
Contextual Hyperedge Replacement

Frank Drewes1, Berthold Hoffmann2, and Mark Minas3

1 Ume̊a Universitet, Sweden
2 DFKI Bremen and Universität Bremen, Germany
3 Universität der Bundeswehr München, Germany

Abstract. In model-driven design, the structure of software is com-
monly specified by meta-models like uml class diagrams. In this paper
we study how graph grammars can be used for this purpose, using state-
charts as an example. We extend context-free hyperedge-replacement—
which is not powerful enough for this application—so that rules may not
only access the nodes attached to the variable on their left-hand side,
but also nodes elsewhere in the graph. Although the resulting notion
of contextual hyperedge replacement preserves many properties of the
context-free case, it has considerably more generative power—enough to
specify software models that cannot be specified by class diagrams.

1 Introduction

Graphs are ubiquitous in science and beyond. When graph-like diagrams are
used to model system development, it is important to define precisely whether
a diagram is a valid model or not. Often, models are defined as the valid instan-
tiations of a meta-model, e.g., the valid object diagrams for a class diagram in
uml. A meta-model is convenient for capturing requirements as it can be refined
gradually. It is easy to check whether a given model is valid for a meta-model.
However, it is not easy to construct valid sample models for a meta-model, and
they give no clue how to define transformations on all valid models. Also, their
abilities to express structural properties (like hierarchical nesting) are limited;
constraints (e.g., in the logic language ocl) have to be used for more complicated
properties like connectedness.

In contrast to meta-models, graph grammars derive sets of graphs construc-
tively, by applying rules to a start graph. This kind of definition is strict, can
easily produce sample graphs by derivation, and its rules provide for a recursive
structure to define transformations on the derivable graphs. However, it must not
be concealed that validating a given graph, by parsing, may be rather complex.

General graph grammars generate all recursively enumerable sets of graphs
[16] so that there can be no parsing algorithm. Context-free graph grammars
based on node replacement or hyperedge replacement [6] do not have the power
to generate graphs of general connectivity, like the language of all graphs, of all
acyclic, and all connected graphs etc. We conclude that practically useful kinds
of graph grammars should lie in between context-free and general ones. We take
hyperedge replacement as a solid basis for devising such grammars, as it has

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 182–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Contextual Hyperedge Replacement 183

a comprehensive theory, and is very simple: A step removes a variable (repre-
sented as a hyperedge) and glues the fixed ordered set of nodes attached to it to
distinguished nodes of a graph. The authors have been working on several ex-
tensions of hyperedge replacement. Adaptive star replacement [2], devised with
D. Janssens and N. Van Eetvelde, allows variables to be attached to arbitrary,
unordered sets of nodes. Its generative power suffices to define sophisticated soft-
ware models like program graphs [3]. Nevertheless, it inherits some of the strong
properties of hyperedge replacement. Unfortunately, adaptive star rules tend to
have many edges, which makes them hard to understand—and to construct.
Therefore the authors have devised contextual graph grammars, where variables
still have a fixed, ordered set of attached nodes, but replacement graphs may
be glued, not only with these attachments, but also with nodes occurring else-
where in the graph, which have been generated in earlier derivation steps [11]. As
we shall show, their generative power suffices to define non-context-free models.
Typically, contextual rules are only modest extensions of hyperedge replacement
rules, and are significantly easier to write and understand than adaptive star
rules. This qualifies contextual hyperedge grammars as a practical notation for
defining software models. When we add application conditions to contextual
rules, as we have done in [11], even subtler software models can be defined.
Since conditions are a standard concept of graph transformation, which have
been used in many graph transformation systems (see, e.g., progres [15]), such
rules are still intuitive.

This paper aims to lay a fundament to the study of contextual hyperedge re-
placement. So we just consider grammars without application conditions for the
moment, as our major subjects of comparison, context-free hyperedge replace-
ment and adaptive star replacement, also do not have them. With context-free
hyperedge replacement, contextual hyperedge replacement shares decidability
results, characterizations of their generated language, and the existence of a
parsing algorithm. Nevertheless, it is powerful enough to make it practically
useful for average structural models.

The remainder of this paper is structured as follows. In Section 2 we introduce
contextual hyperedge replacement grammars and give some examples. In partic-
ular, we discuss a grammar for statecharts in Section 3. Normal forms for these
grammars are presented in Section 4. In Section 5 we show some of their limita-
tions w.r.t. language generation, and sketch parsing in Section 6. We conclude
with some remarks on related and future work in Section 7.

2 Graphs, Rules, and Grammars

In this paper, we consider directed and labeled graphs. We only deal with ab-
stract graphs in the sense that graphs that are equal up to renaming of nodes
and edges are not distinguished. In fact, we use hypergraphs with a generalized
notion of edges that may connect any number of nodes, not just two. Such edges
will also be used to represent variables in graphs and graph grammars.

184 F. Drewes, B. Hoffmann, and M. Minas

We consider labeling alphabets C = Ċ �C̄ �X that are sets whose elements are
the labels (or “colors”) for nodes, edges, and variables, with an arity function
arity : C̄ �X → Ċ∗.1

A labeled hypergraph over C (graph, for short) G = 〈Ġ, Ḡ, attG, �̇G, �̄G〉 consists
of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short) respec-
tively, a function attG : Ḡ → Ġ∗ that attaches sequences of pairwise distinct
nodes to edges so that �̇∗G(attG(e)) = arity(�̄G(e)) for every edge e ∈ Ḡ,2 and

labeling functions �̇G : Ġ → Ċ and �̄G : Ḡ → C̄ �X . Edges are called variables if
they carry a variable name as a label; the set of all graphs over C is denoted by
GC .

For a graph G and hyperedge e ∈ Ḡ, we denote by G− e the graph obtained
by removing e from G. Similarly, for v ∈ Ġ, G − v is obtained by removing v
from G (together with all edges attached to v).

Given graphs G and H , a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:

�̇H ◦ ṁ = �̇G, �̄H ◦ m̄ = �̄G, attH(m̄(e)) = ṁ∗(attG(e)) for every e ∈ Ḡ

As usual, a morphism m : G → H is injective if both ṁ and m̄ are injective.
The replacement of variables in graphs by graphs is performed by applying a

special form of standard double-pushout rules [5].

Definition 1 (Contextual Rule). A contextual rule (rule, for short) r =
(L,R) consists of graphs L and R over C such that

– the left-hand side L contains exactly one edge x, which is required to be a
variable (i.e., L̄ = {x} with �̄L(x) ∈ X) and

– the right-hand side R is an arbitrary supergraph of L− x.

Nodes in L that are not attached to x are the contextual nodes of L (and of r);
r is context-free if it has no contextual nodes. (Context-free rules are known as
hyperedge replacement rules in the literature [7].)

Let r be a contextual rule as above, and consider some graph G. An injective
morphism m : L → G is called a matching for r in G. The replacement of the
variable m(x) ∈ G by R (via m) is the graph H obtained from the disjoint union
of G−m(x) and R by identifying every node v ∈ L̇ with m(v). We write this as
H = G[R/m].

Note that contextual rules are equivalent to contextual star rules as introduced
in [11], however without application conditions.

The notion of rules introduced above gives rise to a class of graph grammars.
We call these grammars contextual hyperedge-replacement grammars, or briefly
contextual grammars.

1 A∗ denotes finite sequences over a set A; the empty sequence is denoted by ε.
2 For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by
f∗(a1, . . . , an) = f(a1) . . . f(an), for all ai ∈ A, 1 � i � n, n � 0.

Contextual Hyperedge Replacement 185

Definition 2 (Contextual Hyperedge-Replacement Grammar). A con-
textual hyperedge-replacement grammar (contextual grammar, for short) is a
triple Γ = 〈C,R, Z〉 consisting of a finite labeling alphabet C, a finite set R
of rules, and a start graph Z ∈ GC .

If R contains only context-free rules, then Γ is a hyperedge replacement gram-
mar. We let G ⇒R H if H = G[R/m] for some rule (L,R) and for a matching
m : L → G. Now, the language generated by Γ is given by

L(Γ) = {G ∈ GC\X | Z ⇒∗
R G}.

Contextual grammars Γ and Γ ′ are equivalent if L(Γ) = L(Γ ′). The classes of
graph languages generated by hyperedge-replacement grammars and contextual
grammars are denoted by HR and CHR, respectively.

Notation (Drawing Conventions for Graphs and Rules). Graphs are
drawn as in Figure 2 and Figure 4. Circles and boxes represent nodes and edges,
respectively. The text inscribed to them is their label from C. (If all nodes carry
the same label, these are just omitted.) The box of an edge is connected to the
circles of its attached nodes by lines; the attached nodes are ordered counter-
clockwise around the edge, starting in its north. The boxes of variables are drawn
in gray. Terminal edges with two attached nodes may also be drawn as arrows
from the first to the second attached node. In this case, the edge label is ascribed
to the arrow.

In figures, a contextual rule r = (L,R) is drawn as L : : =R. Small numbers
above nodes indicate identities of nodes in L and R. L : : =R1|R2 · · · is short
for rules L : : =R1, L : : =R2, . . . with the same left-hand side. Subscripts “n” or
“n|m· · · ” below the symbol : : = define names that are used to refer to rules in
derivations, as in Figure 1 and Figure 3.

Example 1 (The Language of All Graphs). The contextual grammar in Figure 1
generates the set A of loop-free labeled graphs with binary edges, and Figure 2
shows a derivation with this grammar. Rules 0 and d generate n � 0 variables
labeled with G; the rules nx generate a node labeled with x, and the rules ea
insert an edge labeled with a between two nodes that are required to exist in
the context.

G : : =
0|d

〈〉
∣
∣
∣ G G G : : =

x

x , for all x ∈ Ċ
x G y : : =

a

x y
a , for all a ∈ C̄, where arity(a) = xy Z = G

Fig. 1. A contextual grammar (generating the language of all graphs)

G
5⇒
d G

G

GG

G G
3⇒
nA A

A

AG

G G
3⇒
ea A

A

A

a a

a

Fig. 2. A derivation with the rules in Figure 1

186 F. Drewes, B. Hoffmann, and M. Minas

It is well known that the languageA cannot be defined by hyperedge-replacement
grammars [7, Chapter IV, Theorem 3.12(1)].3 Thus, as CHR contains HR by
definition, we have:

Observation 1. HR � CHR.

Flow diagrams are another example for this observation: In contrast to structured
and semi-structured control flow diagrams, unrestricted control flow diagrams
are not in HR, because they have unbounded tree-width [7, Chapter IV, Theorem
3.12(7)]. However, they can be generated by contextual grammars.

0

D

: : =
h|a|b

0

|

0

D

|

0

⊕
�

D D

0

D

1

: : =
g

0

1

Z =
D

Fig. 3. Rules generating unrestricted control flow diagrams

D

⇒
b

⊕
�

D D

⇒
b

D D

D

⊕
�

⊕
�

⇒
h

D

D

⊕
�

⊕
� 3⇒

a

D

D

⊕
�

⊕
�

2⇒
g

⊕
�

�
⊕

Fig. 4. A derivation of an unstructured control flow diagram

Example 2 (Control Flow Diagrams). Unrestricted control flow diagrams repre-
sent sequences of low-level instructions according to a syntax like this:

I : : = [� :]halt | [� :]x := E | [�1 :] if E then goto �2 | [�1 :]goto �2

The rules in Figure 3 generate unrestricted flow diagrams. The first three rules,
h, a, and b, generate control flow trees, and the fourth rule g, which is not
context-free, inserts gotos to a program state in the context. In Figure 4, these
rules are used to derive an “ill-structured” flow diagram.

Note that flow diagrams cannot be defined with class diagrams, because subtyping
and multiplicities do not suffice to define rootedness and connectedness of graphs.

3 It is well-known that node replacement (more precisely, confluent edNCE graph
grammars) cannot generate A either [6, Thm. 4.17]. Hence, Observation 1 holds
similarly for node replacement.

Contextual Hyperedge Replacement 187

3 A Contextual Grammar for Statecharts

Statecharts [9] are an extension of finite automata modeling the state transitions
of a system in reaction on events. The statechart in Figure 5 describes an auction.
Blobs denote states, and arrows denote transitions between them. Black blobs
are initial states, blobs with a black kernel are final states, and the others are
inner states. Inner states may be compound, containing compartments, separated
with dashed lines, which contain sub-statecharts that act independently from one
another, and may themselves contain compound states, in a nested fashion. Text
inside a blob names the purpose of a state or of its compartments, and labels at
transitions name the event triggering them. (We consider neither more general
event specifications, nor more special types of states.)

The structure of statecharts can be specified by the class diagram shown in
Figure 6. The dotted circle with a gray kernel is abstract, for inner or stop states.
An inner state may be composed of compartments (denoted as dashed blobs),
which in turn are composed of other states (defining the sub-charts). In examples
like Figure 5, a compound state is drawn as a big blob with solid lines wherein
the compartments are separated by dashed lines.

The class diagram captures several structural properties of statecharts: It
forbids isolated initial and final states and transitions to initial states; each
compartment contains exactly one initial state, and compound states and their
compartments form a tree hierarchy as the associations uniting and containing
are compositions (indicated by the black diamonds at their sources).

Example 3 (A Grammar for Statecharts). The contextual rules in Figure 7 gen-
erate statecharts according to the class diagram in Figure 6. (Let us ignore the
parts underlaid in gray for a moment.) The charts in these rules are drawn so
that the compositions uniting and containing are just represented by drawing
the blob of their target within the blob of their source. We assume (for regu-
larity) that the topmost statechart is contained in a compartment, see the start
graph Z. The rules for S add transitions to current states, which are either initial
or inner states (drawn as gray nodes). The target of the transition is either a
new final state (rule f), or a new inner state, to which further transitions may be

Getting Evaluating

Checking

Cancelled

Rejected

Purchased

Auction

Bidding

Payment

offer

continue

accept

authorize

reject

cancel ∗

+
t

+ ∗
t

containing

∗

uniting

∗

containing

1

Fig. 5. A statechart modeling an auction Fig. 6. A class diagram
for statecharts

188 F. Drewes, B. Hoffmann, and M. Minas

S : : =
f|m

S
t

∣
∣
∣
∣
∣

S T S

S 10 : : =
T

10
t

10if �

S : : =
c

C C : : =
0|p

C

∣
∣
∣
∣

S C

T

1

: : =
t|n

1t

∣
∣
∣
∣
∣

1 1 t
if ∃ Z = S

Fig. 7. Contextual rules for statecharts (with application conditions)

added (rule m), or an inner state that exists in the context, but not necessarily
in the same compartment (rule T). Rule m inserts a variable named T that may
generate a concrete transition (rule t), or leave the states separate (rule n). (This
is necessary since the transitions to an inner state in a compartment need not
come from a state in that compartment, like states Canceled and Rejected in
Figure 5.) Finally, inner states may be filled (by rules 0 and p for the variable
C) with compartments, each containing a statechart as in the start graph Z.

Every state in a chart should be reachable from an initial state. Reachability
cannot be expressed by class diagrams alone. In order to specify this property
in a meta-model, the inner state must be extended with an auxiliary attribute
that determines this condition by inspecting its direct predecessors, and with a
logical constraint, e.g., in ocl, which requires that the value of the attribute is
true for every instance of a state.

Example 2 shows that contextual grammars can express reachability as such.
In statecharts, reachability is combined with hierarchical nesting of sub-states,
and cannot be specified with contextual rules. However, we may extend contex-
tual rules with application conditions, as proposed in [11]. The parts underlaid in
gray add application conditions to two rules of Figure 7. In Rule n, the condition
requires that the target node of variable T is the target of another transition. It
is easy to show that this guarantees reachability from initial states. The condi-
tion for rule T expresses yet another consistency requirement: The source and
target of a transition must not lie in sister compartments of the same compound
state.

4 Normal Forms of Contextual Grammars

In this section, we study the basic properties of contextual grammars. As it turns
out, these properties are not fundamentally different from the properties known
for the context-free case. This indicates that contextual hyperedge replacement is

Contextual Hyperedge Replacement 189

a modest generalization of hyperedge replacement that, to the extent one might
reasonably hope for, has appropriate computational properties.

Let us first look at some normal forms of contextual grammars. We say that
a restricted class C of contextual grammars is a normal form of contextual
grammars (of a specified type) if, for every contextual grammar (of that type),
one can effectively construct an equivalent grammar in C.

Lemma 1. Contextual grammars in which each rule contains at most one con-
textual node are a normal form of contextual grammars.

Proof. This is straightforward. Suppose we wish to implement a rule (L,R)
whose left-hand side contains a variable with k attached nodes and l � 1 con-
textual nodes. We use l rules to collect the l contextual nodes one by one, finally
ending up with a variable that is attached to k + l nodes. The original rule is
then turned into a context-free rule. 	

In the context-free case, so-called epsilon rules and chain rules can easily be re-
moved from a grammar. A similar modification is possible for contextual gram-
mars. In this context, a rule (L,R) with L̄ = {x} is an epsilon rule if R = L−x,
and a chain rule if R − y = L − x for a variable y ∈ R̄. Note that both epsilon
and chain rules are more general than in the context-free case, because L may
contain contextual nodes. In particular, chain rules can make use of these con-
textual nodes to “move” a variable through a graph. In the case of epsilon rules,
the effect of contextual nodes is that the removal of a variable is subject to the
condition that certain node labels are present in the graph.

Lemma 2. Contextual grammars with neither epsilon nor chain rules are a
normal form of those contextual grammars that do not generate the empty graph.

Proof Sketch. While the overall structure of the proof is similar to the corre-
sponding proof for the context-free case, its details are slightly more compli-
cated. Therefore, we give only a very rough sketch of the proof. The full proof
will be given in a forthcoming extended version of this article.

The proof works as follows. First, it is shown that epsilon rules may be re-
moved by composing non-epsilon rules with epsilon rules that remove some of
the variables in the right-hand side of the original rule. Afterwards, chain rules
are removed by replacing them with rules that correspond to a sequence of chain
rules applied in succession, followed by the application of a non-chain rule.

The notion of composition used here has to take contextual nodes into ac-
count. Suppose we are given rules r1 = (L1, R1) and r2 = (L2, R2), such that
R1 contains a variable with the same name as the variable in L2. We need to be
able to combine both rules even if R1 does not supply r2 with all the necessary
contextual nodes. We do this by enriching L1 with the contextual nodes needed
by r2. However, if r1 contains nodes (with the right labels) that are isolated in
both L1 and R1, these are used instead rather than adding even more contex-
tual nodes to the left-hand sides. This is a necessary precaution, because the
composition of chain rules may otherwise create an infinite set of rules.

190 F. Drewes, B. Hoffmann, and M. Minas

The removal of epsilon rules is non-trivial, because we have to make sure to
avoid introducing deadlocks. To see this, suppose a rule r1 creates a variable
e1 that can be removed by an epsilon rule containing a contextual node labeled
a1. Similarly, assume that r2 creates a variable e2 that can be removed by an
epsilon rule containing a contextual node labeled a2. Assume furthermore that r1
generates an a2-labeled node and r2 generates an a1-labeled node. Then, given
a graph that contains the left-hand sides of r1 and r2, we can apply r1 and
r2, followed by the epsilon rules that delete e1 and e2. However, if we compose
r1 with the first epsilon rule and r2 with the second one, neither of the composed
rules may be applicable, because the first contains an a1-labeled contextual node
and the second contains an a2-labeled contextual node. Fortunately, the problem
can be solved by a guess-and-verify strategy, thanks to the fact that the number
of contextual nodes in the left-hand sides of rule is bounded. Roughly speaking,
the guess-and-verify strategy makes sure that the required contextual nodes will
be generated somewhere in the graph.

Finally, let us sketch how to remove chain rules, assuming that the gram-
mar does not contain epsilon rules. For this, the following observation is crucial.
Consider a derivation G0 ⇒R G1 ⇒R · · · ⇒R Gm that consists of m− 1 appli-
cations of chain rules followed by a single application of another rule. Suppose
the variables replaced are x1, . . . , xm, and let 1 � i1 < · · · < in = m be those
indices such that xm = xin is a direct descendant of xin−1 , which is a direct de-
scendent of xin−2 , and so on. Then all derivation steps that replace variables in
{xi1 , . . . , xin} can be postponed until after the other m−n steps. This is because
the chain rules do not create nodes that the other rules may use as contextual
nodes. In other words, we can assume that ij = m − n + j for all j ∈ [n]. As a
consequence, it is safe to modify Γ by adding all rules obtained by composing a
sequence of chain rules with a single non-chain rule and remove all chain rules.
Thanks to the observation above, the language generated stays the same. 	

Note that, unfortunately, it seems that the normal forms of the previous two
lemmas cannot be achieved simultaneously.

Definition 3 (Reducedness of Contextual Grammars). In Γ = 〈C,R, Z〉,
a rule r ∈ R is useful if there is a derivation of the form Z ⇒∗

R G ⇒r G′ ⇒∗
R H

such that H ∈ GC\X . Γ is reduced if every rule in R is useful.

Note that, in the case of contextual grammars, usefulness of rules is not equiv-
alent to every rule being reachable (i.e., for some G′, the part of the derivation
above up to G′ exists) and productive (i.e., for some G, the part starting from
G exists), because it is important that the pairs (G,G′) are the same.

Theorem 1. Reducedness is decidable for contextual grammars.

Proof Sketch. Let us call a variable name ξ useful if there is a useful rule whose
left-hand side variable has the name ξ. Clearly, it suffices to show that it can be
decided which variable names are useful. To see this, note that we can decide
reducedness by turning each derivation step into two, first a context-free step

Contextual Hyperedge Replacement 191

that nondeterministically “guesses” the rule to be applied and remembers the
guess by relabeling the variable, and then a step using the guessed rule. Then
the original rule is useful if and only if the new variable name recording the guess
is useful.

Assume that the start graph is a single variable without attached nodes.
Then, derivations can be represented as augmented derivation trees, where the
vertices represent the rules applied. Suppose that some vertex ω represents the
rule (L,R), where L contains the contextual nodes u1, . . . , uk. Then the augmen-
tation of ω consists in contextual references (ω1, v1), . . . , (ωk, vk), where each ωi

is another vertex of the tree, and the vi are distinct nodes, each of which is
generated by the rule at ωi and carries the same label as ui. The pair (ωi, vi)
means that the contextual node ui was matched to the node vi generated at ωi.
Finally, in order to correspond to a valid derivation, there must be a linear order
≺ on the vertices of the derivation tree such that ω ≺ ω′ for all children ω′ of a
vertex ω, and ωi ≺ ω for each ωi as above.

4

Now, to keep the argument simple, assume that every rule contains at most
one contextual node (see Lemma 1), and also that the label of this node differs
from the labels of all nodes the variable is attached to. (The reader should easily
be able to check that the proof generalizes to arbitrary contextual grammars.)
The crucial observation is the following. Suppose that, for a given label a ∈ Ċ, ωa

is the first vertex (with respect to ≺) that generates an a-labeled node va. Then,
in each other vertex ω as above, if the rule contains an a-labeled contextual node
u, the corresponding contextual reference (ω′, v) can be replaced with (ωa, va).
This may affect the graph generated, but does not invalidate the derivation tree.
We can do this for all vertices ω and node labels a. As a consequence, at most |Ċ|
vertices of the derivation tree are targets of contextual references. Moreover, it
should be obvious that, if the derivation tree is decomposed into s(t(u)), where
the left-hand sides of the rules at the roots of t and u are the same, then s(u) is
a valid derivation tree, provided that no contextual references in s and u point
to vertices in t. It follows that, to check whether a variable name is useful, we
only have to check whether it occurs in the (finite) set of valid derivation trees
such that (a) all references to nodes with the same label are equal and (b) for
every decomposition of the form above, there is a contextual reference in s or u
that points to a vertex in t. 	

Clearly, removing all useless rules from a contextual grammar yields an equiv-
alent reduced grammar. Thus, we can compute a reduced contextual grammar
from an arbitrary one by determining the largest subset of rules such that the
restriction to these rules yields a reduced contextual grammar.

Corollary 1. Reduced contextual grammars are a normal from of contextual
grammars.

4 To be precise, validity also requires that the variable replaced by the rule at ω is not
attached to vi.

192 F. Drewes, B. Hoffmann, and M. Minas

By turning a grammar into a reduced one, it can furthermore be decided whether
the generated language is empty (as it is empty if and only if the set of rules is
empty and the start graph contains at least one variable).

Corollary 2. For a contextual grammar Γ , it is decidable whether L(Γ) = ∅.

5 Limitations of Contextual Grammars

Let us now come to two results that show limitations of contextual grammars
similar to the known limitations of hyperedge-replacement grammars. The first
of these results is a rather straightforward consequence of Lemma 2: as in the
context-free case, the languages generated by contextual grammars are in NP,
and there are NP-complete ones among them.

Theorem 2. For every contextual grammar Γ , it holds that L(Γ) ∈ NP. More-
over, there is a contextual grammar Γ such that L(Γ) is NP-complete.

Proof. The second part follows from the fact that this holds even for hyperedge-
replacement grammars, which are a special case of contextual grammars. For the
first part, by Lemma 2, it may be assumed that Γ contains neither epsilon nor
chain rules. It follows that the length of each derivation is linear in the size of the
graph generated. Hence, derivations can be nondeterministically “guessed”. 	

It should be pointed out that the corresponding statement for hyperedge-
replacement languages is actually slightly stronger than the one above, because,
in this case, even the uniform membership problem is in NP (i.e., the input is
(Γ,G) rather than just G). It is unclear whether a similar result can be achieved
for contextual grammars, because the construction given in the proof of Lemma 2
may, in the worst case, lead to an exponential size increase of Γ .

Theorem 3. For a graph G, let |G| be either the number of nodes of G, the
number of edges of G, or the sum of both. For every contextual grammar Γ , if
L(Γ) = {H1, H2, . . . } with |H1| � |H2| � . . ., there is a constant k such that
|Hi+1| − |Hi| � k for all i ∈ N.

Proof Sketch. The argument is a rather standard pumping argument. Consider
a contextual grammar Γ without epsilon and chain rules, such that L(Γ) is
infinite. (The statement is trivial, otherwise.) Now, choose a derivation Z =
G0 ⇒ G1 ⇒ · · · ⇒ Gn of a graph Gn ∈ L(Γ), and let xi be the variable in Gi

that is replaced in Gi ⇒ Gi+1, for 0 � i < n. If the derivation is sufficiently long,
there are i < j such that xi and xj have the same label and xj is a descendant
of xi (in the usual sense). Let i = i1 < · · · < ik = j be the indices l, i � l � j,
such that xl is a descendant of xi. The steps in between those given by i1, . . . , ik
(which replace variables other than the descendants of xi) may be necessary to
create the contextual nodes that “enable” the rules applied to xi1 , . . . , xik−1.
However, in Gj , these contextual nodes do all exist, because derivation steps do
not delete nodes. This means that the sub-derivation given by the steps in which

Contextual Hyperedge Replacement 193

xi1 , . . . , xik−1 are replaced can be repeated, using xj as the starting point (and
using, in each of these steps, the same contextual nodes as the original step).
This pumping action can, of course, be repeated, and it increases the size of the
generated graph by at most a constant each time. As there are neither epsilon
nor chain rules, this constant is non-zero, which completes the proof. 	

Corollary 3. The language of all complete graphs is not in CHR.

6 Parsing

In [11], a parser has been briefly sketched that can be used for contextual hy-
peredge replacement grammars with application conditions and, therefore, for
contextual grammars. The following describes the parser in more detail, includ-
ing the grammar transformations that are necessary before it can be applied.

The parser adopts the idea of the Cocke-Younger-Kasami (CYK) parser for
strings, and it requires the contextual grammar to be in Chomsky normal form
(CNF), too. A contextual grammar is said to be in CNF if each rule is either
terminal or nonterminal. The right-hand side of a terminal rule contains exactly
one edge which is terminal, whereas the right-hand side of a nonterminal rule
contains exactly two edges which are variables. Rules must not contain isolated
nodes in their right-hand sides. In the following, we first outline that every
contextual grammar Γ can be transformed into a grammar Γ ′ in CNF so that
a parser for Γ ′ can be used as a parser for Γ . We then consider a contextual
grammar in CNF and sketch a CYK parser for such a grammar.

If the right-hand side of a rule contains an isolated node, it is either (i) a
contextual node, or (ii) a node generated by the rule, or (iii) attached to the
variable of the left-hand side. In case (i), we simply remove the node from the
rule. However, the parser must make sure in its second phase (see below) that
the obtained rule is only applied after a node with corresponding label has been
created previously. Case (ii) can be avoided if we transform the original rule set
R to R′ where each node generated by a rule is attached to a unary hyperedge
with a new label, say ν ∈ C̄. Instead of parsing a graph G we have to parse a
graph G′ instead where each node is attached to such a ν-edge. Finally, case (iii)
can be avoided by transforming R′ again, obtaining R′′. The transformation
process works iteratively: Assume a rule L : : =R with R containing isolated
nodes of kind (iii). Let x ∈ L̄ with label ξ be the variable in L. This rule is
replaced by a rule L′ : : =R′ where L′ and R′ are obtained from L and R by
removing the isolated nodes of kind (iii) and by attaching a new variable to the
remaining nodes of att(x), introducing a new variable name ξ′ ∈ X . We now
search for all rules that have ξ-variables in their right-hand sides. We copy these
rules, replace all variables labeled ξ by ξ′-variables in their right-hand sides,5 and
add the obtained rules to the set of all rules. This process is repeated until no
rule with isolated nodes is left. Obviously, this procedure terminates eventually.

5 This procedure assumes that no rule contains more than one ξ-edge in its right-hand
side. It is easily generalized to rules with multiple occurrences of ξ-edges.

194 F. Drewes, B. Hoffmann, and M. Minas

We assume that the start graph is a single variable labeled ζ, for some ζ ∈ X
with arity(ζ) = ε. Thus, no ζ-edge will ever be replaced by a ζ′-edge. It is clear
that Z ⇒∗

R′ G iff Z ⇒∗
R′′ G for each graph G ∈ GC\X .

Afterwards, chain rules are removed (see Lemma 2), and the obtained con-
textual grammar is transformed into an equivalent grammar in CNF using the
same algorithm as for string grammars.6 Based on this grammar, the parser an-
alyzes a graph G in two phases. The first phase creates trees of rule applications
bottom-up. The second phase searches for a derivation by trying to find a suit-
able linear order ≺ on the nodes of one of the derivation trees, as in the proof
of Theorem 1.

In the first phase, the parser computes n sets S1, S2, . . . , Sn where n is the num-
ber of edges in G. Each set Si eventually contains all graphs (called “Si-graphs”
in the following) that are isomorphic to the left-hand side of any rule, except for
their contextual nodes which are left out, and that can be derived to any subgraph
of G that contains exactly i edges, if any required contextual nodes are provided.

Set S1 is built by finding each occurrence s of the right-hand side R of any
terminal rule (L,R) and adding the isomorphic image s′ of L to S1, but leaving
out all of its contextual nodes. Graph s′ additionally points to its “child” graph s.

The remaining sets Si, i > 1, are then constructed using nonterminal rules.
A nonterminal rule (L,R) is reversely applied by selecting appropriate graphs s
and s′ in sets Si and Sj , respectively, such that R ∼= s ∪ s′. A new graph s′′ is
then7 added to the set Sk where s′′ is isomorphic to L without its contextual
nodes. Note that k = i + j since each Si-graph can be derived to a subgraph of
G with exactly i edges. Graph s′′ additionally points to its child graphs s and
s′. Therefore, each instance of the start graph Z in Sn represents the root of a
tree of rule applications and, therefore, a derivation candidate for G. Note that
contextual nodes are not explicitly indicated in these trees because they have
been removed from the Si-graphs. Contextual nodes are rather treated as if they
were generated by the rules. However, they can be easily distinguished from
really generated ones by inspecting the rules used for creating the Si-graphs.

The second parser phase tries to establish the linear order ≺ on the nodes of
the derivation tree. The order must reflect the fact that each contextual node
must have been generated earlier in the derivation. This process is similar to
topological sorting, and it succeeds iff a derivation of G exists.

The run-time complexity of this parser highly depends on the grammar since
the first phase computes all possible derivation trees. In bad situations, it is com-
parable to the exponential algorithm that simply tries all possible derivations.

6 This is possible iff the L(Γ) does not contain the empty graph which is easily ac-
complished since chain rules have been removed.

7 Furthermore, the parser must check whether the subgraphs of G being derivable from
s and s′ do not have edges in common. This is easily accomplished by associating
each graph in any set Si with the set of all edges in the derivable subgraph of G.
A rule may be reversely applied to s and s′ if the sets associated with s and s′ are
disjoint.

Contextual Hyperedge Replacement 195

In “practical” cases without ambiguity (e.g., for control flow diagrams,
cf. Example 2), however, the parser runs in polynomial time. Reasonably fast
parsing has been demonstrated by DiaGen [12] that uses the same kind of
parser.

A simpler, more efficient way of parsing can be chosen for grammars with the
following property: A contextual grammar Γ = (C,R, Z) is uniquely reductive
if its derivation relation ⇒R has an inverse relation ⇒R−1 (called reduction
relation) that is is terminating and confluent. Then every graph has a reduction
sequence G ⇒∗

R−1 Y so that no rule ofR−1 applies to Y . Confluence of reduction
implies that the graph Y is unique up to isomorphism so thatG is in the language
of Γ if and only if Y equals Z up to isomorphism.

Let Γ be a contextual grammar with neither epsilon, nor chain rules (By
Lemma 2, each contextual grammar without epsilon rules can be transformed
into such a normal form). Then every right-hand side of a rule contains at least
one terminal edge or one new node, and reductions G ⇒∗

R−1 Y terminate, after
a linear number of steps. Confluence of terminating reductions ⇒R−1 can be
shown by checking that their critical pairs are strongly convergent [13]. So it
can be decided whether Γ is uniquely reductive.

Since the construction of a single reduction step is polynomial for a fixed set
of rules, the complexity of parsing is polynomial as well. Note, however, that
parsing does not yield unique derivation structures if the reduction relation has
critical pairs.

Example 4 (Parsing of Control Flow Diagrams). The grammar in Example 2
does not contain epsilon or chain rules. The right-hand sides of the rules may
overlap in their interface node. Overlap in interface nodes alone does not lead to
a critical pair, because the rules are still parallelly independent. The right-hand
sides of the recursive rules for assignment and branching may also overlap in
variables. This gives no critical pair either, because the inverse rules cannot be
applied to the overlap: they violate the dangling condition. The rules are thus
uniquely reductive.

7 Conclusions

In this paper we have studied fundamental properties of contextual grammars.
They have useful normal forms, namely rules with at most one contextual node,
grammars without epsilon and chain rules, and reduced grammars.With context-
free grammars, they share certain algorithmic properties (i.e., decidability of
reducedness and emptiness, as well as an NP-complete membership problem) and
the linear growth of their languages. Nevertheless, contextual grammars are more
powerful than context-free ones, as illustrated in Figure 8. Let NR, ASR, cCHR,
and cASR denote the classes of graph languages generated by node replacement,
adaptive star replacement, conditional contextual hyperedge replacement, and
conditional adaptive star grammars, respectively. HR is properly included in
NR [6, Section 4.3], as is NR in ASR [2, Corollary 4.9]. The proper inclusion
of HR in CHR is stated in Observation 1. Corollary 3 implies that CHR neither

196 F. Drewes, B. Hoffmann, and M. Minas

cCHR CHR

cASR ASR NR

HR

Fig. 8. Inclusion of languages studied in this paper and in [2,11]

includes NR, nor ASR, nor cCHR, because these grammars generate the language
of complete graphs. We do not yet know whether ASR includes CHR; the relation
of cCHR to ASR and cASR is open as well. Example 2 indicates that contextual
grammars allow for a finer definition of structural properties of models than class
diagrams. Application conditions do further increase this power, as discussed in
Section 3.

Some work related to the concepts shown in this paper shall be mentioned
here. Context-exploiting rules [4] correspond to contextual rules with a positive
application condition, and are equivalent to the context-embedding rules used
to define diagram languages in DiaGen [12]. The context-sensitive hypergraph
grammars discussed in [7, Chapter VIII] correspond to context-free rules with a
positive application condition. We are not aware of any attempts to extend node
replacement in order to define graph languages as they are discussed in this pa-
per. The graph reduction specifications [1] mentioned in Section 6 need not use
nonterminals, and their rules may delete previously generated subgraphs. They
are therefore difficult to compare with contextual grammars. Example 4 shows
that some contextual rules specify graph reductions, and may thus use their
simple parsing algorithm. Shape analysis aims at specifying pointer structures
in imperative programming languages (e.g., leaf-connected trees), and at veri-
fying whether this shape is preserved by operations. Several logical formalisms
have been proposed for this purpose [14]. For graph transformation rules, shape
analysis has been studied for shapes defined by context-free grammars [10] and
by adaptive star grammars [3]. We are currently working on shape analysis of
graph transformation rules w.r.t. contextual grammars.

Future work on contextual grammars shall clarify the open questions con-
cerning their generative power, and continue the study of contextual rules with
recursive application conditions [8] that has been started in [11]. Furthermore,
we aim at an improved parsing algorithm for contextual grammars that are un-
ambiguous modulo associativity and commutativity of certain replicative rules.

Acknowledgements. We wish to thank Annegret Habel for numerous useful
comments on the contents of this paper, and the reviewers for their advice to
enhance the “smack of industrial relevance” of this paper.

Contextual Hyperedge Replacement 197

References

1. Bakewell, A., Plump, D., Runciman, C.: Specifying pointer structures by graph re-
duction. Mathematical Structures in Computer Science (2011) (accepted for pub-
lication)

2. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theoretical Computer Science 411(34-36), 3090–3109 (2010)

3. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Shaped
Generic Graph Transformation. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 201–216. Springer, Heidelberg (2008)

4. Drewes, F., Hoffmann, B., Minas, M.: Context-exploiting shapes for diagram trans-
formation. Machine Graphics and Vision 12(1), 117–132 (2003)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs on Theoretical Computer Science. Springer
(2006)

6. Engelfriet, J.: Context-Free Graph Grammars. In: Handbook of Formal Languages.
Beyond Words, vol. 3, ch. 3, pp. 125–213. Springer (1999)

7. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

8. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. In: Ermel,
C., Ehrig, H., Orejas, F., Taentzer, G. (eds.) International Colloquium on Graph
and Model Transformation 2010. ECEASST, vol. 30 (2010)

9. Harel, D.: On visual formalisms. Communication of the ACM 31(5), 514–530 (1988)
10. Hoffmann, B.: Shapely hierarchical graph transformation. In: Proc. of the IEEE

Symposia. on Human-Centric Computing Languages and Environments, pp. 30–37.
IEEE Computer Press (2001)

11. Hoffmann, B., Minas, M.: Defining models – Meta models versus graph grammars.
In: Küster, J.M., Tuosto, E. (eds.) Graph Transformation and Visual Modeling
Techniques 2010. ECEASST, vol. 29 (2010)

12. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming 44(2), 157–180 (2002)

13. Plump, D.: Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.
In: Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C. (eds.) Term Graph Rewriting,
Theory and Practice, pp. 201–213. Wiley & Sons (1993)

14. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems 20(1), 1–50 (1998)

15. Schürr, A., Winter, A., Zündorf, A.: The Progres Approach: Language and Envi-
ronment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rosenberg, G. (eds.) Handbook
of Graph Grammars and Computing by Graph Transformation. Applications, Lan-
guages, and Tools, vol. 2, ch. 13, pp. 487–550. World Scientific (1999)

16. Uesu, T.: A system of graph grammars which generates all recursively enumerable
sets of labelled graphs. Tsukuba Journal of Mathematics 2, 11–26 (1978)

	Contextual Hyperedge Replacement
	Introduction
	Graphs, Rules, and Grammars
	A Contextual Grammar for Statecharts
	Normal Forms of Contextual Grammars
	Limitations of Contextual Grammars
	Parsing
	Conclusions
	References

