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Abstract Indoor localization, especially in wireless networks (WN) has become
an important research focus in computer science during the past ten years. Several
approaches exist to estimate a node’s position relative to other devices. Most
approaches are based on distance measurements and localization algorithms. In
this chapter we provide an overview of common and new localization algorithms.
A detailed investigation on the error distribution and the real world behaviour of
these algorithms is presented. We also provide a discussion of the evaluation
results that leads to open questions and future research approaches.
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1 Introduction

With the broad success of location based services the demand for indoor locali-
zation functionality has become bigger and bigger. In theory most techniques to
satisfy this demand are well known. There are several ways to estimate distances
in wireless networks and several algorithms to calculate positions with estimated
distances and the position of the corresponding anchor devices in the network.
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The general usability of a digital positioning system has been proved since 1994
with the general public availability of the Global Positioning System (GPS).

A positioning system for real world indoor use must have several differences to
GPS. The main difference is the size of the ranging error that is part of every range
estimation. While the GPS satellites use very precise and synchronized clocks, due
to cost reasons, only common quartz clocks are used in WNs. Quartz clocks have
higher jitter and drift, and consequently are not synchronized. Although there exist
several high accuracy time synchronization protocols for use in WN, the achiev-
able accuracy is far too low for precise range estimation. Another big issue for
indoor localization is that generally there is no direct line of sight to the node
whose distance is to be estimated; thus, multipath effects and signal reflection have
a much bigger influence than in the GPS system.

Concerning these issues, several approaches for more error tolerant and more
robust algorithms have been published. Because there are no standardized test
cases and many researches obviously do not have access to radio ranging hard-
ware, many authors rely on simulation to prove their functionality (see Sect. 2 for
examples) and only a small minority uses real world deployments for their eval-
uation. Moreover, each simulation works with its own settings of the simulation
parameters: they all differ in the choice of playing field, placement of anchors,
radio range, and ranging error model. With respect to simulation results: we show
that the performance of location estimation methods depends on the experimental
setting. Thus, choosing a suitable algorithm for a given scenario or deployment is
not possible based on these published results. It may even be impossible to con-
clude whether a method is consistently more precise than another one.

We provide an overview and present a structured analysis of common locali-
zation algorithms. The first two steps of our analysis are based on simulations and
the third step is based on a real world deployment in an office building. All
simulations and all test runs were conducted with the same parameter settings for
all algorithms, so the results are comparable and strengths and weaknesses of the
discussed algorithms can be seen easily.

In Sect. 2, we review related work and motivate our approach. In Sect. 3, we
introduce the algorithms that we consider and explain their basic properties. In
Sect. 4, we present our evaluation by simulation. The first part is a quantitative
simulation of these algorithms. This simulation is similar to the simulations per-
formed in the publications that introduce each algorithm to show their benefits.
Instead of just reproducing the results of those papers, we simulate all algorithms
using the same parameter settings to ensure that our comparisons are valid.

In the second part of Sect. 4, we discuss the spatial properties of the selected
algorithms. The quantitative evaluation in the first part measures the average
performance of each algorithm. Some algorithms show a harmonic performance,
i.e., the position estimation error does not correlate well with the position and the
placement of anchor nodes. Other algorithms are less harmonic; they perform
badly in some areas of the playing field and exceptionally well in other areas.
Thus, analyzing the distribution of the position error for each algorithm gives a
refined view on the results obtained by our quantitative evaluation. We show that
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the error distribution doesn’t only depend on the error distribution of the measured
distances, but also on the geometrical constellation between node and anchors and
the characteristics of the algorithm. We present a new approach that shows that the
algorithm itself has a much bigger influence on the resulting error than only
viewing the geometrical constellation.

In Sect. 5, we validate the simulation results using a large indoor deployment by
executing every algorithm with real world data gathered in our office building. The
combined analysis makes the algorithms much more comparable and delivers a much
better understanding of the strengths and weaknesses of the algorithms than the
original papers where they have been published. In Sect. 6 we present our conclusion.

2 Related Work

Work on evaluating and comparing localization algorithms turns out to be heter-
ogeneous. We are aware of surveys that explain different localization methods, e.g.
(Mao et al. 2007), and qualitative surveys, e.g. (Torres-Solis et al. 2010), that
review existing algorithms and try to convey the context in which they are best
applied. Those surveys are meta-studies and provide little quantitative evaluation.

Surveys that focus on a quantitative comparison are attempted by Biaz and Ji
(2005) and by Langendoen and Reijers (2003). Both survey multi-hop methods.
Their results are not directly comparable to ours, since we do not limit the radio
range. Biaz and Ji are vague on the ranging errors of their simulation, only stating
‘‘The actual range error is determined dynamically during the experiment by the
production of the maximum variance and a random number between -1 and 1’’
but they do not state the used probability distribution. Indeed, Biaz and Ji compare
algorithms based on their sensitivity to ranging errors using varying settings. We
share some experimental setups with Langendoen and Reijers (a centred 3 9 3
grid) but work with different error models.

Comparing published performance evaluations is difficult at best. Table 1 lists
the evaluation methods used by the sources to our algorithms. Each publication
uses a different setup of the playing field and a different error model. Also the
choice of algorithms they compare to varies. Linear Least Squares (LLS) and
Bounding Box/Min–Max, (Savvides et al. 2002; Langendoen and Reijers 2003),
appear to be the most common choices. Thus, transferring results about, say,
Adapted Multi-Lateration (AML) (Kuruoglu et al. 2009) to Least Median of
Squares (LMS) (Li et al. 2005) actually requires a new simulation run, as the
results were obtained in non-comparable settings.

Surveys like the ones above usually compare algorithms based on statistical
evaluations of simulations. Comparing such results is difficult, because they differ
in error model, geometric placement of anchors and density of anchors. These
vary, sometimes leading to contradictory conclusions. Thus, we compare all
algorithms under the same conditions. We highlight that results can be manipu-
lated by the choices, effectively favouring one algorithm over the other.
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Navidi et al. (1998) make a very profound observation about two lateration
approaches: trilateration and multilateration. They observe that anchor position
influences the position estimation error and call for more research in the domain of
anchor placement. This comment also inspired the work on a spatial simulation
that we present in part two of Sect. 4.

Yang and Liu (2010) present a slightly similar approach to research the spatial
error distribution. Instead of calculating all possible positions on the playing field and
visualizing the position error distribution, they calculate one position and visualize
the probability for this node to be located on all other positions of the playing field.

Some researchers use the Cramér-Rao Bound (CRB) for estimating the error dis-
tribution instead of using simulations. The CRB computes a lower bound on the
covariance of the error, usually from the position of the anchors and the statistical error
model. For example, an analysis of the CRB has been given by Yang and Scheuing
(2005), where they apply it to compute optimal anchor positions. The CRB gives a
lower bound on the covariance matrix of an idealised, unbiased position estimator,
based on geometric properties of anchor nodes and statistical properties of the range
measurement errors. It does not reference the algorithm under consideration. Thus, the
CRB only allows to state whether an algorithm is already optimal, provided that the
algorithm is analysed analytically or statistically by a simulation similar to ours. This
was both observed by Dulman et al. (2008) and Vaghefi and Buehrer (2012), which all
observe that the CRB is an inadequate tool for localization. In addition, Yang and
Scheuing observe in Proposition 2, that the CRB is a strict lower bound under any
Gaussian error model, as no unbiased estimator will attain this bound.

3 Localization Algorithms

For reasons of clarity and comprehensibility we focus our evaluation on six
localization algorithms. Three of them are well known algorithms and often
used for performance comparison when proposing a new localization algorithm:
Multilateration using Nonlinear Least Squares (NLLS) or LLS and Min–Max

Table 1 Evaluation settings of common algorithms

Algorithm Compared to Setup Error model

AML LLS, MIN–MAX 200 9 200 m, 40 anchors
uniformly distributed

Zero mean Gaussian,
variance = realDist *

10 %
LMS LLS 500 9 500 m, 30 anchors

randomly distributed
Zero mean Gaussian,
variance = 152, 202

ICLA Centroid, MIN–MAX 50 9 50 m, 10 anchors Log Gaussian RSSI
model;

Error from 10 to 60 %
MIN–MAX

LLS
6 beacons, 10 to 100

ranging nodes, 15 m
maximum range

Zero mean Gaussian;
standard deviation
20 mm
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algorithm. The other three algorithms are more recent and have never been
benchmarked under consistent conditions till now: LMS, AML and Iterative
Clustering-based Localization Algorithm (ICLA) (Haiyong et al. 2011).

1. NLLS: Given m anchor nodes with fixed positions at bi ¼ xi; yið Þ for i ¼ 1; 2; . . .;m
and possibly noisy range measurements di from these nodes to a non-anchor node
located at u ¼ x; yð Þ, multilateration finds the most likely position of the unknown
node, denoted by û. From this information we write a system of equations:

x� x1ð Þ2þ y� y1ð Þ2¼ d2
1

x� x2ð Þ2þ y� y2ð Þ2¼ d2
2

..

.

x� xmð Þ2þ y� ymð Þ2¼ d2
m

ð1Þ

This problem is usually solved by using a least squares (LS) method, that is,
minimizing the sum of the squared residuals between the observed ranges di

and the estimated distances u� bik k:

u ¼ arg min
u

Xm

i¼1

û� bik k � d3
i

� �
ð2Þ

The minimization problem can be solved by using any of the Newton type opti-
mization algorithms (Dennis and Schnabel 1996). These start from an initial guess
at the solution and then iterate to gradually improve the estimated position until a
local minimum of the objective function in Eq. (2) is found. However, there is a
non-negligible probability of falling into a local minimum of the error surface
when solving Eq. (2). Therefore, to find an estimate close to the global minimum,
LS must run several times with different initial starting points, which is expensive
in terms of computing overhead.

2. LLS: The nonlinear least squares problem can be linearized by subtracting one
of the equations given in Eq. (1) from the remaining m� 1 equations. In matrix
notation, the linear system can be expressed as Au ¼ b and can be solved by the
LS method to provide an estimated location, as given by the closed form
solution shown in Eq. (3) (i.e., normal equations).

û ¼ AT A
� ��1

ATb ð3Þ

with:

A ¼

x1 � xm y1 � ym

x2 � xm y2 � ym

..

.

xm�1 � xm

..

.

ym�1 � ym

0
BBB@

1
CCCA; b ¼

1
2

d2
m � d2

1 þ b1 � u3
�� ��

d2
m � d2

2 þ b2 � u3
�� ��

..

.

d2
m � d2

m�1 þ bm�1 � u3
�� ��

0
BBB@

1
CCCA ð4Þ
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3. AML: Similar to multilateration, Adapted Multi-Lateration tries to estimate the
position of an unlocalized node using circle intersections. AML consists of
three steps: intersection and elimination, first estimation and refinement. At the
first step two intersecting circles are arbitrarily chosen. These circles may
intersect at one or two points. If there is more than one point, the point with the
larger distance to the third anchor is eliminated. At the first estimation step the
previously computed intersection point is moved to the middle of the line
connecting it with the closest point of the third anchor’s circle. This is done to
compensate the errors introduced by range measurements. The calculation is
done using the resemblance of triangles. At the last step the position can be
further refined. Therefore, the anchors that were not used in the previous steps
are added to the position estimation process with the same principle utilized in
the second step.

4. Min–Max: The Min–Max algorithm, also known as Bounding Box algorithm, is
a simple and straightforward method in contrast to the quite expensive number
of floating point operations of LLS or NLLS that is required. The main idea is
to build a square (bounding box) given by xi � di; yi � di½ � � xi þ di; yi þ di½ �
around each anchor node i using its location xi; yið Þ and distance estimate di,
and then to calculate the intersection of these squares. The final position of the
unlocalized node is approximated by the center of the intersection box which is
computed by taking the maximum of all coordinate minimums and the mini-
mum of all maximums:

max xi � dið Þ;max yi � dið Þ½ � � min xi þ dið Þ;min yi þ dið Þ½ � ð5Þ

5. ICLA: The ICLA algorithm transforms node localization to an issue of clus-
tering intersection points, which is claimed to be resistant to RSSI errors. The
algorithm consists of three main steps. In the first step all intersection points
between every two circles centered at the anchors coordinates and with radii
equal to the estimated distances are generated. These intersection points cluster
around the unlocalized node. In the second step the iterative clustering model
(ICM) is applied to get the most representative intersection points for locali-
zation. The final step of the algorithm calculates the position of the unlocalized
node by taking the centroid of all intersection points of the biggest group that
ICM has produced. ICM is the central part of the algorithm. Here, all inter-
section points are iteratively moved towards their moving direction and merged
if a collision occurs. The collision area is a circular area with the radius equal to
the size of the moving step. Points with bigger weight exert a larger attracting
force to other points and influence their moving direction. Initially, all points
have the same weight. At the end of the procedure, all points are classified into
several different clusters according to the left points.
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6. LMS: Multilateration using LLS or NLLS is vulnerable to attacks because of its
non-robustness to ‘‘outliers’’. Due to the summation in the cost function shown in
Eq. (2), a single outlier may ruin the estimation. Therefore, Li et al. (2005)
propose to minimize the median of residue squares instead, based on the method
introduced by (Rousseeuw and Leroy (1987). In this way a single outlier has little
influence on the cost function, and won’t bias the estimate considerably. Finding
the exact solution of this non-linear optimization problem is computationally
expensive. Thus, the authors suggest the following procedure for implementing
an approximated solution as the robust LMS algorithm:

1. Set n ¼ 4 as the appropriate subset size.

2. Set M ¼
20; ifN [ 6

N
n

� �
; otherwise

8
<

: as the appropriate total number of subsets.

3. Randomly draw M subsets of size n from the set of available anchors
x1; y1ð Þ; . . .; xN ; yNð Þf g. Estimate a position x̂0; ŷ0ð Þj for each subset j ¼

1; 2; . . .;M using LLS and calculate the median of the estimation residuals r2
ij to

each anchor i ¼ 1; 2; . . .;N.

4. Define m ¼ arg min
j

medi r2
ij

n o
, then x̂0; ŷ0ð Þm is the position estimate with the

least median of all medians among all subsets.

5. Calculate the scale estimate s0 ¼ 1:4826 1þ 5
N�2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medir2

im

p
.

6. Assign a weight wi to each anchor according to the formula

wi ¼ 1; ri
s0

���
���� 2:5

0; otherwise

(
, whereas ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x̂0ð Þ2þ yi � ŷ0ð Þ2

q
� di is the residue

of the i-th anchor for the location estimate x̂0; ŷ0ð Þm.
7. Do LLS with weights wif g and all anchors to compute the final position esti-

mate x̂0; ŷ0ð Þ. This corresponds to executing LLS with only the anchors with a
weight of wi ¼ 1.

The main idea of LMS is that at least one subset among all subsets contains only
small or no measurement errors. Although smaller subsets increase the probability
to have at least one good subset, n ¼ 4 is chosen to reduce the chance that the
samples are too close to each other to produce a numerically stable position
estimate (Li et al. 2005).

4 Simulation

In this section we give a detailed analysis of the six localization algorithms
introduced in Sect. 3. First, we give a quantitative analysis of the algorithms using
a common error model for the distance measurement procedure. This way, we are
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able to compare our results with the results of other research papers. Second, we
give an insight in the spatial error distribution by analyzing all algorithms with the
LS2 (Will et al. 2012) simulation engine. This simulator produces images of the
error distribution by calculating the position error for every discrete point on the
simulated area which easily shows the strengths and weaknesses of a given
algorithm. Throughout the simulations we stick mostly to a grid layout of nine
anchor nodes to be able to compare the results of the two approaches.

4.1 Quantitative Evaluation

We present simulation results that demonstrate the performance of the selected
localization algorithms in different scenarios. We model each measured distance di

between the unlocalized node and the anchor node i as,

di ¼ d̂i þ �LOS þ �NLOS ð6Þ

where d̂i is the real distance, which is contaminated by measuring errors and non-
line of sight (NLOS) errors. The measuring error �LOS results from the measuring
processes in a noisy channel and the NLOS error �NLOS derives from the blocking
of the direct paths. For the sake of comparison, we model �LOS by a zero mean
Gaussian distribution Nð0; rÞ because this is done by the majority of the related
research papers. The NLOS error �NLOS was simulated as an Exponential random
variable with the parameter k uniformly distributed, k 2 Uð0; bÞ where b [ 0 is
the maximum value of the uniform distribution. For each distance measurement a
random value uniformly distributed between 0 (exclusive) and 1 (inclusive) is
chosen and if smaller or equal than a predefined probability p, di gets increased by
NLOS error. For direct line of sight distance measurements this probability is zero,
thus �NLOS ¼ 0. The performance of the localization algorithms is given in terms of
mean absolute error (MAE) which is the average of the difference between the real
and estimated locations. For all of our simulations we have one unlocalized node
which takes 100,000 random positions on a square area and executes each algo-
rithm. The radio range is unlimited in our simulations, so the unlocalized node gets
distance measurements to all anchor nodes regardless of its current location.

In our first simulation, we deploy 9 anchor nodes on a square area of increasing
size. The side length of the area varies from 10 to 100 m. The anchor nodes are
arranged in a grid of 3 9 3 nodes in order that they cover the whole area. The anchor
setup can be seen in Fig. 1. There are only line of sight distance measurements with
standard deviation r ¼ 2:3. Figure 2 shows the results of this simulation, where the
vertical axis is the localization error and the horizontal axis is the side length of the
square area. The performance of NLLS, LLS, LMS, and ICLA stays pretty much
unaffected by an increased area size. The accuracy of ICLA even shows an
improvement of 20 % until the side length reaches 60 m. The performance of AML
and Min–Max decreases linearly as the side length grows, with Min–Max showing
the worst behavior.
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In a second simulation, we deploy the 9 anchor nodes in the same way on a
100 9 100 m2 area but continuously decrease the area the anchor nodes span. This
can be seen in Fig. 1. At the start, the anchors cover the white square area. When
reducing the covered area, the anchors would be deployed on the edges of the grey
square area. In each step we reduce the covered area by 10 %. As a result of this,
the unlocalized node will more and more take positions outside the grid because
the anchors are not any longer the edges of the network. This is a reasonable test
because it’s not always possible to have an ideal anchor setup and the movement
of mobile nodes is not always predictable in a real world deployment. Again,
there are only line of sight distance measurements with r ¼ 2:3. Figure 3 shows
the results of this simulation where the vertical axis is the localization error and the
horizontal axis is the area coverage in percent in relation to the 100 9 100 m2

area. In general, AML and especially Min–Max are affected most by the reduction
of the covered area. NLLS, LLS, LMS, and ICLA stay relatively unaffected until
the coverage ratio drops below a critical margin of 10 %, with NLLS showing the
best performance all the time. Area coverage of 1 % also isn’t a reasonable setup
because the resulting grid only has a dimension of 10 9 10 m2 with a distance of
45 m to the edges of the square area. However, area coverage of 30 % with a grid
dimension of 54.8 9 54.8 m2 and a distance of 22.6 m to the edges still sounds
reasonable. In this scenario localization accuracy drops by 12.3 % (NLLS),
17.4 % (ICLA), 21.8 % (LMS), and 26 % (LLS) compared to the initial situation,
whereas the accuracy of AML drops by 44.5 % and that of Min–Max by 206 %.

In the next set of simulations, we set the side length of the square area to 50 m and
the area coverage to 70 % while sticking to the grid distribution of anchor nodes.

Figure 4 shows the result of a simulation where the line of sight measurement
noise is increased constantly. This is done by increasing the standard deviation r
of the zero mean Gaussian measurement errors �LOS. All algorithms show a
decreased performance in terms of localization accuracy if the measurement noise

Fig. 1 3 9 3 Grid setup
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Fig. 3 Localization error to
area coverage

Fig. 2 Localization error to
area size

Fig. 4 Increasing
measurement noise
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is increased. The localization error of all algorithms except ICLA rises linearly.
ICLA suffers most by an increased measurement noise while NLLS and Min–Max
show the best overall performance. Although Min–Max doesn’t start from the
same level than the other algorithms it can even outperform AML in the end.
When there is no measurement error, only ICLA and Min–Max don’t produce very
low estimation error. This is also expected since Min–Max does not produce an
ideal solution of the equation system (by using bounding boxes) including anchor
coordinates and distances to each of them. ICLA, on the other hand, occasionally
clusters more intersection points than needed. This is the case when the unlocal-
ized node is close to anchors and the resulting circles have small radii. As a result,
there exist intersection points close to the intersection points of the ideal solution.

In our next simulation, we wanted to test the influence of NLOS errors to the
chosen localization algorithms. Therefore, we set the line of sight error to r ¼ 2:3
and the upper bound of the uniform distribution for parameter k to 3. In each
simulation run, we set the probability p for having NLOS errors to a fixed value.
Thus, the expected percentage value of non-line of sight distances is close to p.
The maximum allowed distance estimation error was set to 30 m. In this way all
estimation errors larger than 30 m are cut off and reassigned to 30 m. Figure 5
shows that the localization error of ICLA and Min–Max increases gradually with
the increase of NLOS distances, which demonstrates good NLOS error tolerance.
NLLS, LLS, and AML show large performance degradation in terms of locali-
zation accuracy. As expected, LMS can outperform LLS due to its attack resis-
tance in case of large outliers. At 20 % probability of NLOS distances LMS starts
to perform better than LLS. This observation even gets more obvious when
looking at a simulation run whose results are displayed in Fig. 6. Here, the
maximum allowed distance estimation error is increased in steps of 30 m and the
probability of NLOS distances is kept fixed at 50 %. LLS and NLLS cannot
withstand these large errors due to the summation in the cost function, whereas
ICLA and Min–Max stay completely unaffected by larger errors. Even the per-
formance of AML only slightly decreases and is better than LMS in the end.

In our last simulation, we reposition the anchors as seen in Fig. 7 and modify
the amount of anchors to investigate its influence on the performance of the
algorithms. In the first simulation run, we take anchor 1–3, in the second simu-
lation run anchor 1–4 and so on. In this way, there are no collinear anchors and the
covered area is always nearly at maximum. All other settings remain the same
except that the probability of NLOS distances is set to 30 %. Figure 8 shows the
results of this simulation where the vertical axis is the localization error and the
horizontal axis is the anchor count. Except for AML whose estimation error
increases temporarily when anchor count exceeds 5, the estimation error of the
other algorithms decreases. LMS performs better than LLS when the anchor count
exceeds 5 because only then can LMS build enough subsets of size 4 to filter out
outliers. ICLA doesn’t seem to work well with anchor counts below 5–6 but shows
the overall highest performance gain of all algorithms and in the end outperforms
even NLLS.
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Fig. 5 Increasing the
probability of NLOS
distances

Fig. 6 Increasing the
maximum allowed distance
error

Fig. 7 Grid setup for anchor
count simulation
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Another important aspect when comparing localization algorithms is their
computational complexity. Figure 9 shows the average execution times of the six
algorithms needed for a single localization with three, six, and nine anchors in our
simulation. Min–Max has the smallest execution time since it applies only simple
arithmetic operations. The same holds for AML. The execution time of NLLS is
much higher than that of LLS because of its iterative approach, whereas LLS uses
a closed form solution. The execution time of LMS is around 14 times higher than
that of LLS except when the anchor count is lower five because then LMS cannot
build subsets of size four. The execution time of ICLA is extremely large com-
pared to all other algorithms.

Fig. 8 Increasing the anchor
count

Fig. 9 Execution times of
the six localization
algorithms
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4.2 Spatial Evaluation

To evaluate the spatial distribution of the position error we executed every algo-
rithm 1,000 times in the LS2 simulation engine. LS2 calculates the position error
for every discrete point on the simulated area using an error model and an algo-
rithm selected by the user. First, we simulated every algorithm with a uniform grid
layout for the anchors. We chose nine anchors whose convex hull covers 4 % of
the simulation area. The resulting images consist of up to three differently colored
areas. The grey area indicates a position error between 100 and 500 % of the
expected distance measurement error value; the darker the area, the higher is the
error. The green area (if present) indicates a position error lower than the expected
distance measurement error; the darker the area, the lower is the error. In the blue
area the error is higher than 500 % of the position error and is cropped for better
image contrast. The anchors are represented by the small red squares. We chose a
uniformly distributed error with an expected value of 5 % of the playing field
length for this simulation to minimize the effect of the error model and to maxi-
mize the effect of the geometrical constellation of the anchors and the influence of
the algorithm. Other error models change the shapes very little but lower the
contrast of the resulting images, so they are not as meaningful.

The green area is very important for cooperative localization strategies in WNs,
because the position error stays in a reasonable range as long as the node remains
in the green area. Otherwise the position error tends to grow much faster than
expected.

In Fig. 10 we display the spatial distribution of the six algorithms in descending
order of their average position error. As expected, Min–Max has the worst average
error. But Min–Max performs much better than all other algorithms if the unlocalized
node stays inside the convex hull of the anchors. If the node’s position is more than
the inter-anchor distance away from the convex hull, the error grows very fast. NLLS
performs completely different. Its overall error distribution is nearly uniform but the
weaker regions are inside the convex hull and not outside. This different behavior
corroborates that statistical measures like mean error and standard deviation are less
precise than analyzing the spatial distribution. LLS and LMS perform nearly similar
with LLS having an overall better average result inside the convex hull in this setup.
The quality of AML and ICLA is poor in every aspect in this setup. They have no real
strengths and get weaker very fast with rising distance to the anchors. It is also
remarkable that the spatial error distribution of some algorithms is not symmetric,
although the anchors are set up symmetrically. LMS for example performs better in
the lower right corner of the convex hull than in the other three corners. Only Min–
Max and NLLS are nearly symmetric.

Especially the comparison between LLS and NLLS shows that LLS has its
strengths and is useful in some scenarios even if NLLS performs much better in
the average case. Looking only at this setup, the dynamic selection of algorithms
(e.g. between Min–Max and NLLS) regarding a roughly estimated position would
lead to better results.
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The different spatial distributions of the position error of the six algorithms
shows that statistical methods like the Cramér-Rao Bound, that do not take the
geometrical characteristics of the algorithms into account, are often misleading or
not very helpful.

For some applications where you have to guarantee an upper bound of the
position error, e.g. in rescue scenarios, the worst case of the spatial distribution is
more meaningful than the average case. In Fig. 11 we show the highest position
error for every discrete location out of the 1,000 simulation runs. NLLS shows its
weaknesses inside the convex hull more clearly, but in contrast to the average
results, it looks strictly symmetric. AMLs worst case distribution looks completely

Fig. 10 The average spatial error distribution of the six simulated algorithms (1,000 simulation runs).
The algorithms are from left to right: Min–Max (480 % average position error compared to expected
distance error), ICLA (408 %), AML (340 %), LMS (202 %), LLS (188 %) and NLLS (138 %)

Fig. 11 Worst case results for NLLS, AML, and Min–Max (1,000 simulation runs)
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different to the average case distribution. The lower right half of the convex hull
was one of the weaker regions in Fig. 10 and is the best region in Fig. 11. Again,
AMLs performance is very poor in this setup compared to the other algorithms.
Min–Max again is the best algorithm if the unlocalized node stays inside the
convex hull of the anchor nodes and the worst case distribution is linear weakened
compared to the average one.

For the next simulation run, we lowered the number of anchors to four and
chose a different layout, where the four anchors are not placed optimal but nearly
collinear. The resulting spatial distribution of the position error in Fig. 12 has
changed little. NLLS is weaker inside the convex hull and stronger outside, but
still remains very homogenous. Min–Max remains very good between the anchors
and quickly gets worse with increasing distance to the anchors. Min–Max has still
the lowest error for all algorithms inside the convex hull. LMS and LLS perform
nearly identically. They remain on a good average level and do not seem to suffer
very much from the reduced anchor count. The only outlier is AML, which is the
only algorithm of the six that performs better with fewer anchors in a worse layout.
We conclude that AML has some design weaknesses and should be optimized to
perform better with more anchors, or at least should only use a subset of the given
anchors. In its original paper, AML is mainly simulated in a setup with a maxi-
mum of four anchors, so their conclusion that AML performs very well seems
reasonable only under these limited conditions. ICLA once again is weak under
these conditions. This contradicts somewhat to the findings in its original

Fig. 12 The average spatial error distribution of the six simulated algorithms (1,000 simulation
runs) with 4 anchors. The algorithms are from left to right: ICLA (406 %), Min–Max (382 %),
LMS (262 %), LLS (261 %), AML (220 %) and NLLS (138 %)
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publication where ICLA always showed half the error of Min–Max and also to the
previous subsection where ICLA showed better performance. An explanation can
be seen in Fig. 4. Because the expected measurement error was much higher in the
simulations using LS2 than the other ones, the accuracy of ICLA experienced a
much larger degradation. This is of particular importance since, as previously
mentioned, ICLA suffers the most from an increased measurement noise.

For the last simulation we placed 9 anchors on a half circle. The results of this
simulation can be seen in Fig. 13. The most interesting observation for this constel-
lation is that the size of the green area is significantly bigger for the algorithms with
high average errors. This leads to a new perspective in comparing these algorithms,
especially for tracking applications where the current position can roughly be esti-
mated. In the case shown in Fig. 13 one could implement a simple algorithm which
switches between NLLS and Min–Max depending on the estimated node position.

This observation is also useful for a general comparison and evaluation of
localization algorithms. Concentrating only on the average position error as an
evaluation metric could lead to wrong conclusions if the spatial distribution is dis-
regarded. The very different spatial distributions of ranging errors for a given sce-
nario also implies that the CRB, which does not consider the algorithm itself, can give
only a very vague estimation of the spatial distribution of the position error. For
example, Min–Max has a worse average position error, but performs better in real
world indoor deployments because the inter-anchor distance is normally low and the
node can only move inside the hull of the anchors that are usually mounted to walls.
This behaviour can be predicted from the spatial distribution.

5 Experimental Results

In order to measure the effectiveness of the six algorithms with real sensor network
data and to be able to compare the results with the executed simulations, we
recorded the data of a series of different test runs. The experiments were carried

Fig. 13 The average spatial error distribution of three simulated algorithms (1,000 simulation
runs) with 9 anchors. The algorithms are from left to right: NLLS (130 %), LLS (160 %) and
Min–Max (360 %)
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out using a modified version of the Modular Sensor Board (MSB) A2 (Baar et al.
2008) node which is equipped with a Nanotron nanoPAN 5375 (Nanotron Tech-
nologies GmbH 2009) transceiver. This hardware enables the sensor nodes to
measure inter-node ranges using time of flight (TOF) in the 2.4 GHz frequency
band. The experiments took place on the second floor of our Computer Science
Department during daytime.

Figure 14 shows one exemplary campaign of measurements following a route
among offices, laboratories and with a few people walking around. For the reason
of clarity, we plotted only the results of NLLS and Min–Max using a Kalman filter.
The starting point is denoted by ‘‘S’’, the endpoint is denoted by ‘‘E’’ and the total
length of the path was about 100 m.

In each run, we used 17 anchors which were deployed throughout the building.
Most of the anchors were placed in office rooms with doors closed. Only a small
fraction of nodes was placed on the hallway, in case of Fig. 14, there were four nodes.
Ground truth was measured with the aid of a robot system developed at our
Department using a Microsoft Kinect. This reference system provides about 10 cm
positioning accuracy. The robot also carried the unlocalized node and followed a
predefined path with a predefined speed. We used the maximum movement speed of
the robot, which is 0.5 m/s. In total, we performed over 5,300 localizations when
adding up all test runs. The nanoPAN achieves ranging precision of around 2.85 m in
average and the RMSE is 4.32 m. However, the ranging error can be as large as 20 m.
We even encountered measurement errors up to 75 m in rare cases. Figure 15 shows
the distribution of the distance measurement error using all anchor nodes and all runs.

The quantitative results of the six localization algorithms are shown in Table 2.
The average anchor degree throughout all experiments was 7.48. As it can be seen,
Min–Max outperforms the other algorithms in terms of localization accuracy with

Actual position NLLS

Anchors Min-Max

Fig. 14 Position estimates on the second floor of our Computer Science Department
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achieving an average error of 2.05 m. This is about twice as good as ICLA, the
second best algorithm with an average error of 4.25 m. The good performance of
Min–Max is not surprising because the inter-anchor distances were relative short
(between 5 and 10 m) and the mobile node took mainly positions within the
bounds of the network. As we know from Sect. 4 this is the optimal situation for
Min–Max algorithm. This behavior can also be seen in Fig. 16 where the unfiltered
estimated locations of Min–Max are displayed. For instance when looking at
anchor 11 or 12, one can clearly see that the error is bounded by their coordinates.

The fact that the RMSE of NLLS, AML, and ICLA is only slightly larger than the
RMSE of the distance measurements tells us that these algorithms performed well
relative to the quality of the distance measurements available. The histograms of
localization errors of all algorithms can be seen in Fig. 17 where the vertical axis is
the absolute frequency and the horizontal axis is the localization error. LLS and
therefore also LMS show poor performance compared to the other algorithms. Also
the RMSE is much larger than that of the other algorithms. However, LMS can still
achieve better localization accuracy than LLS as expected from our simulations.

Obviously, the position accuracy could be improved using some filtering
techniques, such as Kalman or particle filters, but the aim of this chapter is to show
and compare the performance of the used localization algorithms without using
any of those filtering techniques.

Fig. 15 Histogram of
distance measurement error
(all runs and anchors)

Table 2 Quantitative results
for the localization task

ALGORITHM MAE (m) RMSE (m) MAX (m)

NLLS 4.49 5.35 30.39
LLS 8.92 20.41 461.63
AML 4.96 5.96 36.76
Min–Max 2.05 2.42 15.39
ICLA 4.25 6.01 45.52
LMS 7.37 17.47 449.09
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Summarizing the results of the simulations and experiments, it can be stated
that NLLS shows the overall best performance no matter the area size and cov-
erage ratio. Its spatial error distribution is very uniform which is proved by the
simulations done in Sect. 4. It is also among the best algorithms of the real
experiment. However, if the measurement noise is not that high, ICLAs perfor-
mance is very close to that of NLLS. When the average anchor degree is greater
than 5 and when operating in indoor environments where the percentage of NLOS
distances is certainly higher than 30 % in most of the cases, ICLA outperforms the
other localization schemes in terms of accuracy and shows a much better resis-
tance to NLOS errors, even than NLLS. However, this advantage comes at the
expense of increased calculation costs compared to all other algorithms.

Fig. 16 Behavior of unfiltered Min–Max algorithm

Fig. 17 Histograms of localization errors in a real environment, the second floor of our
Computer Science Department
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Min–Max has the advantage of being computationally cheap and insensitive to
errors, but it requires a good constellation of anchors; in particular, the desired
localization error of Min–Max can be easily adjusted by placing the anchors at the
edges of the network and having small inter-anchor distances. This fact is also stated
by Savvides et al. (2002) and proved by Langendoen and Reijers (2003). AML works
best when the number of used anchors lies between 4 and 5. This corresponds to the
findings of Kuruoglu et al. (2009) and is the reason why they limit the number of used
anchors to 4 when comparing AML with LLS and Min–Max. They identify the
refinement phase of their algorithm as the reason for this behavior. Like Min–Max,
AML also profits from a good constellation of anchors, although the impact is not as
high as that of Min–Max. We could also prove that LLS performs better than LMS
when the attack strength is low (less than 20 % NLOS distances), which is stated by
Li et al. (2005). That’s the reason why they implemented an efficient switched LLS-
LMS localization scheme to overcome this situation. The desired design goal of
being more robust against large distance measurement error due to non-line of sight
signal propagation could be validated by our studies. Nevertheless, LMS cannot
outperform NLLS unless the distance measurement error is abnormally high which
shouldn’t be the case even in indoor deployments.

6 Conclusion

We showed that the error distribution doesn’t only depend on the error distribution
of the measured distances, but also on the geometrical constellation between node
and anchors and the characteristics of the algorithm. We presented results from
both simulations and real experiments that corroborate our theory.

The NLLS algorithm is the best general purpose algorithm of the tested
localization algorithms, because its spatial error distribution is very homogenous
even if the anchor placement isn’t optimal. ICLA, on the other hand, showed
ambiguous behavior. While the algorithm performed weakly in the spatial error
distribution analysis, the real experiments and other simulations showed opposite
behavior. We discovered that ICLA measurement noise which should be adapted
to omission is the reason for the poor performance in Sect. 4.2. If we know the
error distribution of the distance measurement device and the operation environ-
ment (e.g. indoors), then ICLA provides a good alternative to NLLS. That ICLA
should be adapted is also not mentioned in its original publication.

If the errors are large and the unlocalized node is in the convex hull of the
anchors, Min–Max also is a good choice for localization. Especially in dense
networks with small inter-anchor distances Min–Max outperforms all other
algorithms as shown by the experiments in Sect. 5.

The optimal solution for the localization task would be to use a selection
algorithm which is capable of analyzing the current situation at each point in time
and then applying the ideal method for achieving the lowest positioning error
possible.
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Future work should address the development of an algorithm that is optimized for
geometric constellations typically found in real world deployments. For indoor envi-
ronments an algorithm should focus on low inter-anchor distances and the performance
inside the convex hull of the anchors. For cooperative localization algorithms one
should try to achieve a very homogeneous error distribution with position errors lower
than the average distance error. To develop such algorithms or an adaptive combi-
nation of several algorithms, it would be helpful to get simple estimation for the
expected quality of the current anchor setup with the current algorithm.
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