
Generating Graph Transformation Rules

from AML/GT State Machine Diagrams
for Building Animated Model Editors

Torsten Strobl and Mark Minas

Universität der Bundeswehr München, Germany
{Torsten.Strobl,Mark.Minas}@unibw.de

Abstract. Editing environments which feature animated illustrations of
model changes facilitate and simplify the comprehension of dynamic sys-
tems. Graphs are well suited for representing static models and
systems, and graph transformations are the obvious choice for imple-
menting model changes and dynamic aspects. In previous work, we have
devised the Animation Modeling Language (AML) as a modeling ap-
proach on a higher level. However, AML-based specification could not yet
be translated into an implementation automatically. This paper presents
a language extension called AML/GT and outlines how AML/GT mod-
els can be translated into graph transformation rules automatically and
also provides some implementation details.

1 Introduction

Visual models are considered to be important tools of software development.
Particularly, the area of domain-specific languages (DSLs) is an interesting topic
for research and industry. Therefore, some tools like GenGEd [3], AToM 3 [6] or
DiaGen/DiaMeta [8] support the creation of editors for DSLs with little effort.
For this purpose, many of these tools generate editors out of mostly text-based
editor specifications and use graphs for representing models internally, together
with graph transformations (GTs) for changing them.

However, visual models are not restricted to static structures. They can also
contain execution semantics, for instance the popular example of Petri nets.
Editors for such models usually support animated simulations.

This paper continues our work extending the DiaMeta toolkit in order to facil-
itate the implementation of editors for complex animated models and languages
with preferably minimal effort. Our first step was to allow the specification of
event-based model changes through graph transformation rules (GTRs) [15]. It is
based on the idea of a static graph representing an animated model that changes
while time passes by. Graph transformations happen instantaneously, and they
can be used for starting, stopping or modifying animations, whereas other ap-
proaches (e.g., GenGEd [3]) represent animations by graph transformations that
do not happen instantaneously, but last as long as the animation takes.

Case studies showed that such GTR-based specifications are yet too unstruc-
tured for a convenient specification of animated systems. Therefore, in a second

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 65–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



66 T. Strobl and M. Minas

Fig. 1. Avalanche board Fig. 2. Avalanche pieces

step, the modeling language AML (Animation Modeling Language) has been
introduced for supporting structured design and specification of animated sys-
tems [16]. The language offers, among other features, the behavioral specification
of individual components and a convenient way for describing animations for
particular states. In that way, AML is a helpful tool for creating editor specifica-
tions manually, but it was not yet possible to automatically generate GTR-based
specifications from AML-based specifications. This paper closes this gap and in-
troduces AML/GT as an extension of AML as well as a tool that automatically
transforms an AML/GT-based specification into a GTR-based specification for
DiaMeta which can then be used to generate the implementation of the animated
system. As a running example, an editor called Avalanche is created.

The rest of the paper is structured as follows: Section 2 outlines the running
example Avalanche. Section 3 describes how animated editors can be realized
with DiaMeta in short. AML is revisited in Section 4 and its extension AML/GT
is introduced in Section 5. The translation of AML/GT state machines into
GTRs is elaborated in Section 6. Section 7 gives some implementation details.
Finally, Section 8 shows related work, and Section 9 concludes the paper.

2 Avalanche

This section sketches Avalanche (see Fig. 1) which has been implemented as a
model editor and serves as example throughout this paper. Although Avalanche

is based on a board game, gaming aspects are ignored and it is treated as an
interactive dynamic system. A detailed view on Avalanche and its implementa-
tion using DiaMeta is presented in [15]. In addition, an animated example can
be found online.1

In Avalanche marbles are falling down the lanes of an inclined board. The
board itself can be built by four types of block pieces (see Fig. 2). The top

1 http://www.unibw.de/inf2/DiaGen/animated

http://www.unibw.de/inf2/DiaGen/animated


Generating GTRs from AML/GT State Machine Diagrams 67

Fig. 3. Avalanche board and corresponding hypergraph

of each lane is limited by a Start piece. A Marble can be placed there, and
it starts falling as shown in Fig. 1 (a) then. While falling, the Marble can be
stopped by the upper side of a Switch (b). On the other hand, if a Marble hits
the bottom side (c), a Switch is tilted to the neighboring lane. In this case, a
previously stopped Marble can be released (d). It is also possible that a Marble
hits another Marble, which is currently blocked by a Switch. Then, the falling
Marble bounces off and changes its lane (e). Finally, a Marble can reach an End
piece where it is removed from the board (f).

3 Specification of Animated Model Editors

Avalanche shall be implemented as animated model editor which allows the
creation of individual boards (e.g., the board in Fig. 3). The user can put marbles
in Start pieces. Afterwards, they start falling, and the animated model shows
the game mechanics. Important aspects are the interaction between marbles
and switches and that new marbles can arrive at any time, for example. The
code for the Avalanche editor shall be generated from a specification for the
DiaMeta system. Therefore, this section introduces some basics of DiaMeta and
the applied generation process.

Internally, models of DiaMeta based editors are represented by typed, at-
tributed hypergraphs. DiaMeta supports three types of (hyper)edges in such
hypergraphs. Component hyperedges represent model components. These
edges visit nodes that represent the component’s attachment areas. Such ar-
eas may be spatially related, e.g., overlap, which is represented by so-called
relation edges between the corresponding nodes. Relation edges are created or
removed automatically whenever attachment areas of components start or end
being spatially related [8]. Finally, link hyperedges can be used for connect-
ing nodes of component hyperedges. Such edges can be created and removed
explicitly.



68 T. Strobl and M. Minas

In Fig. 3 an Avalanche board is shown together with its internal hypergraph.
Because of such underlying graphs, it is possible to specify model changes via
GTs. Our approach of implementing animated editors is also based on GTs, so a
brief description follows. A detailed elaboration, however, can be found in [15],
which also includes the underlying formalism.

The internal graph does not necessarily represent a static model. Instead,
a constant graph may describe how visible components are animated, e.g.,
by determining where, when and how a component started moving. Then, the
visualization of the graph can involve the current animation time for illustrating
an animated scene. The hypergraph in Fig. 3 actually shows a marble with
appended startedAt edge, which stands for a currently falling marble during the
visualization of the model.

Besides such (graphical) animations, there are also time-dependent model
changes caused by GTs. These GTs are the result of internal and external
events. External events are sent to the system from an external source, e.g.,
from a user sending a command to the editor, whereas the occurrence of in-
ternal events is based on the system state. Such events are specified (and
implemented) by GTRs, or rather graph transformation programs in DiaMeta.
They are equipped with application conditions to trigger them when external
events happen, or with a time calculation rule (TCR) that computes the
time when the internal event occurs. This calculation usually depends on the
attribute values of the related components.

However, the behavior of the Avalanche editor is not specified directly via
GTRs and event details as described above in this paper. Instead, the modeling
language AML/GT (see Sections 4 and 5) is used and GTRs will be generated.

4 Animation Modeling Language (AML)

The presented specification approach comes along with the Animation Modeling
Language (AML). This section provides an overview focused on aspects relevant
for this paper. Some more details, origin, and goals of AML are presented in [16].

AML models describe both the structure and relations of graphical compo-
nents and their dynamic behavior including animations. The language is based
on UML 2.3 [11]. AML refines UML class diagrams for the static structure and
UML state machine diagrams for the dynamic part (see Fig. 4).

The following extensions are available for the static structure:

– Media Components are the main structural element of AML. They extend
regular UML classes by aspects of visual components. They always include
basic attributes like xPos, yPos, angle and other attributes which determine
spatial aspects or drawing state.

– Inner Properties are similar to UML properties, but their specified type
must be a media component. In addition, they can be arranged hierarchically.
In this way, inner properties can model the compositions of graphical sub
elements within their containing media components.



Generating GTRs from AML/GT State Machine Diagrams 69

Fig. 4. AML metamodel (excerpt)

– Sensors are owned by media components and observe states, animations
and interactions of its owner.

The three most important kinds of sensors are:

– User Sensors are triggered if the user interacts with the sensor owner in a
specific way, e.g., if the user clicks on a component.

– Constraint Sensors are triggered if its guard expression (by default an
OCL expression [10]) evaluates to true, which may also happen during an
animated situation. Collision Sensors are a special subtype of constraint
sensors. They can observe when the owner collides with another component,
called opponent.

– Message Sensors are enabled if the sensor’s owner receives a message of a
declared type from another component, called opponent, too.

Fig. 5 shows an AML/GT model, i.e., an AML model with GT extensions de-
scribed in the next section, but it illustrates plain AML elements, too. The inner
property lever 2 ,2 e.g., represents the graphical lever within the media compo-
nent Switch 1 which represents the whole board piece. It is also shown how the
default value of the lever ’s attribute angle is redefined there. The user sensor
PutMarble 3 is triggered if the user clicks on a Start component, which is the
sensor owner 4 indicated by the solid line. The collision sensor MarbleEnd 5 is
triggered if its owner Marble collides with the bottom of an End piece, which is
connected via a dashed opponent arrow 6 .

Behavior and animations of media components are described by state ma-
chine diagrams and their regions 8 . Each state machine models the states and
transitions of components of one media component type.

For the description of graphical animations, AML supports special states
called animation states 9 that contain so-called animation instructions 10 .
Each animation instruction computes the value of an attribute of the state ma-
chine’s media component while time passes by. E.g., animation instruction 10

defines that the angle of a Switch lever changes from −30◦ to 30◦ within three
seconds as soon as the Switch enters state LeftRight .

2 Numbers in black circles refer to the ones in Fig. 5.



70 T. Strobl and M. Minas

Transitions can be labeled like in regular UML by trigger[guard]/effect. The
trigger describes an event that may cause the transition. Intuitive keywords
like at or after 11 indicate certain points in time or time delays. AML also
supports sensor triggers specified by the name of the sensor 12 that must be
owned by the state machine’s component. The transition is enabled when the
associated sensor is triggered. Finally, transitions without trigger specification 13

are triggered as soon as the state’s internal activities (e.g., active animation
instructions) terminate (completion event).

A guard may restrict transition triggers; a transition is only enabled if the
guard condition is satisfied, too, like in UML.

In AML, effects as well as entry and exit behaviors of states are restricted
to so-called action sequences consisting of an arbitrary series of the following
actions:

– Set actions 14 can change an attribute of the corresponding component or
one of its inner properties.

– Create actions 15 allow the creation of media components.
– Call actions 16 are used for calling operations.
– Send actions can send messages to other media components.

The execution of transitions is performed sequentially. Since a system with
discrete time model may have multiple enabled transitions at the same time and
the UML specification does not define full semantics of conflicting transitions,
enabled AML transitions are executed with the following priority, starting with
the highest one: sensor events, time events, without trigger/with guard, without
trigger/without guard. In addition, each sensor can have an explicitly specified
numeric priority value. Such values must be used to order a set of simultaneously
occurring sensor events. If there are still conflicts, a transition must be chosen
randomly.

5 Animation Modeling Language for GTs (AML/GT)

AML enables developers to model Avalanche and to translate it to a GTR-based
DiaMeta specification manually as described in [16]. For an automated trans-
lation, however, AML models lack important information. Therefore, AML has
been extended to AML/GT which addresses this issue. Technically, AML/GT is
realized as a (UML) profile for extending AML models. This section describes
some of its elements in the context of the Avalanche model shown in Fig. 5.

Some media components represent visual components that the user can place
on the screen using the generated Avalanche editor. They are marked by a small
square next to the media component icon, e.g., Switch 1 , and are then repre-
sented by component hyperedges (see Section 3). In addition, inner properties of
media components can be marked by small circles 17 . Such properties are rep-
resented by nodes of this component hyperedge. Inner properties which model
graphical aspects of the component are marked by a small eye 2 .



Generating GTRs from AML/GT State Machine Diagrams 71

Fig. 5. Avalanche specification (AML/GT model)

A Switch hyperedge, for example, visits the nodes topL, topR, bottomL and
bottomR which represent the four corners of the corresponding component. The
types of these nodes are TS (“top/switch”) or B (“bottom”), resp., as speci-
fied in Fig 5 1 . Fig. 5 also shows how attributes of the inner property’s media
component type are redefined by new default values 2 .

Moreover, associations between media components can be interpreted as edge
types which can be used to connect the nodes of component hyperedges. Asso-
ciations corresponding to link hyperedges are marked with stereotype link 18 .



72 T. Strobl and M. Minas

Fig. 6. Exemplary transi-
tion for Switch

Fig. 7. GTR for DoSwitch transition

Relation edges indicating spatial relationships between attachment areas of vi-
sual components correspond to binary associations with stereotype relation 19 .
The specification of such an attachment area is marked by a small square 20 .

6 Translating AML/GT State Machines into GTRs

After the basic introduction of AML/GT, this section shows how AML/GT
models are translated into GTRs. These GTRs become part of the specification
of the animated editor which is then used by DiaMeta to generate the editor as
described in Section 7.

Each AML/GT state machine describes the behavior of a media component,
and each of its states corresponds to a subgraph of the animated diagram’s hy-
pergraph. It contains the component hyperedge of the media component and
some additional link hyperedges. This subgraph represents the situation when
the modeled media component is in this state, i.e., such a subgraph, called in-
variant pattern in the following, represents an invariant of the state and is vi-
sually denoted inside the state box. For example, the state Left in Fig. 6 contains
the link edge switchedTo next to the component hyperedge itself. By connecting
node n1 with node n0 , the edge indicates that the switch’s lever is currently
blocking the Switch’s left lane. In the same figure, there is also a transition to
state LeftRight . Fig. 7 shows the GTR realizing this state transition.

In order to create the required set of GTRs, the algorithm has to iterate over
all transitions with or without triggers (a completion event trigger is assumed in
the latter case). During this process, the triggers have priorities according to
the rules at the end of Section 4. Each GTR of the resulting set can be specified
with this priority then. GTs with higher priority can be processed first, if there
is more than one GT scheduled at the same point in time.

The following steps show how single GTRs are created. They are based on the
example in Fig. 8 and its example trigger MarbleChangeLaneLeft 1 . The illus-
trated transition is responsible for changing a Marble’s state from Falling to
SwitchingLane, i.e., the Marble has to move to another lane because it has hit
the left side of a Switch which is currently blocked by anotherMarble. The graph



Generating GTRs from AML/GT State Machine Diagrams 73

Fig. 8. Generating a GTR from a state machine transition

pattern shown within the collision sensor MarbleChangeLaneLeft represents this
condition.

The LHS of the rule is created first. It consists of the invariant pattern of
the transition’s source state, extended by subgraphs of the transition’s guard
(e.g., Fig. 5 13 ) as well as graph patterns describing the behavior of sensors
being used as transition triggers (e.g., Fig. 5 7 ). In the example shown in Fig. 8,
there is no transition guard, but the graph pattern located within collision sensor
MarbleChangeLaneLeft has to be added. In general, the LHS is constructed from
several graph patterns. Negative application conditions are possible, too, but
they are not required here.

As a basic principle, the creation of the LHS from all these graph patterns
is performed by building the union of them and then gluing them in a suit-
able way. Gluing is rather straight forward because each of the graph patterns
refers to the same “owner” of the state machine which is represented by its com-
ponent hyperedge and its visited nodes. Therefore, the LHS may contain the
component hyperedge of its owner only once, i.e., all instances of this hyperedge
and its visited nodes must be glued. Further nodes can be glued as well. In the
example, node s0 of the source state graph pattern must be glued with s0 of
the pattern within the sensor. This is specified by the correspondence state-
ment lhs node s0 := s0 2 . However, because equally labeled nodes are glued
automatically, such a statement is omitted in Fig. 5.

The RHS of the rule is built in a similar way. It is constructed from the
invariant of the transition’s target state and, again, all graph patterns of the
transition as for the LHS. The latter have to be added, too, because applying
the rule shall just change the state of the owner’s state machine, i.e., change its
invariant pattern; the rest of the diagram’s hypergraph must remain unchanged.

The owner’s component hyperedge again determines which edges and nodes
must be glued. The gluing of an additional node is specified by the correspondence



74 T. Strobl and M. Minas

statement rhs node s0 := oa1 2 . The node labeled s0 of state SwitchingLane
does obviously not correspond to the node with the same label of state Falling;
it should rather correspond to the node oa1 representing the switch’s attachment
areawhere themarble is switching to as soon as the specified transition is executed.

The rule must not add or delete any nodes since each node represents an
attachment area of a component, and animations do not add or remove media
components (except if created or deleted explicitly; see below). Therefore, nodes
without correspondence in either LHS or RHS must be added to the other side 3 .

After creating the main parts of the GTR, additional elements must be added,
i.e., further application conditions, a TCR necessary for scheduling events, at-
tribute changes, and maybe other types of processing.

Further application conditions are usually expressions which check at-
tribute values of graph elements. For this, the AML/GT model can contain
OCL expressions (conditions), or other Boolean expressions (Java) in case of
DiaMeta. Such expressions must be adapted to a syntax which is compatible to
the GT system and added to the GTR accordingly.3

As described above, the source state’s invariant pattern is part of the cor-
responding GTR’s LHS. However, just relying on the invariant pattern of the
source state is generally not sufficient as the inv broken trigger shows (see below).
Therefore, a state attribute is added to the component hyperedge 5 which is
checked before the rule may be applied 4 . There must be one such attribute for
each UML region because of concurrent and hierarchical states.

Another type of application conditions are path expressions. In Fig. 8, a
path expression called pathDown is required 6 . It verifies that the Marble is
currently falling down the lane which leads through the blocked left side of
the Switch. In DiaMeta this expression is specified as an arbitrary sequence of
topBottom(0,1), Switch(0,2), Switch(1,3), or Straight(0,1) edges. The numbers
within the parenthesis specify the hyperedge tentacles the path must follow:
the first number specifies the ingoing tentacle and the second one specifies the
outgoing tentacle when following the path through the hypergraph.

AML/GT allows specifying actions at different places. They may be spec-
ified with each transition; they are executed as soon as the transition fires
(e.g., Fig. 5 14 ) or as an action associated with an entry into a state (e.g.,
Fig. 5 9 ). Actions are easily translated into GTRs in DiaMeta since it al-
lows arbitrary Java code when executing a rule. Call actions result in the
calls of media component operations (generated Java code; e.g., Fig. 5 9 ), and
set actions involve the change of attributes of the component hyperedge dur-
ing the GT (e.g., Fig. 5 14 ). Finally, create actions can construct components
(e.g., Fig. 5 15 ): AML/GT allows declaring component hyperedges (here Marble)
including its initial attributes, its nodes, and link edges. These edges and nodes
must be added to the RHS of the GTR, and attributes must be set accordingly.

3 Single graph transformation rules are not sufficient in the following; graph transfor-
mation programs are actually needed. However, for simplicity, we still use the term
“graph transformation rule” (GTR) instead of “graph transformation program”.



Generating GTRs from AML/GT State Machine Diagrams 75

Further actions must be added to each GTR (Fig. 8 7 ). First, the state at-
tribute and the state entry time must be updated (such an attribute must be
available for each region again). And second, the attributes which are considered
animated during an active animation state must be updated because attributes
do not change their values during animations in our approach (cf. Section 3). In-
stead, the changing value is calculated using a formula considering the animation
time. Therefore, an update which applies the last calculated value is required.

A generated GTRs must be executed at a specific point in time which is
modeled by a transition’s trigger. A transition triggered by a user sensor is
translated into a GTR that can be induced by the user in the editor. By default,
the GTR is bound to a GUI button starting the GTR if it is applicable. Other
sensor triggers require a TCR 8 for scheduling the GT (see Section 3).

Transitions with time event triggers are translated into GTRs representing
internal events with a TCR reflecting the absolute or relative time when the
event may be triggered. Relative time always refers to the state entry time.

Transitions without explicit trigger must be executed as soon as the pattern
of the LHS can be matched and animations of the source state have been finished
(an additional condition). They are translated into GTRs representing internal
events as well. Its TCR must return the point in time when animations have
been finished. If there is no animation, the GTR must be applied without any
time delay, i.e., the TCR always returns the current time.

Constraint and collision sensors result in internal event specifications, too.
They usually check animated attributes (see above). However, generating a cor-
responding TCR is not straight forward. For a collision sensor, e.g., a TCR is
required which calculates the collision time based on the components’ trajecto-
ries. Currently, such a TCR has to be provided manually. Using a physics engine
may solve this problem in the future.

Finally, two special cases for generating GTRs from the Avalanche model are
described. Termination states are used as the only means to delete compo-
nent hyperedges and, therefore, media components. Such states are visualized
as a small X. If a transition ends in a termination state, it is translated into a
GTR that removes the corresponding component hyperedge and its nodes, so
the resulting RHS corresponds to the LHS without the component’s edge and
its nodes.

Inv broken is an AML/GT keyword that may be used as a transition trigger.
It has lowest priority and is fired if the transition’s source state must be left
because its invariant pattern is “broken”. This may happen if some link edges
being part of the invariant pattern are deleted when some other component and
its link edges are deleted due to a user action.

For instance, a Switch may be removed by the user even if a Marble is con-
nected to one of its nodes via startedAt (state Falling in Fig. 5 21 ). Because
the specification in Fig. 5 requires a marble to be connected to the component
where it started falling, the Marble would be in an inconsistent state then. The
inv broken trigger is used to represent the fact that the pattern invariant of the
current state is suddenly no longer true although the state has not yet been left.



76 T. Strobl and M. Minas

Fig. 9. Overview of the editor generation process

This triggers the state’s inv broken transition and activates its termination state
which removes the Marble, too.

The translation of such an inv broken transition into a GTR is straight for-
ward: The GTR must check the component hyperedge’s state attribute (see
above) and whether the invariant pattern is violated. The latter is simply repre-
sented as a negative context, i.e., the GTR may be applied if the component is
in the corresponding state, but its invariant pattern can (no longer) be matched.

In order to support all features of AML/GT state machines, further special
cases must be considered when generating GTRs as well. Namely, composite
states, concurrency and message passing must be processed specifically.
These topics are not discussed here, but it is clear that they can be translated
to GTRs, too.

7 Implementation

The translation process outlined in the previous section has been completely
implemented, also covering those topics that have been omitted here, e.g., com-
posite states, orthogonal regions or message passing. It is possible now to spec-
ify animated editors (e.g., for Avalanche) using a visual specification tool (the
AML/GT editor) and to generate the editor from this specification. This section
sketches the process, which is outlined in Fig. 9, and some design decisions.

For the creation of AML/GT models, the editor designer uses the AML/GT
editor (see Fig. 10), which has been generated using the DiaMeta toolkit, too.
AML/GT models are automatically translated into the specified animated edi-
tor. Some Java code of the editor is directly generated from the AML/GT model
(“M2T” in Fig. 9). This is necessary for support code which has to be provided
manually when using DiaMeta without AML/GT. The “M2T” transformation
has been realized with Acceleo, a Model-to-Text translation language which is
oriented towards the MOFM2T specification of the OMG [9].

The translation process from an AML/GT model into an editor specification
for DiaMeta (“editor specification” in Fig. 9) as outlined in the previous sec-
tion is performed by the “M2M” component in Fig. 9. It uses Eclipse QVTo,
which implements the OMG specification of MOF QVT Operational [12],



Generating GTRs from AML/GT State Machine Diagrams 77

Fig. 10. Screenshot of the Avalanche editor

a Model-to-Model technology. The target model of this transformation is the
native, XML-oriented DiaMeta specification which also includes the GTRs.

There are several reasons for choosing these technologies instead of using the
DiaMeta framework for creating the specification from AML/GTmodels. First of
all, the GT system of DiaMeta has been created for structured editing in editors
and therefore lacks convenient features for complex model transformations. In
addition, both source (AML/GT) and target model (DiaMeta specification) do
not consist of graphs only, but also contain embedded text or must produce Java
code which are less suited for being modeled as graphs. Finally, standardized
languages have been favored in order get a more future-proof, general and stable
transformation. The mentioned languages have already been supported by a
couple of tools (Eclipse plugins), too.

Besides the AML/GT model, the editor designer has to provide the abstract
syntax4 of the animated visual language, i.e., its meta-model. DiaMeta simply
uses EMF for metamodelling. Any EMF-based tool for specifying Ecore mod-
els [14] can be used here. Furthermore, generating TCRs from collision sensors
still needs manual code (see Section 6), so future solutions require a generic a
priori collision detection algorithm.

Finally, the “editor generator” creates the Java code of the animated editor
using the code generator of DiaMeta. The screenshot in Fig. 10 shows the gen-
erated Avalanche editor with created Avalanche board and a falling marble.
This editor has been generated from the AML/GT model shown in Fig. 5.

8 Related Work

Although it has not been the primary intention of AML/GT, it can be considered
as a visual language for programmed graph rewriting and model transformation.
A good starting point for reading into this topic is provided in [4], which com-
pares AGG, Fujaba, and PROGRES as graph transformation languages and
also mentions GReAT . Another overview is presented in [18] which focuses

4 All descriptions in this paper and AML/GT concern the concrete syntax only.



78 T. Strobl and M. Minas

on model transformation aspects including the tools AToM 3, VIATRA2 , and
VMTS . However, AML/GT cannot compete with these rather general-purpose
languages and tools because the GTRs generated are restricted to the very spe-
cific field of animation specification. For example, a regular transition can only
add or remove link hyperedges. In general, it is specialized for describing the
behavior of components.

Furthermore, there are many other systems and languages which are also in-
tended for describing behavior, especially in the context of statecharts, UML,
and MDE, e.g., Executable UML (xUML). Many of such languages try to ex-
tend or constrain UML in order to get a language with the possibility to describe
systems more precisely than UML. However, many of them have a specific appli-
cation domain. AML and AML/GT, which also extend and constrain standard
UML, focus on visual appearance and graphical animations next to the expres-
siveness of UML statecharts and hypergraphs. Therefore, they are especially
suited for specifying animated visual languages and generating editors. To the
best of our knowledge, they are the only languages featuring this combination,
so the following related work has more or less other domains.

Fujaba, for example, supports so-called story diagrams [2] which combine
UML collaboration diagrams with activity diagrams. GTRs can be drawn within
activities which allow the creation of complex transformation flows. Originally,
the main purpose was to generate Java code from such models, but areas of
application evolved and many extensions are available in the meantime. For
example, Fujaba Real-Time [1] allows the modeling of embedded systems based
on statecharts with real-time capabilities. The modeling of visual aspects of
components, however, is not provided. On the other side, AML/GT is not suited
for embedded systems and does not provide the modeling of real-time constraints.

Another modular and hierarchical model-based approach is presented in [17].
The semantic domain of the models presented there is the Discrete Event Sys-
tem Specification (DEVS ). It is used for describing control structures for pro-
grammed graph rewriting. Although the formalism has a solid foundation, it
requires the user to have a specialized expertise while UML-based approaches
are well-known to the majority of all users. Moreover, it also lacks the possibility
to define the structure of components or graphic related issues.

In [13] a visual language for model transformations and specifying model be-
havior has been introduced which allows the specification of in-place transforma-
tion rules. These rules can be compared to GTRs in a graph-based environment.
There are some further extensions like rule periodicity, duration, exceptions, etc.
State-based modeling on a more coherent level, which is also the intention of this
paper, is not provided.

Finally, the animation approach used in this paper and the translation of state
machines into GTRs is related to other approaches. The differences between our
animation approach and those approaches in similar systems (e.g., [3]) have
been discussed in previous work [15] already. Translating state machines into
equivalent GTR systems is not a new idea either. E.g., there are several papers
describing the semantics of (UML) state machines based on GTs, e.g., in [5].



Generating GTRs from AML/GT State Machine Diagrams 79

The translation process described in Section 6 is rather tailored to its specific
application within animated editors. Finally, the way graph patterns are used
in state machines and sensors of AML/GT can be considered as alternative
to OCL [10]. We also would like to point towards agent-based modeling [7] as
another field of application for AML/GT.

9 Conclusions

We have pursued our approach of modeling animated editors with the UML-
based language AML. The language extension AML/GT offers additional el-
ements which are necessary to create specifications of dynamic systems in a
hypergraph-based environment automatically.

Applying a modeling language like AML/GT promises that complex systems
can be specified in a clear and accessible way. Using state machines for individual
components particularly complies with an intuitive perspective on many systems.
At the same time, the underlying GTs provide an established foundation and
exact semantics, and they facilitate the comprehension of the execution process.

The algorithmic translation of AML/GT model into the specification format
of DiaMeta has been completely implemented. The aim of creating a higher-level
modeling language, which does not require further specifications for generating
interactive, animated editors, has been accomplished. Future work will concen-
trate on how collisions between animated components can be detected without
computing their trajectories in advance. Using a physics engine as used in many
game settings appears to be promising.

References

1. Burmester, S., Giese, H.: The Fujaba Real-Time Statechart Plugin. In: Giese, H.,
Zündorf, A. (eds.) Proc. of the 1st International Fujaba Days 2003, pp. 1–8 (2003);
Technical Report tr-ri-04-247, Universität Paderborn, Informatik

2. Diethelm, I., Geiger, L., Zündorf, A.: Systematic Story Driven Modeling, a Case
Study. In: Giese, H., Krüger, I. (eds.) Proc. of the 3rd International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools (SCESM 2004),
ICSE Workshop (2004)

3. Ermel, C.: Simulation and Animation of Visual Languages Based on Typed Alge-
braic Graph Transformation. Ph.D. thesis, Technical University Berlin (2006)

4. Fuss, C., Mosler, C., Ranger, U., Schultchen, E.: The Jury is Still Out: A Com-
parison of AGG, Fujaba, and PROGRES. In: Ehrig, K., Giese, H. (eds.) Proc. of
the 6th International Workshop on Graph Transformation and Visual Modelling
Techniques. ECEASST, vol. 6 (2007)

5. Kuske, S.: A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 241–256. Springer, Heidelberg (2001)

6. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)



80 T. Strobl and M. Minas

7. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In:
Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proc. of the 37th
Winter Simulation Conference, pp. 2–15. ACM (2005)

8. Minas, M.: Generating Meta-Model-Based Freehand Editors. In: Zündorf, A.,
Varró, D. (eds.) Proc. of the 3rd International Workshop on Graph-Based Tools.
ECEASST, vol. 1 (2006)

9. Object Management Group (OMG): MOF Model To Text Transformation Lan-
guage, v1.0 (January 2008), http://www.omg.org/spec/MOFM2T/1.0

10. Object Management Group (OMG): Object Constraint Language, v2.2 (February
2010), http://www.omg.org/spec/OCL/2.2

11. Object Management Group (OMG): Unified Modeling Language: Superstructure,
v2.3 (May 2010), http://www.omg.org/spec/UML/2.3/Superstructure

12. Object Management Group (OMG): MOF Query/View/Transformation, v1.1
(January 2011), http://www.omg.org/spec/QVT/1.1

13. Rivera, J.E., Durán, F., Vallecillo, A.: A Graphical Approach for Modeling Time-
Dependent Behavior of DSLs. In: DeLine, R., Minas, M., Erwig, M. (eds.) Proc. of
the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing,
pp. 51–55. IEEE Computer Society (2009)

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2009)

15. Strobl, T., Minas, M.: Specifying and Generating Editing Environments for In-
teractive Animated Visual Models. In: Küster, J., Tuosto, E. (eds.) Proc. of the
9th International Workshop on Graph Transformation and Visual Modeling Tech-
niques. ECEASST, vol. 29 (2010)

16. Strobl, T., Minas, M., Pleuß, A., Vitzthum, A.: From the Behavior Model of an
Animated Visual Language to its Editing Environment Based on Graph Transfor-
mation. In: de Lara, J., Varró, D. (eds.) Proc. of the 4th International Workshop
on Graph-Based Tools. ECEASST, vol. 32 (2010)

17. Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with Time for
Simulation-Based Design. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.)
ICMT 2008. LNCS, vol. 5063, pp. 91–106. Springer, Heidelberg (2008)

18. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T.,
Prange, U., Varró, D., Varró-Gyapay, Sz.: Model Transformation by Graph Trans-
formation: A Comparative Study. In: Proc. Workshop Model Transformation in
Practice (Satellite Event of MoDELS 2005) (2005)

http://www.omg.org/spec/MOFM2T/1.0
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/UML/2.3/Superstructure
http://www.omg.org/spec/QVT/1.1

	Generating Graph Transformation Rules from AML/GT State Machine Diagrams for Building Animated Model Editors
	Introduction
	Avalanche
	Specification of Animated Model Editors
	Animation Modeling Language (AML)
	Animation Modeling Language for GTs (AML/GT)
	Translating AML/GT State Machines into GTRs
	Implementation
	Related Work
	Conclusions
	References




