
The Added Value of Programmed Graph
Transformations – A Case Study

from Software Configuration Management

Thomas Buchmann, Bernhard Westfechtel, and Sabine Winetzhammer

Lehrstuhl Angewandte Informatik 1, University of Bayreuth
D-95440 Bayreuth, Germany

firstname.lastname@uni-bayreuth.de

Abstract. Model-driven software engineering intends to increase the productiv-
ity of software engineers by replacing conventional programming with the devel-
opment of executable models at a high level of abstraction. It is claimed that graph
transformation rules contribute towards this goal since they provide a declarative,
usually graphical specification of complex model transformations. Frequently,
graph transformation rules are organized into even more complex model trans-
formations with the help of control structures, resulting in full-fledged support
for executable behavioral models.

This paper examines the added value of programmed graph transformations
with the help of a case study from software configuration management. To this
end, a large model is analyzed which was developed in the MOD2-SCM project
over a period of several years. The model was developed in Fujaba, which pro-
vides story diagrams for programming with graph transformations. Our analysis
shows that the model exhibits a strongly procedural flavor. Graph transforma-
tion rules are heavily used, but typically consist of very small patterns. Further-
more, story diagrams provide fairly low level control structures. Altogether, these
findings challenge the claim that programming with graph transformations is
performed at a significantly higher level of abstraction than conventional pro-
gramming.

1 Introduction

Model-driven software engineering is a discipline which receives increasing attention in
both research and practice. Object-oriented modeling is centered around class diagrams,
which constitute the core model for the structure of a software system. From class di-
agrams, parts of the application code may be generated, including method bodies for
elementary operations such as creation/deletion of objects and links, and modifications
of attribute values. However, for user-defined operations only methods with empty bod-
ies may be generated which have to be filled in by the programmer. Here, programmed
graph transformations may provide added value for the modeler. A behavioral model
for a user-defined operation may be specified by a programmed graph transformation.
A model instance being composed of objects, links, and attributes is considered as an
attributed graph. A graph transformation rule specifies the replacement of a subgraph in
a declarative way. Since it may not be possible to model the behavior of a user-defined

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 198–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Added Value of Programmed Graph Transformations 199

operation with a single graph transformation rule, control structures are added to model
composite graph transformations.

But what is the added value of programmed graph transformations? Typical argu-
ments which have been frequently repeated in the literature in similar ways are the
following ones:

1. A graph transformation rule specifies a complex transformation in a rule-based,
declarative way at a much higher level of abstraction than a conventional program
composing elementary graph operations.

2. Due to the graphical notation, programming with graph transformations is intuitive
and results in (high-level) programs which are easy to read and understand.

This paper examines the added value of programmed graph transformations by analyz-
ing a large model which was developed in the MOD2-SCM project (Model-Driven and
Modular Software Configuration Management) [3] over a period of several years. The
model was developed in Fujaba [8], which provides story diagrams for programming
with graph transformations. We analyze the MOD2-SCM model both quantitatively and
qualitatively to check the claims stated above.

2 MOD2-SCM

The MOD2-SCM project [3] is dedicated to the development of a model-driven product
line for Software Configuration Management (SCM) systems [1]. In contrast to com-
mon SCM systems, which have their underlying models hard-wired in hand-written pro-
gram code, MOD2-SCM has been designed as a modular and model-driven approach
which (a) reduces the development effort by replacing coding with the creation of exe-
cutable models and (b) provides a product line supporting the configuration of an SCM
system from loosely coupled and reusable components.

To achieve this goal, we used Fujaba [8] to create the executable domain model of
the MOD2-SCM system. The main part of the work was to (1) create a feature model
[4], that captures the commonalities and variable parts within the domain software con-
figuration management and (2) to create a highly modular domain model whose loosely
coupled components can be configured to derive new products. To this end, a model li-
brary consisting of loosely coupled components that can be combined in an orthogonal
way has been built around a common core.

The success of a product line heavily depends upon the fact that features that have
been declared as independent from each other in the feature model are actually inde-
pendent in their realizing parts of the domain model. Thus, a thorough analysis of the
dependencies among the different modules is crucial [3] in order to derive valid prod-
uct configurations. In order to keep track of the dependencies in large domain models, a
tool based upon UML package diagrams has been developed and integrated with Fujaba
to support the modeler during this tedious task [2]. In the context of the MOD2-SCM
project, graph transformations were used to specify the behavior of the methods that
have been declared in the domain model.

In this paper, we will discuss the added value of graph transformations especially
in the development of large and highly modular software systems. The added value

200 T. Buchmann, B. Westfechtel, and S. Winetzhammer

of Fujaba compared with other CASE tools is the ability to generate executable code
out of behavioral models. Behavioral modeling in Fujaba is performed with story dia-
grams which are similar to interaction overview diagrams in UML2 [6]. Within story
diagrams, activities and transitions are used to model control flow. Fujaba supports two
kinds of activities: (1) statement activities, allowing the modeler to use source code
fragments that are merged 1:1 with the generated code, and (2) story activities. A story
activity contains a story pattern consisting of a graph of objects and links. A static pat-
tern encodes a graph query, a pattern containing dynamic elements represents a graph
transformation rule. Story patterns may be decorated with constraints and collaboration
calls. A story activity may be marked as a “for each” activity, implying that the follow-
ing activities are performed for each match of the pattern. In addition to activity nodes,
story diagrams contain start, end, and decision nodes.

In the following section, we analyze the domain model of MOD2-SCM with a spe-
cific focus on story diagrams.

3 Analysis

3.1 Quantitative Analysis

Tool support was required to analyze the structure and complexity of the MOD2-SCM
specification. Due to the size of the project, determining the numbers listed in Tables 1
and 2 would have been a tedious task. Therefore, we wrote a Fujaba plug-in that directly
operates on Fujaba’s abstract syntax graph to acquire the numbers we were interested
in. We conclude from the collected numbers:

Table 1. Type and number of language elements

Model element
(structural model)

Total
number

Total
number Model element

(behavioral model)

Total
number

Total
number(structural model) MOD2 SCM CodeGen2 (behavioral model) MOD2 SCM CodeGen2

Packages 68 18 Story diagrams 540 339

Classes 175 162 Story patterns 988 850

Abstract Classes 18 28 Objects 1688 1997

I t f 32 10 N ti bj t 42 22Interfaces 32 10 Negative objects 42 22

Attributes 177 181 Multi objects 25 9

Methods 650 443 Links 725 1121Methods 650 443 Links 725 1121

Generalizations 220 247 Paths 13 7

Associations 148 166 Statement activities 264 64Associations 148 166 Statement activities 264 64

Collaboration calls 1183 711

For each activities 27 88

1. The number of story patterns per story diagram is rather low (an average of 1.83
story patterns were used per story diagram). This indicates a procedural style of the
model and methods of lower complexity.

The Added Value of Programmed Graph Transformations 201

Table 2. Significant ratios of language elements

Metric MOD2 SCM CodeGen2 Metric MOD2 SCM CodeGen2

Cl / k 2 57 9 N i bj / 0 04 0 03Classes/package 2.57 9 Negative objects/pattern 0.04 0.03

Attributes/class 1.01 1.12 Multi objects/pattern 0.03 0.01

Methods/class 3 71 2 73 Paths/pattern 0 01 0 01Methods/class 3.71 2.73 Paths/pattern 0.01 0.01

Patterns/story diagram 1.83 2.51 Statement activities/story pattern 0.27 0.08

Objects/pattern 1.71 2.35 Collaboration calls/story pattern 1.20 0.84Objects/pattern 1.71 2.35 Collaboration calls/story pattern 1.20 0.84

Links/pattern 0.73 1.32

2. Within a story pattern, only a few objects and links are used (1.71 objects and 0.73
links, respectively).

3. The number of collaboration calls is rather high (an average number of 1.2 collab-
oration calls per pattern was determined).

4. Given the fact that we tried to use story patterns as much as possible, the fraction of
statement activities is still rather high (0.27 statement activities per story activity).
Furthermore, the seamless integration of hand-written Java code and story patterns
provides lots of advantages, but it also implies one big disadvantage: The model is
no longer platform-independent. For example, changing the code generation tem-
plates to generate C# code is no longer possible without manually changing each
statement activity in the domain model as well.

5. Complex elements within story patterns (negative objects, multi-objects or paths)
were used only very rarely within the domain model.

Generally, the specification of the MOD2-SCM system is highly procedural and es-
sentially lies at the same level of abstraction as a conventional program. The average
complexity of the implemented methods is rather low. Furthermore, the graph transfor-
mation rules are mostly limited to finding simple patterns in the object graph and to
inserting a single new object at the appropriate position and/or calling another method.

3.2 Qualitative Analysis

In addition to interpreting the numbers shown in the previous section, we took a closer
look at the story diagrams of the domain model to examine the expressive power of the
modeling language and the readability of story diagrams. With respect to story patterns,
we observed:

6. Story patterns are easy to read due to the graphical notation. Furthermore, story
patterns potentially have a high expressive power, but this power is only rarely
exploited since the highly modular architecture results in a fine-grained decompo-
sition of the domain model.

We drew the following conclusions concerning control flow:

202 T. Buchmann, B. Westfechtel, and S. Winetzhammer

AbstractDeltaStorage::appendDelta(...) : Boolean

1 : String predVID := (String) oidVidMap.get(newItem.getOID())

2 : String predStorageID := transformToStorageID(...)

S f S ()3 : String storageID := transformToStorageID(...)

[f il]
predStorageContent := (IDeltifiableItem) this.restore(...)

[failure]

false

this
newDelta := Delta := new Delta(...)

storageID := storageID

stores [failure]

f l

<<create>>

predStorageItem : AbstractStorageItem

storageID == predStorageID

stores hasNext
false

[success]

storageID == predStorageID
true

Fig. 1. Story diagram of average complexity

7. It is evident that Fujaba does not provide any ”higher“-level control structures.
In fact, in terms of control structures, the level of abstraction provided by Fujaba
lies even below conventional programming languages, as story diagrams are very
similar to flow charts.

8. In many cases, Java statement activities are mixed up with story patterns, e.g., for
exception handling. Fujaba does not catch external exceptions raised in the exe-
cution of story patterns, e.g., by external Java methods executed via collaboration
calls. Such low-level details need to be handled in Java.

9. Furthermore, Fujaba itself does not provide any mechanisms to iterate over standard
collections. Collections are implicitly used within for-each activities, but no explicit
support is provided for the user.

10. The graphical programming style may result in loss of the overall picture if the
diagrams are too large and complex. Readability suffers especially (but not only)
when the story diagram does not fit onto a single screen.

4 Examples

In this section, we give some examples that reinforce the statements of the previous
section. Figure 1 represents a method implementation which we consider to be of av-
erage complexity (according to the collected metrics data). It is a typical example for
the observations (1) – (5) made in Section 3.1 as well as observation (6). The method
is used to append a forward delta in order to store a new state of a versioned object.
The first story pattern consists only of collaboration calls that retrieve different required
parameters. The second pattern retrieves the content of the predecessor version (which
must have been stored as a delta). This content is used in the third pattern (the only
graph transformation rule) to compute the difference and to store it at the appropriate
position in the object graph.

All story patterns occurring in Figure 1 are quite simple. Figure 2 shows a (mod-
erately) complex story pattern which stores a backward delta. The enclosing story di-
agram is called when a version stored as baseline is to be replaced with a successor

The Added Value of Programmed Graph Transformations 203

AbstractDeltaStorage::insertDeltaForBaseline(...) : Boolean

. . .

this
stores oldBaseline : Baseline

storageID == baselinestorageID

successorDelta : Delta
successorDelta : Delta

hasNext
<<delete>>

replacementDelta := Delta := new Delta(...)

storageID := baselineStorageID

stores
hasNext<<create>>

hasNext

newBaseline : Baseline := addNewBaseline(...)
<<create>>

[failure][success]

throw new ItemNotFoundException(...);

falsetrue

Fig. 2. A (moderately) complex story pattern

version. To this end, the old baseline is replaced with a new baseline and a backward
delta. In fact this is one of the most complex patterns throughout the whole MOD2-SCM
model, which does not include any patterns with more than 6 objects. This example il-
lustrates a strength of story patterns: The effect of a graph transformation is documented
in an easily comprehensible way. However, most patterns are much simpler, implying
that the equivalent Java code would as well be easy to grasp (observation (6)).

Figure 3 shows the story diagram with the highest number of story patterns through-
out the MOD2-SCM project. The story diagram is used to update the local version in-
formation within the user’s workspace after changes have been committed to the server.
This method is very complex if we take the average number of patterns per story dia-
gram into account. However, its individual steps are not complex at all. Listing 1 shows
the purely hand-written implementation in Java. Essentially, the method consists of a
single loop iterating over a list of object identifiers. Two of the story patterns contain
plain Java code since Fujaba does not supply high level constructs for iterating over
standard collections (observation (9)). The remaining story patterns are also very sim-
ple (observation (5)). Thus, it is not a big challenge to code this story diagram in Java.

The story diagrams presented so far do not contain statement activities, except for a
small activity in Figure 2. We used statement activities only when they were impossible
or awkward to avoid. Observation (4) showed that our attempt to eliminate story patterns
was only successful to a limited extent. The next two examples demonstrate the reasons
for that.

The first example (Figure 4) shows a story diagram which is used to configure the
MOD2-SCM repository server at runtime according to the features selected by the user.
This method is inherently procedural and consists of a large number of conditional
statements for handling the different cases. The modeler decided to code the method
body as a single statement activity. Splitting this activity up into many decision nodes
and activity nodes containing small code fragments would have resulted in a huge and
unreadable diagram (observation (7)).

204 T. Buchmann, B. Westfechtel, and S. Winetzhammer

MOD2SCMServerWorkspaceModule::processUpdateResult(pmiList : PMIList, oidVidMap : Map, replace : Boolean) : Boolean

this
hasModules

workspaceManager : AbstractWorkspaceManageroidIterator : pmiList.getOIDList().iterator()

info
{oidIterator.hasNext()}

[failure] [success]

info

changed == true

changed := false

{replace}

info

changed == false

oldItem IProd ctModelItem

observes notifies

this info

changed == false

1: processUpdateResult

InsertNewItem(...)

<<delete>> <<delete>>

1: String oid :=

(String) oidIterator.next()

{replace}oldItem : IProductModelItem
InsertNewItem(...)

workspaceManager

stores

newItem := pmiList.select(oid)
this 1: notifyMergeNecessary(info, newInfo)

info

changed == true

newInfo : WSInfo

oID := oid

info : WSInfo

oID := oid

stores

<<create>>

<<create>>

workspaceManager
info : WSInfo

oID == oid

stores

changed true

{!replace}

oID : oid

currentVID := (String)

oidVidMap.get(oid)

It

observes notifies

[success]

[failure]

processUpdateResultCleanUpDeletedItems()

newItem

Fig. 3. Story diagram that contains a high number of patterns

Listing 1. Manual implementation of the method shown in Figure 3

1 public boolean processUpdateResult(PMIList pmiList, Map<String, String>
oidVidMap, boolean replace) {

2 Iterator oidIterator = pmiList.getOIDList().iterator();
3 while (oidIterator.hasNext()) {
4 String oid = (String) oidIterator.next();
5 IProductModelItem newItem = pmiList.select(oid);
6 WSInfo info = getWorkspaceManager().getWSInfos().get(oid);
7 if (info != null) {
8 IProductModelItem oldItem = info.getItem();
9 if (!replace && info.isChanged()) {

10 WSInfo newInfo = new WSInfo(oid, (String) oidVidMap.get(oid));
11 newInfo.setItem(newItem);
12 newInfo.setObservable(newItem);
13 notifyMergeNecessary(info, newInfo);
14 }
15 if (replace && info.isChanged())
16 info.setChanged(false);
17 if (!info.isChanged() && oldItem != null) {
18 info.setItem(null);
19 info.setObservable(null);
20 }
21 } else {
22 info = new WSInfo(oid);
23 getWorkspaceManager().addWSInfo(info);
24 }
25 if (!info.isChanged())
26 processUpdateResultInsertNewItem(oldItem, newItem, info, oidVidMap);
27 }
28 processUpdateResultCleanUpDeletedItems();
29 }

The Added Value of Programmed Graph Transformations 205

AbstractRuntimeConfigurableServerFactory::assignFactories(...) : Void

AbstractRepositoryModule versionedItemFactory = null;

if (configuration.contains(VersionEnum.VERSIONFIRST) || ...) {

versionedItemFactory = new ComplexRepositoryModule();

if (configuration.contains(BlockEnum.ITEM)) {

System.err.println(...);

configuration remove(BlockEnum ITEM);configuration.remove(BlockEnum.ITEM);

configuration.add(BlockEnum.SERVER);

}

} else if (configuration.contains(...) || ...) {

...

} else

versionedItemFactory = new AtomicRepositoryModule();

HistoryModule historyFactory = null;HistoryModule historyFactory null;

AbstractIDCreatorModule vIDFactory = null;

...

Fig. 4. Story diagram that represents a highly procedural example

MOD2SCMWorkspaceManager::save() : Void

synchronized(getItemManager()) {

<<create>>
wsManagerFile : File := new File(...)

try {

<<create>>

try {

outputStream := new ObjectOutputStream(...)
<<create>>

1 : writeObject(this) 2 : close()

this number OfSavingTries = 0;this.number OfSavingTries = 0;

} catch (Exception e) {

...

} finally {

...

}

Fig. 5. Story diagram that illustrates the JSP syndrome

Figure 5 is a good example how hand-written code fragments are placed around story
patterns (observation (8)). The story diagram is used to save the state of the workspace
manager. To ensure that the execution is synchronized, the body is embedded into a
synchronization statement. Furthermore, if the write operation fails, the save method
is re-executed (until the maximum number of tries is exceeded). Again, this method
implementation is highly procedural and story driven modeling does not seem to be
the most appropriate formalism for this task. The story diagram is written in a JSP-like
style, including statement activities containing fragments of Java text which do not even
correspond to complete syntactical units.

Figure 6 shows a story diagram that is used to calculate differences on text files based
upon the well-known Longest Common Subsequence (LCS) algorithm. Figure 6 depicts

206 T. Buchmann, B. Westfechtel, and S. Winetzhammer

Diff:calculateDiffInternal() : Void

mt
contains[i]

aArrow : Arrow
startOld = aArrow.getEndpositionRow();

endOld = aArrow.getEndpositionRow();

startNew = aArrow.getEndpositionColumn();

endNew = aArrow.getEndpositionColumn();

this

old oldList : ElementList

newList : ElementListnew

has
has

endNew aArrow.getEndpositionColumn();

while (!(aArrow instanceof DiagonalArrow &&

i < mt.sizeOfArrow()) {

[i < mt.sizeOfArrow()]

[else]

C : Matrix mt : MatrixTrace
has

int i = 0;

int startOld = 0;

int endOld = 0;

i t t tN 0

while (aArrow instanceof VerticalArrow &&

i < mt.sizeOfArrow()) {

endOld++; i++;

if (i < mt.sizeOfArrow())

aArrow = mt.getFromArrow(i);

this

aAdd : DBAdd

consists of {last}

int startNew = 0;

int endNew = 0;

g ();

}

...

}
<<create>>

endingLineNew := endNew

beginningLineOld := startOld

beginningLineNew := startNew + 1

lengthAdd := endNew - startNewthis

this

consists of {last}
<<create>>

1 : setDataBoxContent(newList)

aDelete : DBDelete

endingLineOld := endOld

b i i Li Old t tOld 1

consists of {last}aChange : DBChange

endingLineOld := endOld

endingLineNew := endNew

beginningLineOld := startOld + 1

b i i Li N N 1 [else]

<<create>>

beginningLineOld := startOld + 1

beinningLineNew := startNew

lengthDel := endOld - startOld

1 : setDataBoxContent(oldList)

beginningLineNew := startNew + 1

lengthDel := endOld – startOld

lengthAdd := endNew - startNew

1 : setDataBoxContent

(oldList newList)

[else]

[startNew != endNew]

(oldList, newList)

[else][else]
[startOld != endOld &&

startNew != endNew]

[startOld != endOld]

Fig. 6. Story diagram for the LCS algorithm which may be coded easily in Java

the part of the algorithm where the LCS has been determined and the difference (rep-
resented by add, change, or delete blocks) is being computed. The original algorithm
performs best when working with arrays that contain the indices of the longest com-
mon subsequences in two text fragments. Nevertheless, the student who implemented
this part of the MOD2-SCM system tried to raise the algorithm to the object-oriented
level and to make use of Fujaba to be able to easily integrate it into the already existing
MOD2-SCM domain model. Working with indices was still necessary, though objects
for the matrices and the trace within the matrix representing the longest common sub-
sequence have been created. The result is a mixture of statement activities and story
patterns, which makes it hard to keep track of the actual control flow within the shown
story diagram (unstructured control flow, observation (10)).

5 Discussion

5.1 Results from the MOD2-SCM Project

In this paper, we examined the added value of programmed graph transformations with
the help of a case study from software configuration management. Based on this case
study, may we convince hard-core Java programmers to program with graph transfor-
mations instead? The examination of the story diagrams developed in the MOD2-SCM
project suggests the answer “no”. Altogether, story diagrams are written in a strongly
procedural style at a level of abstraction which hardly goes beyond Java and is even
partially located below Java or other current programming languages.

The authors of the MOD2-SCM model made extensive use of story patterns. How-
ever, our quantitative analysis showed that story patterns are typically composed of a
very small number of objects and links. Furthermore, advanced features such as neg-
ative objects/links, multi-objects, and paths are only very rarely used. Altogether, the
potential of story patterns - the declarative specification of complex graph transforma-
tions - is only exploited to a severely limited extent.

The Added Value of Programmed Graph Transformations 207

As far as story patterns are concerned, the graphical notation is intuitive and en-
hances readability, in particular in the case of more complex graph transformations.
With respect to control flow, however, the graphical notation may have a negative im-
pact on readability. Essentially, story diagrams are conventional flow charts, which are
well known for the “goto considered harmful” syndrome. Control structures known
from structured programming are missing. In this respect, story diagrams fall behind
conventional programming languages such as Java.

5.2 Generalization of Results

Let us summarize the most important general observations derived from the case study:

1. The behavioral model is highly procedural.
2. The expressive power of graph transformation rules (story patterns) is hardly ex-

ploited.

It might be argued that these findings are specific to the case study since providing a
product line requires the fine-grained decomposition of the overall domain model into
a set of rather small reusable components. However, this style of development is not
only applied to product lines, but it should anyhow be applied in any large development
project. To check this assumption, we ran our metrics tool on Fujaba’s CodeGen2 model
(the bootstrapped Fujaba code generator). The results were very similar to the data
collected from the MOD2-SCM project (see again Tables 1 and 2).

It could also be argued that the authors of the story diagrams lacked the expertise
to fully exploit the features of the modeling language. Although some minor parts of
the MOD2-SCM project were developed by students who did not have much experi-
ence in programming with graph transformations, the biggest part of the system was
implemented by experienced Fujaba modelers. Furthermore, the analysis of CodeGen2,
which was developed by the authors of Fujaba themselves, yielded similar results.

Finally, it might be argued that the procedural style of the Fujaba models is due
to the modeling language. However, this argument does not explain the fact that ad-
vanced features of story patterns such as paths, constraints, negative objects and links,
and multi-objects were only rarely used. Nevertheless, we decided to examine a large
specification written in another language to check this argument. The specification was
developed in a Ph.D. thesis in the ECARES project, which was concerned with reverse
engineering and reengineering of telecommunication systems [5]. The specification was
written in PROGRES [7], a language for programming with graph transformations pro-
viding many advanced features (multiple inheritance, derived attributes and relations,
object-orientation, genericity, graph transformation rules with similar features as in Fu-
jaba, high-level control structures, backtracking, and atomic transactions).

The data displayed in Tables 3 and 4 were collected from the complete specification,
as developed in the Ph.D. thesis by Marburger. By and large, the results are consistent
with the metrics data collected from the Fujaba models:

1. The ECARES specification has a strongly procedural flavor. This is indicated by
the ratio of the number of graph tests and graph transformation rules related to the
number of programmed graph queries and transactions: There are twice as many
programmed methods as elementary graph tests and transformation rules.

208 T. Buchmann, B. Westfechtel, and S. Winetzhammer

Table 3. Type and number of language elements in ECARES

Model element Total number Model element Total number

Packages 21 Optional nodes 9

Node classes or types 190 Set nodes 40

Generalizations 193 Edges 374

Intrinsic attributes 87 Negative nodes and edges 13

Derived attributes 9 Positive and negative paths 92

M t tt ib t 8 T ti (d t th d) 299Meta attributes 8 Transactions (update methods) 299

Edge types 21 Queries 8

Textual path declarations 32 Assignments 659Textual path declarations 32 Assignments 659

Graphical path declarations 40 Calls 684

Graph tests 55 Sequences 335Graph tests 55 Sequences 335

Graph transformation rules 92 Conditional statements 270

Mandatory nodes 559 Loops 83y p

Table 4. Significant ratios of language elements in ECARES

Metric Value Metric Value

(Cl)/ k 9 05 (N i d d)/ hi l d fi i i 0 07(Classes + types)/package 9.05 (Negative nodes + edges)/graphical definitions 0.07

Attributes/(classes + types) 0.55 Set nodes/graphical definitions 0.21

(Graph tests + graph transformation rules + (h)/ h l d f(Graph tests + graph transformation rules +
queries + transactions)/(classes + types) 2.39 (Positive + negative paths)/graphical definitions 0.49

(Graph tests + graph transformation rules)/
(queries + transactions) 0.48 (Assignments + calls)/(queries + transactions) 4.37

Nodes/graphical definitions 2.99 Control structures/(queries + transactions) 2.24

Edges/graphical definitions 2.00

2. Graphical definitions (graph tests, graph transformation rules, and graphical path
declarations) are rather small. On average, a graphical definition contains about 3
nodes and 2 edges. These numbers are a bit larger than in MOD2-SCM and Code-
Gen2. However, it has to be taken into account that relationships are represented in
ECARES always as nodes and adjacent edges. Thus, a graph transformation rule
for inserting a relationship requires at least 3 nodes and 2 edges. In the publications
on ECARES, considerably more complex rules were selected for presentation, but
these rules are not representative.

3. The data differ with respect to the utilization of advanced features in graphical
definitions. In particular, paths are used in about 50% of all graphical definitions.
Eliminating paths would result in larger graphical definitions. Thus, altogether the
graphical definitions are slightly more complex than in the studied Fujaba models.

6 Conclusion

We investigated the added value of programmed graph transformations with the help of
a large case study from software configuration management. Our analysis showed that
the model developed in the MOD2-SCM project exhibits a strongly procedural flavor.
Furthermore, graph transformation rules are heavily used, but consist typically of very

The Added Value of Programmed Graph Transformations 209

small and simple patterns. Finally, we have reinforced our findings with metrics data
collected from other projects utilizing programmed graph transformations.

Examining a few large models does not suffice to evaluate the added value of pro-
grammed graph transformations. However, our analysis indicates that the level of ab-
straction is not raised as significantly as expected in comparison to conventional pro-
gramming. In the models we studied, the modeling problem seems to demand for a
procedural solution. Furthermore, modularization of a large model may result in a fine-
grained decomposition such that each method only has to deal with small patterns and
has to provide a small piece of functionality. Further case studies are required to check
whether these effects also apply to other applications.

References

1. Buchmann, T., Dotor, A.: Towards a model-driven product line for SCM systems. In: McGre-
gor, J.D., Muthig, D. (eds.) Proc. of the 13th Int. Software Product Line Conference, vol. 2,
pp. 174–181. SEI (2009)

2. Buchmann, T., Dotor, A., Klinke, M.: Supporting modeling in the large in Fujaba. In: van
Gorp, P. (ed.) Proc. of the 7th International Fujaba Days, pp. 59–63 (2009)

3. Dotor, A.: Entwurf und Modellierung einer Produktlinie von Software-Konfigurations-
Management-Systemen. Ph.D. thesis, University of Bayreuth (2011)

4. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon University Software Engineer-
ing Institute (1990)

5. Marburger, A.: Reverse Engineering of Complex Legacy Telecommunication Systems.
Berichte aus der Informatik. Shaker-Verlag (2005)

6. OMG: OMG Unified Modeling Language (OMG UML), Superstructure V2.2 (version 2.2)
(February 2009)

7. Schürr, A., Winter, A., Zündorf, A.: The PROGRES Approach: Language and Environment.
In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2: Applica-
tions, Languages, and Tools, pp. 487–550. World Scientific (1999)

8. Zündorf, A.: Rigorous object oriented software development. Tech. rep., University of Pader-
born, Germany (2001)

	The Added Value of Programmed Graph Transformations – A Case Study from Software Configuration Management
	Introduction
	MOD2-SCM
	Analysis
	Quantitative Analysis
	Qualitative Analysis

	Examples
	Discussion
	Results from the MOD2-SCM Project
	Generalization of Results

	Conclusion
	References

