Specification and Quantitative Analysis
of Probabilistic Cloud Deployment Patterns

Kenneth Johnson, Simon Reed, and Radu Calinescu

Computer Science Research Group, Aston University, Birmingham B4 7ET UK
{k .h.a.johnson,reeds,r.c. calinescu}@aston. ac.uk

The probable is what usually happens.
Aristotle

Abstract. Cloud computing is a new technological paradigm offering
computing infrastructure, software and platforms as a pay-as-you-go,
subscription-based service. Many potential customers of cloud services
require essential cost assessments to be undertaken before transitioning
to the cloud. Current assessment techniques are imprecise as they rely on
simplified specifications of resource requirements that fail to account for
probabilistic variations in usage. In this paper, we address these prob-
lems and propose a new probabilistic pattern modelling (PPM) approach
to cloud costing and resource usage verification. Our approach is based on
a concise expression of probabilistic resource usage patterns translated
to Markov decision processes (MDPs). Key costing and usage queries
are identified and expressed in a probabilistic variant of temporal logic
and calculated to a high degree of precision using quantitative verifi-
cation techniques. The PPM cost assessment approach has been imple-
mented as a Java library and validated with a case study and scalability
experiments.

Keywords: Cloud computing, formal verification methods, formal speci-
fication languages, formal modelling and specification, probabilistic model
checking, Markov processes, costing analysis, resource usage patterns.

1 Introduction

Cloud computing can be succinctly described as computing as a service [12220]
where software, platforms and virtualised hardware are available on-demand
on a pay-as-you-go basis. The elastic nature of the cloud enables customers to
adapt service usage to meet fine-grained variations of their resource requirements
by dynamically scaling their computing services up or down. This situation is
economically favourable in comparison to making large initial investments on
infrastructure based on requirements for peak demand. Despite the envisioned
benefits of cloud computing, there are still barriers to its adoption. Alongside
concerns such as cloud security [10], reliability and compliance with data pro-
tection laws [11], many potential customers are reticent due to an inability to
accurately express and analyse their resource requirements.

K. Eder, J. Lourengo, and O. Shehory (Eds.): HVC 2011, LNCS 7261, pp. 145-[[59] 2012.
© Springer-Verlag Berlin Heidelberg 2012

146 K. Johnson, S. Reed, and R. Calinescu

The most attractive feature of cloud computing is the ability to dynamically
scale resources up or down over fine-grained time intervals. As a result, cloud
requirements are often thought about in terms of patterns of usage, where re-
source requirements vary over time. Resource usage can change due to small
variances in workload or changing economic situations such as fluctuations in a
cloud provider’s prices and the customer’s capital income.

These types of resource usage patterns are inherently probabilistic in nature
and involve potentially unknown or non-deterministic factors, making require-
ments specification difficult, and existing cost assessment methods less accurate.
Current cost modelling tools employ cloud usage patterns that disregard the
probabilistic nature of resource usages resulting from the cloud’s dynamic scala-
bility [I33]. This leads to a naive cost assessment, where probabilistic behaviours
do not play a role in determining cost. Instead, resource usage is simplified to
follow either constant rates of change or variations over coarser time intervals.
To overcome these limitations we propose a new probabilistic pattern modelling
(PPM) approach for the expression of resource requirements as probabilistic pat-
terns, and the application of quantitative verification techniques to analyse a
wide range of cost-related characteristics of potential cloud deployments.

Probability has been used to model unreliable or unknown behaviour in both
hardware and software systems. Thanks to the development of effective proba-
bilistic modeller checkers such as PRISM [17], MRMC [12] and RAPTURE [9],
quantitative verification has found applicability in a wide range of application
domains. Typical applications include verification of QoS properties in service-
based systems [5] and run-time model checking to guide self-optimisation strate-
gies in software systems [6/4]. Most recently, probabilistic modelling was used
for performance analysis of live migration of virtual machines between physical
servers in a cloud data centre [15].

Our approach employs quantitative verification techniques [I8/19] to enable
potential customers of cloud services to check two classes of quantitative prop-
erties of a cloud deployment

— costs: to determine a deployment’s variation of costs over time, and to
calculate the maximum accumulated costs owed to a cloud provider at the
end of a billing period, and

— resource usage: to determine the maximum and minimum probabilities
that a deployment’s resource usage exceeds a certain threshold.

The main contributions of our work are:

1. A high-level language for the specification of probabilistic and non-
deterministic patterns of cloud resource usage.

2. Techniques to synthesise Markov decision process (MDP) models from re-
source usage patterns and to formalise resource usage and cost properties as
rewards-augmented probabilistic computation tree logic (PCTL) formulae
[8].

3. An implementation of our PPM approach as an open-source Java library.

4. A case study and scalability experiments to validate the approach.

Probabilistic Cloud Deployment Patterns 147

The paper is organised as follows. Section [2] provides background information
on Markovian models, property specification and probabilistic model checking.
Section [3] presents the steps of the PPM approach in detail. A grammar for
probabilistic patterns is given and we describe an algorithm for MDP synthesis.
Properties for cost and resource usage analysis are formalised as probabilis-
tic temporal logic. Section Hl introduces our prototype implementation of the
PPM approach and presents a case study and scalability experiments. Section
discusses related research and Section [0l summarises our results and suggests
directions for future work.

2 Background

A Markov decision process (MDP) is a tuple
M = (S, sg, Act, Dist, step, L) (1)

where S = {sg,...,8,} is a finite set of states, sy the initial state, Act a set
of actions, Dist a set of probability distributions over the states in S, step :
S — 2(ActxDist) s 5 probabilistic transition function that maps the states in S
to finite sets of action-distribution pairs, and L : § — 247 is a map labelling
individual states with finite subsets of properties from an atomic proposition set
AP.

Probabilistic model checking [18] is a technique for building specifications of
systems exhibiting probabilistic behaviour and determining the satisfiability of
their quantitative properties. For the analysis of MDP models, properties are
specified in a probabilistic temporal logic PCTL extending computation tree
logic CTL with a probabilistic operator By, for p € [0,1] and > € {<, <, >, >},
A wide range of quantitative properties for Markovian models can be specified
in this logic. For example “the probability of a cloud deployment eventually re-
quiring x or more resources is less than p” can be specified by the PCTL formula
P_,[F res > z]. For model checking MDPs, the operators Pmingg, and Pmazyq
determine the minimum and maximum probabilities over all adversaries (all res-
olutions of the non-determinism induced by Dist from (), respectively.

A reward structure for an MDP assigns values to states and transitions that
are interpreted, for example, as resource usage. Formally, a rewards structure is
a pair of functions (rs,r,) such that rs : S — R is a state-reward function,
and 7, : S x § x Act =+ R is a transition-reward function. PCTL is extended
to include rewards-augmented operators: instantaneous rewards Ry, [I = t] and
cumulative rewards Ry, [C <], for 7, t € R>o.

Our PPM approach uses the probabilistic model checker PRISM [17] devel-
oped at the Oxford University Computing Laboratory to verify quantitative
properties of models that encode probabilistic cloud deployment patterns, and
which are synthesised from these patterns automatically.

148 K. Johnson, S. Reed, and R. Calinescu

3 Approach

Our approach to assessing the cost and resource usage characteristics of cloud
deployments (Figure[Il) comprises the following steps:

Model MDP
Synthesiser

Probabilistic Pattern ————,

A 4

Query to PCTL
Costing Query PCTL

Translator

Quantitative

Analysis » Results

Fig. 1. Quantitative analysis of cloud deployments

1. Specification of the resource requirements for the cloud deployment as a
high-level probabilistic pattern.

2. MDP Generation. Patterns from Step 1 are accepted as input to a model
synthesiser that outputs an MDP model formalising probabilistic resource
variations over a time interval associated, for example, with a particular day,
week, or billing period.

3. PCTL generation. Queries relating to costs or other quantitative properties
of the cloud deployment act as input to a query-to-PCTL translator that
outputs the query formalised as a PCTL formula.

4. Quantitative Analysis. The MDP model generated in Step 2 and the PCTL
formula from Step 3 act as input to a probabilistic model checker which
performs quantitative analysis. The numerical results of the analysis are
returned for further analysis or data visualisation.

3.1 A Language for Probabilistic Cloud Usage Patterns

PPM formalises the resource requirements of a cloud deployment as probabilistic
patterns, expressed in terms of a simple languageﬂ based on the declaration of
rules that specify elastic variations of cloud resource usage over time. Formally,
a probabilistic pattern

P = BR* (2)

is a high-level syntactic representation of a customer’s hourly usage of cloud
computing resources, beginning with a baseline declaration B, and optionally
followed by a finite list of r rule declarations Ry, ..., RE

A baseline declaration B has the syntactic form

Baseline bl (3)

! We do not expect probabilistic patterns to be composed by hand but rather generated
automatically through analysis of application resource usage and request logs.

2 We list the syntactic form of each declaration in the language with terminals dis-
played in fixed-width font.

Probabilistic Cloud Deployment Patterns 149

specifying that the user requires a constant amount b of cloud computing re-
sources (e.g., virtual machines).
A rule declaration R has the syntactic form

Rule Start S Vary V (4)

which enables the specification of a variation V from the resource usage at a
certain point in time S. For example, a rule might specify an increase in resources
to meet computing requirements at peak times when more resources are needed.
Such variations are probabilistic in nature to reflect the increase and decrease of
resources depending on factors such as workload, capital, economies, and even
the fluctuations in the pricing of cloud services themselves.

A variation V is a set of m discrete probability distributions

{D1,...,Dn} (5)
each of which has the syntactic form
[p1:0p1(z1) + ... + pa:O0py(zy)] (6)
to express the fact that change in resources involves

— a non-deterministic choice of a probability distribution D; € V', and
— a selection of a resource usage variant Op(z) according to the probability
distribution D;, with probabilities p1, pa, ..., pq, 25:1 p; = 1.

A variant Op(z) comprises a name Op of an operation and a numerical operand
z. Variants perform arithmetical operations on the resource amount res at time
S to yield a new resource usage value res’ for time S + 1. The types of variants
that can be used in PPM patterns are given in Table[I], noting that the “baseline”
variant bl does not require an operand.

Table 1. Pattern Variants

Variant Op(z) Description Resources res’ at time S + 1
add(z) res+z
sub(z) Apply arithmetical operation to res —z
mult (2) current resource usage amount res X z
div(z) res + z
bl Set resource usage to baseline value bl
bl-add(z) bl + =
bl-sub(z) Set resource usage to baseline value bl — z
bl-mult(z) and apply arithmetical operation. bl X z

bl-div(z) bl + z

150 K. Johnson, S. Reed, and R. Calinescu

Ezample 1. Consider a cloud deployment associated with a set of applications
whose resource requirements follow a weekly (probabilistic) pattern. Assume, for
instance, that less resources are required at the weekend than during the rest of
the week as specified by the probabilistic pattern

Baseline 10

Rulel Start Jun 2nd Oh Vary {[0.6:sub(2) + 0.4:sub(5)],
[0.1:2dd(1) + 0.9:sub(3)]}

Rule2 Start Jun 3rd 23h Vary {[1:bl]}

that declares a baseline of 10 resource units followed by two rules. The first rule
starts at the beginning of Saturday, June 2"?¢ (2012), varying resource usage
according to the two stated probability distributions. Variants in these distri-
butions subtract resources from the baseline amount, suggesting that this rule
generally decreases resource usage; there is a small probability of selecting the
variant add(1). The second rule begins at the end of Sunday June 37?, and
consists of a single distribution setting the resource usage back to the baseline
bl.

Of course, one might want to specify that less resources are required for every
weekend during certain months in the year. To support this scenario, our lan-
guage allows the specification of an optional repeat declaration for each rule ({@):

Rule Start S Vary V Repeat F Until U (7)

where F' is a keyword from the set {Day, WeekDay, Week, WeekEnd, Month} setting
the frequency of the rule’s application, and U specifies the last time the rule is
to be applied.

Ezample 2. Using the repeat construct (), the probabilistic pattern in Example
[can be extended to

Baseline 10
Rulel Start Jun 2nd Oh Vary {[0.6:sub(2) + 0.4:sub(5)],
[0.1:2dd(1) + 0.9:sub(3)]1}
Repeat WeekEnds Until Aug 31
Rule2 Start Jun 3rd 23h Vary {[1:bl]}
Repeat WeekEnds Until Aug 31

This specifies that both rules apply every weekend during the summer months
of June, July and August.
3.2 Markov Decision Process Synthesis

The model synthesiser takes as input a probabilistic pattern (2] in the form of
the concrete syntax described in Section Bl and a time interval

T =10,n], (8)

Probabilistic Cloud Deployment Patterns 151

and outputs an MDP model that allows the formal analysis of cost- and resource-
related characteristics of the pattern.

We say that an MDP M = (S, sq, Act, Dist, step, L) models P over T if it
satisfies the following properties:

1. The state space is S C {(res,t) | res > 0, t € T}, contains a state s =
(res,t) for each resource amount res > 0 that the cloud deployment may
assume at time instant ¢, and no other states.

2. The initial state is sg = (bl,0) according to the value bl specified in the
baseline declaration B.

3. Act comprises an action a;; for each rule R; from P, 1 <4 < r and each
distribution D;; from rule R;.

4. Dist represents the set of all distributions from rules Ry,..., R, of P.

5. step : S — 24¢tXDist gpecifies state transitions of the form (res,t) A
(res’,t + 1) where a;; € Act is the action corresponding to distribution D;;
and p the probability that D;; associates with state (res’,t + 1).

6. AP = {"resources > 2’ | © € R>o} and L(res,t) = {"resources > 2" | x >
res}.

The remainder of the section describes the algorithm that PPM uses to determine
S and step. First, we model the progression of time over (8) by the function
tick : S — S defined by

(res,t+1) if0<t<mn,
(res,t) otherwise.

tick((res,t)) = { 9)

We say that a rule R; in P applies at time t if R; is

— a rule declaration of the form (@) with start time ¢, or
— a repeat rule declaration of the form (7l) with start time ¢ or frequency F
such that ¢ mod F' = 0,

with a possible change of resource usage occurring at time ¢ 4+ 1. We model rule
applications by the function apply : Variant x S — S defined by

apply(Op(2), (res, t)) = tick((res’,t)) (10)

where res’ is the new resource usage value at time ¢ + 1 defined according to
Table [l

Letting S* denote the subset of all states in S associated with time ¢, the state
space S of an MDP modelling a pattern over (§) is defined by the equations

SO = {SO}a
UDUEV Up:Op(z)GDij
St = {apply(s,0p(2)) | s € S'} if a rule applies at time ¢, (11)
{tick(s) | s € S*} otherwise,

where S = S°USTU---US™ and S*NSY = 0, for t # t'. Equation [Tl defines the
states in S**! by applying variants Op(z) to the states in S* whenever a rule

152 K. Johnson, S. Reed, and R. Calinescu

applies at time ¢. If no rule applies then resources remain unchanged and only ¢
is updated by the tick function.

The transition function step is defined by the equation
For all s € St

UDij cVv Up:Op(z)eDi,j

step(s) = {(s P apply(s,Op(2)))} if a rule applies at time ¢
{s o) tick(s)} otherwise,

where step(s) contains state transitions of the form s A apply(s, Op(2)) when-

ever a rule applies at time ¢. If no rule applies then a unique action a € Act is

chosen and step(s) contains state transitions of the form s o tick(s).

3.3 Quantitative Analysis of Cloud Deployment Queries

Using the query-to-PCTL translator, high-level queries relating to cost and other
quantitative properties are formalised as rewards-augmented PCTL formulae. In
this section, we present a list of such queries and their specification in PCTL
and we outline the verification of each property on an MDP pattern model M
over time interval T from ().

1. What is the mazimum probability of the cloud deployment’s resource require-
ments equalling or exceeding the amount x?

This resource usage query is specified by the PCTL formula Pmaz_-[F res > z].
Quantitative verification returns the maximum probability of eventually reaching
a state in M satisfying the property res > x. Queries for minimum probabilities
or those with probability bounds are also easily specified.

To perform cost analysis we augment M with a rewards structure ry : S —
R>¢ defined by rs((res,t)) = res, associating every state (res,t) with the value
res. We interpret rewards as the cost of the deployment at time ¢. By using actual
resource amounts the customer can scale values according to unit resource prices
set by the provider. For example, the cost at time ¢ of using Amazon’s Standard
On-Demand large instances is calculated res x 0.34¢H

2. What is the expected mazimum cost of a cloud deployment’s resource require-
ments at any point t?

Using MDPs with costs, this high-level cost analysis query is specified by the
rewards-augmented PCTL formula Rmax_-[I = t], where I = ¢ denotes the
instantaneous cost at time t.

3. What is the expected maximum cumulative cost of a cloud deployment’s re-
source requirements up to time t?

This high-level cost analysis query is specified by the rewards-augmented PCTL
formula Rmaz_+[C < t], where C' < t denotes the cumulative reward up to time

3 laws.amazon.com/ec2/pricing (Checked January 2012).

http://aws.amazon.com/ec2/pricing

Probabilistic Cloud Deployment Patterns 153

t. Quantitative verification returns the expected maximum cost of M accumu-
lated over the time interval [0,¢] C T

4 Implementation and Validation

We developed a probabilistic pattern modelling tool PPM that implements our
approach for the analysis of probabilistic cloud deployment patterns. PPM is an
open-source Java class 1ibraryH that supports the realisation of the workflow
in Figure [[l The core component of PPM is a PatternProcessor class whose
constructor takes as parameters the probabilistic pattern ([2]) to analyse, and the
upper bound for (). The PatternProcessor constructor implements the MDP
synthesis technique described in Section by means of a parser-generator built
using the off-the-shelf language tool ANTLRE).,The result of this model synthesis
is an MDP expressed in the PRISM state-based language.

Table 2. Analysis methods provided by the PatternProcessor PPM class

Java double getMaxProbResourcesExceeds(int x)
double getMinProbResourcesExceeds(int x)
Input =z >0
Output max(min) probability of resource usage exceeding x at any time
PCTL Pmax=7[F res >= x], Pmin=7[F res >= x]
Java Double[] getMaxResources(int tl, int t2, int step)
Double[] getMinResources(int tl, int t2, int step)
Input #1,t2, step > 0 such that t1 < t2
Output List of expected max(min) resource usage over [t1,t2] performed
for each t =t1 + i - step, i =0,1,2,... such that t; <t < ta.
PCTL Rmax=7[I=t], Rmin=7[I=t]
Java Double[] getMinCumulativeResources(int t1, int t2, int step)
Double[] getMaxCumulativeResources(int t1, int t2, int step)
Input ¢1,t2, step > 0 such that t; < to
Output Expected max(min) cumulative resource usage over [t1,¢2] performed
for each t =t1 + - step, i =0,1,2,... such that t; <t < ta.
PCTL R=7[C<=t]

The public methods of the PatternProcessor class (Table[2]) enable the quan-
titative analysis of a range of cost and resource usage properties of the consid-
ered probabilistic pattern. Each such method synthesises the appropriate PCTL
property as described in Section B.3] and runs the probabilistic model checker
PRISM in the background to analyse this PCTL property against the MDP
model generated by the constructor. The result of the PRISM analysis is parsed
and returned to the client that invoked the method.

4 PPM is freely available from http://wwwl.aston.ac.uk/eas/staff/dr-kenneth-
johnson/ppm/
® http://www.antlr.org/

http://www1.aston.ac.uk/eas/staff/dr-kenneth-johnson/ppm/
http://www1.aston.ac.uk/eas/staff/dr-kenneth-johnson/ppm/
http://www.antlr.org/

154 K. Johnson, S. Reed, and R. Calinescu

To assess the effectiveness and scalability of PPM, we implemented a simple
test tool that was used to carry out the case study and scalability experiments
presented in the remainder of this section. The results of this validation exercise
are being used to improve PPM, with a view to integrate it into an existing high-
level tool for cloud adoption decision [13].

4.1 Case Study

The case study described in this section considers a potential cloud customer
whose applications require at least three virtual machines at all times in order
to maintain an acceptable system response time. This resource requirement can
be formalised as a probabilistic pattern with a single baseline declaration:

Baseline 3.

Each weekday two or three more VMs above the baseline usage are required
to be started at 7am. At 9am, four or five virtual machines above the baseline
usage are required. These requirements are modelled by two rules:

Rulel Start Jan,1,7 Vary {[0.8:bl-add(2) + 0.2:bl-add(3)]1}
Repeat WeekDay Until Dec,31

Rule2 Start Jan,1,9 Vary {[0.7:bl-add(4) + 0.3:bl-add(5)]}
Repeat WeekDay Until Dec,31.

Resource usage is reduced at 5pm and again at 7pm where resources are set back
to baseline. These requirements are modelled by two further rules:

Rule3 Start Jan,1,17 Vary {[0.8:bl-add(2) + 0.2:bl-add(3)1}
Repeat WeekDay Until Dec,31

Rule4 Start Jan,1,19 Vary {[1:bl]}
Repeat WeekDay Until Dec,31.

We used PPM to analyse the probabilistic cloud deployment pattern described
above. The PRISM MDP model generated as a result of building the PPM Pattern
Processor object for this pattern is depicted in an abbreviated form in Figure[2l

We display in Figure Bl the results of analysing the pattern’s maximum ex-
pected resource usage over the time interval (72 < ¢ < 96) representing the
weekday of January 37¢. The figure labels each application of a rule by the rule
name. As the pattern indicates, the number of VMs is 3 at the beginning of the
day and peaks between 9am and 5pm (i.e., for 79 <t < 90), when the expected
maximum resource usage has value 7.3. The resource usage returns to the base-
line outside working hours at 7pm (when ¢ > 91). Figured depicts the results of
cost analysis performed to determine monthly maximum expected accumulated
costs from January to April 2012. The four values on the graph are labeled with
the cloud resource usage at the end of each month. These values can be used to
determine the maximum expenditures for cloud computing services expected at
the end of a provider’s billing period. For example, supposing the customer uses
Amazon’s standard EC2 instance at a unit cost of 0.32¢ throughout January, the
maximum expected expenditure at the end of January is 3024 x0.32¢ = $967.68.

Probabilistic Cloud Deployment Patterns 155

mdp

const BASELINE=3;

formula Rulel = (m=Jan)&(d=3)&(h=6);

const double p1=0.8; const double p2=0.2;
const Amountl = 2; const Amount2 = 3;

formula Varyl = min(BASELINE+Amount1,MAXRES);
formula Vary2 = min(BASELINE+Amount2,MAXRES) ;

formula RuleStart = (Rulell| ...);

rewards true : res; endrewards

module pattern
m : [0..11] init Jan; d : [1..31] init 1; h : [0..23] init O;
res: [0..Max] init BASELINE;

[1 ('DayEnd)&(!RuleStart) -> (h’=h+1);
[1 (!'DayEnd)&(Rulel) -> pl:(res’=Varyl)&(h’=h+1)+p2: (res’=Vary2)&(h’=h+1);

[1 (DayEnd)&(NotMonthEnd)&(!RuleStart) -> (h’=0)&(d’=d+1);
[1 (DayEnd)&(NotMonthEnd)&(Rulel) -> pl:(res’=Varyl)&(h’=0)&(d’=d+1)+
p2: (res’=Vary2)&(h’=0)&(d’=d+1);

[1 (DayEnd)&(MonthEnd)&(m<Dec)&(!RuleStart) -> (m’=m+1)&(h’=0)&(d’=1);
[1 (DayEnd)&(MonthEnd)&(m<Dec)&(Rulel) ->
pl:(res’=Variation1)&(m’=m+1)&(h’=0)&(d’=1) +
p2: (res’=Variation2)&(m’=m+1)&(h’=0)&(d’=1);

[1 (m=Dec)&(DecEnd)&(DayEnd)-> true;
endmodule

Fig. 2. Abbreviated PRISM file generated by analysis of the case study

4.2 Scalability

Experiments were performed on the PPM tool to test the scalability of our ap-
proach using a set of different patterns of increasing complexity defined over a
single week beginning January 1%'. Between one and five rules formed with the
Repeat construct with WeekDay frequency increased resource amounts on each
day in the week. Rules started from 12am staggered by four hours, and one or
two probability distributions were specified in each rule.

The experiments recorded the number of states and transitions for each MDP
model synthesised from the patterns. The analysis speed of PPM was tested by
performing two method invocations from the Java library on each pattern:

— getMaxResources(0,168,1), calculating the maximum expected resource
usage over a week with a step of one hour, and

— getMaxCumulativeResources(0,168,1), calculating the maximum expected
cumulative cost over a week with a step of one hour.

Our experiments were performed using the PPM command-line interface on an
Apple MacBook Pro operating on Mac OS X Version 10.7.2 with a 2.66Ghz Intel
Core 2 Duo processor and 8GB of 1067TMHz DDR3 memory. PRISM version
4.0.2 was used to perform the quantitative analysis on the synthesised MDPs
using the sparse matrix PRISM engine [16]. The results of the experiments are
listed in Table Bl where method invocation times are averages over several runs,

156 K. Johnson, S. Reed, and R. Calinescu

Resources

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

Time ranging over the hours of a workday

Fig. 3. Expected maximum resource usage for January 3¢ (hours 72 to 96)

14000

12312.00
12000 L
10000 924480
5 *
8 8000
2 6134.40
£ 6000 *
£
S 4000 3024.00
*
2000
0
0 30 80 %0 120

Time measured in days ranging from January to April

Fig. 4. End of month expected accumulated costs from January to April

and include all steps in processing the pattern: parsing, model synthesis and
verification.

To analyse the size complexity of the state space S of an MDP modelling
a pattern, we introduce the following notation. The size of a rule R with m
probability distributions each with ¢; probabilities, 1 < ¢ < m is defined as
size(R) = q1 + - -+ + Gm. We assume that the maximum number of rule applica-
tions at time ¢ is bounded by the value K. For a pattern with rules Ry,..., R,
we set this value to satisfy the inequality size(R1) + - - + size(R,) < K. We
adapt Equation [[T] to give the inequality
51+ < {St K ifa rul.e applies at time ¢, (12)
|S*| otherwise,

for all t > 1 and |S°| = 1. Using Inequality [2} and noting the inequality |S| <
|SO+ 1St +]S52| - - - +]S™| we calculate a bound on the size |S| of the state space
over the interval [0, n]. For patterns consisting of only a baseline declaration, we
have n+1 < |5], e.g. a single state models each point in the time interval. Using

the Repeat construct, rules can be applied repeated on a frequency F yielding
an upper bound [S| < 37 KTr1.

Probabilistic Cloud Deployment Patterns 157

Table 3. Model size and method invocation time according to pattern complexity

Pattern size ~ Model size Avg. analysis time (minutes)
Rules Dists States Transitions Max. Usage = Max. Cost
1 1 654 669 3.67 2.81
2 1 1119 1174 3 6.22
3 1 1427 1532 7.41 6.23
4 1 1610 1763 13.47 4.94
5 1 1700 1890 10.54 4.21
1 2 1624 1729 7.96 7.85
2 2 3019 3454 15.58 16.22
3 2 3943 4804 18.29 19.47
4 2 4492 5767 26.81 27.11
5 2 4762 6358 29.87 25.58

5 Related Work

Several research projects focused on developing tools and techniques to assist
organisations in assessing the cost-savings of transitioning to the cloud. Spe-
cific aspects of cloud technology such as Infrastructure as a Service (IaaS) have
been formally modelled to analyse cost-savings of leasing virtualised hardware
from remote data centres [21], while case studies assessing feasibility of cloud
computing has been carried out for specific industries [I4] and applications [7].

Advanced tools such as CloudSim [2] model components of cloud computing
data centres for fine-tuning applications deployed on the cloud. CloudSim enables
users to improve application performance by simulating resource provisioning
policies, and work is in progress to extend support to include simulated costing-
analysis of deployment on public clouds [3].

Research undertaken as part of the Large Scale Complex IT Systems (LSC-
ITS)@ initiative in the United Kingdom has developed the Cloud Adoption
Toolkit [I3] which is an organisational framework identifying key concerns of
cloud services adoption, and comprising tools that support the decision mak-
ing process of potential cloud customers. In particular, the framework’s cost
modelling tool allows cost-analysis of cloud deployments to be performed with
resource requirements expressed in a notation similar to the language developed
in our approach, but does not support the specification of probabilistic and non-
deterministic characteristics.

Our work complements and improves upon these approaches by accounting
for probabilistic behaviour of cloud deployments, and using precise techniques
for cost and resource usage analysis.

Shttp://1lscits.cs.bris.ac.uk/

http://lscits.cs.bris.ac.uk/

158 K. Johnson, S. Reed, and R. Calinescu
6 Conclusion and Future Work

The results presented in this paper target the growing need for precise cost
analysis techniques that address both uncertainty and probability in using cloud
computing services. The probabilistic pattern modelling approach introduced in
the paper formalises cloud computing resources as probabilistic patterns and
synthesises Markov decision processes. Quantitative verification performed on
the model providing accurate costing and usage results. The approach has been
implemented as an open-source Java library using the probabilistic model checker
PRISM. We have validated our approach with a case study, and carried out a
number of preliminary scalability experiments.

Our future work aims at improving the PPM approach and tool in a number
of ways. The scalability performance of the tool can be improved by exploit-
ing the periodical nature of some patterns to eliminate redundant calculations
when performing analysis. We plan to extend the PPM workflow to include soft-
ware components to synthesises probabilistic cloud deployment patterns using
data mining techniques on application resource request logs. Lastly, we plan to
integrate the PPM tool with existing toolkits such as [13].

Acknowledgements. This work was partly supported by the UK Engineering
and Physical Sciences Research Council grant EP/H042644/1.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, 1., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50-58 (2010)

2. Buyya, R., Ranjan, R., Calheiros, R.: Modeling and simulation of scalable cloud
computing environments and the CloudSim toolkit: Challenges and opportunities.
In: Intl. Conf. on High Performance Computing Simulation, pp. 1-11 (2009)

3. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software: Practice and Expe-
rience 41(1), 23-50 (2011)

4. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimization in service-based systems. IEEE Trans-
actions on Software Engineering 37, 387-409 (2011)

5. Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve Marko-
vian model learning in QoS engineering. In: Proc. of the 2nd Joint Intl. Conf. on
Performance Engineering, pp. 505-510. ACM (2011)

6. Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122-135. Springer,
Heidelberg (2011)

7. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the Montage example. In: Proc. of the 2008 ACM/IEEE
Conf. on Supercomputing, pp. 50:1-50:12 (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Probabilistic Cloud Deployment Patterns 159

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 512-535 (1994)

Jeannet, B., D’Argenio, P., Larsen, K.: Rapture: a tool for verifying Markov de-
cision processes. In: Cerna, I. (ed.) Proc. Tools Day, Affiliated to 13th Int. Conf.
Concurrency Theory (CONCUR 2002). Technical Report FIMU-RS-2002-05, Fac-
ulty of Informatics, Masaryk University, pp. 84-98 (2002)

Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.: On technical security issues in
cloud computing. In: IEEE Intl. Conf. on Cloud Computing, pp. 109-116. IEEE
Computer Society (2009)

Joint, A., Baker, E., Eccles, E.: Hey, you, get off of that cloud? Computer Law &
Security Review 25(3), 270-274 (2009)

Katoen, J.P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. In: Proc. of the 6th Intl. Conf. on
the Quantitative Evaluation of Systems, QEST 2009, pp. 167-176. IEEE Computer
Society Press, Los Alamitos (2009)

Khajeh-Hosseini, A., Greenwood, D., Smith, J.W., Sommerville, I.: The cloud adop-
tion toolkit: supporting cloud adoption decisions in the enterprise. Software: Prac-
tice and Experience (2011)

Khajeh-Hosseini, A., Greenwood, D., Sommerville, I.: Cloud migration: A case
study of migrating an enterprise IT system to IaaS. In: IEEE 3rd Intl. Conf. on
Cloud Computing, pp. 450-457. IEEE Computer Society (2010)

Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration
operations in cloud computing systems using PRISM probabilistic model checker.
In: Proc. 4th Intl. Conf. on Cloud Computing (2011)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Field, T., Harrison, P., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200-204. Springer, Heidelberg (2002)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011)

Kwiatkowska, M.: Quantitative verification: models techniques and tools. In: Pro-
ceedings of the the 6th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, pp. 449458 (2007)

Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilistic Systems. In: Panangaden, P., van
Breugel, F. (eds.) CRM Monograph Series, vol. 23. AMS (2004)

Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39, 50-55 (2008)
Walker, E., Brisken, W., Romney, J.: To lease or not to lease from storage clouds.
Computer 43(4), 44-50 (2010)

Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud comput-
ing. In: Grid Computing Environments Workshop (GCE 2008), pp. 1-10 (2008)

	Specification and Quantitative Analysisof Probabilistic Cloud Deployment Patterns

	Introduction
	Background
	Approach
	A Language for Probabilistic Cloud Usage Patterns
	Markov Decision Process Synthesis
	Quantitative Analysis of Cloud Deployment Queries

	Implementation and Validation
	Case Study
	Scalability

	Related Work
	Conclusion and Future Work
	References

