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Abstract A system for pedestrian indoor localization is presented, which uses the
data of an inertial sensor unit mounted on the foot of a person walking through an
indoor or outdoor environment. The inertial sensor data are integrated to a posi-
tion/orientation information using a classical strapdown navigation approach,
while several additional sensor data and constraints, such as Zero Velocity
Updates, magnetometer and barometer readings and the detection of spatially
distributed RFID tags, are incorporated to the solution using an Unscented Kalman
Filter. The work presents a custom sensor system development, describes the
developed algorithms and evaluates several methods to reduce the drift, which
usually comes with the integration of low cost inertial sensors.
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1 Introduction

As reliable outdoor localization can be addressed with GNSS/GPS-based tech-
niques, the indoor or combined indoor/outdoor scenarios still seem to be far more
challenging as the GNSS signals are usually too weak to penetrate the buildings
and a number of different approaches compete to become the key technology in the
nearest future [see (Retscher 2006) for a summary of indoor localization tech-
niques]. Although originally robotics applications or similar scenarios [e.g., (van
der Merwe and Wan 2004)] attracted most of the efforts, recent advances in
affordable wearable computing, availability of infrastructure [WiFi, RFID and
emerging Ultra Wideband (Gigl et al. 2007)] and significantly improved perfor-
mance of MEMS sensors resulted in a growing interest of applying similar con-
cepts also for pedestrian indoor localization scenarios (Sabatini 2009; Ahn and Yu
2007).

Currently none of the available technologies alone can completely satisfy the
accuracy, flexibility, scalability and cost requirements for pedestrian indoor
localization within an uncontrolled environment and combinations of several
complementary technologies are often employed for increased robustness (Ahn
and Yu 2007; Foxlin 2005). The sensing modalities are usually combined using
Recursive Bayesian Estimation (RBE) framework, which permits to treat the
sensor imperfections, dynamical model uncertainties and heuristic information
regarding the environment in a consistent way (Thrun et al. 2005), enabling a
performance, which is in general not achievable with a single sensing modality.

Robust indoor human tracking is believed to be a crucial requirement for the
concept of so-called Smart Environment as well as Pervasive Computing (Fox
et al. 2003) and biomedical applications (Sabatini 2009) and is considered to be a
rather challenging problem (Ahn and Yu 2007). Potential applications include
ambulatory monitoring for people with disabilities or chronic health conditions,
orientation and mobility aid for blind and visually impaired people, various
assistance systems (Sabatini 2009) etc. Moreover, a reliable indoor localization
can be helpful for emergency first responders such as firefighters. Interestingly,
within the latter scenarios one can not completely rely on localization methods
based on external infrastructure such as Wireless and Ultrasound-based schemes as
the availability of the power can not be in general ensured for most of the
emergency situations. Moreover, some of the approaches can require complex and
expensive infrastructure which can not be placed in all except of very special
locations.

One of the most typical approaches to deal with the drawbacks of the external-
referencing systems is to adopt integrated pedestrian dead-reckoning (PDR), where
the inertial sensors (e.g., accelerometer and gyroscopes constituting the Inertial
Measurement Unit–IMU) provide an internal independent reference, immune to
interference and signal shadowing and are continuously available. In practice,
however, solely inertial system can be hardly employed for any reasonably long
time due to fast accumulating integration errors. Here the position error usually

152 M. Romanovas et al.



increases much faster compared to orientation ones due to the double integration
of the accelerometer imperfections (e.g., offsets). Additional sensors such as
barometric altimeter or magnetic compass are sometimes integrated to bound the
heading error and vertical position while external referencing (in the form of
absolute position or ranging measurements etc.) are used to limit the position
errors. Moreover, the external sensing is also necessary for the initialization phase
of the inertial-based approach as the inertial approach is able to provide only
relative position with respect to the origin.

In this chapter we discuss a foot-mounted system for pedestrian indoor local-
ization and tracking, where low-cost commercial inertial and magnetic sensors are
used, and where the fusion is formulated using Unscented Kalman Filter. The
system is able to provide a reliable position and orientation estimation over a
reasonable period of time. We demonstrate the performance of the system for
several indoor/outdoor scenarios and evaluate its performance with respect to
different algorithm parameters and model structures. We also demonstrate how
some of the accuracy issues can be addressed by augmenting the system with
additional sensors such as a barometer and a RFID tag reader. The RFID tech-
nology has already attracted a significant attention due to its economic advantages
(Subramanian et al. 2008) and was chosen due to being rather low-cost and the
ability to handle potential power constraints (e.g., blackouts).

The rest of the chapter is structured as follows: Sect. 2 presents the related
approaches of other authors and previous work of the authors for pedestrian indoor
localization. Section 3 discusses the mathematical details of the developed
localization algorithm along with the fusion filter and the associated process and
measurement models. The custom developed hardware setup is briefly described in
Sect. 4 with the experimental results of several representative scenarios provided
in Sect. 5. Finally, the Sect. 6 sums up the findings and evaluates the potential of
the technique for future positioning applications.

2 Related Work

While within robotics applications one could achieve a reasonably good perfor-
mance by using an accelerometer, odometer and angular rate sensor and con-
straining the motion with the known kinematic information, such a direct approach
would often fail when applied to pedestrian localization. One of the most
straightforward approaches is to detect the step (e.g., using the accelerometer) and
to calculate the displacement assuming a known step length or to estimate it using
some biomechanical model. Unfortunately, such an approach provides only a very
approximate position and is mainly suitable for activity monitoring or for coarse
localization. Moreover, it could often fail if an unusual scenario is encountered
such as a crowded environment or uphill/downhill walking patterns and often have
to be tuned for a particular user.
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External referencing is believed to be a more reliable option when addressing
pedestrian localization. The issue is often resolved by attaching a small-size
wireless tag [UWB (Gigl et al. 2007)]; CSS-based IEEE 802.15.4a (Nam and Park
2009); ZigBee, WLAN (Ali and Nobles 2007; Retscher 2006), Bluetooth) to the
human body and measuring distances to fixed and known anchor points. Other
approaches include systems based on computer vision and camera systems, RFID
tags (Subramanian et al. 2008), ultrasound based localization (Kim and Choi
2008), passive infrared sensors (PIR), light detectors (Golding and Lesh 1999) and
even temperature sensing (Golding and Lesh 1999). Clearly, one could attempt to
employ a personal dead reckoning (PDR) system combined with one of the ref-
erencing techniques mentioned above (Retscher 2006).

In our previous works (Klingbeil et al. 2010a, b) we have developed a wearable
system for seamless pedestrian indoor/outdoor localization. The system was
intended to be placed on the chest of the person while information from the inertial
sensors was used for heuristic step detection and step length estimation. The
MEMS gyroscope in combination with magnetometer was employed for heading
correction while the GPS and/or RF CSS modules (Nanotron NanolocTM) were
used for absolute position referencing. The fusion algorithm was formulated as a
particle filter (PF) triggered with the step counting. The algorithm was also able to
take into account the map constraints (in the form of occupancy grid) to restrict the
motion not to cross the walls. Although being fairly complex, the system suffered
from several fundamental flaws such as heuristics in step detection and length
estimation, which could easily fail for a user with different gait and walking habits,
poor performance of heading information due to magnetic field disturbances and
noisy CSS ranging information. All the aforementioned issues resulted in diffi-
culties of using such a system for any practical applications.

In this work we described a different strategy for pedestrian indoor localization
using a foot-mounted IMU/sensor block. The approach explicitly employs
assumptions regarding the human foot dynamics to constraint the estimation error
only increasing linearly with the distance, usually navigating open loop only for
time periods shorter than 1 s (i.e., the typical step duration during normal gait
conditions) (Foxlin 2005). The presented method, commonly referred as ‘Zero
Velocity Update’, dramatically decreases the position error by resetting the esti-
mated velocity to zero when the stance phase of the step is detected (Bebek et al.
2010; Sabatini 2009). Note that the residual position error is still not completely
eliminated and remains in general unbounded (House et al. 2011). The overall
fusion concept becomes feasible due to correlation information introduced by the
dynamical model which allows to correct retrospectively the sensor imperfections.

The technique, nowadays rather widely adopted throughout the research com-
munity, was made famous by Foxlin, although using a rather expensive and well-
calibrated IMU [see (Foxlin 2005) for a friendly introduction]. The framework was
extended in numerous recent works of multiple authors. For example, the work of
(Bird and Arden 2011) extended the framework with GPS position measurements
and validation mechanism for magnetic disturbances with cascaded estimation
architecture proposed in (Krach and Robertson 2008). In a series of works
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(Jimenez et al. 2009, 2010) the methods were further exploited with more
advanced motion models, restricting the motion to follow mainly the straight
trajectories. The work (Sabatini 2009) proposed an EKF-based approach with
quaternion orientation parametrization with magnetometer bias estimation and
adaptive measurement models. The work (Bebek et al. 2010) suggested to combine
a shoe-mounted IMU with a high-resolution, thin, flexible error-correcting bio-
mechanical ground reaction sensor to provide more detailed contact information
compared to a detection based solely on inertial sensors only.

A combination of a foot mounted IMU with passive RFID tags was proposed in
House et al. (2011). Interestingly, the authors placed the correction step outside the
filter and employed a pure geometric approach based on affine transforms for
trajectory segment correction between current and previous RFID detection points.

3 Algorithm Description

3.1 Recursive Bayesian Estimation and the Unscented Kalman
Filter

The pedestrian localization scenario is formulated as the state estimation problem
of the following system:

xk ¼ f ðxk�1; uk�1;wkÞ; zk ¼ hðxk; �kÞ ð1:1Þ

where xk 2 R
n is the state at time tk with the associated measurement zk 2 R

m;
f ð�Þ and hð�Þ are the nonlinear system process and measurement functions
respectively, wk and � correspond to the process and measurement noises and uk

stands for control input.
Within the framework of recursive bayesian estimation (RBE) (Fox et al. 2003;

Thrun et al. 2005) the estimation of the state xk of a system at the time tk based on
all measurements Zk ¼ z0; . . .; zk up to that time is represented as a probability
density function (pdf) pðxkjZkÞ; which can be calculated recursively using two
steps:

Prediction The a priori probability pðexkÞ is calculated from the last a poste-
riori probability pðxk�1jZk�1Þ using the process model pðxkjxk�1Þ:

pðexkÞ ¼ pðxkjZk�1Þ ¼
Z

pðxkjxk�1Þpðxk�1jZk�1Þdxk�1 ð1:2Þ

Correction The a posteriori probability pðxkjZkÞ is calculated from the a priori
probability using the measurement model pðzkjxkÞ and the current measurement zk:

pðxkjZkÞ ¼
pðzkjxkÞpðxkjZk�1Þ

pðzkjZk�1Þ
: ð1:3Þ
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Various implementations of RBE algorithms differ in the way the probabilities
are represented and transformed in the process and measurement models (e.g.,
Kalman Filters, the non-linear variants Extended Kalman Filter (EKF) (Thrun
et al. 2005) and Unscented Kalman Filter (UKF) (Julier et al. 2000; Van der Merwe
2004) and Sequential Monte Carlo Filters).

Although the original implementation (Foxlin 2005) of the ZUPT-based fil-
tering with foot mounted inertial sensors was based on an EKF, we decided to
implement our approach as an UKF, where the probability distribution is
approximated using a set of deterministically placed points in the state space,
chosen to conserve the Gaussian properties of the distribution under nonlinear
transformations. This unscented transformation (UT) is in general more compu-
tational demanding than a linearization used in an EKF, but apart from the better
statistical properties the formulation of the models is straightforward, since no
Jacobians have to be calculated. There also exist methods for the optimization of
the UKF regarding stability and computational needs, such as Square Root ver-
sions or the usage of Spherical Simplex Sigma Points. The authors have applied
these methods before for orientation estimation (Romanovas et al. 2009). Please
refer to this chapter and the references therein for a detailed description of the
UKF equations as we omit them here due to space constraints.

The main challenge in the implementation of RBE algorithms is the formulation
of the process and measurement models as well as the associated uncertainties.
Below we describe the process model, which is a straightforward implementation
of the classical INS strapdown integration, and a variety of measurement models
incorporating various sensors and constraints. The basic strategy of the method is
to integrate the inertial sensors with the rate of their availability using the process
model and then perform measurement updates whenever an additional informa-
tion, such as a Zero Velocity Update or a RFID tag detection is available.

3.2 Process Model: INS Strapdown Integration

A detailed structure of the process model can be found in Fig. 1. The process
model is essentially based on simplified mechanization equations of an Inertial
Navigation System (INS). The state of the system is as follows:

xk ¼ qk; vk; pk; bx;k; ba;k

� �T
; ð1:4Þ

where qk stands for a quaternion representation of the orientation, and vk and pk

are correspondingly the velocity and position in the navigation frame, while ba;k

and bx;k are the bias values associated with the accelerometers and the angular rate
sensors. The process model for the quaternion is a discrete integration obtained
from the quaternion derivative as follows:
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qk ¼
1
2

Z

Dt

0

X xkð Þqk�1dt; with Dt ¼ tk � tk�1: ð1:5Þ

We consider the angular rate as a control input to the process model and allows
to preserve highly dynamical motion of the human limbs without constructing any
explicit model. The angular rate in the expression above is calculated from:

xk ¼~xk � bx;k�1 þ wx;k; where wx;k�N 0;Qx;k

� �

ð1:6Þ

is the gyroscope noise and ~xk corresponds to the actual angular rate measurement.
The quaternion representation of the orientation has several advantages such as
quasi-linear mathematics and the absence of the gimbal lock problem. The
acceleration is also treated as a control input:

ak ¼ ~ak � ba;k�1 þ wa;k; with wa;k�N 0;Qa;k

� �

: ð1:7Þ

The process model for the the gyroscope and accelerometer biases become:

bx;k ¼ bx;k�1 þ wbx;k; with wbx;k �N 0;Qbx;k

� �

ð1:8Þ

ba;k ¼ ba;k�1 þ wba;k; with wba;k �N 0;Qba;k

� �

ð1:9Þ

Fig. 1 Detailed process model for the prediction step of the UKF
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The measured acceleration can be transformed to the navigation frame using:

ak;nav ¼ qkakq�1
k � g; with g ¼ 0 0 G½ �T m=s2 and G � 9; 81

m

s2
ð1:10Þ

Then the velocity and the position can be obtained by integration:

vk ¼ vk�1 þ
Z

Dt

0

ak;navdt; pk ¼ pk�1 þ
Z

Dt

0

vkdt; ð1:11Þ

where both pk and vk are in the navigation frame. The process as shown in Fig. 1
does not consider the system initialization. The system model must be initialized
with the initial values of orientation quaternion qk; position pk and velocity vk as
well as corresponding values for the sensor biases.

3.3 Measurement Models

We distinguish two different measurement model groups: one is called ‘Zero
Velocity Updates’ and contains all updates which utilize only the inertial sensors
and the fact, that the human foot undergoes a still phase on a regular basis. The
second part uses additional sensors such as a magnetometer, a barometer and a
RFID reader. In principle other localization methods, such as GNSS, signal
strength or distance measurements can be added to the algorithm as measurement
models, but this is beyond the scope of this chapter.

3.4 Zero Velocity Updates

Under normal condition human walking follows some pattern as shown in Fig. 2.
During the stance phase we can assume the foot is not moving and therefore the
velocity of the foot has to be zero. Similarly, the assumption can be extended by
noticing that the angular rate should be also close to zero for the no motion
conditions. Finally, under similar assumptions the measured acceleration vector
should only contain the terms due to gravity and the accelerometer bias. If the IMU
is attached to the foot of the person, we are able to detect the ‘no motion’ condition
of the foot and apply the following measurement models:

Zero Velocity Update (ZUPT): this is a ‘virtual’ measurement where we
assume the velocity vk to be zero if the associated conditions are fulfilled:

0 0 0½ �T¼ vk þ �ZUPT;k ð1:12Þ
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Clearly, the triggering mechanism is not a complete guarantee that the true
object velocity is zero and some measurement noise 2ZUPT;k�N 0;RZUPTð Þ has to
be adopted.

Zero Angular Rate Update (ZARU): similarly to ZUPT, the measurement
assumes that under some ‘no motion’ condition the measured angular rate is due to
the sensor bias only:

~xk ¼ bx;k þ �ZARU;k: ð1:13Þ

Again, due to imperfection of triggering mechanism and sensor noises we have
to assume some non-negligible measurement noise 2ZARU;k�N 0;RZARUð Þ asso-
ciated with this type of the measurement.

Gravity (G) Measurement: Similarly to conventional orientation filter we can
employ the acceleration measurements to compensate pitch and roll under the
condition that no significant linear acceleration is present and the accelerometer
observations ~ak are solely due to measured gravity g and the accelerometer bias:

~ak ¼ q�1
k gqk þ ba;k�1 þ �G;k; ð1:14Þ

where �G;k �N 0;RGð Þ is the accelerometer additive noise. Unfortunately, the
zero-velocity phase detection is not completely reliable using inertial sensors with
some more detailed discussion on algorithm to be found in Bebek et al. (2010). We
do not use a single detection mechanism for triggering all the measurements, but
rather apply three different detectors, each of them being optimized for the par-
ticular condition. Fig. 3 shows the sensor measurements during the stance phase
and the three different conditions, which have been detected.

The detection of the walking motion’s stance phase, and thus the right time to
apply the Zero Velocity Updates, is implemented according to Foxlin (2005). After
one of the gyroscope or accelerometer signals have entered the predefined limits
(the magnitude of the gyroscope signal should be below 0.1 rad/s, and that of the
acceleration in the range from 9.6 to 10.0 m/s2), a delay of 30 ms is imposed
before the ZUPT or ZARU conditions are triggered. The signals must stay within
the ranges for the associated condition to be triggered. If the delay requirement is
satisfied, new thresholds are computed using the current threshold and the actual
sensor output. This allows the sensor signal to satisfy the trigger condition even if
it is corrupted with the noise. The new threshold conditions are computed at each
iteration and are switched off when the signal values grow too fast (i.e., when the

Fig. 2 A sketch of stance
phases in human bipedal
motion (Bebek et al. 2010)
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foot enters the swing phase). Note that the ZUPT and ZARU conditions are
triggered separately, while when both conditions are satisfied, the effective mea-
surement model incorporates ZUPT, ZARU and G measurements. The block
diagram for the generic filtering algorithm is shown in Fig. 4.

Fig. 3 Stance still detection example

Fig. 4 Block diagram of the filter for position estimation using ZUPT
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The prediction step uses the process model is discussed above. After the pre-
diction is performed, the detector checks one of the conditions for the correction
step to be fulfilled, and if so (yes output of the stance still detector block), the
predicted state estimate x̂�k and associated covariance P�k are corrected using the
measurements described above. If the detector fails to confirm a still motion
condition, no correction is performed and the predicted values are considered as
corrected ones for the next iteration of the filter cycle.

3.5 Additional Sensors

The generic filter structure using solely inertial sensors can be easily augmented
with other sensors. The new measurements are incorporated into the measurement
update of the algorithm as described below.

Magnetic Field Measurement For scenarios where magnetic field measure-
ments are employed, one can construct the measurement model as follows:

~mk ¼ q�1
k mEqk þ �M;k; ð1:15Þ

where the actual measurements ~mk are obtained by rotating the reference (Earth)
magnetic field vector mE: Note that no magnetometer biases are modeled for this
simple scenario but the values of �M;k �N 0;RMð Þ are usually set much higher
compared to the true sensor noises in order to accommodate the disturbances when
passing close to equipment, building structural elements etc. Here the magnetic
field measurement are performed continuously and are not conditioned on any foot
motion phase.

Barometric Pressure (Height) Measurement We adopt the following mea-
surement model for height measurements using the barometric pressure Pk:

~pz;k ¼
T0

L

Pk

P0

� ��LR
G

�1

 !

þ �h;k; ð1:16Þ

which is a simplified expression for altitude in terms of atmospheric pressure
measurement Pk: Here L is the lapse rate defined as the rate of temperature
increase in the atmosphere with increasing altitude and is taken L ¼ �6:5� 10�3

K/m, T0 and P0 are correspondingly the temperature and the pressure at zero
altitude, R is the gas constant for air and G is the acceleration due to gravity. For
our scenarios with small vertical displacements we assume a simplified additive
Gaussian noise model �h;k �N 0;Rhð Þ for the vertical position.

RFID Position Measurements The sensor unit contains a RFID reader, while
several RFID tags are distributed over the floor at known positions. When a RFID
tag is detected by the reader this can be seen as a position measurement with an
accuracy roughly corresponding to the RFID transmission range. Then a trivial
position model can be assumed:
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~pk ¼ pk þ �p;k: ð1:17Þ

Here the position measurement noise �p;k�N 0;Rp

� �

mainly reflects the tag
detection distance as well as our ability to detect the tag when passing close to it.
Due to simplicity of the hardware we do not employ any signal strength related
model.

4 Hardware Setup

While developing the custom hardware we again follow the modular system
approach (Klingbeil et al. 2010a, b), where the core of the developed system
consists of two main boards: a sensor unit and power unit with a Li-Polymer
battery attached. The sensor unit consists of a microprocessor, responsible for the
sensor readout, data pre-processing and communication, a three axis accelerom-
eter, a three axis gyroscope and a compass module. It also contains a pressure
sensor, working as a barometer. The inertial sensors a sampled at 100 Hz, while
the magnetometer and the barometer are sampled at 75 and 2 Hz respectivly. The
system was mounted on the shoe as shown in Fig. 5 (left).

The setup for the RFID augmentation shown in Fig. 5 (right). We used
13.56 MHz as the RFID chip carrier frequency for faster communication with the
RFID tags. Whenever a tag is within the reading range of the reader, its ID is
recognized in the processor. The polling rate is set to 50 ms, which seems to be a
reasonable rate with respect to the foot dynamics and the typical duration of the
foot stance phase ([200 ms). In the RFID experiments a number of passive tags
have been placed on the floor with known positions associated with the unique ID
of each tag. The effective reading range of the reader was approximately 12 cm.

Fig. 5 Custom IMU mounted on a foot (left) with body coordinate frame and IMU augmented
with RFID reader antenna and tag beneath the foot (right)
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This position information was used within the fusion algorithm whenever a tag
was detected within the reading range and its ID was recorded by the system.

The hardware is based on low cost off-the-shelf components and the algorithm
will perform better when used with higher quality and better calibrated sensors.
Here we wanted to demonstrate explicitly the feasibility of the approach with
components which can be easily integrated into a shoe bearing in mind its low cost
profile. Note, that although one could make the RFID ranging larger in order to
increase the hit rate, this would also increase the effective noise value as the
measurement accuracy is reduced.

All sensor data are transmitted to PC via a Bluetooth interface. Although the
UKF containing the ZUPT part of the algorithm can be made running on the
microprocessor itself, the reference localization schemes require external infor-
mation (e.g., position information for RFID tags, etc.) and apparently has to be
implemented on a Smartphone or PDA level in an application scenario where the
usage of a PC has to be avoided.

The system described in the chapter does not provide an initial position. This is
assumed to be known or has to be deduced through other sensing mechanisms. The
initial heading is set manually to a correct value as it can not be estimated from
pure inertial data. Note that the filter needs some time to stabilize and the initial
phase of this fairly complex filter is quite noisy compared to latter stages when the
filter converged to true sensor biases and proper covariance values.

5 Results

The filter is initialized with the correct pitch and roll angles (quaternion equivalent)
and the gyroscope bias estimates obtained from the first several seconds of the user
standing still. The initial covariances are set to small values for faster algorithm
convergence and in practice reflect our confidence in the initial estimates. The
control noise for the accelerometer was set to ra = 0.02 m/s2 and for the gyroscope
to rx = 3 mrad/s. The G measurement model noise was set to rG = 0.05 m/s2 due
to an additional uncertainty within the detection mechanism. The process noise for
the gyroscope bias was set to rbx = 3�10-6 rad/s for Fs = 100 Hz and the accel-
erometer bias drift was modeled with rba = 1�10-5 m/s2. The measurement models
were implemented assuming rZUPT = 0.02 m/s, rZARU = 0.02 rad/s. Both ZUPT
and ZARU are ‘virtual’ measurements with the noises essentially representing the
quality of the associated ZUPT and ZARU detectors.

Usually, the performance of similar algorithms is reported with respect to more
expensive highly calibrated IMUs such as the XSens MTi or equivalent (Bebek
et al. 2010; Sabatini 2009). Figure 6 presents the result of our algorithm based on
inertial sensors only for both the XSens MTi and the one of the in-house developed
units. Although the XSens MTi also provides a complete 3D orientation, we only
use the calibrated sensor readings for our algorithm. Although the well calibrated
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XSens MTi unit (price app. 1,500 $) outperforms our custom system without
temperature calibration, the difference is not dramatic and even a low-cost system
apparently is able to provide meaningful trajectory over reasonably long period of
time. Clearly, the direct INS mechanization (blue line in Fig. 6 (left)) fails to
deliver a reliable position due to fast accumulating errors. The subsequent
experiments are all done with our custom sensor unit in order to check the fea-
sibility of the approach for low-cost systems. Obviously, better results can be
obtained for more expensive calibrated sensor systems.

Both systems have not returned back to the starting position with the error being
slightly smaller for the XSens MTi unit. The vertical position mismatch was even
smaller for the custom IMU unit. This however, is merely a coincidence as, some
errors have canceled each other during the experiment. The custom IMU has a
more rugged vertical position estimation and several jumps which can be attrib-
uted to failures in stance detection. Interestingly, even this vertical accuracy of our
custom IMU is more than enough to distinguish separate stairs (actually a couple
of stairs as long as the unit is mounted on a single shoe and a single swing usually
covers two stairs) as shown in Fig. 7.

The incorporation of the accelerometer bias ba;k into the filter state can be
justified by the results shown in Fig. 8 (left), where two otherwise identical filters
with and without bias are compared. The presence of ba;k slightly improves the
position estimate although in practice this depends on the quality of the sensors
used and comes at a price of three extra states to be estimated within the filter. The
associated bias estimates for both filters are shown in Fig. 9. The elimination of the
ba;k had practically no effect on the bx;k estimation as the latter is directly

Fig. 6 Pure inertial localization using the XSens MTi and the custom unit. XY position plot
(left). Black square marks the start of walking while the pink dashed line corresponds to true
walking trajectory. Estimated vertical displacement: custom IMU (right top) and XSens MTi
(right bottom). Blue and green square mark correspondingly the start and the end of the trajectory.
The walking duration was *5 min
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observable via the ZUPT measurement model during the still phase. The initial
high dynamics of the estimates in Fig. 9 is due to a fairly high initial covariance.

Although for the ‘real’ sensors the noise models are usually mapped to the true
characteristics of the sensors, the situation is somehow more complicated for the
‘virtual’ ZUPT and G measurement models where the entire SSD mechanism
should be considered as a sensor per se. A rough understanding of the influence of
these parameters on the localization performance can be obtained from Fig. 8
(right) which confirms that some trial-and-error efforts are necessary for filter
tuning.

Fig. 7 Vertical displacement scenario with stairs using the custom IMU

Fig. 8 Pure inertial localization for filter with and without ba;k (left) and influence of
measurement noise values on the performance of the tracking algorithm (right)
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In the cases above the true heading is not known to the system. The problem, at
least in theory, can be addressed by measuring the Earth’s magnetic field. In
practice, however, these measurements are unreliable due to magnetic field dis-
turbances as they appear especially in indoor environments. The issue is often
handled by assuming very large measurement noise or employing some heuristic
disturbance detectors (Sabatini 2009). Unfortunately, these methods can not
handled arbitrary disturbances and are suggested to be carefully tested before
deployment. However, for outdoor scenarios with minor disturbances (Fig. 10)
only the heading can be corrected with associated improvement in estimated
positions. One could also attempt to estimate the magnetic field disturbances along
with the actual filter state, but this would increase the complexity of the filter and
could result in some observability issues.

From the results above is not completely clear whether a fairly complex
ZUPT+G+ZARU SSD mechanism is actually necessary. The result of using a
combination of SSD techniques is shown in Fig. 11. Here we leave the ZUPT
measurement for all the cases in order to avoid a too fast error accumulation due to
double integration of the acceleration errors. The addition of the G measurement
strongly improves the performance as the pitch and roll information becomes
observable. The minor influence of the ZARU measurment can be attributed to a
stable gyroscope bias bx;k during the experiment.

The vertical position drift can be eliminated by augmenting the system with a
barometric pressure sensor. In our setup we limit the pressure measurements to be
valid only during the ZUPT+ZARU+G condition to avoid higher pressure devi-
ations due to air circulation caused by fast foot movements. The localization
results for a three floor setup and stair/elevator segments is shown in Fig. 12. The
pure inertial system performs rather well for upstairs but of course fails to detect

Fig. 9 Estimated biases: gyroscope bias (top) and accelerometer bias (middle) for full state
formulation and only gyroscope bias for filter formulation without ba;k
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the elevator part. The barometer measurements (assumed rh = 0.2 m) clearly
permit to correct the height estimation, but the sensor output are rather noisy and
the sensor is sensitive to the changing environment such as a door opening. Faster
height corrections can be achieved with smaller rh values which, however, result
in a noisier height estimation (marked as ‘B’ in Fig. 12). On the other hand, a high

Fig. 10 Comparison of the algorithm performance with and without magnetic field information.
XY position estimate results (left). Estimated vertical displacement for both filters (right): blue
and green squares mark correspondingly start and the end of the trajectory. The walking duration
was *4 min

Fig. 11 Comparison of pure inertial method for different combinations of zero-velocity
detectors. XY position estimate results (left). Estimated vertical displacement for different
detection mechanisms (right): blue and green squares mark correspondingly start and the end of
the trajectory
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uncertainty assigned to barometer measurements can have an effect similar to that
denoted as ‘A’ in the plot, where the height correction was not in time before the
person left the elevator and returned to the starting point. We also have observed
almost no barometer influence on the XY displacement estimation. Note that
barometer measurements can be potentially used outside the fusion filter as well,
e.g., for the floor detection in a multi-storey building.

Even if the vertical position drift can be partially corrected using the barometric
pressure sensor as shown above, the XY position errors are still not bounded.
Below we present some preliminary results where the position reference infor-
mation is obtained via the detection of passive RFID tags (Figs. 13 and 14). As the
position of the tag within the environment is known thanks to its unique ID, a
direct position correction can be applied. Due to RFID hardware constraints the
user has to step on or reasonably close to the tag placed on the floor. The detection
of the tag in the vicinity of the foot triggers the position correction mechanism
with rRFID = 10 cm. The performance of the approach strongly depends on the
number of tags encountered during the walking and clearly one intends to put the
tags on some commonly traversed locations. Interestingly, even few RFID tags
encountered during our experiments allow a significant improvement of the

Fig. 12 Multi-storey localization scenario: perspective view for the results of pure inertial
algorithm (top left) and system augmented with barometric pressure sensor (top right). The
vertical scale is artificially increased for improved visual separation between the floors. The
associated top view (bottom left) and height estimation results for different values of pressure
noise (bottom right). The total walking duration was *3 min
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estimated trajectory. Naturally, some better performance is expected for more
advanced RFID systems with RSSI measurements similar to those discussed in
Subramanian et al. (2008). A combination of IMU and RFID is a perfect example
of complementary sensing modalities where short term tracking with IMU is
supported by an accurate location information from RFID tags.

Although the presented ZUPT mechanism, even when implemented using
inertial sensors only, seems to show a significant improvement in the position
estimate when compared to pedometer-based methods, it also does not guarantee
the position error to be bounded when applied alone. The algorithm as formulated
above, is deceptively simple. Unfortunately, the presented integration mechanism
is in general susceptible to several error sources including the integration itself,
sensor offsets, noises and other calibration errors.

Fig. 13 Example of inertial system performance augmented with RFID reader for multi-floor
scenario. Red squares mark the position of RFIDs while the black square denote the start of the
walking. The vertical scale is artificially increased for improved visual separation between the
floors

Fig. 14 Comparison of pure inertial localization (left) and approach augmented with RFID
measurements (right) in single floor scenario. Red squares mark the position of RFID tags while
the blue square denote the start of the walking trajectory
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Augmentation of the inertial system with additional sensors comes with its own
disadvantages. Apart of increasing costs, size, weight and power requirements of
the overall system, these sensors can make the system sensitive to unmodelled
external disturbances. For example, the assumptions regarding Earth’s magnetic
field are often violated for indoor scenarios or in proximity of larger metallic
structures and some heuristics are often necessary to validate the measurements.
The introduction of heuristics into the RBE mechanism makes the performance of
the overall system less predictable while the performance starts to be data and
scenario dependent. The same holds for barometric pressure sensing, where local
pressure disturbances due to motion affect the sensor signal. Numerous other
modifications possible including more sophisticated process models. Unfortu-
nately, the adoption of more complex models does not necessarily lead to a better
practical performance as some parameters can become unobservable or their
effective estimation can depend on the actual motion.

The presented experiments were performed with the user stepping on asphalt
surfaces and office building floor. It stays for the future research to analyze the
performance of the algorithm with challenging scenarios such as jogging and
running as well as stepping on grass, sand and snow covered surfaces.

6 Conclusions and Future Work

Within the work we have demonstrated the feasibility of a foot-mounted low-cost
IMU system for personal navigation applications using low cost MEMS sensors.
The inertial sensor system employed a combination of Zero Velocity Updates as
the basis for PDR and the performance was compared against a realization based
on a more expensive and calibrated IMU. We have shown that the performance of
the system can be significantly improved by using a more complex filter with
simultaneous state and parameter estimation as well as augmenting the system
with additional sensors for magnetic field, pressure measurement and detection of
passive RFID tags placed on the floor. The chapter also describes some of the
practical difficulties when dealing with realistic indoor scenarios and actual sen-
sors as well as presented some algorithm design issues. Employment of cheap
sensors puts higher requirements on the algorithm itself including the general
algorithm structure, complexity of the SSD and a careful revision of all the rel-
evant assumptions.

In future, the method is planned to be implemented on an Android-based system
to employ the available WiFi infrastructure and GPS information from the plat-
form for position correction when applicable. The computational feasibility of the
approach will be handled by reformulating the existing algorithm as more tractable
EKF-based fusion problem, whereas the Kalman smoothing approach is planned
for offline refinement of the estimated trajectory. A better algorithm performance
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is also expected with the IMU placed closer to the heel. Obviously, some
improvement is also expected when known explicit motion constraints (i.e., the
map information) is incorporated into the filter.
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