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Abstract Navigating and travelling between destinations with the help of
Geographic Information Systems route planning is a very common task carried out
by millions of commuters daily. The route is mostly based on geocoding of the
addresses given by the traveller based on static road network into digital-map
positions, and thus the creation of path and directions needed to be taken. Today’s
navigation data sets rarely contain information about parking lots, related to
building entrances, and walking paths. This is especially relevant for large building
complexes (hospitals, industrial buildings, city halls, universities). A fine-tuned
route tailored for the driver requirement, e.g., park the car close-by to destination,
is required in such cases to save time and frustration. The idea of this chapter is to
extract this information from the navigational behaviour of users, which is
accessible via an analysis of GPS traces; analysis of car commuters in relation to
their point of departure and destination by analysing the walking path they took
from—and to—their parked car in relation to a specific address. A classification
scheme of GPS-traces is suggested, which enables to classify robustly different
travel modes that compose a single GPS trace. By ascribing the classified vehicular
car trace, which is accompanied by a walking path to/from the car, to a specific
address, it is made feasible to extract the required ascribed data: parking places
corresponding to that address. This additional data can later be added to the road
network navigation maps used by the route planning scheme to enable the con-
struction of a more fine-tuned optimal and reliable route that will prevent sub-
sequent detours.
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1 Introduction

Nowadays, vehicle drivers use commercial route planners via electronic maps
to guide them from their point of departure to destination: from finding an office to
planning cross-country excursions. The routes given by mass-use route planning
systems, such as Yahoo! Maps, Google Maps, to name a few, are commonly
constructed and based usually on static data derived from the use of road networks
existing in geospatial libraries and databases. Most algorithms that rely on such
road networks are usually based on designed cost-function schema—or a mix of
such functions—associated with the network ‘edges’; most commonly used ones
are travel time, distance, scenic value, etc., which together construct the ‘most
optimal’ route. Relying solely on the road network yields that not all available data
regarding neighbouring attributes, for example parking lots or means of access, are
taken into consideration when the route is being constructed. Moreover, the des-
tination point, which is normally an address, is being geocoded into a single
position, e.g., coordinate, on the digital-map. A driver who is unfamiliar with the
area and uses a vehicle to get to that destination address will usually require a car
parking, which adds some ambiguity since this might not exist or be accessed
directly from the destination address; thus, a detour to the assigned route is
unavoidable. Consequently, an alternate route that is the optimal one for the dri-
ver’s needs might have been constructed in case the driver’s destination was the
parking place affiliated with his specific destination address that he wishes to get
to. Figure 1 depicts such an example, in which a fine-tuned route (right image) that
directs the driver from point of departure (denoted as A in green bubble) to the
affiliated parking place (brown circle) of his desired address (denoted as green
arrow) is shorter by 400 m than the optimal preliminary route constructed (left
image). A detour to find the affiliated parking (denoted as red arrow) will cost the
driver in this case to drive an additional distance of 1,100 m. These translate to a
fine-tuned solution that will evidently save the driver, who is unfamiliar with that
area, time and unnecessary frustration.

GPS-data today are often collected through mobile handheld devices. As a result,
roads, paths and routable traces derived by GPS measurements are collected
straightforwardly by pedestrians, vehicular commuters, bicycle riders, and more.
The assumption is that every GPS-trace stores some unique and relevant charac-
teristics that are dependent on a specific travel-mode resultant by the road-type it was
acquired on. A single such trace is usually composed from several sub-traces; each
corresponding to a different travel-mode. Based on this assumption, a GPS-trace
composed of vehicular driving data accompanied by walking paths before and/or
after points to a route where parking took place; parking that apparently is essential
to get to a specific address or location. By being able to classify correctly such trace
should deliver the data that is required to construct the optimal route planning, and
hence update the existing navigation map with this significant and valuable data.

This research proposes a classification scheme of GPS-traces, which enables to
classify robustly different travel modes that compose a single GPS trace.
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By ascribing the classified vehicular car trace, which is accompanied by a walking
path to/from the car, to a specific address (building), it is made feasible to extract
the required ascribed data: parking places corresponding to a specific address. This
additional data is added to the route planning scheme enabling to extract a more
fine-tuned optimal route.

2 Related Work

Since data in road networks is usually static, path construction is mostly based to
some extent of pre-computations, which are stored and re-used for acceleration
reasons. Classical static algorithms might suggest the Dijkstra’s Algorithm
(Dijkstra 1959), which maintains an array of tentative distances for all nodes exist
in the road network. As shown by Delling et al. (2009), though most algorithms
used today will aim to guarantee (to some extent) that indeed the shortest route
(path) is found, the commercial route planning systems usually settle for an
approximate result. This usually happens due to the fact that these systems neglect
certain data as being unimportant for certain preference issues, thus moving away
from the optimal solution.

Due to increase in mobile navigation systems, as car navigation and the use of
smartphones equipped with GPS, dynamization is integrated into the route planner:
traffic jams and such can also be incorporated (for example: Biagioni et al. 2011).
This also yields the use of Multi-Criteria Routing (for example: Li et al. 2011;
Nadi and Delavar 2011), which states that the fastest or shortest route in the
analysed network is often not the ‘best’ one—since other criteria are to be taken
into account. For example: price—or in this chapter’s case—time spent for finding

Fig. 1 An example showing different planned routes using Google maps (left): directly to the
address (denoted as green arrow), and to the address’s affiliated parking place (brown circle),
yielding a route that is 400 m shorter (right). Red arrow (left) depicts the additional 1,100 m
required in the first route to get to the parking place (source http://maps.google.com/)
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a parking spot. This also yields Multimodal Routing constraints (walking to and
from) that might also have a significant influence and criteria on the optimal route
chosen. Jariyasunant et al. (2010) had suggested a real-time route planner system
to predict shortest path between any points—while relying on static maps only—
together with incorporating third-party information. It also integrated to the
analysis user-defined data that considered the travel mode in different regions of
the path to achieve close to optimal routing. Axhausen et al. (2003) attempted to
construct route planning scheme that is based solely on a vast number of GPS
traces collected; still, no attempt was carried to try and classify the different
traces—assuming all where only vehicular ones—in order to produce a fine-tuned
optimal route tailored for a specific need, for example: means of transportation.
Adapting such scenarios is perhaps one of the main challenges in near future.

Since GPS observations alone supply only with geometric and temporal data,
specific data-mining methods have to be applied in order to extract the required
information of travel-mode type classification. Most approaches include two steps
in such process: a segmentation of the trajectory into a series of single travel-
mode; and, assigning a specific travel-mode to all segments exist in the series.
A basic assumption is usually made (Chung and Shalaby 2007; Zheng et al. 2008)
that walking is necessary when a mode-change occurs, e.g., change point-based
segmentation method. Segmentation of such usually relies on small or no position
change accompanied by low speed value and time-length of segments. Though
usually found to be accurate, the research proposed here suggests using additional
characterization values and parameters, such as heading and single travel-mode
pattern-classifiers, thus introducing more robust and non-ambiguous segmentation
to a given GPS-trajectory. This is a key-element here, since we look here for
vehicular travel modes accompanied by walking (specifically: from/to car).

As for classification, most of the existing methods compare some known pre-
liminary travel-mode related measures, e.g., rule-based values, to empirically
determined values. Most commonly used values are derived from the speed and
acceleration of a segment (single travel-mode), such as maximum and mean speed
(Bohte and Maat 2009; Oliveira et al. 2006). Still, it was shown that these
approaches might present ambiguous-classification, thus yield errors and lack the
flexibility to examine properly change in pattern and uncertainty of the travel-
mode. Also, the thresholds depend on a specific study-area and supplementary
data, making them not generic to be implemented for all environments and test-
data. To overcome the uncertainty and ambiguity existing in the data, the use of
fuzzy logics as a replacement for the empirically determined values is also
suggested for classification. The speed and acceleration measures are related as
fuzzy sets, while fuzzy membership patterns are structured to enable travel-mode
classifiers via linguistic rules (Tsui and Shalaby 2006; Schüssler and Axhausen
2008). Although these researches show an improvement in robustness of classi-
fication, the determination of bounds for each linguistic rules associated with each
measure, such as fast speed and long travel, was found to be depended on sub-
jective experience exist in the travel-logs. A Decision Tree is also used (for
example: Reddy et al. 2008), where the authors present its superiority to other
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approaches commonly used. Still, some perquisites in the classification process
were considered (grouping several different travel mode classes to a single one)
together with training data that was relatively small. In past research we had
presented a first version of segmentation and multi-stage classification approach
dividing it to two supplementary stages. The first stage used a fuzzy-logic clas-
sification for identifying walking, cycling and vehicular travel-modes. The second
stage entailed the classification of the vehicular travel-mode class using Support
Vector Machines (SVMs) schema into car, train, tram, and bus travel-modes.
Adopting that scheme showed promising and qualitative classification results of all
six different travel-modes. In this chapter, this is explained in more detail with
additional examples, while data extracted (classified) is used for the determination
of important locations in the network, namely parking lots and access paths to
buildings.

3 Segmentation and Classification Methodology

Classifying correctly car and walk travel modes is the main emphasize given here;
by doing so, the added data required to fine-tune the GPS routes and make them
optimal is made feasible. Since the research carried here try to simulate the natural
way of commuters in their everyday all available data is collected and classified.
Work schema of the proposed methodology is presented in the diagram, depicted
in Fig. 2.

3.1 Data Collection

GPS traces involved with vehicular car routes in the urban region of Hanover City
were collected using android-based handheld mobile devices (smartphones). These
devices, which are equipped with GPS for collection of positions, used a desig-
nated application for data collection that was developed specifically for this
research. To evaluate the reliability of the approach presented here, travel-modes
are recorded also by the application as reference—together with the collection of
the traces’ positions. Emphasis was given to simulate the natural way of com-
muters in their everyday life during data collection without applying any special
concerns or restrictions.

Since the reliability and consistency of the travel-mode classification process is
a primer key in this approach, training data with supplementary information is
required. The Android-based application, which was programmed in Java, collects
GPS data and reference travel-mode tagging specified by the data-collection user.
The Graphical User Interface (GUI) of the TRACER, depicted in Fig. 3, presents
specific and easy-to-use functions. These functions include: a toggle button for
starting and stopping data acquisition (left); and, a button enabling the user to
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select (and modify) the current travel-mode (right). The user can choose from six
different travel-modes, which were chosen to simulate all travel-modes commonly
exercised: Walk, Bike, Car, Bus, Train, and Tram. Though this chapter addresses
two specific travel-modes: Car and Walk; still, emphasis was given to verify all
travel-modes are enabled and collected, and ‘used’ during the classification
process.

Since the data acquisition is supposed to be a passive procedure, the TRACER
application provides with a notification system that requires the user attention on
specific predefined events. The notification system utilizes all modes of user
notifications provided by modern smartphones, e.g., visual, sound and haptical. If
required by the user, a checkbox labelled ‘‘silent’’ allows the user to choose not to
be notified by certain predefined events. The idea is that the application will not
irritate the user as much as possible, so the data-collection will be a smooth and
almost ‘transparent’ process to the user. Still, certain notifications are used here,
while their common goal is to obtain the user’s current travel-mode, which is vital
for the handling of the training data.

Fig. 2 Proposed
methodology workflow
diagram
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The TRACER application implements the following events:

• Constant travel-mode update: this event forces the user to update the current
travel-mode every 10 min. This is implemented to prevent the user from for-
getting to do so, i.e., did not change travel-mode whilst travel-mode had
changed.

• GPS-signal loss: this event is triggered only after gaining back of GPS-signal,
which was lost for more than 20 s (tunnel, non-coverage area, etc.). This event
also prevents cases where travel-mode had changed while no GPS-signal was
available.

• Speed inconsistency: this event is triggered when there seems to be speed
anomalies in respect to the travel-mode assigned by the user. Thus, speed limits,
which are based on some coarse preliminary knowledge, for walking and
cycling travel-modes for more than 10 consecutive seconds are implemented.
Since thresholds used are coarse, as such they are only a type of warning
enforcing and travel-mode change during the data collection process.

3.2 Data Pre-Processing

The positional accuracy of mobile handheld GPS signal in normal conditions can
reach several meters (Wolf 2006). Still, it is quite common that the positional
accuracy is even worse, in cases where there is a lack of sufficient satellites
coverage, equipment that is not being ideally positioned (this is common with the
use of GPS in smartphones), signal that is being reflected by tall buildings, bad
weather—to name a few. The errors are reflected directly on the position of the
acquired GPS data. Moreover, since travelling attributes are the key-features for
enabling reliable travel-mode classification, positional errors are projected directly

Fig. 3 TRACER GUI: main
view (left); and, travel-mode
selection (right)
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on such attributes, such as speed and acceleration. Thus, preliminary reduction of
error affects before the calculation of attributes and parameters is implemented.
The use of smoothing method to reduce speed errors by averaging its neigh-
bourhood is introduced. The range of the smoothing is five travel-epochs, or
seconds under common conditions. Heading smoothing was not implemented here,
because heading is not a continuous phenomenon by nature, thus smoothing might
remove its characteristic and degrade its reliability as a travel-mode parameter that
is required on latter stages of classification.

3.3 Traces Segmentation

Since the relations between both car and walk travel-modes are mandatory to
achieve the approach addressed here, it is only logical that a GPS trace is not
derived from a single travel-mode; instead, it is composed of several different
travel-modes: walking to the car, driving to work and parking the car, and walking
from the car to the office (for example). Thus, before any classification can be
implemented, a division of the single GPS trace into segments of (still unknown)
individual travel-modes has to be implemented. These different segments are
categorized and characterized as sub-traces. A definition is made, which states that
a sub-trace is composed of a single travel-movement segment that is separated
(divided) by two stops. A stop can be a temporal pause in movement (no change in
position over time), but also a change in travel-mode (e.g., change point-based
segmentation method). Figure 4 (top) depicts an example of stops, which consist
of a sequence of observations—black segments—that have very low speed and
very small distance changes that on the same time are not classified and defined as
a walk. Thus, identifying stops and consequently filtering-out the stops-data before
actual classification takes place is important (calculating travel-modes parameters
should avoid using stop-data, otherwise modifying these parameters and weak-
ening the reliability of the classification process).

Most researches trying to identify change point-based segmentation commonly
use values associated with stops—namely small distance changes per-time and low
speed value. This research proposes the use of magnitude in heading change; this
parameter was found to be vital for a robust identification of stops. Figure 4
(bottom) depict the idea behind this, where stops are always accompanied with
large magnitude values in heading changes (in black), which cannot be explained
by realistic movement changes (as the ones in blue or red, for example, which
correspond to specific travel-modes). The reason of the existence of these
accompanied large values is the result when no change in position occurs, i.e.,
stops or low speed values, thus large and random magnitude values in heading
changes exist due to relatively small change in position. This can be interpreted as
heading change noise, which expresses a very limited change in position over time.

The following thresholds are used in this research to form the sub-traces seg-
mentation existing in a single GPS-trace: (All values given below are in respect to
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the 1 s time-stamp of the GPS-traces locations collected in this research; modi-
fying these values should be considered when other time-stamp values are used).

• Variation in position: cases where distance change for 5 consecutive seconds is
less than 5 m are identified as stop.

• Speed values: cases where for 5 consecutive seconds speed value is less than
0.5 m/s are identified as stop.

• Magnitude in heading change: cases where heading change value for 5 con-
secutive seconds is larger than 100 decimal degrees are identified as stop.

The algorithm workflow is as follows:

• From the first observation point on, in case accumulative distance from that
observation point to the fifth consecutive observation point neighbour is less
than 5 m—break the trace from that point; go to step 2.

Fig. 4 Speed derived from a GPS-trace representing approximately 15 min of travelling divided
into different individual segments in blue (walk is in red), and identified stops in black (top);
corresponding heading changes magnitude (bottom), showing high correspondence exist between
stops (in black) having high heading change values
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• Check all points existing in this 5-points segment: if speed is smaller than 0.5 m/
s and/or change of heading magnitude is larger than 100�—check next point.
Else—break the trace from that point and go to step 1. If no break occurs—go to
step 3.

• Assign the sixth point (in regard to the first observation point examined) as the
beginning point—go to step 1.

• Stop when reaching the end of the trace.

3.4 Segments Travel-Mode Identification

Classification is applied to the separate segments identified earlier, which together
compose a single GPS-trace. This is finalized by linking of neighbouring segments
that have been classified with the same travel-mode to form a sub-trace. It was
found that the characteristics of walk and bicycle travel-modes are prominently
different from all other travel-modes, categorized here as vehicular class. Addi-
tionally, a classification all four vehicular, namely car, bus, tram and train, which
is based solely on the segments, might result in an ambiguous results. This is due
to the fact that the divided segments might present similar characteristics
(parameters values), while the characteristics of the whole sub-trace of a specific
travel-mode are not utilized. For example, buses and cars are specifically different
on the fact that buses have regular stops and cars do not. Still, by examining a
single segment only might show otherwise.

As a result, adopting a multi-stage method is required: on the first stage,
pedestrian and bicycle travel-modes are differentiated from motorized vehicles
based on specific characterizations and specification of their segments. On the
second stage, segments are linked up to form sub-traces, and consecutively car,
bus, tram and train travel-modes are classified based on the specific character-
izations and specification of the sub-traces. Still, the proposed idea behind this
research is concerned mainly with car travel-modes associated with walking travel
modes to/from the car, thus the first stage should satisfy this requirement. None-
theless, the second stage is presented in short here, which is required where val-
idating that the travel-mode classified is indeed of a car is required.

First stage classification, which is derived from two main parameters associated
with travel modes, is employed based on fuzzy logic classification scheme:

• Speed related characteristics are very important for identifying travel-modes,
mainly in this stage. Four principal parameters are used here, namely: mean speed,
maximum speed, mean acceleration, and maximum acceleration. These are cal-
culated for each individual segment of the trace. To achieve more reliable
parameters and reduce classification errors and bias that might exist when using
one observation alone for each segment, the parameters of maximum speed and
maximum acceleration are calculated based on the average values of the largest
five (5) values exist in the segment.
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• Heading related parameters, namely mean and maximum heading magnitude
changes, are also employed. The heading change is calculated in a way that it is
in the range of (-180�, 180�) decimal degrees. When calculating mean heading
changes all values are transferred to positive because the magnitude alone—and
not the sign—is of importance. As shown earlier in Fig. 4, while maximum
heading change corresponds to stops, walking always show a large magnitude
value for the average heading changes, thus making this parameter very useful
for this stage classification.

Figure 5 depicts three of the classifiers, namely mean speed, maximum speed
and mean heading changes, used in the fuzzy logic classification stage. Wide
enough ranges for the three classifiers are used to include all possible segments
into consideration whilst avoiding making wrong classification. As stated earlier,
additional classifiers are used to validate correct travel-mode separation and
classification. From Fig. 5 it is clear that there are some overlay areas for the
parameters used, between: stop and walk, walk and bicycle, and bicycle and
motorized vehicles. Taking all three under consideration, a minority of segments
will fall into these overlay areas simultaneously. Solving these ambiguities yielded
extra parameters to be incorporated into the fuzzy logic classification process:

• Stop and walk overlay area: maximum heading change is introduced. Since
stops are always accompanied with high magnitude values of heading change, it
was found that in case this value for a specific segment is larger than 80 decimal
degrees, the entire segment can be classified as a stop (and not walk).

• Walk and bicycle overlay area: the use of second order polynomial is performed,
where the polynomial is fitted to the segments speed pattern. The coefficients (a,

mean speed(m/s)0  0.5  1                2                     5       6

walk bicycle  motorized vehicles

max. speed(m/s0        1   1.5              3               5                10                       16

walk bicycle  motorized vehicles

mean heading
(degree)

 0     8     20       30                       50                        80      180

motorized vehicles bicycle walk

Fig. 5 Fuzzy logic
classification: value range
used for different travel-
modes—mean speed (top),
maximum speed (middle),
and, mean heading changes
(bottom)
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b, and c) of the best fitting polynomial are used, where it was found that walking
usually show a constant value of the second coefficient (b)—as opposed to
bicycle, which is noisier.

• Bicycle and motorized vehicles overlay area: the use of maximum acceleration is
introduced. It was found that when bicycle travels with a relatively high speed
(mean speed [5 m/s) it is accompanied with high value of acceleration (maximum
acceleration [4 m/s2)—as opposed to motorized vehicles, which will usually
show a smaller maximum acceleration value when travelling at these speeds.

3.5 Sub-Traces Construction: Linkage of Travel-Modes

Neighbouring segments with the same travel-mode are linked up to form sub-
traces, which are assigned a travel-mode of walk, bicycle or motorized vehicle.
The segments are checked with specific predefined rules to ensure they are not
incorrectly classified before joined to a sub-trace. For example, a vehicular seg-
ment, which has a relatively low speed (parking process, for example), may be
wrongly identified as bicycle. However, if this segment’s neighbouring segments
both are classified as vehicular segment travel-mode, and since it is not possible to
transfer directly from bicycle to car, for instance, without stop or walk, the travel-
mode is corrected and re-classified accordingly.

In order to correct the possibly wrongly classified segments, rules are applied
during the linking procedure according to the basic travel knowledge:

• A travel-mode should exceed the period of 120 s—the use 120 s is designed to
eliminate sub-traces that are too short and thus have no significance on the sub-
trace, or are wrongly classified.

• Stop duration between two neighbouring segments of one sub-trace should be
less than 120 s—if the stop duration is longer than 120 s then the trace should be
treated as two individual sub-traces.

• No direct transformation from bicycle to any of the motorized vehicle class is
possible—unless at least 120 s of walking or stop took place. The time duration
threshold of 120 s is used to avoid linking two different modes together. This
linkage rule is of major importance here, since it helps in identifying walk travel
modes accompanied with car travel mode, and perhaps more importantly, avoids
the classification of bicycle travel mode that come before/after a car travel mode.

3.6 SVM Classification

Since this research is aimed at classifying car and walk travel-modes only, the first
stage facilitates this. To assure the classification of car travel-mode (and not public
bus or train, which is normally accompanied with walking, for example), the use of
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the supervised learning method SVM is employed, aimed at classifying the dif-
ferent motorized vehicles (that includes car, bus, tram and train). SVMs are a
popular machine learning method used in recent years for classification and other
learning tasks. This method projects the parameters to a high–or infinite–dimen-
sional space and constructs a hyperplane, which can be used for classification
(Smola and Schölkopf 1998). The SVM produces a model based on a set of
training data (attributes together with target values), and then uses this model to
predict the target value of the test data with attributes only to find the solution for
the optimization problem. A kernel function is used; in this case a Gaussian Radial
Basis Function (RBF) that is suitable for cases where the relation between class
and attributes is simultaneously nonlinear and linear (Hsu et al. 2003).

SVM classification is based solely on the constructed sub-traces of the already-
classified motorized vehicles. The entire sub-trace is treated as a single object, and
the attributes of each sub-trace are presumed to describe the characteristics of a
unique travel-mode. An assumption is made (for a more reliable classification of
cars) stating that bus, tram and train travel-modes should present regular stops,
which are longer than those of car; this together with similar travel duration
between two consecutive stops. Additional parameterization of travelling char-
acterization—11 parameters in total—is used as attributes in the SVM
implementation:

• Mean and standard deviation of maximum speed
• Mean and standard deviation of average speed
• Mean and standard deviation of acceleration
• Mean and standard deviation of average acceleration
• Mean and standard deviation of travelling duration
• Ratio of stop duration in respect to travelling duration.

Each segment within an individual sub-trace is used for the calculation of the
aforementioned attributes. The attributes are scaled before applying SVMs to
range (0, 1). Both the corresponding attributes of training and testing data are
scaled in the same way. The main advantage of doing so is avoiding the attributes
in greater value ranges dominating those in smaller numeric ranges, together with
benefit of reducing calculation complexities.

4 Travel Route Plan Optimization

4.1 Extracting Parking Locations

After classification of all GPS-traces is finalized, all traces composed of car
accompanied by walking travel-modes are analysed for the proposed optimization
route planning process. First, all change points are identified where travel-modes
are altered from car to walking—or vice versa. These locations refers and points to
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the desired information about parking lots related to building entrances. Also,
these locations refer to starting/ending point of walking paths taken by the driver
that are located nearby the point of departure—or destination. Consequently, these
locations will have to be associated to specific addresses in their vicinity to be
associated as their parking lots.

4.2 Identifying Destination

Since the positional accuracy of the GPS is at least several meters (and worse in
build-up areas), and GPS multipath signal errors and signal-loss is common in the
vicinity and inside of buildings, identifying correctly the building in which the
walking started/ended in is important. This stage is achieved by performing a
buffering process around building features in the close vicinity of the start and end
points locations identified earlier. A building feature buffer that contains in its
spatial extent (intersect) the first/last walking signal acquired in the trace, or some
walking trace-segments, is assumed to be associated to that trace; hence, desti-
nation address can be identified. An example of this process is depicted in Fig. 6.
Since parking lots are mostly situated in the vicinity of large building complexes
(hospitals, industrial buildings, and such), the assumption is that if several building
buffers contain the same walking positions, all can be attributed to the same
parking lot position since it probably serves all these buildings. Buffer size used is
derived from the positional accuracy of the building features (existing in the given
database), but also from the positional certainty of the GPS signals acquired during
the walking trace. Since build-up areas is of poor positional certainty, this value
should be considered based on some knowledge of the errors at hand. In the
examples analysed in the next chapter, buffer size used had the magnitude of 10 m,
which was found to be sufficient.

5 Experimental Results

5.1 Classification

Evaluating the reliability and certainty of the classification methodology is carried
out. This is an important assessment to verify that indeed when all the collected
observations are processed, only those GPS-traces that are relevant to the fine-
tuning process, namely car traces accompanied by walk, are identified correctly.
149 GPS-traces were collected in the study-area of Hannover City. Almost all
traces are composed of two or more travel-modes. Table 1 depicts the fuzzy-logic
classification results, showing high statistical classification certainty of close to
100 % for all classified travel-modes. When compared to the available reference
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data (TRACER tags) the most common erroneously classification is walk-stop;
this usually occurs when walking presents very low speed together with rapid
stops.

Table 2 depicts the SVM classification results after comparing all observations
to the available reference data (TRACER tags). Perhaps the most significant figure
in this table is depicted in the upper row, showing 98 % certainty for car travel-
modes that are correctly classified; this is very important to the scope of this
research since these traces are later used for the optimization process. Analyzing
the error matrix received for the SVMs classification showed that no other type of
vehicular travel mode was classified as car, which also strengthens the assurance
of this classification process.

Table 1 Fuzzy-logic classification results

Travel-mode Total Correct Statistical classification certainty (%)

Walk 47 44 94
Bicycle 19 18 95
Motorized vehicle 170 165 97

Fig. 6 Building buffer containing walking travel modes to/from car parking place: car traces are
represented in blue, walk traces are represented in red
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5.2 Identifying Parking Lots and Entrances

Since all GPS-traces are classified automatically and with high statistical certainty,
the final stage in which the route plan is being optimized can take place. All traces
composed of car accompanied by walking travel-modes are identified, so the
extraction of parking locations and the identification of buildings/addresses can
take place. An example is depicted in Fig. 6, which shows a building buffer
polygon containing traces of walking travel-modes (in red) emerging from car
travel modes (in blue). It is visible that the 10 m building buffer covers in its extent
all walking traces leading to/from it. Since this building has two entrances, some
walking traces lead to its north entrance associated to the east parking lot, while
the other lead to its south entrance associated to the south parking lot. Conse-
quently, both parking lot positions are associated to this building. Also, it is visible
that other building in the vicinity will also be associated to one (or both) parking
lots extracted here.

Figure 7 depicts a scenario of the proposed route optimization: blue traces
represent car travel-mode and red traces represent walking travel-mode (right).
The left image depicts the default route plan produced via Google Maps, while the
right image depicts the route which would be taken if the parking lot was available
in the data set, which is devised by knowing the digital-map position (coordinates)
the car should get to in order to park. The position of the parking place is the one
that was associated with the walking route—represented by the red traces. This
scenario shows that the optimized route is much shorter—approximately 800 m.
Not only that the route is shorter, thus saving driving time, the driver will most
probably save some time and frustration in finding this specific parking place.

Figure 8 depicts two additional scenarios, in which by knowing the parking
place associated with the desired address the driver is directed to a different but
more appropriate and optimized location. By doing so, the driver is not directed
straight to the address, represented by a pink buffer in both images. In this way, the
system is able to automatically detect the most appropriate locations for parking
spaces related to certain addresses. This information is revealed from the behav-
iour of users.

These examples amplify the argument presented in this research: by including
the knowledge regarding parking places in the vicinity of building and facilities
addresses into the navigation maps and databases, it is possible to construct a more

Table 2 SVMs classification results

Travel-mode Training data Testing data Correct Statistical classification certainty (%)

Car 49 50 49 98
Bus 11 10 8 91
Tram 19 9 7 78
Train 4 2 2 100
Total 83 71 66 93
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fine-tuned route that answers the user requirements; the closest location where he
or she can park the car in order to get to the desired address. This is done
automatically and with high certainty and positional reliability.

6 Conclusions and Discussion

Routing techniques using static road networks have made tremendous progress in
the last few years, mainly in the speed-up domain where fast query response time
is critical. Still, answering also requirements derived from multi-criteria

Fig. 7 Route planning scenario: ‘off-the-shelf’ Google maps route (left) (source http://
maps.google.com/), and optimized route proposed in this research, showing precise classifica-
tion and extraction of parking place associated with desired address

Fig. 8 Optimized route planning scenarios showing precise classification and extraction of
parking place associated with desired address avoiding detour and loss of valuable time: car trace
in blue, walking trace in red, destination in pink polygon
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optimization for specific users is under constant development. This chapter pre-
sents a working frame that facilitates a more fine-tuned, optimised and fully-
automatic route planner that answers specific user demands. In this case, giving
driving instruction to a parking place associated with the desired address (desti-
nation). This modified route planner makes use of an automatic detection and
classification travel-modes working schema of GPS-traces, which are acquired
today straightforwardly by travellers. Segments of GPS-traces and sub-traces
comprised of an individual travel-mode are found with very high certainty, reli-
ability, and efficiency. Preliminary tests and examples presented in the chapter are
promising, showing good results in producing routes that are usually shorter, but
perhaps more important—tailored to the problem at hand. Thus proving technical
feasibility as well as having positive effects on the drivers travelling these routes.

Future work will involve the analysis and verification of the presented process
on larger datasets, while integrating the extracted knowledge with navigation maps
of road networks that are used for real-time route planning. It will also involve the
adaptation of the proposed classification methodology to other multi-criteria sce-
narios, such as adding bicycle path to the route planner. As the appropriate parking
locations associated with an address are automatically derived from the users’
behaviour, it is also possible to reveal temporal properties, e.g., that the best
parking place varies over the day: in the morning there might be enough parking
lots in front of a building, whereas in the afternoon a nearby alternative parking lot
may be the most appropriate one to use. Also, our first approach for identifying the
entrances is rather straightforward using buffer threshold; future work will entail
the use of clustering approaches. These are issues of future research we plan to
deal with.
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