflow systems,
mentioned in Sec. 3.2. While all of these have been developed with particular
applications in mind (typically in the area of e-science), the PROV generic model
of provenance stands out, as it is, at the time of writing, in the process of
crystallizing as a W3C recommendation2. PROV follows in the steps of the
Open Provenance Model [MCF+11].

The PROV approach to modelling provenance is based on the general concept
of entity, an abstraction for anything that may have a provenance record associ-
ated to it, and their relationships to activities, which are capable of generating
and using entities, and agents (including both humans and computer programs)
which are responsible for carrying out the activities. A PROV statement is a fact
that relates entities to other entities or to activities and agents. For example,
one may state that entity e1 was derived from another entity, e2. A collection
of such facts forms a graph of relations that represents an observer’s account of
past interactions amongst the elements mentioned in those facts.

PROV and SON are only superficially similar in the way they represent prove-
nance, differing in at least three main aspects. Firstly, in PROV the notion of
causality is deliberately avoided (facts are asserted based on observations or on
any form of background knowledge, which is not made explicit), while it is cen-
tral to the ON and thus the SON models. Secondly, SONs are naturally suited for
modelling the evolution of agents, because those are simply modelled as systems,
a point that is made more concretely in Sec. 3.3. In PROV, modelling agents’
evolution is possible in principle, as agents can be viewed as entities themselves,
however this involves overloading, or perhaps specializing, the meaning of the
generation relation (i.e., one could assert that a new version of an agent was
“generated by” an activity carried out by the previous version of the same).
Finally, and perhaps more importantly, as we will see in the next section SONs
extend ONs by introducing a set of relations that provide different forms of
abstraction (communication, temporal, behavioural, and spatial). This in turn
makes it possible for different abstractions over the same provenance facts to
co-exist in the same SONs. In contrast, PROV only defines a single flat space of
facts, and completely lacks any mechanism for abstraction3.

A more detailed comparison between PROV and SON-based provenance re-
garding these three aspects can be found in Sec. 4. A formal account of the
differences between the two approaches is, however, beyond the scope of this
paper.

2 PROV will become a W3C recommendation by the end of 2012. The current working
draft can be found here: http://www.w3.org/TR/prov-dm/

3 One can, however, arbitrarily group facts into bundles, which can be nested.

http://www.w3.org/TR/prov-dm/

Modelling Provenance Using Structured Occurrence Networks 187

1.3 Paper Organization

The rest of the paper is organized as follows. An overview on SONs is provided
in the next section, followed in Sec. 3 by the description of SON patterns for
modelling provenance. Sec. 5 concludes the paper with a brief discussion on
ongoing work.

2 Structured Occurrence Networks

A SON is a set of ONs that are formally related to each other using one or
more of a number of different types of relations [KR09]. Here we will make
use of just three types of relation, namely behaviour relations, (asynchronous
and synchronous) communication relations, and temporal abstraction relations.
These provide a direct means of recording which systems give rise to which parts
of some overall activity, how these systems interacted during this overall activity,
and how these systems have themselves perhaps evolved.

Behaviour relation. The behaviour relation is the means by which some portion
of a complex overall activity is associated with a particular system. It embod-
ies the system-state duality alluded to earlier, by allowing the use of the same
symbol (a circle representing a condition) at two different levels of (behavioural)
abstraction to represent both a system and a state of an activity of that system.
Given this, it is then possible to represent an evolving system, and to link ap-
propriate activities to the appropriate versions of this evolving system. This is
illustrated in Fig. 3, which uses dashed rectangles to delineate ONs, and portrays
the pre- and post-upgrade history of an evolving computer system. The relation
is portrayed by a link to the rectangular box enclosing, and hence identifying
this set of states and events4.

Fig. 3. Duality of systems and states, shown using behavioural abstraction

4 The example refers to a hardware evolution, but it could have equally been a software
upgrade. Also, the above example shows offline system evolution, in that there is
no direct connection between the final state of the computer’s activity pre-evolution
and the initial state post-evolution. In contrast, one can use online system evolution,
where the final state of an activity pre-evolution is taken as the initial state post-
evolution.

188 P. Missier, B. Randell, and M. Koutny

(a) Abstract view (b) A possible unstructured, more de-
tailed, view of (a)

Fig. 4. Asynchronous communication relation

Fig. 5. SON pattern for temporal abstraction

Asynchronous communication relation This relation states a temporal ordering
between two events. An example of asynchronous communication between oth-
erwise separate ONs is shown in Fig. 4(a), using a bold dashed arrow5. This
communication might be very simple, or might in reality be much more com-
plicated, involving sophisticated buffering or networked communication, as in
Fig. 4(b).

Asynchronous or synchronous relations6 enable one to abstract away the de-
tails of interactions, should these not be regarded as relevant, and to use a set
of relatively simple separate ONs in a conveniently structured representation of
what would otherwise have to be shown as an unstructured and hence much
more complex single ON.

Temporal abstraction relation Temporal abstraction enables the abbreviation of
part of an occurrence net in such a way that some of its actions appear instan-
taneous to their environment and yet, at a different level of abstraction, they

5 Note that such an arrow connects two events, whereas the directed arcs in a conven-
tional ON connect an event to a condition or a condition to an event.

6 Synchronous communication [KR09] is used to indicate that two events in separate
ONs are perceived as occurring simultaneously. The fact that such a relation is
undirected allows one to relax the rule that any ON (and any SON) must be an
acyclic directed graph, without however violating conventional notions of causality.
This relation is used later in the paper to model activities with a finite duration
(Sec. 3.4).

Modelling Provenance Using Structured Occurrence Networks 189

unfold into a possibly lengthy and complex asynchronous activity. One partic-
ular pattern involving temporal abstraction is shown in Fig. 5. In this pattern,
event e appears instantaneous in the top view of the system, while it expands
into multiple events, namely e1 and e2 , at the more detailed level at the bottom
(the latter represents the temporary existence of an intermediate value a′, for
example). This pattern is useful when using events, which are instantaneous in
ON, to model provenance traces that involve activities with a finite duration
(see Section 3.4).

3 SONs Modelling Patterns for Provenance

Here we propose, by means of examples, a set of modelling patterns that make
use of SONs for representing the provenance of data associated to processes that
are at least partially observable, possibly at multiple levels of abstraction.

3.1 Simple Values Manipulation and Variable Assignment

To focus the ideas, we begin with the simplest case of a sequence of operations
that act upon data held in a single variable, shown in the ON of Fig. 6(a).
As mentioned earlier, the labels associated to the events, i.e., ‘r’ for read, ‘w’
for write, are conventional and have no formal meaning. In this example, they
are used to clarify whether the events modify the state of the variable. Here the
variable name is left implicit. For the more common case where multiple variables
are involved, we propose the pattern of Fig. 6(b), consisting on multiple ONs,
one for each variable, each labelled with the variable name and linked together by
communication relations. For example, the graph in the figure captures the effect
of the composed activity “A:=A+1; A:=A+B; B:=A+B” as a SON consisting of
a pair of communicating ONs. This SON records how the various data read and
write operations occurred, as well as their partial ordering, making it possible
to trace the provenance of any particular recorded data value. (A more complex
example could show actual use being made of the data obtained by all the various
read operations). In each system included in this SON, the activities that occur
during the system’s lifetime are exposed, including interactions (asynchronous,
in this case) with other systems. In this example, the two systems, for variables
A and B, interact using read and write operations. Event A:=A+B in particular
depends on the current state of B as well as the state of A. This is represented by
the asynchronous communication relation connecting the r event in B‘s activity,
to the w event in A‘s activity. Similarly, the event B:=B+A receives the current
value of A from A‘s SON to compute the new value for B. Note that conveying
the state of the system to another system is one of many possible read events
that do not modify the state of the system (printing the value is another, shown
in Fig. 6(a)7).

7 A printing activity would involve communication with a separate printing system,
however there is no obligation to represent such interaction, either because it is
not of interest for tracing provenance, or because such level of detail is simply not
available.

190 P. Missier, B. Randell, and M. Koutny

(a) Single variable

(b) Two variables as interacting systems

(c) Function application changing the values of
multiple variables

Fig. 6. Capturing the provenance of multiple variables

Expanding on this second example, consider a function application of the
form: 〈X,Z〉 := g(X,Y), where g doubles the value of its first argument, as well
as of a new variable Z. To capture its execution, we include an additional SON
to represent the function g itself. The resulting pattern is shown in Fig. 6(c).
One advantage of representing g as a system is that its own evolution can be
captured as part of provenance, using behavioural abstraction. We show this
feature in action later (Sec. 3.3).

3.2 Workflow Fragments

The pattern just illustrated in Fig. 6(c) is a stepping stone for modelling the
provenance of data produced by dataflows [LP95], which provide the formal un-
derpinning for a number of workflow systems used across e-science domains and

Modelling Provenance Using Structured Occurrence Networks 191

Fig. 7. Dataflow fragment, one execution, and SON portraying the execution trace

applications [DGST09]. A dataflow is a system design (a program) in the form
of a graph whose nodes represent executable tasks, and directed arcs denote
data dependencies between a source node (producer) and a sink node (con-
sumer). A basic example is given in Fig. 7(a)8. Part (b) depicts one execution
of this system. The scientific workflow community has been amongst the earliest
and most eager to support provenance recording of workflow outputs, moti-
vated by the need to associate an evidence trail to valuable datasets which are
destined for publication [ABJF06, MMW11, MPB10, KSM+11]. Provenance is
recorded by instrumenting the workflow enactment engine with suitable monitor-
ing
capability.

A possible SON representation of an execution of Fig. 7(b) appears in Fig. 7(c).
Note that a choice has been made to model both workflow tasks (the invoca-
tion of functions f and g) as part of the same system, which represents the
entire workflow execution. As an alternative, one could associate one SON to
each task, a modelling choice that makes it possible to capture the evolution, eg.
represented by software updates, of the tasks themselves. This means that SONs
can be used to seamlessly model both workflow execution traces, workflow tasks,
and their evolution over time. Only a few other documented provenance data
models, including Janus [MSZ+10] and OPMW [GG11] (both of which extend
the Open Provenance Model [MCF+11]) and [LLCF10] support the modelling
of the dataflow itself, in addition to its execution traces. The VisTrails prove-
nance model [SVKF08] is, to the best of our knowledge, the only model that can
describe the evolution of the dataflow, as a tree of its versions.

8 This is a simplified flowchart-like visual depiction. A variety of visual languages are
employed in actual systems.

192 P. Missier, B. Randell, and M. Koutny

3.3 Agents and Their Provenance

As mentioned in the introduction, one of the considerations that make SONs
appealing for encoding execution traces is the uniform representation of the evo-
lution of the data and of the agents that are responsible for its manipulation,
namely both as systems (in this setting, we use the term agent to refer, infor-
mally, to a system, such as a computer or a person, that performs the activities
that account for changes in the state of the data). We have already made the
point that knowledge of the state of agents, and of how that state evolves in re-
sponse to interactions with other systems (including other agents), contributes
to formulating sensible judgments regarding the reliability of the data products
under the agents’ control.

Fig. 8. Alice and Bob collaborate on document editing

Fig. 8 shows an example in which an actor Bob collaborates with Alice in
editing a document. The systems modelling follows our familiar pattern: the F
ON captures the evolution of the file itself, according to activities that occur in
two other ONs (“Bob” and “Alice”). The overall SON unambiguously models
the following situation: “Bob drafts version f1 of file F (he then goes on to
perform other activities that are of no interest here). At some later point in
time, Alice reads the draft f1 and leaves some comments as part of the same
file. This results in a new version f2 of F. Later, Bob reads the comments (this
leaves the file unchanged), then performs additional edits which result in the new
version f3.” This model makes it explicit that Bob does the edits after reading
Alice’s feedback, i.e., while he is in state b3. Contrast this with an alternative
model, shown in Fig. 9, in which Bob is unaware of Alice’s comments when he
performs the editing activity. Arguably, these two models may lead to different
conclusions as to the quality of the final document.

An additional advantage of modelling agents within the SON framework (as
opposed to other approaches, including PROV) is that behavioural abstraction
can be used to expand on the activities that correspond to an agent’s state,

Modelling Provenance Using Structured Occurrence Networks 193

Fig. 9. Bob ignores Alice’s comments

thus revealing further details that may be relevant for judgment. This is shown
in Fig. 10, where Bob’s state ptd (preparing-to-draft) expands into a set of
activities that describe the preparation phase (shown in Fig. 1 as our initial
example). Note that we still do not have a complete picture of how the draft
manuscript was produced: for example, we do not know whether the memo was
actually used during the drafting of the manuscript. We can, however, easily add
this additional information (assuming it is available) by explicitly modelling the
internal memo itself as a system, and then adding appropriate communication
relations amongst the SONs, using our familiar pattern.

Fig. 10. Bob prepares to draft a manuscript

3.4 Modelling Activities with a Finite Duration

So far we have used ON events, which are by definition instantaneous, to model
activities, ignoring that the latter generally span some finite, non-zero time du-
ration. To reconcile this contrast, we introduce a further pattern which makes
use of the temporal abstraction relation (see Sec. 2) as shown in Fig. 11.

194 P. Missier, B. Randell, and M. Koutny

Fig. 11. Representing activities with explicit start and end events, and time

The top ON in the figure includes a new shorthand notation to indicate that
activity f is demarcated by start and end events s and e, respectively. This ON
is mapped to the one in the middle by way of temporal abstraction relations,
following the (graphical) rules set out in Sec. 2. In turn, one can optionally in-
troduce a new ON to represent a time line, and use synchronous communication
relations to associate a time to events s and e. This type of communication re-
lation appears in [KR09]. It indicates that two events in separate ONs in fact
are perceived as occurring simultaneously. Note that this convention leaves the
freedom to introduce multiple time lines to account for events seen by different
observers, possibly using differing clocks.

4 SON and PROV

We conclude our overview of SON-based provenance modelling with an infor-
mal comparison with the PROV provenance model, from the W3C Provenance
Working Group9. We have already remarked earlier (Sec. 1.2) that PROV is not
designed to support multiple abstractions over provenance. In contrast, SONs do
this by supporting an explicit dual view of states and systems, which we have de-
scribed in the paper. We also remarked, in the same section, that it is possible in
PROV to model at the same time the evolution of data and of the agents who are
responsible for it, a feature we have argued for, but that this involves overloading
some of the PROV relations. Indeed, one can assert that agent ag was respon-
sible for activity a: wasAssociatedWith(a,ag), that entity e was generated by
a: wasGeneratedBy(e,a), and because agents can be viewed as entities, which
are therefore are entitled to their own provenance, wasGeneratedBy(ag,a) is a
valid assertion, too. This makes it possible to encode (a simplified version of)
the SON fragment of Fig. 9 (reproduced in Fig. 12(a)), as shown in Fig. 12(b).

9 http://www.w3.org/2011/prov/wiki/Main_Page

http://www.w3.org/2011/prov/wiki/Main_Page

Modelling Provenance Using Structured Occurrence Networks 195

b2

Bob

f2 r f2 w f3

read
feedback editb3 b4

F

edit f3

Bob_b3

wasGeneratedBy

wasAssociatedWith

f2
used

read
feedback

wasGeneratedBy

used

Bob_b2

wasAssociatedWith
wasDerivedFrom

r f2

Bob_b4wasDerivedFrom

wasGeneratedBy

(a)

(b)

Fig. 12. SON and PROV model fragments for the document editing example

In this encoding, ON states are mapped to PROV entities or agents.
In particular, states for agent Bob become agents Bob b2, Bob b3, and
Bob b4. Data evolution through an activity is modelled by used(edit,f2)

and wasGeneratedBy(f3, edit). Because modelling system evolution is not
part of PROV, agent evolution must be encoded using relations such
as wasGeneratedBy(Bob b4, edit), wasDerivedFrom(Bob b4, Bob b3). How-
ever, f3 and Bob b4 are now both “outputs” of edit, despite their different
nature and role, a confusion that can only be resolved by adding properties to
the wasGeneratedBy relations themselves10.

Other differences concern the use of system communication along with state
changes, a SON feature that is missing in PROV and that makes it possible, for
example, to expand the communication links into complex system interactions.

5 Conclusions

In this paper we have presented an initial exploration into the use of Structured
Occurrence Nets as a model for describing the execution traces of interacting
asynchronous systems, and thus as a manifestation of the provenance of data
produced and consumed by those systems. Provenance analysis informs the for-
mulation of judgments regarding the quality and reliability of data products.
SON-based modelling of provenance makes it possible to view agents, in addi-
tion to the data, as evolving interacting systems. This is a distinctive feature
of this modelling approach, which leads to potentially more accurate judgments

10 Additonal subtleties make this pattern less than natural: in PROV, from
wasDerivedFrom(e2,e1) one can infer the existence of an entity e that used e1

and generated e2. This would be edit, which would therefore both use Bob b3 and
be associated with it.

196 P. Missier, B. Randell, and M. Koutny

as the state of agents (programs, or humans) are taken seamlessly into account.
In addition, the formal grounding of Occurrence Nets provides a foundation for
provenance validation and analysis.

We have presented a number of modelling patterns as an informal demon-
stration of the capabilities of the model, and Sec. 4 shows an example of how
it compares with the W3C PROV modelling language for provenance. A more
formal account of the provenance model, as well as a rigorous comparison with
PROV, are left for further work.

References

[ABJF06] Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance Collection Support
in the Kepler Scientific Workflow System. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

[BD87] Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net
theory. Theoretical Computer Science 55(1), 87–136 (1987)

[DGST09] Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-
Science: An overview of workflow system features and capabilities. Future
Generation Computer Systems 25(5), 528–540 (2009)

[GG11] Garijo, D., Gil, Y.: A New Approach for Publishing Workflows: Abstrac-
tions, Standards, and Linked Data. In: Proceedings of the Sixth Work-
shop on Workflows in Support of Large-Scale Science (WORKS 2011),
held in conjunction with SC 2011, Seattle, Washington (2011)

[HSBMR08] Holland, D.A., Seltzer, M.I., Braun, U., Muniswamy-Reddy, K.-K.:
PASSing the provenance challenge. Concurrency and Computation:
Practice and Experience 20, 531–540 (2008)

[HT04] Harel, D., Thiagarajan, P.: Message Sequence Charts. In: Lavagno, L.,
Martin, G., Selic, B. (eds.) UML for Real, pp. 77–105. Springer US (2004)

[KK11] Kleijn, J., Koutny, M.: Causality in Structured Occurrence Nets. In:
Jones, C.B., Lloyd, J.L. (eds.) Dependable and Historic Computing.
LNCS, vol. 6875, pp. 283–297. Springer, Heidelberg (2011)

[KR09] Koutny, M., Randell, B.: Structured Occurrence Nets: A Formalism for
Aiding System Failure Prevention and Analysis Techniques. Fundamenta
Informaticae 97 (2009)

[KSM+11] Koop, D., Santos, E., Mates, P., Vo, H.T., Bonnet, P., Bauer, B., Surer,
B., Troyer, M., Williams, D.N., Tohline, J.E., Freire, J., Silva, C.T.: A
Provenance-Based Infrastructure to Support the Life Cycle of Executable
Papers. Procedia CS 4, 648–657 (2011)

[LLCF10] Lim, C., Lu, S., Chebotko, A., Fotouhi, F.: Prospective and Retrospec-
tive Provenance Collection in Scientific Workflow Environments. In: 2010
IEEE International Conference on Services Computing (SCC), pp. 449–
456 (July 2010)

[LP95] Lee, E.A., Parks, T.M.: Dataflow Process Networks. Memorandum 5,
UC Berkeley EECS Dept. (1995)

[MCF+11] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwas-
nikowska, N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y.,
Stephan, E., Van Den Bussche, J.: The Open Provenance Model — Core
Specification (v1.1). Future Generation Computer Systems 7(21), 743–
756 (2011)

Modelling Provenance Using Structured Occurrence Networks 197

[MMW11] Marinho, A., Murta, L., Werner, C.: ProvManager: a provenance man-
agement system for scientific workflows. Concurrency and Computation:
Practice and Experience, n/a–n/a (2011)

[MPB10] Missier, P., Paton, N., Belhajjame, K.: Fine-grained and efficient lin-
eage querying of collection-based workflow provenance. In: Procs. EDBT,
Lausanne, Switzerland (2010)

[MSZ+10] Missier, P., Sahoo, S.S., Zhao, J., Goble, C., Sheth, A.: Janus: From
Workflows to Semantic Provenance and Linked Open Data. In: McGuin-
ness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS,
vol. 6378, pp. 129–141. Springer, Heidelberg (2010)

[Ran11] Randell, B.: Occurrence Nets Then and Now: The Path to Structured
Occurrence Nets. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS
2011. LNCS, vol. 6709, pp. 1–16. Springer, Heidelberg (2011)

[Sim08] Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: Provenance manage-
ment for data driven workflows. International Journal of Web Services
Research 5(1) (2008)

[SVKF08] Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J.: Querying and Re-Using
Workflows with VisTrails. In: Procs. SIGMOD, pp. 1251–1254 (2008)

DEMO: ourSpaces – A Provenance Enabled

Virtual Research Environment

Peter Edwards, Chris Mellish, Edoardo Pignotti, Kapila Ponnamperuma,
Thomas Bouttaz, Alan Eckhardt, Kate Pangbourne, Lorna Philip,

and John Farrington

Computing Science and Geography & Environment, University of Aberdeen,
Aberdeen AB24 5UA, UK

{p.edwards,c.mellish,e.pignotti,k.ponnamperuma,t.bouttaz,a.eckhardt,
k.pangbourne,l.philip,j.farrington}@abdn.ac.uk

Abstract. In this demo we present ourSpaces, a Virtual Research En-
vironment designed to support inter-disciplinary research teams. This
system has been developed to facilitate collaboration and interaction be-
tween researchers by enabling users to create, visualise and manage the
provenance of research artefacts and processes.

Keywords: provenance, virtual research environment, eResearch.

1 Introduction

Many of the contemporary challenges facing society such as climate change re-
quire researchers from a range of disciplines to work together. Moreover, as
scientific research becomes increasingly interdisciplinary in nature, the need for
technologies that support collaboration and provide access to heterogeneous data
and computational resources becomes ever more critical.

Some of the issues highlighted above have been explored by the PolicyGrid1

project, a collaboration between human geographers and computer scientists as
part of the UK Digital Social Research initiative. As part of this project we have
developed ourSpaces2, a web-based virtual research environment which aims to
provide a collaboration space for interdisciplinary academic research commu-
nities. Groups using ourSpaces work in socio-environmental and health-related
domains and there are currently around 170 registered users. The system is scal-
able and, in principle, applicable to any research/policy domain. A screenshot
of the ourSpaces web interface in presented in Figure 1.

Provenance in ourSpaces is crucial in order to support transparency and ac-
countability of the research process by documenting the derivation history of
research artefacts. The system utilizes a number of Semantic Web technologies

1 This work is supported by the UK Economic & Social Research Council (ESRC)
under the Digital Social Research programme; award RES-149-25-1075.

2 http://www.ourspaces.net

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 198–202, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DEMO: ourSpaces – A Provenance Enabled Virtual Research Environment 199

such as OWL3 and RDF4 in a user interface that shares some of the networking
features of on-line social media.

2 Provenance in ourSpaces

At the heart of ourSpaces is a ontological framework describing different aspects
of the provenance of the research process [1]. An extract of this framework is
illustrated in Figure 2. In order to support basic provenance we use a Web On-
tology Language (OWL) representation of the Open Provenance Model [2]. This
ontology defines the primary entities of OPM as well as the causal relationships
that link them. OPM is a generic solution and as a result, our framework sup-
ports additional domain-specific provenance ontologies that are created by ex-
tending the concepts defined in the OPM ontology with domain-specific classes.
For example, in a social simulation domain ontology one might have a Model as
a type of artefact and a Simulation Experiment as a type of process. To date
we have developed a number of domain-specific provenance ontologies describing
aspects of Human Geography and Social Simulation. Using these ontologies it is
possible, for example, to describe a physical research activity (e.g. an interview)
as an opm:Process, and how such an activity causes an opm:Artifact to be
generated (e.g. interview notes).

For research groups utilising ourSpaces, it is important to situate research arte-
facts and processes alongside people and their associated organisational struc-
tures. The current OPM specification supports limited information about a per-
son (agent) controlling a process; there is also little regard for the wider social
context. Friend-of-a-Friend5 (FOAF) is an established RDF vocabulary for de-
scribing people and their social networks and we have opted to utilise this within
our framework; a foaf:Profile is thus a subclass of the opm:Agent.

In an environment like ourSpaces, online communication is often used to com-
ment about research artefacts or to discuss research issues. Documenting this
process in the VRE it is also a crucial requirement for achieving a full and trans-
parent provenance representation. The SIOC6 (Semantically-Interlinked Online
Communities) ontology is designed to describe aspects of online communication
by providing a model to express user-generated content such as posting a mes-
sage in a blog or posting a comment. We have also integrated this vocabulary
within our provenance framework, e.g. a sioc:post generated by a foaf:user

can be associated with an opm:Artifact, opm:Process or opm:Agent.
Provenance produced in ourSpaces is stored in a repository in the form of

RDF statements. Within the system we have developed a service enabling users
to visualise short textual descriptions of the provenance of resources. This ser-
vice translates RDF statements into English sentences, based on the approach
described by Bouttaz et al. [3].

3 http://www.w3.org/TR/owl-ref/
4 http://www.w3.org/RDF/
5 http://www.foaf-project.org/
6 http://sioc-project.org/

200 P. Edwards et al.

Fig. 1. A screenshot of the ourSpaces VRE showing a user’s home space, an open
upload form and the graphical provenance visualiser

Within the environment, there is also a need to manage users and their be-
haviours so that they comply with certain policies. For example, a user may
impose certain access constraints on digital artefacts that he/she owns, e.g. an
artefact may only be accessible to people in my social network. Provenance pro-
vides useful contextual information to trigger such policies and influence their
outcome. For example, provenance would be useful in order to determine the
relationship between a restricted artefact and the person requesting access to
it. An artefact may only be accessible to users who are members of a particu-
lar project and who contributed towards the creation of the artefact (i.e. were
named as a co-author).

We have extended our provenance framework to define such policies as a
combination of conditions such as obligations, prohibitions or permissions [4].

DEMO: ourSpaces – A Provenance Enabled Virtual Research Environment 201

We make use of the SPIN ontology [5] to support the use of the SPARQL query
language to specify rules and logical constraints necessary to reason about poli-
cies. The SPIN ontology allows SPARQL queries to be represented in RDF and
associated to classes in an ontology using two pre-defined description properties:
spin:constraint can be used to define conditions that all members of a class
must fulfil; spin:rule can be used to specify inference rules using SPARQL
CONSTRUCT, DELETE and INSERT statements.

In order to support this policy framework in ourSpaces we have developed
an event manager service designed to monitor events taking place in the envi-
ronment, e.g. download/upload artefact, add/remove metadata, etc. When an
activity is detected, the event manager initiates a policy session. The PolicyRea-
soner checks if any of the policies stored in the policy repository can be activated
by running the SPIN reasoner against the spin:rule instances associated with
the policies and stores the outcome of the activation in the policy session. In or-
der to reason about obligation, permission or prohibition conditions we require a
reasoning mechanism able to check conditions over a provenance graph.This can
be seen as a semantic matchmaking problem where a functional description of a
condition is matched to a subset of a provenance graph. This is done by evalu-
ating each condition defined as a spin:rule. For an obligation, conditions have
to be met; for a prohibition, the condition cannot be met; and for a permission,
the condition might (or might not) be met.

Using this approach in ourSpaces we were able to implement a number of
policies for use by the project teams using the system. For example, one of the
policies specifies the kind of metadata required for artefacts that will be archived
to the UK social science data archive - UKDA7. More specifically, a policy as-
sociated with an interview transcript requires the user to provide information
about the provenance of the interview process if this is not already documented
in the provenance graph. We have also implemented policies to control the re-use
of resources within the VRE. In this context provenance is crucial in order to
allow the creation of policies that reason about the derivation of an artefact. For
example, in the map visualisation space, only publicly available data (including
its sources) can be visualised as stated by the conditions of use of the OS Open
Space map service8 which is integrated into ourSpaces.

3 Demonstration Content

During the demonstration, we will present the ourSpaces virtual research envi-
ronment. Key features of the system will be demonstrated such as creation of
provenance, provenance policies, visualisation of provenance, provenance of so-
cial networks and provenance querying. A video podcast of the demo is available
at: http://www.ourspaces.net/ourSpacesDemo.mov

7 http://www.data-archive.ac.uk/
8 http://openspace.ordnancesurvey.co.uk/

202 P. Edwards et al.

opm:Artifact

opm:Agentopm:Process

Provenance

CausalRelation
hasCause
hasEffect

hasCause
hasEffect

hasCause
hasEffect

foaf:Person

sioc:Post

sioc:creatorOf

sioc:about

foaf:knows

Social Networking

Events

Event

Communication
Action

QueryAction

Resource
Action

StateChange
Action

basedOnEventbasedOnEvent

Policy

ActivationCondition

PolicyCondition

Obligation

Prohibition

Permission

hasActivation*

hasCondition*

Authority

hasAuthority

PolicyActivation ActionRequest

activePolicy

aboutResource

owl:Thing

basedOnCondition

Policy

spin:Construct

spin:Construct

Fig. 2. An extract of the ourSpaces ontological framework

References

1. Pignotti, E., Edwards, P., Reid, R.: A Multi-faceted Provenance Solution for Science
on the Web. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010.
LNCS, vol. 6378, pp. 295–297. Springer, Heidelberg (2010)

2. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Buss-
che, J.V.: The open provenance model core specification (v1.1). Future Generation
Computer Systems (July 2010)

3. Bouttaz, T., Pignotti, E., Mellish, C., Edwards, P.: A policy-based approach to con-
text dependent natural language generation. In: Proceedings of the 13th European
Workshop on Natural Language Generation, Nancy, France, pp. 151–157. Associa-
tion for Computational Linguistics (September 2011)

4. Pignotti, E., Edwards, P.: Using web services and policies within a social platform
to support collaborative research. In: Working Notes of AAAI 2012 Stanford Spring
Symposium on Intelligent Web Services Meet Social Computing (March 2012)

5. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - Overview and Motivation. Tech-
nical report, W3C Member Submission (2011)

SOLE: Linking Research Papers with Science Objects

Quan Pham1, Tanu Malik2, Ian Foster1,2, Roberto Di Lauro3, and Raffaele Montella3

1 Department of Computer Science, University of Chicago, Chicago, IL 60637
2 Computation Institute, University of Chicago, Chicago, IL 60637

3 Department of Applied Science, University of Napoli Parthenope, Napoli, 80143
quanpt@cs.uchicago.edu, tanum@ci.uchicago.edu

Abstract. We introduce Science Object Linking and Embedding (SOLE), a tool
for linking research papers with associated science objects, such as source codes,
datasets, annotations, workflows, packages, and virtual machine images. The ob-
jective of SOLE is to reduce the cost to an author of linking research papers with
such science objects for the purpose of reproducible research. To this end, SOLE
allows an author to use simple tags to delimit a science object to be associated
with a research paper. It creates an adequate representation of the science ob-
ject and manages a bibliography-like specification of science objects. Authors
and readers can reference elements of this bibliography and associate them with
phrases in the text of the research paper through a Web interface, in a similar
manner to a traditional bibliography tool.

1 Introduction

Prior to the computational driven revolution in science, research papers provided the
primary mechanism for sharing data. Papers summarized experiments involving small
amount of data, derivations on that data, and associated methods and algorithms. Read-
ers reproduced results through physical experimentation, hand calculation, and/or log-
ical argument. But as scientific methods have become increasingly computational, in-
volving large quantities of data, complex data manipulation and/or numerical simula-
tion, and the use of large and often distributed software stacks, the paper often merely
summarizes rather than describes the data and computation. A reader wanting to under-
stand the paper fully requires access to further digital materials. Input and output data
may be shared through websites and software may be made available through packages
or virtual machine images. Such indirect linkages, however, are typically disconnected
from the claims and the results in the paper–not allowing, for example, an equation in a
paper to be mapped directly to its implementation.

With the growing emphasis on reproducible research, readers and reviewers increas-
ingly often want to be able to assess the validity of findings and to verify results. Con-
sequently, indirect linkages are not sufficient. Instead, we would like digital materials
associated with the works described in a paper–what we term here the paper’s science
objects–to be closely associated with the text so that they can be accessed while reading
the paper. Examples of such associations are linking a concept described in the paper
to its implementation in source code; linking a description of a dataset to its metadata
and digital object identifiers (DOIs); linking a figure in the paper to its derivation and

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 203–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

204 Q. Pham et al.

workflow, and linking data values referenced from another paper sources to the exact
location in that other paper’s PDF source.

While associating papers with science objects at this fine granularity may be desir-
able, the realization of this goal introduces at least three challenges. First, we face the
need to transform each science object into a form amenable to linkage with a paper.
In our work, this means that important classes and functions in source code files must
be associated with URLs and that datasets must be recorded in registries that specify
dataset locations and access methods. It also means that data analysis pipelines must be
cast as workflows with appropriate wrappers and web services that specify inputs and
functional forms, or alternatively associated with software on a adequately provisioned
virtual image. A second challenge concerns the manner in which linkages are repre-
sented in papers. Using URLs to refer to science objects is often unwieldy, especially
when an object is referenced multiple times. A third challenge relates to presentation:
Clicking on a science object link should lead to adequate presentation to the user.

We demonstrate Science Object Linking and Embedding (SOLE), a system [15] that
eases the process of linking research papers with science objects, such as source codes,
datasets, workflows, and virtual images. Authors identify science objects with human-
readable tags; SOLE converts each tagged science object into an associated linked data
object with an associated URI. For ease of management, the tags, URIs, and accom-
panying representation are maintained in a registry: what is, in effect, a science object
bibliography. To aid authors with the linking process, SOLE also provides a web inter-
face that allows authors to associate groups of words in a research paper with one or
more science object tags. Clicking a link in the text results in the display of an appro-
priate representation of the science object.

In the remainder of this article, we describe how SOLE works to ease author burden
and demonstrate how SOLE has been used to enable reproducible research in the RD-
CEP project [4] in which research papers must be associated with several computational
products.

2 Related Work

It is widely recognized that currently there is a lack of suitable incentives that attribute
scientists for conducting reproducible research. However, the merits of conducting re-
producible research are also widely accepted–it leads to scientific methods which have
higher transparency and are more open. To improve transparency of research papers,
some projects have demonstrated the concept of reproducible research paper by fo-
cussing on one or more aspects. Utopia [1] reproduces paper by associating concepts
in paper with external annotations retrieved from an online meta data store. Annota-
tions are publicly shared and readers can further comment upon them. Vistrails [9]
creates reproducible papers by associating figures and results in the paper with exe-
cutable components. It allows authors to publish workflows and associated provenance
and hyperlink to it in a result or figure in the article. Sweave [14] and Dexy [6] are
literate programming environments, which if adopted from the beginning of the scien-
tific process can lead to papers with embedded source code and derived results. SOLE
is particularly targeted towards authors for whom experimentation and writing research

SOLE: Linking Research Papers with Science Objects 205

papers continue to remain separate activities, but would like a less burdensome, yet effi-
cient mechanism to associate their research papers post-hoc with the inputs and outputs
of the scientific process. SOLE has similar goals as provided by websites such as Run-
MyCode.org [13], but provides the ability to associate a wider class of scientific inputs
and outputs at a finer control.

3 SOLE

SOLE provides command-line tools for authors to create science objects, and a web-
based interface for authors and readers to associate phrases in the paper with their cor-
responding science objects. To create a science object in SOLE, the author puts a tag on
the science object with the following syntax:

begin type name1| . . . |namen
[science object content]
end
in which begin and end are delimiters of the tag, type defines the kind of science object
to create, and name1 to namen are user-defined names. Thus, the same object can be
tagged by more than one name. SOLE processes a tagged file and based on tag type
definitions creates a science object, which associates a set of metadata elements repre-
senting the object, including a reference to the object as a URI. Authors can place tags
on source codes and text files to create SOs, such as source code snippets, annotations
in PDFs, units of a workflow that can be executed on a given environment, and virtual
machine images, described later in the section. After creation of a variety of science
objects, authors/readers can load the paper in HTML format and associate phrases in
the text with the name of the tag.

In SOLE, four kinds of science objects can currently be created and linked:

Language Objects. The author can import a local source code repository or a public
domain code repository, such as Github, to create URIs for language objects defined in
the source. Internally, SOLE uses Ctags [5] to create tags for language objects in a file,
but appends a URI to the language objects. We have expanded the Ctags utility to allow
users to tag more than one language object as a single object to be referenced in a paper.
This is useful when an algorithm in a paper must be associated with multiple functions
and data structure specifications defined in multiple files.

Annotated PDFs and Datasets. SOLE uses the Poppler library [12] to extract tagged
annotations from PDF. The metadata of the tagged annotation includes the URI of the
PDF, the exact location in the pdf where annotation was made, and the annotated text.
Tagging of a dataset, should ideally retrieve the metadata associated with the dataset, as-
sociate a DOI, and provide some methods for data access. However, developing generic
tags for all types of datasets is challenging since datasets exist in a variety of formats,
and with a wide variety of access tools. Currently, an author can tag the metadata file of
NetCDF and ASCII datasets to generate a corresponding URI on the entire dataset. We
plan to make dataset tags more versatile by integrating them with DOIs.

Web Services. SOLE creates a web-service specification of functions specified by a
user. The functions are delimited in the source file by inserting tags with the workflow

206 Q. Pham et al.

Fig. 1. Figure 1 demonstrates the three easy steps that an author follows to create and associate
science objects in SOLE. The author first tags the function aggregateFractions in their source
code with the user-defined tag name “aggregate” (step 1); then runs SOLE as command line tool
to create the necessary metadata (step 2); and finally associates the phrase “Aggregate’ in the
paper with the tag and views the specification of the object (step 3).

tagtype. SOLE creates workflow specifications as Galaxy tools, with description about
inputs and outputs. Galaxy provides an open, web-based platform for specifying tools
and running computational experiments as workflows[10]. Each function is automati-
cally wrapped as an appropriate Galaxy tool definition and hosted on the web-server
instance connected with Galaxy. Authors can further specify if web services should
accept user specified parameters and types of data.

Virtual images. Authors can also create packages of a source directory, using different
package managers, and then with a single click deploy those packages on a virtual ma-
chine hosted on a cloud, and obtain a URI that includes machine ID and parameters for
the package to be executed. To conduct this operation, SOLE must be configured with
the user’s account on a cloud infrastructure such as Amazon. SOLE uses a configuration
file to specify the package and deploys on the image using recipes in provisioning tools.

The science object URI and its tag is stored in FluidInfo [7], a key-value data store
that stores tags for a variety of data objects and provides a simple query language to
allow users to search the datastore for specific tags and tag-values.

SOLE: Linking Research Papers with Science Objects 207

4 Demonstration Scenario

The Center for Robust Decision making on Climate and Energy Policy (RDCEP) [4] is a
collaborative, multi-institutional project that aims to improve the computational models
needed to evaluate climate and energy policies and to make robust decisions based on
outcomes. Sharing science objects in the form of data, tools, and software is critical;
it enables scientists to compare models and to build more accurate models. Currently
in RDCEP science objects are shared through a web site. Our demonstration scenario
consists of two documents [2,11] produced within the Center which we link with their
respective science objects, using SOLE

Scenario 1: To reproduce the first document [2] (a master’s thesis; see also the associ-
ated paper [3]), the author must associate the text and embedded figures with science
objects that include datasets, algorithmic descriptions, computational analysis work-
flows, and workflow executions. The author tags each science object to create web ac-
cessible resources in the form of HTML fragments and web services. The resulting
object representations are maintained in the SOLE database.

Scenario 2: To reproduce the second paper [11], the author must associate descriptions
in the paper with a set of data values, each of which is embedded in another research
paper. We demonstrate that authors can insert an annotations on the PDF, tag it, then use
SOLE on PDF files to generate URIs on tagged annotations, and and finally associate
with phrases in the research paper.

5 Conclusion

SOLE eases the management and creation of digital objects associated with scientific
experiments and associating the objects with research papers. Demonstrated in the do-
main of policy science, SOLE uses general features and interfaces such as tagging and
Galaxy. With minimal effort it can also be applied to other domains such as biology,
astronomy, and the geosciences. SOLE is currently under development and will be re-
leased to a broader audience at a later date. In the future, we plan to interface SOLE to
Globus Online [8] to enable authors to create a richer reproducible environment.

Acknowledgements. We thank Neil Best for the insightful discussions on conduct-
ing reproducible research. This work was supported in part by the Center for Robust
Decision making on Climate and Energy Policy, under NSF grant number 0951576.

References

1. Attwood, T.K., et al.: Utopia Documents: linking scholarly literature with research data. In:
European Conference on Computational Biology, Ghent, Belgium (September 2010)

2. Best, N.: Synthesis of a complete land use/land cover data set for the conterminous United
States emphasizing accuracy in area and distribution of agricultural activity, Master’s Thesis,
Northeastern Illinois University (2011)

208 Q. Pham et al.

3. Best, N., Elliott, J., Foster, I.: Synthesis of a complete land use/land cover data set for the
conterminous United States. RDCEP, Working Paper 12-08,
http://dx.doi.org/10.2139/ssrn.2051158

4. Center for Robust Decision making on Climate and Energy Policy (RDCEP),
http://www.rdcep.org/

5. Ctags, http://ctags.sourceforge.net/ctags.html
6. Dexy, http://www.dexy.it/
7. FluidInfo, http://fluidinfo.com/
8. Foster, I.: Globus Online: Accelerating and democratizing science through cloud-based ser-

vices. IEEE Internet Computing, 70–73 (May/June 2011)
9. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing

Rapidly-Evolving Scientific Workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

10. Goecks, J., Nekrutenko, A., Taylor, J., The Galaxy Team: Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol. 11(8), R86 (2010)

11. Johnson, S., Moyer, E.: Feasibility of U.S. Renewable Portfolio Standards Un-
der Cost Caps and Case Study for Illinois. RDCEP, Working Paper 12-07,
http://dx.doi.org/10.2139/ssrn.1996621

12. Poppler, http://poppler.freedesktop.org/
13. Run My Code, http://www.runmycode.org
14. Leisch, F.: Sweave, Part I: Mixing R and LaTeX: A short introduction to the Sweave file

format and corresponding R functions. R News 2(3), 28–31
15. Science Object Linking and Embedding (SOLE),

http://www.ci.uchicago.edu/SOLE

http://dx.doi.org/10.2139/ssrn.2051158
http://www.rdcep.org/
http://ctags.sourceforge.net/ctags.html
http://www.dexy.it/
http://fluidinfo.com/
http://dx.doi.org/10.2139/ssrn.1996621
http://poppler.freedesktop.org/
http://www.runmycode.org
http://www.ci.uchicago.edu/SOLE

DEMO: Managing the Provenance

of Crowdsourced Disruption Reports�

Milan Markovic, Peter Edwards, David Corsar, and Jeff Z. Pan

Computing Science dot.rural Digital Economy Hub, University of Aberdeen,
Aberdeen, AB24 5UA

{m.markovic,p.edwards,dcorsar,j.z.pan}@abdn.ac.uk

Abstract. Human computation systems that outsource tasks to the
crowd often have to address issues associated with the quality of con-
tributions. We are exploring the potential role of provenance to facilitate
processes such as quality assessment within such systems. In this demo we
present an application for managing traffic disruption reports generated
by the crowd, and outline the technologies used to integrate provenance,
linked data, and streams.

1 Introduction

Part of the original vision for the World Wide Web described by Berners-Lee
and Fischetti in Weaving the Web [2] was the creation of a human network
that would make it possible to create abstract social machines on the Web.
These machines are described as: “processes in which the people do the creative
work and the machine does the administration...”. This is very similar to the
human-based computation concept [5], where certain steps of a computational
process are outsourced to humans. Both these visions of the web create a need
for an infrastructure to handle the incorporation of human elements within a
larger social computing ecosystem. Hendler [3] noted that early social machines
already exist on the Web in the form of interactive applications (e.g. Wikipedia1).
Hendler also highlighted that these applications are limited as their functions
are largely isolated from one another (e.g. they are unable to easily share data).
We argue that this limitation could be addressed by emerging practices such
as linked data [1] - a set of principles for consuming and publishing machine-
readable data on the web.

One of the ways of obtaining human input is through harvesting of so-called
collective intelligence via crowdsourcing methods. Systems using crowdsourcing
typically rely on large, diverse crowds, where the number of error generating
individuals is small, resulting in minimal effect to overall system performance.

� The research described here is supported by the award made by the RCUK Dig-
ital Economy programme to the dot.rural Digital Economy Hub; award reference:
EP/G066051/1.

1 http://wikipedia.org

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 209–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 M. Markovic et al.

However, in situations where the crowd size is small (perhaps because of the
nature of the task or a limited population of potential participants) the po-
tential for adverse effects caused by unreliable individuals is significant. Within
such systems it is therefore critical to reason about the quality of contribu-
tions. We propose a solution to facilitate such reasoning operations based on the
maintenance of a provenance record within the crowdsourcing system. In this
context provenance would mean a record of the data generated/maintained by
the crowd and the process(es) involved. Another important characteristic of such
applications is their dynamic nature, with participants creating, maintaining or
validating data continuously over time. We argue that participant interactions
should therefore be modelled as a continuous stream of data elements published
in compliance with the Linked Data Principles [4]. This necessitates a provenance
solution able to interoperate with such streams.

2 Application Scenario

Travel disruption is not easy to predict and even monitoring of disruption poses
some challenges (e.g. how to obtain information from the site of an incident). A
crowdsourcing application able to gather, manage, and assess disruption reports
would provide an obvious solution. For example, consider a system that allows
participants to report travel disruption events (e.g. an accident on a particu-
lar route) from their mobile device. In addition, they are able to perform other
tasks such as the creation of links between disruption reports or validation of
data provided by others (evaluation). By linking here we mean the identification
of relationships between disruption reports (e.g. queuing traffic caused by an
incident five miles ahead). However, this data alone does not provide important
contextual detail such as who created it, who performed a maintenance opera-
tion, when and how it was performed - all of which are useful when assessing
the credibility of participants and the data they contribute. We argue that the
provenance record should be able to provide this context, by capturing informa-
tion about participants and their activities. For example, user John linked two
disruption reports as related, but in the past links created by him have always
been subsequently reported as incorrect by others.

A disruption event report is likely to trigger a stream of data relating to this
event (such as other disruption reports, or validation reports). It is therefore
entirely natural to represent these data as a stream of elements, with participants
contributing to a stream about a particular event (e.g. an incident on route A90).
A system utilising the crowd to manage travel disruption would thus need to
be built around a set of such streams. Capturing the provenance of a stream
object (e.g. the disruption report that initiated the stream) and the provenance
of stream elements (e.g. who created a specific data element, or created a link
between elements) would provide additional context to support reasoning about
the quality of the data on the stream.

DEMO: Managing the Provenance of Crowdsourced Disruption Reports 211

3 System Architecture

We have constructed a system that is able to gather and manage disruption
reports from the crowd, and to capture the provenance of these activities; the
architecture of this system is shown in Figure 1. A mobile client application
(Figure 2) was built using the jQuery Mobile2 and OpenLayers3 library. The
client collects information from the crowd and communicates crowdsourced re-
sults back to users. It is optimised for use on touch screen mobile devices and
supports the following functionality: creation of disruption reports, creation of
validation reports, creation of reports about relationships (links) between two
disruption reports, visualisation of other reports and their links.

External DatasetsTriple Store

Web Server

Data

 Data Creation
Service

Stream
Service

Provenance
Service

Data Query
Service

Data
Maintenance

Service

Road Network

Report
Assessment

Service

Crowd

Fig. 1. Provenance-enabled travel disruption system architecture

Fig. 2. A mobile client application

The server-side framework was built as a set of RESTful web services. The
data within the system is stored in a TDB4 triple store, and accessed via a
Fuseki5 SPARQL6 endpoint. The framework is responsible for managing reports

2 http://jquerymobile.com/
3 http://openlayers.org/
4 http://jena.apache.org/documentation/tdb/
5 http://jena.apache.org/documentation/serving data/
6 http://www.w3.org/TR/rdf-sparql-query/

212 M. Markovic et al.

created by the mobile client application, managing the provenance of operations
within the system, and the storage of this data (both the reports and their
provenance). The stream service manages the creation of streams (as an ordered
sequence of elements) and is responsible for handling stream operations such as:
registering/unregistering queries; inserting reports (with associated provenance);
and closing/deleting streams. Stream elements consist of the Unique Resource
Identifier that refers to the data stored in a triple store. The provenance ser-
vice generates annotations and is described further in section 3.2. The report
assessment service (described in section 3.3) assesses and annotates reports gen-
erated by the crowd. Disruption reports are represented using a travel disruption
ontology, describing a set of concepts from the domain of transport and travel
disruption; this ontology was developed following a review of a number of UK
travel information services.

3.1 Data Integration

To provide additional contextual information about a report, the system auto-
matically records a timestamp, user location (from the phone’s GPS receiver),
the error associated with the location, and the result of reverse geocoding the
location. Each report is thus a combination of this data and the data directly
contributed by the participant. When the system receives a report, if a stream
already exists for reports in that location (e.g. the street/road), then the re-
port is added to that stream; otherwise, a new stream is created. Some reports
(e.g. validation) explicitly state the relationship to an existing report, and are
therefore added to the same stream as the report to which they refer.

3.2 Provenance Information

Three components within the system either manage or use provenance infor-
mation: the provenance service, the stream service, and the report assessment
service. Two types of provenance annotations are generated by the provenance
service and are stored in a triple store: data provenance and stream provenance.
Data provenance is generated in response to a number of events: when data is
created; when data arrives from the client; or when links between disruption re-
ports are created. The data provenance record7 then contains information such
as the agent that created the report, the activities involved in creating the re-
port (e.g. acquiring the agent’s location, uploading from the client application,
and subsequent processing by the web service), and the entities used/generated
by these activities. Stream provenance is generated in response to: creation of
a new stream; closing a stream; and data being added to a stream. The stream
provenance record then contains information such as the activities that triggered
the creation/closing of a stream, the activities that added elements to a stream,
and the entities used by those activities (e.g. the report that was received).

7 Expressed using terms from the provenance model being developed by the W3C
Provenance Working Group (http://www.w3.org/2011/prov)

DEMO: Managing the Provenance of Crowdsourced Disruption Reports 213

3.3 Report Assessment

The report assessment service performs evaluation of the submitted reports us-
ing the provenance record and other contextual information (other reports, and
links between reports). Currently we have implemented two prototype metrics
within the service. The first metric is based on the distance between the reported
disruption and the participant providing the report: the greater the distance be-
tween the location of the incident being reported and the location of the user
reporting it, the lower the reliability of that report. The second metric uses a
simple reputation model for the report creator, based on how previous reports
generated by that user have been validated by others. For example, if a user cre-
ates a disruption report, which is later validated as correct by others, that user’s
reputation for creating disruption reports will increase. However, if others claim
the report is incorrect, then the reputation decreases. As every disruption event
has a limited lifespan, only validation reports received within that time period
should be used when building the reputation of a participant. However, as each
disruption event has a different duration, we are investigating how to incorporate
crowdsourcing the end of disruption events into the client application.

During the demonstration the following features of the client application and
travel disruption framework will be presented: observation (disruption report)
contribution via the client application to highlight our ontology-driven solution
for creation of the reports and generation of associated provenance data; vali-
dation of disruption reports via the client application; creation of links between
related disruption reports and provenance associated with this process; reason-
ing with provenance within the system to identify unreliable disruption reports;
and visualisation of the crowdsourced results via the client application.

References

1. Berners-Lee, T.: Linked data, http://www.w3.org/DesignIssues/LinkedData.html
(accessed March 10, 2012)

2. Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate
destiny of the World Wide Web. Harper Collins, NY (1999)

3. Hendler, J., Berners-Lee, T.: From the semantic web to social machines: A research
challenge for AI on the world wide web. Artificial Intelligence 174(2), 156–161 (2009)

4. Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: 2nd Interna-
tional Workshop on Semantic Sensor Networks (SSN), Washington, DC, US (2009)

5. von Ahn, L.: Human Computation. PhD thesis, Carnegie Mellon University (2005)

http://www.w3.org/DesignIssues/LinkedData.html

Designing a Provenance-Based Climate Data

Analysis Application

Emanuele Santos1, David Koop1, Thomas Maxwell2, Charles Doutriaux3,
Tommy Ellqvist1, Gerald Potter2, Juliana Freire1, Dean Williams3,

and Cláudio T. Silva1

1 Polytechnic Institute of New York University
2 NASA Goddard Space Flight Center

3 Lawrence Livermore National Laboratory
http://uv-cdat.llnl.gov/

Abstract. Climate scientists have made substantial progress in under-
standing Earth’s climate system, particularly at global and continental
scales. Climate research is now focused on understanding climate changes
over wider ranges of time and space scales. These efforts are generating
ultra-scale data sets at very high spatial resolution. An insightful analy-
sis in climate science depends on using software tools to discover, access,
manipulate, and visualize the data sets of interest. These data explo-
ration tasks can be complex and time-consuming, and they frequently
involve many resources from both the modeling and observational climate
communities. Because of the complexity of the explorations, provenance
is critical, allowing scientists to ensure reproducibility, revisit existing
computational pipelines, and more easily share analyses and results. In
addition, as the results of this work can impact policy, having prove-
nance available is important for decision-making. In this paper we de-
scribe, UV-CDAT, a workflow-based, provenance-enabled system that
integrates climate data analysis libraries and visualization tools in an
end-to-end application, making it easier for scientists to integrate and
use a wide array of tools.

1 Introduction

This is the first paper describing capabilities of the newly developed UV-CDAT
system, an advanced application that can locally and remotely access ultra-scale
climate data archives, provide high-performance parallel analysis and visualiza-
tion capabilities to the desktop of a climate scientist, and ultimately, apply these
tools to make informed decisions on meeting the energy needs of the nation and
the world in light of climate change consequences. UV-CDAT has been devel-
oped in response to the needs of scientists for access, analysis, and visualization
to computer model output resulting from high-resolution, long-term, climate
change projections performed as part of the U.S. Global Change Research Pro-
gram. This program is funding a multi-agency effort towards the modeling and
simulation of long-term climate change, and for the past several years, this effort

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 214–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://uv-cdat.llnl.gov/

Designing a Provenance-Based Climate Data Analysis Application 215

has been an extremely important resource for the research community. As an
example of the research progress that has been enabled under this effort, the
DOE BER-funded Program for Climate Model Diagnosis and Intercomparison
(PCMDI) has collected and disseminated Model Intercomparison Project (MIP)
simulation output from most of the world’s premier climate modeling centers,
including the Coupled Model Intercomparison Project, phase 3 (CMIP-3) collec-
tions which encompass over 35 terabytes (TB) of data, and more than 1 petabyte
(PB) of CMIP-3 data has been distributed to over 4,300 users worldwide, re-
sulting in over 600 peer-reviewed publications evaluating and using simulations
from these state-of-the-art climate models.

Leading domain-specific tools [3, 5, 8], such as Climate Data Analysis Tools
(CDAT) lack a number of desirable features to enable the analysis of this data.
In particular, CDAT is ill-equipped to process very large data sets resulting from
future high-resolution climate model simulations, and it lacks provenance and
workflow functionality [4,6] that are key to ensure that results are reproducible
and easily accessible across the climate research community. UV-CDAT is built
on top of a provenance-enabled workflow system, and all its functionality is in-
tegrated through either tightly coupled or loosely coupled software components.
This model has allowed us to create a modular design that easily supports the in-
tegration of major new packages (and related functionality) in a matter of a few
days versus months of efforts rewriting the guts of the system to accommodate
for the new software.

To summarize, our main contribution in this paper is to describe the UV-
CDAT system, the first provenance-enabled end-user visualization and analysis
tool. UV-CDAT presents a novel architecture that seamlessly integrates work-
flows, provenance, climate data analysis libraries, and visualization tools in an
end-to-end application.

2 UV-CDAT Overview

There are quite a number of components to UV-CDAT, and it is out of the
scope of this paper to provide a complete description of the system. We focus
on the provenance support, and on how this was enabled in a GUI-based end-
user application. Below we provide a rough overview of the system. UV-CDAT
is available for downloading from http://uv-cdat.llnl.gov/. UV-CDAT is a
workflow-based, provenance-enabled system that integrates climate data analysis
libraries and visualization tools in an end-to-end application.

The UV-CDAT framework integrates software infrastructure through two
primary means (Figure 1). Tightly coupled integration of CDAT Core, VCS
and VTK/ParaView infrastructure provides high-performance parallel stream-
ing data analysis and visualization of massive climate data sets. Loosely coupled
integration provides the flexibility to use tools such as VisIt, ParaView, R, and
MatLab for data analysis and visualization as well as to apply customized data
analysis applications within an integrated environment without modifying the
main system. VisTrails provides a package mechanism to allow developers to
expose their libraries (written in any language) to the system by a thin Python

http://uv-cdat.llnl.gov/

216 E. Santos et al.

UV-CDAT

VisTrails

Provenance Storage

Pa
ck

ag
e

Su
pp

or
t

Pa
ck

ag
e

Su
pp

or
t

CDAT Core

VCS

VTK/ParaView

Workflow
Builder

UV-CDAT
GUI Scripting

R

VisIt

ParaView

Loosely Coupled
Integration

Tightly Coupled
Integration

MatLab

Fig. 1. UV-CDAT system architecture

interface through a set of VisTrails modules [2]. In particular, the DV3D [7]
system was integrated into UV-CDAT using this mechanism. DV3D provides
the high-level interfaces and tools required to make the analysis and visualiza-
tion power of VTK readily accessible to users without exposing visualization
technical details. Within both paradigms, UV-CDAT provides data provenance
capture and mechanisms to support data analysis via the VisTrails infrastruc-
ture. Users are able to interact with the system using any of the elements in the
top layer: the UV-CDAT GUI, VisTrails’ workflow builder or Python scripts.
The UV-CDAT GUI, the main window for UV-CDAT, is shown in Figure 2.
It is based on a spreadsheet (middle), a resizable grid where each cell contains
a visualization. By using intuitive drag-and-drop operations, visualizations can
be created, modified, copied, rearranged, and compared. Spreadsheets maintain
their provenance and can be saved and reloaded. Around the spreadsheet are
the tools for building visualizations. The project view (top left) allows you to
group spreadsheets into projects, and to name visualizations and spreadsheets.
The plot view (bottom left) allows you to use and customize your available plot
types. The variable view (top right) allows you to use and edit data variables.
The bottom right contains a variable editor widget, making editing a variable
similar to using a pocket calculator.

3 UV-CDAT Provenance

One of the key concerns in the design of UV-CDAT was integrating functionality
from different sources in a way so that the provenance would be generally un-
derstandable. The two core components in accessing and visualizing information
in UV-CDAT are variables and plots. A variable represents data that may be
either the original data from a model or capture or the result of transforming,
combining, or filtering some other data. There are many operations that allow
the creation of a new variable from existing variables. A plot is a computation
that generates a visualization given an input variable. In addition, it has many
parameters that control the appearance of the visualization.

UV-CDAT uses the same change-based provenance to capture changes to com-
putations as VisTrails, but users can work in an interface that is tailored to cli-

Designing a Provenance-Based Climate Data Analysis Application 217

Fig. 2. UV-CDAT Main Window. Spreadsheet (middle), Project View (top left), Plot
View (bottom left), Variable View (top right), and Calculator (bottom right)

mate data analysis and exploration. In order to capture provenance, UV-CDAT
translates the components of the variables and plots into workflowmodules which
are automatically stored in a provenance format similar to VisTrails. UV-CDAT
also uses the VisTrails infrastructure to capture execution provenance, capturing
and storing it via the workflow execution engine. Another key requirement in the
design of UV-CDAT was scripting support. We extended the provenance model
to automatically generate Python scripts from the stored workflow provenance.

4 Using UV-CDAT as an End-to-End Analysis Tool

As a case study, we present an example of how UV-CDAT is used by a climate
scientist performing data exploration and visualization. Some video tutorials can
be found on http://uv-cdat.llnl.gov/. The scientist is looking at data from
paleoclimate runs on the CCSM3 [1]. The user wants to determine if the vari-
ance of the DJF (December-January-February average) 500 hPa heights changes
from two different paleoclimate simulations. This should give an indication of
the changing location of storm track and could be a test of what happens to
extratropical storm tracks in a warming earth. The scientist will also need to be
able to do the same analysis for many different periods in the past. The list of
steps performed in the analysis are the following:

1. Data discovery: The metadata for the daily model output from the model
runs are examined to find the variables.

2. Select a region of interest. For example, the West Coast of the US.
3. Pick a variable and run the variance calculation on the time dimension.

http://uv-cdat.llnl.gov/

218 E. Santos et al.

4. Save the data.
5. Plot a 3D Hovmoller diagram (latitude, longitude, time) using DV3D to see

the time variation of the geopotential height.
6. Slice the data to examine the region of interest.
7. Plot 2D maps of the subregion, add overlays and manipulate plot parameters.

Figure 2 shows a few of the steps above performed in UV-CDAT. The scientist
benefits from the spreadsheet by laying out different kinds of plots in the same
spreadsheet. Creating 3D plots using DV3D’s set of tools was a simple task. Be-
fore UV-CDAT, the scientist was required to save and manage dozens of scripts
in order to know the operations and datasets used in the plots. The provenance
captured in UV-CDAT is changing all that. The provenance of any plot is readily
accessible at any point in time of the analysis. The scripting support was useful
to generate scripts to run in batch mode for other time periods in the model
run. In addition, the captured provenance allows a student not familiar with the
climate model output to learn and repeat the procedure described above.

5 Conclusion

We have described the UV-CDAT system, what we believe is the first provenance-
enabled end-user visualization and analysis tool for ultra-scale climate analysis.
UV-CDAT presents a novel architecture that seamlessly integrates workflows,
provenance, climate data analysis libraries, and visualization tools in an end-
to-end application. The system is already available to the climate community.
Over the next year and a half, we will continue to refine and extend its func-
tionality with the goal of making it the primary tool for climate scientists. Our
future work plans include to further refine UV-CDAT provenance and workflow
capabilities to make the integration with other packages as smoothly as possible.
We plan to add a more intuitive and powerful provenance browser, and make it
easier for scientists to publish their analysis, workflows, and data products on
the web.

Acknowledgments. This project has been funded by the U.S. Department of
Energy (DOE) Office of Biological and Environmental Research (BER). This is a
large project involving many institutions, including LLNL, LBNL, Los Alamos,
ORNL, Kitware, NYU-Poly, SCI-Utah, and NASA.

References

1. Community Climate System Model version 3.0 (CCSM3),
http://www.cesm.ucar.edu/models/ccsm3.0/ (accessed on March 21, 2012)

2. VisTrails. In: Brown, A., Wilson, G. (eds.) The Architecture of Open Source Ap-
plications: Elegance, Evolution, and a Few Fearless Hacks, ch. 23, pp. 377–394.
Lulu.com (2011), http://www.aosabook.org/

3. Climate Data Analysis Tools (CDAT), http://www2-pcmdi.llnl.gov/cdat (ac-
cessed on March 21, 2012)

http://www.cesm.ucar.edu/models/ccsm3.0/
http://www.aosabook.org/
http://www2-pcmdi.llnl.gov/cdat

Designing a Provenance-Based Climate Data Analysis Application 219

4. Davidson, S.B., Freire, J.: Provenance and Scientific Workflows: Challenges and
Opportunities. In: Proceedings of SIGMOD, pp. 1345–1350 (2008)

5. Doty, B., Kinter III, J.L.: The Grid Analysis and Display System (GrADS): A
practical tool for Earth science visualization. In: Eighth International Conference
on Interactive Information and Procession Systems, Atlanta, GA (January 1992)

6. Freire, J., Koop, D., Silva, C.: Provenance for computational tasks: A survey. Com-
puting in Science and Engineering 10(3), 11 (2008)

7. NASA. Dv3d, http://portal.nccs.nasa.gov/DV3D
8. Unidata. The Integrated Data Viewer (IDV),

https://www.unidata.ucar.edu/software/idv/ (accessed on March 21, 2012)

http://portal.nccs.nasa.gov/DV3D
https://www.unidata.ucar.edu/software/idv/

Quality Assessment, Provenance,

and the Web of Linked Sensor Data�

Chris Baillie, Peter Edwards, and Edoardo Pignotti

Computing Science & dot.rural Digital Economy Research, University of Aberdeen
Aberdeen, UK

{c.baillie,p.edwards,e.pignotti}@abdn.ac.uk

Abstract. This paper presents a quality assessment framework for
linked sensor data and discusses a role for provenance in quality as-
sessment.

Keywords: provenance, linked data, quality assessment.

1 Introduction

In this paper we describe a framework for evaluating the quality of linked data
and discuss how the provenance of such data could be introduced to the quality
assessment process. The open nature of the Web enables anyone (or any ‘thing’)
to publish any content that they choose which means that poor quality data
can quickly propagate [1]. Therefore, a mechanism to assess quality is essential
if agents (human or machine) are to identify reliable data to support tasks such
as decision making and planning.

Data is generally regarded as high quality if it is ‘fit for use’ in that it meets
a number of requirements [2]. These requirements place constraints on certain
quality dimensions (e.g. accuracy, timeliness, relevance) and are described using
quality metrics (e.g. timely data is no more than 10 minutes old). Quality assess-
ments guided by such metrics often require additional metadata describing the
context around data, something which can be provided by publishing informa-
tion as Linked Data. We argue that this context should also include provenance
information, a record of the entities and processes involved in data derivation.
Provenance has been identified as an essential step in helping users to better
understand, trust, reproduce, and validate data [3]. We argue that it should
therefore also play an important role in evaluating data quality. Given the scope
of the Web, we are investigating quality issues within the Web of Linked Sensor
Data [4], a subset of the Web of Linked Data comprising semantic representa-
tions of sensors and their observations. In this paper, we provide a motivating
example before describing the implementation of our quality assessment frame-
work. We then discuss how provenance can be included in quality assessment
and outline our future plans.

� The research described here is supported by the award made by the RCUK Dig-
ital Economy programme to the dot.rural Digital Economy Hub; award reference:
EP/G066051/1.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 220–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quality Assessment, Provenance, and the Web of Linked Sensor Data 221

2 Quality Assessment Framework

To help us better understand the requirements of quality assessment and the
potential for provenance we have examined a number of scenarios. One of these
uses data from the mobile phones of public transport users to provide details
such as vehicle location, speed, etc. Examples of quality metrics in this scenario
include relevance, examining the distance between the observation and the ac-
cepted route of travel, and timeliness, examining how old the observation is when
it is used. Following an analysis of this scenario, and others, we have developed
a number of requirements for a quality assessment framework: (1) data should
be evaluated against a number of quality dimensions, (2) quality metrics are
necessary to guide assessments, and (3) quality assessment results should be
recorded to enable their re-use.

We represent sensor observations using the W3C Semantic Sensor Network
Incubator Group’s ontology1. This enables us to describe the context around
sensor observations such as observed phenomena (e.g. location or speed in the
transport scenario) and features of interest (e.g. a journey). Quality assessment is
represented using the Data Quality Management2 (DQM) ontology.Quality met-
rics are defined using SPIN3 and attached to instances of dqm:DataRequirement
(requirements 1 and 2); the results of assessment are captured using instances of
dqm:QualityScore (requirement 3). We associate sensor observations (and their
values) to quality scores via the dqm:plainScore property. (Fig. 1).

ssn:Observation ssn:ObservationValuessn:observationResult ssn:SensorOutput ssn:hasValue

dqm:DataRequirement dqm:QualityScoredqm:basedOn

dqm:plainScoredqm:plainScore
xsd:string spin:rule

Fig. 1. Quality assessment characterised using the SSN and DQM ontologies

To evaluate our methodology we have developed a number of web services
that enable the creation and manipulation of linked data representing sensor ob-
servations, quality annotations, and their provenance. The observation service
generates RDF representations of sensor observations received from a smart-
phone app and stores them in a triple store. The quality assessment service takes
the URI of an observation as a parameter and performs the evaluation using a
SPIN reasoner. Guided by a number of data requirements, the reasoner produces
quality scores for the observation and stores them in a dedicated quality anno-
tation triple store, enabling the re-use of quality results. The observation and
quality assessment services make use of a provenance service to document how

1 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
2 http://semwebquality.org/dqm-vocabulary/v1/dqm
3 http://www.spinrdf.org

222 C. Baillie, P. Edwards, and E. Pignotti

observations and quality annotations were created. This service uses the W3C
Provenance Working Group’s Prov-O model4 to represent sensor observations
as instances of Entity (physical, digital, or conceptual ‘things’ that one can
provide provenance for) and sensing processes as an Activity (something that
occurs over time and acts upon or with entities). Similarly, we represent data
requirements and quality scores as Entities, and the quality assessment process
as Activities. The next section outlines how this provenance information can
be used in future quality assessments.

3 Provenance and Quality Assessment

At present, our framework evaluates quality using only the metadata associ-
ated with sensor observations. We have identified a number of ways in which
provenance can impact upon data quality such as: the reputation of the agent
responsible for creating the data, the type of device that created the data, and
how the data has been transformed since it was created (e.g. rounded numeric
values or type conversion). We therefore intend to implement new quality met-
rics that can examine observation provenance and make assessments of quality
based on this information in addition to the wider contextual information. We
also intend to investigate how the provenance of existing quality scores can be
used to decide if existing quality assessment outcomes can be re-used instead
of executing new ones. We have identified a number of use cases in which this
could occur, such as agent A re-using a quality score that was generated after an
assessment using agent B’s data requirements because they are in the same so-
cial network and trust each other, or agent A re-using a quality score generated
from a data requirement that matches one of its own requirements.

Finally, we acknowledge that quality assessment is highly subjective and there-
fore intend to allow users (or their agents) to define their own data require-
ments that will supersede the system-wide requirements that are in place at the
moment.

References

1. Baillie, C., Edwards, P., Pignotti, E.: Assessing quality in the web of linked sensor
data. In: 25th Conference on Artificial Intelligence (AAAI 2011), pp. 1750–1751.
AAAI Press (August 2011)

2. Furber, C., Hepp, M.: Using semantic web resources for data quality management.
In: 17th International Conference on Knowledge Engineering and Knowledge Man-
agement, pp. 211–225 (2010)

3. Miles, S., Groth, P., Munroe, S., Moreau, L.: Prime: A methodology for develop-
ing provenance-aware applications. ACM Transactions on Software Engineering and
Methodology 20(3), 39–46 (2009)

4. Page, K.R., De Roure, D.C., Martinez, K., Sadler, J.D., Kit, O.Y.: Linked sensor
data: Restfully serving RDF and GML. In: International Workshop on Semantic
Sensor Networks 2009, vol. 522, pp. 49–63 (October 2009)

4 http://www.w3.org/TR/prov-o

Integrating Text and Graphics

to Present Provenance Information�

Thomas Bouttaz, Alan Eckhardt, Chris Mellish, and Peter Edwards

Computing Science, University of Aberdeen, Aberdeen AB24 5UA, UK
{t.bouttaz,a.eckhardt,c.mellish,p.edwards}@abdn.ac.uk

Abstract. We describe two approaches for the visualisation of prove-
nance - one using natural language generation to produce texts, the other
using a graphical approach. Our main contribution is a mechanism using
a combination of these modalities.

Keywords: provenance, NLG, visualisation, HCI.

1 Introduction

The presentation of provenance should allow users to intuitively understand such
information, without requiring any particular knowledge about the underlying
model. Therefore, identifying appropriate means to present provenance infor-
mation to end-users is an issue that needs to be addressed. In this paper, we
discuss two ways to present this information, one based on generated textual de-
scriptions and the other based on a graphical visualisation1. Our approach was
motivated by the needs of multidisciplinary users within a web-based research
environment ourSpaces [1], but is applicable in other contexts.

ourSpaces2 enables researchers from different backgrounds to manage their
projects by allowing them to communicate and share their research artefacts.
The underlying architecture of ourSpaces is based on Semantic Web technologies
(e.g. OWL, RDF) and at the heart of ourSpaces is an OWL representation of the
Open Provenance Model [2]. OPM is a generic model and as a result, ourSpaces
also supports additional domain specific provenance ontologies that are created
by extending the concepts defined in the OPM ontology. Several services make
use of these ontologies, including Metadata Access - provides Java access to a
RDF data repository, and Provenance - manages provenance data and provides
HTTP and Java access.

2 Visualisation Services

Natural Language Visualisation. We have developed a Natural Language
Generation (NLG) service that generates short textual descriptions based on

� This work is supported by the UK Economic & Social Research Council (ESRC)
under the Digital Social Research programme; award RES-149-25-1075.

1 The software is open source and available at: https://github.com/Policygrid-II
2 http://www.ourspaces.net

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 223–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 T. Bouttaz et al.

Fig. 1. Example of generated texts
containing provenance information

Fig. 2. Integration of textual and graphical vi-
sualisations

RDF data. We have implemented two modes for this service: one for generat-
ing text about general information regarding an entity (e.g. type, title, date of
creation), and one specifically about its provenance (i.e. how it relates to other
OPM entities).

The NLG service is composed of two components - Text Generator and Text
Formatter. First, the metadata about an entity is obtained from the Metadata
access service, which is then used by the Text Generator to build a semantic
model representing information about the entity. Then the model is transformed
into text using the appropriate Language Specification files. These XML files are
divided into two categories: Property Language Specifications contain the lin-
guistic information required to structure the sentence corresponding to a prop-
erty (e.g. syntactic category, verb tense); Class Language Specifications indicate
which properties should be used to refer to a particular class.

The Text Formatter converts the plain text generated by the Text Generator
into HTML. Figure 1 shows an example of a text generated by the NLG service.
This text contains a description of the provenance of the artefact (focus group
data) and can be further expanded by clicking on hyperlinks to related entities.
This calls the service with the URI of that related entity, appending the resulting
description to the original text.

Graphical Visualiser. The Graphical Visualiser was developed to visualise
provenance information using a graph displaying OPM entities as nodes and
OPM causal relationships as directed connections between nodes. It is imple-
mented in HTML and Javascript and divided into two main components - one
for communication and one for visualisation. The communication component
makes use of the Provenance service to query for provenance data, as well to
update the provenance graph. The data are then used by the visualisation com-
ponent to draw the actual graph. The nodes are initially ordered according to
timestamp, but the user can control the position of nodes, as well as the level
of magnification. Each node has a “plus” icon that loads the provenance of
this node when clicked, thus expanding the provenance graph. An example of
a graphical visualisation is shown in Figure 2. A user is able to create and edit

Integrating Text and Graphics to Present Provenance Information 225

provenance information using the graphical visualisation. He/she can create new
links between nodes, create new processes and delete links.

Combining Visualisations. We have integrated the NLG service within the
graphical presentation, by allowing users to generate textual descriptions of the
different entities present in the graph. In this way, a user can easily access more
information about entities. Figure 2 shows how a user can generate the descrip-
tion of an entity (focus group data) by hovering the mouse pointer over its node.

3 Discussion

In order to evaluate this work, we ran a series of focus groups with potential
users of ourSpaces. Users were presented with the same provenance information
presented in different ways and were asked to discuss the main advantages and
drawbacks of each. The participants preferred the terminology to adapt to the
context of use (e.g. referring to the agent that controlled an interview process as
the interviewer, rather than with wasControlledBy). This suggests that more
adaptation of the underlying representation of provenance information may be
required to improve usability. They also felt that some form of temporal infor-
mation would help them to better understand the provenance presentations. The
participants did find that the combination of graphical and textual presentations
was useful to better understand provenance.

This work differs from other provenance visualisation services by providing
users with two presentation modalities supporting each other, as well as a mech-
anism to allow users to edit the provenance metadata. In order to further im-
prove this work, we could also implement other “Types” described by [3], such
as Comparison (comparing the provenance of two artefacts, highlighting their
differences) and Participation (emphasising the agents involved in the processes)
which would be beneficial in the context of a collaborative environment such as
ourSpaces. Currently, the visualisation conforms with Timeline (chronological
ordering) and Result (focus on the main artefact).

References

1. Edwards, P., Mellish, C., Pignotti, E., Ponnamperuma, K., Bouttaz, T., Eckhardt,
A., Pangbourne, K., Philip, L., Farrington, J.: Demo: ourspaces - a provenance en-
abled virtual research environment. In: 4th International Provenance & Annotation
Workshop (2012)

2. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche,
J.V.: The open provenance model core specification (v1.1). Future Gener. Comput.
Syst. 27, 743–756 (2011)

3. Kunde, M., Bergmeyer, H., Schreiber, A.: Requirements for a Provenance Visual-
ization Component. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS,
vol. 5272, pp. 241–252. Springer, Heidelberg (2008)

Exploring Provenance

in a Linked Data Ecosystem

David Corsar, Peter Edwards, Nagendra Velaga, John Nelson, and Jeff Z. Pan

dot.rural Digital Economy Research, University of Aberdeen
{dcorsar,p.edwards,n.r.velaga,j.d.nelson,jeff.z.pan}@abdn.ac.uk

Abstract. We describe our work exploring provenance within an open
linked data ecosystem being developed in the travel/transport domain.
We discuss techniques to infer provenance of sensor data, maintain prove-
nance of third party data, and reference sources not available as linked
data within a provenance record.

Keywords: provenance, linked data, intelligent information infrastruc-
tures, transport.

1 Introduction

In this paper, we discuss our work exploring provenance within an open linked
data ecosystem being developed in the travel/transport domain1. Provenance is
often cited as a key enabler for trusted information systems [1–3], particularly in
dynamic open environments. The ecosystem we are developing integrates several
open datasets published by government and online communities, with data gen-
erated by the crowd using a mobile phone app. Using these datasets, GetThere,
a real time passenger information system, provides users with travel information
such as timetables, estimated vehicle arrival times, vehicle locations, and details
of network disruption. Given the diversity of datasets and providers within the
ecosystem, issues such as information quality [4] and trust naturally arise. By
providing a record of the agents, entities, and activities involved in producing
a resource, provenance has a role to play in addressing these issues. We are ex-
ploring how provenance can be used to support the assessment of data within
the ecosystem, for the purpose of ensuring passengers are provided with high
quality, trustworthy information.

2 Provenance and Open Data

The diversity of data sources within the ecosystem has presented several chal-
lenges, a number of which related to provenance. Here we outline those challenges
and our solutions to date.

1 http://www.dotrural.ac.uk/irp

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 226–228, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.dotrural.ac.uk/irp

Exploring Provenance in a Linked Data Ecosystem 227

Making Implicit Provenance Explicit. Along with providing users with in-
formation, GetThere also asks users to act as sensors during their journeys on
public transport. Observations generated by passengers are represented within
the ecosystem using the Semantic Sensor Network (SSN) ontology2. Along with
describing sensors and observations, the SSN ontology also captures implicit
provenance information (i.e. provenance information not expressed using a prove-
nance model), such as the sensor that generated the observation, the sensing
method it used, and the inputs/outputs of that method.

To make this provenance information available explicitly (i.e. expressed us-
ing a provenance model), we have defined a series of axioms that map SSN
concepts to PROV-O3, the OWL encoding of the provenance interchange for-
mat being developed by the W3C Provenance Working Group4. These axioms
define two equivalent class relationships between: ssn:Process (which represents
sensing processes) and prov:Activity, and ssn:Observation and prov:Entity, along
with three equivalent properties: ssn:hasInput and prov:used, ssn:hasOutput and
prov:generated, and ssn:sensingMethodUsed and prov:wasGeneratedBy. These
axioms allow an ontology reasoner to materialise PROV-O information for ob-
servations, inferring that an observation is an Entity, that the sensing process is
an Activity, and the relevant generated/wasGeneratedBy links.

Associating Provenance with Remote Linked Data. Several of the datasets
within the ecosystem are provided by third parties and accessed via remote
SPARQL endpoints. Having access to the provenance of this data would provide
agents with valuable additional information to use when evaluating such data.
Unfortunately, in many cases provenance is not associated directly with the data.
For example, the UK Government’s public transport linked dataset does not in-
clude provenance; however, the web page linking to the endpoint states that
the data “dates from March 2010”5. As other (non-linked data) versions of this
dataset are updated regularly, associating provenance with the linked data would
support, for example, automated assessment of timeliness. The main challenge
here is determining an appropriate method for associating provenance with third
party data only available via a remote SPARQL endpoint.

To address this we use the SPARQL 1.1 Service Design Ontology6 and PROV-
O to describe remote SPARQL endpoints, the data they make accessible, and
the data provenance. Each endpoint description consist of individuals represent-
ing the sd:Service (the endpoint), the sd:DataSets accessed by the endpoint,
and the sd:Graphs within each dataset. By defining sd:Graph as equivalent to
prov:Entity, we can build a provenance record for it, including a description of
the prov:Activity that generated the graph and the data it contains.

2 http://purl.oclc.org/NET/ssnx/ssn
3 http://www.w3.org/TR/prov-o/
4 http://www.w3.org/2011/prov/wiki/Main Page
5 http://data.gov.uk/linked-data Accessed May 2012.
6 http://www.w3.org/ns/sparql-service-description

http://purl.oclc.org/NET/ssnx/ssn
http://www.w3.org/TR/prov-o/
http://www.w3.org/ns/sparql-service-description

228 D. Corsar et al.

Including Non-linked Data Resources in a Provenance Record. Several
datasets within the ecosystem have been derived from data originally available
in formats such as CSV or HTML. For example, the ecosystem includes a bus
timetable dataset created by manually scraping the timetable information from
the operator’s web site into a spreadsheet, which a program then converts into
RDF. The main challenge here is recording this and including references to the
original resources (for example, the web page), which change over time, so we
cannot, for example, reference the web page URL.

We overcome this using the aforementioned technique for representing the
provenance of data accessible through a SPARQL endpoint. Here, the provenance
record includes details of the timetable scraping process and references to: the
program that was used (in a source code repository); a copy of the file(s) used
by that program; and a downloaded copy of the scraped web page. Although
this record is largely created manually and necessitates storing a copy of all the
files used, it does allow agents to verify the linked data by comparing it with the
original source data.

3 Conclusion

In order to associate provenance with the data in the ecosystem, it has been nec-
essary to develop various approaches that accommodate the diversity in datasets
and providers. Maintaining a provenance record in this environment is challeng-
ing, particularly when dealing with data provided and maintained by third par-
ties. The approaches we describe above illustrate how semantic web technologies
can be used to provide a starting point for associating provenance with such
data. We believe these approaches point the way towards a set of guidelines for
provenance management in open, linked data environments.

Acknowledgements. The research described here is supported by the award
made by the RCUK Digital Economy programme to the dot.rural Digital Econ-
omy Hub; award reference: EP/G066051/1.

References

1. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Web
Semantics: Science, Services and Agents on the World Wide Web 5(2), 58–71 (2007)

2. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.
In: Proc. of the 14th lnt. Conf. on World Wide Web, pp. 613–622. ACM, New York
(2005)

3. Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust,
uncertainty and other meta knowledge in RDF. Web Semantics 7(3), 204–219 (2009)

4. Hartig, O., Zhao, J.: Using web data provenance for quality assessment. In: Freire,
J., Missier, P., Sahoo, S.S. (eds.) Semantic Web in Provenance Management. CEUR
Workshop Proceedings, vol. 526. CEUR-WS.org (2009)

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 229–232, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Enabling Re-executions of Parallel Scientific Workflows
Using Runtime Provenance Data*

Flávio Costa1, Daniel de Oliveira1, Kary A.C.S. Ocaña1, Eduardo Ogasawara1,2,
and Marta Mattoso1

1 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2 CEFET, Rio de Janeiro, Brazil

{flscosta,danielc,kary,ogasawara,marta}@cos.ufrj.br

Abstract. Capturing provenance data in scientific workflows is a key issue
since it allows for reproducibility and evaluation of results. Many of these
workflows generate around 100,000 tasks that execute in parallel in High
Performance Computing environments, such as large clusters and clouds.
SciCumulus is a workflow engine for parallel execution in clouds. Activity
failure is almost inevitable in clouds where virtual machine failures are a reality
rather than a possibility. We present SciMultaneous, a service architecture that
manages re-executions of failed scientific workflow tasks using runtime
provenance. Experimental results on clouds showed that SciMultaneous
considerably increases the workflow completion and reduces the total execution
time of the workflow (considering executions and re-executions) up to 11.5%,
when compared to ad-hoc approaches.

1 Introduction

Scientific workflows became a de facto standard for modeling scientific experiments
that are based on computer simulations [1]. Experiments in different domains of
science demand high processing power. Scientific workflows can generate 100,000 or
more parallel tasks in High Performance Computing (HPC) environments. Recently,
clouds [2] emerge as an attractive alternative environment for scientific applications.
By using clouds, scientists may avoid acquiring expensive HPC machines by
instantiating a multi-processor environment composed by several virtual machines
(VM). In addition, scientists benefit by paying only according to the effective use of
HPC resources (pay per use model [2]). In this paper, we aim at improving reliability
of workflow completion by managing workflow re-execution, in the presence of
many types of failures. Previous experiments [3] show that failures occur very often
in clouds, where the environment is constantly changing. It is a top priority to provide
reliability so that scientists do not have to manage the potentially large numbers of
failures. To illustrate the effective need of improving the reliability of parallel
scientific workflows, we have explored, as case study, a workflow from the
bioinformatics domain, SciPhy [3]. Typically, one execution of SciPhy on clouds,

* This work was partially sponsored by CNPq, FAPERJ and CAPES.

230 F. Costa et al.

consuming 50 multi-fasta files, generates 1,250 parallel tasks and demands
approximately 4.19 days using 16 virtual cores. Mainly due to performance
fluctuations on the cloud environment, a typical execution of SciPhy presents from
2% to 9% of task failures, which may demand up to 10 hours of processing [3].

2 SciMultaneous

SciMultaneous enables re-executions of parallel tasks generated from workflow
activities in case of failures in clouds. SciMultaneous benefits from SciCumulus, a
cloud workflow engine [4], to obtain runtime provenance data [5] in parallel
executions. Differently from the current mainstream, SciMultaneous can detect and
manage failures during workflow execution, by using runtime provenance.
SciCumulus distributes scientific workflow activities (or even entire scientific
workflows) dispatched from a scientific workflow management system (e.g. Kepler
[6]) into clouds such as Amazon EC2. There are several approaches focused on
handling failures on scientific workflows. Ferreira et al. [7] introduce a representation
of the workflow defining a priori the several optional paths to follow when a failure
occurs. Crawl and Altintas [8] propose the Scientific Workflow Doctor, a component
for Kepler to use prospective provenance data, guaranteeing fault tolerance. However,
none of them focus on parallel executions neither provide runtime provenance data.

SciMultaneous architecture follows the Software as a Service (SaaS) model [2].
Three main services are part of SciMultaneous: Task Mapper (TM), VM Configurator
(VMC) and Task Executor (TE). The TM searches for any task failure indicative by
submitting queries to the workflow engine provenance repository. TM analyzes the
generated runtime provenance data and decides which heuristic to use. With the
heuristic chosen, TM informs VMC that there is a demand for re-executions. VMC
analyzes if there is any idle VM to be used or if VMC has to instantiate new VMs for
re-execution. With the environment set, VMC invokes TE that effectively re-executes
tasks in each VM created by VMC. TE is also responsible for capturing and storing
provenance data (related to the re-executions) in the provenance repository.

SciMultaneous follows two heuristics. In both of them we assume that scientists
can access more than one cloud environment. In this case, one of the clouds is chosen
as the reliable one with more processing power, consequently presenting higher
financial costs. The main idea is to start re-executing failed tasks using the other
cloud, less reliable, with lower financial costs. The reliable cloud is left to execute
critical tasks or tasks that also failed in their re-executions. The first heuristic (named
H1) tries to anticipate failures, by redundantly executing tasks that are considered
critical (i.e. long-term tasks). In case of failure, a replica is available for substituting
the failed task. The second heuristic (named H2) focuses on continuous task
monitoring. In case of task failure, SciMultaneous immediately re-schedules it to
another VM in the same cloud or even to another cloud. For example, in H2,
SciMultaneous follows a hierarchical strategy: firstly it re-schedules the task to the
same cloud and in the same VM, assuming that some intermittent problem may have
occurred. If the failure persists, another VM is instantiated in the same cloud
environment to re-schedule the specific task. Then, if the task is considered critical it
is re-scheduled to a powerful VM. Finally, if the failure still persists, SciMultaneous
re-schedules the task to a different cloud, using more processing power per VM.

 Enabling Re-executions of Parallel Scientific Workflows 231

3 Experimental Results and Conclusions

SciMultaneous coupled to SciCumulus was evaluated in the Amazon EC2. We
executed SciPhy workflow as the case study. Our experiment uses as input, a dataset
of 250 multi-fasta files (each file with 10 sequences) of protein sequences extracted
from RefSeq database release 48, as detailed in Ocaña et al. [3]. This data set
generates a total of 6,250 parallel tasks, which approximately 1.96% (thus 123 tasks)
presented some kind of failure. We executed SciPhy workflow varying the number of
virtual cores used in each execution. We compared the two proposed heuristics of
SciMultaneous. For one of the scenarios, both H1 and H2 presented a total execution
time lower than ad-hoc approaches in all cases. For example, using 32 cores, H1
executed in 9.90 days, H2 in 9.63 days and ad-hoc in 10.39 days. In the case of H1,
9.2% of the long-term tasks (i.e. ModelGenerator and RAxML programs [3]) were
executed redundantly (creating one original task and one redundant). Then, 8% of the
original long-term tasks have failed and they were automatically replaced by the
redundant task, as soon as, provenance was produced, and queried by SciMultaneous.
SciMultaneous reached a performance improvement up to 11.5% when using H1
compared to an ad-hoc re-execution approach. In addition, in larger experiments, this
performance gain can be higher than the one reached in this experiment. These
performance improvements led to a reduction of up to US$ 373.24 in financial costs
when comparing H1 execution with ad-hoc re-execution approach. However, the
highest SciMultaneous gain is reliability improvement by workflow completion.
Another advantage of using SciMultaneous is that as it is a service architecture it can
be coupled to other approaches for managing workflow execution, as long as,
provenance data is provided at runtime. Querying provenance at runtime is
fundamental since it allows for online execution adjustments (re-executions) that
otherwise would be impossible to be pre-programmed.

References

[1] Mattoso, M., Werner, C., Travassos, G.H., Braganholo, V., Murta, L., Ogasawara, E.,
Oliveira, D., da Cruz, S.M.S., Martinho, W.: Towards Supporting the Life Cycle of Large-
scale Scientific Experiments. International Journal of Business Process Integration and
Management 5(1), 79–92 (2010)

[2] Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2009)

[3] Ocaña, K.A.C.S., de Oliveira, D., Ogasawara, E., Dávila, A.M.R., Lima, A.A.B., Mattoso,
M.: SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in
Protozoan Genomes. In: Norberto de Souza, O., Telles, G.P., Palakal, M. (eds.) BSB 2011.
LNCS, vol. 6832, pp. 66–70. Springer, Heidelberg (2011)

[4] Oliveira, D., Ogasawara, E., Ocana, K., Baiao, F., Mattoso, M.: An Adaptive Parallel
Execution Strategy for Cloud-based Scientific Workflows. Concurrency and Computation:
Practice and Experience (2011) (online)

[5] Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A
Survey. Computing in Science and Engineering 10(3), 11–21 (2008)

232 F. Costa et al.

[6] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an
extensible system for design and execution of scientific workflows. In: Scientific and
Statistical Database Management, Greece, pp. 423–424 (2004)

[7] Ferreira, J.E., Wu, Q., Malkowski, S., Pu, C.: Towards Flexible Event-Handling in
Workflows Through Data States. In: Proc. of the 2010 IEEE 6th World Congress on
Services, Miami, FL, pp. 344–351 (2010)

[8] Crawl, D., Altintas, I.: A Provenance-Based Fault Tolerance Mechanism for Scientific
Workflows. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp.
152–159. Springer, Heidelberg (2008)

Access Control for OPM Provenance Graphs

Roxana Danger, Robin Campbell Joy, John Darlington, and Vasa Curcin

Department of Computing, Imperial College London, London SW7 2AZ

The field of provenance in computer science arose from the need to capture the
lineage of software data outputs in an automated manner that is semantically
consistent across various applications that participated in producing the said
outputs. This vision being outside the capabilities of simple text logs, a series of
Provenance Challenges investigated the suitability of different approaches, in the
process giving rise to the Open Provenance Model (OPM) [3], currently being
reworked into PROV, a W3C standard.

Provenance data brings with it a new set of security considerations, since
the access permissions to data and to its full lineage may not always coincide.
Clinical trial auditor may not be allowed to see a patient’s full electronic health
record used to gather data for the trial, but may see the trial results, while the
patient owns their health record, but may not necessarily access the full trial
information. Given that provenance information is commonly represented, and
therefore browsed, as causal graphs, access to any individual node in the graph
is potentially affected by other nodes connected to it.

Motivation for our work is to provide access policy language and query eval-
uation method that will offer to the user the maximum permissible amount of
information. To that goal, we define ACLP, an extension to XACML, to sup-
port such policy definitions, and introduce graph transformations that hide the
restricted graph items from the user.

ACLP1 takes as its starting point the language defined in [1], which is itself
an extension of XACML with regular expressions to represent terms of random
depth in provenance graphs. Our extension retains their work, and introduces
the transform construct to support the new query evaluation strategy. SPARQL
1.1 property paths are used for describing complex graph patterns expressions.

A policy in ACLP (Figure 1) is described by a target and an optional con-
dition, the scope, effect and transform descriptors associated to the target. Full
description of these is available in [1], and we only focus on novel elements.

The effect element specifies the intended outcome if the applicable rule matches
some part of the provenance graph. It can take four values: Absolute permit guar-
antees access to the graph regardless of other policies’ outcomes, Deny guaran-
tees that certain parts of the graph will never be accessed by users in the subject
element, Necessary permit describes parts of the graph that need explicit per-
mission to be accessed, andPermit describes those graph segments that can be
accessed if there are no other policies denying access.

1 The full ACLP XSD is available at:
http://www.doc.ic.ac.uk/~rdanger/aclschema_new.xsd.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 233–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.doc.ic.ac.uk/~rdanger/aclschema_new.xsd.

234 R. Danger et al.

<?xml version ="1.0" encoding ="UTF -8"?>

<policies>

<policy >

<target >

<subject >ocld:Patient </ subject >

<record >ocld:DiagRecommProcess </ record >

<restriction >ocld:Patient.patId <> ocld:User.id </ restriction >

<restriction >rdf:property */ocld:Diagnosis /opm :wasGeneratedBy *</restriction >

</target >

<scope >transferable </scope >

<effect >deny </effect >

<transform>

<type >subgraph </type >

<tranformation_scope >ocld:clinicalEvidence </ tranformation_scope >

</transform >

</policy >

</policies >

Fig. 1. Example of access control definition for an EHR system

The transform element specifies if and how the graph is transformed to allow
access to a subgraph when either deny or necessary permit policies apply to
some nodes within the scope. There are three possible values: None denotes that
transformations are not allowed and no part of the graph can be returned, Single
means that the graph may be transformed and modified version returned, and
Subgraph which also allows graph transformation, and also transfers the access
restriction to its children nodes. The scope of this transfer depends on the value
of the transformation scope element, which can be either a set of resources,
defined through a path query, or ’all’ for all reachable nodes.

The example of a fictional EHR system in Figure 1 shows a patient access
policy: the patient has no access to any EHRs other than their own, neither
to any information associated to a diagnosis that was generated by using an
automatic diagnosis recommendation process (ocld:DiagRecommProcess) and to
the subgraph connecting it with the clinical evidences.

Our query evaluation strategy aims to transform the response graphs so that
they conform to the query requestor’s authorisation level. In rule conflicts, the
strategy takes a wider-allowed-access-takes-precedence approach [2], i.e. the al-
gorithm guarantees access to all resources that are not a target of a specific deny
rule. The evaluation pseudo-code is shown in Algorithm 1.

To construct the transformed graph, we distinguish between
causality-preserving and non-causality-preserving transformations. The former
maintain some causal links between remaining nodes (through previous inferred
relations), while the latter change the semantics by removing all connections
between some remaining nodes. The algorithm removes all excluded nodes while
the overall transformation remains causality-preserving, and when this is not the
case, it replaces deleted nodes with the minimal set of fictitious artifacts and
processes) that act as place-holders for one or more deleted nodes, and maintain
the causal dependencies of remaining nodes. This is shown in Algorithm 2.

In this paper, we introduced a novel query evaluation algorithm on provenance
data that returns graphs transformed based on user’s authorisation levels, and
the corresponding extension to XACL to support this in policy definition. The
system is currently being implemented.

Access Control for OPM Provenance Graphs 235

Algorithm 1. Access policy evaluation

Require: g: OPM graph to access.
targets: Applicable targets filtered by user and validity.

Ensure: accessibleGraph: subgraph of g to which the access is granted, or null if the access to the
graph is denied.

{Step One: evaluate ‘absolute permit’}
for target ∈ targets do

if target.effect = ‘abs.permit′ and eval(target.cond) then
return g

{Step Two: evaluate ‘deny’ or ‘necessary permit’}
accessibleGraph = g
excludedNodes = {}
for target ∈ targets do

if (target.effect = ‘deny′ and eval(target.cond)) or
(target.effect = ‘nec.permit′ and not eval(target.cond)) then
if target.transform = ‘no′ then

return null
else

excludedNodes = excludedNodes ∪ getConflictNodes(target, g)
accessibleGraph = transformGraph(g, excludedNodes)
{Step Three: evaluate ‘permit’}
for target ∈ targets do

if target.effect = ‘permit′ and eval(target) then
return accesibleGraph

return null

Algorithm 2. Provenance graph transformation

Require: g: OPM graph to access.
removedNodes: set of nodes to be removed

Ensure: g′: graph equivalent to g in which all minimal subgraphs associated to the nodes in
removedNodes have been transformed.

{Step One: Selection of ‘retain’ graph nodes}
g′ = g
for n ∈ removedNodes do

if (∃nc, ne, cause(n, nc), effect(n, ne)∧
∃n′, n′ /∈ removedNodes, (cause(n, n′) ∨ effect(n, n′)) then
mark(n, ‘retain′)

{Step Two: Transform}
Delete from g′ all n ∈ removedNodes, causalityPreserving(n) without ‘retain’
Replace all consecutive graph nodes without ‘retain’ in g′ with a fictitious artifact if they are all
artifacts, or with a fictitious process otherwise
Replace all consecutive artifacts with ‘retain’ in g′ with a fictitious artifact
Replace all consecutive processes with ‘retain’ in g′ with a fictitious process

return g′.

References

1. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: A language for
provenance access control. In: Proceedings of the First ACM Conference on Data
and Application Security and Privacy, CODASPY 2011, pp. 133–144. ACM, New
York (2011)

2. di Vimercati, S.D.C., Foresti, S., Samarati, P., Jajodia, S.: Access control poli-
cies and languages. International Journal of Computational Science and Engineer-
ing 3(2), 94–102 (2007)

3. Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The Open
Provenance Model: An Overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, p. 236, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving the Understanding of Provenance
and Reproducibility of a Multi-Sensor Merged

Climate Data Record

Hook Hua, Brian Wilson, Gerald Manipon, Lei Pan, and Eric Fetzer

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California 91109, U.S.A

{hook.hua,bdwilson,gmanipon,lei.pan,eric.j.fetzer}@jpl.nasa.gov

Abstract. Multi-decadal climate data records are critical to studying climate
variability and change. These often also require merging data from multiple
instruments such as those from NASA's A-Train that contain measurements
covering a wide range of atmospheric conditions and phenomena. Multi-
decadal climate data record of water vapor measurements from sensors on A-
Train, operational weather, and other satellites are being assembled from
existing data sources, or produced from well-established methods published in
peer-reviewed literature. However, the immense volume and inhomogeneity of
data often requires an "exploratory computing" approach to product generation
where data is processed in a variety of different ways with varying algorithms,
parameters, and code changes until an acceptable product is generated.
Furthermore, the data product information associated with source data,
processing methods, parameters used, intermediate & final product outputs, and
associated materials are often hidden in each of the trials and scattered
throughout the processing system(s). We will present methods to help users
better capture and explore the production legacy of the data, metadata, ancillary
files, code, and computing environment changes used during the production of
these merged and multi-sensor data products. By building provenance services
on semantic and provenance technologies, we show how to leverage
provenance-as-a-service to capture sufficient information to enable users to
track processing, perform faceted searches on the provenance record, and
visualize the provenance of the products and processing lineage. We will also
present services for capturing sufficient provenance information and the
associated artifacts to enable some reproducibility of these climate data records.

Keywords: provenance, semantic, open provenance model, reproducibility,
multi-sensor, data fusion, climate data, web services, faceted navigation,
visualization.

Provenance Tracking in R

Andrew Runnalls and Chris Silles

School of Computing, University of Kent, UK

Abstract. This poster describes current progress and issues in intro-
ducing provenance-tracking facilities into the CXXR implementation of
the R statistical computing environment.

1 CXXR

The object of the CXXR project (www.cs.kent.ac.uk/projects/cxxr) is grad-
ually to reengineer the fundamental parts of the R interpreter from C into C++
in such a way that the full functionality of the standard distribution of R (in-
cluding the recommended packages) is preserved. In particular, the behaviour
of R code is unaffected (unless it probes into interpreter internals), and there is
no change to the existing interfaces for calling out from R to other languages
such as C or Fortran, nor to the main APIs for calling into R. CXXR achieves a
high degree of compatibility with R packages from the CRAN repository, as [1]
illustrated.

Work on CXXR started in May 2007, at that time shadowing R-2.5.1. Since
then CXXR has been regularly upgraded to keep pace with the major releases
of R (usually synching on the .1 minor release), so for example over the last year
CXXR has shadowed the increasing deployment of the bytecode compiler within
standard R. The current release of CXXR shadows R-2.14.1.

A key difference between CXXR and standard R is in the implementation
of R data objects. Standard R provides for only a fixed range of object types
(implemented as a C union) to be assigned to R variables, and to participate in
the interpreter’s garbage collection scheme. In contrast, data objects in CXXR
are implemented as a C++ class hierarchy, which can be extended at will. The
provenance-tracking variant of CXXR leverages this feature extensively.

2 Provenance Tracking and CXXR

The AUDIT facilities [2] that once formed part of S and S-plus were an invaluable
feature, as one of the present authors can testify, and one motivation behind
CXXR was to introduce similar but better facilities into the R interpreter. Early
work on a provenance-enabled variant of CXXR was presented in [3].

In the terminology of the OPM, the approach used is to regard bindings of R
symbols (variables) to R data objects as being the OPM artifacts, and to regard
R top-level commands (i.e. expressions entered directly at the interpreter
prompt) as being OPM processes. At present no use is made of the OPM

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 237–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.cs.kent.ac.uk/projects/cxxr

238 A. Runnalls and C. Silles

agent concept. The interpreter instruments the reading and writing of bindings
within the ‘global environment’ (R’s main workspace), and maintains an audit
trail defining the OPM graph leading up to all extant bindings. This provenance
information can then be interrogated within the interpreter itself: this marks a
difference from the S AUDIT facility, which required a separate tool to query
provenance data.

For example, the CXXR command pg <- pedigree("lm1") will retrieve the
‘pedigree’ of the current binding of the symbol lm1 (presumably to a linear
model): pg$commands will then return an R list showing, in time order, the
history of top-level commands that may have influenced that current value of
lm1. Other components of pg record the dates and times when these commands
were issued, and information relating to xenogenesis (Sec. 3).

A recent development in CXXR is to reengineer the way that data are seri-
alized and deserialized between one session and the next, by drawing on the
serialization facilities of the well-regarded open-source Boost C++ libraries
(www.boost.org). This means that not only can developers extend the range
of data types usable within the interpreter, they can also—within the new C++
class definitions themselves—specify how objects of that class are saved to and
restored from the session archive (which now uses an XML format). This applies
not least to the classes implementing the provenance audit trail, so that this is
carried forward from one CXXR session to the next.

3 Xenogenesis

Many R functions are pure: their return value depends only on the values of the
function arguments. Other functions may have a return value which depends
on the values of other variables within the R session, and some functions—for
example pseudorandom number generators—may have side effects, modifying
the bindings of R variables otherwise than via their return values. Fortunately,
none of the preceding presents any inherent problem for CXXR’s provenance-
tracking mechanism, provided the function’s behaviour is entirely mediated by
the bindings of R variables.

However, there are some R functions whose behaviour is not fully defined
by the current state of the interpreter. This may be because the function (e.g.
scan) reads from an external file or database, or because it accepts user input
in some way (e.g. identify) or because it calls external non-R code via one of
the foreign language interfaces. We call such functions xenogenetic, and the
bindings they give rise to xenogenous: “due to an outside cause”.

If a top-level command calls a xenogenetic function (either directly, or indi-
rectly via some other function), this means that the text of the top-level com-
mand no longer completely defines the OPM process that maps its input artifacts
(bindings) to its output artifacts. To work around this problem, the approach
currently being explored is for the provenance record to identify whether a bind-
ing is xenogenous, and if so to record the value of that binding. So if for example
an R function my.function was created using an external editor using R’s edit

www.boost.org

Provenance Tracking in R 239

command, the provenance record will permanently record the value thus given
to my.function—permanently, that is, for as long as any artifact depending on
that function is retained in the R session.

4 Environments

In R (and CXXR), an environment is a container holding a mapping from R
symbols to R data objects. As previously mentioned, at present CXXR tracks
the provenance of bindings within R’s global environment .GlobalEnv. It is
straightforward to extend this tracking to other standard environments set up
at the start of an R session, though this results in a deluge of provenance data
that would rarely be of value.

However, each invocation of a function written in R results in the creation of a
local environment. In the overwhelming majority of cases this local environment
becomes inaccessible after the function returns, and it is soon garbage-collected.
However, there are some exceptions, and it is for example possible to define an
R function which in effect has internal state, stored in a local environment and
carried forward from one invocation to the next. At present this would result in
a ‘backchannel’ of influence that evades the provenance record, but work is in
the pipeline to rectify this.

One remaining concern is that there is currently no method of referring to
local environments in a way that is meaningful between R sessions: this can
hamper reproducibility, especially in the presence of xenogenesis.

5 Conclusion

This poster has described the current state of work to introduce provenance-
tracking facilities into CXXR. The reader will have noted that the tracking is
self-contained within the interpreter, and does not rely on any external
provenance-tracking tool. A less satisfactory converse is that the implementation
does not currently provide for any interoperation with such external tools. The
authors would be interested to hear from researchers interested in collaborating
to rectify this and other gaps.

References

1. Runnalls, A.: CXXR and add-on packages. In: useR! 2010 (2010),
http://user2010.org/slides/Runnalls.pdf

2. Becker, R.A., Chambers, J.M.: Auditing of data analyses. SIAM J. Sci. Stat. Com-
put. 9, 747–760 (1988)

3. Silles, C.A., Runnalls, A.R.: Provenance-Awareness in R. In: McGuinness, D.L.,
Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 64–72. Springer,
Heidelberg (2010)

http://user2010.org/slides/Runnalls.pdf

The Provenance Store prOOst

for the Open Provenance Model

Andreas Schreiber, Miriam Ney, and Heinrich Wendel

German Aerospace Center (DLR),
Linder Hoehe, 51147 Cologne, Germany,

{Andreas.Schreiber,Miriam.Ney,Heinrich.Wendel}@dlr.de,
http://www.dlr.de/sc

Abstract. This paper presents the provenance storing system prOOst
which uses a semi-structured approach to store the provenance data
based on the Open Provenance Model (OPM). It uses the graph database
“Neo4j” for storage and the graph traversal language “Gremlin” for
querying. Furthermore, it provides a REST interface to record data into
the store, and a web front end to query the database. The prOOst prove-
nance system was published as Open Source software and is available on
SourceForge.

1 Introduction

In [1] the representation of a provenance system is described as follows: A prove-
nance aware application sends information of interest to the provenance store.
From this store inquiries and information is gathered, and possibly given back
to the application.

To record the information, different approaches have been investigated. In [2]
four different realisations are discussed: Relational, XML with XPath, RDF with
SPARQL and semi-structured approaches. They conclude semi-structured ap-
proaches to be most promising. In semi-structured systems, the used technology
has no formal structure, but it provides means of being queried.

In this work, we present the provenance storing system prOOst which uses
a semi-structured approach to store the provenance data based on the Open
Provenance Model (OPM).

2 The Provenance Store prOOst

The Provenance Store prOOst uses the graph database “Neo4j” [3] for storage
and the graph traversal language “Gremlin” [4] for querying. Furthermore, it
provides a REST interface to record data into the store, and a web front end
to query the database. The prOOst provenance system was published as Open
Source software and is available on SourceForge1.

1 http://sourceforge.net/projects/proost/

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 240–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sourceforge.net/projects/proost/

The Provenance Store prOOst for the Open Provenance Model 241

It is not the first implementation using a graph database for storage technol-
ogy. In [5] this approach was already successfully tested. Neo4j was chosen as
it is a robust, performant and popular choice for graph storage systems. Addi-
tionally it readily connectible with the suitable Gremlin query system to meet
our requirements. Further information on the implementation of OPM model
provenance assertions using these systems are described in the following two
sections.

2.1 Graph Database: Neo4j

“Neo4j is a graph database, a fully transactional database that stores
data structured as graphs.” (cf. [3])

An advantage of graph databases like Neo4j is that they offer very flexible storage
models, allowing for a rapid development. Neo4j is dually licensed (AGPLv3 open
source and commercial).

Fig. 1. OPM example in Neo4j

Modelling OPM using Neo4j is described in more detail in [6]. Fig. 1 shows
an example of an OPM graph. Each element is represented by a node (vertex)
in the database. Nodes are indexed according to the Neo4j standard. The nodes
can be annotated with further (OPM specific) information, such as “process”
or “artifact”. Analogously, also the edges connecting the nodes are indexed and
annotated with a label (the OPM relationship).

242 A. Schreiber, M. Ney, and H. Wendel

2.2 Query Language: Gremlin

“Gremlin is a graph traversal language” [4]. Gremlin already provides an inter-
face to interact with the Neo4j graph database. The following example shows
its use for querying Neo4j on the example database, searching for the names
(identifiers) of all discoveries of a certain scientistX:

$_g := neo4j:open(’database’)

$scientists := g:key($_g, ’type’, ’scientist’)

$scientistX := g:key($scientists, ’identifier’, ’scientistX’)

$discoveries := $scientistX/inE/inV[@identifier’]

3 Conclusions and Future Work

Neo4j was chosen as it is a robust, performant and popular choice for graph stor-
age systems. Additionally it readily connectible with the suitable Gremlin query
system to easily perform queries. The provenance store prOOst was evaluated
and used by two different applications: Recording the provenance of software
development processes [6] and recording provenance in an electronic laboratory
notebook system [7].

Future work will concentrate on moving prOOst to support the PROV Data
Model [8] that is specified by the W3C Provenance Working Group.

References

1. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Buss-
che, J.V.: The open provenance model core specification (v1.1). Future Generation
Computer Systems (July 2010)

2. Holl, D.A., Braun, U., Maclean, D., Kumar Muniswamy-Reddy, K., Seltzer, M.I.:
Choosing a data model and query language for provenance. In: Proceedings of the
2nd International Provenance and Annotation Workshop (2008)

3. Neo4j.org: Neo4j graph database, http://neo4j.org
4. Rodriguez, M.A.: Gremlin graph traversal language,

http://gremlin.tinkerpop.com

5. Tylissanakis, G., Cotronis, Y.: Data provenance and reproducibility in grid based
scientific workflows. In: Workshops at the Grid and Pervasive Computing Confer-
ence, pp. 42–49 (2009)

6. Wendel, H., Kunde, M., Schreiber, A.: Provenance of Software Development Pro-
cesses. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS,
vol. 6378, pp. 59–63. Springer, Heidelberg (2010)

7. Ney, M.: Enabling a data management system to support the good laboratory prac-
tice. Master’s thesis, Freie Universität Berlin (2011), http://elib.dlr.de/75261/

8. Moreau, L., Missier, P., Belhajjame, K., Cresswell, S., Gil, Y., B’Far, R., Groth, P.,
Klyne, G., McCusker, J., Miles, S., Myers, J., Sahoo, S.: PROV-DM Part 1: The
Provenance Data Model,
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm.html

http://neo4j.org
http://gremlin.tinkerpop.com
http://elib.dlr.de/75261/
http://dvcs.w3.org/hg/prov/raw-file/default/model/prov-dm.html

A Comprehensive Model for Provenance

Salmin Sultana and Elisa Bertino

Purdue University
{ssultana,bertino}@purdue.edu

Abstract. In this paper, we propose a provenance model able to repre-
sent the provenance of any data object captured at any abstraction layer
(workflow/process/OS) and present an abstract schema of the model.
The expressive nature of the model makes it potential to be utilized in
real world data processing systems.

Keywords: Provenance, Model, Comprehensive, Unified, Generic.

1 Introduction

Existing data provenance systems mostly operate at a single level of abstraction
at which they record and store provenance. Provenance systems for scientific
data [1][2] record provenance at the semantic level of the application. Other
application level provenance systems capture provenance at the granularity of
business objects, lines of source code or other units with semantic meaning
to the context. Workflow systems record provenance at workflow stages and
data/message exchange points. System-call based systems [3][4] operate at the
level of system processes and files. While provenance collected at each abstrac-
tion layer is useful in its own right, integration across these layers is crucial.

To build a unified provenance infrastructure, defining an expressive prove-
nance model able to represent the provenance of data objects with various se-
mantics and granularity is the first crucial step. Such a model should be able to
capture data provenance in a structured way as well as to encapsulate the knowl-
edge of both the application semantics and the system. The model should also
support provenance queries that span layers of abstraction, including workflow
processes, application objects, and system processes. Despite a large number
of research efforts on provenance management, only a few provenance models
have been proposed. Most of these models conform only to a particular prove-
nance system’s data structure. Although a general provenance model has been
proposed by Ni et al. [5], its main focus is on access control for provenance.
Also this model is not able to distinguish between application and system level
provenance information. In this paper, we propose a comprehensive provenance
model that is (i) generic to record the provenance of any data object, (ii) uni-
fied to capture and integrate both the application and system level metadata,
(iii) focused on interoperability among provenance models and integration of
provenance across different systems, (iv) tailored to fine grained access control
and originator preferences on provenance, and (v) able to facilitate queries for
constructing specialized views of provenance graphs.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 243–245, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 S. Sultana and E. Bertino

2 Provenance Model

Fig. 1 shows the proposed provenance model consisting of entities and the inter-
actions among them. To characterize our model, we define the provenance as:

The provenance of a data object is the history of the actors, process, operations,
inter-process/operation communications, environment, access control and other
user preferences related to the creation and modification of the data. The re-
lationships between provenance entities form a data provenance graph (DAG).

Fig. 1. Proposed Provenance Model

Data creation or manipulation is performed by a sequence of operations initi-
ated by a process. A process, consisting of a sequence of operations, may be a
service/activity in a workflow, a user application, or an OS-level (e.g. UNIX)
process. An operation executes specific task(s) and causes manipulation to some
system or user data. Communication represents the interaction (e.g. data flow)
between two processes or two operations in a process. Communication between
two operations in a process means the completion of an operation following the
start of another operation. When the preceding operation results in data, the
communication may involve data passing between the operations. The commu-
nication may also contain triggers, specific messages, etc. There might be also no
explicit message (i.e. communication record) exchange between two operations.
An operation may take data as input and output some data. Each data object is
associated with a lineage record which specifies the immediate data objects that
have been used to generate this data. Processes, operations, and communica-
tions are operated by actors that can be human users, workflow templates, etc.
Environment refers to the operational state, parameters, system configurations
that also affect the execution of an operation and thus output data.

To address the security and privacy requirements of provenance, we include
actor specified access control policies that specify whether and how other actors
may utilize the provenance records. Since our model can capture the very details
of an operation, it might by preferable to allow users to specify the desired level
of provenance details. The granularity policies allow the users to specify how
detailed provenance information they want to be captured and stored.

A Comprehensive Model for Provenance 245

Fig. 2. Class Diagram of Provenance Model

From an implementation perspective, we represent our generic model as rela-
tionships among various provenance records as shown in Fig 2. Each provenance
record is identified by an ID. Since provenance may be exchanged across different
systems, we use domain to specify the scope of the records.

3 Conclusion

In this paper, we propose a comprehensive provenance model that can encapsu-
late the data provenance captured at different stages of a physical/computational
process. The model captures the characteristics of standard provenance models
which ensures the inter-operability of provenance across different systems.

References

1. Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: Proc. of the Conference
on Scientific and Statistical Database Management (SSDBM), pp. 37–46 (2002)

2. Janée, G., Mathena, J., Frew, J.: A data model and architecture for long-term
preservation. In: Proc. of the Conference on Digital Libraries, pp. 134–144 (2008)

3. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of com-
putational provenance. Concurrency and Computation: Practice and Experience 20,
485–496 (2008)

4. Muniswamy-Reddy, K., Holland, D., Braun, U., Seltzer, M.: Provenance-aware stor-
age systems. In: Proc. of the USENIX Annual Technical Conference (2006)

5. Ni, Q., Xu, S., Bertino, E., Sandhu, R., Han, W.: An Access Control Language for a
General Provenance Model. In: Jonker, W., Petković, M. (eds.) SDM 2009. LNCS,
vol. 5776, pp. 68–88. Springer, Heidelberg (2009)

Provenance Representation in the Global

Change Information System (GCIS)

Curt Tilmes

U.S. Global Change Research Program,
1717 Pennsylvania Ave NW, Suite 250

Washington D.C. 20006, USA
Curt.Tilmes@nasa.gov

Abstract. Global climate change is a topic that has become very con-
troversial despite strong support within the scientific community. It is
common for agencies releasing information about climate change to be
served with Freedom of Information Act (FOIA) requests for everything
that led to that conclusion. Capturing and presenting the provenance,
linking to the research papers, data sets, models, analyses, observation
instruments and satellites, etc. supporting key findings has the potential
to mitigate skepticism in this domain.

The U.S. Global Change Research Program (USGCRP) is now coor-
dinating the production of a National Climate Assessment (NCA) that
presents our best understanding of global change. We are now developing
a Global Change Information System (GCIS) that will present the con-
tent of that report and its provenance, including the scientific support
for the findings of the assessment. We are using an approach that will
present this information both through a human accessible web site as
well as a machine readable interface for automated mining of the prove-
nance graph. We plan to use the developing W3C PROV Data Model
and Ontology for this system.

1 Background

The U.S. Global Change Research Program (USGCRP)1 coordinates and inte-
grates federal research on changes in the global environment and their implica-
tions for society. The USGCRP began as a presidential initiative in 1989 and was
mandated by Congress in the Global Change Research Act of 1990[1] (GCRA),
which called for “a comprehensive and integrated United States research program
which will assist the Nation and the world to understand, assess, predict, and
respond to human-induced and natural processes of global change.”

Thirteen U.S. federal departments and agencies participate in the USGCRP:
Department of Commerce, Department of Defense, Department of Energy, De-
partment of the Interior, Department of State, Department of Transportation,
Department of Health and Human Services, Department of Agriculture, National

1 http://globalchange.gov

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 246–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://globalchange.gov

Provenance Representation in the Global Change Information System 247

Aeronautics and Space Administration, National Science Foundation, Smithso-
nian Institution, Agency for International Development and the Environmental
Protection Agency.

The USGCRP is developing a Global Change Information System (GCIS)
that will utilize the developing W3C PROV2 recommendations to eventually
represent the provenance for all of the information related to global change across
the U.S. federal government. The first implementation will provide provenance
for the National Climate Assessment (NCA).

2 National Climate Assessment (NCA)

The GCRA requires a report to the President and the Congress every four years
that integrates, evaluates, and interprets the findings of the USGCRP; analyzes
the effects of global change on the natural environment, agriculture, energy pro-
duction and use, land and water resources, transportation, human health and
welfare, human social systems, and biological diversity; and analyzes current
trends in global change, both human-induced and natural, and projects major
trends for the subsequent 25 to 100 years.

The National Climate Assessment and Development Advisory Committee
(NCADAC) is a Federal Advisory Committee[2] with 60 members, including
45 non-federal members and 16 federal ex-officio representatives. that provides
advice and recommendations for the NCA process. As of this writing, the NCA
has defined 30 chapters and selected 62 “Convening Lead Authors” and 180
“Lead Authors.” The names and institutional affiliations of 240 contributing au-
thors are a critical part of the provenance of the NCA we will be capturing with
the process. All of that information will be of course be part of the printed and
web-based text of the document, but will also be represented through machine
accessible APIs.

Through an open, public process, the NCA has received over 500 distinct tech-
nical inputs, many of which are reports distilling and synthesizing even more in-
formation, coming from thousands of individuals around the federal government,
non-governmental organizations, academic institutions, etc. The inputs include
peer-reviewed scientific publications, model data, observational data (physical,
societal, economic), historical data, sectoral and regional assessments, and data
at a variety of scales and resolutions. Most original data are archived in long
term agency data centers responsible for long term stewardship of the items,
but some includes unconventional information collected from public health de-
partments, states and tribes, NGOs, and data collected but not yet reviewed.
Where the data are transformed into new graphics, graphs or charts, the process
and methods used must be clearly and reproducibly documented.

This poses a tremendous challenge (and opportunity!) for provenance capture,
archive, and presentation. We will represent that information using the PROV
ontology and make the complete information about the NCA itself as well as all
of the inputs to the process available through a publicly accessible web site and

2 http://www.w3.org/TR/prov-dm/

http://www.w3.org/TR/prov-dm/

248 C. Tilmes

SPARQL end point. The GCIS will provide links from the content and findings
of the NCA back to all of their predecessor artifacts.

3 Provenance Representation

The GCIS assigns globally unique, persistent identifiers to all of the entities, ac-
tivities and agents relevant to our discussions of provenance. These are located in
the USGCRP namespace rooted under http://globalchange.gov/id. We are
linking to existing identifiers where possible and appropriate, using journal or
data center assigned DOIs for papers and datasets. NASA’s Global Change Mas-
ter Directory3 has also assigned reusable identifiers for many of the important
datasets and services we are referencing. PROV can be extended with domain
defined types and specialized agent roles like the “Convening Lead Authors.”

All of the globalchange.govURI identifiers will be resolvable through HTTP
content negotiation to either human readable HTML web pages, or machine
readable encodings of the metadata describing the item and linking back to the
repository for that item (such as a journal site for a paper, or an agency data
center for an observational dataset). Where items are derived from other items,
they will link back to their predecessor “entities,” and “activity” representations
with sufficient detail to reproduce the activity.

As an exercise to explore alternative methods of presenting the NCA, the pre-
vious report Global Climate Change Impacts in the United States (2009)[3] was
transformed into a web site4 with additional pages for each figure and footnote
to more information including links back to datasets and data centers.

4 Future Plans

The GCIS is very much a work in progress. We have only begun mapping the
myriad of resources into the PROV Data Model. Indeed, at this time, PROV
itself is not yet complete, being only a “public working draft.” Nevertheless,
using PROV to describe the provenance of the NCA will have benefits for each.
Beyond the NCA and other synthesis reports, the GCIS will be used to present
information about global change from across the agencies of the U.S. Global
Change Research Program.

References

1. U.S. Code: Global Change Research Act of 1990 (P.L. 101-606) (1990)
2. U.S. Code: The Federal Advisory Committee Act (5 U.S.C. App.) (1972)
3. U.S. Global Change Research Program: Global Climate Change Impacts in the

United States (2009)

3 http://gcmd.nasa.gov
4 http://nca2009.globalchange.gov

http://globalchange.gov/id
globalchange.gov
http://gcmd.nasa.gov
http://nca2009.globalchange.gov

Integrating Provenance into an Operational

Data Product Information System

Stephan Zednik, James Michaelis, and Peter Fox

Rensselaer Polytechnic Institute, Troy NY 12180, USA

Abstract. Knowledge of how a science data product has been gener-
ated is a critical component to determining its fitness-for-use for a given
analysis. One objective of science information systems is to allow users
to search for data products based on a wide range of criteria; spatial and
temporal extent, observed parameter, research domain, and organiza-
tional project are common search criteria. Currently, science information
systems are geared towards helping users find data, but not in helping
users determine how the products were generated. An information sys-
tem that exposes the provenance of available data products, that is what
observations, assumptions, and science processing were involved in the
generation of the data products, would contribute significant benefit to
user fitness-for-use decision-making.

In this work we discuss semantics-driven provenance extensions to
the Virtual Solar Terrestrial Observatory (VSTO) information system.
The VSTO semantic web portal uses an ontology to provide a uni-
fied search and product retrieval interface to data in the fields of so-
lar, solar-terrestrial, and space physics. We have developed an extension
to the VSTO ontology that allows it to express item-level data prod-
uct records. We will show how the Open Provenance Model (OPM)
and the Proof Markup Language (PML) can be used to express the
provenance of data product records. Additionally, we will discuss ways
in which domain semantics can aid in the formulation - and answering
- of provenance queries. Our extension to the VSTO ontology has also
been integrated with a solar-terrestrial profile of the Observation and
Measurement (O&M) model to support domain-specific descriptions of
solar-terrestrial observations; we utilize this integration to connect ob-
servation events to the data product record lineage.

Our additions to the VSTO ontology will allow us to extend the VSTO
web portal user interface with search criteria based on provenance and
observation characteristics. More critically, provenance information will
allow the VSTO portal to display important knowledge about selected
data records; what science processes and assumptions were applied to
generate the record, what observations the record derives from, and the
results of quality processing that had been applied to the record and
any records it derives from. We conclude by showing our interface for
showing record provenance information and discuss how it aids users in
determining fitness-for-use of the data.

Keywords: provenance, information systems, observation model, solar-
terrestrial.

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, p. 249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Presenting Apropos Provenance

for Situation Awareness and Data Forensics

Jing Zhao, Yogesh Simmhan, and Viktor Prasanna

University of Southern California, Los Angeles, CA
{zhaoj,simmhan,prasanna}@usc.edu

Abstract. Provenance for data derived from large-scale workflows across
organizations and disciplines can be complex. Users in different roles find
their interpretation onerous unless it is presented in a form that is eas-
ily consumable for the given task at hand. In this position paper, we
motivate the need and discuss key challenges for presenting provenance
across different granularities to support data quality forensics for diverse
users. We also offer potential modeling and algorithmic solutions.

1 Introduction

As data flows through and is derived from workflows executed across organi-
zations and disciplines, provenance may be collected and reconstructed from
different orchestration and execution frameworks [2], and often at different gran-
ularities depending on the execution framework in question. For example, for a
workflow composed of multiple web services, the workflow management system
may collect coarse-grained provenance that describes the data flow and control
flow at the granularity of the web service invocations. Further, within an individ-
ual web service, detailed provenance may be collected to describe the execution
logic of the service. Furthermore, more detailed provenance may be collected on
system and OS calls within each execution step.

Understanding and interpreting raw provenance is challenging for users who
consume it for diverse uses. The provenance collection mechanism provides a
natural “grouping” structure for presenting provenance. However, it presents
provenance from the perspective of the “composer” of the workflow rather than
the “consumer” of the provenance. An appropriate granularity or view of prove-
nance should be presented to users based on the current task at hand and situa-
tion of interest. For example, when using provenance for data quality debugging,
fine-grained provenance needs to be provided for data objects and processes that
have high impact on quality, whilst other provenance is masked. Users with dif-
ferent roles may also be interested in different views of provenance: business
managers may be only interested in high-level business flows, while engineers
are interested in detailed steps and the execution logic in the workflow.

An effective provenance presentation approach is thus required. This should
determine the suitable view or granularity for provenance based on the context of
usage. The presentation approach should support hybrid views that slices across
vertical layers and horizontal boundaries and allow navigation across granu-
larities. This requires support from provenance modeling, approaches to solicit

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 250–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Presenting Apropos Provenance 251

information on the usage context, frameworks to compose the provenance view,
and presentation interfaces to display and navigate the provenance for accom-
plishing the task. In this paper, we outline key challenges and potential solutions
for determining and presenting apropos hybrid provenance views across granu-
larities, analyzed in the context of the Smart Power Grid domain.

2 Presenting Provenance for Data Forensics in Smart
Grid

We use a use case from the Smart Power Grids domain as our motivating ex-
ample. Several workflows, including the Campus Power Consumption Forecast
workflow, the Forecast Model Training workflow, and the Building Sensor Inte-
gration workflow, are used to reliably forecast future power consumption of the
campus, and initiate voluntary and direct-control actions to curtail energy use
during peak load periods. A simplified version of the provenance collected for
the ecosystem of workflows is shown in Figure 1.

M R S

…...

H A AH

AGHS A AHS

HW A AHW

SubM
FM

W

SC

A&T C

C

C AG

BC

F BF

BF

…...
AG CF

Forecast Model Training Building Sensor Integration Campus Power Consumption Forecast

MapReduce Learning

H: historical power consumption
HS: historical schedule
HW: historical weather

A&T: annotation & transformation
BC: power consumption
for a building

…...

S A&T

S A&T

TR

A: annotation
AH: annotated H
AHS: annotated HS

BF: power consumption
forecast for a building
CF: power consumption
forecast for campus
TR: training dataset
M: map
SC: schedule info.
W: weather info.
F: forecast

AHW: annotated HW
S: power consumption
 collected from meter

AG: aggregation
C: power consumption after
transformation and annotation

SubM: sub-model
R: reduce
FM: forecast model

Fig. 1. Simplified provenance graph for power consumption forecast workflows

H A AH AG

HS A AHS

HW A AHW

FM

W

SC

BC

F

BF

BF

…...
AG

CF

…...

MapReduce
Learning

Building Sensor
Integration

TR

(a) data analyst

M R

HHSHW

SubM FM

WSCBC

Campus Power
Consumption

Forecast
CF

Annotation &
Aggregation

S

S
…... Building Sensor

Integration …...
BC

TR

(b) software architect

S

S

BF

BF

…...
AG CF

…...

…...
Building Power

Consumption Forecast

(c) facility operator

S1,1

S1,2

S1,20

BF1 AG CF

BF(other)
…...

Building Power
Consumption Forecast

Power Consumption
Forecast for Other Bld.

(d) data forensics

Fig. 2. Provenance graph views for different user roles

Three types of users consume the provenance information: the software archi-
tect, the data analyst, and the campus facility operator. Each of them has their
own particular interest and usage of provenance collected from the workflow.
For example, the data analyst designs machine learning algorithms for generat-
ing the forecast model. She is interested in provenance about the execution of the
forecast model training and the campus power consumption forecast workflow
so that she can verify the quality of the forecast model. Figure 2 shows different
provenance “views” for these user roles.

252 J. Zhao, Y. Simmhan, and V. Prasanna

The main usage of provenance in our use case is for data quality forensics.
Directly presenting a complete provenance graph with several thousand prove-
nance nodes makes it challenging for users to perform data forensics. The quality
impact, which indicates how the quality of a process/artifact affects the output
quality, is then used to guide users on what processes and data objects they need
to exercise more quality control upon. In addition to user roles, we thus also need
to consider the provenance usage requirement for its presentation. Figure 2(d)
illustrates a provenance view for the facility operator that reflects the granular-
ity requirement based on quality impact. The provenance graph highlights the
provenance trace for calculating the consumption forecast of Building 1 since it
is the largest building and has the highest quality impact.

3 Determining Apropos Provenance Presentation View

In general, the strategies to determine the suitable provenance presentation view
can be classified into a decomposition or a clustering approach. A decomposition
approach is well suited in the presence of granularities clearly defined in the
provenance model. For each individual activity in the workflow, we identify the
most appropriate presentation granularity to satisfy the usage requirement and
to meet the user’s interest. The eventual presentation may be a combination of
fine-grained and coarse-grained provenance for different sections of the graph.
The approach is based on the provenance usage context information, which in-
cludes: 1) the provenance end use specifying the activity for which provenance
is used, such as data quality forensics or software, and 2) the user profile de-
scribing the role of the user consuming provenance, which may include the user’s
affiliation, business level, associated projects, and expertise.

When existing provenance information does not have discrete granularity lev-
els specified in the model, a clustering approach can be applied to infer the
suitable presentation granularities. In general, this approach incrementally clus-
ters the initial fine-grained provenance information so that groups of low-level
provenance nodes are combined and replaced by new higher-level nodes. Some
existing work has already discussed problems in this direction [1]. The cluster-
ing strategy needs to clearly identify what fine-grained provenance information
can be combined into a composite module. A clustering strategy may also con-
sider the semantic connection of the relevant provenance subjects. This requires
mechanisms like calculation of connectivity power to be designed.

4 Conclusion

In this paper, we outlined the critical need and key challenges for determin-
ing appropriate granularities for presenting provenance. We motivated from the
Smart Grid domain and illustrated alternate provenance views when presenting
the same provenance to different user roles and end use needs. Our discussions
centered around modeling these presentation needs and strategies to determine
the appropriate view based on context information.

Presenting Apropos Provenance 253

References

1. Biton, O., Cohen-Boulakia, S., Davidson, S., Hara, C.: Querying and managing
provenance through user views in scientific workflows. In: ICDE (2008)

2. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34 (2005)

Author Index

Asuncion, Hazeline U. 1

Baillie, Chris 220
Belhajjame, Khalid 67, 126
Bertino, Elisa 243
Bouttaz, Thomas 198, 223
Bowers, Shawn 82
Browne, William J. 24

Charlton, Chris 24
Chen, Yuhui 111
Chirigati, Fernando 11
Coppens, Sam 97
Corsar, David 209, 226
Costa, Flávio 229
Costanza, Enrico 139
Curcin, Vasa 233

Danger, Roxana 233
Darlington, John 233
De Nies, Tom 97
de Oliveira, Daniel 152, 229
Difranzo, Dominic 52
Di Lauro, Roberto 203
Doutriaux, Charles 214

Earl, Graeme 139
Ebden, Mark 168
Eckhardt, Alan 198, 223
Edwards, Peter 198, 209, 220, 223, 226
Ellqvist, Tommy 214

Farrington, John 198
Fetzer, Eric 236
Foster, Ian 203
Fox, Peter 249
Frankland, Tom 139
Freire, Juliana 11, 214

Goble, Carole A. 126
Gonçalves, João Carlos de A.R. 152
Graves, Alvaro 39, 52

Hua, Hook 236
Huynh, Trung Dong 168

Jewell, Michael O. 139
Joy, Robin Campbell 233

Koop, David 214
Koutny, Maciej 183

Lebo, Timothy 39, 52
Lucena, Carlos 111
Luck, Michael 111
Ludäscher, Bertram 82

Malik, Tanu 203
Manipon, Gerald 236
Mannens, Erik 97
Markovic, Milan 209
Mattoso, Marta 152, 229
Maxwell, Thomas 214

McGuinness, Deborah L. 39, 52
McPhillips, Timothy 82
Mellish, Chris 198, 223
Michaelides, Danius T. 24
Michaelis, James 249
Miles, Simon 111
Missier, Paolo 67, 126, 183
Montella, Raffaele 203
Moreau, Luc 24, 139, 168

Nelson, John 226
Ney, Miriam 240
Nunes, Ingrid 111

Ocaña, Kary A.C.S. 152, 229
Ogasawara, Eduardo 152, 229

Pan, Jeff Z. 209, 226
Pan, Lei 236
Pangbourne, Kate 198
Pham, Quan 203
Philip, Lorna 198
Pignotti, Edoardo 198, 220
Pinheiro, Paulo 52
Ponnamperuma, Kapila 198
Potter, Gerald 214
Prasanna, Viktor 250

McCusker, Jamie P. 52

256 Author Index

Ramchurn, Sarvapali 168
Randell, Brian 183
Roberts, Stephen 168
Runnalls, Andrew 237

Santos, Emanuele 214
Schreiber, Andreas 240
Silles, Chris 237
Silva, Cláudio T. 214
Simmhan, Yogesh 250
Sultana, Salmin 243

Tilmes, Curt 246

Van Deursen, Davy 97
Van de Walle, Rik 97
Velaga, Nagendra 226

Wang, Ping 39
Wendel, Heinrich 240
Williams, Dean 214
Wilson, Brian 236

Yang, Huanjia 24

Zednik, Stephan 249
Zhao, Jing 250

	Title

	Preface
	Organization
	Table of Contents
	Documents Databases
	SourceTrac: Tracing Data Sources within Spreadsheets
	Introduction
	Provenance Technique
	Tracking the Source as the User Obtains the Data
	Querying Data Sources at Multiple Levels of Granularity
	Calculating the Ancestors of the Data
	Visualizing Sources at Different Levels of Granularity

	SourceTrac Tool Support
	Tool Design and Implementation
	Use Cases

	Evaluation
	Provenance Queries
	User Feedback
	Scalability of Tool

	Related Work
	Conclusion
	References

	Towards Integrating Workflow and Database Provenance
	Introduction
	A Model for Integrating Workflow and Database Provenance
	Background
	Integrating Workflow and Database Provenance
	Enabling Reproducibility
	Querying Provenance

	Implementation
	Conclusion and Future Work
	References

	DEEP: A Provenance-Aware Executable Document System
	Introduction
	Related Work
	Deep Requirements and Design
	Deep System Design and Overview
	Deep Document Structure and Reading

	Provenance Data Model for an Executable Document System
	Presenting and Navigating Provenance Information - Exposing Provenance to Support Users
	Provenance-Aware Interactive Reading - Using Provenance to Drive System Functionality
	Deep Document Execution Status Checking
	Deep Document Rollback

	Conclusion and Future Work
	References

	The Web
	Towards Unified Provenance Granularities

	Introduction
	Related Work
	csv2rdf4lod's Assertions of Granular Provenance
	SemantAqua's Need for Abstracted Provenance
	Deriving Abstractive Provenance
	Discussion
	Conclusion
	References

	Functional Requirements for Information Resource Provenance on the Web
	Introduction
	A Weather Example

	Background: Existing W3C Recommendations
	The Semiotics of HTTP URLs
	FRBR and FRIR
	Explaining HTTP with FRBR, FRIR, and PROV-O
	Implementation
	Discussion
	Conclusion
	References

	A PROV Encoding for Provenance Analysis Using Deductive Rules
	Introduction
	Contributions and Approach
	Related Work

	PROV Provenance Graphs as Deductive Databases
	Example: Collaborative Document Editing
	Background: Datalog Basics
	Datalog Encoding of PROV Graphs

	PROV Constraints as Datalog Rules
	Mapping PROV Rules to Datalog Rules and Queries
	Limitations of Mapping and Rules as DLV Constraints
	Examples Rules and Queries

	Provenance Validation by Constraint Checking
	Conclusions
	References

	Reconstruction
	Declarative Rules for Inferring Fine-Grained Data Provenance from Scientific Workflow Execution Traces
	Introduction
	Workflows, Traces, and Dependencies
	Fine-Grained Data Dependency Rules
	Dependency Rule Language
	Abstract Model and Dependency Rule Implementation
	Dependency Rules for Common Actor Invocation Patterns

	Related Work
	Summary
	References

	Automatic Discovery of High-Level Provenance
Using Semantic Similarity

	Introduction
	Terminology and Key Concepts
	High-Level Provenance
	PROV-DM: The Provenance Data Model

	Proposed Approach
	Discovering Imprecise Derivations
	High-Level Precise Derivations
	Precise Derivations at Finer Granularity

	Use Case: News Versioning
	Documents and Properties
	Extracting Properties through Named Entity Recognition
	Similarity Measure
	Coarse-Grained Provenance through Clustering
	Finer-Grained Provenance

	Evaluation
	Related Work
	Discussion and Future Work
	Conclusions
	References

	Transparently deriving the provenance of user decisions
	Introduction
	Explaining User Decisions
	Motivating Example
	Explanations

	Overall Approach and Background
	Open Provenance Model
	Psychologically-Inspired Automated Decision Making

	An OPM Profile for Decision Making
	Decision Provenance Queries
	Conclusion
	References

	Science Applications
	Detecting Duplicate Records in Scientific Workflow Results
	Introduction
	Related Work
	Data-Driven Workflows and Provenance Trace
	Provenance-Guided Detection of Duplicates
	Verifying the Determinism of Analysis Operations
	Collection-Based Workflows

	Validation
	What Is the Benefit in Terms of Reducing the Number of Record Pair Comparisons?
	Are Real-World Analysis Operations Deterministic?

	Conclusions and Future Work
	References

	The Xeros Data Model: Tracking Interpretations of Archaeological Finds
	Introduction
	Related Work
	Xeros: Representation and Operations
	Extension
	Edition
	Reduction
	Idempotence

	Completion
	Cross-Entity Completion
	Post-fact Merging
	Pre-fact Recall

	Scalability
	Conclusions
	References

	Using Domain-Specific Data to Enhance Scientific
Workflow Steering Queries
	Introduction
	Motivation: Steering for Comparative Genomics Experiments
	SciCumulus Engine and Algebraic Workflow Representation
	Enriching Provenance with Domain-Specific Data
	Experimental Results
	Related Work
	Conclusions
	References

	Networks
	Network Analysis on Provenance Graphs from a Crowdsourcing Application
	Introduction
	CollabMap
	CollabMap Workflow
	Recording Provenance
	Provenance Graphs

	Methods
	Results and Discussion
	Degree Distribution
	Graph Diameter
	Densification

	Conclusion
	References

	Modelling Provenance Using Structured Occurrence Networks
	Introduction
	Benefits and Limitations
	Related Work
	Paper Organization

	Structured Occurrence Networks
	SONs Modelling Patterns for Provenance
	Simple Values Manipulation and Variable Assignment
	Workflow Fragments
	Agents and Their Provenance
	Modelling Activities with a Finite Duration

	SON and PROV
	Conclusions
	References

	Demonstrations
	DEMO: ourSpaces – A Provenance Enabled Virtual Research Environment
	Introduction
	Provenance in ourSpaces
	Demonstration Content
	References

	SOLE: Linking Research Papers with Science Objects
	Introduction
	Related Work
	SOLE
	Demonstration Scenario
	Conclusion
	References

	DEMO: Managing the Provenance of Crowdsourced Disruption Reports
	Introduction
	Application Scenario
	System Architecture
	 Data Integration
	Provenance Information
	Report Assessment

	References

	Designing a Provenance-Based Climate Data Analysis Application
	Introduction
	UV-CDAT Overview
	UV-CDAT Provenance
	Using UV-CDAT as an End-to-End Analysis Tool
	Conclusion
	References

	Posters
	Quality Assessment, Provenance, and the Web of Linked Sensor Data
	Introduction
	Quality Assessment Framework
	Provenance and Quality Assessment
	References

	Integrating Text and Graphics to Present Provenance Information
	Introduction
	Visualisation Services
	Discussion
	References

	Exploring Provenance in a Linked Data Ecosystem
	Introduction
	Provenance and Open Data
	Conclusion
	References

	Enabling Re-executions of Parallel Scientific Workflows
Using Runtime Provenance Data
	Introduction
	SciMultaneous
	Experimental Results and Conclusions
	References

	Access Control for OPM Provenance Graphs
	References

	Improving the Understanding of Provenance and Reproducibility of a Multi-Sensor Merged
Climate Data Record
	Provenance Tracking in R
	CXXR
	Provenance Tracking and CXXR
	Xenogenesis
	Environments
	Conclusion
	References

	The Provenance Store prOOst
for the Open Provenance Model

	Introduction
	The Provenance Store prOOst
	Graph Database: Neo4j
	Query Language: Gremlin

	Conclusions and Future Work
	References

	A Comprehensive Model for Provenance
	Introduction
	Provenance Model
	Conclusion
	References

	Provenance Representation in the Global Change Information System (GCIS)
	Background
	National Climate Assessment (NCA)
	Provenance Representation
	Future Plans
	References

	Integrating Provenance into an Operational Data Product Information System
	On Presenting Apropos Provenance for Situation Awareness and Data Forensics
	Introduction
	Presenting Provenance for Data Forensics in Smart Grid
	Determining Apropos Provenance Presentation View
	Conclusion
	References

	Author Index

