
A Case Study Based Comparison

of ATL and SDM

Sven Patzina and Lars Patzina

Center for Advanced Security Research Darmstadt (CASED), Germany
{sven.patzina,lars.patzina}@cased.de

Abstract. In model driven engineering (MDE) model-to-model trans-
formations play an important role. Nowadays, many model transforma-
tion languages for different purposes andwith different formal foundations
have emerged. In this paper, we present a case study that compares the At-
las Transformation Language (ATL) with Story Driven Modeling (SDM)
by focusing on a complex transformation in the security domain. Addi-
tionally, we highlight the differences and shortcomings revealed by this
case study and propose concepts that are missing in both languages.

Keywords: Atlas Transformation Language, Story Driven Modeling,
Live Sequence Charts, Monitor Petri nets, transformation.

1 Introduction

Model-driven engineering (MDE) demands model-to-model transformations be-
tween models on different abstraction levels. Based on this idea, a model-based
development process for security monitors [15] is developed that allows for the
abstract specification and automated generation of correct security monitors in
software (C, Java) and hardware (VHDL, Verilog). Specifications are modeled as
use and misuse cases with extended Live Sequence Charts (LSCs). Due to the ex-
pressiveness of LSCs, the process foresees a more explicit intermediate language
– the Monitor Petri nets (MPNs), a Petri net dialect with special start and end
places and deterministic execution semantics. This more explicit representation
with a less complex syntax is easier to process than the LSCs itself.

In this context, a rule-based model-to-model transformation language is in-
tended for the complex step from LSCs to MPNs, because a rule-based approach
seems to be less error-prone compared to a manual implementation of the pat-
tern matching process for each transformation in a general-purpose program-
ming language. Nowadays, various transformation languages have emerged with
a different purpose, feature set, and formal foundation. On one side, there are
languages that are based on graph grammar theory such as SDM [6] and on the
other side, languages such as ATL [9], whose semantics has been formalized by
using e.g., abstract state machines [5] and rewriting logics [18]. In contrast to
existing comparisons that use classical examples [4] or more complex examples
by focusing on special properties such as inheritance [21], this case study differs
in the application domain.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 210–221, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Case Study Based Comparison of ATL and SDM 211

In this paper, we show the differences, advantages and disadvantages of the
Atlas Transformation Language (ATL) in version 3.1 and Story Driven Modeling
(SDM) on an example of a real-world transformation. Our main contributions
are the application of two transformation languages to a complex, real-world
example in the security domain and specific proposals for extending the concepts
of the transformation languages.

In the following, Sec. 2 introduces the transformation scenario. Then Sec. 3
presents the requirements and analyses appropriate languages for our purpose
– ATL and SDM. In Sec. 4, selected rules of the transformation in ATL and
SDM that show concepts and differences are compared, and the evaluation is
described. The result of the comparison and suggestions for additional features
for the two transformation languages are shown in Sec. 5. Section 6 concludes
the paper.

2 Running Example

In this section, a Car-to-Infrastucture scenario, where a car communicates with
a tollbridge, will be presented and used in the remainder of this paper. The ex-
ample is based on metamodels that are reduced versions of those used in the case
study, depicted as Ecore/MOF diagrams in Figure 1a) and b). Figure 1c) shows
a communication protocol (use case) in concrete LSC syntax and Figure 1d) the
corresponding MPN representation.

LSCs are an extension of Message Sequence Charts that in addition offer a
distinction between hot and cold elements. Thereby, hot elements are mandatory
and have to occur and cold elements are optional. Additionally, LSCs can have
two forms, a universal LSC with a prechart (precondition) before the mainchart
or an existential LSC without a precondition.

The LSC in Figure 1c) shows an existential LSC that models the exchange
of asynchronous messages between LSC objects in a mainchart. When the car
approaches the tollbridge, it sends a connect() message to the tollbridge that
is represented as hot message. The tollbridge acknowledges this message with
an ack(). After receiving this message, the car has to send some information
data_a(). Then the car is allowed to send additional information data_b(),
modeled as cold message. The communication has to be terminated by the car
by sending a disconnect() message.

The metamodel of the LSC diagrams is depicted in Fig. 1a), where LSC s
and the derived ExistentialLSC s are contained in the root class LSCDocument.
Furthermore, ExistentialLSC s contain LSCObjects and a Mainchart. A Message
starts and ends on a Location that is contained in the related LSCObject as an
ordered set.

Similar to LSC s, MPN s have an MPNDocument as root class, depicted in
Figure 1b). The MPN, derived from the use case LSC, is represented in Fig-
ure 1d). This MPN is a more operational description of the behavior expressed
by the LSC. MPN s are composed of different kinds of places (depicted as circles),
transitions (realized as black bars), and arcs that connect places and transitions.

212 S. Patzina and L. Patzina

MPN

 initial place

 standard place

 end place

 transition

 arc

LSC

 hot message

 cold message

 LSC object

 mainchart

b)a)
c) d)

Ecore Diagram lscmetamodel

LSCDocument

+ name: EString

LSC

+ isMisuseCase: EBoolean
+ name: EString

ExistentialLSC

Mainchart

LSCObject

+ name: EString

Location

+ temperature: Temperature

Message

+ condition: EString
+ content: EString
+ temperature: Temperature
+ type: MessageType

Temperature

«enum»
+ COLD
+ HOT

MessageType

«enum»
+ ASYNC
+ SYNC

+chart0..1

LSCContainsMainchart
+lsc 0..1

+lsc
0..1

LSCContainsObjects

+objects *

+locations *

ObjectContainsLocations
+object 0..1

+lscs *

DocumentContainsLSCs
+document 1

+containingLocations0..*

ChartHasLocations
+chart 0..1

+outMsg 1

MessageHasStartLocation

+startLoc 1

+incMsg 1

+endLoc 1

+message
0..*

ChartContainsMessage
+chart 0..1

MessageHasEndLocation

Ecore Diagram mpnmetamodel

MPNDocument

+ name: EString

MPN

+ isMisuseCase: EBoolean
+ name: EString

Place

+ name: EString

Transition

+ code: EString
+ condition: EString
+ event: EString

PlaceArc

TransitionArc

StandardPlaceInitialPlace

EndPlace

+document 1
MPNDocContainsMPNs

+mpns 0..*

+mpn 0..1

MPNContainsPlaces

+places 0..*

+place 1

PlaceContainsPlaceArcs
+placearcs 0..*

+place

1

PlaceHasTransArcs

+transitionarcs

0..*

+mpn 1
MPNContainsTransitions
+transitions 0..*

+transition 1
TransitionContainsTransArcs
+transitionarcs 0..*

+transition
1

TransitionHasPlaceArcs +placearcs

0..*

car
:Vehicle

tollbridge
:RSU

connect()

ack()

data_a()

data_b()

disconnect()

(T2)

(T3)

(T3)

(T4)

Tr
an

sf
or

m
at

io
ns

«MPNInitial»

car
«MPNInitial»

tollbridge

s.connect()

r.connect()

s.ack()

r.ack()

s.data_a

r.data_a()
s.data_b()

r.data_b()
s.disconnect()

r.disconnect()

stop

s.disconnect()

r.disconnect()

Fig. 1. Metamodels and models of the LSC-to-MPN example

A Case Study Based Comparison of ATL and SDM 213

The transformation from LSCs to MPNs basically consists of four transfor-
mation steps, highlighted in grey in the concrete example. (T1) It starts with
the creation of an MPN for each LSC. (T2) Each LSC object is represented as
an initial place annotated with the name of the object. (T3) A hot asynchronous
message such as the connect()message is split in one transition for the sending
and one for the receiving event and three standard places. These are connected
with arcs where one place is on the sender side, one is on the receiver side, and
one secures the order of sending and receiving of the message. This pattern is
also used for cold messages with additional bypass-transitions that realize the
optional nature of cold messages. (T4) The pattern is finalized by an end place
where all possible paths through the MPN are synchronized by transitions with
the event “stop”.

3 Related Work

In the last years, publications about comparisons between different transfor-
mation languages evolved. On the one side, there is the Transformation Tool
Contest1 event series, where solutions for special transformation problems are
submitted and compared. As [2] stated, this contest can be used as source for
insights of the strong and weak points of transformation tools, but has no clear
focus on achieving really comparable results. On the other side, publications
cope with small classical examples such as UML2RDBMS [4], concentrate only
on graph-based transformation languages [17] or focus on a small subset of prop-
erties such as inheritance [21]. The transformation from extended LSCs to the
corresponding MPN representation is in contrast to the afore mentioned com-
parisons based on a complex, real-world example located in the security domain.

Based on the transformation steps (T1 to T4) that are derived from the ex-
ample in Section 2 the following requirements can be formulated:

R1) 1-to-1 (Model). For each LSC diagram, a single MPN should be gener-
ated. Therefore, for each source model one target model is created. (T1)

R2) m-to-n (Element). One or more elements in the source model have to
be mapped to one or more elements in the target model. (T3)

R3) Traceability Links. For processing optional elements, traceability links
are needed to be able to add bypass-transitions in the target model. (T3)

R4) Attributes. The language must be able to handle attributes of model
elements. It has to check and generate attributes in the target model. (T2)

R5) In-place. For optimizations of the target model, some kind of in-place
transformation on the target model is required. (T4)

R6) Deletion. For post-processing, it is necessary to delete elements from the
target model to remove redundant places and unnecessary transitions. (T4)

R7) Recursive Rules. For the synchronization at the end of an LSC, with an
unknown number of places and LSC objects during specification, recursive
operations on model elements are needed. (T4)

1 http://planet-research20.org/ttc2011/

http://planet-research20.org/ttc2011/

214 S. Patzina and L. Patzina

Table 1. Requirements for the LSC-to-MPN transformation

Req. ATL [9] ETL [11] QVTo [14] PROGRES [16] SDM [6] TGG [10] VIATRA2 [20]

R1) � � � �1 �1 � �
R2) � –2 � � � � �
R3) � o3 � o3 o3 � o3

R4) � � � � � – �
R5) o4 � o4 � � – �
R6) o5 �6 � � � – �
R7) o7 � � �8 �8 – �
R8) � � � � � o9 �
R9) � � � – � � �
�fulfilled; o partly fulfilled; - not fulfilled; 1in-place; 2only 1-to-n; 3manual; 4refining mode;
5new transformation; 6with EOL; 7as helper; 8control flow and path expressions; 9bidirectional

R8) Unidirectional. Some elements of the LSC have no bijective mapping.
A fixed loop of n iterations is, e.g., unwound to n representations of its
content. (T1)

R9) Tool Support. For the realization of the development process, a reliable
implementation of the transformation language is needed.

Based on these requirements, Table 1 compares state-of-the-art rule-based model
transformation languages. While PROGRES, SDM, TGG, and VIATRA2 are
based on graph transformation (GT) principles, ATL, ETL, and Operational
QVT (QVTo) are not formalized. First approaches for ATL are made using
abstract state machines [5] and rewriting logics [18]. The introduced GT lan-
guages, excluding TGGs, are hybrid and support the modeling of control flow.
In contrast to all other approaches, TGGs are fully declarative and bidirectional
transformations have to be specified as mappings of source and target elements
simultaneously. This hampers the specification of the rules, because no bijective
mapping as stated in R8 exists, and R7 is not supported. So TGG does not fit
to the requirements.

There are two groups, on one hand ATL, ETL, and QVTo and on the other
hand PROGRES, SDM, and VIATRA2. Because many comparisons between
languages within one of the groups exist, e.g., [8,17], one language from each
group is chosen.

ATL, the commonly used model transformation language in the Eclipse com-
munity and SDM that is used in the meta-CASE tool MOFLON [1] will be
compared because of their differences. In SDM the rules, embedded in activities
of an activity diagram, are scheduled by an explicitly modeled control flow. Con-
trary to SDM, the rules of an ATL 3.1 transformation are conditioned by OCL
expressions and functionality can be delegated to helper functions. Using these
concepts the execution sequence is derived from implicit relations between the
rules.

A Case Study Based Comparison of ATL and SDM 215

rule LSCDocument2MPNDocument {
from

lscDocument: LSCMM!LSCDocument
to

mpnDocument: MPNMM!MPNDocument(
name <- lscDocument.name

)
}

rule LSC2MPN{
from

lsc: LSCMM!LSC
to

mpn: MPNMM!MPN(
isMisuseCase <- lsc.isMisuseCase,
name <- lsc.name,
document <- lsc.document

)
}

(T1) LSCDocument2MPNDocument

Transformator::transform (lscDocument:
LSCDocument): MPNDocument

(T1) LSC2MPN

<<create>>

mpn: MPN

isMisuseCase:=lsc.isMisuseCase
name:=lsc.name

(T3) MatchMainchartOfExistentialLSC

elsc:= (ExistentialLSC) lsc

chart: Mainchart

mpn
synchronizeObjectsFinal(mpn, lsc);

mpnDocument

(T2) LSCObjects2InitialPlaces

addInitialPlaces(mpn, lsc);

addElements(mpn, chart, chart);

<<create>>

mpnDocument: MPNDocument

name:=lscDocument.name

lscDocument lsc: LSC

[end]

+lscs +document

+document

<<create>>

+mpns

+chart

+lsc

[failure]

[success]

[each time]

ATL

SDM

(T3) Messages2MPNSubnet(T4) Messages2MPNSubnet

Fig. 2. Initial rules of the transformation (T1)

4 Comparison of the Transformations

In this section, rules of the LSC-to-MPN transformation are presented that show
commonalities and differences of ATL and SDM. Thereby, the requirements de-
rived above that are not satisfied by one or both languages (R3, R5, R6 and R7)
are examined and additional missing features are suggested. After that, the im-
plementation of the transformations is evaluated.

4.1 Transformations

The SDM part of Figure 2 maps the basic steps of the transformation, derived in
Section 2 to the activities of the SDM: (T1) LSCDocument to MPNDocument
and LSC to MPN, (T2) LSCObjects to InitialPlaces, (T3) Messages to an MPN
subnet, and (T4) the synchronization to EndPlaces in MPN.
(T1) The first transformation rules in Figure 2 translate the LSCDocument
with its LSC s to an MPNDocument with corresponding MPN s. The ATL rule,
LSCDocument2MPNDocument, corresponds to the first activity in the SDM. In
the SDM rule, lscDocument is already bound as a parameter and an MPNDoc-
ument is created in the first activity. Contrary to the SDM, the ATL rule needs
no already matched (bound) objects for the navigation. So an LSCDocument is
matched in the from part (left side) and an MPNDocument is created in the to
part (right side) of the rule. The second rule LSC2MPN is very similar in both
languages. In the SDM, the activity around the pattern is a foreach-activity that
uses the bound lscDocument to find all LSC s and adds for each lsc an MPN
with the same attributes to the mpnDocument.

These first transformation rules already reveal the main difference of the two
languages. While SDM explicitly relies on a control flow between the declarative

216 S. Patzina and L. Patzina

rule LSCObject2InitialPlace{

from
lscObject: LSCMM!LSCObject

to
initialPlace: MPNMM!InitalPlace(

name <- lscObject.name,
mpn <- thisModule.resolveTemp(

lscObject.lsc, 'mpn')
)

}

ATL SDM
LSCObject2InitialPlace

Transformator::addInitialPlaces (mpn: MPN,
lsc: LSC): void

lsc lscObject: LSCObject

<<create>>

initialPlace: InitialPlace

name:=lscObject.name

mpn

<<create>>
link: TraceabilityLinkthis

+link

<<create>>+object

+link
<<create>>

+places

+lsc +objects

+mpn

<<create>>

+elements

[end]+transformator

<<create>>

+link

Fig. 3. Creation of initial places of MPN (T2)

patterns, ATL should be used as long as possible in a declarative way [9]. Beside
the implementation of SDM in MOFLON, there exists a backward compatible
extension that allows for implicit rule scheduling [13].
(T2) For every matched LSC in the activity LSC2MPN, the transformation
steps are executed. The next activity calls the rule depicted in Figure 3 that
translates all LSCObjects to InitialPlaces of the MPN. The ATL rule matches
every LSCObject specified in the from part of the rule, which corresponds to the
unbound object lscObject in the SDM. The to part of the ATL rule corresponds
to the pattern at the bottom of the SDM activity.

Here, another difference between ATL and SDM emerges. In ATL each appli-
cation of a rule automatically produces traceability links between the matched
source and the created target elements. Such a mechanism does not exist in
standard SDM. Therefore, an additional metamodel containing the transforma-
tion rules as operations and constructs for the management of traceability links
(TraceabilityLink) has to be explicitly modeled as shown in [7]. Traceability links
in ATL have to be used for adding a reference to the already created MPN. This
is done by the predefined helper resolveTemp and name matching. As parame-
ters the elements of the source model and the name of the element in the target
model, defined in the rule that has matched the source elements, are passed.
(T3) When defining more complex rules such as the transformation of asyn-
chronous messages, two different approaches have to be used. In SDM, enabled
by the explicit control flow modeling, the transformation can be defined in one
rule, whereas, in ATL three rules have to be specified.

For the SDM in Figure 4, the manually added traceability links are used to
identify all places in the MPN that have not been synchronized via a hot message
in the LSC. In the activity CreatePlacesForAsyncMessage three StandardPlaces
for the LSC message are created. The following foreach-activity CreatePlaces-
ForStartLocation generates a transition with corresponding arcs for every place
that has a link to the source of the message (LSCObject). This includes the
bypass-transitions for cold messages. The statement -activity TraceabilityLink-
ForStartLocation calls an SDM method that manages the traceability links. The
second part of the SDM, which is collapsed, performs the similar transformation
for the target of the message.

A Case Study Based Comparison of ATL and SDM 217

SDM

ATL

Transformator::addAsyncMessage (mpn: MPN, startObject: LSCObject,
endObject: LSCObject, message: Message): void

CreatePlacesForAsyncMessage

<<create>>
sPA: StandardPlace mpn

<<create>>
sPS: StandardPlace

<<create>>
sPB: StandardPlace

ConnectPlacesForStartLocation

this startObjectlink: TraceabilityLink

place: Place
<<create>>

pAA: PlaceArc

mpn

<<create>>

tA: Transition

event:="s."+message.getContent()

<<create>>
tAS: TransitionArc

sPS

<<create>>
tAA: TransitionArc

sPA

TraceabilityLinksForStartLocation

ConnectLocationsForEndLocations

TracebilityLinksForEndLocation

addLocationPlace(message.getStartLocation(), link, place,
sPA);

addLocationPlace(message.getEndLocation(), link, place, sPB);

+transition

<<create>>+placearcs

[each time]

[end]

[end]

[each time]

+transition
<<create>>

+transitionarcs

+transition

<<create>>

+transitionarcs

+mpn

<<create>>

+places

+place

<<create>>

+transitionarcs

+place

<<create>>

+placearcs

+mpn

<<create>>

+transitions

+mpn
<<create>>

+places

+mpn

<<create>>+places

+link

+places

+transformator +link +link +object

+place

<<create>>
+transitionarcs

rule AsyncMPNPattern{
 from
 lscAM : LSCMM!Message(lscAM.isMessageAsync)
 to
 sPA : MPNMM!StandardPlace(
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 sPS : MPNMM!StandardPlace(placeArcs <- tAS,
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 sPB : MPNMM!StandardPlace(placeArcs <- tAB,
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 tA : MPNMM!Transition(transitionArcs <- tAA, transitionArcs <- tAS,

event <- 's.'.concat(lscAM.content),
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 tAA : MPNMM!TransitionArc(place <- sPA),
 tAS : MPNMM!TransitionArc(place <- sPS),
 pAA : MPNMM!PlaceArc(transition <- tA, place <- thisModule.getPlaceOfPrevMsgSender(lscAM)),
 ...
}
rule bypassTransition{
 from
 firstLoc : LSCMM!Location,
 secondLoc : LSCMM!Location(firstLoc.isBypassCombination(secondLoc))
 to
 pA : MPNMM!PlaceArc(transition <- t,
 place <- secondLoc.getPlaceForLocAndInst),
 t : MPNMM!Transition(event <- secondLoc.getEventName, transitionArcs <- tA,
 mpn <- thisModule.resolveTemp(firstLoc.object.lsc, 'mpn')),
 tA : MPNMM!TransitionArc(place <- thisModule.getPlaceForLocAndInst(secondLoc))
}
rule bypassTransitionWithFollowingAsyncSend extends bypassTransition{
 from
 firstLoc : LSCMM!Location,
 secondLoc : LSCMM!Location(firstLoc.isBypassCombination(secondLoc)
 and secondLoc.isAsyncSendingLocation)
 to
 tAS : MPNMM!TransitionArc(transition <- t,
 place <- thisModule.resolveTemp(secondLoc.outgoingMessage, 'sPS')
),
 pAS : MPNMM!PlaceArc (place <- thisModule.resolveTemp(secondLoc.outgoingMessage, 'sPS'),
 transition <- thisModule.resolveTemp(
 Tuple{fL = firstLoc.getOppositeLocation, sL = secondLoc.getOppositeLocation}, 't'))
}

Fig. 4. SDM and ATL rules for asynchronous messages (T3)

218 S. Patzina and L. Patzina

stop stop stop …

… …

… X X

PO1 PO2 POn

Fig. 5. Synchronization of open places at the end of an MPN (T4)

In ATL the transformation, depicted in Figure 4, is split into three rules that
match different source elements. Where AsyncMPNPattern matches all messages
in the LSC model and translates the messages, the two bypassTransition rules
create the additional transitions for cold messages. For that, the messages have
to be matched again. This can be done by splitting the transformation in two
sequential transformations, losing the traceability links of the former steps, or as
done here, by matching other source elements (combination of locations). The
to parts of the ATL rules and their helpers extensively use traceability links.
(T4) The LSC presented in Section 2 ends with a hot message, so that only the
places belonging to the last message have to be synchronized via a transition
with stop event. For handling one or more cold messages at the end of a chart,
all combinations of places that have not been synchronized from different LSC
objects have to be connected to an own transition. As shown in Figure 5, the
Cartesian product (po1, po2, . . .) ∈ PO1 × PO2 × . . . has to be derived, where
POn contains all unsynchronized places of the n-th LSCObject.

Such a pattern with two variable dimensions – the number of LSCObjects
and the number of Places for each object – cannot be described in a declarative
manner in ATL and SDM. Therefore, a recursive traversal is needed that can
only be realized imperatively. In SDM, this can be handled locally in the control
flow by calling rules recursively, whereas, in ATL this has to be implemented
fully imperatively in global helpers.

4.2 Evaluation of the Transformations

To validate the semantical equivalence of the two transformations, both ap-
proaches have been fed with the same set of input models, and the output mod-
els have been compared manually with each other. The input models with up to
five messages have been chosen to cover different sequences of messages based
on the temperature, the type, and the direction between the two LSC objects.
Caused by the manual review of the output models, these input models are as
compact as possible to realize all combinations with respect to the specifications
of the transformations.

To evaluate the equivalence for more complex models, an “automatic” compar-
ison2 of the output MPNs is needed. Therefore, the part of the SDM
transformation that is presented in this paper has been transferred to the eMoflon

2 Test suite provided at: http://www.moflon.org/emoflon

http://www.moflon.org/emoflon

A Case Study Based Comparison of ATL and SDM 219

tool, a new version of MOFLON based on EMF. Hereby, EMFCompare allows
for an automatic comparison of the output models (MPNs).

5 Desirable Features

In this section, proposals for additional features of these two languages are made.
These originate from (R) the basic requirements of Section 3, (T) the transfor-
mation in Section 4, and (S) additional requirements for the monitor generation
process scenario.

Implicit Traceability Links (R3, T2, T3). The explicit modeling of traceabil-
ity links in SDM alloy the readability of the transformation rules caused by the
additional patterns to create these links. An implicit generation as realized for sub-
graph copying [19] would be desirable for the here studied more general case.

In-PlaceTransformation (R5,R6).For post-processing purposes in theMPN
target model SDM, as an in-place language, is favorable, because recursive dele-
tions and modifications can be modeled within the control flow. Using the refining
mode of ATL 3.1 (realized by copy rules) allows a kind of in-place transformation,
but this approach fails when post-processing steps have to be repeated iteratively
on the changed model until there is no new match. This is caused by the write-
only target model that has to be used as source model in a repeated external call
of the transformation. In the implementation of ATL 3.2 an extended support for
in-place transformations and explicit deletions has been added, but with the draw-
back that some advanced imperative features are not supported.

Patterns of Dynamic Size (R7, T4). In complex transformations some prob-
lems occur that are typically resolved in programming languages with a recursive
approach, which is needed to compute the Cartesian product of an unknown num-
ber of sets each containing an unknown number of elements. Figure 5 shows this
using the example of the synchronization of all places at the end of the transfor-
mation, presented in Section 4.1. To eliminate the imperative part for this issue, a
template concept for patterns is needed that allows the dynamic runtime initial-
ization of parts of patterns by a quantity of instances in the model.

Explicit Modeling of Control Flow (T1, T3). When a complex transfor-
mation should be described in ATL, every object can only be bound by one
rule, which leads to a shortage of unbound elements for other rules, as presented
in Section 4.1 in T3. This forces the developer to design more complex holistic
rules or split the complete transformation into independent sequential steps. By
splitting the transformation, traceability links created in a previous step are not
accessible in the current step.

Reusability of Matched Patterns (T2). In SDM, set patterns can be used to
match many objects of the same type at once. The results can be passed between
rules and returned as result but cannot be used for further pattern matching.
By extending the set concept and allowing, additionally, the passing of matched
patterns, the control flows in SDM rules could be reduced.

220 S. Patzina and L. Patzina

Deterministic and Correct Result (S). In the presented monitor genera-
tion process the correctness of the resulting model has to be ensured. Therefore,
properties such as a deterministic generation of target models, as guaranteed
by the declarative part of ATL [8], are desirable. As shown in the previous sec-
tion, it is often impossible to provide a purely declarative solution for complex
transformations. Hence, in both ATL and SDM the developer has to cope with
non-determinism in the modeled transformation. To address this issue, test prac-
tices, as suggested in [3], have to be developed for ATL and SDM.

Integration into Software (S). The tools for ATL and SDM provide dif-
ferent approaches for the integration of transformations in software products.
MOFLON and FUJABA use SDM specifications to generate Java code and
ATL is translated into byte-code that is interpreted by a special virtual ma-
chine (ATL VM). Hence, the SDM code is preferable for seamless integration
in a standalone tool [6]. When developing a tool integrated in Eclipse, both
approaches are suitable.

6 Conclusion and Future Work

In this paper, we have presented a case study about the comparison of the
transformation languages ATL and SDM in the context of a model-based secu-
rity monitor development process. We have highlighted shortcomings that have
evolved during the case study and suggested additional concepts to improve the
modeling of transformations. Both languages lack some features and should be
extended. One major disadvantage of ATL is the missing possibility to explicitly
model the control flow, and the resulting problem that elements can be bound
only once in a transformation.

A more satisfactory model transformation language for our monitor generation
process could be based on an SDM-like hybrid language that is extended by
static type and determinism analysis from PROGRES and Critical Pair Analysis
from AGG [12]. The language should support recursive patterns as implemented
in VIATRA. Additionally, a possibility for implicit traceability links should be
supported. Furthermore, an improved parameter handling for passing matched
patterns and set patterns between part rules is also desirable.

As stated, all these concepts have been proposed for different transformation
languages, but were never combined in an implementation of a graph transfor-
mation language. Therefore, further research has to determine the compatibility
of these extensions, e.g., determinism and recursive patters.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. van Amstel, M., Bosems, S., Kurtev, I., Ferreira Pires, L.: Performance in Model
Transformations: Experiments with ATL and QVT. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 198–212. Springer, Heidelberg (2011)

A Case Study Based Comparison of ATL and SDM 221

3. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: ECMDA
Workshop on Integration of MDD and MDT. IRB Verlag (2006)

4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45, 621–645 (2006)

5. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for supporting dynamic semantics specifications of DSLs. Tech. rep. LINA
(2006)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

7. Hildebrandt, S., Wätzoldt, S., Giese, H.: Executing graph transformations with the
MDELab story diagram interpreter. In: Transformation Tool Contest (2011)

8. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

10. Klar, F., Rose, S., Schürr, A.: TiE – a tool integration environment. In: Proc. of
the 5th ECMDA-TW. CTIT Workshop Proc., vol. WP09-09, pp. 39–48 (2009)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

12. Mens, T., Taentzer, G., Runge, O.: Detecting structural refactoring conflicts using
critical pair analysis. In: Proc. of the Workshop on Software Evolution through
Transformations. ENTCS, vol. 127, pp. 113–128. Elsevier (2005)

13. Meyers, B., Van Gorp, P.: Towards a hybrid transformation language: Implicit and
explicit rule scheduling in story diagrams. In: Proc. of the 6th Int. FujabaDays (2008)

14. OMG: MOF 2.0 QVT Spec. Object Management Group (January 2011),
http://www.omg.org/spec/QVT/1.1/

15. Patzina, S., Patzina, L., Schürr, A.: Extending LSCs for Behavioral Signature Mod-
eling. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder,
C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 293–304. Springer, Heidelberg (2011)

16. Schürr, A.: Programmed Graph Replacement Systems. In: Handbook of Graph
Grammars and Computing by Graph Transformation, vol. 1: Foundations, pp.
479–546. World Scientific (1997)

17. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T.,
Prange, U., Varró, D.: Varró-Gyapay, Sz.: Model transformation by graph trans-
formation: A comparative study. In: Proc. of Workshop MTiP (2005)

18. Troya, J., Vallecillo, A.: Towards a Rewriting Logic Semantics for ATL. In: Tratt,
L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 230–244. Springer, Hei-
delberg (2010)

19. Van Gorp, P., Schippers, H., Janssens, D.: Copying subgraphs within model repos-
itories. In: Proc. of the 5th Int. Workshop on Graph Transformation and Visual
Modeling Techniques. ENTCS, vol. 211, pp. 133–145. Elsevier (2008)

20. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3), 214–234 (2007)

21. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A Comparison
of Rule Inheritance in Model-to-Model Transformation Languages. In: Cabot, J.,
Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 31–46. Springer, Heidelberg (2011)

http://www.omg.org/spec/QVT/1.1/

	A Case Study Based Comparisonof ATL and SDM
	Introduction
	Running Example
	Related Work
	Comparison of the Transformations
	Transformations
	Evaluation of the Transformations

	Desirable Features
	Conclusion and Future Work
	References

