

Lecture Notes in Computer Science 7233
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andy Schürr Dániel Varró
Gergely Varró (Eds.)

Applications of
Graph Transformations
with Industrial Relevance
4th International Symposium, AGTIVE 2011
Budapest, Hungary, October 4-7, 2011
Revised Selected and Invited Papers

13

Volume Editors

Andy Schürr
Technische Universität Darmstadt, Real-Time Systems Lab
Merckstraße 25, 64283 Darmstadt, Germany
E-mail: andy.schuerr@es.tu-darmstadt.de

Dániel Varró
Budapest University of Technology and Economics
Department of Measurement and Information Systems
Magyar tudósok krt. 2, 1117 Budapest, Hungary
E-mail: varro@mit.bme.hu

Gergely Varró
Technische Universität Darmstadt, Real-Time Systems Lab
Merckstraße 25, 64283 Darmstadt, Germany
E-mail: gergely.varro@es.tu-darmstadt.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34175-5 e-ISBN 978-3-642-34176-2
DOI 10.1007/978-3-642-34176-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949456

CR Subject Classification (1998): G.2.2, E.1, D.2.1-2, D.2.4-5, D.2.11, F.2.2, F.3.1-2,
F.4.2, I.2.8

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume compiles all finally accepted papers presented at the 4th Inter-
national Symposium on Applications of Graph Transformations with Industrial
Relevance (AGTIVE 2011), which took place in October 2011 in Budapest, Hun-
gary. The submissions underwent a thorough, two-round review process both
before and after the symposium to enable the authors to carefully incorporate
the suggestions of reviewers.

AGTIVE 2011 was the fourth practice-oriented scientific meeting of the graph
transformation community. The aim of the AGTIVE series as a whole is to serve
as a forum for all those scientists of the graph transformation community who are
involved in the development of graph transformation tools and the application of
graph transformation techniques usually in an industrial setting. In more detail,
our intentions were to:

1. Bring the practice-oriented graph transformation community together
2. Study and integrate different graph transformation approaches
3. Build a bridge between academia and industry

The first AGTIVE symposium took place at Kerkrade, The Netherlands, in
1999. Its proceedings appeared as vol. 1779 of the Springer LNCS series. The
second symposium was held in 2003 in Charlottesville, Virginia, USA. The pro-
ceedings appeared as LNCS vol. 3062. The third symposium took place in Kassel,
Germany, in 2007, while the proceedings were published as LNCS vol. 5088.

AGTIVE 2011 was hosted by Budapest, the capital of Hungary, which was
founded in 1873 as the unification of the separate historic towns of Buda (the
royal capital since the fifteenth century), Pest (the cultural center), and Óbuda
(built on the ancient Roman settlement of Aquincum). The city is bisected by
the River Danube, which makes Budapest a natural geographical center and a
major international transport hub. Budapest has a rich and fascinating history,
a vibrant cultural heritage, yet it has managed to maintain its magic and charm.
It has also been called the City of Spas with a dozen thermal bath complexes
served by over a hundred natural thermal springs.

Thirty-six papers were submitted to AGTIVE 2011, which were evaluated
twice by at least three reviewers. In all, 26 regular research papers, applica-
tion reports, and tool demonstration papers were accepted in the first round
for presentation at the symposium. These presentations covered a wide range
of application areas such as model migration, software reengineering and con-
figuration management, generation of test specifications, 3D reconstruction of
plant architectures, chemical engineering, reconfiguration of self-adaptive sys-
tems, security aspects of embedded systems, and so forth. Furthermore, many
contributions proposed new graph transformation concepts and implementation
techniques needed to solve real-world problems in a scalable way.

VI Preface

In addition, two invited talks were presented at AGTIVE 2011 reporting on
state-of-the-art, industrial rule-based modeling techniques and applications for
business-critical applications.

– Zsolt Kocsis (IBM): “Best Practices to Model Business Services in Complex
IT Environments”

– Mark Proctor (Red Hat) : “Drools: A Rule Engine for Complex Event Pro-
cessing”

In the second review round, the Program Committee selected 18 submissions
(of which 13 full research, two application report, and three tool demonstration
papers) for publication in the proceedings. Thus, the final acceptance rate was
50%.

The AGTIVE 2011 Symposium was organized in strong collaboration be-
tween the Department of Measurement and Information Systems and the De-
partment of Automation and Applied Informatics at the Budapest University of
Technology and Economics, and the Real-Time Systems Lab at the Technical
University Darmstadt. We would like to give special thanks to members of the
organizing team, namely, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, László
Lengyel, Gergely Mezei, István Ráth, Gábor Tóth, and Zoltán Ujhelyi. We also
acknowledge the additional financial support provided by the SecureChange and
the CERTIMOT projects, and the Alexander von Humboldt Foundation. The
review process was administered by using the EasyChair conference management
system.

July 2012 Andy Schürr
Dániel Varró

Gergely Varró

Organization

Program Co-chairs

Andy Schürr TU Darmstadt, Germany
Dániel Varró BME, Hungary
Gergely Varró TU Darmstadt, Germany

Organizing Committee

Gábor Bergmann Gergely Mezei
Ábel Hegedüs István Ráth
Ákos Horváth Gábor Tóth
László Lengyel Zoltán Ujhelyi

Program Committee

Luciano Baresi University of Milan, Italy
Benoit Baudry INRIA, France
Paolo Bottoni University of Rome La Sapienza, Italy
Jordi Cabot INRIA, France
Krzysztof Czarnecki University of Waterloo, Canada
Juan de Lara Universidad Autónoma de Madrid, Spain
Hartmut Ehrig Technical University of Berlin, Germany
Gregor Engels University of Paderborn, Germany
Nate Foster Cornell University, USA
Holger Giese Hasso Plattner Institute, Germany
Reiko Heckel University of Leicester, UK
Zhenjiang Hu National Institute of Informatics, Japan
Audris Kalnins University of Latvia, Latvia
Gabor Karsai Vanderbilt University, USA
Ekkart Kindler Technical University of Denmark, Denmark
Vinay Kulkarni Tata Consultancy Services, India
Jochen Küster IBM Research, Switzerland
Tihamér Levendovszky Vanderbilt University, USA
Tom Mens University of Mons-Hainaut, Belgium
Mark Minas Universität der Bundeswehr München,

Germany
Manfred Nagl RWTH Aachen, Germany
Richard Paige University of York, UK

VIII Organization

Ivan Porres Åbo Akademi University, Finland
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University of Rio Grande do Sul, Brazil
Ingo Stürmer Model Engineering Solutions GmbH, Germany
Gabriele Taentzer Philipps-Universität Marburg, Germany
Pieter Van Gorp Eindhoven University of Technology,

The Netherlands
Bernhard Westfechtel University of Bayreuth, Germany
Kang Zhang University of Texas at Dallas, USA
Albert Zündorf Kassel University, Germany

Additional Reviewers

Becker, Basil
Branco, Moises
Brüseke, Frank
Buchmann, Thomas
Christ, Fabian
Diskin, Zinovy
Doberkat, Ernst-Erich
Geiger, Nina

Hegedüs, Ábel
Hermann, Frank
Janssens, Dirk
Jubeh, Ruben
Koch, Andreas
Krause, Christian
Lambers, Leen
Maier, Sonja

Marchand, Jonathan
Mosbah, Mohamed
Rutle, Adrian
Syriani, Eugene
Uhrig, Sabrina
Winetzhammer, Sabine

Sponsoring Institutions

Department of Measurement and Information Systems, BME, Hungary
Department of Automation and Applied Informatics, BME, Hungary
Fachgebiet Echtzeitsysteme, Technische Universität Darmstadt, Germany
Alexander von Humboldt Foundation, Germany

Table of Contents

Invited Talk Abstracts

Best Practices to Model Business Services in Complex IT
Environments . 1

Zsolt Kocsis

Drools: A Rule Engine for Complex Event Processing 2
Mark Proctor

Session 1: Model-Driven Engineering

Graph Transformation Concepts for Meta-model Evolution
Guaranteeing Permanent Type Conformance throughout Model
Migration . 3

Florian Mantz, Stefan Jurack, and Gabriele Taentzer

A Graph Transformation-Based Semantics for Deep Metamodelling 19
Alessandro Rossini, Juan de Lara, Esther Guerra,
Adrian Rutle, and Yngve Lamo

Reusable Graph Transformation Templates . 35
Juan de Lara and Esther Guerra

Session 2: Graph Transformation Applications

Towards an Automated 3D Reconstruction of Plant Architecture 51
Florian Schöler and Volker Steinhage

Generating Graph Transformation Rules from AML/GT State Machine
Diagrams for Building Animated Model Editors . 65

Torsten Strobl and Mark Minas

Session 3: Tool Demonstrations

AGG 2.0 – New Features for Specifying and Analyzing Algebraic Graph
Transformations . 81

Olga Runge, Claudia Ermel, and Gabriele Taentzer

Integration of a Pattern-Based Layout Engine into Diagram Editors 89
Sonja Maier and Mark Minas

X Table of Contents

Tool Demonstration of the Transformation Judge . 97
Steffen Mazanek, Christian Rutetzki, and Mark Minas

Session 4: Graph Transformation Exploration
Techniques

Knowledge-Based Graph Exploration Analysis . 105
Ismênia Galvão, Eduardo Zambon, Arend Rensink,
Lesley Wevers, and Mehmet Aksit

Graph Grammar Induction as a Parser-Controlled Heuristic Search
Process . 121

Luka Fürst, Marjan Mernik, and Viljan Mahnič

Planning Self-adaption with Graph Transformations 137
Matthias Tichy and Benjamin Klöpper

Session 5: Graph Transformation Semantics
and Reasoning

From Graph Transformation Units via MiniSat to GrGen.NET 153
Marcus Ermler, Hans-Jörg Kreowski, Sabine Kuske, and
Caroline von Totth

Locality in Reasoning about Graph Transformations 169
Martin Strecker

Contextual Hyperedge Replacement . 182
Frank Drewes, Berthold Hoffmann, and Mark Minas

Session 6: Application Reports

The Added Value of Programmed Graph Transformations – A Case
Study from Software Configuration Management . 198

Thomas Buchmann, Bernhard Westfechtel, and
Sabine Winetzhammer

A Case Study Based Comparison of ATL and SDM 210
Sven Patzina and Lars Patzina

Session 7: Bidirectional Transformations

Applying Advanced TGG Concepts for a Complex Transformation of
Sequence Diagram Specifications to Timed Game Automata 222

Joel Greenyer and Jan Rieke

Table of Contents XI

Automatic Conformance Testing of Optimized Triple Graph Grammar
Implementations . 238

Stephan Hildebrandt, Leen Lambers, Holger Giese,
Dominic Petrick, and Ingo Richter

Author Index . 255

Best Practices to Model Business Services

in Complex IT Environments

Zsolt Kocsis

IBM Hungary

Abstract. Managing complex business services on top of IT solutions
is much more then managing solely the IT infrastructure beneath. Busi-
ness services management requires the management of all resources and
implementation layers by knowing the business logic, and includes ser-
vices relevant information from different business aspects. To achieve an
effective service modeling, the analysis must include resource models,
connection models, error and error propagation models in a way that
the models could be maintained to ensure long term business benefits.

This invited talk gives an insight of the business services modeling,
a possible best practice to build such models in a complex, event based
fault management environment and shows the actual outcomes of a re-
cent project at a leading telecommunication company.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Drools: A Rule Engine

for Complex Event Processing

Mark Proctor

Red Hat

Abstract. Drools is the leading Java based Open Source rule engine.
It is a hybrid chaining engine meaning it can react to changes in data
and also provides advanced query capabilities. Drools provides built in
temporal reasoning for complex event processing and is fully integrated
with the jBPM project for BPMN2 based workflow. Ongoing research in-
cludes (but is not limited) to planning, ontological reasoning (semantic
web), imperfect reasoning, truth maintenance and distributed collabora-
tion through intelligent agents.

This talk will provide an introduction into Drools what it is and how
it works. We will explain the concepts of forward and backward chaining
within the context of Drools as well as exploring the rule engine syntax
and how it has been extended for temporal reasoning for complex event
processing.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Graph Transformation Concepts for Meta-model
Evolution Guaranteeing Permanent Type Conformance

throughout Model Migration

Florian Mantz1,�, Stefan Jurack2, and Gabriele Taentzer2

1 Bergen University College, Norway
fma@hib.no

2 Philipps-Universität Marburg, Germany
{sjurack,taentzer}@mathematik.uni-marburg.de

Abstract. Meta-modeling has become the key technology to define domain-
specific modeling languages for model-driven engineering. However, these mod-
eling languages can change quite frequently which requires the evolution of their
meta-models as well as the co-evolution (or migration) of their models. In this
paper, we present an approach towards meta-model model co-evolution based on
graph transformation concepts that targets to consider this challenge in a formal
setting. Models are specified as graphs while model relations, especially type-
instance relations, are defined by graph morphisms specifying type conformance
of models to their meta-models. We present a basic approach to automatic deduc-
tion of model migrations from meta-model evolution steps which are specified
by single transformation rules. Throughout that migration process, type confor-
mance is ensured permanently. A first implementation is given using existing
technology, namely the Eclipse Modeling Framework (EMF) and the EMF model
transformation tool Henshin which is based on graph transformation concepts.
Our evolution approach is presented at two small evolution scenarios for Petri
nets and state machines.

Keywords: meta-model evolution, model migration, Henshin, graph transforma-
tion, Eclipse Modeling Framework.

1 Introduction

Model-driven engineering (MDE) is a software engineering discipline that uses models
as main artifacts throughout software development processes, adopting model transfor-
mation for code generation. Models in MDE describe application-specific system de-
sign which is automatically translated into code. A commonly used technique to define
modeling languages is meta-modeling.

In contrast to traditional software development where programming languages do
not change often, domain-specific modeling languages and therefore meta-models, can
change frequently: Modeling language elements are renamed, extended by additional
attributes, or refined by a hierarchy of sub-elements. The evolution of a meta-model

� This work was partially funded by NFR project 194521 (FORMGRID).

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 3–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 F. Mantz, S. Jurack, and G. Taentzer

requires the consistent migration of its models and is therefore a considerable research
challenge in MDE (see Fig. 1).

Work in this direction already exists and several approaches have been developed
to face this problem. Approaches use out-place and in-place transformation strategies
which either create new migrated models like in [13] or change models in-place as in
[6]. Most migration approaches are out-place. Out-place transformations have to trans-
late all model parts, i.e., also those which do not change. In contrast, in-place trans-
formations consider those model parts only that are affected by meta-model changes
and can also support incremental migrations of large models. To the best of our knowl-
edge, existing approaches do not ensure the permanent type conformance for in-place
model migration processes. In general, existing approaches can be classified into the
following categories: A model migration strategy is specified manually using a (spe-
cialized) model transformation language like in [13]. We consider a model migration to
be change-based, i.e., if a difference model of two meta-model versions is calculated, an
evolution rule is deduced and a migration definition like the one in [3] is automatically
derived. Model migration is defined to be operator-based, if a set of coupled change
strategies for meta-model evolution and model migration are provided to perform re-
curring adaptations like in [6].

�

�

�

�

Meta-model
evolution ��

�

�

�

�

Meta-model′

�

�

�

�

Model

conforms to

��

migration ��������� �������
�

�

�

�

Model′

conforms to

��

��

Fig. 1. Meta-model evolution and model migration

In this paper we explain how graph transformation concepts can be applied to meta-
model evolution and model migration. Since graph transformations are in-place trans-
formations, we migrate model parts only if they are affected by meta-model changes.
In addition, we face the challenge of keeping models permanently type conformant to
the evolving meta-model. We focus on an approach that is promising to formalize meta-
model evolution with model migration while providing a prototypical implementation.
The goal is to gain witness about completeness and correctness of model migration
definitions before their application. Therefore we start with basic migration scenarios
which will become more complex in the future. In addition, we develop an automatic
derivation strategy for migration rules that does not rely on default migration opera-
tions. In our approach, we consider an in-place approach which uses an intermediate
meta-model allowing the incremental transformation of large models. Using this mi-
gration strategy, models may also consist of many diagrams conforming to different
meta-model versions. For example, consider a large UML 1.4 model consisting of many
diagrams shared by several modelers. While some modelers are still working on their
UML 1.4 diagrams others may already migrate their diagrams to a newer version of
UML.

Graph Transformation Concepts for Meta-model Evolution 5

In this paper, models are consistently migrated using in-place transformations and a
common meta-model. In contrast to our earlier work in [7], this coupled change oper-
ation can be generated from a simpler specification now, not only for one specific case
but for a certain set of meta-model evolutions. Although there are several restrictions
to evolution cases, the approach is already useful in various cases. Up to now, we study
meta-model evolution steps which can be specified by single transformation rules with-
out additional application conditions. Our migration strategy generates a migration rule
rM on the model level which is isomorphic to rule rI evolving a corresponding meta-
model. Rule rM corresponds to rule rI replacing each typing element in rule rI by a
corresponding instance element.

We realize our approach based on the Eclipse Modeling Framework (EMF) [5], a
modeling framework widely used in practice. Ecore, the core language of EMF, com-
plies with Essential MOF (EMOF) being part of OMG’s Meta Object Facility (MOF)
2.0 specification [10]. The model transformation tool chosen to implement our ap-
proach is called Henshin [14]. It implements algebraic graph transformation concepts
[4] adapted to EMF models and specifies its transformation systems as EMF models
themselves. Henshin contains a control concept for rule applications called transfor-
mation units and furthermore, a Java(Script)-based computation engine for attributes.
Since Henshin can be applied to any EMF model, we use it on two modeling levels: (1)
to specify meta-model evolution rules and (2) to define a generator for migration rules.

This paper is structured as follows: In Section 2 we introduce our approach at a
running example. In Sections 3 and 4, we explain the specification and derivation of
meta-model evolution rules respectively model migration rules. Afterwards we discuss
the implementation with EMF and Henshin in Section 5. Finally, in Sections 6 and 7,
we consider related work and conclude our work.

2 Motivating Example

To motivate our approach, we consider two small evolution scenarios on Petri nets
and state machines based on simple EMF-models (see Fig. 2). The essential part of
the Ecore model is presented in Row 1 of Fig. 2. Its main elements are EClass
and EReference. EReferences specify directed relations and their multiplicities.
Furthermore they can be defined as containment references. For model storage, it is
important that an EMF model forms a containment tree. For now, we neglect con-
tainment relationships here, but take them up again for the implementation. In addi-
tion, EClasses can have EAttributes typed over EDatatypes. Note that meta-
references eStructuralFeatures and eType appear in the model twice, due to
its flat presentation. In the original Ecore model, these meta-references are inherited
from a common super class. Note also that EClass and EReference are objects in
this “meta-meta-model”. The Ecore model itself is recursively typed and EClass and
EReference are both typed by EClass themselves.

Rows 2 and 4 of the example (Fig. 2) show meta-models in meta-model syntax.
These meta-models are instances of our simplified Ecore meta-meta-model. Row 2
shows an evolution of a Petri net meta-model while Row 4 shows different versions of
a state machine meta-model. Container classes are not shown due to space limitations.

6 F. Mantz, S. Jurack, and G. Taentzer

However, it is always assumed that each model contains a root object with containment
references to all other objects. The typing of meta-model elements is given by its syntax.
Arrows are typed by EReference, nodes by EClass, attributes by EAttribute
and data types by EDatatype.

Rows 3 and 5 of the example (Fig. 2) show instance models of the Petri net and
state machine meta-models. The instance model typing is also given by its syntax. For
example, place symbols in cell A3 are typed by EClass “Place” in cell A2. Note that
the direction of incoming arrows in the Petri net meta-model in cell A2 does not corre-
spond to the direction of their instance elements in cell A3. This is not a mistake but the
meta-modeler’s decision how to define the meta-model syntax of models. Examples of
instance models in meta-model syntax are given in Fig. 3 which shows cells A3 and B3
of Fig. 2.

Rows 2 and 4 in Fig. 2 show two similar evolutions steps on two different meta-
models. Rows 3 and 5 show their migrated models which may include additional values
entered by the modeler. Cell A3 shows a simple Petri net which models a synchronous
communication between “Alice” and “Bob”. Cell B3 shows an extended version of the
model. Weights at outgoing arrows are added allowing to express that “Alice” produces
more messages than “Bob” during the communication. However, before the modeler
can specify these weights it is required to evolve the meta-model and migrate the model.
Afterwards he can change the default values. The outgoing arrow has to be specified as
EClass in the meta-model since classes only can contain EAttributes. After re-
placing reference “outArr” by EClass “OutArr” and two additional references, an
EAttribute “weight” for the weight at outgoing arrows can be added. If the mod-
eler wants to use colored tokens in addition, the meta-model has to be evolved again.
It is shown in cell C2 a meta-model with an additional attribute “color”, a correspond-
ingly migrated model in cell C3. The modeler transforms the EAttribute “token”
of EClass “Place” into an own EClass where EAttribute “color” can be added.
The old EAttribute “token” becomes the new EAttribute “count” in EClass
“Token” which is connected by a new EReference with multiplicity 1:1.

All model migrations required should be implemented in a rule-based manner be-
cause a meta-model may have many instances which have to be migrated. It may also be
an advantage to encode the meta-model evolution steps as rules. The evolution changes
shown are quite general as we can see when we inspect the changes made to the state
machine metamodel in Row 4 in Fig. 2. First, its instance models are extended by la-
beled transitions, then more information to actions is added such as the priority attribute
“prio”. Hence, we think that it is promising to encode meta-model evolution steps as
reusable, parametrized transformation rules, applicable to any meta-model (see Figs. 4
and 5). Mappings are shown by numbers. Input parameter names start with “Var”. Fur-
thermore string manipulation functions can be used in rules. The rule in Fig. 4 replaces
an EReference by an EClass linked by two EReferences. In addition, the new
EClass gets an new EAttribute which is specified by the modeler applying this
rule. The purpose of this evolution step is to prepare the meta-model for attributed links
in the model.

Graph Transformation Concepts for Meta-model Evolution 7

0
.
.
1

e
T
y
p
e

0
.
.
*

e
S
t
r
u
c
t
u
r
a
l
-

F
e
a
t
u
r
e
s

0
.
.
1

e
T
y
p
e

E
R
e
f
e
r
e
n
c
e

n
a
m
e
:

E
S
t
r
i
n
g

l
o
w
e
r
:

I
n
t

u
p
p
e
r
:

I
n
t

E
C
l
a
s
s

n
a
m
e
:

E
S
t
r
i
n
g

t
y
p
e
d

E
c
o
r
e

m
e
t
a
-
m
e
t
a

m
o
d
e
l

P
e
t
r
i
N
e
t

m
e
t
a
-
m
o
d
e
l
s

1
.
.
1

b
e
g
i
n
O
u
t
A
r
r

1
.
.
*

i
n
A
r
r

e
n
d
O
u
t
A
r
r

t
o
k
e
n

1
.
.
1

T
r
a
n
s
i
t
i
o
n

n
a
m
e
:

E
S
t
r
i
n
g

P
l
a
c
e

n
a
m
e
:

E
S
t
r
i
n
g

O
u
t
A
r
r

w
e
i
g
h
t
:
E
I
n
t
=
1

T
o
k
e
n

c
o
u
n
t
:

E
I
n
t

c
o
l
o
r
:
E
S
t
r
i
n
g
=
"
g
r
e
y
"

1
.
.
1

b
e
g
i
n
O
u
t
A
r
r

1
.
.
*

i
n
A
r
r

1
.
.
1

e
n
d
O
u
t
A
r
r

T
r
a
n
s
i
t
i
o
n

n
a
m
e
:

E
S
t
r
i
n
g

P
l
a
c
e

n
a
m
e
:

E
S
t
r
i
n
g

t
o
k
e
n
:

E
I
n
t

O
u
t
A
r
r

w
e
i
g
h
t
:
E
I
n
t
=
1

1
.
.
*

i
n
A
r
r

T
r
a
n
s
i
t
i
o
n

n
a
m
e
:

E
S
t
r
i
n
g

P
l
a
c
e

n
a
m
e
:

E
S
t
r
i
n
g

t
o
k
e
n
:

E
I
n
t

1
.
.
*

o
u
t
A
r
r

S
e
n
d

M
e
s
s
a
g
e

t
o

B
o
b

S
e
n
d

M
e
s
s
a
g
e

t
o

A
l
i
c
e

A
l
i
c
e

B
o
b

S
e
n
d

M
e
s
s
a
g
e

t
o

B
o
b

S
e
n
d

M
e
s
s
a
g
e

t
o

A
l
i
c
e

A
l
i
c
e

B
o
b

1

1

S
e
n
d

M
e
s
s
a
g
e

t
o

B
o
b

S
e
n
d

M
e
s
s
a
g
e

t
o

A
l
i
c
e

A
l
i
c
e

B
o
b

1

1

P
e
t
r
i
N
e
t

m
o
d
e
l
s

t
y
p
e
d

t
y
p
e
d

t
y
p
e
d

A
B

C

1 2 3

R
u
n
n
i
n
g

d
o
W
o
r
k
(
)

R
e
a
d
y

B
l
o
c
k
e
d

R
e
a
d
y

B
l
o
c
k
e
d

w
a
i
t
i
n
g

f
o
r

i
n
p
u
t

i
n
p
u
t

e
n
t
e
r
e
d

s
c
h
e
d
u
l
e

p
r
e
e
m
p
tR
u
n
n
i
n
g

d
o
W
o
r
k
(
)

R
e
a
d
y

B
l
o
c
k
e
dw
a
i
t
i
n
g

f
o
r

i
n
p
u
t

i
n
p
u
t

e
n
t
e
r
e
d

s
c
h
e
d
u
l
e

p
r
e
e
m
p
tR
u
n
n
i
n
g

d
o
W
o
r
k
(
)

w
i
t
h

P
r
i
o

1

t
y
p
e
d

t
y
p
e
d

t
y
p
e
d

S
t
a
t
e
m
a
c
h
i
n
e

m
o
d
e
l
s

5

1
.
.
1

b
e
g
i
n
T
r
a
n
s
i
t
i
o
n

1
.
.
1

e
n
d
T
r
a
n
s
i
t
i
o
n

S
t
a
t
e

n
a
m
e
:

E
S
t
r
i
n
g

a
c
t
i
o
n
:

E
S
t
r
i
n
g

T
r
a
n
s
i
t
i
o
n

n
a
m
e
:

E
S
t
r
i
n
g
=
"
"

1
.
.
1

b
e
g
i
n
T
r
a
n
s
i
t
i
o
n

1
.
.
1

e
n
d
T
r
a
n
s
i
t
i
o
n

S
t
a
t
e

n
a
m
e
:

E
S
t
r
i
n
g

T
r
a
n
s
i
t
i
o
n

n
a
m
e
:

E
S
t
r
i
n
g
=
"
"

S
t
a
t
e
m
a
c
h
i
n
e

m
e
t
a
-
m
o
d
e
l
s

E
R
2

M
R
2

M
R
2

E
R
2

4

A
c
t
i
o
n

d
o
:

E
S
t
r
i
n
g

p
r
i
o
:

E
I
n
t
=
1

1
.
.
1

a
c
t
i
o
n

E
D
a
t
a
t
y
p
e

n
a
m
e
:

E
S
t
r
i
n
g

E
R
1

M
R
1

M
R
1

E
R
1

E
A
t
t
r
i
b
u
t
e

n
a
m
e
:

E
S
t
r
i
n
g

d
e
f
a
u
l
t
V
a
l
u
e
L
i
t
e
r
a
l
:

E
S
t
r
i
n
g

0
.
.
*

e
S
t
r
u
c
t
u
r
a
l
F
e
a
t
u
r
e
s

1
.
.
1

1
.
.
1

b
e
g
i
n
T
r
a
n
s
i
t
i
o
n

1
.
.
1

e
n
d
T
r
a
n
s
i
t
i
o
n

S
t
a
t
e

n
a
m
e
:

E
S
t
r
i
n
g

a
c
t
i
o
n
:

E
S
t
r
i
n
g

T
r
a
n
s
i
t
i
o
n

F
ig

.2
.M

et
a-

m
od

el
ev

ol
ut

io
n

an
d

m
od

el
m

ig
ra

ti
on

8 F. Mantz, S. Jurack, and G. Taentzer

A B

PetriNet
M1-models

3
:Place

name="Alice"

token=1

:Transition

name="Send Message To Alice"

:Transition

name: "Send Message To Bob"

:inArr

:inArr

:OutArr

weight=1

:OutArr

weight=1

:Place

name="Bob"

token=0

:begin-

OutArr

:endOutArr

:endOutArr

:begin-

OutArr

:Place

name="Alice"

token=1

:Transition

name="Send Message To Alice"

:Transition

name="Send Message To Bob"

:inArr

:inArr

:outArr

:outArr

:Place

name="Bob"

token=0

Fig. 3. Models in meta-model syntax

The rule application for the first change in cell A2 of our motivating example has the
following arguments: VarSrcNodeName="Transition",VarArrName="out-
Arr", VarAttr="weight", VarType="EInt" and VarAttrDefault="1".
The rule in Fig. 5 creates an EClass associated to an existing one. This new EClass
gets the name of a former EAttribute. To store its value a new attribute is created in
this new EClass choosing a new name. Furthermore an additional new EAttribute
“VarAttr2” is added to this new EClass as in the first rule. The purpose of this evolu-
tion step is to encapsulate several attributes in a separate class.

LHS 1

2

 1..1

"end"+format(VarArrName)

 "begin"+format(VarArrName)

1..1

function format(String s){return

s.charAt(0).toUpperCase() + s.substring(1)}

format(VarArrName)

VarAttr: VarType=VarAttrDefault

RHS

1@VarSrcNodeName 2VarArrName

Fig. 4. Meta-model evolution Rule “EReference2EClass” for replacing an EReference by an
EClass. In addition the new EClass contains a new EAttribute and is linked by two
EReferences.

1@VarSrcNodeName

VarAttr1:Type1

LHS
1

1..1

varAttr1

format(VarAttr1)

VarAttr1New: Type1

VarAttr2: VarType2=VarAttr2Default

RHS

function format(String s){return

s.charAt(0).toUpperCase() + s.substring(1)}

Fig. 5. Meta-model evolution Rule “EAttribute2AssociatedEClass” for replacing an attribute by
an associated EClass containing the EAttribute renamed.

Graph Transformation Concepts for Meta-model Evolution 9

3 Meta-model Evolution

Since we want to use in-place transformations to perform the migration task we cannot
apply the meta-model evolution rules directly. A direct application would destroy the
typing morphisms as soon as we delete some of its elements. Hence, we have to do
meta-model evolution and model migration in the following three steps (see Fig. 6):
(1) extend the meta-model, (2) migrate all instance models, and (3) remove elements
to be deleted from the meta-model. Following this process we can migrate models us-
ing an intermediate meta-model. The main advantage of this migration process is the
permanent type conformance of instance models throughout their migration.

Extend
metamodel MM

to MMi

Migrate models
comforming to

metamodel MMi

Reduce
metamodel MM

to MM'
i

Fig. 6. Meta-model evolution, model migration process

To apply this process to meta-model evolution rules such as the ones in Figs. 4 and 5,
we provide a transformation system (see Fig. 7) that generate the necessary artifacts
for us. The transformation system derive the required meta-model evolution rules (to
extend respectively restrict the metamodel) as well as model migration rule. This rule
derivation is explained in the next sections.

Transformation system for model migration
Metamodel evolution rule for deletion

Metamodel evolution rule for creation

Metamodel evolution rule
Generator

transformation system
IN OUT

Fig. 7. Meta-model evolution rules

As mentioned before, meta-model evolution rules such as presented in Fig. 4 and
Fig. 5 are not directly applied to evolve a meta-model in an in-place transformation
approach. Rules like these two are called input rules since we use them to generate new
rules to perform our migration approach.

As an example, a direct rule application of an input rule called “EReference2EClass”
is illustrated in Fig. 8 in the usual meta-model syntax, while Fig. 9 shows this rule
application in meta-meta-model syntax.

Since in our approach, rules follow algebraic graph transformation concepts, they
can be formalized by using the well-known DPO-approach to graph transformation [4].
In [2], the theory (including node type inheritance) is enhanced with containment struc-
tures and constraints to capture all main EMF concepts. An abstract presentation of
an input rule called rI and its application is shown in Fig. 10. Models are specified
by graphs and the type conformance of models to their meta-models is formalized by
graph homomorphisms between instance and type graphs.

10 F. Mantz, S. Jurack, and G. Taentzer

1..1 beginOutArr

1..*
inArr

1..1 endOutArr

Transition
name: EString

Place
name: EString
token: EInt

OutArr
weight:EInt=1

1..*
inArrTransition

name: EString

Place
name: EString
token: EInt

1..*
outArr

EReference

2

EClass

M2 M2'

Fig. 8. Example meta-model evolution step: Before and after an application of Rule “ERefer-
ence2EClass” in meta-model syntax

EReference 2 EClass

:EClass
name="Transition"

:EAttribute
name="name"

eStructural-
Features

:EDatatype
name="EString"

eType

:EClass
name="Place"

:EAttribute
name="name"

eStructural-
Features

:EDatatype
name="EInt"

eType

:EAttribute
name="token"

eStructural-
Features

:EReference
name="inArr"
upper=1
lower=*

eStructural-
Features

eType
eType

:EReference
name="outArr"
upper=1
lower=*

eStructural-
Features

eType

M2

:EClass
name="Transition"

:EAttribute
name="name"

eStructural-
Features

:EDatatype
name="EString"

eType

:EClass
name="Place"

:EAttribute
name="name"

eStructural-
Features

:EDatatype
name="EInt"

eType

:EAttribute
name="token"

eStructural-
Features

:EReference
name="inArr"
upper=1
lower=*

eStructural-
Features

eType
eType

:EAttribute
name="weight"
defaultValueLiteral="1"

eType

:EClass
name="OutArr"

:EReference
name="beginOutArr"
upper=1
lower=1

:EReference
name="endOutArr"
upper=1
lower=1

eStructural-
Features

eStructural-
Features

eType

eType

eStructural-
Features

M2'

Fig. 9. Example meta-model evolution step: Before and after an application of Rule “ERefer-
ence2EClass” in meta-meta-model syntax

As first step in our new approach, we split up rule rI into two rules called rC and rD
such that [[rI]] = [[rC]], [[rD]] = [[rC , rD]] where [[rI]] is the set of all possible applications
of rule rI . An illustration of this rule splitting is given in Fig. 11. Numbers in round
brackets indicate the rule application order. Rule rC creates elements only and rule
rD deletes elements only. Between the applications of these two rules we perform the

Graph Transformation Concepts for Meta-model Evolution 11

M3

LM2

����
��
��
��

rI ��

��

RM2

����
��
��
��

		

M2

��

[[rI]] �� M2′

Fig. 10. Input rule rI

migration transformation system which is considered in the next section. The LHS of
rule rC is equal to the LHS of rule rI . The RHS of rule rC as well as the LHS of rule
rD correspond to LHS ∪ RHS of rule rI . The RHS of rule rD is equal to the RHS of
rule rI .

M3

LM2

����
��
��
��

rC ��

��

IM2

����
��
��
��

rD ��

��

RM2

����
��
��
��

��

M2

��

(1)[[rC]] �� M2I
(2)[[rD]] ��

M2′

��

Fig. 11. Meta-model evolution rules

There are two general restrictions: Firstly, all changes must be expressible by “add”
and “delete” operations i. e. an explicit move operation is not possible. This restriction
is caused by the nature of graph transformation. Secondly, an intermediate meta-model
containing all elements of the initial and revised meta-model must be constructible. This
may not always be the case due to constraints of the meta-meta-model. For example,
a meta-modeling language may prohibit multiple containers for the same object. How-
ever, multiple containment references may be required in the intermediate meta-model
if the modeler wants to move an element from one container to another.

An example application of rules rC and rD is illustrated in the upper part of Fig. 13
for the concrete input rule “EReference2EClass”. The application of rule rC adds basi-
cally the structure EReference “beginOutArr”, EClass “OutArr”, EReference
“endOutArr” to meta-model M2. The application of rule rD deletes EReference
“outArr” from the intermediate meta-model M2I .

4 Model Migration

Models have to be migrated in a sensible way and may be done in more than one mean-
ingful way. Hence often, this task cannot be fully automatized. For this reasons we start

12 F. Mantz, S. Jurack, and G. Taentzer

in this first version of our new approach with meta-model evolution rules that allow
a sensible unique derivation of migration rules. The aim is to relax the restrictions on
meta-model evolution rules in the future by enhancing their definition with additional
information that guide the rule derivation process to other cases. Given a meta-model
evolution rule as input, our current strategy is to generate one isomorphic model migra-
tion rule called rM by replacing each type element t of rule rI with an instance element
of type t.

Fig. 12 shows the relation between meta-model evolution and model migration rules
as well as their applications in a formal manner. The top of Fig. 12 shows the meta-
model evolution rules rC and rD introduced in the previous section. Between their
application, we execute the model migration rule rM as often as possible. Rule rC trans-
forms type graph M2 into an intermediate type graph M2I . An instance graph M1 is
also type conformant to type graph M2I since M2 is included. Then, instance graph
M1 is changed to instance graph M1′ by rule rM . Rule rM adds and deletes instance
elements according to the input rule rI . Afterwards, rule rD is applied transforming
type graph M2I into the final type graph M2′. Instance graph M1′ will also conform
to this type graph since instances of types deleted by rule rD have already been deleted
by rule rM before.

LM2

����
��
��
��

rC �� IM2

����
��
��
��

rD �� RM2

����
��
��
��

M2
(1)[[rC]] �� M2I

(n+1)[[rD]] �� M2′

LM1

����
��
��
��

rM ��

��

��

RM1

����
��
��
��

��

��

M1
(2..n)[[rM]] ��

�� ��

M1′

����

Fig. 12. Model migration transformation system

Currently, our deduction strategy for migration rules can be applied if meta-model
evolution rules match graph parts only that cannot be varied on the instance level. For-
bidden patterns are those that allow variance as e.g., loops and classes that are target
of more than one reference. Whether a meta-model evolution rule belongs this class
of rules can be checked in advance by analysing the meta-model evolution rule and
constraints on the meta-model.

An example meta-model evolution with model migration by rule rC , rM and rD
is illustrated in Fig. 13. The process starts with applying rule rC to meta-model M2
yielding M2I . After this rule application, model M1 is still type conformant since
nothing has been deleted in its meta-model M2I . Then, the migration of model M1
follows by applying the derived rule rM shown in Fig. 14 as often as possible. Finally

Graph Transformation Concepts for Meta-model Evolution 13

the process ends with the application of rule rD which deletes meta-model elements
that are not used in the migrated model M1′ anymore since they have been replaced by
other elements in the migration step before. Hence model M1′ is still type conformant.
Note that rule rM shown in Fig. 14 is presented in meta-model syntax. The typing is
expressed using the usual “:”-notation. Compare also Fig. 14 with Fig. 4 to see that the
structural parts of both rules are isomorphic. Note furthermore that the migration rule
rM does not require any variables anymore. The newly created EAttribute “weight”
is initialized with the default value “1”. However, the second meta-model evolution
Rule “EAttribute2AssociatedEClass” requires an input parameter to transfer attribute
values.

1..1 beginOutArr

1..*

inArr

1..1

endOutArr

Transition

name: EString
Place

name: EString

token: EInt

OutArr

weight:EInt=1

r Dr C

1..*

inArrTransition

name: EString

Place

name: EString

token: EInt
1..*

outArr

M2 M2'

1..1 begin-

OutArr
1..1

endOutArr

Transition

name: EString
Place

name: EString

token: EInt

1..*

inArr

OutArr

weight:EInt=1

1..*

outArr

M2I

:Place

name="Alice"

token=1

:Transition

name="Send Message To Alice"

:Transition

name: "Send Message To Bob"

:inArr

:inArr

:OutArr

weight=1

:OutArr

weight=1

:Place

name="Bob"

token=0

:begin-

OutArr

:endOutArr

:endOutArr

:begin-

OutArr

:Place

name="Alice"

token=1

:Transition

name="Send Message To Alice"

:Transition

name="Send Message To Bob"

:inArr

:inArr

:outArr

:outArr

:Place

name="Bob"

token=0

M1 M1'typedtyped typed

r M r A , r D = EReference 2 EClass

typed

r I

Fig. 13. Example meta-model evolution with model migration

1:Transition 2:Place
:OutArr

LHS 1

2

:OutArr
weight=1

:endOutArr

:beginOutArr
RHS

Fig. 14. Derived model migration rule for meta-model evolution Rule “EReference2EClass”

14 F. Mantz, S. Jurack, and G. Taentzer

5 Implementation by Henshin Model Transformations

The prototypical implementation1 is realized by Henshin model transformations. Hen-
shin input rules are transformed to applicable meta-model evolution and model migra-
tion rules by use of higher-order transformations also specified with Henshin. Before
we discuss the implementation realisation, we consider its current limitations:

1. The number of meta-model elements i.e., classes, references and attributes, to be
deleted by the evolution rule is maximal one. This restriction is given only by the
current implementation.

2. Newly created package elements have to be created within the context of the deleted
package element, i.e., in the same package. This restriction is due to the handling
of containment relationships in our implementation.

3. The intermediate meta-model might lead to an invalid Ecore instance not fulfill-
ing all constraints. For this reason the restriction is by now that the intermediate
meta-model must be constructible. For example, in the intermediate meta-model
after application of Rule “EAttribute2AssociatedEClass”, an EClass requires an
EAttribute and an EReference with the same name. However, this is not
possible in EMF because of an implicit naming constraint. This problem can be
solved by two subsequent evolution steps replacing an attribute by a reference with
a new name first and renaming it to the original name afterwards.

4. Attribute values cannot yet be transfered, since evolution rules do not provide a
specification mechanism for such value transfers yet. At the moment, the migration
rule generator is restricted to the deletion of attributes from the meta-model: By
setting an attribute value to null it is changed to its default value, which is not
stored in the model.

5.1 Specification of Input Rules

Input rules are normal Ecore rules obeying the restrictions given above. In our imple-
mentation, Rule “EReference2EClass” in Fig. 4 can be specified straight forward. A
containment relationship of the newly created EClass has to be specified in addition.

Rule “EAttribute2Associated EClass” in Fig. 5 can be specified in a restricted form
only. The value transfer of attribute “VarAttr1” cannot be specified, as already dis-
cussed. However, a specification mechanism for attribute value transfers is imaginable.
In addition, we have to deal with another restriction: The name of the EReference to
be create shall be specified by the name of an EAttribute. The intermediate meta-
model would require that EClass “1” in the figure contains an EAttribute and an
EReference with the same name. However, this is not possible in EMF. By now, we
solve this problem by choosing another name for the EReference to create in a first
step and adding a second step doing a renaming.

5.2 Derivation of Meta-model Evolution Rule

Our approach contains a model transformation system which creates two rules from
scratch by the following coarse-grained algorithm: (1) Two rules rC and rD are created

1 http://www.mathematik.uni-marburg.de/˜swt/agtive-mm-evolution/

http://www.mathematik.uni-marburg.de/~swt/agtive-mm-evolution/

Graph Transformation Concepts for Meta-model Evolution 15

as copies of rule rI . This is done by coping all elements, i.e., objects, links, mappings
and parameters. (2) The RHS of rule rC and the LHS of rule rD are extended to LHSI∪
RHSI .

5.3 Derivation of Model Migration Rules

A model migration rule should perform corresponding actions on the model level as rule
rI does on the meta-model level. Therefore the creation of a migration rule is required
resembling rule rI adapted to the model level: Type elements of rule rI have to be re-
placed by corresponding instance elements. Note that in EMF this translation is not that
straight forward. Rule rI is formulated in the meta-meta-model syntax, while rule rM
is specified in meta-model syntax: eReferences are objects in the meta-meta-model
syntax and have to be translated into references in the meta-model syntax. Compare
Fig. 3 with Fig. 9 to see which structures are mapped to each other. Fig. 9 shows a rule
application of Rule “EReference2EClass” in meta-meta-model syntax. Fig. 3 shows a
model in meta-model syntax before and after the meta-model change in Fig. 9. Fur-
thermore, while the creation of an EAttribute does not need to be considered on the
model level its deletion has to be treated in a special way: These attributes have to be set
to null in the model as mentioned before (see Alg. 1). Newly created attributes exist
implicitly in each model. Their default values can be specified in their meta-model. The
move of attributes is not implemented yet. In addition, the creation of rule rM requires
that the elements of rule rI can be used as types in migration rule rM . Therefore we
need an intermediate step: We generate a rule which generates the migration rule rM
for a specific meta-model. With this trick we can refer to the elements of rule rI as types
in this “generator generator” rule. However, we think that Henshin would profit from a
feature supporting this step. In addition, the execution logic for applying migration rule
rM as often as possible has to be implemented with Henshin. This is done by gener-
ating not only the migration rule but a transformation system containing the migration
rule and additional elements steering the rule application. If the evolution rule does cre-
ations only, the corresponding migration rule is applied exactly once. This procedure is
formulated in the coarse-grained Algorithm 1 below.

5.4 Performance

The performance of this prototypical tool implementation is acceptable although there
might be potentials for improvements. The derivation of one migration rule such as the
one in Fig. 14 needs around 18 seconds on a standard laptop with an Intel(R) Core(TM)2
Duo CPU @ 2.40 GHz. The time spent to derive a migration rule was independent
from the meta-model size in our test case: We applied rule “EReference2Class” to the
Petri net and the State machine meta-models as well as to the Ecore meta-model. The
performance of model migrations depend only on the used model transformation tool.
We tested the derived model migration Rule “EReference2EClass” (see Fig. 14) with
PetriNet models of different sizes. For a large PetriNet model with 1000 places and 1000
transitions where each one has one in and out arrow, our prototypical implementation
needs around 240 seconds to complete the migration.

16 F. Mantz, S. Jurack, and G. Taentzer

Algorithm 1. Calculate model migrator(Rule rI) := TransformationSystem
1: TransformationSystem s := new HenshinTransformationSystem()
2: Rule rM :=s.add(newRule())
3: List E := All elements of LHSMM and RHSMM in rule rI
4: for each element e in E do
5: if e not instance of Attribute then
6: Translate element e into its instance element i in rM .
7: if i instance of Node then
8: Create a containment reference for i.
9: Map corresponding instance node elements in LHSM and RHSM .

10: else
11: // i instance of Edge:
12: Link the corresponding instance node elements in LHSM resp. RHSM .
13: end if
14: else
15: if e is deleted by rule rI /*Exist only in RHSM*/ then
16: // Delete attribute value in EMF instance:
17: Translate element e into e = null in RHSM .
18: else
19: Do nothing. // New attributes exist implicitly in EMF models
20: end if
21: end if
22: end for
23: if rule rM is not deleting then
24: Embed rule rM in s with a transformation unit calling rule rM once.
25: else
26: Embed rule rM in s with transformation unit calling rule rM as often as possible.
27: end if
28: return s

6 Related Work

Co-evolution of structures has been considered in several areas of computer science
such as database schemata, grammars, and meta-models. Especially schema evolution
has been a subject of research in the last decades. Recently, research activities have
started to consider meta-model evolution and to investigate the transfer of schema evo-
lution concepts to meta-model evolution. For further details we refer to Hermanns-
dörfer [6]. In the following, we focus our comparison on in-place and out-place
approaches for meta-model evolution being presented in the literature.

In [13], Sprinkle et al. introduce a visual graph transformation-based language for
meta-model evolution. The language uses out-place transformations and copies model
elements automatically if their meta-model elements have not been changed. In con-
trast, an in-place approach does not need automatic copying of non-changed elements
since a model can be changed directly.

In [9], Narayanan et al. introduce the Model Change Language (MCL) which mainly
follows the work of [13]. Transformations are specified in a graph transformation based
manner. The resulting model is checked for type conformance.

Graph Transformation Concepts for Meta-model Evolution 17

In [3], Cicchetti et al. present an changed-based approach. A difference model is
automatically computed that acts as input for a higher-order transformation, producing
a migration transformation. ATL [1] rules are generated. Helper classes are used to
specify the transformation behavior.

Rose et al. in [12] introduce an automatic coping approach that uses an elaborated
copy strategy. They present the text-based model migration language Epsilon Flock that
can be used not only to copy unchanged model parts automatically but also those that
pass a less strict conformance check. The idea is that a strict equivalence is often not
required e.g., an integer object can be copied into a long object automatically. In addi-
tion, Epsilon Flock provides an abstraction mechanism to deal with different modeling
frameworks.

In [6], the authors present a meta-model evolution approach called COPE that uses
in-place transformations. A general difficulty of in-place transformations is that mod-
els and meta-models need to be changed in a coordinated manner as shown above, to
guarantee a permanent conformance of models with their meta-model. However, COPE
decouples models and meta-models during transformation and therefore cannot guaran-
tee type conformance during model migration. Conformance is checked at runtime. A
transaction concept comparable to the transaction concept in database systems is used
to prevent models to get corrupted.

In [11] several tools for meta-model evolution are compared, namely: AtlanMod
Matching Language (AML), Ecore2Ecore, COPE, Epsilon Flock. Except COPE, all
tools in [11] use out-place transformations. AML is build on top of ATL and imple-
ments model matching strategies which execute a set of heuristics. Ecore2Ecore uses a
mapping model to describe mappings between two Ecore models. Migration is specified
by the use of this model and hand-written Java code.

In [8], Meyers et al. also suggest to use existing in-place transformation languages
for model migration. Their approach mainly bases on the earlier work of Cicchetti et. al.
in [3] but uses in-place transformations. It starts with a given set of difference models
represented by a sequence of method calls that reflect a change in the meta-model and a
model migration strategy. During the migration each model should stay conform to an
intermediate meta-model as in our approach, however in their example implementation,
they rely on COPE procedures.

7 Conclusion and Future Work

In this paper, an rule-based approach to meta-model evolution and model migration
is presented using in-place model transformation based on graph transformation con-
cepts. The approach is illustrated at two example evolutions of Petri net and state
machine models showing that specific migration rules can be derived for different meta-
models. The implementation is realized using existing technology, namely EMF and the
EMF model transformation tool Henshin. Although our currently implemented migra-
tion strategy has a number of limitations, a variety of evolution case can be handled
already now. In the future, the strategy for automatic deduction of migration rules has
to be further elaborated to cover a larger set of meta-model evolution scenarios elim-
inating existing limitations step-by-step. Our intention is to develop the formal basis

18 F. Mantz, S. Jurack, and G. Taentzer

along with the elaboration of new strategies. The formalization of this work helps us to
gain witness about the completeness and correctness of model migration.

References

1. Atlas Transformation Language: User Guide, http://wiki.eclipse.org/ATL/
User_Guide

2. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transformations by
Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer, Heidelberg (2008)

3. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-
driven engineering. In: Proc. of the 12th International IEEE Enterprise Distributed Object
Computing Conference, pp. 222–231. IEEE Computer Society (2008)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Monographs in Theoretical Computer Science. An EATCS Series. Springer (2006)

5. EMF: Eclipse Modeling Framework (2010), http://www.eclipse.com/emf
6. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evolution of

Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
52–76. Springer, Heidelberg (2009)

7. Jurack, S., Mantz, F.: Towards metamodel evolution of EMF models with Henshin. Tech.
rep., ME 2010: International Workshop on Model Evolution at MoDELS 2010 (Workshop
Online Proceedings) (2010), http://www.modse.fr

8. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place transformation-based
approach to structured model co-evolution. In: Amaral, V., Vangheluwe, H., Hardebolle, C.,
Lengyel, L. (eds.) Workshop on Multi-Paradigm Modeling 2010. ECEASST, vol. 42 (2011)

9. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic Domain
Model Migration to Manage Metamodel Evolution. In: Schürr, A., Selic, B. (eds.)
MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

10. OMG: Meta-Object Facility 2.0. (2010), http://www.omg.org/spec/MOF/2.0/
11. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K., Paige, R.F.,

Polack, F.A.C.: A Comparison of Model Migration Tools. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 61–75. Springer, Heidelberg
(2010)

12. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon Flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Hei-
delberg (2010)

13. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution. Jour-
nal of Visual Languages and Computing 15(3-4) (2004)

14. The EMF Henshin Transformation Tool: Project Web Site, http://www.eclipse.
org/modeling/emft/henshin/

http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide
http://www.eclipse.com/emf
http://www.modse.fr
http://www.omg.org/spec/MOF/2.0/
http://www.eclipse.org/modeling/emft/henshin/
http://www.eclipse.org/modeling/emft/henshin/

A Graph Transformation-Based Semantics
for Deep Metamodelling

Alessandro Rossini1, Juan de Lara2, Esther Guerra2, Adrian Rutle3, and Yngve Lamo3

1 University of Bergen, Norway
rossini@ii.uib.no

2 Universidad Autónoma de Madrid, Spain
{Juan.deLara,Esther.Guerra}@uam.es

3 Bergen University College, Norway
{aru,yla}@hib.no

Abstract. Metamodelling is one of the pillars of model-driven engineering, used
for language engineering and domain modelling. Even though metamodelling is
traditionally based on a two-level approach, several researchers have pointed out
limitations of this solution and proposed an alternative deep (also called multi-
level) approach to obtain simpler system descriptions. However, deep metamod-
elling currently lacks a formalisation that can be used to explain fundamental con-
cepts such as deep characterisation through potency and double linguistic/onto-
logical typing. This paper provides different semantics for such fundamental con-
cepts based on graph transformation and the Diagram Predicate Framework.

1 Introduction

Model-driven engineering (MDE) promotes the use of models as the primary assets in
software development, where they are used to specify, simulate, generate and main-
tain software systems. Models can be specified using general-purpose languages like
UML, but to fully unfold the potential of MDE, models are specified using domain-
specific languages (DSLs) which are tailored to a specific domain of concern. One way
to define DSLs in MDE is by specifying metamodels, which are models that describe
the concepts and define the syntax of a DSL.

The OMG has proposed MOF as the standard language to specify metamodels, and
some popular implementations exist, most notably the Eclipse Modeling Framework
(EMF) [21]. In this approach, a system is specified using models at two metalevels:
a metamodel defining allowed types and a model instantiating these types. However,
this approach may have limitations [4,5,13], in particular when the metamodel includes
the type-object pattern [4,5,13], which requires an explicit modelling of types and their
instances at the same metalevel. In this case, deep metamodelling (also called multi-
level metamodelling) using more than two metalevels yields simpler models [5].

Deep metamodelling was proposed in the seminal works of Atkinson and Kühne [4],
and several researchers and tools have subsequently adopted this approach [1,2,16].
However, there is still a lack of formalisation of the main concepts of deep metamod-
elling like deep characterisation through potency and double linguistic/ontological typ-
ing. Such a formalisation is needed in order to explain the main aspects of the approach,

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 19–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 A. Rossini et al.

study the different semantic variation points and their consequences, as well as to clas-
sify the different semantics found in the tools implementing them [1,2,3,16,15].

In this paper, we present a formal approach to deep metamodelling based on the
Diagram Predicate Framework (DPF) [19,20], a diagrammatic specification framework
founded on category theory and graph transformation. DPF has been adopted up to now
to formalise several concepts in MDE, such as (MOF-based) metamodelling, model
transformation and model versioning. The proposed formalisation helps in reasoning
about the different semantic variation points in the realisation of deep metamodelling
as well as in classifying the existing tools according to these options.

Paper Organisation. Section 2 introduces deep metamodelling through an example in
the domain of component-based web applications. Section 3 presents the basic concepts
of DPF. Section 4 explains different concepts of deep metamodelling through its form-
alisation in DPF. Section 5 compares with related research, and Section 6 concludes.

2 Deep Metamodelling

This section introduces deep metamodelling through an example, illustrating the lim-
itations of two metalevels when defining DSLs which incorporate the type-object pat-
tern [4,5,13]. Moreover, it discusses some open questions that are tackled in this paper.

2.1 Overview of Deep Metamodelling

The MeTEOriC project aims at the model-driven engineering of web applications. Here
we describe a small excerpt of one of the modelling problems encountered in this pro-
ject. A full description of this case study is outside the scope of this paper, but is de-
scribed at: http://astreo.ii.uam.es/~jlara/metaDepth/Collab.html.

In MeTEOriC, a DSL is adopted to define the mash-up of components (like Google
Maps and Google Fusion Tables) to provide the functionality of a web application. A
simplified version of this language can be defined using two metalevels (see Fig. 1(a)).
The metamodel corresponds to the DSL for component-based web applications. In this
metamodel, the metaclass Component defines component types having a type identifier,
whereas the metaclass CInstance defines component instances having a variable name
and a flag indicating whether it should be visualised. Moreover, the metaassociation
type defines the typing of each component instance. The model at the adjacent meta-
level below represents a component-based web application which shows the position
of professors’ offices on a map. In this model, the classes Map and Table are instances
of the metaclass Component and represent component types, whereas the classes UAM-
Camp and UAMProfs are instances of the metaclass CInstance and represent component
instances of Map and Table, respectively.

The type-object relation between component types and instances is represented ex-
plicitly in the metamodel by the metaassociation type between the metaclasses Com-
ponent and CInstance. However, the type-object relation between allowed and actual
data links is implicit since there is no explicit relation between the metaassociations
datalink and dlinstance, and this may lead to several problems. Firstly, it is not pos-
sible to define that the data link instance offices is typed by the data link type geopos,

http://astreo.ii.uam.es/~jlara/metaDepth/Collab.html

A Graph Transformation-Based Semantics for Deep Metamodelling 21

Model
Metamodel

name="UAMCampus"
visualise=true

UAMCamp
camptype

id="GoogleMaps"

Map

trg

o ces

src

trg

geopos

src name="UAMProfs"
visualise=false

UAMProfs
profstype

id="FusionTable"

Table

name: String
visualise: Boolean

CInstance src
*

dlinstance

*trg

*type1
id: String

Component
trg*

datalink

src
*

(a)

Model M3

Model M2

Model M1

name="UAMProfs"
visualise=false

UAMProfs

srctrg
o cesname="UAMCampus"

visualise=true

UAMCamp

id="FusionTable"

Table

srctrg
0..1geopos*

id="GoogleMaps"

Map

@2
@2

@1id: String
name: String
visualise: Boolean

@2Component src
*

@2datalink

*trg
context Component
inv:
 self.trg->
 excludes(self)

@2

(b)

Fig. 1. A simple language for component systems in two and three metalevels

which could be particularly ambiguous if the model contained multiple data link types
between the component types Map and Table. Moreover, it could be possible to specify
a reflexive data link instance from the component instance UAMProfs to itself, which
should not be allowed since the component type Table does not have any reflexive data
link type. Although these errors could be detected by complementing the metamodel
with attached OCL constraints, these constraints are not enough to guide the correct
instantiation of each data link, in the same way as a built-in type system would do if
the data link types and instances belonged to two different metalevels. In the complete
definition of the DSL, the component types can define features, such as the zooming
capabilities of the map component. Again, these features would be represented using
the type-object pattern with metaclasses Feature (associated to Component) and Fea-
tureInstance (associated to CInstance). These metaclasses need to be correctly instanti-
ated and associated to the component instances, which leads to complex constraints and
even more cluttered models. Hence, either one builds manually the needed machinery to
emulate two metalevels within the same one, or this two-metalevel solution eventually
becomes convoluted and hardly usable.

The DSL above can be defined in a simpler way using three metalevels (Fig. 1(b))
and deep characterisation, i.e., the ability to describe structure and express constraints
for metalevels below the adjacent one. In this work, we adopt the deep characterisation
approach described in [4], where each model element has a potency. In the original
proposal of [4], the potency is a natural number which is attached to a model element to
describe at how many subsequent metalevels this element can be instantiated. Moreover,
the potency decreases in one unit at each instantiation at a deeper metalevel. When it
reaches zero, a pure instance that cannot be instantiated further is obtained. In Section 4,
we provide a more precise definition for potency.

In deep metamodelling, the elements in the top metalevel are pure types, the ele-
ments in the bottom metalevel are pure instances, and the elements at intermediate
metalevels retain both a type and an instance facet. Because of that, they are all called
clabjects, which is the merge of the words class and object [5]. Moreover, since in deep
metamodelling the number of metalevels may change depending on the requirements,

22 A. Rossini et al.

we find it more convenient to number the metalevels from 1 onwards starting from the
top-most. The model M1 contains the definition of the DSL (Fig. 1(b)). In this model,
clabject Component has potency 2, denoting that it can be instantiated at the two sub-
sequent metalevels. Its attribute id has potency 1, denoting that it can be assigned a
value when Component is instantiated at the adjacent metalevel below. Its other two at-
tributes name and visualise have potency 2, denoting that they can be assigned a value
only two metalevels below. The association datalink also has potency 2, denoting that
it can be instantiated at the two subsequent metalevels. The attached OCL constraint
in the model M1 forbids to reflexively connect indirect instances of Component. This
constraint has potency 2, denoting that it has to be evaluated in the model M3 only. As
elements in M2 retain a type facet, we can add cardinality constraints to geopos, while
this would need to be emulated in Fig. 1(a). The DSL in Fig. 1(b) is simpler than the
one in Fig. 1(a), as it contains less model elements to define the same DSL.

The deep characterisation is very useful in the design of this DSL. For instance, in
the model M1, the designer can specify the attributes name and visualise which should
be assigned a value in indirect instances of Component, i.e., UAMCamp and UAMProfs.
Moreover, the model M1 does not need to include a clabject CInstance or an association
dlinstance since the clabjects UAMCamp and UAMProfs are instances of the clabjects
Map and Table, respectively, which in turn are instances of the clabject Component.

The dashed grey arrows in Fig. 1(b) denote the ontological typing for the clabjects,
as they represent instantiations within a domain; e.g., the clabjects Map and Table
are ontologically typed by the clabject Component. In addition, deep metamodelling
frameworks usually support an orthogonal linguistic typing [5,16] which refers to the
metamodel of the metamodelling language used to specify the models; e.g., the clab-
jects Component, Map and UAMCamp are linguistically typed by Clabject, whereas the
attributes id, name and visualise are linguistically typed by Attribute.

2.2 Some Open Questions in Deep Metamodelling
Deep metamodelling allows a more flexible approach to metamodelling by introducing
richer modelling mechanisms. However, their semantics have to be precisely defined in
order to obtain sound, robust models. Even if the literature (and this section) permits
grasping an intuition of how these modelling mechanisms work, there are still open
questions which require clarification.

Some works in the literature give different semantics to the potency of associations.
In Fig. 1(b), the associations are instantiated like clabjects. In this case, the association
datalink with potency 2 in the model M1 is first instantiated as the association geopos
with potency 1 in the model M2, and then instantiated as the association offices with
potency 0 in the model M3; i.e., the instantiation of offices is mediated by geopos. In
contrast, the attributes name and visualise with potency 2 in the model M1 are assigned
a value directly in the model M3; i.e., the instantiation of name and visualise is not me-
diated. Some frameworks such as EMF [21] represent associations as Java references,
so the associations could also be instantiated like attributes. In this case, the associ-
ation datalink would not need to be instantiated in the model M2 in order to be able to
instantiate it in the model M3. This would have the effect that one could add an associ-
ation between any two component instances in the model M3, not necessarily between
instances of Table and instances of Map.

A Graph Transformation-Based Semantics for Deep Metamodelling 23

Another ambiguity concerns constraints, since some works in the literature support
potency on constraints [16] but others do not [3]. In Fig. 1(b), the attached OCL con-
straint in the model M1 is evaluated in the model M3 only. In other cases, it might be
useful to have a potency which denotes that a constraint has to be evaluated at every
metalevel. In addition, it is feasible to attach potencies to multiplicity constraints as
well. In Fig. 1(b), all the multiplicity constraints are evaluated at the adjacent metalevel
below. In other cases, it might be useful to attach a potency to multiplicity constraints.
For instance, a potency 2 would have the effect that one could control the number of
data link instances in the model M3.

Finally, another research question concerns the relation between metamodelling stacks
with and without deep characterisation. One could define constructions to flatten deep
characterisation; e.g., given the three-metalevel stack of Fig. 1(b), one could obtain an-
other three-metalevel stack without potencies but with some elements replicated along
metalevels, making explicit the semantics of potency. This would allow the migration
of deeply characterised systems into tools that do not support potency.

Altogether, we observe a lack of consensus and precise semantics for some of the
aspects of deep metamodelling. The contribution of this work is the use of DPF to
provide a neat semantics for different aspects of deep metamodelling: deep character-
isation through potency and double linguistic/ontological typing. As a distinguishing
note, we propose two possible semantics of potency for each model element, i.e., clab-
jects, attributes, associations and constraints. To the best of our knowledge, this is the
first time that the two semantics have been recognised.

3 Diagram Predicate Framework

This section presents the basic concepts of DPF that are used in the formalisation of
deep metamodelling. The interested reader can consult [9,8,10,18,19,17,20] for a more
detailed presentation of the framework.

In DPF, a model is represented by a specification S. A specification S = (S,CS :
Σ) consists of an underlying graph S together with a set of atomic constraints CS

which are specified by means of a predicate signature Σ. A predicate signature Σ =
(ΠΣ , αΣ) consists of a collection of predicates π ∈ ΠΣ , each having an arity (or shape
graph) αΣ(π). An atomic constraint (π, δ) consists of a predicate π ∈ ΠΣ together
with a graph homomorphism δ : αΣ(π) → S from the arity of the predicate to the
underlying graph of a specification.

Fig. 2 shows a specification T which is compliant with the requirements “a compon-
ent must have exactly one identifier”, “a component may be connected to other com-
ponents” and “a component can not be connected to itself”. In T, these requirements are

enforced by the atomic constraints ([mult(1, 1)], δ1 : (1
a−→ 2) → (Component

id−→
String)) and ([irreflexive], δ2 : (1

a−→ 1)→ (Component
datalink−−−−→ Component)).

Similar to E-graphs [11], attributes of nodes can be represented in DPF by edges from
these nodes to nodes representing data types. For example, the attribute id:String of the

clabject Component in Fig. 1(b) is represented in DPF by an edge Component
id−→ String

(see Fig. 2).

24 A. Rossini et al.

The semantics of graph nodes and arrows has to be chosen in a suitable way for
the corresponding modelling environment [20]. In object-oriented structural modelling,
each object may be related to a set of other objects. Hence, it is appropriate to interpret

nodes as sets and arrows X
f−→ Y as multi-valued functions f : X → ℘(Y).

The semantics of predicates of the signature Σ (see Fig 2) is described using the
mathematical language of set theory. In an implementation, the semantics of a predicate
is typically given by the code of a corresponding validator such that the mathematical
and the validator semantics should coincide. A semantic interpretation [[..]]Σ of a signa-
ture Σ consists of a mapping that assigns to each predicate symbol π ∈ ΠΣ a set [[π]]Σ

of graph homomorphisms ι : O → αΣ(π), called valid instances of π, where O may
vary over all graphs. [[π]]Σ is assumed to be closed under isomorphisms.

The semantics of a specification is defined in the fibred way [8,10]; i.e., the semantics
of a specification S = (S,CS :Σ) is given by the set of its instances (I, ι). To check
that an atomic constraint is satisfied in a given instance of a specification S, it is enough
to inspect only the part of S which is affected by the atomic constraint. This kind of
restriction to a subpart is obtained by the pullback construction [6]. An instance (I, ι)
of a specification S consists of a graph I and a graph homomorphism ι : I → S such
that for each atomic constraint (π, δ) ∈ CS we have ι∗ ∈ [[π]]Σ , where the graph
homomorphism ι∗ : O∗ → αΣ(π) is given by the following pullback:

αΣ(π)
δ

S

O∗

P.B.

δ∗

ι∗

I

ι

In DPF, two kinds of conformance relations are distinguished: typed by and conforms
to. A specification S is typed by a graph T if there exists a graph homomorphism ι :
S → T, called the typing morphism, between the underlying graph of the specification
S and T. A specification S is said to conform to a specification T if there exists a
typing morphism ι : S → T between the underlying graphs of S and T such that (S, ι)
is a valid instance of T; i.e., such that ι satisfies the atomic constraints CT .

Fig. 2 shows two specifications S and S′, both typed by T. However, only S con-
forms to T, since S′ violates the atomic constraints CT . This is because the missing
id-typed edge violates the multiplicity constraint ([mult(1, 1)], δ1), while the edge
source violates the irreflexivity constraint ([irreflexive], δ2).

π ∈ ΠΣ αΣ(π) Proposed vis. Semantic interpretation

[irreflexive] 1
a

X
f

∀x ∈ X : x /∈ f(x)

[mult(m, n)] 1 a 2 X f Y ∀x ∈ X : m ≤ |f(x)| ≤ n,
with 0 ≤ m ≤ n and n ≥ 1

[irr]

[m..n]

S'S

Σ

T

Plotsource“Google
Maps”

idMapMap

String[1..1]idComponentdatalink
[irr]

Fig. 2. A signature Σ and specifications T, S and S′, where only S conforms to T

A Graph Transformation-Based Semantics for Deep Metamodelling 25

4 Formalisation of Deep Metamodelling

This section formalises different concepts of deep metamodelling through DPF. Firstly,
we introduce different interpretations of potency. Secondly, we define the syntax of po-
tency in terms of DPF. Thirdly, we define models in a deep stack together with double
linguistic/ontological typing in terms of DPF. Finally, we present an operational se-
mantics of potency in terms of constraint-aware graph transformation.

4.1 Multi- and Single-Potency

As discussed in Section 2.2, different interpretations of potency are possible. In this pa-
per, two kinds of potency are distinguished, namely multi- and single-potency, denoted
by the superscripts �p and�p, respectively.

A multi-potency �p on a clabject/reference at metalevel i denotes that this clab-
ject/reference can be instantiated at all metalevels from i + 1 to i + p (see Fig. 3). A
potency �p on an atomic constraint at metalevel i denotes that this constraint is eval-
uated at all metalevels from i + 1 to i + p. Note that attributes only retain either type
or instance facet but not both, therefore the multi-potency on attributes can not be con-
sidered. This “multi-” semantics is the usual semantics of potency on clabjects found in
the literature.

Metalevel Clabject Reference

i A�p A
a�p

N

i+ 1 B�p-1 B
b�p-1

O

...
...

...
...

...

i+ p− 1 L�1 L
l�1

Y

i+ p M�0 M
m�0

Z

Fig. 3. Intuition on the multi-semantics of potency

In contrast, a single-potency�p on a clabject/reference at metalevel i denotes that
this clabject/reference can be instantiated at metalevel i+p only, but not at the interme-
diate metalevels (see Fig. 4). A potency�p on an attribute at metalevel i denotes that
this attribute can be instantiated (i.e., can be assigned a value) at metalevel i + p only.
A potency�p on an atomic constraint at metalevel i denotes that this atomic constraint
is evaluated at metalevel i+ p only.

26 A. Rossini et al.

Metalevel Clabject Reference Attribute

i A�p A
a�p

N A
a�p

DT

...
...

...
...

...
...

...
...

i+ p B�0 M
b�0

Z M
b�0

DV

Fig. 4. Intuition on the single- semantics of potency

4.2 Syntax of Potency

The syntax of multi- and single-potencies can be represented in DPF by a tag signature,
which has the same components of a predicate signature but a different semantic coun-
terpart (see Section 4.3 and 4.4). A tag signature Ψ = (ΘΨ , αΨ) consists of a collection
of tags θ ∈ ΘΨ , each having an arity αΨ(θ) and a proposed visualisation. Table 1 shows
the tag signature Ψ for specifying potencies.

Table 1. The tag signature Ψ for specifying potencies

θ ∈ ΘΨ αΨ(θ) Proposed visual.

<multi(p)>1 1 X�p

<multi(p)>2
1

a
2 X

f�p

Y

<multi(p)>π
1

a
2 X

f

π�p
Y

θ ∈ ΘΨ αΨ(θ) Proposed visual.

<single(p)>1 1 X�p

<single(p)>2 1
a

2 X
f�p

Y

<single(p)>π
1

a
2 X

f

π�p
Y

The tags θ ∈ ΘΨ are divided into two families <multi(p)> and <single(p)> for
multi- and single-potency, respectively. They are parametrised by the (non-negative)
integer p, which represents the potency value that is attached to an element. More
specifically, the tags <multi(p)>1 and <single(p)>1 are used for attaching poten-
cies to clabjects, <multi(p)>2 and <single(p)>2 for references and attributes, and
<multi(p)>π and <single(p)>π for atomic constraints (with compatible arity).

Given the tag signature Ψ, a potency (θ, γ) consists of a tag θ ∈ ΘΨ and a graph
homomorphism γ : αΨ(θ)→ Si. Note that potencies can only be attached to clabjects,
references, attributes and atomic constraints. This restriction can be defined by adopting
typed tag signatures in which each tag is typed linguistically by a specification. This
detail is omitted in this paper for brevity.

In the following, we adopt potencies to define models in a deep stack.

4.3 Double Linguistic/Ontological Typing

A model at metalevel i in a deep stack can be represented in DPF by a (deep) spe-
cification Si. A specification (Si, λi, ωi) = (Si, Ci : Σ,Pi : Ψ, λi, ωi) consists of an

A Graph Transformation-Based Semantics for Deep Metamodelling 27

underlying graph Si, a set of atomic constraints Ci specified by means of a predicate
signature Σ and a set of potencies Pi specified by means of a tag signature Ψ (see
Fig. 5). Moreover, Si conforms linguistically to the specification LM; i.e., there exists
a linguistic typing morphism λi : Si → LM such that (Si, λi) is a valid instance of
LM. The specification LM corresponds to the metamodelling language used to specify
all specifications in a deep stack. Furthermore, Si conforms ontologically to the spe-
cification Si−1; i.e., there exists an ontological typing morphism ωi : Si → Si−1 such
that (Si, ωi) is a valid instance of Si−1 and the ontological typing is compatible with
the linguistic typing, i.e., ωi;λi−1 = λi.

LM Si−1

λi−1

Σ
Ci−1

Ci

Si

ωi
λi

=

Ψ
Pi

Pi−1

Fig. 5. Double linguistic/ontological typing

A specification S1 at the top metalevel 1 of a deep stack is a special case as its
elements are pure types (see Section 2). As such, S1 conforms only linguistically to
the specification LM; i.e., there is no specification S0, hence, there is no ontological
typing morphism ω1 : S1 → S0.

Example 1 (Deep Stack). Building on the example in Section 2, Fig. 6(a) shows the
specification LM while Figs. 6(b), (c) and (d) show the specifications S1, S2 and S3

of a deep stack corresponding to a simplified version of the one in Fig. 1(b). The figure
also shows the ontological typings as dashed, grey arrows.

In S1 the potency �2 on Component and datalink is specified by (<multi(2)>1

, γ1 : 1 → Component) and (<multi(2)>2, γ2 : (1
a−→ 2) → (Component

datalink−−−−→
Component)), respectively. Similarly, the potencies �1 on id and ([mult(1, 1)], δ1)
are specified by (<single(1)>2, γ3) and (<single(1)>2, γ4; δ1), respectively.

The specifications S1, S2 and S3 conform linguistically to LM; i.e., there exist
linguistic typing morphisms λ1 : S1 → LM , λ2 : S2 → LM and λ3 : S3 → LM
such that (S1, λ1), (S2, λ2) and (S3, λ3) are valid instances of LM. For instance, λ2 is
defined as follows:

λ2(Map) = λ2(Table) = Clabject
λ2(geopos) = Reference
λ2(idMap) = λ2(idTable) = Attribute
λ2(“GoogleMaps”) = λ2(“FusionTable”) = DataType

Moreover, S2 conforms ontologically to S1; i.e., there exists an ontological typing
morphism ω2 : S2 → S1 such that (S2, ω2) is a valid instance of S1:

ω2(Map) = ω2(Table) = Component
ω2(geopos) = datalink
ω2(idMap) = ω2(idTable) = id
ω2(“GoogleMaps”) = ω2(“FusionTable”) = String

28 A. Rossini et al.

S3(d)

S2(c)

S1(b)

LM(a)

“UAM
Profs”

nameTableUAM 0
UAMProfs

0

o ces 0

“UAM
Campus”

nameMapUAM 0
UAMCamp

0

“Fusion
Table”

idTable 0
Table

1

geopos 1

“Google
Maps”

idMap 0
Map

1

String
[1..1] 2name 2

[1..1] 1id 1
Component

2

[irr] 2
datalink 2

[0..1] 2

DataType

At
tr
ib
ut
e

Clabject

Re
fe
re
nc
e

Fig. 6. The specifications LM , S1, S2 and S3

Finally, S3 should conform ontologically to S2, but this is not the case as the ontolo-
gical typing morphism ω3 is undefined for some elements of S3:

ω3(UAMCamp) = Map
ω3(UAMProfs) = Table
ω3(offices) = geopos
ω3(nameMapUAM)=ω3(nameTableUAM)=ω3(“UAMCampus”)=ω3(“UAMProfs”)=∅

In the following, we adopt constraint-aware graph transformation to define an opera-
tional semantics of single-potency and obtain a specification S3 which conforms onto-
logically to S2.

4.4 Semantics of Potency through Graph Transformation

Recall that a single-potency �p on a type at metalevel i denotes that this type can be
instantiated at metalevel i + p only. Hence, there are always p metalevels between an
instance with potency 0 and its type. However, in strict metamodelling, an instance with
potency 0 at metalevel i + p should be ontologically typed by a type with potency 1 at
metalevel i + p − 1. To address this problem we define a semantics of single-potency
which transforms a deep stack into a flattened stack without deep characterisation, in
which an instance with potency 0 at metalevel i+p has its type at metalevel i+p−1. This
transformation adds to each metalevel i + 1 a replica of a type with potency decreased
to p− 1 and then deletes from metalevel i the original type, until p = 1. We specify this
transformation with constraint-aware transformation rules [11].

A transformation rule t = L K
l r

R consists of three specifications L,
K and R. L and R are the left-hand side (LHS) and right-hand side (RHS) of the
transformation rule, respectively, while K is their interface. L \K describes the part of a

A Graph Transformation-Based Semantics for Deep Metamodelling 29

specification which is to be deleted, R\K describes the part to be added andK describes
the part to be preserved by the rule. Roughly speaking, an application of transformation
rule means finding a match of the left-hand side L in a source specification S and
replacing L by R, leading to a target specification S′.

Since the transformation a specification undergoes is dependent of the potencies in
the specification at the metalevel above, the transformation rules take as input and out-
put coupled specifications. A coupled specification CSi = ((Si, λi, ωi), (Si+1, λi+1))
consists of a specification (Si, λi, ωi) coupled with the specification (Si+1, λi+1). This
means that the application of transformation rules modifies specifications at two adja-
cent metalevels i and i+ 1.

Table 2 shows some of the transformation rules which define the operational se-
mantics of single-potency. In general, all these rules follow a general pattern which
adds to metalevel i + 1 a replica of an element with single-potency decreased to p− 1
and then deletes from metalevel i the original element; i.e.:

– Rules tc0 and tdt0: add to metalevel i+ 1 a replica of a clabject/data type.
– Rules tr1 and ta1: add to metalevel i+ 1 a replica of a reference/attribute.
– Rules tacr2 and taca2: add to metalevel i+ 1 a replica of an atomic constraint.
– Rules tacr3 and taca3: delete from metalevel i the original atomic constraint.
– Rules tr4 and ta4: delete from metalevel i the original reference/attribute.
– Rule tc5: deletes from metalevel i the original clabject.

Note that the rules tc0, tc5, taca2 and taca3 are analogous to the rules tr1, tr4, tacr2
and tacr3, respectively, and are omitted from Table 2 for brevity.

The transformation uses negative application conditions (NACs) and layers [11] to
control rule application. Since non-deleting rules can be applied multiple times via the
same match, each rule has a NAC equal to its RHS. Moreover, since the rules are to be
applied only if the matched potency is greater than 1, rules have another NAC demand-
ing p ≤ 1. The subscripts from 0 to 4 denote the layer to which a rule belongs, so that
rules of layer 0 are applied as long as possible before rules of layer 1, etc.

According to this layering, the transformation adds a replica of a reference only after
it adds a replica of a clabject and before it deletes the original clabject. This ensures that
the rule which adds a replica of a reference matches both clabjects with multi-potency
and their instances as well as clabjects with single-potency and their replicas. Moreover,
this ensures that the replica of the reference has as source and target an instance of
the considered clabject with multi-potency or a replica of the considered clabject with
single-potency. The layering of rules for data types, attributes and atomic constraints
follow the same rationale.

Note that the notation A:Clabject
a:Attribute

DT:DataType in the rules denotes that
λi(A) = Clabject, λi(a) = Attribute and λi(DT) = DataType.

Example 2 (Deep Stack and Application of Transformation Rules). Building on
Example 1, Figs. 7(b), (c) and (d) show the specifications S1, S2 and S3 of the deep
stack, after the application of the transformation rules. In particular, the added elements
are shown in Fig. 7(c) in green colour while the deleted elements are shown in Fig. 7(b)
in red colour.

30 A. Rossini et al.

Table 2. The transformation rules for flattening the semantics of single-potencies

CL = CK CR = NAC

tdt0 A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωL
i

DT:DataType

A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωR
i

DT:DataType

ωR
i

ta1 A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωL
i

DT:DataType

ωL
i

A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωR
i

aB:Attribute�p-1

DT:DataType

ωR
i

ωR
i

tr1 A:Clabject
a:Reference�p

N:Clabject

B:Clabject

ωL
i

O:Clabject

ωL
i

A:Clabject
a:Reference�p

N:Clabject

B:Clabject

ωR
i

aB:Reference�p-1

O:Clabject

ωR
i

ωR
i

tacr2 A:Clabject
a:Reference

π�p

N:Clabject

B:Clabject

ωL
i

aB:Reference
O:Clabject

ωL
iωL

i

A:Clabject
a:Reference

π�p

N:Clabject

B:Clabject

ωR
i

aB:Reference

π�p-1

O:Clabject

ωR
iωR

i

CL CK = CR

tacr3 A:Clabject
a:Reference

π�p

N:Clabject

B:Clabject

ωL
i

aB:Reference

π�p-1

O:Clabject

ωL
iωL

i

A:Clabject
a:Reference

N:Clabject

B:Clabject

ωR
i

aB:Reference

π�p-1

O:Clabject

ωR
iωR

i

tr4 A:Clabject
a:Reference�p

N:Clabject

B:Clabject

ωL
i

aB:Reference�p-1

O:Clabject

ωL
i

ωL
i

A:Clabject N:Clabject

B:Clabject

ωR
i

aB:Reference�p-1

O:Clabject

ωR
i

ta4 A:Clabject
a:Attribute�p

DT:DataType

B:Clabject

ωL
i

aB:Attribute�p-1

DT:DataType

ωL
i

ωL
i

A:Clabject DT:DataType

B:Clabject

ωR
i

aB:Attribute�p-1

DT:DataType

ωR
i

A Graph Transformation-Based Semantics for Deep Metamodelling 31

S3(d)

S2(c)

S1(b)

LM(a)

“UAM
Profs”

nameTableUAM 0
UAMProfs

0

o ces 0

“UAM
Campus”

nameMapUAM 0
UAMCamp

0

“Fusion
Table”

idTable 0
Table

1

geopos 1

“Google
Maps”

idMap 0
Map

1

++nameTable 1
+
+
[1
..1

]
1

++[0..1] 1

++nameMap 1
++[1..1] 1

++String

String
--[1..1] 2--name 2

[1..1] 1id 1
Component

2

[irr] 2
datalink 2

--[0..1] 2

DataType

At
tr
ib
ut
e

Clabject

Re
fe
re
nc
e

Fig. 7. The specifications S1, S2 and S3, after applying the rules

Firstly, the application of tdt0 and ta1 adds to S2 the node String and the edges
nameMap and nameTable with potency�1. In this way, the ontological typing morph-
ism ω3 can be defined for all the elements of S3, which makes S3 conform ontologic-
ally to S2:

ω3(nameMapUAM) = nameMap
ω3(nameTableUAM) = nameTable
ω3(“UAMCampus”) = ω3(“UAMProfs”) = String

Secondly, the application of tacr2 and taca2 adds to S2 the atomic constraints
([mult(0, 1)], δ1), ([mult(1, 1)], δ2) and ([mult(1, 1)], δ3) with potency �1 on
the edges geopos, nameMap and nameTable, respectively. In this way, these atomic
constraints are evaluated at metalevel 0.

Thirdly, the application of tacr3 and taca3 deletes from S1 the atomic constraints
([mult(0, 1)], δ1) and ([mult(1, 1)], δ3) on the edges datalink and name, respect-
ively. In this way, these atomic constraints are not evaluated at metalevel 1.

Finally, the application of taca4 deletes from S1 the edge name. In this way, it is
not possible to instantiate name at metalevel 1.

The presented flattening gives the semantics of potencies, so that an equivalent multi-
level system is obtained, but without using deep characterisation. However, one can
apply further flattenings using graph transformation, as shown in Fig. 8:

1. First, one can remove the double linguistic/ontological typing, keeping just one typ-
ing. This can be done by adding the linguistic metamodel on top of the ontological
stack, and replicating such metamodel elements at all metalevels except 0 and 1.

2. Second, one can flatten a multi-level system into two metalevels. The first variant
of this flattening is to merge all models of the ontological stack into a single model,
and then consider this merged model as an instance of the linguistic metamodel.

32 A. Rossini et al.

Two-level system
with ontological on top

Two-level system
with linguistic on top

Multi-level system

Multi-level system
with dual typing

Deeply characterised
multi-level system
with dual typing

Fig. 8. Flattenings for multi-level systems

The second variant is to merge all models of the ontological stack, except the top-
most one, into a single model, and then consider this merged model as an instance
of the top-most model. In this variant, given a system like the one in Fig. 1(b), one
would obtain a two-level system like the one in Fig. 1(a).

5 Related Work

A first strand of research focuses on multi-level metamodelling. In [12], MOF is ex-
tended with multiple metalevels to enable XML-based code generation. Nivel [2] is
a double metamodelling framework based on the weighted constraint rule language
(WCRL). XMF [7] is a language-driven development framework allowing an arbit-
rary number of metalevels. Another form of multi-level metamodelling can be achieved
through powertypes [13], since instances of powertypes are also subtypes of another
type and hence retain both a type and an instance facet. Multi-level metamodelling can
also be emulated through stereotypes, although this is not a general modelling technique
since it relies on UML to emulate the extension of its metamodel. The interested reader
can consult [5] for a thorough comparison of potencies, powertypes and stereotypes.

A second strand of research focuses on deep characterisation. DeepJava [15], META-
DEPTH [16], and the works of Gutheil [14], Atkinson [3], and Aschauer [1] all support
deep characterisation through potency. While these works agree on that clabjects are
instantiated using the multi-potency semantics, they differ in other design decisions.
Firstly, some works are ambiguous about the instantiation semantics for associations.
In [15], the associations can be represented as Java references; hence we interpret that
they are instantiated using the single-potency semantics. In [14], the connectors are ex-
plicitly represented as clabjects but their instantiation semantics is not discussed; hence
we interpret that they are instantiated using the multi-potency semantics. Secondly, not
all works adhere to strict ontological metamodelling. In [1], the ontological type of
an association does not need to be in the adjacent metalevel above, but several meta-
levels above. Note that our single-potency semantics makes it possible to retain strict
metamodelling for associations through a flattening construction that replicates these
associations. Finally, some works differ in how they tackle potency on constraints and
methods. Potency on constraints is not explicitly shown in [3] and not considered in [1],
whereas potency on methods is only supported by DeepJava and METADEPTH.

Table 3 shows a summary of the particular semantics for deep characterisation im-
plemented by the above mentioned works and compares it with the semantics supported
by our formalisation. It is worth noting that no tool recognises the fact that multiplicity
constraints are constraints as well and hence can have a potency.

A Graph Transformation-Based Semantics for Deep Metamodelling 33

Table 3. Comparison of different deep characterisation semantics

Clabjects Associations Strictness Constraints Mult. constraints
DeepJava [15] � � yes � N.A.
Atkinson et al. [3] � � yes � �1
Aschauer et al. [1] � � no N.A. �1
METADEPTH [16] �, � �, � yes � �1
DPF formalisation �, � �, � yes �, � �, �

6 Conclusion and Future Work

In this paper, we presented a formalisation of concepts of deep metamodelling using
DPF and graph transformation. In particular, we provided a precise definition of the
double linguistic/ontological typing and two different semantics for potency on different
model elements, as well as an operational semantics of potency using a flattening based
on graph transformation.

We believe that distinction of two possible semantics for potency is important to
achieve more flexible tools, allow their comparison and their interoperability. For in-
stance, in our case study (see Fig. 1), the multi-potency on the association datalink
has the effect that one can only add associations between instances of the component
Table and instances of the component Map in the model M3. On the contrary, a single-
potency on the association datalink would have the effect that one could add associ-
ations between any two component instances in the model M3, not necessarily between
instances of Table and instances of Map. We found both semantics especially useful in
this case study.

To the best of our knowledge, this work is the first attempt to clarify and formalise
some aspects of the semantics of deep metamodelling. In particular, this work explains
different semantic variation points available for deep metamodelling, points out new
possible semantics, currently unexplored in practice, as well as classifies the existing
tools according to these options.

In the future, we plan to investigate the effects of combining different potency val-
ues to interdependent model elements. This includes the investigation of the effects of
overriding the potency of a clabject using inheritance, as this may lead to contradictory
combinations of potencies. We also plan to formalise the linguistic extensions proposed
in [16]. Finally, we will incorporate the lessons learnt from this formalisation into the
METADEPTH tool, in particular the possibility of assigning potency to multiplicity con-
straints.

Acknowledgements. Work partially funded by the Spanish Ministry of Science (project
TIN2008-02081), and the R&D programme of the Madrid Region (project S2009 /TIC-
1650).

References

1. Aschauer, T., Dauenhauer, G., Pree, W.: Multi-level modeling for industrial automation sys-
tems. In: EUROMICRO 2009, pp. 490–496. IEEE Computer Society (2009)

34 A. Rossini et al.

2. Asikainen, T., Männistö, T.: Nivel: A metamodelling language with a formal semantics. Soft-
ware and Systems Modeling 8(4), 521–549 (2009)

3. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel language en-
gineering. IEEE Transactions on Software Engineering 35(6), 742–755 (2009)

4. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions on Mod-
eling and Computer Simulation 12(4), 290–321 (2002)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software and
Systems Modeling 7(3), 345–359 (2008)

6. Barr, M., Wells, C.: Category Theory for Computing Science, 2nd edn. Prentice-Hall (1995)
7. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling: A Foundation for Language

Driven Development, 2nd edn., Ceteva (2008)
8. Diskin, Z.: Mathematics of Generic Specifications for Model Management I and II. In: En-

cyclopedia of Database Technologies and Applications, pp. 351–366. Information Science
Reference (2005)

9. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal Arrow Foundations for Visual
Modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI),
vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

10. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling. In: Proc. of
the 2nd Workshop on Applied and Computational Category Theory (ACCAT 2007). ENTCS,
vol. 203(6), pp. 19–41. Elsevier (2008)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transform-
ation. Springer (March 2006)

12. Gitzel, R., Ott, I., Schader, M.: Ontological extension to the MOF metamodel as a basis for
code generation. Computer Journal 50(1), 93–115 (2007)

13. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.
Software and Systems Modeling 5(1), 72–90 (2006)

14. Gutheil, M., Kennel, B., Atkinson, C.: A Systematic Approach to Connectors in a Multi-level
Modeling Environment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 843–857. Springer, Heidelberg (2008)

15. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style? Multi-level
programming with DeepJava. In: OOPSLA 2007: 22nd Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages and Applications, pp. 229–244.
ACM (2007)

16. de Lara, J., Guerra, E.: Deep Meta-modelling with METADEPTH. In: Vitek, J. (ed.) TOOLS
2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

17. Rossini, A.: Diagram Predicate Framework Meets Model Versioning and Deep Metamodel-
ling. Ph.D. thesis, Department of Informatics, University of Bergen, Norway (2011)

18. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-merge
approach to version control in MDE. Journal of Logic and Algebraic Programming 79(7),
636–658 (2010)

19. Rutle, A.: Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. thesis, De-
partment of Informatics, University of Bergen, Norway (2010)

20. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification and
transformation of constraints in MDE. Journal of Logic and Algebraic Programming 81(4),
422–457 (2012)

21. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework
2.0., 2nd edn. Addison-Wesley Professional (2008)

Reusable Graph Transformation Templates

Juan de Lara and Esther Guerra

Department of Computer Science
Universidad Autónoma de Madrid, Spain
{Juan.deLara,Esther.Guerra}@uam.es

Abstract. Model-Driven Engineering promotes models as the principal
artefacts of the development, hence model transformation techniques –
like graph transformation – become key enablers for this development
paradigm. In order to increase the adoption of Model-Driven Engineer-
ing in industrial practice, techniques aimed at raising the quality and
productivity in model transformation development are needed.

In this paper we bring elements from generic programming into graph
transformation in order to define generic graph transformations that can
be reused in different contexts. In particular, we propose the definition
and instantiation of graph transformation templates whose requirements
from generic types are specified through so-called concepts, as well as
mixin layers that extend meta-models with the extra auxiliary elements
needed by templates.

1 Introduction

Model-Driven Engineering (MDE) is a software development paradigm that pro-
motes the use of models as the principal assets of the development. Hence, model
manipulation techniques – like graph transformation (GT) [3] – become enabling
technologies for this approach.

In order to foster the use of MDE in industry, techniques aimed at raising the
quality of the generated software and to speed up the productivity of engineers
are needed. One way to improve productivity is to increase the reusability of
model transformations, so that they can be applied in different contexts. Unfor-
tunately, building transformations in MDE is a type-centric activity, in the sense
that transformations are defined over the specific types of concrete meta-models,
and it is difficult to reuse them for other meta-models even if they share charac-
teristics. For example, even if many languages share the semantics of Petri nets,
like activity diagrams or process modelling languages, such semantics is nor-
mally defined over some specific meta-model (a concrete realization of a Petri
net meta-model) and cannot be easily reused for other meta-models.

The present work aims at providing mechanisms to enable the correct reuse
of GT systems across different meta-models. For this purpose, we build upon
some ideas from generic programming [5] to define generic GT systems that we
call GT templates. These generic GT systems are not defined over the types of
concrete meta-models, but over variable types that need to be bound to types

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 35–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

36 J. de Lara and E. Guerra

of some specific meta-model. However, not every meta-model qualifies as a valid
binding for the variable types used in a GT template. Hence, in order to ensure
a correct reuse, we specify the requirements that meta-models need to satisfy
using a so-called concept [10,6]. A concept gathers the structural requirements
that need to be found in a meta-model to be able to instantiate a GT template
on the meta-model types and apply the template to the meta-model instances.

In addition, GTs sometimes need auxiliary model elements to perform some
computations. For example, in order to define the semantics of Petri nets, we may
need an edge referencing the transition that is currently being fired, or in object-
oriented systems we may need to introduce an auxiliary edge to flatten the inher-
itance hierarchy. These extra elements do not belong to the meta-model of the
language, but are auxiliary devices needed by the transformation. Hence, a GT
template cannot demand specific meta-models to include such extra devices as
part of its requirements. Instead, we define so-called mixin layers [10,15]. These
are meta-models with parameters, that are applied to specific meta-models, in-
creasing them with extra elements by a gluing construction. Mixins are generic,
and hence applicable to any meta-model that satisfies the requirements given by
a set of concepts. In this way, a GT template can be defined over the types of
the mixin and the types of the concepts such mixin needs.

This paper continues our research on model transformation reuse by means of
genericity [10,13]. While in [13] we added genericity to model-to-model transfor-
mations expressed in the ATL language, here we focus on in-place transforma-
tions expressed using GT. The use of a formal framework helps in formulating
template instantiations (i.e., bindings) precisely, identifying the needed condi-
tions for correct template reuse, and understanding the composition mechanism
of mixins. The formal semantics of DPO graph transformation yields tighter
conditions for correct template reuse than in our previous works [10,13].

Paper Organization. First, Section 2 introduces our approach. Then, Section 3
defines meta-models algebraically. Section 4 explains how to bind concepts to
meta-models, providing a mechanism to instantiate GT templates. Section 5
shows how to define and apply mixins. Section 6 provides further examples.
Finally, Section 7 compares with related work and Section 8 concludes.

2 Overview of the Approach

Frequently, very similar transformations are developed for different meta-models.
The reason is that although similar, each transformation is developed to work
with the types of a particular meta-model, so that its use with types of other
unrelated meta-models is not possible. This results in a waste of effort as the
same problems and solutions have to be tackled repeatedly. For example, there is
a catalogue of well-known refactorings for object-oriented systems [4]; however,
if we encode them as GT rules, we need a different encoding for each meta-
model we use. In this way, we need to encode a different transformation for
the UML meta-model, the Java meta-model, or the meta-model of any other
object-oriented notation we may like to work with.

Reusable Graph Transformation Templates 37

Analogously, there are languages with similar semantics. For example, many
languages share the semantics of Petri nets, such as activity diagrams or domain-
specific languages for manufacturing (parts are produced and consumed at ma-
chines) and networking (packets are sent and received by computers). However,
if we specify their semantics through a GT system, we need to encode a different
system for the meta-model of each language.

Therefore, a mechanism to define GT systems for families of meta-models
sharing some requirements would promote the reutilization of transformations.
For this purpose, we use so-called concepts [10,6] to gather the requirements
of a family of meta-models, needed by a reusable GT system to work. These
requirements are structural, and hence a concept has the form of a meta-model as
well. However its elements (nodes, edges, attributes) are interpreted as variables
to be bound to elements of specific meta-models. The rules of a GT template use
the variables in the concept instead of the types of a specific meta-model. As
a result we obtain reusability because the concept can be bound to a family of
meta-models, and the GT template becomes applicable to any of them.

This situation is illustrated in Fig. 1, where a GT template has been defined
over the variable types of a concept C. As an example, C may define the core
structural elements that characterize Petri net-like languages, and the transfor-
mation may include rules (defined over the type variables in C) to refactor Petri
net-like models, according to the catalogue in [12]. The concept can be bound to
a set L(C) of meta-models sharing the structure required by the concept. In this
way, the rules can be applied on instances of any meta-model MM ∈ L(C). We
have depicted the set of models conformant to a meta-model MM as L(MM).

Concept C

Meta-model n

binding

Meta-model 1

binding

…

L(C)

typed on

Model-1Model-1Model1 1

L(meta-model 1)

Model-1Model-1Modeln 1

L(meta-model n)

conforms to

…

conforms to

applicable to

Holder Process*

*

Token

tokens
1

in

out

:Process

LHS

:Holder :Process:Holder

:Token

RHS

GT Template

Fig. 1. Scheme of the approach: concept, GT template and binding

In addition, oftentimes, GTs make use of auxiliary graph elements to imple-
ment some model manipulations. For example, when defining the semantics of
Petri nets, we need an auxiliary node to mark which transition is being fired, as
well as the processed input and output places, in order to add/remove tokens
to/from the appropriate places. The types of these auxiliary elements do not
belong to the meta-model of the language (Petri nets), but are auxiliary ele-
ments needed just for the simulation. If this simulator is built as a GT template
over a concept, then this concept cannot include the auxiliary elements (and no

38 J. de Lara and E. Guerra

binding will be provided for them) because the meta-models will hardly ever
include such extra devices.

In order to solve this problem, we define so-calledmixin layers as an extension
mechanism for meta-models. A mixin is a generic meta-model defining all extra
elements needed by a GT template but which are not present in a concept. In
addition, it includes some formal parameters acting as gluing points between
the mixin and the concept. Thus, the GT template can use the variable types
defined on both the mixin and the concept. Once we bind the concept into a
specific meta-model, this is extended with the new types defined by the mixin,
and the template can be applied on instances of this extended meta-model.

This scheme is shown in Fig. 2. In particular, the mixin adds some auxiliary
elements to simulate Petri net-like languages (a pointer to the process being
fired and to the processed holders of tokens). The mixin defines as gluing points
the nodes Holder and Process, whose requirements are given by a concept C
(structure of Petri net-like languages). Binding the concept to a specific meta-
model will increase the meta-model with the elements of the mixin. The GT
template is defined over the types resulting from gluing C and the mixin, and is
applicable to instances of meta-models to which we can bind C.

Concept C

mixin layer ML

typed on

applicable to

MM n

MM 1

…

L(C)

MM n’

MM 1’

…

L(ML)

applyML

M1 1

L(MM 1)

L(MM n)

Mn 1

…

Holder Process*

*

Token

tokens
1

in

out

defined over

requirements
for ext. points

extension
points Holder Process

Currentinp

out

** 0..1

Holder Process

conforms

conforms

typed

typed

binding

binding

active: boolean

:Process

RHS

:Current

active=true

:Process

LHS

GT Template

Fig. 2. Scheme of the approach: adding auxiliary elements through a mixin layer

3 An Algebraic Setting for Models and Meta-models

In our setting, we consider attributed,1 typed graphs [3] of the form G = 〈V ;E;
A;D; srcE , tarE : E → V ; srcA : A → V ; tarA : A → D〉, made of a set V of
vertices, a set E of edges, a set A of attributes, a set D of data nodes, and
functions src and tar that return the source and target vertices of an edge, and
the owning vertex and data value of an attribute.

In order to represent meta-models, we consider type graphs with inheritance
and with cardinality constraints in associations, in the style of [16]. In this way, a

1 For simplicity, we do not consider abstract nodes or attributes in edges.

Reusable Graph Transformation Templates 39

meta-model MM = 〈G; I ⊆ V ×V ; card : E → N× (N∪{∗})〉 is made of a graph
G, together with a set I of inheritance relations, and a function card that returns
the cardinality of target ends of edges. We assume EMF-like references for edges
(i.e., with cardinality only in the target end) so that UML-like associations (i.e.,
with cardinality in both ends) should be modelled as a pair of edges in both
directions. Given a node n ∈ V , we define its clan as the set of its direct and
indirect children, including itself. Formally, clan(n) = {n′ ∈ V |(n′, n) ∈ I∗},
where I∗ is the reflexive and transitive closure of I. For simplicity, we avoid
adding an algebra to MM .

Similar to [16], we give semantics to cardinality constraints by means of pos-
itive and negative atomic graph constraints [3] of the form PC(a : P → Q) and
¬PC(a : P → Q). The former require that for each occurrence of P in a graph
G, we find a commuting occurrence of Q. Formally, for each m : P → G we need
m′ : Q → G s.t. m = m′ ◦ a. Negative atomic constraints demand that for each
occurrence of P in a graph, there is no commuting occurrence of Q. If G satisfies
a constraint a, we write G |= a.

In particular, we generate graph constraints regulating the minimum and
maximum number of instances at association ends. Thus, for each edge e in the
meta-model with card(e) = [l, h], if l > 0 we generate a positive graph constraint
as shown to the left of Fig. 3, and if h �= ∗ we generate a negative graph constraint
as shown to the right of the same figure.

A

B

e

meta-model
fragment

:A

:B

:A

:B

…

P Q
negative constraint due to upper bound

:A

:B

:A

:B

…

P Q
positive constraint due to lower bound

Fig. 3. Graph constraints generated from cardinality constraints

Next we define morphisms between meta-models as a graph morphism with
some extra constraints given by the inheritance hierarchy. We will use this notion
later to define the binding between a concept and a meta-model.

A morphism MM →MM ′ between two meta-models (short MM-morphism)
is given by a clan morphism [9] f : GMM → MM ′ from the graph GMM of
the first meta-model to the second meta-model, preserving the inheritance hi-
erarchy. A clan morphism is similar to a standard E-Graph morphism [3], but
it also takes into account the semantics of inheritance. Hence, for each edge
e of GMM that is mapped to an edge e′ of GMM ′ , we allow the source node
of e to be mapped to any node in the clan of the source node of e′. Formally,
fV (srcE(e)) ∈ clan(src′E(fE(e))), and similar for the target of edges. In addition,
we allow mapping an attribute of a node to an attribute of a supertype the node
is mapped into. Formally, fA(srcA(a)) ∈ clan(src′A(fA(a))). As in [7], the mor-
phism has to preserve the inheritance hierarchy as well, hence if (u, v) ∈ IMM ,
then (f(u), f(v)) ∈ I∗MM ′ . Please note that we purposely neglect cardinality

40 J. de Lara and E. Guerra

constraints in MM-morphisms because the semantics of these is given by graph
constraints. We will deal with this issue when defining the binding between a
concept and a meta-model.

A model M can be seen as a meta-model with empty inheritance hierarchy
and no cardinality constraints. Therefore, we can represent the typing function

M
type−→MM as an MM-morphism. In addition, we say that M conforms to MM

(written M |=type MM) if there is a typing M
type−→ MM and M satisfies all

graph constraints derived from the cardinality constraints in MM .

A

Be
[0,*]

int f

MM
A’

EC’ e’
[2,3]

MM’

B’

[1,*]

d

C

int
a a’

:B
:e

3

M

:C
:a

type

Fig. 4. MM-morphisms

Example. Fig. 4 shows anMM-morphism
f between two meta-models, where we
have represented attributes as arrows to
a datatype (see a) and mapped elements
with primas (e.g., node A is mapped to
node A’). The attribute in node B is
mapped to an attribute defined in E,
which is a supertype of the node mapped
to B, and the same for the edge e. Regard-
ing the preservation of the inheritance hi-
erarchy, MM-morphisms permit introduc-
ing intermediate nodes in the hierarchy of
the target meta-model (like node E which is between the image nodes A’ and B’)
as well as mapping several nodes in an inheritance relation into a single node.

The figure also shows a typing MM-morphism type : M → MM using the
UML notation for typing. We can compose MM-morphisms, hence M is also
typed by f ◦ type : M → MM ′. However, conformance is not compositional in
general, as M conforms to MM (M |=type MM) but not to MM ′ due to its
cardinality constraints (M �f◦type MM ′). Finally, given M ′ |=type MM ′, we
have that the pullback object of MM → MM ′ ← M ′ is typed by MM , but
need not be conformant to MM .

4 Graph Transformation Templates

GT templates are standard GT systems specified over the variable types of a
concept, which has the form of a meta-model. As an example, Fig. 5 shows to
the left the concept TokenHolder, which describes the structural requirements
that we ask from Petri net-like languages, namely the existence of classes playing
the roles of token, holder (places in Petri nets) and process (transitions). We can
use this concept to define generic GT systems for the simulation and refactoring
of models in languages with this semantics. For instance, the right of the same
figure shows one of the behaviour-preserving refactoring rules proposed in [12]
expressed in a generic way, using the types of the concept. The rule removes
self-loop holders with one token provided they are connected to a single process.

In order to use the GT template, we need to bind the concept to a specific
meta-model. This binding is an MM-morphism with some extra constraints de-
rived from the particular GT template to be reused. As an example, Fig. 6 shows

Reusable Graph Transformation Templates 41

Holder Process
in*

TokenHolder (Concept)

Holder Process

Token

1 out*
tokens

Token

LHSNAC1NAC2 RHS

ESH (elimination of self-loop holders)

p:Process

i1:in o:out

LHS

p:Process

i1:in i2:in

NAC1

q:Process

i3:in

NAC2

p:Process

RHS

t:Token h:Holderh:Holderh:Holder

Fig. 5. Concept TokenHolder (left), and GT template over the concept (right)

a binding attempt from the TokenHolder concept to a meta-model to define fac-
tories. Factory models contain machines interconnected by conveyors which may
carry parts. Both conveyors and machines need to be attended by operators.
Hence, our aim is to apply the rule template ESH on instances of the Factories
meta-model. However, there is a problem because this rule deletes holders, and
we have bound holders to conveyors, which are always connected to some op-
erator as required by the cardinality constraints. Thus, if we try to apply the
rule (using DPO semantics), it will always fail as we will obtain a dangling edge.
This shows that the binding should ensure some correctness conditions, which
we present in the remaining of the section.

TokenHolder (Concept)

Conveyor Machine
in*

Part
1 out*

parts

Element

name: String

Operator
1

attendedby

bind

Holder Process
in*

Token

1 out*
tokens

{ (Holder,Conveyor), (out,out),

(Token, Part), (tokens,parts),

(Process, Machine), (in,in) }

Factories

Fig. 6. Binding a concept to a meta-model: first attempt

C
bind �� MM

M ′
type′
��

emb ��

P.B.

��

∗
��

M

type

��

∗
��

��

M ′
f emb′ �� Mf

The general instantiation scheme of a GT template for
a given binding is shown in the diagram to the right. The
template is typed over the concept C, which needs to be
bound to a meta-model MM by a special kind of MM-
morphism bind : C → MM . The binding provides a re-
typing for the rules of the template, which then become
applicable to instance graphs of MM . In order to ensure
a correct application of the template, we must guarantee that for every model
M |=type MM , if we consider only the elements M ′ given by the concept C
(obtained by the pullback in the diagram), and M ′ |= C, then, for each possible
sequence of rule applications over M ′, there is a sequence of rule applications
(using the same order) applicable toM . Moreover, there should be an embedding
from the final model M ′

f into Mf .
Although this issue resembles the one handled by the embedding and extension

theorems [3], there are fundamental differences. The main one is that our goal is
to discard invalid bindings and initial models that would lead to an incorrect ap-
plication of the GT template before applying it. On the contrary, the mentioned

42 J. de Lara and E. Guerra

theorems check the feasibility of each particular derivation M ′ ⇒∗ M ′
f checking

some conditions after the transformation is performed. Hence, our view gains
in efficiency. Moreover, the embedding and extension theorems do not consider
inheritance and cardinalities in type graphs.

In order to ensure that a GT template will behave as expected for a given
meta-model, we generate two kinds of constraints. The first kind works at the
meta-model level and forbids bindings that would always lead to an incorrect
execution of the template, as some rules of the template would be inapplicable for
any possible model due to dangling edges or violations of cardinality constraints.
However, some bindings may lead to incorrect executions only for some initial
models. Thus, our second kind of constraints detects potential incorrect template
executions for a particular instance of a meta-model. If a binding and an initial
model satisfy these constraints, then the template can be safely applied to the
model. Next we explain in detail each constraint type.

Constraints for Bindings. These constraints act as application conditions for
the binding. Fig. 7(a) illustrates how they work. Assume we want to
apply our refactoring GT template to models that conform to the Factory meta-
model. The first step is therefore binding the TokenHolder concept to the meta-
model, as indicated in the figure. Looking at the rule in Fig. 5 we notice that
it deletes holders. As holders are mapped to conveyors, and conveyors are al-
ways attended by one operator, applying the rule to a model with a conveyor
will always produce a dangling edge making the rule not applicable. Since this
is not the behaviour expected from the original template, this binding is not
allowed. In order to detect these situations, we attach the atomic constraint

¬PC(TokenHolder
q→MandatoryEdge) shown in the figure to the binding, in

a similar way as application conditions are attached to the LHS of a rule. This
constraint forbids a binding if the holder is connected to some node Z through an
edge with lower cardinality bigger than 0. As this is the case should we identify
e and attendedby, the binding is not allowed.

TokenHolder (Concept)

q

Conveyor Machine
in*

1

out*

parts

Element

name: String

Operator
1attendedby

bind

MandatoryEdge

ext { … (Z,Operator),

(e,attendedby) }

Holder
in*

Token

1 out*
tokens

Holder
*

Token

1 out*
tokens

in

Z[l..h]

e

{ (Holder,Conveyor), (out,out),

(Token, Part), (tokens,parts),

(Process, Machine), (in,in) }

with l>0

Process Process

Part

A

P

…

A X
e [l..h]

Q
…

l>0with:

Concept C

q

(a) (b)

Fig. 7. (a) Evaluating constraint in a binding. (b) Scheme of constraints for bindings.

Reusable Graph Transformation Templates 43

The structure of the generated constraints for bindings is shown in Fig. 7(b).
The constraints use MM-morphisms and must be satisfied by the function bind.
They are generated for each node type that is created or deleted by the GT
template. Thus, if the template creates or deletes an object of type A, we generate
a constraint that has the concept C as premise, and the concept with a class X
(existing or not in C) connected to A through an edge e with lower cardinality
bigger than 0 as consequence. We also demand that the match of the edge e does
not belong to bind(C). If a rule deletes an A object, the intuitive meaning is that
it will produce a dangling edge because of this mandatory edge, disabling the
rule application. This breaks the correctness criteria because we could apply the
rule in a model M ′ conformant to the concept but not in a model M conformant
to the meta-model. Therefore we forbid such a binding. If a rule creates an A
object, we generate the same constraint because applying the grammar to a
model M typed over MM would only produce incorrect models, as the created
object would need to be connected to an object of type X through an unforeseen
edge type e. Please note that the generated constraint takes into account the
case where the edge e has been defined in an ancestor of the class bound to A,
as we use MM-morphisms. On the contrary, the constraint does not detect if
there is a subtype defining an unbounded mandatory edge and does not forbid
the binding in such a case. Indeed, in this situation, there may be initial models
where the template can be safely applied, therefore this scenario is handled by
a second set of constraints working at the model level (see below).

Regarding cardinalities, we forbid binding edges with cardinality [l..h] to edges
with cardinality [l′..h′] if both intervals do not intersect, as from a model M |=
MM we would never obtain a model M ′ |= C performing the pullback. In
addition, if a GT template creates or deletes instances of the source or target
classes of an edge e defined in a concept C, then we can map the edge to e′ =
bind(e) only if card(e) = card(e′). This condition is not required for edges whose
source and target are not created or deleted by the template; however, the initial
model must satisfy the cardinality constraints of the concept in any case (i.e.,
the pullback object M ′ must satisfy M ′ |= C).

Constraints for Initial Models. These constraints check whether a GT tem-
plate can be safely executed on a given initial model. For instance, assume that
the cardinality of attendedby is [0..1] in the meta-model of Fig. 7(a), so that
the binding is allowed. Still, given an initial model like the one in Fig. 8(a), our
generic refactoring will not be applied to the conveyor as it has one operator,
hence leading to a dangling edge as discussed before. This differs from the orig-
inal template behaviour where such dangling edges do not occur. However, we
can safely apply the rule to any model where conveyors have no operator, which
we check by generating the constraint in the upper part of the figure.

Fig. 8(b) shows the structure of the generated constraints for initial models.
These constraints restrict the instances of the meta-model MM to which the
concept C is bound. They are generated for each node type in the meta-model
that is deleted by the GT template, as well as for its subtypes, whenever the types
declare an edge not included in the binding. Formally, if a generic rule deletes an

44 J. de Lara and E. Guerra

:Conveyor
:out

name=“belt1” name=“press”

:in

:Operator:Part

:Conveyor
:Operator

P
Q

q

m m’=

:bind(A)

P

:bind(A) :Z

Q
with e MM\bind(C)

:e

:bind(A)

P

:bind(A) :X

Q

:d

bind(A)

Z

MM
…

e

with d MM\bind(C)

bind(A)

X

MM
…

d

(a) (b)

:Conveyor

:Machine

Fig. 8. (a) Evaluating constraint in model. (b) Scheme of constraints for initial models.

object of type B, we generate a constraint for each A ∈ clan(bind(B)) and for
each edge e in which A participates whose type belongs to MM \bind(C). This is
a sufficient condition to avoid violating the correctness criteria (the instantiated
template could fail due to dangling edges) but it is not a necessary condition.

5 Mixin Layers

We now define mixin layers with the purpose of extending meta-models with any
auxiliary element needed to execute a GT template. A mixin layer is a meta-
model where some of its elements are identified as parameters. Parameters are
interpreted as variable types that have to be instantiated to types of the specific
meta-model where we want to apply the mixin. However, not every meta-model
is eligible to be extended by a particular mixin, and not every type is a valid
instantiation of the mixin parameters. The requirements needed by a meta-model
and its types are given by one or more concepts.

We define a mixin layerML asML = 〈MM,Conc = {Ci}i∈I , Par = {Pj}j∈J〉,
where MM is a meta-model, Conc is a set of concepts expressing the require-
ments for meta-models to be extensible by the mixin, and Par is a set of pa-
rameters identifying the mixin extension points. Each element Pj in the set of
parameters has the form Pj = 〈GMM ← Gj → GCi〉, a span relating the graph-
ical elements in the mixin (GMM) with the graphical elements in one of the
concepts (GCi∈Conc).

Example. We are building a generic simulator for Petri net-like languages by
means of a GT template defined over the concept TokenHolder. However, apart
from the elements already present in this concept, the simulator must use aux-
iliary nodes and edges to model the firing of transitions. Adding these elements
to the concept is not an option because it would imply that the definition of
every language to be simulated with the template should be modified manually
to include these auxiliary elements in its meta-model. Instead, we define a mixin
which increases any meta-model to be simulated with these auxiliary elements
in a non-intrusive way. Fig. 9 shows the mixin (dotted box named “Simulation
mixin”) which declares two parameters (shaded classes Holder and Process).

Reusable Graph Transformation Templates 45

Additionally, the concept TokenHolder gathers the requirements for the eligible
meta-models for the mixin. The relation between the mixin and the concept is
expressed as a span of MM-morphisms. This is used to build the meta-model
shown to the right by a gluing construction (a colimit, even though in the partic-
ular case of the figure it is also a pushout). This meta-model contains all variable
types that the GT template can use.

Holder Process
in
out

*
*

Token

tokens
1

inp

outp

** 0..1

TokenHolder
concept

Simulation mixin

Parameters

Holder Process

Holder Process
in

out
*
*

Token

tokens
1

Holder Process

inp

outp

** firing

P.O.

firing

0..1

active: boolean

Current

active: boolean

Current

Fig. 9. Specifying a mixin for the simulation of Petri net-like languages

Fig. 10 shows some rules of the generic simulator defined over the mixin.
The rule to the left selects one enabled process to be fired, marking it with an
instance of the Current class from the mixin. Its application condition checks
the enabledness of the process (i.e., each input holder has a token). The rule
to the right removes one token from an input holder of the process being fired,
marking it as processed. Additional rules produce tokens in output holders, and
unmark the processed holders and process to allow further firings.

p:Process

RHS

c:Current

active=true

p:Process

LHS

NAC c:Current

p:Process

:in

if...

h:Holder

p:Process

:in

then

h:Holder

select transition

t:Token

:firing

RHS = NACLHS

remove token

:inp

p:Process

c:Current

active=true

:in

h:Holdert:Token

p:Process

c:Current

active=true

:in

h:Holder

:firing :firing

Fig. 10. Some rules of the GT template for the simulation of Petri net-like languages.
The template is defined over the mixin Simulation shown in Fig. 9.

A mixin becomes applicable by binding its concepts to a meta-model. Fig. 11
shows the binding of concept TokenHolder to the Factory meta-model. Then,
the bound meta-model is extended with the elements defined in the mixin meta-
model but not in the concept (class Current and edges inp, outp and firing).
Thus, we can apply the GT template to instances of the resulting meta-model.

46 J. de Lara and E. Guerra

Conveyor Machine
in*
out*

Element

name: String

Operator
0..1

attendedby

=

bind

meta-model

firinginp

outp

**

mixin applied to meta-model

TokenHolder
concept

Parameters

Holder Process

Holder
in

out
*
*

Token

tokens

1

0..1

Part
1

parts

Process

Conveyor Machine
in*
out*

Element

name: String

Operator
0..1

attendedby

Part
1

parts
Simulation mixin

Holder Process

inp

outp

** firing0..1

active: boolean

Current

active: boolean

Current

Fig. 11. Applying mixin Simulation to a meta-model

The left of Fig. 12 presents formally how a mixin is applied to a meta-model.
The mixin in the figure defines a meta-model MMml, a set of concepts Ci and
parameters MMml ← Gj → Ci. The gluing of the mixin meta-model and the
concepts is obtained by calculating their colimit,2 yielding object MMml. This is
the meta-model over which a GT template is defined. For instance, the template
rules shown in Fig. 10 use the meta-model to the right of Fig. 9. Next, the mixin
can be applied by binding its concepts to a particular meta-model (or in general
to a set of meta-models, as it is not necessary to bind all concepts to the same
meta-model). The colimit of the different mixin parameters MMml ← Gj → Ci

and the bound meta-models yields MM , which is used to retype the template
for its application on the bound meta-models. By the colimit universal property,
there is a unique commuting u : MMml →MM , which acts as binding between
the meta-model over which the GT template is specified and the extended specific
meta-model. The right of Fig. 12 shows this unique binding for the example.

6 Additional Examples

Next we show a further example illustrating the applicability of our proposal.
Software Engineers have developed a catalog of refactorings to improve the

quality of software systems without changing its functionality [4]. One of the
most well known catalogs is specially tailored for object-oriented systems [4].
This catalog describes rules applicable to any object-oriented language, but their
encoding for a particular object-oriented notation cannot be reused to refactor
other notations. Thus, a developer should encode different rule sets for the Java
meta-model, the UML meta-model, and so on.

In our approach, we can define the refactorings once over a concept and then
bind the concept to several meta-models, obtaining reuse for each bound meta-
model. Fig. 13 shows (a simplification of) the concept, together with bindings
for two meta-models. The one to the left defines simple UML class diagrams.

2 In the category of MM-objects and MM-morphisms.

Reusable Graph Transformation Templates 47

u

firinginp

outp

** 0..1

Conveyor Machine
in*
out*

Element

name: String

Operator
0..1

attendedby

Part
1

parts

active: boolean

Current

Holder Process

inp

outp

** firing0..1

active: boolean

Current

in

out
*
*Token

tokens
1

G1

����
��
��

�� C1

bind1 ��

���
��

��
� MM1

���
��

��
�

MMml
... MMml

u ������� MM

Gj

��						
�� Ci

bindi ��

��

MMn

��������

Fig. 12. Binding and applying a mixin (left). Resulting binding for the example (right).

The right meta-model is for Rule-Based Access Control (RBAC) [14], and per-
mits the definition of properties and permissions for roles that can be hierarchi-
cally arranged. Children roles inherit the properties and permissions of parent
roles.

OO (concept)

Class

name: String

atts *

Attribute

name: String

Method

name: String

methods*

bind1

{ (Class, Class), (Class.name, Element.name),

(Attribute, Field), (Attribute.name, Element.name),

(Method, Method), (Method.name, Element.name),

(parent, superclasses), (attrs, features),

(methods, features) }

Simple UML
(meta-model)

parent
*

Element

name: String

Package Class

StructuralFeature

superclasses
*

*

fe
a
tu

re
s

Field Method

Reference

Simple RBAC
(meta-model)

Role

name: String

super

*
Property

name: String
value: String

props

*

permission

*
Operation

name: String

bind2

{ (Class, Role),

(Class.name, Role.name),

(Attribute, Property),

(Attribute.name, Property.name),

(Method, Operation),
(Method.name, Operation.name),

(parent, super), (attrs, props),

(methods, permission) }

Subject

assignment *

Session
*

Fig. 13. Concept for object-oriented systems, and two possible bindings

Fig. 14 shows the generic rules for the pull-up attribute refactoring [4], which
moves an attribute to a superclass when all its children classes define it. The first
rule detects the refactoring opportunity and moves the attribute from one of the
children classes to the superclass. Then, the second rule removes the attribute
from the rest of children. We can also implement a more refined version of this
refactoring by defining a mixin that declares a pointer for classes, which the rules
can use to indicate the parent class being refactored (i.e., class p in the rules).

The binding bind1 in Fig. 13 allows applying the generic refactoring to UML
models and pull-up fields. Nonetheless, using a different binding permits refac-
toring references and methods as well, mapping Attribute to Method or to
Reference. Similarly, the binding bind2 permits refactoring properties in role
hierarchies, but we can bind Attribute to Operation to pull-up operations.

48 J. de Lara and E. Guerra

p:Class

:parent
a:Attribute

name = n

LHS

Pull-up attribute 1

p:Class

:parent
a:Attribute

name = n

RHS

p:Class

a:Attribute

name = n

NAC1

a1:Attribute

name = n

p:Class

:parent

if... then
a:Attribute

name = n p:Class

:parent
a2:Attribute

name = n

a:Attribute

name = n

c:Class c:Class

d:Classd:Class

p:Class

a:Attribute

name = n

c:Class

:parent

b:Attribute

name = n

LHS

Pull-up attribute 2

p:Class

a:Attribute

name = n

c:Class

:parent

RHS

Fig. 14. Rules of the GT template implementing refactoring pull-up attribute

7 Related Work

In object-oriented programming, mixins and traits are classes that provide extra
functionality without being instantiated. Instead, other classes may inherit from
the mixin, which is a means to collect functionality. We have generalized this idea
to mixin layers. These are parameterised meta-models adding auxiliary elements
to a set of meta-models sharing the characteristics specified by a concept.

In previous work [10], we brought ideas from generic programming into MDE,
implementing them in the MetaDepth tool. In particular, we were able to write
generic model manipulations as EOL programs, an OCL-like language with side
effects. Here we have adapted these ideas to the algebraic framework of GT,
which presents several advantages: (i) we were able to formulate correctness
criteria for instantiation and application of GT templates; (ii) in contrast to
EOL programs, GT permits analysing the effects of transformations, and this is
useful to discard bindings leading to incorrect applications of the GT templates;
(iii) formalizing bindings as morphisms provides a more precise description of
the binding constraints, which we could not do in [10] because the behaviour of
EOL programs cannot be easily analysed; and (iv) the algebraic formalization of
mixins helped us in understanding how they work. Moreover, we discovered that
a pattern-based approach to genericity (like the one presented here) imposes
less restrictive conditions for the binding than one based on a scripting language
(like EOL or OCL). This is so as MM-morphisms allow defining the target of
a reference in a supertype (cf. reference e′ in Fig. 4). In EOL, a navigation
expression c.e may lead to an E object, which may not have all properties of
a B′ object (as expected by the generic operation). On the contrary, in GT
one provides a pattern with an explicit type for its objects (e.g., B which gets
mapped to B′), hence filtering the undesired E objects.

Parameterized modules were proposed in algebraic specification in the eight-
ies [2]. A parameterized module is usually represented with a morphism par : P →
M from the formal parameters to the module. In this paper, we propose using
concepts to restrict how the formal parameters can be bound to the actual pa-
rameters in mixins. We can also think as GT templates as parameterized models
(by a concept). In this case, the special semantics of DPO GT induce additional
constraints in the binding. Our MM-morphisms are based on S-morphisms [7],

Reusable Graph Transformation Templates 49

but we support attributes and do not require morphisms to be subtype preserv-
ing. Our composition mechanism is also related to Aspect-Oriented Modelling [8],
which focuses on modularizing and composing crosscutting concerns.

In the context of GT, there are some proposals for adding genericity to rules.
For example, the VIATRA2 framework [1] supports generic rules where types
can be rule parameters. MOFLON has also been extended with generic and
reflective rules using the Java Metadata Interface [11]. These rules can receive
string parameters that can be composed to form attribute or class names, and
may contain nodes that match instances of any class. Still, none of these tools
provide mechanisms (like concepts and bindings) to control the correctness of rule
applications, or extension mechanism (like mixins) for meta-models. We believe
that the ideas presented in this paper can be adapted to these two approaches.

8 Conclusions and Future Work

In this paper we have adapted generic programming techniques to increase the
reusability of GTs. In particular, we have defined GT templates, which are not
typed over a specific meta-model, but over concepts specifying the structural
requirements that a meta-model should fulfil if we want to apply the template
on its instances. Hence, the GT template can be instantiated for any meta-
model satisfying the concept, obtaining reusable transformations. Besides, many
GT systems use auxiliary elements that have to be included ad-hoc in the meta-
models. We have proposed a non-intrusive solution consisting on the definition of
mixin layers declaring any extra device used by the template. The requirements
that a meta-model should fulfil to be extended through the mixin are given by
a concept. Again, we obtain reusability because a template that uses types of a
mixin can be applied to any meta-model that satisfies the mixin requirements.

As for future work, currently we forbid bindings that can lead to an incorrect
execution of a GT template. However, it may be sometimes possible to semi-
automatically adapt the template to make it work correctly. In addition, now
we require an exact match of the concept in the meta-models, but to increase
reusability, we plan to provide techniques to resolve some heterogeneities in the
binding, in the line of [13]. On the practical side, we plan to include the lessons
learnt regarding correct binding and correct reuse in our MetaDepth tool.

Acknowledgements. Work funded by the Spanish Ministry of Economy and
Competitivity (project TIN2011-24139) and the Region of Madrid (project S2009
/TIC-1650).

References

1. Balogh, A., Varró, D.: Advanced model transformation language constructs in the
VIATRA2 framework. In: Proc. of the 21st Annual ACM Symposium on Applied
Computing, SAC 2006, pp. 1280–1287. ACM (2006)

50 J. de Lara and E. Guerra

2. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints. Monographs in Theoretical Computer Science. An EATCS
Series, vol. 21, Springer (1990)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

5. Garćıa, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: A comparative study
of language support for generic programming. ACM SIGPLAN Notices 38(11),
115–134 (2003)

6. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., Lumsdaine, A.: Con-
cepts: Linguistic support for generic programming in C++. ACM SIGPLAN No-
tices 41(10), 291–310 (2006)

7. Hermann, F., Ehrig, H., Ermel, C.: Transformation of Type Graphs with Inheri-
tance for Ensuring Security in E-Government Networks. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 325–339. Springer, Heidelberg (2009)

8. Kienzle, J., Al Abed, W., Fleurey, F., Jézéquel, J.-M., Klein, J.: Aspect-Oriented
Design with Reusable Aspect Models. In: Katz, S., Mezini, M., Kienzle, J. (eds.)
Transactions on AOSD VII. LNCS, vol. 6210, pp. 272–320. Springer, Heidelberg
(2010)

9. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: At-
tributed graph transformation with node type inheritance. Theoretical Computer
Science 376(3), 139–163 (2007)

10. de Lara, J., Guerra, E.: Generic Meta-modelling with Concepts, Templates and
Mixin Layers. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 16–30. Springer, Heidelberg (2010)

11. Legros, E., Amelunxen, C., Klar, F., Schürr, A.: Generic and reflective graph trans-
formations for checking and enforcement of modeling guidelines. Journal of Visual
Languages and Computing 20(4), 252–268 (2009)

12. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

13. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Generic Model Transformations:
Write Once, Reuse Everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS,
vol. 6707, pp. 62–77. Springer, Heidelberg (2011)

14. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

15. Smaragdakis, Y., Batory, D.: Mixin layers: An object-oriented implementation
technique for refinements and collaboration-based designs. ACM Transactions on
Software Engineering and Methodology 11(2), 215–255 (2002)

16. Taentzer, G., Rensink, A.: Ensuring Structural Constraints in Graph-Based Models
with Type Inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64–79.
Springer, Heidelberg (2005)

Towards an Automated 3D Reconstruction
of Plant Architecture

Florian Schöler and Volker Steinhage

Institute of Computer Science III, University of Bonn
Römerstraße 164, 53117 Bonn, Germany

{schoele,steinhag}@iai.uni-bonn.de
http://ivs.informatik.uni-bonn.de/

Abstract. Non-destructive and quantitative analysis and screening of plant phe-
notypes throughout plants’ lifecycles is essential to enable greater efficiency in
crop breeding and to optimize decision making in crop management.

In this contribution we propose graph grammars within a sensor-based system
approach to the automated 3D reconstruction and semantic annotation of plant
architectures. The plant architectures in turn will serve for reliable plant pheno-
typing. More specifically, we propose to employ Relational Growth Grammars to
derive semantically annotated 3D reconstruction hypotheses of plant architectures
from 3D sensor data, i.e., laser range measurements. Furthermore, we suggest de-
riving optimal reconstruction hypotheses by embedding the graph grammar-based
data interpretation within a sophisticated probabilistic optimization framework,
namely a Reversible Jump Markov Chain Monte Carlo sampling.

This paper presents the design of the overall system framework with the graph
grammar-based data interpretation as the central component. Furthermore, we
present first system improvements and experimental results achieved in the appli-
cation domain of grapevine breeding.

Keywords: 3D Reconstruction, Relational Growth Grammar, Reversible Jump
Markov Chain Monte Carlo, Plant Phenotyping, Grapevine Breeding.

1 Introduction

This work is part of CROP.SENSe.net [4], an interdisciplinary research network whose
goal is the assessment of traits of plants for more efficient plant breeding and crop man-
agement. The network is subdivided into several projects, each of which is concerned
with different approaches. Here we are focussed on the 3D reconstruction of plants and
the semantics, i.e., the botanical annotation of all reconstructed plant components from
sensor data as a basis for phenotyping.

The foremost aim is a reconstruction algorithm that can handle arbitrary plants. We
enhance the strict geometric reconstruction by semantic annotations. These annotations
are attached to the components of the plant on the one hand and to the relations between
components on the other. They comprise additional information about the component
or relation. This information in turn is used to assess phenotypic traits of the plant, like
its (estimated) yield. To achieve this we currently work on grapevine as an exemplar

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 51–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://ivs.informatik.uni-bonn.de/

52 F. Schöler and V. Steinhage

plant. There we face several challenges. (1) Diversity in cultivar architectures: There
is a huge number of different grapevine cultivars, each of which has its own character-
istics regarding the architecture like the number of bunches of grapes or the way the
trunk grows (straight up or protruding). (2) Diversity in plant part architectures: Every
grapevine has three parts. The trunk, the leaves and the bunches of grapes. Every such
part has a different architecture in different levels of complexity; the leaves have differ-
ent venations and contours depending on the cultivar, or the bunches of grapes can be
more or less compact. (3) Occlusions: A reconstruction of the complete plant is very
difficult since many parts of it are occluded. When in full bloom one side of the plant
only shows the foliage, blocking sight from that perspective. In bunches of grapes one
can only sense the outer berries, the inner ones are occluded. (4) Inconsistent naming:
Because grapevines are grown all over the world sometimes there are different names
for the same cultivar or one name is used for different cultivars [21]. For a first app-
proach we concentrate on so-called stem skeletons, i.e., bunches of grapes where the
berries were removed. An example can be seen in Fig. 1.

Fig. 1. A sample stem skeleton

The core piece of our approach is a model of the plant architecture for a pruning of
the space of all reconstruction hypotheses and integrating this model into a sampling
method to intelligently explore the hypothesis space.

For the modeling of plant architectures there are different possibilities. The most
popular formalism for the modeling of plants are Lindenmayer systems (L-systems)
[10,11]. An L-system is a parallel string rewriting grammar, where one has an alpha-
bet of characters, an arbitrary start word (axiom) over characters from the alphabet
and a set of production rules or productions that replace a character by a string. L-
systems were first introduced in 1968 as a means to model the development of filamen-
tous organisms. What distinguishes an L-system from other formal grammars is that
the production rules are executed in parallel. This is motivated by the plant domain,
since all parts of a plant also grow in parallel. The basic L-system formalism suffers
from several shortcomings. For example, local context is restricted to a fixed length, the
number of relations between components is restricted, there can only be relations be-
tween components represented by neighboring characters in the string, or the fact that a

Towards an Automated 3D Reconstruction of Plant Architecture 53

one-dimensional string is no well suited representation of three-dimensional, branched
plant structures. Some of the shortcomings were eliminated by extensions, like parame-
terized L-systems, stochastic L-systems or table L-systems [16]. But disadvantages like
the limited number of relations or the unsuited representation as a string remain since
they are inherent in L-systems.

Therefore we opt for a grammar based functional-structural plant modeling, namely
Relational Growth Grammars (RGGs) [8,9], that meets most of the disadvantages of
L-systems. A Relational Growth Grammar is a parallel graph transformation system,
meaning that, as in an L-system the productions are applied in parallel, only they are
applied to graphs rather than strings. This has several benefits for plant modeling in
general and for our purposes in particular. Arbitrary relations between arbitrary plant
parts can be modeled as labeled edges of the graph, whereas the nodes may be arbitrary
components of plants. Furthermore, whole sets of subgraphs can be rewritten with a
single production rule, as opposed to replacing a single character with a string. Other
advantages are that branches are directly represented, that the context of a rule is not
limited in size or location and that therefore local as well as global sensitivity can be
modeled. Since strings can be seen as a graph with a linear sequence of nodes (one node
for each character in the string), RGGs can be interpreted as a superset of L-systems,
meaning that with the RGG formalism one can mimic every L-system, but has even
more descriptive power.

With this formalism we can directly include the semantic annotations as well as the
relations within our model. For example, a frustum (part of a stem skeleton) can be
connected to a sphere (berry) via a attached to relation, or it can be connected to a
sphere that forms a joint via a connected to relation. The relations can also be used for
the creation of a cohesive volume of the generated structure, see Sect. 4.3.

The remainder of this article is organized as follows. In Sect. 2 we introduce an
overview of related work regarding the modeling and reconstruction (of plants) and
research on grapevines. Section 3 gives an introductory overview of the approach fol-
lowed by Sect. 4, which gives a summary of what is already achieved and what is cur-
rently being implemented. The article is closed with Sect. 5, that concludes and shows
what we are planning for the future of the project.

2 Related Work

Besides L-Systems and RGGs there are the so-called Shape Grammars [20]. Similar to
L-systems and RGGs, Shape Grammars have an initial shape and a set of replacement
rules that operate on parts of a given shape and replace such a part with a new shape.
A difference is that the rule execution does not happen in parallel. On the basis of
Shape Grammars Müller et al. [14] developed CGA shape, a Shape Grammar for the
procedural modeling of building shells. Ganster and Klein [5] developed an integrated
environment and a visual language for the procedural modeling with the aim to ease the
development of models.

Regarding the sensing of objects, Schnabel et al. [17] consider cases where objects
can only be sensed in a way that the sensor data contain holes in the objects. At first
the input point cloud is approximated by primitive shapes (planes, spheres, cylinders,

54 F. Schöler and V. Steinhage

cones, tori). Then, these primitives are used as a guidance to complete unsensed areas
and form a complete structure. This approach is limited to situations, where primitives
have been detected in the vicinity of holes, whereas our approach is more general and
is able to approximately fill parts that are not represented in the sensor data by help of
the domain knowledge. For example, in a bunch of grapes we can argue that, depending
on the cultivar, the number of reconstructed berries and the sensed size of the bunch,
we can expect n more berries that are occluded by the outer berries and we could even
approximate their location.

There are other approaches that especially concentrate on the 3D reconstruction of
plants. For example, in [1] a method is introduced which also uses some kind of domain
knowledge of trees to guide the reconstruction process within three-dimensional laser
range data. Their aim is to provide information for the creation of computer models of
tree function. In this approach, a single branch consists of a set of fixed-length segments
(cylinders) and two angles to its parent. The angles and the radius of a segment are
drawn according to certain probability distributions. Also, they use data of structurally
simple trees. We do not use fixed length but rather variable length segments depending
on the sensor data. Additionally, we are currently gathering knowledge about grapevine
cultivars in order to model the plant’s architecture more precisely. Moreover, an RGG
is capable of modeling the functional as well as the structural dimensions of a plant
at the same time and within the same model, rendering the separate functional model
unneeded.

In [19] L-systems are used as one step in the reconstruction of foliaged trees based
on image data. They segment each image of one tree into tree and background, and con-
struct a skeleton of the tree with only a few branching levels. This skeleton is used as the
axiom of an L-system which is then used to generatively add higher order branchings
and leaves. They do not leverage the fact that such a grammar can be used as a guidance
for the reconstruction.

There is also current research on the modeling and reconstruction of grapevines fol-
lowing different approaches. Keightley and Bawden introduced a method for the volu-
metric modeling of grapevine biomass [7]. On the basis of three-dimensional laser scan
point clouds they estimate the volume of grapevine trunks and compare their estimates
with the values gathered by submerging the trunks in water and measuring the overflow-
ing water. The trunks were placed on a turntable and scanned at ten specific angles from
a distance of 8.5 m. They concentrate on the scanning itself and how different scans can
be combined. In our approach the biomass is only one of several phenotypical features
to be determined and therefore only a part of the overall goal.

In [15] a stochastic growth model of grapevine is introduced concentrating on how
the plant develops in dependance of the trophic relationships between plant parts and
water depletion. Louarn et al. [13] model the canopy structure of grapevines and use
this in [12] to analyze the influence of trellis systems and shoot positioning on the
canopy structure and light interception. A former investigation of the development of
the architecture of inflorescences (early state of a bunch) and bunches was performed by
[18]. They analyzed four grapevine cultivars for phenotypical features that contribute
to differences in bunch compactness.

Towards an Automated 3D Reconstruction of Plant Architecture 55

3 Overview of the Approach

3.1 General Overview

In the fields of data interpretation and 3D reconstruction the goal is to find a hypothesis
that in some way best explains the given data. Usually there is a huge, or even infinite
number of possible hypotheses. Therefore one has to find a way to generate hypotheses,
prune the space of all hypotheses, and select hypotheses in a smart way.

For the generation of hypotheses and the pruning of the hypthesis space we use the
aforementioned Relational Growth Grammar formalism. Hypothesis generation occurs
through execution of the production rules. The pruning takes effect through the fact
that the productions determine where components are allowed, thus incorporating ge-
ometric constraints. Additionally, they also give semantic constraints, e.g., a berry is
only allowed at the end of a twig, not in between. Both kinds of constraints are directly
encoded into the productions.

We use Reversible Jump Markov Chain Monte Carlo (RJMCMC) [6] sampling for
the selection of hypotheses. With this approach we can, within one cohesive framework,
select a proper model to interpret the data as well as optimize the parameters of the
selected model.

Figure 2 shows an overview of the components of the reconstruction algorithm and
a resulting structure. Interpretation of the sensor data is done by optimizing a model-
based interpretation that relies on the rules of the RGG. Optimization is done by the
RJMCMC-sampling of the hypothesis space. The sampler selects the best generated
result. For the sake of clarity, the semantic annotations are not shown in the image.

RGG
Model

RJMCMC
Sampler

. . .

Fig. 2. Components of the reconstruction algorithm and its result. The RGG model generates
several reconstruction hypotheses according to the replacement rules. The sampler evaluates them
with regards to the sensor data and chooses the best one. The annotations are not shown for the
sake of clarity.

56 F. Schöler and V. Steinhage

3.2 Sensor Data

As sensor data we use three-dimensional point clouds. The point clouds are generated
by an ultrahigh precision laser rangefinder Perceptron ScanWorks V5 mounted onto a
Romer Infinite 2.0 articulated arm. The rangefinder produces line scans of 7640 points
per line at a frequency of 60 Hz and an average point to point resolution of 0.0137 mm.
By moving the scanner around the software provided by the vendor accumulates the
line scans into one single coordinate frame according to the joint angles of the arm. The
result is a three-dimensional point cloud. Figure 3 shows three sample point clouds of
the stem skeletons of different cultivars.

(a) (b) (c)

Fig. 3. Sample point clouds of three stem skeletons of different cultivars

3.3 Domain Knowledge

For the interpretation of the sensor data we use a Relational Growth Grammar based on
domain knowledge. Rules and parameters of the stem skeleton are derived by measur-
ing the topological skeletons of the corresponding point clouds of the training set. For
an overview of properties of skeletonization algorithms see [3]. We currently use the
”SkelTre” algorithm by Bucksch [2]. This algorithm organizes the given point cloud
by an octree and constructs an initial graph structure over that octree. It then iteratively
simplifies the initial graph by finding special node configurations within it, the so-called
E-pairs and V-pairs, until no more such pairs can be found. An example of a point cloud
and its topological skeleton can be seen in Fig. 4. From the final topological skeleton
we then extract features like the lengths of internodes, the angles of internodes to their
preceeding internode, or the branching depth of a node. All the gathered data are then
stored in a database.

3.4 Modeling with Relational Growth Grammars

As a software tool for the implementation of RGGs we use GroIMP, which was de-
veloped alongside the RGG formalism and is available as an open source distribution.
It is furthermore easily extensible through a simple plugin interface. GroIMP offers a
user-adjustable interface (see Fig. 5 for a screenshot), a text editor with syntax high-
lighting and different modes for visualization like a wireframe visualization, raytracer
based and hardware accelerated OpenGL visualization. GroIMP can read and/or write

Towards an Automated 3D Reconstruction of Plant Architecture 57

Fig. 4. A point cloud and its topological skeleton

a wide range of file formats. It allows direct access to the data structure enabling the
user to inspect current values of parameters of nodes in the graph or even to delete
parts of the graph. For a plant modeler this is useful, for example, for an analysis of
the plant’s behavior in the next development steps. Furthermore, it introduces XL (eX-
tended L-systems) as the programming language for implementing RGGs, which is an
extension of the well known Java programming language. Therefore nodes in the graph
are objects in the sense of Object Oriented Programming.

Fig. 5. A screenshot of GroIMP. The interface consists of different, user-adjustable parts. Here
one can see a text editor for the grammar code in the upper right. The lower right part shows a
part of the current graph. The upper left shows a 3D visualization of the nodes in the graph that
correspond to drawable components. The lower left shows a list of files contained in the project.

In general, the structure of an RGG production looks as follows:

(∗C∗), L, (E) ==> R {P};

C is the context of the rule and L is to be replaced by R. All of those are sets of graphs.
E is a set of logical expressions as a condition for the execution of the rule and P is

58 F. Schöler and V. Steinhage

procedural code. An example RGG (taken from GroIMP) implemented in XL looks as
follows:

protected void init() [

Axiom ==> A(1);

]

public void run() [

A(x) ==> F(x)[RU(30) RH(90) A(x*0.8)]

[RU(-30) RH(90) A(x*0.8)];

]

Where the init() method implements the initial structure and the run() method a devel-
opmental production. A is a green sphere of fixed size, F is a cylinder of fixed radius
and variable length, and RH and RU are rotations about the local z- and y-axis, respec-
tively. The bracket characters [and] introduce branches in the graph. Figure 6 shows
the result after five executions of the run() method.

Fig. 6. Result of the simple example RGG after five iterations

A rule with context and an additional Boolean condition might look as follows:

(* x:Node *), B, (x instanceof A) ==> F(5) B;

This rule says that a node of type B is only to be replaced by an F node and a new B
node, if somewhere in the graph there is a node of type A. The rule is applicable to the
left graph in Fig. 7 but not to the right one. In contrast to the fixed length contexts of
L-systems, this RGG rule is applicable no matter how many nodes there are on the path
from B to the A node and they do not even have to be on the same path.

Besides standard replacing rules, XL allows a second kind of rule: execution rules.
Those are identified by a ::> arrow and are often used to alter the values of parameters
of nodes without replacing them, e.g.,

f:Factor <-encodes- g:Gene(gc) ::>

f[concentration] :+=

Math.max(0,

sum(((*Factor(ca,)-Activates(s,m)->g*),

m * ca / (s + ca))) + gc);

Towards an Automated 3D Reconstruction of Plant Architecture 59

Root
C

C

A

C

B

C
(a)

Root
C

C

C

B

C
(b)

Fig. 7. The production rule (* x:Node *), B, (x instanceof A) ==> F(5) B; is only applicable to
the left graph, not to the right one

This rule (taken from a GroIMP example) searches for all pairs of nodes of types
Factor and Gene, where there is an edge with label encodes from the Gene-Node
to the Factor-Node and assigns identifiers f and g, respectively. It then updates the
concentration parameter of Node f by calling the standard max method of the Java
Programming Language. Execution rules are useful when only the functional part of a
plant (like photosynthesis or the flow of nutrients) has to be updated but not its structure.

This example also demonstrates how arbitrary relations can be used. In the example
a gene regulatory network is constructed and the Activates(,) relation, which is a Java
Class, is used to determine how much a Gene is activated or repressed by a Factor.

3.5 Reconstruction

As stated, the main challenge is that in reconstruction we have a possibly inifinite num-
ber of possible hypotheses to interpret the sensor data. Our two main ingredients for
solving the problem are the Reversible Jump Markov Chain Monte Carlo (RJMCMC)
sampler on the one hand and the RGG model on the other.

The basic Markov Chain Monte Carlo (MCMC) sampler works by performing so-
called jumps within a space of hypotheses, where each hypothesis has the same size,
i.e., number of parameters. A jump generates a new hypothesis on the basis of the cur-
rent one. MCMC therefore samples from the probability distribution over all possible
hypotheses by simulating a Markov Chain. But this is not powerful enough for our pur-
poses, since the number of parameters of different hypotheses can vary largely. For such
cases Green developed the RJMCMC sampler [6]. This method allows jumps between
different hypothesis spaces, where the hypotheses have the same size within one space
but differ in size between spaces. In other words, the sampler jumps within the union
of all the spaces. An important property of the jumps is that they have to be reversible,
i.e., it has to be possible to jump back to earlier states from any given later state. Once
a hypothesis is generated it has to be evaluated and decided if it is put into the chain or
if it is rejected. If it is accepted the hypothesis is the basis for the hypothesis in the next
iteration. Otherwise it is discarded and the next hypothesis is constructed on the basis
of the old one.

To make sure, that the reconstruction terminates, i.e., the sampler stops jumping in
the hypothesis space, we incorporate Simulated Annealing. There one has a temperature

60 F. Schöler and V. Steinhage

that starts at a high value and is decreased during the process. Jumps are chosen relative
to the temperature and stop at a given low temperature

As stated before, the RGG model gives geometric and semantic constraints on the
structure. Through the parameters of the components it also is a compact representation
of all possible (at least as far as the model allows) exemplars of a certain cultivar. On
the other hand a specific value-to-parameter assignment relates to a certain exemplar.

Applied to our task at hand the interplay between sampler, model, and data turns
out to be as follows. At iteration t of the algorithm, the sampler randomly chooses
a jump that is to be performed next, dependent on the current temperature. Each jump
corresponds to one replacement rule in the RGG model and that rule is then executed on
the hypothesis ht−1, resulting in a new hypothesis ht . Now, ht is evaluated with respect
to the data. If it is accepted, ht is the basis for the next iteration, otherwise ht is set to
ht−1. After an update of the temperature this process is repeated until the temperature
falls below a threshold value.

We propose a list of jump/RGG-rule pairs as follows, where frustums are used to
model the twigs of the stem skeleton (see Sect. 4.2).

1. Parameter update: Simply changes a randomly chosen parameter of a randomly
chosen component.

2. Add branch: Adds a completely new branch to the object. The model defines where
and how branches may be added.

3. Delete branch: Deletes one already existing branch.
4. Edit branch: Changes the number of twigs at a branch by adding or deleting twigs.
5. Split frustum: Splits one frustum into two and inserts a sphere in between, to acco-

modate to the curvature of the object under consideration.
6. Merge frustums: Merges two frustums that are connected via a sphere to a single

frustum.

Figure 8 shows a sketch of the reconstruction process. It starts with an initial struc-
ture at the initial temperature T0. At first the topology is changed by adding / deleting
branches, resulting in the second depicted hypothesis. In the following further topology
changes and parameter updates occur resulting in the last depcited hypothesis at the
final temperature Tf inal .

Fig. 8. Sketch of the reconstruction process: At first mostly topology changes occur, at lower
temperatures mostly parameter updates are carried out

Towards an Automated 3D Reconstruction of Plant Architecture 61

4 First Results and Current Developments

4.1 Acquired Data

For a first data acquisition we laser scanned a total of 25 stem skeletons from five differ-
ent cultivars. This is already sufficient for evaluating a first approach to reconstruction.
We first rely on sensor data gathered in controlled situations. Later we will switch to
”real” data gathered in the field.

Additional to the laser scanning we also perform the skeletonization measurements
described in Sect. 3.3 and collect all those information in a database.

The reason why we chose stem skeletons for a first data acquisition is that if we want
to reconstruct the architecture of a bunch of grapes, stem skeletons are exactly this.
Besides, in order to find the berries in the sensor data it is useful to have knowledge
about where to expect them. This is exactly what a stem skeleton can tell us.

4.2 Modeling Stem Skeletons

The most basic approach to modeling stem skeletons is to use cylinders for the twigs
or parts of twigs. For long twigs one could use a chain of cylinders with decreasing ra-
dius. An example of this approach can be seen in Fig. 9(a). This rather simple example
already shows the shortcomings of that approach. There are sharp crossovers as well as
gaps between cylinders. To generate a more realistic look one could constrain the length
of a cylinder, resulting in a greater number of cylinders and therefore an increased com-
putation time since more cylinders have to be handled. We therefore follow a different
approach. This uses frustums instead of cylinders to cope with the sharp crossovers on
the one hand and fills gaps with additional spheres on the other. Figure 9(b) shows the
same example as before but with the more advanced modeling approach. As can be seen
this generates a much more realistic look. But not only the appearance is more realistic,
this model also is a more precise structural representation of the plant architecture.

(a) (b)

Fig. 9. This figure shows in a simplified example the effects of two different modeling approaches.
Left: Chain of cylinders of decreasing radius. Right: Frustums with spheres at intersections. Ob-
viously, the frustum-based approach generates a more realistic look.

62 F. Schöler and V. Steinhage

The model presented here is still a prototype and has to be extended to capture the
full structure of stem skeletons. Additionally the domain knowledge generated by the
skeletonization (Sect. 3.3) has to be incorporated. Also, this model does not result in a
photorealistic rendering of the plant but a more simplistic one, but this is no concern,
since we aim at a precise structural representation of the plant architecture for deriving
phenotypic features.

4.3 Volume Generation

As stated before we want to derive phenotypical features from the reconstructed geo-
metrical structure. So far we only have a set of intersecting geometric primitives, not
”real” objects. Especially we have frustums that intersect those spheres that are regarded
as berries and we have frustums that intersect spheres at joints. Therefore we have to
combine primitives to complex objects on the one hand and remove intersecting vol-
umes on the other. This gives rise to two challenges: (1) We must be able to perform
such operations on the primitives, (2) we must be able to detect, when to apply which
operation.

One solution for challenge (1) are the well known Boolean operations union, inter-
section and difference. Since GroIMP does not yet fully support those operations we had
to implement them. The Boolean operations take as input sets of triangles describing
the surface of the primitives and return a set of triangles describing the surface of the
complex object. Figure 10(a) shows an example of a joint consisting of two frustums
and one sphere. Figure 10(b) depicts the union of the three primitives.

(a) (b)

Fig. 10. Application of Boolean operations. (a) shows a joint with two frustums and one sphere
and (b) its union.

For a solution to challenge (2), we can use the relations that we employ in the RGG
model of the plant. Those relations can not only tell which components are connected
and how, but also what Boolean operation should be performed on the connected com-
ponents. For example, the relation connected to for a frustum and a joining sphere can
tell us that those two primitives should be unified. In contrast, the relation attached to
for a frustum and a sphere (a ”berry sphere”) tells us that we have to subtract the inter-
section of the two primitives from the sphere to get the correct volume of the berry.

Towards an Automated 3D Reconstruction of Plant Architecture 63

Challenge (1) has been solved by implementing the needed Boolean operations while
(2) still has to be incorporated into the RGG model and then into the Boolean operations.

5 Conclusion and Future Work

We have presented the concept of a 3D reconstruction approach of plant architecture
based on the interpretation of three-dimensional laser scan point clouds. Our main idea
is to use an intelligent sampling method and to constrain the space of all hypotheses
by incorporating domain knowledge. As a sampler we use the Reversible Jump Markov
Chain Monte Carlo method and for the modeling we rely on Relational Growth Gram-
mars. As an example, we investigate stem skeletons of grapevine bunches. Furthermore,
we will derive phenotypical features based on the reconstruction of the plants. In the
domain of grapevine breeding this can, for example, be used to detect whether a newly
bred cultivar shows a susceptibility to diseases like Botrytis cinerea.

For the future of this project we are planning several enhancements. For example, we
want to broaden the input by using semantic surface meshes. The surface representa-
tion is based on a triangulation, generated from laser scan point clouds or point clouds
created by stereo images. Then, the surface is augmented with semantic information
from an image segmentation method leading to a semantic surface mesh. Additional
to the knowledge modeled as an RGG this gives us further geometric and semantic
constraints.

A further goal is the implementation of anaylsis tools for the structures generated by
the grammar, like the total weight of a bunch or its compactness.

For the more distant future we aim at a general approach for the reconstruction of
arbitrary grapevine cultivars and all of their parts, not only the bunches. Based on this,
the aim is a general reconstruction approach for arbitrary plants.

Acknowledgements. This work was largely done within the sub-project D2 ”Inter-
preted Plant Architecture” as part of CROP.SENSe.net, the German network of com-
petence for phenotyping science in plant breeding and crop management. We thank
the Federal Ministry of Science and Research (BMBF) and the European Regional
Development Fund (ERDF) for funding. We thank all partners of sub-project D2 for
worthful discussions. Especially, we thank Reinhard Töpfer and Katja Herzog from
the Julius-Kühn-Institute, Siebeldingen, Germany for providing the stem skeletons. We
thank Heiner Kuhlmann and Stefan Paulus from the Department of Geodesy of the
University of Bonn, Germany for generating the laser rangefinder measurements.

References

1. Binney, J., Sukhatme, G.S.: 3D tree reconstruction from laser range data. In: International
Conference on Robotics and Automation, pp. 1321–1326. IEEE (2009)

2. Bucksch, A.K.: Revealing the Skeleton from Imperfect Point Clouds. Ph.D. thesis, Delft
University of Technology (2011)

3. Cornea, N., Silver, D., Min, P.: Curve–skeleton properties, applications, and algorithms.
IEEE Transactions on Visualization and Computer Graphics 13(3), 530–548 (2007)

64 F. Schöler and V. Steinhage

4. CROP.SENSe.net, http://www.cropsense.uni-bonn.de/
5. Ganster, B., Klein, R.: An integrated framework for procedural modeling. In: Spring Confer-

ence on Computer Graphics, pp. 150–157. Comenius University, Bratislava (2007)
6. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika 82(4), 711–732 (1995)
7. Keightley, K.E., Bawden, G.W.: 3D volumetric modeling of grapevine biomass using Tripod

LiDAR. Computers and Electronics in Agriculture 74(2), 305–312 (2010)
8. Kniemeyer, O.: Design and Implementation of a Graph Grammar Based Language for

Functional-Structural Plant Modelling. Ph.D. thesis, Technical University Cottbus (2008)
9. Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational Growth Grammars – A Graph Rewrit-

ing Approach to Dynamical Systems with a Dynamical Structure. In: Banâtre, J.-P., Fradet,
P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 56–72. Springer, Hei-
delberg (2005)

10. Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments
with one-sided inputs. Journal of Theoretical Biology 18(3), 280–299 (1968)

11. Lindenmayer, A.: Mathematical models for cellular interactions in development II. Simple
and branching filaments with two-sided inputs. Journal of Theoretical Biology 18(3), 300–
315 (1968)

12. Louarn, G., Dauzat, J., Lecoeur, J., Lebon, E.: Influence of trellis system and shoot position-
ing on light interception and distribution in two grapevine cultivars with different architec-
tures: An original approach based on 3D canopy modelling. Australian Journal of Grape and
Wine Research 14(3), 143–152 (2008)

13. Louarn, G., Lecoeur, J., Lebon, E.: A three-dimensional statistical reconstruction model of
grapevine (Vitis vinifera) simulating canopy structure variability within and between culti-
var/training system pairs. Annals of Botany 101(8), 1167–1184 (2008)

14. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings.
ACM Transactions on Graphics 25(3), 614–623 (2006)

15. Pallas, B., Loi, C., Christophe, A., Cournède, P.H., Lecoeur, J.: A stochastic growth model
of grapevine with full interaction between environment, trophic competition and plant devel-
opment. In: International Symposium on Plant Growth Modeling, Simulation, Visualization
and Applications, pp. 95–102. IEEE (2009)

16. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer (1990)
17. Schnabel, R., Degener, P., Klein, R.: Completion and reconstruction with primitive shapes.

Eurographics 28(2), 503–512 (2009)
18. Shavrukov, Y.N., Dry, I.B., Thomas, M.R.: Inflorescence and bunch architecture development

in Vitis vinifera L. Australian Journal of Grape and Wine Research 10(2), 116–124 (2004)
19. Shlyakhter, I., Rozenoer, M., Dorsey, J., Teller, S.: Reconstructing 3D tree models from in-

strumented photographs. IEEE Computer Graphics and Applications 21, 53–61 (2001)
20. Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture.

In: The Best Computer Papers of 1971, pp. 125–135. Auerbach Publications (1972)
21. Weihl, T.: Ein Identifikationsverfahren für Rebsorten. Ph.D. thesis, Universität Hohenheim

(1999)

http://www.cropsense.uni-bonn.de/

Generating Graph Transformation Rules

from AML/GT State Machine Diagrams
for Building Animated Model Editors

Torsten Strobl and Mark Minas

Universität der Bundeswehr München, Germany
{Torsten.Strobl,Mark.Minas}@unibw.de

Abstract. Editing environments which feature animated illustrations of
model changes facilitate and simplify the comprehension of dynamic sys-
tems. Graphs are well suited for representing static models and
systems, and graph transformations are the obvious choice for imple-
menting model changes and dynamic aspects. In previous work, we have
devised the Animation Modeling Language (AML) as a modeling ap-
proach on a higher level. However, AML-based specification could not yet
be translated into an implementation automatically. This paper presents
a language extension called AML/GT and outlines how AML/GT mod-
els can be translated into graph transformation rules automatically and
also provides some implementation details.

1 Introduction

Visual models are considered to be important tools of software development.
Particularly, the area of domain-specific languages (DSLs) is an interesting topic
for research and industry. Therefore, some tools like GenGEd [3], AToM 3 [6] or
DiaGen/DiaMeta [8] support the creation of editors for DSLs with little effort.
For this purpose, many of these tools generate editors out of mostly text-based
editor specifications and use graphs for representing models internally, together
with graph transformations (GTs) for changing them.

However, visual models are not restricted to static structures. They can also
contain execution semantics, for instance the popular example of Petri nets.
Editors for such models usually support animated simulations.

This paper continues our work extending the DiaMeta toolkit in order to facil-
itate the implementation of editors for complex animated models and languages
with preferably minimal effort. Our first step was to allow the specification of
event-based model changes through graph transformation rules (GTRs) [15]. It is
based on the idea of a static graph representing an animated model that changes
while time passes by. Graph transformations happen instantaneously, and they
can be used for starting, stopping or modifying animations, whereas other ap-
proaches (e.g., GenGEd [3]) represent animations by graph transformations that
do not happen instantaneously, but last as long as the animation takes.

Case studies showed that such GTR-based specifications are yet too unstruc-
tured for a convenient specification of animated systems. Therefore, in a second

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 65–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 T. Strobl and M. Minas

Fig. 1. Avalanche board Fig. 2. Avalanche pieces

step, the modeling language AML (Animation Modeling Language) has been
introduced for supporting structured design and specification of animated sys-
tems [16]. The language offers, among other features, the behavioral specification
of individual components and a convenient way for describing animations for
particular states. In that way, AML is a helpful tool for creating editor specifica-
tions manually, but it was not yet possible to automatically generate GTR-based
specifications from AML-based specifications. This paper closes this gap and in-
troduces AML/GT as an extension of AML as well as a tool that automatically
transforms an AML/GT-based specification into a GTR-based specification for
DiaMeta which can then be used to generate the implementation of the animated
system. As a running example, an editor called Avalanche is created.

The rest of the paper is structured as follows: Section 2 outlines the running
example Avalanche. Section 3 describes how animated editors can be realized
with DiaMeta in short. AML is revisited in Section 4 and its extension AML/GT
is introduced in Section 5. The translation of AML/GT state machines into
GTRs is elaborated in Section 6. Section 7 gives some implementation details.
Finally, Section 8 shows related work, and Section 9 concludes the paper.

2 Avalanche

This section sketches Avalanche (see Fig. 1) which has been implemented as a
model editor and serves as example throughout this paper. Although Avalanche

is based on a board game, gaming aspects are ignored and it is treated as an
interactive dynamic system. A detailed view on Avalanche and its implementa-
tion using DiaMeta is presented in [15]. In addition, an animated example can
be found online.1

In Avalanche marbles are falling down the lanes of an inclined board. The
board itself can be built by four types of block pieces (see Fig. 2). The top

1 http://www.unibw.de/inf2/DiaGen/animated

http://www.unibw.de/inf2/DiaGen/animated

Generating GTRs from AML/GT State Machine Diagrams 67

Fig. 3. Avalanche board and corresponding hypergraph

of each lane is limited by a Start piece. A Marble can be placed there, and
it starts falling as shown in Fig. 1 (a) then. While falling, the Marble can be
stopped by the upper side of a Switch (b). On the other hand, if a Marble hits
the bottom side (c), a Switch is tilted to the neighboring lane. In this case, a
previously stopped Marble can be released (d). It is also possible that a Marble
hits another Marble, which is currently blocked by a Switch. Then, the falling
Marble bounces off and changes its lane (e). Finally, a Marble can reach an End
piece where it is removed from the board (f).

3 Specification of Animated Model Editors

Avalanche shall be implemented as animated model editor which allows the
creation of individual boards (e.g., the board in Fig. 3). The user can put marbles
in Start pieces. Afterwards, they start falling, and the animated model shows
the game mechanics. Important aspects are the interaction between marbles
and switches and that new marbles can arrive at any time, for example. The
code for the Avalanche editor shall be generated from a specification for the
DiaMeta system. Therefore, this section introduces some basics of DiaMeta and
the applied generation process.

Internally, models of DiaMeta based editors are represented by typed, at-
tributed hypergraphs. DiaMeta supports three types of (hyper)edges in such
hypergraphs. Component hyperedges represent model components. These
edges visit nodes that represent the component’s attachment areas. Such ar-
eas may be spatially related, e.g., overlap, which is represented by so-called
relation edges between the corresponding nodes. Relation edges are created or
removed automatically whenever attachment areas of components start or end
being spatially related [8]. Finally, link hyperedges can be used for connect-
ing nodes of component hyperedges. Such edges can be created and removed
explicitly.

68 T. Strobl and M. Minas

In Fig. 3 an Avalanche board is shown together with its internal hypergraph.
Because of such underlying graphs, it is possible to specify model changes via
GTs. Our approach of implementing animated editors is also based on GTs, so a
brief description follows. A detailed elaboration, however, can be found in [15],
which also includes the underlying formalism.

The internal graph does not necessarily represent a static model. Instead,
a constant graph may describe how visible components are animated, e.g.,
by determining where, when and how a component started moving. Then, the
visualization of the graph can involve the current animation time for illustrating
an animated scene. The hypergraph in Fig. 3 actually shows a marble with
appended startedAt edge, which stands for a currently falling marble during the
visualization of the model.

Besides such (graphical) animations, there are also time-dependent model
changes caused by GTs. These GTs are the result of internal and external
events. External events are sent to the system from an external source, e.g.,
from a user sending a command to the editor, whereas the occurrence of in-
ternal events is based on the system state. Such events are specified (and
implemented) by GTRs, or rather graph transformation programs in DiaMeta.
They are equipped with application conditions to trigger them when external
events happen, or with a time calculation rule (TCR) that computes the
time when the internal event occurs. This calculation usually depends on the
attribute values of the related components.

However, the behavior of the Avalanche editor is not specified directly via
GTRs and event details as described above in this paper. Instead, the modeling
language AML/GT (see Sections 4 and 5) is used and GTRs will be generated.

4 Animation Modeling Language (AML)

The presented specification approach comes along with the Animation Modeling
Language (AML). This section provides an overview focused on aspects relevant
for this paper. Some more details, origin, and goals of AML are presented in [16].

AML models describe both the structure and relations of graphical compo-
nents and their dynamic behavior including animations. The language is based
on UML 2.3 [11]. AML refines UML class diagrams for the static structure and
UML state machine diagrams for the dynamic part (see Fig. 4).

The following extensions are available for the static structure:

– Media Components are the main structural element of AML. They extend
regular UML classes by aspects of visual components. They always include
basic attributes like xPos, yPos, angle and other attributes which determine
spatial aspects or drawing state.

– Inner Properties are similar to UML properties, but their specified type
must be a media component. In addition, they can be arranged hierarchically.
In this way, inner properties can model the compositions of graphical sub
elements within their containing media components.

Generating GTRs from AML/GT State Machine Diagrams 69

Fig. 4. AML metamodel (excerpt)

– Sensors are owned by media components and observe states, animations
and interactions of its owner.

The three most important kinds of sensors are:

– User Sensors are triggered if the user interacts with the sensor owner in a
specific way, e.g., if the user clicks on a component.

– Constraint Sensors are triggered if its guard expression (by default an
OCL expression [10]) evaluates to true, which may also happen during an
animated situation. Collision Sensors are a special subtype of constraint
sensors. They can observe when the owner collides with another component,
called opponent.

– Message Sensors are enabled if the sensor’s owner receives a message of a
declared type from another component, called opponent, too.

Fig. 5 shows an AML/GT model, i.e., an AML model with GT extensions de-
scribed in the next section, but it illustrates plain AML elements, too. The inner
property lever 2 ,2 e.g., represents the graphical lever within the media compo-
nent Switch 1 which represents the whole board piece. It is also shown how the
default value of the lever ’s attribute angle is redefined there. The user sensor
PutMarble 3 is triggered if the user clicks on a Start component, which is the
sensor owner 4 indicated by the solid line. The collision sensor MarbleEnd 5 is
triggered if its owner Marble collides with the bottom of an End piece, which is
connected via a dashed opponent arrow 6 .

Behavior and animations of media components are described by state ma-
chine diagrams and their regions 8 . Each state machine models the states and
transitions of components of one media component type.

For the description of graphical animations, AML supports special states
called animation states 9 that contain so-called animation instructions 10 .
Each animation instruction computes the value of an attribute of the state ma-
chine’s media component while time passes by. E.g., animation instruction 10

defines that the angle of a Switch lever changes from −30◦ to 30◦ within three
seconds as soon as the Switch enters state LeftRight .

2 Numbers in black circles refer to the ones in Fig. 5.

70 T. Strobl and M. Minas

Transitions can be labeled like in regular UML by trigger[guard]/effect. The
trigger describes an event that may cause the transition. Intuitive keywords
like at or after 11 indicate certain points in time or time delays. AML also
supports sensor triggers specified by the name of the sensor 12 that must be
owned by the state machine’s component. The transition is enabled when the
associated sensor is triggered. Finally, transitions without trigger specification 13

are triggered as soon as the state’s internal activities (e.g., active animation
instructions) terminate (completion event).

A guard may restrict transition triggers; a transition is only enabled if the
guard condition is satisfied, too, like in UML.

In AML, effects as well as entry and exit behaviors of states are restricted
to so-called action sequences consisting of an arbitrary series of the following
actions:

– Set actions 14 can change an attribute of the corresponding component or
one of its inner properties.

– Create actions 15 allow the creation of media components.
– Call actions 16 are used for calling operations.
– Send actions can send messages to other media components.

The execution of transitions is performed sequentially. Since a system with
discrete time model may have multiple enabled transitions at the same time and
the UML specification does not define full semantics of conflicting transitions,
enabled AML transitions are executed with the following priority, starting with
the highest one: sensor events, time events, without trigger/with guard, without
trigger/without guard. In addition, each sensor can have an explicitly specified
numeric priority value. Such values must be used to order a set of simultaneously
occurring sensor events. If there are still conflicts, a transition must be chosen
randomly.

5 Animation Modeling Language for GTs (AML/GT)

AML enables developers to model Avalanche and to translate it to a GTR-based
DiaMeta specification manually as described in [16]. For an automated trans-
lation, however, AML models lack important information. Therefore, AML has
been extended to AML/GT which addresses this issue. Technically, AML/GT is
realized as a (UML) profile for extending AML models. This section describes
some of its elements in the context of the Avalanche model shown in Fig. 5.

Some media components represent visual components that the user can place
on the screen using the generated Avalanche editor. They are marked by a small
square next to the media component icon, e.g., Switch 1 , and are then repre-
sented by component hyperedges (see Section 3). In addition, inner properties of
media components can be marked by small circles 17 . Such properties are rep-
resented by nodes of this component hyperedge. Inner properties which model
graphical aspects of the component are marked by a small eye 2 .

Generating GTRs from AML/GT State Machine Diagrams 71

Fig. 5. Avalanche specification (AML/GT model)

A Switch hyperedge, for example, visits the nodes topL, topR, bottomL and
bottomR which represent the four corners of the corresponding component. The
types of these nodes are TS (“top/switch”) or B (“bottom”), resp., as speci-
fied in Fig 5 1 . Fig. 5 also shows how attributes of the inner property’s media
component type are redefined by new default values 2 .

Moreover, associations between media components can be interpreted as edge
types which can be used to connect the nodes of component hyperedges. Asso-
ciations corresponding to link hyperedges are marked with stereotype link 18 .

72 T. Strobl and M. Minas

Fig. 6. Exemplary transi-
tion for Switch

Fig. 7. GTR for DoSwitch transition

Relation edges indicating spatial relationships between attachment areas of vi-
sual components correspond to binary associations with stereotype relation 19 .
The specification of such an attachment area is marked by a small square 20 .

6 Translating AML/GT State Machines into GTRs

After the basic introduction of AML/GT, this section shows how AML/GT
models are translated into GTRs. These GTRs become part of the specification
of the animated editor which is then used by DiaMeta to generate the editor as
described in Section 7.

Each AML/GT state machine describes the behavior of a media component,
and each of its states corresponds to a subgraph of the animated diagram’s hy-
pergraph. It contains the component hyperedge of the media component and
some additional link hyperedges. This subgraph represents the situation when
the modeled media component is in this state, i.e., such a subgraph, called in-
variant pattern in the following, represents an invariant of the state and is vi-
sually denoted inside the state box. For example, the state Left in Fig. 6 contains
the link edge switchedTo next to the component hyperedge itself. By connecting
node n1 with node n0 , the edge indicates that the switch’s lever is currently
blocking the Switch’s left lane. In the same figure, there is also a transition to
state LeftRight . Fig. 7 shows the GTR realizing this state transition.

In order to create the required set of GTRs, the algorithm has to iterate over
all transitions with or without triggers (a completion event trigger is assumed in
the latter case). During this process, the triggers have priorities according to
the rules at the end of Section 4. Each GTR of the resulting set can be specified
with this priority then. GTs with higher priority can be processed first, if there
is more than one GT scheduled at the same point in time.

The following steps show how single GTRs are created. They are based on the
example in Fig. 8 and its example trigger MarbleChangeLaneLeft 1 . The illus-
trated transition is responsible for changing a Marble’s state from Falling to
SwitchingLane, i.e., the Marble has to move to another lane because it has hit
the left side of a Switch which is currently blocked by anotherMarble. The graph

Generating GTRs from AML/GT State Machine Diagrams 73

Fig. 8. Generating a GTR from a state machine transition

pattern shown within the collision sensor MarbleChangeLaneLeft represents this
condition.

The LHS of the rule is created first. It consists of the invariant pattern of
the transition’s source state, extended by subgraphs of the transition’s guard
(e.g., Fig. 5 13) as well as graph patterns describing the behavior of sensors
being used as transition triggers (e.g., Fig. 5 7). In the example shown in Fig. 8,
there is no transition guard, but the graph pattern located within collision sensor
MarbleChangeLaneLeft has to be added. In general, the LHS is constructed from
several graph patterns. Negative application conditions are possible, too, but
they are not required here.

As a basic principle, the creation of the LHS from all these graph patterns
is performed by building the union of them and then gluing them in a suit-
able way. Gluing is rather straight forward because each of the graph patterns
refers to the same “owner” of the state machine which is represented by its com-
ponent hyperedge and its visited nodes. Therefore, the LHS may contain the
component hyperedge of its owner only once, i.e., all instances of this hyperedge
and its visited nodes must be glued. Further nodes can be glued as well. In the
example, node s0 of the source state graph pattern must be glued with s0 of
the pattern within the sensor. This is specified by the correspondence state-
ment lhs node s0 := s0 2 . However, because equally labeled nodes are glued
automatically, such a statement is omitted in Fig. 5.

The RHS of the rule is built in a similar way. It is constructed from the
invariant of the transition’s target state and, again, all graph patterns of the
transition as for the LHS. The latter have to be added, too, because applying
the rule shall just change the state of the owner’s state machine, i.e., change its
invariant pattern; the rest of the diagram’s hypergraph must remain unchanged.

The owner’s component hyperedge again determines which edges and nodes
must be glued. The gluing of an additional node is specified by the correspondence

74 T. Strobl and M. Minas

statement rhs node s0 := oa1 2 . The node labeled s0 of state SwitchingLane
does obviously not correspond to the node with the same label of state Falling;
it should rather correspond to the node oa1 representing the switch’s attachment
areawhere themarble is switching to as soon as the specified transition is executed.

The rule must not add or delete any nodes since each node represents an
attachment area of a component, and animations do not add or remove media
components (except if created or deleted explicitly; see below). Therefore, nodes
without correspondence in either LHS or RHS must be added to the other side 3 .

After creating the main parts of the GTR, additional elements must be added,
i.e., further application conditions, a TCR necessary for scheduling events, at-
tribute changes, and maybe other types of processing.

Further application conditions are usually expressions which check at-
tribute values of graph elements. For this, the AML/GT model can contain
OCL expressions (conditions), or other Boolean expressions (Java) in case of
DiaMeta. Such expressions must be adapted to a syntax which is compatible to
the GT system and added to the GTR accordingly.3

As described above, the source state’s invariant pattern is part of the cor-
responding GTR’s LHS. However, just relying on the invariant pattern of the
source state is generally not sufficient as the inv broken trigger shows (see below).
Therefore, a state attribute is added to the component hyperedge 5 which is
checked before the rule may be applied 4 . There must be one such attribute for
each UML region because of concurrent and hierarchical states.

Another type of application conditions are path expressions. In Fig. 8, a
path expression called pathDown is required 6 . It verifies that the Marble is
currently falling down the lane which leads through the blocked left side of
the Switch. In DiaMeta this expression is specified as an arbitrary sequence of
topBottom(0,1), Switch(0,2), Switch(1,3), or Straight(0,1) edges. The numbers
within the parenthesis specify the hyperedge tentacles the path must follow:
the first number specifies the ingoing tentacle and the second one specifies the
outgoing tentacle when following the path through the hypergraph.

AML/GT allows specifying actions at different places. They may be spec-
ified with each transition; they are executed as soon as the transition fires
(e.g., Fig. 5 14) or as an action associated with an entry into a state (e.g.,
Fig. 5 9). Actions are easily translated into GTRs in DiaMeta since it al-
lows arbitrary Java code when executing a rule. Call actions result in the
calls of media component operations (generated Java code; e.g., Fig. 5 9), and
set actions involve the change of attributes of the component hyperedge dur-
ing the GT (e.g., Fig. 5 14). Finally, create actions can construct components
(e.g., Fig. 5 15): AML/GT allows declaring component hyperedges (here Marble)
including its initial attributes, its nodes, and link edges. These edges and nodes
must be added to the RHS of the GTR, and attributes must be set accordingly.

3 Single graph transformation rules are not sufficient in the following; graph transfor-
mation programs are actually needed. However, for simplicity, we still use the term
“graph transformation rule” (GTR) instead of “graph transformation program”.

Generating GTRs from AML/GT State Machine Diagrams 75

Further actions must be added to each GTR (Fig. 8 7). First, the state at-
tribute and the state entry time must be updated (such an attribute must be
available for each region again). And second, the attributes which are considered
animated during an active animation state must be updated because attributes
do not change their values during animations in our approach (cf. Section 3). In-
stead, the changing value is calculated using a formula considering the animation
time. Therefore, an update which applies the last calculated value is required.

A generated GTRs must be executed at a specific point in time which is
modeled by a transition’s trigger. A transition triggered by a user sensor is
translated into a GTR that can be induced by the user in the editor. By default,
the GTR is bound to a GUI button starting the GTR if it is applicable. Other
sensor triggers require a TCR 8 for scheduling the GT (see Section 3).

Transitions with time event triggers are translated into GTRs representing
internal events with a TCR reflecting the absolute or relative time when the
event may be triggered. Relative time always refers to the state entry time.

Transitions without explicit trigger must be executed as soon as the pattern
of the LHS can be matched and animations of the source state have been finished
(an additional condition). They are translated into GTRs representing internal
events as well. Its TCR must return the point in time when animations have
been finished. If there is no animation, the GTR must be applied without any
time delay, i.e., the TCR always returns the current time.

Constraint and collision sensors result in internal event specifications, too.
They usually check animated attributes (see above). However, generating a cor-
responding TCR is not straight forward. For a collision sensor, e.g., a TCR is
required which calculates the collision time based on the components’ trajecto-
ries. Currently, such a TCR has to be provided manually. Using a physics engine
may solve this problem in the future.

Finally, two special cases for generating GTRs from the Avalanche model are
described. Termination states are used as the only means to delete compo-
nent hyperedges and, therefore, media components. Such states are visualized
as a small X. If a transition ends in a termination state, it is translated into a
GTR that removes the corresponding component hyperedge and its nodes, so
the resulting RHS corresponds to the LHS without the component’s edge and
its nodes.

Inv broken is an AML/GT keyword that may be used as a transition trigger.
It has lowest priority and is fired if the transition’s source state must be left
because its invariant pattern is “broken”. This may happen if some link edges
being part of the invariant pattern are deleted when some other component and
its link edges are deleted due to a user action.

For instance, a Switch may be removed by the user even if a Marble is con-
nected to one of its nodes via startedAt (state Falling in Fig. 5 21). Because
the specification in Fig. 5 requires a marble to be connected to the component
where it started falling, the Marble would be in an inconsistent state then. The
inv broken trigger is used to represent the fact that the pattern invariant of the
current state is suddenly no longer true although the state has not yet been left.

76 T. Strobl and M. Minas

Fig. 9. Overview of the editor generation process

This triggers the state’s inv broken transition and activates its termination state
which removes the Marble, too.

The translation of such an inv broken transition into a GTR is straight for-
ward: The GTR must check the component hyperedge’s state attribute (see
above) and whether the invariant pattern is violated. The latter is simply repre-
sented as a negative context, i.e., the GTR may be applied if the component is
in the corresponding state, but its invariant pattern can (no longer) be matched.

In order to support all features of AML/GT state machines, further special
cases must be considered when generating GTRs as well. Namely, composite
states, concurrency and message passing must be processed specifically.
These topics are not discussed here, but it is clear that they can be translated
to GTRs, too.

7 Implementation

The translation process outlined in the previous section has been completely
implemented, also covering those topics that have been omitted here, e.g., com-
posite states, orthogonal regions or message passing. It is possible now to spec-
ify animated editors (e.g., for Avalanche) using a visual specification tool (the
AML/GT editor) and to generate the editor from this specification. This section
sketches the process, which is outlined in Fig. 9, and some design decisions.

For the creation of AML/GT models, the editor designer uses the AML/GT
editor (see Fig. 10), which has been generated using the DiaMeta toolkit, too.
AML/GT models are automatically translated into the specified animated edi-
tor. Some Java code of the editor is directly generated from the AML/GT model
(“M2T” in Fig. 9). This is necessary for support code which has to be provided
manually when using DiaMeta without AML/GT. The “M2T” transformation
has been realized with Acceleo, a Model-to-Text translation language which is
oriented towards the MOFM2T specification of the OMG [9].

The translation process from an AML/GT model into an editor specification
for DiaMeta (“editor specification” in Fig. 9) as outlined in the previous sec-
tion is performed by the “M2M” component in Fig. 9. It uses Eclipse QVTo,
which implements the OMG specification of MOF QVT Operational [12],

Generating GTRs from AML/GT State Machine Diagrams 77

Fig. 10. Screenshot of the Avalanche editor

a Model-to-Model technology. The target model of this transformation is the
native, XML-oriented DiaMeta specification which also includes the GTRs.

There are several reasons for choosing these technologies instead of using the
DiaMeta framework for creating the specification from AML/GTmodels. First of
all, the GT system of DiaMeta has been created for structured editing in editors
and therefore lacks convenient features for complex model transformations. In
addition, both source (AML/GT) and target model (DiaMeta specification) do
not consist of graphs only, but also contain embedded text or must produce Java
code which are less suited for being modeled as graphs. Finally, standardized
languages have been favored in order get a more future-proof, general and stable
transformation. The mentioned languages have already been supported by a
couple of tools (Eclipse plugins), too.

Besides the AML/GT model, the editor designer has to provide the abstract
syntax4 of the animated visual language, i.e., its meta-model. DiaMeta simply
uses EMF for metamodelling. Any EMF-based tool for specifying Ecore mod-
els [14] can be used here. Furthermore, generating TCRs from collision sensors
still needs manual code (see Section 6), so future solutions require a generic a
priori collision detection algorithm.

Finally, the “editor generator” creates the Java code of the animated editor
using the code generator of DiaMeta. The screenshot in Fig. 10 shows the gen-
erated Avalanche editor with created Avalanche board and a falling marble.
This editor has been generated from the AML/GT model shown in Fig. 5.

8 Related Work

Although it has not been the primary intention of AML/GT, it can be considered
as a visual language for programmed graph rewriting and model transformation.
A good starting point for reading into this topic is provided in [4], which com-
pares AGG, Fujaba, and PROGRES as graph transformation languages and
also mentions GReAT . Another overview is presented in [18] which focuses

4 All descriptions in this paper and AML/GT concern the concrete syntax only.

78 T. Strobl and M. Minas

on model transformation aspects including the tools AToM 3, VIATRA2 , and
VMTS . However, AML/GT cannot compete with these rather general-purpose
languages and tools because the GTRs generated are restricted to the very spe-
cific field of animation specification. For example, a regular transition can only
add or remove link hyperedges. In general, it is specialized for describing the
behavior of components.

Furthermore, there are many other systems and languages which are also in-
tended for describing behavior, especially in the context of statecharts, UML,
and MDE, e.g., Executable UML (xUML). Many of such languages try to ex-
tend or constrain UML in order to get a language with the possibility to describe
systems more precisely than UML. However, many of them have a specific appli-
cation domain. AML and AML/GT, which also extend and constrain standard
UML, focus on visual appearance and graphical animations next to the expres-
siveness of UML statecharts and hypergraphs. Therefore, they are especially
suited for specifying animated visual languages and generating editors. To the
best of our knowledge, they are the only languages featuring this combination,
so the following related work has more or less other domains.

Fujaba, for example, supports so-called story diagrams [2] which combine
UML collaboration diagrams with activity diagrams. GTRs can be drawn within
activities which allow the creation of complex transformation flows. Originally,
the main purpose was to generate Java code from such models, but areas of
application evolved and many extensions are available in the meantime. For
example, Fujaba Real-Time [1] allows the modeling of embedded systems based
on statecharts with real-time capabilities. The modeling of visual aspects of
components, however, is not provided. On the other side, AML/GT is not suited
for embedded systems and does not provide the modeling of real-time constraints.

Another modular and hierarchical model-based approach is presented in [17].
The semantic domain of the models presented there is the Discrete Event Sys-
tem Specification (DEVS). It is used for describing control structures for pro-
grammed graph rewriting. Although the formalism has a solid foundation, it
requires the user to have a specialized expertise while UML-based approaches
are well-known to the majority of all users. Moreover, it also lacks the possibility
to define the structure of components or graphic related issues.

In [13] a visual language for model transformations and specifying model be-
havior has been introduced which allows the specification of in-place transforma-
tion rules. These rules can be compared to GTRs in a graph-based environment.
There are some further extensions like rule periodicity, duration, exceptions, etc.
State-based modeling on a more coherent level, which is also the intention of this
paper, is not provided.

Finally, the animation approach used in this paper and the translation of state
machines into GTRs is related to other approaches. The differences between our
animation approach and those approaches in similar systems (e.g., [3]) have
been discussed in previous work [15] already. Translating state machines into
equivalent GTR systems is not a new idea either. E.g., there are several papers
describing the semantics of (UML) state machines based on GTs, e.g., in [5].

Generating GTRs from AML/GT State Machine Diagrams 79

The translation process described in Section 6 is rather tailored to its specific
application within animated editors. Finally, the way graph patterns are used
in state machines and sensors of AML/GT can be considered as alternative
to OCL [10]. We also would like to point towards agent-based modeling [7] as
another field of application for AML/GT.

9 Conclusions

We have pursued our approach of modeling animated editors with the UML-
based language AML. The language extension AML/GT offers additional el-
ements which are necessary to create specifications of dynamic systems in a
hypergraph-based environment automatically.

Applying a modeling language like AML/GT promises that complex systems
can be specified in a clear and accessible way. Using state machines for individual
components particularly complies with an intuitive perspective on many systems.
At the same time, the underlying GTs provide an established foundation and
exact semantics, and they facilitate the comprehension of the execution process.

The algorithmic translation of AML/GT model into the specification format
of DiaMeta has been completely implemented. The aim of creating a higher-level
modeling language, which does not require further specifications for generating
interactive, animated editors, has been accomplished. Future work will concen-
trate on how collisions between animated components can be detected without
computing their trajectories in advance. Using a physics engine as used in many
game settings appears to be promising.

References

1. Burmester, S., Giese, H.: The Fujaba Real-Time Statechart Plugin. In: Giese, H.,
Zündorf, A. (eds.) Proc. of the 1st International Fujaba Days 2003, pp. 1–8 (2003);
Technical Report tr-ri-04-247, Universität Paderborn, Informatik

2. Diethelm, I., Geiger, L., Zündorf, A.: Systematic Story Driven Modeling, a Case
Study. In: Giese, H., Krüger, I. (eds.) Proc. of the 3rd International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools (SCESM 2004),
ICSE Workshop (2004)

3. Ermel, C.: Simulation and Animation of Visual Languages Based on Typed Alge-
braic Graph Transformation. Ph.D. thesis, Technical University Berlin (2006)

4. Fuss, C., Mosler, C., Ranger, U., Schultchen, E.: The Jury is Still Out: A Com-
parison of AGG, Fujaba, and PROGRES. In: Ehrig, K., Giese, H. (eds.) Proc. of
the 6th International Workshop on Graph Transformation and Visual Modelling
Techniques. ECEASST, vol. 6 (2007)

5. Kuske, S.: A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 241–256. Springer, Heidelberg (2001)

6. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

80 T. Strobl and M. Minas

7. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In:
Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proc. of the 37th
Winter Simulation Conference, pp. 2–15. ACM (2005)

8. Minas, M.: Generating Meta-Model-Based Freehand Editors. In: Zündorf, A.,
Varró, D. (eds.) Proc. of the 3rd International Workshop on Graph-Based Tools.
ECEASST, vol. 1 (2006)

9. Object Management Group (OMG): MOF Model To Text Transformation Lan-
guage, v1.0 (January 2008), http://www.omg.org/spec/MOFM2T/1.0

10. Object Management Group (OMG): Object Constraint Language, v2.2 (February
2010), http://www.omg.org/spec/OCL/2.2

11. Object Management Group (OMG): Unified Modeling Language: Superstructure,
v2.3 (May 2010), http://www.omg.org/spec/UML/2.3/Superstructure

12. Object Management Group (OMG): MOF Query/View/Transformation, v1.1
(January 2011), http://www.omg.org/spec/QVT/1.1

13. Rivera, J.E., Durán, F., Vallecillo, A.: A Graphical Approach for Modeling Time-
Dependent Behavior of DSLs. In: DeLine, R., Minas, M., Erwig, M. (eds.) Proc. of
the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing,
pp. 51–55. IEEE Computer Society (2009)

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2009)

15. Strobl, T., Minas, M.: Specifying and Generating Editing Environments for In-
teractive Animated Visual Models. In: Küster, J., Tuosto, E. (eds.) Proc. of the
9th International Workshop on Graph Transformation and Visual Modeling Tech-
niques. ECEASST, vol. 29 (2010)

16. Strobl, T., Minas, M., Pleuß, A., Vitzthum, A.: From the Behavior Model of an
Animated Visual Language to its Editing Environment Based on Graph Transfor-
mation. In: de Lara, J., Varró, D. (eds.) Proc. of the 4th International Workshop
on Graph-Based Tools. ECEASST, vol. 32 (2010)

17. Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with Time for
Simulation-Based Design. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.)
ICMT 2008. LNCS, vol. 5063, pp. 91–106. Springer, Heidelberg (2008)

18. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T.,
Prange, U., Varró, D., Varró-Gyapay, Sz.: Model Transformation by Graph Trans-
formation: A Comparative Study. In: Proc. Workshop Model Transformation in
Practice (Satellite Event of MoDELS 2005) (2005)

http://www.omg.org/spec/MOFM2T/1.0
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/UML/2.3/Superstructure
http://www.omg.org/spec/QVT/1.1

AGG 2.0 – New Features for Specifying

and Analyzing Algebraic Graph Transformations

Olga Runge1, Claudia Ermel1, and Gabriele Taentzer2

1 Technische Universität Berlin, Germany
{olga.runge,claudia.ermel}@tu-berlin.de

2 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. The integrated development environment AGG supports the
specification of algebraic graph transformation systems based on at-
tributed, typed graphs with node type inheritance, graph rules with
application conditions, and graph constraints. It offers several analy-
sis techniques for graph transformation systems including graph parsing,
consistency checking of graphs as well as conflict and dependency de-
tection in transformations by critical pair analysis of graph rules, an
important instrument to support the confluence check of graph transfor-
mation systems. AGG 2.0 includes various new features added over the
past two years. It supports the specification of complex control structures
for rule application comprising the definition of control and object flow
for rule sequences and nested application conditions. Furthermore, new
possibilities for constructing rules from existing ones (e.g., inverse, mini-
mal, amalgamated, and concurrent rules) and for more flexible usability
of critical pair analyses have been realized.

Keywords: graph transformation tool, AGG 2.0.

1 Introduction

AGG [15,13] is a well-established tool environment for algebraic graph transfor-
mation systems, developed and extended over the past 20 years. Graphs in AGG
are defined by a type graph with node type inheritance and may be attributed by
any kind of Java objects. Graph transformations can be equipped with arbitrary
computations on these Java objects described by Java expressions.

The AGG environment consists of a graphical user interface comprising sev-
eral visual editors, an interpreter, and a set of validation tools. The interpreter
allows the stepwise transformation of graphs as well as rule applications as long
as possible. AGG supports several kinds of validations which comprise graph
parsing, consistency checking of graphs, applicability checking of rule sequences,
and conflict and dependency detection by critical pair analysis of graph rules.
Applications of AGG include graph and rule-based modeling of software, valida-
tion of system properties by assigning an operational semantics to some system
model, graph transformation-based evolution of software, and the definition of
visual languages by graph grammars.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 81–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

82 O. Runge, C. Ermel, and G. Taentzer

Model transformations have recently been identified as a key subject in model-
driven development (MDD). Graph transformations offer useful concepts for
MDD, while the software engineering community can generate interesting chal-
lenges for the graph transformation community. In the past two years, those new
challenges also lead to the augmentation of AGG by new tool features. In this
paper, we describe some of those challenges, the formal approaches developed to
solve them, and the impact they had on recent developments of new features of
AGG, leading to AGG 2.0.

2 Rule Application Control

Application Conditions. For graph transformation rules, well-known negative or
positive application conditions (NACs, PACs) may be used that forbid or require
a certain structure to be present in the graph for the rule to be applied. As a gen-
eralization, application conditions (introduced as nested application conditions
in [9]) further enhance the expressiveness of graph transformations by providing
a more powerful mechanism to control rule applications (see [8] for an extensive
case study).

An application condition ac of rule r : L → R is of the form true or ∃(a, c)
where a : L → C is a graph morphism from L to a condition graph C, and c is
a condition over C. Application conditions may be nested, negated,1 quantified
by FORALL and combined by using the logical connectors AND and OR. Given
application condition ac, a match m : L → G satisfies ac, written m |= ac, if
ac = true. A match m : L → G satisfies condition ac = ∃(a, c) if there is an
injective graph morphism q : C → G such that q ◦ a = m and q satisfies c. The
satisfaction of conditions is extended to Boolean conditions in the usual way. A
rule L → R is applicable only if the application condition ac is satisfied for its
match m : L→ G.

An example is shown in Figure 1, where the activation of an elementary Petri
net transition is checked: Rule ActivationCheck sets the transition attribute isActi-

vated to true if two conditions, called PreCond and PostCond are satisfied: PostCond
is the NAC shown in Figure 1 (b) which forbids the existence of a marked place
in the transition’s post-domain, and PreCond is a nested application condition
shown in Figure 1 (c) which requires that on each place in the transition’s pre-
domain, there must be one token. Note that this condition cannot be expressed
by using simple NACs or PACs. Figure 1 (a) shows the context menu entries for
generating general application conditions (GACs) in AGG 2.0.

Object Flow for Rule Sequences. Object flow between rules has been defined
in [11] as partial rule dependencies relating nodes of the RHS of one rule to
(type-compatible) nodes of the LHS of a (not necessarily direct) subsequent rule
in a given rule sequence. Object flow thus enhances the expressiveness of graph
transformation systems and reduces the match finding effort.

1 An application condition of the form ¬∃a is called negative application condition.

AGG 2.0 – Specifying and Analyzing Algebraic Graph Transformations 83

Fig. 1. Nested application conditions in AGG

In AGG 2.0, object flow can be defined between subsequent rules in a rule
sequence, and the rule sequence can be applied to a given graph respecting the
object flow. An example is the definition of a Petri net transition firing step by
the rule sequence (ActivationCheck, RemovePre*, AddPost*, DeActivate) with object
flow. The sequence defines that rule ActivationCheck (see Figure 1) is applied
once, followed by rules RemovePre (removing a token from a pre-domain place),
AddPost (adding a token to a post-domain place), which are shown in Figure 2,
and DeActivate (setting the transition attribute isActivated back to false).

Fig. 2. Rules RemovePre and AddPost for Petri net firing

In the sequence, rules RemovePre and AddPost are applied as long as possible
(denoted by “*”), and rule DeActivate is applied once. To restrict the application
of the rule sequence to exactly one transition, we need to express that the tran-
sition in the matches of all rules is the same. This is done by defining the object
flow, e.g., by mapping the transition from the RHS of rule ActivationCheck to the
LHSs of rules RemovePre and AddPost as shown in Figure 3.

Fig. 3. Object flow definition for rule sequences in AGG

An example of a firing step by applying the rule sequence with object flow
is shown in Figure 4, where the left transition in the net was selected, found
activated and fired.

84 O. Runge, C. Ermel, and G. Taentzer

Fig. 4. Transition firing step resulting from applying a rule sequence with object flow

3 Constructing Rules from Existing Ones

Obviously, the definition of a rule sequence with object flow is neither simple nor
very intuitive to model Petri net transition firing steps for transitions with an
arbitrary number of pre- and post-domain places. A way closer to the inherent
Petri net semantics (a transition removes the tokens from all of its pre-domain
places and adds tokens to all of its post-domain places in one atomic step)
would be to construct a single rule modelling the firing behaviour of a transition.
AGG 2.0 supports various ways to automatic rule construction.

Construction of Concurrent Rules. A concurrent rule summarizes a given rule se-
quence in one equivalent rule [5,12]. In a nutshell, a concurrent rule p∗Eq = (L←
K → R) is constructed from two rules p = (Lp ← Kp → Rp) and q = (Lq ←
Kq → Rq) that may be sequentially dependent via an overlapping graph E

Lp

�� (1)

Kp�� ��

�� (2)

Rp
ep

���
��

�
Lq

eq

��
 (3)

Kq�� ��

�� (4)

Rq

��
L Cp�� �� E

(5)

Cq�� �� R

K

�����������

�����������

by the diagram to the right, where
(5) is pullback (intersection of
graphs Cp and Cq in E), and all
remaining squares are pushouts.
(A pushout is a union of two
graphs over an interface graph.)
The concurrent rule (p1∗. . .∗pn)E
with E = (E1, . . . , En−1) for a sequence is constructed in an iterated way by
(p1 ∗ . . . ∗ pn)E = p1 ∗E1 p2 ∗E2 . . . ∗En−1 pn. In AGG 2.0, we can construct a
concurrent rule from a rule sequence with the following options concerning the
overlappings of one rule’s RHS with the succeeding rule’s LHS: (1) compute
maximal overlappings according to rule dependencies; (2) compute all possible
overlappings (this usually yields a large number of concurrent rules); (3) compute
overlappings based on the previously defined object flow between given rules; (4)
compute the parallel rule (no overlapping), where rule graphs are disjointly uni-
fied, with NACs constructed according to [12]. As example, Figure 5 shows the
concurrent rule constructed from rule sequence (ActivationCheck, RemovePre(3),

AddPost(2), DeActivate).2 Since an object flow is defined for this sequence, we
choose option (3) by object flow for computing rule overlappings. Constraints
on the type graph (e.g., “a Token node is connected to exactly one Place node”)
prevent the generation of unnecessary NACs.

2 Note that a concurrent rule can be constructed only for a finite rule sequence.

AGG 2.0 – Specifying and Analyzing Algebraic Graph Transformations 85

Fig. 5. Concurrent rule generated from a rule sequence in AGG

Construction of Amalgamated Rules. If a set of rules p1, . . . , pn share a common

subrule p0, a set of “amalgamable” transformations G
(pi,mi)
=⇒ Gi (1 ≤ i ≤ n)

leads to an amalgamated transformation G
p̃,m̃
=⇒ H via the amalgamated rule

p̃ = p1+p0 . . .+p0pn constructed as gluing of p1, . . . , pn along p0. We call p0 kernel
rule, and p1, . . . , pn multi-rules. A kernel rule together with its embeddings in
several multi-rules is called interaction scheme. An amalgamated transformation

G
p̃

=⇒ H is a transformation via the amalgamated rule p̃ [8].
This concept is very useful to specify ∀-quantified operations on recurring

graph patterns (e.g., in model refactorings). The effect is that the kernel rule is
applied only once while multi-rules are applied as often as suitable matches are
found. For formal details on amalgamation and a large case study, see [8].

Figure 6 shows the interaction scheme with a kernel rule and two multi-rules
specifying the firing of a Petri net transition with arbitrary many pre- and post-
domain places. The kernel rule has the same application condition as rule Activa-

tionCheck (see Figure 1). Note that we do not need the isActivated flag any more
because the check and the complete firing step is performed by a single appli-
cation of the amalgamated rule. The amalgamated rule constructed for example
along a match to an activated transition with three pre- and two post-domain
places is similar to the rule in Figure 5 but has no NACs because the match into
the host graph is predefined by construction.

Construction of Inverse Rules. For a given rule, the inverse rule has LHS and
RHS exchanged. Moreover, application conditions are shifted over the rule.
Figure 7 shows the inverse rule of rule AddPost (see Figure 2), where an existing
token is removed. The shifted NAC requires that there is exactly one token on
the place for the rule to be applicable.

Construction of Minimal Rules. A new challenge from MDD comes from the
field of model versioning, where the new notion of graph modification [14], a
span G← D → H has been established to formalize model differences for visual
models. Based on graph modifications, so-called minimal rules may be extracted
from a given span to exploit conflict detection techniques for rules. A minimal
rule comprises the effects of a given rule in a minimal context. Via context
menu, AGG 2.0 supports the extraction of a minimal rule from a selected rule
(interpreted as graph modification). For example, the minimal rule of the rule in
Figure 5 does not contain the arcs connecting the places and transitions, since

86 O. Runge, C. Ermel, and G. Taentzer

Fig. 6. Interaction scheme defining a transition firing step in Petri nets

Fig. 7. Inverse rule of Rule AddPost

these arcs are not changed by the rule. It contains the place nodes (because edges
connected to them are deleted or generated), the token nodes (either deleted or
generated) and the transition node (its attribute is changed).

4 Tuning the Critical Pair Analysis

The critical pair analysis (CPA) checks rule pairs for conflicts of rule applications
in a minimal context. An example for a conflict in a minimal context is shown
in Figure 8, where the classical forward conflict in Petri nets is detected when
analyzing the rule pair (RemovePre, RemovePre). As indicated in the conflict view,
we have a delete-use conflict since two transitions need to remove the same token
from their common pre-domain place.

Fig. 8. CPA of rule pair (RemovePre, RemovePre), detecting a forward conflict

AGG 2.0 – Specifying and Analyzing Algebraic Graph Transformations 87

Selection of rules for CPA. So far, the CPA could be evoked on a graph grammar,
yielding the critical pairs for each possible rule pair of the grammar. AGG 2.0
provides free selection of rule sets to be analyzed. This feature has shown to be
very convenient, e.g., for a case study, where self-healing systems are modeled by
several rule sets (normal system behaviour rules, context-changing rules, repair
rules). These sets are analyzed for conflicts with each other [6].

Modularization of a model into different sub-grammars. In AGG 2.0, rule sets
may be imported into an existing grammar (provided the type graph of the
imported grammar is a subgraph of the type graph of the importing grammar).
This supports modularization of a model without destroying the possibility to
analyze the complete system.

Interrupt and resume running CPA. This usability feature is very handy for
complex computations which may take some time. A partial CPA result may be
stored and reloaded in AGG 2.0.

Generation of Filter NACs. If during CPA, critical pairs are found that are
analyzed by the user as not causing real conflicts, additional NACs for these rules
may be generated automatically that contain the critical overlapping region. A
new CPA of the rules together with the new Filter NACs does not show the
previous critical pair anymore [10].

5 Related Work and Conclusions

AGG is one of the standard graph transformation tools implementing the al-
gebraic approach as presented in [5]. Other graph transformation tools, such
as Fujaba [7], ViaTra [4], VMTS [3], GrGen [16], and Groove [17], implement
different kinds of graph transformation approaches. Some kinds of rule applica-
tion control structures are offered by all of these tools, e.g., Fujaba uses story
diagrams, a kind of activity diagrams. Groove also supports nested application
conditions as well as universal quantification using amalgamation.

Concerning the verification of graph transformation systems, VIATRA and
Groove concentrate on some kind of model checking, while AGG is the only tool
that consequently implements the theoretical results available for algebraic graph
transformation. These results are mainly concerned with conflict and dependency
detection of rules and static applicability checks for rule sequences. The analysis
features offered by AGG are also used by our graph transformation-based tools
Tiger (a tool for generating visual editor and simulator plug-ins in Eclipse [2])
and Henshin (an EMF model transformation engine [1]).

AGG 2.0 extends the existing features now coherently with support for ap-
plication conditions and object flow, and for automatic construction of amalga-
mated, concurrent, inverse and minimal rules. Moreover, the critical pair analysis
has become more usable due to experiences made in several case studies.

88 O. Runge, C. Ermel, and G. Taentzer

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)

2. Biermann, E., Ehrig, K., Ermel, C., Hurrelmann, J.: Generation of simulation views
for domain specific modeling languages based on the Eclipse Modeling Framework.
In: Automated Software Engineering (ASE 2009), pp. 625–629. IEEE Press (2009)

3. Budapest University of Technology and Economics: Visual Modeling and Trans-
formation System (VMTS) (2010), http://www.aut.bme.hu/Portal/Vmts.aspx

4. Eclipse Consortium: VIATRA2 (Visual Automated Model Transformations)
Framework (2011), http://www.eclipse.org/gmt/VIATRA2/

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
(2006)

6. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal Analysis
and Verification of Self-Healing Systems. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)

7. Fujaba Development Group: Fujaba Tool Suite (2011), http://www.fujaba.de/
8. Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A visual interpreter semantics for

statecharts based on amalgamated graph transformation. In: Echahed, R., Habel,
A., Mosbah, M. (eds.) Selected Papers of International Workshop on Graph Com-
putation Models (GCM 2010). ECEASST, vol. 39 (2011)

9. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
1–52 (2009)

10. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Proc. Int. Workshop on Model Driven Interoperability, pp. 22–31. ACM (2010)

11. Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow Def-
inition for Refined Activity Diagrams. In: Chechik, M., Wirsing, M. (eds.) FASE
2009. LNCS, vol. 5503, pp. 49–63. Springer, Heidelberg (2009)

12. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universität Berlin (2009)

13. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

14. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict Detection for Model
Versioning Based on Graph Modifications. In: Ehrig, H., Rensink, A., Rozenberg,
G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Heidel-
berg (2010)

15. TFS-Group, TU Berlin: AGG 2.0 (2011), http://tfs.cs.tu-berlin.de/agg
16. Universität Karlsruhe: Graph Rewrite Generator, GrGen (2010),

http://www.info.uni-karlsruhe.de/software.php/id=7

17. University of Twente: Graphs for Object-Oriented Verification (GROOVE) (2011),
http://groove.cs.utwente.nl/

http://www.aut.bme.hu/Portal/Vmts.aspx
http://www.eclipse.org/gmt/VIATRA2/
http://www.fujaba.de/
http://tfs.cs.tu-berlin.de/agg
http://www.info.uni-karlsruhe.de/software.php/id=7
http://groove.cs.utwente.nl/

Integration of a Pattern-Based Layout Engine

into Diagram Editors

Sonja Maier and Mark Minas

Universität der Bundeswehr München, Germany
{sonja.maier,mark.minas}@unibw.de

Abstract. In this paper, we outline our pattern-based layout approach
and its integration into a diagram editor. In particular, we summarize
editor features that were made possible by the approach. Each layout pat-
tern encapsulates certain layout behavior. Several layout patterns may be
applied to a diagram simultaneously, even to overlapping diagram parts.
Our approach includes a control algorithm that automatically deals with
such situations. To support the user in an interactive environment, it is
not sufficient to apply the same layout behavior in every situation. In-
stead, the user also wants to select and alter the layout behavior at
runtime. Our approach as well as the editor features described in this
paper are specifically designed for such an environment.

1 Introduction

A layout engine usually runs continuously within diagram editors and improves
the layout in response to user interaction in real-time. Layout improvement in-
cludes all sorts of changes concerning the position or shape of diagram compo-
nents. For instance in Figure 1, if class C is moved, the end point of the connected
association is updated accordingly. It is, however, not reasonable to completely
automate layout improvements in diagram editors. The editor user would also
like to influence the layout at runtime.

We have developed a pattern-based layout approach that is tailored to such an
environment [2]. A layout pattern, which encapsulates certain layout behavior,
consists of a (pattern-specific) meta model together with some assertions and a
layout algorithm, which are defined using this meta-model. A pattern may be
applied to a diagram, which means that a pattern instance is created and bound
to (parts of) the diagram. The assertions “define” a valid layout of the diagram
(part), and the layout algorithm is responsible for “repairing” the layout when
assertions are violated. The diagram layout is affected by this pattern instance
until it is deleted. A diagram layout is usually defined by several instances of
layout patterns whose layout algorithms cannot be executed independently. A
control algorithm automatically coordinates when and how these layout algo-
rithms are executed [3].

In this paper, we give an overview of the layout approach with the help of
a class diagram editor as a simple example.1 We focus on some editor features
that support the user during the process of layout improvement:

1 A screencast is available at www.unibw.de/inf2/DiaGen/Layout .

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 89–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.unibw.de/inf2/DiaGen/Layout

90 S. Maier and M. Minas

User-controlled and Automatic Layout: The editor user can apply layout
patterns for user-selected parts of the diagram. These pattern instances affect
the diagram layout until the user deletes them. Furthermore, the specification
of the diagram editor describes when layout patterns are automatically applied
depending on the diagram’s syntactic structure.

Pattern Instance Visualization: Pattern instances created by the editor user
are visualized in the diagram.

Syntax Preservation: The editor makes sure that the layout engine does not
modify the syntactic structure of the diagram.

Layout Suggestions: The editor can automatically suggest application of lay-
out patterns when the user selects some part of the diagram.

Automatic as well as user-controlled layout and pattern instance visualization as
well as syntax preservation have been described or at least sketched earlier [2,3],
but layout suggestions have not been published yet. The concepts described in
this paper have been completely implemented and examined in several diagram
editors.

The term layout pattern has been coined by Schmidt et al. in the context of
syntax-directed editors [5]. They use tree grammars for specifying the digram
language syntax whereas we use meta-models, which are more widely accepted
than grammars. In their approach, layout is computed via attribute evaluation
whereas we support several ways of layout computation, in particular constraint
solving techniques and off-the-shelf graph drawing algorithms. There also exist
some editors including a layout engine that are somewhat related to our ap-
proach. One of these editors is Dunnart [1], a graph editor, which is based on
declarative constraints and which provides some user-controlled layout behavior.
Most of these tools have in common that the layout engine is hand-coded and
hard-wired in the editor. Our approach supports modular specification of layout
on an abstract level and using this layout behavior in different editors.

Section 2 introduces the class diagram editor as a running example and de-
scribes its layout capabilities. Our layout approach is sketched in Section 3.
Section 4 outlines the integration of the approach into an editor. Section 5 con-
cludes the paper.

2 Running Example

Figure 1 shows a class diagram editor, which has been created with the edi-
tor generation framework DiaMeta [4]. DiaMeta allows for generating visual
language editors from specifications of their visual languages. The core of the
specification is a meta-model (called language-specific meta model, LMM, in the
following) of the diagram language, here class diagrams. The meta-model de-
scribes the language’s abstract as well as concrete syntax.

Several layout patterns have been integrated into the class diagram editor:
Non-Overlap removes overlapping of packages and classes that are (directly)

Layout Support for Diagram Editors 91

Fig. 1. Running example: Class diagram editor

contained in the same package by applying a force-directed layout algorithm.
Containment ensures the correct nesting of packages and classes. List arranges
attributes of classes as a list. Minimal Size enforces a minimal size of packages
and classes. Edge Connector ensures that associations and generalizations stay
attached to classes. Alignment (horizontal & vertical) aligns certain packages
and classes vertically or horizontally respectively. Equal Distance (horizontal
& vertical) makes sure that certain packages and classes have an equal distance
to each other. Equal Size (width & height) makes sure that certain packages
and classes have the same height or width respectively. Finally, Layered Layout
assigns each class to a certain horizontal layer such that generalization arrows
always point upward.

3 Layout Engine

Each layout pattern is defined on a pattern-specific meta-model (PMM) whereas
the diagram language is specified using a language-specific meta-model (LMM)
as outlined in Sections 1 and 2. Figure 2 shows three PMM examples: The Con-
tainment PMM used by the Containment pattern, List PMM used for the List
pattern, and Graph PMM used for the Layered Layout pattern. The PMMs are
apparently independent of a concrete diagram language and its meta-model. In
order to use a layout pattern for a certain diagram language, the language’s
LMM must be mapped to the pattern’s PMM. This mapping identifies the roles

92 S. Maier and M. Minas

(a) Containment PMM (b) List PMM (c) Graph PMM

Fig. 2. Pattern-specific meta-models (PMMs)

that the components of the visual language play in the layout pattern. Pat-
tern instantiation then means that the diagram’s model, i.e., the LMM instance
(LM), is transformed into a pattern instance model, i.e., a PMM instance (PM),
following this mapping.

When the editor user draws or modifies a diagram, the editor automatically
updates its diagram model (LM). In addition, the editor automatically updates
all pattern instance models (PMs), creates new ones and deletes existing ones
depending on the modified syntactic structure of the diagram or depending on
user actions (cf. Section 4.1). The PM attribute values reflect the attributes
of the corresponding diagram model. The pattern’s assertions (cf. Section 1)
are checked on these attribute values. The layout algorithm modifies the PM
attribute values when one or more assertions are violated. These values are
then transformed back to the corresponding LM attribute values following the
mapping between LMM and PMM. The layout is updated this way.

Of course, the layout algorithms must not modify the PM attributes and,
therefore, the diagram model attributes independently. The modifications must
rather be coordinated. This is the task of the control algorithm, which was de-
scribed in detail in [3]. Via backtracking, this algorithm determines the order in
which the layout algorithms of the pattern instances change the diagram. This
must be done at runtime because the layout can only be computed as soon as all
attribute values – including the attribute values the user changed – are known.
The idea of the control algorithm is that changes made by the user are propa-
gated through the diagram, trying to find a layout satisfying all assertions. Start-
ing with the component(s) (or more precisely, attribute(s)) changed by the user,
all pattern instances are checked that involve these components. Each pattern
instance whose assertions are violated changes one or more attribute value(s) by
its encapsulated layout algorithm in order to “repair” it. Afterwards, all further
pattern instances that involve these attributes are checked. This procedure is
continued until all pattern instances are satisfied, or until the algorithm signals
a failure. A failure is signaled if there does not exist a “valid” layout, which
might be the case if two or more pattern instances contradict each other. The
algorithm also signals a failure in case layout computation would take longer
than a user-configurable threshold.

With the help of layout patterns, different layout algorithms can be combined.
The following three types of layout algorithms are currently supported:

Layout Support for Diagram Editors 93

– Standard graph drawing algorithms may be used, e.g., the Sugiyama
algorithm for the creation of a layered layout. These algorithms can be used
off-the-shelf from graph drawing libraries.

– Declarative constraintsmay be used to specify the layout algorithm which
then uses a constraint solver for computing the layout. With this type of
layout algorithm, global layout behavior such as “several classes have an
equal distance to each other” can be defined.

– In addition, our own version of rule-based layout algorithms may be
used, which is specifically tailored to the interactive nature of visual language
editors. The rule-based layout algorithm consists of a set of assertions that
“define” the layout, and a set of rules that “repair” violated assertions and
hence update the layout after user modifications.

It is possible to define quite complex layout behavior with these types of lay-
out algorithms. However, layout patterns should be chosen carefully because the
diagram layout is computed and updated at runtime. Especially using a con-
straint solver may lead to a bad performance, e.g., if it aims at minimizing edge
crossings.

4 Integration of the Layout Engine into an Editor

We specified several layout patterns, and integrated them into various visual
language editors. For instance, they were integrated into the class diagram editor
presented earlier, into a graph editor, into a GUI forms editor that allows the
user to create GUIs, or into a VEX editor that allows the user to draw lambda
expressions visually.

The creation of the layout modules as well as their inclusion in different visual
language editors turned out to be (more or less) straightforward. Furthermore,
the concept of layout patterns allowed us to develop some features that increased
the usability of the editors. Some of these features will be described in the
following.

4.1 Automatic and User-Controlled Layout

A layout pattern may be applied to a diagram if some part of the diagram model
can be transformed to a pattern instance model. This situation must be spec-
ified when generating the editor. This is done as follows: The generated editor
uses a graph (actually a hypergraph) for representing the diagram model. This
hypergraph corresponds to the language-specific meta-model (LMM). Pattern
instance models (PMs) are internally represented by graphs, too. Transforma-
tions of the diagram model to the PMs are realized by graph transformations.
The situation that a layout pattern may be applied to a diagram, therefore, is
simply the situation that such a graph transformation may be applied.

The layout engine supports two modes of layout pattern instantiation: auto-
matic and user-controlled application of layout patterns. Automatic instanti-
ation means that the diagram editor tries to transform the diagram model to

94 S. Maier and M. Minas

pattern instance models, i.e., to apply the graph transformations whenever pos-
sible. This mode of pattern instantiation makes sense for layout aspects that are
essential for a diagram language. In the class diagram editor, these are the ap-
plication of the non-overlap pattern, containment pattern, list pattern, minimal
size pattern, and edge connector pattern to the corresponding diagram parts.

However, automatic instantiation does not make sense in situations where the
user would like to modify the layout for, e.g., mere aesthetic reasons. In the class
diagram editor, these are, e.g., the horizontal alignment of classes. Applying such
a layout pattern to every possible situation does not make sense. The editor user
rather has to indicate the situations where he wishes to apply a pattern. This
is realized by user-controlled instantiation. The editor specification must
contain graph transformation rules (actually graph transformation programs in
DiaMeta) for a layout pattern. By selecting a layout pattern and one or more
components, the editor user chooses a part of a diagram for which the layout
pattern shall be instantiated. The selected diagram components correspond to
certain graph components of the diagram model. The editor then tries to apply
a graph transformation specified for the selected layout pattern to the diagram
model that corresponds to the selected graph components of the diagram model.
After creation, the pattern instance is updated after each diagram modification
until it is deleted, either by the editor user who explicitly deletes this pattern
instance, or when the diagram is modified in a way such that the layout pattern
does no longer fit. In the class diagram editor, the equal distance pattern, the
alignment pattern, the equal size pattern and the layered layout pattern are
controlled by the user. All pattern instances that were created by the user are
shown in a list at the bottom-right of the editor.

In the example shown in Figure 1, the user has created the following pattern
instances: Classes Person, Student and Professor and the corresponding gen-
eralizations are rearranged by a layered layout algorithm. Classes Person, A and
B are aligned horizontally at the top and at the bottom. Some pattern instances
have been automatically created. When the user modifies the diagram, the two
alignment pattern instances and the layered layout pattern instance preserve the
layout that was chosen by the user. The non-overlap pattern instance moves the
classes that are contained in the package university to assure that they do not
overlap. The containment pattern instance moves the package and the classes to
preserve the correct nesting of the package university and its contained classes.
The list pattern instance correctly arranges the attributes in the class Person.
The minimal size pattern instance enforces a minimal size of the package and the
classes. Finally, the edge connector pattern instance updates the start and end
point of the association and the generalizations to keep them correctly connected
to the classes.

4.2 Pattern Instance Visualization

Experiments have shown that users of diagram editors have trouble “under-
standing” the layout dependencies between components if current layout pattern
instances are not displayed. Therefore, diagram editors display currently active

Layout Support for Diagram Editors 95

layout pattern instances in the diagram. In the example shown, instances of the
horizontal alignment pattern are visualized via colored lines, and instances of
the layered layout pattern via colored boxes. It is possible to create instances
of the same layout pattern several times in one diagram. To distinguish these
pattern instances, they are highlighted in different colors.

If the user selects one of the pattern instances in the list at the bottom-right
of the editor, the involved components are highlighted via a gray cross in the
middle of each component. For instance, in the editor shown in Figure 1, the user
has selected the layered layout pattern instance, and hence the classes Person,
Student and Professor and the two generalizations are highlighted.

4.3 Syntax Preservation

Freehand editors allow to arrange diagram components on the screen without
any restrictions, and the syntax is defined by the location of the components on
the screen. Because a layout pattern instance does not know about the diagram
syntax, it can easily rearrange components such that the diagram’s syntactic
structure is modified. This is usually unwanted behavior, and it should be pos-
sible to prevent it. For instance, in the class diagram editor, a syntax change
may occur if the layout engine moves one class on top of another class (this is
possible only if the non-overlap pattern is turned off) that has an association
connected to it. Then it is not clear to which class this association is connected.

Syntax preservation has been added for DiaMeta editors. It is achieved by
comparing the internal graph representation of the diagram model before and
after a layout modification. If the graph structure is changed by the layout
engine, the user changes that led to this violation are undone.

4.4 Layout Suggestions

To further support the editor user, the editor is able to suggest layout patterns
that could be applied to a user-selected part of the diagram. Layout suggestions
are computed by “trying out” each layout pattern. For each layout pattern,
pattern matching is performed in the user-selected part of the diagram. For the
maximal match found, a pattern instance is created. The layout engine then tries
to find a valid solution, taking into account the newly created pattern instance(s)
and all other pattern instances currently present in the diagram. The pattern
is applicable if the layout engine is able to compute a valid layout. In addition,
the attribute changes that are performed by the layout engine are examined. A
metric is used to rate the applicability of the different layout patterns. Layout
patterns that result in minor diagram changes are favored over layout patterns
that result in major diagram changes.

This feature can be used as follows: After selecting one or more components,
the user can click the button Compute Layout Suggestions. The buttons on the
right side of the editor are then highlighted in a certain color. Gray indicates
that the corresponding pattern cannot be applied because it either does not fit
the chosen diagram part or is inconsistent with the currently active pattern in-
stances. Blue indicates that the corresponding pattern can be applied. Asterisks

96 S. Maier and M. Minas

are added to the label if the application of the pattern results in minor changes
of the diagram, and they are omitted if it results in major changes.

In Figure 1, layout suggestions for classes Professor, C and D were computed.
Button Horizontal Alignment (top), e.g., is highlighted in blue, and asterisks are
added as only minor diagram changes would be necessary after applying the
pattern, whereas button Vertical Alignment (left) is highlighted in blue, and no
asterisks are added as major diagram changes would be necessary.

5 Conclusions

We have sketched our pattern-based layout approach and the integration of the
layout engine into a diagram editor. We focused on some features that are made
possible by the pattern-based layout approach, namely user-controlled layout,
pattern instance visualization, syntax preservation and layout suggestions. We
have further features in mind that are enabled by the pattern-based approach
and that could also be included, e.g., automatic layout after diagram import.

Our pattern-based approach as well as the features described have been com-
pletely integrated into DiaMeta. Furthermore, we created several visual lan-
guage editors that include the layout engine, and we observed that the layout
engine produces good results, and that the overall performance is satisfactory.

During the development of the layout approach and its integration into several
editors, some questions arose: Which layout patterns should be included in a
certain visual language editor? How should a layout pattern be visualized? As a
next step, we plan to perform a user study to answer these questions.

References

1. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A Constraint-Based Network Di-
agram Authoring Tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS,
vol. 5417, pp. 420–431. Springer, Heidelberg (2009)

2. Maier, S., Minas, M.: Pattern-based layout specifications for visual language editors.
In: Proc. of the 1st International Workshop on Visual Formalisms for Patterns.
ECEASST, vol. 25 (2009)

3. Maier, S., Minas, M.: Combination of different layout approaches. In: Proc. of the
2nd International Workshop on Visual Formalisms for Patterns. ECEASST, vol. 31
(2010)

4. Minas, M.: Generating meta-model-based freehand editors. In: Proc. of the 3rd
International Workshop on Graph Based Tools. ECEASST, vol. 1 (2006)

5. Schmidt, C., Kastens, U.: Implementation of visual languages using pattern-based
specifications. Software: Practice and Experience 33(15), 1471–1505 (2003)

Tool Demonstration of the Transformation Judge

Steffen Mazanek, Christian Rutetzki, and Mark Minas

Universität der Bundeswehr, München, Germany
steffen.mazanek@gmail.com, christian.rutetzki@paprots.com,

mark.minas@unibw.de

http://www.unibw.de/inf2/

Abstract. The transformation judge is a novel system for the auto-
matic evaluation and comparison of graph and model transformations
that have been submitted as solutions for common transformation tasks
such as those accepted as case studies for the transformation tool con-
test. The most important feature of this system is the correctness check
that is done by black-box-testing. But also performance data and other
information about the solutions are collected. So, for academic as well as
industrial users of transformation tools, the judge could be a good start-
ing point for choosing a particular transformation tool for their respec-
tive task, since they can easily explore and compare different solutions
for similar tasks.

In this demonstration we show the most important use cases of the
judge, i.e., uploading of cases and corresponding solutions as well as the
automatic evaluation and comparison of solutions.

1 Introduction

We have almost completed our work on the so-called transformation judge,1

which is an online judge system for graph and model transformations, i.e., it
allows to automatically evaluate solutions for common transformation tasks.
The idea of an online judge originally stems from the domain of programming
contests, where such systems are used to give immediate feedback about the
correctness of submitted solutions. In this context, however, correctness only
means that a certain set of reference inputs is transformed by the submitted
program into the corresponding reference outputs, i.e., black-box-tests are per-
formed. Both inputs as well as outputs are given as plain text in this domain
and the actual output can be compared with the reference output character by
character; with graphs/models as the main artefacts this step certainly is more
complicated. Several online judge systems are available that, among others, differ
in the supported set of programming languages. Most widely known is the UVa
Online Judge,2 which is used in the well-known ACM programming contests,3

but also by people who just want to train and improve their programming skills.

1 http://sites.google.com/site/transformationjudge/
2 http://uva.onlinejudge.org/
3 http://icpc.baylor.edu/

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 97–104, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.unibw.de/inf2/
http://sites.google.com/site/transformationjudge/
http://uva.onlinejudge.org/
http://icpc.baylor.edu/

98 S. Mazanek, C. Rutetzki, and M. Minas

From the organization of the transformation tool contest TTC4 the idea was
born to provide an online judge for the graph and model transformation commu-
nity. In previous editions of the contest the solution submitters presented their
solutions for the respective transformation cases in front of a critical audience
that acted as a jury and ranked the presented approaches according to several
criteria. Of course, such a voting is highly inappropriate for criteria such as cor-
rectness, but there was no other option at that time. Actually, correctness was
even among the most subjective criteria as indicated by a very high variance in
the votings. The transformation judge solves this problem by carrying over the
online judge concept from programming contests. Moreover, the transformation
judge allows to compare transformation approaches with respect to further crite-
ria such as performance, lines of code or user rating and, even more importantly,
across various cases. So, for both academic and industrial users of transformation
tools, the judge, once populated with cases and solutions, could be a good start-
ing point for choosing a particular transformation tool for their respective task,
since they can easily explore and compare different solutions for similar tasks.
Finally, the transformation judge will be a platform for beginners, who want to
get an impression of the different transformation approaches. To simplify this
learning step a Hello World case [7] that comprises very basic transformation
tasks was selected as one of the cases for TTC 2011 [11] and resulted in an initial
fill of the judge.

There are several challenges when developing a transformation judge com-
pared to a conventional judge for programming algorithms, most importantly:

– Many transformation tools are still at the prototypical level, in contrast to
the programming languages supported by the conventional judges.

– The different transformation approaches deal with varying input and output
formats.

– Several transformation approaches are integrated into complex graphical
tools and difficult to invoke in headless mode.

– Regarding security, one needs to be not only careful with the actual trans-
formations but also with the zoo of transformation tools to be integrated
into the judge.

– For most cases, the output of a transformation cannot be compared on
a per-character-basis with the reference output as in conventional judges,
because graphs/models have different possible, equivalent string represen-
tations; even worse, in general it is inherently expensive to compare two
graphs/models of reasonable sizes in practical time.

This demonstration paper describes the most important use cases of the judge,
i.e., the upload of cases and corresponding solutions as well as the automatic
evaluation and comparison of solutions. For a better understanding, also the
architecture of our system is briefly introduced.

4 http://planet-research20.org/ttc2011/

http://planet-research20.org/ttc2011/

Tool Demonstration of the Transformation Judge 99

Case submitter

Solution submitter

User

CC cases

SS solutions

Transformation

Judge

CC SS

RR evaluation

results

Fig. 1. The main roles of judge users

2 Use Cases of the Transformation Judge

The main roles of judge users and the basic process behind the judge are shown
in Figure 1. Case submitters upload cases, which basically consist of a task
description, an input metamodel, an output metamodel and a set of pairs of
reference input models with their corresponding output models. They can also
set some more parameters such as the maximal execution time after which a
solution is terminated. After the publication of the case, solution submitters
upload their respective solutions. To this end, the actual transformation code
needs to be uploaded and the used transformation language needs to be selected
from a list of supported transformation languages. Besides the case and solution
submitters there are also normal users who benefit from the system by exploring
and comparing the various evaluation results.

Fig. 2. Use cases of a normal user

100 S. Mazanek, C. Rutetzki, and M. Minas

Fig. 3. Use cases of case and solution submitters

Figure 2 shows the system’s use cases from the perspective of a normal user.
More precisely we distinguish anonymous users from registered users, and cer-
tain functions such as commenting or voting on solutions can only be used by
registered users.

Figure 3 shows the system’s use cases from the perspective of case and solution
submitters. A case, i.e., a transformation task, consists of a name, a description
file, the determined model compare procedure and a set of model pairs (reference
inputs and expected outputs) that are used for black-box testing the solutions.
Since a case, and thus the model pairs, can be changed during the update of the
case, there need to be mechanisms for versioning and also for checking whether
the already uploaded solutions still pass the black-box test. This mechanism can
be triggered by the case submitter and is called “Revalidate solutions” in the
figure. Solutions that still comply to the new version of the case are automatically
connected with this new version.

3 System Architecture

The judging system is implemented in a modular way following a service-oriented
approach. All supported transformation tools and also the comparison tool are
addressed as webservices. Figure 4 shows how the transformation judge actu-
ally evaluates a solution. After the upload of a solution to the judge website
its evaluation can be triggered. First, the required case- and solution-related
data need to be gathered from the database. It is passed to the evaluation man-
ager that is responsible for controlling the computation of an evaluation result.
To this end, first the transformation tool responsible for the specific solution
needs to be invoked, which is done via its webservice. The result that is passed
back consists of logging information, performance data, and, most importantly,
the output model. This model needs to be compared with the expected out-
put, i.e., the reference output model. This job is performed by the comparator
webservice, which returns some logging information including a human readable

Tool Demonstration of the Transformation Judge 101

Comparor
Webservice
Comparor

Webservice

Comparor
Webservice
Comparor

Webservice
Transformation

Webservice
Transformation

Webservice

Transformation
Webservice

Transformation
Webservice

User & System
Management

User & System
Management

User & System
Management

DB

Evaluation
Manager

Evaluation
Manager

Evaluation
Manager

Comparator
Webservice
Comparor

Webservice

Comparator
ComparorComparor

Webservi
ComparCompar

WebserWebser
ce
iicece

Comparator
Webservice

Transformation
Webservice

Transformation
Webservice

Transformation
T f tiT f ti
Webservi

TransformaTransforma
W bW b

ce
ii

Transformation
Webservice

Fig. 4. The steps for the evaluation of a solution

description of the comparison result and, if applicable, a formal difference model.
The transformation and compare step need to be repeated for each pair of ref-
erence input/output models. From all these results an overall evaluation result
is constructed, passed back and shown to the user, who can publish his solu-
tion afterwards. If he is not satisfied with the evaluation result he can improve
his solution until it passes the test. Note that all communication between the
webservices is performed asynchronously.

In order to integrate a transformation tool, the tool developers need to con-
tribute their tool as an executable file that has to follow a particular call schema.
GReTL [2], ETL [5] and plain Java are already supported and ATL [4], VIATRA
[1] and PETE [10] will follow soon. The judge then wraps these executables into
webservices.

Restrictions

The judge currently has the following restrictions:

– The judge (for now) only provides support for EMF models, i.e., input and
output metamodels have to conform to EMF’s Ecore metamodel.5 Note that
EMF is a de facto modeling standard nowadays and many transformation
tools are based on EMF or at least provide EMF import/export facilities.

– The judge (for now) only provides support for transformation tasks that
require exactly one input and one output model and metamodel, respectively.

– The whole transformation currently has to be uploaded as a single file.

Focusing on the EMF format also has allowed us to integrate model comparison
in a quite straightforward way, because there are several tools available that can
compare EMF models. EMFCompare6 [9] probably is the most widely used tool

5 http://www.eclipse.org/emf/
6 http://www.eclipse.org/emf/compare/

http://www.eclipse.org/emf/
http://www.eclipse.org/emf/compare/

102 S. Mazanek, C. Rutetzki, and M. Minas

Fig. 5. Screenshot of the evaluation screen

for this purpose and, thus, we integrated this tool. Our experiences regarding
the use of model comparison tools for our purpose and also the issues we had to
deal with are described in detail in [8].

4 Related Work

Besides the already mentioned UVa judge, there are also several smaller systems
such as the sphere judge [6] or the z-training judge,7 which support different
programming languages or provide further features. The latter, for instance,
provides interactive graders as a means for the evaluation of intermediate re-
sults of a computation. Such a feature might be interesting for the evaluation
of very complex or step-wise transformations. We have decided to implement
our transformation judge from scratch instead of extending an existing system,
because discussions with both the developers of the sphere and the z-training
judge revealed that it would have been a high effort to adapt these systems
to support transformation tasks. Also, a modular architecture with tool-specific
webservices was an important argument for a completely new system.

Further, there are several approaches that address the evaluation and com-
parison of transformations, among them the yearly tool contest. One of the most
important contributions, however, is the benchmark proposed by Varró et al. as

7 http://www.z-training.net/

http://www.z-training.net/

Tool Demonstration of the Transformation Judge 103

a means for the systematic comparison of the performance of transformation
tools [12]. Setting up such a benchmark from scratch is a huge effort, because
the different systems ideally should be installed in the same environment or at
least on comparable hardware. The transformation judge can be used for bench-
marking as a side effect, because performance data is collected automatically
while running the transformations.

5 Conclusion

We have only put a few quite basic transformation tasks into the judge so far.
The judge deals with them easily and provides quite readable information. It
has successfully verified the GReTL solutions [3] to some subtasks of this year’s
Hello-World case. Note that GReTL is a graph transformation tool. This shows
that the judge is not only dedicated to model transformation tools (although
many graph transformation tools do still not support EMF).

At the moment the webservices for both the transformation and the compare
tools can only be accessed by the judge server itself. However, it would be pos-
sible to make them publicly available. This would, e.g., enable users to compare
models in a very lightweight way and to invoke different transformation tools. So,
users would not need to install tools locally in order to evaluate their suitability
for the task at hand.

Note that the transformation judge is not online yet. The described function-
ality is mostly implemented, but there are a few security issues that still need to
be addressed. A screenshot of the web interface is shown in Figure 5. Moreover,
screencasts of the system are available at the project website: http://sites.
google.com/site/transformationjudge/.

Due to the challenges listed in this paper, the transformation judge is inter-
esting from a software engineering perspective. However, its real value hopefully
will be revealed in the future when the different transformation approaches can
be compared in an objective way across a reasonable number of cases.

Plenty of work remains to be done in the future. For instance, it would be
good to divide the test cases into public and private ones, the further for de-
bugging solutions and the latter for the real competition, i.e., without exposing
the models. Also, we need to compute a better indicator for conciseness than
just lines of code. And, finally, we have to address the current restrictions of the
system to make it more widely applicable.

Acknowledgements. A great thank you to the transformation tool developers
that helped with the integration of their respective tools (Tassilo Horn, Louis
Rose, Massimo Tisi). Also many thanks to Aleksandar Zlateski, the developer
of z-training judge, for a lot of advice regarding the implementation of an online
judge and Cédric Brun and Patrick Konemann for EMFCompare tips. Finally,
a special thank you to Pieter van Gorp, who discussed this project with us from
the very beginning.

http://sites.google.com/site/transformationjudge/
http://sites.google.com/site/transformationjudge/

104 S. Mazanek, C. Rutetzki, and M. Minas

References

1. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA –
Visual automated transformations for formal verification and validation of UML
models. In: 17th IEEE International Conference on Automated Software Engineer-
ing (ASE 2002), pp. 267–270. IEEE Computer Society (2002)

2. Ebert, J.: Metamodels taken seriously: The TGraph approach. In: Proc. of the 12th
European Conference on Software Maintenance and Reengineering, CSMR 2008,
p. 2. IEEE (April 2008)

3. Horn, T.: Saying Hello World with GReTL – A solution to the TTC 2011, instruc-
tive case. In: Van Gorp et al. [11]

4. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

5. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

6. Kosowski, A., Ma�lafiejski, M., Noiński, T.: Application of an Online Judge & Con-
tester System in Academic Tuition. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.)
ICWL 2007. LNCS, vol. 4823, pp. 343–354. Springer, Heidelberg (2008)

7. Mazanek, S.: Hello world! An instructive case for the Transformation Tool Contest.
In: Van Gorp et al. [11], http://sites.google.com/site/helloworldcase/

8. Mazanek, S., Rutetzki, C.: On the importance of model comparison tools for the
automatic evaluation of the correctness of model transformations. In: Proceedings
of the 2nd International Workshop on Model Comparison in Practice, pp. 12–15.
ACM (2011)

9. Mülder, A., Schill, H., Wendehals, L.: Modellvergleich mit EMF Compare – Teil 1:
Funktionsweise des Frameworks. Eclipse Magazin 4, 43–47 (2009)

10. Schätz, B.: Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 227–244. Springer, Heidelberg (2009)

11. Van Gorp, P., Mazanek, S., Rose, L. (eds.): Proc. of the Fifth Transformation
Tool Contest, Zürich, Switzerland. Electronic Proceedings in Theoretical Computer
Science, vol. 74 (2011)

12. Varró, G., Schürr, A., Varró, D.: Benchmarking for Graph Transformation. In:
Erwig, M., Schürr, A. (eds.) Proc. IEEE Symposium on Visual Languages, pp.
79–100. IEEE Computer Society Press (2005)

http://sites.google.com/site/helloworldcase/

Knowledge-Based Graph Exploration Analysis

Ismênia Galvão1, Eduardo Zambon2,�, Arend Rensink2,
Lesley Wevers2, and Mehmet Aksit1

1 Software Engineering Group,
{i.galvao,m.aksit}@ewi.utwente.nl
2 Formal Methods and Tools Group,

Computer Science Department,
University of Twente

PO Box 217, 7500 AE, Enschede, The Netherlands
{zambon,rensink}@cs.utwente.nl, l.wevers@student.utwente.nl

Abstract. In a context where graph transformation is used to explore
a space of possible solutions to a given problem, it is almost always nec-
essary to inspect candidate solutions for relevant properties. This means
that there is a need for a flexible mechanism to query not only graphs
but also their evolution. In this paper we show how to use Prolog queries
to analyse graph exploration. Queries can operate both on the level of
individual graphs and on the level of the transformation steps, enabling
a very powerful and flexible analysis method. This has been implemented
in the graph-based verification tool groove. As an application of this
approach, we show how it gives rise to a competitive analysis technique
in the domain of feature modelling.

Keywords: Graph exploration analysis, Prolog, groove, feature mod-
elling.

1 Introduction

The practical value of graph transformation (GT) is especially determined by the
fact that graphs are a very general, widely applicable mathematical structure.
Virtually every artefact can be understood in terms of entities and relations
between them, which makes it a graph; and consequently, changes in such an
artefact can be specified through GT rules.

On the other hand, capability does not automatically imply suitability. For
instance, though it is possible to express structural properties as (nested) graph
conditions – see, for instance, [19,13] – in practice, if one wants to query a given
structure, writing graphical conditions to express and test for such queries is
not always the most obvious or effective way to go about it. This is particularly
true if the queries have not been predefined but are user-provided. Instead, there
are dedicated languages suitable for querying relational structures, such as, for
instance, SQL or Prolog.
� The work of this author is supported by the GRAIL project, funded by NWO (Grant

612.000.632).

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 105–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

106 I. Galvão et al.

The need for a powerful and flexible query language becomes even more clear
when one wants to combine static (structural) properties with dynamic ones, so
as to include the future or past evolution of the structure. For instance, temporal
logic has been especially introduced to express dynamic properties and check
them efficiently (see [2] for an overview). However, besides lacking accessibility,
temporal logic is propositional, meaning that it takes structural properties as
basic building blocks; there is very little work on logics that can freely mix
static and dynamic aspects of a system.

An example domain that requires this combination of static and dynamic as-
pects is feature modelling. A feature model is a graph in which nodes represent
possible features (of some system under design) and edges express that one
feature requires another, is in conflict, or is related in some other way. Graph
transformation can be used to actually select features (in such a way that the
constraints are met). The outcome is a (partially) resolved model, the quality
of which is not only determined by the choices actually made but also by the
possible choices still remaining. Thus, one would like to query a feature model
for both its static properties (the choices actually made) and for its dynamic
properties (the potential further transformation steps).

In this paper, we describe how one can use Prolog to query static and dynamic
properties of graphs, simultaneously and uniformly. Besides the transformed
graphs this requires a graph transition system (GTS), which is itself a graph
with nodes corresponding to state graphs and edges to rule applications. The
basic building block of Prolog is a predicate, which expresses a relation between
its arguments. Example predicates in our setting are:

– The relation between a graph and its nodes or edges;
– The relation between an edge and its source or target node, or its label;
– The relation between a state of the GTS and its corresponding graph;
– The relation between one state of the GTS and the next.

A collection of Prolog predicates forms a knowledge-base, which is queried during
the analysis of a GTS. Using an extension of the transformation tool groove
that supports Prolog queries, we demonstrate the capabilities of this approach
on a case study based on feature modelling. This domain was chosen due to its
applicability on the development process of software industries.

The paper is organised as follows. We first present the basic concepts for querying
graphs using Prolog (Section 2); then we describe the application to feature
modelling in Section 3. An analysis of the results can be found in Section 4.
Conclusion and ideas for future work are given in Section 5.

2 Prolog in groove

The Prolog programming language [7] is the de facto representative of the logic
programming paradigm. Unlike imperative languages, Prolog is declarative: a

Knowledge-Based Graph Exploration Analysis 107

s0
� ��

s1
� ��

s2
� ����� ���

Fig. 1. Example GTS with three states and two transitions

Prolog program is composed of predicates about objects and their relations,
and computations are performed by running queries over predicates. Given a
query asking whether a predicate holds for a certain (given) object, the Prolog
interpreter uses a resolution procedure that yields a yes or no answer. On the
other hand, if a query has free variables, the Prolog engine will enumerate all
objects which can be assigned to the variables so as to make the predicate true.

groove [22,11] is a graph transformation tool set which can recursively ex-
plore and collect all possible rule applications over a start graph: this is referred
to as the exploration of the state space of a graph grammar. The state space
is stored as a graph transition system (GTS), where each state of the system
contains a graph and each transition is labelled by a rule application. groove
has a graphical interface called the Simulator, for editing graphs and rules, and
for exploring and visualising the GTS. The main technical contribution of this
paper is the integration of a Prolog interpreter into the groove Simulator.

2.1 Functionality Overview

Before executing Prolog queries, the standard groove functionality is used to
perform a state space exploration of the graph grammar under analysis. The
exploration produces a GTS, which can then be inspected in queries. At this
point it is important to stress the difference between states and state graphs. A
state is an element of the GTS; it is implemented as an object with a unique
identity and an associated state graph. A state graph is a host graph over which
the transformation rules are applied.

We illustrate the Prolog functionality on the basis of a very small example.
Figure 1 shows a GTS with three states, represented by dashed boxes: the start
state s0 and two successor states s1 and s2. Each of the states contains a state
graph, consisting of two nodes connected by an e-labelled edge. The state graph
of s1 is obtained from the state graph of s0 by applying rule a2b (not shown
here) which renames an A-node to a B-node. Analogously, the state graph of s2

is produced by applying rule a2c. Now consider the following Prolog query:

?− state(X), state_graph(X,GX), has_node_type(GX,’A’),
state_next(X,Y), state_graph(Y,GY), has_node_type(GY,’C’).

The query is composed of six predicates, interpreted conjunctively from left to
right (the meaning of characters + and ? will be discussed in Section 2.2):

• state(?State) iterates over the states of the currently explored GTS.
• state_graph(+State, ?Graph) binds the state graph of the given state to the

second argument; i.e., it retrieves the state graph associated with the given
state.

108 I. Galvão et al.

• has_node_type(+Graph, +Type) succeeds if the given graph has at least one
node of the given type.

• state_next(+State, ?NextState) iterates over all successors of the given state.

The purpose of the query is to search for a state (variable Y) with a graph (GY)
that has at least one node of type C and that has a predecessor state (X) whose
graph (GX) contains a node of type A. Running this query produces the following
result, which correctly binds Y to state s2:

X = s0
GX = Nodes: [n0, n1]; Edges: [n0−−A−−>n0, n1−−D−−>n1, n0−−e−−>n1]
Y = s2
GY = Nodes: [n0, n1]; Edges: [n0−−C−−>n0, n1−−D−−>n1, n0−−e−−>n1]
Yes
More?
No

The output also shows the bindings for the other variables in the query. The
values printed for variables GX and GY are the toString representations of the
bound graphs, which show their internal structure – this explains the edge lists
with three elements.1 In the last two lines of the listing above, the user asked
the interpreter if there are more results for the query. Since there are no other
states that satisfy the query constraints, the answer is negative. If the GTS
had more states satisfying the query, continuing the execution would eventually
produce all of them. This is a consequence of the Prolog resolution procedure,
which backtracks to predicate state_next, binding Y with other successors of X,
as well as to state, binding X with other states of the GTS.

In addition to using the built-in groove predicates, users can also define
their own Prolog predicates. This ability to expand the Prolog knowledge-base
(illustrated on Section 3.3) improves the extensibility of the framework.

2.2 Implementation Overview

Figure 2 shows the main elements of the integration of Prolog into the Simu-
lator. groove is written in Java, so in order to ease the coupling, we chose
the GNU Prolog for Java library2 [10] as our Prolog interpreter. The Simulator
state in Figure 2 stands for the current snapshot of the Simulator configuration
in memory. It contains Java objects that represent, among others, host graphs,
transformation rules, and the GTS. The main block of Figure 2 is the glue code,
which connects the Prolog interpreter to the rest of the Simulator. The glue code
registers itself in the interpreter and is called back when a Prolog query is run.
When called, the glue code inspects the Simulator state and tries to bind the
Java objects with terms (variables) of the query.

1 groove uses an internal graph representation where nodes have very little structure;
node types and flags are stored as special self-edges.

2 http://www.gnu.org/software/gnuprologjava/

http://www.gnu.org/software/gnuprologjava/

Knowledge-Based Graph Exploration Analysis 109

GROOVE Simulator

Simulator State

Host Graphs

Rules

GTS

· · ·

Glue
Code

Prolog
Interpreter

inspect

register

call

unify terms

Fig. 2. Integration of the Prolog interpreter in the groove Simulator

Built-in Predicates. Each built-in groove predicate requires some glue code,
written partly in Prolog and partly in Java. When the Prolog interpreter is cre-
ated, an initialisation phase registers the built-in predicates with the interpreter.
For instance, gts(−GTS) is a built-in predicate that binds the Java GTS object
to a Prolog variable. Predicate registration is done with the following query:

:− build_in(gts/1, ’groove.prolog.builtin.Predicate_gts’).

Predicate build_in is a special interpreter command for creating new predicates.
The first argument specifies the predicate name and arity, the second one gives
the name of the Java class that implements the predicate functionality. Here is
a simplified listing for the Java Predicate_gts class.

1 public class Predicate_gts extends PrologCode {
2 public int execute(Interpreter interpreter, boolean backtracking, Term[] args) {
3 GTS gts = getSimulatorState().getGTS();
4 if (gts == null) {
5 return FAIL;
6 }
7 return interpreter.unify(args[0], gts);
8 }
9 }

When gts(X) is evaluated in a query, the interpreter calls execute of Predicate_gts.
The third argument of the method is an array of Prolog terms that corresponds
to the arguments of the predicate — in this case, X. The method first inspects
the Simulator state to retrieve the GTS object (line 3). If the object is null the
query fails, otherwise the object is bound to X (line 7).

Argument Modes. In the above, we have specified predicate signatures in
which the parameter names were prefixed with special characters. These indicate
the interaction of the Prolog interpreter with arguments at that position:

110 I. Galvão et al.

+ Input parameter: the argument must already be bound to an object of the
appropriate type. For example, has_node_type(+Graph,+Type) succeeds if the
given graph has a node of the given type.

– Output parameter: the argument should be free, i.e., not bound to an object;
it will receive a value through the query. For example, gts(−GTS) assigns the
object that represents the current GTS of the Simulator.

? Bidirectional parameter: can be used either as input or as output. For exam-
ple, state(?State) may be used in two ways. If the argument is already bound
to a state, the predicate either succeeds or fails depending on whether that
state is part of the current GTS or not. If the argument is free, it will be
bound to a state; backtracking will iterate over the remaining states.

Backtracking. The Prolog resolution procedure is a search for valid bindings,
in the course of which it may backtrack and re-evaluate predicates to retrieve
further solutions. This implies that the implementation of the built-in predicates
must handle backtracking. For example, the following is the Java glue code for
predicate state_next.

1 public class Predicate_state_next extends PrologCode {
2 public int execute(Interpreter interpreter, boolean backtracking, Term[] args) {
3 PrologCollectionIterator it;
4 if (backtracking) {
5 it = interpreter.popBacktrackInfo();
6 } else {
7 State state = getSimulatorState().getState(args[0]);
8 it = new PrologCollectionIterator(state.getNextStateSet(), args[1]);
9 interpreter.pushBacktrackInfo(it);

10 }
11 return it.nextSolution();
12 }
13 }

The backtracking flag (line 2) is used by the interpreter to indicate if the predicate
is being evaluated for the first time in a query or if it is being called again
after backtracking. During the first run, the else block (lines 7–9) is executed.
First the state object is retrieved along with its set of successor states (call
to state.getNextStateSet()). This set is put into a special iterator along with the
argument to be bound (line 8), which is then passed to the interpreter and
stored as backtrack information (line 9). When the method is called again during
backtracking, the same iterator is retrieved from the interpreter (line 5) and the
next solution is returned.

3 Application to Feature Modelling

Feature models [15] are commonly used to support the configuration of products
in software product lines [18]. They model variability by expressing commonali-
ties, variations and constraints between the different features that could be part

Knowledge-Based Graph Exploration Analysis 111

MandOpt

Feature
selected
name: string

Alt
Requires

FeatureModel
configured

Excludes
Or

FeatureTree
violated

Constraint
violated

1feature1 0..* mandatory
1feature2

2..*

or

0..*
constraint

2..*
alt

1tree

0..* optional

root
1

Fig. 3. A type graph for feature models

of a product. A feature usually represents an aspect of the software in an early
phase of the software life cycle, and the impact of the combination of features is
propagated across the phases until the actual product is implemented.

The analysis of feature models [5,25] is mostly concerned with verifying their
static properties with respect to allowed specifications and valid configurations
of the model. However, the specification of feature models and their configura-
tion process go beyond the information in the model: they often involve multiple
groups with distinct interests and expertise, which informally express extra prop-
erties of the features. Moreover, the definition of possible products depends on
forces like market demands, user preferences, and the availability of assets at a
specific time (such as the software components for the related products). Thus,
feature modelling is a domain which can strongly profit from the ability to define
and query static and dynamic properties of models, leading to richer analysis
techniques. In particular, we can identify the following tasks in the analysis:

1. Model additional knowledge about features;
2. Define domain properties independently on the models, in a declarative way;
3. Simulate the configuration process;
4. Query for valid configurations with respect to conditions not expressed in

the feature model;
5. Analyse alternative configuration paths and investigate the evolution of con-

figuration stages.

We proceed to show how the Prolog extension for groove can be used to im-
plement these tasks. First we give an overview of the relevant concepts in terms
of a type graph, some example rules and a small example model; then we focus
on the use of Prolog to query the resulting state space of the grammar.

3.1 Feature Model Type Graph

Figure 3 shows a type graph for feature models (in groove), based on the
definitions given in [25]. The type FeatureModel represents a feature model
composed of two parts: a FeatureTree whose nodes represent Features, and a set

112 I. Galvão et al.

FeatureTree
+ violated
! violated

Feature
selected

Or
selected

or

(a)

Requires
− violated

Feature
selected

Feature
+ selected
! selected

feature2feature1

(b)

FeatureTree
! violated

FeatureModel
+ configured
! configured

Constraint
violated

constraint tree

(c)

Fig. 4. Examples of graph production rules for feature model configuration. groove
rules are represented in a single graph, with different colours and line strokes used
to distinguish different elements: black (continuous thin) elements are matched and
preserved, and red (dashed fat) elements are Negative Application Conditions (NACs).
Node flags preceded by a character have especial roles: + indicates flag creation; − is
flag deletion, and ! is a NAC on the flag.

of explicit Constraints between these features. The constraint Requires indicates
that if the target node of feature1 is selected for a product, then the target
node of feature2 should be selected as well. The constraint Excludes indicates
that the target nodes of feature1 and feature2 cannot be both selected for the
same product. Type Feature has three subtypes: MandOpt, Or and Alt. The
edges from each of these subtypes to a Feature indicate which kinds of child
features each subtype can have. Leaf features of the tree are MandOpt features
without children. Finally, the flags configured , violated , and selected in the type
graph are used in GT rules to assist the configuration process and to enforce the
identification of valid configurations.

3.2 Product Configuration

A specific feature model is a graph instantiating Figure 3, initially without any
flags. The model is then configured using GT rules that encode the following
constraints (some of which were discussed above):

1. The root feature must be selected first;
2. When a MandOpt is selected, all mandatory children must also be selected;
3. When an Or is selected, at least one of its children must also be selected;
4. When an Alt is selected, exactly one of its children must also be selected;
5. When a non-root feature is selected, its parent feature must also be selected.

Child features are selected on demand and violations of constraints are checked
at each step. This applies both to the implicit conditions of the FeatureTree
and to the explicit Requires and Excludes constraints in the model.

Each of the steps above is performed by a combination of graph transformation
rules. For example, Figure 4(a) shows a rule used to detect a violation on the
selection of a child feature of an Or (step 3); the rule in Figure 4(b) selects

Knowledge-Based Graph Exploration Analysis 113

a feature which is required by another, previously selected one and removes
the violation of the Requires constraint; and the rule in Figure 4(c) checks the
conditions for the complete feature model to be correctly configured and marks
it as configured . A valid configuration of the feature model is found when neither
the constraints nor the feature tree are violated. Note that a tree violation is
modelled independently of the violation of explicit constraints between pair of
features. A tree has a violation when one of the requirements listed above is not
satisfied, e.g., when the root feature is not selected. Each valid configuration
selects a set of features that gives rise to a potential product of the product line.

Starting from the initial feature model, state space exploration generates a GTS
resulting from all possible interleavings of rule applications. Each state represents
the feature model with a partial selection of features, some of which may form valid
configurations. Figure 5shows a completely configured featuremodel, immediately
after the application of the rule shown in Figure 4(c) (named FeatureModelConfig-
uration in the grammar). This configuration has a set of selected features and no
constraint violations (violated flags). Note that the mandatory part of feature En-
ergySaving does not have to be selected since the feature itself, which is optional,
was not selected. Once generated, the GTS can be queried using Prolog.

3.3 Querying the State Space

We now come to the main point of the example, which is how Prolog may be
used to analyse the state space. For instance, the following user-defined predicate
extracts completely configured products:

product(Product) :−
rule(’FeatureModelConfiguration’, Rule), % Get the rule object
% Get the graph resulting from rule application
rule_application_result(Rule, Graph),
% Collect all features selected to compose the product.
findall(Feature, selected_feature(Graph, Feature), Product).

The predicate searches for graphs resulting from the application of rule Feature-
ModelConfiguration and then collects all selected features in this graph (using
findall, which is a higher-order predicate provided by GNU Prolog). Successive
calls of product generate all valid models. For the initial, unconfigured version of
the feature model this yields 50 products, including the one shown in Figure 5
(composed of features HomeAuto, Surveil, AccidentDet, AlarmAuto, Alarm, and
Bell). Predicate product uses the following auxiliary predicate, which consults
information of the GTS.

rule_application_result(Rule, Graph) :−
state(Source), % Get a source state
state_transition(Source, Transition), % Get a transition from source state
transition_event(Transition, Event), % Get the rule application event of the transition
ruleevent_rule(Event, Rule), % Ensure that the given rule is the one that was applied
transition_target(Transition, Target), % Get the target state of the transition
state_graph(Target, Graph). % Get the graph of target state

114 I. Galvão et al.

MandOpt
name = "Siren"

MandOpt
selected
name = "HomeAuto"

Alt
name = "WhiteGoodsCtrl"

FeatureTree

MandOpt
name = "Remote"

MandOpt
name = "ClimateCtrl"

MandOpt
selected
name = "AccidentDet"

FeatureModel
configured

Or
selected
name = "Alarm"

MandOpt
name = "EnergySaving"

MandOpt
name = "SmartCtrl"

Or
selected
name = "Surveil"

MandOpt
selected
name = "Bell"

MandOpt
name = "MotionDet"

Requires

MandOpt
selected
name = "AlarmAuto"

root

tree

or

mandatory
or

optional

feature1

feature2

alt

constraint

mandatory

alt

optional

optional

or

or

mandatory

Fig. 5. A valid configuration of the feature model

This predicate uses the rule application event associated with transitions of
the GTS to ensure that the given rule is the one that was indeed applied in
the Transition. It is important to note that the GTS has a total of 312 states,
representing all intermediate states that lead to one of the 50 configured feature
models. These intermediate states allow the analysis of different evolution paths
(formed by different rule application sequences) that lead to the same solution.
Furthermore, the grammar contains rules to re-validate constraint violations,
making it possible to reach a valid configuration even if a constraint was violated
in an intermediate state.

Another useful capability provided by the Prolog extension is the possibility to
define a knowledge base of additional model-related information. As an exam-
ple, suppose that we are interested in products that satisfy a certain budget
constraint. The following Prolog code sets the costs for each feature of the model
and defines what it means for a product to be within budget.

% Extra facts about feature costs.
cost(’HomeAuto’, 1). cost(’Surveil’, 0). cost(’WhiteGoodsCtrl’, 10).
cost(’AlarmAuto’, 10). cost(’EnergySaving’, 5). cost(’Siren’, 15).

Knowledge-Based Graph Exploration Analysis 115

cost(’AccidentDet’, 25). cost(’ClimateCtrl’, 10). cost(’Bell’, 10).
cost(’MotionDet’, 25). cost(’Alarm’, 5). cost(’SmartCtrl’, 10). cost(’Remote’,10).

% Computes the cost of a product.
sum_costs([], 0).
sum_costs([H|T], Total) :− sum_costs(T, CT), cost(H, CH), Total is CH+CT.

% Checks if the given product is within the given budget.
within_budget(Budget, Product) :− sum_costs(Product, Cost), Cost =< Budget.

The following query returns products with total cost smaller or equal to 70:

?− product(P), within_budget(70, P).

For our running example, this gives 11 products within the budget constraint.

4 Discussion and Related Work

In the previous section we showed how the Prolog extension for groove supports
the graph-based representation of feature models, how extra model attributes can
be specified as Prolog predicates and how state space exploration can be used
to search for feature model configurations. Going back to the list of tasks in
Section 3 (page 111), we see that, in fact, all of them are fulfilled.

4.1 Performance

There are two major points of evaluation regarding run-time performance of
the tool set: (i) the time used to explore the state space and store the GTS;
and (ii) the time needed to run the Prolog queries on a given GTS. Item (i)
covers the standard functionality of groove, for which an extensive body of
work exists [21,20,8,12], comprising performance evaluations of several aspects
of groove implementation and also comparisons with other tools. Item (ii)
concerns the functionality introduced by the Prolog extension, which requires a
new analysis.

For the running example of Section 3 the time necessary for building the GTS
and performing the Prolog queries is negligible (around 2 milliseconds in total),
since the state space is small. To properly exercise the tool, we used a grammar
implementing a solution for the leader election case study [16] proposed at the
GraBaTs 2009 tool contest. The purpose of this case is to verify a protocol for the
election of a leader among a ring of processes. The state space size is exponential
on the number of processes, giving rise to very large transition systems.

The results of the experiments are given in Table 1. Column # States shows
the GTS size for an increasing number of processes. Columns Exploration
Time and Query Time give the time in milliseconds needed to explore the
state space and run the Prolog queries, respectively. We used a query similar to
the one given in Section 3.3, that collects all states of the GTS where a leader has
been elected. The last column lists the number of results returned by the query.

116 I. Galvão et al.

Table 1. Performance comparison of Prolog queries against state space size.

Growth Exploration Growth Query Growth
States Ratio Time (ms) Ratio Time (ms) Ratio # Results

10 251 < 1 2
52 5.2 347 1.4 3 4.1 10

473 9.1 1,000 2.9 30 9.0 84
6,358 13.4 6,001 6.0 294 9.9 1,008

113,102 17.8 140,961 23.5 12,238 41.6 15,840

From the times given in Table 1 it can be seen that the bulk of the running time
is spent on building the GTS, unsurprisingly. From the growth ratios we see that
the query time increases linearly over the GTS size until the second-to-last line.
However, at the last line of the table, the query time exhibits a larger growth,
which can be explained by the large amount of backtracking done by the Prolog
interpreter while running the query.

Although further experimentation is certainly in order, we consider these ini-
tial performance results of the Prolog extension satisfactory.

4.2 Related Feature Modelling Approaches

The analysis of feature models is useful for several reasons, such as to efficiently
resolve the configuration constraints and to optimise the configuration calcula-
tion. This analysis is the object of research in many directions, which differ in the
expressiveness of the models and in the configuration strategies. For example,
generalised feature trees [25], propositional formulas [4] and constraint satisfac-
tion problems [5] have been used for the purpose of analysing feature models.
Although some of these algorithms are known to be quite efficient, the major
drawback of such approaches is the rigidity of the analysis method. A review
of the current techniques for the automated analysis of feature models is given
in [6].

Extra feature attributes can be modelled in our approach in at least two ways:
first, by adding new attributes to the graphs; or secondly, by defining predicates
in Prolog that represent such attributes. We chose the last form because the
values of the attributes used can be quite volatile in this application domain.
Again, it is possible to annotate the graph with all kinds of information, but this
would hamper the flexibility of the approach.

We want to draw attention to the issue of staged configuration of product
lines. A stage corresponds to the elimination of a set of configuration options;
the selection of features is deferred through stages until no variability is left.
Czarnecki et al. [9] handle staged configuration using a feature model notation
that supports the definition of feature cardinality. They explore the variability
in a feature model per stage, which contains the features that can be selected.
Hubaux et al. [14] propose a way to guide the configuration process using work-
flows which enforce the staged configuration in a certain order. Both approaches

Knowledge-Based Graph Exploration Analysis 117

also handle inter-related feature models, in which the configuration order matters
but is predefined and fixed over the whole configuration process.

We are able to generate all configuration stages of a feature model, as graph
states, and to inspect these stages in several ways: by querying in which order
the features (especially the variable features) are selected, or also by making
several kinds of inspections in these stages. For example, our groove solution
supports the analysis of configuration contexts in which a constraint has been
violated. We can also add extra constraints which are combinations of conditions
in previous stages.

4.3 Related Tools

progres [23] is a specification language which provides several mechanisms for
defining graph properties, including derived attributes, restrictions and paths
(unary and binary relations on nodes, which may be defined both textually and
graphically), graphical queries (called graph tests in progres), and constraints
(structural conditions going beyond the expressive facilities of graph schemas).
In contrast to the groove/Prolog integration, progres does not support ad-
hoc queries on graphs, and it also does not support queries on graph transition
systems.

Among other tools for the verification of graph transformation (GT) systems
we can cite Augur2 [17] and enforce [1]. Augur2 uses abstraction to verify
GT grammars with infinite state spaces. enforce acts as proof checker for the
correctness high-level programs written as graph transformations. While both
these tools could be used to analyse the evolution of a graph to some degree,
the explicit-state model checking approach of groove gives an advantage, since
it provides a simpler representation of intermediate states that eases the under-
standability for the layman user. For a more comprehensive comparison between
groove and other GT tools see [11].

Concerning other existing combinations of graph transformation tools with
Prolog, as far as we are aware, there are only two similar approaches, embodied
by viatra2 [26] and vmts [27], both of which are GT-based tools for model
transformation.

viatra2. Varró and Balogh [3] describe how viatra2 and Prolog can be used to
implement their so called Model Transformation by Example (MTBE) approach.

The purpose of MTBE is to semi-automatically derive model transformation
rules from example relations between source and target model elements. These
example relations are represented in viatra2 using a mapping model, formed by
the source and target meta-models and a reference meta-model to interconnect
them. The mapping model is translated to Prolog clauses and an inductive learn-
ing program is run, producing Prolog inference rules representing hypothesis that
are satisfied under the given clauses. These inference rules are then translated
back to a viatra2 representation and give rise to model transformation rules
that can operate on instances of the source and target meta-models, following

118 I. Galvão et al.

the example relations given in the mapping model. This process can be repeated
in order to iteratively refine the rules produced.

From the above, it should be clear that the intended use of Prolog in the
setting of viatra2 is quite different from ours, and hence there is little basis for
a deeper comparison.

vmts. At the GraBaTs 2009 tool contest, Siroki et al. [24] presented a solution
to the leader election case study using vmts and Prolog.

The goal of their approach is to check if the outcome of a set of model trans-
formation rules applied to a given input model complies to certain properties.
To perform this analysis, first the input model, the transformation rules and
the control flow graph specifying the order for rule applications are all trans-
lated from the vmts format to a Prolog representation. Subsequently, the Prolog
resolution procedure is used to enumerate the possible output models of the
transformation. Finally, these output models are checked by Prolog predicates
that express the properties one wants to assert.

Their use of Prolog resolution plays the same role as the state space explo-
ration functionality of groove. However, their approach suffers from the need
to translate vmts objects to Prolog. The Prolog resolution procedure is not ad-
equate for the exploration of a graph-based state space and therefore gives poor
performance. Another consequence of the translation is the low readability of
the generated Prolog clauses.

5 Conclusions and Future Work

Summarising, the highlights of the approach described in this paper are:

– Prolog is tightly integrated with graph-based state space exploration;
– Queries can uniformly combine static and dynamic aspects of graphs;
– The framework supports user-defined Prolog facts and predicates.

We have demonstrated these advantages by applying the approach in the domain
of feature modelling, where it gives rise to a competitive alternative to existing,
more rigid frameworks.

We have implemented the above as an extension to groove. Although many
of the examples given in this paper could have been solved in groove using other
means, the Prolog-based solutions are more convenient and elegant. Therefore,
the extension improves usability, which is a key factor for success.

On a more general level, this paper shows that there is much to be gained when
graph transformation is connected to other techniques, and that this connection
can be done in a simple, uniform way.

Future Work. There are two main points planned as future work.

– Prolog-based application conditions. One can associate Prolog queries to indi-
vidual GT rules, to play the role of additional application conditions. When

Knowledge-Based Graph Exploration Analysis 119

a rule with a query is matched, the query is executed in the Prolog inter-
preter, and only if the query succeeds the rule is applied. This functionality
is orthogonal to other application conditions already present in groove,
such as NACs, and would give another option for controlling the flow of rule
applications, in addition to rule priorities and control programs.

– Prolog-based state space exploration. One can also extend the groove explo-
ration strategies with a condition based on a Prolog query. Every time a new
state is produced, the query is run, and if the query is successful the state
is added to the GTS. The effect is comparable to a global post-application
condition.

Availability. The Prolog extension described in this paper is implemented in
groove version 4.4.0, available at http://groove.cs.utwente.nl. The gram-
mar for the solution given in Section 3 can also be downloaded at the same
address.

Acknowledgement. The integration of Prolog into groove is originally due to
Michiel Hendriks.

References

1. Azab, K., Habel, A., Pennemann, K.H., Zuckschwerdt, C.: ENFORCe: A system for
ensuring formal correctness of high-level programs. In: Zündorf, A., Varró, D. (eds.)
Proc. of the 3rd Int. Workshop on Graph-Based Tools. ECEASST, vol. 1 (2007)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
3. Balogh, Z., Varró, D.: Model transformation by example using inductive logic pro-

gramming. Software and System Modeling 8(3), 347–364 (2009)
4. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,

H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35, 615–636 (2010)

7. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer (1984)
8. Crouzen, P., van de Pol, J.C., Rensink, A.: Applying formal methods to gossiping

networks with mCRL and groove. In: Haverkort, B.R.H.M., Siegle, M., van Steen,
M. (eds.) ACM SIGMETRICS Performance Evaluation Review, vol. 36, pp. 7–16.
ACM, New York (2008)

9. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Mod-
els. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Hei-
delberg (2004)

10. Diaz, D., Codognet, P.: The GNU Prolog system and its implementation. In: ACM
Symposium on Applied Computing (SAC), vol. 2, pp. 728–732. ACM, New York
(2000)

11. Ghamarian, A., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using groove. International Journal on Software Tools for Technology
Transfer (STTT) (March 2011)

http://groove.cs.utwente.nl

120 I. Galvão et al.

12. Ghamarian, A.H., Jalali, A., Rensink, A.: Incremental pattern matching in graph-
based state space exploration. In: de Lara, J., Varró, D. (eds.) Proc. of the 4th Int.
Workshop on Graph-Based Tools. ECEASST, vol. 32 (2010)

13. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest Preconditions for High-Level
Programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)

14. Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configura-
tion workflows. In: Muthig, D., McGregor, J.D. (eds.) Software Product Lines
Conference (SPLC). ACM International Conference Proceeding Series, vol. 446,
pp. 221–230. ACM (2009)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (November 1990)

16. König, B.: Case Study: Leader Election, http://is.tm.tue.nl/staff/pvgorp/
events/grabats2009/cases/grabats2009verification.pdf

17. König, B., Kozioura, V.: Augur 2 – A new version of a tool for the analysis of
graph transformation systems. In: Bruni, R., Varró, D. (eds.) Proc. of the 5th In-
ternational Workshop on Graph Transformation and Visual Modeling Techniques.
ENTCS, vol. 211, pp. 201–210. Elsevier (2008)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

19. Rensink, A.: Representing First-Order Logic Using Graphs. In: Ehrig, H., Engels,
G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp.
319–335. Springer, Heidelberg (2004)

20. Rensink, A.: Isomorphism checking in groove. In: Zündorf, A., Varró, D. (eds.)
Proc. of the 3rd Int. Workshop on Graph-Based Tools. ECEASST, vol. 1 (2007)

21. Rensink, A., Schmidt, Á., Varró, D.: Model Checking Graph Transformations: A
Comparison of Two Approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F.,
Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Hei-
delberg (2004)

22. Rensink,A.: The GROOVESimulator: A Tool for State Space Generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

23. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and
environment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Hand-
book of Graph Grammars and Computing by Graph Transformation, pp. 487–550.
World Scientific Publishing Co., Inc., River Edge (1999)

24. Siroki, L., Vajk, T., Madari, I., Mezei, G.: vmts Solution of Case Study: Leader
Election, http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
submissions/grabats2009_submission_18-final.pdf

25. van den Broek, P.M., Galvao, I.: Analysis of feature models using generalised fea-
ture trees. In: Workshop on Variability Modelling of Software-Intensive Systems,
No. 29 in ICB-Research Report, Universität Duisburg–Essen, Germany, pp. 29–35
(January 2009)

26. viatra2– Visual Automated Model Transformations Framework,
http://www.eclipse.org/gmt/VIATRA2/

27. vmts– Visual Modeling and Transformation System, http://vmts.aut.bme.hu/

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009verification.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009verification.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/submissions/grabats2009_submission_18-final.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/submissions/grabats2009_submission_18-final.pdf
http://www.eclipse.org/gmt/VIATRA2/
http://vmts.aut.bme.hu/

Graph Grammar Induction

as a Parser-Controlled Heuristic Search Process

Luka Fürst1, Marjan Mernik2, and Viljan Mahnič1

1 University of Ljubljana, Faculty of Computer and Information Science,
Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

{luka.fuerst,viljan.mahnic}@fri.uni-lj.si
2 University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova ulica 17, SI-2000 Maribor, Slovenia
marjan.mernik@uni-mb.si

Abstract. A graph grammar is a generative description of a graph lan-
guage (a possibly infinite set of graphs). In this paper, we present a novel
algorithm for inducing a graph grammar from a given set of ‘positive’
and ‘negative’ graphs. The algorithm is guaranteed to produce a gram-
mar that can generate all of the positive and none of the negative input
graphs. Driven by a heuristic specific-to-general search process, the algo-
rithm tries to find a small grammar that generalizes beyond the positive
input set. During the search, the algorithm employs a graph grammar
parser to eliminate the candidate grammars that can generate at least
one negative input graph. We validate our method by inducing grammars
for chemical structural formulas and flowcharts and thereby show its po-
tential applicability to chemical engineering and visual programming.

Keywords: Graph grammars, graph grammar induction, graph gram-
mar parsing, heuristic search.

1 Introduction

Despite a large variety of applications [1,5,17], graph grammars have seldom
been used for classifying, compressing, or characterizing graph sets. However,
these potential roles would become far more important if grammars could be
automatically induced from graphs. For example, by inducing a graph grammar
from a set of chemical structural formulas, one could acquire a classifier to dis-
tinguish, e.g., biologically active substances from others, a way to compress large
chemical databases, or a set of rules characterizing a given group of chemicals.

In this paper, we present a novel approach to inducing graph grammars from
positive and (optionally) negative graph examples. Our algorithm is guaranteed
to produce a grammar that can generate all of the positive and none of the neg-
ative examples. By formulating grammar induction as a best-first search process
biased towards small grammars, the algorithm may be expected to induce a
grammar that generalizes beyond the observed examples. The search proceeds
in the specific-to-general direction, starting with a trivial grammar that can

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 121–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 L. Fürst, M. Mernik, and V. Mahnič

generate exactly the positive input graph set. As the algorithm progresses, it
produces increasingly smaller and more general candidate grammars. To pre-
vent over-generalization, the algorithm is coupled with a graph grammar parser,
which is used to check whether a given candidate grammar can generate any
negative input graph. If it can, it is immediately discarded.

In the domain of graph grammar induction, only few approaches have been
formulated as a parser-controlled search process. However, the main contribution
of this paper is the generalization operator in the search process, i.e., the way of
proceeding from more specific to more general grammars.

The grammars induced by our algorithm constitute a subclass of the Layered
Graph Grammars (LGG) formalism [18] and can therefore be parsed using the
Rekers-Schürr parser [18,8]. The parsability of the target formalism makes it
possible to induce a grammar from both positive and negative examples, which
results in a grammar suitable for classification purposes.

In this paper, we present two nontrivial applications of our algorithm. First,
we induce a grammar of flowcharts comprising atomic, sequential, conditional,
and iterative statements. As a second application, we induce a grammar of the
structural formulas of a subset of hydrocarbons (chemical compounds comprising
carbon and hydrogen atoms). The potential applications of inducing grammars
from chemical formulas have already been mentioned. Induction of flowchart
grammars (and diagram grammars in general) may find its uses in visual pro-
gramming tools. Graph grammars are often difficult to create ‘by hand’. Using
our approach, a tool could automatically induce a parsable graph grammar from
a few user-provided sample graphs.

The rest of this paper is structured as follows: In Sect. 2, we give a review of
related work. Section 3 defines the basic concepts. Our approach is described in
Sect. 4 and experimentally validated in Sect. 5. Section 6 concludes the paper.

2 Related Work

The work on graph grammar induction has been fairly scarce. This fact can be
attributed partly to the complexity of the problem itself and partly to the lack
of efficient general parsers, which stems from the NP-hardness of the parsing
problem for many classes of graph grammars.

One of the first graph grammar induction approaches was proposed by Jeltsch
and Kreowski [10]. Their algorithm induces a hyperedge replacement (HR) gram-
mar [19, Chap. 2] from a set of positive graphs by successive generalizations of
the trivial initial grammar. Our approach is based on a similar idea, but we
employ a fairly different generalization operator and embed the generalization
scheme into a search algorithm.

Jonyer et al. [11] also induce grammars from positive graphs in a specific-
to-general direction. In each generalization step, their algorithm determines the
‘best’ (according to the Minimum Description Length principle) subgraph S in
the input set, replaces it with a single nonterminal vertex v, and adds the produc-
tion v ::= S to the grammar. The generated productions are not equipped with

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 123

any embedding rules and can therefore only represent chains of similar graphs
connected with single edges. An improved version of this approach, proposed
by Kukluk et al. [13], induces grammars that can represent sequences of graphs
sharing common edges. Recently, Brijder and Blockeel [4] presented a method
to induce a node-label controlled (NLC) grammar [19, Chap. 1] from a single
graph containing a set of isomorphic subgraphs.

None of the approaches mentioned above makes use of a parser. Therefore,
they cannot accept negative graphs, and the induced grammars are not suitable
for classification purposes. An approach that does employ a parser, although only
to validate the final grammar produced by the induction algorithm, was proposed
by Ates et al. [2]. They induce grammars from the Spatial Graph Grammar
formalism [12], which is parsable in polynomial time but fairly restricted.

Our approach induces grammars that are both parsable and fairly powerful,
at least in comparison to those of Jonyer et al. and Ates et al. Another advantage
of our method is that the parser actively participates in the induction process.
Unfortunately, the combination of the power and parsability of the target for-
malism results in the exponential worst-case complexity of the parser and hence
of the entire algorithm.

The problem of graph grammar induction has been inspired by that of string
grammar induction [16], where many approaches are based on similar ideas as
our method, i.e., specific-to-general search, parser-based validation, etc. [7,15].

Graph grammar induction is also related to the problem of metamodel infer-
ence [9], where the goal is to induce a metamodel from a given set of models,
and to that of model transformation by example [3], where the goal is to in-
fer model transformation rules from a set of known transformation pairs. Since
model transformation rules can be represented as graph grammars in the Triple
Graph Grammar (TGG) formalism [20], the model-transformation-by-example
problem can be formulated as a TGG induction problem.

3 Definitions

A directed graph G is a tuple (VG, EG, VLabelsG, ELabelsG, connG, vlabelG,
elabelG), where VG, EG, VLabelsG, and ELabelsG are the sets of vertices, edges,
vertex labels, and edge labels, respectively, connG : EG → VG×VG is the function
defining the source and the target vertex for each edge, and vlabelG : VG →
VLabelsG and elabelG : EG → ELabelsG are the functions defining the labels of
individual graph elements. For convenience, let labelG(x) ≡ vlabelG(x) if x ∈ VG

and labelG(x) ≡ elabelG(x) if x ∈ EG. Unlabeled vertices and edges will be
treated as if they were labeled with a special label φV and φE , respectively. Let
|G| = |VG|+|EG| be the size of the graph G. Undirected graphs are defined in the
same way as directed ones, except that for each edge e, conn(e) is a two-element
set rather than an ordered pair. The subscripts in VG, EG, connG, etc., will be
omitted when the associated graph is clear from context.

Graphs G and H are isomorphic (denoted G ≈ H) if there exists a bijec-
tive vertex-to-vertex and edge-to-edge mapping (called isomorphism) h : G →

124 L. Fürst, M. Mernik, and V. Mahnič

H that preserves labels and adjacencies, i.e., labelH(h(x)) = labelG(x) and
connH(h(e)) = h(connG(e)) for all x ∈ VG ∪ EG and e ∈ EG.

1 A graph H
is a subgraph of a graph G (denoted H � G) if VH ⊆ VG and EH ⊆ EG. An
occurrence of a graph H in a graph G is a subgraph H ′ � G such that H ′ ≈ H .
Let us define the neighborhood of a subgraph H � G in G (denoted NhG(H))
as the set of all vertices in VG \ VH connected to at least one vertex in VH , i.e.,
NhG(H) = {v ∈ VG \ VH | ∃w ∈ VH , e ∈ EG : connG(e) = (v, w) ∨ connG(e) =
(w, v) ∨ connG(e) = {v, w}}.

Let [u : A
e : t−−→ v : B] (or [u : A e : t v : B]) denote a graph comprising a vertex

u labeled A, a vertex v labeled B, and an edge e labeled t with conn(e) = (u, v)
(or conn(e) = {u, v}). Let [u(S)v] denote a graph comprising vertices u and v, a
subgraph S such that Nh [u(S)v](S) = {u, v}, and an arbitrary number of edges
connecting the vertices of S to the vertices u and v.

Let us now define the graph grammar formalism induced by our method. A
graph grammar is the quadruple GG = (T V , T E , NE , P), where T V , T E ,
and NE = {#1, #2, . . .} are pairwise disjoint sets of terminal vertex labels,
terminal edge labels, and nonterminal edge labels, respectively, and P is a set of
productions of the form p : L ::= R, where L = LHS (p) (the left-hand side or
LHS) and R = RHS(p) (the right-hand side or RHS) are connected graphs such
that VLabelsL ⊆ VLabelsR ⊆ T V , ELabelsL ⊆ NE , and ELabelsR ⊆ T E ∪ NE .
Additionally, each production has to belong to one of the following types:

Type I: Productions of this type take the form λ ::= R, where λ denotes the
graph with no elements (the null graph).

Type II: These productions take the form [u : A
e : #i−−−→ v : B] ::= [u(S)v] or

[u : A e : #i v : B] ::= [u(S)v], where {A,B} ⊆ T V and #i ∈ NE . The sub-
graph S will be called the core, and the vertices u and v will be called

the guards. Productions of this type will often be written as [A
#i−−→ B] ::=

[A(S)B] or [A #i B] ::= [A(S)B].

Type III: These productions take the form [u : A
e : #i−−−→ v : B] ::= [u

r−→ v] or
[u : A e : #i v : B] ::= [u r v], where {A,B} ⊆ T V , #i ∈ NE , and r ∈ T E ∪
NE . Productions of this type will often be written as [A

#i−−→ B] ::= [A
r−→ B]

or [A #i B] ::= [A r B].

For example, the grammar GG7 in Fig. 2 contains one production of each type
(p7,1 belongs to type I, p7,2 to type II, and p7,3 to type III). The guard vertices
on production RHSs are marked with small black circles. In the case of directed
grammars (e.g., in Fig. 1), the RHS guards are marked with ‘S’ and ‘T’. The
letter ‘S’ marks the vertex that coincides with the source vertex on the LHS.

To apply a type-II production p : [u : A
e : #i−−−→ v : B] ::= [u(S)v] to a graph G,

one has to (1) find an occurrence L′ of the graph [u : A
e : #i−−−→ v : B] in G, (2)

replace in L′ the edge that corresponds to e with a copy S′ of the graph S, and

1 For any function f : A → B, let f((x, y)) = (f(x), f(y)) and f({x, y}) = {f(x),
f(y)}.

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 125

(3) connect the vertices of S′ to the vertices corresponding to u and v in the
same way as the vertices of S are connected to the vertices u and v in RHS(p).

To apply a type-III production [u : A
e : #i−−−→ v : B] ::= [u

r−→ v] to a subgraph

[u′ : A
e′ : #i−−−−→ v′ : B], the edge e′ has to be replaced with an edge labeled r .

To reverse-apply a production, this procedure is simply reversed. Undirected
productions are applied and reverse-applied in the same way as directed ones. A
sample grammar and a series of production applications is shown in Fig. 1. The
notation L ::= R1 | . . . |Rs is an abbreviation for L ::= R1, . . . , L ::= Rs.

Fig. 1. Top row : The reference grammar for the flowcharts language. Bottom row : A
derivation of a sample flowchart. The application of the production p8 is highlighted.

A grammar GG covers a graph G if GG can generate G, i.e., if G can be
derived from the null graph using the productions of GG . The language of a
grammar GG is the set of all terminal-labeled graphs covered by GG. A parser
is an algorithm that determines whether a given graph G belongs to the language
of a given grammar GG .

The RHSs of the type-I productions of a grammar GG will be collectively
called the base graphs of GG and denoted B(GG). The size of a grammar will
be defined as |GG| =

∑
p∈P(GG) |p|, where |p| = |RHS(p)| if p is a type-I pro-

duction, and |p| = |RHS(p)|+ |LHS (p)| − 2 = |RHS(p)|+1 otherwise. (The two
guards are common to the LHS and RHS, hence ‘−2’.) A grammar GG1 is larger
(or smaller) than a grammar GG2 if |GG1| > |GG2| (or |GG1| < |GG2|).

Our target grammar formalism can be regarded as a subset of both LGG
and HR formalisms. Hyperedge replacement grammars consist of productions
for replacing individual hyperedges with hypergraphs. A hyperedge is an edge
that connects an arbitrary sequence or multiset of vertices. (An ordinary edge
is therefore a special case of a hyperedge.) A hypergraph is a graph composed of
vertices and hyperedges. Type-I productions can be thus viewed as HR produc-
tions with zero-arity hyperedges on their LHSs. Type-II and type-III productions
also specify HR rules, since the guard vertices do not participate in the replace-
ment process itself; rather, they only determine the context of replacement. The
guards correspond to external vertices in the HR terminology.

126 L. Fürst, M. Mernik, and V. Mahnič

4 The Proposed Graph Grammar Induction Algorithm

In this section, we will often refer to Fig. 2, which shows the induction of a
grammar from a single positive graph, namely the structural formula of butane.
In this example, the final result is the grammar GG7.

4.1 Overview

The pseudocode of the induction algorithm is shown in Fig. 3. The induction
algorithm induces a graph grammar from a set of positive graphs (G+) and (op-
tionally) a set of negative graphs (G−) such that G+ ∩ G− = ∅. The algorithm
accepts two additional parameters (positive integers): beamWidth specifies the
beam width in the search process, and maxVertexCount determines the maxi-
mum vertex count in the search for production cores (explained later).

The induction algorithm operates as a specific-to-general beam search pro-
cess. Its search space can be visualized as a graph in which the vertices repre-
sent individual candidate grammars and the edges represent possible elementary
generalizations of candidate grammars. A candidate grammar is a grammar that
covers all of the positive input graphs and none of the negative ones. An elemen-
tary generalization step transforms a given candidate grammar GG into a new
candidate grammar that is at least as general as GG.

The goal of the algorithm is to find a candidate grammar of the minimum
size. By restricting its search to the space of candidate grammars, the algorithm
is guaranteed to produce a correct grammar in terms of the coverage of the input
graphs. Its preference for small grammars is likely to result in a grammar that
generalizes beyond the observed examples.

The algorithm starts with the most specific candidate grammar. This gram-
mar, denoted GG1, consists of productions {λ ::= G |G ∈ G+} and thus covers
precisely the positive input set. During its execution, the algorithm maintains a
priority queue of all candidate grammars that have been generated but not yet
generalized. In each step, the algorithm removes the smallest grammar from the
queue and applies to it all possible elementary generalizations, producing a new
set of candidate grammars. Each resulting grammar is verified by our improved
version of the Rekers-Schürr parser [8]. If a grammar covers at least one negative
input graph, it is immediately discarded; otherwise, it is placed into the queue.
To reduce the computational effort, only the beamWidth smallest grammars are
kept in the queue. When the queue becomes empty, the algorithm outputs the
smallest grammar created during the search process.

4.2 Elementary Generalizations

To perform a single step forward in our specific-to-general search, a given candi-
date grammar is ‘slightly’ generalized or merely restructured without changing
its generative power. This is achieved by elementary generalizations of two types,
called ‘type A’ and ‘type B’.

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 127

Fig. 2. Inducing a grammar from the structural formula of butane

128 L. Fürst, M. Mernik, and V. Mahnič

1 procedure induceGrammar(G+, G−, beamWidth, maxVertexCount)
2 GG1 := the grammar with productions λ ::= G for each G ∈ G+;
3 GGmin := GG1;
4 Queue := {GG1};
5 while Queue �= ∅ do
6 GG := the smallest grammar from Queue;
7 if |GG | < |GGmin| then GGmin := GG end;
8 Queue := Queue \ {GG};
9 NewProductions := findProductions(GG , maxVertexCount);

10 foreach p ∈ NewProductions do
11 GG ′ := type-A generalization of GG via the production p;
12 if GG ′ does not cover any graph from G− then
13 GG ′′ := type-B generalization of GG ′ (if it exists);
14 if GG ′′ exists and does not cover any graph from G− then
15 Queue := Queue ∪ {GG ′′}
16 else Queue := Queue ∪ {GG ′} end
17 end
18 end;
19 retain the beamWidth smallest grammars in Queue and discard the others
20 end;
21 return GGmin

22 end

Fig. 3. The induction algorithm

Type-A Generalization. A type-A generalization of a candidate grammarGG
adds a new type-II production p to GG and reverse-applies it to all occurrences
of RHS(p) in the base graphs of GG , resulting in a new grammar GG ′. In
Fig. 2, the addition of the production p3,2 to the grammar GG1 results in the
grammar GG3. The grammar GG3 is thus a type-A generalization of GG1 via
the production p3,2.

How can we find a type-II production p to transform a grammar GG into
GG ′? Since the base graphs of GG ′ are obtained by reverse-applying p to the
base graphs of GG , the base graphs of GG must contain at least one occurrence
of RHS(p), i.e., at least one subgraph of the form [u(S)v]. We thus search the
base graphs of GG for all possible subgraphs of the form [u(S)v]. Each such
subgraph is an occurrence of the RHS of some type-II production, and each such
production is eligible to enrich the grammar GG . Since we cannot determine the
‘best’ type-II production in advance, we have to consider all such productions,
and thus we obtain many possible type-A generalizations of GG .

To simplify the explanation, let us first focus on undirected graphs and gram-
mars. The process of finding type-II productions to generalize an undirected
grammar GG is outlined in Fig. 4. The auxiliary procedure findSubgraphs (omit-
ted for lack of space) finds all subgraphs comprising up to maxVertexCount
vertices in the set of base graphs of GG . More precisely, the procedure creates a
set of pairs (Subgraph, Occurrences), where Subgraph is a graph and Occurrences

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 129

is a set of pairs (Match, Host) such that Match is an occurrence of the graph
Subgraph in the graph Host ∈ B(GG). The procedure findSubgraphs first finds
all single-vertex subgraphs and then iteratively produces larger subgraphs as
single-vertex extensions of individual occurrences of smaller subgraphs. This ap-
proach was inspired by a large selection of algorithms sharing similar goals [6],
especially by the VSiGraM approach [14], which could be used in place of it.

1 procedure findProductions(GG , maxVertexCount)
2 SubsAndOccs := findSubgraphs(B(GG),maxVertexCount);
3 Productions := ∅;
4 foreach (Subgraph ,Occurrences) ∈ SubsAndOccs do
5 foreach (Match ,Host) ∈ Occurrences do
6 if |NhHost (Match)| = 2 then
7 call the two vertices in NhHost (Match) u and v ;
8 A := label(u); B := label(v);

9 I := {i | [A #i B] is a subgraph in GG} ;
10 if I = ∅ then k := 1 else k := max(I) + 1 end;
11 foreach i ∈ I ∪ {k} do

12 Productions := Productions ∪ {[A #i B] ::= [A(Subgraph)B]}
13 end
14 end
15 end
16 end;
17 return Productions
18 end;

Fig. 4. Finding eligible type-II productions to generalize an undirected grammar GG

After receiving a set of subgraph-occurrence pairs, the procedure findProduc-
tions searches this set for all subgraphs that can serve as possible production
cores (not entire RHSs!). For a subgraph S to serve as the core of a production,
S must have exactly two neighbors in the base graph in which it occurs. Such a
subgraph S gives rise to a type-II production p : [A #i B] ::= [A(S)B], where #i

could stand for any nonterminal label. If the graph [A #i B] already occurs as a
subgraph somewhere in the grammar, then the production p actually generalizes
the grammar GG; otherwise, GG is merely restructured. To take both possibili-
ties into account, we create a separate production [A #i B] ::= [A(S)B] for each

i such that [A #i B] occurs as a subgraph in GG and for a single value of i that
does not meet this condition (lines 9–13 in Fig. 4). For example, the grammar
GG3 in Fig. 2 is extended by the productions p5,3 (giving the grammar GG5)
and p6,3 (giving the grammar GG6), which differ only in their LHS edge labels.

In the case of directed graphs and grammars, a production core [A(S)B] can

serve as theRHS in two distinct production families, namely [A
#i−−→ B] ::= [A(S)B]

and [B
#i−−→ A] ::= [B(S)A]. Since neither of these families can be considered prefer-

able in advance, both should be added to the resulting production set. The family

130 L. Fürst, M. Mernik, and V. Mahnič

[A
#i−−→ B] ::= [A(S)B] contains a production for each i such that [A

#i−−→ B] occurs
as a subgraph in GG and for a single value of i that does not meet this condition.
The other family is defined in an analogous fashion.

After each type-A generalization step, the resulting grammar is simplified
by reverse-applying its type-II productions to its base graphs wherever possible
and as many times as possible. This procedure is not essential for the induction
process, but can make the grammar considerably smaller.

Type-B Generalization. A type-B generalization of a candidate grammarGG
replaces two ‘similar’ productions of GG with a set of new productions, giving
a grammar GG ′ that is at least as general as GG . In Fig. 2, the grammar GG5

is generalized to GG7 by replacing the productions p5,2 and p5,3 with p7,2 and
p7,3. The notion of ‘similar’ productions is based on the concept of unifiability.

Edge labels l and m are unifiable (denoted l ∼= m) if (l = m)∨(l ∈ NE)∨(m ∈
NE). The unification of unifiable edge labels l and m (denoted unif (l,m)) is the
label l if l ∈ NE ; otherwise, unif (l, m) = m. Graphs G and H are unifiable
if there exists a unifying isomorphism h : G → H , i.e., a bijective vertex-to-
vertex and edge-to-edge mapping such that label(h(v)) = label (v), conn(h(e)) =
h(conn(e)), and label (h(e)) ∼= label (e) for all v ∈ VG and e ∈ EG. The unification
of such graphs G and H (denoted unif (G,H)) is a graph obtained from G by
setting label (e) := unif (label (e), label(h(e))) for all edges e ∈ G.

Type-B generalization can be applied to a pair of directed productions p and

q if they take the form p : [u : A
e : #i−−−→ v : B] ::= [u(S)v] and q : [u′ : A

e′ : #i−−−−→
v′ : B] ::= [u′(S′)v′] and if there exists a unifying isomorphism h : RHS(p) →
RHS(q) such that h(u) = u′ and h(v) = v′. A type-B generalization step replaces

the productions p and q with a set that comprises: (1) a production [A
#i−−→ B] ::=

[A(S′′)B], where S′′ = unif (S, S′) (let g : S′′ → S and g′ : S′′ → S′ denote the

corresponding unifying isomorphisms); (2) a production [P
#j−−→ Q] ::= [P

r−→ Q]
for each edge e of S′′ such that label (conn(e)) = (P ,Q), label(e) = #j, and
label(g(e)) = r ∨ label (g′(e)) = r . Undirected productions are treated in an
analogous manner.

5 Experimental Results

5.1 Application to Flowcharts

In our first series of experiments, we applied the induction algorithm to various
sets of valid flowchart graphs. Our goal was to induce a grammar that generates
(a superset of) the language generated by the reference grammar in Fig. 1.
We experimented with different sets of randomly generated flowchart graphs
and different input parameters. Each input set comprised between 10 and 50
graphs with up to 25 vertices. Different sets gave rise to different grammars,
but in many cases, the algorithm induced the grammar shown in Fig. 5 or some
variation thereof. The productions p1 through p8 in Fig. 5 are equivalent to

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 131

the productions of the reference grammar despite the fact that all nonterminal
edges are reversed. (Note the positions of the markers ‘S’ and ‘T’; in every type-
II production, the source vertex on the LHS coincides with the bottom vertex
on the RHS.) The induced grammar can therefore generate any valid flowchart.

Fig. 5. A grammar induced from various sets of valid flowcharts

5.2 Application to Chemical Structural Formulas

In our second series of experiments, we tried to induce a grammar of linear hydro-
carbons with single and double bonds (LHSDB). This graph language comprises
the structural formulas of chemical compounds consisting of carbon atoms (ver-
tices labeled C) and hydrogen atoms (vertices labeled H). The carbon atoms
form a chain connected with single and double bonds (edges). The hydrogen
atoms are connected to the carbon atoms by means of single bonds so that ev-
ery carbon atom has exactly four incident bonds. Some positive and negative
examples of the LHSDB language are shown in Fig. 8. Our reference grammar
for this language is depicted in Fig. 6.

Fig. 6. The reference grammar for the LHSDB language

To make the induction problem more challenging, the induced grammar was
required to cover only valid (though not necessarily linear) hydrocarbons. We
thus demanded that the induced grammar cover all valid LHSDB graphs and
that every graph covered by the induced grammar represent a valid hydrocarbon.
Experiments showed that such a grammar probably cannot be induced from
positive graphs alone. Moreover, a correct grammar could not be induced from
‘almost any’ pair of input sets. A favorable combination of positive and negative
input graphs had to be sought more systematically.

132 L. Fürst, M. Mernik, and V. Mahnič

To determine whether a correct LHSDB grammar can be induced and from
what set of examples this can be achieved, we prepared a set of 42 positive
examples (G+

0) and a set of 200 negative examples (G−
0). The positive set com-

prised all correct LHSDB graphs with up to 6 carbon vertices. The negative
set was obtained by randomly removing one or two hydrogen atoms in correct
LHSDB graphs with up to four carbon vertices. We then tried to find such subsets
S+ ⊆ G+

0 and S− ⊆ G−
0 that the grammar induced from them would cover all

graphs from G+
0 and none from G−

0 . The sets S+ and S− were obtained by a sim-
ple procedure shown in Fig. 7. The resulting sets are displayed in Fig. 8, and the
grammar induced from them (using beamWidth = 10 and maxVertexCount = 5)
is shown in Fig. 9. The size of the induced grammar equals 59. For comparison,
the size of the reference grammar (Fig. 6) amounts to 54.

1 procedure findInputExamples(G+
0 , G−

0 , beamWidth , maxVertexCount)
2 S+ := {the smallest graph in G+

0 };
3 S− := ∅;
4 GG := induceGrammar(S+, S−, beamWidth , maxVertexCount);
5 Missed+ := {G ∈ G+

0 |GG does not cover G};
6 Missed− := {G ∈ G−

0 |GG covers G};
7 while (Missed+ �= ∅) ∨ (Missed− �= ∅) do
8 if Missed− �= ∅ then S− := S− ∪ {the smallest graph from Missed−}
9 else S+ := S+ ∪ {the smallest graph from Missed+} end;

10 GG := induceGrammar(S+, S−, beamWidth, maxVertexCount);
11 Missed+ := {G ∈ G+

0 |GG does not cover G};
12 Missed− := {G ∈ G−

0 |GG covers G}
13 end;
14 return (S+,S−)
15 end

Fig. 7. Extraction of a pair of small favorable input graph sets (S+ and S−) from a
pair of larger disjoint graph sets (G+

0 and G−
0)

The grammar of Fig. 9 meets the requirements stated above. By mathematical
induction on the length of carbon vertex chains, we could prove that every valid
LHSDB graph can be generated by the induced grammar. To prove that the
grammar generates only valid hydrocarbon graphs, we would have to show that
every vertex introduced by the grammar eventually obtains the correct number
of incident edges (four in the case of carbon vertices and one in the case of
hydrogen vertices). To see this, consider that any subgraph C #1 H expands

into C (. . .) H and that any subgraph C #2 H expands into C=(. . .) H.
Given the input sets S+ and S− of Fig. 8, the induction algorithm was

shown to be robust to the parameters beamWidth and maxVertexCount, pro-
vided that beamWidth ≥ 1 and maxVertexCount ≥ 3. The values 1 and 2
for maxVertexCount cannot possibly produce any meaningful results, since the
production p5 in Fig. 9, which seems to be an indispensable part of any valid

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 133

Fig. 8. The positive input set (S+) and the negative input set (S−) for the induction
of an LHSDB grammar

Fig. 9. The grammar induced from the input sets of Fig. 8

grammar, has three vertices in its core. We systematically varied both param-
eters and ran the induction algorithm for each pair of values. The resulting
grammars were tested on a set of positive and negative graphs disjoint from G+

0

and G−
0 .

5.3 Computational Complexity

Owing to the exhaustive subgraph enumeration procedure, which is the basis
of type-A generalization, and to the Rekers-Schürr parser, our algorithm has
exponential worst-case complexity in terms of time and memory consumption.
The complexity of subgraph search could be reduced at the cost of missing some
subgraphs. For example, the approaches of Jonyer et al. [11], Kukluk et al. [13],
and Ates et al. [2] place an upper limit on the number of created subgraphs and
hence run in a polynomial time and space at the cost of suboptimal results. The
improved version of the Rekers-Schürr parser runs in polynomial time and space
for many grammars [8], but its worst-case complexity is still exponential. This
fact should not come as a surprise, since the problem of graph grammar parsing
is NP-hard even for very restricted classes of grammars [19].

Table 1 shows the performance of our induction algorithm on the input graph
set of Fig. 8 with respect to the parameters beamWidth andmaxVertexCount. We
measured the number of generated candidate grammars and the total execution
time of the algorithm on an 1.86-GHz Intel Core 2 Duo machine. The results for

134 L. Fürst, M. Mernik, and V. Mahnič

different values of beamWidth (with maxVertexCount fixed at 5) are shown on
the left side of the table, and those for different values of maxVertexCount (with
beamWidth = 10) are displayed on the right side.

Figure 10 shows how the execution time depends on the number of input
examples. To obtain the left chart, the number of negative examples was fixed
at 200, and the number of positive examples was varied from 1 to 42 in the order
of increasing graph size. To draw the right chart, the number of positive examples
was fixed at 42, and the number of negative examples was varied from 1 to 200 in
no particular order. In both cases, the input examples were drawn from the set
of 42 positive and 200 negative examples that were supplied to the procedure of
Fig. 7 when searching for a favorable input set for hydrocarbons. The parameters
beamWidth and maxVertexCount were fixed at 10 and 5, respectively.

Table 1. The number of generated grammars and the total execution time with respect
to the parameters beamWidth and maxVertexCount

beamWidth maxVertexCount

1 10 100 1000 3 5 7 9

Number of generated grammars 116 148 590 24 435 95 148 195 224
Execution time (in seconds) 6.8 7.2 12.2 370 3.4 7.2 12.4 17.5

Fig. 10. Total execution time with respect to the number of input examples

The algorithm takes a little less than three minutes to finish if provided with
the entire set of 42 positive and 200 negative examples. However, the user is
not required to wait until the algorithm halts in order to obtain a meaningful
grammar. Since the algorithm generates only grammars that are consistent with
the input set, its result (the current minimum grammar) is valid at any point
during its execution. The longer the algorithm runs, the smaller and the more
general grammars it produces, but all induced grammars are valid with respect
to the input set.

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process 135

6 Conclusion

We have presented a novel graph grammar induction algorithm. Given a pair of
disjoint graph sets, G+ and G−, the algorithm tries to find the smallest gram-
mar that covers all graphs from G+ and none from G−. The induction process
is realized as a parser-controlled specific-to-general search. We applied the pro-
posed method to two meaningful and nontrivial graph languages. The algorithm
exhibited a surprising inductive power when provided with favorable input.

In our ‘chemical’ example, a favorable input set was found by the algorithm
in Fig. 7, which requires a pair of (large) initial input sets. To make the input
selection process more ‘user-friendly’, we are working on a tool with the follow-
ing interaction scenario: First, the user prepares a (small) set of positive input
graphs. The tool induces a grammar from this set and generates a set of random
graphs covered by the induced grammar. The user can then visually inspect the
generated graphs and add to the negative input set all those that do not belong
to the target language. If there are no such graphs, he or she may prepare some
additional positive graphs and, by the help of the built-in parser, add to the
positive input set all those graphs that are not covered by the induced grammar.
After that, the tool induces a new grammar based on the updated input sets.
The process repeats until the user is satisfied with the induced grammar.

At present, our research is focused on more general target grammar for-
malisms. In the formalism presented in this paper, a grammar for arbitrary
hydrocarbons most probably does not exist. In the unrestricted LGG formalism,
such a grammar comprises four simple productions (see the grammar GGHC in
Fig. 3 in [8]).

References

1. Aschenbrenner, N., Geiger, L.: Transforming Scene Graphs Using Triple Graph
Grammars – A Practice Report. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 32–43. Springer, Heidelberg (2008)

2. Ates, K., Kukluk, J.P., Holder, L.B., Cook, D.J., Zhang, K.: Graph grammar in-
duction on structural data for visual programming. In: Proc. of the 18th IEEE
International Conference on Tools with Artificial Intelligence, pp. 232–242. IEEE
Computer Society, Washington, DC (2006)

3. Balogh, Z., Varró, D.: Model transformation by example using inductive logic pro-
gramming. Software and Systems Modeling 8(3), 347–364 (2009)

4. Brijder, R., Blockeel, H.: On the inference of non-confluent NLC graph grammars.
Journal of Logic and Computation (to appear, 2012)

5. Buchmann, T., Dotor, A., Uhrig, S., Westfechtel, B.: Model-Driven Software De-
velopment with Graph Transformations: A Comparative Case Study. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 345–360.
Springer, Heidelberg (2008)

6. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons, New Jersey
(2006)

7. Dubey, A., Jalote, P., Aggarwal, S.K.: Learning context-free grammar rules from
a set of programs. IET Software 2(3), 223–240 (2008)

136 L. Fürst, M. Mernik, and V. Mahnič

8. Fürst, L., Mernik, M., Mahnič, V.: Improving the graph grammar parser of Rekers
and Schürr. IET Software 5(2), 246–261 (2011)

9. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: A metamodel recovery
system using grammar inference. Information and Software Technology 50(9-10),
948–968 (2008)

10. Jeltsch, E., Kreowski, H.J.: Grammatical Inference Based on Hyperedge Replace-
ment. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990.
LNCS, vol. 532, pp. 461–474. Springer, Heidelberg (1991)

11. Jonyer, I., Holder, L.B., Cook, D.J.: MDL-based context-free graph grammar induc-
tion and applications. International Journal of Artificial Intelligence Tools 13(1),
65–79 (2004)

12. Kong, J., Zhang, K., Zeng, X.: Spatial graph grammars for graphical user interfaces.
ACM Transactions on Computer–Human Interaction 13(2), 268–307 (2006)

13. Kukluk, J.P., Holder, L.B., Cook, D.J.: Inferring graph grammars by detecting
overlap in frequent subgraphs. Applied Mathematics and Computer Science 18(2),
241–250 (2008)

14. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph.
Data Mining and Knowledge Discovery 11(3), 243–271 (2005)

15. Nakamura, K., Matsumoto, M.: Incremental learning of context free grammars
based on bottom-up parsing and search. Pattern Recognition 38(9), 1384–1392
(2005)

16. Parekh, R., Honavar, V.: Grammar inference, automata induction, and language
acquisition. In: Dale, R., Somers, H.L., Moisl, H. (eds.) Handbook of Natural Lan-
guage Processing, pp. 727–764. Marcel Dekker, New York (2000)

17. Plasmeijer, R., van Eekelen, M.: Term Graph Rewriting and Mobile Expressions in
Functional Languages. In: Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999.
LNCS, vol. 1779, pp. 1–13. Springer, Heidelberg (2000)

18. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing 8(1), 27–55 (1997)

19. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, vol. 1: Foundations. World Scientific, River Edge (1997)

20. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

Planning Self-adaption

with Graph Transformations

Matthias Tichy1 and Benjamin Klöpper2

1 Software Engineering Division,
Chalmers University of Technology and University of Gothenburg,

Gothenburg, Sweden
tichy@chalmers.se

2 National Institute of Informatics (NII), Tokyo, Japan
kloepper@nii.co.jp

Abstract. Self-adaptive systems autonomously adjust their behavior in
order to achieve their goals despite changes in the environment and the
system itself. Self-adaption is typically implemented in software and
often expressed in terms of architectural reconfiguration. The graph trans-
formation formalism is a natural way to model the architectural recon-
figuration in self-adaptive systems. In this paper, we present (1) how we
employ graph transformations for the specification of architectural recon-
figuration and (2) how we transform graph transformations into actions
of the Planning Domain Definition Language (PDDL) in order to use off-
the-shelf tools for the computation of self-adaptation plans. We illustrate
our approach by a self-healing process and show the results of a simulation
case study.

Keywords: Self-adaptive systems, graph transformations, planning,
PDDL.

1 Introduction

The complexity of today’s systems enforces that more and more decisions are
taken by the system itself. This is resembled by the current trend to systems
which exhibit self-x properties like self-healing, self-optimizing, self-adaption.
Self-x properties cause additional complexity and dynamics within the system.
Therefore, appropriate development approaches have to be employed. The archi-
tecture is one of the key issues in building self-x systems [19,17]. In particular,
self-adaptation can be realized by adapting the architectural configuration by
adding and removing components as well as replacing them.

Kramer and Magee [17] presented a three-layer architecture for self-managed
systems consisting of the following layers: (1) goal management, (2) change man-
agement, and (3) component control. The component control layer contains the
architectural configuration of the self-adaptive system, i.e., the components and
their connections which are active in a certain state. Besides the execution of
the components, this layer is responsible for the execution of reconfiguration

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 137–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

138 M. Tichy and B. Klöpper

plans. These plans, which describe the orderly adding, removing, and replacing
of components and connectors, are executed to transform the current configura-
tion into a new one in reaction to a new situation or event. They are stored in
the change management layer and computed by the goal management layer.

Several approaches [25,18,28,4,26] employ graph transformations for the speci-
fication of architectural reconfiguration of self-adaptive systems. Graph transfor-
mations enable the application of formal verification approaches (e.g., [21,3]) and
code generation [9] for execution during runtime by providing a sound formal basis.
However, all of these approaches only address the modeling aspect of reconfigura-
tion and do not address the computation of reconfigurationplans tomeet the goals.

In this paper, we present how graph transformations can be integrated with
automated planning approaches [12] to compute reconfiguration plans. We model
the system structure using class diagrams and employ story patterns [9,29] as
specific graph transformation formalism. Additionally, we extend story patterns
by modeling elements for temporal properties to enable temporal planning. Simi-
lar to [6], we translate these models to the Planning Domain Definition Language
[10] to enable the application of off-the-shelf planning software like SGPlan [5].

In the next section, we introduce the running example, which is about self-
healing as a special case of self-adaptation, which is used to illustrate our ap-
proach. Section 3 gives a short introduction how we model the structure and the
self-adaption behavior of our running example. The translation of the models to
the planning domain definition language is described in section 4. Thereafter, we
present an extension of our approach to durative actions and temporal planning
in Section 5. In Section 6, we present results of simulation experiments for our
self-healing application scenario. After a discussion of related work in Section 7,
we conclude with an outlook on future work in Section 8.

2 Example

As an application example, we consider the self-healing process in an automotive
application as presented in [16]. While it is currently not the case, we assume
that, in the future, it is possible that software components can be deployed,
started and stopped on electronic control units (ECU) at runtime. Currently, the
deployment of software components to ECUs is done at design time but online
reconfiguration gains interest and will eventually be realized. The AUTOSAR
standard [11] with its standardized interfaces and the run-time environment
(RTE) is the first step towards a system that can be reconfigured.

Our self-healing process reacts to failures of software components and hard-
ware nodes (ECUs) by, for example, starting failed software components on
working nodes, moving software components from a source to a target node,
disconnecting and reconnecting software components. While the original self-
healing process [16] considers redundant software components, we do not con-
sider redundancy in this paper in order to keep the examples smaller.

Figure 1 shows an example of our self-healing process. On the left hand side
of that figure, four nodes are shown which execute five component instances.
node1 has experienced a failure and, thus, component c1 is not working anymore.

Planning Self-adaption with Graph Transformations 139

The self-healing process now reacts to this failure by computation and subse-
quently execution of a self-healing plan. This self-healing plan is comprised of the
actions transfer which transfers the code of a component to a node, the action
createInstance which instantiates the component of a node, and destroy which
destroys a component instance on a node. For this example, the plan basically
results in moving component c2 from node2 to node3 in order to free up space
to subsequently instantiate the failed component c1 on node node2.

State after execution of self-healing planState after failure of node1

node2node1

c1

Self-Healing

Self-Healing Plan

1) Transfer(c2, node2, node3)
2) Destroy(c2)
3) CreateInstance(c2, node3)
4) CreateInstance(c1, node2)

c2

node4node3

c3

c5c4

node2node1

c1

node4node3

c3

c5c4 c2

Fig. 1. Self-healing a failure of node1

A good example of a safety-relevant automotive subsystem is an adaptive
cruise control (ACC). An ACC is an advanced tempomat, its functionality is
to accelerate the car to the driver specified velocity, if no obstacle is detected.
If an obstacle is detected, the car is first decelerated and then controls the gap
between the car and the obstacle (mostly another car). The adaptive in its name
comes from this change of behavior. Figure 2 shows the software components
of a sample adaptive cruise control system. In this paper, we do not specifically
target the self-healing of this adaptive cruise control system but address the
general case of self-healing component-based systems as a running example.

Fig. 2. Software components of an adaptive cruise control system [16]

3 Modeling with Graph Transformations

We employ the story pattern [9,29] graph transformation formalism, which is
tightly integrated with the UML. It employs class diagrams for the specifica-
tion of structure (similar to typed graphs in graph transformations) and refined
collaboration diagrams for the specification of a graph transformation.

140 M. Tichy and B. Klöpper

3.1 Specification of Structure

Figure 3 shows the class diagram for our self-healing scenario. Each component
represents a software component. Pairs of components may have to communicate
with each other. Nodes represent the computation hardware which are used to
execute the software components. Before a component can be started on a node,
the software code of the component has to be deployed to that specific node.
Nodes are connected to other nodes. Components which communicate with each
other must be executed either on the same node or on connected nodes. Each
connection provides a certain transfer rate.

+requiresMem:Int
+size:Int
+isDeployed:bool

Component

+avMem:Int

Node

+value:Int

TransferRate

*
isDeployedTo

0..1
isRunningOn

1
*

sender

1
*receiver

* avCon*reqCon

ComponentInstance

0..1instance

Fig. 3. Class diagram modeling the structure of the self-healing system

For the subsequent translation to PDDL, we require that for each class the
maximum number of instances is specified by the developer. For our example,
this maximum number of instances is known during design-time as the number
of component types is known as well as the number of nodes. The number of
component instances is equal to the number of component types as we specifically
choose to have only a single instance of each component type in the system. Thus,
this requirement is feasible for our scenario. This requirement is also typical in
embedded systems. However, in other applications or domains this requirement
might not hold.

3.2 Specification of Self-adaption Actions

The reconfiguration actions are specified with story patterns which are typed
over the class diagram presented in Figure 3, i.e., they transform instances of
this class diagram.

Story patterns follow the single pushout [22] formalism. The left hand side
and the right hand side are merged into a single graph in story patterns. In
this graph, all nodes and edges which are in the left hand side but not in the
right hand side are marked as delete. These nodes and edges are deleted by
the execution of the rule. All nodes and edges which are in the right hand side
but not in the left hand side are marked as create. They are created by the
execution of the rule. Simple negative application conditions can be modeled by
appropriately annotating edges and nodes in the diagram. It is not allowed that
negative nodes are attached to negative edges [29]. In contrast to standard story
patterns, we do not support bound objects.

Planning Self-adaption with Graph Transformations 141

source:Node avMem >= c.requiresMem
avMem := avMem - c.requiresMem

k:Node

isDeployed := true

c:Component

isDeployedTo

isDeployedTo

isDeployedTo
<<create>>

Fig. 4. Story pattern which specifies the deployment of a component c to node k

Figure 4 shows a story pattern which specifies the transfer of the code of a
component c from a source node source to a target node k to enable starting the
component on that node. The fact that the code of a component is available on a
node is modeled as the existence of an isDeployedTo link between the component
and the node. Additionally, the story pattern specifies that the amount of avail-
able memory on node k must be greater than the required memory of component
c prior to execution. After execution the available memory is reduced.

isDeployedTocomp:Component node:Nodeotherci
:ComponentInstance

ci
:ComponentInstance

<<create>>

isRunningOn

instance

instance

Fig. 5. Story pattern which specifies the instantiation of a component on a node

Figure 5 shows the story pattern concerning the instantiation of a component
on a node. This story pattern can be executed if (1) the component’s code has
been previously deployed to the node and (2) the component is not already
instantiated anywhere in the system. The first condition is expressed by the link
isDeployedTo between comp and node. The second condition is expressed by the
negative object otherci.

3.3 Specification of Goals

Finally, the goal has to be modeled for the self-healing system. Using only the
left hand side of story patterns as in [8], it is possible to model a concrete
situation which shall be reached by the computed plan. Though, this is rather
cumbersome, especially for a large number of objects. Instead we use enhanced
story patterns [24] which extend story patterns with subpatterns and quantifiers.
Figure 6 shows the specification of the goal that for every component there should
exist a component instance which is running on a node.

We do not provide modeling support for the initial state as the initial state is
simply the current state of the self-adaptive system during runtime.

142 M. Tichy and B. Klöpper

forall exists

instancec:Component ci:ComponentInstance n:Node

isRunningOn

Fig. 6. Enhanced story pattern modeling the goal

4 Translation to PDDL

There exist several different representations for planning problems [12]. Set-
theoretic approaches represent states by a set of propositions. Each action spec-
ifies which propositions have to hold in the state for the action to be applicable.
Additionally, an action specifies which propositions will be added and removed
to create a new state. The classical representation uses first-order literals and
logical operators instead of propositions.

The Planning Domain Definition Language (PDDL) has been developed as a
standard language for planning problems in order to compare different tools and
algorithms. In order to be applicable for a wide variety of planning problems and
tools, several extensions with respect to the classical representation have been
added to the PDDL, e.g., typing, durative actions for temporal planning, fluents
for representation of numerical values.

A planning problem in PDDL consists of two parts – the domain and the
problem. The domain defines the types, the predicates, the functions, and the
actions. A PDDL action is defined by a name, a list of parameters, a precondition
and an effect. All objects which are referred to in the precondition and the effect
have to be included in the list of parameters. The action can only be executed if
the precondition is satisfied. The effect holds after the execution of the action.
The problem defines the objects as well as the initial state and the goal state.
The planning system then tries to compute a sequence of actions (including the
arguments for the action parameters) which transforms the initial state into the
goal state.

The PDDL extension :typing enables the modeling of types and generaliza-
tion in the planning model. Thus, classes are translated to types in the domain
definition; the associations are translated to predicates over the types. Story pat-
terns are translated to actions in the planning domain. The left hand is translated
to the precondition and the right hand side to the effect. Although the elements
of both models map well to each other, there are details to consider.

4.1 Types, Predicates and Functions

Basically, classes are translated to types. Generalizations in the class diagrams
are translated as well. Listing 1 shows the types generated from the class diagram
of Figure 3. All types extend the general predefined type object denoted by the
suffix “- object”.

Planning Self-adaption with Graph Transformations 143

Listing 1: Mapping of classes to types in the PDDL
1 (:types
2 Component Node TransferRate ComponentInstance - object
3)

Associations are translated to predicates over the source and target types. We
support unidirectional and bidirectional associations. For example, the unidirec-
tional association isDeployedTo between Component and Node is translated to the
predicate (isDeployedTo ?component - Component ?node - Node). Listing 2 shows
the predicates which are generated from the associations of the class diagram.
For bidirectional associations, only one direction is translated to predicates in
order to minimize the planning domain as bidirectional navigability is already
provided by an unidirectional reference in PDDL.

Listing 2: Translation of associations to predicates
1 (:predicates
2 (exist ?object - object)
3 (isRunningOn ?component - Component ?node - Node)
4 (reqConn ?component - Component ?component - Component)
5 (instance ?component - Component ?componentinstance - ComponentInstance)
6 (isDeployedTo ?component - Component ?node - Node)
7 (avConnections ?node - Node ?node - Node)
8 (sourceTransferRate ?node - Node ?transferrate - TransferRate)
9 (targetTransferRate ?node - Node ?transferrate - TransferRate)

10 (runningOn ?componentinstance - ComponentInstance ?node - Node)
11 (isDeployed ?component - Component)
12)

The PDDL prohibits the creation and deletion of objects to preserve a fi-
nite state space. As node creation and deletion is an important feature of graph
transformations, we decided to emulate object creation and deletion by using the
special predicate (exist ?object - object). We require a fixed number of objects of
each type in the initial state of the planning problem. We emulate object cre-
ation and deletion by setting the exist predicate appropriately. Finally, Boolean
attributes are also translated to predicates, e.g., the attribute isDeployed.

Functions provide mappings from object tuples to the realm of real numbers.
This enables the translation of all numerical attributes from class diagrams.
For example, the function (avMem ?n - Node) stores the amount of that node’s
memory which is increased and reduced depending on the number of components
who are instantiated on a given node.

4.2 Actions

In the following, we present how story patterns are translated to PDDL actions.
The preconditions and the effects of PDDL actions mirror naturally the left hand
side and right hand side of a graph transformation. Listing 4 shows the PDDL
action for the story pattern from Figure 4. We translate all nodes of the story

144 M. Tichy and B. Klöpper

Listing 3: Translation of integer attributes to functions
1 (:functions
2 (requiresMem ?component - Component)
3 (size ?component - Component)
4 (avMem ?node - Node)
5 (value ?transferrate - TransferRate)
6)

pattern to parameters of the action. The planner will bind these parameters to
objects in such a way that the precondition is satisfied. The action transfer has
three parameters for the two nodes source and k and the component c. The

Listing 4: Transfer of component code from source to target node
1 (:action transfer
2 :parameters (
3 ?source - Node ?k - Node ?c - Component
4)
5 :precondition (and
6 (exist ?source) (exist ?k) (exist ?c)
7 (not (= ?source ?k))
8 (isDeployedTo ?c ?source)
9 (not (isDeployedTo ?c ?k))

10 (>= (avMem ?k) (requiresMem ?c))
11)
12 :effect (and
13 (isDeployedTo ?c ?k)
14 (isDeployed ?c)
15 (decrease (avMem ?k) (requiresMem ?c))
16)
17)

precondition requires that all bound objects are indeed existing (line 6). The
story pattern formalism uses a graph isomorphism, i.e., that two nodes of the
graph transformation cannot be bound to the same node in the host graph.
Consequently, we check in line 7 that the two nodes source and k are different.
We translate the isDeployedTo-edge to the predicate in line 8.

The effect of the action simply states that the isDeployedTo predicate holds
for the component c and the node k as the semantics of PDDL effects are that
everything remains unchanged except the explicitly stated effect.

Attribute Expressions. Arithmetic expressions are supported by PDDL func-
tions. The precondition can contain comparisons concerning functions. Values
are assigned to functions in the effect. Concerning the transfer action, the pre-
condition checks whether the available memory is greater or equal than the
memory required by the component in line 10. In line 15, the available memory
is decreased by this required amount of memory. Finally, the assignment of the
Boolean variable isDeployed is part of the effect as well (line 14).

Planning Self-adaption with Graph Transformations 145

Negative Nodes and Edges. Story patterns enable the specification of simple
negative application conditions by annotating nodes and edges that the node or
the edge must not match.

The story pattern of Figure 4 contains a negative edge isDeployedTo between
component c and node k. Thus, the story pattern is only applicable if the com-
ponent c has not been already deployed to the node k. This is translated to a
negated predicate as shown in line 9.

The case of a negative node is more complex. The semantics of a negative
node [29] is that the matching of the left hand side minus the negative node
must not be extendable to include a matching of the negative node as well. This
is translated to a negative existential quantification over the objects of this type
including the edges connected to the negative node as in lines 8 to 10 of Listing 5
which is the PDDL translation of the story pattern shown in Figure 5.

Again, special care has to be taken concerning injective matching. If a node
is already positively matched, it will be excluded from the negative existential
quantification.

Object Creation and Deletion. There exist several possibilities to emulate
object creation and deletion. Naively, objects can be emulated by predicates
which are set to true and false accordingly. This does only work for the case
that it is not required that an object is identifiable. This is typically not suitable
for graph transformations. As mentioned earlier, we decided to allocate a fixed
number of objects of each class and use the additional predicate exist to denote
whether the object exists or not.

Listing 5 shows the PDDL translation of Figure 5. Similar to Listing 4, we
initially check for all nodes which are in the left hand side of the story pattern
whether they exist in line 6. The object which will be created by the story pattern
must not exist prior to the execution with the predicate in line 7. It is created
in the effect (line 16).

Listing 5: Creating objects
1 (:action createInstance
2 :parameters (
3 ?comp - Component ?node - Node ?ci - ComponentInstance
4)
5 :precondition (and
6 (exist ?comp) (exist ?node)
7 (not (exist ?ci))
8 (not (exists (?otherci - ComponentInstance)
9 (instance ?comp ?otherci)

10))
11 (not (instance ?comp ?ci)) (not (runningOn ?ci ?node))
12)
13 :effect (and
14 (instance ?comp ?ci)
15 (runningOn ?ci ?node)
16 (exist ?ci)
17)
18)

146 M. Tichy and B. Klöpper

Listing 6 shows how objects are destroyed by an action. The story pattern
formalism follows the single pushout approach [22]. Therefore, we do not require
that the dangling condition is satisfied and simply delete all edges related to the
node (lines 6 and 7). The class diagram (see Figure 3) holds the information
which edges we have to remove when destroying an object.

Listing 6: Destroying objects
1 (:action destroy
2 :parameters (?ci - ComponentInstance))
3 :precondition (and (exist ?ci))
4 :effect (and
5 (not (exist ?ci))
6 (forall (?o - Node) (not (runningOn ?ci ?o)))
7 (forall (?o - Component) (not (instance ?o ?ci)))
8)
9)

The model of the goal state shown in Figure 6 is translated to the PDDL in a
similar way as the left hand side of story pattern with appropriate handling of
the quantification.

5 Adding Temporal Properties

PDDL 2.1 [10] introduced syntax and semantics for temporal planning. Temporal
planning relaxes the assumption of classical planning that events and actions
have no duration. This abstraction is often not suitable as in reality actions do
occur over a time span. Therefore, durations can be annotated to actions in
temporal planning. As this allows concurrent actions, preconditions and effects
have to be annotated. Three different temporal annotations are supported which
can be combined: (1) at start, the precondition has to be satisfied at the beginning
of the action, (2) at end, the precondition has to be satisfied at the end of the
action, and (3), over all, the precondition has to be satisfied during the action.
Effects have to be annotated with at start or at end.

tr:TransferRatesource target

source:Node avMem >= c.requiresMem <<atstart>>,<<overall>>
avMem := avMem - c.requiresMem <<atstart>>

k:Node

isDeployed := true

c:Component

<<atstart>>,<<overall>>
isDeployedTo

isDeployedTo

isDeployedTo
<<create>>

duration = c.size / tr.value

Fig. 7. Story pattern which specifies the deployment of a component c to node k
including a duration

Planning Self-adaption with Graph Transformations 147

In general, story patterns do not consider time. Timed story patterns [14] are
only concerned with when the pattern is executed, but not about the duration
of its execution. We extend the story pattern by a duration fragment, which is
used for the specification of the duration. Figure 7 shows this extension. The
duration is computed based on the component size and the transfer rate for the
connection between the nodes in our example. We annotate elements of the story
pattern with the stereotypes �atstart�, �atend�, �overall� to specify the
required temporal properties.

Listing 7: durative-action transfer
1 (:durative-action transfer
2 :parameters (?c - component ?k - Node ?source - Node ?tr - TransferRate)
3 :duration (= ?duration (/ (size ?c) (value ?tr)))
4 :condition (and
5 . . .
6 (over all (isDeployedTo ?c ?source))
7 (at start (isDeployedTo ?c ?source))
8 (at start (sourceTransferRate ?rate ?source))
9 (at start (targetTransferRate ?rate ?target))

10 . . .
11)
12 :effect (and
13 (at end (isDeployedTo ?c ?k))
14 (at end (isDeployed ?c))
15 (at start (decrease (avMem ?k) (requiresMem ?c)))
16)
17)

In contrast to the PDDL, we assume the following defaults in the case that
the developer does not specify temporal stereotypes for the sake of visual clarity.
All elements of the left hand side are assumed to have the stereotype�atstart�
whereas all effects are assumed to have the stereotype �atend�.

Listing 7 shows an excerpt from the durative action generated from the story
pattern of Figure 7. The specification of the duration is shown in line 3. During
the whole execution of the action, the component c must be deployed to the
source node. As the temporal plan can schedule actions in parallel, we require
that at the beginning of the action the available memory of node k must already
be decreased by the required amount of component c.

6 Simulation Experiments

In order to show the feasibility of our approach, we conducted simulation
experiments for the self-healing scenario. The scenario has been extended by
resources which are required by components and provided by nodes, communi-
cation buses between the nodes as well as redundant allocation of components
to nodes. The discrete event-based simulation environment simulates (1) failures
of nodes, (2) repairs of nodes, and (3) periodic self-healing activities which are
comprised of computing and executing self-healing plans. We abstract from the
actual behavior of the components and restrict the simulation to the failures

148 M. Tichy and B. Klöpper

and the self-healing process. The plans are computed by the SGPlan automated
planning software. The simulated system consists of 12 component types and 5
nodes connected by two communication buses. Node failures are randomly dis-
tributed by a negative exponential distribution fλ(x) = λe−λx with a failure
rate of λ = 0.0001. Every 5 time units, the self-healing part of the system checks
whether any component type is not instantiated. In that case the planner is
called and the resulting plan is executed.

Fig. 8. Results from the simulation experiments

On the left side of Figure 8, the number of available component instances
at each point of a single simulation run for 100.000 time units is shown. The
complete system is available if each component type is instantiated on a node,
i.e., if 12 component instances are available. At 53 points in time, a node fails
which results in the failure of the components which are instantiated on that
node. 10 of that 53 failures did happen to nodes which had no component types
instantiated and, thus, resulted in no reduction of the number of component
instances. After computing and executing the self-healing plan in reaction to a
node failure, the number of available component instances increases to 12 again.

In the middle of Figure 8, the average availability of the system during the
same simulation run is shown. We define availability as the probability that
all component types of the system are instantiated at a certain point of time.
The system starts with no instantiated components. Consequently, the average
availability rises at the start of the simulation and reacts heavily to node failures.
At the end of the simulation run, it is stable at 0.9995.

On the right side of that figure, we report the time taken by the planner to
compute the plan as well as the planning length based on 277 calls to the planner.
The planner is executed on an Intel Core2Duo with two cores at 2,53 GHz and
4 GB of RAM. Though, the planner uses only one core.

7 Related Work

In [4], a model-driven approach for self-adaption has been presented which also
applied graph transformations for the specification of component reconfigura-
tions. The graph transformations are used to specify goals, but the approach

Planning Self-adaption with Graph Transformations 149

supports only the monitoring of these goals and not the computation of recon-
figuration plans to achieve them. In general, planning is an important method in
self-adapting and self-configuring systems. For instance, Arshad et al. [2] intro-
duced a PDDL planning domain for automated deployment and reconfiguration
of software in a distributed system. Satzger et al. [23] introduced a PDDL based
planning approach for organic computing systems. Sykes et al. present in [13]
an approach for planning architectural reconfiguration of component based sys-
tems based on the aforementioned three layer-architecture. They employ model
checking as a planning technique based on labeled transition systems. This al-
lows them to compute reactive plans, which generates actions sequence from
every state in the state spaces towards the goal state.

None of the approaches supports the system developer appropriately in defin-
ing the required planning domains and offer techniques to check the correctness
of the defined planning domain. A development process based on graph trans-
formation naturally enables the support of respective modeling and verification
tools and methods.

Vaquero et al. [27] present an approach for transforming UML models, use
cases, class diagrams, state machines, and timing diagrams, to Petri Nets as
well as PDDL in order to facilitate analysis and testing of requirements. The
shown mapping from class diagrams to PDDL is similar to the one presented
in this paper. In contrast to the approach by Vaquero et al., we use graph
transformations for the specification of behavior which are more suitable for the
specification of architectural reconfiguration.

There are only few tools and methodologies which support the designer in
developing a planning model that complies to certain properties. For instance,
Howey [15] et al. introduce VAL an automated tool that checks if plans gener-
ated by a planning system satisfy the specification made in the corresponding
PDDL domain. Differently, PDVer is a tool that can be applied to check the
correctness of Planning Domains [20]. However, PDVer does not formally verify
the state transitions enabled by the planning domain, but heuristically generates
and executes a number of test cases.

There are only a few approaches in the area of automated planning with
graph transformations [6,8]. Edelkamp and Rensink present in [6] the combi-
nation of graph transformation and planning. They report that the employed
planner (FF) can handle significantly bigger models than the graph transforma-
tion tool Groove. In contrast to our paper, Edelkamp and Rensink do not present
how to automatically translate graph transformations to the input language of
the employed planner. Estler [8] uses an A* as well as a Best First search for the
computation of plans based on graph transformations. Instead of developing an
own algorithm for planning, we employ standard off-the-shelf planning software
which enables us to exploit their good performance and rich modeling properties,
e.g., for temporal planning.

150 M. Tichy and B. Klöpper

8 Conclusions and Future Work

We presented how graph transformation was used to specify actions for self-
adaptive systems and how we use standard off-the-shelf automated planners to
compute reconfiguration plans which order the execution of the reconfiguration
actions. As a specific case of self-adaption we illustrated our approach by a self-
healing process. We extended the employed story pattern formalism by several
additional annotations for the specific case of durative actions in temporal plan-
ning. Based on this extensions, we showed how we translate story pattern to the
Planning Domain Definition Language (PDDL) which is the standard planning
language.

We have partially implemented the translation using the Eclipse Modeling
Framework and Xpand as model-to-text translation environment. We used the
EMF-based version of Fujaba, which is currently under development. We are
currently working on finishing the implementation of the presented translation of
attribute expressions as well as all syntax elements which are related to temporal
planning.

Durative actions in the PDDL also include continuous effects which specify
the continuous change of values during execution of the action, e.g., the physical
position of an autonomous car based on its speed. It remains to be seen whether
it makes sense to add those aspects to story patterns. Adding this might lead to
a hybrid graph transformation formalism analogous to hybrid automata [1].

To reflect the specific strength and weaknesses of different planners as well
as the differing requirements of application domains, it is reasonable to provide
different translation schemes for story patterns to PDDL. The implementation
and comparison of these different translations with respect to their effect on
planners is an important part of our future research.

Story diagrams add control flow to story patterns. In order to use story di-
agrams for self-healing, we have to translate the control flow to PDDL as well.
For the case of non-temporal planning, this works by numbering all story pat-
terns and adding a sequence function which stores the current activity number.
The control flow is then translated to appropriately handling this function in
the precondition and the effect.

Acknowledgments. We thank Steffen Ziegert, Julian Suck, Florian Nafz, and
Hella Seebach for discussions about the topic. We thank Christopher Gerking for
the implementation of the prototypical translation of story patterns to PDDL
as well as Alexander Stegmeier for the implementation of the simulation en-
vironment. Matthias Tichy was member of the software engineering group at
the University of Paderborn, Germany, and the organic computing group at the
University of Augsburg, Germany, while developing this approach. Benjamin
Klöpper is a visiting researcher at NII and scholarship holder of the German
Academic Exchange Service (DAAD).

Planning Self-adaption with Graph Transformations 151

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

2. Arshad, N., Heimbigner, D., Wolf, A.: Deployment and dynamic reconfiguration
planning for distributed software systems. Software Quality Journal 15(3), 265–281
(2007)

3. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant ver-
ification for systems with dynamic structural adaptation. In: Proc. of the 28th
International Conference on Software Engineering, pp. 72–81. ACM Press (2006)

4. Becker, B., Giese, H.: Modeling of correct self-adaptive systems: A graph transfor-
mation system based approach. In: Proc. of the 5th International Conference on
Soft Computing as Transdisciplinary Science and Technology, pp. 508–516. ACM,
New York (2008)

5. Chen, Y., Wah, B.W., Hsu, C.W.: Temporal planning using subgoal partitioning
and resolution in SGPlan. J. Artif. Intell. Research 26, 323–369 (2006)

6. Edelkamp, S., Rensink, A.: Graph transformation and AI planning. In: Edelkamp,
S., Frank, J. (eds.) Knowledge Engineering Competition. Australian National Uni-
versity, Canberra (2007)

7. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): TAGT 1998. LNCS,
vol. 1764. Springer, Heidelberg (2000)

8. Estler, H.C., Wehrheim, H.: Heuristic search-based planning for graph transforma-
tion systems. In: Proc. of the Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS 2011), pp. 54–61 (2011)

9. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the Unified Modeling Language and Java. In: Ehrig
et al. [7], pp. 296–309

10. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Research 20, 61–124 (2003)

11. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: AUTOSAR – A worldwide standard is
on the road. In: Proc. of the 14th International VDI Congress Electronic Systems
for Vehicles 2009. VDI (2009)

12. Ghallab, M., Nau, D., Traverso, P.: Automated Planning – Theory and Practice.
Morgan Kaufmann Publishers (2004)

13. Heaven, W., Sykes, D., Magee, J., Kramer, J.: A Case Study in Goal-Driven Ar-
chitectural Adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 109–127. Springer,
Heidelberg (2009)

14. Heinzemann, C., Suck, J., Eckardt, T.: Reachability analysis on timed graph trans-
formation systems. ECEASST 32 (2010)

15. Howey, R., Long, D., Fox, M.: VAL: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: Proc. of the Int. Conference on
Tools with Artificial Intelligence, pp. 294–301. IEEE Computer Society (2004)

16. Klöpper, B., Honiden, S., Meyer, J., Tichy, M.: Planning with utilities and state
trajectories constraints for self-healing in automotive systems. In: Proc. of the 4th
IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp.
74–83. IEEE Computer Society (2010)

152 M. Tichy and B. Klöpper

17. Kramer, J., Magee, J.: Self-managed systems: An architectural challenge. In: Future
of Software Engineering 2007, pp. 259–268. IEEE Computer Society (2007)

18. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering 24(7), 521–533 (1998)

19. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: Proc. of the 20th International Conference on Software Engineering, pp.
177–186. IEEE Computer Society (1998)

20. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to verify PDDL planning do-
mains. In: Proc. of ICAPS 2009 Workshop on Verification and Validation of Plan-
ning and Scheduling Systems (2009)

21. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In:
Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–
485. Springer, Heidelberg (2004)

22. Rozenberg, G.: Handbook of Graph Grammars and Computing by Grah Transfor-
mation, vol. 1: Foundations. World Scientific (1997)

23. Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: Using Automated Planning
for Trusted Self-organising Organic Computing Systems. In: Rong, C., Jaatun,
M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp.
60–72. Springer, Heidelberg (2008)

24. Stallmann, F.: A Model-Driven Approach to Multi-Agent System Design. Ph.D.
thesis, University of Paderborn (2009)

25. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by dis-
tributed graph transformation: Towards configurable distributed systems. In: Ehrig
et al. [7], pp. 179–193

26. Tichy, M., Henkler, S., Holtmann, J., Oberthür, S.: Component story diagrams:
A transformation language for component structures in mechatronic systems. In:
Postproc. of the 4th Workshop on Object-oriented Modeling of Embedded Real-
Time Systems. HNI Verlagsschriftenreihe (2008)

27. Vaquero, T.S., Silva, J.R., Ferreira, M., Tonidandel, F., Beck, J.C.: From require-
ments and analysis to PDDL in itSIMPLE3.0. In: Proc. of the International Com-
petition on Knowledge Engineering for Planning and Scheduling (2009)

28. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software
architecture reconfiguration. Sci. Computer Programming 44(2), 133–155 (2002)

29. Zündorf, A.: Rigorous Object Oriented Software Development. University of Pader-
born (2002)

From Graph Transformation Units

via MiniSat to GrGen.NET

Marcus Ermler, Hans-Jörg Kreowski, Sabine Kuske, and Caroline von Totth�

University of Bremen, Department of Computer Science
PO Box 33 04 40, 28334 Bremen, Germany

{maermler,kreo,kuske,caro}@informatik.uni-bremen.de

Abstract. In logistics and other application areas, one faces many in-
tractable and NP-hard problems like scheduling, routing, packing, plan-
ning, and various kinds of optimization. Many of them can nicely and
correctly be modeled by means of graph transformation. But a graph
transformation engine fails to run the solutions properly because it does
not have any mechanisms to overcome or circumvent the intractability.
In this paper, we propose to combine the graph transformation engine
GrGen.NET with the SAT solver MiniSat to improve the situation. SAT
solvers have proved to run efficiently in many cases in the area of chip
design and verification. We want to take these positive experiences up
and to use the SAT solver as a tentative experiment for assisting the
graph transformation engine in finding solutions to NP-hard problems.

1 Introduction

Rule-based systems are nondeterministic in general because several rules may be
applicable to some system state or one of the rules at several matches. In some
cases, the nondeterminism is desired or harmless. A game would be extremely
boring if there would be always a single step to perform (or none at all). A de-
terministic Chomsky grammar generates a single terminal word or the empty set
and is more or less meaningless therefore. Sorting by exchanging two elements
per step that are in the wrong order is nondeterministic, but yields always the
same result whenever done as long as possible. Shortest paths, Eulerian cycles,
minimum spanning trees or maximum flows can be computed nondeterminis-
tically in polynomial time with different results in general, but each result is
acceptable. In many other cases, nondeterminism makes trouble. Even if each
single run takes polynomial time, there may be an exponential number of runs
for a given initial state and only a few of them may yield acceptable final states
or none at all. Hence, if one runs such a rule-based system for some initial state
once or for a small fixed number of attempts and no final state occurs, there may

� The authors would like to acknowledge that their research is partially supported
by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-
cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foun-
dation (DFG).

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 153–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

154 M. Ermler et al.

be none or there may be one, but reachable by another run only. An exhaustive
search is exponential, and any heuristic search may terminate fast, but fail to
yield proper results in general. Many computational problems of this trouble-
some kind are of practical interest, and a good part of them can be found in the
class of NP-hard problems (cf., e.g., [9]). For instance, many problems in logistics
(and similar application domains) like scheduling, route planning and packing
are NP-hard so that no efficient exact solutions are known and means are needed
to overcome this intractability. Apart from using heuristics, another approach is
carried out with some success in the area of chip design and verification: the use
of SAT solvers (cf., e.g., [1,2,8]).

In this paper, we advocate the latter idea as an attempt to lessen the in-
tractability of NP-hard problems in the area of graph transformation [18]. A
graph-transformational specification of an NP-hard problem may be given by a
graph transformation unit [11,12]. It specifies a set of derivations for each input
graph which is of exponential size in general and only some of the derivations
represent a proper solution of the problem (if it is solvable for the input at all). A
graph transformation engine like GrGen.NET (see, e.g., [10]) can build up some
derivations, but it has no means to guarantee success and the derived graphs
may be far away from optimal solutions. To improve the situation, the graph
transformation engine needs help.

We propose a prototypical system that combines GrGen.NET with the SAT
solver MiniSat [5] and works as follows:

(1) A graph transformation unit of a special form is translated into a proposi-
tional formula in conjunctive normal form which describes all successful deriva-
tions.

(2) The formula is solved by the SAT solver yielding a variable assignment in
the positive case that establishes one of the successful derivations.

(3) The variable assignment is translated into a control expression that guides
the graph transformation engine to execute just the successful derivation and to
visualize it in this way.

Altogether, this combination of GrGen.NET and MiniSat means that the graph
transformation engine yields an exact solution of an NP-hard problem for some
input whenever the SAT solver provides some positive result. To demonstrate the
usefulness of our proposal, we discuss the job-shop scheduling problem, which is
considered to be one of the most difficult scheduling problems in logistics (cf.,
e.g., [3,4,17]). It should be noted that the translation of graph transformation
units into propositional formulas was already considered in [13] and is used in
this paper with slight modifications. The interpretation of the variable assign-
ments as successful derivations is new and very helpful because the intermediate
representations as propositional formulas and variable assignments are very large
(even for small input graphs) and very difficult to read. In contrast to this, the
execution on GrGen.NET provides visualizations of the results.

The paper is organized as follows. In Sec. 2, the notion of graph transformation
units is recalled. In Sec. 3, it is shown how the job-shop scheduling problem can

From Graph Transformation Units via MiniSat to GrGen.NET 155

be modeled as a graph transformation unit. In Sec. 4 graph transformation
units are translated into propositional formulas so that they can be put into a
SAT solver. Sec. 5 presents the prototypical implementation that combines the
SAT solver MiniSat with the graph transformation engine GrGen.NET. Sec. 6
contains the conclusion.

2 Graph Transformation Units

Graph transformation units transform initial graphs to terminal graphs by ap-
plying rules according to control conditions. The components of graph transfor-
mation units are briefly recalled in the following.

Graphs. Graphs can be helpful to represent and visualize complex system
states. Graph transformation units transform graphs and are independent of
a concrete class of graphs. This means that transformed graphs belong to an
underlying class G that can be chosen freely. For our running example, we use
the class of edge-labeled directed graphs without multiple edges. For a set Σ of
labels such a graph is a pair G = (V,E) where V is a finite set of nodes and
E ⊆ V × Σ × V is a finite set of labeled edges. The components V and E are
also denoted by VG and EG. An edge of the form (v, x, v) is a loop. In graph
drawings we omit loops and write their labels inside their incident nodes.

The empty graph with no nodes and no edges is denoted by ∅. A graph G is a
subgraph of a graph G′ if VG ⊆ VG′ and EG ⊆ EG′ . An injective graph morphism
from a graph G to a graph H is an injective mapping g : VG → VH that preserves
structure and labels, i.e., (g(v), x, g(v′)) ∈ EH for each edge (v, x, v′) ∈ EG. The
subgraph of H induced by g is denoted by g(G).

Graph Class Expressions. A graph class expression is any expression that
specifies a subset of the underlying graph class G. A typical graph class expression
is a type graph [6] which specifies the class of graphs of this type. Class diagrams
can also be regarded as graph class expressions that specify all object diagrams
covered by the class diagram. In this paper, we use concrete graphs as graph
class expressions where each graph G specifies itself.

Rules. Rules are applied to graphs in order to transform them. Like the graph
class, the rule class can be chosen freely as long as it is suitable to transform
the graphs in G. For our job-shop example, we use a rule class R that is similar
to double-pushout rules. Concretely, such a rule r is a triple of graphs (L,K,R)
where K is a subgraph of L and R. L is the left-hand side, K the gluing graph
and R the right-hand side. We depict rules in the form L→ R where the common
nodes and edges are represented by using identical relative positions.

A rule r = (L,K,R) is applied to a graph G according to the following steps.
Choose an injective graph morphism g from L to G such that the removal of the
items in g(L)− g(K) from G does not produce dangling edges. Then remove the

156 M. Ermler et al.

items in g(L)− g(K) from G yielding D and add R disjointly to D. Afterwards,
glue R and D as follows. (1) Merge each v ∈ VK with g(v). (2) If there is an
edge (v, x, v′) ∈ ER−EK with v, v′ ∈ VK and an edge (g(v), x, g(v′)) ∈ ED then
these edges are identified.

For each r ∈ R, the relation =⇒
r

denotes all pairs (G,G′) ∈ G × G such that

G can be transformed to G′ by applying r. For each P ⊆ R the relation =⇒
P

is

equal to
⋃

r∈P =⇒
r

and
∗

=⇒
P

denotes the reflexive and transitive closure of =⇒
P

.

A sequence of rule applications is called a derivation.

Control Conditions. A control condition is any expression that specifies a set
of derivations. Control conditions are employed to restrict the nondeterminism
of graph transformation. In this paper, we use the following class C of control
conditions. Every rule r is a control condition in C which requires one application
of r, i.e., it permits the set of derivations {G=⇒

r
G′ | G,G′ ∈ G}. For every set

P ⊆ R, the expression P !(k) is in C and prescribes to apply the rules of P as
long as possible but at most k times. Finally, for each c1, c2 ∈ C, the expressions
c1; c2 and c1|c2 are in C where c1; c2 means to apply c1 and afterwards c2 and
c1|c2 means to apply c1 or c2.

The introduced components give rise to the concept of graph transformation
units defined as follows.

Graph Transformation Units. A graph transformation unit is a system tu =
(I, P, C, T) where I and T are graph class expressions called the initial graph class
expression and the terminal graph class expression, P ⊆ R, and C ∈ C. The graph
transformation unit tu specifies all pairs (G,G′) ∈ ∗

=⇒
P

such that G is specified

by I, G′ is specified by T , and the underlying derivation is allowed by C. Such a
derivation is called successful. In general graph transformation units can import
other graph transformation unit, a feature not considered in this paper.

3 Modeling the Job-Shop Scheduling Problem

In this section, we model the job-shop scheduling problem as graph transforma-
tion unit.

3.1 The Job-Shop Scheduling Problem

The job-shop problem is a classical scheduling problem that consists of a finite
set M of machines, a finite set J ⊆ M+ of jobs where for each j ∈ J and each
m ∈ M count(m, j) ≤ 1, and a mapping pt : T → N>0 with T = {(m, j) ∈
M × J | count(m, j) = 1}.1 The mapping pt associates a processing time with
every task t ∈ T .

1 M+ denotes the set of nonempty words over M . For a symbol a and a word w,
count(a,w) counts the number of occurrences of a in w.

From Graph Transformation Units via MiniSat to GrGen.NET 157

A feasible schedule is a mapping start : T → N such that (1) for each job
j = m1 · · ·mk ∈ J with k > 1, start(mi, j) + pt(mi, j) ≤ start(mi+1, j), for
i = 1, . . . k − 1; and (2) for each m ∈ M and all j, j′ ∈ J with j �= j′,
start(m, j) + pt(m, j) ≤ start(m, j′) or start(m, j′) + pt(m, j′) ≤ start(m, j).
The first property means that the machines of each job j must be visited se-
quentially in the order in which they occur in j. The second property assures
that each machine can process at most one job at the same time.

The makespan of each schedule start is defined as the maximum number in
{start(t) + pt(t) | t ∈ T }. A best schedule is one where makespan is minimized.
If a deadline is given, an interesting question is whether there exists a schedule
at all the makespan of which meets the deadline. This decision problem variant
of the job-shop scheduling problem is NP-complete [9].

In the following we do not allow interruptions in schedules, i.e., all machines
perform a processing step if possible.

3.2 The Graph Transformation Unit jobshop

Let JSP = (M,J, pt) be a job-shop scheduling problem and let l ∈ N. Then we
can construct a graph transformation unit jobshop(M,J, pt , l) such that the se-
mantics of jobshop(M,J, pt , l) is not empty if and only if there is a feasible sched-
ule the makespan of which is at most l. The components of jobshop(M,J, pt , l)
are the following.

The initial graph contains a node with an idle-loop for each machine and a
node for each task. Moreover, there is a node with a makespan-loop and a 0-loop.
For each job j = m1 · · ·mk, there is a next -edge pointing from task node (mi, j)
to the task node (mi+1, j) (i = 1, . . . , k−1). There is also an edge from (mi, j) to
the machine nodemi labeled with pt(mi, j). Moreover, the first task node (m1, j)
is connected to the machine node m1 via a waiting-edge. An example of an initial
graph with three machines and three jobs generated by GrGen.NET is given in
Fig. 1. For a better readability, every task-node of this graph additionally shows
a job number and the position where it occurs within the job. For example, the
two leftmost lower task nodes t11 and t12 are associated with job 1 consisting of
the machine sequence m1,m2 as indicated by the positions, the next -edges and
the pt-pointers originating from these task nodes. The first task t11 is waiting
at machine m1 and it needs 2 time units to be processed.

The graph transformation unit jobshop(M,J, pt , l) contains the rules select,
process, switch, finish, activate, and count. The first two rules are given in Fig. 2.
The rule select exchanges a waiting-edge from a task to an idle machine for a
selected -edge from the machine to the task and makes the machine active. The
rule process decreases the residual processing time of a task which is selected
by an active machine by 1 and exchanges the active-loop at the machine for a
ready-loop. As indicated below the arrow, this rule can only be applied if the
remaining processing time has not reached 0.

The rules switch and finish are given in Fig. 3. The rule switch is applied
when a task is processed. In this case the corresponding selected -edge and the
0-edge are removed. The machine which had selected the task becomes idle and

158 M. Ermler et al.

m3:Machine
state = idle

m2:Machine
state = idle

m1:Machine
state = idle

t31:Task
job = 3

position = 1

t22:Task
job = 2

position = 2

t21:Task
job = 2

position = 1

t12:Task
job = 1

position = 2

t11:Task
job = 1

position = 1

mksp:MakeSpan
value = 0

next

next

waiting

waiting

waiting

pt = 1

pt = 1

pt = 1pt = 1

pt = 2

Fig. 1. An initial graph for job-shop

the next task of the same job is attached via a waiting-edge to its machine. The
rule finish is applied when all tasks of the same job are processed. It removes
the selected -edge and the 0-edge and changes the ready-loop of the machine to
an idle-loop.

The rule activate in Fig. 4 relabels a ready-loop by an active-loop and the
rule count increases the counter of the makespan node by one.

The control condition of jobshop(M,J, pt , l) is

(select !; process !; switch!; finish!; activate !; count)l

where for r ∈ {select, process, switch, finish, activate} the expression r! abbre-
viates the expression {r}!(|M |) where |M | denotes the number of machines. The
control condition makes sure that in every iteration of select ! ; process ! ; switch!
; finish! ; activate! ; count the following happens. (1) Every idle machine with
a waiting task becomes active by selecting the task (select !). (2) Every active
machine becomes ready by decreasing the residual processing time of its selected
task by 1 (process !). (3) If a task (m, j) with a next task (m′, j) is processed, it
becomes an isolated node, m becomes idle, and (m′, j) starts to wait at machine
m′. (switch!). (4) If a task (m, j) is processed and has no next task, it be-
comes an isolated node and m becomes idle (finish!). (5) Every ready machine is

select

idle

waiting −→

active

selected

process

active

selectedk
−→
k>0

ready

selectedk − 1

Fig. 2. The graph transformation rules select and process

From Graph Transformation Units via MiniSat to GrGen.NET 159

switch

ready

selected0

next

k −→

idle

k waiting

finish

ready

0 selected −→

idle

Fig. 3. The graph transformation rules switch and finish

activate

ready −→ active

count

makespan
k

−→ makespan
k+1

Fig. 4. The graph transformation rules activate and count

activated for the next processing step (activate!). (6) The makespan is increased
by 1 (count).

The terminal graph class expression of jobshop(M,J, pt , l) requires that after
executing the control condition all tasks should be finished. Concretely, the ter-
minal graph consists of a node for every machine and every task as well as a
node with a makespan-loop and an l-loop.

The following observation states the correctness of the presented unit. The
proof is roughly sketched, a complete proof is beyond the scope of the paper.

Observation 1. Let G,G′ ∈ G, let (M,J, pt) be a job shop scheduling problem
and let l ∈ N. Then (G,G′) is specified by jobshop(M,J, pt , l) if and only if there
is a feasible schedule start of (M,J, pt) such that the makespan of start is at
most l.

Proof (sketch). Let (G,G′) be specified by jobshop(M,J, pt , l) and let der be
a derivation from G to G′, which is permitted by the control condition of
jobshop(M,J, pt , l). Then the following statements hold by induction:

1. The rule select is applied in der exactly once to every task in G.
2. In every graph of der , each machine has at most one selected task.
3. In each execution of c = select !; process !; switch!; finish!; activate!; count a

machine can select at most one task.
4. In each execution of c, every selected task is processed one time unit.
5. Each selected task remains selected until it is completely processed.
6. A target of a next -edge in G can only be selected in der if its source is

completely processed.
7. A task becomes an isolated node if and only if it is completely processed.

Choose start(t) = i, if select is applied to task t in the ith execution of c.
Statements 2 to 5 imply that each machine must process a task completely

160 M. Ermler et al.

before selecting a new one. Statement 4 to 6 imply that all tasks are processed
in the order in which they occur in the jobs. Hence, start is feasible. Since G′

contains only isolated tasks we get by Statement 7 that all tasks are processed in
G′ and this implies together with 4 and 5 that l ≥ max{start(t)+pt(t) | t ∈ T }.

Conversely, let start be a feasible schedule (without interruptions) of (M,J, pt)
with makespan l and let t1, . . . , tn be an arrangement of the tasks in T such
that start(ti) ≤ start(ti+1) for i = 1, . . . , n − 1. Let G be an initial graph of
jobshop(M,J, pt , l). Then by induction on n there is a derivation

G = G0
∗

=⇒
P

G1
∗

=⇒
P
· · · ∗

=⇒
P

Gn
∗

=⇒
P

G′

where P is the rule set of jobshop(M,J, pt , l) and for i = 0, . . . n− 1 the graph
Gi+1 is obtained from Gi by applying condition c start(ti+1) − start(ti) times
and all tasks in {t ∈ T | start(t) + pt(t) ≤ start(ti)} are represented as isolated
nodes in Gi. Moreover, G′ is obtained from Gn by applying c l − start(tn)
times with the effect that all non-isolated tasks of Gn become isolated and the
makespan counter (which is in Gn equal to start(tn)) becomes equal to l. Hence,
G′ is a terminal graph that is obtained from G by applying condition c l times.
Altogether we get that (G,G′) is specified by jobshop(M,J, pt, l).

4 From Graph Transformation Units to Propositional
Formulas

In this section, we shortly describe how graph transformation units can be trans-
lated into propositional formulas in such a way that a SAT solver can be used
to decide whether there is a successful derivation in the unit. In the case of the
job-shop scenario, this means that the SAT solver decides whether there is a
makespan of length at most l. We recall the constructions and results of [13] and
illustrate them with small examples concerning the job shop scheduling prob-
lem. Additionally, we extend the class of control conditions used in [13] by the
operators | and !(k) presented in Sec. 2.

Representing Graph Sequences as Propositional Formulas. We assume
that the nodes of each graph G are numbered from 1 to n, i.e, VG = {1, . . . , n} =
[n], and we call n the size of G. Every propositional formula with variable set
{edge(e, i) | e ∈ [n] × Σ × [n], i ∈ [m]} represents a sequence G1, . . . , Gm of
graphs for each variable assignment f satisfying the formula. In more detail,
graph Gi contains the edge e if and only if f(edge(e, i)) = true.

The graphs of the rule select in Fig. 2 without the idle-loop and the active-
loop can be regarded as a small example of a graph sequence G0, G1 where G0 is
the left-hand side of select, G1 the right-hand side, the upper node has number
1 and the lower number 2. Hence, by choosing Σ = {waiting , selected}, this
sequence can be represented by the formula

From Graph Transformation Units via MiniSat to GrGen.NET 161

edge(1,waiting , 2, 0) ∧ edge(2, selected , 1, 1)∧
¬edge(1,waiting , 1, 0) ∧ ¬edge(2, selected , 2, 1)∧∧

i,j∈[2](¬edge(i, selected , j, 0) ∧ ¬edge(i,waiting , j, 1))∧∧
i∈[2](¬edge(2,waiting , i, 0) ∧ ¬edge(1, selected , i, 1)).

Rule Applications as Propositional Formulas. For technical simplicity,
we assume that the nodes of all three graphs in a rule coincide, i.e., for each
(L,K,R) ∈ R the sizes of L, K, and R are equal. For a rule r = (L,K,R) the
set of injective mappings from [size(L)] to [n] is denoted byM(r, n). Let r ∈ R,
let g ∈ M(r, n) and let i ∈ N. Then the formula

apply (r, g, i) = morph(r, g, i) ∧ rem(r, g, i) ∧ add(r, g, i) ∧ keep(r, g, i)

models the application of rule r to the graph ([n], Ei) with respect to morphism
g, where

– morph(r, g, i) =
∧

(v,x,v′)∈EL
edge(g(v), x, g(v′), i)

– rem(r, g, i) =
∧

(v,x,v′)∈EL−ER
¬edge(g(v), x, g(v′), i + 1)

– add(r, g, i) =
∧

(v,x,v′)∈ER
edge(g(v), x, g(v), i+ 1)

– keep(r, g, i) =
∧

(v,x,v′)/∈g(EL∪ER)(edge(v, x, v
′, i)↔ edge(v, x, v′, i+ 1)).2

The formula morph checks whether g is a graph morphism. The formula rem
models the removal of all edges in g(L) − g(R) and add models the addition
of every edge in ER which does not have an image under g. The formula keep
prescribes that all edges not in g(L) or g(R) should be present in the resulting
graph ([n], Ei+1) if and only if they are contained in ([n], Ei).

For example, let G0 be the initial graph in Fig. 1 and let g be an injective
mapping from the node set {1, 2} of the rule select (where 1 is the upper node)
to the node set of G0. Then the formula

morph(select , g, 0) ∧ rem(select , g, 0) ∧ add(select , g, 0)

is equal to

edge(g(1),waiting , g(2), 0) ∧ edge(g(2), idle , g(2), 0)∧
¬edge(g(1),waiting , g(2), 1) ∧ ¬edge(g(2), idle, g(2), 1)∧
edge(g(2), selected , g(1), 1) ∧ edge(g(2), active, g(2), 1).

The formula keep(select , g, 0) contains the term edge(e, 0) ↔ edge(e, 1) for all
variables e ∈ ([9] × Σ(M,J,pt,l) × [9]) \ {(g(1),waiting , g(2)), (g(2), idle , g(2)),
(g(2), selected , g(1)), (g(2), active, g(2))}where (M,J, pt) is the modeled job shop
scheduling problem andΣ(M,J,pt,l) is equal to {waiting , selected , next , idle, active,
ready ,makespan} ∪ {pt(t) | t ∈ T } ∪ {0, . . . , l}, for each l ∈ N.

2 g(EL ∪ER) abbreviates the set {(g(v), x, g(v′)) | (v, x, v′) ∈ EL ∪ER}.

162 M. Ermler et al.

Translation of Control Conditions into Propositional Formulas. In or-
der to be able to generate propositional formulas from control conditions we
associate a length len with every condition such that len(r) = 1, len(P !(k)) = k,
len(c1; c2) = len(c1) + len(c2), and len(c1|c2) = max{len(c1), len(c2)}.

For example, for c = select !; process !; switch!; finish!; activate!; count and l ∈
N, we have len(cl) = l · len(c) = l · (4 · |M | + 1) where |M | is the number of
machines (remember that here r! stands for {r}!(|M |)). Hence, the length of the
control condition of the jobshop-unit is equal to l · (4 · |M |+ 1).

Moreover, for each control condition c and each i ∈ N we denote the formula
of c at position i w.r.t. graph size n as fn(c, i) defined as follows.

– fn(r, i) =
∨

g∈M(r,n) apply(r, g, i), i.e., fn(r, i) specifies the application of r

to graph Gi = ([n], Ei).

– fn(P !(k), i) =
∧i+k−1

j=i

(∨
r∈P,g∈M(r,n)

(
morph(r, g, j) ∧ apply (r, g, j)

)
∨∧

r∈P,g∈M(r,n) ¬morph(r, g, j) ∧ apply(∅, ∅, j)
)

This means that for j = i to i + k − 1 some rule of P is applied to
Gj if possible. If there is none of the rules in P applicable to Gj , i.e., if∧

r∈P,g∈M(r,n) ¬morph(r, g, j), the empty rule ∅ = (∅, ∅, ∅) is applied, which
has no effect.

– fn(c1; c2, i) = fn(c1, i)∧fn(c2, i+ len(c1), i.e., fn(c1; c2, i) applies c1 of graph
Gi and c2 to graph Gi+len(c1).

– fn(c1|c2, i) = fn(c1; ∅len(c1|c2)−len(c1), i) ∨ fn(c2, ; ∅len(c1|c2)−len(c2), i). This
means that fn(c1|c2, i) applies c1 or c2 but if the length of the applied con-
dition ci is shorter than the length of c1|c2, then the empty rule is applied
len(c1|c2)− len(ci) times.

The formula for a control condition C in a graph transformation unit is then
equal to fn(C, 0) for each graph size n.

For example, if c = select !; process !; switch!; finish!; activate !; count , we have
fn(c

l, 0) = fn(c, 0) ∧ fn(c, 1 · len(c)) ∧ · · · ∧ fn(c, l · len(c)), and for i = 0, . . . , l,
fn(c, i · len(c)) is equal to

fn(select !, i·len(c))∧fn(process !; switch!; finish!; activate!; count), i·len(c)+|M |).

Graph Class Expressions as Propositional Formulas. Every initial graph
I can by represented by the formula

prop(I, 0) =
∧

e∈EI

edge(e, 0) ∧
∧

e/∈EI

¬edge(e, 0).

Similarly, any terminal graph T can be encoded as the formula prop(T, len(C)),
which is obtained from prop(I, 0) by replacing I by T and 0 by len(C) where C
is the control condition of the graph transformation unit. To illustrate this with
a small graph, we take as I the left-hand side of the rule select (without the idle-
loop) and translate it into the corresponding formula prop(I, 0) similarly to the

From Graph Transformation Units via MiniSat to GrGen.NET 163

first example of this section which translated the left as well as the right-hand
side of select. For Σ = {waiting}, the result is equal to

edge(1,waiting , 2, 0) ∧ ¬edge(1,waiting , 1, 0) ∧
∧

i∈[2](¬edge(2,waiting , i, 0)).

More general examples of graph class expressions are considered in [13].

Putting the described formulas together, we can express graph transformation
units as propositional formulas as follows.

Graph Transformation Units as Propositional Formulas. Every graph
transformation unit tu = (I, P, C, T) can be encoded as the propositional formula

fder (tu) = prop(I, 0) ∧ fn(C) ∧ prop(T, len(C))

where n is the size of I.

As stated in [13], every variable assignment that satisfies the formula specifies
a sequence of graphs corresponding to a successful derivation in tu.

It is worth noting that the employment of a SAT solver only makes sense
if the number of literals in the resulting formula is bounded by a polynomial.
For graph transformation units in which each allowed derivation is of polynomial
length this is the case (cf. [13]). Fortunately, all derivations of the transformation
unit jobshop(M,J, pt , l) consist of l · (4 · |M |+1) rule applications, which implies
that they have polynomial lengths.

As shown in the next section one can extract a derivation from every satisfying
variable assignment.

5 Combining MiniSat and GrGen.NET

In this section we take a closer look at a prototypical implementation in Haskell
which combines the SAT solver MiniSat with the graph transformation engine
GrGen.NET. In reference to its task the tool has been called SATaGraT which is
the abbreviation for SAT solver assists graph transformation engine. SATaGraT
uses MiniSat 2, GrGen.NET 3.0, and Glasgow Haskell Compiler 6.12 and has
been tested on an Intel 3.2 GHz with 8GB RAM.

5.1 System Description

Fig. 5 shows an overview of the structure of the implemented system which is
explained in detail in the following. SATaGraT takes a graph transformation
unit as given in Sec. 2 as input and generates a propositional formula as defined
in Sec. 4 which describes all possible runs of this unit. In order to obtain a
satisfying variable assignment, the generated propositional formula is translated
into conjunctive normal form and fed into MiniSat, a fast and easy-to-use SAT
solver. The satisfiability preserving Tseitin transformation [20] which allows a

164 M. Ermler et al.

Fig. 5. The structure of SATaGraT

conversion with linear time and space requirements is used for the translation
into conjunctive normal form (cnf for short). In cases in which the formula is
satisfiable, MiniSat delivers a satisfiying assignment of the variables which is
then used to construct a successful derivation of the initial graph in the original
graph transformation unit.

MiniSat is fully integrated in SATaGraT, i.e., the generated conjunctive nor-
mal form is saved in a file in the DIMACS format as input for MiniSat, then
MiniSat solves the conjunctive normal form, and at last SATaGraT reads the
output from MiniSat and saves the assignment of the variables in an internal
representation. MiniSat returns a list of variable assignments which includes the
information about the solution as well as all the extra variables of the Tseitin
transformation. In Fig. 6, one can see a snippet of the MiniSat-output with the
variable numbers 41820 to 41878 where the truth value of variables preceded by a
minus sign is false and the truth value of unsigned variables is true. Such an out-
put is obviously cryptic and hard to interpret. Therefore, a suitable visualization
seems quite useful.

Fig. 6. A snippet of the output of MiniSat

In accordance with Sec. 4, the assignment of the variables yields a sequence of
graphs representing the derivation. These graphs are described by their edges as
the set of nodes remains invariant throughout the derivation process. In order to
use GrGen.NET for constructing and running the derivation, the applied rules
and the matchings used have to be extracted from this sequence. The following

From Graph Transformation Units via MiniSat to GrGen.NET 165

program in pseudocode illustrates the idea behind the implemented algorithm
for extracting rules and matchings from the variable assignment, where g(EL) =
{(g(v), a, g(v′)) | (v, a, v′) ∈ EL} and g(ER) = {(g(v), a, g(v′)) | (v, a, v′) ∈ ER}
for every rule (L,K,R) ∈ P and every injective mapping g ∈ M(r, n) :

FUNCTION ExtractRulesAndMatchings (E0, . . . , EderivLength : SetOfEdges ,
P : SetOfRules, n : |V |, derivLength : DerivationLength)
: (Derivation , SetOfEdges)

FOR m = 1, . . . , derivLength, (L,K,R) ∈ P, g ∈M((L,K,R), n) DO
Em := Em − Em−1; Em−1 := Em−1 − Em;
IF (Em−1 ⊆ g(EL)) ∧ ((g(EL)− Em−1) ⊆ Em−1) ∧ (Em ⊆ g(ER))
∧((g(ER)− Em) ⊆ Em)

THEN derivationExpr := derivationExpr ∪ (Em, (L,K,R), g);
ELSE RETURN (derivationExpr , E0);

END;

Consider a sequence G0, . . . , Gk of graphs and a rule set P as defined in Sec. 2.
For every graph Gm (with 1 ≤ m ≤ k), every rule r = (L,K,R) ∈ P , and every
g ∈M(r, n) it is checked by comparing the edges of Gm−1 and Gm if r is applied
w.r.t. g in the mth derivation step. The IF-condition assures that (1) the deleted
edges of the mth derivation step are in g(EL); (2) the edges of g(EL) which are
not deleted are in Gm−1; (3) the edges which are added in the mth derivation
step are in g(ER); and (4) the edges of g(ER) which are not added are in Gm.
For some rule sets the algorithm is ambiguous, but for the graph transformation
unit jobshop(M,J, pt, l) we receive a unique result.

By extracting a derivation expression from this result it is now possible to
use GrGen.NET for the visualization of a solution. Fig. 7 shows an excerpt of
a derivation with the 3 × 3 job-shop graph in Fig. 1 of Sec. 3 as initial graph
consisting of the first and last two steps of 48 steps altogether. Obviously, the
GrGen-output is much more transparent than the MiniSat-output in Fig. 6.

The above-mentioned example, with nine nodes total, yields a propositional
formula with 9720861 literals and a cnf formula with 49113 variables and 9723633
clauses. This is already an optimized version of the formula generation algorithm
which takes advantage of node typing to strongly restrict the number of possible
matches. The solving time in MiniSat is 81.26 seconds. The formula turns out
to be satisfiable for makespan 3.

5.2 Discussion

As illustrated above, SATaGraT searches for successful derivations via Min-
iSat and brings the corresponding output into a readable form by translating it
into a derivation executed by GrGen.NET. Hence, in case of NP-hard problems
SATaGraT can be used for proving and illustrating the existence of successful
derivations. The generated propositional formulas are already pretty large even
for small graphs and the conversion to cnf represents a bottleneck, both for time
and for memory reasons. All of the four tested cnf converters (Funsat [7], Lim-
boole [14], Logic2CNF [15], and Sugar [19]) take between 1.5 and 4+ hours to

166 M. Ermler et al.

Fig. 7. An excerpt of a derivation

handle the cnf conversion for the above nine-node example, with Limboole being
by far the fastest and Funsat the slowest. For the larger examples we tried, the
cnf conversion was prematurely aborted due to insufficient memory. In order to
handle not only small input graphs, optimization concerning both the size of
the generated propositional formulas and the efficiency of the cnf conversion are
needed. The propositional formula encodes all possible derivations of the given
transformation unit. Hence, one idea to shrink the formulas is to drop non-
successful derivations in advance. We are hopeful that analyzing the structure of
the initial graph and the rules of the graph transformation unit will prove useful
in achieving this kind of optimization. We have already implemented a matching
optimization mentioned above that has reduced the original size of the formulas
by up to 95 percent.

6 Conclusion

In this paper, we have proposed a combination of a SAT solver like MiniSat
and a graph transformation engine like GrGen.NET. The hope is that this tool
increases the chance to find solutions for instances of NP-hard problems that are
modeled by graph transformation systems. It is known that SAT solvers are em-
ployed in chip design and verification with some success, and our idea has been
to take up these positive experiences and to carry them over to graph trans-
formation. We have designed and implemented the prototypical tool SATaGraT
(SAT solver assists graph transformation engine) and have tested it with graph
transformational models of various problems including the job-shop problem.

Our tentative approach meets three goals.

From Graph Transformation Units via MiniSat to GrGen.NET 167

1. The translation of a special type of graph transformation units into proposi-
tional formulas as proposed in [13] is supplemented by a follow-up translation
of variable assignments satisfying the formulas into successful derivations of
the original graph transformation units.

2. Both translations are implemented prototypically by the SATaGraT system.
3. As the job-shop scheduling example demonstrates, a SAT solver may help

to find solutions of NP-hard graph transformational problems. If the SAT
solver within SATaGraT yields a result, it is exact. If the formula is unsatisfi-
able, there is no successful derivation. This implies that based on SATaGraT
and a SAT solver, it is automatically decidable for the class of considered
transformation units whether their semantics is empty. If it is not empty,
a successful derivation is provided and can be executed and visualized on
GrGen.NET. In contrast, if one searches for successful derivations directly
on GrGen.NET, proper results are pure chance with very small probability
in general.

In the future, the presented work should be further developed with respect to
the following aspects.

– In our very first experiments the sizes of the input graphs are still rather
small. The problem is that our translation of graph transformation units
into propositional formulas yields very large numbers of clauses although
the formulas are of polynomial size. Hence, further optimizations are needed
to obtain a SATaGraT behavior that is competitive with the benchmarks in
the literature.

– One such optimization may be achieved by using structural analysis on the
input graph and the graph transformation unit to reduce the nondeterminism
in the derivation and thus the size of the formula.

– The performance of SATaGraT should be checked against further graph
transformational descriptions of NP-hard graph algorithms.

– In particular, it should be investigated whether SATaGraT may help to
improve upper bounds found so far by non-exact methods applied to concrete
problem instances.

– The presented approach should be compared with other methods for finding
exact solutions for NP-hard problems such as fixed parameter algorithms
(cf., e.g., [16]).

References

1. Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Irwin, M.J. (ed.) Proc. of the 36th
Annual ACM/IEEE Design Automation Conference, pp. 317–320. ACM (1999)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

3. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J. (eds.): Handbook
on Scheduling: From Theory to Applications. Springer (2007)

4. Brucker, P.: Scheduling Algorithms. Springer (2007)

168 M. Ermler et al.

5. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

7. Funsat (2011), http://hackage.haskell.org/package/funsat-0.6.0 (accessed
August 26, 2011)

8. Ganai, M., Gupta, A.: SAT-Based Scalable Formal Verification Solutions. Series
on Integrated Circuits and Systems. Springer (2007)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

10. Geiß, R., Kroll, M.: GrGen.NET: A Fast, Expressive, and General Purpose Graph
Rewrite Tool. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088, pp. 568–569. Springer, Heidelberg (2008)

11. Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics.
Formal Aspects of Computing 11(6), 690–723 (1999)

12. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph Transformation Units – An
Overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008)

13. Kreowski, H.-J., Kuske, S., Wille, R.: Graph Transformation Units Guided by a SAT
Solver. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010.
LNCS, vol. 6372, pp. 27–42. Springer, Heidelberg (2010)

14. Limboole (2011), http://fmv.jku.at/limboole/ (accessed August 26, 2011)
15. Logic2CNF (2011), http://projects.cs.kent.ac.uk/projects/logic2cnf/trac/

(accessed August 26, 2011)
16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series

in Mathematics and its Applications, vol. 31. Oxford University Press, USA (2006)
17. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer (2008)
18. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph

Transformation, vol. 1: Foundations. World Scientific (1997)
19. Sugar (2011), http://bach.istc.kobe-u.ac.jp/sugar/ (accessed August 26,

2011)
20. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies

in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968);
(reprinted in: Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning, vol. 2,
pp. 466–483. Springer (1983))

http://hackage.haskell.org/package/funsat-0.6.0
http://fmv.jku.at/limboole/
http://projects.cs.kent.ac.uk/projects/logic2cnf/trac/
http://bach.istc.kobe-u.ac.jp/sugar/

Locality in Reasoning

about Graph Transformations

Martin Strecker�

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse, France

http://www.irit.fr/~Martin.Strecker/

Abstract. This paper explores how to reason locally about global prop-
erties of graph transformations, in particular properties involving tran-
sitive closure of the edge relations of the graph. We show under which
conditions we can soundly reduce reasoning about all nodes in the graph
to reasoning about a finite set of nodes. We then give an effective proce-
dure to turn this reduced problem into a Boolean satisfiability problem.

Keywords: Graph transformations, formal methods, verification.

1 Introduction

Proving the correctness of graph transformations is a notoriously hard problem.
As opposed to transformations of tree-like structures, such as term rewriting or
functional programming over inductively defined datatypes, there are no well-
defined traversal strategies of a graph, and, still worse, multiple matchings of a
graph rewriting rule are possible for a single position in a graph. This lack of
structure leads to a combinatorial explosion which calls for tool support when
proving properties of graph transformations.

Two major approaches have been developed: The model checking approach
(embodied by [12,3,8,11,19]) considers the evolution of a given start graph under
application of transformation rules. Typical questions of interest are whether cer-
tain invariants are maintained throughout all evolutions of a graph, or whether
certain states are reachable. A downside of this approach is that, in principle, it
only allows to talk about the effect of transformations on individual graphs and
not about the correctness of rules in general. (However, in particular cases, the
rules themselves may generate all interesting instances, such as in the red-black
trees of [2].)

The theorem proving approach (which we follow in this paper) hoists pre-/
postcondition calculi known from imperative programming to programs about
graphs. Even before being able to reason about more complex graph transforma-
tion programs, one has to be able to prove properties of a single transformation
step, i. e., the consequences of the application of a single rule.

� Part of this research has been supported by the Climt project (ANR-11-BS02-016).

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 169–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.irit.fr/~Martin.Strecker/

170 M. Strecker

Thus, in [6], a relational approach to transformation verification is described
and a coding in Event-B presented [17]. In [15], a natural deduction-like proof
system for reasoning about graph transformations is given, [9] establishes a cor-
respondence between categorical notions and satisfiability problems, however
without providing automated verification procedures.

So far, in all this work, one question has remained unanswered: what is the
global impact of applying a rule locally? Under which conditions can reasoning
about a graph with an unbounded (possibly even infinite) number of nodes be
reduced to reasoning about the finite number of nodes the rule is applied to? The
global properties we are particularly interested in are connectedness and reach-
ability, which, in principle, require inductive proofs. We especially concentrate
on preservation of transitive closure of the form r∗ ⊆ r′∗, where r resp. r′ are
the arc relations of a graph before resp. after the transformation. Finding good
answers is essential for automating the verification of graph transformations. We
will show when and how we can reduce the containment problem r∗ ⊆ r′∗ to
a problem of the form r ⊆ r′. This avoids reasoning about possibly unbounded
paths and instead only considers a finite set of nodes and arcs that can be de-
rived directly from the transformation rules. We thus arrive at a problem that
can be decided by Boolean satisfiability checking.

We will further highlight the problem and give an informal overview of our
approach in Section 2. We then describe our language for specifying graph trans-
formations and the property language in Section 3. In Section 4, we show under
which conditions we can separate a graph into an arbitrarily large “exterior”
and a finite “interior”, and in Section 5, we reduce the verification of a given
property on this interior to a Boolean satisfiability problem. In Section 6, we
conclude with an outlook on future work.

2 Problem Statement

Consider the example in Figure 1, describing a graph transformation rule (in
the upper part) that deletes the edge (n1, n3) and instead inserts two new edges
(n1, n2) and (n2, n3). When this transformation is embedded into a larger graph
(in the lower part; the image of the rule in the graph has a darker shading), one
can assert that if it is possible to go from a node x to a node y in the original
graph, then this is also possible after transformation. More formally: if r is the
edge relation and r∗ is its reflexive-transitive closure, then (x, y) ∈ r∗ in the
original graph implies (x, y) ∈ r∗ in the transformed graph, for arbitrary nodes
x and y.

It might appear that this fact can be established by simply looking at the
finite number of nodes of the transformation rule, without taking arbitrary x
and y in the graph. Thus, the path (n1, n3) ∈ r∗ of the LHS of the rule can be
constructed by the composition of (n1, n2) and (n2, n3) in the RHS, which seems
to carry over to embeddings of this rule in larger graphs.

Such a reasoning is fallacious, as illustrated in Figure 2, which is taken from
a case study describing the data flow in a communication network (a similar

Locality in Reasoning about Graph Transformations 171

n1

n2

n3 n1

n2

n3

x yg1

g2

g3 x yg1

g2

g3

Fig. 1. Simple rerouting

example appears in [1]). The network consists of composite elements (bold bor-
ders in the figure) and simple elements. There are two kinds of relations: the
flow relation (simple arrows) and the containment relation between simple and
composite elements (dashed arrows). The reader should not be confused by the
terminology: also a node representing a composite element is a regular node and
not a subgraph.

The transformation rule describes the situation where diagrams with com-
posite elements are flattened, by rerouting data flows to and from composite
elements to their containing blocs (of course, the containment relation cannot
be part of data paths). One can verify that data paths between non-composite
elements are preserved within the rule: the path from n1 to n4 in the LHS also
exists in the RHS. Unfortunately, data path preservation does not hold any more
in a larger context, when considering nodes outside the image of the transforma-
tion rule: For example, the data path from g1 to g6 is lost by the transformation.

To make the statement (“paths between non-composite blocs”) more formal,
let us use three kinds of relations: r for edges between simple blocs (straight,
non-dashed arrows), and rsc (resp. rcs) for edges from simple to composite (resp.
composite to simple) blocs. Let us write ◦ for relation composition. The path
preservation property now reads: if (x, y) ∈ (r∪ (rcs ◦rsc))∗ in the original graph
for arbitrary x, y, then also in the transformed graph.

Why does local reasoning about a rule carry over to the entire graph in the
first, but not in the second case? One of the causes appears to be relation
composition, which hides an existential quantifier: (x, y) ∈ (rcs ◦ rsc) means
∃z.(x, z) ∈ rcs ∧ (z, y) ∈ rsc, and there is no way to tell whether this z is one of
the nodes inside the image of the transformation rule, or whether it lies outside
of it. We will therefore omit relation composition from the relational language
of Section 5.1, but definitely show that local reasoning is safe for the fragment
defined below.

3 Representing and Reasoning about Transformations

Our way of representing and reasoning about graph transformations is described
in more detail in [18], and we therefore only summarize the elements that are

172 M. Strecker

n1

n2

n5

n3

n4 n1

n2

n5

n3

n4

g1

g2

g5

g3

g4

g6

g1

g2

g5

g3

g4

g6

rsc rcs

rsc rcs

rcs rcs

Fig. 2. Complex rerouting

most important for an understanding of this article. This section might be
skipped on a first reading and only be consulted for the terminology used later
on.

The approach is entirely logical and consists of coding all relevant notions of
graph transformations in a higher-order proof assistant, such as rules, matching,
morphisms and rewriting itself. (In our case, the Isabelle [14] system is used, and
some of the definitions below are directly extracted from the Isabelle sources.)
This gives a fine control over the transformation process, such as the properties
of the morphisms mapping rules into graphs. For example, we assume throughout
this article that these morphisms are injective, but this property can easily be
configured differently, however with a non-negligible impact on efficiency of the
reasoning procedures.

A graph is defined to be a record consisting of a set of nodes and a set of
edges (pairs of nodes), indexed by an edge type ′et. Furthermore, nodes can be
given a node type:

record (′nt , ′et , ′h) graph =
nodes :: obj set
edges :: ′et ⇒ (obj ∗ obj) set
nodetp :: obj ⇒ ′nt

A graph transformation consists of an applicability condition that defines a
matching in a target graph, and an effect that specifies how the matched nodes
and edges are transformed: which nodes and edges have to be deleted and which
have to be generated, and how the newly generated nodes have to be typed. In
order to be able to manipulate the applicability condition syntactically, we do
not express it with the aid of the built-in logic of our proof assistant, but rather
use a special-purpose syntax that we do not spell out any further here. As an
illustration, here is the definition that specifies the transformation of Figure 1.
The precondition rerouting-precond expresses that there is a type of nodes, Node,
and a relation r, that the nodes n1 , n2 , n3 have type Node and there is an edge
of type r between n1 and n3. The transformation itself specifies which edges are

Locality in Reasoning about Graph Transformations 173

deleted (e-del) and generated (e-gen). This specification is indexed by the node
relation, hence the lambda-abstraction over et. No nodes are deleted or added
in this example.

datatype nodetp = Node
datatype edgetp = r

definition
rerouting-precond :: nat ⇒ nat ⇒ nat ⇒ (nodetp, edgetp, ′h) path-form where
rerouting-precond n1 n2 n3 = (Conjs-form [

(S-form (Type-set Node) n1), (S-form (Type-set Node) n2),
(S-form (Type-set Node) n3), (P-form (Edge-pth r) n1 n3)])

definition rerouting :: (nodetp, edgetp, ′h) graphtrans where
rerouting =
(| appcond = rerouting-precond 1 2 3 ,
n-del = {}, n-gen = {},
e-del = λ et . {(1 ,3)}, e-gen = λ et . {(1 ,2), (2 ,3)},
n-gentp = empty |)
A morphism is a map from nodes (in the transformation rule) to nodes (in

the target graph):

types graphmorph = nat ⇒ obj option

We now have all ingredients for defining the function apply-graphtrans-rel that
applies a graph transformation under a given morphism to a graph and produces
a transformed graph (see [18] for more details):

consts apply-graphtrans-rel ::
[(′nt , ′et , ′h) graphtrans, graphmorph, (′nt , ′et , ′h) graph, (′nt , ′et , ′h) graph]
⇒ bool

Usually, we are not interested in the behavior of a transformation for one partic-
ular morphism, but for any morphism that satisfies the applicability condition.
The following relation abstracts away from the morphism and just describes that
a graph gr is transformed into a graph gr ′ by a graph transformation gt :

definition apply-transfo-rel ::
[(′nt , ′et , ′h) graphtrans, (′nt , ′et , ′h) graph, (′nt , ′et , ′h) graph] ⇒ bool where
apply-transfo-rel gt gr gr ′ = apply-graphtrans-rel gt (select-morph gt gr) gr gr ′

The proof obligations we set out to prove typically have the form: if the trans-
formation transforms gr into gr ′, then P (gr , gr ′) holds, where P is a predicate
putting into correspondence the node and edge sets of gr and gr ′. For example,
the path preservation property of Figure 1 is stated as:

(applicable-transfo rerouting gr ∧ apply-transfo-rel rerouting gr gr ′)
=⇒ (edges gr r)∗ ⊆ (edges gr ′ r)∗

More specifically, the properties P we will examine in the following are simple
preservation properties r ⊆ s or path preservation properties r∗ ⊆ s∗, where r
represents the edge relation of gr and s the edge relation of gr ′ (“nodes connected

174 M. Strecker

in gr are also connected in gr ′”), or inversely (“nodes connected in gr ′ were
already connected in gr”, rather expressing a preservation of separation).

The way the transformations are defined, references to gr ′ can be eliminated.
To illustrate this point, let us continue with our example. Unfolding definitions
and carrying out some simplifications, our proof obligation reduces to the fol-
lowing (hypotheses are contained in [[...]], and some inessential ones have been
removed):

[[n1 ∈ nodes gr ; n2 ∈ nodes gr ; n3 ∈ nodes gr ; nodetp gr n1 = Node;
nodetp gr n2 = Node; nodetp gr n3 = Node; (n1 , n3) ∈ edges gr r]]
=⇒ (edges gr r)∗

⊆ (insert (n1 , n2) (insert (n2 , n3) (edges gr r − {(n1 , n3)})))∗

4 Graph Decompositions

The essential step of our approach consists in splitting up a graph into an interior
region (the image of nodes of a rule in a graph under a given graph morphism),
and an exterior. Since we are here mostly concerned with the node relations of a
graph, we define the interior and exterior of a relation r with respect to a region
A as follows:

definition interior-rel A r = r ∩ (A × A)
definition exterior-rel A r = r − (A × A)

Visually speaking, the interior of a relation wrt. a region A comprises all arcs
connecting nodes a1, a2 both of which are contained in A, whereas the exterior
consists of the arcs connected to at least one node e outside of A.

a1 a2

e

r

s s

Fig. 3. Interior (dark shade) and exterior (light shade) of a relation

The interior and exterior of a relation add up to the whole relation again:

lemma interior-union-exterior : interior-rel A r ∪ exterior-rel A r = r

and from this, we obtain by simple set-theoretic reasoning a first decomposition
lemma:

lemma interior-exterior-decompos-subset-equal :
(exterior-rel A r ⊆ exterior-rel A s ∧ interior-rel A r ⊆ interior-rel A s)
= (r ⊆ s)

Locality in Reasoning about Graph Transformations 175

When read from right to left, this lemma reduces reasoning of a relation con-
tainment property of the form r ⊆ s to reasoning about the interior and exterior
of these relations.

Our principal interest in this paper is reasoning about preservation of (reflex-
ive) transitivity properties, i. e., properties of the form r∗ ⊆ s∗ or r+ ⊆ s+. Even
though applicable in principle, the above decomposition lemma is of no much use,
as will become apparent in Section 5. We therefore provide the following special-
ized form (a similar lemma holds for the transitive closure as well):

lemma interior-exterior-decompos-rtrancl-subset :
(exterior-rel A r)∗ ⊆ (exterior-rel A s)∗ ∧ (interior-rel A r)∗ ⊆ (interior-rel A s)∗

=⇒ r∗ ⊆ s∗

Its correctness can be seen by using the property (I ∗ ∪ E∗)∗ = (I ∪ E)∗ of
transitive closures and lemma interior-union-exterior to show that ((interior-rel
A r)∗ ∪ (exterior-rel A r)∗)∗ = r∗ and then use simple set-theoretic reasoning.

As witnessed by this lemma, proving r∗ ⊆ s∗ by decomposition into interior
and exterior is sound, but contrary to interior-exterior-decompos-subset-equal,
the above lemma is an implication and not an equality. One may therefore wonder
whether this decomposition does not make us lose completeness, by possibly
reducing a provable to an unprovable statement.

Indeed, the inverse does not hold in general. For example, r∗ ⊆ s∗ =⇒
(interior-rel A r)∗ ⊆ (interior-rel A s)∗ is not satisfied for r = {(a1, a2)},
s = {(a1, e), (e, a2)} and A = {a1, a2}. Note that in this case, interior-rel A
s = {}, whereas interior-rel A r = {(a1, a2)} (also see Figure 3).

However, by choosing the interior large enough, we obtain the inverse of lemma
interior-exterior-decompos-rtrancl-subset (here, Field is the union of the domain
and the range of a relation):

lemma decompos-complete-interior :
Field s ⊆ A =⇒ r∗ ⊆ s∗ =⇒ (interior-rel A r)∗ ⊆ (interior-rel A s)∗

lemma decompos-complete-exterior :
Field r ⊆ A =⇒ r∗ ⊆ s∗ =⇒ (exterior-rel A r)∗ ⊆ (exterior-rel A s)∗

In practice, this means that the interior has to comprise all known elements of
the relations r and s (differently said: all free variables occurring in them).

We have thus recovered completeness of our decomposition for a class of
graphs that comprises also the graphs for which this decomposition is in fact
trivial (i. e., Field s ⊆ A and Field r ⊆ A hold). It also highlights the problem
of performing this decomposition if the fields of the involved relations are not
entirely known, as in the case of relation composition.

Let us conclude this section by applying the above procedure to our example.
Since the variables n1 , n2 , n3 are free in our goal, we choose A = {n1 , n2 , n3}
and obtain two new subgoals, the first having the conclusion

(exterior-rel {n1 , n2 , n3} (edges gr r))∗

⊆ (exterior-rel {n1 , n2 , n3}
(insert (n1 , n2) (insert (n2 , n3) (edges gr r − {(n1 , n3)}))))∗

and the second one being similar, for interior-rel.

176 M. Strecker

5 Reduction to Boolean Satisfiability

As indicated before, we are interested in proving properties of the form r ⊆ s or
r∗ ⊆ s∗, and we have seen in Section 2 that some relation constructors, such as
relation composition, are problematic. In Section 5.1, we therefore give a more
precise characterisation of the structure of the relation expressions r and s we
will use in the following.

After decomposition of the graph into an exterior and an interior, we are
left to simplifying each of these parts separately. In Section 5.2 and Section 5.3
respectively, we will see that for our relation algebra, the resulting problems are
indeed decidable.

5.1 Relation Expressions

We assume that our relational expressions r are built up inductively according
to the following grammar:

r ::= rb
| {}
| insert (n1, n2) r
| r ∪ r
| r ∩ r
| r − r

Here, rb are basic, non-interpreted relations, and n1, n2 are variables representing
node names. Our grammar contains set difference A − B and not simply set
complement − B because the former behaves better with some of the reductions
in Section 5.2 and Section 5.3.

We assume that FV (r) returns all the free variables in r, i. e., the set of all
the n1 and n2 occurring in insert-expressions of r.

It should be noted that this grammar enables to capture at least the effects
of transformations that arise from application of rules as defined in Section 3.

5.2 Reduction of the Exterior

Decomposition of Sec. 4 has left us with a first subgoal of the form (exterior-rel
A r) ⊆ (exterior-rel A s) or (exterior-rel A r)∗ ⊆ (exterior-rel A s)∗. We now
exhaustively apply the following rewrite rules (technically, in our framework,
they are added to Isabelle’s simplification set):

exterior-rel A {} = {}
exterior-rel A (insert (x , y) r) = ({(x , y)} − (A × A)) ∪ exterior-rel A r
exterior-rel A (r ∩ s) = (exterior-rel A r) ∩ (exterior-rel A s)
exterior-rel A (r ∪ s) = (exterior-rel A r) ∪ (exterior-rel A s)
exterior-rel A (r − s) = (exterior-rel A r) − (exterior-rel A s)

Locality in Reasoning about Graph Transformations 177

and furthermore the simplification {(x , y)} − (A × A) = {} if x ,y ∈ A, as well
as trivial simplifications of operations with the empty set.

An easy inductive argument shows that, if FV (r) ⊆ A, these simplifications
reduce any expression exterior-rel A r to a Boolean combination, consisting of
operators ∪, ∩, −, and only involving expressions exterior-rel A r b, where the
rb are basic relations.

If our original goal had the form (exterior-rel A r) ⊆ (exterior-rel A s), we
are now left with a goal R ⊆ S, with R and S such Boolean combinations.
Since the basic rb are uninterpreted, this goal can be proved or disproved with
propositional reasoning.

If our original goal had the form (exterior-rel A r)+ ⊆ (exterior-rel A s)+,
we are now left with a goal R+ ⊆ S+, which we can reduce to R ⊆ S, using the
fact that (reflexive) transitive closure is monotonic, and then proceed as before.
This reduction is obviously sound. It is also complete: if R ⊆ S is not provable,
any counterexample can be turned into a counterexample in which the basic
expressions exterior-rel A r b are interpreted as either empty or non-empty over
a one-element domain. Over this domain, a relation and its transitive closure
coincide, so that we obtain a counterexample of R+ ⊆ S+. A slightly more
involved argument also holds for reflexive-transitive closure.

5.3 Reduction of the Interior

We now show how we can verify the properties in the interior, for goals having the
form (interior-rel A r) ⊆ (interior-rel A s) or (interior-rel A r)∗ ⊆ (interior-rel
A s)∗. Even though it appears intuitively plausible that these questions are
decidable for a finite interior A, it is not sufficient to use traditional graph
algorithms, because our relations r and s are composite.

For simplification, we proceed in several stages:

1. we push inside applications of interior-rel, leaving applications of the form
interior-rel A r b for basic relations r b;

2. we explicitly calculate interior-rel A r b, which completely eliminates all oc-
currences of interior-rel ;

3. if necessary, we explicitly calculate the (reflexive) transitive closure of the
sets thus obtained, which essentially gives a propositional problem;

4. we solve the problem with a propositional solver.

For the first stage, we use the following rewrite rules:

interior-rel A {} = {}
interior-rel A (insert (x , y) r) = ({(x , y)} ∩ (A × A)) ∪ (interior-rel A r)
interior-rel A (r ∩ s) = (interior-rel A r) ∩ (interior-rel A s)
interior-rel A (r ∪ s) = (interior-rel A r) ∪ (interior-rel A s)
interior-rel A (r − s) = (interior-rel A r) − (interior-rel A s)

Note that A is a finite, concrete set, so that we can further simplify with:

178 M. Strecker

x ∈ A ∧ y ∈ A =⇒ ({(x , y)} ∩ (A × A)) = {(x , y)}
x /∈ A ∨ y /∈ A =⇒ ({(x , y)} ∩ (A × A)) = {}
At the end of this first step, we are now left with a Boolean combination of

relations of the style interior-rel A r b, where r b is basic. The following equality:

r ∩ (insert a A) × (insert a A) =
(r ∩ (A × A)) ∪ (r ∩ ({a} × (insert a A))) ∪ (r ∩ ((insert a A) × {a}))

is the basis for a simplification scheme that recurses over A and eliminates all
interior-rel :

interior-rel {} r = {}
interior-rel (insert a A) r =
(interior-rel A r) ∪
(interior-rel-elem-r a (insert a A) r) ∪ (interior-rel-elem-l a (insert a A) r)

Here, we have defined

definition interior-rel-elem-r a B r = r ∩ ({a} × B)
definition interior-rel-elem-l b A r = r ∩ (A × {b})
with the following reductions:

interior-rel-elem-r a {} r = {}
interior-rel-elem-r a (insert b B) r =
(if (a, b) ∈ r then {(a, b)} else {}) ∪ interior-rel-elem-r a B r
interior-rel-elem-l b {} r = {}
interior-rel-elem-l b (insert a A) r =
(if (a, b) ∈ r then {(a, b)} else {}) ∪ interior-rel-elem-l b A r

Before taking the third step, we have to massage the goal by if-splitting, thus
distinguishing, in the above rules, between the cases (a, b) ∈ r and (a, b) /∈ r.
This is a source of a considerable combinatorial explosion: for each basic relation
r b occurring in the goal, and for n nodes, we potentially get 2(n

2) combinations,
the problem being aggravated by the fact that the relations are not directed. We
will come back to this point in Section 6.

To complete the transformation, we symbolically compute the closure. We
show the recursive equation for transitive closure:

(v , w) ∈ (insert (y , x) r)+ =
((v , w) ∈ r+ ∨ ((v = y) ∨ (v , y) ∈ r+) ∧ ((x = w) ∨ (x , w) ∈ r+))

After these transformations, we obtain a Boolean combination of

– membership in an elementary relation: (x , y) ∈ r (or their negation)
– (in)equalities x = y or x �= y between nodes

This fragment can readily be decided by standard propositional solvers.

6 Conclusions

We have presented a method of automatically proving properties of graph trans-
formations in a restricted relational language with transitive closure, by decom-
posing the abstract graph in which a rule is to be applied in an interior and an

Locality in Reasoning about Graph Transformations 179

exterior region on which the proof problems can be verified by essentially propo-
sitional means. Seen from a different angle: the present paper establishes a gen-
eral framework in which the difficultly automizable inductive proofs arising from
transitive closure operations have already been carried out on the meta-level. For
a particular application, it therefore suffices to use finitary proof methods.

The transformations in Section 5.2 might give rise to problems of set contain-
ment for Boolean set operations, which is in principle NP-complete, but seems to
be very efficient in practice. The reason is that the simplifications in Section 5.2
only verify that a decomposition has been applied correctly.

However, in their current form, the transformations in Section 5.3 are of expo-
nential complexity. Intuitively, this is because we have to check for the presence
of any possible combination of edges in the graph in which the rule has to be
applied. It seems difficult to see how to do better, because contrary to tree-like
structures, graph transformations allow for a large number of matchings. We are
currently working on a proof of the complexity of this decision problem.

We can extend our work in different directions: On the practical side, we
would like to develop simplification strategies that perform essential reductions
before case splitting introduces a combinatorial explosion.

On the theoretical side, it is interesting to further explore the boundary be-
tween decidable and undecidable fragments, hopefully leading to a more expres-
sive relational fragment than the one of Section 5.1. Several logics for reasoning
about graphs [5] and for pointer structures in programs have been proposed,
and an in-depth comparison still has to be done. The decidable fragment in [10],
based on transitive closure logic, only allows for a single edge relation, whereas
the logical language in [20] assumes a set of distinguished starting points for
talking about reachability, but does not examine reachability between arbitrary
points.

The decidable logic described in [13] concentrates on the preservation of data
structure variants (such as doubly-linked lists) in pointer manipulating pro-
grams, but does not allow to reason about global graph properties.

Separation Logic (SL) [16] is a specialized logic for reasoning in a pre-/ post-
condition style about pointer-manipulating programs. It advocates splitting the
heap into disjoint areas, thus reducing the complexity of reasoning about pointer
manipulations which may have a global impact due to aliasing. Just like Hoare
logic, SL as such does not aim at being a decidable logic. The decidable fragment
described in [4] is so weak that it is not closed under the heap-manipulating oper-
ations of a programming language. It only enables to describe simple properties
of lists, but not more general properties of connectivity.

The relation of SL and graph rewriting is discussed in [7], however without
reference to particular decision procedures.

Probably the best way to come to terms with the complexity of graph rewrit-
ing is to identify particular classes of graphs that are better behaved. This might
be tree-like graphs or at least graphs in which the non-determinism of rule ap-
plication is strongly restricted.

180 M. Strecker

Acknowledgements. I am grateful for my colleagues Ralph Matthes, Christian
Percebois and Hanh-Ni Tran for discussions about the problem of locality in
graph rewriting and for helpful feedback on preliminary versions of this article.

References

1. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards automated, formal verifica-
tion of model transformations. In: Proc. of the 3rd International Conference on
Software Testing, Verification, and Validation, pp. 15–24. IEEE Computer Society,
Los Alamitos (2010)

2. Baldan, P., Corradini, A., Esparza, J., Heindel, T., König, B., Kozioura, V.: Ver-
ifying red-black trees. In: Proc. of Concurrent Systems with Dynamic Allocated
Heaps, COSMICAH 2005 (2005); Proceedings available as report RR-05-04 (Queen
Mary, University of London)

3. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-
state graph transformation systems. Information and Computation 206(7), 869–907
(2008)

4. Berdine, J., Calcagno, C., O’Hearn, P.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

5. Caferra, R., Echahed, R., Peltier, N.: A term-graph clausal logic: Completeness
and incompleteness results. Journal of Applied Non-classical Logics 18(4), 373–411
(2008)

6. da Costa, S.A., Ribeiro, L.: Formal verification of graph grammars using mathe-
matical induction. In: Proc. of the 11th Brazilian Symposium on Formal Methods
(SBMF 2008). ENTCS, vol. 240, pp. 43–60. Elsevier (2009)

7. Dodds, M.: Graph Transformation and Pointer Structures. Ph.D. thesis, University
of York (2008)

8. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Tech. Rep. TR-CTIT-10-18, Centre for Telem-
atics and Information Technology, University of Twente, Enschede (2010)

9. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19(02),
245–296 (2009)

10. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The Bound-
ary Between Decidability and Undecidability for Transitive-Closure Logics. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174.
Springer, Heidelberg (2004)

11. Kastenberg, H.: Graph-Based Software Specification and Verification. Ph.D. thesis,
University of Twente (2008), http://eprints.eemcs.utwente.nl/13615/

12. König, B., Kozioura, V.: Augur 2 – A new version of a tool for the analysis of
graph transformation systems. In: Proc. of the 5th Int. Workshop on Graph Trans-
formation and Visual Modeling Techniques. ENTCS, vol. 211, pp. 201–210. Elsevier
(2008)

13. McPeak, S., Necula, G.C.: Data Structure Specifications via Local Equality Ax-
ioms. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
476–490. Springer, Heidelberg (2005)

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

http://eprints.eemcs.utwente.nl/13615/

Locality in Reasoning about Graph Transformations 181

15. Pennemann, K.H.: Resolution-Like Theorem Proving for High-Level Conditions.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 289–304. Springer, Heidelberg (2008)

16. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55–74. IEEE Computer Society (2002)

17. Ribeiro, L., Dotti, F.L., da Costa, S.A., Dillenburg, F.C.: Towards theorem proving
graph grammars using Event-B. In: Ermel, C., Ehrig, H., Orejas, F., Taentzer, G.
(eds.) Proc. of the International Colloquium on Graph and Model Transformation
2010. ECEASST, vol. 30 (2010)

18. Strecker, M.: Modeling and verifying graph transformations in proof assistants. In:
Mackie, I., Plump, D. (eds.) International Workshop on Computing with Terms
and Graphs. ENTCS, vol. 203, pp. 135–148. Elsevier (2008)

19. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3), 214–234 (2007)

20. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reach-
able patterns in linked data-structures. The Journal of Logic and Algebraic Pro-
gramming 73(1-2), 111–142 (2007)

Contextual Hyperedge Replacement

Frank Drewes1, Berthold Hoffmann2, and Mark Minas3

1 Ume̊a Universitet, Sweden
2 DFKI Bremen and Universität Bremen, Germany
3 Universität der Bundeswehr München, Germany

Abstract. In model-driven design, the structure of software is com-
monly specified by meta-models like uml class diagrams. In this paper
we study how graph grammars can be used for this purpose, using state-
charts as an example. We extend context-free hyperedge-replacement—
which is not powerful enough for this application—so that rules may not
only access the nodes attached to the variable on their left-hand side,
but also nodes elsewhere in the graph. Although the resulting notion
of contextual hyperedge replacement preserves many properties of the
context-free case, it has considerably more generative power—enough to
specify software models that cannot be specified by class diagrams.

1 Introduction

Graphs are ubiquitous in science and beyond. When graph-like diagrams are
used to model system development, it is important to define precisely whether
a diagram is a valid model or not. Often, models are defined as the valid instan-
tiations of a meta-model, e.g., the valid object diagrams for a class diagram in
uml. A meta-model is convenient for capturing requirements as it can be refined
gradually. It is easy to check whether a given model is valid for a meta-model.
However, it is not easy to construct valid sample models for a meta-model, and
they give no clue how to define transformations on all valid models. Also, their
abilities to express structural properties (like hierarchical nesting) are limited;
constraints (e.g., in the logic language ocl) have to be used for more complicated
properties like connectedness.

In contrast to meta-models, graph grammars derive sets of graphs construc-
tively, by applying rules to a start graph. This kind of definition is strict, can
easily produce sample graphs by derivation, and its rules provide for a recursive
structure to define transformations on the derivable graphs. However, it must not
be concealed that validating a given graph, by parsing, may be rather complex.

General graph grammars generate all recursively enumerable sets of graphs
[16] so that there can be no parsing algorithm. Context-free graph grammars
based on node replacement or hyperedge replacement [6] do not have the power
to generate graphs of general connectivity, like the language of all graphs, of all
acyclic, and all connected graphs etc. We conclude that practically useful kinds
of graph grammars should lie in between context-free and general ones. We take
hyperedge replacement as a solid basis for devising such grammars, as it has

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 182–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Contextual Hyperedge Replacement 183

a comprehensive theory, and is very simple: A step removes a variable (repre-
sented as a hyperedge) and glues the fixed ordered set of nodes attached to it to
distinguished nodes of a graph. The authors have been working on several ex-
tensions of hyperedge replacement. Adaptive star replacement [2], devised with
D. Janssens and N. Van Eetvelde, allows variables to be attached to arbitrary,
unordered sets of nodes. Its generative power suffices to define sophisticated soft-
ware models like program graphs [3]. Nevertheless, it inherits some of the strong
properties of hyperedge replacement. Unfortunately, adaptive star rules tend to
have many edges, which makes them hard to understand—and to construct.
Therefore the authors have devised contextual graph grammars, where variables
still have a fixed, ordered set of attached nodes, but replacement graphs may
be glued, not only with these attachments, but also with nodes occurring else-
where in the graph, which have been generated in earlier derivation steps [11]. As
we shall show, their generative power suffices to define non-context-free models.
Typically, contextual rules are only modest extensions of hyperedge replacement
rules, and are significantly easier to write and understand than adaptive star
rules. This qualifies contextual hyperedge grammars as a practical notation for
defining software models. When we add application conditions to contextual
rules, as we have done in [11], even subtler software models can be defined.
Since conditions are a standard concept of graph transformation, which have
been used in many graph transformation systems (see, e.g., progres [15]), such
rules are still intuitive.

This paper aims to lay a fundament to the study of contextual hyperedge re-
placement. So we just consider grammars without application conditions for the
moment, as our major subjects of comparison, context-free hyperedge replace-
ment and adaptive star replacement, also do not have them. With context-free
hyperedge replacement, contextual hyperedge replacement shares decidability
results, characterizations of their generated language, and the existence of a
parsing algorithm. Nevertheless, it is powerful enough to make it practically
useful for average structural models.

The remainder of this paper is structured as follows. In Section 2 we introduce
contextual hyperedge replacement grammars and give some examples. In partic-
ular, we discuss a grammar for statecharts in Section 3. Normal forms for these
grammars are presented in Section 4. In Section 5 we show some of their limita-
tions w.r.t. language generation, and sketch parsing in Section 6. We conclude
with some remarks on related and future work in Section 7.

2 Graphs, Rules, and Grammars

In this paper, we consider directed and labeled graphs. We only deal with ab-
stract graphs in the sense that graphs that are equal up to renaming of nodes
and edges are not distinguished. In fact, we use hypergraphs with a generalized
notion of edges that may connect any number of nodes, not just two. Such edges
will also be used to represent variables in graphs and graph grammars.

184 F. Drewes, B. Hoffmann, and M. Minas

We consider labeling alphabets C = Ċ �C̄ �X that are sets whose elements are
the labels (or “colors”) for nodes, edges, and variables, with an arity function
arity : C̄ �X → Ċ∗.1

A labeled hypergraph over C (graph, for short) G = 〈Ġ, Ḡ, attG, �̇G, �̄G〉 consists
of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short) respec-
tively, a function attG : Ḡ → Ġ∗ that attaches sequences of pairwise distinct
nodes to edges so that �̇∗G(attG(e)) = arity(�̄G(e)) for every edge e ∈ Ḡ,2 and

labeling functions �̇G : Ġ→ Ċ and �̄G : Ḡ→ C̄ �X . Edges are called variables if
they carry a variable name as a label; the set of all graphs over C is denoted by
GC .

For a graph G and hyperedge e ∈ Ḡ, we denote by G− e the graph obtained
by removing e from G. Similarly, for v ∈ Ġ, G − v is obtained by removing v
from G (together with all edges attached to v).

Given graphs G and H , a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ→ Ḣ and m̄ : Ḡ→ H̄ that preserves labels and attachments:

�̇H ◦ ṁ = �̇G, �̄H ◦ m̄ = �̄G, attH(m̄(e)) = ṁ∗(attG(e)) for every e ∈ Ḡ

As usual, a morphism m : G→ H is injective if both ṁ and m̄ are injective.
The replacement of variables in graphs by graphs is performed by applying a

special form of standard double-pushout rules [5].

Definition 1 (Contextual Rule). A contextual rule (rule, for short) r =
(L,R) consists of graphs L and R over C such that

– the left-hand side L contains exactly one edge x, which is required to be a
variable (i.e., L̄ = {x} with �̄L(x) ∈ X) and

– the right-hand side R is an arbitrary supergraph of L− x.

Nodes in L that are not attached to x are the contextual nodes of L (and of r);
r is context-free if it has no contextual nodes. (Context-free rules are known as
hyperedge replacement rules in the literature [7].)

Let r be a contextual rule as above, and consider some graph G. An injective
morphism m : L → G is called a matching for r in G. The replacement of the
variable m(x) ∈ G by R (via m) is the graph H obtained from the disjoint union
of G−m(x) and R by identifying every node v ∈ L̇ with m(v). We write this as
H = G[R/m].

Note that contextual rules are equivalent to contextual star rules as introduced
in [11], however without application conditions.

The notion of rules introduced above gives rise to a class of graph grammars.
We call these grammars contextual hyperedge-replacement grammars, or briefly
contextual grammars.

1 A∗ denotes finite sequences over a set A; the empty sequence is denoted by ε.
2 For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by
f∗(a1, . . . , an) = f(a1) . . . f(an), for all ai ∈ A, 1 � i � n, n � 0.

Contextual Hyperedge Replacement 185

Definition 2 (Contextual Hyperedge-Replacement Grammar). A con-
textual hyperedge-replacement grammar (contextual grammar, for short) is a
triple Γ = 〈C,R, Z〉 consisting of a finite labeling alphabet C, a finite set R
of rules, and a start graph Z ∈ GC .

If R contains only context-free rules, then Γ is a hyperedge replacement gram-
mar. We let G ⇒R H if H = G[R/m] for some rule (L,R) and for a matching
m : L→ G. Now, the language generated by Γ is given by

L(Γ) = {G ∈ GC\X | Z ⇒∗
R G}.

Contextual grammars Γ and Γ ′ are equivalent if L(Γ) = L(Γ ′). The classes of
graph languages generated by hyperedge-replacement grammars and contextual
grammars are denoted by HR and CHR, respectively.

Notation (Drawing Conventions for Graphs and Rules). Graphs are
drawn as in Figure 2 and Figure 4. Circles and boxes represent nodes and edges,
respectively. The text inscribed to them is their label from C. (If all nodes carry
the same label, these are just omitted.) The box of an edge is connected to the
circles of its attached nodes by lines; the attached nodes are ordered counter-
clockwise around the edge, starting in its north. The boxes of variables are drawn
in gray. Terminal edges with two attached nodes may also be drawn as arrows
from the first to the second attached node. In this case, the edge label is ascribed
to the arrow.

In figures, a contextual rule r = (L,R) is drawn as L : : =R. Small numbers
above nodes indicate identities of nodes in L and R. L : : =R1|R2 · · · is short
for rules L : : =R1, L : : =R2, . . . with the same left-hand side. Subscripts “n” or
“n|m· · · ” below the symbol : : = define names that are used to refer to rules in
derivations, as in Figure 1 and Figure 3.

Example 1 (The Language of All Graphs). The contextual grammar in Figure 1
generates the set A of loop-free labeled graphs with binary edges, and Figure 2
shows a derivation with this grammar. Rules 0 and d generate n � 0 variables
labeled with G; the rules nx generate a node labeled with x, and the rules ea
insert an edge labeled with a between two nodes that are required to exist in
the context.

G : : =
0|d

〈〉
∣
∣
∣ G G G : : =

x

x , for all x ∈ Ċ
x G y : : =

a

x y
a , for all a ∈ C̄, where arity(a) = xy Z = G

Fig. 1. A contextual grammar (generating the language of all graphs)

G
5⇒
d G

G

GG

G G
3⇒
nA A

A

AG

G G
3⇒
ea A

A

A

a a

a

Fig. 2. A derivation with the rules in Figure 1

186 F. Drewes, B. Hoffmann, and M. Minas

It is well known that the languageA cannot be defined by hyperedge-replacement
grammars [7, Chapter IV, Theorem 3.12(1)].3 Thus, as CHR contains HR by
definition, we have:

Observation 1. HR � CHR.

Flow diagrams are another example for this observation: In contrast to structured
and semi-structured control flow diagrams, unrestricted control flow diagrams
are not in HR, because they have unbounded tree-width [7, Chapter IV, Theorem
3.12(7)]. However, they can be generated by contextual grammars.

0

D

: : =
h|a|b

0

|

0

D

|

0

⊕
�

D D

0

D

1

: : =
g

0

1

Z =
D

Fig. 3. Rules generating unrestricted control flow diagrams

D

⇒
b

⊕
�

D D

⇒
b

D D

D

⊕
�

⊕
�

⇒
h

D

D

⊕
�

⊕
� 3⇒

a

D

D

⊕
�

⊕
�

2⇒
g

⊕
�

�
⊕

Fig. 4. A derivation of an unstructured control flow diagram

Example 2 (Control Flow Diagrams). Unrestricted control flow diagrams repre-
sent sequences of low-level instructions according to a syntax like this:

I : : = [� :]halt | [� :]x := E | [�1 :] if E then goto �2 | [�1 :]goto �2

The rules in Figure 3 generate unrestricted flow diagrams. The first three rules,
h, a, and b, generate control flow trees, and the fourth rule g, which is not
context-free, inserts gotos to a program state in the context. In Figure 4, these
rules are used to derive an “ill-structured” flow diagram.

Note that flow diagrams cannot be defined with class diagrams, because subtyping
and multiplicities do not suffice to define rootedness and connectedness of graphs.

3 It is well-known that node replacement (more precisely, confluent edNCE graph
grammars) cannot generate A either [6, Thm. 4.17]. Hence, Observation 1 holds
similarly for node replacement.

Contextual Hyperedge Replacement 187

3 A Contextual Grammar for Statecharts

Statecharts [9] are an extension of finite automata modeling the state transitions
of a system in reaction on events. The statechart in Figure 5 describes an auction.
Blobs denote states, and arrows denote transitions between them. Black blobs
are initial states, blobs with a black kernel are final states, and the others are
inner states. Inner states may be compound, containing compartments, separated
with dashed lines, which contain sub-statecharts that act independently from one
another, and may themselves contain compound states, in a nested fashion. Text
inside a blob names the purpose of a state or of its compartments, and labels at
transitions name the event triggering them. (We consider neither more general
event specifications, nor more special types of states.)

The structure of statecharts can be specified by the class diagram shown in
Figure 6. The dotted circle with a gray kernel is abstract, for inner or stop states.
An inner state may be composed of compartments (denoted as dashed blobs),
which in turn are composed of other states (defining the sub-charts). In examples
like Figure 5, a compound state is drawn as a big blob with solid lines wherein
the compartments are separated by dashed lines.

The class diagram captures several structural properties of statecharts: It
forbids isolated initial and final states and transitions to initial states; each
compartment contains exactly one initial state, and compound states and their
compartments form a tree hierarchy as the associations uniting and containing
are compositions (indicated by the black diamonds at their sources).

Example 3 (A Grammar for Statecharts). The contextual rules in Figure 7 gen-
erate statecharts according to the class diagram in Figure 6. (Let us ignore the
parts underlaid in gray for a moment.) The charts in these rules are drawn so
that the compositions uniting and containing are just represented by drawing
the blob of their target within the blob of their source. We assume (for regu-
larity) that the topmost statechart is contained in a compartment, see the start
graph Z. The rules for S add transitions to current states, which are either initial
or inner states (drawn as gray nodes). The target of the transition is either a
new final state (rule f), or a new inner state, to which further transitions may be

Getting Evaluating

Checking

Cancelled

Rejected

Purchased

Auction

Bidding

Payment

offer

continue

accept

authorize

reject

cancel ∗

+
t

+ ∗
t

containing

∗

uniting

∗

containing

1

Fig. 5. A statechart modeling an auction Fig. 6. A class diagram
for statecharts

188 F. Drewes, B. Hoffmann, and M. Minas

S : : =
f|m

S
t

∣
∣
∣
∣
∣

S T S

S 10 : : =
T

10
t

10if �

S : : =
c

C C : : =
0|p

C

∣
∣
∣
∣

S C

T

1

: : =
t|n

1t

∣
∣
∣
∣
∣

1 1 t
if ∃ Z = S

Fig. 7. Contextual rules for statecharts (with application conditions)

added (rule m), or an inner state that exists in the context, but not necessarily
in the same compartment (rule T). Rule m inserts a variable named T that may
generate a concrete transition (rule t), or leave the states separate (rule n). (This
is necessary since the transitions to an inner state in a compartment need not
come from a state in that compartment, like states Canceled and Rejected in
Figure 5.) Finally, inner states may be filled (by rules 0 and p for the variable
C) with compartments, each containing a statechart as in the start graph Z.

Every state in a chart should be reachable from an initial state. Reachability
cannot be expressed by class diagrams alone. In order to specify this property
in a meta-model, the inner state must be extended with an auxiliary attribute
that determines this condition by inspecting its direct predecessors, and with a
logical constraint, e.g., in ocl, which requires that the value of the attribute is
true for every instance of a state.

Example 2 shows that contextual grammars can express reachability as such.
In statecharts, reachability is combined with hierarchical nesting of sub-states,
and cannot be specified with contextual rules. However, we may extend contex-
tual rules with application conditions, as proposed in [11]. The parts underlaid in
gray add application conditions to two rules of Figure 7. In Rule n, the condition
requires that the target node of variable T is the target of another transition. It
is easy to show that this guarantees reachability from initial states. The condi-
tion for rule T expresses yet another consistency requirement: The source and
target of a transition must not lie in sister compartments of the same compound
state.

4 Normal Forms of Contextual Grammars

In this section, we study the basic properties of contextual grammars. As it turns
out, these properties are not fundamentally different from the properties known
for the context-free case. This indicates that contextual hyperedge replacement is

Contextual Hyperedge Replacement 189

a modest generalization of hyperedge replacement that, to the extent one might
reasonably hope for, has appropriate computational properties.

Let us first look at some normal forms of contextual grammars. We say that
a restricted class C of contextual grammars is a normal form of contextual
grammars (of a specified type) if, for every contextual grammar (of that type),
one can effectively construct an equivalent grammar in C.

Lemma 1. Contextual grammars in which each rule contains at most one con-
textual node are a normal form of contextual grammars.

Proof. This is straightforward. Suppose we wish to implement a rule (L,R)
whose left-hand side contains a variable with k attached nodes and l � 1 con-
textual nodes. We use l rules to collect the l contextual nodes one by one, finally
ending up with a variable that is attached to k + l nodes. The original rule is
then turned into a context-free rule. ��

In the context-free case, so-called epsilon rules and chain rules can easily be re-
moved from a grammar. A similar modification is possible for contextual gram-
mars. In this context, a rule (L,R) with L̄ = {x} is an epsilon rule if R = L−x,
and a chain rule if R − y = L − x for a variable y ∈ R̄. Note that both epsilon
and chain rules are more general than in the context-free case, because L may
contain contextual nodes. In particular, chain rules can make use of these con-
textual nodes to “move” a variable through a graph. In the case of epsilon rules,
the effect of contextual nodes is that the removal of a variable is subject to the
condition that certain node labels are present in the graph.

Lemma 2. Contextual grammars with neither epsilon nor chain rules are a
normal form of those contextual grammars that do not generate the empty graph.

Proof Sketch. While the overall structure of the proof is similar to the corre-
sponding proof for the context-free case, its details are slightly more compli-
cated. Therefore, we give only a very rough sketch of the proof. The full proof
will be given in a forthcoming extended version of this article.

The proof works as follows. First, it is shown that epsilon rules may be re-
moved by composing non-epsilon rules with epsilon rules that remove some of
the variables in the right-hand side of the original rule. Afterwards, chain rules
are removed by replacing them with rules that correspond to a sequence of chain
rules applied in succession, followed by the application of a non-chain rule.

The notion of composition used here has to take contextual nodes into ac-
count. Suppose we are given rules r1 = (L1, R1) and r2 = (L2, R2), such that
R1 contains a variable with the same name as the variable in L2. We need to be
able to combine both rules even if R1 does not supply r2 with all the necessary
contextual nodes. We do this by enriching L1 with the contextual nodes needed
by r2. However, if r1 contains nodes (with the right labels) that are isolated in
both L1 and R1, these are used instead rather than adding even more contex-
tual nodes to the left-hand sides. This is a necessary precaution, because the
composition of chain rules may otherwise create an infinite set of rules.

190 F. Drewes, B. Hoffmann, and M. Minas

The removal of epsilon rules is non-trivial, because we have to make sure to
avoid introducing deadlocks. To see this, suppose a rule r1 creates a variable
e1 that can be removed by an epsilon rule containing a contextual node labeled
a1. Similarly, assume that r2 creates a variable e2 that can be removed by an
epsilon rule containing a contextual node labeled a2. Assume furthermore that r1
generates an a2-labeled node and r2 generates an a1-labeled node. Then, given
a graph that contains the left-hand sides of r1 and r2, we can apply r1 and
r2, followed by the epsilon rules that delete e1 and e2. However, if we compose
r1 with the first epsilon rule and r2 with the second one, neither of the composed
rules may be applicable, because the first contains an a1-labeled contextual node
and the second contains an a2-labeled contextual node. Fortunately, the problem
can be solved by a guess-and-verify strategy, thanks to the fact that the number
of contextual nodes in the left-hand sides of rule is bounded. Roughly speaking,
the guess-and-verify strategy makes sure that the required contextual nodes will
be generated somewhere in the graph.

Finally, let us sketch how to remove chain rules, assuming that the gram-
mar does not contain epsilon rules. For this, the following observation is crucial.
Consider a derivation G0 ⇒R G1 ⇒R · · · ⇒R Gm that consists of m− 1 appli-
cations of chain rules followed by a single application of another rule. Suppose
the variables replaced are x1, . . . , xm, and let 1 � i1 < · · · < in = m be those
indices such that xm = xin is a direct descendant of xin−1 , which is a direct de-
scendent of xin−2 , and so on. Then all derivation steps that replace variables in
{xi1 , . . . , xin} can be postponed until after the other m−n steps. This is because
the chain rules do not create nodes that the other rules may use as contextual
nodes. In other words, we can assume that ij = m − n + j for all j ∈ [n]. As a
consequence, it is safe to modify Γ by adding all rules obtained by composing a
sequence of chain rules with a single non-chain rule and remove all chain rules.
Thanks to the observation above, the language generated stays the same. ��

Note that, unfortunately, it seems that the normal forms of the previous two
lemmas cannot be achieved simultaneously.

Definition 3 (Reducedness of Contextual Grammars). In Γ = 〈C,R, Z〉,
a rule r ∈ R is useful if there is a derivation of the form Z ⇒∗

R G⇒r G′ ⇒∗
R H

such that H ∈ GC\X . Γ is reduced if every rule in R is useful.

Note that, in the case of contextual grammars, usefulness of rules is not equiv-
alent to every rule being reachable (i.e., for some G′, the part of the derivation
above up to G′ exists) and productive (i.e., for some G, the part starting from
G exists), because it is important that the pairs (G,G′) are the same.

Theorem 1. Reducedness is decidable for contextual grammars.

Proof Sketch. Let us call a variable name ξ useful if there is a useful rule whose
left-hand side variable has the name ξ. Clearly, it suffices to show that it can be
decided which variable names are useful. To see this, note that we can decide
reducedness by turning each derivation step into two, first a context-free step

Contextual Hyperedge Replacement 191

that nondeterministically “guesses” the rule to be applied and remembers the
guess by relabeling the variable, and then a step using the guessed rule. Then
the original rule is useful if and only if the new variable name recording the guess
is useful.

Assume that the start graph is a single variable without attached nodes.
Then, derivations can be represented as augmented derivation trees, where the
vertices represent the rules applied. Suppose that some vertex ω represents the
rule (L,R), where L contains the contextual nodes u1, . . . , uk. Then the augmen-
tation of ω consists in contextual references (ω1, v1), . . . , (ωk, vk), where each ωi

is another vertex of the tree, and the vi are distinct nodes, each of which is
generated by the rule at ωi and carries the same label as ui. The pair (ωi, vi)
means that the contextual node ui was matched to the node vi generated at ωi.
Finally, in order to correspond to a valid derivation, there must be a linear order
≺ on the vertices of the derivation tree such that ω ≺ ω′ for all children ω′ of a
vertex ω, and ωi ≺ ω for each ωi as above.

4

Now, to keep the argument simple, assume that every rule contains at most
one contextual node (see Lemma 1), and also that the label of this node differs
from the labels of all nodes the variable is attached to. (The reader should easily
be able to check that the proof generalizes to arbitrary contextual grammars.)
The crucial observation is the following. Suppose that, for a given label a ∈ Ċ, ωa

is the first vertex (with respect to ≺) that generates an a-labeled node va. Then,
in each other vertex ω as above, if the rule contains an a-labeled contextual node
u, the corresponding contextual reference (ω′, v) can be replaced with (ωa, va).
This may affect the graph generated, but does not invalidate the derivation tree.
We can do this for all vertices ω and node labels a. As a consequence, at most |Ċ|
vertices of the derivation tree are targets of contextual references. Moreover, it
should be obvious that, if the derivation tree is decomposed into s(t(u)), where
the left-hand sides of the rules at the roots of t and u are the same, then s(u) is
a valid derivation tree, provided that no contextual references in s and u point
to vertices in t. It follows that, to check whether a variable name is useful, we
only have to check whether it occurs in the (finite) set of valid derivation trees
such that (a) all references to nodes with the same label are equal and (b) for
every decomposition of the form above, there is a contextual reference in s or u
that points to a vertex in t. ��

Clearly, removing all useless rules from a contextual grammar yields an equiv-
alent reduced grammar. Thus, we can compute a reduced contextual grammar
from an arbitrary one by determining the largest subset of rules such that the
restriction to these rules yields a reduced contextual grammar.

Corollary 1. Reduced contextual grammars are a normal from of contextual
grammars.

4 To be precise, validity also requires that the variable replaced by the rule at ω is not
attached to vi.

192 F. Drewes, B. Hoffmann, and M. Minas

By turning a grammar into a reduced one, it can furthermore be decided whether
the generated language is empty (as it is empty if and only if the set of rules is
empty and the start graph contains at least one variable).

Corollary 2. For a contextual grammar Γ , it is decidable whether L(Γ) = ∅.

5 Limitations of Contextual Grammars

Let us now come to two results that show limitations of contextual grammars
similar to the known limitations of hyperedge-replacement grammars. The first
of these results is a rather straightforward consequence of Lemma 2: as in the
context-free case, the languages generated by contextual grammars are in NP,
and there are NP-complete ones among them.

Theorem 2. For every contextual grammar Γ , it holds that L(Γ) ∈ NP. More-
over, there is a contextual grammar Γ such that L(Γ) is NP-complete.

Proof. The second part follows from the fact that this holds even for hyperedge-
replacement grammars, which are a special case of contextual grammars. For the
first part, by Lemma 2, it may be assumed that Γ contains neither epsilon nor
chain rules. It follows that the length of each derivation is linear in the size of the
graph generated. Hence, derivations can be nondeterministically “guessed”. ��

It should be pointed out that the corresponding statement for hyperedge-
replacement languages is actually slightly stronger than the one above, because,
in this case, even the uniform membership problem is in NP (i.e., the input is
(Γ,G) rather than just G). It is unclear whether a similar result can be achieved
for contextual grammars, because the construction given in the proof of Lemma 2
may, in the worst case, lead to an exponential size increase of Γ .

Theorem 3. For a graph G, let |G| be either the number of nodes of G, the
number of edges of G, or the sum of both. For every contextual grammar Γ , if
L(Γ) = {H1, H2, . . . } with |H1| � |H2| � . . ., there is a constant k such that
|Hi+1| − |Hi| � k for all i ∈ N.

Proof Sketch. The argument is a rather standard pumping argument. Consider
a contextual grammar Γ without epsilon and chain rules, such that L(Γ) is
infinite. (The statement is trivial, otherwise.) Now, choose a derivation Z =
G0 ⇒ G1 ⇒ · · · ⇒ Gn of a graph Gn ∈ L(Γ), and let xi be the variable in Gi

that is replaced in Gi ⇒ Gi+1, for 0 � i < n. If the derivation is sufficiently long,
there are i < j such that xi and xj have the same label and xj is a descendant
of xi (in the usual sense). Let i = i1 < · · · < ik = j be the indices l, i � l � j,
such that xl is a descendant of xi. The steps in between those given by i1, . . . , ik
(which replace variables other than the descendants of xi) may be necessary to
create the contextual nodes that “enable” the rules applied to xi1 , . . . , xik−1.
However, in Gj , these contextual nodes do all exist, because derivation steps do
not delete nodes. This means that the sub-derivation given by the steps in which

Contextual Hyperedge Replacement 193

xi1 , . . . , xik−1 are replaced can be repeated, using xj as the starting point (and
using, in each of these steps, the same contextual nodes as the original step).
This pumping action can, of course, be repeated, and it increases the size of the
generated graph by at most a constant each time. As there are neither epsilon
nor chain rules, this constant is non-zero, which completes the proof. ��

Corollary 3. The language of all complete graphs is not in CHR.

6 Parsing

In [11], a parser has been briefly sketched that can be used for contextual hy-
peredge replacement grammars with application conditions and, therefore, for
contextual grammars. The following describes the parser in more detail, includ-
ing the grammar transformations that are necessary before it can be applied.

The parser adopts the idea of the Cocke-Younger-Kasami (CYK) parser for
strings, and it requires the contextual grammar to be in Chomsky normal form
(CNF), too. A contextual grammar is said to be in CNF if each rule is either
terminal or nonterminal. The right-hand side of a terminal rule contains exactly
one edge which is terminal, whereas the right-hand side of a nonterminal rule
contains exactly two edges which are variables. Rules must not contain isolated
nodes in their right-hand sides. In the following, we first outline that every
contextual grammar Γ can be transformed into a grammar Γ ′ in CNF so that
a parser for Γ ′ can be used as a parser for Γ . We then consider a contextual
grammar in CNF and sketch a CYK parser for such a grammar.

If the right-hand side of a rule contains an isolated node, it is either (i) a
contextual node, or (ii) a node generated by the rule, or (iii) attached to the
variable of the left-hand side. In case (i), we simply remove the node from the
rule. However, the parser must make sure in its second phase (see below) that
the obtained rule is only applied after a node with corresponding label has been
created previously. Case (ii) can be avoided if we transform the original rule set
R to R′ where each node generated by a rule is attached to a unary hyperedge
with a new label, say ν ∈ C̄. Instead of parsing a graph G we have to parse a
graph G′ instead where each node is attached to such a ν-edge. Finally, case (iii)
can be avoided by transforming R′ again, obtaining R′′. The transformation
process works iteratively: Assume a rule L : : =R with R containing isolated
nodes of kind (iii). Let x ∈ L̄ with label ξ be the variable in L. This rule is
replaced by a rule L′ : : =R′ where L′ and R′ are obtained from L and R by
removing the isolated nodes of kind (iii) and by attaching a new variable to the
remaining nodes of att(x), introducing a new variable name ξ′ ∈ X . We now
search for all rules that have ξ-variables in their right-hand sides. We copy these
rules, replace all variables labeled ξ by ξ′-variables in their right-hand sides,5 and
add the obtained rules to the set of all rules. This process is repeated until no
rule with isolated nodes is left. Obviously, this procedure terminates eventually.

5 This procedure assumes that no rule contains more than one ξ-edge in its right-hand
side. It is easily generalized to rules with multiple occurrences of ξ-edges.

194 F. Drewes, B. Hoffmann, and M. Minas

We assume that the start graph is a single variable labeled ζ, for some ζ ∈ X
with arity(ζ) = ε. Thus, no ζ-edge will ever be replaced by a ζ′-edge. It is clear
that Z ⇒∗

R′ G iff Z ⇒∗
R′′ G for each graph G ∈ GC\X .

Afterwards, chain rules are removed (see Lemma 2), and the obtained con-
textual grammar is transformed into an equivalent grammar in CNF using the
same algorithm as for string grammars.6 Based on this grammar, the parser an-
alyzes a graph G in two phases. The first phase creates trees of rule applications
bottom-up. The second phase searches for a derivation by trying to find a suit-
able linear order ≺ on the nodes of one of the derivation trees, as in the proof
of Theorem 1.

In the first phase, the parser computes n sets S1, S2, . . . , Sn where n is the num-
ber of edges in G. Each set Si eventually contains all graphs (called “Si-graphs”
in the following) that are isomorphic to the left-hand side of any rule, except for
their contextual nodes which are left out, and that can be derived to any subgraph
of G that contains exactly i edges, if any required contextual nodes are provided.

Set S1 is built by finding each occurrence s of the right-hand side R of any
terminal rule (L,R) and adding the isomorphic image s′ of L to S1, but leaving
out all of its contextual nodes. Graph s′ additionally points to its “child” graph s.

The remaining sets Si, i > 1, are then constructed using nonterminal rules.
A nonterminal rule (L,R) is reversely applied by selecting appropriate graphs s
and s′ in sets Si and Sj , respectively, such that R ∼= s ∪ s′. A new graph s′′ is
then7 added to the set Sk where s′′ is isomorphic to L without its contextual
nodes. Note that k = i + j since each Si-graph can be derived to a subgraph of
G with exactly i edges. Graph s′′ additionally points to its child graphs s and
s′. Therefore, each instance of the start graph Z in Sn represents the root of a
tree of rule applications and, therefore, a derivation candidate for G. Note that
contextual nodes are not explicitly indicated in these trees because they have
been removed from the Si-graphs. Contextual nodes are rather treated as if they
were generated by the rules. However, they can be easily distinguished from
really generated ones by inspecting the rules used for creating the Si-graphs.

The second parser phase tries to establish the linear order ≺ on the nodes of
the derivation tree. The order must reflect the fact that each contextual node
must have been generated earlier in the derivation. This process is similar to
topological sorting, and it succeeds iff a derivation of G exists.

The run-time complexity of this parser highly depends on the grammar since
the first phase computes all possible derivation trees. In bad situations, it is com-
parable to the exponential algorithm that simply tries all possible derivations.

6 This is possible iff the L(Γ) does not contain the empty graph which is easily ac-
complished since chain rules have been removed.

7 Furthermore, the parser must check whether the subgraphs of G being derivable from
s and s′ do not have edges in common. This is easily accomplished by associating
each graph in any set Si with the set of all edges in the derivable subgraph of G.
A rule may be reversely applied to s and s′ if the sets associated with s and s′ are
disjoint.

Contextual Hyperedge Replacement 195

In “practical” cases without ambiguity (e.g., for control flow diagrams,
cf. Example 2), however, the parser runs in polynomial time. Reasonably fast
parsing has been demonstrated by DiaGen [12] that uses the same kind of
parser.

A simpler, more efficient way of parsing can be chosen for grammars with the
following property: A contextual grammar Γ = (C,R, Z) is uniquely reductive
if its derivation relation ⇒R has an inverse relation ⇒R−1 (called reduction
relation) that is is terminating and confluent. Then every graph has a reduction
sequence G⇒∗

R−1 Y so that no rule ofR−1 applies to Y . Confluence of reduction
implies that the graph Y is unique up to isomorphism so thatG is in the language
of Γ if and only if Y equals Z up to isomorphism.

Let Γ be a contextual grammar with neither epsilon, nor chain rules (By
Lemma 2, each contextual grammar without epsilon rules can be transformed
into such a normal form). Then every right-hand side of a rule contains at least
one terminal edge or one new node, and reductions G⇒∗

R−1 Y terminate, after
a linear number of steps. Confluence of terminating reductions ⇒R−1 can be
shown by checking that their critical pairs are strongly convergent [13]. So it
can be decided whether Γ is uniquely reductive.

Since the construction of a single reduction step is polynomial for a fixed set
of rules, the complexity of parsing is polynomial as well. Note, however, that
parsing does not yield unique derivation structures if the reduction relation has
critical pairs.

Example 4 (Parsing of Control Flow Diagrams). The grammar in Example 2
does not contain epsilon or chain rules. The right-hand sides of the rules may
overlap in their interface node. Overlap in interface nodes alone does not lead to
a critical pair, because the rules are still parallelly independent. The right-hand
sides of the recursive rules for assignment and branching may also overlap in
variables. This gives no critical pair either, because the inverse rules cannot be
applied to the overlap: they violate the dangling condition. The rules are thus
uniquely reductive.

7 Conclusions

In this paper we have studied fundamental properties of contextual grammars.
They have useful normal forms, namely rules with at most one contextual node,
grammars without epsilon and chain rules, and reduced grammars.With context-
free grammars, they share certain algorithmic properties (i.e., decidability of
reducedness and emptiness, as well as an NP-complete membership problem) and
the linear growth of their languages. Nevertheless, contextual grammars are more
powerful than context-free ones, as illustrated in Figure 8. Let NR, ASR, cCHR,
and cASR denote the classes of graph languages generated by node replacement,
adaptive star replacement, conditional contextual hyperedge replacement, and
conditional adaptive star grammars, respectively. HR is properly included in
NR [6, Section 4.3], as is NR in ASR [2, Corollary 4.9]. The proper inclusion
of HR in CHR is stated in Observation 1. Corollary 3 implies that CHR neither

196 F. Drewes, B. Hoffmann, and M. Minas

cCHR CHR

cASR ASR NR

HR

Fig. 8. Inclusion of languages studied in this paper and in [2,11]

includes NR, nor ASR, nor cCHR, because these grammars generate the language
of complete graphs. We do not yet know whether ASR includes CHR; the relation
of cCHR to ASR and cASR is open as well. Example 2 indicates that contextual
grammars allow for a finer definition of structural properties of models than class
diagrams. Application conditions do further increase this power, as discussed in
Section 3.

Some work related to the concepts shown in this paper shall be mentioned
here. Context-exploiting rules [4] correspond to contextual rules with a positive
application condition, and are equivalent to the context-embedding rules used
to define diagram languages in DiaGen [12]. The context-sensitive hypergraph
grammars discussed in [7, Chapter VIII] correspond to context-free rules with a
positive application condition. We are not aware of any attempts to extend node
replacement in order to define graph languages as they are discussed in this pa-
per. The graph reduction specifications [1] mentioned in Section 6 need not use
nonterminals, and their rules may delete previously generated subgraphs. They
are therefore difficult to compare with contextual grammars. Example 4 shows
that some contextual rules specify graph reductions, and may thus use their
simple parsing algorithm. Shape analysis aims at specifying pointer structures
in imperative programming languages (e.g., leaf-connected trees), and at veri-
fying whether this shape is preserved by operations. Several logical formalisms
have been proposed for this purpose [14]. For graph transformation rules, shape
analysis has been studied for shapes defined by context-free grammars [10] and
by adaptive star grammars [3]. We are currently working on shape analysis of
graph transformation rules w.r.t. contextual grammars.

Future work on contextual grammars shall clarify the open questions con-
cerning their generative power, and continue the study of contextual rules with
recursive application conditions [8] that has been started in [11]. Furthermore,
we aim at an improved parsing algorithm for contextual grammars that are un-
ambiguous modulo associativity and commutativity of certain replicative rules.

Acknowledgements. We wish to thank Annegret Habel for numerous useful
comments on the contents of this paper, and the reviewers for their advice to
enhance the “smack of industrial relevance” of this paper.

Contextual Hyperedge Replacement 197

References

1. Bakewell, A., Plump, D., Runciman, C.: Specifying pointer structures by graph re-
duction. Mathematical Structures in Computer Science (2011) (accepted for pub-
lication)

2. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theoretical Computer Science 411(34-36), 3090–3109 (2010)

3. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Shaped
Generic Graph Transformation. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 201–216. Springer, Heidelberg (2008)

4. Drewes, F., Hoffmann, B., Minas, M.: Context-exploiting shapes for diagram trans-
formation. Machine Graphics and Vision 12(1), 117–132 (2003)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs on Theoretical Computer Science. Springer
(2006)

6. Engelfriet, J.: Context-Free Graph Grammars. In: Handbook of Formal Languages.
Beyond Words, vol. 3, ch. 3, pp. 125–213. Springer (1999)

7. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

8. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. In: Ermel,
C., Ehrig, H., Orejas, F., Taentzer, G. (eds.) International Colloquium on Graph
and Model Transformation 2010. ECEASST, vol. 30 (2010)

9. Harel, D.: On visual formalisms. Communication of the ACM 31(5), 514–530 (1988)
10. Hoffmann, B.: Shapely hierarchical graph transformation. In: Proc. of the IEEE

Symposia. on Human-Centric Computing Languages and Environments, pp. 30–37.
IEEE Computer Press (2001)

11. Hoffmann, B., Minas, M.: Defining models – Meta models versus graph grammars.
In: Küster, J.M., Tuosto, E. (eds.) Graph Transformation and Visual Modeling
Techniques 2010. ECEASST, vol. 29 (2010)

12. Minas, M.: Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming 44(2), 157–180 (2002)

13. Plump, D.: Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.
In: Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C. (eds.) Term Graph Rewriting,
Theory and Practice, pp. 201–213. Wiley & Sons (1993)

14. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems 20(1), 1–50 (1998)

15. Schürr, A., Winter, A., Zündorf, A.: The Progres Approach: Language and Envi-
ronment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rosenberg, G. (eds.) Handbook
of Graph Grammars and Computing by Graph Transformation. Applications, Lan-
guages, and Tools, vol. 2, ch. 13, pp. 487–550. World Scientific (1999)

16. Uesu, T.: A system of graph grammars which generates all recursively enumerable
sets of labelled graphs. Tsukuba Journal of Mathematics 2, 11–26 (1978)

The Added Value of Programmed Graph
Transformations – A Case Study

from Software Configuration Management

Thomas Buchmann, Bernhard Westfechtel, and Sabine Winetzhammer

Lehrstuhl Angewandte Informatik 1, University of Bayreuth
D-95440 Bayreuth, Germany

firstname.lastname@uni-bayreuth.de

Abstract. Model-driven software engineering intends to increase the productiv-
ity of software engineers by replacing conventional programming with the devel-
opment of executable models at a high level of abstraction. It is claimed that graph
transformation rules contribute towards this goal since they provide a declarative,
usually graphical specification of complex model transformations. Frequently,
graph transformation rules are organized into even more complex model trans-
formations with the help of control structures, resulting in full-fledged support
for executable behavioral models.

This paper examines the added value of programmed graph transformations
with the help of a case study from software configuration management. To this
end, a large model is analyzed which was developed in the MOD2-SCM project
over a period of several years. The model was developed in Fujaba, which pro-
vides story diagrams for programming with graph transformations. Our analysis
shows that the model exhibits a strongly procedural flavor. Graph transforma-
tion rules are heavily used, but typically consist of very small patterns. Further-
more, story diagrams provide fairly low level control structures. Altogether, these
findings challenge the claim that programming with graph transformations is
performed at a significantly higher level of abstraction than conventional pro-
gramming.

1 Introduction

Model-driven software engineering is a discipline which receives increasing attention in
both research and practice. Object-oriented modeling is centered around class diagrams,
which constitute the core model for the structure of a software system. From class di-
agrams, parts of the application code may be generated, including method bodies for
elementary operations such as creation/deletion of objects and links, and modifications
of attribute values. However, for user-defined operations only methods with empty bod-
ies may be generated which have to be filled in by the programmer. Here, programmed
graph transformations may provide added value for the modeler. A behavioral model
for a user-defined operation may be specified by a programmed graph transformation.
A model instance being composed of objects, links, and attributes is considered as an
attributed graph. A graph transformation rule specifies the replacement of a subgraph in
a declarative way. Since it may not be possible to model the behavior of a user-defined

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 198–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Added Value of Programmed Graph Transformations 199

operation with a single graph transformation rule, control structures are added to model
composite graph transformations.

But what is the added value of programmed graph transformations? Typical argu-
ments which have been frequently repeated in the literature in similar ways are the
following ones:

1. A graph transformation rule specifies a complex transformation in a rule-based,
declarative way at a much higher level of abstraction than a conventional program
composing elementary graph operations.

2. Due to the graphical notation, programming with graph transformations is intuitive
and results in (high-level) programs which are easy to read and understand.

This paper examines the added value of programmed graph transformations by analyz-
ing a large model which was developed in the MOD2-SCM project (Model-Driven and
Modular Software Configuration Management) [3] over a period of several years. The
model was developed in Fujaba [8], which provides story diagrams for programming
with graph transformations. We analyze the MOD2-SCM model both quantitatively and
qualitatively to check the claims stated above.

2 MOD2-SCM

The MOD2-SCM project [3] is dedicated to the development of a model-driven product
line for Software Configuration Management (SCM) systems [1]. In contrast to com-
mon SCM systems, which have their underlying models hard-wired in hand-written pro-
gram code, MOD2-SCM has been designed as a modular and model-driven approach
which (a) reduces the development effort by replacing coding with the creation of exe-
cutable models and (b) provides a product line supporting the configuration of an SCM
system from loosely coupled and reusable components.

To achieve this goal, we used Fujaba [8] to create the executable domain model of
the MOD2-SCM system. The main part of the work was to (1) create a feature model
[4], that captures the commonalities and variable parts within the domain software con-
figuration management and (2) to create a highly modular domain model whose loosely
coupled components can be configured to derive new products. To this end, a model li-
brary consisting of loosely coupled components that can be combined in an orthogonal
way has been built around a common core.

The success of a product line heavily depends upon the fact that features that have
been declared as independent from each other in the feature model are actually inde-
pendent in their realizing parts of the domain model. Thus, a thorough analysis of the
dependencies among the different modules is crucial [3] in order to derive valid prod-
uct configurations. In order to keep track of the dependencies in large domain models, a
tool based upon UML package diagrams has been developed and integrated with Fujaba
to support the modeler during this tedious task [2]. In the context of the MOD2-SCM
project, graph transformations were used to specify the behavior of the methods that
have been declared in the domain model.

In this paper, we will discuss the added value of graph transformations especially
in the development of large and highly modular software systems. The added value

200 T. Buchmann, B. Westfechtel, and S. Winetzhammer

of Fujaba compared with other CASE tools is the ability to generate executable code
out of behavioral models. Behavioral modeling in Fujaba is performed with story dia-
grams which are similar to interaction overview diagrams in UML2 [6]. Within story
diagrams, activities and transitions are used to model control flow. Fujaba supports two
kinds of activities: (1) statement activities, allowing the modeler to use source code
fragments that are merged 1:1 with the generated code, and (2) story activities. A story
activity contains a story pattern consisting of a graph of objects and links. A static pat-
tern encodes a graph query, a pattern containing dynamic elements represents a graph
transformation rule. Story patterns may be decorated with constraints and collaboration
calls. A story activity may be marked as a “for each” activity, implying that the follow-
ing activities are performed for each match of the pattern. In addition to activity nodes,
story diagrams contain start, end, and decision nodes.

In the following section, we analyze the domain model of MOD2-SCM with a spe-
cific focus on story diagrams.

3 Analysis

3.1 Quantitative Analysis

Tool support was required to analyze the structure and complexity of the MOD2-SCM
specification. Due to the size of the project, determining the numbers listed in Tables 1
and 2 would have been a tedious task. Therefore, we wrote a Fujaba plug-in that directly
operates on Fujaba’s abstract syntax graph to acquire the numbers we were interested
in. We conclude from the collected numbers:

Table 1. Type and number of language elements

Model element
(structural model)

Total
number

Total
number Model element

(behavioral model)

Total
number

Total
number(structural model) MOD2 SCM CodeGen2 (behavioral model) MOD2 SCM CodeGen2

Packages 68 18 Story diagrams 540 339

Classes 175 162 Story patterns 988 850

Abstract Classes 18 28 Objects 1688 1997

I t f 32 10 N ti bj t 42 22Interfaces 32 10 Negative objects 42 22

Attributes 177 181 Multi objects 25 9

Methods 650 443 Links 725 1121Methods 650 443 Links 725 1121

Generalizations 220 247 Paths 13 7

Associations 148 166 Statement activities 264 64Associations 148 166 Statement activities 264 64

Collaboration calls 1183 711

For each activities 27 88

1. The number of story patterns per story diagram is rather low (an average of 1.83
story patterns were used per story diagram). This indicates a procedural style of the
model and methods of lower complexity.

The Added Value of Programmed Graph Transformations 201

Table 2. Significant ratios of language elements

Metric MOD2 SCM CodeGen2 Metric MOD2 SCM CodeGen2

Cl / k 2 57 9 N i bj / 0 04 0 03Classes/package 2.57 9 Negative objects/pattern 0.04 0.03

Attributes/class 1.01 1.12 Multi objects/pattern 0.03 0.01

Methods/class 3 71 2 73 Paths/pattern 0 01 0 01Methods/class 3.71 2.73 Paths/pattern 0.01 0.01

Patterns/story diagram 1.83 2.51 Statement activities/story pattern 0.27 0.08

Objects/pattern 1.71 2.35 Collaboration calls/story pattern 1.20 0.84Objects/pattern 1.71 2.35 Collaboration calls/story pattern 1.20 0.84

Links/pattern 0.73 1.32

2. Within a story pattern, only a few objects and links are used (1.71 objects and 0.73
links, respectively).

3. The number of collaboration calls is rather high (an average number of 1.2 collab-
oration calls per pattern was determined).

4. Given the fact that we tried to use story patterns as much as possible, the fraction of
statement activities is still rather high (0.27 statement activities per story activity).
Furthermore, the seamless integration of hand-written Java code and story patterns
provides lots of advantages, but it also implies one big disadvantage: The model is
no longer platform-independent. For example, changing the code generation tem-
plates to generate C# code is no longer possible without manually changing each
statement activity in the domain model as well.

5. Complex elements within story patterns (negative objects, multi-objects or paths)
were used only very rarely within the domain model.

Generally, the specification of the MOD2-SCM system is highly procedural and es-
sentially lies at the same level of abstraction as a conventional program. The average
complexity of the implemented methods is rather low. Furthermore, the graph transfor-
mation rules are mostly limited to finding simple patterns in the object graph and to
inserting a single new object at the appropriate position and/or calling another method.

3.2 Qualitative Analysis

In addition to interpreting the numbers shown in the previous section, we took a closer
look at the story diagrams of the domain model to examine the expressive power of the
modeling language and the readability of story diagrams. With respect to story patterns,
we observed:

6. Story patterns are easy to read due to the graphical notation. Furthermore, story
patterns potentially have a high expressive power, but this power is only rarely
exploited since the highly modular architecture results in a fine-grained decompo-
sition of the domain model.

We drew the following conclusions concerning control flow:

202 T. Buchmann, B. Westfechtel, and S. Winetzhammer

AbstractDeltaStorage::appendDelta(...) : Boolean

1 : String predVID := (String) oidVidMap.get(newItem.getOID())
2 : String predStorageID := transformToStorageID(...)

S f S ()3 : String storageID := transformToStorageID(...)

[f il]
predStorageContent := (IDeltifiableItem) this.restore(...)

[failure]

false

this
newDelta := Delta := new Delta(...)

storageID := storageID

stores [failure]

f l

<<create>>

predStorageItem : AbstractStorageItem

storageID == predStorageID

stores hasNext
false

[success]

storageID == predStorageID
true

Fig. 1. Story diagram of average complexity

7. It is evident that Fujaba does not provide any ”higher“-level control structures.
In fact, in terms of control structures, the level of abstraction provided by Fujaba
lies even below conventional programming languages, as story diagrams are very
similar to flow charts.

8. In many cases, Java statement activities are mixed up with story patterns, e.g., for
exception handling. Fujaba does not catch external exceptions raised in the exe-
cution of story patterns, e.g., by external Java methods executed via collaboration
calls. Such low-level details need to be handled in Java.

9. Furthermore, Fujaba itself does not provide any mechanisms to iterate over standard
collections. Collections are implicitly used within for-each activities, but no explicit
support is provided for the user.

10. The graphical programming style may result in loss of the overall picture if the
diagrams are too large and complex. Readability suffers especially (but not only)
when the story diagram does not fit onto a single screen.

4 Examples

In this section, we give some examples that reinforce the statements of the previous
section. Figure 1 represents a method implementation which we consider to be of av-
erage complexity (according to the collected metrics data). It is a typical example for
the observations (1) – (5) made in Section 3.1 as well as observation (6). The method
is used to append a forward delta in order to store a new state of a versioned object.
The first story pattern consists only of collaboration calls that retrieve different required
parameters. The second pattern retrieves the content of the predecessor version (which
must have been stored as a delta). This content is used in the third pattern (the only
graph transformation rule) to compute the difference and to store it at the appropriate
position in the object graph.

All story patterns occurring in Figure 1 are quite simple. Figure 2 shows a (mod-
erately) complex story pattern which stores a backward delta. The enclosing story di-
agram is called when a version stored as baseline is to be replaced with a successor

The Added Value of Programmed Graph Transformations 203

AbstractDeltaStorage::insertDeltaForBaseline(...) : Boolean

. . .

this
stores oldBaseline : Baseline

storageID == baselinestorageID

successorDelta : DeltasuccessorDelta : Delta
hasNext

<<delete>>

replacementDelta := Delta := new Delta(...)

storageID := baselineStorageID

stores
hasNext<<create>>

hasNext

newBaseline : Baseline := addNewBaseline(...)
<<create>>

[failure][success]

throw new ItemNotFoundException(...);

falsetrue

Fig. 2. A (moderately) complex story pattern

version. To this end, the old baseline is replaced with a new baseline and a backward
delta. In fact this is one of the most complex patterns throughout the whole MOD2-SCM
model, which does not include any patterns with more than 6 objects. This example il-
lustrates a strength of story patterns: The effect of a graph transformation is documented
in an easily comprehensible way. However, most patterns are much simpler, implying
that the equivalent Java code would as well be easy to grasp (observation (6)).

Figure 3 shows the story diagram with the highest number of story patterns through-
out the MOD2-SCM project. The story diagram is used to update the local version in-
formation within the user’s workspace after changes have been committed to the server.
This method is very complex if we take the average number of patterns per story dia-
gram into account. However, its individual steps are not complex at all. Listing 1 shows
the purely hand-written implementation in Java. Essentially, the method consists of a
single loop iterating over a list of object identifiers. Two of the story patterns contain
plain Java code since Fujaba does not supply high level constructs for iterating over
standard collections (observation (9)). The remaining story patterns are also very sim-
ple (observation (5)). Thus, it is not a big challenge to code this story diagram in Java.

The story diagrams presented so far do not contain statement activities, except for a
small activity in Figure 2. We used statement activities only when they were impossible
or awkward to avoid. Observation (4) showed that our attempt to eliminate story patterns
was only successful to a limited extent. The next two examples demonstrate the reasons
for that.

The first example (Figure 4) shows a story diagram which is used to configure the
MOD2-SCM repository server at runtime according to the features selected by the user.
This method is inherently procedural and consists of a large number of conditional
statements for handling the different cases. The modeler decided to code the method
body as a single statement activity. Splitting this activity up into many decision nodes
and activity nodes containing small code fragments would have resulted in a huge and
unreadable diagram (observation (7)).

204 T. Buchmann, B. Westfechtel, and S. Winetzhammer

MOD2SCMServerWorkspaceModule::processUpdateResult(pmiList : PMIList, oidVidMap : Map, replace : Boolean) : Boolean

this
hasModules

workspaceManager : AbstractWorkspaceManageroidIterator : pmiList.getOIDList().iterator()

info
{oidIterator.hasNext()}

[failure] [success]

info

changed == true
changed := false

{replace}

info

changed == false

oldItem IProd ctModelItem

observes notifies

this info

changed == false

1: processUpdateResult
InsertNewItem(...)

<<delete>> <<delete>>

1: String oid :=
(String) oidIterator.next()

{replace}oldItem : IProductModelItemInsertNewItem(...)

workspaceManager

stores

newItem := pmiList.select(oid)
this 1: notifyMergeNecessary(info, newInfo)

info

changed == true

newInfo : WSInfo

oID := oid

info : WSInfo

oID := oid

stores

<<create>>

<<create>>

workspaceManager
info : WSInfo

oID == oid

stores

changed true

{!replace}

oID : oid
currentVID := (String)
oidVidMap.get(oid)

It

observes notifies

[success]

[failure]

processUpdateResultCleanUpDeletedItems()
newItem

Fig. 3. Story diagram that contains a high number of patterns

Listing 1. Manual implementation of the method shown in Figure 3

1 public boolean processUpdateResult(PMIList pmiList, Map<String, String>
oidVidMap, boolean replace) {

2 Iterator oidIterator = pmiList.getOIDList().iterator();
3 while (oidIterator.hasNext()) {
4 String oid = (String) oidIterator.next();
5 IProductModelItem newItem = pmiList.select(oid);
6 WSInfo info = getWorkspaceManager().getWSInfos().get(oid);
7 if (info != null) {
8 IProductModelItem oldItem = info.getItem();
9 if (!replace && info.isChanged()) {

10 WSInfo newInfo = new WSInfo(oid, (String) oidVidMap.get(oid));
11 newInfo.setItem(newItem);
12 newInfo.setObservable(newItem);
13 notifyMergeNecessary(info, newInfo);
14 }
15 if (replace && info.isChanged())
16 info.setChanged(false);
17 if (!info.isChanged() && oldItem != null) {
18 info.setItem(null);
19 info.setObservable(null);
20 }
21 } else {
22 info = new WSInfo(oid);
23 getWorkspaceManager().addWSInfo(info);
24 }
25 if (!info.isChanged())
26 processUpdateResultInsertNewItem(oldItem, newItem, info, oidVidMap);
27 }
28 processUpdateResultCleanUpDeletedItems();
29 }

The Added Value of Programmed Graph Transformations 205

AbstractRuntimeConfigurableServerFactory::assignFactories(...) : Void

AbstractRepositoryModule versionedItemFactory = null;
if (configuration.contains(VersionEnum.VERSIONFIRST) || ...) {

versionedItemFactory = new ComplexRepositoryModule();
if (configuration.contains(BlockEnum.ITEM)) {

System.err.println(...);
configuration remove(BlockEnum ITEM);configuration.remove(BlockEnum.ITEM);
configuration.add(BlockEnum.SERVER);

}
} else if (configuration.contains(...) || ...) {

...
} else

versionedItemFactory = new AtomicRepositoryModule();
HistoryModule historyFactory = null;HistoryModule historyFactory null;
AbstractIDCreatorModule vIDFactory = null;

...

Fig. 4. Story diagram that represents a highly procedural example

MOD2SCMWorkspaceManager::save() : Void

synchronized(getItemManager()) {

<<create>>
wsManagerFile : File := new File(...)

try {

<<create>>

try {

outputStream := new ObjectOutputStream(...)
<<create>>

1 : writeObject(this) 2 : close()

this number OfSavingTries = 0;this.number OfSavingTries = 0;
} catch (Exception e) {

...
} finally {

...
}

Fig. 5. Story diagram that illustrates the JSP syndrome

Figure 5 is a good example how hand-written code fragments are placed around story
patterns (observation (8)). The story diagram is used to save the state of the workspace
manager. To ensure that the execution is synchronized, the body is embedded into a
synchronization statement. Furthermore, if the write operation fails, the save method
is re-executed (until the maximum number of tries is exceeded). Again, this method
implementation is highly procedural and story driven modeling does not seem to be
the most appropriate formalism for this task. The story diagram is written in a JSP-like
style, including statement activities containing fragments of Java text which do not even
correspond to complete syntactical units.

Figure 6 shows a story diagram that is used to calculate differences on text files based
upon the well-known Longest Common Subsequence (LCS) algorithm. Figure 6 depicts

206 T. Buchmann, B. Westfechtel, and S. Winetzhammer

Diff:calculateDiffInternal() : Void

mt
contains[i]

aArrow : Arrow
startOld = aArrow.getEndpositionRow();
endOld = aArrow.getEndpositionRow();
startNew = aArrow.getEndpositionColumn();
endNew = aArrow.getEndpositionColumn();

this

old oldList : ElementList

newList : ElementListnew

has
has

endNew aArrow.getEndpositionColumn();

while (!(aArrow instanceof DiagonalArrow &&
i < mt.sizeOfArrow()) {

[i < mt.sizeOfArrow()]

[else]

C : Matrix mt : MatrixTrace
has

int i = 0;
int startOld = 0;
int endOld = 0;
i t t tN 0

while (aArrow instanceof VerticalArrow &&
i < mt.sizeOfArrow()) {

endOld++; i++;
if (i < mt.sizeOfArrow())

aArrow = mt.getFromArrow(i);

this

aAdd : DBAdd

consists of {last}

int startNew = 0;
int endNew = 0;

g ();
}
...

}
<<create>>

endingLineNew := endNew
beginningLineOld := startOld
beginningLineNew := startNew + 1
lengthAdd := endNew - startNewthis

this

consists of {last}
<<create>>

1 : setDataBoxContent(newList)

aDelete : DBDelete

endingLineOld := endOld
b i i Li Old t tOld 1

consists of {last}aChange : DBChange

endingLineOld := endOld
endingLineNew := endNew
beginningLineOld := startOld + 1
b i i Li N N 1 [else]

<<create>>

beginningLineOld := startOld + 1
beinningLineNew := startNew
lengthDel := endOld - startOld

1 : setDataBoxContent(oldList)

beginningLineNew := startNew + 1
lengthDel := endOld – startOld
lengthAdd := endNew - startNew

1 : setDataBoxContent
(oldList newList)

[else]

[startNew != endNew]

(oldList, newList)

[else][else]
[startOld != endOld &&
startNew != endNew]

[startOld != endOld]

Fig. 6. Story diagram for the LCS algorithm which may be coded easily in Java

the part of the algorithm where the LCS has been determined and the difference (rep-
resented by add, change, or delete blocks) is being computed. The original algorithm
performs best when working with arrays that contain the indices of the longest com-
mon subsequences in two text fragments. Nevertheless, the student who implemented
this part of the MOD2-SCM system tried to raise the algorithm to the object-oriented
level and to make use of Fujaba to be able to easily integrate it into the already existing
MOD2-SCM domain model. Working with indices was still necessary, though objects
for the matrices and the trace within the matrix representing the longest common sub-
sequence have been created. The result is a mixture of statement activities and story
patterns, which makes it hard to keep track of the actual control flow within the shown
story diagram (unstructured control flow, observation (10)).

5 Discussion

5.1 Results from the MOD2-SCM Project

In this paper, we examined the added value of programmed graph transformations with
the help of a case study from software configuration management. Based on this case
study, may we convince hard-core Java programmers to program with graph transfor-
mations instead? The examination of the story diagrams developed in the MOD2-SCM
project suggests the answer “no”. Altogether, story diagrams are written in a strongly
procedural style at a level of abstraction which hardly goes beyond Java and is even
partially located below Java or other current programming languages.

The authors of the MOD2-SCM model made extensive use of story patterns. How-
ever, our quantitative analysis showed that story patterns are typically composed of a
very small number of objects and links. Furthermore, advanced features such as neg-
ative objects/links, multi-objects, and paths are only very rarely used. Altogether, the
potential of story patterns - the declarative specification of complex graph transforma-
tions - is only exploited to a severely limited extent.

The Added Value of Programmed Graph Transformations 207

As far as story patterns are concerned, the graphical notation is intuitive and en-
hances readability, in particular in the case of more complex graph transformations.
With respect to control flow, however, the graphical notation may have a negative im-
pact on readability. Essentially, story diagrams are conventional flow charts, which are
well known for the “goto considered harmful” syndrome. Control structures known
from structured programming are missing. In this respect, story diagrams fall behind
conventional programming languages such as Java.

5.2 Generalization of Results

Let us summarize the most important general observations derived from the case study:

1. The behavioral model is highly procedural.
2. The expressive power of graph transformation rules (story patterns) is hardly ex-

ploited.

It might be argued that these findings are specific to the case study since providing a
product line requires the fine-grained decomposition of the overall domain model into
a set of rather small reusable components. However, this style of development is not
only applied to product lines, but it should anyhow be applied in any large development
project. To check this assumption, we ran our metrics tool on Fujaba’s CodeGen2 model
(the bootstrapped Fujaba code generator). The results were very similar to the data
collected from the MOD2-SCM project (see again Tables 1 and 2).

It could also be argued that the authors of the story diagrams lacked the expertise
to fully exploit the features of the modeling language. Although some minor parts of
the MOD2-SCM project were developed by students who did not have much experi-
ence in programming with graph transformations, the biggest part of the system was
implemented by experienced Fujaba modelers. Furthermore, the analysis of CodeGen2,
which was developed by the authors of Fujaba themselves, yielded similar results.

Finally, it might be argued that the procedural style of the Fujaba models is due
to the modeling language. However, this argument does not explain the fact that ad-
vanced features of story patterns such as paths, constraints, negative objects and links,
and multi-objects were only rarely used. Nevertheless, we decided to examine a large
specification written in another language to check this argument. The specification was
developed in a Ph.D. thesis in the ECARES project, which was concerned with reverse
engineering and reengineering of telecommunication systems [5]. The specification was
written in PROGRES [7], a language for programming with graph transformations pro-
viding many advanced features (multiple inheritance, derived attributes and relations,
object-orientation, genericity, graph transformation rules with similar features as in Fu-
jaba, high-level control structures, backtracking, and atomic transactions).

The data displayed in Tables 3 and 4 were collected from the complete specification,
as developed in the Ph.D. thesis by Marburger. By and large, the results are consistent
with the metrics data collected from the Fujaba models:

1. The ECARES specification has a strongly procedural flavor. This is indicated by
the ratio of the number of graph tests and graph transformation rules related to the
number of programmed graph queries and transactions: There are twice as many
programmed methods as elementary graph tests and transformation rules.

208 T. Buchmann, B. Westfechtel, and S. Winetzhammer

Table 3. Type and number of language elements in ECARES

Model element Total number Model element Total number

Packages 21 Optional nodes 9

Node classes or types 190 Set nodes 40

Generalizations 193 Edges 374

Intrinsic attributes 87 Negative nodes and edges 13

Derived attributes 9 Positive and negative paths 92

M t tt ib t 8 T ti (d t th d) 299Meta attributes 8 Transactions (update methods) 299

Edge types 21 Queries 8

Textual path declarations 32 Assignments 659Textual path declarations 32 Assignments 659

Graphical path declarations 40 Calls 684

Graph tests 55 Sequences 335Graph tests 55 Sequences 335

Graph transformation rules 92 Conditional statements 270

Mandatory nodes 559 Loops 83y p

Table 4. Significant ratios of language elements in ECARES

Metric Value Metric Value

(Cl)/ k 9 05 (N i d d)/ hi l d fi i i 0 07(Classes + types)/package 9.05 (Negative nodes + edges)/graphical definitions 0.07

Attributes/(classes + types) 0.55 Set nodes/graphical definitions 0.21

(Graph tests + graph transformation rules + (h)/ h l d f(Graph tests + graph transformation rules +
queries + transactions)/(classes + types) 2.39 (Positive + negative paths)/graphical definitions 0.49

(Graph tests + graph transformation rules)/
(queries + transactions) 0.48 (Assignments + calls)/(queries + transactions) 4.37

Nodes/graphical definitions 2.99 Control structures/(queries + transactions) 2.24

Edges/graphical definitions 2.00

2. Graphical definitions (graph tests, graph transformation rules, and graphical path
declarations) are rather small. On average, a graphical definition contains about 3
nodes and 2 edges. These numbers are a bit larger than in MOD2-SCM and Code-
Gen2. However, it has to be taken into account that relationships are represented in
ECARES always as nodes and adjacent edges. Thus, a graph transformation rule
for inserting a relationship requires at least 3 nodes and 2 edges. In the publications
on ECARES, considerably more complex rules were selected for presentation, but
these rules are not representative.

3. The data differ with respect to the utilization of advanced features in graphical
definitions. In particular, paths are used in about 50% of all graphical definitions.
Eliminating paths would result in larger graphical definitions. Thus, altogether the
graphical definitions are slightly more complex than in the studied Fujaba models.

6 Conclusion

We investigated the added value of programmed graph transformations with the help of
a large case study from software configuration management. Our analysis showed that
the model developed in the MOD2-SCM project exhibits a strongly procedural flavor.
Furthermore, graph transformation rules are heavily used, but consist typically of very

The Added Value of Programmed Graph Transformations 209

small and simple patterns. Finally, we have reinforced our findings with metrics data
collected from other projects utilizing programmed graph transformations.

Examining a few large models does not suffice to evaluate the added value of pro-
grammed graph transformations. However, our analysis indicates that the level of ab-
straction is not raised as significantly as expected in comparison to conventional pro-
gramming. In the models we studied, the modeling problem seems to demand for a
procedural solution. Furthermore, modularization of a large model may result in a fine-
grained decomposition such that each method only has to deal with small patterns and
has to provide a small piece of functionality. Further case studies are required to check
whether these effects also apply to other applications.

References

1. Buchmann, T., Dotor, A.: Towards a model-driven product line for SCM systems. In: McGre-
gor, J.D., Muthig, D. (eds.) Proc. of the 13th Int. Software Product Line Conference, vol. 2,
pp. 174–181. SEI (2009)

2. Buchmann, T., Dotor, A., Klinke, M.: Supporting modeling in the large in Fujaba. In: van
Gorp, P. (ed.) Proc. of the 7th International Fujaba Days, pp. 59–63 (2009)

3. Dotor, A.: Entwurf und Modellierung einer Produktlinie von Software-Konfigurations-
Management-Systemen. Ph.D. thesis, University of Bayreuth (2011)

4. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon University Software Engineer-
ing Institute (1990)

5. Marburger, A.: Reverse Engineering of Complex Legacy Telecommunication Systems.
Berichte aus der Informatik. Shaker-Verlag (2005)

6. OMG: OMG Unified Modeling Language (OMG UML), Superstructure V2.2 (version 2.2)
(February 2009)

7. Schürr, A., Winter, A., Zündorf, A.: The PROGRES Approach: Language and Environment.
In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2: Applica-
tions, Languages, and Tools, pp. 487–550. World Scientific (1999)

8. Zündorf, A.: Rigorous object oriented software development. Tech. rep., University of Pader-
born, Germany (2001)

A Case Study Based Comparison

of ATL and SDM

Sven Patzina and Lars Patzina

Center for Advanced Security Research Darmstadt (CASED), Germany
{sven.patzina,lars.patzina}@cased.de

Abstract. In model driven engineering (MDE) model-to-model trans-
formations play an important role. Nowadays, many model transforma-
tion languages for different purposes andwith different formal foundations
have emerged. In this paper, we present a case study that compares the At-
las Transformation Language (ATL) with Story Driven Modeling (SDM)
by focusing on a complex transformation in the security domain. Addi-
tionally, we highlight the differences and shortcomings revealed by this
case study and propose concepts that are missing in both languages.

Keywords: Atlas Transformation Language, Story Driven Modeling,
Live Sequence Charts, Monitor Petri nets, transformation.

1 Introduction

Model-driven engineering (MDE) demands model-to-model transformations be-
tween models on different abstraction levels. Based on this idea, a model-based
development process for security monitors [15] is developed that allows for the
abstract specification and automated generation of correct security monitors in
software (C, Java) and hardware (VHDL, Verilog). Specifications are modeled as
use and misuse cases with extended Live Sequence Charts (LSCs). Due to the ex-
pressiveness of LSCs, the process foresees a more explicit intermediate language
– the Monitor Petri nets (MPNs), a Petri net dialect with special start and end
places and deterministic execution semantics. This more explicit representation
with a less complex syntax is easier to process than the LSCs itself.

In this context, a rule-based model-to-model transformation language is in-
tended for the complex step from LSCs to MPNs, because a rule-based approach
seems to be less error-prone compared to a manual implementation of the pat-
tern matching process for each transformation in a general-purpose program-
ming language. Nowadays, various transformation languages have emerged with
a different purpose, feature set, and formal foundation. On one side, there are
languages that are based on graph grammar theory such as SDM [6] and on the
other side, languages such as ATL [9], whose semantics has been formalized by
using e.g., abstract state machines [5] and rewriting logics [18]. In contrast to
existing comparisons that use classical examples [4] or more complex examples
by focusing on special properties such as inheritance [21], this case study differs
in the application domain.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 210–221, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Case Study Based Comparison of ATL and SDM 211

In this paper, we show the differences, advantages and disadvantages of the
Atlas Transformation Language (ATL) in version 3.1 and Story Driven Modeling
(SDM) on an example of a real-world transformation. Our main contributions
are the application of two transformation languages to a complex, real-world
example in the security domain and specific proposals for extending the concepts
of the transformation languages.

In the following, Sec. 2 introduces the transformation scenario. Then Sec. 3
presents the requirements and analyses appropriate languages for our purpose
– ATL and SDM. In Sec. 4, selected rules of the transformation in ATL and
SDM that show concepts and differences are compared, and the evaluation is
described. The result of the comparison and suggestions for additional features
for the two transformation languages are shown in Sec. 5. Section 6 concludes
the paper.

2 Running Example

In this section, a Car-to-Infrastucture scenario, where a car communicates with
a tollbridge, will be presented and used in the remainder of this paper. The ex-
ample is based on metamodels that are reduced versions of those used in the case
study, depicted as Ecore/MOF diagrams in Figure 1a) and b). Figure 1c) shows
a communication protocol (use case) in concrete LSC syntax and Figure 1d) the
corresponding MPN representation.

LSCs are an extension of Message Sequence Charts that in addition offer a
distinction between hot and cold elements. Thereby, hot elements are mandatory
and have to occur and cold elements are optional. Additionally, LSCs can have
two forms, a universal LSC with a prechart (precondition) before the mainchart
or an existential LSC without a precondition.

The LSC in Figure 1c) shows an existential LSC that models the exchange
of asynchronous messages between LSC objects in a mainchart. When the car
approaches the tollbridge, it sends a connect() message to the tollbridge that
is represented as hot message. The tollbridge acknowledges this message with
an ack(). After receiving this message, the car has to send some information
data_a(). Then the car is allowed to send additional information data_b(),
modeled as cold message. The communication has to be terminated by the car
by sending a disconnect() message.

The metamodel of the LSC diagrams is depicted in Fig. 1a), where LSC s
and the derived ExistentialLSC s are contained in the root class LSCDocument.
Furthermore, ExistentialLSC s contain LSCObjects and a Mainchart. A Message
starts and ends on a Location that is contained in the related LSCObject as an
ordered set.

Similar to LSC s, MPN s have an MPNDocument as root class, depicted in
Figure 1b). The MPN, derived from the use case LSC, is represented in Fig-
ure 1d). This MPN is a more operational description of the behavior expressed
by the LSC. MPN s are composed of different kinds of places (depicted as circles),
transitions (realized as black bars), and arcs that connect places and transitions.

212 S. Patzina and L. Patzina

MPN

 initial place

 standard place

 end place

 transition

 arc

LSC

 hot message

 cold message

 LSC object

 mainchart

b)a)

c) d)

Ecore Diagram lscmetamodel

LSCDocument

+ name: EString

LSC

+ isMisuseCase: EBoolean

+ name: EString

ExistentialLSC

Mainchart

LSCObject

+ name: EString

Location

+ temperature: Temperature

Message

+ condition: EString

+ content: EString

+ temperature: Temperature

+ type: MessageType

Temperature

«enum»

+ COLD

+ HOT

MessageType

«enum»

+ ASYNC

+ SYNC

+chart0..1

LSCContainsMainchart
+lsc 0..1

+lsc

0..1

LSCContainsObjects

+objects *

+locations *

ObjectContainsLocations

+object 0..1

+lscs *

DocumentContainsLSCs

+document 1

+containingLocations0..*

ChartHasLocations

+chart 0..1

+outMsg 1

MessageHasStartLocation

+startLoc 1

+incMsg 1

+endLoc 1

+message
0..*

ChartContainsMessage

+chart 0..1

MessageHasEndLocation

Ecore Diagram mpnmetamodel

MPNDocument

+ name: EString

MPN

+ isMisuseCase: EBoolean

+ name: EString

Place

+ name: EString

Transition

+ code: EString

+ condition: EString

+ event: EString

PlaceArc

TransitionArc

StandardPlaceInitialPlace

EndPlace

+document 1

MPNDocContainsMPNs

+mpns 0..*

+mpn 0..1

MPNContainsPlaces

+places 0..*

+place 1

PlaceContainsPlaceArcs

+placearcs 0..*

+place

1

PlaceHasTransArcs

+transitionarcs

0..*

+mpn 1
MPNContainsTransitions
+transitions 0..*

+transition 1
TransitionContainsTransArcs
+transitionarcs 0..*

+transition
1

TransitionHasPlaceArcs +placearcs

0..*

car
:Vehicle

tollbridge

:RSU

connect()

ack()

data_a()

data_b()

disconnect()

(T2)

(T3)

(T3)

(T4)

T
ra

n
s
fo

rm
a

ti
o
n
s

«MPNInitial»

car

«MPNInitial»

tollbridge

s.connect()

r.connect()

s.ack()

r.ack()

s.data_a

r.data_a()
s.data_b()

r.data_b()

s.disconnect()

r.disconnect()

stop

s.disconnect()

r.disconnect()

Fig. 1. Metamodels and models of the LSC-to-MPN example

A Case Study Based Comparison of ATL and SDM 213

The transformation from LSCs to MPNs basically consists of four transfor-
mation steps, highlighted in grey in the concrete example. (T1) It starts with
the creation of an MPN for each LSC. (T2) Each LSC object is represented as
an initial place annotated with the name of the object. (T3) A hot asynchronous
message such as the connect()message is split in one transition for the sending
and one for the receiving event and three standard places. These are connected
with arcs where one place is on the sender side, one is on the receiver side, and
one secures the order of sending and receiving of the message. This pattern is
also used for cold messages with additional bypass-transitions that realize the
optional nature of cold messages. (T4) The pattern is finalized by an end place
where all possible paths through the MPN are synchronized by transitions with
the event “stop”.

3 Related Work

In the last years, publications about comparisons between different transfor-
mation languages evolved. On the one side, there is the Transformation Tool
Contest1 event series, where solutions for special transformation problems are
submitted and compared. As [2] stated, this contest can be used as source for
insights of the strong and weak points of transformation tools, but has no clear
focus on achieving really comparable results. On the other side, publications
cope with small classical examples such as UML2RDBMS [4], concentrate only
on graph-based transformation languages [17] or focus on a small subset of prop-
erties such as inheritance [21]. The transformation from extended LSCs to the
corresponding MPN representation is in contrast to the afore mentioned com-
parisons based on a complex, real-world example located in the security domain.

Based on the transformation steps (T1 to T4) that are derived from the ex-
ample in Section 2 the following requirements can be formulated:

R1) 1-to-1 (Model). For each LSC diagram, a single MPN should be gener-
ated. Therefore, for each source model one target model is created. (T1)

R2) m-to-n (Element). One or more elements in the source model have to
be mapped to one or more elements in the target model. (T3)

R3) Traceability Links. For processing optional elements, traceability links
are needed to be able to add bypass-transitions in the target model. (T3)

R4) Attributes. The language must be able to handle attributes of model
elements. It has to check and generate attributes in the target model. (T2)

R5) In-place. For optimizations of the target model, some kind of in-place
transformation on the target model is required. (T4)

R6) Deletion. For post-processing, it is necessary to delete elements from the
target model to remove redundant places and unnecessary transitions. (T4)

R7) Recursive Rules. For the synchronization at the end of an LSC, with an
unknown number of places and LSC objects during specification, recursive
operations on model elements are needed. (T4)

1 http://planet-research20.org/ttc2011/

http://planet-research20.org/ttc2011/

214 S. Patzina and L. Patzina

Table 1. Requirements for the LSC-to-MPN transformation

Req. ATL [9] ETL [11] QVTo [14] PROGRES [16] SDM [6] TGG [10] VIATRA2 [20]

R1) � � � �1 �1 � �
R2) � –2 � � � � �
R3) � o3 � o3 o3 � o3

R4) � � � � � – �
R5) o4 � o4 � � – �
R6) o5 �6 � � � – �
R7) o7 � � �8 �8 – �
R8) � � � � � o9 �
R9) � � � – � � �
�fulfilled; o partly fulfilled; - not fulfilled; 1in-place; 2only 1-to-n; 3manual; 4refining mode;
5new transformation; 6with EOL; 7as helper; 8control flow and path expressions; 9bidirectional

R8) Unidirectional. Some elements of the LSC have no bijective mapping.
A fixed loop of n iterations is, e.g., unwound to n representations of its
content. (T1)

R9) Tool Support. For the realization of the development process, a reliable
implementation of the transformation language is needed.

Based on these requirements, Table 1 compares state-of-the-art rule-based model
transformation languages. While PROGRES, SDM, TGG, and VIATRA2 are
based on graph transformation (GT) principles, ATL, ETL, and Operational
QVT (QVTo) are not formalized. First approaches for ATL are made using
abstract state machines [5] and rewriting logics [18]. The introduced GT lan-
guages, excluding TGGs, are hybrid and support the modeling of control flow.
In contrast to all other approaches, TGGs are fully declarative and bidirectional
transformations have to be specified as mappings of source and target elements
simultaneously. This hampers the specification of the rules, because no bijective
mapping as stated in R8 exists, and R7 is not supported. So TGG does not fit
to the requirements.

There are two groups, on one hand ATL, ETL, and QVTo and on the other
hand PROGRES, SDM, and VIATRA2. Because many comparisons between
languages within one of the groups exist, e.g., [8,17], one language from each
group is chosen.

ATL, the commonly used model transformation language in the Eclipse com-
munity and SDM that is used in the meta-CASE tool MOFLON [1] will be
compared because of their differences. In SDM the rules, embedded in activities
of an activity diagram, are scheduled by an explicitly modeled control flow. Con-
trary to SDM, the rules of an ATL 3.1 transformation are conditioned by OCL
expressions and functionality can be delegated to helper functions. Using these
concepts the execution sequence is derived from implicit relations between the
rules.

A Case Study Based Comparison of ATL and SDM 215

rule LSCDocument2MPNDocument {
from

lscDocument: LSCMM!LSCDocument
to

mpnDocument: MPNMM!MPNDocument(
name <- lscDocument.name

)
}

rule LSC2MPN{
from

lsc: LSCMM!LSC
to

mpn: MPNMM!MPN(
isMisuseCase <- lsc.isMisuseCase,
name <- lsc.name,
document <- lsc.document

)
}

(T1) LSCDocument2MPNDocument

Transformator::transform (lscDocument:

LSCDocument): MPNDocument

(T1) LSC2MPN

<<create>>

mpn: MPN

isMisuseCase:=lsc.isMisuseCase

name:=lsc.name

(T3) MatchMainchartOfExistentialLSC

elsc:= (ExistentialLSC) lsc

chart: Mainchart

mpn
synchronizeObjectsFinal(mpn, lsc);

mpnDocument

(T2) LSCObjects2InitialPlaces

addInitialPlaces(mpn, lsc);

addElements(mpn, chart, chart);

<<create>>

mpnDocument: MPNDocument

name:=lscDocument.name

lscDocument lsc: LSC

[end]

+lscs +document

+document

<<create>>

+mpns

+chart

+lsc

[failure]

[success]

[each time]

ATL

SDM

(T3) Messages2MPNSubnet(T4) Messages2MPNSubnet

Fig. 2. Initial rules of the transformation (T1)

4 Comparison of the Transformations

In this section, rules of the LSC-to-MPN transformation are presented that show
commonalities and differences of ATL and SDM. Thereby, the requirements de-
rived above that are not satisfied by one or both languages (R3, R5, R6 and R7)
are examined and additional missing features are suggested. After that, the im-
plementation of the transformations is evaluated.

4.1 Transformations

The SDM part of Figure 2 maps the basic steps of the transformation, derived in
Section 2 to the activities of the SDM: (T1) LSCDocument to MPNDocument
and LSC to MPN, (T2) LSCObjects to InitialPlaces, (T3) Messages to an MPN
subnet, and (T4) the synchronization to EndPlaces in MPN.
(T1) The first transformation rules in Figure 2 translate the LSCDocument
with its LSC s to an MPNDocument with corresponding MPN s. The ATL rule,
LSCDocument2MPNDocument, corresponds to the first activity in the SDM. In
the SDM rule, lscDocument is already bound as a parameter and an MPNDoc-
ument is created in the first activity. Contrary to the SDM, the ATL rule needs
no already matched (bound) objects for the navigation. So an LSCDocument is
matched in the from part (left side) and an MPNDocument is created in the to
part (right side) of the rule. The second rule LSC2MPN is very similar in both
languages. In the SDM, the activity around the pattern is a foreach-activity that
uses the bound lscDocument to find all LSC s and adds for each lsc an MPN
with the same attributes to the mpnDocument.

These first transformation rules already reveal the main difference of the two
languages. While SDM explicitly relies on a control flow between the declarative

216 S. Patzina and L. Patzina

rule LSCObject2InitialPlace{

from
lscObject: LSCMM!LSCObject

to
initialPlace: MPNMM!InitalPlace(

name <- lscObject.name,
mpn <- thisModule.resolveTemp(

lscObject.lsc, 'mpn')
)

}

ATL SDM

LSCObject2InitialPlace

Transformator::addInitialPlaces (mpn: MPN,

lsc: LSC): void

lsc lscObject: LSCObject

<<create>>

initialPlace: InitialPlace

name:=lscObject.name

mpn

<<create>>

link: TraceabilityLinkthis

+link

<<create>>+object

+link
<<create>>

+places

+lsc +objects

+mpn

<<create>>

+elements

[end]+transformator

<<create>>

+link

Fig. 3. Creation of initial places of MPN (T2)

patterns, ATL should be used as long as possible in a declarative way [9]. Beside
the implementation of SDM in MOFLON, there exists a backward compatible
extension that allows for implicit rule scheduling [13].
(T2) For every matched LSC in the activity LSC2MPN, the transformation
steps are executed. The next activity calls the rule depicted in Figure 3 that
translates all LSCObjects to InitialPlaces of the MPN. The ATL rule matches
every LSCObject specified in the from part of the rule, which corresponds to the
unbound object lscObject in the SDM. The to part of the ATL rule corresponds
to the pattern at the bottom of the SDM activity.

Here, another difference between ATL and SDM emerges. In ATL each appli-
cation of a rule automatically produces traceability links between the matched
source and the created target elements. Such a mechanism does not exist in
standard SDM. Therefore, an additional metamodel containing the transforma-
tion rules as operations and constructs for the management of traceability links
(TraceabilityLink) has to be explicitly modeled as shown in [7]. Traceability links
in ATL have to be used for adding a reference to the already created MPN. This
is done by the predefined helper resolveTemp and name matching. As parame-
ters the elements of the source model and the name of the element in the target
model, defined in the rule that has matched the source elements, are passed.
(T3) When defining more complex rules such as the transformation of asyn-
chronous messages, two different approaches have to be used. In SDM, enabled
by the explicit control flow modeling, the transformation can be defined in one
rule, whereas, in ATL three rules have to be specified.

For the SDM in Figure 4, the manually added traceability links are used to
identify all places in the MPN that have not been synchronized via a hot message
in the LSC. In the activity CreatePlacesForAsyncMessage three StandardPlaces
for the LSC message are created. The following foreach-activity CreatePlaces-
ForStartLocation generates a transition with corresponding arcs for every place
that has a link to the source of the message (LSCObject). This includes the
bypass-transitions for cold messages. The statement -activity TraceabilityLink-
ForStartLocation calls an SDM method that manages the traceability links. The
second part of the SDM, which is collapsed, performs the similar transformation
for the target of the message.

A Case Study Based Comparison of ATL and SDM 217

SDM

ATL

Transformator::addAsyncMessage (mpn: MPN, startObject: LSCObject,
endObject: LSCObject, message: Message): void

CreatePlacesForAsyncMessage

<<create>>
sPA: StandardPlace mpn

<<create>>
sPS: StandardPlace

<<create>>
sPB: StandardPlace

ConnectPlacesForStartLocation

this startObjectlink: TraceabilityLink

place: Place
<<create>>

pAA: PlaceArc

mpn

<<create>>

tA: Transition

event:="s."+message.getContent()

<<create>>
tAS: TransitionArc

sPS

<<create>>
tAA: TransitionArc

sPA

TraceabilityLinksForStartLocation

ConnectLocationsForEndLocations

TracebilityLinksForEndLocation

addLocationPlace(message.getStartLocation(), link, place,
sPA);

addLocationPlace(message.getEndLocation(), link, place, sPB);

+transition

<<create>>+placearcs

[each time]

[end]

[end]

[each time]

+transition

<<create>>

+transitionarcs

+transition

<<create>>

+transitionarcs

+mpn

<<create>>

+places

+place

<<create>>

+transitionarcs

+place

<<create>>

+placearcs

+mpn

<<create>>

+transitions

+mpn
<<create>>

+places

+mpn

<<create>>+places

+link

+places

+transformator +link +link +object

+place

<<create>>

+transitionarcs

rule AsyncMPNPattern{
 from
 lscAM : LSCMM!Message(lscAM.isMessageAsync)
 to
 sPA : MPNMM!StandardPlace(
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 sPS : MPNMM!StandardPlace(placeArcs <- tAS,
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 sPB : MPNMM!StandardPlace(placeArcs <- tAB,
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 tA : MPNMM!Transition(transitionArcs <- tAA, transitionArcs <- tAS,

event <- 's.'.concat(lscAM.content),
 mpn <- thisModule.resolveTemp(lscAM.endLocation.object.lsc, 'mpn')),
 tAA : MPNMM!TransitionArc(place <- sPA),
 tAS : MPNMM!TransitionArc(place <- sPS),
 pAA : MPNMM!PlaceArc(transition <- tA, place <- thisModule.getPlaceOfPrevMsgSender(lscAM)),
 ...
}
rule bypassTransition{
 from
 firstLoc : LSCMM!Location,
 secondLoc : LSCMM!Location(firstLoc.isBypassCombination(secondLoc))
 to
 pA : MPNMM!PlaceArc(transition <- t,
 place <- secondLoc.getPlaceForLocAndInst),
 t : MPNMM!Transition(event <- secondLoc.getEventName, transitionArcs <- tA,
 mpn <- thisModule.resolveTemp(firstLoc.object.lsc, 'mpn')),
 tA : MPNMM!TransitionArc(place <- thisModule.getPlaceForLocAndInst(secondLoc))
}
rule bypassTransitionWithFollowingAsyncSend extends bypassTransition{
 from
 firstLoc : LSCMM!Location,
 secondLoc : LSCMM!Location(firstLoc.isBypassCombination(secondLoc)
 and secondLoc.isAsyncSendingLocation)
 to
 tAS : MPNMM!TransitionArc(transition <- t,
 place <- thisModule.resolveTemp(secondLoc.outgoingMessage, 'sPS')
),
 pAS : MPNMM!PlaceArc (place <- thisModule.resolveTemp(secondLoc.outgoingMessage, 'sPS'),
 transition <- thisModule.resolveTemp(
 Tuple{fL = firstLoc.getOppositeLocation, sL = secondLoc.getOppositeLocation}, 't'))
}

Fig. 4. SDM and ATL rules for asynchronous messages (T3)

218 S. Patzina and L. Patzina

stop stop stop …

… …

… X X

PO1 PO2 POn

Fig. 5. Synchronization of open places at the end of an MPN (T4)

In ATL the transformation, depicted in Figure 4, is split into three rules that
match different source elements. Where AsyncMPNPattern matches all messages
in the LSC model and translates the messages, the two bypassTransition rules
create the additional transitions for cold messages. For that, the messages have
to be matched again. This can be done by splitting the transformation in two
sequential transformations, losing the traceability links of the former steps, or as
done here, by matching other source elements (combination of locations). The
to parts of the ATL rules and their helpers extensively use traceability links.
(T4) The LSC presented in Section 2 ends with a hot message, so that only the
places belonging to the last message have to be synchronized via a transition
with stop event. For handling one or more cold messages at the end of a chart,
all combinations of places that have not been synchronized from different LSC
objects have to be connected to an own transition. As shown in Figure 5, the
Cartesian product (po1, po2, . . .) ∈ PO1 × PO2 × . . . has to be derived, where
POn contains all unsynchronized places of the n-th LSCObject.

Such a pattern with two variable dimensions – the number of LSCObjects
and the number of Places for each object – cannot be described in a declarative
manner in ATL and SDM. Therefore, a recursive traversal is needed that can
only be realized imperatively. In SDM, this can be handled locally in the control
flow by calling rules recursively, whereas, in ATL this has to be implemented
fully imperatively in global helpers.

4.2 Evaluation of the Transformations

To validate the semantical equivalence of the two transformations, both ap-
proaches have been fed with the same set of input models, and the output mod-
els have been compared manually with each other. The input models with up to
five messages have been chosen to cover different sequences of messages based
on the temperature, the type, and the direction between the two LSC objects.
Caused by the manual review of the output models, these input models are as
compact as possible to realize all combinations with respect to the specifications
of the transformations.

To evaluate the equivalence for more complex models, an “automatic” compar-
ison2 of the output MPNs is needed. Therefore, the part of the SDM
transformation that is presented in this paper has been transferred to the eMoflon

2 Test suite provided at: http://www.moflon.org/emoflon

http://www.moflon.org/emoflon

A Case Study Based Comparison of ATL and SDM 219

tool, a new version of MOFLON based on EMF. Hereby, EMFCompare allows
for an automatic comparison of the output models (MPNs).

5 Desirable Features

In this section, proposals for additional features of these two languages are made.
These originate from (R) the basic requirements of Section 3, (T) the transfor-
mation in Section 4, and (S) additional requirements for the monitor generation
process scenario.

Implicit Traceability Links (R3, T2, T3). The explicit modeling of traceabil-
ity links in SDM alloy the readability of the transformation rules caused by the
additional patterns to create these links. An implicit generation as realized for sub-
graph copying [19] would be desirable for the here studied more general case.

In-PlaceTransformation (R5,R6).For post-processing purposes in theMPN
target model SDM, as an in-place language, is favorable, because recursive dele-
tions and modifications can be modeled within the control flow. Using the refining
mode of ATL 3.1 (realized by copy rules) allows a kind of in-place transformation,
but this approach fails when post-processing steps have to be repeated iteratively
on the changed model until there is no new match. This is caused by the write-
only target model that has to be used as source model in a repeated external call
of the transformation. In the implementation of ATL 3.2 an extended support for
in-place transformations and explicit deletions has been added, but with the draw-
back that some advanced imperative features are not supported.

Patterns of Dynamic Size (R7, T4). In complex transformations some prob-
lems occur that are typically resolved in programming languages with a recursive
approach, which is needed to compute the Cartesian product of an unknown num-
ber of sets each containing an unknown number of elements. Figure 5 shows this
using the example of the synchronization of all places at the end of the transfor-
mation, presented in Section 4.1. To eliminate the imperative part for this issue, a
template concept for patterns is needed that allows the dynamic runtime initial-
ization of parts of patterns by a quantity of instances in the model.

Explicit Modeling of Control Flow (T1, T3). When a complex transfor-
mation should be described in ATL, every object can only be bound by one
rule, which leads to a shortage of unbound elements for other rules, as presented
in Section 4.1 in T3. This forces the developer to design more complex holistic
rules or split the complete transformation into independent sequential steps. By
splitting the transformation, traceability links created in a previous step are not
accessible in the current step.

Reusability of Matched Patterns (T2). In SDM, set patterns can be used to
match many objects of the same type at once. The results can be passed between
rules and returned as result but cannot be used for further pattern matching.
By extending the set concept and allowing, additionally, the passing of matched
patterns, the control flows in SDM rules could be reduced.

220 S. Patzina and L. Patzina

Deterministic and Correct Result (S). In the presented monitor genera-
tion process the correctness of the resulting model has to be ensured. Therefore,
properties such as a deterministic generation of target models, as guaranteed
by the declarative part of ATL [8], are desirable. As shown in the previous sec-
tion, it is often impossible to provide a purely declarative solution for complex
transformations. Hence, in both ATL and SDM the developer has to cope with
non-determinism in the modeled transformation. To address this issue, test prac-
tices, as suggested in [3], have to be developed for ATL and SDM.

Integration into Software (S). The tools for ATL and SDM provide dif-
ferent approaches for the integration of transformations in software products.
MOFLON and FUJABA use SDM specifications to generate Java code and
ATL is translated into byte-code that is interpreted by a special virtual ma-
chine (ATL VM). Hence, the SDM code is preferable for seamless integration
in a standalone tool [6]. When developing a tool integrated in Eclipse, both
approaches are suitable.

6 Conclusion and Future Work

In this paper, we have presented a case study about the comparison of the
transformation languages ATL and SDM in the context of a model-based secu-
rity monitor development process. We have highlighted shortcomings that have
evolved during the case study and suggested additional concepts to improve the
modeling of transformations. Both languages lack some features and should be
extended. One major disadvantage of ATL is the missing possibility to explicitly
model the control flow, and the resulting problem that elements can be bound
only once in a transformation.

A more satisfactory model transformation language for our monitor generation
process could be based on an SDM-like hybrid language that is extended by
static type and determinism analysis from PROGRES and Critical Pair Analysis
from AGG [12]. The language should support recursive patterns as implemented
in VIATRA. Additionally, a possibility for implicit traceability links should be
supported. Furthermore, an improved parameter handling for passing matched
patterns and set patterns between part rules is also desirable.

As stated, all these concepts have been proposed for different transformation
languages, but were never combined in an implementation of a graph transfor-
mation language. Therefore, further research has to determine the compatibility
of these extensions, e.g., determinism and recursive patters.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. van Amstel, M., Bosems, S., Kurtev, I., Ferreira Pires, L.: Performance in Model
Transformations: Experiments with ATL and QVT. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 198–212. Springer, Heidelberg (2011)

A Case Study Based Comparison of ATL and SDM 221

3. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: ECMDA
Workshop on Integration of MDD and MDT. IRB Verlag (2006)

4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45, 621–645 (2006)

5. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for supporting dynamic semantics specifications of DSLs. Tech. rep. LINA
(2006)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

7. Hildebrandt, S., Wätzoldt, S., Giese, H.: Executing graph transformations with the
MDELab story diagram interpreter. In: Transformation Tool Contest (2011)

8. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

10. Klar, F., Rose, S., Schürr, A.: TiE – a tool integration environment. In: Proc. of
the 5th ECMDA-TW. CTIT Workshop Proc., vol. WP09-09, pp. 39–48 (2009)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

12. Mens, T., Taentzer, G., Runge, O.: Detecting structural refactoring conflicts using
critical pair analysis. In: Proc. of the Workshop on Software Evolution through
Transformations. ENTCS, vol. 127, pp. 113–128. Elsevier (2005)

13. Meyers, B., Van Gorp, P.: Towards a hybrid transformation language: Implicit and
explicit rule scheduling in story diagrams. In: Proc. of the 6th Int. FujabaDays (2008)

14. OMG: MOF 2.0 QVT Spec. Object Management Group (January 2011),
http://www.omg.org/spec/QVT/1.1/

15. Patzina, S., Patzina, L., Schürr, A.: Extending LSCs for Behavioral Signature Mod-
eling. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder,
C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 293–304. Springer, Heidelberg (2011)

16. Schürr, A.: Programmed Graph Replacement Systems. In: Handbook of Graph
Grammars and Computing by Graph Transformation, vol. 1: Foundations, pp.
479–546. World Scientific (1997)

17. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T.,
Prange, U., Varró, D.: Varró-Gyapay, Sz.: Model transformation by graph trans-
formation: A comparative study. In: Proc. of Workshop MTiP (2005)

18. Troya, J., Vallecillo, A.: Towards a Rewriting Logic Semantics for ATL. In: Tratt,
L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 230–244. Springer, Hei-
delberg (2010)

19. Van Gorp, P., Schippers, H., Janssens, D.: Copying subgraphs within model repos-
itories. In: Proc. of the 5th Int. Workshop on Graph Transformation and Visual
Modeling Techniques. ENTCS, vol. 211, pp. 133–145. Elsevier (2008)

20. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3), 214–234 (2007)

21. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A Comparison
of Rule Inheritance in Model-to-Model Transformation Languages. In: Cabot, J.,
Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 31–46. Springer, Heidelberg (2011)

http://www.omg.org/spec/QVT/1.1/

Applying Advanced TGG Concepts for a

Complex Transformation of Sequence Diagram
Specifications to Timed Game Automata�

Joel Greenyer1,�� and Jan Rieke2,���

1 Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20233 Milano, Italy
greenyer@elet.polimi.it

2 University of Paderborn, Zukunftsmeile 1, 33102 Paderborn, Germany
jrieke@uni-paderborn.de

Abstract. Declarative model transformation languages like QVT-R and
TGGs are particularly convenient because mappings between models
can be specified in a rule-based way, describing how patterns in one
model correspond to patterns in another. The same mapping specification
can be used for different transformation and synchronization scenarios,
which are important in model-based software engineering. However, even
though these languages already exist for a while, they are not widely used
in practice today. One reason for that is that these languages often do
not provide sufficiently rich features to cope with many problems that
occur in practice. We report on a complex model transformation that
we have solved by TGGs. We present advanced extensions of the TGG
language that we have integrated in our tool, the TGG Interpreter.

Keywords: model transformation, Triple Graph Grammar (TGG), case.

1 Introduction

Declarative model transformation languages like QVT-Relations and TGGs are
particularly convenient because mappings between models can be specified in a
rule-based way, describing how particular patterns in one model correspond to
particular patterns in another. The same mapping specification can often be in-
terpreted for different application scenarios, e.g., for the forward transformation
from a given source model to a target model or for the backward transformation
from a given target model to a source model. It can furthermore be used to keep
corresponding models synchronized when changes occur to either one.

� This work was developed in the course of the Collaborative Research Center
614, Self-optimizing Concepts and Structures in Mechanical Engineering, Univ. of
Paderborn, and was published on its behalf, funded by the Deutsche Forschungs-
gemeinschaft.

�� This work was elaborated mainly while the author was working at the University
of Paderborn, Germany.

��� Supported by the International Graduate School Dynamic Intelligent Systems.

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 222–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Applying Advanced TGG Concepts for a Complex Transformation 223

However, even though these languages already exist for a while and a range of
(mostly academic) tools have been developed in the past, these languages are not
widely used in practice today. One reason for that is that these languages often do
not provide sufficiently rich features to cope with many practical transformation
problems. As a consequence, the formalisms may seem appealing at first, but
many developers faced with real-life problems quickly return to “program” their
transformations, using an operational language.

In this paper, we report on a complex model transformation that we have
solved by TGGs (Sect. 3). We present advanced extensions of the TGG language
that we have integrated in our tool, the TGG Interpreter. First, we describe
the integration of OCL for describing attribute value constraints and application
conditions (Sect. 4). We especially support the definition of custom operations
that can be reused in the TGG rules, making them more readable.

Second, we present how constraints on stereotypes in UML domains can be
conveniently specified in the TGG rules (Sect. 5). This extension is crucial be-
cause today many specific languages are defined by providing profiles for UML.

Third, we present a rule generalization concept, revising the one presented
earlier by Klar et al. [15] (Sect. 6). By using generalization, we greatly reduced
the number of redundant patterns that needed to be specified for our example.

Last, in our case study we experienced that there are many transformation
rules where in some cases we wish to create elements in the target model, but
in other cases we wish to reuse elements or whole patterns that were created in
the target model by previous rule applications. We present an advanced concept
for controlling the reuse of model patterns in the target domain in Sect. 7.

Furthermore, we informally discuss important properties of our TGG exten-
sions and the transformation algorithm in Sect. 8, report on related work in
Sect. 9, and conclude in Sect. 10. But first, we briefly introduce TGGs.

2 Triple Graph Grammars

Triple Graph Grammars (TGGs) [20] allow us to define sets of corresponding
graphs. An element of this set is typically a triple consisting of two independent
graphs that are linked via a third graph, called the correspondence graph. Be-
cause of this triple structure, such a graph is also called a triple-graph. These
different graphs in a triple-graph are typed over different type graphs. TGG
rules are non-deleting graph production rules that describe how, based on a
start graph or axiom, triple-graphs can be created. Triple-graphs that can be
created by a TGG are called valid triple-graphs.

Transferred to the “modeling world”, TGGs define sets of corresponding mod-
els, also called triple-models, where the independent models, called domain mod-
els, are instances of different meta-models. The domain models are linked via a
correspondence model, which is an instance of a correspondence meta-model.

TGGs can be interpreted for different application scenarios. In this paper, we
focus on the forward transformation scenario: A model of one domain is given,
called the source domain in the following. A TGG can now be operationalized

224 J. Greenyer and J. Rieke

Fig. 1. The interpretation of a TGG rule for the forward transformation

to create a model of the opposite domain, called the target domain, and a cor-
respondence model, such that the resulting models form a valid triple-model.

A TGG rule consists of nodes and edges that represent objects and links in
the domain models. Since a TGG rule is a non-deleting graph grammar rule, the
nodes and edges appear either on the left-hand side (lhs) and right-hand side
(rhs) of the rule, or they appear on the right-hand side only. The former nodes
and edges are also called context nodes and context edges, the latter are called
produced nodes and produced edges. Context nodes are displayed as white boxes
with a black border; produced nodes are displayed as green boxes with a dark
green border and a “++” label. Context edges are displayed as black arrows;
produced edges are displayed as dark green arrows with a “++” label.

Fig. 1 shows an abstract illustration of a TGG rule and how it is applied in
a forward transformation scenario. Consider a state during the transformation
where some rules were already applied and some elements in the source model
were already translated to some target model elements. After a rule application,
when an object in the model is matched by a node or created according to a
node, we say that this object is bound to that node. A TGG rule is applied as fol-
lows: First, a match of the rule’s context and source domain graph pattern must
be found in the source model and the already created target and correspondence
model. In this match, context nodes must be matched only to already bound ob-
jects and source produced nodes must only be matched to yet unbound objects.
If such a match can be found, target and correspondence model elements can
be created according to the produced target and correspondence pattern of the
rule. All matched and created objects are bound to the according rule nodes. As
a consequence, a model object can only be bound once to a produced node. We
call this the bind-only-once semantics of produced nodes. Each model object in a
valid triple-model is produced by exactly one produced TGG node of one TGG
rule application. Thus, the bind-only-once semantics ensures that the resulting
models form a valid triple-model according to the TGG.1

In our TGG Interpreter, we not only track which objects are bound to
which nodes. We also track which links are bound to which edges. The set of all
node and edge bindings after a rule application is called a rule binding.

1 Most TGG transformation engines, like Moflon [1], essentially implement the same
semantics. However, these tools mostly do not capture a node/object binding in
an explicit data structure: an object is considered bound if there is a link from a
correspondence object pointing to it.

Applying Advanced TGG Concepts for a Complex Transformation 225

Also constraints on attribute values and application conditions can be formu-
lated in a TGG rule, as explained in more detail in Sect. 4. Furthermore, we
have introduced the concept of reusable nodes and reusable edges, displayed in
gray with a “##” label. They can be interpreted either as produced nodes and
edges or as context nodes and edges [10], as explained in more detail in Sect. 7.

3 Example

The transformation example is a mapping from Modal Sequence Diagram (MSD)
specifications to networks of Timed Game Automata (TGA), which is performed
in order to find inconsistencies in the specification with Uppaal Tiga [3,9].

MSDs: MSDs are a formalism for specifying interactions among objects that
may, must, or must not happen, proposed as a formal interpretation of UML
sequence diagrams by Harel and Maoz [13]. In an MSD specification, the inter-
action among system and environment objects is specified in sequence diagrams
where messages have a hot or cold temperature. The left of Fig. 2 shows an
MSD specification with three MSDs. Hot messages are displayed as solid red
arrows; cold messages are displayed as dashed blue arrows. On the top left, a
collaboration diagram shows the object system, which here consists only of an
environment object e:Env and a system object s:S.

In short, the semantics of an MSD specification is as follows: If in a sequence of
interactions a message is sent in the system that corresponds to the first message
in an MSD, an active copy of that MSD, or active MSD, is created. (We only
allow a single active copy of an MSD at a time.) Upon the occurrence of further
messages in the system that correspond to the subsequent messages in the MSD,
the active MSD progresses. This progress is captured by the cut, which marks
the occurred messages in the active MSD. If the cut is immediately prior to a
message on its sending and receiving lifeline, this message is enabled. If a hot
and executed message is enabled, it means that this message must eventually
occur and that no message must occur that corresponds to another message
in the diagram that is not currently enabled. Due to these liveness and safety
requirements, there can be inconsistencies in an MSD specification. An MSD
specification is inconsistent if there exists a sequence of environment events for
which the system objects cannot avoid a violation of these requirements.

Timed Game Automata in Uppaal Tiga: Uppaal Tiga is an extension of
the Uppaal model checker [2]. In Uppaal, a system is modeled as a network of
Timed Automata (TA). Such a TA network consists of parallel automata that
each consist of locations and edges. The edges in the parallel automata can be
synchronized via channels. A transition in a TA network is one edge or multiple
synchronized edges firing in the parallel automata. The edges can also have guard
conditions and update expressions that assign values to variables. Variables and
side-effect-free functions can be declared globally for the whole TGA network or
locally, only visible within one automaton in the network.

In Uppaal Tiga, the Timed Automata are extended to Timed Game Au-
tomata (TGA), in which the edges can be either controllable or uncontrollable.

226 J. Greenyer and J. Rieke

hotViolation

Fig. 2. MSD-to-TGA transformation overview

If only controllable edges participate in a transition, the transition is controllable
by the system; if at least one edge is uncontrollable, the transition is controllable
by the environment. Uppaal Tiga can check different kinds of properties in a
TGA network, for example if some state is reachable by the system even though
the environment will always try to keep the system from reaching that state [3].

The MSD-to-TGA Mapping: An MSD specification can be mapped to a
TGA network so that Uppaal Tiga can check whether the system is always
able to avoid a state that corresponds to a violation of the requirements [8,9]. If
that is the case, the MSD specification is consistent, otherwise it is inconsistent.

The mapping principle is illustrated in Fig. 2: For an MSD specification, one
environment automaton and one system automaton is created. For each MSD in
the specification, one MSD automaton is created. Together, these automata form
a TGA network. The environment and system automata encode the behavior of
the environment and system objects sending messages in the system. The MSD
automata encode the progress of the cut in the active MSD and violations that
may occur in the MSD. The cut is encoded by globally declared lifeline variables
that are created for each lifeline in each MSD.

If the environment chooses to send message x from object e:Env to the object
s:S, this works as follows in the TGA network. First, the environment takes
an edge in the environment automaton, assigning an according constant value
to the variable event (➀). Then the environment automaton takes an edge that
emits over the broadcast channel events. This may synchronize edges in the MSD
automata that represent the message. For each message in the MSD there is an

Applying Advanced TGG Concepts for a Complex Transformation 227

edge in the MSD automaton. This edge has a guard that ensures that it is only
synchronized if the message sent is enabled in the current cut of the active MSD.
It has an update label where the lifeline variables corresponding to the message’s
sending and receiving lifelines are increased, encoding the progress of the cut.
Fig. 2 shows the edge (➁) that corresponds to the first message in MSD D1.

Each message in each MSD is furthermore mapped to an integer constant dec-
laration that represents the message in the above process. The constant name
for a message has the form <name of sending object> <name of receiving ob-
ject> <name of message>. The constant value is always the value of a previ-
ously created constant plus one. Of course, there must not be two variables or
constants with the same name in the TGA specification. Thus, many diagram
messages may be mapped to the same constant declaration if they have the same
sender, receiver and message name. For example, the three messages called x in
the MSDs D1 and D2 must all be mapped to a single declaration of the constant
e s x. Similarly, each message in each MSD is mapped to an edge in the envi-
ronment or system automaton (depending on whether it is a message sent by an
environment or system object), which assigns the corresponding constant to the
variable event (Fig. 2 (➀)). Again, there must not be two edges that assign the
same value to the event variable in the environment or MSD automaton.

For each MSD, furthermore an edge is created in the MSD automaton that
is taken if a message is sent that is violating the active MSD in the current cut,
i.e., the according message is not currently enabled, but nevertheless appears
in the MSD. The guard and update labels of this edge (Fig. 2 (➂)) are not
shown in detail here. What’s more important is that, in order to know whether a
currently“sent”message appears in the MSD, a Boolean function eventInMSD(int
ev) is created in the local declarations of each MSD automaton for each MSD
in the specification. This function has a return statement that consists of a
disjunction that for each message in the MSD contains a statement that renders
the disjunction true if the value of the variable event corresponds to that message
in the MSD. There must not be two redundant sub-expressions in the disjunction,
so there is for example only one sub-expression (ev == e_s_x) even though the
message x appears in the MSD D1 two times.

In summary, the transformation from MSD to TGA is complex for the fol-
lowing reasons. First, the resulting TGA models are complex, and, second, we
have to distinguish several different cases when translating elements (e.g., differ-
ent kinds of messages: hot and cold; messages sent from environment or system
objects; messages at the beginning, middle, or end of an MSD). Third, complex
string concatenations are required for variable and constant definitions, and,
fourth, certain elements must not exist twice in the target model.

We realized this mapping by a TGG transformation from UML to an EMF2-
based Uppaal Tiga model. The transformation can be downloaded as part of
ScenarioTools.3 The TGG Interpreter can also be installed separately.4

2 http://www.eclipse.org/emf/
3 http://www.cs.uni-paderborn.de/index.php?id=scenariotools
4 http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

http://www.eclipse.org/emf/
http://www.cs.uni-paderborn.de/index.php?id=scenariotools
http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

228 J. Greenyer and J. Rieke

Fig. 3. Message2Edge: A TGG rule for translating messages

4 OCL Integration

This transformation is an example where many string attribute values in the
target model must be concatenated from different pieces of information in the
source model. In order to describe such string concatenations and other queries
on the models, we have integrated OCL [18] in TGGs.

In a TGG rule, OCL expressions can be used in attribute value constraints
and application conditions. They are displayed as yellow rounded rectangles in
the TGG rule. In the OCL expressions, the names of nodes in the same rule can
be used as variables, which are bound to the same object as the node is bound
to when the rule is matched in the model (or when target model objects are
created). The TGG rule in Fig. 3 shows a range of attribute value constraints.

This rule maps messages in the UML model to a range of elements in the TGA
model. This diagram shows the concrete syntax of the TGG rule editor that is
part of our TGG Interpreter tool suite. The domains are represented by the
violet nodes at the top of the diagram that link the nodes in the domain via the
thin dotted gray lines. In this rule, a message in the UML model is mapped to
an edge in the MSD automaton, represented by the node msgEventEdge:Edge.
This edge is added to the automaton represented by the node msdAT:Template
(an automaton definition is called a template in Uppaal). The source and target
location of the edge is the location represented by the node :Location. Further-
more, the rule maps a message to the corresponding global constant declaration
and the sub-expression of the return statement in the function eventInMSD(int
ev) that is declared locally for the corresponding MSD automaton (see bottom
right in Fig. 2).

An attribute value constraint always points to a node, which is called its
slot node. The top row of the attribute value constraint’s rounded rectangle
specifies the constrained attribute, which is called the constraint’s slot attribute.
The bottom row specifies an OCL expression, which is called the constraint’s
value expression. An attribute value constraint specifies that the slot node can

Applying Advanced TGG Concepts for a Complex Transformation 229

only be bound to an object if the value of the slot attribute equals the value
specified by the value expression. During a forward transformation, attribute
value constraints in the target domain are interpreted as assignments.

Application conditions are also displayed as yellow rounded rectangles, but
they do not specify a slot node or slot attribute. They only specify an OCL
expression, called the condition expression, which must evaluate to a Boolean
value. Application conditions come in two flavors: They can be either precondi-
tions or postconditions. Preconditions must evaluate to true in order to apply
the rule. At the end of the transformation, all postconditions of all applied rules
must evaluate to true.

Operationally, the attribute value constraints are considered as follows. We
consider a forward transformation scenario for simplicity. The TGG engine em-
ploys a graph matching algorithm that starts with an initial matching of some
source or context node in the TGG rule, and tries to find a pattern in the do-
main models that is isomorphic to the source and context pattern (as explained
in Sect. 3). During the graph matching process, the TGG engine tries to evalu-
ate the value expression of an attribute value constraint as soon as a candidate
object for matching the slot node is found. If the result of the evaluation equals
the value that the candidate object carries for the slot attribute, we say that
the attribute value constraint holds. A node can be bound to an object if all at-
tached attribute value constraints hold; then the graph matching can continue,
otherwise the algorithm backtracks.

When evaluating the value expression, it may however happen that a vari-
able in the expression is unbound because it corresponds to a node in the rule
that is not yet bound. In this case, the attribute value constraint is marked for
a delayed evaluation. It is evaluated as soon as all the nodes that appear as
variables in its value expression are bound. If the constraint holds, the graph
matching continues. If it turns out that the constraint does not hold, the graph
matching backtracks. When backtracking, another binding for nodes that ap-
pear as variables in the constraint’s value expression may be found so that the
attribute value constraint holds, but the graph matching may also backtrack to
find another candidate object for the constraint’s slot node.

When creating elements in the target model, the attribute value constraints
are interpreted as assignments. This means that when an object is created in the
target model according to a node, the value expression of each attached attribute
value constraint is evaluated. The value is then assigned to the slot attribute of
the object created for the slot node. There may also be a delayed evaluation if
the value expression of one constraint refers to a node that was not yet created.

At the end of the transformation, all attribute value constraints of all applied
TGG rules are checked once again. The transformation is only correct if all
attribute value constraints hold.

Preconditions are evaluated as soon as all the nodes that appear as variables
in the condition expression are bound. The graph matching backtracks if the
condition expression evaluates to false. Postconditions are evaluated for all rule

230 J. Greenyer and J. Rieke

applications at the end of the transformation. The transformation is only correct
if all postconditions are satisfied.

The above section for example mentions the naming scheme for the constant
that represents a particular message in the TGA network. This name appears not
only in the global declarations, but also in the update and guard labels and the
local declarations of the different automata. In order to avoid that complex OCL
expressions occur redundantly in the TGG rules, the TGG Interpreter al-
lows the transformation engineer to define custom derived attributes for domain
model elements within the transformation definition. These custom attributes
can be defined in a separate OCL file and the OCL expressions within the TGG
rules can refer to these attributes. For the MSD-to-TGA mapping, we have for
example defined the custom derived attribute typeName for UML messages. It
produces the string <name of sending object> <name of receiving object> <name
of message> as explained above. This derived attribute is used three times within
OCL expressions in the TGG rule shown in Fig. 3.

5 Stereotype Constraints

With the powerful UML tools that are being developed around the Eclipse imple-
mentation of UML2,5 model-based development in practice increasingly employs
UML and its lightweight profile extension mechanism [19]. We have for example
used a profile to add the temperature attribute of messages in MSDs to UML
sequence diagrams (similar to Harel and Maoz [12]) or to mark objects in the
collaboration diagram as system or environment objects (see Fig. 2).

In transformations involving stereotyped UML models, it is crucial to be able
to specify that a certain UML object has a particular stereotype applied or not.
For this purpose, we have extended TGG rules by stereotype constraints that can
be added to nodes in UML domains. Stereotype constraints specify that a node
can only bind a UML object if a certain stereotype is or is not applied to that
element. These constraints are shown within a node’s label. An entry in double
angle brackets represents a required stereotype. If preceded by the keyword not,
this stereotype must not be applied.

The node msg:Message of the rule in Fig. 3 shows an example where the
stereotype ModalMessage must be applied and the stereotype ForbiddenMessage
must not be applied. When a UML object is created according to a node with a
positive stereotype constraint, the stereotype is applied to the object.

If a positive stereotype constraint is added to a node, it is possible to add
attribute value constraints where the slot attribute is an attribute defined by
the stereotype that the stereotype constraint refers to. The TGG rule in Fig. 4
shows an example where the attribute value constraint added to the node spec-
Part:Property refers to the attribute partKind, an attribute defined by the stereo-
type SpecificationPart.

5 http://www.eclipse.org/uml2/

http://www.eclipse.org/uml2/

Applying Advanced TGG Concepts for a Complex Transformation 231

6 TGG Rule Generalization

Generalization is a powerful mechanism in object-orientation for reusing and ex-
tending existing solutions. Klar et al. have introduced this concept to TGG rules
[15] and realized it within theMoflon tool suite. In our example transformation,
there are different kinds of messages that need to be mapped to the TGA model.
Some elements in the TGA model must be created for all messages, some must
be created e.g., only for environment messages. For this purpose, we adopted the
rule generalization concept proposed by Klar et al. with some improvements.

A TGG rule describes a relation between sets of objects. Klar et al. argue that
“generalization usually means that a member of a more specialized type also is a
member of the more general type” and, thus, whenever a more specialized TGG
rule is applicable, also the more general rule should be applicable [15, Sect. 4.1].
We call this the guiding principle of TGG rule generalization in the following.

To ensure that, Klar et al. define a number of syntactical constraints for a
TGG rule that specializes another. These constraints require, first (1), that a
specialized rule contains a copy of the general rule [15, rule 14]. Second (2),
context nodes in the specialized rule may be replaced by nodes with a more
specialized type [15, rule 15]. Third (3), produced nodes in the general rule can
be converted to context nodes in the specialized rule [15, rule 15]. Forth (4), new
nodes and edges may be added to the context and produced pattern of the rule
[15, rule 16], and, fifth (5), further attribute value constraints and application
conditions may be added to the rule [15, rule 17]. Last (6), the specialized rule
must have a higher priority than the more general rule [15, rule 10]. Priorities
are numbers assigned to rules; the Moflon transformation engine will first try
to apply rules with a higher number. This way it is ensured that a more general
rule is only applied when any specialization of that rule cannot be applied.

In the TGG Interpreter, a specialized TGG rule also basically consists of
a copy of the more general rule (as (1) above) and nodes, edges, and constraints
may be added to the specialized rule (as (4) and (5) above). Furthermore, nodes
may be replaced by nodes with a more special type class. In contrast to (2)
above, this is allowed also for produced nodes, since it does not violate the guid-
ing principle of TGG rule generalization. However, it is not allowed to convert
produced nodes to context nodes in the more specialized rule (as (3) above).
This is not allowed because, due to the bind-only-once semantics of produced
nodes, this would violate the guiding principle of TGG rule generalization.

Another difference in the TGG rules of the TGG Interpreter tool suite
compared to the Moflon tool suite is that in order to create a specialized rule,
the transformation engineer does not literally need to create a copy of the more
general rule first. Instead, the rule diagram of the more specialized rule just
contains the added nodes, edges, and constraints, and such nodes from the more
general rule to which additional edges and constraints are attached. Also, the
specialized rule contains the nodes from the more general rule which are given
a more specialized type. All other nodes from the more general rule are only
“copied” into the specialized rule during transformation-time. This makes the
rule set better maintainable and the rule diagrams more concise.

232 J. Greenyer and J. Rieke

Fig. 4. EnvironmentMessage2Edge: A TGG rule for translating a minimal environment
message

Nodes of a more general rule that recur in the specialized rule are called re-
fining nodes. They have the same name as the node that they represent and are
displayed with a dashed border. Figure 4 shows a specialization of the TGG rule
in Fig. 3. This specialized rule maps an environment message (also) to an edge
in the environment automaton. The nodes coll:Collaboration and msg:Message
are refining nodes that appear in this rule because patterns that are added in
this specialized rule are attached to these nodes. A message is an environment
message if the SpecificationPart stereotype is applied to the property in the col-
laboration diagram that is represented by the sending lifeline of the message;
moreover, the stereotype application must carry the value Environment for the
partKind attribute. This is expressed by the pattern added to the UML domain
of this rule. In the target domain, the message is mapped to an edge in the
environment automaton with an update label as explained in Sect. 3.

Another difference to the rule generalization approach presented by Klar et
al. is that we do not use priorities to ensure that the transformation engine will
always try to apply more specialized rules before trying to apply more general
rules. Instead of priorities we define that a more specialized rule has precedence
over its more generalized rule. The transformation engine will not try to apply
a rule if it did not try to apply another rule with precedence over that rule.
The difference in this approach is that the precedence induces a partial order
among the TGG rules whereas the priorities define a total order. The advantage
of the precedence is that it is less restrictive and will not unnecessarily restrict
the non-determinism among the rules; if we for example employ heuristics for
applying TGG rules in a smart order for increasing the transformation speed,
such heuristics will have more freedom to select the next rule to apply.

Note that the precedences are only relevant in the operational interpretation
of the rules, i.e., they are only a directive for the transformation engine to try
to apply certain rules first in a particular application scenario. By contrast, the
valid triple-models are defined as those that can be produced by the TGG rules
regardless of the precedences.

Applying Advanced TGG Concepts for a Complex Transformation 233

7 Reusable Patterns

As described in Sect. 3, each diagram message in each MSD is mapped to an
integer constant declaration. The “same” diagram message can appear several
times in several MSDs and must be mapped to the same constant declaration.
To handle the case where yet no constant declaration exists for a message, we
would need a rule where this constant declaration is represented by produced
nodes. To handle the case where the constant declaration for a message already
exists, we would need a rule where the constant declaration is represented by
context nodes. The previous rule cannot be used for this case because of the bind-
only-once semantics of the produced nodes. If there are many different elements
that may or may not already exist, this leads to a large number of rules that must
be created for mapping the same element. For that reason, we have introduced
the concept of reusable nodes and reusable edges to TGGs [10]. The semantics
of a rule with a reusable node is equivalent to two rules where the node is a
produced node in one rule and a context node in the other. A transformation
engine may therefore nondeterministically decide to interpret a reusable node as
a produced node or as a context node. The same holds for reusable edges.

Reusable nodes can also appear in the source domain. The nodes representing
the lifeline and the property in Fig. 4 are reusable nodes because they may or
may not have been bound previously.

In the target domain, it is sometimes crucial to force the transformation engine
to reuse a certain object structure, i.e., interpret the reusable nodes as context
nodes. This is typically the case if creating another object structure instead of
reusing one creates an invalid or inappropriate model. In the above case, there
must for example not be two constant declarations with the same name. Further-
more, once an edge is created for an environment message in the environment au-
tomaton (see Fig. 4), this edge should be reused, because there should not be two
edges from and to the same locations with identical guard, update and synchro-
nization labels. Such constraints are sometimes part of a domain meta-model;
sometimes they are only formulated for the purpose of a transformation. We call
these constraints global constraints [10] and define that a triple-model produced
by a TGG is only valid if all global constraints are satisfied. At the end of a
transformation, our TGG Interpreter validates the constraints formulated in
the domain meta-models and the transformation-specific global constraints that
can be formulated via OCL in an external file.

If the global constraints are not satisfied at the end of a transformation, this
means that the transformation engine may have to backtrack over the rule appli-
cations, reusing existing objects where previously it created them or creating new
objects where it previously reused others. The latter could be required if global
constraints formulate a lower bound, for example that there must be always at
least two objects with certain properties in a model.

The TGG Interpreter, however, currently cannot backtrack over rule ap-
plications. Since in most cases the global constraints formulate upper bounds,
such as that there must be only one object with certain properties in the model,
it is in most cases sufficient to try reusing objects wherever this is possible.

234 J. Greenyer and J. Rieke

The TGG Interpreter therefore implements a reuse-before-create semantics
for reusable nodes. This is similar to the check-before-enforce semantics in QVT-
Relations [17, Sect. 7.2.3]. In contrast to QVT-Relations, however, the reuse-
before-create semantics is only one possible operational interpretation of reusable
nodes in TGGs—it is not part of the general TGG semantics.

The reuse of an object or a link is decided for each reusable node and edge.
Sometimes, however, this could lead to unintended effects. Consider the two
reusable nodes assignEnvEventEdge:Edge and :TextualStatement in the TGG rule
of Fig. 4. In a case where some environment messages were previously translated,
there would be an uncontrollable edge in the environment automaton that the
reusable node assignEnvEventEdge:Edge could always reuse. However, the update
label statement attached to that edge may not be reusable, because the edge
does not correspond to the “same” message. In this case, a second update label
statement would be attached to the same edge, which is not what we intended.

As a solution, we have introduced the concept of reusable patterns. A reusable
pattern is a set of reusable nodes and edges in a rule. It is represented by a small
gray node with a “##” label that is connected to reusable nodes. The reusable
pattern consists of all the connected nodes the reusable edges between them.

The semantics of a TGG rule with a reusable pattern is equivalent to two
rules where all the nodes and edges in the pattern are produced nodes and edges
in one rule and all the nodes and edges in the pattern are context nodes and
edges in the other rule. Operationally, the TGG Interpreter will first try to
reuse the pattern structure and will only try to create it if that is not possible.

8 Properties of the TGG Extensions

As described in Sect. 2 and 4, a triple-model is valid according to a TGG if (a) it
can be produced by a sequence of TGG rule applications, (b) all postconditions
and attribute value constraints hold for each applied TGG rule, and (c) all
global constraint hold. If after a transformation all model domain elements are
bound, the bind-only-once semantics and the final checking of above-mentioned
constraints ensure that only valid triple-models are effectively created by the
TGG Interpreter. This ensures the correctness of the results.

Also note that the precedence concept introduced for the rule generalization
does not violate the correctness of a transformation. Intuitively, this is because
the precedences are not considered when applying rules to produce the valid
triple-models. Therefore, if a rule is applied in a forward transformation, the
resulting bound triple-model always could have been created by a sequence of
TGG rule applications that create all parts of the triple-model in parallel.

One general issue when operationally interpreting TGG rule in transforma-
tion scenarios is that at several steps during the transformation, different choices
can be made on applying rules. This non-determinism leads to the problem that
certain sequences of rule applications lead to producing a valid triple-model, but
others do not. Our TGG Interpreter currently does not support backtracking
over rule applications. Therefore, in some cases, we may not find a valid trans-
formation result if one exists, i.e., our transformation algorithm is not complete.

Applying Advanced TGG Concepts for a Complex Transformation 235

Reusable nodes and rule inheritance potentially increase the variety of choices
that the transformation engine has during a transformation. We plan to imple-
ment a backtracking mechanism in our TGG Interpreter. The backtracking
mechanism should especially be able to consider choosing a more general rule
instead of selecting only the most special ones applicable. It should also be able
to change the interpretation for a reusable node or pattern (interpreting it as a
produced node/pattern instead of a context node/pattern or vice versa).

As mentioned above, it may happen that several valid triple-models can be cre-
ated from a source model, in which case the transformation result is not unique.
We currently support no analysis methods that help to determine whether a
transformation result is unique. Hermann et al. [14] present an approach that
uses critical pair analysis to determine whether the transformation result of a
TGG may not be unique.

9 Related Work

Dang and Gogolla [4] presented an approach for using OCL for specifying at-
tribute value constraints and application conditions within TGGs. In their ap-
proach, they specify TGG rules textually, including a number of OCL statements.
Then an OCL framework can execute the TGG rules, including the assignment
of attribute values in the target domain. Compared to the approach presented
here, however, they cannot define custom derived attributes for domain elements.

Golas et al. [7] show how to integrate application conditions in TGGs. They ex-
tend a formal framework for TGGs to show the termination, information preser-
vation, correctness and completeness of transformations based on the extended
TGGs. Their application conditions are restricted to formulating constraints on
the context part of the rule. Also they assume that constraints in the source
model are only evaluated in the scope of the already bound part of the source
model. In the TGG Interpreter, constraints are evaluated with respect to
the whole source model. We plan to investigate restrictions to our constraints
that are necessary to ensure the completeness and information preservation of
our transformations. Klar et al. [16] show that efficient translators for TGG
with NACs are still preserving the fundamental TGG properties. However, these
NACs are restricted to forbidding the existence of model elements.

To the best of our knowledge, there are no other TGG or QVT engines which
provide a convenient support for constraints on stereotypes in UML models.
Giese et al. [6] present a TGG-based transformation of a UML model with a
SysML profile, but no indication is given on if and how constraints on stereotype
applications are supported by their transformation engine.

Besides TGGs in Moflon, we are not aware of another relational transfor-
mation engine supporting a rule generalization concept. The comparison with
other, non-relational model transformation languages is beyond the scope of this
paper. We refer to Wimmer et al. [21], who compare the TGG rule generalization

236 J. Greenyer and J. Rieke

concept of Klar et al. to the rule generalization concept of ATL6 and ETL.7

Guerra et al. [11] present a technique to specify transformations declaratively
by relations between models that must or must not exist. Similar to rule gener-
alization, it is a promising approach to make transformation specifications more
intuitive. They also support attribute constraints.

Geiger et al. present a TGG engine [5] in which produced nodes can be
matched multiple times to target objects. This violates the bind-only-once se-
mantics for produced nodes, which is crucial for creating valid triple-models.

10 Conclusion and Outlook

In this paper, we reported on practically relevant TGG extensions that we elabo-
rated and implemented in the TGG Interpreter. We extended TGGs by OCL
for specifying attribute value constraints, application conditions, and custom at-
tributes. We also integrated support for specifying constraints on stereotype
applications and elaborated a rule generalization concept, refining the ideas of
Klar et al. [15]. Last, we extended the concept of reusable nodes to reusable
patterns to better control the reuse of model structures in target models.

With these extensions, TGGs become a powerful and flexible formalism for
solving many complex model transformation and synchronization problems. We
used these extensions in different transformation scenarios. Especially, the rule
generalization improves the maintainability of the rule set. Complex OCL con-
straints and conditions also frequently occur in practical transformations.

We have also identified some open challenges. For example, using rule general-
ization in our example, we still ended up with some redundant rule patterns. We
are therefore planning a more flexible rule extension mechanism. Furthermore,
the reuse-before-create semantics of reusable patterns may not be practical in
all cases. Therefore it could be useful to attach specific constraints on reusable
patterns to more specifically control the reuse of model patterns. In addition,
implementing backtracking over rule applications is also planned for the future.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL – A Tool
Suite for Automatic Verification of Real-time Systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996)

3. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient On-the-Fly
Algorithms for the Analysis of Timed Games. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

6 http://www.eclipse.org/atl
7 http://www.eclipse.org/gmt/epsilon/doc/etl/

http://www.eclipse.org/atl
http://www.eclipse.org/gmt/epsilon/doc/etl/

Applying Advanced TGG Concepts for a Complex Transformation 237

4. Dang, D.-H., Gogolla, M.: On Integrating OCL and Triple Graph Grammars. In:
Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 124–137. Springer,
Heidelberg (2009)

5. Geiger, N., Grusie, B., Koch, A., Zündorf, A.: Yet another TGG engine? In: Nor-
bisrath, U., Jubeh, R. (eds.) Int. Fujaba Days. Kasseler Informatikschriften (2011)

6. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven
Engineering. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg (2010)

7. Golas, U., Ehrig, H., Hermann, F.: Formal Specification of Model Transformations
by Triple Graph Grammars with Application Conditions. In: Rachid Echahed,
A.H., Mosbah, M. (eds.) Int. Workshop on Graph Computation Models. Electronic
Communications of the EASST, vol. 39 (2011)

8. Greenyer, J.: Synthesizing modal sequence diagram specifications with Uppaal-
Tiga. Tech. Rep. tr-ri-10-310, University of Paderborn (2010)

9. Greenyer, J.: Scenario-Based Design of Mechatronic Systems. Ph.D. thesis, Uni-
versity of Paderborn (2011)

10. Greenyer, J., Kindler, E.: Comparing Relational Model Transformation Technolo-
gies: Implementing Query/View/Transformation with Triple Graph Grammars.
Software and Systems Modeling 9(1), 21–46 (2010)

11. Guerra, E., de Lara, J., Orejas, F.: Pattern-Based Model-to-Model Transformation:
Handling Attribute Conditions. In: Paige, R. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 83–99. Springer, Heidelberg (2009)

12. Harel, D., Kleinbort, A., Maoz, S.: S2A: A Compiler for Multi-modal UML Se-
quence Diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 121–124. Springer, Heidelberg (2007)

13. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling 7(2), 237–252 (2008)

14. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal Analysis of Functional Be-
haviour for Model Transformations Based on Triple Graph Grammars. In: Ehrig,
H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372,
pp. 155–170. Springer, Heidelberg (2010)

15. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: ESEC-FSE
2007, pp. 285–294. ACM, New York (2007)

16. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-
Driven Engineering. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010)

17. Object Management Group (OMG): MOF Query/View/Transformation (QVT) 1.1
Specification, OMG document formal/2011-01-01

18. Object Management Group (OMG): Object Constraint Language (OCL 2.2) spec-
ification, OMG document formal/2010-02-01

19. Object Management Group (OMG): UML 2.3 Superstructure Specification, OMG
document formal/2010-05-03

20. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.)WG1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

21. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A Comparison
of Rule Inheritance in Model-to-Model Transformation Languages. In: Cabot, J.,
Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 31–46. Springer, Heidelberg (2011)

Automatic Conformance Testing of Optimized

Triple Graph Grammar Implementations�

Stephan Hildebrandt, Leen Lambers, Holger Giese,
Dominic Petrick, and Ingo Richter

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Straße 2-3
14482 Potsdam, Germany

{stephan.hildebrandt,leen.lambers,holger.giese}@hpi.uni-potsdam.de,
{dominic.petrick,ingo.richter}@student.hpi.uni-potsdam.de

Abstract. In model-driven development, model transformations can be
specified using an operational (imperative) or relational (declarative) ap-
proach. When using a relational approach, approved formal concepts are
necessary to derive a conform operationalization. In general, though, it
is not sure if implementations realize these formal concepts in an entirely
correct way. Moreover, usually, available formal concepts neither cover
every technicality, nor cover each additional optimization an implemen-
tation relies on. Consequently, conformance needs to be validated also
on the implementation level. Conformance means that for each source
model S and target model T related according to the relational specifi-
cation, a corresponding implementation transforms S into T (and T into
S in case that the specification is bidirectional).

We present an automatic conformance testing approach for TGG im-
plementations, where the Triple Graph Grammar (TGG) approach is an
important representative of relational model transformation approaches.
We show that the grammar character of TGGs is very convenient for the
automatic generation of conformance test cases. In particular, test input
models can be generated together with their expected result obtaining a
complete oracle. We show how to measure test suite quality and evaluate
our approach on our own TGG implementation.

Keywords: Conformance testing, model transformation, triple graph
grammar, relational specification, model-driven development.

1 Introduction and Motivation

When models and model transformations become most important artefacts as
proposed in the MDE approach, it is essential to be able to rely on their correct-
ness. In particular, model transformations holding errors may cause problems in

� This work was partially developed in the course of the project – Correct Model
Transformations – Hasso Plattner Institut, Universität Potsdam and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft. See
http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1

A. Schürr, D. Varró, and G. Varró (Eds.): AGTIVE 2011, LNCS 7233, pp. 238–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1

Automatic Conformance Testing of Optimized TGG Implementations 239

the complete development chain. When using a relational model transformation
approach, errors may arise because of faulty operationalizations. Therefore, in
this paper, we concentrate on conformance testing for relational model trans-
formation specifications and their implementations. Conformance means that
for each source model S and target model T related according to the relational
specification, a corresponding implementation transforms S into T (and T into
S in case that the specification is bidirectional).

The Triple Graph Grammar (TGG) approach is an important representa-
tive of the relational model transformation approach. Basic theoretical concepts
describing the derivation of TGG operationalizations are available ever since
the TGG approach emerged [31]. To a certain extent, formal reasoning can be
applied to prove conformance of the TGG and a corresponding operational-
ization [32,21,15]. In general, though, it is not sure if implementations realize
each formal concept describing a conform operationalization in an entirely cor-
rect way. Moreover, usually, TGG formalizations neither cover every technicality
TGG implementations rely on, nor cover each additional optimization augment-
ing efficiency of the model transformation execution. In practice, there exist
different TGG implementations, realizing slightly different dialects, such as Fu-
jaba TGG Engine [5], MOFLON [1], or ATOM3 [25]. Furthermore, even for a
single tool holds that different tool versions with different optimizations exist.
Consequently, in order to ensure the correct automation of model transforma-
tions, conformance needs to be validated also on the implementation level. In
principle, back-to-back testing could be adopted to validate that different TGG
implementations are equivalent, and regression testing could be adopted to val-
idate that an implementation and its optimized version are conform. However,
apart from that this may become very tedious, it does not ensure conformance
with the specification. Therefore, in this paper we present an automatic confor-
mance testing approach for TGGs and their implementations. We are confident
that our approach is a good basis to develop conformance testing approaches
also for other relational specification techniques such as QVT relational [29]. In
particular, making use of [19] where an implementation of QVT relational with
TGGs is presented.

For our conformance testing approach we exploit the following typical fea-
tures of TGGs: (1) Because of its grammar character a TGG may serve as an
”executable” model transformation contract being able to generate all correctly
related input/output models obtaining a complete oracle. (2) A TGG describes
bidirectional model transformations. We aim at providing the TGG implemen-
tation developer with automatic conformance testing support by generating test
cases (exploiting the first feature) for forward as well as backward transforma-
tions (exploiting the second feature).

With conformance testing we mean that we search for errors in the imple-
mentation violating conformance with the specification [30] instead of finding
errors in the specification itself. Moreover, we generate test cases that start with
a ”correct” input according to the specification, i.e., we present an approach
for positive, not negative testing. Note that our test approach is designed to

240 S. Hildebrandt et al.

-name : string
BlockDiagram

-name : string
SystemBlock

-name : string
Block

1
*

1
*

BD2CD

SB2CL

BL2CL

-name : string
ClassDiagram

-name : string
Class

-text : string
Stereotype

-name : string
Association

1
*
1

*

1

*

source

target

Block Diagram
Meta Model

Correspondence
Meta Model

Class Diagram
Meta Model

Fig. 1. Example metamodels

be applied to different versions or optimizations of the same TGG tool or even
different TGG implementations, e.g., MOFLON [1] or the TGG Interpreter [19].
However, in the latter case, the problem of different input formats of TGG Rules
poses an obstacle in practice. Different TGG implementations usually expect
TGG rules in different technical formats. Therefore, a format conversion would
be required before other TGG implementations can be tested with our frame-
work. Furthermore, TGGs may specify non-deterministic forward and backward
relations between source and target models. However, a model transformation is
usually expected to return a deterministic result for a given input. Moreover, as
explained in Sect. 3.3, having non-deterministic TGGs, it may not be possible to
use our automatic test approach. Therefore, we impose some restrictions on the
TGG rules (as explained more in detail in [15,16]) that can be verified statically
to guarantee determinism.

Paper Outline. In Section 2, we introduce TGGs as relational model transfor-
mation specification technique and explain what it means for implementations
to be conform with such a specification. We continue in Section 3 with a descrip-
tion of how to automate conformance testing of TGG implementations and how
a corresponding test environment looks like. We also concentrate on measuring
test suite quality. In Section 4, we show the results of testing our own TGG im-
plementation and evaluate our approach. We give a description of related work
in Section 5. Section 6 gives a summary and an overview on future work.

2 Conform Triple Graph Grammar Implementations

In general, three kinds of transformations can be performed with TGGs: For-
ward, backward, and correspondence transformations. A forward (backward)
transformation takes a source (target) model as input and creates the corre-
spondence and target (source) model. A correspondence transformation requires
a source and target model and creates only the correspondence model. Subse-
quently, we concentrate on forward transformations. Analogous results can be
derived for the backward case (which is symmetric) and the correspondence case.

Automatic Conformance Testing of Optimized TGG Implementations 241

bd1:BD

sb2:SB

bl3:BL

cn1:BD2CD

cn3:BL2CL

cn2:SB2CL

cd1:CD

cl2:CL

cl3:CL

as3:AS

source

target

a++: Created by TGG axiom; r1++: TGG rule 1; r2++: TGG rule 2

r2++
r2++

r2++
r2++

r2++
r2++ r2++

r2++

r2++
r2++

S C T

name := "bd1" name := "bd1"

name := "sb2" name := "sb2"

name := "bl3"

name := "bl3"

name := "bl3"

r1++
r1++ r1++

r1++ r1++r1++
r1++

Fig. 2. Forward transformation via the relational scheme

TGGs as Relational Specification Technique: To illustrate the following
explanations, we will use a model transformation from simple SDL block dia-
grams1 to UML class diagrams. The source and target metamodel of this model
transformation are shown in Fig. 1. When using TGGs to specify model trans-
formations, apart from the source and target metamodel, there is also a so-called
correspondence metamodel. Its elements store traceability information, allowing
to find elements from the source model that correspond to the target model,
i.e., the correspondence model partly overlaps with the source and target mod-
els. TGGs relate three different models: A source model, a target model, and
a correspondence model connecting the source and target model to a so-called
triple graph. Further on, we use a triple of variables SCT to denote one triple
graph, where S denotes its source component, C its correspondence component,
and T its target component. In our example, block and class diagrams are the
source and target graphs connected by a correspondence graph, constituting a
triple graph (see Fig. 2). A TGG consists of an axiom SACATA (the grammar’s
start graph)2 and several TGG rules that are always creating.3 The TGG for
the transformation of block and class diagrams is shown in Fig. 3.4 Elements
that are preserved are drawn black, elements that are created are drawn green
and marked with ”++”. The TGG can be used to build triple graphs, repre-
senting correctly related source and target models, as follows: Starting from the
axiom, the rules of the TGG are applied wherever they match in an arbitrary
order leading to a derivation tree like shown in Fig. 4. Each arrow represents a

1 This is a simplified version of SDL block diagrams
(http://www.itu.int/ITU-T/studygroups/com17/languages/Z100.eps)

2 In particular, we use a so-called axiom rule, which is applied once to the empty
graph and thereby sets some attribute values creating the concrete axiom.

3 We restrict our explanations to TGG rules without application conditions, but it
is possible to apply our test framework also to more expressive TGGs holding ap-
plication conditions[22,21,19]. In our TGG implementation it is possible to express
application conditions using OCL constraints.

4 Note, that the types defined in Fig. 1 are abbreviated in Fig. 3.

http://www.itu.int/ITU-T/studygroups/com17/languages/Z100.eps

242 S. Hildebrandt et al.

bd1:BD cn1:BD2CD cd1:CD

bd1:BD cn1:BD2CD cd1:CD

++
++

++
++

++

sb2:SB cn2:SB2CL cl2:CL

++
++

++
++

++

++
++

sb2:SB cn2:SB2CL cl2:CL

bl3:BL cn3:BL2CL

as3:AS

cl3:CL

source

target

++

++
++

++

++

++

++
++

++
++

++

++

cn1:BD2CD cd1:CDbd1:BD

Axiom Rule (BlockDiagram to ClassDiagram)

Rule 1 (SystemBlock to Class)

Rule 2 (Block to Class and Association)

SA CA TA

SL1 CL1 TL1

SR1 CR1 TR1

SL2 CL2 TL2

SR2 CR2 TR2

name := cd1.name name := bd1.name

name := cl2.name name := sb2.name

name := cl3.name

name := bl3.name

name := bl3.name

Fig. 3. Example TGG rules and axiom rule

rule application and each node represents a triple graph of the so-called TGG
language L(TGG) containing all correctly related models according to the TGG.
Applying TGG rules in this manner is used later on to automatically generate
source and target test models (see Sect. 3).

The most straightforward way to derive a forward translation from the re-
lational TGG follows the so-called relational scheme: Given a source graph S,
then the forward translation via the relational scheme returns a set of triple
graphs that can be generated by the TGG starting from SACATA and have S
as a source component. Fig. 2 shows a block diagram S with a corresponding
class diagram T connected by a correspondence model. Assuming that we want
to transform the depicted block diagram S, T is a valid forward transformation
result following the relational scheme because the triple graph SCT is created
according to the TGG in Fig. 3. The annotations in Fig. 2 indicate which rules
create the corresponding elements. The attribute assignments ensure equality of
the name attributes of corresponding elements. However, while all three mod-
els are created in parallel, the actual name values can be chosen arbitrarily.
Note that the generation of SCT corresponds conceptually to one path in the
derivation tree of Fig. 4.

Conform TGG Implementation: In practice, when performing a forward
transformation via some TGG, one of the models already exists and a model
transformation system has to create the other one. Therefore, operational rules
have to be generated from the TGG, which create consistently related target

Automatic Conformance Testing of Optimized TGG Implementations 243

S C T

Legend:

S21 C21 T21

S22 C22 T22

S23 C23 T23

S24 C24 T24
S25 C25 T25

S26 C26 T26

Relational
Scheme

...

SA CA TA

S11 C11 T11 S12 C12 T12 S13 C13 T13

Legend:

L(TGG)Cij TijSij

Implementation

S S C1 T1S CA TA ...

L(TGG) ?

S translated elements of S

C TS

S

Fig. 4. Relational scheme and implementation

model elements for given source model elements. For each of the aforementioned
transformation directions, separate operational rules can be derived and they are
applied to the model to be translated in some specific optimal way. This results
in a linear derivation for the implementation like shown in Fig. 4. Thereby, in
order to ensure conformance with the relational scheme, it is important that the
resulting triple graph belongs to the aforementioned triple graph language. For
example, Fig. 2 shows a forward translation following the relational scheme from
a block diagram into a class diagram. A conform implementation would start its
translation with the BlockDiagram and transforms it into the depicted ClassDi-
agram. The following section is concerned with testing this kind of conformance.

Our TGG Implementation: We have developed an implementation5 of TGGs
based on Eclipse and the Eclipse Modeling Framework.6 The system can per-
form model transformations (see [15,16] for more information and formal details)
and model synchronizations[18]. It utilizes several optimizations to increase per-
formance of model transformations, for example, limiting the pattern matching
process to parts of the source model. Fig. 5 shows an overview of the tool’s ar-
chitecture and the test framework, which will be presented in Sect. 3. The core
component of our tool architecture is the TGG Engine, which performs model
transformations specified by a set of TGG Rules, which can be edited by a TGG
Editor. While TGGs are a purely relational formalism, an operational form has
to be derived to make them executable. In our implementation, a set of Story
Diagrams [11] is generated for each TGG rule by an Operational Rules Gener-
ator. Story Diagrams combine UML activity diagrams to express control flow,
and graph transformation rules to express pattern matching and modifications

5 Downloadable from our Eclipse update site http://www.mdelab.de/update-site
6 http://www.eclipse.org/emf

http://www.mdelab.de/update-site
http://www.eclipse.org/emf

244 S. Hildebrandt et al.

TGG Editor
Operational

Rules
Generator

TGG
Rules

Story
Diagrams

TGG Engine

Source
Model

Target
Model

Test Model
Generator

Expected
Target
Model

EMFCompare ?

Impl.
Coverage

Data

TGG Monitor

Spec.
Coverage

Data

create generate

execute

generate

generate

TGG
Implementation

Fig. 5. Test environment

on graphs. For each TGG rule, three story diagrams are generated, one for each
transformation direction. These Story Diagrams are executed by a Story Dia-
gram Interpreter [17]. The TGG Engine invokes the interpreter to execute the
appropriate Story Diagrams.

3 Automatic Conformance Testing of TGG
Implementations

3.1 Test Objective

As explained in Sect. 2, the TGG language L(TGG) contains all correctly re-
lated source and target models SCT according to the TGG. Our test objective
is checking conformance of the TGG implementation with the TGG. A TGG
and its implementation are conform if for each SCT belonging to L(TGG) it
holds that S is translated forward into T and T is translated backward into S
by the TGG implementation. In particular, we want to analyze that for each
node SijCijTij in Fig. 4, it holds that Sij is translated forward into Tij by the
implementation and Tij is translated backward into Sij .

7

In our implementation, possible sources of errors are the TGG Engine and
the Operational Rules Generator because these components make up the TGG
Implementation. Causes may originate from an implementation that does not re-
alize each formal concept describing a conform operationalization in an entirely

7 In principle, one could also include the correspondence component into the test objec-
tive. However, we ignore the correspondences here, because we are mainly interested
in the model transformation result T.

Automatic Conformance Testing of Optimized TGG Implementations 245

correct way. Moreover, an implementation might include erroneous optimiza-
tions, or domain-specific technicalities not considered in the TGG formalization
so far. In Sect. 4, we present such technical specialties.

3.2 Test Case Definition and Random Generation

Given the test objective, we can define a test case for the forward case (backward
analogous) as follows: it consists of a source graph S and the expected target
graph T such that there exists a triple graph SCT in the TGG languageL(TGG).

Usually, one major problem when generating test cases for model transfor-
mations is how to obtain the expected target models as test oracles (see Sect. 5
on related work). However, in the case of TGGs, their grammar character (see
Sect. 2 and Fig. 4) allows us to automatically generate triple graphs SCT in a
random way, representing a test case input with a source graph S and expected
target graph T . This random generation procedure is implemented by the Test
Model Generator (cf. Fig. 5). First, it creates the elements of the axiom (the
grammar’s start graph). Then it randomly applies all TGG rules a predefined
number of times to extend the start graph. At this point, the source S and target
model T are extracted from the triple graph SCT .

3.3 Test Case Execution

A test case consists of a test case input S and the expected target graph T ,
generated randomly as described in the last section. The source model S is
transformed by the TGG implementation under test to create a second target
model T ′. According to the test objective, the expected target model T and
T ′ must be equal to pass the test successfully, otherwise one has detected a
conformance error. Here, we exploit the fact that the model transformation is
deterministic (cf. Sect. 1), i.e., there is only one target graph T corresponding to
S. Otherwise, we would have to generate the set of all target models to a specific
source model, and check whether the created target model T ′ is contained in
that set. This would greatly increase computation effort if it is at all possible
(e.g., the number of possible target models could be infinite).

Technically, we compare the expected target model T and computed model T ′

using EMFCompare. It uses a heuristic to find pairs of corresponding elements
in both models. All elements of the two models are compared by a similarity
metric based on types, values of attributes and references of both elements.
EMFCompare is able to detect identical models based on this metric. Moreover,
it outputs information about differences between both models. More information
can be found in [34]. Note that although this technical solution is quite satis-
factory already, model comparison is a research topic on its own as described
in [26].

If a conformance error has been detected, we need some means to find its
cause. To this extent, we provide a TGG Monitor logging the internal state of the
TGG Engine during a model transformation execution allowing the developer
to inspect the model transformation step-by-step.

246 S. Hildebrandt et al.

3.4 Test Suite Quality

The grammar character of TGGs gives us a means to randomly generate test
cases. However usually, an infinite number of them exists so we have to limit the
size of test cases. Therefore, we need some well-considered techniques to measure
the quality of a test suite, consisting of a finite set of test cases. To this extent, we
apply different test adequacy criteria. We not only consider the TGG as an oracle,
but we consider it also to develop specification coverage criteria. Moreover, we
evaluate the quality of our test suite with respect to implementation coverage.

Specification coverage is analyzed by checking for a given test suite which
TGG rules it covers. In particular, if each TGG rule was used at least once8 to
generate test case inputs and corresponding expected results of the test suite,
then the correct implementation of each TGG rule is tested. Therefore, we have
the following TGG rule coverage criterion: Given a test suite, each TGG rule has
been applied at least once in order to generate the test suite. TGG rule coverage
can be measured by evaluating test cases that were randomly generated (see
Sect. 3.2). During random generation of test cases, the Test Model Generator
(see Fig. 5) records, which of the TGG rules have been applied such that it can
provide us also with coverage data.

11..* 1..*10..*

0..* 0..*

0..*

11..* 1..*10..*

0..* 0..*

0..*

1..*

1++
++

++
++

++

1..*

0..*

1..*

0..*

++

++

SourceNode

SourceNode

CorrespondenceNode

CorrespondenceNode

TargetNode

TargetNode ++

++

Fig. 6. Prototypical structure of TGG rules in our implementation

As mentioned in [20,24] errors in a rule-based implementation often arise be-
cause of dependencies. Rule dependency coverage then describes how many of
these dependencies are covered by test suite. In particular, TGG rules might
create relations between source and target elements depending on the existence
of another relation between specific source and target elements (these rules are
said to be in a produce-use relation accordingly). For the corresponding forward
rules in the implementation, this means that specific source elements should
be translated only if some related source elements have been translated before
already. For example, rule 2 in Fig. 3 depends on the axiom and rule 1. It is
possible to find out these dependencies statically on specification level using
AGG [4] and systematically generate test cases covering them. For efficiency

8 In principle, TGGs exist in which specific rules are never applicable. For these kind
of inconsistent TGGs the rule coverage criterion will never be fulfilled.

Automatic Conformance Testing of Optimized TGG Implementations 247

reasons, we implemented a simple dependency detection algorithm that exploits
certain TGG rule properties specific to our TGG implementation summarized
by the prototypical structure shown in Fig. 6. Amongst other criteria, this pro-
totypical structure is required to ensure deterministic transformations [15] and,
moreover, allows us to implement specific optimizations. Due to the fact that all
model elements are connected to a single correspondence node, we can compute
dependencies based on the produce-use relation between correspondence node
types only. This leads to an over-approximation because dependencies might be
detected that do not really exist.

Implementation coverage considers the concrete model transformation im-
plementation of the TGG and computes for a given set of test cases which parts of
the implementation have been covered when executing the test cases. This infor-
mation helps to find out, whether all relevant parts of the TGG implementation
are covered by the test cases. Our implementation (see Fig. 5) is model-based
(story diagrams) and we have a TGG Engine triggering the interpretation of
these models by surrounding code. Therefore, we consider two kinds of coverage:
Story diagram coverage and code coverage.

Story Diagram Coverage: The story diagrams generated by the Operational Rules
Generator contain large parts of the model transformation algorithm, e.g., for
bookkeeping of transformed elements, detecting inconsistencies in the input mod-
els, optimizing rule application. A detailed measurement of story diagram cov-
erage shows whether a test case covers all relevant parts of the story diagrams.
Some coverage criteria for Activity Diagrams are described by Chen et al. [7],
e.g., activity coverage, which is the ratio between checked activities and all activ-
ities in the activity diagram, and transition coverage, which is the ratio between
checked transitions and all transitions in the activity diagram. Story diagram
coverage as used here is the ratio between all executed elements (i.e., activities
and transitions as well as nodes and links of graph transformation rules) and
the total number of elements in all executed story diagrams of a transformation
direction.

Code Coverage: Elaborate code coverage techniques have been developed already
in the past decades. We use the code coverage tool EclEMMA9 to measure state-
ment coverage of the TGG Engine. Here, we cannot expect full code coverage,
since the TGG Engine contains code, e.g., for executing model transformations
via the GUI, or executing a specific transformation direction, respectively.

4 Testing Our TGG Implementation and Evaluation

We have executed conformance test cases for three different TGGs, which rep-
resent typical uses of model transformations: Model-to-model transformations
(SDL2UML), model-to-text transformations (Automata2PLC), and a large prac-
tical model transformation from an industrial project (SystemDesk2AUTOSAR).
The SDL2UML TGG is a slightly more complex version of the TGG presented in

9 http://www.eclemma.org/

http://www.eclemma.org/

248 S. Hildebrandt et al.

Fig. 3. The TGG contains six rules, where the largest rules contain 17 nodes. Au-
tomata2PLC [14] is a transformation from automata models to abstract syntax
trees (AST) of a language for programmable logic controllers (PLC). It con-
sists of five rules with up to 20 nodes in a rule. In contrast to the other two
transformations, which are bidirectional, this transformation can only transform
from automata to PLC models but not reverse. The SystemDesk2AUTOSAR
transformation [18] was created in an industrial research project. It transforms
models from the modeling tool dSPACE SystemDesk to AUTOSAR, a standard-
ized modeling language in the automotive domain. This transformation consists
of 50 rules and the largest of them contain 31 nodes.

Test cases were generated with 10, 100, and 1000 random rule applications.
TGG rules are creating, therefore the test model size correlates to the number of
rule applications. For example, the rules of SDL2UML TGG create one element
in the SDL model and five elements in the UML model on average. Therefore,
1000 random rule applications of that TGG lead to an SDL model with 1000
elements and a UML model with about 5000 elements. Five test cases were
generated for each of the three numbers of rule applications, each TGG, and
each possible transformation direction. From each group of five test cases the
test case with the highest rule coverage was selected for further execution. This
amounts to a total of 15 executed test cases. Executing a test case with 1000 rule
applications takes about two minutes on an Intel i5 750 CPU with 2.67 GHz. The
smaller test cases take less then a minute. For the two smaller TGGs, we could
easily achieve complete rule and dependency coverage, even for the smallest test
models. However, for the very large SystemDesk2AUTOSAR TGG, we could
not achieve complete specification coverage. Rule coverage for test models with
10 rule applications was only 37% and went up to 71% (both directions) for the
test models with 1000 rule applications. Dependency coverage was only 19% for
the largest test models. The SystemDesk2AUTOSAR TGG contains many rules
with quite complex preconditions. For some of them, it is rather improbable to
create a triple graph satisfying the required precondition with a purely random
approach. Therefore, specification coverage increases with a higher number of
rule applications, but is still far from complete coverage. Here, a systematic
approach (possibly making use of model checking [13]) to generate test models
would be required.

For the SDL2UML TGG, we achieved a story diagram coverage of 82% for
the largest test models. Story diagram coverage of the Automata2PLC TGG is
97% for all test models. Like specification coverage, story diagram coverage of
the SystemDesk2AUTOSAR TGG was rather low, only 36% for the largest test
models. Naturally, story diagram coverage is connected to specification coverage,
because the story diagrams can only be completely executed if specification
coverage is complete. In addition, the generated story diagrams contain code
for error handling, which is never executed in the test cases. Therefore, story
diagram coverage of the SDL2UML and Automata2PLC TGGs can only be
improved with test cases using faulty input models (negative testing).

Automatic Conformance Testing of Optimized TGG Implementations 249

Code coverage of the TGG Engine (49%) is quite constant over all test cases.
When looking into detail, we can see that all code parts of the TGG Engine that
are relevant to the test cases are covered.

The results of the test cases indicate, that the SDL2UML TGG and its im-
plementation are indeed conform, because EMFCompare did not find any differ-
ences between transformed and expected target models. The test cases for the
other two TGGs failed indicating that complete conformance with their imple-
mentations could not be shown, mainly because of domain-specific technicalities
not covered by TGG formalizations so far. Until now, we did neither find errors
related to the faulty interpretation of formal concepts for TGG operationaliza-
tions nor for optimizations augmenting efficiency of the model transformation
execution.

In the Automata2PLC test case, we discovered that the transformation does
not maintain the order of model elements in references. The TGG Implementa-
tion creates target elements in a different order than the Test Model Generator,
which is reported by EMFCompare. This is not a problem for models without
ordered references. However, in the PLC target model all references are ordered
references. The PLC model is an abstract-syntax tree of a textual language. The
order of the elements in the syntax tree directly reflects the order of the corre-
sponding text blocks of the textual syntax. Therefore, this order is relevant like in
most other textual languages. The Automata input model does not have ordered
references. It consists of states connected by transitions. For the PLC model, we
have to derive an order in some way. However, there is no formalization of TGGs
taking ordered references into account.

The SystemDesk2AUTOSAR test cases revealed another subtle problem in
the forward and backward directions. For example, SystemDesk models contain
a Library element, which does not have a counterpart in AUTOSAR (this prob-
lem occurs in several places, not just with Libraries, and it also occurs in the
opposite direction, i.e., there are elements in AUTOSAR that do not have a di-
rect counterpart in SystemDesk). While all elements in SystemDesk must have
a UUID (universally unique identifier), each Library gets a new random UUID
when it is created. Of course, the Library in the expected target model has a
different UUID than the Library element in the transformed target model. There-
fore, EMFCompare reports a difference between both models, although they are
otherwise identical. One can argue that this transformation is not deterministic
because it creates random UUIDs in the target model. One idea to overcome this
problem would be to assign a static UUID for the Library in the TGG rule that
creates it. However, this is not an option in practice because then the Library’s
UUID would not be universally unique anymore, which would cause problems in
the modeling tools. Therefore, another idea is to derive the Library’s UUID from
the source model in some way to achieve determinism. However, a proper way to
do that has yet to be defined. Another possibility is to adapt EMFCompare so
that it ignores UUIDs for Library (and other affected) elements. However, this
adaptation of the test framework would be specific to these models. Summariz-
ing, the concepts of UUIDs as well as ordered references should be considered

250 S. Hildebrandt et al.

by TGG formalizations such that conform TGG implementations can be built
properly. Existing TGG formalizations are defined on attributed graphs. On
the contrary, models are based on metamodeling standards like MOF or EMF
including additional concepts specific to the technical modeling domain.

Finally, we still have the following limitation of the test framework: The exam-
ple TGGs that we tested only contain string attributes without complex attribute
computations. During generation of the input and expected target models, these
attributes are set to arbitrary values. For complex data types and attribute com-
putations, more complex techniques like classical data partitioning techniques
have to be integrated with the Test Model Generator. Especially, if the attributes’
values have to satisfy certain constraints.

5 Related Work

Compiler testing as oldest line of related work is based on the grammar-based
generation of test data. [23] gives a survey on compiler testing methods and
presents a number of coverage criteria. The rule coverage criterion is the most
basic one and we use this coverage criterion as an orientation in our grammar-
based generation of input test models for TGG implementations (see Section 3).

There is some work on validating and verifying relational (or declarative)
model transformation specifications themselves (e.g., [6,27]). In this work, we
assume that the specification has been validated and aim at testing conformance
of the specification with its implementation.

A number of conformance testing approaches relying on graph transformation
as a specification technique exist [9,20,2]. Instead of focusing on model trans-
formation specifications and implementations, they are rather concerned with
conformance testing of behavioral specifications w.r.t. (actual) behavior in re-
fined models or (generated) code.

There are a number of testing approaches proposed for model transformation
implementations. Most black-box methods are concerned with generating
(as e.g., [33,8,12]) qualified test input models taking into consideration the input
metamodel (and corresponding constraints). For example, in [12] meta-model cov-
erage is considered using data-partitioning techniques. It is required, for example,
that models must contain representatives of association ends, which differ in their
cardinalities. On the contrary, [24] proposes white-box criteria to qualify test in-
put models. We concentrate on generating conformance test cases using the model
transformation specification as an ”executable contract” generating not only test
inputmodels, but also expected results obtaining a complete oracle. [3,28] mention
that, in general, describing the oracle is a difficult task because even simplest ex-
pected results may become quite complex. The availability of formal requirements
for the model transformation is desirable and can be used for building the oracle.
In particular, [10] presents an approach for specifying MOF-based metamodels
and their interrelationships, model transformation specification, implementation
and test case generation using constructive logic. [10] uses the specification as par-
tial oracle and does not generate expected results as we do. Moreover, it proposes

Automatic Conformance Testing of Optimized TGG Implementations 251

a new uniform framework, whereas we rely on TGGs as existing model transfor-
mation specification technique for which several tools are already available.

6 Conclusion and Future Work

We have presented and evaluated an approach to automatic conformance testing
for optimized TGG implementations. The grammar character of TGGs is used
to generate test cases including expected results. We are confident that our
approach is a good basis to develop automatic conformance testing also for other
relational specification techniques.

As future work we consider a number of extensions to this approach. (1) Our
TGG implementation supports not only batch model transformations, but also
model synchronization. We would like to develop an automatic conformance test
approach also for the latter case. (2) Since we concentrate on positive testing,
the approach should be extended to negative testing to find out if a TGG im-
plementation handles inconsistent input models in a reasonable way. This is not
trivial, since parsing would be involved to find out if a model would be an in-
consistent input according to the TGG. (3) As in the approaches for generating
test input models based on the source metamodel of a model transformation, it
would be interesting to integrate metamodel constraints. Certain models con-
sistent according to the TGG are potentially inconsistent w.r.t. the metamodel
constraints and become negative test input models. (4) We have described first
test case generation strategies and coverage criteria. We plan to apply mutation
testing or more systematic generation strategies (possibly making use of model
checking) to qualify test cases. (5) As mentioned in the introduction, our aim is
to generalize this automatic test approach to other relational model transforma-
tion approaches such as QVT Relational.

Acknowledgement. We thank the anonymous reviewers for their valuable
comments.

References

1. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based
tool integration with MOFLON. In: ICSE 2008, pp. 807–810. ACM Press (2008)

2. Baldan, P., König, B., Stürmer, I.: Generating Test Cases for Code Generators
by Unfolding Graph Transformation Systems. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 194–209.
Springer, Heidelberg (2004)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers
to systematic model transformation testing. Communications of the ACM 53, 139–
143 (2010)

4. Biermann, E., Ermel, C., Lambers, L., Prange, U., Runge, O., Taentzer, G.: In-
troduction to AGG and EMF Tiger by modeling a conference scheduling system.
International Journal on Software Tools for Technology Transfer 12(3-4) (2010)

252 S. Hildebrandt et al.

5. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wende-
hals, L., Zündorf, A.: Tool integration at the meta-model level within the FUJABA
Tool Suite. International Journal on Software Tools for Technology Transfer 6(3),
203–218 (2004)

6. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

7. Chen, M., Mishra, P., Kalita, D.: Coverage-driven automatic test generation for
UML Activity Diagrams. In: Proceedings of the 18th ACMGreat Lakes Symposium
on VLSI, pp. 139–142. ACM (2008)

8. Ehrig, K., Küster, J.M., Taentzer, G., Winkelmann, J.: Generating Instance Models
from Meta Models. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 156–170. Springer, Heidelberg (2006)

9. Engels, G., Güldali, B., Lohmann, M.: Towards Model-Driven Unit Testing. In:
Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 182–192. Springer, Heidelberg
(2007)

10. Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A Constructive Ap-
proach to Testing Model Transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT
2010. LNCS, vol. 6142, pp. 77–92. Springer, Heidelberg (2010)

11. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

12. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: First International Workshop on Model, Design and
Validation, pp. 29–40. IEEE Computer Society (2004)

13. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: A survey.
Software Testing, Verification and Reliability 19(3), 215–261 (2009)

14. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model
to code transformations. In: Proc. of the 3rd Workshop on Model Design and
Validation. ACM/IEEE, Genova, Italy (2006)

15. Giese, H., Hildebrandt, S., Lambers, L.: Toward bridging the gap between formal
semantics and implementation of triple graph grammars. Tech. Rep. 37, Hasso
Plattner Institute at the University of Potsdam (2010)

16. Giese, H., Hildebrandt, S., Lambers, L.: Toward bridging the gap between formal
semantics and implementation of triple graph grammars. In: Lúcio, L., Vieira, E.,
Weißleder, S. (eds.) Proceedings of Models Workshop on Model-Driven Engineer-
ing, Verification and Validations, pp. 19–24. IEEE Computer Society (2010)

17. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by in-
terpreting story diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.) Pro-
ceedings of the 8th International Workshop on Graph Transformation and Visual
Modeling Techniques. Electronic Communications of the EASST, vol. 18 (2009)

18. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven
Engineering. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg (2010)

19. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies:
Implementing Query/View/Transformation with triple graph grammars. Software
and Systems Modeling 9(1), 21–46 (2010)

20. Heckel, R., Mariani, L.: Automatic Conformance Testing of Web Services. In: Ce-
rioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005)

Automatic Conformance Testing of Optimized TGG Implementations 253

21. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Proceedings of the 1st International Workshop on Model-Driven Interoperability,
pp. 22–31. ACM (2010)

22. Kindler, E., Wagner, R.: Triple graph grammars: Concept, extensions, implemen-
tations and application scenarios. Tech. rep., Software Engineering Group, Depart-
ment of Computer Science, Universität Paderborn (2007)

23. Kossatchev, A.S., Posypkin, M.A.: Survey of compiler testing methods. Program-
ming and Computer Software 31, 10–19 (2005)

24. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations – First Ex-
periences Using a White Box Approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

25. de Lara, J., Vangheluwe, H.: Using AToM3 as a Meta-CASE environment. In:
International Conference on Enterprise Integration Systems (2002)

26. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation
testing and version control in model driven software development. In: Control in
Model Driven Software Development. OOPSLA/GPCE: Best Practices for Model-
Driven Software Development, pp. 219–236. Springer (2004)

27. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. In:
Beydeda, S., Book, M., Gruhn, V. (eds.) Model-Driven Software Development, pp.
219–236. Springer (2005)

28. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: Oracle issue.
In: Proceedings of the 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, pp. 105–112. IEEE Computer Society (2008)

29. Object Management Group: MOF 2.0 QVT 1.0 Specification (2008)
30. Richardson, D., O’Malley, O., Tittle, C.: Approaches to specification-based testing.

In: Kemmerer, R. (ed.) Proc. of the ACM SIGSOFT 1989 Third Symposium on
Software Testing, Analysis, and Verification, pp. 86–96. ACM Press (1989)

31. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

32. Schürr, A., Klar, F.: 15 years of Triple Graph Grammar: Research Challenges, New
Contributions, Open Problems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer,
G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

33. Sen, S., Baudry, B., Mottu, J.-M.: Automatic Model Generation Strategies for
Model Transformation Testing. In: Paige, R. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 148–164. Springer, Heidelberg (2009)

34. Toulmé, A.: Presentation of EMF Compare utility. In: Eclipse Modeling Sympo-
sium 2006, pp. 1–8 (2006),
http://www.eclipsecon.org/summiteurope2006/index.php?page=detail/&id=6

http://www.eclipsecon.org/summiteurope2006/index.php?page=detail/&id=6

Author Index

Aksit, Mehmet 105

Buchmann, Thomas 198

de Lara, Juan 19, 35
Drewes, Frank 182

Ermel, Claudia 81
Ermler, Marcus 153

Fürst, Luka 121

Galvão, Ismênia 105
Giese, Holger 238
Greenyer, Joel 222
Guerra, Esther 19, 35

Hildebrandt, Stephan 238
Hoffmann, Berthold 182

Jurack, Stefan 3

Klöpper, Benjamin 137
Kocsis, Zsolt 1
Kreowski, Hans-Jörg 153
Kuske, Sabine 153

Lambers, Leen 238
Lamo, Yngve 19

Mahnič, Viljan 121
Maier, Sonja 89
Mantz, Florian 3

Mazanek, Steffen 97
Mernik, Marjan 121
Minas, Mark 65, 89, 97, 182

Patzina, Lars 210
Patzina, Sven 210
Petrick, Dominic 238
Proctor, Mark 2

Rensink, Arend 105
Richter, Ingo 238
Rieke, Jan 222
Rossini, Alessandro 19
Runge, Olga 81
Rutetzki, Christian 97
Rutle, Adrian 19

Schöler, Florian 51
Steinhage, Volker 51
Strecker, Martin 169
Strobl, Torsten 65

Taentzer, Gabriele 3, 81
Tichy, Matthias 137

von Totth, Caroline 153

Westfechtel, Bernhard 198
Wevers, Lesley 105
Winetzhammer, Sabine 198

Zambon, Eduardo 105

	Title
	Preface
	Organization
	Table of Contents
	Invited Talk Abstracts
	Best Practices to Model Business Services in Complex IT Environments
	Drools: A Rule Engine for Complex Event Processing

	Session 1: Model-Driven Engineering
	Graph Transformation Concepts for Meta-model Evolution Guaranteeing Permanent Type Conformance throughout Model Migration
	Introduction
	Motivating Example
	Meta-model Evolution
	Model Migration
	Implementation by Henshin Model Transformations
	Specification of Input Rules
	Derivation of Meta-model Evolution Rule
	Derivation of Model Migration Rules
	Performance

	Related Work
	Conclusion and Future Work
	References

	A Graph Transformation-Based Semantics for Deep Metamodelling
	Introduction
	Deep Metamodelling
	Overview of Deep Metamodelling
	Some Open Questions in Deep Metamodelling

	Diagram Predicate Framework
	Formalisation of Deep Metamodelling
	Multi- and Single-Potency
	Syntax of Potency
	Double Linguistic/Ontological Typing
	Semantics of Potency through Graph Transformation

	Related Work
	Conclusion and Future Work
	References

	Reusable Graph Transformation Templates
	Introduction
	Overview of the Approach
	An Algebraic Setting for Models and Meta-models
	Graph Transformation Templates
	Mixin Layers
	Additional Examples
	Related Work
	Conclusions and Future Work
	References

	Session 2: Graph Transformation Applications
	Towards an Automated 3D Reconstruction of Plant Architecture
	Introduction
	Related Work
	Overview of the Approach
	General Overview
	Sensor Data
	Domain Knowledge
	Modeling with Relational Growth Grammars
	Reconstruction

	First Results and Current Developments
	Acquired Data
	Modeling Stem Skeletons
	Volume Generation

	Conclusion and Future Work
	References

	Generating Graph Transformation Rules from AML/GT State Machine Diagrams for Building Animated Model Editors
	Introduction
	Avalanche
	Specification of Animated Model Editors
	Animation Modeling Language (AML)
	Animation Modeling Language for GTs (AML/GT)
	Translating AML/GT State Machines into GTRs
	Implementation
	Related Work
	Conclusions
	References

	Session 3: Tool Demonstrations
	AGG 2.0 – New Features for Specifying and Analyzing Algebraic Graph Transformations
	Introduction
	Rule Application Control
	Constructing Rules from Existing Ones
	Tuning the Critical Pair Analysis
	Related Work and Conclusions
	References

	Integration of a Pattern-Based Layout Engine into Diagram Editors
	Introduction
	Running Example
	Layout Engine
	Integration of the Layout Engine into an Editor
	Automatic and User-Controlled Layout
	Pattern Instance Visualization
	Syntax Preservation
	Layout Suggestions

	Conclusions
	References

	Tool Demonstration of the Transformation Judge
	Introduction
	Use Cases of the Transformation Judge
	System Architecture
	Related Work
	Conclusion
	References

	Session 4: Graph Transformation Exploration Techniques
	Knowledge-Based Graph Exploration Analysis
	Introduction
	Prolog in groove
	Functionality Overview
	Implementation Overview

	Application to Feature Modelling
	Feature Model Type Graph
	Product Configuration
	Querying the State Space

	Discussion and Related Work
	Performance
	Related Feature Modelling Approaches
	Related Tools

	Conclusions and Future Work
	References

	Graph Grammar Induction as a Parser-Controlled Heuristic Search Process
	Introduction
	Related Work
	Definitions
	The Proposed Graph Grammar Induction Algorithm
	Overview
	Elementary Generalizations

	Experimental Results
	Application to Flowcharts
	Application to Chemical Structural Formulas
	Computational Complexity

	Conclusion
	References

	Planning Self-adaptionwith Graph Transformations
	Introduction
	Example
	Modeling with Graph Transformations
	Specification of Structure
	Specification of Self-adaption Actions
	Specification of Goals

	Translation to PDDL
	Types, Predicates and Functions
	Actions

	Adding Temporal Properties
	Simulation Experiments
	Related Work
	Conclusions and Future Work
	References

	Session 5: Graph Transformation Semantics and Reasoning
	From Graph Transformation Units via MiniSat to GrGen.NET
	Introduction
	Graph Transformation Units
	Modeling the Job-Shop Scheduling Problem
	The Job-Shop Scheduling Problem
	The Graph Transformation Unit jobshop

	From Graph Transformation Units to Propositional Formulas
	Combining MiniSat and GrGen.NET
	System Description
	Discussion

	Conclusion
	References

	Locality in Reasoning about Graph Transformations
	Introduction
	Problem Statement
	Representing and Reasoning about Transformations
	Graph Decompositions
	Reduction to Boolean Satisfiability
	Relation Expressions
	Reduction of the Exterior
	Reduction of the Interior

	Conclusions
	References

	Contextual Hyperedge Replacement
	Introduction
	Graphs, Rules, and Grammars
	A Contextual Grammar for Statecharts
	Normal Forms of Contextual Grammars
	Limitations of Contextual Grammars
	Parsing
	Conclusions
	References

	Session 6: Application Reports
	The Added Value of Programmed Graph Transformations – A Case Study from Software Configuration Management
	Introduction
	MOD2-SCM
	Analysis
	Quantitative Analysis
	Qualitative Analysis

	Examples
	Discussion
	Results from the MOD2-SCM Project
	Generalization of Results

	Conclusion
	References

	A Case Study Based Comparison of ATL and SDM
	Introduction
	Running Example
	Related Work
	Comparison of the Transformations
	Transformations
	Evaluation of the Transformations

	Desirable Features
	Conclusion and Future Work
	References

	Session 7: Bidirectional Transformations
	Applying Advanced TGG Concepts for a Complex Transformation of Sequence Diagram Specifications to Timed Game Automata
	Introduction
	Triple Graph Grammars
	Example
	OCL Integration
	Stereotype Constraints
	TGG Rule Generalization
	Reusable Patterns
	Properties of the TGG Extensions
	Related Work
	Conclusion and Outlook
	References

	Automatic Conformance Testing of Optimized Triple Graph Grammar Implementations
	Introduction and Motivation
	Conform Triple Graph Grammar Implementations
	Automatic Conformance Testing of TGG Implementations
	Test Objective
	Test Case Definition and Random Generation
	Test Case Execution
	Test Suite Quality

	Testing Our TGG Implementation and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Author Index

