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2 Université de Lorraine-LORIA CNRS UMR 7503, Nancy, France

Abstract. Defining similarities or distances between graphs is one of
the bases of the structural pattern recognition field. An important trend
within this field consists in going beyond the simple formulation of simi-
larity measures by studying properties of graph’s spaces induced by such
distance or similarity measures . Such a problematic is closely related to
the graph embedding problem. In this article, we investigate two types
of similarity measures. The first one is based on the notion of graph
edit distance which aims to catch a global dissimilarity between graphs.
The second family is based on comparisons of bags of patterns extracted
from graphs to be compared. Both approaches are detailed and their
performances are evaluated on different chemoinformatics problems.

1 Introduction

Graphs allow to encode not only the elementary features of a set of objects but
also the relationships between these objects. Graphs constitute thus an efficient
tool to model complex objects or phenomenons. Classification, regression or
clustering operations applied on graphs constitute an important sub field of
the structural pattern recognition framework, all these operations being based
either implicitly or explicitly on a distance or a similarity measure.

Definition of graph distances or graph similarity measures constitute an active
field within the structural pattern recognition framework. Main distance defini-
tions are based on one hand on the size of the minimum common super graph or
the maximum common sub graph and on the other hand on the minimal num-
ber of vertex/edge insertion/removal/relabeling required to transform one graph
into an other. This last measure called the edit distance is related to the notion
of maximum common sub graph [2] and provides a nicely interpretable measure
of distance between two graphs. Moreover, assuming basic properties on the ele-
mentary edit costs, one can show that this distance satisfies the 4 properties of a
distance (positivity, separation, symmetry and triangular inequality). However,
the number of calculus required by edit distance computation grows exponen-
tially with the number of nodes of both input graphs and several heuristics have
been proposed to obtain efficient but sub optimal edit distances [8, 14].
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Restricting structural pattern recognition to pairwise comparisons of graphs
leads to restrict the field to efficient but often basic classification or clustering al-
gorithms such as the k-nearest neighbor or the k-median algorithms. Computing
efficiently more global feature on a set of graphs requires additional properties
of the topology of the graph’s space implicitly defined by a distance measure
between graphs. Such a problem may be solved by defining a natural embedding
of graphs. Such an embedding leads to associate explicitly or implicitly a vector
to each graph and to define a metric between these vectors which corresponds
to the metric defined by the graph distance. However, the fact that a distance
satisfies the 4 usual distance’s axioms does not insure that an embedding within
an Hilbert space may be associated to graphs [3]. More precisely, given a set of
n graphs, and a matrix D encoding all pairwise distances between the graphs of
the set, the type of space induced by D is provided by the spectrum of the matrix
Sc = − 1
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nee

t)D(I − 1
nee

t) where e is the vector of ones (Section 2). The
metric space encoding similarities between graphs is a Krein space if this spec-
trum contains negative eigen values and an Hilbert space otherwise. Krein spaces
have unusual properties such as possibly negative distances between graphs. In
order to avoid to use such spaces, several authors [8] regularize the matrix Sc in
order to remove its negative eigen values hereby slightly modifying the original
metric defined by D. An alternative approach consists in associating a vector to
each graph using for example spectral analysis [12]. The approach is in this case
slightly different since the metric defined between vectors does not correspond
to a metric initially defined in the graph’s space. A last approach consists in
defining a symmetric similarity measure between graphs. The matrix encoding
all pairwise similarities between the graphs of a set is called the Gram matrix of
this set. If for some sets of graphs the Gram matrix is non definite positive the
embedding space associated to this similarity measure is a Krein space. Other-
wise, the embedding space corresponds to an Hilbert space and the similarity
measure is called a kernel. In this last case the similarity function corresponds to
a scalar product between the vectors associated to both input graphs. One may
note the symmetry between embeddings based on distances and similarity mea-
sures. Both problems are indeed related, since within an Hibert space or a Krein
space a distance measure may be defined from scalar products and conversely.

This paper provides a comparison of both distance and similarity approaches.
We first present two important methods within the distance based embedding
framework in Section 2. Then we provide an overview of graph kernels meth-
ods in Section 3. Both approaches are finally compared in Section 4 on several
chemoinformatics data sets.

2 Graph Embedding

Embedding graph in vector space aims to define points in a vector space such
that their mutual distances is as close as possible to the initial graph dissimi-
larity matrix wrt a cost function (eg. graph edit distance). More precisely, let
G={g1, ..., gn} be a set of graphs and d: G × G → R a graph distance function
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between pairs of its elements and let D = Dij = d(gi, gj) ∈ R
n×n be the dissim-

ilarity matrix. The aim in the graph embedding is to provide n p-dimensional
vectors xi such that the distance between xi and xj is as close as possible to
the similarity Dij between gi and gj. Thus, embedding graph into a vector space
make the graph available to numerous machine learning techniques which require
vectorial representation.

Numerous approaches [4,8,12,18] have been proposed in the literature. In this
paper we recall the approach proposed in [8] and which is based on the constant
shift embedding [15]. Originally, the constant shift embedding was introduced in
order to embed pairwise data into Euclidean vector spaces. In [8], the authors
adapt this method to the domain of graphs. The key issue is to convert general
dissimilarity data into metric data.

Constant Shift Embedding. We briefly describe the method of Roth et al. [15]
to embed D (restricted by the constraint that self-dissimilarities are equal to
zero) into a Euclidian space, without influencing the distribution of the initial
data. The aim of this approach is to determine a matrix D̃ close to D such that
it exists a set of vectors (xi)i∈{1,...,n} with D̃ij = ‖xi − xj‖2. The solution of
this problem is of course not unique since any translation of vectors xi would
provide a same distance matrix. In order to overcome this problem we perform

a centralization of matrix D by considering Sc = −1

2
Dc, where Dc = QDQ is

the definition of the centralization and Q = In − 1
nene

ᵀ
n is the projection matrix

on the orthogonal complement of en = (1, . . . , 1). Such a matrix Sc satifies:

Dc
ij = Sc

ii + Sc
jj − 2Sc

ij (1)

If Sc is semidefinite positive, its singular value decomposition is equal to Sc =
V ΛV t where columns of V encode the eigen vectors of Sc and Λ is a diagonal

matrix encoding its positive eigen values. Setting X = V (Λ)
1
2 , we obtain Sc =

XXt. Hence, each element Sc
ij of Sc is equal to a scalar product < xi, xj >

between the lines i and j of X . Equation 1 may thus be intepreted as a classical
result on Euclidean norms stating that the squared distance between two vectors
is equal to the sum of the squared norms of these vectors minus twice their scalar
product. The scaled eigen vectors (xi)i∈{1,...,n} provide thus a natural embedding
of matrix D when matrix Sc is definite positive.

Following the constant shift embedding Sc can be transformed into a positive
semidefinite matrix (see Lemma 2 in [15]):

S̃ = Sc − λn(S
c)In

where λn(S
c) is the minimal eigenvalue of the matrix Sc. The diagonal shift of the

matrix Sc transforms the dissimilarity matrix D in a matrix representing squared
Euclidean distances. The resulting embedding of D is defined by (minimal shift
theorem):

D̃ij = S̃ii + S̃jj - 2S̃ij ⇐⇒ D̃ = D − 2λn(S
c)(ene

ᵀ
n − In)
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Setting Dimension. In PCA it is known that small eigenvalues contain noise.
Therefore, the dimensionality p can reduced by choosing t ≤ p. Consequently, a
n× t map matrix Xt=Vt(Λt)

1/2 will be computed where Vt is the column-matrix
of the selected eigenvectors and Λt the diagonal matrix of the corresponding
eigenvectors.

Graph Similarity Measure. Let us recall how the similarity (or dissimilarity)
in the domain of graphs can be computed. Similarity between two graphs is
almost always referred as a graph matching problem. Graph matching is the
process of finding a correspondence between nodes and edges of two graphs
that satisfies some constraints ensuring that similar substructures in one graph
are mapped to similar substructures in the other. Many approaches have been
proposed to solve the graph matching problem. Among these, the graph edit
distance has been widely used as the most appropriate similarity measure for
representing the distance between graphs. In this paper we use two approaches [7,
14] based both on an approximation of the graph edit distance as an instance
of an assignment problem where the edit distance between two graphs is based
on a bipartite graph matching. In both approaches, the authors formulate the
assignment problem by cost matrix where the optimal match is solved by the
Hungarian algorithm.

In [14], each entry of the cost matrix encodes the cost of a node substitu-
tion, deletion or insertion. Substitution costs are defined using the Hungarian
algorithm on the set of incident edges of both vertices. The substitution cost of
two incident edges takes into account the label of the edges and the label of the
incident vertices.

In [7], the cost matrix is encoded differently using a distance (HEOM distance)
between node signatures. A signature describes the node (degree, attributes), the
incident edges attributes but also the degrees of the adjacent nodes. The main
differences with the previous approach is that no prior computation (learning
phase) of the edit cost function are needed and more global information are
taken into account on the graph in the signature.

3 Graph Kernels Methods

Graph embedding methods aim to associate coordinates to graphs. Such an
embedding allows us to define similarity or distance measures from graph’s co-
ordinates. An alternative strategy consists in computing directly a similarity
measure between graphs. Graph kernels can be understood as symmetric graph
similarity measures. Using a semi definite positive kernel, the value K(G,G′),
where G and G′ encode two input graphs corresponds to a scalar product be-
tween two vectors φ(G) and φ(G′) in some Hilbert space, called feature space.
Distance between two graphs G and G′ can be retrieved from kernel function
by the relation (Equation 1) d2(G,G′) = K(G,G) + K(G′, G′) − 2K(G,G′).
Thanks to this possibly implicit embedding of graphs into an Hilbert space,
graph kernels can be combined with machine learning methods based on scalar
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products between input data, such as the well-known SVM. This use of kernels
into statistical machine learning method, called kernel trick, provides a natural
connection between structural pattern recognition and graph theory on one hand
and statistical pattern recognition on the other hand.

A large family of graph kernels are based on the extraction of a bag of patterns
from each graph. Methods corresponding to this family consists in three key
steps. First, bags of pattern are built from graphs by enumerating a given set
of patterns P within graphs. This enumeration, possibly implicit, defines an
embedding of graphs into a feature space where each dimension is associated to
a pattern. Second, global similarity between graphs is defined by the similarity
of their bags of patterns. Finally, this similarity between bags is based on a sub
kernel between pattern kp : P×P → R. This sub kernel kp encodes the similarity
of two patterns extracted from graphs.

A common approach defines the set of patterns as all possible walks included
within a graph. A first method, defined by Gärtner and al., proposes a formu-
lation of a kernel based on graph product and powers of adjacency matrix [5]
which computes the number of common walks of the two graphs to be compared.
A second method proposed by Kashima and al. [9] defines a random walk kernel
by considering the probability p(w|G) of encountering a random walk w within
a graph G. Using such probabilities, the kernel is defined as:

krw(G,G′) =
∑

w∈W(G)

∑

w′∈W(G′)

p(w|G)p(w′|G′)k(w,w′) (2)

with W(G) denoting the set of walks extracted from G. Vishwanathan [16] has
proposed an unified and efficient computation of both methods by means of
Sylvester equations. However, comparison of graphs based on random walks
suffers from tottering. Tottering corresponds to possible infinite oscillations be-
tween two nodes which leads to artificially long walks not representative of the
structure of the graphs.

The major drawback of methods based on linear patterns is that linear struc-
tures can not represent most of the structural information encoded within com-
plex and non linear structures such as molecular graphs. In order to tackle this
limitation, Ramon and Gärtner [11] and Mahé and Vert [10] have proposed a
kernel based on the comparison of non linear patterns. This set of non linear pat-
terns is defined as the set of tree patterns, denoted TP , i.e. trees where a same
node can appears more than once. This kernel maps each tree pattern having a
different labeling to a specific dimension in an infinite feature space represent-
ing all possible tree patterns. This embedding may be encoded by projection
φTP (G) and graph kernel is defined as an inner product between these projec-
tions: KTP (G,G′) = 〈φTP (G), φTP (G

′)〉. Computation of this kernel is based on
a recursive comparison of neighborhood matching sets up to a given depth [10].

Mahé and Vert have proposed in [10] an extension of tree pattern kernel which
weights each tree pattern according to its structural complexity. This measure
of structural complexity may be encoded by the branching cardinality or the
ratio between number of nodes and depth of tree patterns. However, since the
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number of occurrences of each tree pattern is not explicitly computed during
kernel computation, only an a priori weighting of tree patterns can be applied to
each tree pattern. In addition, as observed on walks, tree patterns suffers from
tottering. However, Mahé and Vert [10] have proposed an extension to prevent
tottering based on a transformation of input graphs.

Another method based on non linear patterns computes an explicit distri-
bution of each pattern within a graph. This method, called treelet kernel [6],
explicitly enumerates treelets included within a graph, the set of treelets being
defined as the 14 trees having a size lower than or equals to 6 nodes. Thanks
to the limited number of different patterns encoding treelets, an efficient algo-
rithm allows to enumerate the number of occurrences of each pattern within a
graph. Given this first enumeration, a first kernel on unlabeled graphs can be
defined. When applying this method to set of labeled graphs, labeling informa-
tion included within treelets is encoded by a canonical key. This canonical key is
defined such that given two treelets with a same structure, their canonical key is
similar if and only if the two treelets are isomorphic. Each treelet being uniquely
identified by the index of its pattern and its canonical key, any graph G can
be associated to a vector f(G) which explicitly encodes the number of occur-
rences of each treelet t by ft(G). Using this vector representation, treelet kernel
between graphs is defined as a sum of sub kernels between common treelets of
both graphs:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (3)

where k(., .) defines any positive definite kernel between real numbers such as
linear, Gaussian or polynomial kernel. In the same way as tree pattern kernel,
each pattern can be weighted in order to improve kernel accuracy as follows:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

w(t)k(ft(G), ft(G
′)) (4)

However, conversely to tree pattern kernel, the explicit enumeration of each sub
structure provided by treelet kernel method allows to weight each pattern ac-
cording to a property to predict and not only according to an a priori function.
This weighting may be computed using variable selection algorithms [6] or mul-
tiple kernel learning [1].

4 Experiments

Our first experiment is based on two regression problems1 which consist in pre-
dicting molecule boiling points. The first dataset is composed of 150 alkanes, an
alkane corresponding to an acyclic molecule solely composed of carbons and hy-
drogens. A common encoding is to implicitly encode hydrogen atoms using the

1 These databases are available on the IAPR TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry

http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry
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Table 1. Boiling point prediction

Method
RMSE (◦C) Computation

Alkane Acyclic Time (s)
(1) Gaussian edit distance 10.01 10.27 1.35
(2) Random Walks Kernel 16.28 18.72 19.10
(3) Treelet Kernel 1.92 8.10 0.07
(4) Tree Pattern Kernel 3.48 11.02 4.98
(5) Graph Embedding 6.15 12.3 7.21

valency of carbon atoms. Such an encoding allows to represent alkanes as un-
labeled graphs. The second dataset is composed of 183 acyclic molecules, each
molecule being composed of heteroatoms and thus encoded as acyclic labeled
graphs. We evaluate the boiling point of each molecule using several test sets
composed of 10% of the database, the remaining 90% being used as training set.

First, we can note that linear patterns (Table 1, Line 2) do not encode enough
structural information to correctly predict boiling points of molecules. Con-
versely, methods based on bags of non linear patterns obtain better results (Ta-
ble 1, Lines 3 and 4). Differences between Treelet Kernel and Tree Pattern Kernel
may be explained by the use of a Gaussian kernel for Treelet kernel, which is not
possible within the tree pattern computational scheme. In addition, limitation
on the size of patterns induced by explicit enumeration of treelets does not have
a large influence on these problems since molecules have a low number of atoms.
Second, Table 1 shows results obtain by graph embedding method (Line 5) and
a Gaussian kernel applied on the approximate edit distance as defined by [14]
(Line 1). Graph embedding results have been computed using different subsets
of eigenvalues obtained by applying a threshold on variance encoded within the
matrix.We can note that the improvement on edit distance approximation leads
to better results than approximation defined in [14] when applied to unlabeled
graphs. Finally, the last column of Table 1 shows the time required to compute
the Gram matrix on acyclic dataset. Note that while most of the methods are
computed within the same order of magnitude (seconds), Treelet Kernel can be
computed in 0.07 seconds thanks to the efficient enumeration of a limited set of
patterns.

The second experiment consists of two classification problems. The first one is
taken from the Predictive Toxicity Challenge [17] which aims to predict carcino-
genicity of 416 chemical compounds applied to female (F) and male (M) rats (R)
and mice (M). This experiment consists of ten different datasets for each class
of animal, each of them being composed of one train set of about 310 molecules
and one test set of about 35 molecules. The second dataset is provided by [13].
This database defined from the AIDS Antiviral Screen Database of Active Com-
pounds is composed of 2000 chemical compounds. These chemical compounds
have been screened as active or inactive against HIV and they are split into
three different sets. A train set composed of 250 compounds used to train SVM,
a validation set composed of 250 compounds used to find parameters giving the
best prediction accuracy and a test set composed of remaining 1500 compounds.
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Table 2. Classification accuracy on the two classification experiments

Method
PTC

AIDS
MM FM MR FR

(1) Gaussian Edit Distance 223 212 194 234 99.7%
(2) Random Walks Kernel 216 221 201 232 98.5%
(3) Treelet Kernel (TK) 208 205 209 212 99.1%
(4) TK with variable weighting 217 224 223 250 99.7%
(5) Graph Embedding 218 227 206 239 99.7%

Table 2 shows the amount of correctly classified molecules over the ten test
sets for each class of animal for the first dataset and the accuracy obtained
by differents methods on AIDS dataset. Note however that results obtained by
tree pattern kernel are not displayed since the source code provided by the
authors is restricted to molecules with a degree bounded by 4. First, we can
note that method based on graph embedding (Table 2, Line 5) leads to globally
better results than Gaussian kernel applied on an approximation of the graph
edit distance (Table 2, Line 1). In the same way, graph embedding methods
outperforms RandomWalks Kernel (Table 2, Line 2) and Treelet Kernel (Table 2,
Line 3). However, combination of a variable weighting scheme with Treelet Kernel
(Table 2, Line 4) improves the prediction accuracy of Treelet Kernel and obtains
the best results on 3 over 5 datasets a slightly lower prediction accuracy than
graph embedding methods on the two others. However, weighting each treelet
according to a property to predict requires about 30 minutes for each train set
of PTC dataset whereas computational time of graph embedding is performed
in about 74 seconds for each PTC dataset. The accuracy provided by variable
weighting can thus be obtained at the cost of an high computational time.

5 Conclusion

As shown in our experiments graph kernels and graph embeddingmethods provide
close results in most of experiments. This last point is expected since as stressed
in this paper both approaches are closely related. The main difference of both ap-
proaches should rather be determined from their potential usage. On one hand,
Graph embedding methods provide an explicit embedding in a finite dimensional
space for each input data sets. Hence, this approach is not restricted to kernel
methods but can use explicitly the coordinates associated to graphs. On the other
hand, this approach requires the whole data set to compute an embedding. Graph
kernels based on bag of patterns, only require to compute the similarity between
an input graph and the one of the training set. These methods may thus be used
on unbounded data sets. The choice between both approaches should thus be de-
termined from the ability for a given application to obtain the whole data set and
from the ability of algorithms applied on graphs to be kernelized.

Acknowledgments. The authors thanks Salim Jouili for providing the graph
embedding code.
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