
High Precision 3D Indoor Routing
on Reduced Visibility Graphs

Horst Steuer

Abstract Indoor navigation is becoming a most wanted application especially on
the background of the wide availability of powerful personal mobile devices and
new methods for indoor positioning. Existing approaches do seldom incorporate that
people can move freely through e.g. big halls and are not constrained to specific
lanes as vehicles are on road networks. Thereby these approaches can only
approximate shortest paths and cannot benefit from possible highly accurate indoor
positioning methods. In this chapter we show how the concept of visibility graphs
can be applied to indoor routing and how it results in highly accurate shortest paths.
We demonstrate how any accurate position can be incorporated in the automatically
constructed graph. Furthermore we show how the knowledge that different levels of
a building are usually sparsely interconnected can be used to speed up the well-
known shortest path algorithm A* by introducing a new heuristic. In experiments we
show that our approach needs 29 % less run-time than a standard A*-algorithm.

Keywords Indoor routing � Visibility graph � Heuristic � Shortest path

1 Introduction

Navigation in outdoor environments is probably the most used application of
geodata in the end-user market, especially since the upcoming of satellite navi-
gation systems. With the ever growing demand of navigation solutions a big

H. Steuer (&)
Fachgebiet Geoinformationssysteme, Technische Universität München, Arcisstraße 21,
80333 Munich, Germany
e-mail: steuer@tum.de

J. M. Krisp (ed.), Progress in Location-Based Services,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-34203-5_15,
� Springer-Verlag Berlin Heidelberg 2013

265

diversity of products emerged on the market: from hardware to software,
expanding automotive navigation to bicycle as well as pedestrian navigation.
Accompanying these developments is an ever growing demand for map data: at
first only roads needed to be mapped, later bicycle tracks and pedestrian paths
were required as well.

With the development of indoor positioning methods and further establishment
of mobile devices like smart phones the demand for new indoor navigation
methods arises. Indoor navigation can be especially helpful in unclear, public
buildings like airports, train stations or malls.

The task of (indoor) navigation for humans can be divided in several essential
sub-tasks:

• Data acquisition, the first step, is the process of generating the necessary map
and localization data for all of the following tasks. This can be done either by
traditional geodetic methods, by building on existing plans or by using volun-
teered geographical information like Open Street Map (Haklay and Weber
2008).

• Localization is the process of determining the (start-)location by manual or
automatic means. The user can give his/her position by addressing it or the
navigation system can determine its own position by means of different sensors
like GPS or Wi-Fi-positioning (Evennue and Marx 2006). Localization is a
necessary step before the subsequent ones, but can also be repeated during the
process later.

• Addressing is necessary for enabling the user to specify his or her destination.
This can for example be a point in a coordinate system, a specific room number
or the exit of a building.

• Routing is the process of computing an optimal path in regard to some opti-
mality criteria. Usually a length optimal path is sought for but there also exist
several requests where a safe path for handicapped people is sought (Karimi and
Ghafourian 2010).

• Visualizing the optimal path has to be done in the most useful way for the user.
This can be done by visualization in a map (e.g. Hagedorn et al. 2009) or as a set
of commands which can be presented visually or acoustically (May et al. 2003).

In this chapter we will focus especially on the routing sub-task. Historically,
routing is based on graphs since road networks can easily be described as sets of
nodes and edges. Another reason why graph based solutions are so popular is that
there exist well-known algorithms like Dijkstra’s algorithm (Dijkstra 1959) or A*
(Hart et al. 1968) which can compute shortest paths on any given graph with edge
weights. Since these graph-based shortest path algorithms can guarantee to find
shortest paths, the problem of defining an algorithm to find shortest paths in indoor
environments is reduced to generating a useful graph.

In pedestrian navigation one has to observe that pedestrians usually are not
constrained to straight paths like cars but can move freely in huge places or big halls.
A static graph design which represents every possible pedestrian movement would
induce the number of nodes and edges to grow to infinity, and is therefore infeasible.

266 H. Steuer

One popular approach to solve this problem is to focus on the topology of
rooms and build a graph to represent this topology. In Fig. 1 you can see examples
of this approach.

Figure 1a shows a floor of a bureau building where each bureau is represented by
one node. Each of these nodes is connected to the corridor by an edge. As can be
seen, it is not enough to generate a single node for the corridor but there have to be
quite a few nodes in order to compute a useful path. The advantage of this approach
is that it results in a relatively small graph. Because of the low number of nodes a
shortest path can be computed in very fast run time and the resulting path can be
easily described by simple commands like ‘‘Move 10 m straight ahead, Turn left,
Enter Room 101’’. Furthermore the addressing sub-task part becomes trivial since
for each point of interest an extra node can be added. The disadvantage of this
approach is that the space of possible movement is reduced/discretized to these few
nodes. Thereby it is not guaranteed to find a geometrically shortest path.

As can be seen in Fig. 1b this becomes even more relevant in less constricted
places like an airport entrance hall. Additionally the self-localization poses a
problem: The (automatically) determined position has to be projected onto these
nodes and the error in initial positioning has to be communicated to the user.

1.1 Contribution

In this chapter we present a different approach to generate a dynamic graph
automatically from a floor plan. This approach originates in the field of robotics
but has not yet been applied to human indoor navigation to our knowledge. In the

Fig. 1 Examples of graph structures which discretize the available moving navigable space
(a) an office building where each room is represented by a single node in the graph, corridors and
halls are represented by more nodes (Ariza-Villaverde et al. 2010) (b) an airport entrance hall
with two zones of interest (Goetz and Zipf 2011). Since in both examples only a few points are
used as nodes of the graph it is obvious that the given graphs cannot lead to exact shortest paths
and can lead to discretization errors when using a self-localization technique

High Precision 3D Indoor Routing on Reduced Visibility Graphs 267

next section we describe the structure of the floor plans we need as an input to this
approach. In the section ‘‘Construction of a Graph’’ we describe the automatic
generation of a so called visibility graph. Using Dijkstra’s algorithm and A* with a
standard and a custom heuristic we perform several experiments which we present
in section ‘‘Applying the Dijkstra and A* Algorithms’’ before we give a conclu-
sion in the last section.

2 Description of Indoor Environments

In the following, we will assume that a single floor of every indoor environment
can be modelled or at least be approximated by a polygon with holes. The outer
walls of the building, including touching inner walls, make up the outer border of
the polygon, while walls which do not touch the outer perimeter and any other
obstacle are modelled as holes of this polygon (see Fig. 2). For simplicity reasons
we assume that each floor is completely flat, meaning there are no steps or ramps
on this floor. Non-flat floors would have to be modelled as a set of more floors in
this approach.

Assuming that a human being can approach an obstacle only up to 30 cm
measured from his/her barycentre we can add a buffer operation to these polygons.
In doing so we also close gaps between obstacles which are too small to walk
trough. As a result we obtain a polygon which describes the navigable- or moving
space of a person.

In order to connect the different floors of a multi-level building we do not model
steps and elevators geometrically but add special nodes to the graph. Especially for
the elevators this is a valid approach, since these often have a relatively narrow
entrance zone.

3 Construction of a Graph

Given a one-floor polygonal environment we described in the last section we adopt
the principle of visibility graphs first introduced in Lozano-Peréz and Wesley
(1979). The property of every shortest path in such an environment is ‘‘that it is
composed of straight lines joining the origin and the destination via a possibly empty
sequence of vertices of obstacles’’ (Lozano-Peréz and Wesley 1979). If we interpret
the outside of the polygon as obstacle the visibility graph G(V, E) is defined by a set
V of all vertices of all obstacles (inner holes and outer perimeter) and a set of edges
E. Each edge e = (v1, v2) of E (v1, v2 element of V) is connected by a straight line
which lies completely inside the polygon and does not cross an obstacle. As edge
weights we use the euclidean length |(v1, v2)| of the edge.

We can reduce the number of edges in E by removing those which would
intersect an obstacle when elongated by an e (see Fig. 3). This graph G is

268 H. Steuer

universally useful for the computation of any shortest path in a given environment.
Since it does not need to be changed, we call it the static part of the graph.
Figure 4a and b show a simple example of such a polygonal environment and the
resulting reduced visibility graph (Latombe 1991).

In order to compute a shortest path we add a start vertex s and a goal vertex g to
V, as well as edges e = (s, v) and e = (g, v) respectively, where v is an element of
V such that e does not leave the polygon or crosses an obstacle. Furthermore we do
not need to consider edges as described in Fig. 3. Since these edges have to be
established for every shortest path computation anew we call it the dynamic part of
the graph. Figure 4c shows an example for these dynamic edges. Using such a
graph consisting of a static and a dynamic part we can apply well-known shortest
path algorithms as we will describe in detail in the next chapter to obtain a shortest
path (see also Fig. 4d). The division of the graph into a static and a dynamic part
makes the construction of the graph run-time efficient.

The concept of visibility graphs has several advantages over the space dis-
cretizing graphs described in the first section:

• An exact geometrically shortest path can be computed.
• An exact position (e.g. measured by some self-localization system) can be

integrated directly into the graph without loss of accuracy due to discretization.

Fig. 2 Floor plan of a mall: the navigable space is described by the cyan polygon which we
obtained by buffering the input polygon (grey lines). Obstacles are modelled as holes in the
polygon. The red line is an example shortest path computed by the presented algorithm. Note that
start and end positions can be at arbitrary positions inside the navigable space

High Precision 3D Indoor Routing on Reduced Visibility Graphs 269

Fig. 3 Reduction of the visibility graph: (S, A) intersects an obstacle when elongated by an e.
Any path starting at S and passing the obstacle has to use either B or C. A path using (S, A)
cannot be a shortest path because of the triangle inequality: |(S, A)| ? |(A, B)| [|(S, B)| and
analogously for C. Therefore the edge (S, A) is not needed for the computation of a shortest path
and can be removed from the graph

Fig. 4 Computing a shortest path with visibility graph: a a room with five obstacles, b the
resulting reduced visibility graph, c adding vertices and edges dynamically to the graph for start
and goal positions, d the resulting shortest path

270 H. Steuer

4 Shortest Paths with Customized A*

The probably most famous shortest path algorithm is the algorithm given in
(Dijkstra 1959). The algorithm works by managing two sets of nodes: the visited
and the unvisited nodes. Initially the visited set consists only of the start node
while all other nodes are part of the unvisited set. Then one node n is chosen out of
the nodes of the unvisited set which is adjacent to a node of the visited set and has
a minimum distance d(n) to the start node (adjacent means the node is connected to
another node by an edge). This distance is computed by adding the length of the
edge which connects the node to one node nv of the visited set to the distance this
node nv has to the start node.

fDijkstraðnÞ :¼ dðnÞ :¼ dðnpredecessorÞ þ eðnpredecessor; nÞ ! min ð1Þ

Repeating the last steps until the goal node is added to the visited set yields the
shortest path.

In other words the algorithm of Dijkstra expands the set of visited nodes suc-
cessively in all directions until the goal node is found. In Hart et al. (1968) the A*
algorithm was introduced, which can be seen as an extension of Dijkstra’s algo-
rithm. They suggest to add a heuristic h(n) which steers the expansion of the set of
visited nodes into the direction of the goal node. Hence, A* chooses the node of
the unvisited set which is adjacent to a node of the visited set and where the sum of
the shortest distance to the start node and the approximated distance to the goal
node is minimal.

fA�ðnÞ :¼ dðnÞ þ hðnÞ ! min ð2Þ

Fig. 5 A 10-story building. The different floors are connected by four centrally located elevators
and two staircases in the middle part and on the left side, respectively. The red line shows a
shortest path using an elevator

High Precision 3D Indoor Routing on Reduced Visibility Graphs 271

These two algorithms introduced by Dijkstra and by Hart et al. can both
guarantee to find a shortest path in a weighted graph like the one we constructed in
the last section (without negative edge weights). A* additionally needs an
admissible heuristic h(n) as input, which estimates the distance of a node n to the
goal node. A heuristic is admissible if it does not overestimate the distance to the
goal node. In order to be implemented in a run time efficient way the heuristic also
has to be monotonic, meaning that for every two adjacent nodes n1 and n2 the
following in equation is fulfilled:

h n1ð Þ � h n2ð Þ þ eðn1; n2Þ ð3Þ

The probably most often used heuristic in graphs which represent topologies in
a euclidean space is the euclidean distance.

he nð Þ :¼ dist n; goalð Þ

¼
ffi

ðn:x� goal:xÞ2 þ ðn:y� goal:yÞ2 þ ðn:z� goal:zÞ2
q

ð4Þ

In the visibility graph described above, where edge weights are set to the
euclidean distance of the two nodes, in Eq. (3) can be written as

dist n1; goalð Þ � dist n2; goalð Þ þ distðn1; n2Þ ð5Þ

which is a variant of the triangle inequality and therefore the heuristic he is
admissible.

Another admissible heuristic is

h0ðnÞ ¼ 0: ð6Þ

Using this heuristic h0 fA� is reduced to fDijkstra and the A*-algorithm behaves
like Dijkstra’s algorithm.

In Fig. 6 you can see a behaviour for the three-dimensional case. Here A* still
outperforms the algorithm by Dijkstra in regard to the number of expanded nodes
but expands many nodes on the floors between the start and goal node. This
happens because the heuristic he does not differentiate between the three axes of
the coordinate system. A* tries to approach the goal node on every floor.

4.1 Customized A*

We optimize the behaviour of A* by using our knowledge on the graph’s structure.
We know that there are relatively many nodes and edges on each floor but that
these floors are only sparsely interconnected. Therefore on reaching steps or an
elevator we would like the algorithm to prioritize a vertical movement over a
horizontal one: We achieve this by using a different heuristic:

272 H. Steuer

h3D building nð Þ :¼
ffi

w � ð n:x� goal:xð Þ2þ n:y� goal:yð Þ2Þ þ ðn:z� goal:zÞ2
q

ð7Þ

with a weight w out of [0,1]. Experiments showed that 0.5 is a valid choice of w in
our test case. Using this heuristic the vertical distance gets a greater weight. In
Fig. 6 you can see a resulting set of expanded nodes (red). A* using our heuristic
h3D building outperforms both Dijkstra’s algorithm as well as A* using the standard
heuristic he.

4.2 Experiments

In order to do a more extensive test we chose 100 pairs of points in our 10-story
test building (see Fig. 5) at random and computed the shortest path with all three
algorithmic options on this set of points. We made sure, that none of these ran-
domly chosen points lies outside of the building so we have no outliers. The test
was done on an Athlon 64 X2 system with 2.21 GHz. The graph consists of 3,832
nodes and 11,886 edges. All three algorithmic options find the same path for each
of the point pairs.

Table 1 shows that on average A* using our heuristic h_3D_building needs
29 % less run-time than A* using the heuristic he and 77 % less run-time than
Dijkstra’s algorithm.

Fig. 6 Three sets of visited nodes: Dijkstra’s algorithm (blue), A* using the standard heuristic he

(yellow) and A* using the proposed heuristic h3D building specialized for routing in 3D buildings.
We are visualizing the edges leading to the visited nodes instead of the nodes itself because of
clearer visibility

High Precision 3D Indoor Routing on Reduced Visibility Graphs 273

5 Conclusion

We showed that using the concept of visibility graphs can improve indoor navi-
gation without requiring excessive amounts of run-time. Based on the assumption
that each floor is modelled as a polygon we showed how highly accurate shortest
paths can be computed using completely arbitrary positions for start and goal
nodes. To achieve this we adopted the concept of reduced visibility graphs which
are automatically constructed from polygonal floor plans. Furthermore, we intro-
duced a new heuristic which enables A* to favour vertical over horizontal
movement, leading to 29 % less run-time.

Acknowledgments The author would like to thank Bernhard Steuer for the visualisation of the
data in Figs. 5 and 6.

References

Ariza-Villaverde AB, de Ravé EG, Jiménez-Hornero FJ, Pavón-Domínguez P, Muñoz-ermejo F
(2010) Introducing a geographic information system as computer tool to apply the problem-
based learning process in public buildings indoor routing. Comput Appl Eng Educ.
doi:10.1002/cae.20442

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische Mathematik
1:269–271

Evennou F, Marx F (2006) Advanced integration of WIFI and inertial navigation systems for
indoor mobile positioning. EURASIP J Appl Signal Process 2006:1–11

Goetz M, Zipf A (2011) Formal definition of an user-adaptive and length-optimal routing graph
for complex indoor environments. Geo-spatial Inf Sci 14(2):119–128

Hagedorn B, Trapp M, Glander T et al. (2009) Towards an indoor level-of-detail model for route
visualization. Proceeding 10th International Conference on Mobile Data Management:
systems services and middleware 692–697

Haklay M, Weber P (2008) Open street map: user-generated street maps. IEEE Pervasive Comput
7(4):12–18

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

Karimi HA, Ghafourian M (2010) Indoor routing for individuals with special needs and
preferences. Trans GIS 14(3):299–329

Latombe JC (1991) Robot motion planning. Kluwer Academic Publishers, Boston

Table 1 Accumulated computation times and numbers of expanded nodes of 100 shortest paths
between randomly chosen points of the 10-story building depicted in Fig. 5

Dijkstra A* A*-3D_building

Time 192 s 63 s 45 s
Expanded nodes 94,950 29,975 25,921

The runtime includes the generation of the dynamic parts of the graph and the shortest path
computation itself

274 H. Steuer

http://dx.doi.org/10.1002/cae.20442

Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among
polyhedral obstacles. Commun ACM 22:560–570

May AJ, Ross T, Bayer SH, Tarkiainen MJ (2003) Pedestrian navigation aids: information
requirements and design implications. Pers Ubiquit Comput 7(6):331–338

High Precision 3D Indoor Routing on Reduced Visibility Graphs 275

	15 High Precision 3D Indoor Routing on Reduced Visibility Graphs
	Abstract
	1…Introduction
	1.1 Contribution

	2…Description of Indoor Environments
	3…Construction of a Graph
	4…Shortest Paths with Customized A*
	4.1 Customized A*
	4.2 Experiments

	5…Conclusion
	Acknowledgments
	References

