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Abstract Current indoor localisation systems make use of common wireless
signals such as Bluetooth, WiFi to track the users inside a building. Amongst those,
Bluetooth has been widely known for its low-power consumption, small mainte-
nance cost, as well as its wide-spread amongst the commodity devices. Under-
standing the properties of such wireless signal definitely aids the tracking system
design. However, little research has been done to understand the properties of
Bluetooth wireless signal amongst the current Bluetooth-based tracking systems. In
this chapter, the most important Bluetooth properties related to indoor localisation
are experimentally investigated from a statistical perspective. A Bluetooth-based
tracking system is proposed and evaluated with the location fingerprinting technique
to incorporate the Bluetooth properties described in the chapter.
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1 Introduction

Indoor localisation is the state-of-the-art to identify and observe a moving human
or object inside a building. Global Positioning System (GPS) has long been an
optimal solution for outdoor localisation, yet the indoor counterpart remains an
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open research problem because the sophisticated building infrastructure hinders
the GPS signal, as well as making indoor signals modelling difficult. The 10 m
limitation accuracy of the GPS is another consideration for those looking to apply
the technology, as 1–2 m accuracy is desirable for room-level tracking.

Within the past decade, there have been numerous attempts to solve the
problem with extensive hardware implementations such as the Active Badge
system (Want et al. 1992; Addlesee et al. 2001), the Cricket system (Priyantha
2005) which measure the time-of-flight from a tag to the beacons using ultrasonic
sensors. Despite an extreme accuracy up to 3 cm, 95 % of the time, these systems
are expensive and hard to maintain and deploy. There have been pure software
solutions such as Fingerprinting to utilise the built-in Wireless LAN of the
building to create a signal-to-position mapping database beforehand, then applies
pattern-matching algorithms to filter the most probable position for a real-time
signal fingerprint (Bahl and Padmanabhan 2000; Youssef and Agrawala 2005;
Brunato and Kallo 2002; Lin and Lin 2005). The Wireless LAN signal, however,
uses much power, and is hard to install and configure in the first place. Another
alternative is the Bluetooth wireless signal, which has been widely known for its
low-power consumption, small maintenance and installation cost, as well as its
ubiquitous amongst the commodity devices, such as mobile phones, head phones
and laptops. There have been many Bluetooth-based indoor tracking systems
(Orozco-Ochoa et al. 2011; Wang et al. 2011; Frost et al. 2012; Bargh and Groote
2008), yet, those systems did not pay much attention to the Bluetooth properties
and assumed they are similar to other wireless signal. Understanding the properties
of the wireless signal definitely aids the tracking system design. In this chapter, the
most important Bluetooth properties related to indoor localisation are experi-
mentally investigated from a statistical perspective. We aim to answer the ques-
tion: Is Bluetooth signal robust enough for the indoor localisation purpose? In
addition, a Bluetooth-based tracking system is proposed and evaluated with the
location fingerprinting technique to incorporate the Bluetooth properties described
in this chapter. The performance of such system is compared to the RADAR
indoor tracking’s counterpart, which is one of the first indoor tracking systems
(Bahl and Padmanabhan 2000).

The contribution of this chapter is two folds. First, we investigate the most
important Bluetooth properties from an indoor localisation perspective. Second,
we propose a novel Bluetooth-based indoor tracking system to incorporate the
Bluetooth properties demonstrated in this chapter.

2 Localisation with the Wireless Signal

Wireless signal is ubiquitous now-a-days, and benefits many indoor tracking
applications. This section outlines the application of wireless signal into locali-
sation and compares Bluetooth technology with Wireless LAN, which are the most
popular wireless signal, in terms of localisation perspective.
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2.1 Fine-Grained Tracking and Coarse-Grained Tracking

Based on the station broadcasting range, whenever an user and a station can com-
municate, which means they are in range, the user location can be interpreted as the
station location itself. This method is known as proximity-based tracking. Despite its
simplicity, the solution has two drawbacks. First, the system accuracy is exactly the
broadcasting range of the station. A Class 2 Bluetooth device has a 10 m range,
which is not very useful for indoor localisation. This method is enhanced by dividing
the tracking space into grids. The stations are strategically placed in such a way that
each grid block is overlapped by the signal from as many different stations as possible
(Fig. 1). Thus, instead of coarsely predicting the user’s location to be somewhere
within the station’s broadcasting range, the accuracy is improved by interpreting the
user’s location to be inside the overlapped area.

The idea still has one flaw, since many stations must be deployed to have a good
tracking result. The coarse-grained tracking idea is great for observing users at room-
level resolution. However, to identify an user location at sub-room-level up to 1–2 m,
a more fine-grained tracking is needed. The solution can be further enhanced by
analysing the wireless signal between each station to the user’s unknown location.
This idea bases on the fact that the wireless signal attenuates and gets weaker as it
travels in the air. There are two measurements to roughly represent the distance
between an user and a station: the received signal strength indication (RSSI) and the
link quality (LQ). A simple, yet efficient method known as Location Fingerprinting
makes use of these measurements. It utilises the built-in wireless signal of the
building to create a signal-to-position mapping database beforehand, then applies
pattern-matching algorithms to filter the most probable position for a real-time signal
fingerprint. In comparison to proximity-based tracking, this solution offers much
higher fine-grained tracking even with a few stations. In the next section, we discuss
the difference between Bluetooth and Wireless LAN, which are the most popular
wireless signals, for the purpose of fine-grained indoor localisation.

2.2 A comparison of Bluetooth and Wireless LAN

Bluetooth technology is a means for devices to wirelessly communicate over short
distances. Many tracking systems require the user to carry ‘a tag’ for observation.
However, the users often forget to wear it, making localisation impossible.

Fig. 1 Overlapping signal of
3 stations
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Compared to WiFi, Bluetooth technology has been more widely adopted amongst
the commodity hardware such as mobile phones, head phones and laptops, which
is a benefit as almost everyone carries a mobile phone these days. For large scale
deployment, the ease of installation and the affordability also make Bluetooth-
based approach stand out. Two Bluetooth devices are virtually ready to commu-
nicate upon plugging in, while a Wireless LAN network requires an adapter, and a
router/wireless spot, which also needs more configuration. Further, the low cost
(£3/Belkin dongle) is an advantage, which also consumes as little as 2.5 mW for a
Class 2 dongle, compared to 1,675 mW for a Wireless LAN card while transfer-
ring data (Chandra 2003), which is 670 times higher in power consumption.
Table 1 compares the power consumption level of the three Bluetooth classes.
Class 2 Bluetooth is widely used nowadays, while Class 3 Bluetooth devices are
obsolete and are no longer manufactured.

One big problem for any signal-based indoor tracking system is the attenuation
of the wireless signal in the air. To increase the signal robustness, Bluetooth
employs the ‘adaptive frequency hopping’ technique, in which the transceiver hops
through 79 channels 1,600 times per second, while avoiding those channels with
high interference. The transmission is broken down into very small packets to
increase the signal robustness. Although both Bluetooth and WiFi use the license-
free 2.4 GHz spectrum, WiFi devices stick to one channel during the session. The
robustness of the adaptive frequency hopping technique will be investigated in this
chapter.

However, when it comes to real-time tracking, WiFi offers almost instant RSSI
and LQ inquiry, while a Bluetooth device takes 10.24 s for a full scan. Although it
is possible to quickly target a particular user with the Bluetooth’s MAC address to
perform a direct connection request, 1.28 s are still needed to determine whether
the user is within range (Hay and Harle 2009). This weakness can be compensated
by either modifying the Page Scan parameter of the Bluetooth dongle; or using
more than one ‘scanner’ to boost the discovery rate. Table 2 summaries the dif-
ference between Bluetooth and Wireless LAN technology, in terms of indoor
localisation perspective.

3 Properties of Bluetooth Signal at a Static Position

This section surveys the Bluetooth properties from a statistical perspective. We
discuss what have been learned and how to benefit them in the actual
implementation.

Table 1 Bluetooth classes
comparsion

Working range (m) Power consumption (mW)

Class 1 100 100
Class 2 10 2.5
Class 3 1 1
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3.1 The Distribution of Bluetooth Signal

Figure 2 shows the histogram distribution of the Bluetooth signal in a clear area
with 30 cm distance between the transmitter and the receiver. We sampled the
RSSI reading every 10.24 s over 24 h with a total of 8,897 samples. This is the
standard Bluetooth inquiry rate. We recorded 52 histogram distributions over
4 months, with 96 % of the histogram samples showed a near-Gaussian distribu-
tion, 82 % of those were left-skewed, 11 % of those were almost-symmetric, and
only 7 % were right-skewed. This skewness should be considered when modelling
the indoor Bluetooth signal. Other indoor WiFi survey reports a similar distribu-
tion pattern (Kaemarungsi and Krishnamurthy 2004). The range of Bluetooth RSSI
can be as wide as 10 dBm, with very few isolated individual RSSI, which is
similar to the WiFi indoor signal. Since the histogram contains a concentrated peak
around the highest RSSI value, with a high 50 % probability, it is possible to
average the whole distribution as a single RSSI value, which performs well for
Weighted K-nearest neighbour’s algorithm.

These experiments used a Belkin Class 2 Bluetooth dongle. However, other
dongles were tested to show a similar result.

3.2 The Antenna Orientation of the Bluetooth Device

An important property of the Bluetooth signal strength is the direction the device is
facing. To the best of our knowledge, by surveying the internal design of popular
Class 1 and Class 2 branded Bluetooth dongles in the market (Belkin, BlueNext,
Nexxus, Asus, BlueWalker, Daffodil, Kensington, StarTech) from different
Bluetooth chip manufacturers (Broadcom, Cambridge Silicon Radio (CSR), Texas
Instruments (TI)), none of the current Bluetooth dongle is equipped with an omni-
directional antenna. The Bluetooth antenna is physically shaped as a plate (Fig. 3),
which broadcasts the wireless signal in a cone-shaped wave. The broadcasting
angle is around 30�, and is highly concentrated at the centre. Therefore, it is
understandable that the RSSI is strongest when two devices are totally parallel and
opposite each other.

Table 2 Bluetooth and wireless LAN comparsion

Bluetooth Wireless LAN

Indoor range 10 m 100 m
Power consumption 2.5 mW 1,675 mW
Data transfer Frequency hopping Sequence spreading
Frequency 2.4 Ghz 2.4 Ghz
Ease of usage Simple Complex
Cost Low (£3/dongle) High (£20/card)
Inquiry time 1.28 s (direct inquiry) Instant
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To study the change of the Bluetooth signal upon the antenna orientation, we
divide the 2D space into eight directions, parallel to the floor. At a clear distance of
30 cm between two opposite devices at the same height, the signal variation can be
as large as 10 dBm (Fig. 4). The RSSI gradually decreases when one device
rotates from the West-side to the East-side, with the weakest RSSI observed at the
furthest East-side.

By moving one device out of the 30� broadcasting range of the other device, the
signal variation still behaves as expected, although it is not as clear as when they
are totally opposite each other (Fig. 5). A similar result was observed when
changing the device’s altitude.

Based on this observation, it is recommended that the Bluetooth stations to be
placed at the corners, with the antenna pointing towards the centre of the room for
the best signal broadcasting.

3.3 The Variation of the Bluetooth Signal upon Distance

When an user is further away from a fixed station, the attenuation weakens the
wireless signal. However, it is not possible to fit a mathematical equation to
calculate the exact signal strength loss, given the distance. We can only expect a

Fig. 2 Bluetooth RSSI
distribution

Fig. 3 Belkin dongle’s
antenna
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rough decreasing pattern as the distance increases. In general, the changes of
Bluetooth RSSI can be separated into two categories; given the user can move a
short or a long distance.

3.3.1 Small Scale Variation

It is not surprising that a very small distance on the order of a wavelength can
cause the Bluetooth signal to vary to as much as 10 dBm. Small-scale variation is
caused mostly by the multipath effect. When the two devices can directly see each
other, the strongest signal follows a shortest unobstructed straight line-of-sight
from one end to the other. However, in an indoor environment with many
obstacles, the signal propagates in different paths because of reflection, scattering,
diffraction and eventually reaches the destination (Fig. 6).

It was suggested measuring the readings every few metres apart to avoid
capturing this variation (Youssef and Agrawala 2005). However, it makes the
tracking capability very coarse with probabilistic algorithms such as the Bayesian
approach, since they predict the unknown real-time location to be just one of the

Fig. 4 RSSI orientation at
the same height, opposite
each other

Fig. 5 RSSI orientation at
the same height, not opposite
each other

Fig. 6 Multipath fading
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records in the database. Another solution is based on the Weighted K-nearest
neighbour algorithm, which takes the average weighted measurements of K
locations, and returns an estimated position in the middle of these K locations. The
best solution is increasing the resolution of the tracking grid, such as taking
measurements every 10 cm, which increases the system’s maximum accuracy to
10 cm. However, this process is very time-consuming and results in a bigger
database. We solve this issue with a robot to automatically collect the data, to be
discussed later.

3.3.2 Large Scale Variation

When the user moves a long distance, it is expected that the signal strength gets
weaker gradually. For the purpose of coarse-grained tracking, this serves as a
warning that the user is leaving the tracking area. The large scale variation is very
important for any fine-grained tracking purpose, as there is a correlation between
the signal strength and the travelling distance at any location. However, the
complex indoor structure makes modelling the wireless signal a very difficult and
inaccurate task. Two distinct indoor locations further apart might have a similar
signal strength pattern, due to multipath and other signal fading issues. This
problem is alleviated by setting up many stations to increase the signal density and
the uniqueness of each location in the tracking zone. We analyse this variation in
details in both 2D and 3D spaces.

3.3.3 Moving Horizontally and Parallel to the Floor

In an ideal world, by ignoring all atmospheric, water absorption and multipath, an
RF signal fades as it propagates in the air, because of the free-space path loss
exclusively. The signal strength loss is calculated by the Friis transmission
equation

PRX ¼ PTX � GTX � GRX �
k

4pd

� �2

ð1Þ

with
PTX Transmission power of sender
PRX Remaining power of wave at receiver
GTX Gain of transmitter
GRX Gain of receiver
k Wave length
d Distance between sender and receiver

Since the Bluetooth RSSI has a near-normal distribution shape, the large scale
variation will be represented under a log-normal random variable. We fit a best
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line to present the median path loss, calculated by the above formulae. This best fit
line shows a quadratically decreasing relationship between the distance and the
RSSI.

The above experiment (Fig. 7) was taken in a long office corridor, so that a
clear unobstructed line-of-sight is possible. The base station was placed in the
middle of the corridor and the Bluetooth device was gradually moving perpen-
dicularly further away from the station. Overall, when the distance is more than
70 cm, we would expect to see a significant change in the RSSI. Interestingly, we
found out from approximately 5 m onward, the RSSI stays almost the same. The
signal is completely lost amongst all the noises at a distance of 6 m for a Class 2
Bluetooth device, which supposes to have a working range of 10 m. Another
feature observed from Fig. 7 is that the standard deviation of the Bluetooth signal
grows bigger as the distances increases. However, the number of recorded RSSI
decreases as the distance increases. We conclude that strong Bluetooth RSSIs,
which are found near the station, are more stable. Further, it is strongly recom-
mended to set up a Bluetooth station every 5 m for the best Bluetooth signal
differentiation amongst locations.

3.3.4 Moving Vertically and Perpendicularly to the Floor

Does the altitude of the device influence the Bluetooth signal? Many indoor
tracking systems do not implement this feature, as they assume the height of the
transceiver is fixed throughout the tracking process. This is not correct, as an user
can carry his phone, which is used as the tracking tag, in either his shirt pocket or
trouser’s pocket. Further, the change of the signal strength upon the altitude is
important for 3D tracking to detect if the user is moving upstair or downstair.

Fig. 7 Large scale variation
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First, the range an user carries his tag can vary from 70–145 cm off the ground
for an adult. Does this 75 cm difference influence the signal strength? In this
experiment, a fixed station was set up at 1 m off the floor. The distance between
the station and the device is 50 cm. When moving the device from the bottom floor
to 2 m off the floor, the RSSI gradually increased. When the Bluetooth device and
the station were parallel and opposite each other at the same height around 1 m off
the ground, the highest RSSI were observed. The signal strength gradually
decreased when the altitude of the device continued to increase.

Further, to investigate the effect of the altitude upon the Bluetooth station, the
above experiment was repeated with the station set up at different heights, from the
bottom floor to 1 m off the floor. Interestingly, we encountered many strange
individual RSSIs with significant larger or smaller value, when the station was set
up just 10 cm above the ground. This phenomenon can be explained by the effect
of the multipath fading. The Bluetooth signal travels in different directions upon
reflection, scattering, diffraction off the indoor objects and reaches the destination
in different paths. Occasionally, two in-phase Bluetooth waves meet in the air, and
cause a constructive interference, if both of them are using the same frequency.
Destructive interference happens when two out-phase waves happen to be on
the same channel, in which they will cancel each other. A station placed near the
ground will increase the chance of two Bluetooth waves meeting in the air. We
experimentally found out that the above phenomenon is less severe when the
station’s altitude is higher than 1 m off the floor (Fig. 8).

Since Sect. 3.2 reveals that the effective broadcasting angle of the Bluetooth
device is around 30�, and Sect. 3.3 shows that the signal strength is strongly
distinguishable within 4 m distance, the effective altitude of the Bluetooth station
is calculated as

x ¼ 4
tan 75ð Þ

� �
¼ 1:07 mð Þ ð2Þ

Thus, it is strongly recommended to set up the base stations at least 1 m off the
ground to lessen the multipath problem.

Fig. 8 Station’s optimal
altitude
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4 Properties of Bluetooth Signal on a Mobile User

Tracking a mobile user is harder than tracking a static one. First, the 10.24 s
discovery time of the Bluetooth devices is not suitable for real-time tracking.
Second, the user’s movement pace affects the robustness of the received signal as
reported for the Wireless LAN (Kaemarungsi and Krishnamurthy 2004). The first
issue is alleviated in the recent ‘connection-based’ approach, which reduces the
discovery time to 1.28 s, following a one-off registration of the device’s MAC-ID.
The second problem is more difficult, because the hang-over effect makes the
wireless signal unpredictable.

It was reported that the faster the walking speed, the less reliable the Bluetooth
signal strength is (Madhavapeddy and Tse 2005). To verify this statement, we
recorded the RSSI at two moving paces more accurately with a robot: 2 m/s for a
fast walk and 0.22 m/s for a slow walk. Figure 9 shows that the difference between
‘fast walk’ and ‘slow walk’ in our experiment was much less severe than what
reported above. However, we did observe a similar increasing pattern of the
standard deviation, as the distance from the station increases. Further, contrast to
the report that ‘static measurements’ failed to achieve a better result than ‘slow
walk’, we observed a similar performance in both cases. ‘Static measurement’
means the robot stops for a few seconds to take readings before moving on.

There are two differences between our approach and the one reported above.
First, we applied the recent connection-based inquiry to measure the RSSI in less
than 1.28 s, rather than using the standard 10.24 s inquiry, which allowed us to
collect more RSSI at a faster rate. Second, we opted for the RSSI measurement
while the other experiment used the LQ as the signal strength measurement. The
use of a robot to collect data could also have an impact in our case.

Fig. 9 Comparison of walking speeds
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5 External Influences upon the Bluetooth Signals

Many indoor tracking systems assumed an ideal environment (Bruno and Delmastro
2003; Hallberg et al. 2003). In reality, the surrounding varies from time to time due
to human movements, humidity, furniture re-arrangement, etc. Any database-based
tracking system must frequently update the latest signal readings, or use multiple
databases to reflect different environments during rush hour, early morning, late
evening.

5.1 Influence from the Human Body

The human presence is a major factor for any indoor tracking system. The human
body contains as much as 75 % of water, which absorbs the radio wireless signal.
Many tracking systems require the user to carry a tag, which lies very close to the
human body. To examine the human presence effect, two fixed base stations were
set up at 1 m away in a cafeteria. Two periods of time were chosen to record the
Bluetooth signal: when the cafeteria was crowded with people at mid-noon and
when it was quiet in the late evening. Figure 10 below shows that the Bluetooth
signal fluctuates more wildly when there are many people around, with a bigger
standard deviation of 3.17, compared to 2.36 without the human presence.

We attempted the above experiment at the same location with the Wireless
LAN to compare the signal variation. Interestingly, the standard deviation recor-
ded for the Wireless LAN was bigger than the value recorded for the Bluetooth
signal when the area was crowded. We observed both the WiFi and Bluetooth
signals for a week with different levels of crowd. All our records showed that the
Bluetooth wireless signal copes well with much noise around. However, when the
distance between the two stations increased, the Wireless LAN signal was much
stable with smaller standard deviation. This phenomenon shows that in a noisy
environment, the Bluetooth signal is much more adaptive for short distance
communication than the Wireless LAN, by breaking the transmission into small
packets and frequently switching channels to avoid signal collision.

5.2 Influence Amongst the Bluetooth Signals

Deploying a Bluetooth-based tracking system involves setting up many Bluetooth
stations under the same domain. Do the Bluetooth signals affect each other? Is
there a relationship amongst the signals over times? This section discusses whether
many Bluetooth devices can co-exist in a small domain. Since the limited Blue-
tooth broadcasting range demands a close distance between stations, the potential
signal collision is a possibility.
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5.2.1 The Correlation of the Bluetooth RSSI at the Same Station

An indoor tracking system relying on an off-line database has to capture the signal
variation in different times of the day to reflect different environments. Is it nec-
essary to re-run the whole surveying process at the same time in different days,
presuming the environment does not change as much? This condition can only be
relaxed if the Bluetooth signals themselves do not cause any internal conflict. We
applied the Wide-Sense Stationary (WSS) process to verify the stationary property
of the Bluetooth RSSI in different times at the same station, assuming the envi-
ronment is static. A Bluetooth RSSI is said to be stationary, if its histogram

Fig. 10 Bluetooth RSSI without/with human presence
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distribution do not change with time. Two conditions must be met. First, the mean
value of the RSSI distribution is a constant, regardless of the time. Second, the
autocorrelation function of the WSS process is independent of the time difference
at the same station. With an RSSI sequence recorded in an isolated room to
eliminate most external noises over 24 h, we divided the sequence into chunks of
6 h, and compared these segments. Table 3 shows that the means and the standard
deviation of the four sequences were very close, which mostly satisfies the first
WSS condition. Despite our best effort to eliminate the surrounding noises, it is
difficult to purify the environment, which explains the small difference in the
statistical values.

Figure 11 demonstrates the correlogram of the above 6 h segments. Beside the
close autocorrelation, the shapes of the 4 correlograms were also very identical.
We also tested different segment sizes of 1, 2, 4, 8 and 12 h to confirm the
similarity of the result. Therefore, we conclude that the Bluetooth RSSI at the
same station is independent, regardless of the time difference, presuming the
environment is identical.

5.2.2 The Correlation of the Bluetooth Signal at Different Stations

Section 3.3 reveals that the Bluetooth signal is completely lost amongst all the
noises at a distance of 6 m onwards. The short distance characteristic of the
Bluetooth signal demands the Bluetooth stations to be set up as close as 5 m to
each other, which raises the question if they can potentially interfere. We set up 4
stations as shown in the first testbed (Sect. 6.1). A receiver R was placed at the
lower left corner of the room to record the signal from the 4 stations over 24 h.
Table 4 shows that there is no correlation between the received signal, with a
strong distinction of the mean, standard deviation and the correlation. We con-
clude that the Bluetooth signal in different stations is independent.

5.3 Influence from Other Wireless Sources

It is common to have many wireless sources co-existing in the same environment.
Bluetooth technology increases the signal’s robustness by adapting the frequency-
hopping to constantly switching between 79 channels 1,600 times per second to
avoid collision with other wireless signals operating on the same 2.4 GHz spec-
trum, such as Wireless LAN, microwave oven. Some indoor tracking systems were

Table 3 6 h segments comparsion

6–12am 12–6pm 6pm–0am 0–6am

Mean -67.5 -67.74 -68.1 -66.86
Standard deviation 1.14 1.04 1.09 0.95
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seen to in-corporate both Bluetooth and Wireless LAN (Pandya et al. 2003), yet
there has not been a verification to confirm if there is any conflict between the
Bluetooth and Wireless LAN signals.

To test the influence of the Wireless LAN upon the Bluetooth signal, a Blue-
tooth transmitter and receiver were set up to constantly measure the RSSI between
them. The same environment was artificially modified by injecting many WiFi
signal, with five computers equipped with the wireless LAN cards constantly ping
each other. Table 5 shows that both cases have a very identical mean value and
standard deviation. There is also a strong correlation R = 0.92. Therefore, we
conclude that the interference caused by the Wireless LAN is almost non-existent.

6 A Bluetooth-Based Location Fingerprinting System

To incorporate the above Bluetooth features, we propose a Bluetooth-based indoor
tracking system with the Fingerprinting method. Especially, to tackle the hassle of
database collection, we designed a robot to automatically collect the Bluetooth
data. Three classification algorithms were implemented, the Weighted K-nearest

Fig. 11 6 h segments correlograms

Table 4 Signal correlation from 4 different stations

Distance (m) Mean Standard deviation Correlation

R–A 5 -82 2.84 -0.21
R–B 5.8 -86 3.28 -0.17
R–C 4 -78 2.4 +0.17
R–D 1.5 -69 1.57 +0.26
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neighbours, the Bayesian approach and the Histogram matching algorithm. We
compared our system performance to the RADAR system (Bahl and Padmanabhan
2000), which used a similar K-nearest neighbours approach with the Wireless
LAN signal.

6.1 Data Collection

The system was installed in two different locations as described below. In both
cases, a robot was used to collect the Bluetooth data along with the location’s
physical co-ordinate.

6.1.1 Testbed 1

The first testing environment was deployed on the second floor in the Computer
Lab, University of Cambridge where we used the Bat system as a reference to
provide accurate 3D location data. This testbed was, however, limited to just a
single room of 15 m2 (5 9 3 m). All locations within the tracking zone can be
seen by all four Bluetooth stations (Fig. 12).

Table 5 Bluetooth distribution with/without WiFi noises

Mean Standard deviation

Without WiFi -71 2.45
With WiFi -72 2.7

Fig. 12 First testbed
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6.1.2 Testbed 2

The second testbed aimed to deploy the system in a large environment, where each
station alone cannot cover the whole tracking zone. An office of 136 m2

(17 9 8 m) was used to deploy the system (Fig. 13).

6.1.3 Automated Robot

For a database reference method such as Fingerprinting, the system accuracy
depends on the reliability of the reference entries stored in the database, as well as
the number of surveyed entries. Yet, it takes much effort for a human to survey
every location within the tracking area. For this reason, a robot was built from
LEGO pieces (Fig. 14), which is convenient for maintenance and re-production.
The robot is capable of carrying a laptop for 8 h per single charge. More details
about the robot are discussed in (Nguyen 2011). The advantages of the mobile
robot for indoor localisation include automated data collection, less interference
with RF signals due to its small size, and adjustable body to experiment at different
heights. Although in real-time tracking, an user will present instead of a robot, the
signal attenuation due to human body can be compensated.

6.2 System Evaluation

We collect data from 260 random positions in the first testbed and 270 positions in
the second testbed. Each position contains the Bluetooth RSSI fingerprint, and the
physical 3D co-ordinate. To evaluate the system performance, we provide the
Bluetooth fingerprint into the system, which returns a predicted co-ordinate based
on the training database constructed beforehand. Three algorithms were
implemented.

Fig. 13 Second testbed
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6.2.1 Weighted K-Nearest Neighbours

Given a Bluetooth RSSI, the Weighted K-nearest neighbour’s algorithm selects K-
nearest entries in the database, in terms of the Euclidean distance. A Bluetooth
RSSI is represented as an n-tuple X = (x1, x2,…, xn), with xi is the signal strength
measured from the station i. The ‘distance’ between two Bluetooth RSSI X and Y is
measured as

dist X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � y1ð Þ2þ � � � þ xn � ynð Þ2

q
ð3Þ

It is common that many distinct locations far away might have a similar
combination of signal strength, because of the indoor signal multipath problem,
where the wireless signal bounces off the indoor objects and arrives at the desti-
nation in different paths. Thus, by considering the ‘weight’, corresponding to the
inverse distance between each neighbour ni and the unknown position l, the final
estimated 3D position E = (ex, ey, ez) would be much more accurate. The reason to
invert the distance is to prioritise closer neighbours over further away one. The
‘weighted’ equation is repeated for each dimension of the unknown location
L = (lx, ly, lz)

ex ¼

PK
i¼1

1
dist ni;lð Þlx

PK
i¼1

1
dist ni;lð Þ

ð4Þ

Finally, an optimal K parameter is calibrated specifically for each environment
and the wireless signal. In our system, we experimentally found K = 16 as an
optimal value across all testing points. Some locations had better results with
different K. Generally, starting from K = 1, which is equivalent to considering

Fig. 14 LEGO robot
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only the nearest entry, the accuracy tends to increase when K increases, up to a
certain point (K = 16 in our case), then it begins to decrease with bigger K.

Compared to the normal K-nearest neighbour algorithm implemented in the
early version of the RADAR system, the overall performance was enhanced by
more than 25 % (Fig. 15).

6.2.2 Naive Bayesian Approach

While the Weighted K-nearest neighbour’s algorithm computes an average of all
nearest locations to estimate an unknown position, the Bayesian approach picks up
just one entry in the database with the highest probability to represent the esti-
mated location. The idea of ‘probability’ comes from a histogram table, which
records the Bluetooth signal variation in terms of the small-scale variation.
Assuming the base stations are independent, the probability of a given signal
strength pattern X = (x1, x2,…,xn) at a particular location L recorded in the
database is calculated by the probability of each individual signal strength xi, as
follows

P x1; x2; . . .; xnð ÞjLð Þ ¼ P x1jLð Þ P x2jLð Þ. . .P xnjLð Þ ð5Þ

Each separate term P(xi|L) can be calculated independently based on the fre-
quency of xi recorded at the location L in the database

P xijLð Þ ¼ number of times xi appears
total number of readings at location L

ð6Þ

Fig. 15 Weighted K-NN
versus unweighted K-NN
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However, the actual purpose is to calculate the probability that the given RSSI
X = (x1, x2,…,xn) indeed belongs to the location L recorded in the database. This
is the reverse probability

P Lj x1; x2; . . .; xnð Þð Þ ¼ P x1; x2; . . .; xnð ÞjLð Þ P Lð Þ
P x1; x2; . . .; xnð Þ ð7Þ

The probability P((x1, x2,…,xn) | L) is calculated using Eq. 5. The probability
P(L) of a location L itself is always 1/N with N = number of entries in the
database, which is a constant. The probability P(x1, x2,…,xn) is the number of
times (x1, x2,…, xn) appears in the database divided by the total number of entries
in the database, which is also a constant. Thus, P(L) and P(x1, x2,…,xn) can be
ignored in the computation.

To sum up, given an unknown location’s signal strength pattern, the probability
of every record Li in the database P(Li | (x1, x2,…,xn)) to match this unknown
location is calculated. The position Li with the highest probability is considered as
the estimated position.

This Naive Bayesian approach assumes the base stations are independent. This
assumption is correct as discussed in Sect. 5.2. The drawback of this solution was
the big size of the database, resulting from many readings taken at a fixed position
to record the signal variation. Second, the tracking zone’s resolution determines
the accuracy of this approach. For every 1 m measurement, the Bayesian approach
cannot provide estimated position with more than 1 m accuracy, because it picks
just one entry in the database as the estimated location. Ideally, we prefer a high
granularity database, yet it consumes much longer to survey the tracking zone. In
general, the Bayesian approach performs better than the Weighted K-nearest
neighbour’s counterpart, as it takes into account the signal variation, at the cost of
a bigger database size.

6.2.3 Histogram Matching

The Histogram matching method adapts a similar approach as the Bayesian, by
using the histogram table. Besides, it takes a further step by considering the signal
variation at the unknown position too, while the Bayesian approach considers just
a single RSSI snapshot. However, this solution has one flaw. Although it is pos-
sible to wait for signal arriving in the database construction stage, in real-time
tracking, the mobile user moves quickly, which limits the amount of signal
received at any particular moment. For tracking static user, this approach shows
very good performance.

To compare the histogram tables, we implemented two algorithms. The ‘Stu-
dent’s T test’ is performed, if the histogram table is normally distributed, otherwise
the ‘Kolmogorov–Smirnov test’ (K–S test) is performed. Section 3.1 implies that
the Bluetooth signal strength does not have a Gaussian distribution only 4 % of the
times. The experimental result shows that the performance does not degrade too
much by this violation.
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6.2.4 Performance Summary

In general, all three algorithms performed equally well (Fig. 16).
The Weighted K-nearest neighbours is simple and easy to implement, but

deciding the optimal K parameter is challenging, which can only be achieved
experimentally depending on the environment deployed and the wireless signal’s
properties. The histogram matching approach seems to edge out of the other two,
since it uses the signal variation in both off-line and on-line stages. However,
obtaining many readings in a short period of time during real-time tracking is
challenging, especially for the Bluetooth signal. The Bayesian approach algorithm
captures just one signal strength reading during real-time tracking, but considers
the whole range of the signal variation recorded in the database to select one entry
with the highest probability as the estimated location. This is the most balanced
algorithm, in terms of performance and realistic deployment. The system achieved
less than 1.5 m error, 88 % of the time; or 50 cm error, 43 % of the time. Com-
pared to the RADAR system with 2 m error using the Wireless LAN signal, this
performance is very promising, considering the affordability and the efficiency
nature of the Bluetooth devices. It only took less than 0.04 s to estimate an
unknown position on a 1.6 GHz computer.

The Bayesian approach can be further enhanced by combining with the
Weighted K-nearest neighbours. Instead of picking just one location in the data-
base, it selects K entries with the highest probabilities, and uses the probability
measurement as the weight to average the estimated position. However, it would
take more computational power to process K entries.

Fig. 16 System performance
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7 Conclusions and Further Work

In this chapter, we investigated the Bluetooth properties for the indoor localisation
purpose. The Bluetooth signal is strongly immune to the interference caused by
other wireless sources, thanks to the adaptive frequency hopping. However, human
presence is a major factor, which influences the Bluetooth signal strength and
deviation. Compared to the Wireless LAN, Bluetooth technology has the benefits
of affordability and efficiency, which suit the purpose of ubiquitous deployment.
The main weakness of Bluetooth, however, is the slow inquiry time, which can
take up to 10.24 s for a full scan. The recent ‘connection-based’ approach has
reduced it to just 1.28 s, which is very important for tracking mobile users.

We implemented a Bluetooth-based indoor tracking system with Fingerprinting
method and a robot to incorporate the Bluetooth properties learned from this
chapter. The system performance is promising with an accuracy of less than 1.5 m
error, 88 % of the time, considering the affordability and efficiency nature of the
Bluetooth technology. We plan to implement machine learning algorithms to
tackle the slow inquiry time, as well as minimal the signal-survey effort.
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