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Abstract. In this paper we extend the heat diffusion-thermodynamic
depth approach for undirected networks/graphs to directed graphs. This
extension is motivated by the need to measure the complexity of struc-
tural patterns encoded by directed graphs. It consists of: a) analyzing and
characterizing heat diffusion traces in directed graphs, b) extending the
thermodynamic depth framework to capture the second-order variability
of the diffusion traces to measure the complexity of directed networks. In
our experiments we characterize several directed networks derived from
different natural languages. We show that our proposed extension finds
differences between languages that are blind to the classical analysis of
degree distributions.

1 Introduction

The quantification of the complexity of patterns plays a fundamental role in
pattern recognition and machine learning. Information theory [I] provides prin-
cipled approaches to the analysis complexity that include minimum description
length (MDL) and minimum message length (MML) which allow us to find the
model that parsimoniously describes vectorial data. However, the latter prin-
ciples have not been incorporated to the graph domain until recently (see [2]
for trees and [3] for edge-weighted undirected graphs). In fact, the intersection
between structural pattern recognition and complex networks has proved to be
fruitful and has inspired several interesting measures of graph complexity. Most
of these measures rely on quantifying the degree of randomness of the structural
representation. For instance, Kérner entropy was motivated by the need to mea-
sure how much information can flow through a graph, when pairs of symbols can
be confused [4]. This implies admitting a probability that a memoryless source
emits a symbol. For each node in the graph there is a symbol, and two nodes are
adjacent if their symbols are distinguishable. In this setting entropy is defined as
the minimal cross entropy between the probability distribution and the vertex
packing polytope of the graph. Since the vertex packing polytope is the convex
hull of all characteristic vectors of stable sets of the graph, the task of measur-
ing Korner entropy relies on solving an NP problem. More recently, Passerini
and Severini have applied the quantum (von Neumann) entropy to graphs [5].
The state of a quantum mechanical system of a finite dimension is defined by a
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density matrix for networks that can be modeled the combinatorial Laplacian.
As a result the von Neumann entropy is given by the Shannon entropy of the
Laplacian eigenvalues (normalized by the volume of the graph). This definition
of graph entropy is maximal for random graphs, minimal for complete ones and
intermediate for star graphs. Although the computation of the von Neumann en-
tropy is cubic with the size of the network, it has recently been shown how this
can be approximated using quadratic degree statistics and successfully applied
to structural discrimination [0].

The Korner and von Neumann entropies are two examples of randomness
complexity applied to graphs. An alternative is to use the so called statistical
complexity and to quantify the regularities of the structure beyond its random-
ness [7]. The general underlying principle of statistical complexity is that it is
zero for both random and regular/complete (completely ordered) graphs. A very
recent example of statistical complexity is the Estrada heterogeneity index [§].
This index is defined as the Dirichlet sum of root squared degree differences. The
obtained index is related to the Randi¢ index [9]. Estrada’s heterogeneity index
is obviously zero for both random graphs and regular or complete ones. Another
method which goes beyond randomness complexity is our recent application of
thermodynamic depth [I0] to the domain of graphs [I1]. This involves defining
both the macro-states (the graph) and the micro-states (the nodes). Complexity
is quantified in terms of the amount of structural variability as a node evolves
through a subgraph containing adjacent nodes (first order expansion) and even-
tually encompasses the full graph (if possible). Each expansion step is character-
ized by the temporal trace of heat flowing through the network. The sequence
of expansions for a given node is referred to as a history [12], which contains
the heat flow traces of each node. The variability of a given history quantifies
how uniformly the full graph emerges from the corresponding node. The aver-
age heat flow traces of all the nodes can be combined to yield a second-order
variability measure, the so called thermodynamic depth of the graph. Shallow
(low-variability) graphs are characterized by similar histories with low variance
and this means that heat flows satisfies similar topological constraints at each
node. In contrast, deep graphs emerge from histories with large variance. Both
random and complete graphs have zero depth, whereas grids and linear graphs
have larger depths. A nice property of our thermodynamic depth approach is
that it can be applied not only to heat flow traces but also to the heterogeneity
index and the von Neumann entropy. It has been successfully used to correlate
PPI networks with the phyla of bacteria.

All of the above approaches are confined to undirected graphs since many net-
works or graphs in the real world can be modeled with them: (e.g. protein-protein
interaction (PPI) networks, shapes as Delaunay triangulations, adjacency graphs
in images). However, considering the orientation of edges (e.g. directed trees and
causal graphs in Bayesian networks) adds meaningful information which allows
us to model networks such as metabolic pathways (cascades of chemical reac-
tions) as well as natural languages (where the relative order of words matters)
together with social networks (e.g. citation networks). The Internet is a clear
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example of a directed network and Pagerank is an example of well known algo-
rithm [I3] which exemplifies the formal difficulty of analyzing directed graphs
and the study of how the information flows through them in the context of
the Internet. When a sink node (a node with zero outdegree) is reached by a
random walk, there is a given (small) probability of making a transition to any
other node in the network (this is called teleporting). The Laplacian of a directed
graph can be defined through a symmetrization process provided that the tran-
sition matrix for the random walks allows for teleporting. Given a symmetric
semi-definite operator such as the directed Laplacian, it is straightforward to
compute heat kernels and thus to evaluate diffusion flow traces. A natural way
of quantifying the complexity of directed graphs is to extend our thermodynamic
depth approach to deal with oriented edges.

In this paper we will address that challenging point as follows. In Section 2
we will describe the directed Laplacian. Section 3 is devoted to the analysis
of the fundamental formal differences between undirected and directed graphs
in terms of heat flow diffusion using heat kernels. In Section 4 we redefine the
thermodynamic depth for digraphs. Experiments and discussion (Section 5) are
focused on the analysis of directed networks derived from natural languages
and the quantification of their complexities. For instance, we show that our
proposed extension can identify differences between languages that are blind
to the classical analysis of degree distributions. We conclude this paper with a
summary of our contributions and suggestions for future work.

2 The Laplacian of a Directed Graph

A directed graph (digraph) G = (V, E) with n = |V vertices and edges E C
E x E is encoded by and adjacency matrix A where 4;; > 0if ¢ — j € £ and
A;; = 0 otherwise (this definition includes weigthed adjacency matrices). The
outdegree matrix D is a diagonal matrix where D;; = > jev A;j. The transition
matrix P is defined by P;; = gﬂ if (i,j) € E and P;; = 0 otherwise. The
transition matrix is key to defining random walks on the digraph and P;; is the
probability of reaching node j from node i. Given these definitions we have that
> jev Pij # 1 in general. In addition, P is irreducible iff G is strongly connected
(there is path from each vertex to every other vertex). If P is irreducible, the
Perron-Frobenius theorem ensures that there exists a left eigenvector ¢ satisfying
¢TP = \pT and ¢(i) > 0Vi. If P is aperiodic (spectral radius p = 1) we have
¢TP = poT and all the other eigenvalues have an absolute value smaller that
p = 1. By ensuring strong connection and aperiodicity we also ensure that any
random walk in a directed graph satisfying these two properties converges to a
unique stationary distribution.

Normalizing ¢ so that ), i, ¢(i) = 1, we encode the eigenvector elements as
a probability distribution. This normalized row vector ¢ corresponds to the sta-
tionary distribution of the random walks defined by P since ¢P = ¢. Therefore,
o(i) = Zm_}i @(j)Pji, that is, the probability of that the random walk is at
node ¢ is the sum of all incoming probabilities from all nodes j satisfying 7 — j.
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If we define @ = diag(¢(1)...¢(n)), we have that the j—th column of #P has
the form (PP); = [¢(1)Pj1 ¢(2)Pj2 ... ¢(n)P;,]7, that is, > i (PP); = ¢(i).
Since (#P)T = PT® the i—th row of PT® is identical to the j—th column of
PP and thus )7, (PT®)" = ¢(i). Consequently, the matrix &P + P is also
symmetric and the sum of the elements in the columns in i—th row (or the sum
of the elements in the rows in the same column) is like

n n

Y (@P +PTo) =3 (@P+PTD); = Y ¢(i)Py+ > ()P, (1)
j=1 j=1 iyi—sj Gui—i
~ ~ -
#(i)
i.e. the sum of both incoming and outcoming probabilities. Since ¢ corresponds
to the stationary distribution we have that >, ; .. ¢(i)P;; = ¢(i) for (oP)T =
PT¢ = ¢". Consequently, Y7, (OP + PT®)" = 2¢(i) Vi. This leads to the
definition of the following matrices:
P +PTo P21/ 4 p1/2pT gt/

5 and £L=1— 9 ., (2

where @ = diag(é(1)...¢(n)), L is the combinatorial directed Laplacian and L
is the normalized directed Laplacian [I4]. Focusing on L we have

{ (i) ifi=j

_ (¢<¢>Pu;¢<j>m> otherwise .

L=¢

Lij = 9 (3)

where it is assumed that P;; = 0Vi. Otherwise L;; = ¢(i)(1 — P;).
Symmetrizing P leads to real valued eigenvalues and eigenvectors. In addition
@ plays the role of a degree matrix and off-diagonal entries are designed so
that the all-ones vector 1 is the eigenvector f; of the combinatorial Laplacian
(the vector with eigenvalue A; = 0). This is due to the fact that the sum of
the i—th row of L is 37 (L)" = ¢(i) — 2¢(i)/2 = 0. In any case, satisfying
irreducibility is difficult in practice since sink vertices may arise frequently. For
instance, a circular graph C), given by 1 -2 — 3 — ... = n — 1 is clearly
irreducible. However, the linear graph L,, obtained by removing n — 1 from the
cycle is reducible since we have a sink at n and the graph is no longer strongly
connected. Sink vertices introduce rows of zeros in A and consequently in P. The
consequence is the non-existence of a left Perron eigenvector and this renders
computing the Laplacians is impossible. A formal trick consists of replacing P
by P’ so that P, = Lif A;; = 0 and D;; = 0. This strategy is adopted in
Pagerank [13] and allows for teleporting acting on the random walk to any other
node in the graph. Teleporting is modeled by redefining P in the following way:
P=nP +(1-1n) 1$LT with 0 < 7 < 1. The new P ensures both irreducibility
and aperiodicity and this allows us to both apply P’ with probability n and to
teleport from any node with A;; = 0 with probability 1 —n. In [I5] a trade-off
between large values n (preserving more the structure of P’) and small ones
(potentially increasing the spectral gap) is recommended. For instance, in [16],
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where the task is to learn classifiers on directed graphs, the setting is n = 0.99.
When using the new P we always have that P;; # 0 due to the Pagerank masking.
Such masking may introduce significant interferences in heat diffusion when the
Laplacian is used to derive the heat kernel.

3 Directed Heat Kernels and Heat Flow

The definition of P is critical for finding both the directed combinatorial Lapla-
cian L and the directed normalized Laplacian £. Consequently it is also critical
in determining the behavior of the heat kernel derived from the latter matrices.
If the graph is strongly connected and aperiodic the original P has a unique
equilibrium distribution and the components of the combinatorial Laplacian are
given by Eq. Bl Otherwise the above conditions are enforced by exploiting the
Pagerank transformation. In any case, the n x n heat/diffusion kernel Kg(G)
of the graph is the solution to the heat/diffusion equation: 8{;;‘3 = —LKjp, and
is given by the matrix exponentiation Kg(G) = exp(—pL), for f§ > 0. Using
the Taylor series (which may be useful for large n) we have: Kz(G) = e At =
I, AL+ gf L2— gf L3+..., where I, is the n x n identity matrix. In this regard,
the matrix W = ¢P+2PT¢ can be seen as the weight matriz of the undirected
graph G,, associated with G (which may be also weighted) through P and &.
Therefore, the analysis of how the heat flows through G is equivalent to the
analysis of how it flows through G,,.

We commence by reviewing the concept of heat flow [I1]. Firstly, the spectral
decomposition of the diffusion kernel is Kg(G) = exp(—BL) = WAUT where A =
diag(eiﬁ)\laeiﬁ)qa R 676)\")3 v = Wl, P, ... an]a and {(Aza wl) ?:1 are the
eigenvalue-eigenvector pairs of ®—W. Hence Kg,, = Y"1 ¥y (i)yr(j)e 7, and
Kp,, € [0,1]is the (4, j) entry of a doubly stochastic matrix. Doubly stochasticity
for all B implies heat conservation in the system as a whole. That is, not only
in the nodes and edges of the graph but also in the transitivity links eventually
established between non-adjacent nodes (if ¢ is not adjacent to j, eventually will
appear an entry Kpg,, > 0 for  large enough). The total directed heat flowing
through the graph at a given § (instantaneous directed flow) is given by

F3(G) = ZAij (Z Zbk(i)?/fk(j)eAkB) ; (4)
k=1

1—7

A more compact definition of the flow is Fg(G) = A : Kg, where X : Z =
> j XijZi; = trace(XZT) is the Frobenius inner product. While instantaneous
flow for the heat flowing through the edges of the graph, it accounts neither
for the heat remaining in the nodes nor for that in the transitivity links. The
limiting cases are Fy = 0 and Fg,, ., = }inﬂj A;; which is reduced to “jl
if G is unattributed (A;; € {0,1} Vij). Defining Fjg in terms of A instead of
W, we retain the directed nature of the original graph G. The function derived
from computing Fg(G) from 5 = 0 t0 Bmas is the so called directed heat flow
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trace. These traces exhibit the following differences with respect to those of
unattributed undirected graphs:

1. They satisfy the phase transition principle [11] (although the formal proof
is out of the scope of this paper).

2. In general heat flow diffuses more slowly than in the undirected case and
phase transition points (PTPs) appear later. This is due to the constraints
imposed by A.

3. PTPs may coincide with equilibrium points even when the directed graph is
not the complete one. This happens in strongly connected graphs with many
cycles (where connectivity constraints are relaxed) but the traces of single
cycles do not have this behavior.

4. The sum of all walks connecting every pair of nodes is maximal (if we exclude
the sum of all cycles for each node) for all components corresponding to non-
zero values in A. This is straightforward to prove by expressing the kernel
in terms of sums of walks.

5. Graphs with at least one sink require the Pagerank mastering strategy which
introduces noise in the diffusion process. This noise has no practical effect
even for moderate/small values of 7 (e.g. n = 0.15).

6. The heat diffusion process does not only allow increasing heat values for set-
ting transitivity links but it may also happen at directed edges. The main rea-
son is that Kg is expressed in terms of an undirected attributed graph given
by W even for non-attributed strongly connected and aperiodic digraphs.

4 Heat Flow - Thermodynamic Depth Complexity

The application of thermodynamic depth (TD) to characterize the complexity
of directed graphs demands the formal specification of the micro-states whose
history leads to the macro-state (of the network). Here we define such micro-
states in terms of expansion subgraphs.

Let G = (V, E) with |V| = n. Then the directed history of a node i € V
is hi(G) = {e(i),e%(i)),...,eP(i)} where: e(i) C G is the first-order expansion
subgraph given by ¢ and all j : i — j. If there are nodes j also satisfying 7 — 4
then these edges are included. If node i is a sink then e(i) = i. Similarly e?(i) =
e(e(i)) € G is the second-order erpansion consisting on j — z : j € Vo), 2 &
Ve(s), including also z — j if these edges exists and j — z. This process continues
until p cannot be increased. If G is strongly connected eP (i) = G, otherwise eP(7)
is the strongly connected component to which 4 belongs.

Every h;(G) defines a different causal trajectory which may lead to G it-
self, if it is strongly connected, or to one of its strongly connected components
otherwise. Thus, in terms of TD the full graph G or the union of its strongly
connected components is the macro-state (macroscopic state). The depth of such
macro-states relies on the variability of the causal trajectories leading to them.
The higher the variability, the more complex it is to explain how the macro-
state is reached and the deeper is this state. Therefore, in order to characterize
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each trajectory we combine the heat flow complexities of its expansion sub-
graphs by means of defining minimal enclosing Bregman balls (MEBB) [I8].
Here we use the I-Kullback-Leibler (I-KL) Bregman divergence between traces
fand g: Dp(fllg) = Z?Zl filog gz - Z?Zl fi+ Z?Zl gi with convex generator
F(f) = Z?:l(fi log fi — fi).

Given h;(G), the heat flow complexity f; = f(e'(i)) for the ¢ — th expan-
sion of i, a generator F' and a Bregman divergence Dp, the causal trajectory
leading to G (or one of its strongly connected components) from i is charac-
terized by the center ¢; € R? and radius r; € R of the MEBB B¢ = {fi €
X : Dp(c||ft) < ri}.Solving for the center and radius implies finding ¢* and
r* minimizing r subject to Dp(c;||fi) < r ¥Vt € X with |X| = T. Considering
the Lagrange multipliers oy we have that ¢* = VﬁlF(Zthl ar ftVF(ft)). The
efficient algorithm in [I8] estimates both the center and multipliers. This idea is
closely related to Core Vector Machines [19], and it is interesting to focus on the
non-zero multipliers (and their support vectors) used to compute the optimal
radius. More precisely, the multipliers define a convex combination and we have
ar x Dp(c*||ft), and the radius is simply chosen as: r* = maxq,,~0 Dr(c*||ft).

Given the directed graph G = (V,E), with |V| = n and all the n pairs
(¢i,14), the heat flow-thermodynamic depth complezity of G is characterized by
the MEBB B¢" = {¢; € &; : Dp(cl||c;) < r}. As a result, the TD depth of the
directed graph is given by D(G) = r. This definition of depth is highly consistent
with summarizing node histories with second-order variability operators to find
a global causal trajectory which is as tightly bounded as possible.

5 Experiments: Analysis of Language Complexity

We analyse networks extracted from the adjacency of words for different lan-
guages. We used a subset of the parallel corpora published in the Official Jour-
nal of the European Union. We used 100,000 lines of text from each language,
all of them corresponding to the same text (human translation). The languages
included in this study are: Bulgarian (BG), Czech (CS), Danish (DA), German
(DE), Greek (EL), English (EN), Spanish (ES), Estonian (ET), Finnish (FI),
French (FR), Hungarian (HU), Italian (IT), Lithuanian (LT), Latvian (LV),
Maltese (MT), Dutch (NL), Polish (PL), Portuguese (PT), Slovak (SK), Slovene
(SL) and Swedish (SV).

The directed adjacency graph represent words which appear consecutively in
a text. We take the words as they appear in the text (surface form) and not
only their lemmas. In this way we retain morphology, which imposes different
restrictions in each language. In the graphs we construct the edges commencing
from each node (word) V; connect to the words which follow V;. Thus a language
with no restrictions is represented by a fully connected graph. We also take into
account the frequency of each connection occurring in the corpus, and we store
this information as attributes for the directed edges. This means that we give
a greater importance to those adjacencies between words which are used more
frequently (in the corpus). Although we do not store the frequency of each word
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Degree distribution Coverage ratio and hermodnynamic depth
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Fig. 1. Left: Log-log plot of the degree distribution of three languages (MT, FR, ES).
The remaining languages are represented as well. All distributions behave in a similar
way. We found no significant difference between the degree distributions of different
languages. Right: The coverage measures the amount of text covered by the n most
frequent surface forms.

in the graph representation we do use it for selecting the n most frequent words
which constitute the nodes V;.

In Fig. [lHeft we show that the classical analysis based on the degree distri-
bution is blind to differences of complexities between languages (all languages
follow a similar degree distribution). In Fig. [lright we compare the thermo-
dynamic depth for different languages and show the amount of text that was
covered by the graph of each language. Each of the graphs have n = 500 nodes
which correspond to the n most frequent surface forms. These n surfaces cover
part of the corpus of the language and the remainder of the surfaces in the corpus
are not represented by the graph because of their lower frequency. We may take
as a baseline for the complexity of a language the coverage ratio of n surface
forms. An intuitive explanation is that if all the languages had a similar number
of different lemmas in the parallel corpora, then the number of different surface
forms would depend on the morphology of each language. A simpler morphology
would enable the n surfaces to cover a larger amount of text than that covered
by a rich morphology. This baseline does not capture all the subtle complexities
of the network formed by the adjacency relation between words. The bar plot
shows that there are some languages which do have the same tendencies both
for thermodynamic depth and coverage. This is not the case of FR and MT.

6 Conclusions and Future Work

In this work we extend the heat-diffusion TD initially designed for unattributed
undirected graphs to digraphs. We analyze the Laplacian operator used to that
end and the consequences of using it to compute the heat flow. We enunciate
several properties of heat diffusion traces in digraphs. In our experiments we
compute the complexity of several languages and find differences that are blind
to degree distribution analysis. Our future work includes the formal proof of the
properties and the exploration of other graph-based representations of languages.
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