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Abstract In conventional thematic cartography the visualisation techniques to
symbolise spatio-temporal phenomena are limited. On a two dimensional map
temporal changes can only be visualised adequately as time series or by animation.
To simultaneously visualise thematic data in space and time a third dimension
must be added. In this work conventional cartographic symbolization meets the
space-time cube to create a holistic 3D spatio-temporal visualisation model. The
two dimensional proportional symbol mapping technique is adopted and extruded
into the third dimension to model the temporal factor. Kernel density estimation is
performed on the time line to create a temporal continuous model from discrete
points in time. The resulting visualisation model is implemented into an earth
viewer to enable the user to freely navigate the phenomenon and visually detect
anomalies without losing the overall view. This tool is evaluated by visualizing the
events of a mobile phone location dataset over space and time in one single model.

Keywords Visual analytics � Geostatistics � Thematic cartography � 3D visualisation
� Mobile phone location data

1 Introduction

There is a need for effective methods to exploit and use the hidden opportunities
and knowledge resting in unexplored data resources (Keim et al. 2010).
An effective approach to reveal the hidden information in large spatial databases is
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to combine computational tools with human understanding into visual data
exploration and sense making. This approach is part of the visual analytics field,
which consists of various research areas. Visual analytics has been introduced and
specified as the science of analytical reasoning facilitated by interactive reasoning
techniques (Thomas and Cook 2005).

Despite various existing methods for data mining and data visualisation, both
visual data exploration and statistical analysis of temporal changes of a phe-
nomenon remain difficult. Haggett (1990) defines four types of temporal change in
spatial data: constants, trends, cycles and shifts. Constants are long periods of no
change while trends refer to long-term linear changes, e.g. migration of objects.
Cycles describe recurring patterns like for instance daily hotspots of rush hour
traffic and shifts describe random changes that misfit overall trends and cycles. In
the case of a mobile phone location dataset an overall daily cyclic pattern would be
expected.

It is necessary to simplify large amounts of event data. These events cannot be
analysed and visualised adequately and therefore a phenomena cannot be under-
stood. The events, each with a distinct location, can be used as points. This is why
kernel density estimation has become so popular in recent years for its ability to
make large amounts of point data understandable. Derived from point distances
and a kernel function it assigns density values throughout the study area of the
examined phenomena. The resulting density values can be classified and colour
coded which leads to an isarithmic mapping technique. This density surface dis-
plays a simplified and abstract presentation of the point cloud to provide a legible
and comprehensive visualisation. To provide a spatiotemporal analysis of a spa-
tiotemporal phenomenon a current practice is to investigate space and time sep-
arately. It seems reasonable to use kernel density analysis to investigate on the
spatial behaviour. A typical spatial analysis by kernel density estimation of a
mobile phone call location dataset is shown in Fig. 1.

To respect the temporal aspect of a spatiotemporal analysis the spatial inves-
tigation is enriched with a temporal analysis. In many cases this consists of a
histogram simply showing quantities over time. The events are then classified into
discrete intervals. An example using the same mobile phone call location dataset is
shown in Fig. 2.

This implemented approach of separating the spatiotemporal analysis into a
spatial analysis and a temporal analysis has, regardless of its usefulness for par-
ticular cases, major drawbacks. Time is not applied as continuous in opposition to
its nature. The events in time are presented in discrete manner. Information is lost
as the distribution of events within a class is neglected. But the crucial drawback is
that the study area cannot be explored in detail over time. Spatiotemporal hotspots
are therefore not identifiable as either the overall temporal hotspots or overall
spatial hotspots only can be depicted. It is not possible to detect the density of a
certain place at a certain time. The divisiveness of the analysis results into a visual
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exploration of space or time rather than a visual exploration of space and time.
To enable the analyst to perceive for instance mobile phone call events as

behaviour rather than multiple individual patterns, the analysis of all events must
be presented in one display. This major principle for exploring data has been
introduced for instance by Andrienko and Andrienko (2006) as ‘‘see the whole’’.
For instance, a time-based animation for the exploration of spatiotemporal data
does not fulfil this demand as different points in time can only be analysed in
sequence. By the use of a temporal third dimension in a static view, time steps and
positions can be explored according to the underlying scales without temporal
limitations (Müller, Schumann 2003). The in a 3D presentation occurring handi-
caps such as occlusion and lost information on back faces can be tackled by
advanced interaction techniques or additional cues (Aigner et al. 2007).

Fig. 1 Phone call densities
in space

Fig. 2 A histogram showing
phone call quantities over
time
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2 Input Data and Applied Method

2.1 Input Data

The in this work introduced visual analytics tool is applied on a mobile phone
location dataset provided by Vodafone. For this dataset all outgoing Vodafone
mobile phone calls were stored taken from an area approximately 7 9 7 km
centred over Munich city centre during one week. Every mobile phone call was
logged and assigned to the geographic location of a mobile phone cell. A resulting
1.5 million events occurred in 216 unique cells. For privacy issues all records were
stored anonymously by removing the formal identifiers, such as phone number,
phone ID, etc.

2.2 Applied Method

The coordinate pairs of the mobile phone base stations set the two dimensional
distribution for all events. On the basis of the Space-Time-Cube concept, which
was introduced by Hägerstrand (1970), the phone cells are presented in 2d space
(along the x- and y-axis) and the height represents time (z-axis). Therefore, the
time attribute of every event is used as the third dimension to enable a holistic
space-time analysis. In this way the mobile phone call events can be defined as
points in a 3D scatter plot.

Only if analytical methods are applied to compute expressive abstractions it is
possible to analyse such large data sets efficiently (Aigner et al. 2007). In this case
1.5 million phoning events are generalised by a kernel density estimation, which is
performed based on a formula stated by Scott (1992):
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h xð Þ = general Kernel Density
K = Kernel function
h = Kernel radius (bandwidth)
n = Number of points within kernel distance
x1; x2. . .; xn = points within the Kernel.

The kernel density function estimates a probability density function. This
function is standardised by the number of points so that the integral of every
probability density function is always equal to one. The kernel density function
therefore represents relative point frequencies. As the density estimation is to be
performed on the time axis over every base station, the density function has to be
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modified, to represent absolute (not relative) quantities. The in this work applied
function (2) represents the absolute quantities of mobile phone call events, which
allows visual comparison between different phone cells in sense of comparing
absolute numbers.
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With:

qh zð Þ = Quantitative Kernel Density
K = Kernel function
h = Kernel radius (bandwidth)
z1; z2. . .; zn = points/events on the time axis within the kernel

A quantitative density function is estimated for all phone cells. It is necessary to
use an identical kernel for all phone cells in order not to bias the comparison
between different phone cells. A 1 h wide Gaussian kernel was used to calculate a
density functions for every phone cell. These density functions are then used as
rotating plane curves around z-axes perpendicular upon the two dimensional space.
Each z-axis origins at a base station location so that a resulting 216 solid of
revolutions represent the 3D symbols indicating the mobile phone call events in
space and time. This statistical model indicates the amount of phone calls by its
radius, which is the distance from time axis. The time value is given by the
distance from the z-axis origin. A transverse section in x–y direction reveals the
quantity of events at a certain time. This solid of revolution symbol is like an
infinite number of two dimensional proportional symbol maps (one for every point
in time) layered over each other.

The solid of revolutions are implemented into a Keyhole Markup Language
(KML) file and rendered by the popular earth viewer Google Earth. A basic
example of a solid of revolution is shown on Fig. 3. A Lambertian shading model
is included to act as a diffuse reflecting texture over the solid figure and to enhance
the 3D perception.

The solid of revolution persists of independently time coded sections. This
empowers the user to visualise a certain time interval only. The earth viewer
provides a comprehensive set of navigation tools to pan and zoom into every 3D
location and to freely change the direction of sight. Therefore each solid figure of
the model can be visually explored in detail. The through Google Earth supplied
satellite imagery and aerial photography of the study area provides the users’
orientation.

Google Earth features a time slider from Google Earth 5 and later. Whenever
geodata containing time information is loaded into the viewer a time line function
window called the time slider appears. The time slider enables a user to display
spatio-temporal data of a specific point in time or to display a time interval. The
user can also animate spatio-temporal data by playing the information in a visual
sequence. In the case of the mobile phone events the user is given the power to
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visualise the phone call densities at a specific day time (i.e. from 08.00 to 10.00).
The user can then animate the model at his desired speed to highlight the phe-
nomenon’s density changes over the course of the day. The time interval settings
stay hereby clearly in the user’s visual field.

The assigning of day times to density values on the time axis is enhanced for the
final visualisation by a bipolar colour scheme to identify night times in dark orange
colours, early mornings in lighter orange over to a neutral light yellow colour for
lunch time to a light red in the afternoons and dark red colours for late evenings
(Fig. 4). This bipolar colour ramp is derived from the Lab colour space so that
equal time differences are perceived as equal along the entire time axis.

3 Results

The resulting model for analysis of mobile phone events can be seen on Figs. 4
and 5. To symbolize the whole phenomena simultaneously in space and time
integrated in one single model, space and time are treated as equal dimensions.
The time axis is set as third dimension orthogonal to a plane two dimensional
space. This Space-Time-Cube concept to represent multidimensional data has been
applied by researchers prior to this approach. Tominski et al (2005) introduced the
concept of 3D icons on a map display for representing spatio-temporal data. Better
known as the pencil and helix icons this concept indeed has the capability to
visualise higher dimensional data on distinct side surfaces of the icons based on the

Fig. 3 A solid of revolution
symbolising the mobile
phone call events of a phone
cell during one day, rendered
in Google Earth
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visual variable colour, but has the handicap of information loss due to occlusion
and hidden surfaces. Similar is the approach of Forlines and Wittenburg (2010) in
which the multi-dimensional visualisation is based on the extrusion of a 2D radar
chart. Here the visual variable size is used to indicate various quantitative variables
in a specified horizontal angle. The in this work used solid of revolution symbols
naturally show the same colour coding and convexity on every horizontal angle
and therefore minimize the information loss due to occlusion and reduces the
user0s cognitive workload. Also, it ensures that the general survey of the holistic
spatiotemporal phenomenon remains allocated in every angle of view.

Within this approach the radii and accordingly the convexities of the solid of
revolutions are derived by a kernel function from the temporal variable of
occurring events. In this way it is ensured that time is treated as continuous. This is
the major difference to Thakur and Ryne0s (2009) data vases. Although the
appearance of the 3d data vases, in which polygonal disks are stacked for each
time step, is alike to the here shown solids of revolution, the data vases are derived
from independent values in time such as in a histogram. This has the benefit of
simplicity in terms of the symbol setting but has a lack of continuity. The solids of
revolution are derived from a rotating probability density function that estimates
the distribution of a continuous valued random variable. In this case the variable is
the amount of phone calls scattered on the time line. This avoids edge effects
between different classes (for instance one hour classes) simply because no
intervals are classified on the time line. The complete phenomenon is treated in
respect to its continuous nature. The by the kernel inflicted data smoothing also
guarantees individual events in space-time areas of sparse phone calls do not

Fig. 4 Visualization of
mobile phone call quantities
during 3 days
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interact strongly with the estimation. Outliers have a minimal influence on the
solids of revolutions diameter. The kernel density estimation ensures that the
major quantitative changes in time remain clearly visible.

One could argue that the kernel density estimation should not have only been
executed on the time axis but also between phone cells in two dimensional space.
But it has to be kept in mind that the events where collected through mobile phone
base stations. Despite the clear boundary visualisation of cells by using Voronoi
diagrams, the location of a phone call can only be determined by the coordinates of
the connecting base station. The events are therefore only conceptual spatial
points. O0Sullivan and Unwin (2003) state that one important criterion for using
point pattern analysis (and therefore kernel density estimation) is to use true
locations of event data. They further state that the points must be true incidents
with real spatial coordinates. For this reason every phone cell is treated separately.

The overall analysis of the mobile phone call activities in Munich is shown on
Fig. 5. A very high density can be identified in the middle of the study area which
is the city centre. The perhaps not surprising phenomenon of a high mobile phone
activity in city centres has been surveyed before, for instance by Ahas et al. (2010).
But it is also possible to detect minor hotspots in other areas, most of them in the
afternoon. At the same time regions with low mobile phone traffic can be seen.

Fig. 5 Visualization of mobile phone call densities of one day until 6:00 p.m
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The by common sense estimated daily cyclic behaviour of the phenomena can be
better identified at a more tilted angle as depicted in Fig. 4. Peaks and valleys
occur at nearly all base stations at similar times.

The mobile phone call events are symbolized by solids of revolution. The
mobile phone call densities are indicated by the radius (or thickness), which is
equivalent to the visual variable size. The temporal variable is indicated by a
colour scheme driven by the visual variables brightness and hue. Size is classed as
a quantitative visual variable by Bertin (1967/1984). Hence, the analyst is able to
visually estimate the density from the solid of revolution0s radius. The visual
variables brightness and hue plus saturation produce the colour. Colour empowers
the observer to order (Green 1998). This insists the analyst can visually classify
day times into a temporal order.

This 3D visualisation model can be used for various spatio-temporal phe-
nomena. However, the space-time-cube based visualisation becomes limited when
dealing with long period spatio-temporal phenomena. By extending the time line
largely into the third dimension the resulting symbols have a great height. The
model will appear oversized to the user and the overall view will be inhibited.
A further problem would be the assignment of oversized symbols to their location.
When dealing with long period spatio-temporal phenomena a solution to overcome
this problem is to reduce the time/space ratio. As the time line has a spatial extent
the vertical time scale in proportion to the horizontal space scale plays an
important role on the model0s appearance. By inducing the model with a reduced
time/space ratio the spatial extent of the symbols in the third dimension will be
shortened to prevent the oversize symbols and to once again enable the overall
view. The solids of revolution will be visualised in a more compact form. This
could lead in some cases to surface artefacts simply for the reason that too much
information is given on a spatially short timeline. The likeliness of overburdening
the user0s visual estimation ability is high. The user would probably percept the
diameter changes as noise. The decrease of the time/space ratio has therefore an
impact on the choice of the kernel bandwidth. The choice of the bandwidth affects
the probability density estimation strongly. The higher the time/space ratio is, the
higher the kernel bandwidth must be. A larger bandwidth results into smoother
changes in time. The visualisation model is more generalized with easier readable
solids of revolution. Minor phenomenon changes in time are sacrificed to enable
that the major phenomenon changes in time are well readable.

The Google Earth virtual globe provides the reference map to assign distinct
places in Munich to every solid of revolution. Focusing on data subsets is enabled
with the navigational functions onto any specific detail of the model. The analyst
can freely move, view, zoom, tilt and rotate the current view to analyse the model
from every angle and distance. With assistance of Google Earth0s time slider the
course of the day can even be animated in this 3D environment. These tools
improve the legibility immensely as the differences between neighbouring mobile
phone cells can be compared more easily and the line-of-sight obstruction is
minimized. The 3d visualisation exhibits its potency especially in approximately
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horizontal view in which identical time sections of different locations are all in one
plane level and are therefore easily compared.

Every solid of revolution symbol is assigned to its location by the symbol root
which is fixed to the earth surface. When using the time slider to focus on single
time intervals this may not be the case. Then the symbols float at a certain height
over the base map which constrains the user0s ability to identify its true location.
Only tilting the model into a vertical view ensures that the user can assign a chosen
time interval and symbol with its location. Here again it becomes definitive that
this 3D dimensional spatio-temporal visualisation model is practicable for visual
data exploration and the general overall view of a phenomenon.

Another benefit of the symbolisation method is that the solid of revolution0s
smooth rotating curve respects the continuous nature of time. In addition, due to
the natural geometry of a solid of revolution figure representing a mobile phone
cell the horizontal angle of sight has no effect on the visual estimation. This also
clears the back faces problem. Depth perception cues ensure the visual estimation
of mobile phone call quantities. Especially the zooming, tilting and panning
functions enable the user to obtain a 3D impression of the model by motion.
Motion in combination with, the in this model offered, shading significantly
reduces the errors of 3d structural information perception (Norman et al. 1995). As
a consequence increases, decreases, stability and fluctuations of mobile phone calls
can clearly be identified in spatiotemporal relation.

4 Conclusion

It has become easier in recent years to visualise and to disseminate geodata due to
the emergence of virtual globes being able to run smoothly on various ubiquitous
electronic devices. Either a standalone geographical information programme
which provides the virtual globe or simply a browser plugin, which is for instance
offered by Google, provides base map material for a thematic layer in a 3D virtual
environment. Supported by XML notations such as KML it is possible to visualise
spatiotemporal in a 3D view. The user of this visualisation can be either the
professional analyst or an ordinary person. The earth viewers provide an easy to
use time slider and a comprehensive set of navigation tools. To make spatio-
temporal data understandable one can use all provided dimensions to enable a
complete spatiotemporal analysis.

The in this work introduced visualization method ensures that the complete
phenomenon can be visually examined in one view. All major and minor spatio-
temporal hotspots (or coldspots) are clearly visible. The analyst can freely navigate
within the phenomena to explore in detail any given location in space and time.

When visualising mass data an abstraction is essential to preserve the legibility.
Kernel density estimation can generalise mass event data consisting of point
clouds. This makes events displayable in a usable manner. Further research has to
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extend kernel density estimation applications for spatiotemporal and 3D data and
should evaluate the usability of such 3D visualisations.
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