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Abstract. Vast amounts of information is encoded in tables found in
documents, on the Web, and in spreadsheets or databases. Integrating or
searching over this information benefits from understanding its intended
meaning and making it explicit in a semantic representation language
like RDF. Most current approaches to generating Semantic Web rep-
resentations from tables requires human input to create schemas and
often results in graphs that do not follow best practices for linked data.
Evidence for a table’s meaning can be found in its column headers, cell
values, implicit relations between columns, caption and surrounding text
but also requires general and domain-specific background knowledge. Ap-
proaches that work well for one domain, may not necessarily work well
for others. We describe a domain independent framework for interpreting
the intended meaning of tables and representing it as Linked Data. At the
core of the framework are techniques grounded in graphical models and
probabilistic reasoning to infer meaning associated with a table. Using
background knowledge from resources in the Linked Open Data cloud,
we jointly infer the semantics of column headers, table cell values (e.g.,
strings and numbers) and relations between columns and represent the
inferred meaning as graph of RDF triples. A table’s meaning is thus cap-
tured by mapping columns to classes in an appropriate ontology, linking
cell values to literal constants, implied measurements, or entities in the
linked data cloud (existing or new) and discovering or and identifying
relations between columns.

Keywords: linked data, RDF, Semantic Web, tables, entity linking,
machine learning, graphical models.

1 Introduction

The Web has become a primary source of knowledge and information, largely
replacing encyclopedias and reference books. Most Web text is written in a nar-
rative form as news stories, blogs, reports, letters, etc., but significant amounts
of information is also encoded in structured forms as stand-alone spreadsheets
or tables and as tables embedded in Web pages and documents. Cafarella et al.
[5] estimated that the Web contains over 150 million high quality relational html
tables.
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Tables are also used to present and summarize key data and results in doc-
uments in many subject areas, including science, medicine, healthcare, finance,
and public policy. As a part of a coordinated open data and transparency ini-
tiative, nearly 30 nations are publishing government data on sites in structured
formats. The US data.gov site shares more than 390,000 datasets drawn from
many federal agencies and is complemented by similar sites from state and lo-
cal government organizations. Tables are used to represent significant amount of
information and knowledge, yet, we are not able to fully exploit it. Both integrat-
ing or searching over this information will benefit from a better understanding
of the intended meaning of the data and its mapping to other reference dataset.

The goal of our research is to unlock knowledge encoded in tables. In this
paper, we present a domain independent framework for automatically inferring
the intended meaning and semantics associated with tables. Using the Linked
Open Data [2] (or an provided ontology, knowledge base [KB]) as background
knowledge, our techniques grounded in graphical models and probabilistic rea-
soning, map every column header to a class from an ontology, links table cell
values to entities from the KB and discovers relations between table columns.
The inferred information is represented as a graph of RDF triples allowing other
applications to utilize the recovered knowledge.

2 Impact

Many real world problems and applications can benefit from exploiting informa-
tion stored in tables including evidence based medical research [22]. Its goal is to
judge the efficacy of drug dosages and treatments by performing meta-analyses
(i.e systematic reviews) over published literature and clinical trials. The pro-
cess involves finding appropriate studies, extracting useful data from them and
performing statistical analysis over the data to produce a evidence report.

Fig. 1. The number of papers reporting on
systematic reviews and meta-analyses is small
compared to those reporting on individual clini-
cal trials, as shown in this data from MEDLINE

Key information required to
produce evidence reports
include data such as patient de-
mographics, drug dosage infor-
mation, different types of drugs
used, brands of the drugs used,
number of patients cured with
a particular dosage etc. Most of
this information is encoded in
tables, which are currently be-
yond the scope of regular text
processing systems and search
engines. This makes the pro-
cess manual and cumbersome for
medical researchers.

Presently medical researchers perform keyword based search on systems such
as PubMed’s MEDLINE which end up producing many irrelevant studies, re-
quiring researchers to manually evaluate all of the studies to select the relevant
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ones. Figure 1 obtained from [6] clearly shows the huge difference in number of
meta-analysis and number of clinical trials published every year. By adding se-
mantics to tables like Figure 2, we can develop systems that can easily correlate,
integrate and search over different tables from different studies to be combined
for a single meta-analysis.

Web search is another area that can benefit from understanding information
stores in tables. Search engines work well at searching over text in web pages, but
poorly when searching over tables. If recovered semantics are available, search
engines can answer queries like dog breeds life span, wheat production in Africa
or temperature change in the Arctic,with tables or web pages containing them
as results. We also see our work helping to generate high quality semantic linked
data, which in turn will aid the growth of the Semantic Web.

3 Inferring the Semantics of Tables

Analyzing tables provide unique challenges. One might be tempted to think that
regular text processing might work with tables as well. After all tables also store
text. However that is not the case. To differentiate between text processing and
table processing consider the text “Barack Hussein Obama II (born August 4,
1961) is the 44th and current President of the United States. He is the first
African American to hold the office.”

Fig. 2. Tables in clinical trials literature have
characteristics that differ from typical, generic
Web tables. They often have row headers well as
column headers, most of the cell values are nu-
meric, cell values are often structured and cap-
tions can contain detailed metadata (From [32]).

The over-all meaning can be
understood from the meaning
of words in the sentence. The
meaning of each word can be
can be recovered from the word
itself or by using context of
the surrounding words. Now
consider the table shown in
Figure 2. In some ways, this
information is easier to under-
stand because of its structure,
but in others it is more diffi-
cult because it lacks the normal
organization and context of
narrative text. The message
conveyed by table in Figure 2
is different eradication rates for
different drug dosages and treat-
ment regimes for the disease H
pylori. Similarly consider the ta-
ble shown in Figure 3. The table
represents information about cities in the United States of America. A closer
look at the table tells us that the cities in column one are the largest cities of
the respective states in column three.
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City State Mayor Population

Baltimore MD S.C.Rawlings-Blake 640,000

Philadelphia PA M.Nutter 1,500,000

New York NY M.Bloomberg 8,400,000

Boston MA T.Menino 610,000

Fig. 3. A simple table representing information about cities in United States of America

To extract such information from tables, it will be important to interpret the
meaning of column (and row) headers, correlation between columns, and entities
and literals mentioned in tables. Additional context and information can be also
be obtained from caption of the table as well text surrounding the table.

The intended meaning of column headers can be extracted by analyzing the
values in the columns. For example, the strings in column one in Figure 3 can
be recognized as entity mentions that are instances of the dbpedia-owl:Place
class. Additional analysis can automatically generate a narrower description
such as major U.S. cities. The string in the third column match the names
of people and also the narrower class of politicians. The column header pro-
vides additional evidence and better interpretation that the strings in column
three are the mayors of the cities in column one. Linking the table cell val-
ues to known entities enriches the table further. Linking S.C.Rawlings-Blake
to dbpedia:Stephanie C. Rawlings-Blake, T.Menino to dbpedia:Thomas Menino ,
M.Nutter to dbpedia:Michael Nutter we can automatically infer the additional
information that all three belong to the Democratic party. Discovering correla-
tions between table columns also add key information. For example, in this case,
correlation between columns one and two help us infer that cities in column one
are largestCities of the respective states in column three.

The techniques above will work well when the table cell values are strings;
but not necessarily when cell values are literals, for e.g. numerical values such
as the ones from the table in Figure 2 or values from column four of the table
in Figure 3. We discuss the challenges posed by such literals and how to tackle
them later in the paper.

Producing an overall interpretation of a table is a complex task that requires
developing an understanding of the intended meaning of the table as well as
attention to the details of choosing the right URIs to represent both the schema
as well as instances. We break down the process into following major tasks: (i)
assign every column (or row header) a class label from an appropriate ontology;
(ii) link table cell values to appropriate LOD entities, if possible; (iii) discover
relationships between the table columns and link them to linked data properties;
and (iv) generate a linked data representation of the inferred data.

4 DIF-LDT: A Domain Independent Framework

We present DIF-LDT - our domain independent framework for inferring the
semantics associated with tables in Figure 4. With little or no domain depen-
dence, the framework should work equally well with tables found on web pages,
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Fig. 4. We are developing a robust domain independent framework for table interpre-
tation that will result in a representation of the information extracted as RDF Linked
Open Data

in medical literature or tabular datasets from sites like data.gov. The goal of this
framework is also to address a number of practical challenges, including handling
with large tables containing many rows, tables with acronyms and encoded val-
ues, and literal data in the form of numbers and measurements.

At the core of the framework are two modules - a) module that queries and
generates initial set of mappings for column headers, cell values and relation
between columns in a table and b) a module grounded in probabilistic graphical
model, which performs joint inference. Once the table passes through initial pre-
processing, the query phase generates a set of candidate classes, entities and
relations between columns, for every column header and cell values in a table.
The module for joint inference will jointly assign values to column headers, cell
values and relations between columns in a table. The table interpretation will
be useful only when we are able to generate an appropriate representation of it
which can be reasoned and queried over by other systems. Thus, the next step
would be generating an appropriate representation of the inferred information.
Certain applications may require that the user review and if necessary change the
generated interpretation. To incorporate this requirement, an additional module
provides a interactive framework to allow a human to work with the system to
produce the interpretation. In the following sections we describe each module in
detail.

4.1 Pre-processing

The goal of the preprocessing modules at the start of the process is for dealing
with special cases. For example, certain tables or datasets can be too large to
be dealt by the module for joint inference. In such cases, it would better to
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sample the table, generate a smaller version and let that pass through the rest
of workflow. While applying joint inference/joint assignment techniques to large
tables is not feasible, we believe that it is also not necessary. We note that
people can usually understand a large table’s meaning by looking only at its
initial portion. Our approach will be similar – given a large table, we will sample
the rows to select a smaller number to which we will apply the graphical model.
The other pre-processing module we present is for acronyms. Many tables tend
to use acronyms. Replacing them with their expanded forms, will provide a more
accurate context and thus help in generating a better interpretation. While, we
present only two such modules, given the independent nature of the modules,
more modules can be easily added without breaking the rest of the workflow.

4.2 Generate and Rank Candidates

The goal of the querying phase is to access knowledge sources and generate a
initial set of mappings of classes, entities and relations for each mention in the
table. The knowledge sources used in the query process will include datasets such
as DBpedia [3], Yago [25] from the LOD cloud. For other specialized domains
such as the medical domain or open government data, additional ontologies and
knowledge resources may be needed. For general tables, like the ones found on
the web, DBpedia, Yago and Wikitology [26] provide very good coverage.

Presently, we use Wikitology, a hybrid kb based onWikipedia’s structured and
unstructured information augmented with information from structured sources
like DBpedia, Freebase [4], WordNet [17] and Yago, to generate our initial map-
pings. The query module generates a set of candidate entities for each cell value
in a table by querying Wikitology, using query techniques described in [19].

Each returned entity has a set of associated classes (or types). For example,
a subset of classes associated with the entity dbpedia:Baltimore are yago:Ind-
ependentCitiesInTheUnitedStates, dbpedia-owl:PopulatedPlace, dbpedia-owl:City,
yago:CitiesInMaryland. The set of candidate classes for a given column in a table
can be obtained by taking a union of the set of classes associated with the can-
didate entities in that column. Our current focus is restricted to column headers
and entities in a table.

Once the candidate sets are generated, the next step is to rank the candidates.
We developed two functions ψ1 and ψ2 for this purpose. ψ1 ranks the candidate
classes in a given set, whereas ψ2 ranks the candidate entities. ψ1 will compute
the ‘affinity’ between a column header string (e.g., City) and a class from the
candidate set (say dbpedia-owl:City). We define ψ1 as the exponential of the
product of a weight vector and a feature vector computed for column header.
ψ1 will assign a score to each candidate class which can be used to rank the
candidate classes. Thus,

ψ1 = exp(wT
1 .f1(Ci, LCi))

where w1 is the weight vector, LCi is the candidate class label and Ci is the
string in column header i. The feature vector f1 is composed of the following
features:
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f1 = [LevenshteinDistance(Ci, LCi), DiceScore(Ci, LCi),
SemanticSimilarity(Ci, LCi), InformationContent(LCi)]

f1 includes a set of string similarity metrics (Levenshtein distance [15], Dice
score [24]) to capture string similarity between the class and column header
string. To overcome cases where there is no string or content match (e.g. dbpedia-
owl:AdministrativeRegion and State), we also include a metric to capture Seman-
tic Similarity [10] between the candidate class and column header string.

Selecting ‘specific’ classes is more useful than selecting ‘general’ classes. For
example it is better to infer that a column header is of type of dbpedia-owl:City
as compared to inferring it as dbpedia-owl:Place or owl:Thing. Thus, to promote
classes of the likes of dbpedia-owl:City, f1 incorporates an Information content
measure. Based on semantic similarity defined in [21], we define Information
Content as, I.C(LC) = −log2[p(LC)], where p(LC) is the probability of the class
LC . We computed I.C. for classes from the DBpedia ontology and noticed that
specific classes will have a higher value for I.C. as compared to more general
classes.

We also develop a function ψ2 to rank and compute the affinity between
the string in the table row cell (say Baltimore) and the candidate entity (say
dbpedia:Baltimore). We define ψ2 as the exponential of the product of a weight
vector and a feature vector computed for a cell value. Once again ψ2 will assign
a score to each entity which can be used to rank the entities. Thus,

ψ2 = exp(wT
2 .f2(Ri,j , Ei,j))

where w2 is the weight vector, Ei,j is the candidate entity and Ri,j is string
value in column i and row j. The feature vector f2 is composed as follows:

f2 = [LevenshteinDistance(Ri,j, Ei,j), DiceScore(Ri,j , Ei,j),
PageRank(Ei,j),KBScore(Ei,j), PageLength(Ei,j)]

f2 is consists a set of string similarity metrics (Levenshtein distance, Dice score)
and also a set of popularity metrics(Predicted Page Rank [27], Page Length
and Wikitology KB score for the entity). When it is difficult to disambiguate
between entities, the more popular entity is likely to be the correct answer; hence
the inclusion of popularity metrics. The weight vectors w1, w2 can be tweaked
via experiments or can be learned using standard machine learning procedures.
As we continue to make progress in our work, in the future, we will develop a
similar function for ranking candidate relations.

4.3 Joint Inference

Given candidate sets for column headers, cell values and relation between ta-
ble columns, the joint inference module is responsible for joint assignment to
mentions in the table and infer the meaning of a table as a whole. Probabilistic
graphical models [13] provide a powerful and convenient framework for express-
ing a joint probability over a set of variables and performing inference or joint
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assignment of values to the variables. Probabilistic graphical models use graph
based representations to encode probability distribution over a set of variables for
a given system. The nodes in such a graph represent the variables of the system
and the edges represent the probabilistic interaction between the variables.

Based on the graphical representation used to model the system, the graph
needs to be parametrized and then an appropriate inference algorithm needs to
be selected to perform inferencing over the graph. Thus constructing a graph-
ical model involves the following steps: (i) identifying variables in the system;
(ii) specifying interactions between variables and representing it as a graph; (iii)
parameterizing the graphical structure; and (iv) selecting an appropriate algo-
rithm for inferencing. Following this plan, we describe how a graphical model
for inferring the semantics of tables is constructed.

Variables in the System. The column headers, cells values (strings and lit-
erals) and relation between columns in a table represent the set of variables in
an interpretation framework. Each variable has a set of candidates associated,
which are generated as described in section 4.2. The initial assignment to each
variable will be its top ranked candidate.

Graphical Representation. There are three major representation techniques
for encoding the distribution over set of variables: directed models (e.g., Bayesian
networks), undirected models (e.g., Markov networks), and partially directed
models. In the context of graphical models, Markov networks are undirected
graphs in which nodes represent the set of variables in a system and the undi-
rected edges represent the probabilistic interactions between the them. The edges
in the graph are undirected because the interaction between the variables are
symmetrical. In the case of tables, interaction between the column headers, ta-
ble cell values and relation between table columns are symmetrical. Thus we
choose a Markov network based graphical model for the inferring the semantics
of tables.

Figure 5(a) shows the interaction between the variables in a table. In a typi-
cal well formed table, each column contains data of a single syntactic type (e.g.,
strings) that represent entities or values of a common semantic type (e.g., peo-
ple). For example, in a column of cities, the column header City represents the
semantic type of values in the column and Baltimore, Boston and Philadelphia
are instances of that type. Thus knowing the type (or class) of the column header,
influences the decision of the assignment to the table cells in that column and
vice-versa.

To capture this influence, we insert an edge between the column header and
each of the table cells in the column. Edges between the table cell themselves in
the same column are not needed since they become independent of each other
once the column header is known. To keep the figure simple, we show inter-
action between column header and row values for one column only. The same
interactions apply, of course, to the rest of the columns.

Table cells across a given row are also related. Consider a table cell with a
value Beetle. It might be referring to an insect or a car. The next table cell
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(a) (b)

Fig. 5. (a) This graph represents the interactions between the variables in a simple
table. Only some of the connections are shown to keep the figure simple. (b) This
factor graph is a parameterized Markov network with nodes for variables and factors.

has a value red which is a color. The value in the last table cell is Gasoline, a
type of fuel source. All the values considered together, indicate that the row is
representing values of a car rather than an insect. This can be further confirmed
by the evidence from type of the column header. Thus to disambiguate a table
cell correctly, the context from the rest of table cells in the row should be used.
To capture this context, we insert edges between all the table cells in a given
row. Again for simplicity, we show interaction between the table cells of only one
row.

Similar interaction also exist between the column headers. The column header
City might suggest that the strings in the columns are cities. However if City
appears in the table with other columns which are Basketball players, Coach and
Division, we can infer that the column of cities is referring to a team itself – an
example of metonymy in which the team is referenced by one of its significant
properties, the location of it’s base. Thus to correctly disambiguate what the
column header means, we should use evidence from rest of the column headers
as well. To capture this interaction, we insert edges between all the column
headers as well.

The model we have presented captures interactions between the column head-
ers and table cell values. Our initial plan is to experiment with the current model
and then further extend it to incorporate the variable to capture relations be-
tween table columns in the graph as well.

Parametrizing the Network. To represent the distribution associated with
the graph structure, we need to parameterize the structure. Since Markov net-
works are undirected, the goal of parameterization is to capture the affinity
between the interacting variables. That is if variable A is assigned a value a1
and variable B is assigned b1, the question we ask is whether A and B are likely
to agree or not. The function that computes this affinity is known as a factor.
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One way to parameterize a Markov network is to represent it as a factor graph.
A factor graph is an undirected graph containing two types of nodes: variables
and factors. The graph has edges only between the factor nodes and variable
nodes. The factor nodes are responsible for computing the affinity between the
variable nodes to which it is connected. Figure 5(b) presents the parametrized
network. The column headers (all Ci) and cell values (all Rij) are the variable
nodes and ψ3, ψ4 and ψ5 are factor nodes in the graph.
ψ3 is a factor node that captures the affinity between the class label assigned

to a column header and the entities linked to the cell values in the same column;
i.e., its goal is to check whether dbpedia-owl:City, dbpedia:Baltimore, dbpedia:-
Philadelphia and dbpedia:Boston are ‘compatible’ or not. ψ3 has two goals - to
detect if any of cell values have been linked to incorrect entities or if the class
label assigned to the column header is incorrect.

Each entity is associated with a set of classes (or types). For example the
classes associated with dbpedia:Baltimore include dbpedia:City, yago:Indepen-
dentCitiesInTheUnitedStates, and yago:CitiesInMaryland. ψ3 will assign a score
to the class mapped to the column header as follows. Each entity in the column
will contribute a score between zero and one to the class. The score contributed
will be 0.0 if the class assigned to the column header is not in the set of classes
associated with the entity and 1.0 if its the best match. An entity will contribute
a lower score if the class assigned to the column header has a more “descriptive”
or specific class in its set. For example, the class dbpedia:City is more descriptive
and informative as compared to dbpedia:Place. The score assigned to the class
label will be the average of the sum of scores assigned by each of the individual
entities in the column.

What inferences can be drawn from the score? A score of 0.0 indicates either
that the class label assigned is incorrect or all the entities linked to the cell values
are incorrect. A score of 1.0 strongly suggests that class and entity assignments
are correct. Scores tending towards 1.0 will indicate higher level of agreement
whereas scores closer to 0.0 indicate less agreement. We will discuss how this
information is used in the section on inferencing over the graph.
ψ4 is a factor node that captures the affinity between the entities linked to the

values in the table cells in a given row in the table, i.e., the affinity between db-
pedia:Baltimore, dbpedia:Maryland, and dbpedia:Stephanie Rawlings-Blake. En-
tities across a given row are likely to be related to each other. We use Pointwise
mutual information (PMI) as a measure to capture the relatedness between
entities. The PMI between totally unrelated entities will be zero, whereas the
value will be non zero for related entities. For example, the PMI between dbpe-
dia:Baltimore and dbpedia:Seattle Seahawks will be 0.0, since they are unrelated.
We have computed PMI values for Wikitology entities based on statistics derived
from Wikipedia and DBpedia.

The factor node ψ4 will compute pairwise PMI for a entity with the rest
of entities in the row. Thus, in this case, for dbpedia:Baltimore, ψ4 will com-
pute PMI between dbpedia:Baltimore, dbpedia:Maryland and dbpedia:Baltimore,
dbpedia:Stephanie Rawlings-Blake. If a cell value in the row is mapped to a
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incorrect entity, the entity will have zero PMI with every other entity present in
the row. This can be used as a indicator to detect incorrect mapping for a given
cell value.

Similarly, ψ5 is a factor node that captures the affinity between classes that
have been assigned to all the column headers in the table, i.e., the affinity between
dbpedia-owl:City, dbpedia-owl:AdministrativeRegion, and dbpedia-owl:Mayor. We
again rely on the PMI data to capture the association between the class labels as-
signed to column headers. For every class label, ψ5 will compute PMI between the
class label and each of the other class labels across the column header. A unrelated
class label will have zero PMI with every other class label, which can be used as
indicator of incorrect mapping.

The factor nodes are dependent on measures such as PMI and the score as-
signed by entities to a class. These measures can be computed from the domain
knowledge source. We see these functions as first iteration and expect them to
evolve as continue to experiment. Similarly as the graph is extended to incorpo-
rate relations between table columns, more factor nodes are likely to be added.

Inference. The objective of the inference process is to determine the best pos-
sible assignments to the column headers and table cell values and eventually re-
lations between table columns. We will use a variation of message-passing/belief
propagation [13] for this process. Our inference algorithm will work as follows.
The process will start with the variable nodes sending a message to all its con-
nected factor nodes. The message will be composed of the current value assigned
to the variable node.

Once a factor node receives messages from all the connected variable nodes,
it will compute if the values assigned are in agreement or not. If the values are
not in agreement, it will identify the variable node(s) that may have a wrong
assignment. For all the nodes with possible wrong assignments, the factor node
will send a message requesting the node to change its assignment to a different
value. It will also send a confidence measure; i.e., how confident is the factor
node about the assertion that the variable node has a wrong assignment. For
the variable nodes with correct assignment, the factor node will send a message
of ‘no change’.

The factor nodes will use the functions defined above to determine agreement.
For example, the factor node ψ4 can conclude that all the values are in agreement,
if every entity assigned in a row is connected (i.e., has non-zero PMI) with at least
one other entity in the same row. ψ4 will send a message of change assignment to
a variable, if the entity assigned has zero PMI will all other entities in the row.
Similarly if the score assigned to a class mapped to the column header is one,
ψ3 will conclude that the class and the entities in the column are in agreement.

Once a variable node receives messages from all the factor nodes to which it is
connected, the variable nodes determines whether it needs to change its assigned
value or not. For example, if a node receives a ‘no change’ message from all factor
nodes, the variable node will not change its value. If the node receives a change
message from all the factor nodes, the node will change its value and select a
new assignment. In the long run, our goal will be to develop a generic function
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that nodes will use to decide whether to change values or not. The function will
take into account factors such as the ‘change’ and ‘no change’ messages received,
confidence associated with each message and overall ‘global temperature’. This
last measure will capture whether most (or all) variable nodes are satisfied with
their assignment or not. If there is high level of agreement/satisfaction across all
nodes, the variable told to change its assignment with low confidence, may not
change. We expect that this mechanism will ensure or at least promote conver-
gence to a solution, much like the temperature concept of simulated annealing.

All variable nodes which change their assigned value to a new one send a
message to all their connected factor nodes, announcing the update as well the
updated value. Every factor node which receives such a message, will redo the
computation with the new value and the above process is repeated. This contin-
ues until all the variables do not change their values. To ensure that this process
converges, variations like penalizing a change in assignment as the number of
iterations increase, will be included.

4.4 Generate Linked Data

The table interpretation will be useful only when we are able to generate an
appropriate representation of it which can be reasoned and queried over by
other systems. Figure 6 presents our preliminary template for representing the
inferred information as Semantic Linked Data.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dbpedia: <http://dbpedia.org/resource/>.
@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.
@prefix dbpprop: <http://dbpedia.org/property/>.

“City”@en is rdfs:label of dbpedia-owl:City.
“State”@en is rdfs:label of dbpedia-owl:AdminstrativeRegion.
“Baltimore”@en is rdfs:label of dbpedia:Baltimore.
dbpedia:Baltimore a dbpedia-owl:City.
“MD”@en is rdfs:label of dbpedia:Maryland.
dbpedia:Maryland a dbpedia-owl:AdministrativeRegion.

Fig. 6. A preliminary represented of inferred knowledge
from a table

In the future, we will
extend our preliminary
template and develop an
richer ontology for an-
notating and represent-
ing tabular data as linked
data. The ontology will
provide terms for ex-
pressing the provenance
of the interpretation and
annotating some map-
pings certainty informa-
tion. With the use of a probabilistic graphical model, it is possible to generate
certainty information. Since we are dealing with tables on the web, different
tables are likely to generate contradictory information. Thus provenance and
source of tables will be important to applications reasoning over our data. Our
representation will also capture table meta data such as number of columns and
rows as well as the table in its raw form. We wish to allow applications to be
able to reconstruct the original table from the linked data representation.

4.5 Human in the Loop

Since achieving perfect accuracy in automatically translating a table into linked
data is infeasible, we will develop a interactive framework to allow a human to
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work with the system to produce the interpretation. Our approach will have two
phases: interpretation exploration and providing feedback. The first phase will
allow a person to inspect and explore the interpretation, determining the entities,
concepts and relations to which table components are mapped. The human user
will also be able to see the ranked list of alternatives for each mapping along
with any associated scores or confidence measures. The second phase will permit
the user to identify one of the mappings an incorrect and optionally select and
“lock down” one of the alternate interpretations. The system will then rerun
the graphical model, producing a new overall interpretation. This sequence of
inspection and correction can be repeated until an acceptable interpretation is
produced.

4.6 Challenges – Literals

Literals pose unique challenges. Unlike strings in table cells, literals are not
entities that can be linked to existing entities from a knowledge base; but rather
they represent values of properties. The properties themselves can be associated
with other entities in the table. Thus techniques that will work with string based
values will not necessarily work for literals.

So how do we treat literals such as numerical data ? We can take the intuition
that humans use to understand columns of numerical data as a starting point. To
begin with, the range of numbers in a given column can start providing evidence
about what the column is about. If a person looks at a column (without a column
header) that contains numbers in the range of 0–100, the person is likely to infer
that the column could be percentages or ages. The row (or column) header may
have additional clues. For example, in the case of percentages, the % sign maybe
associated with the numbers in the table cell or it may be present in the row (or
column) header in the table.

Successfully understanding numerical data, will require understanding what
properties do values from a column map to and extracting unit associated with
numbers or unit symbols (like %).

5 Related Work

Our work is closely related to two threads of research. The first focuses on
generating RDF and linked data from sources such as databases, spreadsheets
and CSV files. The second, and more recent one, addresses understanding and
inferring the implicit semantics of tables.

Several systems have been implemented to generate semantic web data from
databases [23,28,20], spreadsheets [11,14] and CSV files [8]. All are manual or
at best partially automated and none have focused on automatically generating
linked RDF data for the entire table. These systems have mainly focused on
relational databases where the schema is available or on simple spreadsheets.
In the domain of open government data, [8] presents techniques to convert raw
data (CSV, spreadsheets) to RDF. However the generated RDF data does not
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use existing classes or properties for column headers, nor does it link cell values to
entities from the LOD cloud. To generate a richer, enhanced mappings, users will
need to manually specify a configuration file. Their focus has been on generating
massive quantity linked government data rather quality linked government data.

<rdf:Description rdf:about=“#entry1”>
<value>6444</value>
<label>Number of Farms</label>
<group>Farms with women principal operators</group>
<county fips>000</county fips>
<state fips>01</state fips>
<state>Alabama</state>
<rdf:type rdf:resource=“http://data-gov.tw.rpi.edu/2009
/data-gov-twc.rdf#DataEntry”/>
</rdf:Description>

Fig. 7. A portion of the RDF representation from dataset
1425 - Census of Agriculture Race, Ethnicity and Gender
Profile Data from data.gov.

The key shortcoming
in such systems is that
they rely heavily on users
and their knowledge of
the Semantic Web. Most
systems do not automati-
cally link classes and enti-
ties generated from their
mapping to existing Se-
mantic Web resources –
their output turns out to
be just raw string data
represented as RDF, in-
stead of fully linked RDF. Figure 7 shows a part of RDF representation of
dataset 1425 from data.gov [7]. The property names in the representation are
column headers from the raw dataset and the values of the properties represent
row values for the respective columns.

The representation fails to use existing vocabulary terms to annotate the
raw data and most of the column headers are mapped to properties local to
the RDF file. Mapping column headers to classes and properties from the LOD
cloud, provides richer description as compared to the local properties. Such a
representation often uses string identifiers for table cell values instead of linking
them to existing entities in the LOD cloud. Linking the string cell values can
further enrich the semantic representation of the data. Our framework will link
and reuse existing classes, properties and entities with dereferenceable URIs from
the LOD cloud. Our goal is to generate linked data in a form which is identified
as “five star” by Tim Berners-Lee [1].

Early work in table understanding focused on extracting tables from docu-
ments and web pages [12,9] with more recent research attempting to understand
their semantics. Wang et al. [30] began by identifying a single ‘entity column’
in a table and, based on its values and rest of the column headers, associates a
concept from the Probase [31] knowledge base with the table. Their work does
not attempt to link the table cell values or identify relations between columns.
Ventis et al. [29] associate multiple class labels (or concepts) with columns in
a table and identify relations between the ‘subject’ column and the rest of the
columns in the table. Both the concept identification for columns and relation
identification is based on maximum likelihood hypothesis, i.e., the best class la-
bel (or relation) is one that maximizes the probability of the values given the
class label (or relation) for the column. Their work also does not attempt to
link the table cell values. Limaye et al. [16] use a graphical model which maps
every column header to a class from a known ontology, links table cell values to



30 V. Mulwad, T. Finin, and A. Joshi

entities from a knowledge-base and identifies relations between columns. They
rely on Yago for background knowledge.

The core of our framework is a probabilistic graphical model that captures a
much richer semantics, including relation between column headers as well rela-
tion between entities across a given row. Our model has a single ‘factor’ node to
capture relation between column header and strings in the column, which makes
it possible to deal with missing values (e.g., absent column header).

Current systems for interpreting tables rely on semantically poor and possibly
noisy knowledge-bases and do not attempt to produce a complete interpretation
of a table. None of the current systems propose or generate any form of linked
data from the inferred meaning. The work mentioned above will work well with
string based tables but we know of no systems that interpret columns with
numeric values and use the results as evidence in the table interpretation. Doing
so is essential for many domains, including medical research.

6 Discussion and Conclusion

We built a baseline system [19] to evaluate the feasibility in tacking the problem.
The baseline system was a sequential system that did three things : i) predict
class labels for column headers ii) link table cell values to entities and iii) discover
correlation between column headers. We evaluated our baseline system using a
dataset of 15 tables obtained from the web, Google Squared and tables from
Wikipedia articles. Excluding the columns with numbers, the 15 tables have 52
columns and 611 entities for evaluation of our algorithms. We used a subset of
23 columns for evaluation of relation identification between columns.

In the first evaluation of the algorithm for assigning class labels to columns,
we compared the ranked list of possible class labels generated by the system
against the list of possible class labels ranked by the evaluators. For 80.76% of
the columns the average precision between the system and evaluators list was
greater than 0 which indicates that there was at least one relevant label in the
top three of the system ranked list. The mean average precision for 52 columns
was 0.411.For 75% of the columns, the recall of the algorithm was greater than or
equal to 0.6. We also assessed whether our predicted class labels were reasonable
based on the judgement of human subjects. 76.92% of the class labels predicted
were considered correct by the evaluators. 66.12% of the table cell strings were
correctly linked by our algorithm for linking table cells. Our dataset had 24 new
entities and our algorithm was able to correctly predict for all the 24 entities
as new entities not present in the KB. We did not get encouraging results for
relationship identification with an accuracy of 25%.

Analysis of our evaluation provided useful lessons. First, we noticed, with
a sequential system, the error percolated from stage one to stage three, thus
leading to an overall poor interpretation of the semantics of tables. This lead us
to developing a framework based around probabilistic graphical model for joint
inference over a table. Secondly, our baseline system was giving preference to
‘general classes’ over ‘specific classes’, which we address by introducing measures
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like Information Content of a class. Our framework also goes beyond web-tables
and aims to deal with tables across multiple domains – from medical literature
to open government data. We are in the process of implementing the graphical
model. Once the model is implemented, we will evaluate it against a dataset of
tables shared by Limaye et al. [16].

Generating an explicit representation of the meaning implicit in tabular data
will support automatic integration and more accurate search. We described gen-
eral techniques grounded in graphical models and probabilistic reasoning to infer
a tables meaning relative to a knowledge base of general and domain-specific
knowledge expressed in the Semantic Web language OWL. We represent a ta-
ble’s meaning as a graph of OWL triples where the columns have been mapped
to classes, cell values to literals, measurements, or knowledge-base entities and
relations to triples. We believe that knowledge recovered from tables can enable
and assist various application and lead us towards a web of semantics, concepts
and entities.
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