


Lecture Notes in Computer Science 7261
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Kerstin Eder João Lourenço
Onn Shehory (Eds.)

Hardware and Software:
Verification andTesting
7th International
Haifa Verification Conference, HVC 2011
Haifa, Israel, December 6-8, 2011
Revised Selected Papers

13



Volume Editors

Kerstin Eder
University of Bristol, Department of Computer Science
Merchant Venturers Building 3.25, Woodland Road, Bristol BS8 1UB, UK
E-mail: kerstin.eder@bristol.ac.uk

João Lourenço
NOVA University of Lisbon, Department of Computer Science and Engineering
FCT-UNL, Quinta da Tore, 2829-516 Caparica, Portugal
E-mail: joao.lourenco@fct.unl.pt

Onn Shehory
IBM Research Labs at Haifa
Haifa University Campus, Mount Carmel, Haifa 31905, Israel
E-mail: onn@il.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34187-8 e-ISBN 978-3-642-34188-5
DOI 10.1007/978-3-642-34188-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012950042

CR Subject Classification (1998): D.2.4-5, D.3.1, F.3.1-2, D.2.11, I.2.2-3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at the Haifa Verification Conference
2011, the 7th in the series of annual conferences dedicated to advancing the
state of the art and state of the practice in verification and testing of hardware
and software. HVC provides a forum for researchers and practitioners from both
academia and industry to share their work, exchange ideas, and discuss chal-
lenges and future directions of testing and verification for hardware, software,
and hybrid systems.

Academic research in system verification and testing is roughly divided into
two major paradigms: formal verification and dynamic verification (testing).
Within each paradigm, algorithms, techniques and even terminology may differ
considerably between hardware-related solutions and software-related solutions.
However, the common underlying goal of verification, across paradigms and sys-
tem types, is to gain confidence in a system meeting its functional as well as its
non-functional requirements. HVC is the only conference that brings together
researchers and practitioners from all verification and testing sub-fields, thereby
encouraging the migration of methods and ideas among domains. One key asset
of HVC is the strong participation from industry. HVC provides a platform for
the academic and industrial research communities to mix and mingle, thereby
creating new opportunities for collaborative research. We are particularly proud
to say that the papers selected for presentation at HVC 2011 covered a wide range
of sub-fields related to testing and verification applicable to software, hardware,
and hybrid systems, thus stimulating discussion within the wider verification
community.

From a total of 43 submissions, the Program Committee selected 15 regular
papers for full presentation, three tools papers for short presentation, and four
posters for the student poster session on day one of the conference. HVC 2011 was
organized in five technical sessions devoted to topics including synthesis, formal
verification, software quality, testing, and coverage. The best paper selection jury
considered both the quality of the technical paper as well as the presentation
at the conference. The best paper prize was awarded to Marijn Heule, Oliver
Kullmann, Siert Wieringa, and Armin Biere for their paper entitled “Cube and
Conquer: Guiding CDCL SAT Solvers by Lookaheads.”

Granted since 2007, the HVC award recognizes the most promising academic
and industrial contribution to the fields of testing and software and hardware
verification from the last five years. The HVC 2011 award went to Daniel Kroen-
ing from Oxford for his contribution of CBMC, a bounded model checker for C
programs. CBMC is the first and most influential industrial-strength verification
engine for a non-academic programming language, and hence a major milestone
in automated verification. To date, CBMC is the only verification engine that
supports the full functionality of C, including precise modeling of floating-point
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operations and bit-precise arithmetic. CBMC promotes the industrial adoption
of formal software verification more than any other tool in existence and is there-
fore a significant contribution to the verification community.

The conference was hosted by IBM at the IBM Research Labs in Haifa. We
would like to thank all who made HVC 2011 run smoothly and gratefully ac-
knowledge the invaluable support by many on the IBM administrative team,
without which this event could not meet its goals and match the high standards
established over the years. We would like to thank the Program Committee,
the HVC Award Committee, the Best Paper Prize Jury, the authors of all sub-
missions to HVC 2011 and, of course, the presenters of the papers and posters
accepted. All these contributed toward making HVC 2011 another success in the
HVC conference series. We would also like to thank the tutorial presenters Avner
Engel, Ofer Strichman, and Rachel Tzoref-Brill for an informative first day prior
to the main conference. Special thanks are due to our invited speakers who
enriched the program with insightful and inspiring presentations: Kathryn Kra-
nen, Jasper Design Automation, Ben Liblit, University of Wisconsin-Madison,
Klaus-Dieter Schubert, IBM Deutschland Research and Development GmbH,
and Armin Biere, Johannes Kepler University, Linz.

Finally, we would like to thank our sponsors, IBM, Cadence, Mentor Graph-
ics, and Jasper Design Automation, for their generous support in preparation
and throughout the event.

July 2012 Kerstin Eder
João Lourenço
Onn Shehory
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Preprocessing and Inprocessing Techniques

in SAT

Armin Biere

Johannes Kepler University
Altenbergerstr. 69

4040 Linz
Austria

Abstract. SAT solvers are used in many applications in and outside
of Computer Science. The success of SAT is based on the use of good
decision heuristics, learning, restarts, and compact data structures with
fast algorithms. But also efficient and effective encoding, preprocessing
and inprocessing techniques are important in practice. In this talk we
give an overview of old and more recent inprocessing and preprocessing
techniques starting with ancient pure literal reasoning and failed literal
probing. Hyper-binary resolution and variable elimination are more re-
cent techniques of this century. We discuss blocked-clause elimination,
which gives a nice connection to optimizing encodings and conclude with
our recent results on unhiding redundancy fast.

Speaker Bio
Since 2004 Prof. Armin Biere chairs the Institute for Formal Models and
Verification at the Johannes Kepler University in Linz, Austria. Between
2000 and 2004 he held a position as Assistant Professor within the De-
partment of Computer Science at ETH Zürich, Switzerland. In 1999 Biere
was working for a start-up company in electronic design automation after
one year as Post-Doc with Edmund Clarke at CMU, Pittsburgh, USA.
In 1997 Biere received a Ph.D. in Computer Science from the University
of Karlsruhe, Germany.

His primary research interests are applied formal methods, more
specifically formal verification of hardware and software, using model
checking, propositional and related techniques. He is the author and co-
author of more than 60 papers and served on the program committee
of more than 45 international workshops and conferences. His highest
influential work is the contribution to Bounded Model Checking. Deci-
sion procedures for SAT, QBF and SMT, developed by him or under his
guidance rank at the top of many international competitions. Besides
organizing several workshops Armin Biere was co-chair of SAT’06 and
FMCAD’09. He is on the editorial board of the Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), and is one of the editors
of the Handbook of Satisfiability. He also organizes the Hardware Model
Checking Competition.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Pioneering the Future of Verification: A Spiral

of Technological and Business Innovation

Kathryn Kranen

Jasper Design Automation
100 View St., Suite 101

Mountain View
94041

United States

Abstract. Changing the way the world verifies semiconductors and sys-
tems takes far more than algorithmic or methodological breakthroughs.
Over the past two decades, there have been four or five great verifica-
tion breakthroughs, while many other promising technologies have been
relegated to the dust bin. Bringing a nascent EDA technology to main-
stream use and commercial success requires alternating technological and
business innovations to accelerate adoption.

In this session, you’ll learn key concepts about bringing a disruptive
technology to widespread adoption. Kathryn Kranen will share insights
gained as a market pioneer of three technologies that have become the ma-
jor pillars of today’s mainstream system-on-chip verification: hardware
emulation, constrained-random simulation, and formal property verifica-
tion. You will also hear some of her visions of what the future of design
and verification may hold.

Speaker Bio
Kathryn Kranen is responsible for leading Jasper’s team in successfully
bringing the company’s pioneering technology to the mainstream de-
sign verification market. She has more than 20 years EDA industry
experience and a proven management track record. While serving as
president and CEO of Verisity Design, Inc., US headquarters of Verisity
Ltd., Kathryn and the team she built created an entirely new market in
design verification. (Verisity later became a public company, and was the
top-performing IPO of 2001.) Prior to Verisity, Kathryn was vice pres-
ident of North American sales at Quickturn Systems. She started her
career as a design engineer at Rockwell International, and later joined
Daisy Systems, an early EDA company. Kathryn graduated Summa cum
Laude from Texas A&M University with a B.S. in Electrical Engineering.
Kathryn is serving her fifth term on the EDA Consortium board of direc-
tors, and was elected its vice chairperson. In 2005, Kathryn was recipient
of the prestigious Marie R. Pistilli Women in Electronic Design Automa-
tion (EDA) Achievement Award. In 2009, EE Times listed Kathryn as
one of the “Top 10 Women in Microelectronics”.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Automated Detection and Repair

of Concurrency Bugs

Ben Liblit

Computer Sciences Department
University of Wisconsin–Madison

1210 West Dayton Street
Madison, WI 53706-1685

United States

Abstract. Finding and fixing concurrency bugs is critical in modern
software systems. This talk examines two recent efforts to automate both
the detection and the repair of certain types of concurrency bugs using
a mixture of static, dynamic, and statistical methods.

First, we present a low-overhead instrumentation framework to di-
agnose production-run failures caused by concurrency bugs. We track
specific thread interleavings at run-time, using sparse random sampling
to limit overhead. Methods drawn from work in statistical debugging let
us identify strong failure predictors among the sampled concurrent be-
haviors. Our approach offers a spectrum of performance and diagnosis
capabilities suitable for wide deployment to real user desktops.

Second, we describe a strategy for automatically fixing one of the
most common types of concurrency bugs in real-world code. Starting
with descriptions of bad interleavings, our tool automatically inserts
synchronization operations to steer future executions away from dan-
ger. Static analyses help us maintain good performance while reducing
the risk of deadlocks. Dynamic monitoring allows for run-time recovery
from deadlocks that could not be statically avoided.

Overall, our approach yields overheads too low to reliably measure;
produces small, simple, understandable patches; and completely elimi-
nates detected bugs in the targeted class across a variety of complex,
real-world applications.

Speaker Bio
Ben Liblit is an associate professor in the Computer Sciences Department
of the University of Wisconsin–Madison, with research interests in pro-
gramming languages and software engineering. Professor Liblit worked
as a professional software engineer for four years before beginning grad-
uate study. His experience has inspired a research style that emphasizes
practical, best-effort solutions that bring formal methods to bear against
the ugly complexities of real-world software development.

Professor Liblit completed his Ph.D. in 2004 at UC Berkeley with ad-
visor Alex Aiken. He earned the 2005 ACM Doctoral Dissertation Award
for his work on post-deployment statistical debugging, and has received
AFOSR Young Investigator and NSF CAREER awards in support of his
research.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Verification Challenges of Workload Optimized

Hardware Systems

Klaus-Dieter Schubert

IBM Deutschland Research and Development GmbH
Systems & Technology Group

71032 Böblingen
Germany

Abstract. Over the last couple of years it became more and more obvi-
ous that improvements in chip technology get smaller and smaller with
each generation. Processor frequency is stagnating for some time now
and single thread performance of general purpose processor cores is only
increasing very slowly from generation to generation despite the fact that
designers have more and more transistors they can utilize.

However, to stay competitive in the Compute Server business it is
necessary to follow Moore’s law and provide significant performance im-
provements to the customer every year. This begs the question how this
can be achieved when traditional ways like cycle time improvements and
the usage of more transistors are not yielding the desired results. The
answer has to be a combination of logic, system and software design.

This talk will first describe why continuing with “business as usual”
will fail going forward. It will then discuss a number of scenarios for
workload optimized systems to overcome these hurdles before the focus
will shift to the question: What challenges will that present to the area
of hardware verification?

Speaker Bio
Klaus-Dieter Schubert received the Dipl.-Ing. degree in electrical engi-
neering in 1990 from Stuttgart University (Germany). Subsequently, he
joined IBM in Boeblingen and has been responsible for hardware verifi-
cation of various IBM mainframe systems and its components. He was
the technical lead for the hardware verification of the z900 2064 system
before he moved to the field of hardware and software co-verification
where he established the concept of virtual power-on (VPO) for zSeries
and pSeries systems. From 2006 to 2008, Mr. Schubert was on a work as-
signment in Austin, Texas, where he has led the verification team for the
POWER7 microprocessor. Today he is an IBM Distinguished Engineer
and the technical leader for the hardware verification of future POWER
processors. He has received two IBM Outstanding Achievement Awards
for his contributions in the field of hardware verification.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, p. 4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Synthesis with Clairvoyance�

Orna Kupferman1, Dorsa Sadigh2, and Sanjit A. Seshia2

1 Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel
2 UC Berkeley, EECS Department, Berkeley CA, USA

Abstract. We consider the problem of automatically synthesizing, from a lin-
ear temporal logic (LTL) specification, a system that is guaranteed to satisfy the
specification with respect to all environments. Algorithms for solving the synthe-
sis problem reduce it to the solution of a game played between the system and its
environment, in which the system and environment alternate between generating
outputs and inputs respectively. Typically, the system is required to generate an
output right after receiving the current input. If a solution to the game exists, the
specification is said to be realizable.

In this paper, we consider the role of clairvoyance in synthesis, in which the
system can “look into the future,” basing its output upon future inputs. An in-
finite look-ahead transforms the realizability problem into a problem known as
universal satisfiability. A thesis we explore in this paper is that the notion of clair-
voyance is useful as a heuristic even in the general case of synthesis, when there
is no lookahead. Specifically, we suggest a heuristic in which we search for strate-
gies where the system and the environment try to force each other into hopeless
states in the game — states from which they cannot win, no matter how large the
lookahead. The classification to hopeful and hopeless states is thus based on a
modified notion of universal satisfiability where the output prefix is constrained.
Our approach uses the automata for the specification in the process of classifica-
tion into hopeful and hopeless states, and uses the structure of the automata in
order to construct the game graph, but the important point is that the game itself
is a reachability game. We demonstrate the efficiency of our approach with exam-
ples, and outline some directions for future work exploring the proposed approach.

1 Introduction

A frequent criticism against verification methods is that verification is done after signif-
icant resources have already been invested in the development of the system. The critics
argue that the desired goal is to use the specification in the system development process
in order to guarantee the design of correct systems. This is called automatic synthesis.
Formally, given a specification to a reactive system, typically by means of an LTL for-
mula, the goal in automatic synthesis is to transform it into a system that is guaranteed
to satisfy the specification.1

� This research was supported in part by NSF grant CNS-0644436 and the Gigascale Systems
Research Center, one of six research centers funded under the Focus Center Research Program
(FCRP), a Semiconductor Research Corporation entity.

1 To make life interesting, several different methodologies in system design are all termed “syn-
thesis”. The automatic synthesis we study should not be confused with logic synthesis, which
is a process by which an abstract form of a desired circuit behavior (typically, register transfer
level, which by itself may be the outcome of yet another synthesis procedure, termed high-level
synthesis) is turned into a design implementation by means of logic gates.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, pp. 5–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In the late 1980s, several researchers realized that the classical approach to system
synthesis, where a system is extracted from a proof that the specification is satisfiable,
is well suited to closed systems, but not to open (also called reactive [10]) systems
[1,4,21]. A reactive system interacts with its environment, and a correct system should
satisfy the specification with respect to all environments. The right way to approach
synthesis of reactive systems is to consider the situation as a (possibly infinite) game
between the environment and the system. More formally, a strategy for a system with
inputs in I and outputs in O maps finite sequences of inputs — words in (2I)∗, which
correspond to the actions of the environment so far, to an output in 2O — a suggested
action for the system. A specificationψ over I∪O is then realizable iff there is a strategy
all of whose computations satisfy ψ, whre the computation of a strategy f : (2I)∗ → 2O

on a infinite sequence i0, i1, i2, . . . ∈ (2I)ω is i0 ∪ f(ε), i1 ∪ f(i0), i2 ∪ f(i0 · i1), . . ..
The synthesis problem for ψ is to return a finite-state transducer that realizes it (or an
answer that ψ is not realizable).

While model-checking theory has led to industrial development and use of formal-
verification tools, the integration of synthesis in the industry is slow. This has to do
with theoretical limitations, like the complexity of the problem (the synthesis problem
for linear temporal logic (LTL) is 2EXPTIME-complete [21]), methodological reasons
(the traditional solutions to the synthesis problem require the determinization of au-
tomata on infinite words [23] and the solution of parity games [15]), and practical
reasons: the difficulty of writing complete specifications and environment assumptions,
the lack of satisfactory compositional synthesis algorithms, and suboptimal results (cur-
rent algorithms produce systems that satisfy the specification, but may be larger or less
well-structured than systems constructed manually, and may satisfy the specification in
a peculiar way).

In the last decade there has been a significant advances in the development of prac-
tical algorithms for synthesis. In the theoretical fronts, researchers have suggested LTL
synthesis algorithms that circumvent determinization and parity games [17], algorithms
for fragments of LTL that can be implemented symbolically [20], and algorithms that
reduce LTL synthesis to the solution of safety games [6]. These algorithms have been
implemented [7,13,14,20], and they also support basic compositional synthesis [7,16].
Synthesis tools that are based on them give encouraging recent results (c.f., synthesis
of an arbiter for RAM’s on-chip AMBA advanced high-performance bus from tem-
poral specifications [9], an electronic voting machine [5], and more). Work has also
been done on generating environment assumptions to reduce the specification burden
for synthesis [18].

In this paper we describe a new approach for solving LTL synthesis. Consider an LTL
formula ψ. Like earlier approaches, our main goal is to circumvent the determinization
of the automaton for ψ and the solution of parity games. Unlike earlier approaches, our
algorithm is based on reducing the synthesis problem to a solution of a reachability game,
played between the system and the environment on a graph obtained by combining the
subset constructions of the automata forψand¬ψ. Our algorithm is a heuristic – the goals
of the system and the environment in the reachability game are not dual, and it may be
that no player can force the opponent to its target states. Even in that case, the information
obtained from the game enables us to restrict standard synthesis algorithms to a subset of
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the game, which is often much smaller. In addition, as we elaborate below, our algorithm
involves theoretical issues at the heart of the synthesis problem that we believe should get
more attention. In particular, we study synthesis with clairvoyance (look-ahead), which
is strongly related to the need to work with deterministic automata [11,12].

Let us now explain the idea behind our algorithm. Recall that satisfiability of an LTL
formula ψ only guarantees that there is a collaborative input sequence x ∈ (2I)ω with
which the system can interact and generate an output sequence y ∈ (2O)ω such that
the composition of x and y into a computation in (2I∪O)ω satisfies ψ. On the other
hand, in realizability, the system should have a strategy that satisfies the specification
with respect to all possible environments. Between the satisfiability and the realizabil-
ity problems, one can consider universal satisfiability, where for every input sequence
x ∈ (2I)ω, there is an output sequence y ∈ (2O)ω such that the composition of x
and y satisfies ψ. Clearly, not all satisfiable specifications are universally satisfiable.
Also, it is not hard to see that while universal satisfaction is a necessary condition for
realizability, it is not a sufficient condition. A good way to understand the difference
between realizability and universal satisfiability is to consider realizability with look-
ahead – a notion that generalizes both of them. In realizability with look-ahead k, for
k ≥ 0, we also seek a strategy for the system. Here, however, the system generates the
output at position j only after seeing the input in all positions up to j + k. It is easy to
see that realizability coincides with realizability with look-ahead 0, whereas universal
satisfiability coincides with realizability with look-ahead ∞.

Look-ahead helps the system in two ways. First, when the ability to satisfy the speci-
fication depends on information from the future, the look-ahead reveals the future. Sec-
ond, when different futures with the same prefix require different outputs, look-ahead
postpones the need to commit to the same output for both futures. One may wonder if
these two ways are not two different interpretation of the same extra burden that realiz-
ability poses on universal satisfiability, and indeed this is the case. In fact, this is exactly
the same burden that requires us to determinize the specification automaton in the pro-
cess of solving the realizability problem: different input sequences that share the same
prefix may need to follow different runs of the nondeterministic automaton, and the run
may differ already in the joint prefix. A look-ahead enables us to follow different runs
in the joint prefix, as long as the difference between the sequences is “in the range of
visibility” of the strategy. 2

With all this in mind, our algorithm works as follows. First, we try our luck and check
whether ψ is universally satisfiable. If it is not, then clearly ψ is also non-realizable and
we are done. If it is, then we again try our luck and check whether ¬ψ is strongly satisfi-
able by the environment. If it is not, then again we are done, as we can conclude that ¬ψ
is not realizable by the environment, making ψ realizable by the system, and in fact it is
easy to find a transducer for it – the transducer can ignore the input and just generates
the output that witnesses the fact ¬ψ is not universally satisfiable by the environment.
Note that checking universal satisfaction is much simpler than checking realizability,
not just from a theoretical point of view (the problem is EXPSPACE-complete [24]),
but also in practice – universal satisfaction amounts to checking universality of a non-

2 This is similar to the link between online/offline algorithms and deterministic/nondeterministic
automata [2].
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deterministic Büchi word automaton. Our experiments show that we may actually be
lucky quite often.

Our algorithm becomes more interesting when both ψ and ¬ψ are universally satis-
fiable. Then, we know that with an infinite look-ahead, both the system and the envi-
ronment can satisfy their dual goals, and it is only the nature of the interaction, which
requires both of them to proceed on-line, that makes only one of ψ and ¬ψ realizable.3

Consider a prefix w ∈ (2I∪O)∗ of a computation. We can say that the system is hopeful
after w if ψ stays universally satisfiable even when the interaction is restricted to start
with w. Note that in the definition of universal satisfaction, the outputs are existentially
quantified. Thus, fixing the outputs in w may indeed prevent ψ from being universally
satisfiable. Dually, the environment is hopeful after w if ¬ψ stays universally satisfi-
able. Our algorithm checks whether the system has a strategy to force the environment
to a prefix of a computation after which only the system is hopeful, and dually for the
environment. In the first case, we can conclude that ψ is realizable, and we also get a
transducer for it. In the second, we know that ¬ψ is realizable by the environment. The
good news is that the classification of prefixes can be reduced to a sequence of checks
for universal satisfaction, and is needed only for prefixes the lead to different states in
the subset construction of the automata for ψ and ¬ψ, with no determinization needed.
Also, as noted above, in case neither the system nor the environment have a strategy
to make the opponent hopeless, we can restrict traditional synthesis algorithms to take
into an account the need of the system and the environment to stay in a hopeful set of
states. As our examples show, our algorithm often terminates with a definite answer,
and it may also leads to a significant reduction in the state space. In Section 6, we also
point to other advantages of our algorithm.

Finally, we study synthesis with look-ahead and describe an algorithm for solving it.
A solution for the problem is described already in [12] in the context of sequential cal-
culus, Here, we adjust the solution to the modern setting of LTL and parity games, and
relate it to our heuristic. Beyond the theoretical interest in realizability with look-ahead
as a notion between universal satisfiabaility and realizability, look-ahead is interesting
also from a practical point of view. As we demonstrate in the paper (see also [3,11]),
look-ahead can make the difference between a specification being realizable and not
being realizable. Since in practice we often do have a look-ahead (say, when the envi-
ronment buffers its actions), it makes sense to use it.

2 Preliminaries

2.1 Satisfiability, Universal Satisfiability, and Realizability

Let I and O be finite sets of input and output signals, respectively. For an input se-
quence x = i0, i1, . . . ∈ (2I)ω and an output sequence y = o0, o1, . . . ∈ (2O)ω, the
computation x⊕ y is the interleaved sequence i0 ∪ o0, i1 ∪ o1, . . . ∈ (2I∪O)ω .

Consider an LTL formula ψ over I∪O. We consider three levels of satisfaction of ψ.

– The formula ψ is satisfiable if there is a computation that satisfies ψ.

3 An orthogonal research direction is to study the cases in which this happens, and the setting in
which a bounded lookahead is sufficient. As shown in [11], such problems are decidable.
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– The formula ψ is universally satisfiable if for every input sequence x ∈ (2I)ω,
there is an output sequence y ∈ (2O)ω such that x⊕ y satisfies ψ.

– The formula ψ is realizable if there is a strategy f : (2I)∗ → 2O such that for
every input sequence x = i0, i1, i2, . . . ∈ (2I)ω, the computation of f on x, that is
i0 ∪ f(ε), i1 ∪ f(i0), i2 ∪ f(i0 · i1), . . . satisfies ψ.

It is not hard to see that realizability implies universal satisfiability, which implies sat-
isfiability, but not the other way around. For example, let I = {q} and O = {p}. It is
easy to see that the formula Gq is satisfiable but not universally satisfiable. Also, the
formula G(p ↔ q) is universally satisfiable but not realizable. Indeed, if, by way of
contradiction, f is a strategy that realizes it, then an input sequence x that starts with q
if f(ε) = ∅ and starts with {∅} if f(ε) = {p} is such that the computation of f on x
does not satisfy p↔ q, and hence does not satisfy G(p↔ q).

We note that in our definition of realizability, we did not require the strategy f to be
finite state. Since LTL formulas induce regular languages, adding such a requirement
would result in an equivalent definition [22]. Formally, a strategy f : (2I)∗ → 2O is
finite state if for every o ∈ 2O, the language f−1(o), which is a subset of (2I)∗, is
regular. Equivalently, f is finite state if it is induced by a finite-state transducer – a
deterministic automaton over the alphabet 2I in which each state is labeled by a letter
in 2O. Then, given a sequence w ∈ (2I)∗, the strategy f induced by the transducer is
such that f(w) is the label of the state that the transducer visits after reading w.

2.2 Automata on Infinite Words

A specification over I ∪ O can be viewed as a language over the alphabet 2I∪O. The
decision procedures for the three levels of satisfaction discussed above follow this view,
and are based on automata on infinite words.

A nondeterministic automaton is a tuple A = 〈Σ,Q,Q0, δ, α〉, where Σ is a finite
nonempty alphabet, Q is a finite nonempty set of states, Q0 ⊆ Q is a nonempty set of
initial states, δ : Q×Σ → 2Q is a transition function, and α is an acceptance condition.
The automaton A is deterministic if |Q0| = 1 and |δ(q, σ)| ≤ 1 for all states q ∈ Q and
symbols σ ∈ Σ.

A run r of A on an infinite word w = σ1 · σ2 · · · ∈ Σω is an infinite sequence
q0, q1, . . . of states such that q0 ∈ Q0, and for all i ≥ 0, we have qi+1 ∈ δ(qi, σi+1). The
acceptance condition α determines which runs are accepting. In the Büchi acceptance
condition, α ⊆ Q, and a run r is accepting if it visits some state in α infinitely often.
Formally, let inf (r) = {q : qi = q for infinitely many i’s }. Then, r is accepting iff
inf (r)∩α �= ∅. A wordw is accepted by an automaton A if there is an accepting run of
A on w. The language of A, denoted L(A), is the set of words that A accepts. We say
that A is empty if L(A) = ∅ and that A is universal if L(A) = Σω. A pre-automaton is
an automaton without an acceptance condition. We use NBW and DBW to abbreviate
nondeterministic and deterministic Büchi automata, respectively.

We are going to mention also the co-Büchi and the parity acceptance conditions.
The condition co-Büchi is dual to Büchi, thus a run is accepting if it visits α only
finitely often. The parity is more complicated and for our purposes here it is enough to
note that determistic parity automata (DPWs) are sufficiently expressive to recognize
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all the languages recognized by nondeterministic Büchi automata. Thus, NBWs can be
translated to DPWs [19,23].

Theorem 1. [25] For every LTL formula ψ, there is an NBW Aψ with 2O(|ψ|) states
such that L(Aψ) = {w : w |= ψ}.

2.3 Traditional Decision Procedures

In this section we briefly review the traditional algorithms for solving satisfiability,
universal satisfiability, and realizability.

Deciding satisfiability is PSPACE-complete: given ψ, one can follow Theorem 1 and
constructs the NBW Aψ. Clearly, ψ is satisfiable iff L(Aψ) is not empty. Since the size
of Aψ is exponential in the length of ψ and checking its nonemptiness can be done
on-the-fly in NLOGSPACE, the PSPACE complexity follows.

Deciding universal satisfiability is more complicated and is EXPSPACE-complete:
Starting with Aψ, we construct an NBW A∃O

ψ , obtained from Aψ by taking its projec-
tion on I . That is, if A = 〈2I∪O, Q,Q0, δ, α〉, then A∃O

ψ = 〈2I , Q,Q0, δ
∃O, α〉, where

for a state q ∈ Q and input i ∈ 2I , we have that δ∃O(q, i) = {s : ∃o ∈ 2O such that s =
δ(q, i ∪ o)}. It is not hard to see that a word x ∈ (2I)ω is accepted by A∃O

ψ iff there
is a word y ∈ (2O)ω such that x ⊕ y is accepted by A. Hence, A∃O

ψ is universal iff
ψ is strongly satisfiable. Checking the universality of A∃O

ψ can be done by checking
the emptiness of its complement. Since the size of Aψ, and hence also of A∃O

ψ is ex-
ponential in the length of ψ, complementation involves an exponential blow-up, and
emptiness can be checked in NLOGSPACE, the EXPSPACE complexity follows.

Finally, deciding realizability is even more complicated, and is 2EXPTIME-complete.
The traditional algorithm determinizes Aψ, and transforms the obtained DPW into a
two-player game between the system and the environment. Formally, let Dψ = 〈2I∪O,
Q, q0, δ, α〉 be the DPW for ψ. Then, the game is Gψ = 〈V,E〉, where the set of ver-
tices V = Vsys∪Venv is such that Vsys = Q and Venv ⊆ 2Q. For S ∈ 2Q, we have that
S ∈ Venv iff there is q ∈ Q and o ∈ 2O such that S = δ∃I(q, o), in which case E(q, S).
Also, E(S, q′) iff q′ ∈ S. Deciding the realizability problem then amounts to deciding
the winner in the game Gψ with winning objective α. Intuitively, each transition of Dψ
is partitioned in the gameGψ into two transitions: consider a vertex q ∈ Vsys. First, the
system chooses an output o ∈ 2O, and the game moves to the vertex δ∃I(q, o) ∈ Venv .
Then, the environment chooses an input i ∈ 2I and the game continues to the state in
δ∃I(q, o) that i leads to, namely to δ(q, i ∪ o) ∈ Vsys.

It is sometimes convenient to refine Gψ to include more information, which enables
a labeling of the edges by the actions taken by the players. Thus, hereE ⊆ (Vsys×2O×
Venv) ∪ (Venv × 2I × Vsys). For that, we define, Vsys = Q and Venv ⊆ Q× 2O × 2Q

is such that 〈q, o, S〉 ∈ Venv iff S = δ∃I(q, o). Then, we also have E(q, o, 〈q, o, S〉). In
addition, for all vertices 〈q, o, S〉 ∈ Venv and q′ ∈ Vsys, we have that E(〈q, o, S〉, i, q′)
iff q′ = δ(q, i ∪ o). Note that q′ ∈ S.

The system and the environment are dual, in the sense that we can view the setting as
one in which the environment is trying to satisfy ¬ψ when it interacts with all systems.
Thus, the roles of the system and the environment may be switched, and we can talk
about a formula ψ being universally satisfied by the environment, meaning that for
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every output sequence y ∈ (2O)ω, there is an input sequence x ∈ (2I)ω such that x⊕ y
satisfies ψ. We can also talk about ψ being realizable by the environment, meaning
that there is a finite-state strategy g : (2O)∗ → 2I such that for every output sequence
y = o0, o1, o2, . . . ∈ (2O)ω , the computation of g on y, that is o0 ∪ g(o0), o1 ∪ g(i0 ·
o1), o2 ∪ g(o0 · o1 · o2), . . . satisfies ψ. Note that in both types of realizability (by
the system and by the environment), the system moves first. Thus, the settings are not
completely dual. For universal satisfiability, the identity of the player that moves first is
irrelevant, and the definitions are completely dual.4 From determinancy of games, we
know that either ψ is realizable by the system or ¬ψ is realizable by the environment.

3 Using Universal Satisfiability

In this section we describe the first steps in our methodology for using universal sat-
isfiability in the process of checking realizability. We also point to realizability with
look-ahead as a notion between universal satisfiability and realizability.

Given a property ψ over I and O, we proceed as follows.

(1) Check universal satisfiability of ψ.
(1.1) If the answer is negative, we are done. Indeed, if ψ is not universally satisfi-

able, then clearly ψ is also not realizable.
(1.2) If the answer is positive, proceed to (2).

(2) Check universal satisfiability of ¬ψ by the environment.
(2.1) If the answer is negative, we are done. Indeed, if ¬ψ is not universally sat-

isfiable by the environment, then clearly ¬ψ is also not realizable by the envi-
ronment, implying that ψ is realizable by the system. Moreover, a transducer
for ψ can simply generate the output sequence y ∈ (2O)ω for which for all
x ∈ (2I)ω we have that x⊕ y |= ψ.

(2.2) If the answer is positive, proceed to (3).
(3) This is the interesting case: both ψ and ¬ψ are universally satisfiable. Note that

while it cannot be that both ψ and ¬ψ are realizable, they can both be universally
satisfiable. When this happens, we know that one of the players, the system or the
environment, cannot arrange the responses that work for the universal satisfiability
in the form of the strategy that is needed for realizablity. For example, consider the
formula ψ = G(p ↔ q), with I = {q} and O = {p}. Note that ¬ψ = F (¬(p ↔
q)). While both ψ and ¬ψ are universally satisfiable, only ¬ψ is realizable by the
environment.

The example of a robotic vehicle controller from [18], demonstrates how our heuristic
detects that the system is not realizable when sufficient assumptions are not provided.
The example of the robotic vehicle controller aims to synthesize a discrete planner that
allows an autonomous robot to move in a rectangular grid, while avoiding obstacles.
The obstacles are put and cleared by the environment at arbitrary times and squares. In
this example, the specification ψ is of the form A → G, where A is a conjunction of

4 The cleanest way to handle this lack of duality is to parameterize the synthesis problem with
a ”who moves first” flag. We decided to keep the setting simpler and let the system move first
in both settings.



12 O. Kupferman, D. Sadigh, and S.A. Seshia

assumptions on the environment, and G is a conjunction of guarnatees. The guarantees
require the car to start at the initial square, and in each step to move to an adjacent
square or to stay in the current one. The car cannot move to an occupied square, and
it eventually have to reach the destination square. The assumptions on the environment
require that there are no obstacles at the initial and destination squares. With this weak
assumption, ψ is not universally satisfied and our heuristic terminates at Step (1.1). In
order to make the specification realizble, we need to add stronger assumptions to A.
Adding the assumption that “ all the squares must be clear of obstacles infinitely often”
resolves the problem, and makes ψ realizable. Here too, out heuristic is helpful, as with
the stronger assumption we get that ¬ψ is not universally satisfied by the environment,
thus our heuristic terminates at Step (1.2).

Before we proceed to describe how our algorithm continues in Step (3), let us dis-
cuss the situation in more detail. Consider again the formula ψ = G(p ↔ q). As noted
above, ψ is not realizable. Intuitively, once the system generates an output, the envi-
ronment can generate an input that does not agree with the polarity of the output, thus
violating the specification. But what if the system can generate its output only after
seeing the next input? Then, the specification is realizable. In general, the difference
between universal satisfiability and realizability is the fact that in universal satisfiability
the system knows the whole sequence of inputs before generating the output, whereas
in realizability, the system has to react online and generate the next output without
knowing the inputs yet to come. Between these two extreme cases, we can talk about
realizability with look-ahead, where the system has to generate the next output after
seeing a prefix of the inputs yet to arrive.

Definition 1. [realizable with look-ahead] An LTL formula ψ over I ∪O is realizable
with look-ahead k (k-realizable, for short), if there is a strategy f : (2I)≥k → 2O such
that for every input sequence w = i0, i1, i2, . . . ∈ (2I)ω, the computation of f on w,
that is i0 ∪ f(i0, i1, . . . , ik−1), i1 ∪ f(i0, i1, . . . , ik), i2 ∪ f(i0, i1, . . . , ik+1), . . . , ij ∪
f(i0, i1, . . . , ik+j−1), . . . satisfies ψ.

As explained in Section 1, both universal satisfiability and realizability are a special
cases of k-realizability; the first with k = ∞ and the second with k = 0. Also, re-
alizability with look-ahead is interesting also in practice, as it corresponds to realistic
settings and can make specifications realizable [11,12].

4 When Both ψ and ¬ψ Are Universally Satisfiable

In this section we continue the description of our algorithm, namely what to do when
we get to Step (3). Let Aψ = 〈2I∪O, S, S0, ρ, α〉 and A¬ψ = 〈2I∪O, S′, S′

0, ρ
′, α′〉 be

NBWs for ψ and ¬ψ, respectively. Let Uψ be the pre-automaton obtained by applying
the subset construction to Aψ and A¬ψ. Thus, Uψ = 〈2I∪O, 2S × 2S

′
, 〈S0, S

′
0〉, δ〉,

where for all 〈P, P ′〉 ∈ 2S × 2S
′

and σ ∈ 2I∪O, we have that δ(〈P, P ′〉, σ) =
〈ρ(P, σ), ρ′(P ′, σ)〉. For a state 〈P, P ′〉 of Uψ, letL(AP

ψ ) andL(AP
¬ψ) be the languages

of Aψ and A¬ψ with initial sets P and P ′, respectively. We say that a set P ∈ 2S is
system hopeful (sys-hopeful, for short) if for all x ∈ (2I)ω there is y ∈ (2O)ω such that
x ⊕ y ∈ L(AP

ψ ). We say that a set P ′ ∈ 2S
′

is environment hopeful (env-hopeful, for
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short) if for all y ∈ (2O)ω there is x ∈ (2I)ω such that x⊕ y ∈ L(AP ′
¬ψ). Thus, system

hopefulness coincides with universal satisfaction, except that instead of talking about
satisfaction of an LTL formula we talk about the membership in the language of AP

ψ .

Dually, environment hopefulness refer to membership in AP ′
¬ψ.

Consider a state 〈P, P ′〉 ∈ 2S × 2S
′

of Uψ. It is possible to decide in space expo-
nential in the length of ψ whether P is system hopeful and whether P ′ is environment
hopeful. Indeed, the check is similar to the check for universal satisfaction described in
Section 2. For the case of system hopefulness, we project AP

ψ on 2I and check that the

obtained NBW is universal. For environment hopefulness we do the same, with AP ′
¬ψ

and a projection on 2O.

Remark 1. In case we start with a deterministic automaton Dψ for the specification, we
do not have to apply the subset construction, and we can work directly with Dψ. Then,
the notion of system and environment hopefulness applies to single states, and checking
whether a state s is env-hopeful is done by dualizing Dψ , thus getting a deterministic
co-Büchi automaton for the negation of ψ. We can then project the co-Büchi automaton
existentially on 2O, and check whether the result is universal (see Example 1).

We can now describe the continuation of the algorithm:

(3) Consider the game induced by the pre-automaton Uψ.
(3.1) If the system has a strategy to reach a state 〈P, P ′〉 such that P is sys-hopeful and

P ′ is not env-hopeful, then we are done. Indeed, ψ is realizable, and we can also
have a transducer for it.

(3.2) If the environment has a strategy to reach a state 〈P, P ′〉 such that P ′ is env-
hopeful and P is not sys-hopeful, then we are done. Indeed, in a manner dual to the
one above, ¬ψ is realizable by the environment.

(3.3) If we got here, both the system and the environment have strategies to stay forever
in the region of states that are both sys-hopeful and env-hopeful. At this point we
give up and turn to solve the realizability problem using one of the traditional al-
gorithms. The information gathered during our algorithm is still useful and enables
us to restrict the realizability game to states in the region of hopeful states (all the
other states are replaced by two states – one is winning for the system and one is
winning for the environment).

We conclude the description of the algorithm with the following theorem.

Theorem 2. Consider an LTL specification ψ over I ∪O.

1. If the algorithm reaches Step (3), then all the states 〈P, P ′〉 that are reachable in
Uψ are such that at least one of the sets P and P ′ is hopeful.

2. If the algorithm terminates in Steps (2.1) or (3.1), then ψ is realizable and the
checks done by the algorithm induce a transducer for the system that satisfies ψ.

3. If the algorithm terminates in Steps (1.1) or (3.2), then ψ is not realizable and the
check done induce a transducer for the environment that satisfies ¬ψ.

Proof: We start with the first point. Consider a state 〈P, P ′〉 that is reachable in Uψ.
Let w be a word that leads to 〈P, P ′〉. Consider now the parity game that corresponds to
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the realizability problem for ψ and the vertex vw that the game reaches after the system
and the environment proceeds according to w. Since parity games are determined, vw
is a winning vertex for either the system (in which case P must be hopeful) or the
environment (in which case P ′ must be hopeful).

Now, if the algorithm terminates Step (2.1), then ψ is realizable as a transducer for it
can simply generate the output sequence y ∈ (2O)ω for which for all x ∈ (2I)ω we have
that x⊕ y |= ψ; the fact ¬ψ is not universally realizable by the environment guarantees
that such a sequence y exists, and we know how to find it: this is the sequence that
witnesses the nonemptiness of the complement of A∃I

¬ψ.
Finally, when the algorithm terminates in Step (3.2), then ψ is realizable as a trans-

ducer for it can start with the strategy that reaches 〈P, P ′〉 such that P is sys-hopeful
and P ′ is not env-hopeful. It is guaranteed that when we apply Steps (1+2) of the algo-
rithm with AP

ψ instead of ψ and AP ′
¬ψ instead of ¬ψ, we would end up end up in Step

(2.1), thus once generating the prefix that leads to 〈P, P ′〉, the transducer can continue
with a fixed output sequence, as described above. The case ψ is not realizable is dual.

We now demonstrate our algorithm with three examples. In all of them, we have for
I = {q} and O = {p}.

Example 1. We start with an example in which the NBW for the specification is deter-
ministic. Let ψ = G(p ↔ Fq). Note that ψ is equivalent to G(p → Fq) ∧ G(¬p →
G¬q). The specification is universally satisfiable: given a sequence x ∈ (q,¬q)ω , it
is not hard to see that the sequence y ∈ (p,¬p)ω in which p holds in position j iff q
holds in a position grater than j is such that x ⊕ y |= ψ. Consider the negation of the
specification, that is ¬ψ = F (p ∧ G¬q) ∨ F (¬p ∧ Fq). It is not hard to see that ¬ψ
is universally satisfiable by the environment. Indeed, given a sequence y ∈ (p,¬p)ω,
a sequence x ∈ (q,¬q)ω in which q holds exactly when p does not hold, is such that
x⊕ y |= ¬ψ.

On the left of Figure 1 below we describe a DBW Dψ for ψ. Since Dψ is determinis-
tic, we do not have to apply the subset construction on it. On the right, we describe the
two projections of Dψ on I and on O.

Note that in D∃O
ψ , only s0 is universal (the other states are not universal since, for

example, qω is not accepted from them). Thus, only s0 is sys-hopeful in Dψ. In order to

Fig. 1. A DBW Dψ for ψ = G(p ↔ Fq) (left), and its projections D∃O
ψ and D∃I

¬ψ on I (middle)
and O (right), respectively
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Fig. 2. The game induced by Dψ

find the env-hopeful states we consider the co-Büchi automaton D∃I
¬ψ. Here, all states

are universal. Indeed, s3 is an accepting sink, s1 can get with both p and ¬p to s3 in
one transition, s2 can stay in s2 forever with pω, and with all other words it can reach
s3, and finally, s0 can reach s2 and s1 with p and ¬p, respectively. It follows that all the
states in Dψ are env-hopeful.

The game induced by Dψ appears in Figure 2. The system states are ovals (and in
them, the system chooses between p and ¬p), and the environment states are rectangles
(the environment chooses q or ¬q). It is not hard to see that the environment has a
strategy to force the system to a state that is not sys-hopeful while staying within env-
hopeful states. Thus, we can conclude that ψ is not realizable.

Example 2. We now consider a case where Aψ is nondeterministic, thus we proceed
with NBWs for both ψ and ¬ψ. Consider the specification ψ = (Gp ∧ Fq) ∨ (G¬p ∧
F¬q). Thus, either the system always generates p and the environment generates q
eventually, or the system always generates ¬p, and the environment generates ¬q even-
tually. Note that ¬ψ = (Fp∧ F¬p)∨ (G¬q ∧Fp) ∨ (Gq ∧F¬p). It is not hard to see
that ψ is universally satisfiable by the system and ¬ψ is universally satisfiable by the
environment.

In Figure 3, we describe the NBWs Aψ (on the left, a union of two components) and
A¬ψ (on the right, a union of three components).

We now check the system and environment hopefulness of sets that are reachable in
the subset construction of the two NBWs. If we get to a set that is not hopeful, there
is no need to continue the construction from it. In Figure 4 we describe the obtained
deterministic pre-automata. In the figure, we indicate by dashed lines that the set is not
hopeful. For example, the set {s0} is not sys-hopeful since there is no output sequence
y ∈ (p,¬p)ω such that x ⊕ y is accepted from A{s0}

ψ for x = (¬q)ω . Similarly, the set

Fig. 3. The NBWs Aψ (left) and A¬ψ (right)
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Fig. 4. The pre-automata obtained by applying the subset construction toAψ (left) andA¬ψ (right)

Fig. 5. The game corresponding to Uψ

{t0, t5} is not env-hopeful since there is no input sequence x ∈ (q,¬q)ω such that x⊕y
is accepted from A{t0,t5}

¬ψ for y = (¬q)ω .
In Figure 5 we describe the game corresponding to Uψ, obtained by combin-

ing the two pre-automata. As indicated in the figure, the states ({s1}, {t2, t6}) and
({s3}, {t0, t5}) are winning states for the system. Indeed, {s1} is sys-hopeful whereas
{t2, t6} is not env-hopeful, and likewise, {s3} is sys-hopeful whereas {t0, t5} is not
env-hopeful. Dually, the states ({s0}, {t1, t6}) and ({s2}, {t3, t5}) are winning states
for the environment. It is not hard to see that the environment has a strategy to reach its
winning states, thus we conclude that ψ is not realizable.

Example 3. In this example we demonstrate a case in which our algorithm does not
reach a definite answer. Consider the specification ψ = F (p ↔ q). Again, both ψ and
¬ψ are universally satisfiable, so we get to Step (3). The deterministic automatonDψ of
ψ appears in Figure 6. It is easy to see that both s0 and s1 are system hopeful, whereas
only s0 is environment hopeful. However, the system does not have a strategy to force
the game induced by Dψ to s1: if the system proceeds from s0 with p, the environment
will respond with ¬q, and if the system proceeds with ¬p, the environment will respond
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Fig. 6. A DBW for ψ = F (p↔ q) and the game corresponding to it

with q. Also, since both s0 and s1 are system hopeful, the environment does not have a
strategy to force the game into states that are not system hopeful. So, we have to solve
the realizability problem. We can use, however, the fact that game would get stuck in
s0, which would not satisfy the Büchi condition, thus ψ is not realizable.

5 LTL Realizability with Look-Ahead

In Section 3, we defined LTL realizability with look-ahead. This notion is not funda-
mentally new, and the problem of k-realizability was studied already in 1972, in the
context of sequential calculus [12]. Here, we adjust the solution to the modern set-
ting of LTL and DPWs, and describe how our algorithm can be adjusted to handle
k-realizability too.

Theorem 3. Consider an LTL formula ψ and an integer k ≥ 0. Let Ak
ψ be such that

L(Ak
ψ) = {x⊕ y : x⊕ yk ∈ L(Aψ)}, where yk is the suffix of y from position k.

– We can construct an NBW Ak
ψ as above with number of states exponential in |ψ|

and k.
– We can construct an DPW Ak

ψ as above with number of states doubly-exponential
in |ψ| and exponential in k.

– Applying synthesis algorithms with respect to Ak
ψ rather than Aψ solves the

k-realizability problem.

Proof: Let Aψ = 〈2I∪O, Q, δ, q0, α〉 be an NBW for ψ. We define Ak
ψ = 〈2I∪O, Q′,

ε, δ′, α′〉, where

– Q′ = (
⋃

0≤j<k(2
I)j) ∪ (Q × (2I)k). The first type of states is for accumulating

the vector of the last k − 1 inputs. The second type is to be used after we have
accumulated the first k inputs. Then, we follow the runs of Aψ , with the output
being combined with the input read k letters earlier.

– The transition function is defined as follows.
• For the first type of states, if 0 ≤ j < k − 1, we ignore the output component

of the letter read (intuitively, since we shift the output by k, the output in the
first k − 1 levels is not important) and only accumulate inputs in the vector.
Accordingly, δ′(〈i1, . . . , ij〉, i ∪ o) = {〈i1, ..., ij , i〉}.

• In the last level of states from the first type, we still ignore the output read but
get ready to start following the runs of Aψ. Accordingly, δ′(〈i1, . . . , ik−1〉, i∪
o) = Q0 × {〈i1, ..., ik−1, i〉}.

• Then, we continue to follow the runs ofAψ , where o is combined with the input
read k transitions earlier. Accordingly, δ′(〈q, i1, . . . , ik〉, i∪o) = δ(q, i1∪o)×
{〈i2, ..., ik, i〉}.
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– α′ is obtained from α by replacing a set F ⊆ Q by the set F × (2I)k.

The construction of the DPW Ak
ψ is similar, starting from a DPW Aψ for the property.

Note that we could have also determinized the NBW described above, but the blow-up
in terms of I could then have been doubly exponential. Note that Ak

ψ proceeds accord-
ing to the input that was read k positions earlier, combined with the current output. This
captures the fact that in k-realizability, the output is combined with the input only after
knowing what the previous k inputs were. Accordingly, the game induced by the DPW
Ak
ψ solves the k-realizability problem.

Applying our algorithm in order to solve the k-realizability problem, we proceed with the
game obtained from the subset construction applied on the the NBWsAk

ψ andAk
¬ψ. Note

that in both automata, the O-component of a letters is combined with the I-component
of the letter read k positions earlier. All the other details of the algorithm are the same.

6 Discussion

We described a simple heuristic that replaces the parity game corresponding to LTL syn-
thesis with a game in which the system and the environment try to force each other into
hopeless states in the game. Our definition of hopeless is based on universal satisfaction
– the game-free variant of realizability, and is therefore easier to reason about.

Below we discuss some further advantages of our heuristic, and some directions
for future research. First, several challenges in the context of realizability are easier
to cope with using our approach. This includes compositional synthesis [16], mining
for assumptions [18], and testing for inherent vacuity in specifications [8]. In all these
problems, one can try to circumvent the need to work with parity games by using our
heuristic that use instead hopeless finite prefixes.

Our definition of hopeful states can be replaced by other definitions, leading to looser
(but even more efficient) or tighter (but more complex to achieve) heuristics. On the
loose side, one can work with the nondeterministic automaton (rather than the subset
construction on it). Under this definition, a prefix of a computation is hopeful if there is
a single state s in Aψ such that the prefix can lead to s and As

ψ is universally satisfiable.
Note that now, states that are not hopeful may still be reachable by hopeful prefixes, thus
the heuristic can be used in order to direct the subset construction to construct subsets
only when such a construction is needed. On the tighter side, one can replace universal
satisfaction by definitions that are game-based, but are easier to solve than parity.

Finally, in case our algorithm does not terminate with a definite answer, we suggested
to continue with traditional synthesis algorithms, with actions being restricted to these
that keep the system and the environment in their hopeful regions. We found this case
very interesting: both the system and the environment can stay hopeful forever, yet
only one of them can satisfy the acceptance condition of Aψ (the system) or A¬ψ (the
environment). We plan to study whether this special situation can be of help when we
solve the parity game on the restricted region.
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19. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. In: Proc. 21st LICS, pp. 255–264 (2006)

20. Piterman, N., Pnueli, A., Saar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–
190 (1989)

22. Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Mathematical So-
ciety (1972)

23. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327 (1988)
24. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with
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Abstract. We present a new approach to synthesizing systems from
Generalized Reactivity(1) specifications. Our method does not require
a monolithic strategy, which can be prohibitively large. Instead, our
approach constructs a circuit directly from the iterates of the fixpoint
computation that computes the winning region. We build the overall sys-
tem by combining these circuit parts. Our approach has generally lower
memory requirements than previous GR(1) synthesis approaches, and
is also faster. In addition to that, the circuits we build are eager, in the
sense that they typically fulfill system guarantees faster than the circuits
obtained with previous approaches, as experiments show.

1 Introduction

Formal methods have recently seen increased attention focused on synthesis tech-
niques in which programs are created automatically from specifications. Such
techniques may create full systems from a specification given, for instance, in
temporal logic [7,17,16,10,11,4,19,15,8,18], or they may synthesize pieces of a
program that are difficult to implement or were previously implemented incor-
rectly [20,22,14,23,12]. Synthesis promises to remove an important burden from
the programmer, who only has to think about the specification and not about
implementation details. The main drawback currently is the lack of capacity of
synthesis tools — they are only applicable to small examples. Time and espe-
cially memory use of current tools are often prohibitive, keeping many realistic
examples outside of the realm of synthesis.

In this paper we consider an alternative method to generate systems in GR(1)
synthesis [16]. Our synthesis method is implemented in RATSY [4], a tool for
synthesis of GR(1) properties. GR(1) properties can be viewed as an implication
of deterministic Büchi automata. Let A1 through An be the assumptions on
the environment and let G1 through Gm be the guarantees that the system has
to fulfill. If A1, . . . , An and G1, . . . , Gm are expressed as deterministic Büchi
automata, then the formula ∧

i

Ai =⇒
∧
j

Gj
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is a GR(1) specification. Previous work [5,6] has shown that GR(1) is expres-
sive, easy to use, and that it allows for a relatively efficient implementation of
synthesis.

The time and memory use of RATSY is high. Moreover, it has the draw-
back of producing systems that are not very eager. The general strategy used
by RATSY is to satisfy the guarantees one at a time in a round-robin fashion.
Each of the guarantees is fulfilled using an attractor strategy in which the ap-
proach to the guarantee is enforced whenever all of the assumptions have been
fulfilled. This formulation of the strategy is very general and allows significant
freedom to choose a small implementation. However, since the attractor strategy
only requires some progress to be made, this formulation allows for very lazy
implementations that may take a long time to fulfill a goal.

In this paper we present an alternative to the round-robin strategy, which is
eager : each goal is achieved as soon as possible. This gives us more desirable,
responsive systems, which achieve some robustness against failure by the envi-
ronment to achieve its liveness goals, at a fraction of the cost of other methods
[2,3]. At the same time, our experimental results show that our new approach
reduces time and memory use significantly at the expense of generating larger
circuits.

The rest of the paper is organized as follows. In Section 2, we revisit some
preliminaries necessary for our method and establish notation. In Section 3, we
present our synthesis approach. Section 4 presents specific aspects of our imple-
mentation. In Section 5, we summarize our experimental results, and Section 6
concludes the paper.

2 Preliminaries

2.1 Generalized Reactivity

Generalized Reactivity(1) [16], GR(1) for short, is a syntactic restriction of Linear
Temporal Logic (LTL). Let I and O be sets of (propositional) variables. A GR(1)
specification ϕ is required to be of the form ϕ = ϕe → ϕs where ϕe and ϕs can
be written as a conjunction of the following three parts [16]:

– A Boolean formula ϕei (ϕsi , respectively) over I and O, characterizing the
initial states.

– An LTL formula ϕet (ϕst , respectively), characterizing the transitions of the
environment (system, respectively). ϕet is of the form

∧
i G(Bi), where each

Bi is a Boolean combination of variables from I and O, and expressions of
the form X(v), where v is a variable from I for ϕet and from I ∪ O for ϕst .

– An LTL formula ϕef (ϕsf , respectively), characterizing the fairness states for
the environment (system, respectively). ϕef and ϕsf are both of the form∧
i GFBi for a Boolean formulae Bi over I ∪ O.

It is easiest to think about ϕe and ϕs as encoding the symbolic representation of
the product of several Büchi automata. (Extra variables for encoding automata
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states can be modeled as extra state variables.) The goal of synthesis is to gener-
ate a Mealy machine that satisfies the GR(1) specification. The Mealy machine
has inputs I, state variables I ∪ O, and the outputs coincide with (the next
state values of) the state variables [16]. A Mealy machine satisfies a GR(1) spec-
ification if (1) ϕei and ϕsi are satisfied initially, (2) as long as the environment
fulfills ϕet , the system fulfills ϕst , and (3) if the environment fulfills ϕef , the system
fulfills ϕsf .

Synthesizing a correct system from its specification corresponds to finding
a strategy in a game between the system (protagonist) and the environment
(antagonist). Following [16], we define a game structure 〈I,O, Θ, ρe, ρs, ϕ〉. Here,
I is a set of (Boolean) input variables, which are under the environment’s control.
Similarly, O is a set of output variables, under the system’s control. We define
a state to be an interpretation of I ∪O, assigning to each variable either true or
false. We will denote the set of all states with Q. Furthermore, Θ is the initial
condition; in our case Θ = ϕei ∧ ϕsi . The transition relation of the environment
is denoted by ρe(I,O, I ′), relating a present state q ∈ Q to possible values for
next inputs I ′ ∈ I ′, where I ′ contains primed copies of the elements in I. In
our case, ρe = ϕet , where we replace each occurrence of X v with v′, representing
the “next state” of v. Similarly, ρs(I,O, I ′,O′) is the transition relation of the
system, relating a present state q ∈ Q and a next input I ′ to possible values for
next outputs O′ ∈ O′. We set ρs = ϕst , again replacing all occurrences of X v
with v′. Finally, ϕ is the winning condition of the game. We use ϕ = ϕe → ϕs.
Furthermore, let JGj (for j ∈ {1, . . . , n}) and JAi (for i ∈ {1, . . . ,m}) be the sets
of fair states of the system and the environment, characterized by the conjuncts
Bi in ϕ

s
f and ϕef , respectively. We will also refer to them as “guarantee states”

and “assumption states” respectively.
One step of the game consists of the environment choosing values for the next

inputs I ′, after which the system must choose values for the next outputs O′. The
game is won by the system iff the resulting sequence of states in the game graph
satisfies the winning condition ϕ. Informally speaking (and slightly simplified),
the system wins the game if it is either able to ensure infinitely many visits to
all sets of guarantee states, or if it can prevent the environment from visiting at
least one of the sets of assumption states infinitely often.

A strategy is a (partial) function that maps the present state and next inputs
to next outputs. It is called a winning strategy if every play that adheres to it
is won by the system. A winning strategy can easily be turned into a correct
implementation for the system [16,6].

2.2 μ-Calculus

For solving games, we use the propositional μ-calculus [13]. Formulae of the μ-
calculus are defined recursively. Let Q be the set of all states of a game structure.
Furthermore, let V be a set of variables. Every subset S ⊆ Q and every variable
V ∈ V is a μ-calculus formula. Let A,B be μ-calculus formulae. Then also ¬A,
A∪B, and A∩B are μ-calculus formulae, with the obvious semantics. Moreover,
the μ-calculus comprises least and greatest fixpoint formulae, defined as follows.



Generalized Reactivity(1) Synthesis without a Monolithic Strategy 23

For a μ-calculus formula P with a free variable V ∈ V the following are μ-calculus
formulae:

μV . P (V ) =
⋃
i

Vi, where V0 = ∅ and Vi+1 = P (Vi) and (1)

νV . P (V ) =
⋂
i

Vi, where V0 = Q and Vi+1 = P (Vi). (2)

We extend the classical μ-calculus with a mixed-preimage operator MX, defined
as follows:

MX(V ) = {(i, o) ∈ Q | ∀i′ .∃o′ .((i, o, i′) |= ρe → (i, o, i′, o′) |= ρs) ∧ (i′, o′) ∈ V }.

Semantically,MX(V ) denotes the set of all states from which the system can force
the play into a state in V , irrespective of the input i′ chosen by the environment.

2.3 Computing the Winning Region of GR(1) Games

Piterman et al. [16] presented a μ-calculus formula for computing the winning
region of a GR(1) game, i.e., the set of states from which the system can win
the game by adhering to a winning strategy. The winning region of such a spec-
ification is given by the following triply-nested fixpoint formula [16]:

Win = νZ .
n∧
j=1

μY .
m∨
i=1

νX .(JGj ∧MX(Z)) ∨MX(Y ) ∨ (¬JAi ∧MX(X)). (3)

Piterman et al. [16] also show how to use the intermediate values of the fixpoint
computations in Equation 3 to construct a strategy, consisting of the disjunc-
tion of three sub-strategies. These three sub-strategies correspond to the three
disjuncts in Equation 3. Sub-strategy ρ1 is applied when the game has reached
a guarantee state in JGj . In this case, a counter jx that stores which guarantee
should be fulfilled next is incremented (modulo n, the number of guarantees).
Sub-strategy ρ2 takes the play at least one step closer to a state in JGj . Sub-
strategy ρ3 ensures that the play stays in a region in which at least one of the
sets of assumption states JAi is not visited.

Although systems that adhere to these sub-strategies are correct, they are
not necessarily eager. The strategies only ensure that each step takes the play
at least one step closer to a guarantee state, or even stay where they are as
long as an assumption state is not reached. However, in many situations the
system might have a choice of getting not only one, but several steps closer to a
guarantee state. An eager system would always make the choice that takes it as
close to the guarantee states as possible. It might even fulfil multiple guarantees
at once.

2.4 Relation Determinization

The strategies computed according to [16] are relations, mapping a tuple (i, o, i′)
of present state inputs i, present state outputs o, and next state inputs i′ to pos-
sible next state outputs o′. These relations can be represented by a characteristic
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function, usually in form of a Binary Decision Diagram (BDD). In order to build
circuits, we need to extract completely specified functions for each of the Boolean
output signals oi ∈ O from this relation.

There are several ways to find functions compatible with a given relation
[24,1,9,6,5]. We will use the approach presented in [6,5], as it integrates seam-
lessly with the symbolic algorithms we use. When given a BDD b(I,O, I ′,O′)
we will write FN(b) to denote a circuit with inputs I,O, I ′ and outputs O′, such
that FN(b)(i, o, i′) = o′ only if b(i, o, i′, o′) = true or ¬∃o′ . b(i, o, i′, o′). To em-
phasize that FN(b) is a (completely specified) function, we will sometimes write
FN(b)(I,O, I ′ → O′).

3 Onion Rings Approach

Previous work [6,5] shows that tools implementing GR(1) synthesis spend a lot
of time computing the strategy relation. While computing the winning region is
comparatively fast, combining the intermediate results of the fixpoint computa-
tion to form a monolithic strategy requires a lot of CPU time and memory. We
will demonstrate how to build a correct-by-construction circuit directly from the
intermediate results of the winning region computation, without having to build
a monolithic strategy relation first.

Our new synthesis approach is based on the intermediate results of fixpoint
computations, which we call onion rings. The name stems from the form of the
intermediate results of an attractor computation. Like in an onion, each iteration
of the computation adds a layer of states “around” the previous results. We will
show how to build two kinds of circuits. The first are enable circuits which
detect whether we can reach a particular onion ring. The second are circuits
that provide correct outputs for the case that we move to the particular enabled
onion ring. Before that, however, we will introduce some simple auxiliary circuits
that we will need to combine the other parts. In the following, we will denote
circuits and combinational gates by upper-case sans-serif letters (e.g., circuit
A, B, C, . . ., gates AND, XOR). For “standard gates” such as AND and XOR, we
will use infix notation (e.g. A AND B). BDDs will be denoted by lowercase letters
(e.g. a, b, c, . . .). Operations on BDDs will be denoted using the common logic
operators such as ∧ and ∃. Furthermore, we will write C(b) to denote a circuit
equivalent to b. That is, a circuit having the variables of b as its inputs, and one
output that is true if and only if the inputs are in the on-set of b.1

3.1 Auxiliary Circuits

The first auxiliary circuit we need is called SELECT. It has n one-bit selector
inputs S1, . . . , Sn, and n data inputs F1, . . . ,Fn, each m bits wide. Furthermore,
SELECT((S1, . . . , Sn), (F1, . . . ,Fn)) has an m bits wide data output, which is
equal to F1 if S1 is true, equal to F2 if S1 is false and S2 is true, equal to F3 if

1 Note that it is trivial to construct such a circuit by using one multiplexer for each
BDD node.
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S1 and S2 are false and S3 is true, etc. I.e., the output equals the input with
the lowest index for which the corresponding selector bit is true. If all selector
signals S1, . . . , Sn are false, the output of the SELECT circuit is arbitrary.

The second auxiliary circuit is a comparator. COMP(A,B) outputs true if and
only if A and B are (bitwise) equal.

3.2 Enable Circuits for Onion Rings

From the computation of the winning region of a GR(1) game, we get a set of
BDDs x[j, r, i], each referring to variables in I ∪ O [16]. The indices i and j
range over all the sets of assumption and guarantee states of the specification,
respectively. The index r denotes iterations in the computation of the least fix-
point over Y in Equation 3. Each of these BDDs symbolically represents a set
of states in the GR(1) game. The set represented by x[j, r, i] denotes the set of
states from which the system can either (1) enforce moving one step closer to
one of the states in the j-th guarantee set (i.e., a state in x[j, r′, i′] for r′ < r and
arbitrary i′), or (2) stay in that part of x[j, r, i], which does not share any states
with the i-th set of assumption states. We will use primes to denote BDDs that
represent sets of “next states” (i.e., referring to variables in I ′ ∪ O′). For each
BDD x′[j, r, i], we build an enable circuit that detects whether a state described
by x′[j, r, i] is reachable by obeying the system transition relation ρs for some
next state output O′:

EN[j, r, i](I,O, I′) = C(∃O′ . ρs ∧ x′[j, r, i]) (4)

A circuit EN[j, r, i] outputs true if and only if the tuple (I,O,I’) at its input sat-
isfies the system transition relation and gets the system into the set of states
represented by x′[j, r, i] under some output O′.

3.3 Function Circuits for Onion Rings

For each onion ring, as described in the previous section, we build a correspond-
ing function circuit FN(I,O, I′ → O′) that computes the system’s outputs for this
particular case:

FN[j, r, i](I,O, I′ → O′) = FN(ρs ∧ x′[j, r, i]) (5)

The enable and function circuits are combined in a way to make maximum
progress when approaching a guarantee state JGj . That means we want to choose
the function corresponding to the minimal (r, i) whose enable circuit outputs
true. I.e., we step to the innermost onion ring possible. We use SELECT cir-
cuits, as described in Section 3.1, to achieve this by ordering the selector (enable
signals) and data inputs (function signals) lexicographically according to (r, i).
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SELJX

SEL

C(∃O′ : ρs ∧ x′[k, 1, 1])

...

C(∃O′ : ρs ∧ x′[k, rmax,m])

FN(ρs ∧ x′[k, 1, 1]) · · · FN(ρs ∧ x′[k, rmax,m])

FN[k]

· · · · · ·FN[1] FN[n]

O′

I ∪O ∪ I ′

Fig. 1. Diagram of the whole circuit. Dashed boxes symbolize parts of the circuit that
are built analogously to the neighboring parts drawn in detail.

FN[j] = SELECT((EN[j, 1, 1], . . . ,EN[j, 1,m], (6)

EN[j, 2, 1], . . . ,EN[j, 2,m], . . . ,

EN[j, rmax, 1], . . . ,EN[j, rmax,m]),

(FN[j, 1, 1], . . . ,FN[j, 1,m],

FN[j, 2, 1], . . . ,FN[j, 2,m], . . . ,

FN[j, rmax, 1], . . . ,FN[j, rmax,m]))

This gives us circuits for approaching each of the guarantee states eagerly. Each
FN[j] corresponds to one of the dashed boxes in Fig. 1.

3.4 Bookkeeping Circuit for Guarantee Selection

Finally we have to choose which guarantee to approach next. In [16], this was
done in a round-robin fashion using a modular counter jx. We present a new
approach that satisfies each guarantee as quickly as possible without having to
wait for a counter to match a guarantee’s index j. We will first informally describe
the principal idea behind the bookkeeping circuit we employ, and afterwards
define it formally.

Our approach uses one bit of memory for each guarantee (JX[1], . . . , JX[n]),
plus one master bit (master). Initially, the master bit and all JX bits are all
set to the same (arbitrary) value. The semantics of these bits is as follows:
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JX[j] XOR master is true if and only if guarantee j has already been satisfied in
the current round. A guarantee j will be satisfied when the play is about enter
a state in the set represented by J ′

j
G
. When this happens, the corresponding bit

JX[j] is flipped (if it was not already different from the master bit). As soon as
all guarantees were satisfied in one round (i.e., all JX bits are different from the
master bit), the master bit is flipped and the procedure starts another round.
Thus, the JX bits together with the master bit allow us to determine which
guarantees still have to be pursued at a given time.

Note that the sets JGj are not necessarily disjunct. Empirical evidence suggests

that there are often states which belong to several (or even all) sets JGj . Imagine,
for example, an arbiter with N request and grant signals, and N guarantees
stating that every request must eventually be granted. Then the state in which
no requests are made (and thus no grants are given) fulfills all N guarantees and
thus belongs to all sets JGj . Our bookkeeping circuit can take advantage of that
by flipping all the JX bits corresponding to (yet unfulfilled) guarantees that are
fulfilled in a particular state. This leads to a much more eager systems compared
to systems using a modular counter for bookkeeping. We will illustrate this with
an example in Section 3.6.

We will now provide a formal definition of our bookkeeping circuit.

JX Flip Signal. We need flip signals to determine whether a guarantee is being
satisfied or not. Guarantee j is being satisfied whenever we move to the states
represented by J ′G

j .

JXflip[j] = C(J ′G
j ) (7)

JX Update. The value of a JX bit is updated (flipped) whenever the corre-
sponding JXflip signal is true and the JX bit is still equal to the master bit. A
diagram of this circuit is shown in Figure 2.

JX′[j] = JX[j] XOR (JXflip[j] AND COMP(JX[j], master)) (8)

Master Update. The update of the master bit works as follows: The master
bit is flipped when it is unequal to all next JX bits. I.e., the flip happens if and
only if all guarantees have been satisfied in a round. A diagram of this circuit is
shown in Figure 3.

master′ = master XOR (ANDj (NOT COMP(JX′[j], master))) (9)

Guarantee Selection. Finally, we need to select a guarantee that should
be pursued at the moment. Candidates are all those guarantees whose JX bit
equals the master bit, as these are the guarantees not yet fulfilled in the current
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JX′[j]

J ′G
j

=

JXsel[j]

JX[j]

master

Fig. 2. Circuit for updating a JX bit with the signal for selecting a guarantee

master′

=

=

master

JX′[1]

JX′[n]

...

Fig. 3. Circuit for updating the master bit

round. The signal JXsel[j] tells whether or not guarantee j is a candidate for
selection.

JXsel[j] = COMP(master, JX[j]) (10)

3.5 Combining Functions with Guarantee Selection

To achieve eagerness, we use the signals JXsel[j] selector signals for the top-
most SELECT circuit in Figure 1. I.e., we choose to make progress to-
wards the lowest-numbered unsatisfied guarantee by choosing the corresponding
function.2

FN(I,O, I′ → O′) = SELECT((JXsel[1], . . . , JXsel[n]), (FN[1], . . . ,FN[n])) (11)

Note that the outputs of the circuit in Equation 11 are also the primary outputs
(O′) of the overall system.

2 This gives designers the possibility to prioritize guarantees by reordering them in
the specification.
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clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14

re

rf

ge

gf

jx 1 2 3 4 5 0 1 2 3 4 5 0 1

(a) Modular counter jx as in [16]

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14

re

rf

ge

gf

(b) Bookkeeping as Section 3.4.

Fig. 4. Timing diagram of a 6-input arbiter. The request and grant signals with indices
a, . . . , d have been omitted, as they are all zero for the entire time shown.

3.6 Demonstration of Eagerness

To illustrate how the circuits synthesized according to our new method are more
eager, we make the following comparison. We take a specification for a full-
handshake arbiter with six request lines (ra to rf ) and six corresponding grant
lines (ga to gf ). We synthesize circuits for this specification, once according
to [16], and once according to the method presented in this paper. We simu-
late both circuits with the same input values. We set the request rf to 1 in
clock cycles 0 to 4 and we set request re to 1 from cycle 6 on. The timing
diagrams of our simulations are shown in Figures 4a and 4b. For increased read-
ability, we have omitted some of the signals which are 0 the entire time in the
waveform.

We observe a difference in the behavior of granting the requests by the two
circuits in comparison:

1. Round-robin strategy: We see that the first request (rf ) is immediately
answered with grant gf . The second request (re), however, is only granted in
cycle 11 (i.e., with a delay of 5 cycles), because the modular counter jx has
to loop around first, in order to reach the value 4, which corresponds to ge.
In each of the “wasted” 5 cycles, the implementation discovers that there
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is no request on one particular request line, and thus, the corresponding
guarantee is fulfilled.

2. Guarantee selection with bookkeeping: In this case the first request is
granted in the same clock cycle as in the circuit with the round-robin strat-
egy. The grant answering request re is given in cycle 7, though. This is a delay
of only 1 cycle; a 4-cycle improvement: the bookkeeping approach discovers
immediately that the guarantees corresponding to those request lines where
no request is made are all fulfilled. Thus, the system can immediately fulfils
the remaining guarantee concerning request re.

4 Implementation

We implemented the proposed synthesis method as an extension to RATSY
(Requirements Analysis Tool with Synthesis) [4]. Computation of the winning
region (and the necessary intermediate results) had already been implemented in
this tool. We start with our new approach after the computation of the winning
region finishes. Instead of building a monolithic strategy, we construct the cir-
cuits as described in Section 3. We have two slightly different implementations,
which are described in the following sections.

4.1 Onion Rings without BDD Reordering

Our first approach is to create one sub-circuit after the other, immediately freeing
any BDDs that are no longer required for subsequent computations. We keep
a hash table of all BDD nodes for which we already constructed multiplexers.
Since BDDs within the same manager may share internal nodes, we can reuse
the corresponding multiplexers whenever necessary.

This advantage, however, comes at a price. We have to disable dynamic BDD
reordering when we create the first circuit, because dynamic reordering may
remove and/or reassign internal BDD nodes. Note, however, that reordering can
of course be used before we create the first circuit. Thus, we enable dynamic
reordering of BDDs during the computation of the winning region.

4.2 Onion Rings with BDD Reordering

As an alternative method, we first compute BDDs corresponding to all circuits
without actually writing them out already. Thus, we can keep dynamic reordering
enabled during all the computations.

Once we have computed all BDDs to be dumped, we perform a final (forced)
reordering to reduce the size of the resulting multiplexer circuit, and then dump
all BDDs at once, again taking advantage of node sharing.

5 Experimental Results

We used the specifications of the AMBA bus arbiter [5] for our experiments. We
compared runtime, memory usage, and circuit size. We already had a working



Generalized Reactivity(1) Synthesis without a Monolithic Strategy 31

Table 1. Experimental results for each test case and method

Circuit
Runtime [s] Memory usage [GB]

Circuit Size
[relative to Ref]

Ref OnionRO OnionnoRO Ref OnionRO OnionnoRO OnionRO OnionnoRO

amba02 3 6 11 0.55 0.57 0.57 18.3 31.9
amba03 53 27 44 0.67 0.62 0.66 4.5 8.0
amba04 176 517 846 0.99 1.55 1.19 40.5 66.6
amba05 492 885 846 1.41 1.13 1.49 23.6 62.7
amba06 1,059 723 1,370 1.55 1.45 1.18 16.9 42.9
amba07 1,960 1,532 1,592 1.63 1.56 1.50 12.3 22.5
amba08 13,390 19,800 36,433 7.45 16.62 16.89 X X
amba09 5,394 4,011 4,578 2.45 2.63 2.41 16.9 28.4
amba10 12,673 5,413 8,941 7.20 3.11 2.67 25.4 46.7
amba11 10,685 7,609 11,277 4.24 4.41 2.68 13.2 23.9
amba12 55,997 7,831 11,585 9.18 4.79 2.79 19.2 28.5
amba13 40,229 14,787 15,825 13.81 5.05 4.39 10.8 25.7
amba14 41,538 17,077 14,287 8.92 5.77 2.98 21.1 30.3
amba15 43,173 17,721 19,646 14.98 8.10 4.24 16.7 24.7

synthesis implementation, based on cofactors [6] and used it as a reference point
for our new technique. All experiments were conducted on a 64-bit Linux machine
powered by a 2.66GHz Intel Xeon CPU with 64GB RAM. The 3 methods we
have compared are as follows:

1. Reference: The cofactor-based approach described in [6]. This method
serves as a reference point.

2. Onion Rings without reordering: The method described in Section 4.1.
3. Onion Rings with reordering: The method described in Section 4.2.

We will use the abbreviations Ref, OnionnoRO and OnionRO to denote the meth-
ods. The results are presented in Table 1 and in Figures 5 and 6. We do not
know why amba08 has a significantly higher time and memory consumption
than amba09 in all three methods. A similar discrepancy has been observed
before [6].

5.1 Runtime

We can see that for larger examples, method OnionRO performs much better than
the reference method. For smaller examples, the 3 methods perform similarly.
We also see that finding a better BDD order pays off by improving the runtime.
I.e., OnionRO is typically faster than OnionnoRO.

5.2 Memory Usage

The memory requirements are taken from the Cudd PrintInfo function of the
CUDD [21] library and reflect the memory requirements of the BDD manager.
Note that almost all memory used by RATSY is used by the BDD manager.
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We can see that the memory usage of our methods is better than the reference
method. Again, smaller examples perform similarly, but for larger examples we
gain an advantage. The method OnionnoRO performs best, as it only needs to
have the BDDs for creating a specific onion ring in memory. In contrast, Ref has
to have the whole strategy BDD in memory, and OnionRO has to have the BDDs
for all onion rings in memory to find a consistent BDD order before building the
circuits.

5.3 Circuit Size

Circuit size was measured with abc3. Table 1 shows the relative circuit sizes
with respect to the Reference method. For example, when synthesizing amba02
with method OnionRO, the resulting circuit is 18.3 times the size of the circuit
obtained when synthesizing amba02 with the Reference method. Note that fac-
tors have been rounded to one decimal. For amba08, abc runs into a timeout
(marked with “X” in Table 1).

6 Conclusion and Future Work

We have presented a novel approach to GR(1) synthesis. Our technique builds
upon [16], but circumvents the generation of a large, monolithic strategy relation.
We have shown in our experiments that, using our technique, we can, in general,
reduce the runtime and memory usage significantly. For larger examples, our
method is able to synthesize results, where previous methods might have run
out of memory, or run into timeouts. These results, however, come at the cost
of larger circuits.

3 http://www.eecs.berkeley.edu/~alanmi/abc/abc.htm

http://www.eecs.berkeley.edu/~alanmi/abc/abc.htm
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Apart from that, circuits built with our new method are eager, meaning that
they fulfill the guarantees more quickly, whenever possible. First, we get as close
as we can to the next guarantee state in every time step. Second, we check which
guarantees are already fulfilled in parallel, instead of sequentially. This leads to
more responsive, robust systems.

For future work, we will investigate different relation determinization tech-
niques (cf. Section 2.4), which might improve circuit sizes. Also, we plan to in-
vestigate extensive “don’t-care propagation”. Whenever we have detected that
we are in onion ring r, the output functions corresponding to all rings s > r can
actually be set to arbitrary values. Such optimizations might improve circuit size
at the expense of additional CPU time.
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Abstract. In the authors’ previous work, we proposed a linear programming
(LP) based approach to check the reachability specification along one abstract
path in a linear hybrid automaton (LHA) at a time by translating the reachability
problem into the satisfiability problem of a linear constraint set. Then a depth-
first-search (DFS) is deployed on the graph structure of the LHA to check all the
paths with length in the threshold to answer the question of bounded reachability.

In this DFS-style bounded model checking (BMC) algorithm, once a path is
found to be infeasible by the underlying LP solver, a backtracking on the graph
structure will be conducted. Clearly, the efficiency of the algorithm depends on
the accuracy of the backtracking. If the DFS can backtrack to the most reasonable
location, the state space need to search and verify can be reduced significantly.

Fortunately, once a linear constraint set is judged to be unsatisfiable, the irre-
ducible infeasible set (IIS) technique can be deployed on the unsatisfiable con-
straint set to give a quick analysis and find a small set of constraints which makes
the whole program unsatisfiable. In this paper, we adopt this technique into our
DFS-style BMC of LHA to locate the nodes and transitions which make the path
under verification infeasible to guide the backtracking and answer the bounded
reachability of LHA more efficiently.

1 Introduction

Hybrid automata [1] are well studied formal models for hybrid systems with both dis-
crete and continuous state changes. However, the analysis of hybrid automata is very
difficult. Even for the simple class of linear hybrid automata (LHA), the reachability
problem is undecidable [1–4]. The state-of-the-art symbolic model checking techniques
for LHA try to compute the transitive closure of the state space of the system by geomet-
ric computation which is very expensive and not guaranteed to terminate. Several tools
are designed and implemented in this style, like HYTECH [10] and its improvement
PHAVer [11] but they do not scale well to the size of practical problems.

In recent years, bounded model checking (BMC) [5] has been presented as an al-
ternative technique for BDD-based symbolic model checking, whose basic idea is to
encode the next-state relation of a system as a propositional formula, and unroll this
formula to some integer k, using SAT/SMT idea to search for a counterexample in the
model executions whose length is bounded by k. These technique have been used to
answer the reachability problem of LHA also. But, as these techniques require to en-
code the state space of LHA in threshold firstly, when the system size or the given step

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, pp. 35–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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threshold is large, the object problem could be very huge, which greatly restricts the
size of the problem that can be solved [6, 7].

Both symbolic model checking and bounded model checking are facing the complete
state space or the partly complete space under the threshold at one time which is always
too large and complex for the solver to handle. In order to control the complexity of
the verification of LHA, we proposed a linear programming (LP) based approach[8]
to develop an efficient path-oriented reachability checker to check one abstract path in
the graph structure of a LHA at a time to find whether there exists a behavior of the
LHA along this abstract path and satisfy the given reachability specification. In such a
manner, the length of the path and the size of the automaton being checked can be large
enough to handle problems of practical interest. As a straightforward extension, all the
abstract paths with length shorter than or equal to the threshold in the graph structure
can be enumerated and checked one by one by depth-first-search(DFS) traversing to
answer the question of bounded reachability analysis of the LHA.

The above DFS based BMC has shown good performance and scalability in our
previous studies[9, 14]. Nevertheless, it has a lot of space to optimize:

– The simple DFS algorithm checks each path ρ in the given length threshold for the
reachability by solving the corresponding linear program. Although the checking
of a single path is very efficient, if the number of candidate path is large, it will
still be time consuming. However, suppose we are checking whether location v is
reachable in bound k, and v is not contained in ρ at all, we can simply falsify ρ for
the reachability to save computation time.

– Once a path ρ is found to be infeasible, the DFS algorithm will only remove the last
location in the path and backtrack to the location preceding the last one to search
for the next candidate in a recursive manner. This backtracking method does not use
any information of the infeasible path. If the infeasible cone in the linear constraint
set related to ρ can be extracted, then the DFS procedure can backtrack to the exact
place that makes the ongoing path infeasible. Then, the state space needed to search
and verify can be pruned significantly.

Based on the above directions, we optimize our DFS-style BMC algorithm in the
following ways:

– Only when the last location of the current visiting path ρ is contained in the reacha-
bility specification, the DFS procedure will call the underlying decision procedure
to check the feasibility of ρ. Otherwise, the DFS will just go on traversing on the
graph structure to reduce the time overhead.

– Once a linear constraint set is judged to be unsatisfiable, the irreducible infea-
sible set (IIS) technique[12] can be deployed to give quick analysis of the pro-
gram and find a small set of constraints which makes the whole program un-
satisfiable. We deploy this technique into our DFS-style BMC of LHA to lo-
cate the nodes and transitions which cause the path under verification infeasi-
ble to guide the backtracking and answer the bounded reachability of LHA more
efficiently.
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2 Linear Hybrid Automata and Reachability Verification

This section gives the formal definition of linear hybrid automata and presents the re-
view of the path-oriented reachability analysis and bounded reachability analysis tech-
niques that were proposed in our previous works[8, 9].

2.1 Linear Hybrid Automata

The linear hybrid automata (LHA) considered in this paper are defined in[13], which
is a variation of the definition given in [1]. The flow conditions of variables in a linear
hybrid automaton considered here can be given as a range of values for their derivatives.

Definition 1. An LHA H is a tuple H = (X, Σ,V,V0, E, α, β, γ), where

- X is a finite set of real-valued variables; Σ is a finite set of event labels; V is a finite
set of locations; V0 ⊆ V is a set of initial locations.

- E is a transition relation whose elements are of the form (v, σ, φ, ψ, v′), where v, v′
are in V , σ ∈ Σ is a label, φ is a set of transition guards of the form a ≤ ∑l

i=0 ci xi ≤
b, and ψ is a set of reset actions of the form x := c where xi ∈ X , x ∈ X, a, b, c and
ci are real numbers (a, b may be∞).

- α is a labeling function which maps each location in V to a location invariant which
is a set of variable constraints of the form a ≤ ∑l

i=0 cixi ≤ b where xi ∈ X, a, b and
ci are real numbers (a, b may be∞).

- β is a labeling function which maps each location in V to a set of flow conditions
which are of the form ẋ ∈ [a, b] where x ∈ X, and a, b are real numbers (a ≤ b). For
any v ∈ V , for any x ∈ X, there is one and only one flow condition ẋ ∈ [a, b] ∈ β(v).

- γ is a labeling function which maps each location in V0 to a set of initial conditions
which are of the form x = a where x ∈ X and a is a real number. For any v ∈ V0,
for any x ∈ X, there is at most one initial condition definition x = a ∈ γ(v). �	

Path and Behavior. We use the sequences of locations to represent the evolution of an
LHA from location to location. For an LHA H = (X, Σ,V,V0, E, α, β, γ), a path segment

is a sequence of locations of the form 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉, which satisfies

(vi, σi, φi, ψi, vi+1) ∈ E for each i (0 ≤ i < n). A path in H is a path segment starting at
an initial location in V0.

For a path in H of the form 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉, by assigning each

location vi with a time delay stamp δi we get a timed sequence of the form
〈

v0

δ0

〉
(φ0 ,ψ0)−→
σ0〈

v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

where δi (0 ≤ i ≤ n) is a nonnegative real number, which

represents a behavior of H such that the system starts at v0, stays there for δ0 time units,
then jumps to v1 and stays at v1 for δ1 time units, and so on.

The behavior of an LHA can be described informally as follows. The automaton
starts at one of the initial locations with some variables initialized to their initial values.
As time progresses, the values of all variables change continuously according to the
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flow condition associated with the current location. At any time, the system can change
its current location from v to v′ provided that there is a transition (v, σ, φ, ψ, v′) from v
to v′ whose all transition guards in φ are satisfied by the current value of the variables.
With a location change by a transition (v, σ, φ, ψ, v′), some variables are reset to the new
value accordingly to the reset actions in ψ. Transitions are assumed to be instantaneous.

Let H = (X, Σ,V,V0, E, α, β, γ) be an LHA. Given a timed sequence ω of the form〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

, let ζi(x) represents the value of x (x ∈ X) when

the automaton has stayed at vi for delay δi along with ω (0 ≤ i ≤ n), and λi(x) represents
the value of x at the time the automaton reaches vi along withω. It follows that λ0(x) = a

if x = a ∈ γ(v0), and λi+1(x) =

{
d if x := d ∈ ψi

ζi(x) otherwise
(0 ≤ i < n).

Definition 2. For an LHA H = (X, Σ,V,V0, E, α, β, γ), a timed sequence of the form〈
v0

δ0

〉
(φ0 ,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

represents a behavior of H if and only if the

following condition is satisfied:

– 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 is a path;

– δ1, δ2, . . . , δn ensure that each variable x ∈ X evolves according to its flow condition
in each location vi (0 ≤ i ≤ n), i.e. uiδi ≤ ζi(x) − λi(x) ≤ u′iδi where ẋ ∈ [ui, u′i] ∈
β(vi);

– all the transition guards in φi (1 ≤ i ≤ n − 1) are satisfied, i.e. for each transition
guard a ≤ c0x0+c1x1+ · · ·+clxl ≤ b in φi, a ≤ c0ζi(x0)+c1ζi(x1)+ · · ·+clζi(xl) ≤ b;

– the location invariant of each location vi (1 ≤ i ≤ n) is satisfied, i.e.
- at the time the automaton leaves vi, each variable constraint a ≤ c0x0 + c1x1 +

· · · + cl xl ≤ b in α(vi) (0 ≤ i ≤ n) is satisfied, i.e.a ≤ c0ζi(x0) + c1ζi(x1) + · · · +
clζi(xl) ≤ b, and

- at the time the automaton reaches vi, each variable constraint a ≤ c0x0 + c1x1 +

· · · + clxl ≤ b in α(vi) (0 ≤ i ≤ n) is satisfied, i.e.a ≤ c0λi(x0) + c1λi(x1) + · · · +
clλi(xl) ≤ b. �	

Definition 3. For an LHA H = (X, Σ,V,V0, E, α, β, γ), if a timed sequence of the form〈
v0

δ0

〉
(φ0 ,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

is a behavior of H, we say path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0

〈v1〉 (φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1
〈vn〉 is feasible, and location vn is reachable along ρ. �	

2.2 Reachability Specification and Verification

Reachability Specification. For an LHA H = (X, Σ,V,V0, E, α, β, γ), a reachability
specification, denoted as R(v, ϕ), consists of a location v in H and a set ϕ of variable
constraints of the form a ≤ c0x0+c1x1+ · · ·+clxl ≤ b where xi ∈ X for any i (0 ≤ i ≤ l),
a, b and ci (0 ≤ i ≤ l) are real numbers.

Definition 4. Let H = (X, Σ,V,V0, E, α, β, γ) be an LHA, and R(v, ϕ) be a reachability

specification. A behavior of H of the form
〈

v0

δ0

〉
(φ0 ,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

satis-

fies R(v, ϕ) if and only if vn = v and each constraint in ϕ is satisfied when the automaton
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has stayed in vn for delay δn, i.e. for each variable constraint a ≤ c0x0+c1x1+· · ·+clxl ≤
b in ϕ, a ≤ c0ζn(x0) + c1ζn(x1) + · · · + cmζn(xl) ≤ b where ζn(xk) (0 ≤ k ≤ l) represents
the value of xk when the automaton has stayed at vn for the delay δn. H satisfies R(v, ϕ)
if and only if there is a behavior of H which satisfies R(v, ϕ). �	
Definition 5. Given LHA H = (X, Σ,V,V0, E, α, β, γ), and reachability specification
R(v, ϕ), by introducing a new sink location vR and a sink transition eR into H, which
results a new LHA HR. The satisfiability of R(v, ϕ) on LHA H are equivalent to the
reachability of vR in HR iff α(vR) = ∅ and eR = (v, σ, φ, ψ, vR), where v = v ∈ R(v, ϕ),
φ = R(v, ϕ), ψ = ∅. �	
Based on the above definition, without loss of generality, in the following paragraph,
we will only discuss the reachability problem of a given location in the LHA, which
covers the verification of the reachability specification R(v, ϕ).

According to Definition.2, the reachability verification problem of location vn along
the path ρ can be translated into the satisfiability problem of a set of constraints on
variables δi and ζi(x) where (0 ≤ i ≤ n). If we use notation Θ(ρ, vn) to represent this set
of linear constraints, we can check whether ρ reaches location vn by checking whether
Θ(ρ, vn) has a solution, which can be solved by linear programming (LP) efficiently.

Bounded Reachability Verification. The bounded reachability analysis is to look for
a system trajectory in a given threshold which can satisfy the given specification. Last
paragraph gives a technique to verify the reachability of an abstract path in the LHA.
Based on that, we proposed a bounded reachability verification method in[9] to traverse
the system structure directly by DFS and check all the potential paths one by one until
a feasible path to the reachability target is found or the given threshold is reached.

The pseudocode for this algorithm is shown in Table.1. The main function is
Verify(H, v, bound) where H is the LHA, v is the reachability target location and bound
is the value of the threshold. This function traverses the graph structure by calling func-
tion TRAVERSE(stack) recursively, where the input parameter stack is the stack which
contains the current visiting path. When the function finds a path which satisfies the
specification, it returns 1, then the upper caller will be informed and the DFS will be
terminated. If the return value is 0, the caller will remove the last location from the
ongoing path and keep on traversing. Because whenever a new location is added into
the ongoing path, the algorithm will check the feasibility of it, we call this algorithm
the “Eager”-DFS based bounded reachability analysis algorithm.

Instead of encoding the whole problem space to a group of formulas like SAT-style
solver, which suffers the state space explosion a lot when dealing with big problems, this
plain DFS style approach only needs to keep the discrete structure and current visiting
path in memory, and check each potential path one by one, which makes it possible to
solve big problems as long as enough time is given. The case studies given in[9] give a
demonstration of this approach which also supports our belief of this argument.

3 Pruning Algorithm For DFS Optimization

The DFS-based algorithm for bounded reachability analysis of LHA reviewed in the
last section gives an intuitive method to traverse and check one path at a time[9]. As
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Table 1. Eager-DFS Based Bounded Reachability Analysis of LHA

Verify (H, v, bound)
1. for each location vI ∈ V0:
2 . begin
3 . new stack s;
4 . s.push(vI);
5 . int res=TRAVERSE(s);
6 . if (res==1) return true;
7 . s.pop(vI);
8 . end
9. return false;

TRAVERSE (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 from stack s;

2 . check the feasibility of ρ;
3 . if (infeasible) return 0;
4 . if ((feasible)&&(vn == v)) return 1;
5 . if ((s.depth == bound)||(vn doesn’t have any successive location)) return 0;
6 . for each successive location sloc of vn

7. begin
8. s.push(sloc);
9. boolean res=TRAVERSE(s);
10. if (res==1) return res;
11. s.pop(sloc);
12. end
13. return 0;

the number of paths under given bound are finite, this algorithm is guaranteed to termi-
nate. Furthermore, the algorithm only checks the reachability of one path, therefore the
memory usage will not blow up quickly without control.

3.1 Target Location-Guided Lazy-DFS

Basically, the above algorithm makes a tradeoff between space and time to handle prob-
lems with large size. Using our DFS-style BMC algorithm, we can solve a problem with
practical size given enough time. As a result, we have a stable ground for the control of
memory usage. Now let’s turn our direction to time control, which means we want to
give an algorithm to traverse the bounded behavior tree of a LHA more efficiently.

The current Eager-DFS algorithm checks all the paths under the given threshold.
When the threshold is large and the graph structure is complex, there could be nu-
merous candidate paths to check, which could consume a considerably large amount
of computation time. Take the LHA in Fig.1 for example, suppose we want to check
whether v6 is reachable within bound 7, the related bounded behavior tree of this au-
tomaton is shown in Fig.2, which has 37 candidate paths, for example, 〈v1〉 −→

e1
〈v2〉 and

so on. This means the DFS procedure could call the underlying LP solver 37 times in
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Fig. 1. Sample Automaton
Fig. 2. Behavior Tree With Bound 7

the worst case. If the size of bound is larger, the number of path segments need to check
could blow up quickly, which will be the main bottleneck for the entire bounded veri-
fication. Therefore, if there is a method to decrease the number of paths need to check,
then the efficiency of the above algorithm can be improved for sure.

By investigating the 37 paths, we can find that most of the paths are not even related
with the reachability specification. As we are checking whether location v6 is reachable
in bound 7, path segments like 〈v1〉 −→

e1
〈v2〉, 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 don’t have location v6

involved, therefore these paths can not satisfy the specification for sure and it could be
a waste of time to check their feasibilities by calling a LP solver.

Based on this intuitive idea, we give the first straightforward optimization as fol-
lows: When checking whether location v is reachable along a path ρ, if the location
v is not contained in ρ, the investigation of the feasibility of ρ will be postponed un-
til v is traversed. Comparing with the Eager-DFS algorithm presented in the last sec-
tion which checks the feasibility of the ongoing path whenever a new location is tra-
versed, in this optimization, the calling of the LP solver will only be conducted once
the new traversed location is specification related. Therefore, we name this algorithm as
“Lazy”-DFS.

The pseudocode for the function TRAVERSE in Lazy-DFS algorithm is shown be-
low in Table.2. The main difference between this algorithm and the algorithm in Ta-
ble.1 is the checking of the feasibility of the ongoing path is moved into the branch
with vn == v . It is clear to see that only when the last location of the current vis-
iting path ρ is the target location, the DFS procedure will call the underlying deci-
sion procedure to translate the feasibility of ρ into a linear constraint set and verify
it by LP. Otherwise, the DFS will just go on traversing on the graph structure. Thus,
the number of paths need to be checked can be reduced significantly to raise the effi-
ciency. Again. let’s take the automaton given in Fig.1 for example. Under Lazy-DFS,
there are only 5 paths need to call the underlying decision procedure to check, e.g.,
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉, 〈v1〉 −→

e8
〈v5〉 −→

e5
〈v6〉 and so on.
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Table 2. Lazy-DFS Based on Target Location-Guided Checking

TRAVERSE (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 from stack s;

2 . if(vn == v)
3. begin
4 . check the feasibility of ρ;
5 . if (feasible) return 1 else return 0;
6. end
7 . if ((s.depth == bound)||(vn doesn’t have any successive location)) return 0;
8 . for each successive location sloc of vn

9. begin
10. s.push(sloc);
11. int res=TRAVERSE(s);
12. if (res==1) return res;
13. s.pop(sloc);
14. end
15. return 0;

3.2 IIS-Based Infeasible Constraint Locating and Backtracking

In general, by only checking the paths which are specification related, the times of
calling the underlying LP solver can be reduced greatly. But it is not always the case.
Still take the automaton given in Fig.1 for example. Based on the Lazy-DFS algorithm
given in Table.2, when checking the automaton according to target location v6, the first
path that the algorithm will call the underlying decision procedure is: ρ = 〈v1〉 −→

e1

〈v2〉 −→
e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉. Suppose it is proved that ρ is not feasible by

calling the underlying LP solver, the algorithm will pop out the last location v6 from the
stack and visit the next branch from v5. Suppose the path segment ρ′′ = 〈v1〉 −→

e1
〈v2〉 −→

e2

〈v3〉 −→
e3
〈v4〉 is already infeasible, as ρ′′ is not related with the reachability target, under

Lazy-DFS the feasibility of ρ′′ will not be checked at all. But, if the algorithm deployed
is the Eager-DFS which checks all the path segments as shown in Table.1, the feasibility
of ρ′′ will be checked right after location v4 is added into the ongoing path. Once ρ′′
is proved to be infeasible, then a backtracking will be conducted immediately, which
means the subtree starting from location v4 with prefix as ρ′′ will not be traversed in
Eager-DFS at all. But, in the Lazy-DFS algorithm, this subtree will still be traversed.
So, is there a method which can reduce the times of solving LP problems as proposed by
Lazy-DFS and also backtrack to the exact place where infeasibility happened to prune
the behavior tree as Eager-DFS? The answer is yes!

Now, let’s come back to the automaton given in Fig.1, in location v3 we have ẋ = 2,
ẏ = 1 and x < 5. According to definition 2, in the related constraint set R, there are
accordingly constrains: δv3 > 0, ζv3 (x) − λv3(x) = 2δv3 , ζv3 (y) − λv3 (y) = δv3 , ζv3(x) < 5,
where λv3 (x) = λv3 (y) = 1 as x and y are reset to 1 on transition e2. On transition e3,
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there is guard x > 3. In location v4, there is invariant y > 4. Therefore, we also have
constraints ζv3 (x) > 3 and ζv3 (y) > 4 in R. If we name this set of constraints as Rρ′ ,
clearly it is unsatisfiable. As ζv3 (x) < 5, ζv3(x) > 3, and ζv3 (x) − 1 = 2δv3 , we can get
1 < δv3 < 2. Because ζv3(y) − 1 = δv3 , we can get 2 < ζv3(y) < 3, which contradicts
with ζv3(y) > 4. As these constraints are generated according to the invariants and
guards from transition e2, e3, and location v3, v4, this implies the path segment 〈v2〉 −→

e2

〈v3〉 −→
e3
〈v4〉 is infeasible, but 〈v2〉 −→

e2
〈v3〉 is an feasible one. Therefore, if the DFS

algorithm is clever enough, it will backtrack to the location v3 and traverse the next
branch 〈v3〉 −→

e9
〈v1〉. So, now the problem is how to locate such a backtracking point?

The answer is the irreducible infeasible set (IIS) technique[12]. Generally speaking,
a set of linear constraints R is said to be satisfiable, if there exists a valuation of all the
variables which makes all the constraints in R to be true. Otherwise, R is unsatisfiable.
If R is unsatisfiable, then IIS of R is a subset R′ ⊆ R that R′ is unsatisfiable and for any
R
′′ ⊂ R′, R′′ is satisfiable.
Intuitively speaking, the IIS of a linear constraint set is an unsatisfiable set of

constraints that becomes satisfiable if any constraint is removed. Fortunately, quoted
from[12], the algorithm to locate the IIS from a unsatisfiable set is “simple, relatively
efficient and easily incorporation into standard LP solvers”. Actually many software
packages are available which supports the efficient analysis of a linear constraint set and
locating of the minimal IIS, such as MINOS[16], IBM CPLEX[17] and LINDO[18].
Therefore, given an infeasible path ρ, we can simply analyze the constraint set R gen-
erated according to this path to locate the IIS R′. Now, if there is a mapping function to
map each constraint ∇ ∈ R′ to the original elements in the path, we can manipulate the
structure of the bounded depth behavior tree more efficiently.

Definition 6. Given LHA H = (X, Σ,V,V0, E, α, β, γ), path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1

. . .
(φn−1 ,ψn−1)−→

σn−1
〈vn〉, and linear constraint set R which is generated according to the fea-

sibility of ρ. For constraint ∇ ∈ R, the stem location set V∇ of ∇ in ρ is defined as
follows:

– if ∇ is generated according to the time duration on location vi (0 ≤ i ≤ n), δvi ≥ 0,
vi ∈ V∇;

– if ∇ is generated according to the transition guard in φi on transition ei (0 ≤ i ≤
n − 1), vi+1 ∈ V∇. If i > 0, vi−1 ∈ V∇ as well;

– if ∇ is generated according to the reset action in ψi on transition ei (0 ≤ i ≤ n − 1),
vi+1 ∈ V∇.If i > 0, vi−1 ∈ V∇ as well;

– if ∇ is generated according to the flow conditions in βvi location vi (0 ≤ i ≤ n),
vi ∈ V∇. If i > 0, vi+1 ∈ V∇ as well;

– if ∇ is generated according to the invariants in αvi in location vi (0 ≤ i ≤ n);
• if ∇ is generated according to ζi(x), vi ∈ V∇
• if ∇ is generated according to λi(x), vi ∈ V∇, if i > 0, vi−1 ∈ V∇ as well. �	

Definition 7. Given LHA H = (X, Σ,V,V0, E, α, β, γ), path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1

. . .
(φn−1 ,ψn−1)−→

σn−1
〈vn〉 and linear constraint set Rwhich is generated according to the feasibility
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of ρ. For a set R′ = {∇1,∇2, . . . ,∇m} ⊆ R, the stem location set of R′ is VR′ = V∇1 ∪
V∇2 ∪ · · · ∪ V∇m . �	

Basically speaking, given a path ρ and the linear constraintRρ, the above two definitions
mark each constraints φ in Rρ according to a location v in ρ. This means, φ will not be
added into Rρ until ρ travels to location v. Now, let’s review the constraint set Rρ′ given
in the beginning of this section again. Rρ′ = {δv3 > 0, ζv3(x) − λv3 (x) = 2δv3 , ζv3(y) −
λv3 (y) = δv3 , λv3 (x) = 1, λv3(y) = 1, ζv3(x) < 5, ζv3(x) > 3, ζv3(y) > 3}. Clearly the stem
location set of Rρ′ is V = {v2, v3, v4}.

Suppose Rρ′ is the only IIS in the constraint set of path ρ = 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e3

〈v4〉 −→
e4
〈v5〉 −→

e5
〈v6〉, because if any constraint in Rρ′ is removed, the new constraint

set is satisfiable. Then, it clearly implies that the path segment before reaching the
location with the biggest index in the stem location set of Rρ′ , which is v4 in ρ, is
feasible. So the sub tree starting from v4 after 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 doesn’t need to be

traversed.
Furthermore, as mentioned above, the constraint set that IIS technique located can

be mapped back to a path segments ρ′ in the path ρ. This path segment can be saved
as a guideline for the future traversing, once a new traversed path ρ′′ contains an exact
path segment as ρ′, we can simply falsify ρ′′ for verification without call the underly-
ing decision procedure, since the syntax elements in ρ′ has already been proved to be
infeasible in ρ, the occurrence of ρ′ in ρ′′ will just be translated into the same set of
unsatisfiable constraints with just variable name changed.

Based on the above discussion, the optimized function TRAVERSE (stack) is given
below in Table.3. A new function IIS (stack) is introduced in Table.3 as well. This

function finds the IIS in the constraint set according to the ongoing path 〈v0〉 (φ0 ,ψ0)−→
σ0

〈v1〉 (φ1 ,ψ1)−→
σ1

. . .
(φm−1 ,ψm−1)−→

σm−1
〈vm〉 at first, then locates the stem location set from the IIS con-

straint set. By locating the node vk in the set with the largest index, this function will
inform the upper caller to backtrack to location vk−1 by indicating the distance between
vk−1 and vm.

Furthermore, once a path segment ρ′ is located in the IIS, ρ′ will be added into a
global vector Ω as “bad examples”. Then in the Traverse function, once a path is found
to be specification related, the algorithm will check whether this path contains any “bad
example”. If any of the bad examples is hit, the Traverse function will directly return
the backtracking step to the upper caller1.

Based on the algorithm given in Table.3, once a path ρ is proved to be infeasible, an
IIS based method will be called to locate the path segment which makes ρ infeasible.
Then the DFS algorithm can backtrack to the right position to prune the bounded be-
havior tree efficiently. Besides that, the path segment will be saved to falsify the other
new generated paths under checking to save the computation time.

1 Generally speaking, the mapping with bad examples can be preformed once a new location is
added to the path, but the matching will be time consuming if the size of example set is huge,
so we decide to be lazy again to postpone the matching until the target is found.
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Table 3. IIS-DFS Based On Infeasible Path Segment Localization

TRAVERSE (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 from stack s;

2 . if(vn == v)
3. begin
4 . if (∃ω ∈ Ω && ω is a path segment in ρ )

5 . locate ω in ρ as ρω = 〈vi〉 (φi,ψi)−→
σi
〈vi+1〉 (φi+1 ,ψi+1)−→

σi+1
. . .

(φ j−1 ,ψ j−1)−→
σ j−1

〈vj〉;
6 . return j-n;
7 . check the feasibility of ρ;
8 . if (unfeasible)
9 . return IIS(s);
10. end
11 . if ((s.depth == bound)||(vn doesn’t have any successive location)) return 0;
12 . for each successive location sloc of vn

13. begin
14. s.push(sloc);
15. int res=TRAVERSE(s);
16. if (res==1) return res;
17. s.pop(sloc);
18. if (res < 0) return res+1;
19. end
20. return 0;

IIS (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φm−1 ,ψm−1)−→
σm−1

〈vm〉 from stack s;

2 . Locate the stem location set Vρ and the accordingly path segment ρ′ of ρ;
3 . Ω.add(ρ′);
4 . Get the location vk in Vρ with the largest index;
5 . return k-m;

4 Case Studies

In order to evaluate the performance of the optimization methods presented in this pa-
per, we upgrade our bounded reachability checker for LHA: BACH[9, 14] to a new
version BACH 3 (http://seg.nju.edu.cn/BACH/). BACH 3 shares the graphical
LHA Editor with BACH. As the LP solver underlying BACH is OR-objects[15] which
does not support the functionality of IIS analysis. BACH 3 calls the IBM CPLEX[17]
instead, which gives a nice support of IIS analysis.

In the experiments, we evaluate the performance of BACH 3 under three different
settings according to the underlying DFS algorithm, which are Eager-DFS, Lazy-DFS
and IIS-DFS respectively. The experiments are conducted on a DELL workstation (Intel
Core2 Quad CPU 2.4GHz, 4GB RAM).

http://seg.nju.edu.cn/BACH/
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As the comparisons between Eager-DFS and other related tools are already reported
in[9], in this section, we focus on the comparison between the three different DFS al-
gorithms to show the performance of the optimization methods presented in this paper.

We use three benchmarks in the experiments. The first LHA is the sample automaton
given in Fig.1 in this paper. The second one is the temperature control system used in
our previous case studies in[9]. The third automaton is the automated highway example
introduced in[19] with 5 cars included. These automata are shown in Fig.3. For the
sample automaton, we are checking whether location v6 is reachable. In the other two
automata, the reachability of the target location under checking is v4 for temperature
control system, which stands for that no rod is available in the nuclear reactor; and v6

for the automated highway which stands for that a car collision will happen.

Fig. 3. Experimental Automata

We conduct these three DFS algorithms on all of these three automata. The time
limit is set as 2 hours in the experiments. The performance data for each benchmark are
shown in Table.4,5,and 6 respectively. In these tables we show the total time spent for
each problem w.r.t different bound size. Furthermore, in order to show the performance
of the optimization techniques in decreasing the number of paths to check, we also
collect and report the times BACH 3 calls the underlying LP solver -CPLEX, each call
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means a unique path is transformed into an LP constraint set and solved by CPLEX. To
demonstrate these data more intuitively, we also show the plotted graphs in Fig.4.

Table 4. Performance Data On The Sample Automaton In 2 Hours

Eager-DFS Lazy-DFS IIS-DFS�����Bound
Tech.

Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX
10 0.252 51 0.063 17 0.046 2
20 7.111 431 1.487 853 0.124 2
30 98.354 3223 44.610 46037 0.343 2
40 1036.987 23743 2784.989 2544981 1.322 2
50 N/A N/A N/A N/A 10.729 2
70 N/A N/A N/A N/A 1040.308 2

Table 5. Performance Data On The Temperature Control System Benchmark In 2 Hours

Eager-DFS Lazy-DFS IIS-DFS�����Bound
Tech.

Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX
5 0.062 16 0.022 3 0.075 3

15 1.595 636 0.58 127 0.595 23
25 46.004 20476 9.669 4095 1.77 43
35 2256.519 655356 386.743 131071 19.867 63
40 N/A N/A 3389.555 1048575 141.046 75
50 N/A N/A N/A N/A 6470.308 95

Table 6. Performance Data On The Automated Highway System Benchmark In 2 Hours

Eager-DFS Lazy-DFS IIS-DFS�����Bound
Tech.

Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX
5 1.115 61 0.113 20 0.383 20

10 27.877 2045 1.328 340 0.656 20
15 822.996 65533 79.611 21844 1.647 20
20 N/A N/A 1689.658 349524 28.225 20
25 N/A N/A N/A N/A 1242.241 20

We can see that with any of the optimizations deployed, the size of the problem that
can be solved are increased significantly and the performance for the same question
are clearly optimized. Furthermore, IIS-DFS outperforms Lazy-DFS substantially. Take
the automated highway system as example, when bound is set as 15, it cost Eager-
DFS 822.9 seconds to check 65533 paths. By using Lazy-DFS, the verification time is
decreased to 79.6 seconds by only checking 21844 paths. Finally, when use IIS-DFS,
the verification is finished in only 1.6 seconds, and only 20 paths are verified.

The reason is that in our DFS schema, each time a candidate path is found, the
algorithm will call the underlying LP solver to reason the feasibility of the path. When
the size of path and/or the number of candidate paths is large, the reasoning by LP
will be very time consuming. By using optimization techniques presented in this paper,
the number of paths need to check is reduced significantly, thus, it is possible to solve
problem more quickly and to solve larger problems. In detail:

– By introducing Lazy-DFS, the number of candidate paths to check can be reduced
in most of the cases, that’s the reason that Lazy-DFS outperforms Eager-DFS.
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Fig. 4. Performance of Bounded Reachability Analysis in 2 Hours

– By introducing IIS-DFS, when a path is infeasible, IIS can locate the exact path
segment where the infeasibility happens to guide the backtracking. Besides this, the
infeasible path segment can be saved as a “bad example” that if any future candidate
path has a same path segments as the “bad example”, the candidate path can be
falsified for the feasibility reasoning without call the underlying LP solver. That’s
the reason that IIS-DFS outperforms Lazy-DFS in almost all the experiments.

– Indeed, if a candidate path can be matched with a “bad example”, then it can be
falsified directly without call the underlying LP solver to save computation time.
Nevertheless, when the size of the candidate path set is huge, the comparison be-
tween each of the candidate path and the “bad example” set will also be very time
consuming, that’s the reason that as shown in our data, the total time spent is not
proportional to the times of calling CPLEX.

5 Conclusion

The bounded reachability analysis of hybrid automata is difficult. Even for the sim-
ple class of linear hybrid automata (LHA), the state-of-the-art tools can only analyze
systems with few continuous variables, control nodes and small bound.

In this paper, we present an algorithm to check the bounded reachability of LHA in
a DFS manner. Only the abstract path related with the reachability specification will
be analyzed by the underlying LP solver. If the path is judged to be infeasible, the IIS
technique will be deployed on the infeasible path to locate the path segment which
makes this path infeasible to guide the backtracking of the DFS.

We implement the optimization techniques presented in this paper into BACH
which is a bounded reachability checker for LHA. The experiments on BACH greatly
strengthen our belief that with the help of the optimization methods presented in this
paper, the size of the problem that BACH can solve is increased substantially while the
time for solving the same problem is reduced significantly as well.
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Abstract. Satisfiability (SAT) is considered as one of the most im-
portant core technologies in formal verification and related areas. Even
though there is steady progress in improving practical SAT solving, there
are limits on scalability of SAT solvers. We address this issue and present
a new approach, called cube-and-conquer, targeted at reducing solving
time on hard instances. This two-phase approach partitions a prob-
lem into many thousands (or millions) of cubes using lookahead tech-
niques. Afterwards, a conflict-driven solver tackles the problem, using
the cubes to guide the search. On several hard competition benchmarks,
our hybrid approach outperforms both lookahead and conflict-driven
solvers. Moreover, because cube-and-conquer is natural to parallelize, it is
a competitive alternative for solving SAT problems in parallel.

1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to tackle prob-
lems ranging from industrial formal verification [4] to hard combinatorial chal-
lenges [27]. The most successful tools are known as conflict-driven clause learning
(CDCL) solvers [24]. These solvers have data-structures optimized for huge in-
stances and focus reasoning on learning new clauses from emerging conflicts.
Although there exist several approaches to parallelize CDCL solvers [10], it ap-
pears hard to significantly improve performance on most industrial problems.

On the other hand, lookahead solvers [14] focus on small hard problems which
require sophisticated heuristics to solve them efficiently. These solvers can be
parallelized naturally and effectively. Yet, even with many cores at hand, they
cannot compete with single core CDCL solvers on industrial problems.

While developing a method for computing van der Waerden numbers, Kull-
mann observed that CDCL and lookahead solvers can be interleaved in such a
way that the combination outperforms both pure methods. In short, lookahead
is used to assign a certain fraction of the variables, and afterwards CDCL tackles
the reduced problem. For optimal performance the lookahead solver partitions
the original problem into thousands (sometimes millions) of cubes. The CDCL
solver iteratively assumes each cube to be true and solves the simplified instance.

In order to apply this method, called cube-and-conquer, on a large spectrum
of problems, we present a mechanism that determines dynamically when to cut
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off a branch in the search-tree of a lookahead solver to send it to a CDCL
solver. Using this mechanism, several hard industrial problems can be solved
more efficiently using the combination of solvers than with a stand-alone SAT
solver. Additionally, the combined solving method can be parallelized naturally
as well. Therefore, using a parallel implementation of our method, we are able
to solve some hard instances faster than alternative methods.

Our approach is based on the following intuition. Obviously the reduced for-
mulas, after applying some decisions, become easier to solve. Furthermore, at
least empirically, CDCL solvers are effective on solving instances which are rather
easy for their size, utilizing local heuristics including those based on variable ac-
tivities. On the other hand, lookahead solvers are considered to be better at
picking good decisions at the top-level, by using more global heuristics. There
has to be a transition between hard and easy subproblems. So we try to switch
from lookahead to CDCL solving when the subproblem seems to become easy.

The outline of this paper is as follows. After some preliminaries in Section 2,
an overview of the cube-and-conquer method is provided in Section 3 as well as
a description of both solver types. Section 4, discussing the above application to
Ramsey theory, offers a motivating study of the method. Then a general method-
ology is developed. The details of the first phase, the “cube”-phase (partitioning
the problem) are discussed in Section 5, and the details of the second phase, the
“conquer”-phase (solving the sub-problems) in Section 6. Experimental results
are presented in Section 7 and some conclusions are drawn in Section 8.

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by ¬x. A clause is a disjunction of literals, and
a CNF formula is a conjunction of clauses. A clause can be seen as a finite set
of literals, and a CNF formula as a finite set of clauses. A unit clause contains
exactly one literal. A truth assignment for a CNF formula F is a function ϕ that
maps variables in F to {t, f}. If ϕ(x) = v, then ϕ(¬x) = ¬v, where ¬t = f and
¬f = t. A clause C is satisfied by ϕ if ϕ(l) = t for some l ∈ C. An assignment
ϕ satisfies F if it satisfies every clause in F . A cube is a conjunction of literals
and a DNF formula a disjunction of cubes. A cube can be seen as a finite set of
literals and a DNF formula as a finite set of cubes. If c = (l1 ∧ . . .∧ lk) is a cube,
then ¬c = (¬l1 ∨ . . .∨ ¬lk) is a clause. A truth assignment ϕ can be seen as the
cube of literals l for which ϕ(l) = t. A cube c is satisfied by ϕ if ϕ(l) = t for all
l ∈ c. An assignment ϕ satisfies DNF formula D if it satisfies some cube in D. A
DNF formula D is called a tautology if every full assignment ϕ satisfies D. For
a CNF formula F , Boolean constraint propagation (BCP) (or unit propagation)
propagates all unit clauses, i.e., repeats the following until fix-point: if there is
a unit clause (l) ∈ F , remove from F \ {(l)} all clauses that contain the literal l,
and remove the literal ¬l from all clauses in F . The resulting formula is referred
to as BCP(F ). If ∅ ∈ BCP(F ), we say that BCP derives a conflict.

3 Combining CDCL and Lookahead

The main complete SAT solver types are conflict-driven clause learning (CDCL)
solvers [24] and lookahead solvers [14]. In short, CDCL solvers are optimized for
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F1 := F ∧ (x5 ∧ x7 ∧ ¬x8)
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F3 := F ∧ (x5 ∧ ¬x7 ∧ x9)

F4 := F ∧ (x5 ∧ ¬x7 ∧ ¬x9)
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F7 := F ∧ (¬x5 ∧ x2 ∧ x8 ∧ ¬x9)

cutoff leaf

refuted leaf

Fig. 1. A partition of a CNF formula F into seven subformulas Fi. The binary search
tree on the left is constructed by a lookahead solver. It shows in the internal nodes the
decision variable, and on the edges the truth value of a branch. Black leaves represent
refuted leaves, while white leaves are cutoff leafs. The decisions of cutoff leaves yield a
cube of assumptions that together with F forms a subformula Fi.

large industrial problems and consequently use inexpensive decision heuristics.
In contrast, lookahead solvers focus on small hard problems on which it pays
off to compute sophisticated decision heuristics. This section describes the main
features of these solvers, and how we want to combine both types.

Overview. The central approach in this paper deals with a lookahead solver
that partitions a formula into many subformulas which in turn are solved by
a CDCL solver. The sophisticated decision heuristics of lookahead solvers are
used to compute important decision variables. These decisions are provided to
the CDCL solver to guide the search process.

Figure 1 illustrates this approach by an example. The left shows a binary
search tree produced by a lookahead solver. Internal nodes contain a decision
variable. On the edges the truth value is shown to which a decision variable is set
to reach a child node. There are two possible leaf nodes. Either the lookahead
solver refuted the branch because a conflict emerged, or the cutoff heuristic
suggests that this branch should be solved by a CDCL solver. This heuristic
(discussed in detail in Section 5) is crucial for the effectiveness of the approach.

The cutoff branches can be described as a cube of the decisions on the path
to the leaf. A CDCL solver can solve the branch by either adding the decisions
as unit clauses, or by adding them as assumptions (see the Incremental SAT
solving paragraph below). In case one of the branches is satisfiable, the original
formula is satisfiable (and hence remaining branches could be neglected). If all
cutoff branches are unsatisfiable, the original formula is unsatisfiable.

The use of lookahead heuristics to partition a formula have been proposed by
Hyvärinen et al. [15]. In [15] formulas are partitioned into dozens of subformulas
which are distributed on a grid to be solved in parallel. The starting point of this
paper is now the discovery, discussed in Section 4, that some hard combinatorial
problems can be efficiently solved by partitioning them into many thousands of
subformulas (millions for harder problems). Inspired by these results we focus
on the latter approach. We also use more sophisticated lookahead techniques as
employed in state-of-the-art lookahead solvers.
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Lookahead Solvers. Since CDCL is currently the dominant approach in prac-
tical SAT solving, we assume the reader already knows how CDCL solvers work,
and otherwise refer to [24] for more details.

Lookahead solvers combine the David-Putnam-Logemann-Loveland (DPLL)
algorithm [7] with lookaheads; for a general discussion see [14,19], while we de-
scribe here an exemplary scheme. Given a CNF formula F , a lookahead on literal
x works as follows: First, x is assigned to t, followed by BCP. Second, in case
there was no conflict, the difference between F and the reduced formula F ′ is
measured. The quality of lookahead techniques depends heavily on the used mea-
surement. A frequently used method weighs the clauses in F ′ \F (the ones that
are reduced but not satisfied). Third, all simplifications are reversed to get back
to F . If a conflict was detected during the lookahead, then x is forced to f and is
called a failed literal. The measurements are used to determine the decision vari-
able in each node of the search tree. In general a variable x is chosen for which
both the lookahead on x and ¬x result in a large reduction of the formula. We
remark that this scheme combines reduction (elimination of failed literals) and
lookahead (estimating the quality of a branch by considering its development in
the future), while in general these processes can be different.

State-of-the-art lookahead solvers are kcnfs [8], march [25], OKsolver [18],
and satz [23]. These solvers show strong performances on hard random k-SAT
formulas, but they cannot compete with CDCL solvers on large industrial in-
stances. Apart from random instances, lookahead techniques are also useful for
combinatorial problems; these problems have some form of structure to be ex-
ploited, and yield relatively small but typically very hard SAT problems.

While measuring the reduction of the formula F , most lookahead solvers also
perform local learning. In contrast to the learning in CDCL solvers, local learning
computes clauses (mostly unary and binary) that can be added to the formula
for further reduction, but that have to be removed again during backtracking
to the parent node in the search tree. An example of local learning is hyper bi-
nary resolution [2]. Current state-of-the-art lookahead solvers do not implement
conflict clause learning as in CDCL solvers, and mostly not even backjumping
(except of the OKsolver). For an overview of local learning we refer to [14].

Incremental SAT Solving. A frequently used feature of CDCL solvers is in-
cremental SAT solving [9]. The solver provides an interface to (i) add clauses to
the formula and (ii) to solve the formula under a cube of assumptions (decisions
at level 0). Both techniques are very useful for tools that integrate SAT solvers.
The input of an incremental solver can be seen as a sequence consisting of both
clauses and cubes, where each cube defines a job which is the conjunction of that
cube and all clauses preceding it in the sequence. In the context of cube-and-
conquer we solve one formula under a set of cubes, thus all clauses precede all
cubes in the solver input. A useful feature of incremental SAT solvers is that if a
formula has no solutions under a given cube c, then the solver returns a subset
c′ ⊆ c that was required to prove unsatisfiability. The clause ¬c′ can then be
added to the formula to improve performance on other cubes.

As an example of the above, let us return to Figure 1. Now, consider a CDCL
solver solving F2, which is F assuming cube (x5∧x7∧x8∧x2). If however actually
only (x8 ∧ x2) is required to proof unsatisfiability, then we can add (¬x8 ∨¬x2)
to the formula. This binary clause is conflicting with F6 and F7, so by adding
it, these cubes are immediately refuted.
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4 Creating Cubes: The Basic Method

In this section we describe cube-and-conquer in its simplest form, as it came out
of investigations into van-der-Waerden-like numbers ([21,1,22]). The principle
aim is to solve extremely hard instances, which would take many years on a single
machine. Thus a natural splitting of the problem into sub-problems is applied,
and since lookahead solvers are competitive on these instances, it is natural
to use lookahead for this task. The great surprise now is that on these (easy)
sub-problems, conflict-driven solvers are very fast, and via this collaboration
a total speed-up (regarding the total running time) of at least a factor of two
(compared always to the best single solver available) is achieved. So even on a
single machine the problems are solved at least twice as fast, and additionally the
splitting is ideal for parallelization (via clusters for example; no communication
is needed between the processes). This was the birth of “cube-and-conquer”.
The lookahead solver is the OKsolver, which participated successfully at the
SAT 2002 competition and aims at being as “theoretically clean” as possible;
see [18,19] for further information, and see the OKlibrary ([20]) for the renovated
source code. It uses complete elimination of failed literals, and autarky reduction
for the partial assignment at hand (see [17]). The distance along a branch is,
as discussed above, a weighted sum of the number of new clauses, while the
heuristics is the product of these values for the two branches (to be maximized);
again (as for the reduction), all variables are (always) considered.

Computing the cubes is rather simple: cubes are partial assignments, corre-
sponding to initial parts of the paths from the root to leaves in the splitting
(branching) tree, and the task is to “cut off” these paths at the right place. Two
methods are implemented, interpreting a depth parameter D ≥ 0: either the
branches are cut off when exactly D decisions have been made (method A), or
when the total number of assigned variables (decisions, unit propagations, failed
literals, autarkies) is at least D (method B).

The interface to the sub-solver is here as simple as possible: a complete de-
coupling is achieved by applying the partial assignments, and the sub-solver
just gets the results. So each sub-instance is solved completely independent of
each other, and the sub-solver only sees the sub-instance. For method A as well
as for method B, the partial assignments contain everything: the decisions, the
unit-propagation, the failed literals, the autarkies found (including pure literals).

On the implementation side, there are two simple data formats: either storing
each partial assignment in its own file in DIMACS format (this is used for the
experiments below), or creating an iCNF file1, which here is basically just the
concatenation of the instance and the partial assignments, put into one big file.
Processing runs through the partial assignments, applies them to the original
CNF, and calls the sub-solver on the sub-instance. Since only unsatisfiable in-
stances are considered in this section, and the sub-instances are independent of
each other, the order of the instances does not matter. All methods and all data
are available in the OKlibrary, see [20]. The cutoff (the above parameter D) is
determined ad-hoc such that sub-instances only take a few seconds (this seems
to be around the optimum, but with less overhead, as achieved by the system
discussed in Section 5, one can partition further — the more cubes the better).

1 http://users.ics.tkk.fi/swiering/icnf/

http://users.ics.tkk.fi/swiering/icnf/
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We report here only on two instance classes, determining unsatisfiability of
van-der-Waerden (vdW) instances and palindromic vdW instances, using in both
cases two colors, and thus the instances have a canonical translation into boolean
CNF. Such problems are explained (resp. introduced in the palindromic case)
in [1], and they were also part of the SAT 2011 competition. The standard
(boolean) vdW-problems are given by equations vdw(k1, k2) = n, for natural
numbers k1 ≤ k2 ≤ n, meaning that whenever partitioning {1, . . . , n} into two
parts, it holds that the first part contains an arithmetic progression (ap for short)
of size k1 or the second part contains an ap of size k2 (and n is minimal with this
property). This gives a CNF with n variables v1, . . . , vn and with two clause-sizes
k1, k2, where the clauses of length k1 are all the ap’s of size k1, as positive clauses,
and the clauses of length k2 are all the ap’s of size k2, as negative clauses. The
palindromic (boolean) vdW-problems are given by equations vdwpd(k1, k2) =
(n1, n2) (n1 < n2), with a similar meaning, only that now only palindromic
partitions are allowed, thus regarding the partition as a bit-string of length n,
given by the values of v1, . . . , vn, and requiring that (v1, . . . , vn) = (vn, . . . , v1).
By these equations, the number of variables is halved, replacing vn by v1 and
so on, and shorter clauses are obtained. Subsumption elimination is performed
on the instances. There are now two unsatisfiable problems, one using n1+1

2
variables, with n = n1 + 1 as the smallest n with unsatisfiable problem, and
one with n2+1

2 variables, based on the smallest n = n2 such that all n′ ≥ n
yield unsatisfiable problems. For standard vdW-instances, lookahead solvers can
perform better than conflict-driven solvers, while for palindromic vdW-instances
conflict-driven solvers are much better (here we are not speaking about cube-
and-conquer, but about standard SAT solving). Method (B) for determining
the cutoff was vastly superior (diminishing the variability of the sub-instances
enormously), and is only considered here. As the sub-solver, minisat-2.2.0
performed very well here and is used throughout. All times are on a single core
with about 2 GHz (parallelization has not been used), and the times for the cube-
and-conquer approach is the total time, including all computations (writing each
sub-instance to file etc.). All solvers mentioned below for comparison seem best
performing (as ordinary SAT solvers, on the original (full) instances).

For vdw(3, 15) = 218 (yielding 13362 clauses) the lookahead solver satz (ver-
sion 215) needs about 20h, while with D = 35 (yielding 32331 cubes) it is
solved in about 4h. The maximal time per job is 5 seconds, enabling trivial op-
timal parallelization with more than 2000 processors (by just distributing the
jobs for the sub-problems to the first available processor). For vdw(4, 8) = 146
(yielding 4930 clauses) picosat (version 913) takes 8h. Setting D = 20 (yield-
ing 65270 cubes), it is solved in 4h, with maximal job-time of 22s. picosat for
vdw(5, 6) = 206 was aborted after a week, while with D = 20 (yielding 91001

cubes) it was solved in about one day. For vdwpd(3, 25) = (586, 607) (yielding
45779 resp. 49427 clauses), precosat (version 570) used in both cases about 13
days, while with D = 45 (yielding 9120 resp. 13462 cubes) the problems were

solved in about 6.5h resp. 2 days. For vdwpd(4, 12) = (387, 394) (yielding 15544
resp. 15889 clauses) minisat version 2.2.0, was aborted after 2 weeks, while
setting D = 30 resp. D = 34 (yielding 132131 resp. 147237 cubes) solved the

problems in 2 days resp. 8h. Finally, for vdwpd(5, 8) = (312, 323) (yielding 9121
resp. 9973 clauses), minisat used 3 1/2 days resp. 53 days, while setting D = 20
in both cases (yielding 22482 resp. 87667 cubes) solved it in 5h resp. 40h.
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5 Creating Cubes: A General Methodology

This section shows how to modify a lookahead solver into a partitioning tool.
First, we explain where to modify the code, Section 5.1. Second, we present an
adaptive mechanism to cut off branches in Section 5.2. We conclude with some
important heuristics in Section 5.3. The automatic partitioning provided here
essentially is able to simulate the splitting characteristics from Section 4.

5.1 General Framework

The procedure CreateCubes, a modified lookahead solver for partitioning, shown
in Figure 2, takes as input a CNF formula F and outputs two sets. The first setA
is a disjunction of cubes for which each cube represents a set of assumptions that
describe a cutoff branch in the DPLL tree. The cubes in A cover all subproblems
of F that have not been refuted during the partition procedure. The second set
C is a conjunction of clauses. Each of these (learnt) clauses are implied by F
and represent refuted branches in the DPLL tree. Hence the clauses in C can be
added to F to obtain a logically equivalent formula F ′ := F ∪ C.

The recursive procedure has five inputs. Besides F , A, and C, it passes on the
set of decision literals (denoted by ϕdec) and the set of implied literals (denoted
ϕimp). Implied literals are assignments that were forced by BCP or some form
of learning such as failed literal reasoning. Initially, CreateCubes is called with
the input formula F and all the other parameters as empty sets.

In line 1 of the procedure, the method LAsimplify and learn is called. This
method simplifies the formula by BCP and lookaheads, forcing some variables
to certain truth values. All assigned variables are added to ϕimp. Additionally,
it produces local learnt clauses which are added to F . In case the current as-
signment falsifies F then a conflict clause is learnt. This clause consists of the
complements of the decisions and is added to C (line 2). Line 3 deals with cutting
off branching which is further discussed in the next subsection. The procedure
LAdecide on line 4 determines the next decision variable and preferred truth
value based on lookaheads. There exists a vast body of work on these decision
heuristics [19]. Section 5.3 offers the details of this produce.

After CreateCubes is terminated, A and C are optimized. First, the clauses in
C are reduced in size by applying self-subsumption resolution. For instance, back
to the example in Figure 1 with (x5 ∨ x2 ∨¬x3 ∨ x7), (x5 ∨ x2 ∨¬x3 ∨¬x7) ∈ C,
then the resolvent (x5 ∨ x2 ∨ ¬x3) replaces both antecedent clauses. When C is

CreateCubes (CNF F , DNF A, CNF C, dec. lits. ϕdec, imp. lits. ϕimp)

1 〈F,ϕimp〉 := LAsimplify and learn (F , ϕdec, ϕimp)

2 if ϕdec ∪ ϕimp falsify a clause in F then return 〈A, C ∪ {¬ϕdec}〉
3 if cutoff heuristic is triggered then return 〈A ∪ {ϕdec}, C〉
4 ldec := LAdecide (F , ϕdec, ϕimp)

5 〈A, C〉 := CreateCubes (F,A, C, ϕdec ∪ {ldec}, ϕimp)

6 return CreateCubes (F,A, C, ϕdec ∪ {¬ldec}, ϕimp)

Fig. 2. The general framework of the recursive procedure CreateCubes
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fully optimized, this set of conflict clauses is used to remove assumptions in A.
For instance if (¬x5 ∧ x2 ∧ x8 ∧ x9) ∈ A, and (x5 ∨ ¬x2 ∨ x8) ∈ C, then x8 is
removed as an assumption because it will be forced by BCP after C is added to
F . After these optimizations until fix-point, A is a tautology.

5.2 Cutoff Heuristic

The heuristic that triggers the cutoff of a branch is of crucial importance to create
an effective partition. Ideally, this heuristic partitions the original problem into
several subproblems such that 1) the runtimes to solve each of the subproblems
are comparable and 2) the sum of these runtimes (at least) does not exceed the
runtime of solving the original instance.

A (simplifying) interpretation of the results discussed in Section 4 is that for
some hard combinatorial problems both objectives can be achieved by cutting
off a branch if a certain fraction (say 10%) of the variables is assigned — this
measure is much easier to handle than the solution time for the sub-instances,
which for the experiments reported in Section 4 was determined in an ad-hoc
manner. There actually the total solution time for the subproblems was not just
not bigger than the original solution time, but much smaller. So this metric is
very useful for several small hard problems. However, for the larger industrial
instances, the number of decisions appears to be also of important to determine
the hardness of a subproblem. Additionally, for these formulas sometimes a single
decision assigns 10% of the variables, while for other formulas it requires over
100 decisions. In the former case the number of partitions becomes too small,
while in the latter case the number of partitions becomes too large.

An alternative approach by Hyvärinen et al. [15] cuts off a branch after k
decisions have been made (this was called method A in Section 4). The advantage
of this approach is that one can clearly upper-bound the number of partitions
in advance. However, branches with the same number of decisions are rarely
equally hard to solve. It is often the case, that assigning a decision literal x to t
results in significantly more implied literals than assigning x to f or vice versa.

We combine both approaches by using the product of the number of decisions
and the number of assigned variables, |ϕdec| · |ϕdec ∪ ϕimp|, as the cutoff metric.
Furthermore, the refined procedure CreateCubes∗, Figure 3, includes a dynamic
cutoff mechanism. It implements the cutoff of a branch (with the cutoff heuristic
discussed above) as shown in line 5 using a threshold parameter θ. Two lines
update the value of θ. The first, the increment rule on line 1, raises the value
by 5% without a condition. This rule aims to restore the value in case it was
reduced too much. The second, the decrement rule on line 3, lowers the value by
30%. This rule tries to avoid two unfavorable situations described below.

First and most importantly, the value is decreased if the lookahead solver
hits a conflict, meaning that the current node is a refuted branch. The rationale
of this update is as follows. If the lookahead solver was able to show that the
current node is conflicting, then probably a CDCL solver could have found the
conflict faster. Additionally, if the CDCL solver would have found the conflict,
then it could have analyzed it and possibly computed a smaller reason of this
conflict (than all decisions as computed by the lookahead solver). By lowering θ,
the mechanism tries to cut off neighboring branches before a conflict emerges.

Secondly, the mechanism prevents the recursive procedure from going too
deep into the DPLL tree. For most interesting instances, it appeared useful to
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CreateCubes∗ (CNF F , DNF A, CNF C, dec. lits. ϕdec, imp. lits. ϕimp)
1 θ := 1.05 · θ
2 〈F,ϕimp〉 := LAsimplify and learn (F , ϕdec, ϕimp)
3 if ϕdec ∪ ϕimp falsify a clause in F or |ϕdec| > 20 then θ := 0.7 · θ
4 if ϕdec ∪ ϕimp falsify a clause in F then return 〈A, C ∪ {¬ϕdec}〉
5 if |ϕdec| · |ϕdec ∪ ϕimp| > θ · |vars(F )| then return 〈A ∪ {ϕdec}, C〉
6 ldec := LAdecide (F , ϕdec, ϕimp)
7 〈A, C〉 := CreateCubes∗ (F,A, C, ϕdec ∪ {ldec}, ϕimp)
8 return CreateCubes∗ (F,A, C, ϕdec ∪ {¬ldec}, ϕimp)

Fig. 3. The recursive procedure CreateCubes∗ with the cutoff mechanism

decrease θ for all nodes with a depth larger than 20. In case one wants the
mechanism to finish creating cubes within a few seconds, then the condition
should be dependent on the size of the formula, such as |ϕdec|+ log2(|F |) > 30.

Initially, θ should be large enough to ensure that the mechanism will cut off
the tree at a reasonable depth. We used θ := 1000 as initial value. Using a value
which is a factor 10 larger or smaller hardly influences the resulting partition.
Using this initial value, θ will first be decreased before cutting off a branch.

5.3 Heuristics for Splitting

Besides the development of the cutoff mechanism, the standard heuristics for
lookahead solvers had to be tweaked in order to realize fast performance.

Decision Heuristics. The default and costly lookahead evaluation heuristic
(measurement) in most lookahead solvers is based on the clauses that are re-
duced, but not satisfied during a lookahead. These clauses are weighted depend-
ing on their (new) length. In general, a clause of length k has a weight which is
a factor five times larger compared to a clause of length k + 1. A more cheaply
heuristic counts the number of variables that are assigned during the lookahead.

For an example of both heuristics, consider the formula F below. Because the
longest clauses have length 3, all “new” clauses have length 2, so no weights are
required. Let evalcls(xi) denote the clause based heuristic being the (weighted)
sum of the reduced, not satisfied clauses and evalvar(xi) the variable based heuris-
tic being the number of assigned variables during the lookahead on xi = 1. E.g.,
evalvar(¬x6) = 1 and evalcls(¬x6) = 2 because the lookahead on x6 = 0 reduces
two clauses from ternary to binary, and only x6 is assigned. Notice that the
values of the two heuristics are not necessarily related. evalcls(xi) may be much
smaller than evalvar(xi). For instance evalcls(¬x2) = 1, while evalvar(¬x2) = 4.

F = (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x6) ∧
(¬x1 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x6) ∧ (x4 ∨ x5 ∨ x6) ∧ (x5 ∨ ¬x6)

In general, lookahead solvers rank variables xi by eval(xi) · eval(¬xi). Ties are
broken by eval(xi) + eval(¬xi). The decision heuristics select in each node of the
DPLL tree the variable with the highest rank.
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The default heuristics evalcls appeared to be quite effective on instances that
had none or few binary clauses. This is frequently the case for random and crafted
instances used in the SAT competitions. However, we noticed that evalvar was
more effective on industrial instances. An advantage of evalvar is that it does
not require the eager data-structures used in lookahead SAT solvers. Hence, this
heuristic can relatively easy be implemented in CDCL solvers.

Direction Heuristics. Given a decision variable x, direction heuristics decide
which branch (x to t or x to f) to explore first; see Section 5.3.2 in [14] for
more information. Direction heuristics in lookahead solvers aim to improve per-
formance on satisfiable formulas. Therefore, the solver prefers the branch that is
most “likely” to be satisfiable. For methods how to estimate such probabilities
see Section 7.9 in [19], and see Subsection 4.6.2 in [3] for some discussions in
the CSP context. As a cheap approximation one can take the least constraint
branch first. This is the complementary strategy of the first fail principle [12]
which is often used in Constraint Satisfaction. In case eval(x) < eval(¬x), x to t
is explored first. Otherwise x to f is preferred. For a certain node with decision
variable x, we refer to the branch with eval(x) < eval(¬x) as its left branch. The
other branch we call its right branch.

The partition mechanism as described in Section 5.2 seems to be quite ro-
bust regarding the direction heuristics. The number of cubes and the average
size of the cubes is hardly influenced by exploring the left or the right branch
first. However the order in which partitions are visited has a clear impact on
performance related to the left and right branches, when considering how the
sub-problems are solved; see Section 6.1.

6 Solving Cubes

A CDCL solver deals with the second phase of the cube-and-conquer method.
The solver takes as input the original formula F , optionally extended with the
learnt clauses C, and the set of assumption cubes A. The latter is ordered based
on some heuristic. For each cube c ∈ A based on this order, the CDCL solver
solves F ∧ c (∧C). First, we present how to solve the cubes sequentially (Sec-
tion 6.1). Second, we discuss a parallel solving approach (Section 6.2).

6.1 Sequential Solving

The sequential solving procedure is rather straightforward and shown in Figure 4.
Iteratively, a cube c ∈ A is selected (line 3) and assumed to be true followed
by solving the simplified formula (line 4). In case the result is satisfiable, the
original formula is satisfiable and hence the procedure ends. After all cubes have
been refuted, the formula is found to be unsatisfiable.

After refuting a cube, most CDCL solvers provide a technique, known as
AnalyzeFinal , to extract a subset of the cube that was required to proof unsat-
isfiability. It can be useful to add the clause –the complement of this subset–
to the formula (line 5). Adding it can help refuting another cube more easily
and the CDCL solver cannot remove it (in contrast to learnt clauses). How-
ever, if |A| is much larger than |F |, the addition may significantly slow down
performance.
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SolveCubes (CDCL solver S, CNF F , DNF A)

1 S.Load (F )

2 while A is not empty do

3 get a cube c from A and remove c from A
4 if S.SolveWithAssumptions (c) = satisfiable then return satisfiable

5 S.AnalyzeFinal () // optional

6 S.ResetClauseDeletionPolicy ()

7 return unsatisfiable

Fig. 4. The pseudo-code of the sequential solver using the partition

Last, but not least, we observed that removing some learnt clauses after refut-
ing a cube can significantly improve performance of cube-and-conquer. This can
be explained by the intuition that the subproblems are relatively independent
and hence the learnt clauses of one subproblem can hardly be reused for another
subproblem. Removal of learnt clauses is realized by reseting the clause deletion
policy after solving a cube (line 6). So the size of the clause database is reduced
to its initial size and the least important clauses are kicked out.

Describing the Cubes. In the partition procedure CreateCubes, the cube con-
sists only of all decisions (ϕdec) from the root to the cutoff. Alternatively, one
could describe a cube by all the assigned variables (ϕdec∪ϕimp). The latter may
include several assignments that a CDCL solver cannot reconstruct by BCP, for
instance the failed literals. Recall that this approach is used is Section 4 and by
Hyvärinen et al. [15,16]. However, it seems that communicating implied variables
to a CDCL solver does not improve runtime. Throughout our experiments, using
cubes consisting of only decision literals resulted in stronger performance.

The order in which the decision literals are assumed in the CDCL solver
influence the size of conflict clauses. The natural order –the order in which the
decisions were made– appears to be the best alternative.

Ordering the Cubes. During the experiments, we observed a relation between
the time it requires to refute a cube and the number of right branches between
the root and the cutoff of that cube: the more right branches (also known as
discrepancies), the easier the corresponding subformula. On the other hand, for
satisfiable formulas, cubes that cover a solution tend to have few right branches.
Although we focused mostly on unsatisfiable formulas, we observed that for
satisfiable benchmarks it pays off to solve the cubes with few right branches
first. This strategy is known as limited discrepancy search [13].

There is also another reasoning for preferring this order, namely when solving
cubes in parallel (see Section 6.2). In case CreateCubes produces an unbalanced
tree, then frequently one or a few cubes will consume most of the computation
costs to solve a formula. Therefore, one should solve the hard cubes first: a few
cores attack these cubes, while others solve the easy ones. Otherwise, if a hard
cube needs to be solved in the end, there would no cubes left for the other
cores.
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6.2 Parallel Solving

A natural extension of the approach in the prior section is to consider solving
the partitions in parallel. In existing work on parallel SAT solving [10] two main
approaches are distinguishable. The first aims to partition the formula in an
attempt to divide the total workload evenly over multiple computation nodes,
the second are so called portfolio approaches [11]. Rather than partitioning the
formula, portfolio systems run multiple solvers in parallel, each attempting to
solve the same formula, and the system finishes whenever the fastest solver
finishes. Often such portfolios consist simply of multiple instances of the same
CDCL solver, as those can be made to all traverse the search space in a different
order by as little as using different random seeds. Such parallel solvers thus
mostly exploit the lack of robustness of SAT solvers, and can be surprisingly
effective. Parallel SAT solvers of both types can be extended with exchange of
learnt clauses between computation nodes.

In the solving phase of cube-and-conquer many partitions are independently
solved and thus it can be easily parallelized. However as we make use of in-
cremental SAT, so one can also think of this phase as one single incremental
problem. In [26] two different job assignment strategies for parallel incremental
SAT were discussed and implemented in a tool called Tarmo. That work was
focused on Bounded Model Checking (BMC) but it can be seen as a general
framework for parallel incremental SAT solving with clause sharing. The first
strategy implemented is the multijob approach in which an idle node is assigned
the first job that is not already assigned to any other node. When two nodes
are idle at the same time the job assignment order is undefined but it is guaran-
teed that no two nodes ever work on the same job. The second strategy called
multiconv is inspired by portfolio solvers, and it simply runs a conventional in-
cremental SAT solver on all jobs on all nodes. The latter can be effective for
BMC where jobs are difficult and job order is relevant. For cube-and-conquer
however we deal with a huge number of jobs, most of which are very easy, which
means there are no large deviations in single job run times for the multiconv
strategy to exploit. For this application multijob is a natural choice, although
it is not ideal. If the partitioning is uneven a small number of the jobs may
make up a large fraction of the run time. Thus using multijob nodes given only
easy jobs may end up sitting idle waiting for a small number of nodes with hard
jobs to finish. In Tarmo we experimented also with an extended strategy, multi-
job+, which is like multijob except that it will assign a job that is already being
solved by some node to nodes that would otherwise become idle. This modified
strategy appeared to beneficial for performance of the cube-and-conquer solving
phase.

Another feature of Tarmo is its ability to share learnt clauses between solver
threads. As discussed in [26] different settings are possible for the amount
of clauses shared. Tarmo’s default setting which shares learnt clauses that
have a length which is below average appeared the most effective for this
application.

After studying the parallelization of cube-and-conquer’s solving phase using
various versions of Tarmo, a special purpose multithreaded version of the fast
SAT solver lingeling was created, which uses the basic multijob strategy. This
special purpose solver called iLingeling is faster than Tarmo for this application
although it does not use clause sharing or the multijob+ strategy yet.
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7 Experimental Results

The experiments focus on the strength of cube-and-conquer on hard application
benchmarks. For this paper we used instances from the SAT 09 application cat-
egory that were not solved during the competition (within the given timeout of
10,000 seconds) – the same set as used in [16]. We modified two existing SAT
solvers according to the general method of cube-and-conquer. First, the look-
ahead SAT solver march [25] was converted into a splitting tool called march cc.
Second, the CDCL solver lingeling was extended to deal with iCNF files. This
version called iLingeling also supports solving cubes in parallel. The sources
of both tools are available on http://fmv.jku.at/cnc/.

Phase I of our cube-and-conquer implementation consists of A) simplifying the
formula using the preprocessor of lingeling (option -s) and B) calling march cc
on the result. The cutoff mechanism in march cc is implemented as shown in
Figure 3. Three benchmarks in the SAT09 suite (9dlx* and sortnet*) remained
too large after simplifying and caused memory problems for march cc. There-
fore, we replaced |ϕdec| > 20 by |ϕdec| > 10 in the decrement rule for these
instances. We used the cheap evalvar lookahead evaluation, because it resulted
in improved performance compared to evalcls. The reported runtimes in Table 1
for phase I include both preprocessing and partitioning – the latter consuming
most of the time. Notice that partitioning is based on lookahead. Hence, this
part can relatively easy be parallelized. Since solving cubes requires more time
than creating them, this optimization is left for future work. march cc outputs
an iCNF file which concatenates the simplified formula and a line for each cube.

For phase II of cube-and-conquer, the iCNF file is provided to iLingeling.
We used a 12-core-machine during this phase. On such a machine, iLingeling
starts 12 worker threads using separate lingeling solvers. Idle threads ask for
the first cube that has not been dealt with by another thread. After receiving a
cube, lingeling solves the reduced formula of the first phase with the cube as
assumptions. After a cube is refuted, the clause database of the corresponding
lingeling is reduced as discussed in Section 6.1. A thread terminates either
when a solution is found by one of the 12 solvers or when no new cube is available.
iLingeling terminates when all threads are terminated.

Table 1 shows the results of our cube-and-conquer implementation on hard
SAT 2009 application instances. The experiments are run on a two 6-core AMD
Opteron 2435 machine from 2009. This machine, part of a cluster, has 32GB
main memory and each job had a memory limit of 2.5GB per core. Additionally
it shows the results of three alternative solvers, which we obtained from [16]:

– Plingeling 276, a multi-core portfolio solver using 12 cores [5].
– ManySAT 1.5, multi-core portfolio solver using 4 cores [11].
– PT-Learn, an iterative partitioning solver with learning running on a

grid [16].

The portfolio solvers Plingeling and ManySAT were run on exactly the same
hardware as our implementation, while PT-Learn was run on the M-grid envi-
ronment consisting of nine clusters with CPU’s from 2006 to 2009.

When we compare our approach with the two portfolio solvers Plingeling
and ManySAT, then cube-and-conquer solves several more of these hard instances.
Portfolio solvers are stronger on the three huge instances 9dlx* and sortnet*.

http://fmv.jku.at/cnc/
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Table 1. Results on benchmarks of the SAT 2009 application suite that were not solved
during that competition. S denotes satisfiable, U denotes unsatisfiable. Phase I uses
lingeling for preprocessing and march cc for partitioning. The column I shows the
total time (in seconds) of both tools on a single core. Phase II uses iLingeling to solve
the cubes. Both the total time (sum of all threads) and the real time are listed. For
the other solvers only the real time is provided which originate from [16]. — denotes
that the timeout of 4 hours (14400 seconds) was reached.

S number I II II Plingeling ManySAT PT-Learn

Benchmark U of cubes total total real real real real
9dlx vliw at b iq8 U 84 284 — — 3256 2750 —
9dlx vliw at b iq9 U 40 314 — — 5164 3731 —
AProVE07-25 U 98320 168 81513 6858 — — 9967
dated-5-19-u U 28547 478 5601 2538 4465 18080 2522
eq.atree.braun.12 U 86583 115 3218 269 — — 4691
eq.atree.braun.13 U 83079 106 17546 1466 — — 9972
gss-24-s100 S 339398 1853 14265 1191 2930 6575 3492
gss-26-s100 S 493870 1517 66489 5547 18173 — 10347
gus-md5-14 U 78488 649 — — — — 13890
ndhf xits 09 UNS U 39351 128 — — — — 9583
rbcl xits 09 UNK U 61653 210 132788 16900 — — 9819
rpoc xits 09 UNS U 36733 255 104552 20665 — — 8635
sortnet-8-ipc5-h19 S 583 271 48147 4023 2700 79010 4304
total-10-17-u U 19773 948 5927 5561 3672 10755 4447
total-5-15-u U 7865 192 — — — — 18670

A possible explanation could be that these instances must be “easy” relative to
their size. Therefore, lookahead techniques can not really help the CDCL solvers.

The PT-Learn solver shows on most instances comparable performance to
cube-and-conquer – although the latter is an order of magnitude faster on the
eq.atree.braun* and gss* benchmarks. The comparison of both solvers in Table 1
however is biased towards PT-Learn: the experiments are run on similar hard-
ware, but PT-Learn runs up to 60 jobs at the same time, while cube-and-conquer
runs at most 12 jobs. PT-Learn suffers a bit from delays, while our solver runs
on one machine. So, the presented results are suggesting that cube-and-conquer
is actually the strongest solver on these hard application benchmarks.

Additional experiments suggest that our current implementation of cube-and-
conquer is not optimal yet. For several instances, we observed improved real time
using less than 12 cores. E.g., our 4 core cube-and-conquer experiments dated-5-
19-u in 901 seconds. Also, total-10-17-u was solved in 2632 seconds using a single
core. This time is almost half the 12 core real time and faster than the other
parallel SAT solvers. Notice that for both instances the real time is relatively
close to the total time, indicating that solving a certain cube requires most of
the computational cost.

8 Conclusions

We presented the novel SAT solving approach cube-and-conquer which is a very
powerful method to solve hard CNF formulas. Our approach combines sophisti-
cated lookahead decision heuristics with the efficiency of CDCL solvers. Results
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on hard van der Waerden benchmarks using our basic method show reduced com-
putational costs up to a factor 20 compared to the fastest “pure” SAT solver.
Moreover, using our cutoff mechanism, we were able to apply cube-and-conquer
on hard application instances of the SAT competition. As a result, we outperform
on most of these benchmarks the state-of-the-art parallel SAT solvers.

While this paper focused on the offline version of cube-and-conquer (i.e., a
strict separation between both phases), we plan to implement an online version
in the future. By integrating the method into a single solver, the phases can
communicate with each other. For instance, the cube creation phase may select
more effective decision literals if it knows which variables were frequently part
of AnalyzeFinal . Also, if a cube appears hard to solve, the conquer phase can
request additional assumptions.
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Abstract. This paper proposes an efficient algorithm for the system-
atic learning of implications. This is done as part of a new search and
restart strategy in the SAT solver. We evaluate the new algorithm within
a number of applications, including BMC and induction with invari-
ant strengthening for equivalence checking. We provide extensive exper-
imental evidence attesting to a speedup of one and often two orders of
magnitude with our algorithm, on a representative set of industrial and
publicly available test suites, as compared to a basic version of invariant
strengthening. Moreover, we show that the new invariant strengthening
algorithm alone performs better than induction and interpolation, and
that the absolutely best result is achieved when it is combined with in-
terpolation. In addition, we experimentally demonstrate the superiority
of an application of our new algorithm to BMC.

1 Introduction

The need to efficiently solve many closely related problems arises in numerous
applications of model checking [8] and equivalence checking [12]. Various au-
tomatic invariant strengthening algorithms fall into this class of applications.
In such algorithms one has to guess the missing invariants that strengthen the
target property, thereby making it easier to prove. However, for the guessing
to succeed, many potential invariants must be tried out, and therefore for over-
all efficiency it is very important that the evaluation of potential invariants be
very fast.

In the domain of SAT solving [3,14], several efficient approaches to solving
multiple related objectives incrementally [26,27] or simultaneously [13] have been
developed in the past, and due to its increasing importance this is an active
research area. The two approaches are closely related, yet there are subtle fun-
damental differences between the two. Their relative performance depends on
the nature of the benchmarks.

In this work we focus on improving and refining the Simultaneous SATisfia-
bility (or SSAT ) approach to solving multiple closely related SAT tasks. Recall
that the SSAT algorithm aims at proving a number of related objectives (called
proof objectives, or POs) in one backtrack search. The algorithm receives a CNF
instance and a number of literals that occur in the CNF. These literals rep-
resent the POs. If there is a satisfying assignment to the CNF where a PO is
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assigned false, then the PO is not a logical consequence of the CNF instance and
is therefore called falsifiable; otherwise it is valid. For each PO, the SSAT algo-
rithm returns one of the following statuses: valid, falsifiable, or indeterminate (in
case the algorithm is interrupted). This is different from solving the satisfiability
status of the conjunction of all POs.

As an example, consider the problem of combinational or sequential equiva-
lence checking of circuits. By the nature of the problem, and in particular, by
the nature of the design or synthesis of an implementation model based on a
specification model, there are many internal nodes in the circuits that are equiv-
alent. Exploiting these internal equivalences often helps enormously in proving
the functional equivalence of the corresponding outputs of the two circuit de-
signs. The POs are then equivalences of the form x ↔ y or x ↔ ¬y between
internal nodes x and y of the specification and implementation circuits. On a
large set of Intel and academic benchmarks, we found that SSAT is more effi-
cient within the invariant-strengthening algorithms than saturation or multiple
incremental calls to the SAT solver. Still, there is an inefficiency caused by the
fact that the definitions of many (sometimes tens or hundreds of thousands) of
the POs corresponding to the candidate invariants must be added to the CNF
instance: an equivalence of the form x ↔ y or x ↔ ¬y is translated into four
clauses (with the standard Tseitin encoding), and these extra clauses noticeably
slow down the SAT solver.

We introduce a novel DPLL-based approach, called implicative SSAT (or
SSAT→), that leverages from the fact that the POs are equivalences consisting
of two implications, e.g., x→ y and y → x. The SSAT→ algorithm learns these
implications and equivalences without encoding them into the CNF. Instead, it
deals with them during the search using a dedicated algorithm. This leads to a
speedup of up to two orders of magnitude as compared to other approaches to
invariant strengthening that also try to prove a maximal number of candidate
invariants at a given induction depth. Our algorithm can solve any number of
user-given properties simultaneously. The algorithm is discussed in Section 2.

We propose two new applications of SSAT and SSAT→ (Sections 3 and 4, re-
spectively). One is in-depth BMC, which uses simultaneous solving in a BMC [2]
scheme where unrolling happens with intervals [11,28] (the SAT solver is not
called after each unrolling step). The other application is an invariant strength-
ening algorithm for equivalence checking known as van Eijk’s method [10]. Both
Sections 3 and 4 present a rich collection of experiential results demonstrating
the efficiency of our algorithms. In Section 5 we provide an extensive overview
of related work, in order to make it clear how our research advances to the state
of the art. Conclusions and discussion of future work appear in Section 6.

2 Implicative SSAT

Recall that SSAT modifies the modern SAT solver’s algorithm in a way that
allows it to solve multiple proof objectives in one search ([13], Section 5). The
SSAT algorithm always maintains a PO literal, called the currently watched
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PO (CWPO), that the SAT search tries to falsify. At the beginning of the search
CWPO is set to be any PO literal. At every stage of the search, prior to invoking
a generic decision heuristic, CWPO is assigned false. The CWPO ceases to be
the currently watched PO in two circumstances:

(1) When a model containing CWPO = false is discovered, in which case we
mark as falsifiable the CWPO as well as all the POs that are assigned false
(or are don’t care literals) in the model;

(2) When the CWPO is discovered to be globally true, in which case we mark
the CWPO as valid.

In either of these circumstances, we check whether there exists an unresolved PO
l – a PO that has not been found valid or falsifiable. If such an unresolved PO
l exists, we set the CWPO to l, otherwise the algorithm halts. The algorithm
returns the pair (vPOs, fPOs) consisting of POs proved valid and POs proved
falsifiable.

We found it very useful to frequently reschedule POs in the SSAT algorithm:
each CWPO ceases to be a CWPO after a given number of restarts, and the
next PO in a sorted list of POs is selected as the CWPO. In other words, the list
of unresolved POs is rotated. This is different from the original SSAT algorithm
(where a CWPO ceases to be a CWPO only after it gets resolved), and often
prevents wasting search effort in irrelevant search space: the learning gained re-
solving other POs often makes it easier to resolve the once problematic CWPO
later. In particular, thanks to frequent rescheduling, simpler invariants are dis-
covered easily and solved first; rescheduling can thus be seen as an improved
version of the widely used method according to which candidate invariants are
sorted in a bottom-up fashion and solved in that order.

As discussed earlier, in applications where the POs are equivalences of the
form PO = os ↔ oi, and there are many POs, translating them all into the
CNF instance can be a significant overhead for the solver. Therefore, we propose
implicative SSAT , or SSAT→, as an algorithm that takes a number of pairs
(ojs, o

j
i ) as input and reports the status of each equivalence ojs ↔ oji for each j: if

there is a satisfying assignment with ¬ojs ∧ o
j
i or ojs ∧ ¬oji , then the equivalence

is false and POj = ojs ↔ oji is falsifiable; otherwise it is valid.
For deciding the validity of an equivalence PO = os ↔ oi, the algorithm

checks the satisfiability status of two implications PO→ : os → oi and PO← :
os ← oi. A pseudo algorithm for SSAT→ is described in Figure 1. For simplicity
of presentation, we do not treat the circumstance where there are initial unit
clauses, in which case some POs might be found valid before the loop at line 2.
The algorithm’s structure is similar to that of SSAT. The main difference is that
the SSAT→ algorithm needs to track the status of implications, rather than sin-
gle literals. Consequently, the treatment of the CWPO in lines 8 – 19 becomes
more complex, since each PO has two implications and each implication has two
literals. Consider line 25, which is supposed to find globally valid PO implica-
tions. Our algorithm (not specified in Figure 1) returns that a PO implication
PO→ : os → oi is valid if one of the following conditions holds:
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(1) os is globally false (false at decision level 0);
(2) oi is globally true;
(3) At decision level 1: both os and oi are true, where os is the decision literal

and oi is an implied literal.

3 In-Depth BMC with SSAT→

In this section we discuss a variant of the BMC algorithm that employs SSAT→

in a way that differs from the known usages of incremental SAT with assumptions
in BMC [9]. Besides the maximal bound k, BMC with intervals [11] takes an
argument i that denotes the length of the bound intervals in which SAT checks
for falsification of the property are performed. For instance, with i = 10 and
k = 100, bound intervals 0−9, 10−19, . . . , 90−99, 100 are checked consecutively
and incrementally. More precisely, given a safety property P and a state s,
assume that P (s) is a variable denoting P in state s. Then in the interval 0− 9,
BMC with intervals calls the SAT solver to check the satisfiability of the following
formulas, where Tr and I denote the transition and initial state relations, and
P0−9 = P (s0) ∧ . . . ∧ P (s9).

I(s0) ∧ path(s0, . . . , s9) ∧ ¬P0−9

path(s0, . . . , sk) = Tr(s0, s1) ∧ . . . ∧ Tr(sk−1, sk)

In the in-depth BMC algorithm that we propose, in each interval such as 0− 9,
we call SSAT→ with POs P (s0), . . . , P (s9), on the unrolled instance.

Tables 1 and 2 compare our implementations of incremental BMC [9] (col-
umn BMC), incremental BMC with intervals (BMC10, BMC25), and in-depth
BMC (BMC10→, BMC25→), for the maximal bound k = 100 and intervals
10, 25, on 417 problems from several families of HWMCC’10 benchmarks. We
also compare our results with ABC-BMC3, which is ABC’s implementation of
incremental BMC, and ABC-BMC2, which is similar to BMC with intervals but
whose unrolling intervals are determined based on the extra gate count [19]. We
selected the problems that were unsatisfiable for both the ABC-BMC2 strategy
in the competition and our BMC implementation, since most of the falsifiable
instances in the HWMCC’10 set are too easy. The first table shows 115 prob-
lem instances for which a 900-second time-out occurred for at least one of the
strategies before the maximal bound was reached; for each group the sum of the
reached bounds is shown. The second table shows the run-times per group and
per strategy for the remaining 302 problem instances.

The tables show that in-depth BMC reaches higher bounds than any other
version of BMC. Implication learning was disabled in these experiments, since for
BMC these techniques are useful only for very difficult instances. The advantage
of in-depth BMC over BMC can be explained as follows: In the interval 0 − 9,
while trying to falsify, say, P (s3), the SSAT

→ solver has a view of the cones of
P (s4), . . . , P (s9) as well; this allows the solver to infer and use useful correlations
among signals at bounds up-to 3 from the definitions, user constraints (possibly
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SSAT→ (cnf , [PO1 = (o1s, o
1
i ), . . . , POn = (ons , o

n
i )])

1: CWPO = any PO pair;
2: while (true) do
3: if CWPO is marked valid or falsifiable then
4: if all the POs are marked valid or falsifiable then
5: return (vPOs, fPOs);
6: end if
7: CWPO = any PO pair (ojs, o

j
i ) that is yet unresolved;

8: if PO→ is unresolved then
9: σ = true
10: else
11: σ = false
12: end if
13: if os is unassigned then
14: Assign os = σ
15: else
16: if oi is unassigned then
17: Assign oi = ¬σ
18: end if
19: end if
20: else
21: Assign choose-decision-literal();
22: end if
23: while (status == local-conflict) do
24: status = BCP();
25: Mark any PO implication PO→ or PO← that is discovered to be globally true

as valid;
26: If for an unresolved PO both PO→ and PO← are marked valid, mark the PO

valid;
27: if status == global-conflict then
28: Mark all unmarked POs valid;
29: return (vPOs, fPOs);
30: end if
31: if (status == model) then
32: Mark any falsified PO implication PO→ or PO← falsifiable;
33: If for an unresolved PO one of the implications PO→ and PO← is marked

falsifiable, mark the PO falsifiable;
34: Unassign all the literals that are not globally true;
35: end if
36: if (status == local-conflict) then
37: Add a conflict clause; Backtrack;
38: Assign literal that must be flipped following conflict analysis;
39: end if
40: end while
41: end while

Fig. 1. Pseudo algorithm for implicative SSAT (or SSAT→)
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Table 1. Comparing the bound for 115 timed-out instances

Family BMC BMC10 BMC10→ BMC25 BMC25→ ABC-BMC2 ABC-BMC3
bj 405 393 461 328 462 485 553
bob 674 645 736 427 697 706 710
cmu 137 140 138 150 143 158 174
eij 785 765 846 551 848 585 730
nus 283 301 301 301 355 225 385
pdt 3393 3504 3963 2957 3983 3430 3673
pj 300 312 331 252 347 404 404
texas 202 202 168 176 199 202 202
Total (bound) 6179 6262 6944 5142 7034 6195 6831

Table 2. Comparing the run-time for 302 completed instances

Family BMC BMC10 BMC10→ BMC25 BMC25→ ABC-BMC2 ABC-BMC3
bj 215.8 324.9 190.6 341.4 103.3 407.07 51.08
bob 116.7 853.1 648.9 1622 1176 186.99 174.61
cmu 203.4 21.1 14.6 21.9 17.3 3.9 3.38
eij 678.2 513.1 190.2 1446.1 141.4 62.38 171.58
nus 2609.1 747.5 617 933.4 883.8 311.87 396.16
pdt 4202 2837.1 1981.8 4230.3 1884.8 1350.72 955.41
pj 513.2 911.1 449 829.4 555.8 569.72 940.1
texas 8.4 22.4 142.1 33.7 37.7 25.67 25.06
vis 311.9 238 138.7 406.3 147.6 94.7 169.52
Total (cpu time) 9614.6 8049.7 5187.5 12336.5 5697.9 4458.19 3108.8

sequential), and PO assignments at higher bounds. While BMC with intervals
also has the view of the cones of all the POs P (so), . . . , P (s9), in contrast to
in-depth BMC, it can either solve them all together (by proving that ¬P0−9 is
unsatisfiable) or solve none of them. Solving all the POs is more complex than
only proving valid POs up to P (s3).

4 SSAT→ and Strengthening Inductive Invariants

A basic scheme combining invariant strengthening and temporal induction is de-
picted in Figure 2. This scheme was proposed in [4]. The induction and invariant
strengthening algorithms in [23,10], as well as the algorithms that we propose,
can be seen as instances of this algorithm scheme. Recall that, according to the
temporal induction scheme [23], a property P is valid if for some m, the formu-
las base(P, k) and step(P,m) defined below are unsatisfiable for all 0 ≤ k ≤ m
(for simplicity, we omit discussion of the loop-free condition for the induction
step).

base(P, k) = I(s0) ∧ path(s0, . . . , sk) ∧ P (s0) ∧ . . . ∧ P (sk−1) ∧ ¬P (sk)
step(P, k) = path(s0, . . . , sk+1) ∧ P (s0) ∧ . . . ∧ P (sk) ∧ ¬P (sk+1)

To interface the base and step formulas base(P, k) and step(P, k) for a property
P = l ↔ r with SSAT→, we change them as follows, where l(si) ↔ r(si)
represents P at state si:
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Induction with invariant strengthening (P, nMaxDepth)

k = 0;
POs = Create candidate invariants() (where P ∈ POs);
while (k <= nMaxDepth ) do
POs = BASE(POs, k);
if (POs �= [ ]) then
POs = STEP (POs, k);

end if
if (POs �= [ ]) then
k ++;

end if
end while

Fig. 2. Pseudo algorithm for induction with invariant strengthening

base cnf(k) = I(s0) ∧ path(s0, . . . , sk)
base PO pairs(P, k) = [(l(sk), r(sk))]
step assumption(P, k) = P (s0) ∧ . . . ∧ P (sk)
step cnf(k) = path(s0, . . . , sk+1)
step assum cnf(P, k) = step cnf(k) ∧ step assumption(P, k)
step PO pairs(P, k) = [(l(sk+1), r(sk+1))]

Then, base(P, k) is satisfiable iff

SSAT→(base cnf(k), base PO pairs(P, k))

returns P as falsifiable; similarly step(P, k) is unsatisfiable iff

SSAT→(step assum cnf(P, k), step PO pairs(P, k))

returns P as valid. Thus the above formulas define a sound way of using SSAT→

in temporal induction.
Now, if we want to perform the base and step checks simultaneously for a

number of POs PO0, . . . , POn, the definitions of base cnf(k) and step cnf(k)
remain unchanged – they do not depend on the properties that one is interested
in. The step assumption is the conjunction of formulas step assumption(POi, k)
for 0 ≤ i ≤ n, and the base and step PO lists are defined as follows:

base PO pairs(POs, k) = [(l0(sk), r0(sk)), . . . , (ln(sk), rn(sk))]
step PO pairs(POs, k) = [(l0(sk+1), r0(sk+1)), . . . , (ln(sk+1), rn(sk+1))]
step assumption(POs, k) = ∧i=ni=0 step assumption(POi, k)
step assum cnf(POs, k) = step cnf(k) ∧ step assumption(POs, k)

The BASE(POs, k) procedure employing SSAT→, called base issat, is depicted
in Figure 3.(a). vPOs denote the POs whose corresponding base formulas are
valid in state sk. Similarly, Figure 3.(b) depicts the STEP (POs, k) procedure
employing SSAT→, called step issat.
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(a) base issat (POs, k)

(vPOs, fPOs) = SSAT→(base cnf(k), base PO pairs(POs, k));
report fPOs as falsifiable;
return vPos;

(b) step issat (POs, k)

i = 0;
POs0 = POs;
while (true) do

(vPOsi, fPOsi) = SSAT→(step assum cnf(POsi, k), step PO pairs(POsi, k));

POsi+1 = vPOsi;
if (fPOsi = [ ]) then

break;
end if
i = i+ 1;

end while
report POsi as valid;
return POs \ POsi;

Fig. 3. BASE(POs, k) and STEP (POs, k) for invariant strengthening with SSAT→

We call the invariant strengthening algorithm just described invSSAT→. In
the same vein, we refer to the similar invariant strengthening algorithm em-
ploying SSAT as invSSAT . Further, in the experiments reported below, we
use invSATURk to denote the invariant strengthening scheme of [4], where
k-saturation is used as combinational reasoning engine. By invCONJ , we re-
fer to the invariant strengthening scheme where saturation is replaced by SAT.
That is, in invCONJ , the candidate invariants are proven using the conjunction
approach to verifying multiple properties presented in [11].

Table 3. Comparing invariant strengthening algorithms as well as strategy combina-
tions with induction and interpolation

Fam. 1 Fam. 2 Fam. 3 Fam. 4 Fam 5 Fam. 6 Fam. 7 Total
Algorithm time solv time solv time solv time solv time solv time solv time solv time solv
invSSAT→ 8 132 366 574 39 659 1 142 475 147 513 3775 2983 230 4387 5659
& interp.
invSSAT→ 9 132 365 574 36 659 1 142 16 147 512 3775 3686 230 4627 5659
invSSAT 6 132 418 574 45 659 1 142 14 147 258 3775 21311 218 22055 5647
invSATUR0 94 132 4345 529 115 659 2 142 221 147 1841 3774 683 230 7304 5613
& interp.
invSATUR0 5 132 10390 532 675 654 1000 140 1000 145 55 3773 26059 217 39186 5593
& induction
invCONJ 97 132 1233 574 3783 659 10 142 61 147 2077 3775 229856 1 237120 5430
interp. 4018 128 21171 494 20487 548 38 142 3943 45 4526 3774 19349 217 73535 5348
induction 18020 43 24836 478 52737 185 1000 133 2037 131 70159 184 60053 187 228845 1341
invSATUR1 11 40 283 19 44 408 2 13 12 18 305 53 752 28 1413 579

In Table 3 we report experimental results for 7 families of equivalence checking
problems from recent microprocessor designs at Intel. Each family corresponds
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to a functional module. These 7 families together contain 5659 sequential equiva-
lence checking problem instances. The designs are non-state-matching, therefore
provable internal equivalences form a very small portion of all potential equiv-
alences (the number of provable equivalences is typically a few hundreds, and
many of them are very simple.) The timeout used in our experiments was 1000
seconds (in combined algorithms, the timeout was divided between the strate-
gies). The maximal unrolling bound in all algorithms was 100. In the columns
named solv we report the number of problem instances solved by each algorithm
per family and in total. In the columns named time we report the time spent on
each family and in total. We compare the different versions of invariant strength-
ening algorithms discussed in this section, as well as combinations of the best
invariant strengthening algorithms with temporal induction [23] and interpola-
tion [18]. We used a rescheduling rate of 5 in the experiments for invSSAT→.
invSATUR0 and invSATUR2 could not solve any of the problem instances,

and therefore these algorithms do not appear in the table. Compared to the
SAT-based conjunction method invCONJ , employing SSAT in invSSAT yields
an order of magnitude speedup, and an additional 217 problem instances were
solved. Employing SSAT→ in invSSAT→ yields an average 52.6x speedup com-
pared to invCONJ , and an additional 229 problems were solved. The addi-
tional gain in invSSAT→ compared to invSSAT is due to quick processing of
candidate implications in SSAT→, which was our main motivation for intro-
ducing SSAT→. While invSATUR0 is too weak to solve any of the problem
instances, it can very quickly prove important equivalences which might help
the induction [23] and interpolation [18] algorithms. Similarly, invariants proven
by invSSAT→ can significantly improve the runtime of interpolation. The re-
sults show that invSSAT→ outperforms both the induction and interpolation
algorithms, and that invSSAT→ combined with interpolation is the winning
algorithm overall: it solves all 5659 problem instances, and is faster than any
other single or combined algorithm.

We also ran several strategy combinations on the 417 problems discussed in
Section 3, and compared them with their counterparts in ABC (ABC-scorr de-
notes ABC’s scorr algorithm with unrolling bound 100; scorr is the algorithm
within ABC that is the closest to our invariant strengthening algorithms). The
summary of these results is presented in Table 4: as one can see, the results, both

Table 4. Comparing strategy combinations on 417 HWMCC’10 problem instances

Algorithm time solv
invSSAT→& interp. 78106 319
ABC-interpolation 109166 310
invSSAT→ 133266 296
invCONJ 135519 294
invSSAT 135774 294
invSATUR0& interp. 141619 283
interpolation 144131 282
ABC-scorr & ABC-interp 149540 281
invSATUR0& induction 147645 265
ABC-scorr 146685 242
induction 176056 231
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in terms of solved problems and runtimes, are similar to what was observed on
Intel benchmark families, although the impact of combining invariant strength-
ening strategies with induction and interpolation algorithms is even greater. The
combination of invSSAT→ followed by interpolation (which reuses the learning)
remains the best combination.

5 Related Work

The CNF and the POs for an SSAT→ instance are often produced by translat-
ing a circuit ckt into CNF. Following [22], in our model-checking tool, a circuit
is represented as a collection of triplets of the form x := y → z or x := y ↔ z,
where x, y, and z are literals. This is close to the widely used And-Inverter Graph
(AIG) representation [16], where the triplets are of the form x := y ∧ z. Besides
the structural information recorded as triplets, our representation of ckt main-
tains its variables in equivalence classes (E-classes, for short) [22]; each class has
a representative variable, and all the variables in an equivalence class are known
to be (logically) equivalent to the representative or its negation. When converting
ckt into an SSAT instance, only the representative variables and the relations
between them are reflected in the resulting CNF. The unit and two-literal clauses
learned during the SSAT search are added to ckt. Saturation [24] on the en-
hanced ckt may yield additional learning, including the learning of equivalences
and inverse equivalences among the representative variables of E-classes; this
in turn enables merging E-classes and reducing the number of representative
variables.

The aim of SSAT→ is to solve closely related objectives in at most one com-
plete search. The SSAT→ solver has a view of the entire problem instance, and
has the freedom to focus on resolving a particular objective and to switch be-
tween the objectives as part of the search strategy. Furthermore, again as part
of the search strategy, SSAT→ tries to learn the entire instance by learning
the implications between all pairs of variable assignments. These implications
are recorded as two-literal clauses (which are known to be very important learn-
ings). Equivalences derived from them enable merging variables by merging their
equivalence clauses.

The idea of learning the implications between circuit signal values was intro-
duced in the recursive learning algorithm [17], in the context of circuit ATPG [1].
There implications are learned iteratively using a dedicated constant propaga-
tion algorithm, with increasing effort at each iteration. The learned implications
are used to speedup the backward justification process (which is the main rou-
tine of ATPG). SSAT→ can be seen as a SAT-based implementation of recursive
learning, where the learning of implications happens as part of the SAT search
rather than as a separate routine. Indeed, SSAT→ introduces a new dimension
to restart strategies. Traditionally, a restart strategy refers to when to restart,
not how to restart. SSAT introduces fairness into the how-to-restart strategy:
the first two variable assignments after a restart do not follow the default search
heuristic of the SAT solver; instead, every pair of variables in the candidate
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equivalences list is considered with four possible value assignments. We note
that the when part of the restart strategy in our SSAT→ solver is the same in
all the reported experiments; and our SAT solver is implemented as a special
case of SSAT→ since the latter has more generic (incremental) interface (API).

The crucial idea of simplifying equivalence checking by proving (observable)
internal equivalences and merging equivalent nodes was introduced in [6]. The
AIGs data structure and BDD and SAT sweeping [16,15] allow for very efficient
implementation of this idea. The triplet and equivalence classes data structure
is closely related to the AIGs data structure, however it is no longer a DAG. In
addition we work with constraints explicitly, a fact which entangles the cones of
the objectives even more tightly. Finally, we do not use local BDDs [16] or AIG
rewriting [5] to optimize the problem instance; instead we rely on saturation [24]
and on learning from SSAT→ to achieve a compact representation.

An incremental version of SAT sweeping was proposed in [19], where, in addi-
tion, rescheduling of candidate equivalences was first considered. In that paper
the authors work incrementally with a SAT-with-assumptions interface [9]. The
idea behind SSAT→ could be used to extend SAT-with-assumptions, so that it
could treat assumptions that are implications rather than literals.

Unlike SSAT→, in [19] each CWPO is targeted for falsification in its cone of
influence; this is achieved by an API that allows the SAT solver to work with
a subset of relevant variables (computed based upon the circuit), and Boolean
Constraint Propagation (BCP) needs to be modified accordingly. This modified
search procedure is not described in detail in [19], we therefore couldn’t re-
implement it for a fair comparison (moreover, recall that we use a very different
circuit representation). Our early experience with simultaneous solving of multi-
ple POs by solving each PO in its cone of influence and re-using pervasive learned
clauses compared to SSAT is reported in [13], and is negative. In fact, one of the
main original motivations for introducing SSAT was to eliminate the overhead
of computing the cones of each objective and managing the conflict clauses. The
relative performance of these two methods certainly depends on the nature of the
problems at hand; Overall, our experience (within our implementation) is that
SSAT performs much better when the POs that are solved simultaneously are
closely related (and their cones have a high percentage of overlap). As observed
in [15], modern SAT solvers are efficient in focusing on relevant parts of the
problem. This saves us the effort of forcing the SAT solver to work exclusively
with the cone-of-influence of the CWPO. Furthermore, when working with the
entire instance, one has a greater freedom in deciding assignments for other PO
implications (that might not be in the cone), thereby increasing the chance of
solving them as a side-effect of the search. For example, in SSAT→, the de-
fault behavior is that after assigning the CWPO, the other yet unresolved user
POs are assigned next, with false. Experimental evaluation of the in-depth BMC
strategy clearly demonstrates that giving a solver a wider view of the problem
instance and letting it decide how to perform the search is beneficial.

Since in SSAT→, unlike in previous work, solving candidate equivalences
is a by-product of the search heuristic, in our approach it becomes much



Implicative Simultaneous Satisfiability and Applications 77

less important to reduce candidate equivalences by quick falsification meth-
ods such as simulation with random or biased input patterns or satisfying-
assignments [6,15,19]. Since we work with user constraints explicitly, as part of
the E-classes data structure, we cannot use random simulation of inputs for quick
falsification (the constraints need not hold for arbitrary input assignments). We
have experimented with multiple methods of diverse satisfying assignment gen-
eration [21] in order to use them as simulation patterns for quick falsification
of candidate equivalences, and while they can significantly reduce the number
of candidate equivalences, this didn’t noticeably affect overall runtime, because
SSAT→ typically generates many satisfying assignments during the search (bi-
ased towards the falsification of as many POs as possible) and they filter out
false candidate equivalences very efficiently.

The basic idea of invariant strengthening for sequential equivalence checking
was proposed by van Eijk in [10]. The transition invariants were computed using
BDDs. This idea was further generalized in [4], in two ways: the basic tran-
sition invariant scheme was enhanced by the temporal induction scheme [23],
and saturation [24] replaced the usage of BDDs. Numerous circuit-level opti-
mizations were proposed in [7]; the main differences with our approach has been
discussed above. The speculative reduction technique [20] further advances van
Eijk’s method by strengthening the inductive assumptions within refinement it-
erations of candidate invariant set; this is done by creating copies of the current
set of candidate invariants and assuming them (in all reachable states) when
proving other candidates.

6 Conclusions

The main contribution of this paper is the introduction of a highly scalable and
efficient DPLL-based algorithm SSAT→ that can decide the satisfiability of a
large number of (user-given and automatically generated) proof objectives in a
single DPLL search, where each proof objective can be either a single literal or
an implication between two literals.

We have presented a number of applications of SSAT→ in bounded and un-
bounded model checking. The experimental results on academic as well as Intel
benchmarks for in-depth BMC and for induction with invariant strengthening
fully support the usefulness of these new algorithms compared to the state-of
the art.

The SSAT→ algorithm has already been used as an efficient core DPLL-based
engine in many other verification applications at Intel.

Our implication learning algorithms can be viewed as advanced techniques for
simplifying combinational problems by systematically learning 2-literal clauses.
An interesting future work would be to investigate how to deal with more com-
plex relations between pairs or triplets of literals using a dedicated DPLL-based
algorithm. In particular, an immediate generalization of the idea of SSAT→

would be to designate an algorithm that would efficiently learn 3-literal clauses
as part of the SAT search: for example, if no implications have been learned



78 Z. Khasidashvili and A. Nadel

between variables a, b, c, a clause a ∧ ¬b ∧ c can be learned if any other combi-
nation of the assignments leads to a global conflict.

Acknowledgements. We thank the ABC developers for help in running the
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Abstract. Within the formal verification community, choosing between 
liveness and safety approaches has long been a subject of debate. This paper 
applies both approaches to a common design in the networking industry, a Def-
icit Weighted Round Robin (DWRR) arbiter. It then presents the tradeoffs we 
encountered while applying both approaches and also describes how we over-
came state space explosion. We also describe two real post-silicon design bugs 
that we found, which were missed by all simulation methods. 

1 Introduction 

Correctness properties that define a system take the form of safety and liveness asser-
tions [1]. Computer scientists have long debated the merits of safety and liveness 
approaches while casting these correctness properties. For example, consider the fol-
lowing contrasting manifestos from a liveness workshop [2]: 

Moshe Vardi: “Liveness properties are used to abstract away from messy safety 
properties.” 

Leslie Lamport: “Since the inherent complexity of checking liveness is greater 
than that of checking safety, engineers can check more complicated and therefore 
more useful models by checking only safety properties.” 

In this paper, we will use a real design to put these theories to a practical test, taking 
advantage of various proof-engines at our disposal, including one that implements the 
known automated approach to transform liveness into safety properties [3]. 

Our design implements a DWRR arbiter [4], a practical scheme to implement fair 
queuing. Traffic at the inputs of the arbiter arrives on various ports. Each port has an 
associated weight. These weights determine the bandwidth distribution across the 
various ports. If we consider an n-port DWRR, with the ports having weights W0, W1, 
…, Wn-1 respectively, then the averaged fractional bandwidth given to port(i) will be 
Wi/(W0+W1+…+Wn-1). 

Hardware implementations of DWRRs typically have per-port counters that main-
tain a notion of currently available credits. These counters enforce the bandwidth 
distribution. Ports request arbitration from DWRR, and the credit counter of the 
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winning port is reduced by a cost charged by the port. The cost represents the amount 
of bandwidth consumed by the port. When a port has negative credits, it will not win 
arbitration, provided that a port with positive credits is requesting arbitration. Every 
time the sum of the credit counters goes to 0 or below, each counter is refreshed by its 
weight.  

Two properties are paramount for such a DWRR: (a) the fairness property that the 
average bandwidth distribution is equal to the configured weights; and (b) the liveness 
property that states: If port i arbitrates at time t, then it will always eventually be giv-
en a grant at some time t’>=t, regardless of the weight distribution across ports. In 
this paper, we focus on this latter liveness property, which is one of the classical 
liveness properties [5]. 

Given the importance of this property, we applied formal verification techniques to 
validate the design. Unfortunately, the cones of influence of such liveness properties 
tend to have very large sequential depths because of the numerous internal counters 
implementing the arbitration decision making logic. This arbitration logic relies upon 
the integrity of these counters, and abstracting them away as purely nondeterministic 
signals yields bogus counterexamples. Therefore, other techniques were needed to 
make the proofs tractable. 

Very few people in the industry apply formal verification on complex designs, 
largely because difficult problems are intractable without the use of a suitable abstrac-
tion methodology. Unfortunately, there is a woeful lack of case studies and discussion 
of practical, applicable abstraction methods in the published literature. Through this 
paper, we want to contribute two approaches to verify forward progress in DWRR 
arbiters, given how prevalent they are in the networking ASIC industry.  

The paper first describes the operational details associated with our 4 port DWRR 
and then focuses on our experiences in obtaining liveness property proofs for this 
circuit both with and without certain manual abstractions. It then describes how we 
recast our recalcitrant liveness property in terms of safety properties.  
Next, we compare and contrast liveness and safety-based approaches to evaluate the 
merits and demerits of each. We then describe two post-silicon bugs that were found 
during the formal verification process.  

The Cadence IFV [6] model checker was used over the course of this project. For 
the purposes of this discussion, we limit ourselves to languages supported by com-
mercial tools like PSL and SVA (System Verilog Assertions). These languages all 
happen to be LTL-based. We also limit this discussion to the 1800-2005 SV standard 
[7] where strong liveness is the default. 

All our properties were run on a machine with two dual core AMD Opteron pro-
cessors running at 2.6Ghz, with 1 Mbyte cache each and 16 Gbyte of main memory. 

2 Operational Details 

In this section, we describe our DWRR’s interface and the associated handshaking 
protocol that governs the behavior of each port. The design maintains per-port credit 
counters, initialized to configured port Weights, and a priority queue of port numbers. 



82 B.A. Krishna et al. 

Each port presents an arbitration request until a grant is handed to it by the DWRR. 
Once a grant is obtained, the port in question utilizes this grant for an arbitrary num-
ber of cycles. During any cycle of this occupancy, the port can specify a cost. The 
port holding the grant is allowed to specify a non-zero cost multiple times while hold-
ing on to a grant. 

This cost determines the bandwidth utilized. When a non-zero cost is specified, the 
per-port credit counter is decremented by the specified cost. When the grant is relin-
quished, the priority of this port is made the lowest, in order to ensure arbitration fair-
ness across ports. If the sum of the per-port counters reaches 0 or goes negative, each 
per-port counter is refreshed by its Weight. A new “DRR round” starts whenever the 
per-port counters are refreshed. 

For timing purposes, our design maintains another counter called the global coun-
ter. It is always added and subtracted by the same amounts as the per-port counters. In 
fact, we verified in a separate exercise that it always equals the sum of the per-port 
counters. The design uses it to determine when new DRR rounds start. 

Configuration (Static) Inputs:  

• Wi[1:0]  Port i’s Weight (legal values: 1, 2, and 3) 

Per-port arb/grant interface: 

• Pi_Req (input)  port(i) asserts this signal to request a grant. 
• Pi_Gnt (output) DWRR asserts this signal to give port(i) a grant. 
• Pi_Vld (input) grant holder asserts this to qualify Pi_{Cost,Eop}  
• Pi_Cost (input) grant holder specifies cost provided Pi_Vld is asserted 
• Pi_Eop (input) grant holder asserts this with Pi_Vld to relinquish grant. 

The interface signals conform to the following protocol rules: 

1. Pi_Req should be asserted until Pi_Gnt is asserted. 
2. When port(i) does not have a grant, it should not assert Pi_Vld. 
3. Once port(i) has a grant, it can charge a cost against its per-port credit counter by 

asserting: Pi_Vld & Pi_Cost. This will cause the per port credit counter to be sub-
tracted by the specified amount. If Pi_Vld is not asserted, Pi_Cost will be ignored 
by the DWRR. 

4. Once port(i) has a grant, it can choose to relinquish this grant by asserting: 
Pi_Vld & Pi_Eop. If Pi_Vld is not asserted, Pi_Eop will be ignored by the 
DWRR. 

5. Each port must charge a non-zero cost before relinquishing its grant. 

The credit counter of each port(i) is initialized to the configuration weight Wi. The 
arbiter examines the per-port counters associated with all arbitrating ports. A grant is 
given to the highest priority arbitrating port with positive credits. If there is no port 
arbitrating with positive credits, then the highest priority arbitrating port with zero or 
negative credits receives a grant. In all cases, once a grant is given, the granted port is 
deprecated to the end of the priority queue. 

When a cost is subtracted from the per-port credits, the resulting credit value could 
be negative. To accommodate negative credits, a separate sign bit is maintained 
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alongside each per-port counter. Further, ports with negative credits can win grants 
and continue to drive the credits more negative. The design avoids wrap by defining a 
maximum negative value at which the per-port counters saturate.  

Counter refresh happens when the global counter value goes from a positive to ei-
ther a negative or zero value. During a refresh, the per-port counters are incremented 
by a value limited by their original configuration weight. If a per-port counter was 0 
or negative, it is incremented by its configuration weight. If a per-port counter was 
positive, it is set to a value equal to the configuration weight. 

3 Formal Verification Strategy  

In order to model the constraints for the FV of the DWRR, we used a 3-state FSM. 
Each port’s inputs were driven by signals that were combinationally generated from a 
state variable, Pi_state, whose state transitions are described in Figure 1. 

 

 

Fig. 1. Pi_state 

The state variable Pi_state, has 3 possible states, namely IDL, REQ and GNT. The 
significance of each state is as follows: 

• Pi_state==IDL: The port has not yet started arbitrating for a grant and may or 
may not be asserting Pi_Req. In this state, Pi_Req is non-deterministically driven 
to 0 or 1 while Pi_Vld, Pi_Eop and Pi_Cost are driven to 0. 

• Pi_state==REQ: The port was arbitrating in the previous cycle, but did not pos-
sess a grant. Therefore, in this cycle, it should continue arbitrating, so Pi_Req 
should be asserted, and Pi_Vld, Pi_Eop and Pi_Cost are driven to 0. 
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• Pi_state==GNT: The port has already secured a grant. In this cycle, the port a) 
may or may not relinquish the grant by asserting Pi_Vld && Pi_Eop and b) may 
or may not charge a cost to its credit counter by asserting Pi_Vld && Pi_Cost. 

This state variable was then utilized to generate inputs Pi_Req, Pi_Vld, Pi_Cost, and 
Pi_Eop. In addition, the per-port configuration weight inputs W1, W2, W3, W4, were 
driven by rigid variables that were non-deterministically set to {1,2,3} at the time of 
reset, and preserved constant throughout.  

In order to eliminate bogus counter-examples, we added the below constraints: 

• Once a port acquires a grant, it will always eventually relinquish it (fairness 
constraint). 

• Once a port acquires a grant, it will always charge a non-zero cost at least once 
(safety constraint). This constraint was required as per the design specifica-
tions. 

Both these constraints were specified as SVA assumptions to eliminate false negative 
paths where either a port holds a grant forever or relinquishes a grant without charg-
ing a cost. The former constraint was coded using the following SVA code snippet: 

wire pi_release = (pi_state==GNT) && pi_vld && pi_eop; 
 
assume_porti_gnt_release: assume property (  
  @(posedge clk) disable iff (!rst_)( 
    (pi_state==GNT && !(pi_vld && pi_eop)) 
    |-> ##[1:$] (pi_release) 
  ) 
); 
In other words, if, at time t, port(i) has a grant and is not relinquishing it, then there 

will be some t’ > t when port(i) asserts both Pi_Vld & Pi_Eop to relinquish the grant. 
To ensure that each port charged a cost at least once in the course of holding a 

grant, 1 bit of state per port, called Pi_Charged, is introduced. It is set whenever a 
non-zero Pi_Cost is specified during a grant and cleared when the grant is relin-
quished. This state variable is then used to determine if we need to post a non-zero 
cost at the time of grant relinquishment. 

With all these constraints in place, we cast the liveness property in SVA as 
follows: 

assert_propi_liveness: assert property ( 
  @(posedge clk) disable iff (!rst_) 
    (pi_state==REQ) |-> ##[0:$] (pi_gnt) 
  ) 
); 

If, at time t, port(i) is arbitrating, then there will always be some t’ >= t when port(i) 
gets a grant.  
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An intuitive attempt to cast this as a safety property that applies a cycle bound on the 
maximum number of cycles that can elapse before a requesting port gets a grant, will 
fail. Unfortunately, for our DWRR arbiter, there is no such cycle bound. We will 
explore safety based alternatives in a later section. 

4 Liveness 

Once the FV scaffolding was built, numerous attempts were made to converge on 
proofs without deploying any abstractions. We utilized all possible proof engines, but 
none succeeded in converging over an 8+ hour window.  

Despite having relatively few state bits in the cone of influence, the proofs were 
not tractable because the sequential depths associated with these proofs were inordi-
nately large. Consequently, we studied the cone of influence associated with the 
liveness property in order to reduce it. Simplistic attempts to abstract away the per-
port credit counters entirely resulted in counterexamples that were bogus, consisting 
of paths that never occurred in the real implementation. These paths consisted of sce-
narios where the internal counters exhibited values that would never occur in the real 
design.  

It became clear to us that if we are to abstract away per-port credit counters, we 
need an abstraction that places constraints on the permissible range of values. While 
thinking through counter abstractions, we realized that simpler abstractions are possi-
ble elsewhere. We will start with the simpler abstractions and later revisit a counter 
abstraction. 

Abstraction(I). The following interface assumptions helped us gain insights into 
possible abstraction techniques: 

• Each port required a non-deterministic variable to generate a “random” cost 
(Pi_Cost), possibly multiple times in the course of holding a grant. 

• Each port additionally required a state variable, Pi_charged, to ensure that dur-
ing a grant, a non-zero cost would be specified at least once. 

We observed that, as per the port specifications, since Pi_Cost and Pi_Charged can 
be posted if and only if this port was in possession of a grant, it seemed unnecessarily 
onerous to maintain these state variables on a per-port basis.  

Rather, since only one port can be in possession of a grant, and since only that par-
ticular port can charge a cost or relinquish, we realized that the DWRR would inter-
nally have a mux, which had various per-port cost inputs and a single set of outputs, 
“Vld” and “Cost” that pertains to the port in possession of a grant. The DWRR inter-
nally does maintain such a multiplexer whose outputs were: sel_vld, sel_cost & 
sel_port={0,1,2,3}. This mux appeared to be relatively trivial to verify separately. 

The first abstraction we deployed did the following: We introduced cutpoints at 
sel_vld & sel_cost. The FV framework directly posted cost values on this interface, 
keeping in mind the DUT’s requirement that a non-zero cost has to be posted by a 
port at least once while it is holding a grant (and not necessarily at the time the grant 
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is relinquished). This abstraction therefore eliminated 4 per-port state bits and re-
placed it with a single bit state variable, for the purposes of generating cost.  

The single state bit is cleared upon a new grant and set whenever a cost is posted. It 
is consulted during EOP. If no cost has been posted before EOP, a cost is posted at 
EOP. If a cost has already been posted, then another cost may be optionally posted at 
EOP. It was possible to trivially establish that this abstraction scheme was sound 
through visual inspection of the RTL. 

Abstraction (II). The second manual abstraction that we used stemmed from another 
design insight: There should still be arbitration fairness even if refresh never occurs. 
Without any refreshes, the credit counters of all ports that win grants and post costs 
will be driven negative. At this point, the DWRR should simply hand out grants in a 
“round-robin” fashion, provided the behaviors of the per-port counters and priority 
list are preserved. 

The global credit counter, which is the sum of the various per-port credit counters, 
serves a sole purpose: To trigger refresh. The second abstraction eliminated the global 
counter by introducing a cutpoint directly at the internal RTL signal wt_refresh, 
which was responsible for generating per-port counter refreshes. There was no need to 
impose fairness constraints on the behavior of wt_refresh. 

Results with Abstractions (I) & (II) 
Once these two manual abstractions were deployed, we tried multiple different BDD 
[8] and SAT [9] based engines. The BDD based engines used the Emerson and Lei 
algorithm [10] to natively check liveness properties  

With Abstractions (I) & (II), assert_propi_liveness ran to completion within ~ 25 
minutes. Our lowest runtime was obtained with a SAT based engine that used Proper-
ty Directed Reachability (PDR [11]) and employed a filter to automatically translate 
liveness properties into safety properties [3]. 

Abstraction (III). In an attempt to further reduce proof runtimes, we then gave 
thought to more sophisticated abstraction techniques. We observed that per-port coun-
ter values are manipulated in the course of two events: 1) decrements when costs are 
posted, and 2) increments during refresh. We further observed that the RTL’s arbitra-
tion grant logic only discriminated between {positive, 0, negative} per-port counter 
values and did not care about the actual values. This insight led us to believe that it 
would be possible to abstract each per-port counter as 2 bits.  

The DUT internally maintains 4 per-port counters within state variables: wt_cur0, 
wt_cur1, wt_cur2 and wt_cur3. These RTL registers are updated every cycle from 
“next” state variables: wt_nxt0, wt_nxt1, wt_nxt2 and wt_nxt3. To deploy Abstraction 
(III), we preserved the per-port counter for the port under liveness consideration and 
then introduced cutpoints at wt_nxt for all the other three ports’ credit counters. These 
cutpointed signals are then driven by abstraction code described in Table 1.  

 



 Liveness vs Safety – A Practical Viewpoint 87 

Table 1. Non-deterministic per-port counter abstraction for wt_nxt 

 

In the course of deploying Abstraction(III), we found the need to assume a new fair-
ness constraint. This constraint was needed for subtle reasons. 
 
Fairness constraint: If we see new arbitration requests infinitely often, then we will 
always eventually see a refresh. 

In the absence of this fairness constraint, the model checker can construct counter-
examples where the liveness port under consideration remains forever at deficit credit 
values (and is therefore disadvantaged) while others, even after being given grants, do 
not go negative and remain eternally advantaged because of our abstraction’s non-
determinism. This is an artificial scenario, since in reality, these other ports will even-
tually use enough credits to cause a refresh. Sufficient refreshes will replenish the 
disadvantaged port’s credits and raise its arbitration priority. To avoid this unrealistic 
scenario, we use the fairness constraint which states that there will always eventually 
be a refresh allowing our deficit port to recover credits over time. 
 
Results with Abstractions(I), (II) & (III) 
When all 3 abstractions were deployed, this liveness property ran to completion, pass-
ing in ~ 100 seconds, when we used a SAT (PDR based) engine [11]. Our next step 
was to ensure the soundness of Abstraction (III). We were able to establish trivially 
through visual inspection that this abstraction is sound. However, we also had to 
prove our fairness constraint. 
 

always @(*) begin 
  wt_nxt = wt_cur; 
  if (decrement && wt_refresh) /* subtract && add */ 
     wt_nxt = rnd0 ? WT_POS: rnd1 ? WT_ZERO: WT_NEG; 
 else 
 if (decrement && !wt_refresh) /* subtract only */ 
    if (wt_cur==WT_POS) 
       wt_nxt = rnd0 ? WT_POS: rnd1 ? WT_ZERO: WT_NEG; 
    else 
    if (wt_cur==WT_ZERO) 
       wt_nxt = WT_NEG; 
 else 
 if (!decrement && wt_refresh) /* add only */ 
    if (wt_cur==WT_ZERO) 
       wt_nxt = WT_POS; 
    else 
    if (wt_cur==WT_NEG) 
       wt_nxt = rnd0 ? WT_POS: rnd1 ? WT_ZERO: WT_NEG; 
end 
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In order to prove our fairness constraint, we removed Abstractions (II) & (III) and 
expressed this constraint in SVA as: 
 

assert_liveness_refresh: assert property ( 
   @(posedge Clk) disable iff (!rst_)( 
     ##[0:$] (wt_refresh) 
   ) 
); 

 
The above liveness property was falsified by the model checker, which generated a 
counterexample exposing a design anomaly. Within the counterexample, port0 was 
the only arbitrating port. It had an initial credit counter value of 3. It then proceeded 
to issue requests and was given grants. For each grant, it posted a cost of 1 credit. 
This caused port0’s credit counter to become negatively saturated at -4. port0 contin-
ued to infinitely get grants, but the posted costs were not applied to either the global 
credit counter or port0’s credit counter. Consequently, wt_refresh was forever 
deasserted. 

We classify this behavior as a bug. If a port with negative credits is in possession 
of a grant and posts a cost while no positive port is arbitrating, then this event should 
force wt_refresh to be asserted, triggering a refresh of all per-port credit counters. 
Such new semantics would ensure that (a) all grants result in modification of per-
port/global counters and (b) If we see new requests infinitely often, we will be assured 
of eventually seeing a refresh. 

This bug does not affect the validity of the earlier proof that used Abstractions (I) 
& (II) because it prevents refresh only when ports with negative credits are arbitrat-
ing. As previously stated, the arbiter degrades to round robin at this point, thereby 
maintaining fairness. In fact, the first liveness proof with Abstractions (I) & (II) 
shows that forward progress does not require any refreshes.  

After fixing this bug, assert_liveness_refresh ran to completion, passing in ~120 
seconds using the same SAT (PDR based) engine[11]]. The cumulative runtime for 
our counter abstraction based proofs was ~ 3.5 minutes, constituting a significant 
improvement over our earlier approach which resulted in a runtime of ~ 25 minutes. 

5 Safety (Bounded Forward Progress) 

Since the inherent complexity of proving liveness is much higher than that of proving 
safety, we wondered if safety-based approaches would converge without abstractions. 
Consequently, we began exploring ways to verify this circuit with safety properties. 
We found that we could do so by answering the question, “If a particular port is arbi-
trating for a grant, what is the maximum number of grants (N) that can be given to 
others after which point this port will be given a grant?”  

We identified a set of two safety properties that implies the liveness property under 
consideration. These safety properties are: 
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• If port(i) is arbitrating for a grant, no more than a total of N grants can be given 
to other ports.  

• If no port is currently holding a grant and at least one port arbitrates at time t, 
then a grant will be given to one of them at t+1. 

The first property only verifies that less than or equal to N grants are given to other 
ports. This, by itself, is insufficient. A faulty DUT that halts before issuing N+1 
grants to other ports would still pass this metric but fail the original liveness property. 
Therefore we needed the second property as well. 

All starvation scenarios involve one of two things:  

1. Other ports keep getting grants forever (or ) 
2. No port gets grants in the future 

Both scenarios described above will result in a violation of our safety property set. 
Composing the exact safety property set required to imply forward progress, 

that can be used in lieu of our liveness property, was non-trivial. We iterated through 
many different sets of safety assertions before agreeing upon the ones outlined 
above. Our next task was to compute N (max. grants given to others while a port is 
arbitrating). 
 
Computation of N  
Consider a 4 port DWRR with each port having an n bit credit counter. We 
consider an implementation where the global counter is always equal to the sum of 
the various per-port counters. Each n bit per-port credit counter is in the range: {-2(n-

1)…2(n-1)-1}. 
If we have n-bit wide per-port credit counters, we find that the configuration 

weights required for this worst case scenario will consist of: port(i)'s Wi = 1 and 
port(j!=i)'s Wj = 2(n-1)-1. This configuration maximally disadvantages port(i) and 
maximally advantages all port(j!=i). 

The total number of credits, T, available at the beginning of round #1 will be equal 
to the sum of the configuration weights. That is, T = 1+3*(2(n-1)-1). 

In the first round, port(i) will get a grant and proceed to drive himself into the 
worst deficit possible. In other words, port(i) will go from +1 to -2(n-1). That is, port(i) 
will consume a total of C credits, C = 2(n-1)+1. The remaining credits in this round, R, 
expands to R = T-C = 3*2(n-1)-2 - (2(n-1)+1) = 2*2(n-1)-3. 

These remaining credits will be handed out to other ports, i.e., port(j!=i), and dur-
ing each grant, only one credit will be consumed by these ports, in the worst case 
path. 

During subsequent rounds, port(i) will be replenished only with 1 new credit, and 
port(i) will slowly work its way out of its deficit value. Meanwhile, other ports, never 
having gone deficit, will be fully replenished to their original configuration weight.  

The total number of credits available for arbitration, during the round #2, will be 
R+1. The "+1" comes about because port(i)'s credit counter, which was at a deficit, 
got incremented by its Weight Wi = 1. During the second round, port(i) will 
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receive one credit, but still be in deficit mode. Therefore port(i) will not receive a 
grant and all R+1 credits will be given to ports(j!=i), with each of them utilizing 1 
credit per grant. 

The total number of credits available for arbitration, during the round #3, will be 
R+2. During the third round, port(i) will receive one credit, but still be in deficit 
mode. Therefore port(i) will not receive a grant and all R+2 credits will be given to 
port(j!=i), with each of them utilizing 1 credit per grant. 

The number of rounds of arbitration required for port(i) to go from his deficit to 
a positive credit level works out to: M = C = 2(n-1)+1. A total of M rounds of 
arbitration will be required for port(i) to recover from deficit and win a grant 
where  
M = 2(n-1)+1. 

The grand total number of grants given to other port(j!=i) across all rounds of arbi-
tration, while port(i) is waiting, works out to be an arithmetic progression of the form: 
{{ R }, { R+1 }, {R+2}, ..., {R+(M-1)}, so N will therefore be equal to the sum of this 
progression, which works out to be = N = M/2*(2*R+(M-1)).  

For our DUT's configuration, we have 

M = 2(n-1)+1 = 2(3-1)+1 = 22+1 = 5 and R = 2*2(n-1)-3 = 2*2(3-1)-3 = 2*2(2)-3 = 5.  

So our sum, N = 5/2*(2*5+(5-1)) = 5/2*(10+4) = 5/2*14 = 35. This is the answer 
to our question: "If port(i) is arbitrating, what is the maximum number of grants that 
can be given to port(j!=i) after which point port(i) is guaranteed to be given a 
grant". 

This analysis was not done entirely upfront. Based on our knowledge of the design, 
we attempted to compute N, verified this computation using a model checker, and 
found counterexamples which we then analyzed. After refining our understanding of 
the subtleties in the design, we recomputed N. We iteratively repeated this process 
until our manual computation matched the behavior observed with the model checker. 
This was a very laborious and time consuming process. As it turned out, minor design 
details played a major role in the computation, more so than any of us had 
anticipated. 

Note that the bug previously disclosed does not impact the maximum N because it 
causes the arbiter to degrade to round robin. The worst-case N for a 4 port round robin 
arbiter is 3. 

A simple finite state machine, shown in Table II, was written to count the number 
of grants given to port (j!=i) while port(i) is arbitrating without having obtained a 
grant. Here, N is equal to MAX_CNTi. 
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Table 2. Implementation of per port grant counter 

 

The state variable pi_gnt_ctr is initialized to 0. Whenever port(i) is requesting grants, 
if some other port(j!=i) wins a grant, we increment pi_gnt_ctr. Whenever port(i) wins 
a grant, we clear pi_gnt_ctr. Our safety property ensures that pi_gnt_ctr will never 
have a value of MAX_CNTi+1, which would indicate N+1 grants given to other ports. 

Stating N in such a concrete fashion (as 35 for a 4-port DWRR) gives us tighter 
bounds than our liveness property specification. 

We observe that as the per-port counter widths increase, this N goes up exponen-
tially, making the safety properties much more computationally intensive. 

There are some pitfalls associated with “guestimating” N. The designer was unable 
to precisely compute N upfront and provide it in the specification. Were we to guess a 
value and find a failure, in the absence of us knowing what N is precisely, we would 
not know whether this failure is a real bug, or simply a case where our safety property 
has not waited for enough grants. It is likely that the designer will not view such a 
failure as compelling evidence of design malfunction.  

The best cumulative runtime of our safety property proofs was ~ 5 minutes using 
the BDD[8]-based engines which is greater than the runtime observed with our 
liveness based approach, i.e. the counter abstraction liveness proofs. However, unlike 
the liveness-based approach, here we required no manual abstractions to render our 
proofs tractable.  

We further note that the liveness formulation is more portable than the safety 
equivalent. The safety invariants tend to be more design specific than the more 
general liveness properties. We found that seemingly trivial design changes yielded 

// pi_gnt_ctr: counts gnts to port(j!=i) while port(i) waits 
always @(posedge Clk) begin 
  if (!rst_ || pi_granting) 
     pi_gnt_ctr <= 7'd0; // rst or got our grant; clear ctr 
  else begin 
   if (pi_requesting && non_pi_granting) 
      // pi requesting but !pi getting grants; incr. ctr  
      pi_gnt_ctr <= pi_gnt_ctr+7'd1;  
   end 
  end 
end 
  
// We should never see MAX_CNTi+1 grants given to others 
assert_propi_req: assert property ( 
   @(posedge Clk) disable iff (!rst_)( 
      (pi_gnt_ctr!=(MAX_CNTi+7'd1)) 
 ) 
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large changes in N while the liveness properties remained valid unchanged regardless 
of the design’s implementation details. 

6 Property Results 

Formal verification of this block took place after the design was taped-out. The 
liveness properties passed. For experimental purposes, we artificially inserted a cou-
ple of starvation type bugs. These bugs manifested themselves as liveness property 
failures. 

During the liveness-based effort, we identified a design bug pertaining to the be-
havior of wt_refresh. During the safety-based effort, we encountered a non-critical 
bug that did not affect the liveness proofs. Following is the description of this bug: 

In DWRR configurations that have a cost input wider than 1 bit, it is possible that 1 
cycle after a refresh, the global counter will still be zero, leading to a new round of 
arbitration with 0 credits, causing yet another refresh during the next cycle. This bug 
exposes a non-critical design sub-optimality.  

This second bug does not invalidate the liveness or the safety proofs because it just 
lengthens the duration of refresh from 1 cycle to 2 cycles. The design does not hand 
out grants during refresh, so this bug does not add additional counter manipulation 
corner cases. Furthermore, none of our proofs depend upon the length of refresh. 

This second bug was not found as a direct consequence of failing the safety proper-
ties outlined above. The “computation of N” safety approach forced us to examine 
several microscopic details relating to the arbiter’s grant mechanism, which in turn 
led us to cast a secondary safety property that eventually identified our second bug. 
Had we exclusively used a liveness approach, we would not have cast other detailed 
properties pertaining to the internal grant mechanism. As a consequence of using a 
safety-based approach, we were forced to ask previously unidentified questions about 
the design. If we had simply “guestimated” an appropriate N until we found a passing 
value, we also would not have cast secondary questions or found this second bug.  

7 Conclusions and Limitations 

We have compared and contrasted liveness and safety-based approaches while 
proving forward progress in our DWRR circuit. We invested roughly equal effort on 
both approaches with a view to characterizing each in terms of abstractions required, 
proof runtimes and suitability of proof-engines. 

There is a dearth of papers that describe (a) the applicability of well-known ab-
straction techniques to industrial designs and (b) the advantages and disadvantages of 
liveness and safety-based approaches in proving forward progress for such designs. In 
narrating our experiences, we aspire to fill both voids. 

The Liveness proofs exhibited better runtimes with the right sort of abstraction 
techniques (including but not limited to counter abstractions), in conjunction with 
the SAT (PDR based) engine[11]. This makes liveness an attractive option for us, 
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particularly since we did not have a forward progress definition, in the form of a pre-
cise safety event bound, a priori. 

Our liveness-based approach required considerable effort in experimenting with 
various abstractions and proof-engines as well as in identifying design insights that 
made application of these abstractions possible. 

Our safety based approach required no abstractions and had a slightly higher 
runtime than the liveness runtime. The safety-based approach required us to expend a 
lot of effort in (a) identifying a precise set of safety properties that implied forward 
progress and (b) computing an exact bound on the number of grants that could be 
given to others while a port is arbitrating for a grant. 

If we had to choose one approach over the other, it would be based on the follow-
ing criterion: Has the designer specified and endorsed a precise event bound (for the 
max. number of grants that can be given to other ports)? Is this bound stable? If the 
answer to either of those questions is “no”, we conclude that a liveness based ap-
proach is preferable. On the other hand, if the answer to both those questions is “yes”, 
we conclude that a safety based approach is viable and practical. 

We also conclude that both approaches are viable, but have their downsides. 
Liveness may be preferred by users comfortable with making abstractions to reduce 
larger runtimes, and safety might be preferred by users who can work more closely 
with the designers to come up with precise, design-specific safety properties. Engi-
neers with sufficient time might prefer both - liveness for simpler property formula-
tion with easier portability if design changes occur, and safety for more precise speci-
fication that can find additional bugs. 

By formally verifying our DWRR circuit, we also gained subtle insights into the 
current design, which include but are not limited to the following: 

1. We have arrived at a precise formula that determines the number of grants that 
can be given to other ports while a particular port is arbitrating. 

2. We observe that if per-port counters are preserved intact and the refresh logic is 
abstracted away entirely, then we are guaranteed forward progress. 

3. We observe that if per-port counters are carefully abstracted and we are always 
eventually assured of a refresh, then we are guaranteed forward progress. 

We view these insights as a valuable by-product of the overall FV effort since they 
constitute a more rigorous specification of our existing design and can help influence 
future design changes. 
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Abstract. In our recent work, we addressed the problem of detecting se-
rializability violations in a concurrent program using predictive analysis,
where we used a graph-based method to derive a predictive model from a
given test execution. The exploration of the predictive model to check al-
ternate interleavings of events in the execution was performed explicitly,
based on stateless model checking using dynamic partial order reduction
(DPOR). Although this was effective on some benchmarks, the explicit
enumeration was too expensive on other examples. This motivated us to
examine alternatives based on symbolic exploration using SMT solvers.
In this paper, we propose an SMT-based encoding for detecting seri-
alizability violations in our predictive model. SMT-based encodings for
detecting simpler atomicity violations (with two threads and a single
variable) have been used before, but to our knowledge, our work is the
first to use them for serializability violations with any number of threads
and variables. We also describe details of our DPOR-based explicit search
and pruning, and present an experimental evaluation comparing the two
search techniques. This provides some insight into the characteristics of
the instances when one of these is superior to the other. These charac-
teristics can then be used to predict the preferred technique for a given
instance.

1 Introduction

The atomicity of a set of operations is a desired correctness condition for concur-
rent programs. There exist many different notions of atomicity, useful in various
contexts [22,11,4]. In this paper, we address conflict-serializability [22], a widely
used notion. Informally, an execution is conflict-serializable if it is equivalent,
in some sense, to a serial execution where the individual atomic regions are
executed sequentially. In general, atomicity violations can be detected by ob-
serving a particular trace, called the monitoring problem [5,27], or by exploring
alternate interleavings of events in a given trace, called the predictive analysis
problem [7,26,28,33,37,25,6,17].

The existing predictive analysis methods are broadly classified into two cat-
egories based on their precision. Methods in the first category detect must-
violations, i.e. the reported violation must be a real violation [26,37,33]. Methods
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in the second category detect may-violations, i.e. the reported violation may be
a real violation [25,6,17]. Due to higher precision, the methods in the first cat-
egory are usually expensive. Therefore, effort is needed to improve performance
and scale better on long traces.

In our recent prior work on predictive analysis [28], we proposed a method in
the first category, where we used a graph-based technique to derive a predictive
model called a TAS (Trace Atomicity Segment) that is based on read-write and
synchronization events in the observed trace. The TAS is used to generate alter-
nate interleavings, called Almost View Preserving (AVP) interleavings, that are
guaranteed to be feasible executions of the concurrent program. Therefore, any
serializability violations detected on AVP interleavings are also guaranteed to be
real violations. The basic idea is to consider alternate interleavings where any
thread is allowed to break its read-coupling, i.e. it reads from a different write
event than what was observed in the given trace, but to skip all subsequent de-
pendent events in this and other threads (since they can no longer be guaranteed
to be feasible). Essentially, AVP interleavings preserve the view in each thread
upto some prefix, and only the prefixes and broken read events are allowed to
appear in a serializability violation.

1.1 Motivating Example

Fig. 1. This is a serializable program
execution trace

To motivate the issue of feasible ex-
ecutions, consider a program execu-
tion shown in Figure 1, with events
numbered in the order of execution in
the given trace. It has four concurrent
threads (T1 . . . T4) and four shared
variables (x, y, z and t). The rectangu-
lar boxes (in threads T2 and T4) denote
pre-specified atomic blocks (e.g. using
begin atomic and end atomic labels
in the trace). The inter-thread edges
represent read-after-write (RaW) or-
ders. Suppose that event e9 in T1 is
conditional on the value of z in e5,
which gets its value from e4. Note that
the given trace is a serializable execu-
tion since the events can be ordered as (e1, e4, e7),e2, e3, e5, e9,(e6, e8) without
violating atomicity of the blocks. In Figure 2, we show two other possible inter-
leavings of the same events, where the atomicity of the atomic block in thread
T2 is violated.

Although both interleavings shown in Figure 2 are unserializable, the violation
in (a) is real, while the violation in (b) may be bogus. Specifically, in execution
(b), event e8 happens between e4 and e5, thereby assigning a different value to
the shared variable z in event e5 than in the original trace. Therefore, the value
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read by event e5 may not be the same (we call this a broken-read), which may
affect the occurrence of event e9 down the line.

1.2 Overview and Contributions

Fig. 2. The interleaving (a) is unserializable and feasible.
However, the interleaving (b) is unserializable but not
guaranteed to be feasible. (The broken arrow represents
serializability violation path defined in Section 2.)

In our prior work [28],
we used an explicit state
traversal technique based
on Dynamic Partial Or-
der Reduction (DPOR)
[8] to generate AVP in-
terleavings from our pre-
dictive model, and each
interleaving was checked
by looking for a cy-
cle in the correspond-
ing D-serializable (DSR)
graph [22,27]. Although
use of dynamic partial
order reduction ensures
that no redundant inter-
leavings (with respect to
the conflict-based partial order) are generated, the number of interleavings was
still quite high for many benchmarks in our experiments. This motivated us to
examine symbolic search techniques, that avoid an explicit enumeration of the
AVP interleavings.

Note that symbolic encodings of interleavings in a concurrent program have
been studied earlier [32,33,29,30]. However, their focus is on read-write con-
sistency constraints to ensure feasible interleavings, and suitable interference
abstractions and refinement to weaken/strengthen these constraints for mod-
ular analysis. These encodings (capturing a concurrent trace) can be utilized
with a suitable encoding of any target property for verification. In this paper,
we use a similar encoding of read-write consistency (adapted to our predictive
model), and combine it with an encoding for checking serializability violations
(for any number of variables, for any number of threads) based on cycle detection.
This general serializability property has not been addressed in any of the earlier
symbolic efforts, which handled only data races, deadlocks, and simple atomic-
ity/serializability violations (involving a single variable and two threads). Indeed,
our symbolic encoding of serializability violations based on cycle detection can
be potentially combined with other SMT-based encodings of interleavings in a
concurrent program.

In recent years, the advancements in SAT and SMT solvers [19,21] have been
leveraged in many areas of automated software verification, including symbolic
exploration for concurrent programs, e.g. symbolic partial order reduction [35],
symbolic predictive analysis [34,33], datarace detection [24]. Therefore, it is nat-
ural to examine whether SMT-based search can be useful in our method for
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predictive analysis. Although previous methods have used SMT-based encod-
ings for detecting simple serializability violations involving two threads and a
single variable [33], to the best of our knowledge, our method proposed here
is the first SMT-based technique for detecting general serializability violations
involving any number of threads and variables. Our SMT-based encoding can be
potentially useful in other settings as well, e.g. bounded model checking [1,9].

In this paper, we describe the DPOR-based search with additional pruning
and heuristics optimized for our predictive analysis setting (these details were
not described in our prior work [28], and also provide the context for comparison
with SMT-based search). We then describe our SMT-based search in detail.
Our SMT-based encoding performs both tasks: (a) symbolic exploration of AVP
interleavings, and (b) detection of cycles in the associated DSR graph.

We have implemented our SMT-based technique and compare it with our
DPOR-based technique on a suite of C/C++ and Java benchmark programs.
The comparison reflects the classic tradeoff between time and space, and our
results show that these techniques are complementary in the sense that neither
outperforms the other on all benchmarks. We then consider some features of
our predictive model that indicate which technique is likely to perform better
(based on our current experiments). Specifically, we consider the relative TAS
size (how big is the TAS model, relative to the trace) and coupling between
threads (number of inter-thread edges, relative to number of all events) that
seem to be good predictors.

Contributions: To summarize, this work makes the following contributions.

– We describe details of a DPOR-based explicit technique for exploration of
interleavings, with additional pruning and heuristics optimized for finding
serializability violations.

– We propose an SMT-based technique for detecting serializability violations
using predictive analysis, suitable for modern SMT-solvers.

– We provide experimental results for the SMT-based technique, using two
state-of-the-art SMT-solvers – Yices [15] and Z3 [31].

– Finally, we present the comparative results between DPOR-based and SMT-
based techniques in our predictive analysis, and identify some characteristics
of instances that can be used to select between them.

2 Preliminaries

In this section, we summarize the needed background on our prior work. We
omit the detailed formal discourse (available online in [28]), and describe the
main aspects. We consider a concurrent program consisting of a set of threads
T1, . . . , Tk and a set of shared variables. Let tid = {1, . . . , k} be the set of thread
indices. The remaining aspects of the program, including the control flow and
the expression syntax, are intentionally left unspecified for generality.

Program Trace Model: An execution trace ρ = e1, e2,. . . en is a sequence of
events, each of which is an instance of a visible operation (read/write accesses
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to shared variables and synchronization operations are regarded as visible oper-
ations) during the execution of the concurrent program. An event is represented
as a 5-tuple (tid, eid, type, var, child), where tid is the thread index, eid is the
event index (that starts from 1 and increases sequentially within a thread), type
is the event type, var is either a shared variable (in read/write operations) or
a synchronization object, child is the child thread index (in thread create/join).
The event type is one of {read, write, fork, join, acquire, release, wait, notify,
notifyall, atomic begin, atomic end}.

An execution trace ρ provides a total order on the events appearing in ρ. We
derive a partial order by retaining only the set of must-happen-before constraints,
which collectively are sufficient to guarantee feasibility of the serializations of this
partial order.
Partial Order Graph: Let G(V,E) be a partial order graph such that V (G)
is the set of vertices, each of which represents an event in the trace (we use
vertices and events interchangeably when the context is clear). A directed edge
in E(G) (the set of edges) is either a program order (PO), or a read-after-write
(RaW), or a synchronization (Sync.) edge. If there is a RaW edge from a to b in
G, then the pair (a, b) is defined as a read-couple. In a different interleaving, if b
reads from a different event c, we say that the read-couple for b in G is broken.

Fig. 3. The PO graph with vectors. Ver-
tices represent events from the trace.
The dashed and solid edges are PO and
RaW/Sync. edges respectively. Note that
RaW edges can both be inter- and intra-
thread edges.

We assign clock-vectors to each ver-
tex in G, following the idea of Lam-
port’s Logical Clock [18] in order to
check the causality order between any
two events. An example of a partial or-
der graph with 3 threads is shown in
Figure 3. The rectangular block in this
figure represents an atomic block de-
noted by A. V (A) denotes the vertices
in A. The number inside each vertex
is the eid. The vectors are shown in
square brackets next to the vertices.
For convenience, we shall refer to ver-
tex 1 in the 2nd thread as vertex 2.1.
Almost View Preserving (AVP)
Interleavings: Let G′ be a partial or-
der graph derived from ρ similar to G,
except that it has only the program or-
der and sync. edges. Let t ∈ T , where
T be the set of all interleavings con-
sistent with G′. Let v be a read event
in t. For each read event v in t, if the read couple for v in ρ is broken in t,
then all vertices w, such that v must-happen-before w in G, are deleted from t
resulting in t′. AV P (ρ) is the set of all t′ s.t. t ∈ T . Serializability Violation
Path: It is well-known that there is a conflict-serializability violation if there
exists a cycle in the D-serializable (DSR) graph [22,27]. In our setting, for any
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alternate interleaving we conceptually construct a conflict graph GC (similar to
a DSR graph), where the vertices are the read/write events and edges represent
conflicting accesses and program order. There is an atomicity violation if we can
find a path that starts and terminates within the atomic block, and visits at
least one vertex outside the atomic block in GC .
Trace Atomicity Segment (TAS): For each atomic blockA, we identify a TAS
as a subgraph ZA ⊆ G that is sufficient for the purpose of detecting all serializ-
ability violations amongAVP (ρ). Intuitively, theTAS captures all events thatmay
happen in parallel with events in A, until broken reads are encountered. Our over-
all technique derives a TAS for each atomic block in the given trace. In effect, this
considers a sliding window over the trace, where each window looks at alternate
interleavings among events that can happen in parallel with an atomic block.

A frontier is a k-tuple, i.e. a vector, where the ith integer represents the eid of
some event in ith thread. A TAS is bounded by two frontiers: upper and lower, with
respect to G (see Figure 4). Events that must happen before the first event within
A are above the upper frontier. Analogously, events that must happen after the
last event inA are below the lower frontier. The subgraph ofG between the upper
frontier and the lower frontier is called the TAS ZA. The usefulness of frontiers is
that no vertex above the upper frontier (below the lower frontier)may appear after
(before) any vertex v ∈ VRW (A) ⊆ V (ZA) in any interleaving in AV P (ρ) (where
VRW (A) denotes the read-write vertices in the given atomic block).

Example: Figure 4 shows an example of a TAS for the atomic region in a
partial order graph with three threads. The upper frontier is UFA={8,5,6}.

Fig. 4. The TAS in a partial order graph
G, with respect to the atomic block
(shaded rectangular region). The upper
and lower frontiers are given by {8,5,6} and
{17,11,11}, respectively.

The lower frontier is LFA={17,11,11}.
The subgraph in between the frontiers
is the TAS ZA. Note that VRW (A) ⊆
V (ZA). Although, the frontiers are
simple vectors, they are represented as
cuts in Figure 4 as the frontiers demar-
cate the boundaries of the TAS. We
have shown that the TAS for a given
atomic block is sufficient for detecting
the existence of a serializability viola-
tion path among AV P (ρ), i.e. there
exists no violation path that includes
vertices outside ZA. In effect, the TAS
serves as our predictive model, and we
search over all AVP interleavings over
events in the TAS.

Note that for a violation path, there
must exist at least two events within
the atomic block that conflict with
other access(es) outside the atomic
block but within the TAS. Although such events may exist across a long trace,
they may not occur within a relatively small TAS. This provides a static check: If
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such events do not exist in a TAS, then no violation is possible among AV P (ρ).
In practice, this static check is frequently successful.

3 Explicit Search within the TAS

If the TAS ZA fails the above simple static check, i.e. a serializability violation
may be possible, we search among all the interleavings within ZA to find the
unserializable one. In this section, we use a Dynamic Partial Order Reduction
(DPOR [8,36]) based explicit search algorithm. We also improve this DPOR
search with several sound pruning techniques and search heuristics.

3.1 Overview of DPOR Algorithm

An interleaving prefix π = e1, e2,. . . ek is a sequence of a subset of the events
in ρ; that is, ∀i, event ei belongs to ρ, |π| ≤ |ρ|, and events in π are not nec-
essarily in the same order as in ρ. Two interleaving prefixes comprised of the
same subset of events are conflict-equivalent iff the relative order of all pairs of
conflicting events is same. The DPOR algorithm can be used to generate one
representative interleaving from each conflict-equivalent class, by avoiding the
other (redundant) interleavings.

In the DPOR algorithm, an interleaving prefix π is represented as a sequence
s1, s2, . . . sk of program states, where event ei is executed during the transition
from si to si+1, for all i = 1, 2, . . . k. At each state s, we use s.enabled to record
the set of threads that are ready to execute. The next event in any thread
τ ∈ s.enabled is referred to as the ready-transition. We also use s.backtrack ⊆
s.enabled to record a subset of the enabled threads, where each thread τ ∈
s.backtrack represents a possible scheduling choice at s in some future runs. Note
that τ �∈ s.backtrack means that, according to the partial order reduction theory,
executing thread τ at state s would have led to a redundant interleaving [8].

Two mutually independent transitions (ti,tj) whose events are both ready
for execution are referred to as co-enabled transitions. For instance, if a lock is
acquired by one thread, it must be released before another thread can acquire it.
Therefore, the transition that releases the lock and the transition that acquires
it are mutually dependent, and hence are not co-enabled transitions.

Although DPOR is efficient in testing concurrent programs, it is not geared
toward enumeration of interleavings in a predictive model such as ours. More
specifically, it does not take TAS and the read-write coupling requirements into
consideration. Therefore, we have customized the original DPOR for TAS, and
our new algorithm is presented in Figures 5& 6. (Our modifications are lines
marked with a ‘�’.) In the pseudo-code, we use symbol S to denote the state
stack (s0s1 . . . sd . . . sn), and use s.stack depth to denote the depth of state s in
stack S. We start search with the first event in an atomic regionA (say u0) (lines
1-3, procedure Init). At each state s, we first find a set of preceding states (whose
next events are mutually dependent with the enabled events at s) and update
their backtrack sets (lines 2-12, procedure Explore). Here, in order to properly
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Init {
1: if(u0.type = read or write)

computeEnabledRaW(s0, s0, u0);
2: else computeEnabled(s0, s0, u0);
3: S.push(s0);
4: Explore(S);
5: }

Explore(S) {
1: let s = S.top of stack();
2: for each thread h{
3: let tn be a transition such that tn.tid ∈ s.enabled and tn.tid = h

and tn is not a coupled read in the atomic block;
4: for all transitions tdin the current explored path dependent with

tn and it may be co-enabled with tn{
5: let sd be the state in S from which td is executed;
� 6: if (sd.cs ≥ CSmax or

(bt tag.isTrue ? (bt tag.stack depth< sd.stack depth):false))
� 7: continue;
8: let E = {q.tid ∈ sd.enabled | (q.tid = h ∧ q is not a coupled

read from the atomic block) ∨ (td ≺ q ≺ tn and q is
dependent with some t′ such that, q ≺ t′ ≺ tn &
t′.tid = h)};

9: if (E �= {}) then
choose any member of E and add to sd.backtrack;

10: else
add {q.tid | q.tid ∈ sd.enabled and q is not a coupled
read from the atomic block} to sd.backtrack;

11: }
12: }
13: if (s.enabled is not empty) {
� 14: heuristically, pick t.tid from s.enabled;
15: s.backtrack ← {t.tid};
16: let done = {};
17: while (∃t such that t.tid ∈ s.backtrack \done){
18: add t to done;
19: let, s′ ← next(s, t);
� 20: computeContextSwitch(s, s′, t); // compute cs for s′

� 21: if(t.type = read or write) computeEnabledRaW(s, s′, t);
22: else computeEnabled(s, s′, t); // compute s′.enabled
23: S.push(s′);
24: Explore(S);
25: S.pop();
26: }
27: }
28: }

Fig. 5. Generating and checking the non-interfering runs

update the backtrack sets and avoid redundant interleavings, we need to track
the conflicting pairs of transitions within the interleaving prefix. After finding
and updating the backtrack sets of dependent preceding states, we need to pick
an enabled thread at state s to execute. Rather than randomly picking (as in
the original DPOR), we heuristically pick a thread, insert it in s.backtrack (lines
14-15, procedure Explore), and continue. We continue exploring the enabled
threads in s.backtrack by calling Explore recursively, until all threads in this
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backtrack set are explored (lines 17-27). At this point, we insert the thread into
the done set (line 18).

In this DPOR search, deciding whether any of the read-couples is broken in
the current prefix is crucial. We use a map called active couple to store the
mapping from the ‘written but not read’ shared variables to the last coupled-
reader in ρ (a written value can be read by multiple readers). Once the last reader
reads the variable, the map is removed from active couple (line 12, procedure
computeEnabledRaW).

The set enabled is computed by procedure computeEnabledRaW if the
current transition is a read/write access (Figure 6) and by the standard pro-
cedure computeEnabled otherwise (pseudo-code omitted for brevity). Proce-
dure computeEnabledRaW is designed specifically to handle constraints from
the RaW edges (or couples), while procedure computeEnabled deals with the
standard synchronization primitives. It is worth pointing out that the original
DPOR does not have or need procedure computeEnabledRaW. In our case,
if a coupled read is mismatched, i.e. the read event is not reading the value it
is supposed to read, the following events in the thread are skipped (line 6-7,
procedure computeEnabledRaW).

Several helper procedures such as preProcess and postProcess (lines 1 and
16, respectively) are also called.We omit their pseudo code, but provide a brief de-
scription as follows. Procedure preProcess helps in initializing the various data-
structures of a state (except for s0, the current state inherits those data-structures
from the previous state). Procedure postProcess helps in eliminating or insert-
ing thread-ids into the enabled of the current state depending on certain conditions
related to the ready-transitions and the data-structures of the current state.

computeEnabledRaW (states: sp, sc, transition: t) {
// sp: previous state; sc: current state;

1: preProcess (sp, sc);
2: if (t.type = write and this write is coupled) {
3: sc.active couple ← sc.active couple ∪ {(t.var, last reader of t)};
4: } else if (t.type = read and this read is coupled) {
5: if (t.var ∈ sc.active couple){
6: if (read-couple is broken)
7: sc.next(t.tid) ← null; // thread virtually terminates
8: if (t = sc.active couple[t.var]) //t is the last reader
9: sc.active couple ← sc.active couple.erase(t.var);
10: }
11: }
12: if(read-couple is broken and t is the broken read within the atomic region) {
13: bt tag.isTrue ← true;
14: bt tag.stack depth ← sp.stack depth;
15: }
16: postProcess (sp, sc);
17: }

Fig. 6. Computing enabled using RaW edges
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Although we are performing a restricted search (by using RaW edges to reduce
the number of interleavings), the explicit search overhead is still not practical in
most of our initial experiments. These unrealistic run-times pushed us to look
for smarter prunings and heuristics. In order to further reduce the number of
interleavings, we propose several sound pruning techniques (Section 3.2) and
search heuristics (Section 3.3).

3.2 Pruning TAS Search Space

Consider the scenario in Figure 7 (a), where tlastInAB is the last transition
in the atomic region (from state sd) and t is the current transition in the
interleaving prefix. Assume that ti, tj and tk are the predecessor transitions
from states si, sj and sk respectively, conflicting with t. Our observation is
that, if the atomicity property is not violated in the interleaving prefix un-
til tlastInAB , then updating the backtrack set of any successor state after sd

Fig. 7. (a) Setting a marker when the last transition
(tlastInAB) from the atomic region appears in the pre-
fix helps in pruning the interleavings. (b) Tuning the
parameter CSmax can help in carrying out localized
search.

cannot generate any viola-
tion path. This claim can
be justified as follows. First,
updating the backtrack set
of successors of sd will
not change the interleaving
prefix until tlastInAB. Sec-
ond, there is no transition
within the atomic block af-
ter tlastInAB , and no vio-
lation exists in the prefix
until tlastInAB . Hence there
does not exist a serializ-
ability violation path in the
interleavings with fixed pre-
fix until tlastInAB . There-
fore, in Figure 7 (a), we
update the backtrack sets
of si and sj only (and
leave the backtrack set of sk
unchanged).

We implement this sound pruning technique in line 6 of procedure Explore,
by introducing the global data-structure bt tag (read as backtrack-tag). This
data-structure has two fields: a Boolean variable isT rue and an integer variable
stack depth. The data-structure is set in line 13-14 in procedure computeEn-
abledRaW, if current transition t is a mismatched read in A and the following
events within A are skipped. The field stack depth records the depth of sd in
the state-stack S such that, subsequent updates of the backtrack set of s can
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be ignored if bt tag.isT rue is true and bt tag.stack depth < s.stack depth (lines
6-7, Fig. 5).

3.3 Heuristics for TAS Search

We also use context bounding (i.e. limiting the number of context-switches) as a
search heuristic to reduce cost. However, this is an unsound reduction technique
because it may miss real bugs. We call a context switch significant when it is
either inevitable (i.e. the previous transition is the last event of its thread) or
needed to facilitate read-after-write or wait-notify couples. All other context-
switches are referred to as insignificant. Our definition of insignificant context
switches differs from the preemptive context switches in CHESS [20] since we
also consider the RaW constraints.

We assign a counter s.cs to record the number of insignificant context switches
in the interleaving prefix up to state s. Let CSmax be the maximum number of
insignificant context-switches permitted by the user. Observe that in line 6 of
procedure Explore, for a state sd, if sd.cs ≥ CSmax, we will skip the update
of its backtrack set. The intuition behind this conditional update is as follows.
Assume that there is a potential violation path comprising of fewer insignifi-
cant context-switches, then it will be detected by our algorithm with a small
predetermined CSmax. In line 14, procedure Explore, the thread is heuristi-
cally picked from s.enabled to efficiently utilize this budget. In practice, we can
broaden the search space incrementally, by first exploring the interleavings with
fewer context switches, and then gradually increasing the maximum number of
insignificant context switches. In other words, the insignificant context-switch
bounding enables a localized search within a fixed prefix length.

The complexity of this clock-vector based algorithm, as derived in [8], is
O(kdr), where k is number of threads, d is the maximum size of the search
stack and r is the number of transitions explored.

4 Implicit Search within the TAS

As discussed earlier, an alternate framework for systematic exploration of events
within the TAS is SMT-based implicit exploration. We now show how to encode
the problem as an SMT instance using difference logic. This instance can then
be analyzed by state of the art SMT solvers.

4.1 Encoding of the Violation Path Reachability

Consider the example in Figure 8. All the vertices shown in the figure
(u, v, v′ and w) write to variable x. The path u → v → v′ → w
is a violation path. We encode this violation path which may be present
in some alternate interleaving ρ′ ∈ AV P (ρ). Although, an alternate inter-
leaving ρ′ may contain one or many broken read-couples (as any thread
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Fig. 8. The function inA(u) denotes
whether vertex u belongs to the atomic
block, while function fromA(u) denotes if
u is reachable from some vertex within A
via a violation path

is allowed to break its read-coupling),
for ease of understanding, we first con-
sider the case which does not allow
broken read-couples. This assumption
will be subsequently relaxed to include
the possibility of broken read couples.

Atomic Block Membership
Condition: The violation path always
begins in an atomic block. We define
the following function inA(u) for a
vertex u.

inA(u) =

{
true if u ∈ V (A)

false otherwise
(1)

Consider edge (u, v) such that v is a conflicting access in a different thread from
u. In the interleaving ρ′, u happens before v. Let x(u) be a function that assigns
an integer value to the vertex u. This is used to provide ordering constraints
between vertices in the violation path. x(u) < x(v) iff in ρ′, u happens before v.

We define function fromA(v) to be true if vertex v is reachable from A
along a possible violation path. Let the function edgeFromA(u, v) be true if v
is reachable from A through u. There are two cases.
Case 1 (u ∈ V (A)): In ρ′, x(u) < x(v) and v should be outside the atomic block
(i. e. inA(v) = false) ensuring that the path leaves the atomic block. Then,

edgeFromA(u, v) = (¬inA(v) ∧ (x(u) < x(v))) if u ∈ V (A) (2)

In Fig. 8, edgeFromA(u, v) is true.
Case 2 (u /∈ V (A)): Vertex u happens before v and u is already on a violation
path (i.e. fromA(u) = true). Then,

edgeFromA(u,v) = (fromA(u) ∧ (x(u) < x(v))) if u /∈ V (A) (3)

In Fig. 8, (x(v) < x(v′)) and fromA(v) = true imply edgeFromA(v, v′) = true.
We refer to the set of eligible (u, v) pairs that need to be considered in the

edgeFromA computation defined above as EP Set. There are two possibilities
for edges in this set. Either, (i) the vertices u and v conflict or (ii) they belong
to the same thread.

EP Set = {(u, v) | ((u.type = write ∨ v.type = write)

∧ (u.var = v.var)) ∨ (u.tid = v.tid),where u,v ∈ VRW }

Thus, combining Eq. 2 and Eq. 3 we can define function fromA(v).

fromA(v) =
∨

∀(u,v)∈EP Set

edgeFromA(u, v) (4)
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4.2 Encoding of the Violation Path

Finally, there exists a violation path iff there exists at least one vertex u within
A such that fromA(u) is true implying that u is reachable from some vertex in
A via a violation path that visits vertices outside A. So the following condition
(Φ) is satisfied if the interleaving contains a violation path.

ΦV P =
∨

∀u∈V (A)

fromA(u) (5)

4.3 Encoding of the Program Order

For each edge (u, v) ∈ E(G) except for the RaW edges (since the RaW edges
denote read-couples which can be broken), the following constraint is introduced
in the encoding.

HB(u, v) = (x(u) < x(v)) (6)

Let,

ΦPO Sync =
∧

∀(u,v)∈PO Sync Set

HB(u, v) (7)

where,

PO Sync Set = {(u, v) | (u, v) ∈ E(G) and (u, v)

is not a RaW edge.}

Moreover, for each conflicting pair (u, v) such that u may happen in parallel
with v, denoted by u | v,

φPar(u, v) = (x(u) < x(v)) ∨ (x(v) < x(u)) (8)

Let,

ΦPar =
∧

∀(u,v)∈Par EP Set

φPar(u, v) (9)

where,

Par EP Set = {(u, v) | (u, v) ∈ EP Set and (u | v)}

4.4 Encoding of Synchronizations

The synchronization events like lock-unlock and wait-notify also need to be en-
coded to get an alternate feasible interleaving. First, we encode the lock-unlocks.
Let lk1 = (ulk1, uunlk1) and lk2 = (ulk2, uunlk2) are two pairs of vertices that op-
erate on the same lock-variable. As the locked regions cannot overlap, there are
two possibilities (1) x(uunlk1) < x(ulk2), or (2) x(uunlk2) < x(ulk1). Therefore,
for each pair of lock-unlock events operating on the same lock,

φLK(lk1, lk2) = (x(uunlk1) < x(ulk2)) ∨ (x(uunlk2) < x(ulk1)) (10)
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Let,

ΦLK =
∧

∀(lk1,lk2)
φLK(lk1, lk2) (11)

The wait-notify events are encoded similarly. Let, (uw, un) be a wait-notify cou-
ple and u′n be another notify event operating on the same variable. Therefore,
u′n should not come in between uw and un in any interleaving. Therefore,

φWN (uw, un, u
′
n) = (x(u′n) < x(uw)) ∨ (x(un) < x(u′n)) (12)

Let,

ΦWN =
∧

∀(uw,un,u′
n)

φWN (uw, un, u
′
n) (13)

4.5 Encoding of Broken Read-Couples

Fig. 9. Let u1, u2, . . . , un be the
parents of v in G such that
none of them writes. The set
{u1, u2, . . . , un} is denoted as
SkipParent(v).

For a given trace ρ, the set AV P (ρ) contains
interleavings where one or many read-couples
are broken. Next, we encode these broken read-
couples. We introduce two new related func-
tions - Broken and Skip. Intuitively, whenever a
read-couple is broken, Broken(u) is true where
u is the reader and Skip(v) is true for all the
following vertices v. These two functions are
defined using mutual recursion. Consider the
read-couple (u, v) in Figure 10. The read-couple
can be broken under three circumstances.

1. Some other write event u′ happens
between u and v (i.e., HB(u, u′) ∧
HB(u′, v)), where HB(u, v) stands
for (x(u) < x(v))) and none of u, v
and u′ are skipped (i.e., ¬(Skip(u) ∨
Skip(v) ∨ Skip(u′))). We refer to u′

as “challenger” as it challenges the
read-couple (u, v). This condition is
denoted as φB1(u, v).

2. Vertex v appears before u (i.e.,
HB(v, u) is true) and none of u
and v are skipped (i.e., ¬(Skip(u) ∨
Skip(v))). This condition is denoted
as φB2(u, v).

3. The writer u is skipped while reader
v is not skipped (i.e., Skip(u) ∧
¬Skip(v)). This condition is denoted
as φB3(u, v).

Fig. 10. Let (u, v) be a read-couple and u′

writes the same variable. The read-couple
can be broken in three ways in an alter-
nate interleaving ρ′. (1) u′ happens be-
tween u and v, or, (2) v happens before
u, or, (3) u is skipped.
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Further, if some write u′ happens before v, where v is initially not read-coupled
and none of u′ and v are skipped, then Broken(v) is true.

Thus, we define Broken(v) as follows.

Broken(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φB1(u, v) ∨ φB2(u, v) (u,v) is a read-couple

∨ φB3(u, v) and u′ is challenger,∨

∀u′
(HB(u′, v) ∧ ¬(Skip(u′) ∨ Skip(v)))

v reads but not

read-coupled within the

TAS and u′ is a challenger,

false otherwise.

(14)

where,

φB1(u, v) = ¬(Skip(u) ∨ Skip(v)) ∧
(
∨

∀u′
(HB(u, u′) ∧HB(u′, v) ∧ ¬Skip(u′))

)

φB2(u, v) = ¬(Skip(u) ∨ Skip(v)) ∧HB(v, u)

φB3(u, v) = Skip(u) ∧ ¬Skip(v)

The intuitive idea behind the condition for a vertex v being skipped is as fol-
lows: (c.f. Figure 9): when any of the parents of v in G is skipped or broken,
except when the parent is a conflicting write from a different thread (only pos-
sible in case of read-couples), v is also skipped. When a parent that writes in a
different thread is skipped, v must be the coupled read which gets broken (but
not skipped) and the events following v are skipped. The set SkipParent(v) is
defined as follows.

SkipParent(v) ={u | (u, v) ∈ E(G) except when u is a

write from a different thread}

Next we define Skip(v). We skip a vertex v when one of the members of
SkipParent(v) is skipped or broken.

Skip(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

false if SkipParent(v)={}∨

u∈SkipParent(v)
Skip(u) ∨ Broken(u)

otherwise.

(15)

Note that although we have used mutual recursion in the definitions of Skip
and Broken, the definitions are not cyclic. The reason for this is as follows. The
definition of Skip(v) depends on the values of Skip(u) and Broken(u), where
u is one of the parents of v. Therefore, the definition of Skip is not cyclic. The
function Broken(v) is also acyclic since it refers to Skip function and we have
already argued that Skip is acyclic.
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4.6 Encoding Allowing the Broken Read-Couples

We now state the modified constraints that allow the broken reads. The modi-
fications in the constraints are underlined.

– The atomic block membership constraints: If a vertex within A is
skipped, the violation path cannot start from the vertex. Therefore, we mod-
ify Eq. 1 to account for the broken read-couples in the following equation,

inA(u) =

{
¬Skip(u) if u ∈ V (A)

false otherwise
, (16)

– The encoding of the reachability of the violation path: The function
edgeFromA is meaningless when either u or v is skipped. Thus, we add a
new conjunctive clause (¬(Skip(u) ∨ Skip(v))) to the original definition of
edgeFromA.

edgeFromA(u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(¬inA(v) ∧ (x(u) < x(v))

∧ ¬(Skip(u) ∨ Skip(v))),
if u ∈ V (A)

(fromA(u) ∧ (x(u) < x(v))

∧ ¬(Skip(u) ∨ Skip(v))),
otherwise

(17)

Finally, we combine Equations 5, 7, 9, 11 and 13 to get the complete encoding

Φ = (ΦV P ∧ ΦPO Sync ∧ ΦPar ∧ ΦLK ∧ ΦWN ) (18)

where, the functions inA, fromA, Broken, Skip are defined in Equa-
tions 16, 4, 14 and 15 respectively.

4.7 Complexity

The number of constraints is bounded by O(N +mpq2+ l2evl), where N , m, p, q,
lev and l represent: number of events, number of variables, maximum number of
reads per variable, maximum number of writes per variable, maximum number
of events per lock variable and number of lock variables respectively.

5 Results

We have implemented our technique in a prototype tool. This tool is capable of
logging/analyzing execution traces generated by both Java programs and mul-
tithreaded C/C++ programs using Pthreads. The program traces used are all
available online [14]. The C++ benchmark is available online [12]. All the Java
benchmarks are publicly available [3,10,13,16,23].

The tool logs execution traces at runtime from C++ source code instrumented
using the commercial front end from Edison Design Group (EDG). For Java
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programs, we use execution traces logged at runtime by a modified Java Virtual
Machine (JVM). For each test case, we first execute the program using the
default OS thread scheduling and log the execution trace. Next we apply our
algorithm to detect the serializability violations. For Java traces, we assume that
all synchronized blocks are intended to be atomic, unless the synchronized block
has a wait. For the C++ application, we assume that all blocks using scoped
locks (monitors implemented using Pthreads locks and condition variables) are
intended to be atomic.

Fig. 11. It is our intuition, although not validated over
large set of programs, that the winner among DPOR vs
SMT can be predicted given the relative TAS size and
the strength of the coupling (these can be determined
statically) between the threads in a trace

All our experiments
were conducted on an
Intel i7 machine (2.67
GHz, 3 GB memory) run-
ning Ubuntu 2.6.31-14-
generic. Our experiments
are designed to study
how implicit interleaving
enumeration using SMT
compares against explicit
enumeration using
DPOR. As part of this,
we consider two different
SMT-solvers (Yices [15]
& Z3 [31]). However, a
fair comparison of Yices
and Z3 is not possible as
we can use the Yices API,
but need to call Z3 using
the SMT instance in a file as the Z3 API library is not available for Unix [2]. Fur-
ther, we have also considered bit-blasting of the order variables (the x variables)
in the SMT encoding rather than using difference logic. However, the results
with bit-blasting are not significantly different from those without it.

We found that when the number of constraints generated in symbolic ex-
ploration (i.e. SMT) largely exceeds the interleavings explored in explicit ex-
ploration (i.e. DPOR), the DPOR-based strategy runs faster compared to the
SMT-solvers. This observation has been validated for both the SMT solvers -
Yices and Z3.

In Figure 11, we present an interesting observation made from our experi-
mental results. We define coupling strength as the ratio of the inter-thread edges
and the number of vertices in the graph. A low (high) number represents loosely
(strongly)-coupled threads. (These indicators can be derived & generalized over
all available traces.) We characterized the traces with respect to their relative
TAS sizes (ratio of number of vertices within the TAS and in the entire trace)
(Y-axis) and coupling strength (X-axis). We found that traces where DPOR
beats SMT-solvers lie around the curve indicated in Figure 11. We classify the
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traces that lie further away from this curve into two sub-groups: (1) Those for
which SMT-solvers beat DPOR, and (2) Those for which SMT-solvers run out of
memory. Observe that, the traces belonging to sub-group 2 lie further away from
the curve compared to those belonging to sub-group 1. We offer the following
explanation for this observation. The curve contains traces for which one of the
following is true.

1. The strength of coupling is very low but relative TAS size is large - due to
low intensity of coupling, the number of conflicting accesses is probably very
small, e.g. in ThriftTraces the coupling strength is between 0.1-0.3, and
the relative TAS size is 10-26%. Hence, TAS+DPOR is effective for these
traces.

2. The strength of coupling is high but relative TAS size is small - due to small
relative TAS size, the possible number of interleavings is again very small,
e.g. in DaisyTest, Tsp the strength of coupling is between 0.65-0.8 and the
relative TAS size is 0-2%. Hence, once again, TAS+DPOR is effective for
these traces.

However, in traces outside this curve, the coupling is such that the relative
TAS size is still large, e.g. in account, conpool the strength of coupling is
approximately 0.56 while the relative TAS size is 32-38%. In such cases, DPOR
runs significantly slower than SMT-solvers. Finally, when both the coupling-
strength and relative TAS size are both high the SMT-solvers run out of memory,
e.g. in traces from Elevator, the strength of coupling is 0.7-0.8 and relative TAS
size is 36-48% and SMT-solvers run out of memory. We would like to clarify that
while this explanation seems to fit this limited data set, further experimentation
is needed with a larger data set to draw general conclusions.

6 Conclusion

This paper builds on our previous work on predictive analysis using trace-
atomicity-segments for almost-view-preserving interleavings [28]. It first provides
details of an explicit search algorithm that explores possible interleavings using
specialized heuristics in a DPOR based search. (This was not described in [28]).
Next, it shows how this problem may be encoded as an SMT instance, thus
leveraging modern SMT solvers. Finally, based on experimental evaluation, it
provides some insight into the characteristics of the instances when one of these
techniques is superior to the other. These characteristic can be used to predict
the preferred technique for a given problem instance.
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Abstract. Many dynamic analysis techniques have been proposed to
detect incorrect program behaviors resulted from faulty code. However,
the huge overhead incurred by such dynamic analysis prevents thorough
testing of large-scale software systems. In this paper, we propose a novel
framework using compile-time and run-time optimizations on instrumen-
tation and monitoring that aim to significantly reduce the overhead of
dynamic analysis on multithreaded programs. We implemented a tool
called SAM (Self-Adaptive Monitoring) that can selectively turn off ex-
cessive monitoring on repeated code region invocations if the current
program context has been determined to be redundant, which may as-
sist many existing dynamic detection tools to improve their performance.
Specifically, we approximate the program context for a code region in-
vocation as a set of variables, which include path-critical variables and
shared variables accessed in that region. The path-critical variables are
inferred using a use-definition dataflow analysis, and the shared variables
are identified using a hybrid thread-based escape analysis. We have im-
plemented the tool in Java and evaluated it on a set of real-world pro-
grams. Our experimental results show that it can significantly reduce the
runtime overhead of the baseline atomicity violation and data race anal-
yses by an average of 50% and 20%, respectively, while roughly keeping
the accuracy of the underlying runtime detection tools.

1 Introduction

Dynamic analysis often suffers from the expensive runtime overhead which pre-
vents it from scaling up to large-scale enterprise software systems. Despite its
superior accuracy on error reporting compared to static analysis, the dynamic
monitoring overhead has been an issue that prevents many runtime approaches
from being adopted practically. According to our and other researchers’ expe-
riences [4,8,6,19,11,1,2], the runtime overhead is largely due to repetitive mon-
itoring on code blocks’ executions with the same or similar context. For the
programs with intensive memory accesses, the problem is more severe. In our
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experiment with the benchmark tsp [10], the executions produce as many as
20 million memory access events even under a small input dataset with only
3 threads. With the further investigation, we found that most of these events
are generated from a certain number of code blocks and involve many objects
created from the same class.

Faced to these issues, we are motivated to design a more efficient and scal-
able approach to speed up the widely-used dynamic analysis on multithreaded
programs. In this paper, we propose a novel framework using compile-time and
run-time instrumentation and monitoring optimizations that aim to significantly
reduce the overhead of dynamic analysis on multithreaded programs. We imple-
mented a tool called SAM (Self-Adaptive Monitoring) in Java, which can selec-
tively turn off excessive monitoring on a repeated code region invocation if the
program context of the current thread has been determined to be redundant.
For any code region that has been monitored before, we do not monitor it again
as long as the code region is executed with the same thread context previously
visited, because this usually will not contribute additional information to dy-
namic analysis of multithreaded programs. An important observation is that for
concurrency error detection, where the primary goal is to reveal the bugs re-
sulted from incorrectly using synchronization and accessing shared variables, we
are concerned about the accessing order of shared memory locations rather than
their contents.

To demonstrate its effectiveness, we evaluated SAM over a set of multi-
threaded Java programs in conjunction with two baseline analysis tools, the
Eraser for detecting data race [15] and the DAVE for detecting atomicity viola-
tion [18]. The experimental results show that this approach is more effective in
reducing the subsequent analyses’ performance overhead and better in preserving
the baseline tools’ accuracy than the prior approach [8].

This paper makes the following contributions:

– Our approach uses a refined program context approximation to check pro-
gram state equivalence and avoid repeated monitoring, which results in more
precise context approximation. The program context for a code region invo-
cation is approximated as a set of path-critical variables and shared variables
accessed in that region. We extend use-definition dataflow analysis to infer
the path-critical variables, and design a hybrid thread-based escape analysis
to identify the shared variables.

– SAM is specially designed for multithreaded programs by taking into account
the synchronization information and shared variables when approximating
the program contexts for each thread. Specifically, SAM considers the lockset
held by the current thread.

– SAM can be easily integrated with dynamic analysis tools, which allows
developers to focus on the dynamic analysis design rather than be distracted
on tuning overhead and optimizing performance.

The rest of this paper is organized as follows. Section 2 reviews the literature and
discusses how SAM differs from the related work. Section 3 introduces the mo-
tivations and key insights in SAM, and describes our extended use-def dataflow



SAM: Self-adaptive Dynamic Analysis for Multithreaded Programs 117

analysis. Section 4 covers SAM’s implementation details. Section 5 presents our
experimental evaluation on SAM and demonstrate its performance improvement.
Section 6 concludes this paper and discusses the future work.

2 Related Works

Different optimization techniques for dynamic analysis have been designed. Fei et
al. [8] present a tool called Artemis, which is the most related work to our tool
SAM. Artemis is a dynamic tool implemented in C and helps reduce the runtime
overhead of the dynamic analysis tools. The code region analyzed by Artemis is
based on the function level. Our current implementation of SAM follows this ap-
proach and also works on the method/function level. All prior observed contexts
for a code region are recorded in a table. The currently observed context is com-
paredwith the previously preserved contexts to determine whether themonitoring
on the function can be safely turned off. The context in Artemis at the entry point
of each function invocation contains all global variables and function parameter
variables. If a variable in the context is in primitive type, its value is checked when
comparing contexts; if a variable in the context is in complex type (e.g., pointer
to a data structure), its type, instead of its value, is checked when comparing con-
texts. Note the context of Artemis is an approximation.While it reduces monitor-
ing overhead, certainly, it will also cause the underlying tools to miss information,
which further affects the accuracy of the baseline tools. In addition, Artemis does
not consider synchronization operation and concurrent accessing, hence cannot
handle multithreaded programs. Our tool SAM utilizes a more accurate context
approximation approach and supports multithreaded programs.

Arnold et al. [1] design a similar framework that also duplicates code into two
versions: original and instrumented, and inserts counter-based sampling code to
allow statistically turning on/off the monitoring. SAM differs from it in that it fo-
cuses on multithreaded programs, and its context approximation is more precise.

Sampling is another popular technique to reduce the runtime overhead of dy-
namic analysis. This approach is suitable for the scenarios when multiple runs of
the sampled program yield complementary information. However, it suffers from
under-reporting problem hence may miss errors. Moreover, the need of multiple
runs in the sampling-based monitoring further limits its applicability. Liblit et
al. [11] use the sampling technique to reduce the frequency of code monitoring
for long running programs. Hauswirth and Chilimbi [9] sample the code for pos-
sible memory leak error at a sampling rate that is inversely proportional to the
frequency of code segment execution.

Many other runtime monitoring tools [16,5] have resorted to static analysis
to reduce the overhead of dynamic analysis. Yong et al. [19] proposes several
techniques that rely on the results of static analysis to remove unnecessary in-
strumentation from the code, which in turns reduces the subsequent dynamic
analysis overhead. The techniques specifically designed to reduce the overhead
of runtime type-checking can also be adopted for other similar dynamic anal-
ysis systems. Although static analysis can guide dynamic analysis to avoid



118 Q. Chen, L. Wang, and Z. Yang

monitoring some code executions, its effect on reducing overhead is usually lim-
ited and quite ad-hoc to applications.

There are also research work in the area of parallelizing runtime checking to
reduce overhead. Patil et al. [14] suggest to use shadow process to check pointer
and array accesses in C program. Oplinger et al. [13] spawn a speculative thread
to execute the checking code. Although these techniques use parallelism to reduce
the checking overhead, they also introduce additional communication overhead
that is usually not negligible.

3 The Design of SAM

3.1 An Overview

The insight for the overhead of dynamic analysis is that monitoring and ana-
lyzing many repeated events inevitably slows down the program’s execution. To
avoid repeated monitoring, SAM relies on checking program context to direct the
baseline tool to avoid monitoring repeated events. As we mentioned before, the
execution of the benchmark tsp contains as many as 20 million access events on
shared variables. Without optimization, such huge number of events will prevent
any dynamic analysis from finishing within reasonable time.

The tool Artemis [8] is a step toward this goal. It adopts a method level
context checking scheme. Artemis keeps track of the method contexts prior to
the entrance of every method. However, besides its inaccurate context, Artemis is
targeted for serial code and cannot handle multithreaded programs. For example,
Artemis does not consider any synchronization state or the currently held locks
when computing the context, which leads to under-approximation of the context.
In contrast, our tool SAM is designed to assist the dynamic tools to analyze
multithreaded programs. It considers the current synchronization state when
computing the context and takes into account the path-critical variables and
shared (escaped) objects accessed in the current method, while Artemis considers
all global variables for the context. For example, if a method f() is invoked by a
thread that holds the locks l1 and l2, then the two acquired locks l1 and l2 will
be included in the context.

Let m be a method, Θm be the program context prior to the execution of m.
The context Θm consists of the following three kinds of variables:

Θm :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rm : all references to shared (escaped) objects that that are accessed in

m, including “this” and locking objects accessed in m.

PCCVm :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

If Rm = ∅, PCCVm is ∅.
If Rm �= ∅, PCCVm is a set of path-critical context variables,

i.e., the variables that are not defined inside m (e.g.,

method parameters, fields of escaped objects) and could

directly or indirectly affect the execution path of m.

Olckm :

{
If Rm = ∅, Olckm is ∅.
If Rm �= ∅, Olckm is all locking objects held at the entrance of m.
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Thus, Θm is represented by 〈Rm, PCCVm, Olckm 〉. A variable v in Θm is denoted
by 〈v, val(v)〉. If v is an object reference, val(v) is its hash code obtained in
runtime. If v is in a primitive type, val(v) is its runtime value.

Figure 1 illustrates how the context check works and the difference between
our tool SAM and Artemis. The code in the then branch of the if statement is
the original code. The deposited value is added to account a1 then allBalance is
updated. In this example, Artemis’s context contains a1, a (method arguments),
and allBalance (global variable), whereas SAM’s context contains only a1 (an
object accessed in the method) and allBalance (global variable), because a is
not a path-critical variable, and allBalance is a global variable that is shared
among multiple threads. Here, Artemis does not consider the address of object
a1 but only its class type. The approximation of the object type would cause
the underlying baseline tool to miss some important information if the method
deposit is invoked twice with two distinct objects of Account, as the second
invocation would be deemed by Artemis as redundant and thus not monitored
by the underlying error detection tool. Therefore, the underlying baseline tool’s
accuracy suffers in this case.

Fig. 1. Code snippets that illustrate the context check in Artemis and SAM

There are trade-offs between accuracy and efficiency for the approach of SAM.
SAM is subject to the thread scheduling nondeterminism that might cause shared
variables or path-critical context variables to be changed during the method
invocation, which may invalidate the initial context checking. Intuitively, such
scenarios happen very rarely. In addition, SAM’s context does not include the
newly created objects within the current method. Usually, the escaping of these
objects, if happens, will occur in the following invocations of other methods,
which will be analyzed when these methods are invoked. Certainly, an object
may escape within the method where it is created (e.g., is assigned to a static
field). However, such possibility is rare. In our experiment shown in Section 5,
all these scenarios affecting inaccuracy did not appear. Note that each thread
has its own context profiles in SAM does not include any information from other
threads to compute the method context for current thread because they will not
affect monitoring events except for the two cases mentioned before.
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Algorithm 1 shows the algorithm of SAM’s context check. We conduct an
intraprocedural analysis to generate a symbolic context for each method. The
symbolic context is similar to the runtime context, except that the symbolic
context contains all object references accessed in the method, and the values of
the context variables are null. In the runtime context, all references to unescaped
objects are removed, and the context variables are updated by the corresponding
runtime values. At the same time, each method is expanded with two versions
of the code: one version consists of the original code, and the other version is
the instrumented code by the baseline tool. A context check is inserted at the
beginning of each method. When a method is invoked, we first call “Remove-
UnescapedObjects (Cm)” to get rid of all non-escaped objects in the symbolic
context Cm. Then “RuntimeValueUpdate(C′

m, Pm)” is called to update all sym-
bolic names with their runtime values. Then we check whether the current con-
text has ever been contained in the context table CTm that stores all previous
visited contexts. If the current context Θm has been encountered before, we call
the uninstrumented code directly; otherwise, we call the instrumented code and
save Θm into CTm.

Input:
Cm: the symbolic context for method m generated from static analysis;
Pm: the program runtime state at the entrance of method m;
CTm: the runtime context table storing previously visited contexts for m;

SAM-ContextCheck(Cm, Pm, CTm){
C′
m = RemoveUnescapedObjects(Cm);

Θm = RuntimeValueUpdate(C′
m, Pm);

for each ctm ∈ CTm do
if Θm == ctm then

execute the uninstrumented version of code of m;
return;

end
continue;

end
CTm = CTm ∪ {Θm};
execute the instrumented version of code of m;
}

Algorithm 1. The SAM context check algorithm.

3.2 Context Checking for Multithreaded Programs

Given a methodm, a variable v is a branching variable if v is included in a branch-
ing expression of m(e.g., the conditional expression in if/for/while/switch

statements). A variable u is a path-critical context variable (PCCV ) if u is not
defined inside m (e.g., method parameters or fields of escaped objects) could
directly or indirectly affect the value of a branching variable.
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To infer PCCV according to branching variables, we use an extended use-def
dataflow analysis. Use-def analysis [12] identifies and tracks a variable’s definition
and usage sites inside a function. The DU (i.e., def-use) and UD (i.e., use-def)
chains are a concise representation of the dataflow information about a given
variable. The DU chain of a variable starts from the definition site of the variable
and connects it to all the variable use sites where the defined variable can flow
to. In contrast, the UD chain for a variable connects a variable’s use site to all
its definition sites.

Algorithm 2 illustrates how to compute the set of PCCV . We iteratively apply
a use-def intraprocedural dataflow analysis (i.e., UD chain) to identify and track
the path-critical context variables that indirectly affect the program’s execution
path. Specifically, given a branching variable’s use site, we track its definition
statements. For any local variable on the assignment statement’s right-hand-side
(RHS), we continuously track its definition recursively. This search is repeated
till we identify all non locally defined variables whose values directly or indirectly
affect the branching variables. These non-local variables, which may be object
references, fields, or parameter variables, are PCCV for the given branching
variables.

4 Implementation and Optimization

We use the Eclipse JDT [7] to instrument program source code. To simplify
the instrumentation, SAM first duplicates each method in the original program
source into two methods with different suffix names. The method with the suffix
name “ original” represents the original method that will not be instrumented
by the baseline analysis tool. The method with the suffix “ instrumented” is the
method that will be instrumented by the baseline tool. This allows the baseline
tool to easily instrument program source code without resorting to complex
tagging or structure identification mechanism. At each method entrance, SAM
inserts an if statement for the context check and places the function calls to
the original or the instrumented methods into the then and else branches,
respectively. If the context has been observed before, the original code is chosen.
Otherwise, the instrumented version will be activated in the execution.

Escape analysis plays an important role in our context checking. Thread es-
cape analysis is to determine whether and when a variable becomes shared by
multiple threads. We utilize our thread-based escape analysis to identify escaped
objects, which is based on our previous work [3]. When an object o is created, o
is owned by its creating thread. Object o is said to be thread-escaped or shared
when it becomes accessible by two or more threads. When an object o becomes
accessible by multiple threads, its fields are vulnerable to concurrent accessing,
hence may result in concurrency errors such as data races and atomicity vio-
lations. Thus, it is important to know whether (even when) an object escapes
from its creating thread during the program’s execution. During the program’s
execution, the dynamic thread escape analysis is complemented and refined with
the thread escape information from the context-sensitive flow-insensitive inter-
procedural static analysis for each unexecuted code block to produce the final
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Input: ASTM: the abstract syntax tree of a method M.
Output: PCCV: the set of symbolic path-critical context variables.

ComputePCCV(M){
BV = ∅; // the set of branching variables.
PCCV = ∅;
for each statement S in ASTM do

if S contains branching expression, say expr then
for each variable v in expr do

BV = BV ∪ {v};
end

end
end
for each v ∈ BV do

ComputeUseDef(v);
end
}

ComputeUseDef(v) {
compute the definition sites DSv of v;
for each definition site dsv ∈ DSv do

if dsv is on a field of locally created object then
continue;

end
if dsv is out of the scope of M then

PCCV = PCCV ∪ {v};
end
Let RHSV be the list of variables on the RHS of dsv;
for each variable rhsv in RHSV do

ComputeUseDef(rhsv);
end

end
}

Algorithm 2. The algorithm for computing path-critical context variables.

hybrid thread escape analysis results. The thread-based escape analysis results
are used to identify the shared objects.

To further reduce the context checking overhead incurred by SAM, we design
the following optimization technique. To avoid maintaining a huge context table
and reduce the memory usage in SAM, we insert an array field to store the con-
texts in different threads for each method in the class, which can be indexed by
the thread ID in runtime. These context tables are initialized with empty con-
tent. When a context check is encountered in runtime, the accessing thread will
use its thread ID as index to retrieve the current context table and compare the
newly computed context against the ones saved in current table. This approach
avoids maintaining a multi-level hierarchical context table for each thread and
reduces the lookup frequency and overhead.
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5 Experiments

We present three sets of experimental results over the benchmarks including
Elevator, Tsp, Sor, and Hedc from [17], and Vector, Stack, and Hashtable

from JDK 1.6. For the Elevator benchmark, we tested it with 2 threads using
the provided input data and instrumented a timer that forces the program to
terminate after a wall-clock time of 10 seconds. For the benchmark Tsp, we tested
it with 3 threads using the provided input datasets map13, map14, and map15.
For the benchmark Sor, we tested it with 2 threads and 50 iterations. For the
benchmarks Vector, Stack, and HashTable, we tested them using 2 threads to
concurrently insert, update, and remove elements.

The first experiment measures the performance overhead and effectiveness of
SAM’s context checking without the baseline monitoring tool. The second and
third experiments aim to illustrate the SAM’s performance improvement and
accuracy preservation on the dynamic analysis. Specifically, we evaluate SAM
using our dynamic atomicity violation detector DAVE [18] and the Eraser race
detector [15].

To compare SAM with Artemis, we also implement a revised version of Artemis
[8] that can work for multithreaded Java programs context checking. Specifically,
in the enhanced Artemis C (C stands for Concurrent), each thread rather than
the whole programmaintains its own context profiles and the context of a method
consists of the method parameters and global variables (static fields) that are
accessed in the method.

The experiments are performed on a machine with 1.6 GHz Intel Core Duo
dual-core CPU with 4 GB memory, Windows XP SP3, and Sun JDK 1.6.

5.1 Artemis C and SAM’s Context Checking Overhead

To measure the context check overhead and effectiveness of Artemis C and SAM,
we evaluate Artemis C and SAM over the aforementioned benchmarks without
the baseline monitoring instrumentation. The experimental results are shown in
Figure 2 and Figure 3. The runtime overhead introduced by the context check
in SAM itself is around 270% on average and thus is not significant compared to
the huge overhead (typically in the order of 10x or more) incurred by the baseline
tool for the memory-intensive benchmarks. In addition, SAM filters 67% of all
observed contexts in the benchmarks, which is very effective in filtering out the
redundant monitoring for reducing the subsequent baseline tool’s monitoring
overhead. The runtime overhead introduced by the context check in Artemis C
is about 370% and 72% of the observed contexts are deemed redundant by
Artemis C. Although Artemis C has a higher context filtering rate than SAM,
it does not preserve baseline tool’s accuracy as well as SAM, which is discussed
in the following sections.
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Fig. 2. The performance overheads of Artemis C and SAM’s context checking

Fig. 3. The effectiveness of Artemis C and SAM’s context checking

5.2 SAM + DAVE vs. Artemis C + DAVE

In the second experiment, we evaluate SAM with our atomicity violation detector
DAVE. DAVE is a dynamic analysis [18] that detects atomicity violations in
multi-threaded Java programs.

The experimental results are shown in Figures 4 and 5. As we can see from
Figure 5, our baseline tool DAVE with SAM has experienced an average 43%
performance improvement, whereas the performance improvement of Artemis C
over DAVE is about 20%.

In addition, we can see from Figure 4 that SAM outperforms Artemis C in
preserving the baseline tool DAVE’s atomicity violation coverage in the bench-
marks elevator, tsp(map13), tsp(map14) and hedc. Note that the atomicity
violation coverage is not the number of atomicity violation errors revealed by
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Fig. 4. DAVE’s atomicity violation coverage when it is integrated with Artemis and
SAM

Fig. 5. DAVE’s monitoring overhead using Artemis and SAM

the tool in the source program. For example, a program might have only 2 lo-
cations that are involved in an atomicity violation which may occur repeatedly
for 1,000 times in the execution. If the dynamic analysis observes the repeated
900 atomicity violations occurred in the execution, we say it has a 90% vio-
lation coverage. If the dynamic analysis identifies all the two locations in the
source code that are involved in the atomicity violations, it has no accuracy loss.
Figure 8 compares the DAVE’s accuracy loss when using Artemis C and SAM,
respectively. It can be seen that SAM keeps the accuracy on all benchmarks
except for Tsp(map14), whereas Artemis C loses accuracy on both Elevator
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Fig. 6. Eraser’s violation coverage when it is integrated with Artemis and SAM

Fig. 7. Eraser’s monitoring overhead using Artemis and SAM

and Tsp(map14). In addition, SAM also outperforms Artemis C on accuracy
on Elevator. One of the main reasons incurs loss of accuracy for SAM and
Artemis C is that they failed to feed some non-redundant events to the baseline
analysis tools due to the context appromixation and filtering. Certainly, in or-
der to improve accuracy, we can incorporate more information when computing
the context, but it will lead to a much higher context checking overhead which
might offset the performance benefits brought about by turning off the repeated
monitoring.
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5.3 SAM + Eraser vs. Artemis C + Eraser

The Eraser [15] is a dynamic analysis tool for detecting data races. Eraser checks
race conditions based on a simple locking policy, i.e., all accesses to a shared
variable should be protected by a common lock. To simplify experimental setup,
our Eraser implementation does not classify the benign data races and false
positives from the real data race bugs.

Figures 6 and 7 show the violation coverage and performance slowdown of
Eraser using Artemis C and SAM, respectively. As we can see, Eraser+SAM has
about 93% violation coverage on average while Eraser+Artemis C has only about
66%. In addition, Eraser+SAM has better violation coverage than
Eraser+Artemis C (90% violation coverage) on most benchmarks except for sor,
Vector, Stack, and Hashtable, on which the baseline tool Eraser does not re-
port any data race warnings. However, SAM and Artemis C does not reduce
the Eraser’s monitoring time by a large portion, which is due to the simple on-
the-fly analysis algorithm used in Eraser. As shown in Figure 7, Eraser+SAM
has less performance slowdown than Eraser+Artemis C on most benchmarks
except for tsp(map13), hedc and Vector 1.4. Figure 8 compares the Eraser’s
data race accuracy when using Artemis C and SAM, respectively. It can be seen
that SAM also outperforms Artemis C in preserving the Eraser’s accuracy in
the benchmarks elevator, tsp(map13), tsp(map14) and hedc with only an
average accuracy loss of 5%.

Fig. 8. Comparison of the performance and accuracy of the DAVE, DAVE+SAM,
DAVE+Artemis C, Eraser, Eraser+SAM, and Eraser+Artemis C. “Base” is the orig-
inal program’s running time without instrumentation. “Dummy” is the instrumented
program’s running time without any analysis (intercepting events only). The column
“nAV” denotes the number of atomicity violations, which are counted based on the
places in source code involved in atomicity violations. The column “nDR” denotes the
number of data races, which are counted based on the source code locations involved
in data races. All execution times are measured in seconds.
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6 Conclusions and Future Work

In this paper, we propose a self-adaptive monitoring scheme for reducing the
runtime overhead of dynamic program analysis. Our experiments show that this
approach significantly reduces the overhead of the baseline dynamic analysis
tools with slight accuracy loss. It can be utilized by the general dynamic analyses
to improve their runtime performance, reduce the analysis turnaround time, and
scale up to large memory-intensive programs.

Our future work includes integrating it and evaluating its effectiveness with
other dynamic analysis tools, establishing context checking’s cost model, and
investigating more fine-grained block-level context checking scheme.
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Abstract. We report on multi-core implementations of parity game
solvers based on Small Progress Measures. We revisit a known imple-
mentation of multi-core machines (PW solver), and change, in what we
call the PWe solver, the way it computes progress measures. We then sug-
gest an alternative implementation (CSPM), that reduces logical depen-
dency on configuration state and makes performance less dependent on
configuration details. In experimental evaluation, both PWe and CSPM
out-perform PW. On most benchmarks, especially larger ones, CSPM
performs better than PWe. The observed linear speed-up of paralleliza-
tion shows great promise for parallel implementations of game solvers.

1 Introduction

Parity games are an important foundational concept in formal methods. Struc-
turally, parity games are graph-based, zero-sum, two-person games with infinite
plays. Such games are determined [12]: either player 0 or player 1 wins a given
node in the game, and each player has some memoryless, pure strategy that wins
from all nodes which that player wins, her so called winning region.

One reason for the importance of these games is that a variety of applications
reduce to the solution of parity games. We briefly discuss a few of these problems
and how parity games address them.

Themodal μ-calculus [7] is an important temporal logic with least and greatest
fixed point operators. In practice, one considers its local model checking prob-
lem: given a state in a Kripke structure and a formula of the modal μ-calculus,
decide whether that state satisfies that formula. It is known that this problem
is equivalent to that of deciding whether a particular node in a parity game is
won by a particular player [10]. Design synthesis is the process of automatically
producing controllers from temporal logic specifications [9]. Synthesis has been
used, e.g., for the production of robot controllers [8]. Parity games and their
solution can complete a key step in design synthesis. Parity games also play an
important role in decision procedures for the satisfiability for formulas written
in the temporal logic CTL* (see e.g. [4]).
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Solving parity games is generally hard. The decision problem of which player
wins a node is in UP ∩ coUP [6]. The best known deterministic algorithms for
solving parity games have sub-exponential running time. The tool PGSolver [2]
supports a host of such deterministic, sequential algorithms and can often solve
games with millions of nodes in reasonable time.

Yet, not much research has been done on the parallelization of parity game
solvers. This is somewhat surprising, given the shift to multi-core computing.
We are only aware of the work in [11], which implements and evaluates a solver
based on small progress measures [5] (SPM) on a multi-core architecture.

The approach taken in that paper has a fairly complex configuration space
(e.g. a partition of the node set into pools of nodes) and the performance of the
parallel solver appears to depend significantly on the configuration state.

We therefore want to research how one can implement concurrent versions of
SPM in a more generic manner, with less configuration space, and with more
robust performance gains. In this paper we therefore make the following two
contributions. Firstly, we change the way the algorithm in [11] accesses shared
data and thereby improve considerably its run time. Secondly, we develop an
alternative concurrent implementation of SPM that
– has less logical dependency on configuration state,
– exhibits a performance less dependent on configuration details, and
– has an experimentally observed linear speed-up in the parallelization.

Each of our new implementations performs better than the other on some of the
benchmarks and both outperform the original implementation of [11].

Outline of paper. Parity games, and the SPM solver are presented in Section 2.
Prior work on parallelizing this solver on multi-core machines features in Sec-
tion 3, as does a presentation of our improvement to it. The design and rationale
of our concurrent implementation of this solver is found in Section 4. Our exper-
imental results, and comparison to prior work are in Section 5. The correctness
of our solver is stated in Section 6. The paper concludes in Section 7.

2 Background

A parity game G = (V0, V1, E, c) is a two-player game (player 0 and 1) played
on a directed graph (V,E) with a finite set of nodes V = V0 ∪ V1 and edges
E ⊆ V × V . The disjoint sets of nodes V0 and V1 are owned by player 0 and 1,
respectively. We assume that for all v ∈ V , there exists w ∈ V with (v, w) in E.

The coloring function c : V → N returns the color c(v) of the node v in V . Let
d be maxv∈V c(v). We say that d+ 1 is the index of G.

A play λ in G starts from some node v0 ∈ V and results in an infinite path
of nodes v0v1v2..., where the owner of vi chooses the successor vi+1 such that
(vi, vi+1) is in E. Let Inf(λ) be the set of colors that occur in λ infinitely often:
Inf(λ) = {k ∈ N | ∃I ⊆ N infinite : ∀i ∈ I : k = c(vi)}. Player 0 wins play λ iff
min Inf(λ) is even; otherwise player 1 wins play λ.

A strategy for player s (where s = 0 or 1) is a total function τs : Vs → V , such
that (v, τs(v)) is in E, whenever v is in Vs. From node v0, a pair of strategies
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v0 3

v1 3

v2 2 v31

v42

Fig. 1. Parity game G with index 4

τ0 and τ1 induce a unique play (τ0, τ1)(v0) = v0, v1, . . ., where if s is the owner
of node vi then vi+1 = τs(vi). Strategy τw0 is winning from node v0 if for every
τ1 we have (τw0, τ1)(v0) is won by player 0. A winning strategy for player 1 is
defined similarly. Parity games are determined [12]: the set of nodes in a parity
game G can be divided into disjoint winning regions W0 and W1, where player
s has a strategy τws that is winning in Ws, as it guarantees that player s wins
all plays beginning in Ws regardless of the strategy chosen by s’s adversary.

Jurdziński’s small progress measures (SPM) algorithm [5] solves a parity game
through the computation of a least fixed point for a monotone function in a
finite lattice. The algorithm extracts the winning regions for both players and
the winning strategy for player 0. Thus, the extraction of a winning strategy for
the other player requires a second run of that solver on a dual game.

We now define the finite lattice that the SPM solver uses.

Definition 1. Let G be a parity game of index d+ 1.
1. For each color i, let mi be the number of nodes v in G with color i.
2. For a color i in G, set Mi = {0, . . . ,mi} if i is odd and Mi = {0} otherwise.
3. Define MG =M0 ×M1 × ... ×Md and M�

G =MG ∪ {�}.
4. A progress measure is an element of M�

G .

For an example, consider the parity game G in Fig. 1. We have m1 = 1, m3 = 2,
and M�

G = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2),�}.
The SPM solver modifies a progress measure function ρ : V →M�

G , which for
every node v returns the progress measure of v. The value of ρ(v) has to relate
to all or some ρ(w), where (v, w) is in E, according to a set of SPM stability
rules defined below. If one of these rules is broken, ρ(v) is updated to satisfy the
rule again. If no rule is broken, the algorithm stops.

Operators >n, <n, and =n compare progress measures lexicographically from
the 0th up to the nth tuple position. Also, for every n and every α in M�

G we
have � >n α, � >n �, and � ≥n �. For example, (0, 1, 0, 2) =1 (0, 1, 0, 0),
(0, 1, 0, 2) =2 (0, 1, 0, 0), and � >3 � >3 (0, 1, 0, 2) >3 (0, 1, 0, 0) >3 (0, 0, 0, 2).

Progress measure ρ is modified by SPM stability rules, shown in Fig. 2. If
for some v in V , ρ(v) does not satisfy all SPM stability rules, we say ρ(v) is
unstable. By abuse of language we then also call node v unstable. Also, we call
a progress measure function ρ stable if there is no v for which ρ(v) is unstable.
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1. If v is in V0 and c(v) is even, then ρ(v) ≥c(v) ρ(w) for some (v, w) in E.
2. If v is in V0 and c(v) is odd, then ρ(v) >c(v) ρ(w) for some (v, w) in E.
3. If v is in V1 and c(v) is even, then ρ(v) ≥c(v) ρ(w) for all (v, w) in E.
4. If v is in V1 and c(v) is odd, then ρ(v) >c(v) ρ(w) for all (v, w) in E.

Fig. 2. SPM stability rules for progress measure functions ρ : V →M	
G

v0

	
3

v1

0001

3

v2

0000

2 v3

	
1

v4

	
2

Fig. 3. Parity game G annotated with stable progress measure written next to nodes

In the SPM algorithm, the initial value of ρ is v �→ 0 : V →M�
G , which maps

all nodes to the constant 0 vector – the least element of (M�
G ,≤d). If for some

v in V , v is unstable, then the algorithm updates ρ(v) to the minimal progress
measure in the latticeM�

G such that v is no longer a reason for ρ being unstable.
The algorithm terminates when ρ is stable.

For all v in V , value ρ(v) thus monotonically increases in (M�
G ,≤d). If ρ(v)

increases so that some component is strictly greater than its possible maximum
value, an “overflow” occurs, and ρ(v) becomes �. The intuition is then that
player 1 wins node v. We record the formal results from [5] for this solver.

Theorem 1. [5] For parity game G with index d+1 and ρ the least-fixed point,
and stable progress measure computed by SPM in lattice (M�

G ,≤d) we have:
– The winning regions of G are W0 = {v ∈ V | ρ(v) �= �} and W1 = V \W0.
– A winning strategy for player 0 in W0 is some τw0 : V0 → V such that ρ(v) =
w∗ for every (v, w∗) in E with ρ(w∗) = min(v,w)∈E ρ(w).

Thus we can extract both winning regions and a winning strategy for player 0
from the progress measure that is the output of the SPM solver on that game.
The progress measure for G in Fig. 1, computed by SPM, is shown in Fig. 3: so
W0 = {v1, v2}, W1 = {v0, v3, v4}, and a winning strategy of player 0 is v1 → v2.

The SPM algorithm in [5] iterates through the entire node set until the
progress measure function is stable. In [1], a modified algorithm reprocesses
only nodes that require update. Technically, this requires a counter value and a
value for a node’s “best” successor node. In a parallel implementation, though,
synchronization of the logic of these values is required to ensure correctness, and
has detrimental effect on the performance. We, therefore, strive to find a better
balance between thread contention and computational complexity.
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3 PW Solver: The Concurrent State of the Art

In [11], van de Pol and Weber introduced a concurrent implementation of a
parity game solver based on SPM (called PW here). The PW solver partitions
the set of nodes of parity game G into N partitions V = P1∪P2∪· · ·∪Pn, where
each Pi is controlled by a different worker ω in {1, 2, . . . , n}.

The pseudocode of the PW algorithm is shown in Fig. 4. Each worker ω it-
erates through all nodes v of her partition Pω in an ordering specified by one
of the suggested permutation approaches [11]. A worker ω calculates a progress
measure value ρ′(v) for all such v (update(ρ(v)) on line 6) such that ρ′(v) sat-
isfies the SPM rules (Fig. 2). If ρ′(v) >c(v) ρ(v), then ρ(v) is updated to ρ′(v),
otherwise, ρ′(v) is discarded. This requires worker ω to read values of ρ for nodes
from partitions controlled by other workers.

The PW solver computes a least fixed point ρ where in each iteration all
workers work on their respective portion of ρ concurrently. The solver stops
when no worker modifies her portion of ρ (terminating condition on line 11), as
then no worker will obtain new work to do.

The implementation of the PW solver requires little modification from the
sequential SPM solver, and is thus a simple and elegant solution for utilizing
processing resources of multi-core environments. But the performance of the
PW solver can be affected by configuration options, which we discuss next.

Each iteration in the PW solver can decide whether another iteration is re-
quired only once all workers have finished their partition scans. We thus want a
fairly uniform balance of computational loads across workers so as to minimize
idling. But partitioning V into sets Pi of roughly equal size, as done in [11], does
not recognize that the computational loads for individual workers depend also on
the number of successor nodes. Also, the workload of individual workers should
reduce as computation progresses towards the least fixed point. But even if ρ(v)
has reached its least fixed point in partition Pi, an iteration of PW would still
require worker i to calculate a new and now redundant progress measure ρ′(v).
Further, the permutation approaches suggested in [11] either rely on the heuris-
tics of the parity game generation, or trade off (either way) the computational
complexity with higher lock contention. There is no obvious method for deciding
which of these approaches is best in terms of overall performance, without prior
analysis of the structure of the parity game.

To resolve some of these issues we devise an improved version of the PW
algorithm, which we call PWe. We add an if statement that governs the execution
of lines 6-9 in the PW code. The condition of this if statement is that method
stable(v) from Fig. 6 returns false. That method checks whether SPM rules are
broken for v and whether ρ(v) requires an update. It is computationally cheaper
than update(v), so we expect to see some performance gain from PW to PWe.

4 CSPM: Our Concurrent Solution

We report on our design of a concurrent SPM solver, denoted as CSPM hence-
forth. The objectives of our design are to optimally utilize the resources and
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1 Partition V to P1, P2, ..., Pn
2 repeat
3 changed = false
4 do in parallel n times
5 for each v ∈ Pi ordered by selected permutation approach
6 ρ′(v) = update(ρ(v))
7 if ρ′(v) >c(v) ρ(v) then

8 ρ(v) = ρ′(v)
9 changed = true

10 await all terminate
11 until ! changed

Fig. 4. The PW algorithm

processing power offered by the modern computing hardware, to minimize idling
of threads, and to ensure all threads are doing “useful” work as much as possible.

The implementation of our CSPM solver is shown in Fig. 5. It exploits the
local nature of updating progress measure functions via the SPM stability rules:
a new value of ρ(v) is solely determined by current values of ρ at successor nodes
of v in (V,E). Clearly, this means that one can process sets of nodes concurrently
without interference if these sets are not connected by edges in (V,E).

1 insert all v ∈ V to pendingQueue
2 repeat N times in parallel

3 let v = pendingQueue.remove(0)
4 if stable(v) is not true then

5 parallelLift(v)
6 add all nodes from {w ∈ V | (w, v) ∈ E} to pendingQueue
7 until pendingQueue = ∅

Fig. 5. Main loop of the CSPM algorithm

But even if (v, w) is in E, then updates to ρ(v) and ρ(w) cannot lead to
genuine interference. To see this, we consider two cases:
1. If ρ(w) is updated before ρ(v), then the update of ρ(v) takes the new value

of ρ(w) into consideration, which is sound.
2. If ρ(v) is updated before ρ(w), then the update of ρ(v) is based on stale data

at w. But a subsequent update of ρ(w) causes another iteration, at which
point in time v has the current value of ρ(w). So this is sound as well.

Our design of CSPM is informed by these insights in order to minimize thread
blocking so as to maximize total throughput. The code for CSPM has only
two synchronized sections in its main loop (see Fig. 5). The first one is the
pendingQueue, which contains a list of nodes that need to be processed. The
second one is the access to ρ(v), which is protected by a multiple-readers/single-
writer lock. Other node properties such as owner and color, are immutable, and
so can be read by multiple threads safely without the need for locking.
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Therefore, our design of CPSM reduces critical sections to finer synchronized
segments, and lets multiple workers process nodes without blocking each other
until the actual update of the value ρ(v), see the code parallelLift(v) in Fig. 7.

We now discuss our CSPM solver in detail. In its main loop (Fig. 5), the queue
pendingQueue holds the nodes which may require processing, thus it initially
contains all nodes. For a predefined number N of worker threads, each worker
thread ω removes the first node v from the queue, and processes v as follows:

On line 4, worker thread ω examines whether the value of ρ(v) is stable for
all w according to the SPM stability rules by method call stable(v) (see Fig. 6).
If so, nothing is modified. Otherwise, parallelLift (see Fig. 7) is performed on
v to update the value of ρ(v). All the predecessors of v now may be subject
to modifications of their progress measures, and so they are all added to the
pendingQueue. This process repeats until pendingQueue is empty.

1 synchronized on ρ(v):
2 if ρ(v) =  then return true
3 for all w ∈ {u ∈ V | (v, u) ∈ E}
4 synchronized on ρ(w):
5 let 
(w) = ρ(w)
6 synchronized on ρ(v): {
7 if ρ(v) >c(v) 
(w) then

8 if v ∈ V0 then return true
9 else if c(v) is even and ρ(v) =c(v) 
(w) then

10 if v ∈ V0 then return true
11 else if v ∈ V1 then return false
12 }
13 if v ∈ V1 then return true
14 else return false

Fig. 6. stable(v)

Method stable(v) (see Fig. 6) checks whether ρ(v) satisfies the SPM stabil-
ity rules. It contains finer synchronized segments to avoid lengthy blocking. As
mentioned, the mutable part ρ(v) of node v is protected by multiple-read/single-
write locks to ensure thread safety. This is sound as method stable(v) only needs
read access, and so minimal blocking of concurrently running threads is achieved.

Access to mutable parts has been marked by synchronized on symbols, and
unmarked lines are safe for concurrent access. Progress measure comparisons are
performed lexicographically up to the position that is the color of the left-hand
side node, e.g., the comparison of ρ(v) and ρ(w) is done up to the c(v)th position.

On line 2, if ρ(v) is already �, it can not be incremented further, therefore,
ρ(v) is considered stable. The remainder of method stable(v) implements the
SPM stability rules in Fig. 2, relying on a local copy �(w) of the current value of
ρ(w), so that ρ(w) is accessed only once. The rules are implemented as follows:
– If ρ(v) is greater than �(w) and v ∈ V0, the SPM stability rules for V0 are

met and ρ(v) is deemed stable.
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– If c(v) is even, v is in V0, and ρ(v) is equal to �(w), it means ρ(v) is equal
to at least one of {ρ(w) | (v, w) ∈ E}. This makes ρ(v) stable also.

– If c(v) is even, v is in V1, and ρ(v) is equal to �(w), the stability of ρ(v) is
not yet decided. Since stability requires that ρ(v) ≥ ρ(w) for all (v, w) in E,
we have to iterate through all successors of v.

– If v is in V1 and ρ(v) is less than �(w), then ρ(v) is unstable.
– Finally, the code only reaches line 13/14 if

• either ρ(v) is greater than all values �(w) and v is in V1, so ρ(v) is stable.
• Or v is in V0 with ρ(v) less than all values of �(w), hence, ρ(v) is unstable.

1 synchronized on ρ(v):
2 if ρ(v) =  then return

3 let ρnew(v) = 0
4 for all w ∈ {y ∈ V | (v, y) ∈ E}
5 let ρ′new(v) = prog(v,w)
6 if ρnew(v) = 0 then ρnew(v) = ρ′new(v)
7 else

8 if (v ∈ V1 and ρ′new(v) >c(v) ρnew(v))
9 or (v ∈ V0 and ρ′new(v) <c(v) ρnew(v))

10 then ρnew(v) = ρ′new(v)
11 synchronized on ρ(v):
12 if ρ(v) <c(v) ρnew(v) then ρ(v) = ρnew(v)

Fig. 7. parallelLift(v)

Fig. 7 shows the pseudocode of method parallelLift(v). Its design ensures the
correct, concurrent calculation of the potentially new value ρnew(v) of ρ(v). On
line 2, if ρ(v) is already �, the method simply returns without any action. The
temporary progress measure ρnew(v) holds the potential value for ρ(v). Line 3
initializes ρnew(v) to value 0, i.e. every element in ρnew(v) is set to 0.

The for-loop on lines 4 to 10 iterates through all w with (v, w) in E, and
stores in ρnew(v) the maximum (respectively, minimum) ρ(w) value seen so far

1 synchronized on ρ(w):
2 let 
(w) = ρ(w)
3 if 
(w) =  return 
4 synchronized on ρ(v):
5 let ρnew(v) = ρ(v)
6 if ρnew(v) ≤c(v) 
(w) then

7 let ρnew(v) = zeroElements(
(w), c(v))
8 if c(v) % 2 = 1 then

9 ρnew(v) = increment(
(v), c(v))
10 return ρnew(v)

Fig. 8. prog(v,w)
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that makes ρ(v) stable. Then ρ(v) is set to the final value of ρnew(v), which is
the only time the write lock is applied.

Method prog(v, w) (see Fig. 8) returns a progress measure ρnew(v) that is
stable for w only. The synchronized sections on line 2 and 5 take local copies of
ρ(w) and ρ(v), and store them in �(w) and ρnew(v), respectively. Therefore, the
rest of the method does not require further locking.
– If �(w) is �, then return �, as in this case, the only valid progress measure

for v is �.
– If ρ(v) is greater than �(w), ρ(v) is also stable for w, so we return ρnew(v).
– Otherwise, the output of prog(v, w) needs to be greater or equal to, or strictly

greater than �(w) (depending on the parity of c(v), see Fig. 2) where elements
higher than the c(v)th position are “zeroed out”.

Method zeroElements(�(w), c(v)) zeros out elements in �(w) above the c(v)th
position, and increment(�(v), c(v)) adds 1 to the c(v)th element in �(v).

We see that the progress measure update operation (parallelLift(v)) requires
iterating through all v’s successors, while there are opportunities to escape the
full iteration in stable(v). Therefore, CSPM checks the stability of a node v
before an update is attempted to reduce the overall computation complexity.

Revisiting game G in Fig. 3, let us consider the following cases:

– Nodes v0 and v3 share no edge, so they can be processed in parallel.
– Note that v0 is a V1 node with odd color, so ρ(v0) has to be strictly greater

than both ρ(v1) and ρ(v4) (according to SPM stability rules in Fig. 2). If
the update to ρ(v0) happens before the update to ρ(v4), and if ρ(v4) has
the stale data 0100 (with ρ(v1) = 0001), then ρ(v0) is updated to 0101. The
node v0 is added to the pendingQueue for reprocessing when v4 is processed.
This requires one additional iteration for ρ(v0) to reach expected value (�).

– Similarly, v1 and v4 can be processed at the same time with no interference.
– However, if ρ(v4) is processed before ρ(v0), then ρ(v4) is first incremented to

�, and then ρ(v0) is subsequently updated to �, thus saving one iteration
for ρ(v0) to reach the expected value.

5 Experimental Results

The aim of our experiments is a relative comparison of the performance of dif-
ferent solvers under the same conditions, rather than measuring their maximal
possible throughput. Hence, we implemented solvers in Scala for ease of pro-
gramming and comprehension. Games, nodes, and progress measures are coded
as domain objects which understand their roles and responsibilities. For exam-
ple, a node object knows who its predecessors/successors are, and a progress
measure object knows how to compare itself with other progress measures.

By the same token, we did not implement the hardware specific optimizations
in [11] as they would blur relative comparisons of the algorithmic essence of
solvers.We also did not implement ordering optimizations that exploit knowledge
of game structure, as we seek comparisons across a wide spectrum of parity game
types as alluded to in the introduction.
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In [11], permutation approaches were suggested for the PW solver but none
were identified as being uniformly better. So we only implemented one such
approach, swiping, for PW and PWe as it is the simplest heuristic to program.
In it, each worker iterates through her partition. This approach aims to minimise
the thread contentions at cost of higher computational complexity.

All experiments are run on a multi-core machine, a server with four Dual-Core
AMD OpteronTM 8220 SE processors running at 2.8 GHz, and 16G of RAM.
This effectively means the total number of CPU cores available is eight.

We measure the wall-clock time to solve different parity game types under var-
ious solver configurations. No prior analysis is carried out on the generated games
to inform solver configurations. PGSolver was used to generate non-random
games, detailed descriptions on the game types used in the experiments can
be found in [3]. (As we do not control the node creation exploration order of
the PGSolver, our PWe implementation thus can not guarantee that successor
nodes will always be processed before predecessors.)

Experiments include 5 iterations of tests for a solver configuration against
each game type listed in Fig. 9. We show the average results of five iterations to
allow for timing variations in running parallel programs on the same game. The
notation CSPMX is CSPM solver with X threads, and PWeY is PWe solver
using Y partitions (hence Y worker threads). Similarly for the PWY notation.

Each game type is denoted by GameName [xx] vv/ee/cc, where xx is the game
configuration option, and vv/ee/cc describes internal structure of the game. Part
vv is the number of total nodes, ee the total number of edges, and cc the index
of the game. For example, a Jurdziński [25 50] 3850/10149/52 game is the
worst case game defined in [5] of depth 25 and width 50, whose node count, edge
count and index are 3850, 10149 and 52. Note that most of these games have
large indices compared to the maximum index 4 for PW in [11].

Each test consists of the following sequence of activities:
1. PGSolver generates a parity game G with desired game configuration option.
2. For each configuration config listed in Fig. 9:

(a) Solve parity game G with config to extract winning regions W0 and W1.
(b) For config = CSPM16, verify thatW0 is correct by checking thatW0, af-

ter we removed all edges that are inconsistent with the computed winning
strategy τw0 for player 0, contains no cycle of nodes whose minimal color
has odd parity. Then we save the solution {W0,W1} as {W0,W1}saved.

(c) For other values of config, verify that {W0,W1} equals {W0,W1}saved.
The time taken to generate parity games (step 1), and to verify winning

regions (step 2b and 2c) was excluded from the experimental results. Figure 9
shows the average wall-clock time only for solving 5 games of each type (step 2a).
If one of the solutions fails the verification steps (step 2b or 2c), the whole
experiment is aborted. This was useful for debugging code for our experiments.

For CSPM, 8 threads are optimal for most game types, to be expected for an
8 core test server. Each core can execute a thread effectively without resorting
to time-sliced multiplexing. However, CSPM4 is optimal for games Jurdziński
[25 50] suggesting a high degree of thread contention in their solving.
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Solver
Config

Clique
[100]
100/

9900/100

Ladder
[400]
800/

1600/2

Jur-
dziński
[25 50]
3850/

10149/52

Recursive
Ladder

[100]
500/

1097/303

Strategy
Impr [10]

260/
610/295

Model
Checker
Ladder

[500]
1501/

2001/1001

TowerOf-
Hanoi [5]

972/
1698/2

CSPM16 242 1541 331 156 453 861 3289

CSPM8 118 1575 256 109 362 601 3231

CSPM4 157 2152 198 140 442 1002 3498

CSPM2 271 4871 203 252 465 1946 3013

CSPM1 548 10419 301 446 1123 3882 3511

PWe16 139 1465 461 2821 2076 1546 335

PWe8 172 1269 775 2280 2354 1587 343

PWe4 230 656 1647 2795 1802 2584 608

PWe2 421 1941 3655 4357 1563 5325 1517

PWe1 424 3753 10367 7297 2365 10045 4555

PW16 316 1455 865 2626 3082 1701 433

PW8 283 1198 1466 1501 3313 1378 444

PW4 421 430 2802 3000 2586 2474 751

PW2 689 1438 6120 5505 2855 4841 1727

PW1 1467 3402 13782 10802 4185 9866 4862

Fig. 9. Average times (in ms) for 5 runs of non-random games [3] with CSPM, PWe,
and PW

For most game types, CSPM8 consistently outperforms the optimal PWe and
PW solver configurations under the constraints specified in our experiments.
One exception is games with extremely small indices, e.g. the index-2 games
Ladder [400] and TowerOfHanoi [5]. This is so since a small index implies
a short progress measure and so there will be low computational load in each
update. Therefore, the worker threads spend relatively more CPU cycles on
node switching than on node processing. And the PW and PWe solvers favor
the reduction of thread contention in this situation.

Within the constraints of our experimental setup, one of the contributing
factors to performance gain of CSPM over PWe is the scheduling of its task
delegation. The pendingQueue maintains only nodes likely to require updates,
so worker threads can concentrate on performing “useful” tasks. As a result, we
observed solver time reductions from 14% to 95% between the optimal thread
counts of CSPM and PWe for most non-random game types (and with reasonable
index sizes) in the experiments.

The added stability check can hinder or improve performance for non-random
games. If the structure of the game promotes high probability of unstable nodes,
PWe (and CSPM for that matter) needs to frequently perform stable(v) and
then parallelLift(v) actions. This costs extra processing. In Fig. 9, we see that
the optimal performance of PWe is better than PW for 4 out of 7 games (Clique
[100], Jurdziński [25 50], Strategy Impr [10], and TowerOfHanoi [5]).
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The combination of these two factors allows CSPM to exhibit 56% to 93%
performance gain over PW under their optimal thread counts for most games,
except for the two games with extremely small indices.

Solver
Config

200/1/
40/200

400/1/
80/400

800/1/
160/400

1000/1/
200/400

1600/1/
200/400

1600/1/
320/400

2000/1/
400/400

CSPM16 186 780 6668 11121 23277 148265 219514

CSPM8 139 610 5164 9336 21290 167359 229943

CSPM4 140 1043 9493 18195 35115 197345 288196

CSPM2 232 1992 18702 34129 77654 248926 411811

CSPM1 452 3966 36661 67723 145505 349815 617459

PWe16 190 603 4138 7961 22185 190558 324805

PWe8 126 550 4363 7526 28518 164139 265443

PWe4 125 922 7805 14163 38833 183424 336146

PWe2 200 1706 15157 27991 60620 214494 391561

PWe1 386 3349 30325 56414 110731 307127 534214

Fig. 10. Average times (in ms) for 20 runs of xx/yy/zz/cc games for CSPM and PWe

We now discuss our experiments on random games. The notation used to de-
scribe randomly generated parity games is xx/yy/zz/cc, where xx is the number
of nodes (node ownership is determined by a fair coin flip for each node indepen-
dently), with between yy to zz out-going edges for each node, and with colors
at nodes chosen at random from {0, . . . , cc}. We then modify these games to
ensure that they have no dead-ends (so yy > 0), no self-loops, and no color gaps
(by reducing colors to eliminate gaps). The latter means that, e.g. a set of colors
{0, 3, 4, 5, 8} is being compressed to {0, 1, 2, 3, 4}.

Experiments include 20 iterations of tests to allow solver timing variations
due to randomness of the game structures. The set of solver configurations and
the game types used in the experiments are listed in Fig. 10. The indices of
the random games are capped at 400, except for 200-node parity games. Test
activities were as for non-random games, except step 1 now generates random
games in the manner described previously.

We performed experiments on CSPM vs PWe and on CSPM vs PW, sepa-
rately. The results show that, using the optimal thread counts (8 or 16), CSPM
is consistently 52% to 71% faster than PW, while the performance of PWe is
closer to that of CSPM. This indicates that the added stability check is effec-
tive in increasing overall efficiency in solving random games. The CSPM vs PW
results are omitted in the discussion.

We analyze our experimental data in Fig. 10. The raw data (before averaging)
suggest that run times for solving different games of the same type can vary
quite significantly, especially for larger games. Run times of “harder” games
can be orders of magnitude longer than those of “easier” games of similar size.
We attribute this to the existence of large winning regions W1 with high color
nodes. Solvers then need to increment a greater and greater number of progress
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measures from a relatively low value all the way to �. This update process can
heavily increase the running time as the index may be as large as 400.

As these discrepancies apply to both CSPM and PWe solver, it is still apt
to compare their relative differences through the averaged statistics discussed
already. These data then lead us to the following insights:
– For most game types, the best performance of CSPM solver are obtained

with 8 worker threads.
– We noticed additional performance gains for larger parity games (for exam-

ple, 1600/1/320/400 and 2000/1/400/400) using CSPM with 16 threads.
– As the number of nodes increases in parity games, the time required to solve

these games using the CSPM and PWe solvers grows exponentially.
– The optimal performance of PWe is better than CSPM for smaller games.
– As game size increases above 1600 nodes, CSPM performs better than PWe.

Eight threads are optimal for the reason discussed before. For larger games
(1600/1/320/400 and 2000/1/400/400), we observed that 16 worker threads pro-
duced optimal performance (5% to 11% time reduction from 8 threads). We un-
derstand that the computational complexity for processing a node v is tied to
the number of v’s successors w. The value ρ(v) can reach its fixed point only if
all ρ(w) values reach their fixed points. When the number of successors passes
a certain threshold, the benefit of having extra threads to push a greater num-
ber of “areas” towards their least fixed points, begins to outweigh the additional
context switching overhead due to handling of multiple threads per CPU. Hence,
ρ may reach its least fixed point in less iterations and so in less wall-clock time.

This claim is corroborated by the experimental results on 1600/1/200/400
games. The performances of the solvers on this game type exhibit similar patterns
as for smaller (200, 400, 800 nodes) games, where the CSPM8 remains optimal.

Our experimental data confirm that none of these solvers can avoid an expo-
nential blowup in the size of games. But we do see a linear speed-up for the CSPM
solver. For all the game types in the experiments, CSPM enjoys around 29% to
50% reduction in solver time from one to two threads (essentially the change
from the generic SPM solver to using two workers), 21% to 55% reduction from
two to four threads, and 1% to 49% reduction from four to eight threads. For
larger games (1600/1/320/400 and 2000/1/400/400), sixteen workers achieved
extra 5% to 11% solver time reduction over eight workers.

Experiments on games with more than 2000 nodes (and index capped at 400)
did not complete in a reasonable amount of time, due to resource constraints
imposed by our test server and programming model.

6 Correctness of CSPM Solution

For a parity game G, we now argue that our CSPM solver is correct and that
this correctness depends neither on configuration details (such as the number of
threads) nor on scheduling details.

Definition 2. For a parity game G with node set V , let a state of G be a progress
measure function ρ : V →M�

G . We write SG for the set of all states of G.
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The set of states SG is a finite lattice, induced by the partial order ρ1 ≤ ρ2 iff for
all v ∈ V we have ρ1(v) ≤d ρ2(v) in M�

G , where d is the maximal color. We now
define a function F : SG → SG such that F (ρ) captures all updates one could
have made in state ρ. We then show that F is monotone, that its least fixed
point is the state computed by SPM, and that our CSPM solver computes that
same state.

To that end, we recall the formal definition of method prog(v, w) in Figure 8.
Note that when prog(v, w) increases ρ(w), elements above the c(v)th position

in ρ(w) are set to 0. We denote by ρ(w) +c 1 the increase of the cth element of
ρ(w) by 1. The definition of F is given in the same figure.

prog(v,w) =

⎧
⎪⎨

⎪⎩

ρ(v), if ρ(v) >c(v) ρ(w)

ρ(w), if ρ(v) ≤c(v) ρ(w) and c(v) is even
ρ(w) +c(v) 1, if ρ(v) ≤c(v) ρ(w) and c(v) is odd

F (ρ)(v) =

⎧
⎪⎨

⎪⎩

ρ(v), if v is stable

min{prog(v, w) | (v, w) ∈ E}, if v is unstable and v ∈ V0

max{prog(v,w) | (v, w) ∈ E}, if v is unstable and v ∈ V1

Fig. 11. Definition of prog(v,w) where (v, w) is in E, and of F (ρ) for ρ in SG

Now we can prove some key properties of the global update function F .

Lemma 1. Let G be a parity game. Then we have:
1. For all ρ in SG, ρ ≤ F (ρ), i.e. F is extensional.
2. For all ρ1 ≤ ρ2 in SG, F (ρ1) ≤ F (ρ2), i.e. F is monotone.

Using that lemma, we can formally prove the correctness of our CSPM solver.

Theorem 2. Let G be a parity game. Every function ρ computed by our CSPM
solver is the least fixed point of F for game G.

This theorem ensures that our CSPM solver always computes the correct final
state, no matter how scheduling works or how many threads run.

7 Conclusions

We implemented a concurrent version of the Small Progress Measure solver for
parity games (CSPM), and have formally proven its correctness. Our imple-
mentation of CSPM relies on the maintenance of a synchronized queue (pend-
ingQueue), but tasks delegated require worker threads to process only potentially
unstable nodes. The worker threads are only blocked when accessing the muta-
ble property (i.e. progress measures) of nodes and the pendingQueue. They only
become idle when pendingQueue is empty as there is then no more work to do.

Because of this, we believe CSPM achieves a good balance between computa-
tional complexity and thread contention, and should deliver better performance
over SPM [5], PWe, and a known parallel implementation of SPM in [11] (PW).
Our experimental results on non-random games support this expectation:
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– CSPM8 and CSPM16 have performance gain between 8% to 85% of solver
time reduction, over the original version SPM (i.e. CSPM1) in a multi-core
environment for all of seven, non-random game types studied here.

– CSPM4 has 44% time reduction over CSPM1 for Jurdziński [25 50] games.
– For games whose index is greater than 2, CSPM’s solver time is 15% to 95%

less over PWe for their optimal thread counts.
– CSPM took 56% to 93% less time than PW under the same conditions.

We do observe better performances from PWe and PW for Ladder [400] and
TowerOfHanoi [10] due to their small indices of 2. The experimental results on
random games give us similar insights. CSPM is better than PWe for games with
higher computational complexity, and has better performance for all random
games we generated than the original PW.

We also argued that our CSPM solver is more flexible and generic as it won’t
rely on configuration details, e.g. a predefined partition of the game graph.

In conclusion, we think that our implementations and experimental results
attest to the great potential that parallelization may bring to game solving.
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The probable is what usually happens.

Aristotle

Abstract. Cloud computing is a new technological paradigm offering
computing infrastructure, software and platforms as a pay-as-you-go,
subscription-based service. Many potential customers of cloud services
require essential cost assessments to be undertaken before transitioning
to the cloud. Current assessment techniques are imprecise as they rely on
simplified specifications of resource requirements that fail to account for
probabilistic variations in usage. In this paper, we address these prob-
lems and propose a new probabilistic pattern modelling (PPM) approach
to cloud costing and resource usage verification. Our approach is based on
a concise expression of probabilistic resource usage patterns translated
to Markov decision processes (MDPs). Key costing and usage queries
are identified and expressed in a probabilistic variant of temporal logic
and calculated to a high degree of precision using quantitative verifi-
cation techniques. The PPM cost assessment approach has been imple-
mented as a Java library and validated with a case study and scalability
experiments.

Keywords: Cloud computing, formal verification methods, formal speci-
fication languages, formal modelling and specification, probabilistic model
checking, Markov processes, costing analysis, resource usage patterns.

1 Introduction

Cloud computing can be succinctly described as computing as a service [1,22,20]
where software, platforms and virtualised hardware are available on-demand
on a pay-as-you-go basis. The elastic nature of the cloud enables customers to
adapt service usage to meet fine-grained variations of their resource requirements
by dynamically scaling their computing services up or down. This situation is
economically favourable in comparison to making large initial investments on
infrastructure based on requirements for peak demand. Despite the envisioned
benefits of cloud computing, there are still barriers to its adoption. Alongside
concerns such as cloud security [10], reliability and compliance with data pro-
tection laws [11], many potential customers are reticent due to an inability to
accurately express and analyse their resource requirements.

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, pp. 145–159, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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The most attractive feature of cloud computing is the ability to dynamically
scale resources up or down over fine-grained time intervals. As a result, cloud
requirements are often thought about in terms of patterns of usage, where re-
source requirements vary over time. Resource usage can change due to small
variances in workload or changing economic situations such as fluctuations in a
cloud provider’s prices and the customer’s capital income.

These types of resource usage patterns are inherently probabilistic in nature
and involve potentially unknown or non-deterministic factors, making require-
ments specification difficult, and existing cost assessment methods less accurate.
Current cost modelling tools employ cloud usage patterns that disregard the
probabilistic nature of resource usages resulting from the cloud’s dynamic scala-
bility [13,3]. This leads to a naive cost assessment, where probabilistic behaviours
do not play a role in determining cost. Instead, resource usage is simplified to
follow either constant rates of change or variations over coarser time intervals.
To overcome these limitations we propose a new probabilistic pattern modelling
(PPM) approach for the expression of resource requirements as probabilistic pat-
terns, and the application of quantitative verification techniques to analyse a
wide range of cost-related characteristics of potential cloud deployments.

Probability has been used to model unreliable or unknown behaviour in both
hardware and software systems. Thanks to the development of effective proba-
bilistic modeller checkers such as PRISM [17], MRMC [12] and RAPTURE [9],
quantitative verification has found applicability in a wide range of application
domains. Typical applications include verification of QoS properties in service-
based systems [5] and run-time model checking to guide self-optimisation strate-
gies in software systems [6,4]. Most recently, probabilistic modelling was used
for performance analysis of live migration of virtual machines between physical
servers in a cloud data centre [15].

Our approach employs quantitative verification techniques [18,19] to enable
potential customers of cloud services to check two classes of quantitative prop-
erties of a cloud deployment

– costs: to determine a deployment’s variation of costs over time, and to
calculate the maximum accumulated costs owed to a cloud provider at the
end of a billing period, and

– resource usage: to determine the maximum and minimum probabilities
that a deployment’s resource usage exceeds a certain threshold.

The main contributions of our work are:

1. A high-level language for the specification of probabilistic and non-
deterministic patterns of cloud resource usage.

2. Techniques to synthesise Markov decision process (MDP) models from re-
source usage patterns and to formalise resource usage and cost properties as
rewards-augmented probabilistic computation tree logic (PCTL) formulae
[8].

3. An implementation of our PPM approach as an open-source Java library.
4. A case study and scalability experiments to validate the approach.
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The paper is organised as follows. Section 2 provides background information
on Markovian models, property specification and probabilistic model checking.
Section 3 presents the steps of the PPM approach in detail. A grammar for
probabilistic patterns is given and we describe an algorithm for MDP synthesis.
Properties for cost and resource usage analysis are formalised as probabilis-
tic temporal logic. Section 4 introduces our prototype implementation of the
PPM approach and presents a case study and scalability experiments. Section
5 discusses related research and Section 6 summarises our results and suggests
directions for future work.

2 Background

A Markov decision process (MDP) is a tuple

M = (S, s0, Act,Dist, step, L) (1)

where S = {s0, . . . , sn} is a finite set of states, s0 the initial state, Act a set
of actions, Dist a set of probability distributions over the states in S, step :
S → 2(Act×Dist) is a probabilistic transition function that maps the states in S
to finite sets of action-distribution pairs, and L : S → 2AP is a map labelling
individual states with finite subsets of properties from an atomic proposition set
AP .

Probabilistic model checking [18] is a technique for building specifications of
systems exhibiting probabilistic behaviour and determining the satisfiability of
their quantitative properties. For the analysis of MDP models, properties are
specified in a probabilistic temporal logic PCTL extending computation tree
logic CTL with a probabilistic operator P��p, for p ∈ [0, 1] and �� ∈ {<,≤,≥, >}.
A wide range of quantitative properties for Markovian models can be specified
in this logic. For example “the probability of a cloud deployment eventually re-
quiring x or more resources is less than p” can be specified by the PCTL formula
P<p[F res ≥ x]. For model checking MDPs, the operators Pmin��p and Pmax��p
determine the minimum and maximum probabilities over all adversaries (all res-
olutions of the non-determinism induced by Dist from (1)), respectively.

A reward structure for an MDP assigns values to states and transitions that
are interpreted, for example, as resource usage. Formally, a rewards structure is
a pair of functions (rs, ra) such that rs : S → R≥0 is a state-reward function,
and ra : S × S ×Act → R≥0 is a transition-reward function. PCTL is extended
to include rewards-augmented operators: instantaneous rewards R��r[I = t] and
cumulative rewards R��r[C ≤ t], for r, t ∈ R≥0.

Our PPM approach uses the probabilistic model checker PRISM [17] devel-
oped at the Oxford University Computing Laboratory to verify quantitative
properties of models that encode probabilistic cloud deployment patterns, and
which are synthesised from these patterns automatically.
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3 Approach

Our approach to assessing the cost and resource usage characteristics of cloud
deployments (Figure 1) comprises the following steps:

Fig. 1. Quantitative analysis of cloud deployments

1. Specification of the resource requirements for the cloud deployment as a
high-level probabilistic pattern.

2. MDP Generation. Patterns from Step 1 are accepted as input to a model
synthesiser that outputs an MDP model formalising probabilistic resource
variations over a time interval associated, for example, with a particular day,
week, or billing period.

3. PCTL generation. Queries relating to costs or other quantitative properties
of the cloud deployment act as input to a query-to-PCTL translator that
outputs the query formalised as a PCTL formula.

4. Quantitative Analysis. The MDP model generated in Step 2 and the PCTL
formula from Step 3 act as input to a probabilistic model checker which
performs quantitative analysis. The numerical results of the analysis are
returned for further analysis or data visualisation.

3.1 A Language for Probabilistic Cloud Usage Patterns

PPM formalises the resource requirements of a cloud deployment as probabilistic
patterns, expressed in terms of a simple language1 based on the declaration of
rules that specify elastic variations of cloud resource usage over time. Formally,
a probabilistic pattern

P = BR∗ (2)

is a high-level syntactic representation of a customer’s hourly usage of cloud
computing resources, beginning with a baseline declaration B, and optionally
followed by a finite list of r rule declarations R1, . . . , Rr

2.
A baseline declaration B has the syntactic form

Baseline bl (3)

1 We do not expect probabilistic patterns to be composed by hand but rather generated
automatically through analysis of application resource usage and request logs.

2 We list the syntactic form of each declaration in the language with terminals dis-
played in fixed-width font.
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specifying that the user requires a constant amount b of cloud computing re-
sources (e.g., virtual machines).

A rule declaration R has the syntactic form

Rule Start S Vary V (4)

which enables the specification of a variation V from the resource usage at a
certain point in time S. For example, a rule might specify an increase in resources
to meet computing requirements at peak times when more resources are needed.
Such variations are probabilistic in nature to reflect the increase and decrease of
resources depending on factors such as workload, capital, economies, and even
the fluctuations in the pricing of cloud services themselves.

A variation V is a set of m discrete probability distributions

{D1,...,Dm} (5)

each of which has the syntactic form

[p1:Op1(z1) + . . . + pq:Opq(zq)] (6)

to express the fact that change in resources involves

– a non-deterministic choice of a probability distribution Di ∈ V , and
– a selection of a resource usage variant Op(z) according to the probability

distribution Di, with probabilities p1, p2, . . . , pq,
∑q

j=1 pj = 1.

A variant Op(z) comprises a name Op of an operation and a numerical operand
z. Variants perform arithmetical operations on the resource amount res at time
S to yield a new resource usage value res′ for time S + 1. The types of variants
that can be used in PPM patterns are given in Table 1, noting that the “baseline”
variant bl does not require an operand.

Table 1. Pattern Variants

Variant Op(z) Description Resources res′ at time S + 1

add(z) res+ z
sub(z) Apply arithmetical operation to res− z
mult(z) current resource usage amount res× z
div(z) res÷ z

bl Set resource usage to baseline value bl

bl-add(z) bl + z
bl-sub(z) Set resource usage to baseline value bl − z
bl-mult(z) and apply arithmetical operation. bl × z
bl-div(z) bl ÷ z
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Example 1. Consider a cloud deployment associated with a set of applications
whose resource requirements follow a weekly (probabilistic) pattern. Assume, for
instance, that less resources are required at the weekend than during the rest of
the week as specified by the probabilistic pattern

Baseline 10

Rule1 Start Jun 2nd 0h Vary {[0.6:sub(2) + 0.4:sub(5)],

[0.1:add(1) + 0.9:sub(3)]}

Rule2 Start Jun 3rd 23h Vary {[1:bl]}

that declares a baseline of 10 resource units followed by two rules. The first rule
starts at the beginning of Saturday, June 2nd (2012), varying resource usage
according to the two stated probability distributions. Variants in these distri-
butions subtract resources from the baseline amount, suggesting that this rule
generally decreases resource usage; there is a small probability of selecting the
variant add(1). The second rule begins at the end of Sunday June 3rd, and
consists of a single distribution setting the resource usage back to the baseline
bl.

Of course, one might want to specify that less resources are required for every
weekend during certain months in the year. To support this scenario, our lan-
guage allows the specification of an optional repeat declaration for each rule (4):

Rule Start S Vary V Repeat F Until U (7)

where F is a keyword from the set {Day, WeekDay, Week, WeekEnd, Month} setting
the frequency of the rule’s application, and U specifies the last time the rule is
to be applied.

Example 2. Using the repeat construct (7), the probabilistic pattern in Example
1 can be extended to

Baseline 10

Rule1 Start Jun 2nd 0h Vary {[0.6:sub(2) + 0.4:sub(5)],

[0.1:add(1) + 0.9:sub(3)]}

Repeat WeekEnds Until Aug 31

Rule2 Start Jun 3rd 23h Vary {[1:bl]}

Repeat WeekEnds Until Aug 31

This specifies that both rules apply every weekend during the summer months
of June, July and August.

3.2 Markov Decision Process Synthesis

The model synthesiser takes as input a probabilistic pattern (2) in the form of
the concrete syntax described in Section 3.1 and a time interval

T = [0, n], (8)
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and outputs an MDP model that allows the formal analysis of cost- and resource-
related characteristics of the pattern.

We say that an MDP M = (S, s0, Act,Dist, step, L) models P over T if it
satisfies the following properties:
1. The state space is S ⊆ {(res, t) | res ≥ 0, t ∈ T }, contains a state s =

(res, t) for each resource amount res ≥ 0 that the cloud deployment may
assume at time instant t, and no other states.

2. The initial state is s0 = (bl, 0) according to the value bl specified in the
baseline declaration B.

3. Act comprises an action aij for each rule Ri from P , 1 ≤ i ≤ r and each
distribution Dij from rule Ri.

4. Dist represents the set of all distributions from rules R1, . . . , Rr of P .

5. step : S → 2Act×Dist specifies state transitions of the form (res, t)
aij ,p→

(res′, t+ 1) where aij ∈ Act is the action corresponding to distribution Dij

and p the probability that Dij associates with state (res′, t+ 1).
6. AP = {”resources ≥ x” | x ∈ R≥0} and L(res, t) = {”resources ≥ x” | x ≥
res}.

The remainder of the section describes the algorithm that PPM uses to determine
S and step. First, we model the progression of time over (8) by the function
tick : S → S defined by

tick((res, t)) =

{
(res, t+ 1) if 0 ≤ t < n,

(res, t) otherwise.
(9)

We say that a rule Ri in P applies at time t if Ri is

– a rule declaration of the form (4) with start time t, or
– a repeat rule declaration of the form (7) with start time t or frequency F

such that t mod F = 0,

with a possible change of resource usage occurring at time t+ 1. We model rule
applications by the function apply : V ariant× S → S defined by

apply(Op(z), (res, t)) = tick((res′, t)) (10)

where res′ is the new resource usage value at time t + 1 defined according to
Table 1.

Letting St denote the subset of all states in S associated with time t, the state
space S of an MDP modelling a pattern over (8) is defined by the equations

S0 = {s0},

St+1 =

⎧⎪⎨
⎪⎩
⋃
Dij∈V

⋃
p:Op(z)∈Dij

{apply(s,Op(z)) | s ∈ St} if a rule applies at time t,

{tick(s) | s ∈ St} otherwise,

(11)

where S = S0∪S1∪· · ·∪Sn and St∩St′ = ∅, for t �= t′. Equation 11 defines the
states in St+1 by applying variants Op(z) to the states in St whenever a rule
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applies at time t. If no rule applies then resources remain unchanged and only t
is updated by the tick function.

The transition function step is defined by the equation
For all s ∈ St:

step(s) =

⎧⎪⎨
⎪⎩
⋃
Dij∈V

⋃
p:Op(z)∈Dij{

(s
aij ,p→ apply(s,Op(z)))

}
if a rule applies at time t{

s
a,1→ tick(s)

}
otherwise,

where step(s) contains state transitions of the form s
aij ,p→ apply(s,Op(z)) when-

ever a rule applies at time t. If no rule applies then a unique action a ∈ Act is

chosen and step(s) contains state transitions of the form s
a,1→ tick(s).

3.3 Quantitative Analysis of Cloud Deployment Queries

Using the query-to-PCTL translator, high-level queries relating to cost and other
quantitative properties are formalised as rewards-augmented PCTL formulae. In
this section, we present a list of such queries and their specification in PCTL
and we outline the verification of each property on an MDP pattern model M
over time interval T from (8).

1. What is the maximum probability of the cloud deployment’s resource require-
ments equalling or exceeding the amount x?

This resource usage query is specified by the PCTL formula Pmax=?[F res ≥ x].
Quantitative verification returns the maximum probability of eventually reaching
a state in M satisfying the property res ≥ x. Queries for minimum probabilities
or those with probability bounds are also easily specified.

To perform cost analysis we augment M with a rewards structure rs : S →
R≥0 defined by rs((res, t)) = res, associating every state (res, t) with the value
res. We interpret rewards as the cost of the deployment at time t. By using actual
resource amounts the customer can scale values according to unit resource prices
set by the provider. For example, the cost at time t of using Amazon’s Standard
On-Demand large instances is calculated res× 0.34¢.3

2. What is the expected maximum cost of a cloud deployment’s resource require-
ments at any point t?

Using MDPs with costs, this high-level cost analysis query is specified by the
rewards-augmented PCTL formula Rmax=?[I = t], where I = t denotes the
instantaneous cost at time t.

3. What is the expected maximum cumulative cost of a cloud deployment’s re-
source requirements up to time t?

This high-level cost analysis query is specified by the rewards-augmented PCTL
formula Rmax=?[C ≤ t], where C ≤ t denotes the cumulative reward up to time

3 aws.amazon.com/ec2/pricing (Checked January 2012).

http://aws.amazon.com/ec2/pricing
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t. Quantitative verification returns the expected maximum cost of M accumu-
lated over the time interval [0, t] ⊆ T .

4 Implementation and Validation

We developed a probabilistic pattern modelling tool PPM that implements our
approach for the analysis of probabilistic cloud deployment patterns. PPM is an
open-source Java class library4 that supports the realisation of the workflow
in Figure 1. The core component of PPM is a PatternProcessor class whose
constructor takes as parameters the probabilistic pattern (2) to analyse, and the
upper bound for (8). The PatternProcessor constructor implements the MDP
synthesis technique described in Section 3.2 by means of a parser-generator built
using the off-the-shelf language tool ANTLR5. The result of this model synthesis
is an MDP expressed in the PRISM state-based language.

Table 2. Analysis methods provided by the PatternProcessor PPM class

Java double getMaxProbResourcesExceeds(int x)

double getMinProbResourcesExceeds(int x)

Input x ≥ 0
Output max(min) probability of resource usage exceeding x at any time
PCTL Pmax=?[F res >= x], Pmin=?[F res >= x]

Java Double[] getMaxResources(int t1, int t2, int step)

Double[] getMinResources(int t1, int t2, int step)

Input t1, t2, step > 0 such that t1 < t2
Output List of expected max(min) resource usage over [t1, t2] performed

for each t = t1 + i · step, i = 0, 1, 2, . . . such that t1 ≤ t ≤ t2.
PCTL Rmax=?[I=t], Rmin=?[I=t]

Java Double[] getMinCumulativeResources(int t1, int t2, int step)

Double[] getMaxCumulativeResources(int t1, int t2, int step)

Input t1, t2, step > 0 such that t1 < t2
Output Expected max(min) cumulative resource usage over [t1, t2] performed

for each t = t1 + i · step, i = 0, 1, 2, . . . such that t1 ≤ t ≤ t2.
PCTL R=?[C<=t]

The public methods of the PatternProcessor class (Table 2) enable the quan-
titative analysis of a range of cost and resource usage properties of the consid-
ered probabilistic pattern. Each such method synthesises the appropriate PCTL
property as described in Section 3.3, and runs the probabilistic model checker
PRISM in the background to analyse this PCTL property against the MDP
model generated by the constructor. The result of the PRISM analysis is parsed
and returned to the client that invoked the method.

4 PPM is freely available from http://www1.aston.ac.uk/eas/staff/dr-kenneth-

johnson/ppm/
5 http://www.antlr.org/

http://www1.aston.ac.uk/eas/staff/dr-kenneth-johnson/ppm/
http://www1.aston.ac.uk/eas/staff/dr-kenneth-johnson/ppm/
http://www.antlr.org/
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To assess the effectiveness and scalability of PPM, we implemented a simple
test tool that was used to carry out the case study and scalability experiments
presented in the remainder of this section. The results of this validation exercise
are being used to improve PPM, with a view to integrate it into an existing high-
level tool for cloud adoption decision [13].

4.1 Case Study

The case study described in this section considers a potential cloud customer
whose applications require at least three virtual machines at all times in order
to maintain an acceptable system response time. This resource requirement can
be formalised as a probabilistic pattern with a single baseline declaration:

Baseline 3.

Each weekday two or three more VMs above the baseline usage are required
to be started at 7am. At 9am, four or five virtual machines above the baseline
usage are required. These requirements are modelled by two rules:

Rule1 Start Jan,1,7 Vary {[0.8:bl-add(2) + 0.2:bl-add(3)]}

Repeat WeekDay Until Dec,31

Rule2 Start Jan,1,9 Vary {[0.7:bl-add(4) + 0.3:bl-add(5)]}

Repeat WeekDay Until Dec,31.

Resource usage is reduced at 5pm and again at 7pm where resources are set back
to baseline. These requirements are modelled by two further rules:

Rule3 Start Jan,1,17 Vary {[0.8:bl-add(2) + 0.2:bl-add(3)]}

Repeat WeekDay Until Dec,31

Rule4 Start Jan,1,19 Vary {[1:bl]}

Repeat WeekDay Until Dec,31.

We used PPM to analyse the probabilistic cloud deployment pattern described
above. The PRISMMDPmodel generated as a result of building the PPM Pattern
Processor object for this pattern is depicted in an abbreviated form in Figure 2.

We display in Figure 3 the results of analysing the pattern’s maximum ex-
pected resource usage over the time interval (72 ≤ t ≤ 96) representing the
weekday of January 3rd. The figure labels each application of a rule by the rule
name. As the pattern indicates, the number of VMs is 3 at the beginning of the
day and peaks between 9am and 5pm (i.e., for 79 ≤ t ≤ 90), when the expected
maximum resource usage has value 7.3. The resource usage returns to the base-
line outside working hours at 7pm (when t ≥ 91). Figure 4 depicts the results of
cost analysis performed to determine monthly maximum expected accumulated
costs from January to April 2012. The four values on the graph are labeled with
the cloud resource usage at the end of each month. These values can be used to
determine the maximum expenditures for cloud computing services expected at
the end of a provider’s billing period. For example, supposing the customer uses
Amazon’s standard EC2 instance at a unit cost of 0.32¢ throughout January, the
maximum expected expenditure at the end of January is 3024×0.32¢ = $967.68.
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mdp
...
const BASELINE=3;
formula Rule1 = (m=Jan)&(d=3)&(h=6);
const double p1=0.8; const double p2=0.2;
const Amount1 = 2; const Amount2 = 3;
formula Vary1 = min(BASELINE+Amount1,MAXRES);
formula Vary2 = min(BASELINE+Amount2,MAXRES);
...
formula RuleStart = (Rule1| ... );

rewards true : res; endrewards
module pattern

m : [0..11] init Jan; d : [1..31] init 1; h : [0..23] init 0;
res: [0..Max] init BASELINE;

[] (!DayEnd)&(!RuleStart) -> (h’=h+1);
[] (!DayEnd)&(Rule1) -> p1:(res’=Vary1)&(h’=h+1)+p2:(res’=Vary2)&(h’=h+1);
...
[] (DayEnd)&(NotMonthEnd)&(!RuleStart) -> (h’=0)&(d’=d+1);
[] (DayEnd)&(NotMonthEnd)&(Rule1) -> p1:(res’=Vary1)&(h’=0)&(d’=d+1)+

p2:(res’=Vary2)&(h’=0)&(d’=d+1);
...
[] (DayEnd)&(MonthEnd)&(m<Dec)&(!RuleStart) -> (m’=m+1)&(h’=0)&(d’=1);
[] (DayEnd)&(MonthEnd)&(m<Dec)&(Rule1) ->

p1:(res’=Variation1)&(m’=m+1)&(h’=0)&(d’=1) +
p2:(res’=Variation2)&(m’=m+1)&(h’=0)&(d’=1);

...
[] (m=Dec)&(DecEnd)&(DayEnd)-> true;
endmodule

Fig. 2. Abbreviated PRISM file generated by analysis of the case study

4.2 Scalability

Experiments were performed on the PPM tool to test the scalability of our ap-
proach using a set of different patterns of increasing complexity defined over a
single week beginning January 1st. Between one and five rules formed with the
Repeat construct with WeekDay frequency increased resource amounts on each
day in the week. Rules started from 12am staggered by four hours, and one or
two probability distributions were specified in each rule.

The experiments recorded the number of states and transitions for each MDP
model synthesised from the patterns. The analysis speed of PPM was tested by
performing two method invocations from the Java library on each pattern:

– getMaxResources(0,168,1), calculating the maximum expected resource
usage over a week with a step of one hour, and

– getMaxCumulativeResources(0,168,1), calculating the maximum expected
cumulative cost over a week with a step of one hour.

Our experiments were performed using the PPM command-line interface on an
Apple MacBook Pro operating on Mac OS X Version 10.7.2 with a 2.66Ghz Intel
Core 2 Duo processor and 8GB of 1067MHz DDR3 memory. PRISM version
4.0.2 was used to perform the quantitative analysis on the synthesised MDPs
using the sparse matrix PRISM engine [16]. The results of the experiments are
listed in Table 3, where method invocation times are averages over several runs,
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Fig. 3. Expected maximum resource usage for January 3rd (hours 72 to 96)

Fig. 4. End of month expected accumulated costs from January to April

and include all steps in processing the pattern: parsing, model synthesis and
verification.

To analyse the size complexity of the state space S of an MDP modelling
a pattern, we introduce the following notation. The size of a rule R with m
probability distributions each with qi probabilities, 1 ≤ i ≤ m is defined as
size(R) = q1 + · · ·+ qm. We assume that the maximum number of rule applica-
tions at time t is bounded by the value K. For a pattern with rules R1, . . . , Rr
we set this value to satisfy the inequality size(R1) + · · · + size(Rr) ≤ K. We
adapt Equation 11 to give the inequality

|St+1| ≤
{
|St| ·K if a rule applies at time t,

|St| otherwise,
(12)

for all t ≥ 1 and |S0| = 1. Using Inequality 12, and noting the inequality |S| ≤
|S0|+ |S1|+ |S2| · · ·+ |Sn| we calculate a bound on the size |S| of the state space
over the interval [0, n]. For patterns consisting of only a baseline declaration, we
have n+1 ≤ |S|, e.g. a single state models each point in the time interval. Using
the Repeat construct, rules can be applied repeated on a frequency F yielding
an upper bound |S| ≤

∑n
t=0K

� t
F �.
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Table 3. Model size and method invocation time according to pattern complexity

Pattern size Model size Avg. analysis time (minutes)

Rules Dists States Transitions Max. Usage Max. Cost

1 1 654 669 3.67 2.81
2 1 1119 1174 3 6.22
3 1 1427 1532 7.41 6.23
4 1 1610 1763 13.47 4.94
5 1 1700 1890 10.54 4.21

1 2 1624 1729 7.96 7.85
2 2 3019 3454 15.58 16.22
3 2 3943 4804 18.29 19.47
4 2 4492 5767 26.81 27.11
5 2 4762 6358 29.87 25.58

5 Related Work

Several research projects focused on developing tools and techniques to assist
organisations in assessing the cost-savings of transitioning to the cloud. Spe-
cific aspects of cloud technology such as Infrastructure as a Service (IaaS) have
been formally modelled to analyse cost-savings of leasing virtualised hardware
from remote data centres [21], while case studies assessing feasibility of cloud
computing has been carried out for specific industries [14] and applications [7].

Advanced tools such as CloudSim [2] model components of cloud computing
data centres for fine-tuning applications deployed on the cloud. CloudSim enables
users to improve application performance by simulating resource provisioning
policies, and work is in progress to extend support to include simulated costing-
analysis of deployment on public clouds [3].

Research undertaken as part of the Large Scale Complex IT Systems (LSC-
ITS)6 initiative in the United Kingdom has developed the Cloud Adoption
Toolkit [13] which is an organisational framework identifying key concerns of
cloud services adoption, and comprising tools that support the decision mak-
ing process of potential cloud customers. In particular, the framework’s cost
modelling tool allows cost-analysis of cloud deployments to be performed with
resource requirements expressed in a notation similar to the language developed
in our approach, but does not support the specification of probabilistic and non-
deterministic characteristics.

Our work complements and improves upon these approaches by accounting
for probabilistic behaviour of cloud deployments, and using precise techniques
for cost and resource usage analysis.

6 http://lscits.cs.bris.ac.uk/

http://lscits.cs.bris.ac.uk/
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6 Conclusion and Future Work

The results presented in this paper target the growing need for precise cost
analysis techniques that address both uncertainty and probability in using cloud
computing services. The probabilistic pattern modelling approach introduced in
the paper formalises cloud computing resources as probabilistic patterns and
synthesises Markov decision processes. Quantitative verification performed on
the model providing accurate costing and usage results. The approach has been
implemented as an open-source Java library using the probabilistic model checker
PRISM. We have validated our approach with a case study, and carried out a
number of preliminary scalability experiments.

Our future work aims at improving the PPM approach and tool in a number
of ways. The scalability performance of the tool can be improved by exploit-
ing the periodical nature of some patterns to eliminate redundant calculations
when performing analysis. We plan to extend the PPM workflow to include soft-
ware components to synthesises probabilistic cloud deployment patterns using
data mining techniques on application resource request logs. Lastly, we plan to
integrate the PPM tool with existing toolkits such as [13].

Acknowledgements. This work was partly supported by the UK Engineering
and Physical Sciences Research Council grant EP/H042644/1.
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Abstract. During model checking of software against various specifica-
tions, it is often the case that the same parts of the program have to be
modeled/verified multiple times. To reduce the overall verification effort,
this paper proposes a new technique that extracts function summaries
after the initial successful verification run, and then uses them for more
efficient subsequent analysis of the other specifications. Function sum-
maries are computed as over-approximations using Craig interpolation,
a mechanism which is well-known to preserve the most relevant informa-
tion, and thus tend to be a good substitute for the functions that were
examined in the previous verification runs. In our summarization-based
verification approach, the spurious behaviors introduced as a side effect
of the over-approximation, are ruled out automatically by means of the
counter-example guided refinement of the function summaries. We im-
plemented interpolation-based summarization in our FunFrog tool, and
compared it with several state-of-the-art software model checking tools.
Our experiments demonstrate the feasibility of the new technique and
confirm its advantages on the large programs.

1 Introduction

Model checking is a popular technique for automated analysis of software. Due to
the state explosion problem, it is usually infeasible to analyze a whole program
in a single run starting from its entry point (e.g., the main function). Instead,
the problem is often modularized and a model checker is used to exhaustively
explore portions of the program for different properties. Typically, this means
that the same code (e.g., same functions) of the original program is used in
multiple model checker runs and it is analyzed multiple times. We observe that
significant savings can be achieved if information concerning the already analyzed
code is reused in the subsequent runs of the model checker.

We present a technique for extracting and reusing information about the al-
ready analyzed code, in the form of function summaries. The novelty of our work
lies in the use of Craig interpolation [8] to extract function summaries after a
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successful verification run. An interpolant-based function summary is an over-
approximation of the actual function behavior and it symbolically captures all
execution traces through the function. Since interpolants tend to contain mostly
the relevant information, the computed function summaries are more compact
than a precise representation of the function, and thus result in the overall ver-
ification efficiency gain. We prove that no errors are missed due to the use of
the interpolation-based summaries. On the other hand, when spurious errors oc-
cur as a side-effect of over-approximation, our approach uses a counter-example
guided strategy to automatically refine summaries.

The implementation of the proposed technique, the FunFrog tool, is based
on the CBMC bounded model checker [6]. We use propositional encoding to
get bit-precise reasoning. However, our approach is general and works also with
SMT encodings for which an interpolation algorithm exists. To evaluate the new
approach, we compared running times of FunFrog with the state-of-the-art model
checkers CBMC, SATABS [7], and CPAchecker [4] on various benchmarks. The
experimental results demonstrate feasibility and advantages of our approach.

2 Preliminaries

As customary in model checking, we use an adapted definition of interpolation:

Definition 1 (Craig interpolation). Let A and B be formulas and A ∧B be
unsatisfiable. Craig interpolant of (A,B) is a formula I such that A→ I, I ∧B
is unsatisfiable, and I contains only free variables common to A and B.

For an unsatisfiable pair of formulas (A,B), an interpolant always exists [8].
For many theories, an interpolant can be constructed from a proof of unsatisfi-
ablity [19]. In this work, interpolation is used to extract function summaries in
the context of bounded model checking (BMC). Therefore, for the sake of sim-
plicity but without a loss of generality, the paper refers to unwound programs
without loops and recursion as an input of the summarization algorithm. Intu-
itively, such a program is created from the original one by unwinding all loops
and recursive calls by the given number (bound). Note that in our implementa-
tion the unwinding is performed on-the-fly when needed.

Definition 2. An unwound program for a bound ν is a tuple Pν = (F, fmain),
s.t. F is a finite set of functions and fmain ∈ F is an entry point.

We use relations child, subtree ⊆ F × F , where child relates each function f to
all the functions invoked by f , and subtree is a transitive closure of child. In
addition, we use F̂ to denote the finite set of unique function calls, i.e., function
call with a unique combination of a call stack, a program location, and a target
function (denoted by target : F̂ → F ). F̂ corresponds to the invocation tree of
the unwound program. By f̂main we denote the implicit call of the program entry
point and target(f̂main) = fmain. We extend the relations child and subtree to
F̂ in a natural way, s.t. ∀f̂ , ĝ ∈ F̂ : child(f̂ , ĝ) → child(target(f̂), target(ĝ)) and
subtree is a transitive closure of the extended relation child.
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f(int a) {
if (a < 10)

return a;
return a - 10;

}

main() {
int y = 1;
int x = nondet();

if (x > 0)
y = f(x);

assert(y >= 0);
}

(a) C code

// main
y0 = 1;
x0 = nondet();
if (x0 > 0) {

a0 = x0;
// f
if (a0 < 10)
ret0 = a0;

else
ret1 = a0 - 10;

ret2 = phi(ret0, ret1);
// end f
y1 = ret2;

}
y2 = phi(y0, y1);
assert(y2 >= 0);

(b) SSA form

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
ret0 = a0 ∧
ret1 = a0 − 10 ∧
(x0 > 0 ∧ a0 < 10 ⇒

ret2 = ret0) ∧
(x0 > 0 ∧ a0 ≥ 10 ⇒

ret2 = ret1) ∧
y1 = ret2 ∧
(x0 > 0 ⇒ y2 = y1) ∧
(x0 ≤ 0 ⇒ y2 = y0) ∧
y2 < 0

(c) BMC formula

Fig. 1. BMC formula generation

Standard BMC of software encodes an unwound program to a BMC formula
in a way illustrated in Fig. 1 (more details on the encoding can be found in [6]).
First, the unwound program is converted into the SSA form (Fig. 1b), where each
variable is assigned at most once. A so called φ-function is used to merge values
from different control-flow paths. Functions are expanded in the call site as if
being inlined. Then a BMC formula (Fig. 1c) is constructed from the SSA form.
Assignments are converted to equalities, path conditions are computed from
branching conditions and used to encode φ-functions. Negation of the assertion
condition guarded by its path condition (true in this case) is conjuncted with
the BMC formula. The resulting BMC formula is unsatisfiable if the assertion
holds. In the other case, a satisfying assignment identifies an error trace.

3 Function Summaries

This section first defines function summaries as a means to over-approximate
functions in BMC. Then it shows how interpolation can be used as a way to ex-
tract function summaries after a successful verification run. Finally, it presents a
BMC algorithm extended with the interpolation-based function summarization.

A function summary relates input and output arguments of a function. There-
fore, a notion of arguments of a function is necessary. For this purpose, we expect
to have a set of program variables V and a domain function D which assigns a
domain (i.e., set of possible values) to every variable from V.

Definition 3. For a function f , sequences of variables argsfin = 〈in1, . . . , inm〉
and argsfout = 〈out1, . . . , outn〉 denote the input and output arguments of f ,
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where ini, outj ∈ V for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In addition, argsf =
〈in1, . . . , inm, out1, . . . , outn〉 denotes all the arguments of f . As a shortcut, we
use D(f) = D(in1)× . . .× D(inm)× D(out1)× . . .× D(outn).

In the following, we expect that functions do not have other than input and
output arguments, which include also the return value. Note that an in-out
argument1 is split into one input and one output argument. Similarly, a global
variable accessed by a function is rewritten into the corresponding input or/and
output argument, depending on the mode of access (i.e., read or/and write).

Precise behavior of a function can be defined as a relation over values of input
and output arguments of the function as follows.

Definition 4 (Relational Representation). Let f be a function, then the
relation Rf ⊆ D(f) is the relational representation of the function f , if Rf
contains exactly all the tuples v̄ = 〈v1, . . . , v|argsf |〉 such that the function f
called with the input values 〈v1, . . . , v|argsfin|〉 can finish with the output values
〈v|argsfin|+1, . . . , v|argsf |〉.

Note that Def. 4 admits multiple combinations of values of the output arguments
for the same combination of values of the input arguments. This is useful to
model nondeterministic behavior, and for abstraction of the precise behavior of
a function. In this work, the summaries are applied in BMC. For this reason,
the rest of the text will be restricted to the following bounded version of Def. 4.

Definition 5 (Bounded Relational Representation). Let f be a function
and ν be a bound, then the relation Rfν ⊆ Rf is the bounded relational represen-
tation of the function f , if Rfν contains only the tuples representing computations
with all loops and recursive calls unwound up to ν times.

Then a summary of a function is an over-approximation of the precise behavior
of the given function under the given bound. In other words, a summary captures
all the behaviors of the function and possibly more.

Definition 6 (Summary). Let f be a function and ν be a bound, then a rela-
tion S such that Rfν ⊆ S ⊆ D(f) is a summary of the function f .

The relational view on a function behavior is intuitive but impractical for imple-
mentation. Typically, these relations are captured by means of logical formulas.
Def. 7 makes a connection between these two views.

Definition 7 (Summary Formula). Let f be a function, ν a bound, σ a for-
mula with free variables only from argsf , and S a relation induced by σ as
S = {v̄ ∈ D(f) | σ[v̄/argsf ] |= true}. If S is a summary of the function f and
bound ν, then σ is a summary formula of the function f and bound ν.

A summary formula of a function can be directly used during construction of the
BMC formula to represent a function call. This way, the part of the SSA form
1 E.g., a parameter passed by reference.
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y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
(a0 > 0 ⇒ ret0 > 0) ∧

y1 = ret0 ∧
(x0 > 0 ⇒ y2 = y1) ∧
(x0 ≤ 0 ⇒ y2 = y0) ∧
y2 < 0

Fig. 2. BMC formula created using summary a > 0 ⇒ ret > 0 for function f

corresponding to the called function does not have to be created and converted
to a part of the BMC formula. Moreover, the summary formula tends to be
smaller. Of course, the arguments have to be assigned the correct SSA version.
Considering the example in Fig. 1, using the summary formula a > 0 ⇒ ret > 0
for the function f yields the BMC formula in Fig. 2.

The important property of the resulting BMC formula is that if it is unsat-
isfiable (as in Fig. 2) then also the formula without summaries (in Fig. 1c) is
unsatisfiable. Therefore, no errors are missed due to the use of summaries.

Lemma 1. Let φ be a BMC formula of an unwound program P for a given
bound ν, and let φ′ be a BMC formula of P and ν, with some function calls
substituted by the corresponding summary formulas bounded by ν′, ν′ ≥ ν. If φ′
is unsatisfiable then φ is unsatisfiable as well.

Proof. Without loss of generality, suppose that there is only one summary for-
mula σf substituted in φ′ for a call to a function f . If multiple summary formulas
are substituted, we can apply the following reasoning for all of them.

For a contradiction, suppose that φ′ is unsatisfiable and φ is satisfiable. From
the satisfying assignment of φ, we get values 〈v1, . . . , v|argsf |〉 of the arguments
to the call to the function f . Assuming correctness of construction of the BMC
formula φ, the function f given the input arguments 〈v1, . . . , v|argsfin|〉 can fin-
ish with the output arguments 〈v|argsfin|+1, . . . , v|argsf |〉 and with all loops and
recursive calls unwound at most ν times. Therefore, by definition of the sum-
mary formula, the values 〈v1, . . . , v|argsf |〉 also satisfy σf . Since the rest of the
formulas φ and φ′ is the same, the satisfying assignment of φ is also a satisfying
assignment of φ′ (up to SSA version renaming). ��

3.1 Interpolation-Based Summaries

There may be multiple ways to obtain a summary formula. In this section, we
present a way to extract summary formulas using Craig interpolation. To use
interpolation, the BMC formula φ should have the form

∧
f̂∈F̂ φf̂ such that every

φf̂ symbolically represents the function f , a target of the call f̂ . Moreover, the
symbols of φf̂ shared with the rest of the formula are only the elements of argsf .

Note that the BMC formula is generally not in this form. Variables from the
calling context tend to leak into the formulas of the called function as a part
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y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
x0 > 0 ⇔ callstartf̂ ∧ (1)
y1 = ret0 ∧
(x0 > 0 ⇒ y2 = y1) ∧
(x0 ≤ 0 ⇒ y2 = y0) ∧
(callendf̂ ∨ x0 ≤ 0) ∧ y2 < 0 (2)

(a) formula φf̂main

ret1 = a0 ∧
ret2 = a0 − 10 ∧
(callstartf̂ ∧ a0 < 10 ⇒ ret0 = ret1) ∧ (3)
(callstartf̂ ∧ a0 ≥ 10 ⇒ ret0 = ret2) ∧ (4)
(callendf̂ ⇒ callstartf̂ ) (5)

(b) formula φf̂

Fig. 3. Partitioned bounded model checking formula

of the path condition. For example in Fig. 1c, the variable x0 from the calling
context of the function f appears in the bold part, which represents f itself. To
achieve the desired form, we generate the parts of the formula corresponding to
the individual functions in separation and bind them together using two boolean
variables for every function call: callstartf̂ and callendf̂ . We call the resulting
formula a partitioned bounded model checking (PBMC) formula.

Fig. 3 demonstrates creation of a PBMC formula for the example from Fig. 1.
Intuitively, callstartf̂ should be true when the corresponding function call is
reached. Therefore, the formula of the calling context (Fig. 3a) makes it equiv-
alent to the path condition of the call (1). The callendf̂ variable is true if the
call returns. It is conjuncted with the path condition so it occurs in the guard
of the assertion check (2). In the called function (Fig. 3b), callstartf̂ is taken
as the initial path condition, and thus it appears in the expanded φ-function (3,
4). The value of callendf̂ is derived from the path conditions2 at function exit
points (5). The two helper variables are added to the set of function arguments
argsf . Therefore, the variables shared between the individual formulas φf̂ and
the rest of the PBMC formula (here φf̂main

) are only the variables from argsf .
If the resulting PBMC formula is unsatisfiable, we compute multiple Craig

interpolants from a single proof of unsatisfiability to get function summaries.

Definition 8 (Interpolant summary formula). Let f̂ be a function call of
an unwound program P , ν a bound, and φ ≡

∧
ĝ∈F̂ φĝ an unsatisfiable PBMC

formula for P . Furthermore, let I f̂ν be a Craig interpolant of (A,B) such that
A ≡

∧
ĝ∈F̂ :subtree(f̂ ,ĝ) φĝ, and B ≡

∧
ĥ∈F̂ :¬subtree(f̂ ,ĥ) φĥ. Then the interpolant

I f̂ν is an interpolant summary formula.

Of course, an important property of the interpolant summary formula is that it
is indeed a summary formula from Def. 7.
2 Note that the implication may be more complicated, e.g., if the function can exit the

program or if it contains user assumptions that prune some computational paths.
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Lemma 2. The interpolant I f̂ν constructed by Def. 8 is a summary formula for
the function f and the bound ν.

Proof. By definition of Craig interpolation, the only free variables of I f̂ν are from
argsf . Moreover, we know that A ⇒ I f̂ν and that A represents the call f̂ with
all function invocations within it. By construction of A and the PBMC formula
φ, every tuple of values v̄ ∈ Rfν defines a partial valuation of A that can be
extended to a satisfying valuation of A. Therefore by A ⇒ I f̂ν , all these partial
valuations satisfy I f̂ν as well. The relation S induced by the satisfying valuations
of I f̂ν thus satisfies Rfν ⊆ S ⊆ D(f). ��

Another useful property of the interpolant summary formula is that I f̂ν ∧ B is
unsatisfiable (by Def. 1). In other words, the interpolant summary formula con-
tains all the necessary information for showing that the program under analysis
is safe with respect to the property being analyzed. Since the interpolant is cre-
ated from a proof of unsatisfiablity of A∧B, it tends to contain only the relevant
part and thus be smaller than A. An important consequence is that the inter-
polant summary formulas can be used to abstract function calls in BMC without
missing errors that are reachable within the given bound.

Theorem 1. Let φ be a BMC formula of an unwound program P for a given
bound ν and let φ′ be a BMC formula of P and ν, with some function calls
substituted by the corresponding interpolant summary formulas bounded by ν′,
ν′ ≥ ν. If φ′ is unsatisfiable then φ is unsatisfiable as well.

Proof. The proof directly follows from Lemmas 1 and 2. ��

3.2 Algorithm

An overview of the BMC algorithm for creation of the PBMC formula and
extraction of interpolant summaries is depicted in Alg. 1. First, the algorithm
creates the PBMC formula. It takes one function at a time and creates the
corresponding part of the formula (line 12) using the SSA encoding as sketched
in Section 2. The difference lies in handling of function calls. When available,
function summaries (line 8) are used instead of processing the function body
(ApplySummary maps the symbols in the summary to the correct SSA version).
Otherwise, the function is queued for later processing (line 10). In both cases, a
glue part of the formula, which reserves the argument SSA versions and generates
the callstartf̂ and callendf̂ bindings as described above, is created (line 6).

Having the PBMC formula, the algorithm calls a SAT or SMT solver. In the
case of a successful verification (UNSAT answer), the algorithm extracts new
function summaries (line 18-24). For many functions, the summary is just a
trivial true formula, which means that the function is not relevant for validity of
the property being verified. Note that the function StoreSummary (line 23) also
does a simple filtering, i.e., if there are multiple summaries for a single function,
it checks that none of them implies any other. Though this means a quadratic
number of solver calls in general, in our experience, the actual cost is very small.
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Algorithm 1. BMC algorithm with summary application and extraction.
Input: Unwound program Pν = (F, fmain) with function calls F̂
Output: Verification result: {SAFE,UNSAFE}
Data: D: queued function calls, φ: PBMC formula

1 D ← {f̂main}, φ← true ; // (1) formula creation
2 while D �= ∅ do
3 choose f̂ ∈ D, and D ← D \ {f̂};
4 φf̂ ← true;
5 foreach ĝ s.t. child(f̂ , ĝ) do
6 φf̂ ← φf̂∧ ReserveArguments(ĝ);
7 if HasSummary(ĝ) then
8 φf̂ ← φf̂∧ ApplySummary(ĝ) ; // apply summaries
9 else

10 D ← D ∪ {ĝ} ; // process ĝ later
11 end
12 φf̂ ← φf̂∧ CreateFormula(f̂ );
13 φ← φ ∧ φf̂
14 end
15 result← Solve(φ) ; // (2) run solver
16 if result = SAT then
17 return UNSAFE;
18 foreach f̂ ∈ F̂ do // (3) extract summaries
19 A←

∧
ĝ∈F̂ :subtree(f̂ ,ĝ) φĝ;

20 B ←
∧
ĥ∈F̂ :¬subtree(f̂,ĥ) φĥ;

21 If̂ ← Interpolate(A, B);
22 if If̂ �= true then
23 StoreSummary(If̂ );
24 end
25 return SAFE;

4 Refinement

When the PBMC formula is satisfiable, the BMC algorithm reports an error
(line 17 of Alg. 1), which can be either a real or a spurious violation since function
summaries are computed using over-approximation. This section introduces an
algorithm that iteratively refines the PBMC formula until either a real error is
found or an unsatisfiable PBMC formula is detected. The refinement algorithm
uses the generalized version of Alg. 1 that can be executed with a specified level
of approximation.

Definition 9. A substitution scenario for function calls is a function Ω : F̂ →
{inline, sum, havoc}.

For each function call, a substitution scenario determines a level of approxima-
tion as one of the following three options: inline when it processes the whole
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function body; sum when it substitutes the call by an existing summary, and
havoc when it treats the call as a nondeterministic function. The havoc option
abstracts from the call; it is equivalent to using a summary formula true. To
employ these options, we replace lines 7-10 of Alg. 1 by the following code:

7 switch Ω(ĝ) do
8 case sum: φf̂ ← φf̂∧ ApplySummary(ĝ) ; // apply summaries
9 case inline: D ← D ∪ {ĝ} ; // process ĝ later

10 case havoc: skip; // treat ĝ nondeterministically
11 endsw

For example, a substitution scenario that makes the generalized algorithm equiv-
alent to Alg. 1 looks as follows:

Ω0(ĝ) =

{
sum, if HasSummary(ĝ) = true
inline, otherwise

The substitution scenario used as the initial approximation is called initial sce-
nario and denoted as Ω0. The above initial scenario is eager, since it eagerly
processes bodies of functions without available summaries. Alternatively, one
can use a lazy initial scenario to treat functions without available summaries as
nondeterministic ones (by replacing the inline with havoc case). This results in a
smaller initial PBMC formula and leaves identification of the important function
calls to the refinement loop, possibly resulting in more refinement iterations.

When a substitution scenarioΩi leads to a satisfiable PBMC formula, a refine-
ment strategy either shows that the error is real or looks for another substitution
scenario Ωi+1. In the latter case, Ωi+1 represents a tighter approximation, i.e.,
it refines Ωi.

Definition 10. Given two substitution scenarios Ω1, Ω2, we say that Ω2 refines
Ω1, if ∀f̂ ∈ F̂ : Ω1(f̂) = inline → Ω2(f̂) = inline, and ∃ĝ ∈ F̂ : Ω1(ĝ) �=
inline∧Ω2(ĝ) = inline.

Note, that due to a finite size of F̂ , the refinement loop terminates independently
from the refinement strategy (i.e., the choice of Ωi+1). Rephrasing Def. 10, we
have {f̂ ∈ F̂ | Ωi(f̂) = inline} ⊂ {f̂ ∈ F̂ | Ωi+1(f̂) = inline} ⊆ F̂ . Therefore,
the sequence of sets {f̂ ∈ F̂ | Ωi(f̂) = inline} grows strictly monotonically while
being bounded by F̂ . If the refinement loop reaches a substituting scenario Ω�
such that ∀f̂ ∈ F̂ : Ω�(f̂) = inline, the generalized algorithm using Ω� is equiv-
alent to BMC without summarization, thus yielding the same precise answer. In
the following, we call Ω� the supreme scenario.

Counter-Example Guided Refinement. We propose a refinement strategy
based on analysis of an error trace. When refining a substitution scenario Ωi,
the counter-example guided refinement strategy refines the function calls that
(1) are substituted by a summary or havoced in Ωi and (2) are on the error trace
corresponding to the given satisfying assignment of the current PBMC formula
and (3) do influence validity of the assertion being analyzed.
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The second point is deduced from the satisfying assignment of the PBMC
formula. By construction of the PBMC formula, a variable callstartf̂ is valuated
to true, if and only if the satisfying assignment represents a trace that includes
the function call f̂ . Therefore, all function calls for which the callstart variable is
assigned true are suspected. The third point is decided based on a path-sensitive
dependency analysis over the SSA form. As a result, only the function calls that
actually influence validity of the assertion are marked inline in Ωi+1. If no such
function call exists, the error trace is real and it is reported to a user.

Ωi+1(ĝ) =

{
inline, if Ωi(ĝ) �= inline∧ callstartĝ = true ∧ InfluenceProp(ĝ)
Ωi(ĝ), otherwise

Note that we do not explicitly test whether the error trace is feasible. The
error trace can be simulated exactly, where summaries are not used. However,
a summary hides precise paths inside the substituted function and only the
inputs and outputs of the functions are preserved in the satisfying assignment.
Thus all the possible paths through the function would have to be considered
to see whether this combination of inputs and outputs is indeed possible. This
becomes costly for summaries of large functions and the advantage of having a
simple abstraction might be lost.

For experimentation purposes, we define another simplistic refinement strat-
egy, a greedy one. When the PBMC formula corresponding to the chosen initial
scenario Ω0 is satisfiable, the greedy strategy simply refines Ω0 directly to the
supreme scenario Ω�. This way, the greedy strategy fallbacks to the standard
BMC when the approximation is too coarse to prove the assertion being verified.

5 Evaluation

We implemented the interpolation-based function summarization and refinement
in a tool called FunFrog, extending the CBMC model checker. Currently, there
is a limited support for pointers. The OpenSMT solver [5] is used both for
satisfiability checks and interpolation. Note that OpenSMT is used as a SAT
solver, which gives us bit-precise reasoning3. FunFrog and the benchmarks used
for its evaluation are available for other researchers4.

We run FunFrog on industrial benchmarks to show that it works correctly for
real-life purposes, and on artificial programs (artN), to stress-test the implemen-
tation. Three benchmarks are taken from the Versicec5 suite (verisecN), small
string manipulating programs. The most interesting benchmarks (kbfiltrN,
diskperfN, floppyN) are taken from [18], which are three Windows device
drivers, each of which contains user defined assertions. All the assertions hold,
i.e., FunFrog may generate and reuse summaries.

3 Specialized SAT solvers without proof construction generally outperform OpenSMT
in the satisfiability checks though they lack the interpolant generation features.

4 http://verify.inf.usi.ch/funfrog
5 se.cs.toronto.edu/index.php/Verisec_Suite

http://verify.inf.usi.ch/funfrog
se.cs.toronto.edu/index.php/Verisec_Suite
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Table 1. Verification times (sec.) of FunFrog, CBMC, SATABS, and CPAchecker.
Number of assertions and lines of code in the benchmarks and interpolation time for
FunFrog are shown. WA: wrong answer, TO: 1 hour timeout exceeded.

benchmark FunFrog CBMC SATABS CPAchecker
name #assert LoC total time itp. time
verisec1 2 63 0.020 0.002 0.003 1.004 2.851
verisec2 2 101 0.515 0.005 0.016 0.003 0.896
verisec3 2 81 0.093 0.004 0.011 TO 1.91
art1 2 242 1.731 0.034 0.280 534.8 65.37
art2 2 63 3.327 0.030 0.408 881.2 WA
art3 4 120 1.811 0.076 2.112 TO WA
kbfiltr1 8 12253 6.718 0.003 5.742 106.457 WA
kbfiltr2 5 12253 2.665 0.008 3.702 13.002 WA
diskperf1 9 6321 5.284 0.037 20.309 433.74 15.045
diskperf2 4 6321 43.486 2.005 11.620 1064.2 24.849
floppy1 2 10259 2.196 0.001 18.028 2735.4 15.246
floppy2 4 10259 2.283 0.003 53.801 1402.1 47.891
floppy3 11 10259 45.073 0.006 99.512 2208.5 97.436

To evaluate FunFrog, we compared it with CBMC (v3.9), SATABS (v2.4
with Cadence SMV v10-11-02p46), and CPAchecker (rev3901). SATABS and
CPAchecker are CEGAR-based model checkers of C. Being a bounded model
checker, CBMC is the closest tool to compare with. We used the same bounds
for FunFrog and CBMC, sufficient to traverse the state space of the benchmarks.
In order to make the results comparable, we manually unwound the benchmarks
to represent the same verification task for SATABS and CPAchecker.

We expected reusability of the interpolation-based function summaries to be
sensitive to the mutual relevance of the assertions in the code. Therefore, for
the large benchmarks (kbfiltrN, diskperfN, floppyN), we experimented with
multiple groups of assertions with a different level of mutual relevance, ignoring
the other assertions.

The experimental results are captured in Table 1. The timings are in seconds
and denote the whole verification process6. FunFrog performs very favorably
on the larger benchmarks as it outperforms all other tools. In some cases, it
outperforms CBMC, the second best tool, by an order of magnitude. However,
as may be expected, the benefit is not general for all assertions. Clearly, when a
set of unrelated assertions is checked, the generated function summaries are not
reusable (see diskperf2). In this case, a number of refinement steps is needed
to construct a precise approximation (which is close to the supreme substitution
scenario). Since CBMC creates the full BMC formula right away without the
iterative refinement, it outperforms FunFrog on this benchmark. Even in this
case, running time of FunFrog is still comparable to the other tools.
6 On some benchmarks, the simplified handling of pointers and the known implemen-

tation bug prevent CPAchecker from producing the correct results. We reported the
problems to the developers of CPAchecker.
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As expected, FunFrog is less competitive on the small benchmarks, as it, for
example, is outperformed by CBMC. We identified several reasons for this. First,
there is a rather small number of function calls in these benchmarks. Thus the
benefit of function summarization is smaller compared to the overhead of using
a slower solver and the extra work on partitioning the formula. Second, CBMC
can prove trivially holding assertions using only constant propagation, which is
currently not implemented in FunFrog.

Notably, the overhead of our technique is small as the actual interpolation
time is very low (itp. time in Table 1). Still, some cost (not measured) is hidden
in the need to create an unsatisfiability proof, which hinders the solver.

Comparison of Refinement Strategies. Table 2 compares verification times
for different combinations of refinement strategies and initial scenarios. Due to
their realistic size, only the benchmarks from [18] are considered.

We note that the counter-example guided refinement strategy (noted as CEG
to prevent confusion with classical CEGAR) is better or comparable to the
greedy one on almost all the benchmarks. The exception (diskperf2) is the
case where CBMC outperforms FunFrog. In this case, the number of refinement
iterations is quite large due to too coarse summaries. In general, however, the
number of refinement iterations needed is small. Therefore, we conclude that the
counter-example guided refinement strategy performs well.

Based on the experiments, neither initial scenario is universally better. Despite
winning in some cases, the lazy initial scenario performs very poor on some
others. The eager initial scenario tends to perform consistently well in general,
even though loosing sometimes. Therefore, the eager initial scenario combined
with counter-example based refinement strategy is a safer, less volatile choice.

6 Related Work

Function summaries date back to Hoare [13]. Now it is commonly used in pro-
gram analysis to achieve scalable interprocedural analysis [1,9]. Each function is
processed only once, its summary is created and applied for other calls of the
function. To get more fine grained summaries, multiple summaries may be cre-
ated for different input conditions [9]. In BMC, state exploration of the unwound
symbolically encoded program is left to a SAT/SMT solver. Thus, the program
analysis approaches using fixpoint computation are not directly applicable.

Another domain of function summaries is model checking of pushdown sys-
tems (PDS). Here the most related work is [2] proposing a method to create
function summaries for bounded model checking of PDS using a QBF solver.
As admitted in [2], QBF queries constitute a major bottleneck. In our case, we
extract multiple function summaries from a single proof of unsatisfiability of a
BMC formula, which is inexpensive in comparison.

Less frequently, the idea of function summaries is used in concolic execu-
tion [10] and explicit-state model checking [20]. For example, the model checker
Zing records explicit summaries as a set of tuples of explicit input and out-
put values that were observed on an execution trace during state space traver-
sal [20]. Summaries used in Zing also contain lock-related information necessary
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Table 2. Verification times (sec.) and refinement iterations (RI) per assertion

benchmark (assertion) lazy/greedy eager/greedy lazy/CEG eager/CEG
time #RI time #RI time #RI time #RI

kbfiltr1 (1/5) 0.637 1 0.448 0 0.639 1 0.446 0
kbfiltr1 (2/5) 0.650 1 0.975 1 0.187 1 0.801 1
kbfiltr1 (3/5) 0.115 0 0.468 0 0.133 0 0.466 0
kbfiltr1 (4/5) 0.124 0 0.493 0 0.121 0 0.444 0
kbfiltr1 (5/5) 0.120 0 0.501 0 0.114 0 0.508 0
kbfiltr2 (1/8) 1.141 1 1.029 0 1.133 1 1.042 0
kbfiltr2 (2/8) 0.595 1 0.908 1 0.058 1 0.811 1
kbfiltr2 (3/8) 0.036 0 0.251 0 0.061 1 0.525 1
kbfiltr2 (4/8) 0.634 1 0.518 0 0.104 1 0.864 1
kbfiltr2 (5/8) 0.693 1 0.491 0 1.170 2 0.927 1
kbfiltr2 (6/8) 0.074 0 0.294 0 0.101 1 0.597 1
kbfiltr2 (7/8) 0.662 1 0.491 0 0.653 2 0.865 1
kbfiltr2 (8/8) 0.586 1 0.849 1 0.601 2 1.087 2
diskperf1 (1/9) 1.686 1 1.493 0 1.727 1 1.462 0
diskperf1 (2/9) 0.061 0 0.370 0 0.055 0 0.372 0
diskperf1 (3/9) 0.060 0 0.379 0 0.055 0 0.369 0
diskperf1 (4/9) 0.031 0 1.287 0 0.028 0 0.252 0
diskperf1 (5/9) 0.044 0 1.222 0 0.034 0 1.310 0
diskperf1 (6/9) 0.060 0 0.343 0 0.065 0 0.335 0
diskperf1 (7/9) 1.545 1 0.523 0 1.544 2 0.535 0
diskperf1 (8/9) 0.075 0 0.385 0 0.073 0 0.376 0
diskperf1 (9/9) 0.030 0 0.267 0 0.029 0 0.273 0
diskperf2 (1/4) 6.917 1 1.110 0 7.032 1 1.129 0
diskperf2 (2/4) 5.397 1 6.007 1 8.631 11 6.075 1
diskperf2 (3/4) 5.660 1 5.267 1 9.630 11 20.025 10
diskperf2 (4/4) 8.910 1 9.084 1 13.713 12 16.257 10
floppy1 (1/4) 0.284 0 1.346 0 0.285 0 1.334 0
floppy1 (2/4) 0.281 0 0.472 0 0.287 0 0.477 0
floppy1 (3/4) 149.401 1 0.485 0 151.163 1 0.509 0
floppy1 (4/4) 31.510 1 0.504 0 31.017 1 0.503 0
floppy2 (1/2) 155.741 1 1.088 0 154.174 1 1.080 0
floppy2 (2/2) 161.395 1 1.111 0 39.875 1 1.116 0
floppy3 (1/11) 160.323 1 6.549 0 161.108 1 6.508 0
floppy3 (2/11) 159.470 1 148.587 1 39.213 1 12.956 1
floppy3 (3/11) 144.195 1 1.747 0 9.346 1 2.238 0
floppy3 (4/11) 160.492 1 1.739 0 9.345 1 2.254 0
floppy3 (5/11) 0.328 0 1.904 0 9.355 1 2.354 0
floppy3 (6/11) 0.312 0 1.835 0 0.294 0 2.339 0
floppy3 (7/11) 0.313 0 1.870 0 0.291 0 2.393 0
floppy3 (8/11) 0.320 0 2.716 0 9.401 1 3.452 0
floppy3 (9/11) 166.772 1 2.877 0 9.402 1 4.246 0
floppy3 (10/11) 0.313 0 2.840 0 9.493 1 4.180 0
floppy3 (11/11) 0.149 0 1.537 0 2.335 1 2.153 0
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for checking concurrent software. In contrast, in FunFrog each summary sym-
bolically defines an over-approximation of all explicit execution traces through
a function, but currently without concurrency related data.

Craig interpolation [8] is commonly used as a means of abstraction in model
checking [16]. It was used to speed up convergence of BMC by iterative over-
approximation of transition relation [15]. In the scope of predicate abstraction,
interpolation was used [12] to derive new predicates in the abstraction refinement
phase of CEGAR-based tools (e.g., Blast [3], CPAchecker [4]). In these tools, sets
of predicates are extracted from interpolants of the formulas corresponding to a
prefix and suffix of a spurious error trace. This results in predicates associated to
program locations along the spurious error trace yielding a more fine grained ab-
straction [12]. The authors also propose reordering of a path formula to generate
interpolants with local variables suitable for inter-procedural analysis. Focusing
on predicates, these works ignore the boolean structure of interpolants. Others
observed that interpolation can be directly used to create an inductive sequence
of interpolants [17,21]. The authors of [17] envision interpolation-based function
summaries that would be derived from a single spurious error trace. Unfortu-
nately, the idea is not further refined. In comparison, our function summaries are
derived from the whole BMC formula and thus they contain information about
all the paths through the function. Moreover, we provide a refinement strategy
to deal with too weak summaries. In [11], the authors extend the idea of finding
an inductive sequence of interpolants [17] to programs with function calls and
recursion. The work does not refine the idea of function summaries in any way.

Lazy annotation [18] also uses function summaries. It extends symbolic execu-
tion to remember a reason for infeasibility of an execution path, i.e., a blocking
annotation. Blocking annotations are used to reject other execution paths as
early as possible. Compared to our technique, lazy annotation uses interpolation
to derive and propagate the blocking annotations backwards for every program
instruction. If the annotation is to be propagated across a function call, a func-
tion summary merging blocking annotations from all paths through the function
is generated and stored for a later use. Our technique uses interpolation on the
whole BMC formula and creates one function summary from one interpolant.

7 Conclusion

This paper presented a new technique to speed up BMC by means of extracting
and reusing over-approximating function summaries. Our function summaries
are extracted from a successful verification run using Craig interpolation which
symbolically captures all execution traces through the function. We provided
a counter-example guided refinement strategy to automatically refine spurious
behaviors which are possible due to over-approximation. The new approach
was implemented in our tool FunFrog whose application to various benchmarks
demonstrated feasibility and advantages of our approach. Although the presented
technique is not strictly limited to BMC, it requires combining with another
technique for dealing with loops and recursion. We are therefore investigating
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possible connection with an engine for loop invariant detection, e.g., the one
used in LoopFrog [14]. Nevertheless, we restrict the presentation in this paper
to the BMC case that is also covered by the implementation in FunFrog. An-
other restriction of our technique is that it is defined for sequential programs.
We believe that the generated summaries may be extended by a locking related
information in a similar way as in [20]. However, this is left for a future work.
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Abstract. In earlier studies of multiple-release systems, we observed
that the number of changes and the number of faults in a file in the past
release, the size of a file, and the maturity of a file are all useful pre-
dictors of the file’s fault proneness in the next release. In each case the
data needed to make predictions have been extracted from a configura-
tion management system which provides integrated change management
and version control functionality. In this paper we investigate analogous
questions for the system as a whole, rather than looking at its constituent
files. Using two large industrial software systems, each with many field
releases, we examine a number of questions relating defects to system
maturity, how often the system has changed, the size difference of a re-
lease from the prior release, and the length of time a release has been
under development before the start of system testing. Most of our obser-
vations match neither our intuition, nor the relations observed for these
two systems when similar questions were asked at the file level.

Keywords: software fault prediction, fault density, system maturity,
system size, system changes, elapsed development time.

1 Introduction

For the last several years, we have been developing highly accurate software
fault prediction models to identify the files most likely to contain the largest
numbers of defects in the next release of large systems. We have also designed
and implemented an automated tool that allows practitioners to see the results
of predictions without knowledge of the underlying data mining algorithms used
or any expertise in statistics or modeling.

All of the information needed to make the predictions is obtained by extract-
ing data from a configuration management system’s repository in which every
time a change to the software is deemed necessary for any reason, a modification
request (MR) is made detailing such information as the reason for the change
and the development stage at which the MR is being written. Since the con-
figuration management system integrates a change management functionality
with the version control system, it contains not only information directly en-
tered by the person who initiates the MR, but also the code itself and history
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information such as how and when the code was changed, and which changes
represent bug fixes. Both sorts of information have been used to make our pre-
dictions and jointly have yielded far more accurate results than using either type
of characteristic alone.

In our previous work, we have constructed and evaluated predictions of fault-
proneness of individual files in nine different large industrial systems. Each sys-
tem has been through a number of releases and each has been in the field for
multiple years, running continuously. Collectively predictions for more than 160
distinct releases have been made and evaluated. Together these systems have
been in the field for almost 50 years.

In this paper, we use data from the repository to answer questions about
the software at the system level. To our knowledge, this is the first paper that
has considered whether the characteristics that have been used to make success-
ful predictions at the method, file or module level, are also useful in making
predictions at the system level.

Accurate prediction of the fault-proneness of the overall system can guide the
allocation of testing resources, including the number and experience level of the
assigned testers, and the time scheduled for testing. Similarly, it can be used to
decide on the numbers and skill levels of developers needed to make changes at
the next release. In addition, the predicted fault-proneness of a future release
can be an input to help evaluate if the system is on track toward successful
completion, or to decide whether major redesign or re-establishment of project
goals are needed.

In this paper we pose the following questions, and observe trends as the system
matures.

– Does a system’s fault density increase, decrease, or remain relatively stable
as the system matures?

– Is there a relationship between the number of changes made to a system
during a release and the number of faults occurring in that release and in
the next release?

– Is there a relationship between the amount of change in the size of a system
during a release and the number of faults occurring in the system’s next
release?

– Is there a relationship between the length of time that a system release is
in the coding, unit testing, and integration phases of development and the
number of faults occurring in that release?

In our earliest studies [1], we considered these sorts of questions at the file level
to determine which variables were likely to affect our predictions. For example,
we found that files that were new to a system or had been changed in the
previous release, were much more likely to contain defects than files that were
in the previous release but were not changed. Based on these relations, we built
negative binomial regression models that were able to identify most of the files
that contained the largest numbers of defects in the next release. In this paper
we consider the analogues of some of the file-level questions we studied, to see
whether we can detect similar patterns for complete systems.
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2 System Information

The two large industrial systems described below have been written and main-
tained by teams from two different companies.

System TS is a business maintenance support system that has been in the field
for over 9 years and 35 releases. Its most recent release included in the study
consists of 442,000 lines of code, mostly written in C. System IC is a service
provisioning system that initializes a service for a customer. This system has
been operational for over 4 years, and we have collected data from 16 releases for
this study. The most recent release consists of 1,370,000 lines of code, primarily
in Java. Both of these systems run continuously.

Tables 1 and 2 provide detailed information about the two systems on a release
by release basis, including each release’s size, the number of faults detected, the
number of changes made, and the elapsed calendar days that the release was in
development. A change refers to a check-out/check-in of the code for any reason.
A fault is a check-out/check-in for the purpose of fixing a bug, and may consist
of modifying or removing existing code, or adding new code. For the purpose
of this paper, we consider that a release is in development during the coding,
unit testing and integration stages. All of the necessary data was extracted from
their respective repositories.

3 Observations

In this section we consider each of the four questions presented in the intro-
duction to see whether we find any pattern either within a system or between
systems.

3.1 Fault Density with Maturity

How does fault density change as a system matures? Our intuition might tell us
that as a system matures, the number of faults per release should decrease, while
the size of the system increases, and therefore the fault density should decrease
as the system matures.

Although many researchers, including us, have observed that change of any
type (sometimes referred to as churn), whether to add new functionality, to
modify existing functionality, or to correct defects, often leads to new defects
being inserted into a file, we nonetheless expect that a system will eventually
stabilize with age and there will be fewer and fewer defects observed as the system
matures. Surely it is not uncommon for newly released systems to be highly
problematic, perhaps because they were rushed to market to get a competitive
advantage or because they were released prematurely before sufficient testing
had occurred for some other reason.

A look at Tables 1 and 2 shows that in each case studied, as expected, the
systems almost always increase in size with age. The only exception is a slight
decrease in size from Release 33 to Release 34 of System TS. However, we do
not see the expected decrease in the number of faults as the system matures.
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Table 1. Size, Faults, Changes and Development Time for System TS (Maintenance
System)

Days in
Release Files LOC Faults Changes Development

1 354 144572 22 3147 256

2 362 191592 26 522 56

3 369 194884 24 168 40

4 382 201285 59 492 96

5 390 214730 131 556 103

6 412 239224 59 354 79

7 441 242549 63 361 90

8 485 268760 72 413 90

9 490 271227 59 527 90

10 500 284259 28 201 77

11 507 285365 44 162 77

12 510 287532 18 192 91

13 518 294261 51 194 84

14 530 303830 27 276 98

15 535 308740 4 166 108

16 574 310975 23 384 157

17 573 317416 35 206 109

18 578 324346 58 192 123

19 579 330360 39 59 91

20 596 342894 61 140 97

21 602 350909 36 177 125

22 611 364169 54 259 76

23 614 372958 61 147 92

24 614 377919 54 229 96

25 616 385467 58 338 106

26 624 404895 42 208 91

27 633 411926 74 352 114

28 636 425278 72 97 104

29 638 427511 64 188 126

30 648 429373 50 162 120

31 653 432929 22 142 89

32 663 438177 40 161 173

33 664 443099 8 32 87

34 667 441569 5 32 84

35 668 441888 6 29 NA
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Table 2. Size, Faults, Changes and Development Time for System IC (Provisioning
System)

Days in
Release Files LOC Faults Changes Development

1 1832 816,000 275 799 90

2 1847 842,000 161 451 64

3 1860 854,000 392 897 100

4 1913 872,000 238 1015 114

5 1933 892,000 182 592 105

6 2027 914,000 277 591 49

7 2190 960,000 569 2359 112

8 2320 1,005,000 347 1354 91

9 2460 1,044,000 438 2571 140

10 2798 1,150,000 678 2819 126

11 2843 1,206,000 563 1150 65

12 2809 1,212,000 161 295 51

13 3003 1,280,000 717 2458 130

14 3058 1,323,000 452 2019 119

15 3084 1,357,000 389 1133 91

16 3085 1,370,000 184 565 66

This is reflected in Figures 1 and 2 showing the fault density over time for
Systems TS and IC, respectively. For neither system do we see any systematic
decrease in the fault density.

Although Releases 4-9 of System TS have higher fault density than the fol-
lowing releases, and the last 3 releases have markedly lower density, the overall
graph does not show a pattern of decrease. For System IC, the fault density again
does not show any systematic decreasing trend. In fact two of the three highest
values for fault density in this system occur well into the third and the fourth
year that the system was in the field, contrary to our expectations. Although
the density drops off after Release 13, the values are not substantially different
from those of much earlier releases.

3.2 Number of Changes vs. Number of Faults

Is there a relationship between the number of changes made to a system during
a release and the number of faults occurring in the system in the next release?

As the number of changes increases, it is reasonable to expect that the number
of defects in the next release would also increase in some “reasonable” way. That
is certainly what we have observed at the file level. Reasonable might mean
linearly, in which case the graph showing the ratios of the number of changes in
Release N to the number of defects in Release N+1 shown in Figures 3 and 4
should look approximately flat.

A more likely expectation would be that as the number of changes increases,
the number of faults in the next release increases faster than linearly. In that
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case, one would expect to see peaks corresponding to particularly large numbers
of changes in the previous release.

It is not uncommon to see many changes in early releases of a system as new
functionality is added, since often a new system has planned enhancements of
this sort for the first several releases. The specifications might say, for example,
that in Release 1 there will be functionality A, B, C and D, and then in Release 2,
functionality E, F, and G will be added, and so on for the first several releases.

When studying systems at the file level, we have often observed that with
change comes defects. An important component of our successful fault prediction
models [2,3] is the observation that unchanged files are likely to have few or no
faults in the next release, and that new files and changed files are much more
likely to contain defects in the next release.

Figure 3 shows the ratio of the faults in Release N+1 divided by the number
of changes in Release N for System TS, with the releases plotted along the x-
axis, ordered by increasing number of changes in Release N. Figure 4 provides
the same information for System IC.

If the first hypothesized relation were true and the relation between the num-
ber of changes in Release N and the number of defects in Release N+1 remained
constant, then we might expect Figures 3 and 4 to be relatively flat. We do not
see such a pattern for either system.

If on the other hand, the second hypothesized relation were true, that releases
with many changes lead to subsequent releases with high numbers of defects,
then we would expect to see a steadily increasing pattern, since the graphs are
presented in increasing order of the number of changes made in a given release.
We do not see that for either Figure 3 or Figure 4. In fact in Figure 4 we see
almost the opposite pattern. We intend to examine additional systems for the
presence or absence of this counterintuitive pattern.

Note that both systems were used as subjects of earlier empirical studies in
which the expected file-level relationships were in fact observed. The data for
the current study is simply the aggregate of the data for all files for a given
release, and we therefore find it particularly interesting and puzzling that these
relationships are not observed at the system level.

3.3 Size of Change vs. Number of Faults

Is there is a relationship between the amount of change in the size of a system
during a release and the number of faults occurring in the system in the next
release?

In our earlier fault prediction studies, file size was always a key factor in
predicting which files would have the largest numbers of defects in the next
release, and was frequently the most important factor. In a recent paper [4], we
observed that counts of lines added, deleted, and modified were very effective for
fault prediction. Therefore, our intuition leads us to expect that if a Release N+1
increases in size by a large amount over the size of the previous Release N, then
Release N+1 would likely have many defects.
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Fig. 3. Faults by changes in prior release - System TS

Fig. 4. Faults by changes in prior release - System IC
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To investigate this question, we look at Figures 5 and 6. These two figures
show the ratio of the number of faults detected in Release N+1 to the size
difference (in KLOC) between Release N+1 and Release N. The releases are in
order of increasing size of change in the succeeding release. Release 33 occurs
first in Figure 5, with a negative bar, because there is a decrease in size to its
successor, Release 34. Apart from Release 34, all other releases are larger than
the preceding one. Release 1 occurs last in the graph because Release 2 has the
largest increase of code of any release, more than 47,000 additional lines.

Again, our expectation might be that the number of faults in a release in-
creases in some “reasonable” way as the amount of new code grows in that
release. If the relation were linear, then one would see a relatively flat graph.
Thus if there were 100 new lines of code in a release and there were 10 new
faults detected, then for a release that had grown by 1,000 lines of code over
the previous release, then perhaps there should be roughly 100 defects detected.
But that is certainly not what we observe in either Figure 5 or Figure 6.

Since we observed in all of the nine systems we studied, including Systems TS
and IC, that file size was a critical factor in determining the likelihood of faults
in the next release, it seemed reasonable to expect that the number of faults
would increase faster than linearly as the size of the system grows. But that is
not at all evident in either of these two figures. In fact, if there is a relation, it
is closer to the inverse.

Fig. 5. Faults by KLOC difference - System TS
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Fig. 6. Faults by KLOC difference - System IC

Another way of viewing this relation between size and faults involves looking
at the absolute number of faults in Release N+1 rather than the ratio considered
in Figures 5 and 6.

Figures 7 and 8 plot the absolute number of faults in a given release for
each release. Again the releases are in order of increasing size of change in the
succeeding release. We have typically seen that as the size of the file increased,
the number of faults in the file also increased. Therefore, when sorting the files
based on the amount of added code, one might expect a monotonically increasing
graph or close to it. Clearly we do not see anything like that in either of these
graphs. In Figure 7, we see no discernible pattern. In Figure 8, while we do not
see a monotonically increasing graph, we do see that the seven releases that have
the smallest amounts of increment often have fewer faults than the eight releases
that have the largest amounts of increment, but even that is not always the case.

3.4 Development Time vs. Number of Faults

Is there is a relationship between the length of time that a release is in the
coding, unit testing, and integration phases and the number of faults occurring
in that release?

The systems we have investigated are all long-lived products, whose software
is developed and released at roughly regular intervals, in well-defined stages.
Generally, at any given time three versions or releases of the system are active.
Release N-1 has been released to the field; Release N is undergoing system test-
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Fig. 7. Number of faults per release - System TS

Fig. 8. Number of faults per release - System IC
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ing; and Release N+1 is under development, including coding, unit testing and
integration. The start time of a release is the date when coding for that release
begins, and is usually the date when the previous release enters system testing.
After the initial version, each subsequent Release N is usually started by copying
all the code of the previous Release N-1 into a base version of N.

We refer to the period of elapsed calendar time between the start date of
Release N and the start date of Release N+1 as the development time of N. The
start date of Release N+1 usually corresponds to the end of the coding, unit
testing, and integration testing phases of N, and the beginning of N’s system
testing phase. We can easily measure the development time of each release, and
ask whether there is a relation between Release N’s development time, and the
number of faults that are detected in system testing of Release N.

Reasonable arguments in two directions could be given that fault count de-
pends on the length of a release, with a longer development time leading to
either more faults or fewer faults. A longer development time for Release N
might mean that more code is being written for N, or that the functionality
being implemented is more complex than the average. Both of those situations
could plausibly lead to more faults in the code to be discovered during N’s system
testing.

On the other hand, one could also argue that a longer time in development of
Release N means that more care is being taken for the design of new functionality,
or that the release is being tested more thoroughly in the early stages of unit
and integration testing. Both of those situations might lead to more stable code,
with fewer faults to be discovered during system testing of Release N. Figures 9
and 10, showing faults per release with the releases ordered from shortest to
longest development time, are inconclusive.

Although the development times for most releases of both systems are usually
close to 90 days (as can be seen in Tables 1 and 2), there is substantial variation,
especially for System TS. Its development times range from 40 days for Release 3
up to 256 days for Release 1. The average is 103 days. System IC’s development
times range from 49 to 140 days, with an average of 95. The two systems show
significantly different relations between faults and development time.

The Spearman rank correlation between faults and development time for Sys-
tem TS is very low, at .131. Figure 9 shows the faults in each release, with
releases in increasing order of their development time. There is no discernible
pattern, even if the obvious outliers at Releases 34, 33, 5 and 15 are removed.
Despite having the longest development time, and by far the largest number
of changes, very few faults were detected during system testing of Release 1.
The relative scarcity of faults continued through Releases 2 and 3, with a large
number detected finally at Release 5.

The rank correlation for System IC is a much stronger .617, and the corre-
sponding Figure 10 shows at least some indication that the faults frequently
increase with an increased development time.
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Fig. 9. Faults per release ordered by development time - System TS

Fig. 10. Faults per release ordered by development time - System IC



Can File Level Characteristics Help Identify System Level Fault-Proneness? 189

4 Conclusions

We have presented and examined a number of intuitively plausible relations
between defects and system history data, with the data extracted from a con-
figuration management system for two large, mature software systems. Our ex-
pectation was that we would see patterns similar to those observed for these
systems when we looked at analogous questions at the file level. Our reasoning
was that software systems are simply the aggregate of their files, so that if many
changes in a file indicate that it is likely to have many defects in the next release,
then if a release has many changes, it should be likely to have many defects in
the next release. We did not observe any of the expected relations for any of the
questions we investigated for either of these systems.

What does that tell us? The most important thing we have learned is that it
is not acceptable to rely on our intuition or software engineering folklore, even
when questions addressed are at least superficially similar to ones already asked
and observed in large industrial empirical studies. Specifically, we learned that
the answer to each of the questions we posed is no, even though our expectation
was that the answers would all be in the affirmative.
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Abstract. Commonly used approaches for accumulating coverage data
do not properly track events that have been covered in the past but not
recently (stale events). They either treat stale events as covered events
(global approach) or as uncovered events (window approach). We propose
a new approach called reverse coverage analysis that is based on tracking
the last time each coverage event was hit and looking at the coverage
data backward in time from the present. With this approach, we can
easily identify stale events and when the ability to cover them was lost.
The reverse coverage approach was successfully used in the verification
of two high-end IBM microprocessors and improved treatment of stale
events and their causes.

1 Introduction

The size and complexity of modern hardware systems have turned the functional
verification of these systems into a mammoth task [1]. Verifying such systems
involves tens or hundreds of person years and requires the computing power of
thousands of workstations. In current industrial practice, verification is a highly
automated process that is based on autonomous verification environments. Such
environments contain random stimuli generators [2] that generate a massive
amount of tests, simulation engines, and sophisticated checking mechanisms [3].

Coverage [4] is one of the main vehicles for monitoring and controlling the
verification process. Coverage analysis provides the means to track the progress
of verification and identify weaknesses in it. To this extent, coverage-driven veri-
fication (CDV) methodology [5], which tightly connects the verification plan and
its execution with coverage measures, is a commonly used verification method-
ology.

The goal of coverage analysis tools and techniques is to convert the huge
amount of coverage data collected during the lifetime of a project into simple and
concise reports that provide useful information to the users about the state and
progress of the verification process. In general, coverage analysis tools provide
users with two types of reports: progress reports that track the state of coverage
(e.g., number of events covered) over time; and status reports that provide a
description, at various levels of details, of the coverage state. Advanced analysis
techniques, such as the ones described in [6, 7], are often used to improve the
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quality of the generated reports. For example, hole analysis [6] can be used
to detect large uncovered areas and report these areas instead of large lists of
uncovered events.

Usually, coverage analysis tools look at coverage data that is accumulated over
time. Therefore, it is an interesting and important question to determine the
timeframe in which coverage data is analyzed. There are two major approaches
to answer this question. The first approach looks at all the data collected since
the beginning of time; while the second approach looks at the coverage data in
fixed windows (e.g., the coverage collected during the last seven days). These
two approaches have significant drawbacks when handling stale events; that is,
events that were covered in the past, but not recently. Both approaches do not
properly treat these events properly. The global approach treats these events
like other covered events, denying the users the important fact that these events
have not been covered for a long time. This may prevent an investigation of
why the events have not been covered recently, which may lead to the detection
of problems in the design, its environment, or the verification process. In the
window approach, stale events fall outside the window and look like any other
uncovered events. This hides the fact that the events have been covered in the
past and something (perhaps important) caused the loss of the ability to cover
them.

Reverse coverage analysis is a new approach for accumulating and looking
at coverage data. It is designed to overcome the drawbacks of the global and
window approaches regarding stale events. This approach uses a global view of
the coverage data, but it looks at the data in reverse chronological order. That
is, instead of looking at the data from the beginning of time toward the present,
it looks at the data from the present towards the beginning of time. The basis
of this approach is the reverse progress report that plots for each time t, how
many events, of those events that were covered in the past, are not covered after
time t.

The reverse progress report can provide useful information about the state of
the verification process. The time it takes the plot to flatten from the present
backwards is an indicator of the time it takes to cover all the covered events
again; the level of the plot when it flattens shows how many stale events exist;
and sharp changes in the slope of the plot point to times when the ability to
cover some events was lost. In addition to the reverse progress plot, the reverse
analysis also allows status reports regarding the stale events, such as displaying
all the stale events that have not been covered for the last two weeks.

We used the reverse analysis approach in the verification of two recent IBM
high-end microprocessors, POWER7 and z196. The approach was implemented
on top of two internal coverage tools: Meteor [6], a cross-product coverage tool
that uses the global approach, and Bugspray [8], a designer-level discrete events
tool that uses the window approach. The reverse progress and stale events reports
helped the verification teams identify stale events and other problems in the
verification processes and simplified the process of reaching the root cause of
these problems.



192 A. Birnbaum et al.

The rest of the paper is organized as follows. In Section 2, we provide some
background on coverage analysis and its importance. In Section 3, we explain
the reverse coverage analysis approach and its advantages over other approaches
for accumulating coverage data. Section 4 describes some of our experience in
using reverse coverage analysis in two recent IBM projects. Finally, in Section 5,
we present our conclusions and plans for the future.

2 Coverage Analysis

Coverage analysis is one of the important sources for information to the veri-
fication team regarding the status and progress of the verification process. For
example, large uncovered areas may indicate that a feature is missing in the
stimuli generator; and not hitting new events for a long time may indicate that
the current set of test templates ran out of steam.

The goals of coverage analysis tools are to collect the coverage data that is
created during the lifetime of the project, process and analyze the data, and
provide the users with concise and meaningful reports. In general, this work is
done in two steps. The first step includes processing the raw coverage data and
storing it in coverage databases. The second step is to analyze the coverage data
stored in the database and to produce coverage reports. In this work we consider
a large verification project that produces a very large amount of raw coverage
data. This large amount of data makes it impossible to keep all the data in
the coverage database. Therefore, the coverage data kept in the database is a
summary of the raw data fed to the coverage tool.

The amount of data saved in the coverage database determines the analysis
tool’s ability to provide useful information to its users. For rudimentary cover-
age analysis, simply recording which events occurred may be sufficient. Small
additions to this information that still keep the database compact can signifi-
cantly increase the analysis capabilities of the tool. For example, reporting the
number of times an event has occurred can help discover lightly covered events;
and recording the time an event was first covered allows coverage progress to be
computed.

In this section we describe basic coverage analysis techniques and coverage
reports. We use, as an example, a simple coverage model for floating-point data.
The model is used throughout this paper to demonstrate various analysis tech-
niques and reports, and to compare different approaches for accumulating cov-
erage data. This model has been used to check the coverage of tests generated
for the floating-point units of several processors in IBM [9]. Note that the model
presented in the paper is a subset of the real coverage model (e.g., not all the
floating-point instructions are included). The data presented in the reports below
represent 12 weeks of coverage collection in an experimental work. The coverage
collection period is June 10 through August 31 (this fact is important for dates
shown in the reports).

Figure 1 shows the attributes of the coverage space and possible values for each
attribute. The space consists of three attributes — Instr, Result, and Rounding
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Attribute Values

Instr fadd, fadds, fsub, fmul, fdiv, fmadd,
fmsub, fres, frsqrte, fabs, fneg, fsel, . . .

SNaN, QNaN, ±0, ±∞,
Result ±Norm, ±MinNorm, ±MaxNorm,

±DeNorm,±MinDeNorm, ±MaxDeNorm,

RM Near , 0, +∞, −∞

Fig. 1. Coverage space attributes for the floating-point model

Mode (RM) — each with the possible values shown. The semantic description
of the coverage space is as follows: test that all instructions produce all possible
target results in the various rounding modes supported by the processor.

A critical step in the coverage process is to define a coverage model that
contains only the legal events in the coverage space. This is because not all
events in the coverage space of the schema are legal. For example, the results of
executing a floating-point absolute value instruction can never be negative.

Most coverage tools provide two types of reports — status reports that provide
the state of coverage at a given time and progress reports that show how coverage
progresses over time [4]. The actual reports vary in their level of detail and the
way they present their data according to their specific goals and target users.
For example, project management is usually interested in high-level status and
progress of coverage, while a verification engineer may be interested in many
details about small sets of coverage events assigned to her.

Status reports are designed to describe the status of coverage (or a specific
coverage model) at a specific point in time. The reports can range in detail from
a high-level summary of the coverage status to detailed reports that contain
the status of each event. The high-level summary reports are useful for a quick
overview of the coverage status. They can be used, for example, to determine
which coverage models deserve more attention and deeper analysis. Detailed
coverage reports can be used by the verification team to detect areas in the
DUV that are unverified or lightly verified and direct the verification efforts to
these areas.

Figure 2 shows some coverage reports for the floating-point coverage model.
The summary of the coverage status is shown in Figure 2(a). The summary
includes information about the size of the coverage space and model, how many
events are covered and not covered, and the number of measured traces. On its
own, it is hard to interpret the significance of the data in the report. This can
be done only by comparing the data to previous reports and reports of other
models or by looking at a more detailed report.

Figure 2(b) shows part of the detailed status. Because the model contains
close to 1700 events, and not all of them can be displayed, only a small set of
events is shown. The report shows, for each event, how many times it was hit and
the first time it was hit. Note that a detailed report can include additional infor-
mation about the events, such as a threshold under which they are considered
lightly covered, their coverage status (uncovered, lightly covered, or covered),
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Size of coverage space: 2104
Number of events in model: 1696
Number of covered events: 1599
Percent of covered events: 94.28%
Number of holes: 97
Number of illegal events: 0
Number of traces measured (total): 13973

(a) Summary report

Attributes Coverage Data

Instr Result RM Count First

fadd +Norm 0 471 6/10

fsub -∞ Near 193 6/11

fres -DeNorm 0 219 6/14

fadd -MaxNorm +∞ 153 6/27

fabs +0 −∞ 189 7/02

fdiv QNaN Near 48 7/16

fsqrt +DeNorm −∞ 0 -

(b) Status report

Hole size Instr Result RM

72 fctid * *

24 fsqrt, fsqrts RES.DENORM *

1 fdiv -MaxDeNorm −∞
(c) Holes report
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(d) Progress report

Fig. 2. Examples of coverage reports for the floating-point model

details about the first test that hit them, etc. To reduce the size of the report,
the user can filter the presented events based on the coverage data of the events.
For example, a user may ask for events that have not yet been covered. To fur-
ther reduce the size of the reports and improve their usefulness, more advanced
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analysis techniques, such as the ones described in [6], can be used. For example,
hole analysis can be used to detect large areas of uncovered events. Figure 2(c)
shows the hole analysis report for the floating-point model. The report shows
two large holes. The first hole corresponds to the fctid instruction that was not
covered at all; this hole can be attributed to a problem in the stimuli generator.
The second hole contains square root instructions with very small results; these
events are actually impossible and should be removed from the model. Note that
the ‘*’ in the hole report represent a don’t-care value for that attribute.

Progress reports display the progress of coverage over time, usually in terms
of covered events. These reports are useful in showing if and how fast coverage is
progressing and detecting when the verification is “running out of steam”. Sharp
changes in the slope of the coverage progress are good indicators for changes in
the verification environment or its activation that caused an increase or decrease
in the coverage improvement rate. In addition, statistical analysis techniques can
be used to predict potential coverage levels [7].

Figure 2(d) displays the progress report for the floating-point model. The
figure shows that progress has flattened and over the last three weeks no progress
in coverage was made. The figure also shows a sharp increase in the coverage rate
around Week 4. This improvement in the coverage rate was caused by coverage
analysis that revealed a large hole in the coverage of the model. The root cause
of the hole was a bug in the stimuli generator. When the bug was fixed, the
events in the hole started to be covered and the coverage rate improved.

3 Reverse Coverage Analysis

In general, coverage analysis tools look at coverage data that accumulates over
time. While looking at the coverage of single tests can be useful, most of the
benefits of coverage analysis come from analysis of large sets of tests. Therefore,
an interesting and important question is to determine the timeframe in which
coverage data is analyzed.

There are two major approaches to answering this question. The first approach
is to look at all the data that has been collected. The advantage of this approach
is that it uses all the coverage data available. Therefore, it will not miss or ignore
coverage events that are rarely seen. The disadvantage of the approach is that it
does not distinguish between stale events (events that have not been covered for
a long time) and other covered events. Regarding stale events as covered may
hide problems such as losing the ability to cover an event because of changes in
the design or its environment.

The second approach looks at the coverage data in fixed windows (e.g., the
coverage collected during the last seven days). This approach ensures that only
recent coverage data is viewed and considered in coverage analysis. On the other
hand, this approach does not distinguish between stale events and uncovered
events, as both types look like uncovered events. Another disadvantage of this
approach is the difficulty in determining the size of the window.

Figure 3 compares a basic status report and a progress report for the global
and window approaches of the floating-point coverage model. To illustrate the
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Attributes Global Window

Instr Result RM Cnt First Cnt First

fadd +Norm 0 471 6/10 53 8/25

fsub -∞ Near 193 6/11 27 8/25

fres -DeNorm 0 219 6/14 0 -

fadd -MaxNorm +∞ 153 6/27 21 8/27

fabs +0 −∞ 189 7/02 30 8/24

fdiv QNaN Near 48 7/16 0 -

fsqrt +DeNorm −∞ 0 - 0 -

(a) Status report
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(b) Progress report

Fig. 3. Comparison of the global and window approaches

differences between the approaches, we have overlaid the figures. Look first at
the progress report in Figure 3(b). The figure helps illustrate some of the dis-
advantages of the two approaches. First, the slope of the progress report of the
window approach is still positive at the end, indicating that a larger window
would improve the window coverage. Second, the total number of events covered
in the window approach is less than the total number of events covered globally.
This means there are some events that have not been covered recently. The third
and sixth rows of the status report in Figure 3(a) are examples of such events.
The <fres, -DeNorm, 0> event in the third row has been covered many times
(more than its surrounding events in the report), but has not been covered in the
last seven days. This raises the suspicion that something happened to the ability
to cover the event. The <fdiv, QNaN, Near> event on the sixth row, on the
other hand, was covered a small number of times, so the reason for not covering
it during the last seven days may be caused by a difficulty of reaching it. Note
that such events can not be detected by just the global or window approaches,
and even the combined approach does not reveal if such events are not covered
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recently because the window is too small or because of a more serious problem
in the verification process.

To address the disadvantages of the global and window approach, we propose
a new way to accumulate and look at coverage data: the reverse coverage analysis
approach. This approach uses a global view of the coverage data, but it looks at
the data in reverse chronological order. That is, instead of looking at the data
from the beginning of data collection to the present, it looks at the data from
the present backwards. Note that the reverse coverage analysis approach should
not replace the global or window approaches. Instead, it should be combined
with one of these approaches to provide the benefits of forward and backward
looking at the coverage data.

The reverse analysis approach is enabled by recording information on the last
time each coverage event was hit. With this information we can generate a reverse
progress report. This report shows, for each time t, how many covered events
have their last hit at time less than t. In other words, the plot shows how many
events, out of the events that have been covered in the past, are not covered after
time t. Clearly, at the present time, all the covered events meet this criterion,
so the reverse progress plot starts where the normal progress plots ends. As we
move back in time (leftward) the number of events that meet the criterion drops
and so does the plot, until it reaches a point in time when the number of events
that meet the criterion is zero, or, in other words, all the covered events have
been covered after that time.

We can describe the reverse analysis more formally. Let E be the set of all
coverage events in the design, and first, last : E → T denote the first and last
times each event was covered (we take T to be the axis of time plus an additional
point ⊥ to indicate an event has never been covered). Now we can define, for
any given point t in time, the following set of events:

St = {e ∈ E | last(e) ≤ t& last(e) �= ⊥}

This set includes the events that are “stale” since time t. We then refer to the
analysis that refers to this set as the reverse coverage approach. For example, a
reverse coverage plot shows the size of St versus the t axis.

For contrast, we can give a similar description of the global and window
approaches. The global approach can be seen as the analysis of the set of events
covered at any point in time:

Ct = {e ∈ E | first(e) ≤ t& first(e) �= ⊥}

The window approach requires some more information: if we take firstw(e) to be
the first time event e was covered after time w (the earliest date in our window),
we can define:

Wt = {e ∈ E | firstw(e) ≤ t& firstw(e) �= ⊥}

Figure 4 shows an example of progress and status reports for the floating-point
coverage model with reverse coverage analysis. The status report in Figure 4(a)



198 A. Birnbaum et al.

Attributes Coverage Data

Instr Result RM Count First Last

fadd +Norm 0 471 6/10 8/31

fsub -∞ Near 193 6/11 8/31

fres -DeNorm 0 219 6/14 7/24

fadd -MaxNorm +∞ 153 6/27 8/28

fabs +0 −∞ 189 7/02 8/30

fdiv QNaN Near 48 7/16 8/23

fsqrt +DeNorm −∞ 0 - -

(a) Status report
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(b) Progress report

Fig. 4. Reverse coverage reports

is similar to the report in Figure 2(b), except for the added Last column that
specifies when events are last hit. This column can be used to identify stale
events, such as the third event that has not been hit in more than 30 days. The
progress plot in Figure 4(b) shows the reverse progress plot in addition to the
“normal” global progress and window progress.

Like the “normal” progress report, the reverse progress report can reveal
useful information to its users about the state and progress of the verification
process. The slope of the plot can be useful in determining the rate of covering
events again. Specifically, the time it takes the plot to flatten is the time needed
to cover again all the events that the current environment can cover. This time
can be used to determine the size of the window in the window approach. For
example, in Figure 4(b) it takes the reverse plot about 1 1

2 weeks to flatten, and
therefore this value (or a slightly bigger one) should be used as the window size
instead of the 1 week that is used in Figure 3(b).

Discontinuities and sharp changes in the slope indicate a sudden loss of the
ability to cover a set of events. For example, in Figure 4(b) we see such a change
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around July 25. This change indicates that about 40 events that were hit early are
suddenly no longer hit. A simple query to the coverage database regarding events
that were last hit before July 25 yields a report like the one shown in Figure 5(a).
This basic status report can be combined with more advanced coverage analysis
techniques, such as the techniques described in [6], to provide more compact
and meaningful reports. For example, clustering techniques such as hole analysis
can be used to identify groups of events that have not been covered lately and
indicate that a major area has been skipped. In our example, the hole analysis
report produces the report in Figure 5(b) that contains only one line. This report
quickly identifies that the fres instruction has not been used with negative
results since July 25.

This kind of phenomenon cannot be seen with the global report alone, as this
only looks at the time of first coverage. The window report does show a decrease
in coverage when compared to the global one, but as stated before, it is hard to
understand from this report alone if the decrease shows a true gap in coverage
power or is just a measurement artifact and would go away with a wider window.
The plateau in the reverse coverage plot tells us it is the former.

Attributes Coverage Data

Instr Result RM Count First Last

fres -Norm 0 258 6/10 7/23

fres -DeNorm 0 219 6/14 7/25

fres -∞ Near 138 6/16 7/26

fres -MaxNorm +∞ 113 6/17 7/22

fres -MinNorm −∞ 148 6/18 7/26
(a) Simple list of stale events

Hole size Instr Result RM

36 fres SIGN.NEG *
(b) Large area of stale events

Fig. 5. Events not covered since July 25

Another advantage of the reverse coverage analysis is the creation of regression
suites. Static, coverage-oriented regression suites are small sets of test cases that
can cover all the covered events. Efficient algorithms for creating such regression
suites exist [10], but they rely on obtaining coverage information of all test cases
available. When this information is not available, such as the case in this paper,
regression suites are created by saving to a database the test case that hit each
coverage event for the first time. With the reverse coverage analysis approach,
this method is replaced by saving the test cases that are the last to hit coverage
events. The advantage of the reverse method is that it harvests newer test cases,
and therefore, the chances that these test cases lose their coverage capabilities
because of changes to the DUV or its verification environment are smaller. In
addition, newer test cases are being generated by an improved and better tuned
verification environment. Therefore, they cover events faster and result in smaller
regression suites. For example, in the floating-point model, the size of a first hit
based regression suite is 193 test cases, while the size of reverse regression suite
is only 175 test cases.
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Implementing the reverse coverage analysis requires saving the last time each
event is hit. This adds small constant factor to the size of the coverage database.
It also adds a small constant factor to the time needed for processing raw cov-
erage data. Performing the reverse coverage analysis and producing its reports
have similar complexity as global analysis. For example, both the normal and
reverse progress reports require sorting the events according to coverage time
(first for the normal report and last for the reverse report) followed by a scan
of the sorted list to create the plot, which leads to a complexity of o(n logn) for
n events.

4 Usage Example

The reverse coverage analysis was used in the verification of two high-end IBM
microprocessors: POWER7 and z196. The support for reverse coverage was im-
plemented on top of two IBM internal coverage tools, Meteor [6] and Bugspray [8].

Meteor is a cross-product coverage analysis tool used for architectural and
microarchitectural coverage. It uses the global approach and it already keeps
information about the last time coverage events are hit in its databases. However,
its analysis engines do not support the reverse progress and stale events reports.
We created the reverse progress reports by post-processing a detailed status
report of covered events, sorted according to the last hit time. To generate stale
reports, such as the one shown in Figure 5(b), we filtered the events based on
the last hit time and fed the filtered events back to the tool analysis engines.

Figure 6 shows the reverse progress of the CoreExecute model. This model
is designed to check that all aspects of the execute instructions (ex and exrl)
are verified. The figure is similar in shape to Figure 4(b), although the effects
in Figure 4(b) such as the flattening of slope and sudden changes in it are less
noticeable here. This figure and similar figures for other models are produced as
part of the daily coverage reports of the project. The plots are used to detect
bad trends in the coverage, such as a large number of stale events and sharp
changes in the ability to cover events again.

Bugspray is a designer-level coverage tool for discrete coverage events. It uses
the window approach with a configurable window size. The POWER7 and z196
projects used windows of 14 and 21 days for their reports. To add support for
reverse coverage analysis, we added a small, simple database that includes a
summary of the coverage history for each event. This summary includes dates
of when an event is defined and when it first and last hit. The history database
is updated when the daily reports are generated. It reports stale events in two
ways: it marks stale events in purple instead of red that is used for uncovered
events, and it creates reports of the stale events like the one shown in Figure 7.

Reporting the stale events helped the verification teams in several ways. First,
it ensured that the window time period was appropriate. This was done by
ensuring that only a very small number of events fluctuated between the covered
and stale states. In addition, the information on stale events combined with
information on the test templates that contributed to the coverage of which
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Fig. 6. Reverse progress report for the z196 CoreExecute model

Unit Entity Var First Hit Last Hit

L3 l3sdrtl case-00951 May-1-08 Oct-27-08

L3 l3sdrtl bad-hpc-dir-dis Apr-15-08 Jul-19-09

MCU mca-top crc-w-idxmatch Oct-6-08 Jun-28-09

IFU pref-mac squash-w-dmd Apr-1-08 Jul-15-09

LSU ls-srqs lssrqs-count053 Nov-10-08 Feb-18-09

NCU ncrccomc bsr-rc-arc-s8-s8 Apr-22-08 Jul-25-09

Fig. 7. Sample of stale events report for POWER7 system verification

events helped fine-tune the execution policy of test templates and identify other
problems in activating the verification environment.

5 Conclusions

Information about stale coverage events can be important to verification teams
because it reveals problems in the verification process. This paper proposed the
reversed coverage analysis approach to better handle stale events. By recording
the last time coverage events are hit and looking backwards in time, reverse
coverage analysis can easily detect and report stale events. In addition, it can
provide users with other useful information about the state of the coverage pro-
cess, such as the time it takes to re-cover all the covered events.

The reverse coverage analysis was implemented on top of two IBM coverage
tools and was used in the verification of two high-end microprocessors. The re-
verse progress and stale events reports helped the verification teams in both
projects to detect stale events, and through them, identify problems in the ver-
ification environments and processes.
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Our current work is focused on extending the usefulness of the reverse coverage
analysis approach. Specifically, we are investigating new methods to improve
the analysis of the reverse data. For example, we examine how trend analysis
techniques [11] can be used to automatically detect a sudden loss in the ability
to cover a large set of events.
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Abstract. We present an effective technique for crosschecking a C or
C++ program against an accelerated OpenCL version, as well as a tech-
nique for detecting data races in OpenCL programs. Our techniques are
implemented in KLEE-CL, a symbolic execution engine based on KLEE
and KLEE-FP that supports symbolic reasoning on the equivalence be-
tween symbolic values.

Our approach is to symbolically model the OpenCL environment using
an OpenCL runtime library targeted to symbolic execution. Using this
model we are able to run OpenCL programs symbolically, keeping track
of memory accesses for the purpose of race detection. We then compare
the symbolic result against the plain C or C++ implementation in order
to detect mismatches between the two versions.

We applied KLEE-CL to the Parboil benchmark suite, the Bullet
physics library and the OP2 library, in which we were able to find a total
of seven errors: two mismatches between the OpenCL and C implemen-
tations, three memory errors, one OpenCL compiler bug and one race
condition.

1 Introduction

The Open Computing Language (OpenCL) [12] is an open standard for parallel
computing architectures, such as Graphics Processing Units (GPUs). OpenCL
includes a C API which provides the means for a developer to execute computa-
tional kernels in parallel on an OpenCL compatible device. Kernels are written
in a variant of ISO C99 [11] referred to as OpenCL C.

The fundamental unit of execution in OpenCL is the work-item, which rep-
resents a single invocation of a specified kernel function. A kernel invocation
constitutes the parallel execution of a set of work-items, optionally organised
into work-groups, which can share common resources such as local memory.
Each work-item conceptually resides at a point in the kernel invocation’s it-
eration space, referred to as the n-dimensional range, or NDRange. Data-level
parallelism is achieved by having the kernel function vary the data items accessed
depending on the position of the work-item in the iteration space. Figure 1 shows
an example of how work-item functions can be used for this purpose.

The translation of an existing C or C++ program to OpenCL can be a com-
plex process, especially for those unfamiliar with the concurrency model and the
relevant APIs. In the end, the developer has little confidence that their trans-
lated OpenCL code is equivalent to the original C or C++ code. Neither can the
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i = get_global_id(0),

j = get_global_id(1);

y[j]
x[i]

i=0,
j=0 j=0

i=1,

i=0,
j=1

Array x

Array y

Kernel NDRange

Fig. 1. Using a 2-dimensional NDRange iteration space to vary the data items accessed

developer easily determine that their code is compliant with the OpenCL spec-
ification, because he or she may unknowingly be using undocumented quirks
of their particular implementation. For example, memory is generally not re-
quired to be consistent across work-items [12, § 3.3.1], and the actual behaviour
generally depends on the underlying hardware memory model.

This paper presents a crosschecking and data race detection technique for
OpenCL programs. Our approach is based on symbolic execution [13], which
provides a systematic way of exploring all feasible paths in a program for inputs
up to a certain size. On each explored path, our technique works by building
the symbolic expressions associated with the C/C++ and OpenCL versions of
the code, and proving their equivalence. During symbolic execution of OpenCL
kernels, we also maintain a log of all memory accesses for use in race detection.
We build on earlier work [5], in which we extended the KLEE symbolic execution
engine with support for crosschecking floating point and SIMD code.

This paper makes the following contributions:

1. We present a symbolic execution based technique for crosschecking OpenCL
programs against their original C or C++ implementations.

2. We present a technique for testing for the presence of data races in OpenCL
programs using a memory access log.

3. We describe KLEE-CL, an open-source tool that implements our technique
by extending KLEE-FP [5] (itself an extension to the open source symbolic
execution tool KLEE) with a model of the OpenCL runtime library and our
race detection algorithm.

4. We evaluateKLEE-CL by applying it to three Parboil benchmarks, the Bul-
let physics library and the OP2 library, and show that it can find real bugs,
including memory errors, race conditions, and implementation mismatches.

2 Overview

Our approach for testing OpenCL code is illustrated graphically in Figure 2.
Given an OpenCL and a C/C++ implementation of a given routine, our tech-
nique uses symbolic execution to explore all feasible pairs of paths (or as many
as possible in a given time budget) through the given implementations (§3.1).
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Fig. 2. Architecture diagram for KLEE-CL

Then, on each explored path it (1) symbolically checks whether the two imple-
mentations compute equivalent outputs (§3.2) and (2) checks whether there are
any race conditions (§5). In order to be able to reason about OpenCL code, our
technique implements a symbolic OpenCL model (§4).

To illustrate the main features of our technique, we walk the reader through a
simple example in which we check the equivalence between a C and an OpenCL
implementation of a simple routine. The code example shown in Listing 1 con-
tains a function called cpu arr sqrt, a C implementation of a function that
computes the square root of every element of an array in, storing it into an
array out; as well as gpu arr sqrt, an OpenCL implementation of the same
function that makes use of the OpenCL kernel arr sqrt kern.

Like the C implementation, gpu arr sqrt takes as arguments the input and
output arrays in and out and their size size. However, gpu arr sqrt receives
three additional arguments: a context, which is used to execute kernels on one
or more devices and to manage objects such as memory and kernel objects; a
command queue, which is created on a specific device and is used to enqueue
OpenCL commands to be executed by the device; and kernel, which represents
the function to be executed on the device (in our case arr sqrt kern).

In order to run the arr sqrt kern kernel, the code first creates two memory
buffer objects, in buf and out buf, which represent memory allocated on the
device. The memory buffer objects are set up such that OpenCL will copy data
between the host and the device when necessary (i.e. in will be copied to in buf

before kernel execution, and out buf to out after execution).
On line 11 the code sets the first kernel function argument to out buf, and on

line 12 the second to in buf. Then on line 14 it calls clEnqueueNDRangeKernel,
which schedules the execution of arr sqrt kern on the device. Finally on line 20
it calls clFinish, which blocks until kernel execution terminates.
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1 kernel void a r r s q r t k e r n ( global f loat ∗out ,
2 global const f loat ∗ in ) {
3 s i ze t i = g e t g l o b a l i d ( 0 ) ;
4 out [ i ] = sq r t ( in [ i ] ) ;
5 }
6
7 void gpu a r r s q r t ( c l c on t ex t context ,
8 cl command queue cmd queue , c l k e r n e l ke rne l ,
9 f loat ∗out , const f loat ∗ in , s i ze t s i z e ) {

10 /∗ I n i t i a l i s a t i o n of in bu f and ou t bu f : omitted ∗/
11 c lSe tKerne lArg ( ke rne l , 0 , s izeof ( cl mem ) , &out bu f ) ;
12 c lSe tKerne lArg ( ke rne l , 1 , s izeof ( cl mem ) , &in bu f ) ;
13
14 clEnqueueNDRangeKernel( cmd queue , ke rne l ,
15 /∗ work dim ∗/ 1 ,
16 /∗ g l o b a l wo r k o f f s e t ∗/ NULL,
17 /∗ g l ob a l wo r k s i z e ∗/ &s i z e ,
18 NULL, 0 , NULL, NULL) ;
19
20 c lF i n i s h ( cmd queue ) ;
21 }
22
23 void c pu a r r s q r t ( f loat ∗out , const f loat ∗ in , s i ze t s i z e ) {
24 for ( s i ze t i = 0 ; i != s i z e ; ++i )
25 out [ i ] = sq r t ( in [ i ] ) ;
26 }
27
28 int main (void ) {
29 f loat in [ 6 4 ] , cpuout [ 6 4 ] , gpuout [ 6 4 ] ;
30 u in t32 t ∗ cpuout i = ( u in t32 t ∗) cpuout ;
31 u in t32 t ∗ gpuouti = ( u in t32 t ∗) gpuout ;
32 k lee make symbol i c ( in , s izeof ( in ) , ” in ” ) ;
33
34 c pu a r r s q r t ( cpuout , in , 6 4 ) ;
35
36 /∗ I n i t i a l i s a t i o n of context , cq , kerne l : omitted ∗/
37 gpu a r r s q r t ( context , cq , ke rne l , gpuout , in , 6 4 ) ;
38
39 for ( s i ze t i = 0 ; i != 64 ; ++i )
40 a s s e r t ( gpuouti [ i ] == cpuout i [ i ] ) ;
41 }

Listing 1. A simple test benchmark

The call to clEnqueueNDRangeKernel specifies the bounds of an implicit par-
allel loop around a call to arr sqrt kern. In this case, the work dim argument is
set to 1, so the loop has one dimension; global work size is a pointer to size,
so the loop will have size iterations; and global work offset is NULL, so the
lower bound of the loop index is 0.

The arr sqrt kern kernel function implements one iteration of the loop found
in cpu arr sqrt. The get global id(0) function call on line 3 is used to retrieve
the loop index, which indexes the in and out arrays in the same way as the
loop index i in cpu arr sqrt. As with cpu arr sqrt, the loop index ranges
between 0 and size-1 due to the loop bounds specified by the arguments to
clEnqueueNDRangeKernel.
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The main function constitutes the test harness, which is similar to the ones
used to crosscheck scalar and SIMD implementations in KLEE-FP [5]. In order
to use our KLEE-CL tool, developers have to identify the C/C++ and the
OpenCL versions of the code being compared, and the inputs and outputs to
these routines. In our example, we have one input, namely the array in. Thus,
the first step is to mark this array as symbolic, meaning that its elements could
initially have any value (see §3.1 for more details). This is accomplished on line 32
by calling the function klee make symbolic() provided by KLEE, which takes
three arguments: the address of the memory region to be made symbolic, its
size in bytes, and a name used for debugging purposes only. Then, on line 34
we call the C version of the code and store the result in cpuout, and on line 37
we call the OpenCL version and store the result in gpuout (the initialisation
of the parameters context, cq and kernel are omitted for brevity). Finally,
on lines 39–40 each element of gpuout is compared against the corresponding
element of cpuout. As in KLEE-FP, we use bitcasting to integers via the pointers
gpuouti and cpuouti for a bitwise comparison. This is necessary because in the
presence of NaN (Not a Number) values, the C floating point comparison operator
== does not always return true if its floating-point operands are the same, as
distinguished from a bitwise comparison.

3 Crosschecking of OpenCL and C Implementations

Our technique uses symbolic execution to explore multiple paths through the
OpenCL and C/C++ implementations being compared, in order to check, on
each path, for output equivalence (§3.2) and race conditions (§5).

3.1 Symbolic Execution

At a high level, symbolic execution is a technique that allows the automatic
exploration of paths in a program. It works by executing the program on symbolic
input, which is initially unconstrained. As the programs runs, any operations
that depend on the symbolic input add constraints on the input. For example,
if the program input is represented by variable x, than the statement y = x+3

would add the constraint that y = x+ 3. Furthermore, whenever a branch that
depends on the symbolic input is reached, the technique first checks if both sides
are feasible, and if so, it forks execution and follows each side separately, adding
the constraint that the branch condition is true on the true side and false on the
other side. For example, given the symbolic input x, where x is unconstrained,
the symbolic execution of the branch if (x == 3) would result in two paths
being explored, one on which x = 3 and one on which x �= 3.

In our work, we use symbolic execution to explore the different paths in the
OpenCL and C/C++ implementations being tested, and for each pair of paths,
we check whether (1) there are no memory errors (these checks are by default
performed by KLEE); (2) the implementations are race free (§5) and (3) the
outputs computed by the two implementations are equivalent (§3.2).
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One fundamental limitation of symbolic execution is that it only handles
objects of fixed size (e.g., each data structure in a program usually has to be
assigned a concrete size, as in the normal execution of the program). For our
work, this means that we can verify the equivalence of OpenCL and C/C++
programs only up to a certain input size and number of threads. In the rest of
the paper, we discuss our experiments solely in terms of input size: this is because
in a typical OpenCL program, the number of work-items depends linearly on the
size of the input being processed.

3.2 Equivalence Checking

To verify the output equivalence on a pair of paths through the two implemen-
tations, our technique first constructs the symbolic expressions corresponding
to the output of each implementation, applies a set of canonicalisation rules to
bring the two expressions to a canonical form, and then compares the two ex-
pressions syntactically. The main advantages of this approach are performance
and the ability to deal with floating-point expressions, for which there are no
efficient constraint solvers currently available. On the other hand, this approach
is prone to false positives, i.e., it can say that two expressions are not equivalent
when in fact they are. For more details, we refer the reader to our previous work
on KLEE-FP [5].

In addition to the canonicalisation rules already implemented in KLEE-FP,
we added a set of new rules, some of which rely on certain assumptions about
the floating point model. For example, it is generally unsound to simplify x× 0
to 0 because if x is negative or infinite the result is respectively −0 or NaN.
However, developers are often not interested in such edge cases, and therefore
we added the option to enable such assumptions on demand (via command line
arguments). We added a total of three assumptions with five associated rules:

– The positive zero assumption allows the simplifier to disregard the difference
between positive and negative zero, which is usually inconsequential. If this
assumption is enabled, x+ 0 may be simplified to x.

– The finite assumption allows the simplifier to assume all results are finite. If
this assumption together with the positive zero assumption is enabled, x× 0
and 0× x may be simplified to 0.

– The associativity assumption allows the simplifier to assume that floating
point operations are associative. If this assumption is enabled, + and ×
operations are rearranged to be left-associative, so x+ (y+ z) is normalised
to (x + y) + z and x× (y × z) to (x× y)× z.

We also added two rules which do not rely on any assumptions being enabled.
These rules allow x× 1 and 1× x to be simplified to x.

4 Modelling the OpenCL Environment

Our OpenCL model presents a single OpenCL compliant device to the program
under test. This device presents itself as a CPU-based device with support for the
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cl khr fp64 extension, which allows the kernel to use double-precision floating
point arithmetic.

The OpenCL model is made up of two distinct parts: the runtime library,
which is used by the host to manage the execution of OpenCL kernels, and the
OpenCL C environment, which models the execution of a kernel on the device.

4.1 The OpenCL Runtime

The OpenCL runtime library is specified by two sections of the OpenCL specifi-
cation: the OpenCL Platform Layer [12, § 4] and the OpenCL Runtime [12, § 5].
The Platform Layer is used to query the set of available OpenCL devices, while
the Runtime is used to query and manipulate objects on a specific device or set
of devices such as device-side memory buffers and compiled OpenCL programs.
In total, our model implements 30 functions specified as part of the Platform
Layer and Runtime. For example, the clEnqueueNDRangeKernel function dis-
cussed in Section 2 is implemented by starting one modelled POSIX thread for
each work-item in the iteration space. Each thread sets up the environment ap-
propriately (for example, by initialising thread local variables) and then calls
the kernel function. In our implementation, we use the POSIX threading model
added to KLEE by Cloud9 [2].

4.2 The OpenCL C Programming Language

OpenCL kernels are written in an extended version of ISO C99 [11] referred to
as OpenCL C, which is specified as part of the OpenCL specification [12, § 6].
Among the language extensions provided by OpenCL C are vector data types,
specialised memory address spaces and a set of built-in functions.

The vector data types provided by OpenCL are used to exploit the SIMD
capabilities common among GPUs. For example, float4 is the name of a data
type referring to a vector of four float values. KLEE-FP, which our technique
extends, already includes support for vector data types [5].

The four disjoint address spaces provided by OpenCL are named global,
local, constant and private. Globally available data resides in global,

data local to a work-group in local, read-only data in constant and function
arguments and local variables in private.

Three of these address spaces ( global, constant and private) can be
modelled using the generic address space used by regular CPU implementations.
The local address space, however, needs special attention because local

data must be shared between work-items in the same work-group, and each
work-group must have its own local data. To model local, we added a
group-local address space, which is an address space shared between user-created
thread groups. Each thread belongs to a single thread group. Before beginning
kernel execution, we create one thread group for each work-group, and set each
thread’s group to match its work-group.

Our model implements 18 of the built-in functions specified by the OpenCL
specification, which are enough to run our benchmarks. These include work-item
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functions, which are used by the kernel to query various properties of the cur-
rent execution’s index space; math functions, which perform various mathemat-
ical operations (including vectorised variants); and the barrier synchronisation
function, which is used to introduce execution barriers into the kernel.

4.3 Runtime Compilation of OpenCL Kernels

Programs that use the OpenCL runtime library (written in languages such as C
or C++) are compiled in the usual way, before they are run. By contrast, kernels
written in OpenCL C are normally compiled at runtime by passing their source
code as a string to the runtime library function clCreateProgramWithSource,
and later compiling the program using the clBuildProgram function. This can
pose a challenge for tools such as ours, which necessarily must incorporate a full
OpenCL C compiler. Our implementation of clBuildProgram invokes a compiler
based on the OpenCL C front-end provided by the Clang [3] compiler. Clang is
designed to be used as a library, which made it easy to integrate into KLEE-CL.
Clang produces an LLVM [14] module representing the compiled program which
is then dynamically loaded into the current instance of KLEE-CL.

5 Race Detection

Our model implements race detection capable of detecting, on each path ex-
plored, read-write and write-write races across work-items. Note that our analy-
sis is targeted towards detecting races between work-items in the same NDRange.
In OpenCL, a command queue may be created in out-of-order mode [12, § 5.11].
By scheduling multiple kernel invocations on an out-of-order command queue,
or by scheduling kernel invocations across multiple command queues, a client
program may cause kernel NDRanges to run in parallel such that races may oc-
cur between NDRanges. In this work, we concern ourselves only with the more
common in-order case where only one NDRange is executing at a time.

To detect data races, we keep for each byte in the generic and group-local
address spaces a memory access record (MAR) of accesses to that byte by a
work-item thread. Each item in the MAR consists of the thread identifier of
the most recent work-item to access the byte, the work-group identifier of the
most recent work-group to access the byte, and four flags indicating whether the
byte was (1) written by one or more work-items, (2) read by one or more work-
items, (3) read by multiple work-items (many-read), and (4) read by multiple
work-groups (wg-many-read).

The MAR may be stored concretely or symbolically. The concrete represen-
tation of the MAR is an array of structs, each holding the MAR for one byte
in the array. The symbolic representation of the MAR is a set of 6 symbolic
arrays, each as large as the underlying array, and each representing one of the
MAR attributes. For efficiency we store the MARs concretely by default, but
if a symbolically indexed memory access is performed, the array’s MARs are
converted to the symbolic representation.
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Read
write[index] ∧ threadId[index] �= threadId ∧ wgid[index] �= wgid

manyRead[index] ← manyRead[index] ∨ (read[index] ∧ threadId[index] �= 0 ∧
threadId[index] �= threadId)

wgManyRead[index] ← wgManyRead[index] ∨ (read[index] ∧ wgid[index] �= wgid)
threadId[index] ← threadId wgid[index] ← wgid

read[index] ← �

Write
manyRead[index] ∨ wgManyRead[index] ∨ ((read[index] ∨ write[index]) ∧ threadId[index] �=
threadId ∧ wgid[index] �= wgid)

threadId[index] ← threadId wgid[index] ← wgId
write[index] ← �

Fig. 3. Race condition test and MAR updates

Whenever a memory access occurs, the MAR is inspected for any race con-
ditions, and then updated. A race condition can be a read-after-write, a write-
after-write or a write-after-read performed by a work-item or work-group other
than that identified by the corresponding entry in the MAR, or any write-after-
read if either of the many-read or wg-many-read flags are set.

The race condition test, together with the required MAR updates, are shown
in Figure 3. If the MAR is being stored concretely, we perform the test and
the MAR updates directly. If the MAR is being stored symbolically, the test is
performed by querying the constraint solver as to whether the symbolic expres-
sion representing the race condition test is feasible, and the MAR updates are
performed by appending an update to the symbolic arrays.

The main intra-work-group synchronisation mechanism provided by OpenCL
C is the barrier function, which acts as an execution barrier. barrier blocks
until all work-items in the work-group have reached the call to barrier, at
which point a memory fence is queued to ensure the correct ordering of memory
operations between work-items, and all work-items resume execution.

To simulate this behaviour, when a work-item reaches a barrier we add it to a
list of blocked work-items associated with the current work-group. When the size
of this list becomes as large as the number of work-items in the work-group, the
MAR is locally reset and the list emptied, resuming execution. We locally reset
the MAR by removing the work-item identifier and clearing the many-read flag of
each MAR whose work-group identifier matches the work-group performing the
barrier. This has the effect of causing no intra-work-group accesses across the
reset to be considered a race, while preserving inter-work-group race detection.

At the end of the execution of a kernel, wemust perform a full reset of the MAR,
to prevent access records from one kernel invocation from interfering with accesses
from subsequent invocations (since we only support in-order kernel invocation,
it is safe to do this). Similar to the case when a barrier is reached, we add the
kernel to a list of inactive work-items, which is this time associated with the entire
NDRange. When the list size becomes as large as the size of the NDRange, we
reset the MAR by removing all identifiers and clearing all flags, and then resume
execution.

To illustrate the race detection technique described above, we use the code in
Figure 4. This code contains two simple kernels, avg and avg2, the purpose of
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Work-item 1 Work-item 2
1 kernel void avg( global float ∗a) { Tid Wid R W Con Tid Wid R W Con
2 size t lid = get local id (0), 1 1 X X
3 lsize = get local size (0); 1 1 X X
4 float r0 = lid > 0 ? a[ lid−1] : 0; 1 1 X X w/r
5 float r1 = a[lid ]; 1 1 X 1 1 X X
6 float r2 = lid+1 < lsize ? a[ lid+1] : 0; 1 1 X 1 1 X X
7 a[ lid ] = (r0 + r1 + r2) / 3; 1 1 X X 1 1 X X
8 }

Work-item 1 Work-item 2
1 kernel void avg2( global float ∗a) { Tid Wid R W Con Tid Wid R W Con
2 size t lid = get local id (0), 1 1 X
3 lsize = get local size (0); 1 1 X
4 float r0 = lid > 0 ? a[ lid−1] : 0; 1 1 X
5 float r1 = a[lid ]; 1 1 X 1 1 X
6 float r2 = lid+1 < lsize ? a[ lid+1] : 0; 1 1 X 1 1 X
7 barrier(CLK GLOBAL MEM FENCE); 1 X 1 1 X X
8 a[ lid ] = (r0 + r1 + r2) / 3; 1 1 X X 1 1 X X
9 }

Fig. 4. Intermediate MARs for the memory location at a[0] during execution of work-
items 1 and 2. Column Tid shows the byte’s work-item identifier, Wid its work-group
identifier, R the read flag, W the write flag, and Con (if present) the nature of the
conflict detected at that line. Note that the many-read and wg-many-read flags are not
shown here.

which is to store in each element of array a the mean of that element and the
two adjacent elements.

The avg kernel contains a race condition, while avg2 uses an execution barrier
to avoid the race. For each statement in the kernels, we show alongside it the state
of the MAR for the first element of array a after execution of that statement.
Note that in KLEE-CL we execute each work-item in its entirety until it reaches
an execution barrier or terminates; however, our race detection algorithm would
work with any other execution schedule. Thus, for avg the entirety of work-item
1 is executed before work-item 2, and the MAR persists from the end of execution
of work-item 1 to the beginning of execution of work-item 2. For avg2 the first
five lines of work-item 1 are executed (up to the barrier), then the first five lines
of work-item 2, the memory access records are locally reset, the last two lines of
work-item 1 are executed and finally the last two lines of work-item 2.

On line 4 of avg in work-item 2, we report a read-after-write race. This is due
to the earlier write of work-item 1 on line 7 causing the write flag to be set. This
race does not exist in avg2 because on line 4 of avg2 in work-item 2, line 8 in
work-item 1 had not yet been reached, as it had been preempted by the barrier
on line 7.

6 Evaluation

We evaluated our technique on a set of benchmarks that compare C/C++
and OpenCL variants of code developed independently by third parties. The
codebases that we selected were the Parboil benchmark suite [10], the Bullet
physics library [6] and the OP2 [8] library.
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6.1 Parboil

Parboil [10] is a popular GPU benchmark suite, which contains C and CUDA [18]
implementations of various algorithms. In order to be able to run Parboil bench-
marks using KLEE-FP, we used Grewe et al’s [9] translation of certain Parboil 1
benchmarks from CUDA to OpenCL. The translation comprised four bench-
marks in total, and we tested three of these: cp (Coulombic Potential), mri-q
(Magnetic Resonance Imaging – Q) and mri-fhd (Magnetic Resonance Imaging
– FHD). We were unable to test the fourth benchmark, rpes (Rys Polynomial
Equation Solver) because it created a very large number of work-items (> 30000)
even for small problems, which KLEE-CL could not execute in a reasonable
amount of time.

We modified the code for each benchmark to incorporate the C and OpenCL
versions of the benchmarks into the same executable. This allowed us to con-
struct simple test harnesses similar to the one in Listing 1 which invoke both
versions of the benchmarks with the same symbolic arguments.

By running these benchmark programs using KLEE-CL, we detected two
mismatches between the C and OpenCL implementations of cp. We also found
three memory errors in mri-q and mri-fhd as a result of the memory bounds
checking performed during symbolic execution.

Mismatches: The cp benchmark computes the Coulombic potential for a set
of points on a grid. The computation of a Coulombic potential at a grid point
involves the calculation of the Euclidean distance of the form

√
δx2 + δy2 + δz2

between an electrically charged particle and that point.
The first mismatch for cp is due to an associativity issue. The OpenCL im-

plementation uses an unrolled loop in which a set of adjacent grid points are
computed during each iteration. Because only the x coordinate varies during
an iteration, the values of δy and δz remain constant, allowing δy2 + δz2 to be
precomputed at the start of each iteration. So the expression is evaluated as√
δx2 + (δy2 + δz2). In the C implementation, the inner expression is left un-

bracketed and normal C associativity rules apply. Because + is left-associative
in C [11], the expression is evaluated as

√
(δx2 + δy2) + δz2. Since + in floating

point is not associative, the two expressions do not match.
The second mismatch arises in the context of computing δx in the two im-

plementations. In the C implementation, this is done by subtracting the atom’s
x coordinate from the grid’s x coordinate. In the OpenCL implementation, δx
for the iteration’s first grid point is computed in the same way. However, for
subsequent points in the iteration, δx is computed by adding the grid’s spacing
to the value of δx for the previous point. Since floating point + and × are neither
associative nor distributive, the expressions do not match.

Whether these mismatches are important or not depends on the specific appli-
cation. KLEE-CL’s job is to flag such mismatches, but it is up to the developer
to assess whether strict equivalence should be enforced. Furthermore, developers
can use the assumptions discussed in Section 3.2 to ignore the cause of differ-
ent mismatches. For the current example, developers could add the assumption
that floating point operations are associative and rerun KLEE-CL to find other
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problems. With this assumption enabled, KLEE-CL verifies a variant of this
benchmark in which the second mismatch, but not the first, has been fixed.

Memory Errors: A non-obvious memory error was found in mri-q. After the
OpenCL kernel is invoked, mri-q deallocates some OpenCL memory buffers
and then copies some data from the GPU to the host. Because OpenCL kernel
invocation is asynchronous, the memory buffers may be deallocated by the time
that the kernel accesses them. KLEE-CL caught this error as a result of its
thread scheduling behaviour—it will defer execution of code running in other
threads (i.e. kernel code) until the current thread explicitly yields execution.
This means that the deallocations (running in the main thread) were executed
before the kernel code. We fixed this error by moving the data copies before
the memory deallocations. Since the data copies were synchronous, they caused
execution of the main thread to be preempted until after kernel execution.

A memory error found in both mri-q and mri-fhd was caused by a read
beyond the end of a memory buffer used to store (x, y, z) coordinates. This
memory buffer was indexed using the work-item identifier, which ranged between
0 and a multiple of the work-group size. This error was never caught, perhaps
due to the fact that all benchmark data provided with Parboil had a size that
was a multiple of the work-group size. We fixed these errors by enclosing the
relevant part of the kernel inside an if statement.

A memory error found in mri-fhd is related to the use of uninitialised memory.
This benchmark allocates a buffer of output data using memalign, which was
assumed to be zero initialised. Since memalign buffers are uninitialised, and
KLEE-CL models this, incorrect results were produced. The fix was simply to
initialise the buffer using memset.

6.2 The Bullet Physics Library

Bullet [6] is a physics library primarily used in gaming and 3D applications. It
incorporates a number of physics simulation algorithms, including a soft body
simulation. This can be used to simulate objects such as cloths which are freely
deformable within the environment. Bullet provides a C++ and an OpenCL
implementation of the soft body simulation.

We implemented two benchmark programs which create a simulation with
two soft body objects, each containing three vertices connected by three edges.
The coordinates of the vertices are concrete values, but all other simulation
parameters are symbolic. The program runs a single simulation step using both
the C++ and the OpenCL implementations, and compares the results.

The first of our benchmarks (softbody) tests the soft body simulation in
isolation, while the second benchmark (dynworld) tests the simulation using a
soft rigid dynamics world, which exercises more of the soft body code.

For the softbody benchmark, KLEE-CL verified that the C++ and OpenCL
code produce the same results. For dynworld, KLEE-CL was able to verify
equivalence under the assumption that x× 0 = 0 in floating point.

One important caveat is that we do not model inaccurate floating point op-
erations, such as the single precision division operation in OpenCL (which need
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only be accurate to 2.5 ulp [12, § 7.4]), because the LLVM IR generated by the
Clang compiler does not provide the accuracy of each individual operation. In
fact, while running a test using real GPU hardware (an NVIDIA Tesla C1060),
we found discrepancies between the C++ and OpenCL results, which were due
to a single precision floating point division operation, caused by the incorrect
modelling discussed above. We attempted to rectify this by casting the operands
of the division operator to double precision ([12, § 9.3.9] requires double precision
division to be correctly rounded).

OpenCL Compiler Bug: Of course, these equivalence results hold under the
additional assumption that all the components involved in running the code—
from compilers to hardware—are correct. The bug discussed below illustrates
this point.

After fixing the single precision issue mentioned above, we were surprised to
see that the test run on real GPU hardware still showed discrepancies between
the OpenCL and C++ implementations, despite the fact that we were able to
verify their equivalence. After further investigation, we found that the PTX
assembly code produced by NVIDIA’s OpenCL compiler continued to use a
single precision division instruction (div.full.f32), despite the cast to double
precision. If we disabled compiler optimisations, using the -cl-opt-disable flag
to the OpenCL compiler, the double precision division instruction (div.rn.f64)
was used. This suggested that the problem may lie in the optimiser.

We worked around this issue by postprocessing the PTX code to replace
div.full.f32 with div.rn.f64 together with appropriate conversions, similar
to the unoptimised code. After doing this, the results obtained were identical.

We reported the issue to NVIDIA who confirmed our bug report, and as of this
writing had fixed the bug, but had not yet released a version of their OpenCL
implementation with the fix.

6.3 OP2

OP2 [8] is a library for generating parallel executables of applications using un-
structured grids. OP2 enables users to write a single program targeting multiple
platforms. OP2 has four implementations: a serial reference (library) implemen-
tation and source-to-source transformations to CUDA, OpenCL and OpenMP.

Among the operations offered by OP2 is the global reduction operation, which
is used to reduce a set of results computed across a set of grid nodes to a single
result. We used KLEE-CL to test the correctness of the OpenCL implementa-
tion of the global reduction operation by extracting the relevant kernel from the
OP2 source code and constructing a benchmark program which uses this kernel
to perform a global reduction on an array of symbolic data.

KLEE-CL detected a race condition in this kernel, and the problematic code
is shown in Listing 2. Each iteration of the for loop on lines 4–9 uses a result
computed in an earlier iteration by another work-item (specifically, work-item
tid uses a result computed by work-item tid+d) without using an execution
barrier beforehand. Because of the lack of synchronisation, the behaviour of the
kernel is undefined by the OpenCL specification.



216 P. Collingbourne, C. Cadar, and P.H.J. Kelly

1 int t i d = g e t l o c a l i d ( 0 ) , d = g e t l o c a l s i z e ( 0 )>>1;
2 l oca l vo la t i l e f loat ∗vtemp = temp ;
3 . . .
4 for ( ; d>0; d>>=1 ) { /∗ d i s at most 16 here ∗/
5 i f ( t id<d )
6 . . .
7 vtemp [ t i d ] = vtemp [ t i d ] + vtemp [ t i d+d ] ;
8 . . .
9 }

Listing 2. OP2’s unsynchronised loop (slightly modified for formatting purposes)

To understand why this loop was written in this way, one must consider the
history of the code. The OpenCL implementation was heavily based on the
CUDA implementation and was in many places developed by replacing CUDA
constructs with the relevant OpenCL constructs. In CUDA (and the NVIDIA
GPU architecture), each group of 32 work-items within a work-group (referred
to as a warp) is executed in lockstep with implicit synchronisation between
work-items [18]. However, no such feature is present in OpenCL, and OpenCL
code relying on warps has implementation-defined behaviour. In the case of the
NVIDIA implementation of OpenCL this happens to function correctly, however
there is no requirement that it do so on other architectures.

We modified the kernel to introduce a local execution barrier using the barrier
function before each iteration of the loop (between lines 4 and 5). With this mod-
ification in place, KLEE-CL does not report a race condition.

7 Related Work

Despite the growing popularity of GPU languages, there has been relatively little
work on testing and verification techniques for code written in these languages.
While we are not aware of any work directly targeting OpenCL, several relevant
testing techniques exist for checking CUDA code.

Race Detection. Most previous work in this space has focused on race detec-
tion [1, 15, 24, 25]. Li and Gopalakrishnan [15] and Tripakis et al. [24] propose
two static race detection techniques based on translating CUDA code into SMT
constraints. The main advantage of a static analysis approach is coverage: our
dynamic approach depends on the number of paths explored by symbolic exe-
cution in a given time budget and can only reason about objects with concrete
bounds. On the other hand, static analysis suffers from false positives, due to
various over-approximations resulting from, e.g., analysing kernels in isolation
and loop unrolling.

A dynamic race detection approach similar to our technique is introduced by
Boyer et al. in the context of CUDA programs [1]. A more recent technique from
Zheng et al. [25] combines dynamic race detection with a static analysis pass that
removes accesses that can be statically proven to be safe or unsafe, resulting in
a system with a relatively small runtime overhead. The main weakness of these
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techniques is that they depend on the concrete inputs with which the program
is run. Instead, our approach can check for symbolic race conditions on all the
different paths explored via symbolic execution.

Our approach is also similar in spirit to previous dynamic race detection ap-
proaches for CPU code [7, 19, 21], although the barrier-based synchronisation
model used in OpenCL allows for a simpler algorithm than in the case of tradi-
tional synchronisation primitives such as locks and semaphores.

Concurrently and independently with our work, GKLEE [16] has extended
KLEE with the ability to find several categories of errors in CUDA programs,
including race conditions and deadlocks caused by execution barrier divergence.

Equivalence Checking. As far as we know, this is the first technique that
focuses on checking the equivalence between an OpenCL and a C or C++ im-
plementation. Our work builds up on previous research on KLEE-FP [5], in
which we have applied a similar approach to crosscheck SIMD and scalar imple-
mentations. To make this general crosschecking approach effective to OpenCL
code, we had to construct an OpenCL model, and add support for concurrency,
race detection and several additional rules and assumptions. In addition to our
work on KLEE-FP, this approach has been successfully used in the past to verify
code equivalence in other contexts, such as hardware verification [4], compiler
optimisations [17], block cipher implementations [23] and parallel numerical pro-
grams [22]. The main advantages of normalizing symbolic expressions and then
comparing them syntactically are that (1) the technique is lightweight compared
to more precise symbolic analyses such as [20], and (2) it can deal with floating-
point constraints, for which there are no efficient constraint solvers currently
available. On the other hand, this approach is prone to false positives, i.e., it can
say that two expressions are not equivalent when in fact they are.

8 Conclusion

We presented an effective technique for crosschecking OpenCL and C/C++ pro-
grams and for detecting race conditions in OpenCL code. We implemented our
approach in the KLEE-CL tool, and applied it to three real OpenCL code bases,
in which it found seven previously unknown errors: two mismatches between the
OpenCL and C implementations, three memory errors, one OpenCL compiler
bug and one race condition. The KLEE-CL tool is freely available from our
website at http://www.pcc.me.uk/~peter/klee-cl/.
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Abstract. There are many cases where the development and testing
of data-intensive applications need to be supported without the prior
existence of data. Our work presents a dynamic test data generation
framework for testing such applications. This capability is important,
when the data is confidential and cannot be given to the test person for
security reasons or when the application is in its development phase and
real data does not yet exist. The proposed solution dynamically inter-
cepts queries made by the application under test and creates appropriate
data based on user requirements. This approach does not require access
to the source code of the application under test, which could also be
confidential. Data generation can be controlled to achieve desired data
and query result patterns, including realistic data or data with higher
test quality. The paper concludes with experiments that demonstrate the
coverage and performance aspects of the solution.

Keywords: Database applications, data privacy, query-aware data gen-
eration, constraint satisfaction problems.

1 Introduction

Test data needs to be prepared in advance for testing many data intensive ap-
plications. Many large data-intensive applications depend on and manipulate
data that is stored in relational databases. These applications connect to the
database(s) and read or write data from and into the database using SQL queries.
In many cases, real data that the application uses is unavailable during the test-
ing stage. This can be due to data privacy regulations, in which the application
tester or even the developer might not have access to real data. Alternatively,
testing may be carried out during an early development phase of the application
when real data does not yet exist or is not structured in a way that the appli-
cation assumes. Even when real data is available it might not have the required
characteristics for thorough testing properties, such as covering rare corner cases.

We propose a solution that generates data on-the-fly while the application
is running, without needing the source code of the application and without re-
quiring access to real or masked data. In our solution, data generation can be
constrained directly by the user or by a knowledge database to achieve the
desired testing objectives.
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Existing solutions to this problem include various forms of data masking and
scrambling, and the generation of new data. We briefly present these alternative
solutions and the different set of conditions to which each solution applies.

1.1 Data Masking and Scrambling

Many industrial applications that manipulate large databases are developed and
tested by a third party or even by different teams in the same organization -
neither of whom have access privileges to real data. Access privileges to private
information, such as in the banking, insurance, or health industries, is usually
given to a limited group of individuals and cannot be transferred outside of the
production environment. The problem also arises when the application develop-
ment is outsourced to a different team with no access privileges to the data.

Testing such applications requires that an alternative database be supplied by
the database owner. The alternative database is prepared by masking (hiding) a
part or all of the data [1] in the real database. Masking is needed for many types
of sensitive information, including the identities of people, credit card numbers,
and more.

Masking usually incurs a large overhead of computation efforts when the
databases are large. Moreover, any small changes to the structure of the database
may require that the preparation process be done over again. The cost of such
operations is a burden especially in the context of off-shore outsourced devel-
opment or testing. The process requires access to secure data which naturally
involves bureaucratic decisions and permits. Furthermore, in many high security
situations, even the masking and scrambling of data could be deemed insuffi-
cient when non-reversibility, correctness, and security of these processes cannot
be guaranteed.

1.2 Data Generation

A different approach to dealing with the absence of data during the application
development and testing phases is the fabrication of alternative data. Off line
approaches that are unaware of the usage of the generated data, such as DB2
test data generator [2] populate the database with consistent data according
to its given schema. These methods require huge amounts of random data to
ensure the existence of useful data. The work presented by Emmi et al. [3] shows
how a software testing technique called concolic execution [4,5] can be used
to generate test data. Concolic execution involves a simultaneous concrete and
symbolic execution of the application. Concolic execution is usually applied for
small unit tests (e.g. methods, functions, etc), in which full coverage of the unit
under test is feasible [6,7,8]. Alternatively, a more realistic objective is to focus
on specific functional coverage goals. Furthermore, testing applications using
concolic execution requires access to the source code of the application, which
could be unavailable or confidential (e.g., when the testing is carried out by a
third party).
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Other works focus on query-aware data generation [9,10,11], in which a query
or a set of queries are given as input and the output is a database that answers
all queries with non-empty answers. These works do not directly concern specific
features of applications using databases, but nevertheless, can be used in such
a paradigm. Some of these works are concerned with generating data for all
coverage rules derived from a given query or a set of queries [12,13] and not only
a non-empty answer. These works generate the data using the Alloy analyzer
[14].

1.3 Proposed Solution

To overcome the shortcomings of existing techniques, we propose a solution that
generates data on-the-fly while the application is running. The solution does not
require access to real or masked data, to the tested application’s source code, or
to historic actual queries — all of which might involve some breach of security.

Data generation can be constrained directly by the user, who may be the tester
or the developer, or by a knowledge database. These constraints can direct the
generation towards desired testing objectives or to realistic database statistics
and query behavior. The solution generates new data as needed to fulfill the test
requirements while the application is running.

In the rest of the paper we present the solution framework. We elaborate on
the central components of the solution and discuss aspects of its implementa-
tion. We also describe several experiments with our solution and then state our
conclusions.

2 Dynamic Test Data Generation Framework

In this section, we outline how our solution enables interesting test cases to
be run for a data intensive application, without previously available data. The
solution needs the database schema, and can be driven by user requirements
and a testing-knowledge base. The application’s database is populated during
the application run in an on-the-fly manner inducing a performance overhead
that diminishes as the database is populated. A high-level description of the
solution is depicted in Fig. 1.

From the application’s point of view, the data generation process is trans-
parent. This causes the application to run as if the data had already existed
apriori. The user of the solution, whether developer or test person, equips the
data-generation system with the schema of the database and can specify the re-
quirements for the desired test properties. The data generation system also uses
a testing-knowledge base that accumulates information on how to best test the
database application through generated data. The user can then refer to or ac-
tivate this testing-knowledge through user requirements. The testing-knowledge
base may include information on interesting execution paths for the application
as well as various sources of realistic data. Realistic data can be derived from
publicly available data (e.g. lists of possible first names, formats of residence ad-
dresses, etc.) or can be modeled as software data generators that yield realistic
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Fig. 1. A high level description of the dynamic data generation solution

data patterns when invoked. One especially interesting source for realistic data
is database statistics automatically collected by most database servers. These
statistics can provide information on the data (such as value distributions) in
some actual database. This case is especially interesting when data already exists,
but cannot be made available for the user at a certain stage due to confidentiality
(proprietary data) or privacy regulations (health care records, banking industry
data, governmental information, sensitive personal information) and when the
data statistics are non or less confidential than the data itself.

The core of the data generation system is located between the application logic
and the database. It consists of three main parts: an interception mechanism, a
database analyzer, and a data generator. The interception mechanism catches
queries from the application, pauses the execution of each query on the database,
and passes it to the database analyzer. The analyzer queries the database and
checks whether the test requirements are met for the current query. These re-
quirements almost always imply that the database has enough data to return
a non-empty result to the query. If the requirements are met by existing data
in the database, the system lets the query pass through to the database. If,
on the other hand, the requirements are not met, the analyzer sends the query
to the data generator. The data generator parses the query and constructs a
constraint-problem based on the query, the current state of the database, the
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test requirements, and the knowledge base. The constraint-problem [16,17] is
solved using a constraint solver. The solution of the constraint-problem is used
to construct the records needed to populate the database. These records are re-
turned to the database analyzer which forms corresponding database commands
to actually add the records to the database. These commands are in the form
of Data-Modification-Language (DML) statements that are executed upon the
database to change its state. When the records have been added to the database,
the system lets the query pass from the application to the database. The ap-
plication then receives the result from the database as if the data existed prior
to the query execution. This entire generation scheme takes place “behind the
scenes”. Meanwhile, the application runs normally and receives answers to its
queries as if the data had been in the database to begin with.

2.1 Database Schema

The data generation solution can create new data in an existing database or can
start by creating an empty database; this is done by passing the appropriate
SQL DDL commands to the database server. In both cases, the solution requires
the database schema as one of its main inputs. The solution uses the schema
to discover the structure of the database to be populated, its tables, and its
columns, as well as rules that must be considered to make the data consistent.

There are various types of data consistency rules derived from the schema.
For example, if a column is not allowed to be ’null’, then null values must not
be generated for it. A column might have some ’CHECK’ constraint that must
be taken into account while generating its values.

Consider the database schema in Fig. 2. Creating a record for the table t1

dictates some constraints: x should be an integer, y should be an integer between
1 and 99, x should be larger than y, z should be an integer of null, and idRef

should be an integer for which a record with the same value must exist in table
t2. Such ’referential integrity’ constraints imply that when a record is generated
for table t1, an additional record may need to be generated for t2 with the same
value in the id field. The id field is a primary key of t2, which implies that
different records generated for t2 cannot share the same id value. Additional
constraints may be added due to the test requirements and the specific inter-
cepted query. For example, if the query is a SELECT query from table t1 with
the condition x > 30, then a constraint x > 30 is added to the list of constraints
to be solved.

2.2 Test Requirements

The solution framework allows users to define requirements related to the de-
sired test and ensure that the data leads to some interesting behavior in the
tested application. Users state their requirements through directives to the data
generation system.

There are two main types of test requirements. The first relates to queries ex-
ecuted by the application and the second relates to characteristics of the data in
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CREATE TABLE t1 ( x INT NOT NULL,

Y INT NOT NULL CHECK (y > 0 AND y < 100),

idRef INT NOT NULL,

CHECK (x > y),

FOREIGN KEY (idRef) REFERENCES t2(id) );

CREATE TABLE t2 ( id INT PRIMARY KEY NOT NULL,

z INT );

Fig. 2. Simple database schema

the database. Requirements related to executed queries must identify the queries
affected. This can be done using a query template in the form of a regular ex-
pression. Requirements related to executed queries can specify desired properties
of the results including size, column distribution, maximal value, minimal value,
average, etc. Requirements related to the database can specify the desired prop-
erties of the database including table sizes, column distribution, maximal value,
minimal value, average, etc.

QUERY_TEMPLATE = SELECT $ FROM $ t1 $ WHERE $ x > $

AMOUNT_CONSTRAINT = [ >= 20 ]

Fig. 3. Query template with constrain for amount

Consider the database schema given in Fig. 2 and the user requirement in 3.
This is an example for a requirement of the first type, relating to application
queries. Here, the user identifies all queries that use a SELECT from the table
t1 with an inequality constraint on x, x > $, where $ stands for a string of wild
cards). The requirement in 3 then specifies that such queries must yield at least
20 records as a result.

Figure 4 gives an example for a user requirement of the second type, relating
to the database. Here, the user specifies a desired distribution of values for some
column in the database. The desired distribution could generally be expressed
as either some formula or through quantile specifications. The requirement in
Fig. 4 specifies that column z in table t2 be distributed normally with a bias of
100 and a standard deviation of 10.

The user can add test requirements that impose further conditions on the
structure and relations of the database, such as conditions restricting the do-
mains of some columns or the required relations between columns. These re-
quirements are meant to impose conditions on the database that come from a

COLUMN = t2, z

DISTRIBUTION = normal(100,10)

Fig. 4. Distribution constraint
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deeper understanding of the application and the different scenarios under which
it is activated than what is expressed in the database schema. Such require-
ments should be used to help drive a specific test towards desired situations.
For instance, the user might add a requirement constraining the column z of all
records of table t2 to be either null or equal to the value of column x in the
record in table t1 pointing to it.

Furthermore, test requirements might relate to various pieces of information
provided in the knowledge base. For example, the user can add some specifically
designed data generation functions for some column types into the knowledge
base and then activate them through the tests directives.

2.3 The Knowledge Base

There are two categories of information accumulated in the knowledge base:
testing-knowledge and realistic data. Testing knowledge generally embeds infor-
mation that directs or biases the system to generate interesting test scenarios
and corner test cases. Testing-knowledge includes common generic testing knowl-
edge applicable to any application, such as knowledge about column data types,
and also knowledge on the best way to test an application.

Information on realistic data is collected from external sources either for some
specific needs of the application and the tester, or general information such as
localized geographic knowledge. Using the knowledge base, one might dictate
a set of predetermined values to be used for a certain column or column type
when generating data. Equivalently, a data generation function might be written
and entered into the knowledge base. For example, a useful external source for
localization purposes might be a list of people’s first names or a template for
representing addresses, both of which may vary depending on the location of the
application’s usage and database origin. Alternatively, names could be generated
according to a generation function that produces strings that sound like first
names for the purpose of de-identification [15].

2.4 Database Statistics

One especially interesting type of information for the knowledge base are the
database statistics generated by the database management system (DBMS) for
some real databases – possibly even the confidential database to be used by the
application. This is useful for cases where real data exists but is unavailable
due to data privacy and confidentiality issues. For each column in the database,
the distribution of values is given by various measures, such as the quantiles,
cardinality, minimal value, maximal value, etc. When database statistics are
given, the user can state a test requirement to generate data according to those
statistics. In such cases, the solution can be viewed as a tool that attempts to
mimic the behavior of the application for real data by populating the database
with generated data that approximates the given statistics.
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3 Building the Constraint-Problem

For a given relational database schema and a set of test requirements, we define
a satisfying set of a certain SQL query as a set of records that comply with the
given schema, and that satisfy the constraints originating from the conditions in
the query and from the user requirements.

SELECT a.y FROM t1 AS a

WHERE

EXISTS (

SELECT * FROM t1 AS b

WHERE b.x != a.x AND b.y = a.y)

AND

a.y IN (

SELECT z FROM t2 AS c

WHERE c.z > 0 AND c.z < 100 AND

c.id != a.idRef

);

Fig. 5. Sample query

For example, consider the database schema in Fig. 2, the test requirements in
Fig. 3 and Fig. 4, and the following complex (and artificial) query in Fig. 5. The
SQL query is asking for y columns of records of t1 that occur in other records
of t1 with different x columns. It also requires that the value of the selected y

column be equal to a z column (in the range 0 through 100) in t2 records that
don’t share the id column with the t1 record.

Any satisfying set for this query must include at least two records of table t1,
for which the y column is equal and the x column is not, and at least two records
in table t2 – the first to conform with the referential integrity requirement of
the id column in the selected t1 records, and the second to serve as the t2 record
referred to in the query. An example satisfying set is depicted in Tab. 1.

Table 1. Satisfying set for the query in Fig. 5

t1
x y idRef

7 97 1

8 97 1

t2
id z

1 103

3 97

In general, the analyzer receives the query string and queries the database to
see whether a satisfying set can be found in the database. If it is found, the query
is allowed to pass through to the database and return the results. If no satisfying
set is found in the database, the analyzer sends the query to the data generator,
which formulates a constraint problem based on the query, the database schema,
and the test requirements and knowledge base.
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A constraint satisfaction problem (CSP) [16,17] is a triple 〈X,D,C〉, where X
is a set of variables, D is a corresponding set of value domains for the variables,
and C is a set of constraints. A constraint solver solves a CSP and produces an
assignment for the variables in X with values from D, such that the constraints
C are satisfied. Constraint solvers are extensively used in both software and
hardware verification [6,13,18].

In our solution, the data generator formulates the CSP with different types
of constraints hailing from the different inputs as depicted in Fig. 6.

Fig. 6. A high level description of the CSP creation process. The constraints are taken
from the query, the database schema, and the test requirements and knowledge base.
The CSP is solved and the solution is then translated into a set of DML instructions
to alter the database.

The set of variablesX corresponds to all the columns of all the records needed
to satisfy the query. A variable name is represented uniquely by either the table
alias and the column name or by the table name and the column name. If
the variable is not identified by an alias, and there are multiple occurrences of
such variables belonging to the same table and the same column, then they are
identified by the order of their integration in the CSP. For instance, for some
column z of the table t2, the variables would be t2.z, t2′.z, t2′′.z and so on.

For each variable added to X , an appropriate domain is added to D that
corresponds to the domain defined for the corresponding column in the database
schema. If a foreign key is added to X , then all the referred columns are also
added to X and a constraint stating equality between the foreign key and the
referenced primary key is added to C. Furthermore, the condition that appears
in the WHERE clause of the query is added to C. If the WHERE clause includes
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subqueries then the subquery is treated similarly by adding all the columns of
all its joins to X and so on.

We demonstrate the CSP formulation process for the SELECT query given
in Fig. 5. In the beginning, the SELECT query addresses a single table, namely
t1 as a, therefore a.x, a.y, and a.idRef are added to X with domains of Z
for all, where Z stands for the integer domain. Since y is constrained in the
schema, then a.y > 0 and a.y < 100 are added to C. Furthermore, for each
foreign key variable, the referred columns are added. Then, t2.id and t2.z will
be added to X due to a.idRef . Once the referenced table’s columns are added,
equality constraints linking each foreign key to the appropriate primary key
should be added to the constraint list, thus, a.idRef = t2.id is added to C.
Adding the variable t2.z triggers the test requirement that relates to the column
z of the table t2 and adds a request that this variable be generated according to
normal distribution (see Fig. 4), meaning that t2.z ∈ Normal(100, 10) will be
added to C. Similarly, the EXIST clause causes the addition of b.x, b.y, b.idRef ,
t2′.id, and t2′.z to X and the addition of b.y > 0, b.y < 100, b.idRef = t2′.id,
b.x �= a.x, and b.y == a.y to C. The IN clause also adds the variables c.id
and c.z and the constraints c.z > 0, c.z < 100, c.id �= a.idRef . Lastly, to
conform with the key uniqueness requirement, all the variables representing each
unique key are constrained by a corresponding All Diff(·) constraint, where
All Diff(·) stands for the constraint that requires that all its operands are
different. The All Diff(·) constraint also constrains all primary key values that
have been generated previously for the column. This step is required preserve the
consistency of the database during the application run. It can be implemented
by saving a history of the existing unique keys and the generated ones or by
querying the database each time for the complete set of existing unique keys. A
more accurate, but also more complex to manage, constraint can demand that
every pair of records in the query must either use different key values or be
completely identical in all their columns. This can be formulated as follows:

X = { a.x, a.y, a.idRef, b.x, b.y, a.idRef, t2.id, t2.z, t2′.id, t2′.z, c.id, c.z } , (1)
D = { Z,Z,Z,Z,Z,Z,Z,Z ∪ {null},Z,Z∪ {null},Z,Z∪ {null} } , (2)

C = { a.y > 0, a.y < 100, b.y > 0, b.y < 100, (3)

a.idRef = t2.id, b.idRef = t2′.id,
b.x �= a.x, b.y == a.y,

c.z > 0, c.z < 100, c.id �= a.idRef,

(t2.id �= t2′.id)||(t2.z == t2′.z),
(t2.id �= c.id)||(t2.z == c.z),

(t2′.id �= c.id)||(t2′.z == t2′.z),
t2.z ∈ Normal(100, 10),

t2′.z ∈ Normal(100, 10),

c.z ∈ Normal(100, 10) } .
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A possible solution to the CSP stated in (1)-(3) is the solution depicted in Tab. 1.
If a QUERY TEMPLATE with an AMOUNT CONSTRAINTmatches the query, then all

variables are duplicated into arrays with the appropriate size. If the AMOUNT

CONSTRAINT states that more than a single record is needed for some table, then
an All Diff(·) constraint is added to the constraints’ set for each unique key.
For example, the AMOUNT CONSTRAINT in Fig. 3 causes each variable in Eq. 1 to
be duplicated into an array of a size larger or equal to 20 (a random number can
be chosen) and adds consistency constraints ensuring that all generated primary
keys are unique.

4 Implementation and Experiments

We implemented the solution in a Java-based environment, exploiting the Java
class loading mechanism. The query interception was implemented by overriding
the Java class loader and tracking the classes being loaded by the application
under test. Once the application causes the loading of the Java database con-
nectivity (JDBC) driver classes, the overriding class loader loads the respective
class and instruments it with dedicated code using byte code injection tech-
niques. Within the instrumented class, appropriate methods that normally exe-
cute SQL queries are changed to redirect the calls to the analyzer. The analyzer,
in turn, checks whether new data needs to be generated and manages the gen-
eration procedure as presented in Sect. 2. The constraint solver we used for the
data generation was the IBM ILOG CPLEX Optimization Studio [19] and the
database management system was MySQL [20].

The data generation system is given the database schema, the test require-
ments, and the knowledge base. The application under test is in Java bytecode
and no source code is needed by the solution. We tested the solution with an
application that runs queries against a synthetic database schema consisting of
30 tables with a total of 180 columns that include primary and foreign keys. The
application ran 100 queries with multiple joins, each containing a set of condi-
tions that involve 30 different columns. The data generation system caused the
generation and insertion of 3000 new records to the database. The experiments
were carried out on an Intel(R) Core(TM)2 Duo CPU E6550@2.33GHz personal
computer with 3GB of RAM.

Figure 7 depicts the time consumption, in seconds, of the data generation for
each query. The time period grows as the database grows due to the unique-key
constraints. As can be observed, the time consumption of the data generation
grows from ∼ 0.1sec for the first queries up to ∼ 1.4sec for the 100’th query.
In practice the latter queries are much less likely to require data generation,
because the database would already include most of the required data.

We also performed an experiment to show that the data generation overhead
is diminished as more and more data is added to the database. We applied the
dynamic data generation solution to an application running random queries with
multiple constraints and plotted the time intervals between each 100 queries.
Figure 8 depicts the data generation overhead in seconds for each 100 queries
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Fig. 7. Time consumption of the data generation of each query

Fig. 8. The time consumption of the execution of the queries including data generation
vs. the number of queries performed by the application

along the duration of the application’s execution. The figure shows that most
of the time overhead is spent at the beginning of the application run and the
overhead per query is decreased as the database is populated.

Another experiment we conducted measured the application’s method cov-
erage, a simple case of code coverage [21] of the application under test. In our
experiment, a coverage point was defined to be a method in the application.
The coverage point belonging to a method is met during a test when the test
executes the method. We created an application with 100 methods and marked
them as coverage goals. The 100 methods all receive as input a record that came
back from some query. The methods were divided into 50 pairs of methods: the
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Fig. 9. Coverage percentage vs. the size of randomly generated testing data (log scale)
averaged over 10 experiments (solid line with bars) and coverage percentage of the
dynamic data generation solution (dashed line with circles)

first method of the pair is invoked for every record resulting from some SQL
query. This method then used another internal SQL query that was based on
the information in the input record. It then invoked the second method of the
pair for every record resulting from the second query. The first set of queries was
a set of simple SELECT statements with 5 simple random WHERE conditions,
each relating to a different column of the same table. On average, the condition
for each column could be satisfied for half of the possible values in the domain
of the column. The second set of queries was a set of SELECT statements with
one WHERE condition that could be satisfied only for one value in the domain
of a column in a different table. In other words, the second set of queries was
much harder to satisfy with random generation of data.

We tested our dynamic data generation on the above mentioned application
and reached all the marked coverage goals, while generating a total of 49 records
for the two tables (44 for the first table and 5 for the second table). We also
measured the coverage with random generation of consistent data sets of different
sizes. Figure 9 depicts the coverage percentage results achieved with our proposed
dynamic generation solution and with random data vs. the size of the generated
data set (log scale). The results obtained by the random data generator precisely
correspond to the expected probability calculations.
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5 Conclusions

We presented a dynamic test data generation framework for testing data inten-
sive applications. We showed that it can be used during the development and
testing phases of applications that use data when data is not available for various
reasons. The solution does not require the prior availability of queries made by
applications nor does it require the source code of the application under test.

The framework enables the generation of interesting tests based on the struc-
ture of the database(s), on a set of test requirements, and on queries made by the
application during testing. The test requirements can bias the random data gen-
eration towards realistic data based on available statistics or modeled knowledge,
and towards data with better testing quality such as interesting corner cases. We
also showed that the solution achieves better coverage results than random data
generation with much less data and the time consumption overhead diminishes
as the application run progresses.

We are also working on integrating the dynamic data generation solution as a
mode of operation in a larger framework for testing data intensive applications.
The dynamic data generation would follow an off-line static data generation
solution. This off-line data generation solution could prepare parts of the data
that require time consuming analysis based on available generic information,
while the dynamic data generation would attempt to drive the tests towards
interesting cases based on the properties of the specific test. We believe that
such a hybrid solution should yield a good trade-off between systematic coverage
and user-guided scenarios with workload testing.
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Injecting Floating-Point Testing Knowledge
into Test Generators

Merav Aharony, Emanuel Gofman, Elena Guralnik, and Anatoly Koyfman
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Abstract. Floating-point unit (FPU) verification is a known challenge,
due to the variety of corner cases both in its data path and control
flow. We have identified a gap in the coverage of FP corner cases that
combine special data and control scenarios. We propose a solution based
on combining the deep FP knowledge of a special FP test generator with
the strength of a general-purpose test generator. We present a novel FP
testing knowledge package (FPTK) that consists of a weighted set of FP
scenarios. We explain the flow of combining the existing tools with the
FPTK and demonstrate its effect.

1 Introduction

Both formal and simulation methods have been developed to deal with floating-
point unit (FPU) verification. Verification by simulation involves executing a
subset of tests assumed to be a representative sample of the entire test space.
Two major types of stimuli generators that address the floating-point (FP) realm
exist. General-purpose generators, such as [5,6], can produce multi-instruction
scenarios. However, they usually lack internal knowledge of the FP domain and
thus do not apply for the verification of FP data path logic. FP test generators,
such as [7], target the particular intricacies of FP data. Particular cases of such
generators are directed test generators [8,9,10], which verify specific areas in
the FP design, such as the rounding mechanism. Static FP test suites [1,2] are
also used in simulation. Using all these methods, unit verification achieves high
confidence in the validity of the FP data path. However, these techniques are all
limited to handling single FP instructions.

FP verification still has a gap regarding combinations of data corner cases
with control flow. This gap is particularly vulnerable in designs that have ag-
gressive control features such as early forwarding of intermediate results. To
systematically cover this gap, we would need to combine all coverage cases of
interesting FP data with all interesting control flow cases, thus creating a large
cross-product coverage space. No existing tools target this space.

We analyzed certain FP bugs found during verification and concluded that the
scenarios that reveal such problems cannot be characterized in a single instruc-
tion. One example of such a bug is the following scenario. The first instruction
produced an intermediate result of the form 1.11...1 and exponent equal to 1023
(max norm exponent), which led to overflow and to an infinite final result due
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to the rounding mode. The intermediate result before rounding was forwarded
to another instruction, which also resulted in overflow. After overflow detection
in the first instruction, the pipeline was flushed, and the second instruction was
performed again, but the overflow flag was not reset.

A straightforward method to cover this gap is to inject interesting FP data
into the general-purpose test generator, by having the test generator randomly
select FP data from a static test suite every time it generates an FP instruction.
Although we use this method during later stages of verification, it is not rigorous
enough for core verification. This solution lacks the ability of the designer to
specify a data-control scenario in general terms, and to have the test generator
provide a suitable test.

In this paper, we propose combining the deep understanding of FP present in
special FP-generators with the simulation abilities of general-purpose generators.
For this purpose, we created an FP testing knowledge (FPTK) package that can
be invoked by an external test generator. We constructed a system comprising
three components: Genesys-Pro (GPro), IBM’s processor level stimuli generator;
FPgen, IBM’s deep-knowledge coverage-driven FP test generator; and an FPTK
package. The first two components are existing tools, and the third is new.

In subsequent sections we explain how this mechanism is constructed, and
how it is used to target the cross-product coverage space created by control-data
combinations. The proposed mechanism also provides flexibility over the level of
coverage case selection. The user can, on one hand, target a specific combination
corner, or on the other hand, randomly run tests out of the entire coverage space.
Moreover, a user can focus on a certain slice of the coverage space. In Section 2,
we provide background for this work and an overview of the tools we used. In
Section 3, we describe the FPTK package we built. Section 4 presents application
use and experimental results, and we conclude the paper in Section 5.

2 Background

Over the last two decades, IBM Haifa Research Labs has developed a large set
of verification tools for processors, used within IBM as well as externally [11].
The predecessor of GPro, Genesys [3,4], contained an FP testing knowledge
package, in which interesting FP data scenarios were implemented in C code.
Our package is based on this approach. When generating an FP instruction,
the test generator selects an interesting FP scenario using the FPTK package.
Our idea was to use FPgen for generating operands of FP instructions as a part
of the test generation process of GPro. Our implementation takes advantage of
the state-of-the-art tools GPro and FPgen and combines their test generation
abilities. In addition, we added a new FPTK package that directs the tools as
to which FP scenarios to generate and over which the user has control.

2.1 FPgen Overview

FPgen is a random test generator that receives a list of tasks to be fulfilled
(a coverage model) as input and then outputs a set of random tests covering
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the model. Coverage models are sets of FP instructions, with sets of constraints
on the input, intermediate result(s), and result operands of the participating
instructions. The constraints on FP operands are described in a language that
allows domain definition (e.g., ranges of numbers, bit vectors, and number of
leading zeros) and operations (set operations and relations between the values
of the operand fields). Each operand field (sign, exponent, and fraction) can be
constrained separately.

FPgen can be used by verification engineers to construct test cases by spec-
ifying constraints on the instructions. However, since interesting FP scenarios
are common to all FP designs, a generic test plan (GTP) was written. This plan
has been used for verification of all IBM FP designs over the last decade. It is
composed of a large collection of coverage models implemented as input files for
FPgen. This GTP is based on the experience accumulated during the verification
of several processors along with a deep understanding of FPU algorithms and
design. In addition to generic models, some tasks target implementation-specific
features. In particular, the IBM’s FP Test Suite for IEEE 754R Standard [2]
was constructed by running FPgen on a part of GTP referring to the IEEE
compliance.

2.2 Genesys-Pro Overview

GPro was specifically designed to address the challenges of test case generation
for processor verification. The tool is based on a generic engine. Its inputs are
a test specification describing a verification scenario and a design model that
describes the design architecture and micro-architecture. It then outputs a test
fitting the input requirements. The design model is specified in a declarative
language containing special constructs for describing the architecture and micro-
architecture. The test scenario is specified in a programming-like language. The
restrictions specified by the test template and the design model are automatically
translated into constraints on the output test. In the domain of FP, the GPro
design model includes the description of FP instructions including the operands
and a limited testing knowledge. This information is used to bias the chosen FP
data toward special cases.

3 FPTK

The general idea is to assign the responsibility of defining control scenarios to a
general-purpose test generator (GPro) and the responsibility for choosing mean-
ingful data to an FP test generator (FPgen), with a software layer (FPTK) re-
sponsible for the connection between them. The crucial point is that the general-
purpose test generator can bias the data chosen by the FP test generator via this
layer, based on the control state chosen. This is implemented in FPTK through
predefined weighted trees of different FP data cases, in which the weights can
be changed by the general-purpose test generator in such a way that the desired
data will be chosen by the FP test generator. Conceptually, FPTK consists of
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two components: an API between the two tools and a description of FP scenar-
ios in a modeling language. Whereas the first component is specific code for our
tools, the second component is generic and not tool-based.

At each stage of test generation, GPro decides (according to the specification
of the test template) which instruction to generate and which source and target
registers to use. In the normal flow of GPro, it also generates the data for the
operands. However, when FPTK is enabled, if an FP instruction is selected,
then GPro will call upon FPTK to provide the operand data. GPro sends a
request, including the name of the instruction (mandatory), the constraints on
the operands derived from the source and target registers’ content (mandatory),
new weights on the decision trees of FPTK (optional), and the constraints on
the content of relevant control registers, such as specifying the rounding mode
or enable bits (mandatory).

FPTK chooses a biasing for the operand/instruction and produces an FPgen
task that contains the requested instruction and the data constraints derived
from the original request, along with an FP bias request. FPgen solves the task
to generate data that complies with all requests. This data is returned to GPro,
which injects it as operand data for the current instruction and then continues
with its regular flow.

The strategy for choosing a biasing for the instruction is based on an internal
reservoir of scenarios. This reservoir was constructed based on the generic test
plan (see Section 2.1), and consists of several weighted decision trees. The most
basic distinction is between trees for operand and trees for instruction biasing.
For each of these, separate trees exist for binary, decimal, and hexadecimal FP.

The nodes of an operand tree represent the possible biases for the input
operands. Each edge from a parent node to a child node has a weight repre-
senting the probability of selecting the child node, given that the parent node
was selected. Thus the biasing on each of the generated operands is selected from
the operand tree, with probabilities determined by the weight of each edge in
the operand tree. For example, the root of the binary operand tree has two chil-
dren: “basic types” and “special values”. The “basic types” has several children:
“norm”, “denorm”, and so forth. The “norm” node has several children: “large
norm”, “max norm”, and so on. The probability of selecting the “large norm”
bias is the product of the weights of the edges to “basic types”, “norm” and
“large norm”.

As for instruction biasing, a unique tree exists for every instruction type,
such as a binary AddSub tree or a decimal Div tree. The biases resulted from
the instruction tree are on the entire instruction, rather than on the operands.
More specifically, biases can be on the final or intermediate result(s), or on some
relationship involving input operands or/and output operands. Some of these
biases are generic to all instructions, such as, “final result is overflow”. Other
biases are instruction-specific, such as, “divide: zero divisor exception”. Figure 1
portrays a small section of the binary FPAdd instruction tree.

The list of all scenarios is visible to the user who has control over the relative
probability of selecting each scenario. The edge weights can be changed during
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Fig. 1. Binary FPAdd instruction tree decision tree

test generation via directives passed to FPTK with other request attributes.
For example, a user can exclude denormalized intermediate results of FPAdd
instruction by changing the weight on the highlighted edge from 10 to 0 (see
Figure 1).

FPTK stores a general TK model containing all the biasing trees. To use
FPTK for choosing FP data, GPro calls FPTK in the beginning of test gen-
eration to create the FPTK model for the specified design. FPTK creates an
operand tree for each format supported in the design and an instruction tree for
each instruction implemented. At each call from GPro, FPTK creates an instance
for the specified instruction, meaning that the relevant operand and instruction
trees are prepared and that all environment fields are set, such as the rounding
mode or enable bits. Then the edge weights of the instance’s trees are updated
in accordance with the directives received, and one leaf is chosen on each tree.
These leaves define a constraint on the instruction’s operands that FPgen will
solve. The FPTK model currently contains approximately 2,000 leaves.

The three possible modes of operation are explained below:

1. Tailored cases: In this mode, a specific data-control scenario can be defined
by the user. An appropriate control sequence is specified in GPro, and the desired
data is chosen by setting zero weights on all other nodes in the FPTK decision
tree. This mode is useful for bug reconstruction and verification of bug fixes.

2. Bias toward certain cases: In this mode, the user selects preferred scenarios,
such as a denormalized intermediate result, and then requests FPTK to increase
the probability of this case. This mode can also be used to exclude certain simu-
lation events at different verification stages. For instance, if exceptions should be
excluded, then the user can request FPTK not to generate intermediate results
outside of the range of normalized numbers.

3. Completely random: This mode depends on the default strategy of choosing
biases. In this case, FPTK runs in the background and generates interesting FP
data without the user having to be aware of it.
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4 Application Use and Experimental Results

The FPTK was used in the FP verification of IBM processor designs for about
five years. The tailored cases mode was used mostly for bug reconstruction and
bug fix verification. We have discovered that producing the desired stimuli with
FPTK is significantly easier than manually writing the appropriate tests. The
bias toward certain cases was widely used to prevent exceptions during early ver-
ification stages (when exception handling is not yet implemented) and to stress
areas of the implementation not sufficiently otherwise exercised (for example, de-
normalized numbers treatment). This allowed the verification engineers to start
the verification process earlier and easily focus on the desired areas. However,
the largest impact was achieved when FPTK was used in the completely ran-
dom mode. This mode of operation allowed us to significantly improve the FP
coverage, as illustrated with the following experiment.

We used one of the recent IBM Power designs as a vehicle for the experiment.
We fed two identical regression suites into GPro. One was generated with FPTK
turned off, and the other with it turned on. We used two types of scenarios:
specific (containing FP instructions only, in which each instruction had an equal
probability of being selected), and general-purpose (actually used in verification,
containing all processor instructions). The generated test cases contained 200
instructions each to provide greater interaction among FP instructions, as well
as on encircling FP unit control logic. A total of 25,000 instructions per group
were generated, and the coverage was evaluated. The list of coverage events
used in the experiment is the list used for regression, containing 4,773 FP tasks.
Although this number of instructions is far from sufficient for providing full
coverage of all FP events, it allows for comparison of the tendencies of coverage
with and without FPTK.

As we illustrated in Figure 2, better coverage (up to a 10% improvement)
was achieved when running both test suites with FPTK turned on. As expected,
FPTK led to better results while running the test suite containing only FP
instructions.

Fig. 2. Coverage by the set of instructions
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GPro has its own embedded biasing, applied at each stage of decision making.
When it comes to operand data biasing, special values such as all zeros, all
ones, or denorm, have reasonable probabilities to be selected. This explains the
relatively good coverage achieved by GPro, even without FPTK. However, GPro
is not capable of creating test cases with more specialized FP scenarios, such as
cases of dependency among FP operands. Generating such tests is important, not
only to verify the correct implementation of an instruction, but also to verify its
interaction with other instructions and with control logic, whose behavior may
vary depending on the instruction result.

5 Conclusion and Future Work

FPTK is a package of interesting FP scenarios that can be invoked by an exter-
nal test generator. It has been used in the verification of several FP units and
has assisted in uncovering many interesting bugs. Our experiments have shown
clear advantages to using FPTK in FPU verification. FPTK has achieved better
coverage in less time than traditional methods and has generated control-data
corner cases that would have otherwise required intensive manual efforts. Al-
though we tested this approach using particular general-purpose and FP specific
generators, the underlying ideas may be applied to any pair of the appropriate
generators.

FPTK has been successfully integrated into existing verification processes,
providing a means to easily address the coverage targets. The next step is to
observe whether, given the new powers of scenario description and test generation
offered by FPTK, test plans themselves can be extended to include additional
microarchitectural corner cases.
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Abstract. In this paper, we present a tool THM&STE, which combines theorem
proving with symbolic trajectory evaluation. With the help of theorem proving,
a large property is decomposed into smaller properties, which can be handled
directly by running STE. Besides the support of decomposition by the classical
STE laws, some novel techniques such as simplification on the assertions based
on causal dependency between nodes, symmetry reduction, tacticals are provided
in THM&STE.

1 Introduction

Symbolic trajectory evaluation (STE) is an efficient formal verification method that has
grown from a combination of multi-valued simulation and symbolic simulation [10,2].
It has shown great promise in verifying medium to large scale industrial hardware de-
signs with substantial automation. STE has been actively used by Intel, Motorola, and
IBM. For example, STE was used at Intel to verify a floating point arithmetic unit
against IEEE standard 754 and a complex IA instruction length decoder unit [9,1].
There were prior attempts to combine symbolic simulation with theorem provers such
as ACL2 [3]. In addition, the FORTE formal hardware verification tool, which combines
STE and theorem proving with higher-order logic, has been developed at Intel [4].

Tackling state space explosion is a central task of formal verification such as STE.
Despite strategies such as X-abstraction and symbolic indexing techniques in STE, it is
not sufficient for us to only rely on STE to solve this task. A promising approach is to
combine STE with theorem proving [11,1,3]. The motivation of this hybrid approach
is to harness the power and flexibility of theorem prover to decompose and transform
large problems into tasks that can be tractably handled by STE.

The main motivation of ours is to build a practical tool, which combines theorem
proving and STE, on top of the trial version of Forte. We provide a free tool which
introduce some new tactics such as symmetry reduction, causal dependency-based sim-
plification, etc. Tacticals can introduce control structure to compose proofs. These are
powerful techniques to handle complex real-world verification problems.

2 An Overview of the THM&STE Framework

The overall framework of our tool is shown in Fig. 1. The tool takes a circuit netlist de-
scription such as EXLIF and automatically extracts a finite state machine model. Users

K. Eder, J. Lourenço, and O. Shehory (Eds.): HVC 2011, LNCS 7261, pp. 242–246, 2012.
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Trajectory specifications

Forte

FSM

Circuit descriptions like EXLIF

FL scripts

THM&STE

Fig. 1. Framework of THM&STE

interacts with the system by providing specifications and proof scripts for these specifi-
cations. Both specifications and proofs are written in FL. The proof scripts comprises a
series of tactics. The tool THM&STE accepts the specifications as a goal, and execute
the proof scripts to reach the goal. Once a proof tactic is applied to a goal, the goal is
reduced to some subgoals. The remaining subgoals are refined by further applications
of tactics until the remaining subgoals can be immediately solved by transforming them
to a STE assertion which can be verified by the STE engine.

3 Illustrating Example

In this section, we demonstrate our tool and our symmetry reduction method by verify-
ing a Content-Addressable Memory (CAM). CAMs are hardware implementations of
lookup tables. A CAM stores a number of tags, each of which is linked to a specific
data-entry. A CAM circuit typically consists of two memory blocks, one containing tag
entries, and the other the same number of corresponding data entries, Given an input
tag, the associative-read operation consists of searching all tags in the CAM to deter-
mine if there is a match to the input tag, and if so sending the associated data-entry to
the output. The overall FL verification script can be found in [8].

3.1 Writing the STE Assertion

A natural account of the tag match operation of a CAM is as follows:
entries = (0 upto 15),
ant = AndList
[(Is1 aread), (tagin bvAre vOfTagin), (tagmemmemAre vOfTagmem)]
matchCond i ≡ vOfTagin bvEq (vOfTagmemi)
consOfHit = AndList (map (λi.When (matchCond i) Is1 hit) entries)
assertion = ant� consOfHit
where tagmem is a memory for stored tag nodes, tagin a vector of input tag nodes,
vOfTagmem a vector of vector of symbolic boolean variables, vOfTagin a vector
of symbolic boolean variables. This specification says that once one line of stored tags
is matched with the input tag, the hit node becomes high.
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3.2 Writing the Proof

Property Decomposition Using Laws. There are two main ways to decompose a com-
plex STE assertion into smaller ones: structural decomposition and case split over data
(input) space. Now modularity is the most important features in modern hardware de-
sign. A hardware module is composed of a set of submodules. Naturally an assertion on
a module can boil down to assertions of the pieces of the modules. On the other hand, a
complex STE assertion specifies behaviors of a circuit over some kinds of legal values
of input nodes in symbolic simulation, we can naturally split cases over the legal values
to decompose a complex assertion into a set of smaller assertions. The split cases are
usually hinted by the boolean guards in the assertions.

The proof steps are backward-style reasoning steps combined with STE runs. After
applying rule steConjI to the main goal cktSat cam assertion, we have 16 subgoals.

(1) cktSat cam ant� When (matchCond 0) (Is1 hit)
...

(16) cktSat cam ant� When (matchCond 15) (Is1 hit)

For (1), we apply rule steImpI to it, we have a new goal:

(1’) (matchCond 0) =⇒ cktSat cam ant� (Is1 hit).

Let B = (Is1match0), we use rule steTrans to reduce (1’) into two subgoals:

(1-1) (matchCond 0) =⇒ cktSat cam ant� B;
(1-2) (matchCond 0) =⇒ cktSat cam B � (Is1 hit).

Simplifying Assertions Based on Causal Dependency. For goal (1-1), we can remove
all useless antecedents which assign symbolic values to memory lines tagmemi where
i �= 0, because only the memory line mem0 and input tags will affect the value of
match0 after the symbolic simulation. The tool THM&STE supports an automatical
simplification tactic steSimpByDelAnt for assertions such as (1-1) based on the causal
dependency between nodes specified in the consequents and antecedents.

For instance, for the goal (1-1), the bounded cone of inputs of match0 is the set of
tagmem0 and tagin, while the other memory lines has nothing with match0. Then
only the conjuncts tagmem0 and tagin in the ant are needed, and other antecedents are
eliminated. Let antf i = AndList [(Is1 aread), (tagin bvAre vOfTagin), (tagmemi

bvAre vOfTagmemi)], the renaming goal will be as follows after we use a command
steSimpByDelAnt to simplify the the goal (1-1):

(1-1’) (matchCond 0) =⇒ cktSat cam (antf 0) � (Is1match0)

Running STE Engine. For goal (1-1’) and (1-2), we can use STE symbolic simulation
tactic steSymbSim to directly verify it, which in turn calls STE engine supported by
FORTE . For a goal P =⇒ cktSat ckt A � C, THM&STE transforms A and When
P C into two lists of 5-tuples antL and consL respectively, then runs Forte command
STE ”” ckt [] antL consL [] to check the goal directly. If the result is returned as T ,
the goal is solved; otherwise the result is the condition where the assertion holds.
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Symmetry Reduction. After solving the goal (1-1) by solving (1-1’) and (1-2), now
our task is to solve the remaining unsolved goals (2)-(16). For instance, for goal (2), we
can use similar techniques to decompose it into subgoals: (2-1’)(matchCond 1) =⇒
cktSat cam (antf 1) � (Is1match!1). Our solution to (2-1’) is to use symmetry
reduction, instead of repeating an STE run.

THM&STE provides symmetry reduction tactic steSymReduce to solve the goal
from the proved lemma. Roughly speaking, our symmetry reduction procedure is di-
vided into four steps: (1) the matching procedure of two consequents C and C′; (2)
exploring the symmetry between two causal parts of the circuit ckt on A � C and
A′ � C′; the bijection computed in (1) is used as the heuristics to find symmetry;
(3) checking whether the symmetry between nodes in step (2) is a swap function; if
thus, then the function is used to transform the assertion P ′ =⇒ cktSat ckt A′ � C′.
(4) checking whether the transformed assertion in (3) can be unified with the proved
Lemma. In THM&STE, we can first introduce a lemma of the form (1-1’), and name it
”oneLineHit”. For goal (2-1’), we can use the following command to solve:
steSymReduce ”oneLineHit” (\n.is input n OR is latch n)

Tacticals. A main goal can be decomposed into similar subgoals, which can be solved
by similar proof procedures. For instance, subgoals (2)- (16) in CAM case study can be
solved by repeating similar proof steps. Therefore a respectable proof procedure can be
composed of tactics with the help of a few control structures. Such a control structure is
called a tactical, which is formally a higher-order functor operating on tactics. Properly
using tacticals make proof as automatically as possible.

For subgoals (i) in CAM case where 1 < i ≤ 16, we can define a general taci i
to solve it, then we can call tactical forTact [2, ..., 16] taci to solve all the remaining
goals. Here tactical forTact list tacPara st starts from proof state st, and applies a
tactic (tacParac i) repeatedly to solve all remaining goals, where i is in the integer
list list. This process will be repeated until all the elements of L are used or the tactic
(tacParac i) fails.

4 Experiments

Besides the combination of STE with the aforementioned techniques, we also combine
GSTE with these techniques. More experiments are done including ring-buffer based
FIFO, shift registers based FIFO, shift memory, and round-robin arbiters. The detail
experiment codes and data can be found in [5,7,6].

5 Conclusion

Our case studies on FIFOs and CAMs are typical examples to illustrate the guiding
principle of THM&STE. Instead of symbolic indexing, theorem proving and STE are
combined in THM&STE. The formal verification results are proof scripts, which use
deductive inference rules to handle property decomposition, which is similar to the ap-
proach used in [11,1]. Necessary simplification are done to delete useless antecedents
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by the analysis on the causal dependency between nodes specified in the assertions.
Deleting unnecessary antecedents means that the nodes, which specified by these an-
tecedents are set X, and symbolic variables used in them are also not needed. Symmetry
between some decomposed smaller properties w.r.t. the parts of the circuit under verifi-
cation is exploited, a representative property from the equivalence class is verified in the
STE simulator, and the others are solved by symmetry reduction. Tacticals can be used
to compose proof scripts to handle the complex problem, and make proof developments
as program developments. In our study on CAMs, we use laws to decompose the overall
assertions on the tag matching to each match cases, then we simplify all assertions of
each matching cases. We try to find the symmetry relation between assertions on each
matching cases, thus only need one STE run for a matching case, and the others can be
solved by symmetry reduction. Tactical forTact is used to repeat the similar proofs for
each assertion on one match case.

Acknowledgments. This work was supported by grants (61170073, 60833001,
60603001, 60721061, 60973016, 60496321, 61050002, 60421001, 60903030) from the
National Natural Science Foundation of China.
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Abstract. Functional verification is a widespread technique to check whether
a hardware system satisfies a given correctness specification. As the complex-
ity of modern hardware systems rises rapidly, it is a challenging task to find ap-
propriate techniques for acceleration of this process. In this paper we present
HAVEN, a freely available open functional verification framework that exploits
the field-programmable gate array (FPGA) technology for cycle-accurate acceler-
ation of simulation-based verification runs. HAVEN takes advantage of the inher-
ent parallelism of hardware systems and moves the verified system together with
transaction-based interface components of the functional verification environment
from software into an FPGA. The presented framework is written in SystemVer-
ilog and complies with the principles of functional verification methodologies
(OVM, UVM), assertion-based verification, and also provides adequate debug-
ging visibility, making its application range quite large. Our experiments confirm
the assumption that the achieved acceleration is proportional to the complexity
of the verified system, with the peak acceleration ratio being over 1,000.

1 Introduction

Today’s highly competitive market of consumer electronics is very sensitive to the time
it takes to introduce a new product (the so-called time to market). This has driven the de-
mand for fast, efficient and cost-effective methods of verification of hardware systems.
There are several options applicable to this issue, with functional verification currently
being one of the most popular.

Functional verification is a simulation-based method that generates a set of con-
strained-random test vectors and compares the behaviour of the verified hardware sys-
tem for these vectors with the dynamically predicted behaviour specified by a transfer
function, which is called scoreboarding. In order to achieve a high level of coverage of
a system’s state space, it is necessary to (i) find a way how to generate test vectors that
cover critical parts of the state space, and (ii) maximise the number of vectors tested.
The generation of appropriate scenarios can be fully automated by an intelligent pro-
gram that controls coverage results and chooses parameters or a pseudo-random number

� This work was supported by the Czech Science Foundation (projects P103/10/0306 and
102/09/1668), the Czech Ministry of Education (projects COST OC10009 and MSM
0021630528), Reduced Certification Costs Using Trusted Multi-core Platforms project,
Artemis JU, RECOMP #100202 and the BUT FIT project FIT-S-11-1. An extended version of
this paper is available as the technical report [1].
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generator seed according to the achieved coverage. This approach is called coverage-
driven verification. To facilitate the process of verification and to formally express the
intended behaviour, internal synchronization, and expected operations of the system, as-
sertions may be used. Assertions create monitors at critical points of the system without
the need to create separate testbenches where these points would be externally visible.

Simulation-based verification approaches including functional verification provide
great opportunity to inspect the internal behaviour of a running system, but they suf-
fer from the fact that software simulation of inherently parallel hardware is extremely
slow when compared to the speed of real hardware. To address this issue, we intro-
duce HAVEN (Hardware-Accelerated Verification ENvironment), an open framework
that exploits the inherent parallelism of hardware systems to accelerate their functional
verification by moving the verified system together with several necessary components
of the verification environment to a field-programmable gate array (FPGA). To provide
advanced level of debugging capabilities, the framework adopts some formal techniques
(assertion-based verification) and functional verification techniques (constrained-
random stimulus generation, self-checking mechanisms) and enables partial signal ob-
servability to achieve appropriate debugging visibility while running in the FPGA.
HAVEN is freely available and open source1, and we welcome collaboration on its
further development.

Currently, there already exist several approaches to acceleration of functional verifi-
cation. Mentor Graphics’ Veloce technology [2] accelerates simulation by synthesising
the design under test (DUT) and placing it into a proprietary emulator. This provides
simulation speed-up while maintaining full signal visibility. The maximum frequency
of the emulator is claimed to be 1.5 MHz, which may still not be sufficient for some
applications (e.g., applications that need to communicate using a high-speed interface).
From the same deficit suffers also the Cadence’s Transaction-Based Acceleration (TBA)
environment [3] with the performance of a proprietary accelerator/emulator being up to
1 MHz. TBA supports a reusable accelerated verification environment and benefits from
a direct transaction-based interface (based on the SCE-MI standard [7]) for the desired
testbench language. TBA ensures the same results in simulation and acceleration with-
out needing to change any design or testbench models and also guarantees access to all
design components and signals throughout the whole runtime session. SEmulator [5] is
a system that enables acceleration of simulation of a DUT using FPGA while sacrificing
observability of the DUT’s signals. Our approach is in many aspects similar to the work
of Huang et al [4] who also place the DUT with necessary components to an FPGA, and
in addition provide limited observability of the DUT’s signals. Nevertheless, to the best
of our knowledge, there is currently still no available working implementation based
on their proposal. Unfortunately, we could not perform a detailed comparison of these
solutions as they are not available to us.

2 Design of the Verification Framework

HAVEN is a SystemVerilog verification framework that allows users to run either a non-
accelerated or an accelerated version of the same testbench with a cycle-accurate time
behaviour.

1 http://www.fit.vutbr.cz/˜isimkova/haven/
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The non-accelerated version of the framework presents a similar approach to func-
tional verification that is commonly used in verification methodologies. This version is
highly efficient in the initial phase of the verification process when testing basic system
functionality with a small number of transactions (up to thousands). In this phase it is
desirable to have a quick access to the values of all signals of the system and to monitor
the verification process in a simulator. Coverage statistics (code coverage, functional
coverage, path coverage, etc.) provide a feedback about the state space exploration and
allows the user to arrange constrained-random test cases properly to achieve even higher
level of coverage. Despite all these advantages the application of the non-accelerated
version is very inefficient for verification of complex systems and/or large number of
test vectors.

The accelerated version of the framework moves the DUT to a verification environ-
ment in the FPGA. As RTL simulation takes the biggest portion of verification time,
this approach may yield a significant acceleration of the overall process. Complex sys-
tems can be verified very quickly and with much higher number of transactions (in the
order of millions and more). Behavioural parts of the testbench, such as planning of
test sequences, generation of constrained-random stimuli, and scoreboarding, remain
in the software simulator. This partitioning is possible because the generic nature of
currently prevalent verification methodologies, such as Open Verification Methodology
(OVM) or its extension Universal Verification Methodology (UVM), and transaction-
based communication among their subcomponents enable to transparently move some
of these components to a specialized hardware. The communication between the soft-
ware and the hardware part of the verification environment is mediated using a generic
protocol. Nevertheless, the readability for verification engineers remains the same and
the tests can be assembled at a high level of abstraction without the need to change any
hardware-level code.

As illustrated in Fig. 1 some components of the framework are shared in both ver-
sions. On the other hand, the use of other components strictly depends on the selected
version of the framework.

Testcases, written by the user, hold parameters such as settings of generics of the
system, the number of tested transaction, or options for the generator of random trans-
actions. Generator produces constrained-random stimuli, which are typically random
data and random delays generated in the ranges specified in the Testcase. Scoreboard
dynamically predicts the response of the DUT and compares it with received transac-
tions. The remaining blocks were designed in order to create an innovative architec-
ture that supports fast and easy switching between the two versions, which is as easy
as changing a single parameter of the verification. These blocks are briefly described
below and more details can be found in [1].

Input Controller interprets instructions from testcases. For the successive processing
of transactions, the Input Controller hands over the control to Software Driver or to
Hardware Driver according to the selected version.

Driver breaks down data transactions received from Input Controller into individual
signal changes and supplies them either on the input interface of the simulated
DUT in the non-accelerated version (Software Driver) or on the input interface of
the synthesised DUT in the FPGA in the accelerated version (Hardware Driver).
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Fig. 1. The architecture of the HAVEN framework

Monitor observes signal transitions from the output interface of the simulated DUT
in the non-accelerated version (Software Monitor) or from the output interface of
the synthesised DUT placed in the FPGA in the accelerated version (Hardware
Monitor). Subsequently, it groups signals together into high-level transactions and
passes them to Scoreboard for comparison.

Assertion Checker is used to check validity of assertions inside or on the interfaces
of the DUT. SystemVerilog uses the linear-time assertion language SystemVerilog
Assertions (SVA) as its internal part. Given its linear nature, any assertion in the
language can be effectively transformed into a Büchi automaton, which can in turn
be easily implemented as a finite state machine in the FPGA (see [6]).

Signal Observer monitors values of signals in the system during a verification run.
The values are sampled in each clock cycle and stored into the standardised Value
Change Dump (VCD) format and streamed into software using the generic proto-
col. Later they can be inspected using any compliant waveform viewer, e.g., Model-
Sim or GTKWave. When functional verification of a system detects an error, Signal
Observer allows to observe internal states of the verified system in order to localise
the source of the erroneous behaviour. There is no limit on the number of observed
signals, however, observing a high number of signals may decrease the performance
of a verification run, as the transport of observed signal values and test data share
the same communication channel.

HAVEN is built upon NetCOPE2, a free and open source platform for development of
applications in FPGAs. NetCOPE provides abstraction over the type of the FPGA and
the used acceleration card by defining a uniform interface for data transfers between the

2 http://www.liberouter.org/netcope/

http://www.liberouter.org/netcope/
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FPGA and the CPU. Although NetCOPE focuses primarily on network applications, it
was successfully used for our purpose as well. Moreover, because NetCOPE provides
a uniform interface over several protocols, its use makes it very easy to change the
framework to use Ethernet or other supported communication protocol for data transfers
instead of a system bus without any change to the verification environment itself.

In order to achieve cycle-accurate time behaviour of verification runs, simply placing
the DUT into an FPGA is not sufficient, as the transfer of data through the system
bus may be delayed, thus yielding behaviour different from the one obtained from the
simulator. We solve this issue by placing the DUT into a separate clock domain in the
FPGA and enabling/disabling the clock signal for this domain depending on the state
of DMA buffers for the input and output transactions. The communication between
the main and the DUT clock domain is accomplished using input and output internal
asynchronous FIFO buffers (see [1] for further details). Thus the run of the DUT in the
FPGA is guaranteed to result in the same waveform as the run in the simulator.

The framework monitors two types of errors: assertion failures and conflicts in Score-
board such as missing or corrupted data or incorrect order of received transactions. If
a bug is detected, the framework provides a short report about the nature of the failure,
the simulation time when it occurred and the number of the received transaction which
caused the inconsistency in Scoreboard.

3 Experimental Results

We performed a set of experiments using the COMBOv2 LXT155 acceleration card
equipped with the Xilinx Virtex-5 FPGA in a server with two quad-core Intel Xeon
E5420@2.50 GHz processors and 10 GiB of RAM. The data throughput between the
acceleration card and the CPU was measured to be over 10 Gbps for this configuration
and the clock frequency of the acceleration environment was 125 MHz. We used Mentor
Graphics’ ModelSim SE-64 6.6a as the SystemVerilog interpreter and in the case of the
non-accelerated version also as the DUT simulator. Unfortunately, we were not able to
compare HAVEN to other solutions for acceleration of functional verification, because
these are mostly not freely available commercial products.

We evaluated the performance of HAVEN on two hardware components: a simple
FIFO buffer and a hash generator (HGEN) which computes the hash value of input
data. In order to fully exploit the capabilities of the accelerated version of HAVEN it is
necessary to verify a complex system. For this purpose we also built systems with 2, 4,
8, and 16 parallelly working HGEN units.

The results of our measurements are shown in Table 1. The average acceleration ratio
of the accelerated version computed from all verification runs for every verified system
is given in the row Acceleration, whereas the row Acceleration w/o trans. represents
the average acceleration ratio without the time of transaction generation (as this is the
same for both versions). Rows Slices and Slices % describe the total consumed amount
of resources at the FPGA (in Virtex-5 slices and percent respectively); the total num-
ber of slices on the used FPGA is 24,320 and the overhead of NetCOPE is about 35 %
of FPGA resources. The resource consumption of overhead modules (driver, monitor,
etc.) is negligible (below 2 %). The row Build time gives the time it took to build the
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Table 1. Results of experiments with HAVEN

Component FIFO HGEN HGENx2 HGENx4 HGENx8 HGENx16

Acceleration 2.38 4.73 12.47 17.11 35.68 142.26
Acceleration w/o trans. 38.25 27.51 81.97 116.39 243.09 1,008.00
Slices 9,362 9,787 11,315 12,938 16,304 22,096
Slices % 38.5 40.2 46.5 53.2 67.0 90.9
Build time [s] 1,473 1,724 1,895 2,340 3,390 7,909
B-E transactions 3,116,000 622,000 222,000 196,000 131,000 75,000

firmware of the accelerated version and the row B-E transactions holds the number
of transactions for which the accelerated version starts to be beneficial (i.e., when the
acceleration compensates for the build time of the firmware). Details about the experi-
ments and further discussion can be found in [1].

4 Conclusion

We presented an open framework for FPGA-accelerated functional verification of hard-
ware systems, which is to the best of our knowledge currently the only open and free
solution available. The framework allows users to easily accelerate SystemVerilog test-
benches by moving the verified DUT from the simulator into FPGA. The frequency
of the acceleration environment achieved in our experiments was 125 MHz, which is
significantly higher than the frequency of emulation-based commercial solutions (cur-
rently up to 1.5 MHz). However, the use of HAVEN is limited by available resources
of current FPGA technology, thus it is more appropriate for verification of stand-alone
IP cores than for verification of full industrial-size circuits. The components of the
framework can be easily incorporated as blocks into testbenches that use OVM, UVM
or any other transaction-based verification methodology. The experiments and their re-
sults show that by mapping the RTL logic into an FPGA instead of using a software
simulator the acceleration ratio of over 1,000 can be achieved.

In the future, we wish to continue improving HAVEN. As currently only manual cre-
ation of Assertion Checkers is supported, we believe that implementing (and perhaps
improving) the procedure proposed in [6] for synthesis of SVA assertions, both on in-
terfaces and inside systems, is a reasonable step. The results of our experiments show
that another challenging issue is hardware-accelerated generation of test vectors, which
requires solving often quite complex constraints. In order to verify more complex and
industrial-sized circuits, we wish to seek a less complex but sufficient platform for data
transfers to use instead of NetCOPE. Moreover, to comply with current industry stan-
dards, providing the SCE-MI [7] interface for the accelerated testbench is desirable. In
addition, our future effort will lead also to integration of HAVEN into various research
areas, especially into diagnostics, where we wish to explore the capability of functional
verification to improve the quality of fault-tolerant systems. We welcome collaboration
on any of these issues and hope that the community can benefit from our contribution.
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Identifying a temporal pattern of events is a fundamental task of on-line (real-time)
verification. In this work we present efficient schemes for on-line monitoring of events
for identifying predefined patterns of events. The schemes use preprocessing to ensure
that the number of comparisons during run-time is minimized. In particular, obsoloete
sub-sequences are discarded to avoid unnecessary comparisons. We use our monitoring
scheme for estimating the probability that a random suffix of a given execution will
contain the pattern.

Many complex systems, both hardware and software, require a sound verification
of their operation, usually in the form of safety and liveness properties. One of the
prominent formal verification methods used today is model-checking [7]. The major
drawback of model checking is the state explosion due to the exponential number of
system states (w.r.t. the number of system variables) [3]. In addition, model checking
can only be as accurate as the model is, compared to the actual system. A more accu-
rate verification method in system specifications is testing. Unfortunately, an exhaustive
search for specifications‘ violation is not feasible. It cannot tackle implementation flaws
that materialize only during specific and rare executions.

In order to detect such flaws, a run-time verification of system execution is required
[9,4]. We focus on a variant of run-time system verification, namely the detection of
predefined temporal patterns in a given stream of system events. These temporal pat-
terns are described by a sequence of system events and temporal constraints semantics.

Temporal patterns are defined as a triplet TP = (A,CMax,CMin) where A is
the sequence of events (A = (a1, a2, ..., an)) while CMax and CMin are sets of
temporal constraints. A maximum temporal constraint is a tuple (ai, aj, t), where t is
the maximum time allowed between ai and aj . Symmetrically, a minimum temporal
constraint (ai, aj , t) defines the minimum time allowed between ai and aj . Note that
the time interval bound (t) in a temporal constraint may also be 0 or ∞.

We design an algorithm that, given a set of temporal patterns, analyzes the stream of
system events. In order to detect desired/undesired system behavior we employ methods
similar to string matching solutions [6], however we deal with the added difficulty of

� Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel Science Foundation (grant
number 428/11), Cabarnit Cyber Security MAGNET Consortium, Grant from the Institute for
Future Defense Technologies Research named for the Medvedi of the Technion, Israeli Internet
Association, and Israeli Defense Secretary (MAFAT).
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the timing constraints. Our algorithm detects the first instance (and all subsequent ones)
of the pattern’s appearance during system execution.

The number of comparisons required for such patterns to be detected is minimized by
a preprocessing phase that computes the temporal semantics closure of the constraints.
The preprocessing resembles results in Temporal Constraint Networks [8] where,
unfortunately, the on-line monitoring task and its composition with the preprocessing
phase are not considered.

An approach of extending Computation Tree Logic (CTL) to include timing con-
straints appears in [2]. In [11] transitional durations are added to timed temporal for-
mulae as an extension of Kripke Structures, and timed versions of CTL are considered.
These frameworks however, do not address real-time verification.

Tools for real-time verification exist in the form of assertion checking, some of which
follow the PSL IEEE standard, notably [1] and [5]. Whereas these allow the specifica-
tion of quite general properties and employ an automaton for detecting a single prop-
erty, we focus on patterns with timing constraints, and employ an automaton to detect
all pattern instances.

Furthermore, we conduct an analysis to estimate the chances of a token representing
a partial pattern to complete to a pattern match. We assume all events have some equal
probability p to occur at any time point, however our approach is easily extended to
arbitrary probabilities per event type. For each event, all possibilities of the next event
occurring in the time window derived from the temporal constraints are examined.

We maintain a tree of partial executions which we call a probability tree. Each exe-
cution is a path from the root down to a leaf. The root represents the relative zero-time
of a pattern match, i.e. the time from which we wish to compute the pattern match
probability. An edge Pxi to a node in the tree represents a time point with a shift of
xi time points relative to the beginning of the current time window, contributing a fac-
tor of pxi = p(1− p)

xi to the current probability path. The set of a node’s children
in the tree represents the different possibilities of the current history’s continuation. In
other words, suppose the current probability path counts the factors px1px2 . . . pxd

=

pd(1 − p)
∑d

i=1 xi . If we denote x =
∑d
i=1 xi, we have

∏d
i=1 pxi = p∗d,x. Suppose

the next time window is of size k′. Then the edges to the current node’s children are
P0, P1, . . . , Pk′ , and continuing along an edge Pxd+1

, 0 ≤ xd+1 ≤ k′ adds the factor

pxd+1
to the above multiple, yielding pd+1(1− p)

∑d+1
i=1 xi = p∗d+1,x+xd+1

.
In fact, we get here multiple paths that lead to the same probability. Let T be a

probability tree, and let Paths(T ) be the set of rooted paths in T ending in a leaf. Then
the pattern’s completion probability equals

∑
P∈Paths(T ) p

∗
ρ(P ), where ρ(P ) denotes

the value of the last node in P . Furthermore, if k is the size of the maximal time window
for some event to occur, then the maximal value of a leaf is k · l where l is the number
of events in the pattern. Hence, there are at most k · l+1 leaves and we can use an array
of size k · l + 1 to count the instances of every p∗j , 0 ≤ j ≤ k · l.

More details can be found in [10].
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We propose a new technique for checking of software upgrades based on an op-
timization of bounded model checking (BMC) with interpolation-based function
summaries. In general, function summaries avoid duplicate actions during the ver-
ification process. We extract function summaries as an over-approximation of the
actual function behavior after a successful model checker run and use it in the
consecutive runs. It is useful in real life, when the same code gets analyzed mul-
tiple times for different properties. As a practical example of this situation, con-
sider SLAM [1] which is used in a Static Driver Verifier to verify Windows device
drivers. There the same code of the device driver is model checked repeatedly for
different sets of predefined properties. In every run, function summaries could be
generated and reused in the others to reduce the computational burden.

For generation of function summaries with respect to a given property (e.g.,
a user supplied or automatically generated assertion), we use Craig Interpolan-
tion [3]. As in the standard BMC, we transform the program into a logical
formula, via unwinding, conversion into the SSA form, followed by addition of
the negated property, and bit-blasting. Then we check satisfiability of the result-
ing formula, passing it to a SAT solver. From UNSAT result (i.e., the property
holds), the solver generates an interpolant for each function call, occurring in
the formula. By construction, the interpolant is an over-approximation of the
corresponding function, i.e., its summary. To use the extracted summary later,
we substitute it in the formula instead of processing the entire function again.

Consider we check the program with respect to a different property. Since the
summary is an over-approximation of a function, made for a specific property, it
may contain spurious behaviors. These behaviors may be crucial for checking an-
other properties, leading to spurious errors. In such a case, our method requires
refinement, in which we analyze the spurious error trace. It aims at identifying
function calls substituted by summaries that occur on the error trace and in-
fluence the assertion (determined by dependency analysis). We repeat the check
again without using these summaries, but keeping the rest. If no such summary
is identified, the error is real. We describe the extraction, use, and refinement of
summaries in details in [5], and implement the process in a tool called FunFrog1.

As our contribution to upgrade checking, we propose to reuse the already
extracted summaries to prevent re-verification of the entire code. Our upgrade

� This work is partially supported by the European Community under the call FP7-
ICT-2009-5 — project PINCETTE 257647.
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checking procedure verifies that a property of a program still holds after the
program is modified. The proposed method is based on the following observation.
There are two possibilities for the modified functions, either their old summaries
are still a valid over-approximation or not. If they are valid, properties of the old
version, for which the summaries are relevant, still hold also in the new version.

Our method identifies the functions that were modified using syntactic com-
parison of different versions. Then, for all modified functions, it checks if the
summaries are still valid. If the check fails, we detect the calling context of the
function and try again. It is important to note two things. First, the check com-
pares the function with its summary and ignores the rest of the system. So the
check is local and thus relatively cheap. Second, we can reuse the summaries
of the unmodified functions when performing the check. Of course, this implies
that refinement may be necessary.

Obviously, the cost of the upgrade check would depend on the extend of the
change both syntactical (number of modified functions) and semantical (number
of invalid summaries). Thus our approach is likely to benefit for smaller changes
that do not violated the properties. In the worst case, the problem is refined to
checking of the entire upgraded program, which, however, is rare in practice.

In [2], the authors propose an algorithm for containment and compatibility
checks for upgrades of software components. They use predicate abstraction and
the CEGAR loop to create and refine models of the new and old components.
Though the goal is the same, the means are different. In the context of dynamic
test generation, the authors of [4] purpose to use function summaries for testing
upgrades. Their notion of a summary is a collection of concrete pairs of inputs
and outputs, i.e., an under-approximation, and thus their check can be not sound.

In future work, we will implement the proposed upgrade checker in the Fun-
Frog tool. In collaboration with the PINCETTE project validators, we plan to
apply the tool to verify real-world applications. As shown in [5], the current re-
lease of FunFrog, despite not being final, was already applied to industrial bench-
marks. Enlarging the set of benchmarks, will help us to analyze experimentally
the benefits of our approach and to reveal directions for further optimizations.
We expect to confirm experimentally that interpolant-based upgrade checking
outperforms model checking of the entire upgraded program.
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Abstract. We study the descriptive complexity of parity games by tak-
ing into account the coloring of their game graphs whilst ignoring their
ownership structure. Different colorings of the same graph are identi-
fied if they determine the same winning regions and strategies, for all
ownership structures of nodes. The Rabin index of a parity game is the
minimum of the maximal color taken over all equivalent coloring func-
tions. We show that deciding whether the Rabin index is at least k is
in P for k = 1 but NP-hard for all fixed k ≥ 2. We present an EXP-
TIME algorithm that computes the Rabin index by simplifying its input
coloring function. When replacing simple cycle with cycle detection in
that algorithm, its output over-approximates the Rabin index in poly-
nomial time. Experimental results show that this approximation yields
good values in practice.

Parity games (see e.g. [1]) are infinite, 2-person, 0-sum, graph-based games that
are hard to solve. Their nodes are colored with natural numbers, controlled by
different players, and the winning condition of plays depends on the minimal
color occurring in cycles. The condition for winning a node, therefore, is an
alternation of existential and universal quantification. In practice, this means
that the maximal color of its coloring function is the only exponential source for
the worst-case complexity of most parity game solvers, e.g. for those in [1,2,3].

One approach taken in analyzing the complexity of such games is through the
study of the descriptive complexity of their underlying game graph. This method
therefore ignores the ownership structure on parity games.

An example of this approach is the notion of DAG-width in [4]. Every directed
graph has a DAG-width, a natural number that specifies how well that graph
can be decomposed into a directed acyclic graph (DAG). The decision problem
for DAG-width, whether the DAG-width of a directed graph is at most k, is
NP-complete [4] in k. But parity games whose DAG-width is below a given
threshold have polynomial-time solutions [4]. The latter is a non-trivial result
since DAG-width also ignores the colors of a parity game.
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In this abstract, we report a similar measure of the descriptive complexity of
parity games, their Rabin index, a natural number that ignores the ownership of
nodes, but does take into account the colors of a parity game.

The name for this measure is inspired by related work on the Wagner hierarchy
for automata on infinite words [5]: Carton and Maceiras use similar ideas to
compute and minimize the Rabin index of deterministic parity automata on
infinite words [6]. To the best of our knowledge, our work is the first to study
this notion in the realm of infinite, 2-person games.

The idea behind our Rabin index is that one may change the coloring function
of a parity game to another one if that change neither affects the winning regions
nor the choices of winning strategies. This yields an equivalence relation between
coloring functions. For the coloring function of a parity game, we then seek an
equivalent coloring function with the smallest possible maximal color, and call
that minimal maximum the Rabin index of the respective parity game.

The results we report here about this Rabin index are similar in spirit to those
developed for DAG-width in [4] but there are important differences:

– We propose a measure of descriptive complexity that is closer to the structure
of the parity game as it only forgets ownership of nodes and not their colors.

– We prove that for every fixed k ≥ 2, deciding whether the Rabin index of a
parity game is at least k is NP-hard.

– We can characterize the above equivalence relation in terms of the parities
of minimal colors on simple cycles in the game graph.

– We use that characterization to design an algorithm that computes the Rabin
index and a witnessing coloring function in exponential time.

– We define an approximation of the Rabin index by replacing simple cycles
in the definition of Rabin index by cycles.

– We show how to efficiently compute this approximation by replacing the
search for simple cycles by search for cycles in the same algorithm.

– We conduct detailed experimental studies that corroborate the utility of that
approximation, also as a preprocessor for solvers.
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Abstract. Hardware testing is an expensive process at different stages of 
hardware design and manufacturing. It includes pre-silicon, post-silicon and 
production testing. Testing is expensive both in terms of manpower and in 
computing resources, and it directly affects the hardware profitability and the 
time to market. This problem is especially acute for Systems on Chip (SoC) 
where both manpower and timing constraints are very tight. Therefore it is 
important to reduce the total number of tests without sacrificing testing quality. 

To learn the behavior of a large test set smart algorithms are needed. In 
addition, visualization techniques can provide a bird's-eye view of the total test 
coverage data. 

Our goal is to optimize post-silicon hardware test suites based on coverage 
metrics and to provide test coverage visualization. We utilize ideas and methods 
developed in machine learning and bioinformatics, and develop new biology-
inspired methods to analyze and visualize post-silicon data. In a different effort, 
we are exploring combinatorial methods of covering and domination for the 
same problem. 

Mathematically, the results of post-silicon tests can be presented as a matrix 
whose rows correspond to the tests performed on the chip and columns 
correspond to certain events of interest occurring during the test's runs. The 
matrix values are the number of times the event occurred in the test. Such a 
matrix can then be used to define a similarity measure between tests and 
analyze their relations. 

In computational biology (bioinformatics), advanced methods were 
developed to handle gene expression microarray data [1], which has a similar 
structure. The result of a set of microarray experiments is a gene expression 
values matrix where rows are genes and columns are conditions. A rich 
spectrum of methods was developed for analysis of such data [2], and we adapt 
them for the post-silicon analysis. For example, clustering techniques divide the 
tests into similarity groups, identifying subsets of tests that cover similar events. 
The identified groups can then be analyzed by the hardware validation 
engineers in order to identify coverage holes and to improve the test suite 
quality. In addition, similar test groups can be investigated for enrichment of 
certain chip properties as done for gene groups with biological properties. This 
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can give further insight on the chip's operation and the tests scope. Gene 
expression software tools that combine advanced analysis and visualization can 
assist in visual comprehension of the post silicon validation process. We are 
using for this task the Expander tool developed in Prof. Shamir's group [3-5]. 

We describe initial results obtained by applying computational biology 
methods to post-Si test suite optimization and visualization. Though we 
experimented only with post-silicon test data, most of the developed methods 
should be applicable with appropriate modifications also to pre-silicon, 
production, and even to software testing. 

Keywords: Post-silicon, SoC, microprocessor testing, cluster analysis. 
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