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Preface

The joint IAPR International Workshops on Structural and Syntactic Pattern
Recognition (SSPR 2012) and Statistical Techniques in Pattern Recognition
(SPR 2012) were held at Miya-jima Itsukushima, Hiroshima, during November
7–9, 2012. These were, respectively, the 14th and 9th editions of the SSPR and
SPR workshops. This joint event is biannually organized by Technical Committee
1 (Statistical Pattern Recognition Technique) and Technical Committee 2 (Struc-
tural and Syntactical Pattern Recognition) of the International Association of
Pattern Recognition (IAPR), and held in conjunction with the International
Conference on Pattern Recognition (ICPR). This year the 21st ICPR was held
during November 11–15, 2012, at the Tsukuba International Congress Center,
Tsukuba, Japan. As is now tradition, during the SPR workshop the Pierre De-
vijver Award recipient presents an invited lecture. This year the Pierre Devijver
Award winner was Professor George Nagy from Rensselaer Polytechnic Institute
in Troy, USA. The workshop also contained invited talks by Ales Leonardis from
the University of Birmingham and Kenichi Kanatani from Okayama University.

In 2012 the joint SSPR and SPR Workshops were co-hosted by the pattern
recognition research groups from four Japanese universities, namely, Hokkaido
University, Tohoku University, Hiroshima University, and Chiba University. The
Special Interest Group of Pattern Recognition and Media Understanding (SIG
PRMU, formerly SIG PR) of the Institute of Electronic Information and Com-
munication Engineers (IEICE) of Japan offered formal support for this event.
SIG PRMU(PR) is one of the oldest communities for pattern recognition in the
world, dating back to the 1960s. Interestingly, the origins of the Principal Com-
ponent Analysis technique now universally used in pattern recognition can be
traced back to independent early work by Taizo Iijima in 1963 at the former
Electrotechnical Laboratory of MITI and Satosi Watanabe in 1962, from the
University of Hawaii. Today PCA is an indispensable tool in pattern recognition
that has recently been extended to give both sparse and kernel methods, provid-
ing powerful new tools for data reduction. In the 1970s basic methodology from
structural and syntactical pattern recognition was used in a national project
concerned with “Kanji” (Chinese characters used in Japanese context) character
recognition, and the results presented and discussed at a historically significant
meeting of SIG PR. Based on this long tradition of pattern recognition in Japan,
we welcomed SS+SPR 2012 at Miyajima.

There were 120 papers submitted to the joint workshops, of which we accepted
80 papers from 18 countries. We thank the members of the international Program
Committee for their thoughtful reviews, which led to the interesting and varied
set of papers contained within this volume.

We gratefully acknowledge the financial support from the Institute of Media
and Information Technology, Chiba University, and from Chiba University. We
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also acknowledge valuable support from Hokkaido University, Tohoku University,
Hiroshima University, and the Special Interest Group of Pattern Recognition and
Media Understanding in Institute of Electronic Information and Communication
Engineers of Japan. We gratefully extend our thanks to Takio Kurita and Toru
Tamaki for their help with the local organization in Hiroshima. Without their
assistance, the workshops at Hiroshima would not have been possible. Finally,
we thank Hayato Itoh, Shun Inagaki, Fumiki Sekiya, and Ken Nobehara for their
invaluable help in assembling this volume.

November 2012 Georgy L. Gimel’ farb
Edwin Hancock

Atsushi Imiya
Mineichi Kudo
Arjan Kuijper

Shinichiro Omachi
Terry Windeatt

Keiji Yamada
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Sébastien Bougleux, François-Xavier Dupé, Luc Brun, and
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Albert Solé-Ribalta, Xavier Cortés, and Francesc Serratosa

Improving Fuzzy Multilevel Graph Embedding through Feature
Selection Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Muhammad Muzzamil Luqman, Jean Yves Ramel, and Josep Lladós

Clustering

Dynamic Learning of SCRF for Feature Selection and Classification of
Hyperspectral Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Ping Zhong, Zhiming Qian, and Runsheng Wang

Entropic Selection of Histogram Features for Efficient Classification . . . . 264
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Benoit Gaüzère, Makoto Hasegawa, Luc Brun, and Salvatore Tabbone

Modeling Spoken Dialog Systems under the Interactive Pattern
Recognition Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

M. Inés Torres, Jose Miguel Bened́ı, Raquel Justo, and Fabrizio Ghigi



XVI Table of Contents

Hierarchical Graph Representation for Symbol Spotting in Graphical
Document Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang, and Josep Lladós

Compact Form of the Pseudo–inverse Matrix in the Approximation of
a Star Graph Using the Conductance Electrical Model (CEM) . . . . . . . . . 539

Manuel Igelmo and Alberto Sanfeliu

A Heuristic Based on the Intrinsic Dimensionality for Reducing the
Number of Cyclic DTW Comparisons in Shape Classification and
Retrieval Using AESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Vicente Palazón-González and Andrés Marzal
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Estimation, Learning, and Adaptation: 
Systems That Improve with Use 

George Nagy 

RPI, Troy, NY 12180, USA 

Abstract. The accuracy of automated classification (labeling) of single patterns, 
especially printed, hand-printed, or handwritten characters, has leveled off.  
Further gains in accuracy require classifying sequences of patterns. Linguistic 
context, already widely used, relies on 1-D lexical and syntactic constraints.  
Style-constrained classification exploits the shape-similarity of sets of  
same-source (isogenous) characters of either the same or different classes. For 
understanding tables and forms, 2-D structural and relational constraints are 
necessary. Applications of pattern recognition that do not exceed the limits  
of human senses and cognition can benefit from green interaction wherein  
operator corrections are recycled to the classifier.  

Keywords: Devijver, adaptive classification, style consistency, tables,  
green interaction. 

1 Introduction 

Pierre Devijver and I shared several interests – nearest neighbors, Delaunay triangula-
tion, clustering, connected components, error estimation, and context. I have dabbled 
in computational geometry, computer-aided design, remote sensing, and geographical 
information systems. However, most of my studies – and those of my students – have 
been devoted to document image analysis and to one of its fundamental components, 
character recognition.  

The fact that research on character recognition has contributed so much to pattern 
recognition and machine learning cannot be attributed mainly to our desire to live in a 
paperless world. Character recognition is a limitless field of research in SPR because 
of the wealth of relationships induced by messages conveyed through sequences of 
visually recognizable patterns characterized by multi-dimensional feature vectors to 
be classified into possibly hierarchical classes with minimum error or cost. One can 
investigate and model the statistical distributions of individual features, of all the 
features of a single sample, and the relationships between the features of multiple 
patterns and class variables. Any of the above patterns may consist of a single stroke, 
a single letter or numeral, part of a word, or a whole word, page, or document. The 
various models used or proposed in character recognition can be represented concise-
ly by Bayesian networks [1].  
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If this paper fails to conform to some rules, I claim the Senior Citizens’ Exemption. 
First I shall reminisce about Pierre Devijver and his technical legacy. Then I shall 
ruminate about some of my own hobby horses, including a few whose connection 
with statistical pattern recognition may be less than obvious. Table processing, for 
example, may fit better under “syntactic and structural.” The conclusions mention 
some developments that I did not anticipate. 

The reader will find no formulas or experimental results herein. Since all of what I 
recount has already been published – some of it more than once – I keep to a bird’s 
eye view. Details can be found in the references cited, or in the references cited in 
those references. 

2 Pierre Devijver 

Pierre Devijver was a man of many accomplishments, and I am honored to have a 
chance to talk about my favorite topic, statistical pattern recognition, under his aegis. 
I had occasion to meet Pierre at several conferences where our similar technical inter-
ests and a predilection for lunch-time walks promoted conversation.  (If I had known 
that he was a marathon runner I would have worried about those long walks with 
him.)  

I missed the 1973 ICPR in Washington DC where Pierre first introduced his ideas 
about the relationship of the Bayes Risk to the Mean Square Error [2]. He published 
an article on error bounds the following year in the IEEE Transactions on Computers 
(where the best papers on pattern recognition were published before PAMI came 
along) [3]. So even before I ever met him I had studied some of his work. Later, when 
I taught pattern recognition and document image processing at RPI, I benefited a great 
deal from his and Joseph Kittler’s rigorous text [4], which includes some of their re-
sults on the bias and variance of k-NN based error estimates. I still return to their 
lucid presentation of probabilistic distance measures.  

I know that Pierre and I interacted at the 1980 Pattern Recognition in Practice 
workshop organized by Edzard Gelsema† and Laveen Kanal in Amsterdam. We both 
presented papers at the ICPR earlier that year in Miami Beach, but I don’t recall any 
conversation between us. I also cannot remember any specific discussion at the 1984 
ICPR in Montreal. By then Pierre was vice-president of IAPR, so he must have spent 
any time left after the technical sessions at committee meetings. In spite of his consci-
entious work for IAPR, the following examples show that he found time for remarka-
ble technical contributions. 

2.1 Connected Components 

For many years the Devijver-Ronse monograph on Connected Component Detection 
was the only book on the subject. It expounded efficient disk access while tracing a 
CC [5]. Pierre foresaw that CC detection would be a cornerstone of document image 
analysis even though at the time only a small swath of a scanned page would fit into 
primary memory. 
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2.2 Markov Algorithms 

In 1966, working under first-order Markov Chain assumptions, Joseph Raviv devised 
an iterative algorithm to convert the information from feature vectors of preceding 
patterns into the prior probability for the current pattern by using bigram and trigram 
class-transition probability tables. At the 1984 ICPR, Pierre extended this to take into 
account the information from any number of succeeding patterns by adding an itera-
tive backward pass [6,]. He subsequently improved the numerical stability of Baum’s 
HMM training algorithm by computing joint rather than conditional probabilities [7].  

Already then his interest lay in Markov meshes and MRFs for image processing, so 
he avoided any assumptions that applied only to 1-D. I wish that Pierre had completed 
his studies of MRFs a few years earlier, when my UNL students and I were struggling 
to set appropriate constraints on causal generation of 2-D Markov fields. Pierre’s deep 
insights would have been invaluable. 

2.3 Nearest Neighbors 

As Godfried Toussaint repeatedly demonstrated, statistical pattern recognition and com-
putational geometry mix well. The decision boundaries of a nearest neighbor classifier 
are a subset of the edges of its Voronoi diagram in feature space. The Voronoi diagram, 
in turn, can be computed rapidly from its dual Delaunay triangulation. One way to speed 
up nearest-neighbor classification is by removing from the reference set all the patterns 
with same-class Voronoi Neighbors. However, removing a pattern changes both the 
Voronoi diagram and the underlying Delaunay triangulation. Pierre devised fast algo-
rithms for dynamic Delaunay triangulation in high-dimensions [8]. He also derived 
bounds on the fraction of the training set that can be harmlessly edited out. 

Pierre’s research included methods of estimating the error rate on the test set from 
results on the training set (still a hot topic), feature extraction, the relationship be-
tween clustering and mixture identification, and applications ranging from tumor 
detection to astronomy. This sketch of his contributions is far too superficial to do 
justice to his pervasive and persuasive ideas. 

3 My Own Trail 

Before I get into even a modicum of technicalities, I wish to acknowledge what good 
fortune I had in my collaborators and co-authors, and how much I learned from  
my students (some regrettably already retired). One of the best things about the field 
of pattern recognition is that it has attracted such bright, generous, and convivial 
scholars. 

3.1 Feature Extraction 

My first graduate student, at the Université de Montréal, was Kamal Abdali. I set  
him to solve the optimal feature extraction problem because nobody knew yet about 
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NP-completeness. My last student, Xiaoli Zhang, confirmed my belief that the class-
conditional statistical dependence structure (e.g., the covariance matrix) of features 
depends far more on the chosen feature set than on the data itself [9]. NP-complete it 
may be, but there is more to be done. 

3.2 Unsupervised Classification 

There is no such thing as unsupervised learning. Children learn without being explic-
itly taught, but only because they emulate the behavior of respected teachers (grown-
up or other children). They often get to surpass the abilities of those whom they  
imitate. In 1965 we programmed a classifier to trust the labels assigned to scanned 
printed characters by an off-the-shelf journeyman classifier, and to use them for its 
own training set. On the data that it was retrained on, this apprentice classifier turned 
out to be better than the original classifier, and so we used it as a role model for still 
another classifier. To our surprise and delight, the error rate kept dropping during 
several iterations and then flattened out [10,11].  Almost three decades later, these 
results impressed Henry Baird, so we tried “mean adaptation” with his own features 
and his then humungous 100-font dataset [12]. Henry concluded that the expected 
gain is considerable, while the downside risk was small. 

Ho and Agrawala had pointed out earlier that we were lucky because the many da-
tasets on which we had experimented all fell under restrictive constraints [13,14]. 
With features crafted by Hiromichi Fujisawa and Cheng-Lin Liu of the Hitachi Cen-
tral Research Laboratory, Harsha Veeramachaneni used Expectation Maximization to 
re-estimate both the means and the class-covariance matrices using classifier-assigned 
labels. This turned out even luckier (at least on NIST hand-printed digits) than just 
mean adaptation [15]. 

We have not yet found necessary and sufficient conditions that would guarantee 
that adaptation will reduce the error on a set of same-source samples. Is there a prin-
cipled way to predict the results of adaptation? A place to start might be Castelli’s and 
Cover’s insights on the relative values of labeled and unlabeled samples. 

3.3 Prototype Based Text-Image Compression 

Any clustering method can be viewed as data compression with each cluster prototype 
serving as surrogate for all the patterns in that cluster. In 1970 or thereabouts, Pete 
Welch, my boss’s boss at IBM Research, suggested that we apply the bitmap cluster-
ing methods that we had developed earlier for Chinese character recognition [16] to 
image data compression. It worked like a charm! We could not patent it because  
of a Government anti-monopoly suit, so IBM waited four years before letting us  
publish it [17].  

Our method eventually resurfaced in DjVu and JBIG, but with a critical improve-
ment that we had missed. We transmitted only run-length coded prototypes, or their 
(compressed) id and position. Subsequent researchers encoded the difference between 
the prototype and the actual glyph, thereby rendering the scheme lossless. Current 
methods are nearing the theoretical limits. 
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3.4 Decision Trees 

Although I worked at IBM on several OCR projects, including the three million dollar  
reader for the Social Security Administration, the only algorithm that made it into a 
product was a probabilistic decision tree for isolated bitmapped characters [18]. Dick 
Casey developed most of the theory, and I programmed it up in APL during a summer 
at the IBM San Jose Research Center. After everything was reprogrammed efficiently 
in Japan it became the IBM TextReader. I still have copies of the shrink-wrapped 
floppies. 

3.5 Language Context 

Both children and adults expand their vocabulary by guessing and refining the mean-
ing of unknown words or phrases according to what makes sense time after time. If in 
a foreign land most street signs end in a particular string, it is likely to mean “street” 
or ”avenue”. Early proponents of the use of language context in pattern recognition 
include Allen Hanson, Ed Riseman†, Joe Raviv†, Godfried Toussaint, and Ching 
Suen. 

Meanings can be assigned to unknown alphabetic glyphs so that they form words 
that are part of the language. Substitution ciphers have been solved this way since at 
least the days of the Roman Empire. I have participated in three initiatives to auto-
mate this process and apply it to scanned text. 

In a first attempt, Dick Casey and I clustered bitmaps of scanned single-case Eng-
lish text in one of four different typefaces. We solved the resulting cryptograms by 
matching the frequencies of cluster numbers and bigrams of cluster numbers to the 
known letter unigram and bigram frequencies of the English language [19]. We were 
very pleased when Scientific American asked us to describe our methods in laymen’s 
terms [20].  Twenty years later at the University of Nebraska, we improved the 
scheme by recursive matching of trial assignments against a lexicon of a few hundred 
words instead of letter n-grams [21]. In another ten years, Tin Ho at Bell Labs used a 
larger lexicon and improved the matching scheme. We demonstrated “OCR with no 
shape training” on Spitz glyphs at the Barcelona ICPR [22].  

3.6 Style 

At the 1992 ICPR I proposed exploiting the family resemblance of same-font letters 
and numerals for recognizing individually ambiguous characters when they appeared 
in their usual company [23]. I called this notion spatial context. During his doctoral 
research Prateek Sarkar dubbed the distinction between feature distributions originat-
ing from patterns from isogenous typeface, printer, writer or speaker, and distribu-
tions from patterns from heterogeneous sources, as style. Harsha Veeramachaneni 
explained style as follows:  “the way Alice writes 1 helps predict the way she will 
write 7.” Applying these concepts to fields of same-source patterns may not be so 
difficult, but defining them formally requires a lot of notation and subscripts. 
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A critical property of style context defined by Harsha is order independence, 
known in probability theory as exchangeability [24]. Pure style implies that the prob-
ability of any pattern field given the field class is equal to the probability of any per-
mutation of that pattern field given the field class subjected to the same permutation. 
Order independence vitiates most types of language context, but style and multi-
pattern language context can still be combined. 

Another useful distinction can be made between intra-class style and inter-class 
style. In intra-class style, an “e” in a field of patterns to be recognized is always in the 
same font, or was written by the same person. One might, however, find this “e” next 
to a “c” of a different font or by a different writer. So there is some statistical depend-
ence between the feature distributions of all the patterns of the same class, but no way 
to tell anything about a pattern of class E from a pattern of class C. The inter-class 
constraint is more rigid: samples from all the classes must be isogenous. Therefore the 
features of patterns even of different classes exhibit observable statistical dependence. 
Most of the adaptive classifiers discussed above require only intra-class style. The 
style classifiers described below make use of inter-class style. 

Prateek Sarkar derived algorithms for optimal classification of style-consistent 
fields of arbitrary length [25]. He posited that the features of each pattern, while de-
pendent on the features of other patterns in the field because of the same-style con-
straint, were independent of the classes of the other patterns. In other words, every 
“e” in the field looks the same, regardless of whether the field spells “element” or 
“dependent”. He formulated several ways of combining Gaussians as mixture distri-
butions to model the class-and-style-conditional probabilities via weighting factors 
that depend on both class and style. In terms of hand print, his method can classify 
fields of never-before-seen hybrid Ann-Jen script after training only on separate fields 
of Ann’s, Bonnie’s, Dave’s and Jen’s writing. 

Because the computation of the optimal maximum likelihood assignment requires 
lengthy sum-of-products-of-sums computations, Prateek devised a top-label approxi-
mation equivalent to selecting from a set of style-specific feature classifiers the one 
that yields the highest field-feature likelihood. He trained his classifiers with a mix-
ture of isogenous (isofont) fields, and tested them on isogenous fields of lengths dif-
ferent from those of the training set. 

Harsha Veeramachaneni considered a continuous distribution of Gaussians instead 
of mixtures of a predetermined fixed number.  His insight was that the posterior  
distribution of a field of any length can be determined from the cross-covariance  
matrices of only pairs of same-source pattern feature vectors. This led to quadratic 
field classification with computation proportional rather than exponential with field 
length [26]. 

From the perspective of style-constrained field classification, the field of an  
adaptive classifier encompasses the entire set of isogenous data rather than a fixed 
number of patterns. This observation may explain why some adaptive classifiers ex-
ploit only intra-class consistency. On short fields, on the other hand, more powerful 
and more computation-intensive classifiers can take full benefit of inter-class style 
consistency.  
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In practical OCR applications, style-constrained classification aims at scenarios 
similar to font or writer recognition. Both of these are effective tools for decreasing 
the error rate by substituting a single-font or single-writer classifier for a more error-
prone omnifont or omni-writer classifier. In theory, however, style classifiers should 
achieve a lower error rate because they do not “waste” any statistical information on 
font or writer identification. In some applications, however, it is desirable to identify 
font or writer in addition to producing a transcription. We have also pursued, with 
mixed, success, variations of style classification based on nearest-neighbors and  
support-vector machines. 

4 Tables 

We began our studies of tables twenty years ago with foreign language tables that 
gave us a chance to see how much information can be derived from table structure 
without lexical help. Since then mainstream table recognition has progressed from 
scanned paper tables to computer-generated HTML and PDF tables. All of this work 
has been part of a long-standing and most enjoyable collaboration with Dave Embley 
(BYU), Sharad Seth (UNL), Moorthy Krishnamoorthy (RPI) and Dan Lopresti 
(Lehigh), often under the aegis  of TANGO [27]. We have written far too many sur-
veys and reports, especially considering how often our views have shifted, so rather 
than reciting progressive steps I just list some articles of faith (for which I take sole 
responsibility and which I may retract next year). 

• The underlying grid of a table reveals a 2-D indexing scheme. This geometric in-
dexing is interwoven with possibly higher-dimensional, logical “Wang” categories 
which can be interpreted as geometric indexing in a higher-dimensional space. 

• The essential task of table analysis is to establish the relationship of column and 
row headers to individual data cells. This is trickier than might first appear because 
of the possible occurrence of hierarchical headers, spanning cells and headers in 
the row stub, and because the appearance of a table depends on the rendering pro-
gram as well as the file containing the table Additional tasks require extracting 
metadata (table caption, title, footnote references, footnotes, aggregates, units, …). 

• Tables are distinguished from forms because tables are meant to disseminate in-
formation rather than collect it. The distinction is often obvious, but a filled-out 
spreadsheet might be either a table or a form. In most forms individual field cap-
tions take the place of 2-D indexing. Their structure can be represented by graphs. 

• Tables are distinguished from lists by 2-D indexing of data cells by row and col-
umn headers.. Even ordered lists like telephone books require a search to locate a 
cell. The table vs. list question arises only when nested lists of uniform length are 
laid out on a grid, or when table ill-formed table headers preclude unique indexing.  

• Tables prepared for human readers are different from relational tables. The design-
er of a relational table must determine what is an attribute and what is a key, and 
orient the table accordingly, with attributes on top. In contrast, the orientation of 
tables prepared for hardcopy or web publication is usually determined by matching 
the number of row and column headers to the page or display format. Therefore in 
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tables of Canadian statistics the column headers are often provinces, while in tables 
of US statistics the states are usually row headers. Visual tables are essentially 
symmetric with respect to rows and columns, but relational tables are not. This 
does not preclude the transformation of visual tables into relational tables. 

5 Green Interaction 

CAVIAR (Computer Assisted Visual InterActive Recognition) for flowers is an  
attempt at efficient human-computer interaction [28]. When a flower image is pre-
sented, the program extracts visually verifiable features (like the shape or number of 
petals), and classifies the flower into one of a hundred or so classes. If the user is 
unsatisfied, she or he can edit the features and reject or approve the classification 
according to the resemblance of the flower to reference samples. The classifier, in 
turn, adapts its parameters using what it learns from the user. Both the computer and 
the user improve with time. A most enjoyable part of this project was collecting over 
600 wildflower samples.  

In OCR, a perennial problem is obtaining large-enough labeled training sets. Stud-
ies have shown that classification on the test set improves even after tens or hundreds 
of thousands of training samples. The output of an OCR system, especially in error 
intolerant applications like medical or financial form entry, is often routed to opera-
tors for verification or correction. The best possible training set is the stream of data 
encountered during actual operation. Therefore all final corrected labels should  
be associated with the scanned patterns and routed back periodically to retrain the 
classifier.  

Green interaction means that expensive and time-consuming human effort devoted 
to approving or correcting the output of any pattern recognition system should not be 
wasted. More on this at ICPR 2012. 

6 Conclusion 

We miss Pierre Devijver. We are fortunate that he left behind so much to think about. 
Claims made ever since Pierre and I were starting out, to the effect that OCR was 

essentially a solved problem, turned out to be uninformed. I had the good luck to 
work on a variety of related problems with perspicacious colleagues and students. The 
study of each problem revealed new problems begging for solution. Writing surveys 
has shown me many more. It is like a Garden of Eden where the quandary is which 
fruit to taste first. Fortunately there are still some sweet low-hanging fruit left. 

Progress in some areas surprises me. In 1968, when we worked on hand-printed 
numeral recognition, I was sure that writer-independent cursive script recognition was 
a pipe dream. Speech and face recognition also work better than I expected. I underes-
timated the scope and power of Expectation Maximization (but eventually made a 
strenuous effort to understand it more thoroughly). While I did predict in a 1983 
scanner survey that camera-based systems would be right along, I never dreamed  
that so much image processing and recognition software would be crammed into a 
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KitKat-sized camera cell phone. I was skeptical that Wikipedia could become a useful 
and tolerably reliable source of information about pattern recognition. I hope that 
there are many more equally pleasant surprises coming down the pike! 

One of my most agreeable duties from 1967 till 2007 was teaching a graduate 
course in pattern recognition. I always offered students completing the course with at 
least a B a lifetime guarantee to make myself available for any technical question that 
they might want to discuss. Some have taken me up on it. Now that I am retired, I 
have gone back to being a full time student. In addition to the occasional déjà vu, I 
look forward to learning much new material during SSSPR and ICPR 2012. 
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Abstract. We overview techniques for optimal geometric estimation
from noisy observations for computer vision applications. We first de-
scribe estimation techniques based on minimization of given cost func-
tions: least squares (LS), maximum likelihood (ML), which includes
reprojection error minimization (Gold Standard) as a special case, and
Sampson error minimization. We then formulate estimation techniques
not based on minimization of any cost function: iterative reweight, renor-
malization, and hyper-renormalization. Showing numerical examples, we
conclude that hyper-renormalization is robust to noise and currently is
the best method.

1 Introduction

One of the most important tasks of computer vision is to compute the 2-D and
3-D shapes of objects exploiting geometric constraints , by which we mean prop-
erties that can be described by relatively simple equations such as the objects
being lines or planes, their being parallel or orthogonal, and the camera imag-
ing geometry being perspective projection. We call the inference based on such
geometric constraints geometric estimation. In the presence of noise, however,
the assumed constraints do not exactly hold. To do geometric estimation “op-
timally” in the presence of noise, a lot of efforts have been made since 1980s
by many researchers. This paper summarizes that history and reports the latest
results.

2 Preliminaries

2.1 Definition of Geometric Estimation

The geometric estimation problem we consider here is defined as follows. We
observe some quantity x (a vector), which is assumed to satisfy in the absence
of noise an equation

F (x; θ) = 0, (1)

parameterized by unknown vector θ. This equation is called the geometric con-
straint . Our task is to estimate the parameter θ from noisy instances xα, α = 1,
..., N , of x. Many computer vision problems are formulated in this way, and we
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Fig. 1. (a) Line fitting. (b) Ellipse fitting. (c) Fundamental matrix computation.

can compute from the estimated θ the positions, the shapes, and the motions of
the objects we are viewing. In many problems, we can reparameterize the prob-
lem so that the constraint is liner in the parameter θ (but generally nonlinear
in the data x). Then, Eq. (1) has the form

(ξ(x), θ) = 0, (2)

where ξ(x) is a vector-valued nonlinear function of x. In this paper, we denote
the inner product of vectors a and b by (a, b). Equation (2) implies that the
scale of θ is indeterminate, so we hereafter normalize θ to unit norm: ‖θ‖ = 1.

Example 1. (Line fitting) To a given point sequence (xα, yα), α = 1, ..., N , we
fit a line

Ax+By + C = 0. (3)

(Fig. 1(a).) If we define

ξ(x, y) ≡ (x, y, 1)�, θ ≡ (A, B, C)�, (4)

the line equation is written as

(ξ(x, y), θ) = 0. (5)

Example 2. (Ellipse fitting) To a given point sequence (xα, yα), α = 1, ..., N ,
we fit an ellipse

Ax2 + 2Bxy + Cy2 + 2(Dx+ Ey) + F = 0. (6)

(Fig. 1(b).) If we define

ξ(x, y) ≡ (x2, 2xy, y2, 2x, 2y, 1)�, θ ≡ (A, B, C, D, E, F )�, (7)

the ellipse equation is written as

(ξ(x, y), θ) = 0. (8)

Example 3. (Fundamental matrix computation) Corresponding points (x, y) and
(x′, y′) in two images of the same 3-D scene taken from different positions satisfy
the epipolar equation [8]
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(

⎛⎝xy
1

⎞⎠ ,F
⎛⎝x′y′

1

⎞⎠) = 0, (9)

where F is called the fundamental matrix , from which we can compute the
camera positions and the 3-D structure of the scene [8] (Fig. 1(c)). If we define

ξ(x, y, x′, y′) ≡ (xx′, xy′, x, yx′, yy′, y, x′, y′, 1)�, (10)

θ ≡ (F11, F12, F13, F21, F22, F23, F31, F32, F33)
�, (11)

the epipolar equation is written as

(ξ(x, y, x′, y′), θ) = 0. (12)

2.2 Modeling of Noise

In the context of image analysis, “noise” means uncertainty of image processing
operations , rather than random fluctuations over time or space as commonly
understood in physics and communications. It reflects the fact that standard
image processing operations such as feature extraction and edge detection are
not perfect and do not necessarily output exactly what we are looking for. We
model this uncertainty in statistical terms: the observed value xα is regarded
as a perturbation from its true value x̄α by an independent random Gaussian
variable Δxα of mean 0 and covariance matrix V [xα]. Furthermore, V [xα] is
assumed to be known up to scale. Namely, we write it as

V [xα] = σ2V0[xα] (13)

for some unknown constant σ, which we call the noise level . The matrix V0[xα],
which we call the normalized covariance matrix , describes the orientation de-
pendence of uncertainty in relative terms and is assumed to be known. The
separation of V [xα] into σ

2 and V0[xα] is merely a matter of convenience; there
is no fixed rule. This convention is motivated by the fact that optimal estimation
can be done, as shown shortly, only from the knowledge of V0[xα].

If the observation xα is regarded as a random variable, its nonlinear mapping
ξ(xα), which we write ξα for short, is also a random variable. Its covariance
matrix V [ξα] = σ2V0[ξα] is evaluated to a first approximation in terms of the
Jacobi matrix ∂ξ/∂x of the mapping ξ(x) as follows:

V0[ξα] =
∂ξ

∂x

∣∣∣∣
x=x̄α

V0[xα]
∂ξ

∂x

∣∣∣∣�
x=x̄α

. (14)

This expression contains the true value x̄α, which is replaced in actual compu-
tation by the observation xα. It has been confirmed by experiments that this
replacement does not practically affect the final result. It has also been con-
firmed that upgrading the first approximation to higher orders does not have
any practical effect.
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2.3 Geometric Models for Geometric Estimation

One of the most prominent distinctions of the geometric estimation from the tra-
ditional statistical estimation is that the starting equation, Eq. (1) (or Eq. (2)),
which we call the geometric model , only specifies the necessary constraint and
does not explain the mechanism as to how the data xα are generated. Hence,
we cannot express xα in terms of the parameter θ as an explicit function.

Another big difference is that while the traditional statistical estimation is
based on repeated observations regarded as sampled from the statistical model
(= probability density), and hence accuracy vs. the number N of observations in
the asymptotic limit N → ∞ is a major concern, geometric estimation is done
from one set of data {x1, ..., xN}. Naturally, the estimation accuracy increases
with less observation uncertainty. Hence, accuracy vs. the noise level σ in the
limit of σ → 0 is a major concern [14].

In computer vision applications, the asymptotic analysis of N → ∞ does not
have much sense, because the number of data obtained by image processing
operations is limited in number. Usually, the output of an image processing
operation is accompanied by its reliability index, and we select only those data
that have high reliability indices. If we want to increase the number of data,
we necessarily need to include those with low reliability, but they are often
misdetections. Despite the basic differences, however, two approaches exist in
both statistical and geometric estimation domains:

Minimization Approach. We choose the value θ that minimizes a specified
cost function. This is regarded as the standard for computer vision applica-
tions.

Non-minimization Approach. We compute the value θ by solving a set of
equations, called estimating equations [6], which need not be derivatives of
some function. Hence, the solution does not necessarily minimize any cost
function. In traditional statistical estimation domains, this approach is re-
garded as more general and more flexible with a possibility of yielding better
solutions than the minimization approach, but it is not widely recognized in
computer vision research.

2.4 KCR Lower Bound

For minimization or non-minimization approaches, there exists a theoretical ac-
curacy limit. We assume that the true values ξ̄α of the observations ξα satisfy
the constraint (ξ̄α, θ) = 0 for some θ. If it is estimated from the observation

{ξα}Nα=1 by some means, the estimate θ̂ is as a function θ̂({ξα}Nα=1) of {ξα}Nα=1,

called an estimator of θ. Let Δθ be its error, i.e., write θ̂ = θ+Δθ, and define
the covariance matrix of θ̂ by

V [θ̂] = E[ΔθΔθ�], (15)

where E[ · ] denotes expectation over data uncertainty. If we can assume that
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– each ξα is perturbed from its true value ξ̄α by independent Gaussian noise
of mean 0 and covariance matrix V [ξα] = σ2V0[ξα], and

– the function θ̂({ξα}Nα=1) is an unbiased estimator , i.e., E[θ̂] = θ identically
holds for whatever θ,

then the following inequality holds [3,11,12,14].

V [θ̂] � σ2

N

( 1
N

N∑
α=1

ξ̄αξ̄
�
α

(θ, V0[ξα]θ)

)−
. (16)

Here, A � B means that A −B is a positive semidefinite symmetric matrix,
and ( · )− denotes the pseudo inverse. Chernov and Lesort [3] called the right
side Eq. (16) Kanatani-Cramer-Rao (KCR) lower bound .

3 Minimization Approach

First, we overview popular geometric estimation techniques for computer vision
that are based on the minimization approach.

3.1 Least Squares (LS)

Since the true values ξ̄α of the observations ξα satisfy (ξ̄α, θ) = 0, we choose
the value θ that minimizes

J =
1

N

N∑
α=1

(ξα, θ)
2 (17)

for noisy observations ξα subject to the constraint ‖θ‖ = 1. This can also be

viewed as minimizing
∑N

α=1(ξα, θ)
2/‖θ‖2. Equation (17) can be rewritten in the

form

J =
1

N

N∑
α=1

(ξα, θ)
2 =

1

N

N∑
α=1

θ�ξαξ
�
αθ = (θ,

1

N

N∑
α=1

ξαξ
�
α︸ ︷︷ ︸

≡M

θ) = (θ,Mθ), (18)

which is a quadratic form of M . As is well known, the unit vector θ that mini-
mizes this form is given by the unit eigenvector of M for the smallest eigenvalue.

Since the sum of squares is minimized, this method is called least squares
(LS ). Equation (17) is often called the algebraic distance, so this method is also
called algebraic distance minimization. Because the solution is directly obtained
without any search, LS is widely used in many applications. However, it has
been observed that the solution has a large statistical bias. For ellipse fitting
in Example 2 (Sec. 2.1), for instance, the fitted ellipse is almost always smaller
than the true shape. For this reason, LS is not suited for accurate estimation.
However, LS is convenient for rough estimation for guiding image processing, for
the outlier-detection voting, and for initializing iterative optimization schemes.
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3.2 Maximum Likelihood (ML)

If the noise in each xα is an independent Gaussian variable of mean 0 and co-
variance matrix V [xα] = σ2V0[xα], the Mahalanobis distance of the observations
{xα} from their true values {x̄α} is

J =
1

N

N∑
α=1

(xα − x̄α, V0[xα]
−1(xα − x̄α)), (19)

and the likelihood of {xα} is written as Ce−NJ/2σ2

, where C is a normalization
constant that does not depend on x̄α or θ. Thus, maximum likelihood (ML) is
equivalent to minimizing Eq. (19) subject to the constraint

(ξ(x̄α), θ) = 0. (20)

As a special case, if the noise is homogeneous, i.e., independent of α, and
isotropic, i.e., independent of orientation, we can write V0[xα] = I (the identity),
which reduces Eq. (19) to the geometric distance

J =
1

N

N∑
α=1

‖xα − x̄α‖2. (21)

Minimizing this subject to Eq. (20) is called geometric distance minimization by
computer vision researchers and total least squares (TLS ) by numerical analysis
researchers1. If x̄α represents the projection of the assumed 3-D structure onto
the image plane and xα is its actually observed positions, Eq. (21) is called the
reprojection error . Minimizing it subject to Eq. (20) is often called reprojection
error minimization.

Geometrically, ML can be interpreted to be fitting to N points xα in the data
space the parameterized hypersurface (ξ(x), θ) = 0 by adjusting θ, where the
discrepancy of the points from the surface is measured not by the Euclid distance
but by the Mahalanobis distance of Eq. (19), which inversely weights the data by
their covariances, thereby imposing heavier penalties on the points with higher
certainty. In the field of computer vision, this approach is widely regarded as
the ultimate method and often called the Gold Standard [8]. However, this is a
highly nonlinear optimization problem and difficult to solve by a direct means.
The difficulty stems from the fact that Eq. (20) is an implicit function of x̄α. If
we could solve Eq. (20) for x̄α to express it as an explicit function of θ, we could
substitute it into Eq. (19) to obtain an unconstrained optimization problem for
θ alone, but this is generally not possible. In Examples 1 (line fitting), 2 (ellipse
fitting), and 3 (fundamental matrix computation) in Sec. 2.1, for instance, we
cannot express (x, y) or (x, y, x′, y′) in terms of θ.

1 If the data xα are 2-D positions xα = (xα, yα) and the y-coordinate alone undergoes
noise, we only need to minimize (1/N)

∑N
α=1(yα − ȳα)

2. In general, if only some
components of the data xα contain noise, the problem is called partial least squares
(PLS).
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3.3 Bundle Adjustment

A standard technique for minimizing Eq. (19) subject to Eq. (20) is to introduce
a problem-dependent auxiliary variable to each Xα and express x̄α in terms of
Xα and θ in the form

x̄α = x̄α(Xα, θ). (22)

Then, we substitute this into Eq. (19) and minimize

J({Xα}Nα=1, θ) =
1

N

N∑
α=1

(xα − x̄α(Xα, θ), V0[xα]
−1(xα − x̄α(Xα, θ))) (23)

over the joint parameter space of {Xα}Nα=1 and θ.
A typical example of this approach is 3-D reconstruction from multiple images,

for which xα has the form of xα = (xα, yα, x
′
α, y

′
α, ..., x

′′
α, y

′′
α), concatenating the

projections (xα, yα), (x
′
α, y

′
α), ..., (x

′′
α, y

′′
α) of the αth point in the scene onto the

images. The unknown parameter θ specifies the state of all the cameras, consist-
ing of the extrinsic parameters (the positions and orientations) and the intrinsic
parameters (the focal lengths, the principal points, the aspect ratios, and the
skew angles). If we introduce the 3-D position Xα = (Xα, Yα, Zα) of each point
in the scene as the auxiliary variable, the true value x̄α of xα can be explicitly
expressed in the form x̄α(Xα, θ), which describes the image positions of the 3-D
point Xα that should be observed if the cameras have the parameter θ. Then, we
minimize the reprojection error , i.e., the discrepancy of the observed projections
ξα from the predicted projections x̄α(Xα, θ). The minimum is searched over
the entire parameter space of {Xα}Nα=1 and θ. This process is called bundle ad-
justment [23,32], a term originated from photogrammetry, meaning we “adjust”
the “bundle” of lines of sight so that they pass through the observed points in
images. The package program is available on the Web [23]. The dimension of the
parameter space is 3N + ‘the dimension of θ’, which becomes very large when
many points are observed.

This bundle adjustment approach is not limited to 3-D reconstruction from
multiple images. In Examples 1 (line fitting) and 2 (ellipse fitting) in Sec. 2.1,
for example, if we introduce the arc length sα of the true position (x̄α, ȳα) along
the line or the ellipse from a fixed point as the auxiliary variable, we can express
(xα, yα) in terms of sα and θ. Then, we minimize the resulting Mahalanobis
distance J over the entire parameter space of s1, ..., sN and θ. Instead of the arc
length sα, we can alternatively use the argument φα measured from the x-axis
[30]. A similar approach can be done for fundamental matrix computation [2].

The standard numerical technique for the search of the parameter space is
the Levenberg-Marquardt (LM ) method [27], which is a hybrid of the Gauss-
Newton iterations and the gradient descent. However, depending on the initial
value of the iterations, the search may fall into a local minimum. Various global
optimization techniques have also been studied [7]. A typical method is branch
and bound , which introduces a function that gives a lower bound of J over a given
region and divides the parameter space into small cells; those cells which have
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lower bounds that are above the tested values are removed, and other cells are
recursively subdivided [7,9]. However, the evaluation of the lower bound involves
a complicated technique, and searching the entire space requires a significant
amount of computational time.

3.4 Gaussian Approximation of Noise in the ξ-Space

The search in a high-dimensional parameter space of the bundle adjustment
approach can be avoided if we introduce Gaussian approximation to the noise
distribution in the ξ-space. If the noise in the observation xα is Gaussian, the
noise in its nonlinear transformation ξα = ξ(xα) is not strictly Gaussian, al-
though it is expected to have a Gaussian-like distribution if the noise is small. If
it is approximated to be Gaussian, the optimization computation becomes much
simpler. Suppose ξα has noise of mean 0 with the covariance matrix V [ξα] =
σ2V0[ξα] evaluated by Eq. (14). Then, the ML computation reduces to minimiz-
ing the Mahalanobis distance

J =
1

N

N∑
α=1

(ξα − ξ̄α, V0[ξα]
−1(ξα − ξ̄α)) (24)

in the ξ-space subject to the linear constraint

(ξ̄α, θ) = 0. (25)

Geometrically, this is interpreted to be fitting to N points ξα in the ξ-space the
parameterized “hyperplane” (ξ, θ) = 0 by adjusting θ, where the discrepancy of
the points from the plane is measured by the Mahalanobis distance of Eq. (24)
inversely weighted by the covariances of the data in the ξ-space. Since Eq. (25) is
now “linear” in ξ̄α, this constraint can be eliminated using Lagrange multipliers,
reducing the problem to unconstrained minimization of

J =
1

N

N∑
α=1

(ξα, θ)
2

(θ, V0[ξα]θ)
. (26)

Today, Eq. (26) is called the Sampson error [8] after the ellipse fitting scheme
introduced by P. D. Sampson [29].

3.5 Sampson Error Minimization

Various numerical techniques have been proposed for minimizing the Sampson
error in Eq. (26). The best known is the FNS (Fundamental Numerical Scheme)
of Chojnacki et al. [5], which goes as follows:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Computer the matrices

M =
1

N

N∑
α=1

Wαξαξ
�
α , L =

1

N

N∑
α=1

W 2
α(θ0, ξα)

2V0[ξα]. (27)
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3. Solve the eigenvalue problem (M −L)θ = λθ, and compute the unit eigen-
vector θ for the smallest2 eigenvalue λ.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ, (28)

and go back to Step 2.

The background of FNS is as follows. At the time of convergence, the matrices
M and L have the form

M =
1

N

N∑
α=1

ξαξ
�
α

(θ, V0[ξα]θ)
, L =

1

N

N∑
α=1

(θ, ξα)
2V0[ξα]

(θ, V0[ξα]θ)
2
. (29)

It is easily seen that the derivative of the Sampson error J in Eq. (26) is written
in terms of these matrices in the form

∇θJ = 2(M −L)θ. (30)

It can be shown that if the above iterations converge, the eigenvalue λ must be
0. Hence, the returned value θ is the solution of ∇θJ = 0.

Other methods exist for minimizing Eq. (26) including the HEIV (Het-
eroscedastic Errors-in-Variables) of Leedan and Meer [22] and Matei and Meer
[24], and the projective Gauss-Newton iterations of Kanatani and Sugaya [18];
all compute the same solution. Note that the “initial solution” obtained in the
beginning by letting Wα = 1 coincides with the LS solution described in Sec. 3.1.

3.6 Computation of the Exact ML Solution

Since the Sampson error of Eq. (26) is obtained by approximating the non-
Gaussian noise distribution in the ξ-space by a Gaussian distribution, the so-
lution does not necessarily coincide with the ML solution that minimizes the
Mahalanobis distance in Eq. (19). However, once we have obtained the solution
θ that minimizes Eq. (26), we can iteratively modify Eq. (26) by using that θ
so that Eq. (26) coincides with Eq. (19) in the end. This means that we obtain
the exact ML solution. The procedure goes as follows [21]:

1. Let J∗
0 = ∞ (a sufficiently large number), x̂α = xα, and x̃α = 0, α = 1, ...,

N .
2. Evaluate the normalized covariance matrices V0[ξ̂α] by replacing xα by x̂α

in their definition.
3. Compute the following ξ∗α:

ξ∗α = ξα +
∂ξ

∂x

∣∣∣∣
x=xα

x̃α. (31)

2 We can alternatively compute the unit eigenvector θ for the smallest eigenvalue λ in
absolute value, but it has been experimentally confirmed that convergence is faster
for computing the smallest eigenvalue [18].
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4. Compute the value θ that minimizes the modified Sampson error

J∗ =
1

N

N∑
α=1

(ξ∗α, θ)
2

(θ, V0[ξ̂α]θ)
. (32)

5. Update x̃α and x̂α as follows:

x̃α ←
(ξ∗α, θ)V0[xα]

(θ, V0[ξ̂α]θ)

∂ξ

∂x

∣∣∣∣�
x=xα

θ, x̂α ← xα − x̃α. (33)

6. Evaluate J∗ by

J∗ =
1

N

N∑
α

(x̃α, V0[xα]x̃α). (34)

If J∗ ≈ J0, return θ and stop. Else, let J0 ← J∗ and go back to Step 2.

Since the modified Sampson error in Eq. (32) has the same form as the Sampson
error in Eq. (26), we can minimize it by FNS (or other methods). According
to numerical experiments, this modification converges after four or five rounds,
yet in many practical problems the first four or five effective figures remain
unchanged [19,20]. In this sense, we can practically identify the Sampson error
minimization with the ML computation.

3.7 Hyperaccurate Correction of ML

It has been widely recognized that the Sampson error minimization solution,
which can be practically identified with the ML solution, has very high accu-
racy. However, it can be shown by detailed error analysis that the solution has
statistical bias of O(σ2) and that the magnitude of the bias can be theoreti-
cally evaluated [14]. This implies that the accuracy can be further improved by
subtracting the theoretically expected bias. This process is called hyperaccurate
correction and goes as follows [13,14]:

1. Estimate the square noise level σ2 from the computed solution θ and the
corresponding matrix M in Eq. (29) by

σ̂2 =
(θ,Mθ)

1− (n− 1)/N
, (35)

where n is the dimension of the vector θ.
2. Compute the correction term3

Δcθ=−
σ2

N
M−

n−1

N∑
α=1

Wα(eα, θ)ξα+
σ̂2

N2
M−

n−1

N∑
α=1

W 2
α(ξα,M

−
n−1V0[ξα]θ)ξα,

(36)
where eα is a vector that depends on individual problems, and M−

n−1 is the
pseudoinverse of M with truncated rank n − 1 (the smallest eigenvalue is
replaced by 0 in its spectral decomposition).

3 The first term of Eq. (36) is omitted in [13,14].
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3. Correct the ML solution θ in the form

θ ← N [θ −Δcθ], (37)

where N [ · ] is the normalization operator into unit norm (N [a] ≡ a/‖a‖).

The vector eα is 0 for many problems including line fitting (Example 1 in
Sec. 2.1) and fundamental matrix computation (Example 3 in Sec. 2.1). It is
generally 0 if multiple images are involved. A typical problem of nonzero eα is
ellipse fitting (Example 2 in Sec. 2.1), for which eα = (1, 0, 1, 0, 0, 0)�. However,
the effect is negligibly small, and the solution is practically the same if eα is
replaced by 0.

The above bias correction concerns geometric estimation based on the geomet-
ric model of Eq. (2). In statistics, on the other hand, it is known that ML entails
statistical bias in the presence of what is known as “nuisance parameters”, and
various studies exist for analyzing and removing bias in the ML solution. Okatani
and Deguchi [25,26] applied them to vision problems by introducing auxiliary
variables in the form of Eq. (22). They analyzed the relationship between the bias
and the hypersurface defined by the constraint [25] and introduced the method
of projected scores [26].

For those computer vision researchers who regarded reprojection error min-
imization as the ultimate method, or the Gold Standard [8], the fact that the
accuracy of ML can be improved by the above hyperaccurate correction was
rather surprising. For hyperaccurate correction, however, one first needs to ob-
tain the ML solution by an iterative method such as FNS and also estimate the
noise level σ. Then, a question arises. Is it not possible to directly compute the
corrected solution from the beginning, say, by modifying the FNS iterations?
We now show that this is possible if we adopt the non-minimization approach
of geometric estimation.

4 Non-minimization Approach

4.1 Iterative Reweight

The oldest method that is not based on minimization is the following iterative
reweight :

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Computer the following matrix M :

M =
1

N

N∑
α=1

Wαξαξ
�
α . (38)

3. Solve the eigenvalue problem Mθ = λθ, and compute the unit eigenvector
θ for the smallest eigenvalue λ.
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4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ, (39)

and go back to Step 2.

The motivation of this method is the weighted least squares that minimizes

1

N

N∑
α=1

Wα(ξα, θ)
2 =

1

N

N∑
α=1

Wαθ
�ξαξ

�
αθ = (θ,

1

N

N∑
α=1

Wαξαξ
�
α︸ ︷︷ ︸

≡M

θ) = (θ,Mθ).

(40)
This is minimized by the unit eigenvector θ of the matrix M for the smallest
eigenvalue. As is well known in statistics, the optimal choice of the weight Wα

is the inverse of the variance of that term. Since (ξ̄α, θ) = 0, we have (ξα, θ) =
(Δξα, θ) + · · · , and hence the leading term of the variance is

E[(Δξα, θ)
2] = E[θ�ΔξαΔξ�αθ] = (θ, E[ΔξαΔξ�α ]θ) = σ2(θ, V0[ξα]θ). (41)

Hence, we should choose

Wα =
1

(θ, V0[ξα]θ)
, (42)

but θ is unknown. So, we do iterations, determining the weight Wα from the
value of θ in the preceding step. The “initial solution” computed with Wα = 1
coincides with the LS solution, minimizing Eq. (17) in Sec. 3.1.

If Eq. (42) is substituted, Eq. (40) coincides with the Sampson error in
Eq. (26). With the iterative update in Eq. (39), it appears that Eq. (26) is min-
imized. However, we are computing at each step the value of θ that minimizes
the numerator part for the fixed value of the denominator terms determined in
the preceding step. Hence, at the time of the convergence, the resulting solution
θ is such that

1

N

N∑
α=1

(ξα, θ)
2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ
′)2

(θ, V0[ξα]θ)
(43)

for any θ′, but this does not mean

1

N

N∑
α=1

(ξα, θ)
2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ
′)2

(θ′, V0[ξα]θ
′)
. (44)

The fact that iterative reweight does not minimize a particular cost function has
not been well recognized by vision researchers.

The perturbation analysis in [14] shows that the covariance matrix V [θ] of the
resulting solution θ agrees with the KCR lower bound (Sec. 2.4) up to O(σ4).
Hence, it is practically impossible to reduce the variance any further. However, it
has been widely known that the iterative reweight solution has a large bias [11].
Thus, the following strategies were introduced to improve iterative reweight:
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– Remove the bias of the solution.
– Exactly minimize the Sampson error in Eq. (26).

The former is Kanatani’s renormalization [10,11], and the latter is the FNS of
Chojnacki et al. [5] and the HEIV of Leedan and Meer [22] and Matei and Meer
[24].

4.2 Renormalization

Kanatani’s renormalization [10,11] goes as follows4:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1

N

N∑
α=1

Wαξαξ
�
α , N =

1

N

N∑
α=1

WαV0[ξα]. (45)

3. Solve the generalized eigenvalue problem Mθ = λNθ, and compute the unit
eigenvector θ for the smallest eigenvalue λ in absolute value.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ, (46)

and go back to Step 2.

The motivation of renormalization is as follows. Let M̄ be the true value of the
matrix M in Eq. (45). Since (ξ̄α, θ) = 0, we have M̄θ = 0. Hence, θ is the
eigenvector of M̄ for eigenvalue 0, but M̄ is unknown. So, we estimate it. Since
E[Δξα] = 0 to a first approximation, the expectation of M is

E[M ] = E[
1

N

N∑
α=1

Wα(ξ̄α+Δξα)(ξ̄α+Δξα)
�] = M̄+

1

N

N∑
α=1

WαE[ΔξαΔξ�α ]

= M̄+
σ2

N

N∑
α=1

WαV0[ξα] = M̄ + σ2N . (47)

Thus, M̄ = E[M ]− σ2N ≈ M − σ2N , so instead of M̄θ = 0 we solve (M −
σ2N)θ = 0, or Mθ = σ2Nθ. Assuming that σ2 is small, we regard it as the
smallest eigenvalue λ in absolute value. As in the case of iterative reweight, we
iteratively update the weight Wα so that it approaches Eq. (42).

Kanatani’s renormalization [10,11] attracted much attention because it exhib-
ited higher accuracy than any other then known methods. However, questions

4 This is slightly different from the description in [10], in which the generalized eigen-
value problem is reduced to the standard eigenvalue problem, but the resulting
solution is the same [11].
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were repeatedly raised as to what it minimizes, perhaps out of the deep-rooted
preconception that optimal estimation should minimize something. Chojnacki
et al. [4] argued that renormalization can be “rationalized” if viewed as approx-
imately minimizing the Sampson error. However, the renormalization process is
not minimizing any particular cost function.

Note that the initial solution with Wα = 1 solves
(∑N

α=1 ξαξ
�
α

)
θ =

λ
(∑N

α=1 V0[ξα]
)
θ, which is nothing but the method of Taubin [31], known to

be very accurate algebraic method without requiring iterations. Thus, renormal-
ization is an iterative improvement of the Taubin solution. According to many
experiments, renormalization is shown to be more accurate than the Taubin
method with nearly comparable accuracy with the FNS and the HEIV. The
accuracy of renormalization is analytically evaluated in [14], showing that the
covariance matrix V [θ] of the solution θ agrees with the KCR lower bound up
to O(σ4) just as iterative reweight, but the bias is much smaller. That is the
reason for the high accuracy of renormalization.

4.3 Analysis of Covariance and Bias

Since the covariance matrix V [θ] of the renormalization solution θ agrees with
the KCR lower bound up to O(σ4), the covariance of the solution cannot be
substantially improved any further. Very small it may be, however, the bias is
not 0. Note that the renormalization procedure reduces to iterative reweight if
the matrix N is replaced by the identity I. This means that the reduction of
the bias is attributed to the matrix N . This observation implies the possibility
of further reducing the bias by optimizing the matrix N in the form

N =
1

N

N∑
α=1

WαV0[ξα] + · · · , (48)

so that the bias is zero up to high order error terms. Using the perturbation
analysis in [14], Al-Sharadqah and Chernov [1] actually did this for ellipse fit-
ting, and Kanatani et al. [15] extended it to general geometric estimation. Their
analysis goes as follows. We write the observation xα as the sum xα = x̄α+Δxα

of the true value x̄α and the noise term Δxα. Substituting this into ξα = ξ(xα)
and expand it in the form

ξ̄α +Δ1ξα +Δ2ξα + · · · , (49)

where and hereafter the bar denotes the noiseless value and Δk denotes terms
of O(σk). We similarly expand M , θ, λ, and N and express the generalized
eigenvalue problem in the form

(M̄+Δ1M+Δ2M+· · · )(θ̄+Δ1θ+Δ2θ+· · · )
= (λ̄+Δ1λ+Δ2λ+· · · )(N̄+Δ1N+Δ2N+· · · )(θ̄+Δ1θ+Δ2θ+· · · ).
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Equating the terms of the same order in σ, we obtain

Δ1θ = −M̄−
Δ1Mθ̄, (50)

Δ⊥
2 θ = M̄

−
( (θ̄,T θ̄)

(θ̄, N̄θ̄)
N̄θ̄ − T θ̄

)
, (51)

where M̄
−

is the pseudoinverse of M̄ ; since M̄ has the eigenvector θ̄ of eigen-
value 0, its rank is n − 1 (n is the dimension of θ). The symbol Δ⊥

2 θ denotes
the component of the second order noise term orthogonal to θ̄; since θ is a unit
vector, it has no error in the direction of itself, so we are interested in the error
orthogonal to it. The matrix T in Eq. (51) is defined to be

T ≡ Δ2M −Δ1MM̄
−
Δ1M . (52)

From Eq. (50), we can show that the leading term of the covariance matrix of θ
has the following form [14].

V [θ] ≡ E[Δ1θΔ1θ
�] =

σ2

N
M̄

−
. (53)

From this we observe:

– The covariance matrix V [θ] is O(σ2).
– The right side of Eq. (16) agrees with the KCR lower bound.
– Eq. (53) does not contain the matrix N .

Thus, we cannot change the value of Eq. (53) by adjusting the matrix N . How-
ever, the root-mean-square (RMS) error of θ is the sum of the covariance term
and the bias term, and the bias term is also O(σ2) (the expectation of odd or-
der noise terms is 0, so the first order bias is E[Δ1θ] = 0). Since the second
order bias term contains the matrix N , we can reduce it by adjusting N . From
Eq. (51), the second order bias has the following expression:

E[Δ⊥
2 θ] = M̄

−
( (θ̄, E[T θ̄])

(θ̄, N̄θ̄)
N̄θ̄ − E[T θ̄]

)
. (54)

4.4 Hyper-renormalization

Equation (54) implies that if we can choose an N such that

E[T θ̄] = cN̄θ̄ (55)

for some constant c, we will have

E[Δ⊥
2 θ] = M̄

−
((θ̄, cN̄θ̄)

(θ̄, N̄θ̄)
N̄θ̄ − cN̄θ̄

)
= 0, (56)
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i.e., the second order bias is completely eliminated . Kanatani et al. [15] showed
that if the matrix N̄ is defined by

N̄ =
1

N

N∑
α=1

W̄α

(
V0[ξα] + 2S[ξ̄αe�α ]

)
− 1

N2

N∑
α=1

W̄ 2
α

(
(ξ̄α,M̄

−
ξ̄α)V0[ξα] + 2S[V0[ξα]M̄

−
ξ̄αξ̄

�
α ]
)
, (57)

then E[T θ̄] = σ2N̄θ̄ holds, where eα is a vector that depends on individual
problems (the same vector as that in Eq. (36)), and S[ · ] denotes symmetriza-
tion (S[A] = (A +A�)/2). In actual computation, the true values in Eq. (57)
are replaced by computed values. This entails errors of O(σ), but since the ex-
pectation of odd order noise terms is 0, Eq. (56) is O(σ4). Thus, we obtain the
following procedure of hyper-renormalization:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1

N

N∑
α=1

Wαξαξ
�
α , (58)

N =
1

N

N∑
α=1

Wα

(
V0[ξα] + 2S[ξαe�α ]

)
− 1

N2

N∑
α=1

W 2
α

(
(ξα,M

−
n−1ξα)V0[ξα] + 2S[V0[ξα]M−

n−1ξαξ
�
α ]
)
. (59)

Here, M−
n−1 is the pseudoinverse of M with truncated rank n − 1 (cf.

Eq. (36).
3. Solve the generalized eigenvalue problem Mθ = λNθ, and compute the unit

eigenvector θ for the smallest eigenvalue λ in absolute value.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ, (60)

and go back to Step 2.

It turns out that the initial solution with Wα = 1 coincides with what is called
HyperLS [16,17,28], which is derived to remove the bias up to second order error
terms within the framework of algebraic methods without iterations5. Thus,
hyper-renormalization is an iterative improvement of HyperLS .

Standard linear algebra routines for solving the generalized eigenvalue prob-
lemMθ = λNθ assume thatN is positive definite, but the matrixN in Eq. (59)

5 The expression of Eq. (59) with Wα = 1 lacks one term as compared with the
corresponding expression of HyperLS, but the same solution is produced.
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has both positive and negative eigenvalues. For renormalization, the matrix N
is positive semidefinite, having eigenvalue 0. This, however, causes no trouble,
because the problem can be rewritten as

Nθ =
1

λ
Mθ. (61)

The matrix M is positive definite for noisy data, so we can use a standard
routine to compute the eigenvector θ for the eigenvalue 1/λ with the largest
absolute value. If the matrix M happens to have eigenvalue 0, it indicates that
the data are all exact, so the unit eigenvector for the eigenvalue 0 is the exact
solution.

5 Numerical Examples

We define 30 equidistant points on the ellipse shown in Fig. 1(a). The major and
minor axis are set to 100 and 50 pixels, respectively. We add random Gaussian
noise of mean 0 and standard deviation σ to the x and y coordinates of each
point independently and fit an ellipse to the noisy point sequence using : 1) LS,
2) iterative reweight, 3) the Taubin method, 4) renormalization, 5) HyperLS, 6)
hyper-renormalization, 7) ML, and 8) hyperaccurate correction of ML.

Since the computed θ and its true value θ̄ are both unit vectors, we mea-
sure the discrepancy between them by the orthogonal component Δ⊥θ = P θ̄θ,

where P θ̄ (≡ I − θ̄θ̄
�
) is the projection matrix along θ̄. We generated 10000

independent noise instances and evaluated the bias B (Fig. 1(b)) and the RMS
(root-mean-square) error D (Fig. 1(c)) defined by

B =
∥∥∥ 1

10000

10000∑
a=1

Δ⊥θ(a)
∥∥∥, D =

√√√√ 1

10000

10000∑
a=1

‖Δ⊥θ(a)‖2, (62)

where θ(a) is the solution in the ath trial. The dotted line in Fig. 1(c) indicates
the KCR lower bound. The interrupted plots in Fig. 2(a) for iterative reweight,
ML, and hyperaccurate correction of ML indicate that the iterations did not
converge beyond that noise level. Our convergence criterion is ‖θ − θ0‖ < 10−6

for the current value θ and the value θ0 in the preceding iteration; their signs are
adjusted before subtraction. If this criterion is not satisfied after 100 iterations,
we stopped. For each σ, we regarded the iterations as not convergent if any
among the 10000 trials does not converge.

We can see from Fig. 2(a) that LS and iterative reweight have very large
bias, in contrast to which the bias is very small for the Taubin method and
renormalization. The bias of HyperLS and hyper-renormalization is still smaller
and even smaller than ML. Since the leading covariance is common to iterative
reweight, renormalization, and hyper-renormalization, the RMS error reflects the
magnitude of the bias as shown in Fig. 2(b). Because the hyper-renormalization
solution does not have bias up to high order error terms, it has nearly the same
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Fig. 2. Thirty points on an ellipse (a). The bias (a) and the RMS error (b) of the fitted
ellipse for the standard deviation σ of the added noise over 10000 independent trials.
1) LS, 2) iterative reweight, 3) the Taubin method, 4) renormalization, 5) HyperLS, 6)
hyper-renormalization, 7) ML, 8) hyperaccurate correction of ML. The dotted line in
(c) indicates the KCR lower bound.

accuracy as ML, or reprojection error minimization. A close examination of the
small σ part reveals that hyper-renormalization outperforms ML. The highest
accuracy is achieved, although the difference is very small, by hyperaccurate cor-
rection of ML. However, it first requires the ML solution, and the FNS iterations
for its computation may not converge above a certain noise level, as shown in
Figs. 2(a), (b). On the other hand, hyper-renormalization is very robust to noise.
This is because the initial solution is HyperLS, which is itself highly accurate al-
ready as shown in Fig. 2. For this reason, we conclude that it is the best method
for practical computations.

6 Concluding Remarks

We have overviewed techniques for optimal geometric estimation from noisy
observations for computer vision applications. We first described minimization-
based approaches: LS, ML, which includes reprojection error minimization (Gold
Standard) as a special case, and Sampson error minimization. We then for-
mulated non-minimization approaches: iterative reweight, renormalization, and
hyper-renormalization, which can be viewed as iterative improvement of LS, the
Taubin method, and HyperLS, respectively (Table 1). Showing numerical exam-
ples, we conclude that hyper-renormalization is robust to noise and currently is
the best method.

Table 1. Summary of non-minimization approaches

initial weight update final

LS −→ iterative reweight
Taubin −→ renormalization
HyperLS −→ hyper-renormalization
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Abstract. Visual categorisation has been an area of intensive research
in the vision community for several decades. Ultimately, the goal is to
efficiently detect and recognize an increasing number of object classes.
The problem entangles three highly interconnected issues: the internal
object representation, which should compactly capture the visual vari-
ability of objects and generalize well over each class; a means for learning
the representation from a set of input images with as little supervision
as possible; and an effective inference algorithm that robustly matches
the object representation against the image and scales favorably with
the number of objects.

In this talk I will present our approach which combines a learned com-
positional hierarchy, representing (2D) shapes of multiple object classes,
and a coarse-to-fine matching scheme that exploits a taxonomy of ob-
jects to perform efficient object detection. Our framework for learning
a hierarchical compositional shape vocabulary for representing multiple
object classes takes simple contour fragments and learns their frequent
spatial configurations. These are recursively combined into increasingly
more complex and class-specific shape compositions, each exerting a high
degree of shape variability. At the top-level of the vocabulary, the com-
positions represent the whole shapes of the objects. The vocabulary is
learned layer after layer, by gradually increasing the size of the window
of analysis and reducing the spatial resolution at which the shape con-
figurations are learned. The lower layers are learned jointly on images
of all classes, whereas the higher layers of the vocabulary are learned
incrementally, by presenting the algorithm with one object class after
another.

However, in order for recognition systems to scale to a larger number of
object categories, and achieve running times logarithmic in the number of
classes, building visual class taxonomies becomes necessary. We propose

� This is a joint work with Sanja Fidler and Marko Boben.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 31–32, 2012.
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an approach for speeding up recognition times of multi-class part-based
object representations. The main idea is to construct a taxonomy of
constellation models cascaded from coarse-to-fine resolution and use it
in recognition with an efficient search strategy. The structure and the
depth of the taxonomy is built automatically in a way that minimizes
the number of expected computations during recognition by optimizing
the cost-to-power ratio. The combination of the learned taxonomy with
the compositional hierarchy of object shape achieves efficiency both with
respect to the representation of the structure of objects and in terms of
the number of modeled object classes. The experimental results show
that the learned multi-class object representation achieves a detection
performance comparable to the current state-of-the-art flat approaches
with both faster inference and shorter training times.
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Abstract. In thispaperweproposeaprototype size selectionmethod for a
set of sample graphs. Our first contribution is to show how approximate set
coding can be extended from the vector to graph domain.With this frame-
work to hand we show how prototype selection can be posed as optimizing
themutual information between two partitioned sets of sample graphs.We
show how the resulting method can be used for prototype graph size selec-
tion. In our experiments, we apply our method to a real-world dataset and
investigate its performance on prototype size selection tasks.
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1 Introduction

Relational graphs provide a convenient means of representing structural pat-
terns. Examples include the arrangement of shape primitives or feature points
in images, molecules and social networks. Recently, there has been considerable
interest in learning prototype graphs which can capture the structural variations
given a set of sample graphs [1,12]. These approaches are frequently sample-
based, having several candidate prototype graphs in hand, we are confronted
with the problem of selecting the best one. This problem falls into the category
of model selection, which is one of the fundamental tasks in pattern analysis. A
good model should be able to summarize the observed data well. Moreover, it
should have good predictive capabilities. There are a wealth of principles in the
literature for selecting the best model [9,11,10]. Generally speaking, although
the principles are motivated from different viewpoints, most of them employ pe-
nalizing the parameters (or complexity) of the model in order to generalize well
on a new dataset. For example, the Akaike information criterion(AIC) penalizes
the model using the value of twice the number of free parameters of the model
[13], while the minimum description length criterion uses a universal coding [14].

The main drawback of these approaches is that they cannot be easily extended
from the vector domain to the graph domain. On the other hand, other frame-
works such as the approximate set coding [3] can be transformed to the graph
domain with the help of sampling techniques such as Importance Sampling.
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In this paper we present an approach to selecting the optimal prototype size
for a set of sample graphs. Our method is an extension of the theory of the
approximate set coding to graph data. The prototype of optimal size is that
which maximizes the mutual information between the two partitioned sets of
the sample graphs. To measure the mutual information, we need to compute
the partition functions of the two partitioned sets and their joint partition func-
tion. The computation of the partition function involves exploring the complete
hypothesis space and this is a NP hard problem for graphs. We locate an ap-
proximate solution to this problem by using the importance sampling approach.

The remainder of the paper is organized as follows. We first briefly introduce
the theory of the approximate set coding [3]. Then we describe how we extend the
theory on model selection in vector domain to the graph domain. This includes
how to characterize the sample sets using the partition function and how to
approximate the value of the partition function using the importance sampling
approach. In the last part we provide some preliminary experimental results.

2 Approximation Set Coding

In this section we briefly review the theory of the approximate set coding pro-
posed in [3,4]. In this context, a hypothesis is a solution to our pattern recognition
problem. In this specific case, a hypothesis c is a mapping (matching) of all of
our sample graphs to a prototype graph. We also have a cost function R(c) which
evaluates the quality of a particular matching. Naturally R(c) depends on the
prototype graph proposed for the data samples.

Given a prototype graph drawn from set of possible prototypes (usually of dif-
ferent sizes or complexity), we can find the best matching and prototype configura-
tion by optimizingR(c). We denote the best hypothesis as c⊥. As usual, we cannot
useR(c) to select the best prototype from the set, as the more complex prototypes
have lower costs (they fit the samples better) but do not generalize well.

Approximation set coding uses the observation that there are a set of transfor-
mations which alter the sample data without essentially changing the prototype
in any way. For example, if we consider the sample graphs in a different order,
or their nodes are permuted in some way, then the structure of the recovered
prototype should be the same (although the prototype graph nodes may also be
in a different order). We can use this fact to measure how good our prototype
is at recovering these transformations when they are coded using the prototype
graph and sent through a noisy channel. To do this, we split the sample data into
two partitions. The first partition is used to code the transformation, and the
second partition provides a prototype graph to decode the transformation. We
then attempt to maximize the amount of information transmitted. The analysis
in [3] shows that the mutual information between sender and receiver is

Iγ =
1

n
log

(
|T ||ΔCγ,12|
|Cγ,1|Cγ,2

)
(1)

where |Cγ,1| is the number of hypotheses which are within a cost γ of the best
cost in set 1 (and likewise for |Cγ,2|). The quantity |ΔCγ,12| is the number of
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hypotheses on set 2 which are within a cost γ of the best cost in set 1. To
calculate this, we need a way of transferring hypotheses from set 2 to set 1. For
more details of these techniques, the reader is referred to [3,4].

3 Prototype Selection for Graphs

In this section, we extend the methodology of the approximate set coding from
the vector domain to the graph domain. Our main contribution here is that we
redefine three important ingredients in the approximate set coding (i.e. hypoth-
esis, cost function and partition function), and generalize them from the vector
domain to the graph domain. In the following, we commence by introducing our
problem and then give formal definitions of the ingredients.

Given a set of sample graphs, our aim is to select the optimal size of the pro-
totype graph for the sample graphs. To ensure that the optimal prototype graph
generalizes well on a new dataset, we adopt a two-sample set scenario and parti-

tion the sample graphs into two sets of the same size G1 = {G(1)
1 , G

(1)
2 , ..., G

(1)
n },

G2 = {G(2)
1 , G

(2)
2 , ..., G

(2)
n }. Here the superscripts indicate different sample-set

and the subscripts indicate the graph indices. The best prototype graph is de-
termined according to its generalization capability on the two sets.

3.1 Hypothesis

The hypotheses originally proposed in the clustering problem (where approxi-
mate set coding was first used) are the assignments of data points to clusters
[4]. Here in our problem the hypotheses consist of a set of mappings of each of
the sample graphs onto its corresponding prototype graph. By direct analogy
with the clustering problem, each mapping is equivalent to an assignment of a
point to a cluster; the prototype graph here is equivalent to the cluster cen-

troid. For each dataset Gq(q ∈ {1, 2}) a hypothesis is cq = {S(q)
1 , S

(q)
2 , ..., S

(q)
n }

where S
(q)
i (i ∈ {1, ..., n}) is the assignment matrix between graph i from set q

and its corresponding prototype graph G
(q)
M . The set of all possible hypotheses

is C , which consists of all the possible mappings between all samples and the
prototype graph.

3.2 Cost Function

To proceed, we require a cost function Rq(cq) to quantify the effectiveness of a
particular hypothesis cq. The cost function measures how consistent the given
mappings are with the prototype graph. Here the cost function of a hypothesis
is the negative logarithm of the matching probability between the sample graph
and the prototype graph under the hypothesis modelled using the technique
described in [15].

Rq(cq) = − logP (Gq|G(q)
M , cq)

=
∑
G

(q)
i

∑
a∈V

(q)
i

− log
∑

a∈V
(q)
M

Ki
aexp

[
μ
∑

b∈V
(q)
i

∑
β∈V

(q)
M

D
(q)
iabM

(q)
αβ S

(q)
ibβ

]
. (2)
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In the above, D
(q)
i is the adjacency matrix for the sample graph Gi from set q

and M (q) is the adjacency matrix for the prototype graph G
(q)
M . The matrix S

(q)
i

is the assignment matrix between the two graphs. If nodes a and b of the sample

graph G
(q)
i are connected, their corresponding element D

(q)
iab in D

(q)
i has a unit

value otherwise it is zero. This is same for the nodes α, β of the prototype graph

G
(q)
M . The elements of the assignment matrix S

(q)
iaα are unit if node a in graph G

(q)
i

is matched to node α in graph GM . The cost function above is a natural choice
in our problem because it is also involved in measuring the similarity between
the sample graphs and the prototype graph during the learning procedure of the
prototype graph.

In order to normalize the minimum cost of the hypotheses to zero, we define
the relative cost of hypothesis. Suppose the optimal hypothesis (i.e., the hypoth-
esis yielding the lowest costs between the sample graphs and their prototype
graph) is c⊥q , the relative cost of hypothesis cq is ΔRq(cq) = Rq(cq)−Rq(c

⊥
q ).

3.3 Partition Function

The measurement of the mutual information of the two sample-sets requires
counting the number of hypotheses which are within a certain cost of the optimal
solution. However, this is hard to do since it involves exploring all the hypotheses.
Fortunately, this value can be estimated using concepts from statistical physics.
Considering the hypotheses as microcanonical ensembles in statistical mechanics,
their number can be estimated by calculating the partition function [4]

Zq =
∑
cq∈Cq

exp[−βΔRq(cq)] (3)

where β is a positive scaling parameter known as the inverse computational
temperature. Essentially, β coarsens the precision of the partition function ap-
proximating the number of hypotheses that fit the sample set [3]. When β is
zero, the partition function is equal to the number of all the possible hypothe-
ses. When β is very large, the partition function only counts the number of
optimal hypotheses. Because β controls the number of hypotheses fitting the
sample set, we will call these β-optimal hypotheses. In our case, the hypothesis
space is the set of all the possible mappings between the sample graphs and their
prototype graph. The hypothesis space is very large and the computation of the
partition function will be expensive. Later we show how we use the importance
sampling approach to sample the mapping between the sample graphs and their
prototype graph and approximate the partition function.

To measure how well the hypotheses generalize for the two sample sets, we
count the number of β-optimal hypotheses in the first set which also exist in
the second set, when transferred to the first set. We therefore need a way of
transferring hypotheses from the second dataset to the first. We denote the cost

of the hypothesis c2 between the transferred graphs and prototype graph G
(2)
M as

Rt(c2). This is the cost of making hypothesis c2 for the graphs G2 when evaluated
against the data in G1. The following procedure may be used to find the transfer.
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Fig. 1. A diagram illustrates the procedure of computing the three partition functions.
When we compute the partition function Z12, we need to count how many of our
hypotheses are β-optimal when we use the prototype from set 2 and the data graphs
from set 1. We therefore need a way of transferring hypotheses from the second set to
the first.

For each G
(1)
i graph in G1, we find the most similar graph in G2 and the mapping

between Ti between the two. Ti◦G(i)
i is then the image of this graph in the second

set. From these images, we compute the cost of c2 by comparing the images to

the prototype graph G(2)M under the mappings in c2. Finally, the joint partition
function is formulated as

Z12 =
∑
c2∈C2

exp[−β(ΔRt(c2) +ΔR2(c2))] . (4)

The quantity ΔRt(c2) is the relative cost of hypothesis c2 between the image

graphs of G1 in the second set and the prototype graphG
(2)
M . It is equivalent to the

cost of hypothesis c2 between the image graphs and G
(2)
M minus their minimum

cost. Figure 1 illustrates the procedure of computing partition functions Z1, Z2

and the joint partition function Z12.
Prototype graphs with different sizes are ranked according to their mutual

information between the two sets

Iβ =
1

n
log

(
kZ12

Z1Z2

)
. (5)

In the above equation, Z1 and Z2 are the respective partition functions of two
sample sets, and Z12 is their joint partition function. The constant k is a normal-
ization factor which keeps the value of the mutual information equal to zero when
β is zero. The value of the mutual information can be interpreted as the max-
imum generalization capacity of prototype graphs. Hence our problem is posed
as that of finding the prototype graph that maximizes this mutual information.
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3.4 Importance Sampling

In order to deal with the super-exponential growth of the set of hypotheses,
we resort to an Importance Sampling [7] approach in a manner similar to that
reported by Torsello [2].

Importance Sampling is a variance reduction sampling technique used to com-
pute Monte Carlo estimations of averages of the type E[h(x)] = 1

||A||
∫
A
h(x)dx,

where h(x) is a real function taking values in A. This requires sampling the
domain from a non necessarily uniform distribution f , thus yielding

Ef [h(x)] ≈
1

k

k∑
i=1

h(xi)

1
||A||
f(xi)

(6)

where
1

||A||
f(xi)

is the importance factor used to correct the bias introduced when

sampling from the distribution f . Note that in the limit if f = h(x)∫
A

h(x)dx
then

the variance of the estimator is zero. In practice then, we would like choose f as

close as possible to h(x)∫
A
h(x)dx

.

In this paper, we need to approximate the value of the partition functions Z1,
Z2 and Z12. Since the approximation procedure is going to be the same in all
the three cases, we simply review the equations for Z1. In this case, ||A|| = n!
and h(x) = exp[−βΔR1(c1)], and thus

Z1 = Ec1

[
exp[−βΔR1(c1)]

]
n! ≈ 1

|C1|

k∑
c1∈C1

exp[−βΔR1(c1)]

P (c1)
(7)

To implement the importance sampler along the lines suggested in [2], recall

that ΔRq = Rq(cq)−Rq(c
⊥
q ) and Rq(cq) = − logP (Gq |G(q)

M , cq), where Gq is the

observed graph and G
(q)
M is the prototype graph. We aim to sample a mapping

cq ∈ Cq with probability close to
P (Gq|G(q)

M ,cq)∑
cq∈Cq

P (Gq|G(q)
M ,cq)

. The procedure is as follows.

Assume that we know the node-correspondence matrix M̄ = (mαa) giving the
probability that graph node a was generated by prototype node α. Then we
can first sample a correspondence for the prototype node 1 with probability
m1a1 . The next step is to condition the matrix to the current match by taking
into account the structural information between the sampled nodes and all the
remainder. Finally we project the conditioned matrix onto a double-stochastic
matrix by using the Sinkhorn process [16], yielding the matrix M̄a1

1 . We repeat
this procedure for each node of the prototype graph, until we have sampled a
mapping cq with probability P (cq) = (M̄)1,a1 · (M̄a1

1 )2,a2 · . . . · (M̄
a1,...,an−1

1,...,n−1 )n,an .

4 Experiments

In this section, we report some experimental results of the application of our
prototype size selection method on real-world dataset. The dataset used is the
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Fig. 2. How the mutual information and logarithm of partition functions change as β
increases from 0 to 50

COIL [5] which consists of images of different objects, with 72 views of each
object obtained from equally spaced viewing directions over 360◦. We extract
corner features from each image and use the detected feature points as nodes to
construct sample graphs by Delaunay triangulation.

We first investigate how the value of the mutual information and the three par-
tition functions vary as the value of β increases. To do this, we randomly parti-
tion the graphs from a given object, e.g. the cat images, into a training set and a
test set which are of the same size. The bijective mapping of the graphs between
the two sets is located by minimizing the sum of the edit distances between the
mapped graphs. We learn two prototype graphs of the same size for the two sets
using the method in [1]. Given this setting, we compute the value of the mutual
information and the logarithms of the three partition functions logZ1, logZ2 and
logZ12. Figure 2 shows how these quantities vary as we increase the value of β from
0 to 50. From the plot in Figure 2(a), we observe that the mutual information ini-
tially increases and achieves the highest value around β = 8, and afterwards it
begins to decrease. To maintain the non negativity of the mutual information, we
set its value to zero when it falls below zero. Figure 2(b) and 2(c) respectively
show the value of the logarithms of partition functions logZ1 and logZ2. From
the plots it is clear that these two quantities converge to a horizontal asymptote.
The reason for this is that while the relative cost of the optimal hypothesis is zero
and thus its contribution to the partition function is a constant positive value, the
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Fig. 3. Variation of the mutual information of 6 prototype graphs of the four objects

exponential of the relative costs given by the non optimal hypotheses converges
to zero as β increases, thus yielding the observed horizontal asymptote. On the
other hand, the logarithm of the joint partition function logZ12 in Figure 2(d)
continues to decrease as β increases. This indicates that the optimal hypotheses
of the graphs in the test set do not necessarily generalize to the optimal hypothe-
ses of their mapped graphs in the training set. For this reason the relative costs of
all the hypotheses in the joint partition function are positive values. As a result
their exponentials converge to zero as β increases. Consequently, the joint par-
tition function converges to zero and its corresponding logarithm becomes both
large and negative.

Our second experimental goal is to select the optimal size of the prototype
graph for several objects from the COIL dataset. Here the objects we used are
the cat, pig and two bottles. To perform these tasks, for each object we learn 6
prototype graphs of different size using the method in [1] and then compute the
mutual information of these prototype graphs. The optimal size of the prototype
graph is that which gives the highest mutual information as β is varied. Figure
3 shows plots of the mutual information versus β for the four objects. From
the plots it is clear that for each objet there is a prototypes size that gives
optimized performance. Finally, note that unlike what is expected using other
standard model complexity selection methods, which may choose the model with
the smallest size, in our experiments we observe that in 3 out of 4 objects the
proposed method favours some value between the largest and the smallest size.
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5 Conclusion

In this paper we have developed a method for selecting the optimal size of a
prototype graph used to represent a set of sample graphs. The optimal size of
the prototype graph is selected so as to maximize the mutual information of the
two partitioned sets of the sample graphs. To compute the mutual information,
we extend the theory of approximate set coding from the vector domain to
the graph domain. Experimental results show that our method works well for
prototype graph selection in object recognition. Future work will concentrate
on validating our prototype graph size selection method. Moreover, while the
prototype selection step is currently a separate post processing step which takes
place after the learning procedure, we intend to investigate how to integrate the
two together, so as to reduce the overall complexity.

Acknowledgement. Edwin Hancock was supported by a Royal Society Wolf-
son Research Merit Award.
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Abstract. Graph kernels allow to define metrics on graph space and
constitute thus an efficient tool to combine advantages of structural and
statistical pattern recognition fields. Within the chemoinformatics frame-
work, kernels are usually defined by comparing the number of occurences
of patterns extracted from two different graphs. Such a graph kernel con-
struction scheme neglects the fact that similar but not identical patterns
may lead to close properties. We propose in this paper to overcome this
drawback by defining our kernel as a weighted sum of comparisons be-
tween all couples of patterns. In addition, we propose an efficient com-
putation of the optimal edit distance on a limited set of finite trees. This
extension has been tested on two chemoinformatics problems.

1 Introduction

Chemoinformatics aims to predict molecule’s properties from their structural
similarity. Most of existing methods are based on fingerprints defined as col-
lections of descriptors such as boiling point, logP, molar refractivity, etc. An
alternative strategy consists to extract a set of descriptors directly from the
molecular graph G = (V,E, μ, ν), where the unlabeled graph (V,E) encodes the
structure of the molecule while μ maps each vertex to an atom’s label and ν char-
acterizes a type of bond between two atoms (single, double, triple or aromatic).
Considering this representation, similarity between molecules can be deduced
from the similarity of their molecular graphs.

Graph kernels can be understood as symmetric graph similarity measures.
Using a semi definite positive kernel, the value k(G,G′), where G and G′ en-
code two graphs, corresponds to a scalar product between two vectors ψ(G)
and ψ(G′) in an Hilbert space. Graph kernels provide thus a natural connection
between structural and statistical pattern recognition fields. A large family of
kernels is based on bags of patterns. These methods extract a bag of patterns
from each graph and deduce graph’s similarity from bag’s similarity by com-
paring the number of occurrences of each pattern within both graphs. Most of
existing methods are defined on linear patterns [6]. Such methods have generally
a low complexity but are limited by the lack of expressivity of linear patterns
on graphs. In order to use more structural information, some methods are based
on non linear patterns, such as the tree-pattern kernel [7]. This last method is
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Fig. 1. Set of sub structures enumerated from the graphs

based on an implicit enumeration of tree patterns, ie. trees where a node can
appear more than once.

Another approach, called treelet kernel [4], computes an explicit enumeration
of a limited set of subtrees. Treelet kernel is a graph kernel defined as a kernel
between two sets of patterns extracted from both graphs to be compared. The set
of extracted patterns, called treelets and denoted T , is composed of all labeled
trees with a number of nodes less than or equal to 6 (Figure 1). Based on the
enumeration of this set of substructures, each graph G is associated to a vector
f(G). Each component of this vector ft(G) equals the number of occurrences of
a given treelet t in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(t�G)| (1)

where T (G) denotes the set of treelets extracted from G and � the sub graph
isomorphism relationship. Using this vector representation, similarity between
treelet distributions is computed using a sum of sub kernels between treelet’s
frequencies:

KT (G,G
′) =

∑
t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (2)

where k(., .) defines any positive definite kernel between real numbers such as
linear kernel, Gaussian kernel or intersection kernel. Unfortunately, similarity
of occurrences is only computed between isomorphic patterns and not between
similar patterns. From a mathematical point of view, computing similarities only
between isomorphic patterns relies to consider that each axis encoding a pattern
is orthogonal with all other axis. This assumption is dubious since large patterns
are composed by smaller ones, hence encoding partially the same information.
Moreover, from a chemical point of view, two sub structures may have a similar
influence on a chemical property if they slightly differ, hence showing the interest
of crossing information collected from differents treelets.

In order to capture this similarity, we propose to extend treelet kernel by
adding comparisons of non isomorphic treelets. In Section 2, we propose to weigh
the influence of any pair of treelets by their edit distance. In Section 2.1, we
propose an efficient way to compute an exact edit distance between treelets.
Then, in Section 3, this treelet kernel extension is tested and discussed on an
experimental comparison involving two chemoinformatics problems.
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2 Inter Treelet Kernel Based on Edit Distance

Haussler’s convolution kernels [5] are defined on objects x ∈ X which can be
associated to a decomposition into finite sets Xx. Considering a sub kernel k :
Xx×Xx → R, Haussler’s convolution kernel K : X ×X → R is defined as follows:

K(x, y) =
∑

(x′,y′)∈Xx×Xy

k(x′, y′) (3)

By considering a decomposition XG = {(t, ft(G))|t � G} of each graph and a
tensor product (k⊗k′) of two kernels k′ : T ×T → R and k : R×R→ R, treelet
kernel (Equation 2) can be reformulated as a convolution kernel:

K(G,G′) =
∑

(t,ft(G))∈XG

(t′,ft′ (G
′))∈XG′

(k′ ⊗ k)(t, ft(G), t′, ft′(G
′))

K(G,G′) =
∑

(t,ft(G))∈XG

(t′,ft′ (G
′))∈XG′

k′(t, t′)k(ft(G), ft′(G
′)) (4)

where k(ft(G), ft′(G
′)) is defined as in Equation 2 and k′(t, t′) = 1 ⇐⇒ t � t′, 0

otherwise. Note that k′(t, t′) is equal to 1 only if treelet t in T (G) is isomorphic
to t′ and thus belongs simultaneously to T (G) and T (G′) (Equation 2). Such a
definition of k′(t, t′) restricts comparison of occurrences to isomorphic treelets.
In order to relax this restriction and based on the assumption that similar struc-
tures should have a similar chemical activity, we propose to define k′(t, t′) in
Equation 4 as a measure of similarity between t and t′. This similarity mea-
sure is based on the graph edit distance defined as the sequence of operations
transforming G into G′ with a minimal cost [8]. Such a sequence, called an edit
path, may include vertex or edge addition, removal and relabeling. Given a cost
function c(.) associated to each operation, the cost of a sequence of operations
is defined as the sum of each elementary operation’s costs. A high edit dis-
tance indicates a low similarity between two graphs while a small one indicates
a strong similarity. Unfortunately, trivial kernels defined on graph edit distance
are not always semi definite positive and thus do not define valid kernels. In
order to define semi definite positive kernels, we apply a regularization scheme
as defined by [4, 8]. According to [8], the computational cost of the exact edit
distance grows exponentially with the size of graphs. To overcome this problem,
Fankhauser and al. [3] propose a method to compute an approximate edit dis-
tance in O(n3) where n is equals to the number of nodes and to the maximal
degree of both graphs. Such an edit distance computation provides an efficient
way to compute an approximate edit distance between graphs at the cost of a
lower precision.

2.1 Exact Treelet Edit Distance

Exact edit distance is hard to compute when considering the whole set of possible
graphs. Given a finite set of n structures B = {(V1, E1), . . . , (Vn, En)}, we thus
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restrict our study to sets of graphs D such that for any G = (V,E, μ, ν) ∈ D we
have (V,E) ∈ B. We show in the remaining of this section that within this frame-
work, exact edit distance may be computed within a reasonable computational
time using ad hoc methods. In order to present such methods, let us introduce
some common definitions. A graph G′ = (V ′, E′, μ′, ν′) is a structural sub graph
of G = (V,E, μ, ν), denoted G′ �s G, iff V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).
In addition, if μ′

|V ′ = μ and ν′|E′ = ν, f| denoting the restriction of function

f to a particular domain, then G′ is a sub graph of G, denoted G′ � G. A
graph G = (V,E, μ, ν) is structurally isomorphic to a graph G′ = (V ′, E′, μ′, ν′),
denoted G �s G′ iff there exists a bijective function f : V → V ′ such that
(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′. If μ′ ◦f = μ and ν′ ◦f = ν, then G is isomorphic
to G′, denoted G � G′. If G = G′ then f is called an automorphism. If f is only
injective then it exists a sub graph isomorphism between G and G′. A graph
Ĝ is a maximal common sub graph of G1 and G2 if it is a sub graph of G1

and G2 and if it is not a sub graph of any other common sub graph of G1 and
G2. A graph Ĝ is called a maximum common sub graph of G1 and G2 if it is a
common sub graph of G1 and G2 with a maximal number of nodes.The notions
of maximal structural sub graph and maximum structural sub graph are defined
the same way using the notion of structural sub graph.

Under mild assumptions [1], the sequence of edit operations encoding an edit
path can be ordered into a sequence of deletions, substitutions and additions
as illustrated in Figure 2(a). The first sequence transforms the initial graph G1

into one of its sub graphs Ĝ1 by deleting a set of nodes corresponding to V1− V̂1
and a set of edges corresponding to E1− Ê1. The second sequence represents the
set of substitutions transforming Ĝ1 into Ĝ2. This set of substitutions defines a
one to one matching between V̂1 and V̂2 on the one hand and between Ê1 and
Ê2 on the other. Substitutions matching two elements having a same label are
denoted as identical substitutions. Finally, the last sequence corresponds to the
addition of a set of nodes and edges in order to transform Ĝ2 into G2. Note that
the set of operations transforming Ĝ1 into Ĝ2 is only composed of substitutions

(a) Different steps describing an edit
path.

(b) Possible edit paths passing through
maximum common structural sub
graphs {Ĝ1

1, . . . , Ĝ
n
1 } and {Ĝ1

2, . . . , Ĝ
n
2 }.

Dashed lines correspond to structural
operations, other to substitutions.

Fig. 2. General edit path scheme and edit paths passing through maximum common
structural sub graphs
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which do not modify the structure of graphs. Therefore, Ĝ1 and Ĝ2 have the
same structure and correspond to two structurally isomorphic sub graphs of G1

and G2. We define costs on edit operations as non negative constant functions
for edges (ce∗) and vertex (cv∗) deletions (c∗d), insertions (c∗i) or substitutions
(c∗s). In addition, the cost associated to an identical substitution is equals to
0 since such an operation does not modify the graph. Using the representation
described in Figure 2(a) and cost functions previously defined, the cost of any
edit path is equal to:

γ(P ) = |V1−V̂1|cvd+|E1−Ê1|ced+Vfcvs+Efces+|V2−V̂2|cvi+|E2−Ê2|cei (5)

with Vf , resp. Ef , denoting the number of non identical substitutions on nodes,

resp. edges, required to transform Ĝ1 into Ĝ2. Bunke has shown that under
some slightly different conditions on edge operations, constraining the costs to
cvd + cvi < cvs and ces < cvs induces that Ĝ1 � Ĝ2 correspond to a maximum
common sub graph of G1 and G2 [2]. However, maximum common sub graph of
two graphs depends both on structure and labels. This last point does not allow
us to use efficiently our assumption that the number of different structures of
any set of graphs is bounded and known a priori. We propose to study if different
conditions between costs can lead to a possible efficient algorithm to compute
an exact edit distance.

Proposition 1. Given two graphs G1, G2, let us denote by δv the number of
vertices of their maximum structural common sub graph and by δe, the maximal
number of edges, of their structural common sub graphs. If cvd+cvi

cvs
≥ δv +

ces
cvs

δe

and ced+cei
ces

≥ δe +
cvs
ces
δv , then Ĝ1 is a maximal common structural sub graph

of G1 and G2.

Proof. Can be found in [1]

Considering two graphs G1 and G2, this first proposition ensures that sequences
of structural operations transform G1 and G2 into one of their maximal com-
mon structural sub graphs. Since the maximal common structural sub graph
does not depend on labeling information, the set of maximal common structural
sub graphs may be pre computed between any pair of structure belonging to B.
However, this number may be large hence forbidding an efficient pre computa-
tion of the exact edit distance. By restricting conditions on costs, we obtain a
relationship leading to a reduced set of sub structures:

Proposition 2. Let us suppose that ces = ced + cei. Given two graphs G1 and
G2, let us further denotes by δv the number of vertices of their maximum common
structural sub graphs and by δe the maximal number of edges of all maximal
common structural sub graphs. If cvd+cvi ≥ cvsδv+cesδe, then Ĝ1 is a maximum
common structural sub graph of G1 and G2.

Proof. Can be found in [1]

Proposition 2 states that under some hypothesis on the costs c∗d, c∗i and c∗s any
optimal edit path between two graphs G1 and G2 should pass through one of
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their maximum common structural sub graphs. Let us consider two graphs G1

and G2 and without loss of generality let us suppose that these two graphs share
only one maximum common structural sub graph Ĝ = (V̂ , Ê). Let us denote

as {Ĝ0
1, . . . , Ĝ

i
1, . . . , Ĝ

n1
1 } and {Ĝ0

2, . . . ,
ˆ
Gj

2, . . . , Ĝ
n2
2 } the sets of sub graphs of

G1 and G2 structurally isomorphic to G (Figure 2(b)). By Proposition 2, any
optimal edit path P between G1 and G2 should pass through one Gi

1 and Gj
2.

The cost associated to P can be decomposed into two parts: a structural cost
γstruc(P ), corresponding to insertion and deletion operations, and a substitution

cost γlabel(P ), corresponding to the label substitutions required to transform Ĝi
1

into
ˆ
Gj

2:
γ(P ) = γstruc(P ) + γlabel(P ) (6)

Following Equation 5, we have:{
γstruc(P ) = |V1 − V̂1|cvd + |E1 − Ê1|ced + |V2 − V̂2|cvi + |E2 − Ê2|cei
γlabel(P ) = Vfcvs + Efces

(7)

For any i ∈ {1, . . . , n1}, since Ĝi
1 �G1, we have V̂ i

1 ⊆ V1 and Êi
1 ⊆ E1 and thus:{

|V̂ i
1 − V1| = |V1| − |V̂ i

1 | = |V1| − |V̂ |
|Êi

1 − E1| = |E1| − |Êi
1| = |E1| − |Ê|

(8)

Similarly, the same holds for G2 and
ˆ
Gj

2 for any j ∈ {1, . . . , n2}. Structural cost
corresponding to edit path P is thus equals to:

γstruct(P ) =|V1|cvd + |V2|cvi + |E1|ced + |E2|cei
− |V̂ |(cvd + cvi)− |Ê|(ced + cei)

(9)

Computing substitution cost γlabel(P ) (Equation 7) relies on computing the num-
ber of non identical node substitutions Vf and edge substitutions Ef transform-

ing Ĝi
1 into

ˆ
Gj

2. Let Φ(Ĝ) denotes the set of structural automorphisms of Ĝ.

Given both sub graphs Ĝi
1 and

ˆ
Gj

2, each automorphism φ ∈ Φ(Ĝ) induces a

mapping of Ĝi
1 onto

ˆ
Gj

2 and thus a substitution of the label of each vertex v

(resp. edge e) of Gi
1 onto the label of φ(v) (resp. φ(e)) in

ˆ
Gj

2. More precisely,

let us denote by Pi,j,φ the edit path associated to the triplet (Ĝi
1,

ˆ
Gj

2, φ). The
number of non identical substitutions Vf and Ef induced by Pi,j,φ is equals to:

Vf (Pi,j,φ) = |{v ∈ V̂1 | μ̂i
1(v) �= μ̂j

2(φ(v))}|
Ef (Pi,j,φ) = |{(v, v′) ∈ Ê1 | ν̂i1(v, v′)) �= ν̂j2(φ(v), φ(v

′))}|
(10)

Substitution cost of edit path Pi,j,φ is thus equals to γlabel(Pi,j,φ)=Vf (Pi,j,φ)cns+
Ef (Pi,j,φ)ces. Let us denotes by Popt the edit path minimizing the substitution
cost:
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Popt = Pi0,j0,φ0 with (i0, j0, φ0) = argmin
(i,j,φ)∈{1,...,n1}×{1,...,n2}×Φ(Ĝ)

γlabel(Pi,j,φ)

(11)

Since γstruct(Pi,j,φ) is the same for any (i, j, φ) ∈ {1, . . . , n1}×{1, . . . , n2}×Φ(Ĝ)
(Equation 9), Popt is an edit path having a minimal cost. Therefore, under our
assumptions, the edit path associated to the edit distance is the one which passes
through the pair of maximum common structural sub graphs and which mini-
mizes the number of substitutions (Equation 11). This exact edit distance com-
putation algorithm can be applied to treelets since the set of treelets is composed
of 14 different structures. In addition, by restricting the set of edit paths to the
ones which preserve the connectedness of intermediate graphs [1], we can obtain
a lower bound on the ratio between substitutions and insertion/deletion costs.

Proposition 3. Considering edit paths preserving connectedness and given two
trees T1, T2 ∈ T , if cvd+cvi

cvs
≥ δv and ced+cei

ces
≥ δv − 1, then Ĝ1 is a maximum

common structural sub tree of T1 and T2.

Proof. Can be found in [1]

When computing tree edit distance on the set of treelets, δv is bounded by 6
and if we define costs as symmetric, i.e. cvd = cvi and ced = cei, bounds on
costs lead to: cvd > 3cvs and ced > 2.5ces. Since the set of treelets represents
all trees having a size less than or equal to 6, the maximum common structural
sub tree of two treelets T1 and T2 is a treelet. The set of possible sub graphs
and automorphisms for any pair of treelets can be easily pre computed since
we have to consider only 14 patterns. Therefore, computing exact edit distance
between two treelets consists in comparing at most maxi,j∈{0,...,13}(ni∗nj ∗|Φij |)
label sequences where Φij denotes the set of automorphisms of the maximum

common structural subtree T̂ of treelets Ti and Tj and ni, nj the numbers of

sub trees of Ti and Tj isomorphic to T̂ . The value of this product on the set of
treelets is bounded by 120, hence inducing a constant time complexity for the
computation of the exact tree edit distance. Note that, without our restriction
to a set of specific tree structures, the complexity of the edit distance calculation
between labeled unordered unrooted trees is NP-Complete [9]. In addition, given
a trainset D, our kernel is defined as the 0-extension of the kernel defined by
the regularization of matrix

(
e−d(ti,tj)/σ

)
(i,j)∈{1,...,n}2 , where n is the number

of different treelets extracted from D. Note that this regularisation has to be
performed only once since this kernel only operates on treelets and not directly
on graphs.

3 Experiments

Our first experiment evaluates our inter treelet kernel on a regression problem
which consists in predicting molecule’s boiling points1. This dataset is composed

1 All databases are available on the IAPR TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry

http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry
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Table 1. Boiling point prediction

Method RMSE (◦C) Learning Time (s)

1 Random Walks Kernel 18.72 19.10
2 Gaussian edit distance 10.27 1.35
3 Tree Pattern Kernel 11.02 4.98
4 Treelet Kernel 8.10 0.07
5 Treelet Kernel with backward selection 6.75 10363
6 Inter Treelet Kernel with approximate edit distance 6.09 0.70
7 Inter Treelet Kernel with exact edit distance 5.89 0.50

of 183 acyclic molecules and prediction is performed using a 10-fold cross val-
idation. Table 1 shows prediction accuracy and time required to compute the
Gram matrix and to perform linear regressions for each method.

Due to the limited expressivity of linear patterns, random walks kernel [6]
(Table 1, Line 1) does not permit to predict correctly molecule’s boiling points.
Line 2 shows results obtained by a Gaussian kernel applied on graph edit dis-
tance [8]. This last method based on global similarity of graphs obtains a better
result than kernel based on linear patterns. In the same way, tree pattern [7]
and treelet kernels (Table 1, Lines 3 and 4) improve the accuracy of prediction
model based on linear patterns by including information encoded by non linear
patterns. Then, Line 5 shows results obtained by combining treelet kernel with
a variable selection step [4] which leads to a better prediction accuracy (Table 1,
Line 5) than Treelet Kernel without variable selection step (Table 1, Line 4),
at the price of an high computation time. Lines 6 and 7 show results obtained
using our inter treelet kernel. First, inter treelet kernel obtains a better predic-
tion accuracy than using treelet kernel restricted to the comparison of similar
treelets, hence showing the relevance of including pairs of non isomorphic treelets
within kernel computation. Second, we can note that the use of an exact edit
distance provides a slightly more accurate weighting than using an approximate
edit distance (Table 1, Lines 6 and 7).

Our second experiment is defined as a classification problem on the monoamine
oxidase (MAO) dataset which is composed of 68molecules divided into two classes:
38 molecules inhibit the monoamine oxidase (antidepressant drugs) and 30 do
not. Classification accuracy is measured for each method using a leave one out

Table 2. Classification accuracy on the monoamine oxidase (MAO) dataset

Method
Classification Learning
Accuracy Time (s)

1 Random Walks Kernel 82% (56/68) 58.80
2 Gaussian edit distance 90% (61/68) 1.03
3 Tree Pattern Kernel 96% (65/68) 7.18
4 Treelet Kernel 91% (62/68) 0.3
5 Inter Treelet Kernel with approximate edit distance 93% (63/68) 0.67
6 Inter Treelet Kernel with exact edit distance 94% (64/68) 0.54
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procedure with a two-class SVM. This classification scheme is made for each of
the 68 molecules of the dataset. In this experiment, best results are obtained us-
ing a Tree Pattern Kernel (Table 2, Line 3). Methods based on non linear patterns
(Table 2, Lines 3 to 6) outperformmethods based on linear patterns (Table 2, Line
1) and graph edit distance (Table 2, Line 2). In addition, the better accuracy ob-
tained by methods crossing information from differents patterns (Table 2, Lines 5
and 6) shows the relevance of the proposed extension. As highlighted on our first
experiment, difference between the two methods may be explained by the better
accuracy provided by the exact edit distance. Note that the 3 molecules misclas-
sified by Tree Pattern Kernel method are also misclassified by all others methods.

4 Conclusion

In this article, we have presented an extension of the Treelet Kernel which con-
sists in crossing information encoded by non isomorphic treelets according to
their structural similarities. In addition, we have defined a new relation between
edit distance and maximum common structural sub graphs which leads to an
efficient computation of edit distance between treelets. One major perspective
of this work is to define the weighting of non isomorphic treelet pairs using their
relevance according to a property to predict and no more by an a priori similarity
measure such as edit distance.
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Abstract. Clustering by mode seeking is most popular using the mean
shift algorithm. A less well known alternative with different properties
on the computational complexity is kNN mode seeking, based on the
nearest neighbor rule instead of the Parzen kernel density estimator. It
is faster and allows for much higher dimensionalities. We compare the
performances of both procedures using a number of labeled datasets. The
retrieved clusters are compared with the given class labels. In addition,
the properties of the procedures are investigated for prototype selection.

It is shown that kNN mode seeking is well performing and is feasible
for large scale problems with hundreds of dimensions and up to a hundred
thousand data points. The mean shift algorithm may perform better than
kNN mode seeking for smaller dataset sizes.

1 Introduction

The mean shift clustering procedure is based on a 1975 paper by Fukunaga
[7]. It has been made most popular by Cheng [2] and by Comaniciu and Meer
[3]. They showed how the idea of finding the modes of a non-parametrically
estimated probability density function based on the Parzen kernel could be im-
plemented sufficiently fast such that it can be used for segmenting images. As
for reliable estimates many data points are needed, this became only feasible
when sufficiently large memories and fast CPUs entered the market after 2000.
The mean shift algorithm however suffers from the fact that determining and
tracking the gradient in high dimensional spaces is still computationally heavy.
Its use is thereby mainly restricted to applications with small sets of features,
e.g. three color images.

There exists an interesting alternative for the Parzen kernel in mode seeking:
the k-Nearest Neighbor (kNN) rule. This has also been shown by Fukunaga and
his colleagues Koontz and Narendra in 1976 [9], but it did not receive much
attention. An early version of the algorithm has been included in the PRTools
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Matlab package [4] about 15 years ago. We renewed this implementation to
make it feasible for 104 - 105 data points and 102 - 103 dimensions. It is the
purpose of this paper to compare the two mode-seeking algorithms with each
other. We will show that the performance of kNN mode seeking is reasonable,
sometimes worse, sometimes better than mean shift, but it has the advantage of
a significantly better computational efficiency. This will be shown and explained.

Comparing procedures for data analysis in general and for cluster analysis in
particular is a mining field. It is very difficult to make general statements and
one can easily be deceived. For that reason, we include a discussion (Section 2)
on our philosophy on benchmarking cluster procedures and give arguments for
the choices we have made. In Section 3, the algorithms will be discussed and
our version of kNN mode seeking will be specified. In Section 4, the algorithms
are compared on a number of datasets for two performance criteria and their
computing times. The paper is finished with a discussion, summarizing the main
properties and differences of both algorithms, see Section 5.

2 Comparing Cluster Procedures

The aim of clustering is to find an interesting structure in data, e.. sensor data
collected in some scientific study. What is interesting is usually not pre-defined.
Any structure that makes sense for building an understanding of the observations
may give a hint to the researcher to think in a particular direction. For this
reason, clustering is necessarily ill defined. Attempts to specify ’interesting’ in
terms of numerically well defined criteria may limit the analyst in his exploration.
Consequently, a vast number of procedures has been developed, partially as
diversity is essential, but also because there is no way inside clustering to estimate
performances.

A way out of this dilemma is to use datasets that have already been analyzed
by experts and for which they defined labels to identify objects that belong to
the same structure (classes). This may be done by inspecting the data itself, or
by other means, outside the given data. It is thereby possible to find in retrospect
the cluster procedures yielding results that are consistent with expert supplied
class labels. In this way, examples of procedures can be found that make sense
in real world problems.

Cluster procedures give the following two types of results. They may group
the objects, i.e. they define subsets of objects that are in one way or another
similar. Some procedures determine in addition, or sometimes just instead, small
sets of prototypes or examples of objects that are representative for the whole
set. Procedures that don’t deliver both can be extended with an additional step
to determine the missing information. If just clusters are obtained and no pro-
totypes, then for every cluster its centre (or medoid) will define a prototype (i.e.
the object for which the maximum (mean) distance to the other objects in the
cluster is minimized). If just prototypes are found, clusters can be defined by
applying the nearest mean classifier trained by the prototypes to all objects.

These two results give two different ways to determine how consistent a clus-
ter result is with a given class labeling. It depends on the number of clusters



Mode Seeking Clustering by KNN and Mean Shift Evaluated 53

or prototypes that have been found. Almost every clustering procedure has a
parameter that controls this number. In many studies, attempts are made to
determine an optimal number of clusters. In comparing clustering results with
given class labeling, this is not always appropriate. The expert may have used a
varying resolution in distinguishing and naming classes. To remove this problem,
we decided to use in this study a series of clusterings obtaining k = 1 up to (e.g.)
k = 50 clusters. Next a performance measure is computed relating the result of
all these clusterings with the given, true class labels. We used two performance
measures, one that focuses on the obtained clusters and one on the prototypes.

An obtained clustering differs from a given class labeling in two ways. Objects
in the same cluster may belong to different classes and objects in different clusters
may belong to the same class. Let the cluster index of an object x be given by
C(x) ∈ {1, 2, ..., k} and let its object label be λ(x) ∈ {1, 2, ..., n}. The following
two probabilities for an arbitrarily selected pair of objects {xi, xj} are a measure
for the consistency of the clustering with the true class labeling:

ε1 = Prob(C(xi) �= C(xj)|λ(xi) = λ(xj)) (1)

ε2 = Prob(C(xi) = C(xj)|λ(xi) �= λ(xj)) (2)

A clustering is consistent with the class labelling if ε1 = 0 in case k <= n and
ε2 = 0 in case k >= n. Both should be zero if k = n in case of consistency. For
a set of clusterings with varying k a set of (εk1 , ε

k
2) pairs is obtained for every

value of k, constituting a curve in the (ε1, ε2)-plane. An example is given in Fig.
1 for the two procedures, kNN mode seeking and mean shift, applied to the Iris
dataset, see Section 3 and Section 4 for more details.
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Fig. 1. Cluster-class consistency plot
for the Iris dataset
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Fig. 2. Learning curves for the Iris
dataset. Dashed curves as estimated,
solid ones are approximated by Eq. 4.

Points on the horizontal axis relate to clusterings in which every cluster con-
tains just objects that belong to the same class. Points on the vertical axis relate
to clusterings in which all objects of the same class are taken by a single cluster.
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A point in the origin corresponds to a clustering that fully coincides with the
class labeling. The previous two types of clustering are still consistent with this
one as either a merge or a split of clusters may produce this origin clustering.

As the two curves in Fig. 1 describing the two clustering procedures cross
each other it is not clear whether one of the two is better than the other for
the Iris dataset. A solution to judge this can be found be reducing such a curve
to a single number. A possible option is to find the point on the curve that is
most close to the origin, i.e. use ε1 + ε2 as a criterion. As this depends on just a
single point, we prefer the following. Like in judging ROC curves that describe
the trade-off between two types of classification errors [1], we may use the Area
Under the Curve (AUC) for judging it. In this case, the lower the better. If the
AUC is zero the set of clusterings is perfect as all clusterings are consistent with
the class labels.

In case the clustering procedure results in prototypes, another way of judging
its performance is possible. By simulating an active learning scenario, the labels
of these prototypes may be used to label the clusters they belong to. By repeating
such a procedure as a function of the number of prototypes, a learning curve,
is created, see Fig. 2 for an example. To convert such a curve into a single
performance measure, the learning curve, the classification error ε as a function
of the number of training samples k, can be approximated by the following
function:

ε(k) = ε0 ∗ k−α + ε∞ (3)

in which ε0 is the starting value and ε∞ is the asymptotic value that equals here
the nearest neighbor error for an infinite training set. The important parameter
is the learning speed α that can be considered as a measure for the quality of
the prototypes. We estimate α by

α = argminα

∑
k

(ε̂k − ε(k))2 (4)

in which k takes the values determined by the set of clustering procedures and ε̂k
is the observed error based on classifying the out-of-prototypes objects according
to the k true prototype labels. Objects are classified by assigning the clusters to
the label of the corresponding prototype, or by the nearest mean rule in case of
a prototype selection procedure that does not generate clusters in addition.

The advantage of using a supervised criterion for judging cluster performances
is that, by definition, such a criterion cannot be used by any cluster procedure
itself. This contrasts the unsupervised criteria. Any choice, e.g. based on within
and/or between cluster distances would result in a bias towards specific cluster
algorithms.

Before discussing algorithms and datasets, we like to emphasize that a com-
parative study is not a match between procedures. The target is not to find a
winner in one way or the other. As algorithms differ, they are good for differ-
ent datasets. Any cluster algorithm can be considered as an estimator of some
statistics of the data defined by the performance measure. Different algorithms
relate to different estimators. Any estimator is biased, as it is based on some
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assumptions or a model. It will be better if these assumptions hold for a consid-
ered dataset. What is done in a comparative study over a collection of datasets is
that one tries to find out for which problems, which estimators are better, or at
least, whether for different estimators different datasets can be found for which
they are useful. Any voting or averaging of results over a collection is arbitrary,
unless one is sure that the collection is very representative for the problems to
be studied in future.

3 The Algorithms

Mode seeking clustering can be considered as an agglomerative approach. First,
a density function is estimated for the dataset. In general, it has several local
maxima: the modes. In the clustering phase, for every object it is decided to
which mode it belongs by following the density gradient from that object until a
mode is found. Objects that end up in the same mode are considered to belong
to the same cluster.

By this procedure, the number of clusters is identical to the number of modes.
Here this approach differs from the Mixture-of-Gaussians (MoG) procedures as
for these every component may be related to a cluster, but not every compo-
nent constitutes its own mode in the mixture. The two mode seeking procedures
discussed in this paper are not based on a mixture of Gaussians, but on non-
parametric density estimates based on the Parzen kernel (the mean shift proce-
dure) and the k-nearest-neighbor estimator (kNN mode seeking). Both have a
width parameter that influences the number of modes in the density estimate.
This number may thereby vary between one, for a very wide kernel or a large k,
and m for a narrow kernel or k = 1. We do not try to optimize the width param-
eter, but instead consider the clustering results as a function of this parameter.

The use of the Parzen kernel for mode seeking clustering can be traced back
to a 1975 paper by Fukunaga [7]. It resulted in the mean shift algorithm, which
uses the observation that the shift of the mean of a kernel of a single object
after weighing it with the neighboring objects inside the kernel points into the
direction of the gradient. It has been made most popular by Cheng [2] and
by Comaniciu and Meer [3]. They showed how this idea could be implemented
sufficiently fast such that it can be used for segmenting images. For our study,
we used the Matlab implementation by Bart Finkston [5]. It is not deterministic
as it depends on the order in which objects are considered. Instead of the kernel
width we used the number of nearest neighbors like in the kNN mode seeking
(see below). The kernel width was set to the average distance to the k-th nearest
neighbor over the entire dataset.

kNN mode seeking is originally described by Koontz [9]. It is related to an
algorithm studied by Kittler [8] for which Shaffer et al. [10] stated that although
it is based on another idea, its results may be very similar to single-linkage
hierarchical clustering. Our experiments have shown that this is not true for our
version. In our definition of kNN mode seeking, the density of every object is
proportional to the distance to its k-th neighbor. We define for every object a
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pointer to the object with the highest density in its neighborhood. Finally, these
pointers are followed to the object that points to itself. It stands for a mode in
the density as it is itself the object with the highest density in its neighborhood.

The main difference between the two mode seeking procedures, kNN and mean
shift, is that the latter uses a kernel with a neighborhood size that, in terms of
distances, is constant over the entire space. kNN on the other hand uses a fixed
neighborhood size in terms of the number of objects and thereby adapts itself to
areas with higher or lower densities. In addition, from the implementation point
of view, it is much faster to jump from object to object than to compute and
follow a gradient.

The below description of kNN mode seeking is good for very large data set
sizes m (e.g. m = 105) objects. All pairwise distances are needed twice and as
m2 = 1010 distances cannot be stored, they are computed twice. This is done
for a set of n neighborhood sizes k (e.g.n = 25) in parallel, by which it is needed
to store mn densities and mn pointers. These are used to compute mn cluster
indices for the n clusterings.

1. Define a set of target neighborhood sizes K = k1, k2, ..., kn.
2. Repeat for all m objects xi.
3. Compute its distances dij to all other objects xj .
4. Sort them: sir = sortj(dij)
5. Store density estimates ∀k ∈ K : fij = 1/sik.
6. Next i
7. Repeat for all m objects xi.
8. Compute its distances dij to all other objects xj .
9. Rank them: qir = argsortj(dij)
10. Store for all k ∈ K a pointer pi = argmaxr=1,k(qir)
11. Next i
12. Repeat for all neighborhood sizes k ∈ K
13. Repeat until no change ∀i : pi = ppi

14. Store clustering for neighborhood size k: Ck = [p1, p2, ...pm]
15. Next k

4 Experiments

In this section it is shown that the two procedures defined in Section 3 are both
useful. For both of them, datasets can be found for which one is better than the
other. The datasets belong to the standard distribution of PRTools [4]. Most of
them originate from the UCI repository [6]. Table 1 presents the area-under-the-
curve values for the cluster-class consistency plots as defined is Section 2 and
Eq. 1-2. The underlined values are the best for a dataset.

In Table 2, the learning speeds (Equation 4) are shown for the same datasets
and algorithms. They show how valuable the procedures are for selecting proto-
types to be used for labeling an entire dataset. As the mean shift algorithm does
not find modes exactly on the position of objects, we used the medoids of the
clusters it finds. In comparing Tables 1 and 2 it can be concluded that although
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Table 1. The cluster-class-consistency AUC
values for a collection of datasets (the lower
the better). Underlined are the best results per
dataset. The datasets Aviris* and MNIST* are
sampled versions (10%) of the originals.

Dataset m d c kNN MS

Hepatitis 155 19 2 0.52 0.47
Wine 178 13 3 0.31 0.28
Biomed 194 5 2 0.43 0.28
Glass 214 9 4 0.40 0.34
Malaysia 291 8 20 0.45 0.46
Ecoli 336 7 8 0.20 0.08
Auto-mpg 398 6 2 0.25 0.39
Arrhythmia 420 278 13 0.47 0.29
Breast 699 9 2 0.33 0.05
Diabetes 768 8 2 0.49 0.47
Car 1728 6 4 0.50 0.50
mfeat-fou 2000 76 10 0.27 0.16
Aviris* 2109 200 17 0.37 0.39
MNIST* 6006 784 10 0.35 0.29
Satellite 6435 36 6 0.21 0.17
Ringnorm 7400 20 2 0.50 0.34
Twonorm 7400 20 2 0.10 0.07
ChromoBands 12000 30 24 0.28 0.23

Table 2. The Learning Speed val-
ues of the cluster algorithms (the
higher the better)

Dataset kNN MS

Hepatitis 1.73 0.09
Wine 0.66 0.29
Biomed 0.62 0.47
Glass 0.34 0.16
Malaysia 0.07 0.09
Ecoli 0.32 0.48
Auto-mpg 0.84 0.99
Arrhythmia 1.99 -0.70
Breast 0.76 27.27
Diabetes 0.75 0.26
Car 0.14 0.36
mfeat-fou 0.59 0.47
Aviris* -0.03 -0.09
MNIST* 0.30 -0.05
Satellite 0.58 0.44
Ringnorm 0.00 0.37
Twonorm 51.76 0.71
ChromoBands 0.32 0.17

our collection of datasets contains more problems for which mean shift has a
better AUC value than the kNN procedure, the latter has more problems with
a lower learning speed. So for these examples mode shift finds clusters that are
more consistent with the classes, but kNN finds better prototypes.

If the modes of the density function have to be used to define clusters,
good density estimates should be available. This points to the direction of large
datasets in comparison with the (intrinsic) dimensionality. The mean shift algo-
rithm can handle large datasets for low dimensional spaces, but has problems for
tracking the density gradient in high dimensions. Our implementation of kNN
mode seeking can handle both, large numbers of objects and high dimensions.

It is interesting that the kNN procedure is significantly faster than mean shift,
see Table 3. kNN mode seeking can easily handle datasets that are even an order
larger than the ones studied here. The mean shift algorithm then fails, either
due to intolerable computing times or because of the need to handle too large
distance matrices.

5 Discussion

Mode seeking seems a natural procedure for cluster analysis. It is, however,
necessary to have a sufficiently large dataset to obtain good density estimates.
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Table 3. The total computing times (over about 25 clusterings per problem) in seconds
needed for the various experiments

Dataset m d c kNN MS

Aviris* 2109 200 17 2 381
ChromB 12000 30 24 72 5976
MNIST* 6006 784 10 43 12974
Ringnorm 7400 20 2 28 3014
Twonorm 7400 20 2 29 1469
Satellite 6435 36 6 22 886

Formally the mean shift procedure should be better able to handle this as the
Parzen kernel takes care for a smooth estimate. The kNN procedure, however,
offers interesting possibilities for a feasible and fast implementation.

Except for speed the restriction to use densities located in the objects offers
a few additional advantages. As it is well defined, there is no inaccuracy in the
exact position of the mode. In the mean shift algorithm, thresholds have to be
set to determine whether a newly found mode is really new. We studied this
in a small experiment based on the mfeat-fou dataset that has 2000 objects. In
Tables 4 and 5, the sizes of the largest clusters are given for the two procedures
for a set of values for k between 25 and 200. The mean shift procedure has the
tendency to select one or a few large clusters and many with a size of one or two
objects. kNN mode seeking finds more balanced cluster sizes.

Table 4. The number of objects in the 7
largest clusters found by kNNmode seek-
ing with k = {25, ..., 200} for the mfeat-
fou dataset (2000 objects)

k

25 316 245 207 180 159 146 146
50 381 339 303 209 188 142 141
75 595 486 355 253 214 97
100 746 580 448 226
125 704 560 502 234
150 752 577 433 238
175 741 621 398 240
200 1086 914

Table 5. The number of objects in the
7 largest clusters found by mean shift
with k = {25, ..., 200} for the mfeat-fou
dataset (2000 objects)

k

25 447 327 294 189 184 166 144
50 1410 323 165 67 2 1 1
75 1658 324 2 1 1 1 1
100 1739 252 1 1 1 1 1
125 1734 261 1 1 1 1 1
150 1752 244 1 1 1 1
175 1996 1 1 1 1
200 1997 1 1 1

Another advantage of the kNN mode seeking procedure is that it is based
on the object distances only. No computations in the feature space are needed.
Consequently, it may operate on given distance matrices and after conversion on
similarity matrices as well.
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Finally, we showed that for the given collection of datasets kNN mode seeking
is a better prototype selector, while the mean shift algorithm found often clusters
that are more consistent with given class labelings.
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S.: PRTools 4.1, a Matlab toolbox for pattern recognition, http://prtools.org

5. Finkston, B.: Mean shift clustering
6. Frank, A., Asuncion, A.: UCI machine learning repository (2010),

http://archive.ics.uci.edu/ml

7. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Trans. Information Theory 21(1),
32–40 (1975)

8. Kittler, J.V.: A locally sensitive method for cluster analysis. Pattern Recogni-
tion 8(1), 23–33 (1976)

9. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A graph-theoretic approach to
nonparametric cluster analysis. IEEE Trans. Computer 25, 936–944 (1976)

10. Shaffer, E., Dubes, R.C., Jain, A.K.: Single-link characteristics of a mode-seeking
clustering algorithm. Pattern Recognition 11(1), 65–70 (1979)

http://prtools.org
http://archive.ics.uci.edu/ml


Learning Sparse Kernel Classifiers in the Primal

Zhouyu Fu1, Guojun Lu2, Kai-Ming Ting2, and Dengsheng Zhang2

1 School of Computing, University of Western Sydney, Penrith, NSW 2750, Australia
2 Gippsland School of IT, Monash University, Churchill, VIC 3842, Australia
z.fu@uws.edu.au, {guojun.lu,kaiming.ting,dengsheng.zhang}@monash.edu

Abstract. The increasing number of classification applications in large
data sets demands that efficient classifiers be designed not only in train-
ing but also for prediction. In this paper, we address the problem of learn-
ing kernel classifiers with reduced complexity and improved efficiency for
prediction in comparison to those trained by standard methods. A single
optimisation problem is formulated for classifier learning which optimises
both classifier weights and eXpansion Vectors (XVs) that define the clas-
sification function in a joint fashion. Unlike the existing approach of Wu
et al, which performs optimisation in the dual formulation, our approach
solves the primal problem directly. The primal problem is much more ef-
ficient to solve, as it can be converted to the training of a linear classifier
in each iteration, which scales linearly to the size of the data set and the
number of expansions. This makes our primal approach highly desirable
for large-scale applications, where the dual approach is inadequate and
prohibitively slow due to the solution of cubic-time kernel SVM involved
in each iteration. Experimental results have demonstrated the efficiency
and effectiveness of the proposed primal approach for learning sparse
kernel classifiers that clearly outperform the alternatives.

1 Introduction

Kernel classifiers have been widely used in pattern classification applications due
to its superior predictive performance. Themajor issue with kernel classifiers is the
heavy computational cost involved in both training and prediction.While existing
methods have mainly focused on reducing the training cost for kernel classifiers
especially the Support Vector Machine (SVM) [2], one should not overlook the
issue of prediction cost. The reason is that a kernel classifier takes a linear expan-
sion of kernel evaluations for prediction, where the number of expansion terms is
usually determined by the size of training data. This makes kernel classifiers quite
inefficient for large-scale applications where prediction speed is a main concern,
such as classifying pictures, music and web documents in a large collection.

A few methods have been proposed in the literature for learning sparse kernel
classifiers with fewer expansion terms in the learned classifiers [3,4,1,5]. The fewer
expansions, the sparser the classifier, the smaller number of kernel function eval-
uations needed, and hence the more efficient the prediction stage is. While early
methods such as the Reduced Set (RS) [4] and Reduced SVM (RSVM) [3] focused
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on pre- and post-processing steps for building sparse kernel classification mod-
els, they do not explicitly take into account label information and can result in
the loss of discriminant information in fitting the kernel expansions. More recent
methods [1,5] adopted a discriminant approach by searching for the expansion
vectors (XV) which form the kernel function terms in the resulting classifier so
as to maximise the margin and minimise the mis-classification cost. Specifically,
Wu et al [1] proposed the Sparse Kernel Learning Algorithm (SKLA), a direct
approach for building kernel classifiers with significantly smaller number of XVs
and comparable predictive performance to the standard SVM. Compared to the
greedy incremental algorithm in [5], SKLA formulates sparse kernel learning in
a single optimisation problem and is able to select XVs at arbitrary locations,
making it possible for further reduction of the classifier.

A major issue with SKLA is its training complexity. It is an iterative algorithm
which involves training a full kernel SVM model in each iteration. This makes
it extremely inefficient for large data sets, where SVM training becomes quite
costly. On the other hand, it is more likely to have a over-complex kernel classifier
with thousands of SVs when we apply standard SVM methods to large data sets.
Hence producing sparser classifiers to improve prediction efficiency becomes a
real issue for problems with large data sets. For these problems, one needs to have
an effective algorithm for sparse kernel classifier learning with low computational
cost in both training and testing.

The main contribution of this paper is a solution to the above problem that
scales well to large data sets and produces sparse prediction models for testing.
A similar formulation to [1] is developed using a differentiable loss function. This
allows us to tackle the resulting optimisation problem directly in its primal form
instead of converting it to the dual form for solution as in [1]. Moreover, with
transformation of variables, we are able to convert the primal problem into a
standard linear SVM. An iterative technique [6] is then employed to solve the
formulated problem, where each iteration only involves solving a linear SVM
with significant computational savings particularly for large data. The resulting
algorithm, dubbed Primal Sparse Kernel Classifier (PSKC), is shown to perform
competitively with SKLA and SVM while being more efficient.

2 Learning Sparse Kernel Classifiers

We focus on kernel SVM in this paper, but the proposed algorithm can easily
be adapted to other kernel classifiers. Consider a binary classification problem
with data set (X ,Y) = {(xi, yi)|i = 1, . . . , N, xi ∈ Rd, yi ∈ {−1, 1}}, kernel SVM
training can be cast as the following optimisation problem

min
w,b

1

2
‖w‖2 + C

N∑
i

�(f(xi), yi) (1)

f(xi) = wTϕ(xi) + b

where ϕ specifies an implicit feature mapping function. The exact form of ϕ is
unknown but the inner product between two feature maps ϕ(xi) and ϕ(xj) is
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well defined by the kernel function κ such that κ(xi,xj) = 〈ϕ(xi), ϕ(xj)〉 holds
for any xi,xj ∈ Rd. And �(fi, yi) = max (0, 1− fiyi) is the Hinge loss for SVM
and varnishes whenever the margin is greater than 1 (fiyi ≥ 1).

Despite the simple form, it is difficult to directly solve problem (1) without
knowing ϕ in closed form. Hence the following dual problem is solved instead

min
α

1

2

∑
i,j

αiαjκ(xi,xj)−
∑
i

αiyi (2)

s.t.
∑
i

αi = 0 and 0 ≤ αiyi ≤ C

where αi is the dual variable for input example i and the primal variable w and
the classifier f in (1) can be expressed in terms of dual variables

w =
∑

i,αi �=0

αiϕ(xi) (3)

f(x) =
∑

i,αi �=0

αiκ(xi,x) + b (4)

Note that only examples with nonzero dual variables are included in the ex-
pansion above. These are called Support Vectors (SV), referring to examples
incurring positive Hinge losses. The complexity of kernel SVM depends on the
number of SVs in the expansion (4). With larger training data set, it is likely to
produce a classifier with a large number of SVs. The purpose for sparse kernel
classifiers is to reduce the number of expansion terms in (3) and (4) without
affecting the performance. The weight vector takes a similar form below

w =

m∑
j=1

βjϕ(zj) (5)

where zi’s are the eXpansion Vectors (XV) that form the bases of w. Unlike SVs
in kernel SVM, XVs do not necessarily overlap with input data and thus provide
more flexibility in fitting the weight w. The number of XVs m is much smaller
than the number of SVs in standard SVM, making predictions more efficient.

Various strategies can be used for selecting XVs here, such as random selection
from the input examples (RSVM, [3]) or fitting a trained SVM classifier with a
fixed number of XVs that minimises the reconstruction error (RS, [4]). A more
principled approach would account for the cost function to be minimised and
embed XV selection into the optimisation process. Wu et al [1] added Equation
(5) as an explicit constraint into the SVM formulation in (1). They then showed
that a new dual problem can be formulated for sparse SVM, resembling the
standard formulation in (2) with a modified kernel function

κ̂z(xi,xj) = ψT
i (K

z)−1ψj (6)

ψi = [κ(xi, z1), . . . , κ(xi, zm)]T (7)

where Kz is a m ×m Gram matrix whose (i, j)th entry is given by the kernel
evaluation κ(zi, zj). Each entry κ̂z(xi,xj) depends on the XVs zi’s. This suggests
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the use of a perturbed optimisation technique [6] to solve the formulated problem
iteratively. In each iteration, the gradient of the dual objective function with
respect to zi is computed by solving the dual SVM problem with modified kernel
(6) and fixing the dual variables to their optimal values in gradient computation
as if they do not depend on the XVs. Then a line search is pursued in the
direction of the negative gradient for sufficient decrease of cost function value.
Each linear search updates the values of zi’s and hence involves retraining of
the kernel SVM. The validity of this approach is established by a theorem for
optimal value functions in [6].

3 Primal Sparse Kernel Classifier Learning

Despite the effectiveness of SKLA [1] for learning sparse kernel classifiers, it is
extremely expensive in training, making it impractical for large-scale applica-
tions. The complexity of SKLA arises mainly in two aspects. Firstly, being an
algorithm of iterative nature, SKLA involves repeatedly retraining of the ker-
nel SVM problem for each function evaluation involved in gradient computation
and line search. Note the complexity of kernel SVM training is at best cubic
in the number of SVs, which is roughly proportional to the training data size.
In addition, for difficult problems, there is a high probability of failure for line
searches. This would greatly increase the number of times for SVM retraining
and the overall training time. Secondly, the gradient computation is also very
costly, as it involves taking the derivative of each κ̂z(xi,xj) in the modified ker-
nel w.r.t. zj ’s. The time complexity for computing the gradient of a single XV
is O(N2m2d), quadratic in both the training data size and the number of XVs.
This is also undesirable for large-scale applications.

The main hurdle to the efficiency of SKLA is the optimisation of dual vari-
ables, which are then used to compute the β variables that define the weight
vector in (5). A more direct approach would aim to solve βi’s directly. This
motivates the development of the PSKC algorithm, which provides a primal op-
timisation framework for sparse kernel classifier learning. By substituting weight
vector w in (5) into the primal problem in (1) and rewriting the cost function
in terms of β and zj ’s, we have

min
β,b;Z

f(β, b;Z) =
1

2
βTKzβ + C

N∑
i

�(βTψi + b, yi) (8)

Here β = [β1, . . . , βm]T is the vector of expansion coefficients, ψi is defined in (7),
and Z is a concatenation of XVs zj ’s. Moreover, the squared Hinge loss is used

here �(fi, yi) = max (0, 1− fiyi)2 instead of the Hinge loss for standard SVM.
The reason for utilising the squared Hinge loss will become apparent shortly.

Two sets of variables need to be optimised for the above problem, the expan-
sion coefficient vector β and the XVs Z. Hence, we adopt an efficient approach
to solve this joint optimisation problem. Specifically, we convert the original
problem in (8) into the following problem which depends on variable Z only

min
Z

g(Z) with g(Z) = min
β,b

f(β, b;Z) (9)
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The new cost function g(Z) is special because itself is the optimal value of f
minimised over variables (β, b). In our case, g(Z) not only exists, but is also
differentiable at each Z. This result can be established by applying Theorem
4.1 of [6], which provides sufficient conditions for the existence of derivatives for
optimal value functions like g(Z). According to the theorem, g(Z) is differentiable
if f(β, b;Z) is differentiable w.r.t. β and b and has unique optimal value over
variables β and b for each given Z. The first condition is guaranteed by the use
of squared Hinge loss discussed before, which is differentiable everywhere. Note
this condition is not true for the standard Hinge loss, as it is non-differentiable
if yifi = 1. The uniqueness condition is true because f is a quadratic function
over β with positive definite Hessian Kz. Thus f is convex in β and ensures the
optimal solution is unique. Let (β, b) = argmin f(β, b;Z) be the minimiser of f
at given Z, the derivative of g(Z) w.r.t. each XV zj can then be computed by
substituting β and b into (8) and taking the corresponding derivative as if g(Z)
does not depend on β and b

∂g

∂zj
=
∑
i=1

mβi

∂κ(zi, zj)

∂zj
βj + 2C

∑
i∈S

(βTψi + b − yi)βj
∂κ(xi, zj)

∂zj
(10)

where S = {i|�(yi, fi) > 0} denotes the index set of examples with positive loss
terms. The partial derivative of the kernel function depends on the choice of the
kernel. In this paper, we have adopted the following Gaussian kernel, but the
algorithm works for all differentiable kernel functions

κ(x, z) = exp (−γ‖x− z‖2)
∂κ(x, z)

∂z
=2γκ(x, z)(x− z) (11)

With the derivatives of g(Z), we can use a gradient descent algorithm with back-
tracing line search to iteratively optimise the values of Z. The only problem
left is how to evaluate the value of g(Z) for each Z, which equals solving the
minimisation problem in (8) for β and b with fixed Z. This problem is in fact
equivalent to a linear SVM with the one-to-one mapping of variables below.

ϑ = (Kz)
1
2β ⇐⇒ β = (Kz)−

1
2ϑ (12)

By substituting β in (8), we can rewrite it as a cost function over ϑ

f
′
(ϑ, b;Z) = ϑTϑ+ C

N∑
i

�(ϑT (Kz)−
1
2ψi + b, yi) (13)

The above is the same as the cost function for a linear SVM. ϑ is the weight
vector of the linear SVM, and (Kz)−

1
2ψi’s are the input vectors. Let (ϑ, b) be

the solution of the linear SVM trained with transformed feature vectors, the
minimiser (β, b) for f(β, b;Z) can be easily obtained by mapping the solution ϑ
back to β via (12).
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Same as the case of SKLA, the complexity of PSKC depends mainly on func-
tion evaluation and gradient computation. We have shown above that function
evaluation is equal to solving a linear SVM with transformed features. Both lin-
ear SVM training and feature transformation has linear time complexity O(N)
with input data size N . This is much better than SKLA with time complexity of
O(N3) for kernel SVM training. Since m is a small number compared to N , the

computation of (Kz)−
1
2 and map from ϑ to β is negligible. From (10), we can

see that the cost of gradient computation for each XV zj is roughly O(Nmd), a
factor-O(Nm) saving compared to that in SKLA.

4 Experimental Results

We first tested our PSKC algorithm on a synthetic example to showcase its
interesting properties. The synthetic data set shown in Figure 1. has four classes,
each occupying a separate cluster generated from a Gaussian distribution. Points
from different classes are marked with different symbols. For this example, a
minimum of 4 XVs overlapping with the centroid of each cluster is sufficient to
distinguish the four classes. We deliberately initialise PSKC with poor initial
locations of the XVs far from their respective cluster centroids, as denoted by
squares in the top-left plot. By running PSKC and recording the locations of
XVs over each iteration, a trajectory is created for each XV which keeps track
of its evolution during optimisation. It can be seen that eventually all XVs have
converged to locations close to the cluster centroids, as denoted by the circles in
the same plot. The improvement on XVs locations is a natural consequence of
the reduction in cost function values over each iteration, as shown in the top-
right plot. These plots have empirically demonstrated the effectiveness of PSKC
in finding good XVs for sparse kernel classifiers.

We have obtained similar results with the dual SKLA algorithm [1]. However,
SKLA is much more costly than PSKC in training. To show this, we conducted
two experiments on the same data distributions. The first experiment compares
the training speed of PSKC and SKLA by increasing the size of the training data
while the second one focuses on the effect of increasing feature dimensions. The
results are shown on the second row of Figure 1, with the number of seconds spent
on training over different training data sizes in the left plot and increasing feature
dimensions on the right for both PSKC ((in solid lines) and SKLA (in broken
lines). It can be easily seen that PSKC has superior scalability in comparison
to SKLA in both cases. This is especially true with large training data sizes.
Whereas SKLA has cubic time complexity with the sample size, PSKC scales
linearly and is well suited for large-scale applications.

We now turn our attention to real-world data sets. 12 data sets from the UCI
Machine Learning Repository1 were used in our experiment. A summary of data
sets used is given in Table 1, including the size of the training (Ntr) and testing
(Nts) sets, feature dimension (Dim), number of classes (Cls). We then applied the

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Fig. 1. Results on synthetic data. Top row: trajectories for the locations of each XV
(left) and cost function values over the iterations (right); Bottom row: training speed
for PSKC and SKLA with increasing data sizes (left) and feature dimensions (right).

standard SVM with the Gaussian kernel on each data set and compared the re-
sults of SVM with four candidate sparse kernel classifiers - RS [4], RSVM [3], the
dual SKLA [1] and the proposed PSKC. Input data were scaled to have unit vari-
ance for each coordinate. The parameter γ for the Gaussian kernel was empirically
set to the inverse of the feature dimension and the SVM parameter C was 10 for
all methods under comparison. We have used the LibSVM package2 for training
kernel SVM classifiers and the LibLinear package3 for training linear SVMs for
RSVM and PSKC. The algorithms was implemented in Octave on a MacBook
Pro with Intel Core i5 CPU and 4Gb memory. We have repeated the experiment
10 times over random partitions of training and testing data. The classification
performance in terms of average accuracy values and their standard deviations
are reported in Table 2.

For the SVM classifier, we have also recorded the number of SVs produced on
average for each data set, which are the numbers in the brackets on the second
column of Table 2. For each sparse kernel classifier, we have used a fixed number
of expansions equal to 1% of the training data size capped at a minimum value
of 10 and a maximum value of 100. The exact number for each data set is shown
inside the brackets following the names on the first column. For each data set, we
have highlighted the accuracy value corresponding to the best-performing sparse
kernel classifier. More than one values could be highlighted in cases of ties, which
are determined by the results of paired t-tests at the confidence interval of 95%.

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3 http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table 1. Statistics of the real-world data sets used in the comparison experiment

Data Ntr Nts Dim Cls Data Ntr Nts Dim Cls

australian 346 344 14 2 letter 15000 5000 16 26

breast-cancer 342 341 10 2 connect-4 33780 33777 126 3

dna 1001 999 180 3 shuttle 43500 14500 9 7

segment 1155 1155 19 7 ijcnn1 49990 91701 22 2

satimage 4435 2000 36 6 mnist 60000 10000 784 10

usps 7291 2007 256 10 SensIT 78823 19705 100 3

We can clearly see from Table 2 that PSKC and SKLA are the most competitive
sparse kernel classifiers. Their performances could approach that of kernel SVM
albeit with a significantly smaller number of kernel expansions. In contrast, RS
and RSVM do not perform as well as PSKC and SKLA. Specifically, among the
four sparse kernel classifiers under comparison, PSKC is the exclusive winner for
6 out of 12 data sets, and winning 10 of them including tied cases. Moreover, for
the majority of data sets, PSKC beats RSVM by a large margin in performance.
This is clear evidence for the effectiveness of the PSKC optimisation algorithm,
as RSVM is the special case of PSKC without any optimisation.

Table 2. Comparison of classification performance for SVM and various sparse kernel
classifiers on real-world data sets

SVM RS RSVM SKLA PSKC

australian (10) 84.2 ± 1.4(156) 82.2± 3.1 77.9 ± 2.6 85.7± 2.1 85.8± 1.6

breast-cancer (10) 95.2± 0.8(56) 94.6± 1.6 96.4± 0.7 96.1± 0.9 96.0 ± 0.8

dna (10) 95.3 ± 0.6(821) 94.7± 0.4 67.0 ± 2.5 94.3 ± 0.6 94.2 ± 0.5

segment (12) 94.4 ± 0.6(384) 71.3± 7.7 85.7 ± 2.5 91.7 ± 1.1 92.9± 0.9

satimage (44) 91.0 ± 0.7(1425) 89.8± 0.8 88.5 ± 1.0 90.2± 0.8 90.4± 0.6

usps (73) 97.8 ± 0.8(2175) 96.1± 1.0 94.4 ± 1.0 96.9± 0.8 97.0± 0.9

letter (100) 96.5 ± 0.4(6260) 76.9± 1.9 88.3 ± 0.3 - 94.6± 0.3

connect-4 (100) 83.7 ± 0.1(16721) 80.3± 0.7 74.5 ± 0.3 - 80.1± 0.5

shuttle (100) 99.8 ± 0.0(605) 98.8± 1.1 99.8 ± 0.0 - 99.8± 0.0

ijcnn1 (100) 99.0 ± 0.1(2683) 98.5± 0.2 96.4 ± 0.2 - 98.5± 0.2

mnist (100) 97.7 ± 0.1(9883) 94.3± 0.4 90.5 ± 0.4 - 95.8± 0.2

SensIT (100) 84.0 ± 0.2(21249) 82.0± 0.8 80.0 ± 0.6 - 83.6± 0.4

Though the performances of PSKC and SKLA are quite comparable, there is a
huge difference in training cost. SKLA is very inefficient and scales poorly to large
data, hence we only have the results for SKLA in Table 2 for the first six data
sets. For the remaining data sets with over 10, 000 training examples, the training
cost is prohibitive for SKLA, which involves many iterations of kernel SVM
training and heavy gradient computations. The training times for each method
are reported in Table 3. It is evident that SKLA is very inefficient in training. On
the other hand, PSKC scales much better with increasing training sizes. After all,
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Table 3. Comparison of training time for different methods

SVM RS RSVM SKLA PSKC

australian 0.02 sec 0.35 sec 0.01 sec 1.0 sec 0.2 sec

breast-cancer 0.01 sec 0.39 sec 0.01 sec 0.4 sec 0.1 sec

dna 1.2 sec 2.9 sec 0.01 sec ≈ 4.2 min 0.5 sec

segment 0.2 sec 2.5 sec 0.02 sec 31.1 sec 0.6 sec

satimage 2.5 sec 27.9 sec 0.2 sec ≈ 47.0 min 9.0 sec

usps 32.9 sec ≈ 4.7 min 0.9 sec > 3 hour 38.4 sec

letter 52.1 sec ≈ 7.0 min 6.2 sec - ≈ 3.7 min

connect-4 ≈ 13.4 min ≈ 21.0 min 3.0 sec - ≈ 4.7 min

shuttle 9.7 sec ≈ 1.0 min 5.3 sec - ≈ 2.3 min

ijcnn1 31.2 sec ≈ 1.3 min 1.9 sec - ≈ 1.3 min

mnist ≈ 1.5 hour ≈ 2 hour 12.3 sec - ≈ 12.8 min

SensIT ≈ 2 hour ≈ 2.5 hour 18.6 sec - ≈ 11.4 min

it only involves repeated training of linear SVM during optimisation. Although
it is not as efficient as SVM for small and median data sets, the asymptotic
complexity for PSKC is better. This is empirically justified by the less amount
of time spent for training on two largest data sets - “mnists” and “SensIT”
in Table 3. In addition, PSKC uses only 10% to 1% of XVs compared to the
number of SVs in SVM. This reduces prediction time by a factor of 10 to 100,
which depends linearly on the number of XVs in the classifier. The improvement
in efficiency for PSKC is more pronounced for large data sets compared to SVM.
This makes PSKC particularly suited for large-scale applications.

5 Conclusions

In this paper we presented PSKC, an efficient and effective algorithm for learn-
ing sparse kernel classifiers. Training PSKC is quite efficient and only involves
solving linear classifiers repeatedly. Experiments show that PSKC outperforms
other sparse kernel classifiers and is comparable with kernel SVM in predictive
accuracy at lower training and prediction costs for large data sets.
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Abstract. A new general framework for generalized median approxi-
mation is proposed based on the concept of weighted mean of a pair of
objects. It can be easily adopted for different application domains like
strings, graphs or clusterings, among others. The framework is validated
for strings showing its superiority over the state-of-the-art.

1 Introduction

The concept of median is widely used in order to estimate a single representative
of a set of objects. Another motivation of the median concept is to eliminate some
erroneous objects by averaging over all objects. Further, the median concept is
also motivated by the results received from supervised classifier combination: It
is well known that by averaging the results of several classifiers a more reliable
classification can be achieved [9].

While finding the Euclidean median in vector space was originally posed by
Fermat in the 17th century and is referred to as the Fermat-Weber problem, in
the last years the median problem was also formulated for more general spaces
and objects like strings [7], graphs [3], clusterings [12], and segmentations [11],
among others. In most cases, however, the computation of generalized median
turns out to be very demanding, partly even of NP-completeness [10,12]. This
fact motivates the design of approximate approaches.

There is very little work on general frameworks for generalized median ap-
proximation. The embedding approach is based on embedding the objects into
the vector space, in which the Weiszfeld algorithm [14] can be applied to find
the median point. Then, an inverse transformation to the original object domain
is performed by using the weighted mean of a pair of objects (to be discussed
later). This framework has been adopted to strings [7] and graphs [3]. However,
the transformation in vector space and back into object (string, graph, etc.)
domain is not trivial and such an embedding may cause undesired distortions.

In this work we propose a new framework for generalized median approxi-
mation. It is formulated for objects in general spaces and can be adopted to
different application domains, such as strings, graphs, and clusterings, among

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 70–78, 2012.
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others. The proposed framework is motivated by the lower bound for the gener-
alized median [6]. It is observed that in case of a tight lower bound generalized
median is received by computing the weighted mean of a pair of objects. This
motivates us to formulate an algorithm for generalized median approximation by
using the concept of weighted mean. The definition of weighted mean is directly
motivated by the weighted mean of two numbers (or vectors) and it has already
been adopted to the domain of strings [2], graphs [1] and clusterings [5].

In the experimental part of this work the proposed framework is adopted to
the domain of strings. Further, a comparison with the embedded based approach
[7] is provided.

The rest of the paper is organized as follows. In the next section we intro-
duce the fundamentals of this work (formal definition of the generalized median
problem and weighted mean). Our new general framework for generalized me-
dian approximation is presented in Section 3. The application to the domain of
strings and experiments are shown in Section 4. We conclude in Section 5.

2 Fundamentals

We first define the problem of generalized median formally for a set of general
objects.

Definition 1. Let X = {x1, . . . , xn} be a set of objects in a general space U and
d : U ×U → R+

0 a distance function defined on U . Then, the generalized median
x̂ is defined by

x̂ = arg min
x∈U

n∑
i=1

d (x, xi) = arg min
x∈U

SOD(x), (1)

where the summation will be called sum of distances (SOD) of object x.

It intends to infer a representative sample out of the ensembleX . If the minimizer
x̂ is restricted to be within the ensemble X , then the corresponding solution is
called set median.

Further, for the proposed algorithm we need the concept of weighted mean of
a pair of objects. Consider two points in the n-dimensional real space, x, y ∈ Rn.
The weighted mean of x and y is defined as

z = αx+ (1− α)y, 0 ≤ α ≤ 1. (2)

If α = 1
2 , then z is the (normal) mean of x and y. Clearly, z is a point on the line

segment between x and y and the distance between z to x and y is controlled
by the parameter α.

Generally, the weighted mean of two objects can be defined as follows.

Definition 2. Let x1 and x2 denote two objects in a space U of all objects,
and d : U × U → R+

0 a distance function defined on U which measures the
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Fig. 1. Generalized median in two-dimensional vector space. Red points: initial points.
Small black points: weighted means. Green point: generalized median. (a) Generalized
median is located at the intersection point of the line segments of opposite point pairs.
(b) Line segments do not intersect in one point. Further iterations are necessary to
approach the generalized median.

dissimilarity of two objects. The weighted mean of x1 and x2 is an object xw
such that

d(x1, xw) = α (3)

d(x1, x2) = α+ d(xw , x2) (4)

where α is a constant with 0 ≤ α ≤ d(x1, x2).

The concept of weighted mean has been brought to pattern recognition for strings
[2], graphs [1], and clusterings [5].

3 Evolutionary Weighted Mean Based Framework for
Generalized Median Computation

In order to motivate our new method for generalized median approximation let
us first consider the lower bound for the generalized median [6]. Let P denote a
partition of the objects X into m = n

2 pairs (n even for convenience):

P = {(x11, x12), (x21, x22), . . . , (xm1, xm2)} , xi,j ∈ X,
⋃

i=1,...,m,j=1,2

{xij} = X.

Further, P denotes the set of all such partitions P . If d is a metric, then it
can be shown that a lower bound Γ on the SOD of the generalized median x̂,
i.e. 0 ≤ Γ ≤ SOD(x̂), can be computed by estimating the optimal set of pairs
P̂ ∈ P such that the sum of distances of the pairs (xi1, xi2) is maximal (see [6]
for a proof):

Γ = max
P∈P

m∑
i=1

d (xi1, xi2) . (5)

This lower bound formulation motivates an approximation algorithm for the
generalized median. By approaching the lower bound the generalized median is
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obviously also approached. In the ideal case, where the lower bound is tight,
i.e. SOD(x̂) = Γ , even the true generalized median could be found by ap-
proaching Γ . In this case it directly follows from the metric property d(xi1, x̂)+
d(x̂, xi2) = d(xi1, xi2), i.e. the generalized median is the weighted mean of each
pair (xi1, xi2) ∈ P̂ . Since the lower bound is estimated by an optimum partition
of pairs, the generalized median is approached by computing the weighted means
of such pairs of objects.

For each pair the optimum weight is unknown a priori. But a condition for
optimality is obvious: The optimum weighted means of all pairs are estimated
such that they match in one point, namely the generalized median.

The idea is depicted in Fig. 1 for a set of points. From a geometrical point
of view, the median point in an Euclidean space is ideally located in the exact
intersection point between the opposite pairs of points (Fig. 1(a)). Thus, the gen-
eralized median is received by computing for each of the pairs a set of weighted
means (represented by the smaller points on the line segments). The generalized
median is then located at the point where the weighted means match. Note that
in general the lower bound will not be tight. To say it another way, in geometric
space the weighted means of all pairs will not match in one point as depicted in
Fig. 1(b). Thus, we resort to an iterative algorithm:

Step 1: Compute the optimum (opposite) pairs of objects.
Step 2: Estimate for each pair the optimum weighted mean in terms of SOD

and add it to the current set of objects.
Step 3: Select the optimum objects in the current set of objects.

These steps are detailed in the following.

Step 1: Optimum Pairs of Objects

The question arises how to estimate the optimum set of pairs of objects such that
the sum of distances of pairs (Eq. (5)) is maximized. To handle this problem it is
proposed to build a graph, where each object corresponds to a vertex and each
edge between two vertices is weighted by the distance between the corresponding
objects. Then, finding the optimum pairs is equipollent to solving the maximum
weighted graph matching problem. A solution to this problem is provided by [8].
Note that in the situation of an odd number of input objects one vertex remains
unmatched (see also [6]). The unmatched point is stored in the current set of
objects which is processed in the third step.

Step 2: Optimum Weighted Mean in Terms of SOD

After having computed the optimum set of pairs the weighted mean for each
pair of objects is computed. In this situation, however, the problem arises that
the weight may vary for each pair in the range [0, 1] (after normalization) and
the optimum weight yielding the generalized median is unknown a priori. To
find the optimum weight a search procedure is applied. First, several weighted
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means are computed and in the next step it is decided which weighted means are
suitable and which are not, i.e. a kind of fitness function is needed. Considering
that the generalized median aims at minimizing the SOD in Eq. (1) it is proposed
to use this SOD as fitness function. To estimate the best weight α the whole
range is sampled a fixed number of times in an equidistant way. The weighted
means are evaluated by the SOD and the weighted mean with the lowest SOD
is selected. Note that this kind of search procedure is a linear search. Further
search procedures could be also adopted. Optionally, the two weighted means
with the lowest SOD may be selected. This is discussed in the next step.

Step 3: Selecting the Optimum Set of Objects

In an ideal situation the optimum weighted mean for each pair of objects in terms
of SOD (as computed in Step 2) would be equal to the generalized median of the
initial set. In this case the algorithm should terminate. In a non-ideal situation,
however, it cannot be expected that the computed optimum weighted means of
different pairs are equal. Probably, some weighted means will be more suitable
than other ones. Again, it is proposed to resort to the SOD as a fitness function
in order to distinguish between suitable weighted means and less suitable ones.

More specifically, in the proposed algorithm the optimum weighted mean for
each pair of objects is added to the current set of objects. Then, the optimum
set of objects is estimated by selecting the best nmax objects from the current
set of objects, where nmax is a parameter of the algorithm. Hereby, the best
objects are again selected by evaluating their SOD with respect to the input
set of objects and selecting the objects with the lowest SOD. The parameter
nmax is fixed such that the size of the set of optimum objects is limited during
the iteration process. Note that optionally, the second best weighted mean from
Step 2 may also be added to the set of objects because in a non-ideal case it
may contain valuable information as well.

The process is now iterated beginning with the first step using the current
optimum set of objects. The algorithm may finish when either the lower bound
is reached or when it converges to some solution.

Evolutionary Weighted Mean Based Framework

The proposed framework can now be formulated as follows. Given a set of objects
O = {o1, . . . , on}.
1. Consider all pairs of objects and compute their weights by the distance

between the corresponding objects. Save them into the distance matrix D.
2. Determine the optimal set of pairs using maximum weighted graph matching

on D. Let E = (e1, . . . , em) denote the corresponding optimum set of edges.
3. For each edge ei ∈ E consider the corresponding pair (oi1, oi2) and:

(a) Compute w weighted means by using α = i·d(oi1,oi2)
w+1 , i = 1, . . . , w.

(b) Evaluate the w weighted means by the fitness function SOD and select
the best weighted mean o∗. Update the current set of objects by adding
the best weighted mean: O = O ∪ {o∗}.
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4. Evaluate all objects in O by SOD and delete the worst instances such that
the resulting current set O consists of a maximum number nmax of objects.

5. It is checked if the lower bound is matched or if convergence is achieved.
Otherwise, the procedure starts from step 1 with the current O. A maximum
number of iterations Imax prevents the algorithm from getting inefficient.

Obviously, the algorithm is convergent, because the values of the fitness func-
tion (SOD) can only decrease. However, Imax is introduced in the last step for
efficiency reasons.

It is emphasized that the only requirement for this framework is that the
weighted mean is well defined for the space under consideration. In the next sec-
tion this framework will be adopted and validated for the median string problem.

4 Application to Strings

Strings are a fundamental representation in structural pattern recognition. Here,
our framework is adopted to the domain of strings. As a comparison method the
embedding based generalized median computation proposed by Jiang et al. [7]
will be used, which has been demonstrated to outperform the related algorithms
from the literature.

In order to be able to apply our proposed approach to the domain of strings two
requirements have to be fulfilled. First, a suitable distance function is needed in
order to compare strings. Secondly, based on this distance function the weighted
mean has to be defined. Here, we use the popular Levenshtein edit distance [13].

The weighted mean of a pair of strings (S1,S2) for the edit distance was
introduced in [2]. It is defined analogously to Definition 2 as a string Sw with

d(S1, Sw) = α, d(S1,S2) = α+ d(Sw,S2), 0 ≤ α ≤ d(S1,S2).

Sw is constructed by selecting a subsequence of all edit operations used for
transforming S1 into S2, such that d(S1,Sw) = α. Applying this subsequence
to S1 yields Sw.

The evolutionary weighted mean algorithm can now be directly applied to
the domain of strings. In the implementation we set w = 3 and nmax = 10, i.e.
the set of strings will consist of a maximum number of 10 strings after the first
iteration. Further, the iteration is stopped after Imax = 5 iterations.

4.1 Experimental Settings

In order to be able to compare the proposed approach with the embedding
based approach the experimental settings from [7] are used. A synthetic dataset
is generated for test purpose by distorting an initial string p times. Hereby, each
symbol of the initial string is distorted with a fixed probability pdistort. If a
symbol is distorted, then the three elementary operations substitution, deletion,
and insertion are chosen by a fixed probability. Five strings (Scotland, Birming-
ham, Philadelphia, TristanDaCunha, WesternPatagonia) are used. 100 datasets
are generated for each initial string and the average performance measures are
reported. The same parameter values as in [7] are used:
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– p = 40: Number of strings in the initial set S.
– pdistort = 12%: Distortion probability for each symbol.
– The probabilities of the three basic operations: psubstitute = 87%, pdelete =

9%, pinsert = 4%.
– c(s→ s̄) = c(ε→ s) = c(s→ ε) = 1: Equal costs for the edit operations.

We also summarize some settings of the embedding based method [7]. It uses
prototype selection in order to reduce computational efforts. In our experiments
the K-medians prototype selector is used as it was proposed in [7]. The number
of prototypes is chosen to be 25% of the original set size. A comparison with all
variants of the embedding based approach (concerning the inverse transformation
to the original object domain) is provided, namely linear, triangulation, and
recursive. Additionally, set median is also included into the comparison.

4.2 Experimental Results

In order to evaluate the obtained median strings it has to be taken into account
that both the generalized median Ŝ and its SOD(Ŝ) are unknown. Consequently,
we have to resort to the lower bound Γ (see Eq. (5)). Then, the quality of the
obtained median S̄ is evaluated by Δ = SOD(S̄)/Γ . If Δ ≈ 1, it is a strong hint
that S̄ is an accurate approximation of the generalized median.

Probability of symbol distortion. In the first experiment the robustness against
distortions in the input strings is investigated (see Fig. 2). The distortion prob-
ability is varied (pdistort ∈ [2, 50]). As observed in [7], our results confirm that
the recursive approach dominates the other embedding based approaches up to
20%. For higher distortion probabilities the deviation Δ increases. The proposed
evolutionary weighted mean algorithm clearly outperforms all variants for all dis-
tortion probabilities. Even for a distortion probability of 35% the deviation Δ is
less than 1.05, making our method suitable also for high distortion levels.

Number of strings. Now we study the algorithm behavior with respect to the
number of strings in the initial set of strings, i.e. we vary p = 10, 12, . . . , 40. The
results are shown in Fig. 3. While for example the recursive approach needs 40
initial strings in order to yield a deviation Δ ≤ 1.05 the evolutionary weighted
mean algorithm performs very well already for more than 10 input strings with
a deviation Δ ≤ 1.01.

Length of initial string. In Fig. 4 the performance is plotted for different string
lengths. The evolutionary weighted mean algorithm clearly outperforms the em-
bedding based approach for all string lengths. The SOD of the obtained median
is very close to the lower bound indicating that the obtained median of the
proposed algorithm is very close to the generalized median.

Time complexity. The time complexity for one iteration depends on the number
of weighted means computed for one pair of strings as well as on the maximum
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Fig. 2. Performance as a function of dis-
tortion probability

Fig. 3. Performance as a function of num-
ber of strings

Fig. 4. Performance as a function of
string length

Fig. 5. Computational time for test series
”String length”

number of pairs in the current set of objects, i.e. O(w · nmax

2 ). Consequently, for
a maximum number of iterations Imax the overall time complexity is O(Imax ·w ·
nmax

2 ). The computational time was measured on an Intel Core i7 2.80 GHz with
6 GB RAM. The result with respect to the string length is shown in Fig. 5. Note
that the proposed approach is slightly more complex than the embedding based
approach because of a higher number of necessary weighted mean computations.
Nevertheless, the computational time is absolutely negligible (less than half a
second in all cases).

Discussion. The performed experiments have shown that the evolutionary al-
gorithm clearly outperforms the embedding based approach in all cases. It can
handle high distortion levels very well and it works also quite well for a small
number of initial input strings, whereas for example the embedding based recur-
sive approach needs a significantly higher number of input strings in order to
yield comparable results. Moreover, the results have shown that in many cases
the performance is less than 2-3% compared to the lower bound, indicating that
the obtained result is very close to the unknown generalized median.
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5 Conclusion

A new algorithm for generalized median computation was formulated based on
the concept of weighted mean. Experimental results were shown for strings. The
proposed algorithm clearly outperforms the embedding based approach (and thus
the related algorithms from the literature). The main advantage of the proposed
framework is that it can be easily adopted for every application domain, in which
the weighted mean is defined. Recently, the framework was adopted for ensemble
clustering and its superiority with respect to several state-of-the-art ensemble
clustering methods has been shown [4]. In future we will consider the application
of the framework to further domains such as graphs and image segmentation.
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Abstract. In this paper we aim to characterize graphs in terms of struc-
tural complexities. Our idea is to decompose a graph into substructures
of increasing layers, and then to measure the dissimilarity of these sub-
structures using Jensen-Shannon divergence. We commence by identify-
ing a centroid vertex by computing the minimum variance of its shortest
path lengths. From the centroid vertex, a family of centroid expansion
subgraphs of the graph with increasing layers are constructed. We then
compute the depth-based complexity trace of a graph by measuring how
the Jensen-Shannon divergence varies with increasing layers of the sub-
graphs. The required Shannon or von Neumann entropies are computed
on the condensed subgraph family of the graph. We perform graph clus-
tering in the principal components space of the complexity trace vector.
Experiments on graph datasets abstracted from bioinformatics and image
data demonstrate effectiveness and efficiency of the graphs complexity
traces.

1 Introduction

Graph based relational representations have proven to be both powerful and
flexible in pattern recognition. Compared to vector based pattern recognition,
a major drawback with graph representations is the lack of a natural corre-
spondence order. This limits the direct application of standard machine learning
algorithms for problems such as graph clustering. One way to overcome this
problem is to embed the graph data into a vector space, where standard ma-
chine learning techniques can be deployed. There have been several successful
solutions which include a) embedding graph into vector space using the dissimi-
larity embedding [5], b) representing graph structure using permutation invariant
polynomials computed from the eigenvectors of the Laplacian matrix using alge-
braic graph theory [10], and c) computing permutation-invariant graph features
via the Ihara zeta function [7]. The limitations of the existing methods is that
they usually depend on the graph topology or size, and as a result they tend to be
computationally burdensome or can not be efficiently computed in an algebraic
manner.
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To overcome the limitations of existing methods, we propose a novel frame-
work for characterizating graphs based on computing complexity traces. Depth-
based representations of undirected graph structures have proved powerful for
characterizing their topological structure in terms of intrinsic complexity [1,2].
One approach is to gauge information content flow through K layer subgraphs
of a graph (e.g.subgraphs around a vertex having a maximum topology distance
or minimal path length K) of increasing size and to use the flow as a struc-
tural signature. This approach allows a complexity trace to be defined which
gauges how the complexity of the graph varies as a function of depth [2]. Unfor-
tunately, to construct such a trace requires a measure of the intrinsic structural
complexity, and this requires burdensome computations. In this paper we fo-
cus on developing an efficient depth-based signature, that can both capture fine
structure and can be evaluated relatively efficiently. To compute a complexity
trace of a graph G, we identify the centroid vertex vC in G by selecting the
vertex with minimum variance of shortest path lengths. Based on vC , we derive
a family of expansion subgraphs from vC with in increasing layer size K. Then
we construct a complexity trace of G by measuring how the dissimilarity be-
tween the K layer subgraph and G varies on the expansion subgraphs with the
increasing layer K. To compute the proposed depth-based complexity trace effi-
ciently, we turn to the Jensen-Shannon divergence as the dissimilarity measure.
This is a nonextensive information theoretic measure derived from the mutual
information between probability distributions over different structures. Here the
required entropies of the Jensen-Shannon divergence are computed using the
Shannon entropy or von Neumann entropy on the (sub)graphs. We empirically
demonstrate that our Jensen-Shannon complexity trace can easily scale to large
graphs. The performance of our framework is competitive to the state of the art
methods in the literature.

2 Centroid Expansion Subgraphs

In this section, we introduce a set of subgraphs which we refer to as centroid
expansion subgraphs of a given graph. We first describe how to identify the
centroid vertex for a graph and explain how to extract the centroid expansion
subgraphs from the graph with regard to the centroid vertex. Then we describe
how to compute entropies on these centroid expansion subgraphs.

2.1 Centroid Vertex

The shortest path for a pair of vertices vi and vj in an undirected graph G(V,E)
can be obtained by using Dijkstra algorithm. We refer to the matrix SG whose
elements SG(i, j) represents the shortest path length between vertices vi and vj
as shortest path matrix for G(V,E). The average-shortest-path vector SV for
G(V,E) is a vector with the same vertex sequence as SG, with each element

SV (i) =
∑|V |

j=1 SG(i, j)/|V | representing the average shortest path length from
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vertex vi to the remaining vertices. We then locate the centroid vertex vi for
G(V,E) as follows

î = argmin
i

|V |∑
j=1

[SG(i, j)− SV (i)]
2. (1)

The centroid vertex vi of G(V,E) is located through selecting a vertex with
a minimum variance of shortest path lengths out of all vertices in G(V,E).
Therefore, the shortest paths starting from the centroid vertex vi form a steady
path set that exhibits less length variability than those path sets starting from
other vertices. For a graph G(V,E) with the centroid vertex vC , the K-layer
centroid expansion subgraph GK(VK ; EK) is{

VK := {u ∈ V |S(vC , u) ≤ K,K ≥ 1};
EK := {{v, u} ⊆ VK |{v, u} ∈ E}.

(2)

The number of centroid expansion subgraphs is equal to the greatest length of
the shortest path from the centroid vertex to the other vertices of the graph.

2.2 Entropies on K-Layer Centroid Expansion Subgraphs

The definition of steady state random walks and entropy on a subgraph is similar
to that for a graph. Given the K-layer centroid expansion subgraph GK(VK ; EK)
of a graph G(V,E), the adjacency matrix AK for GK(VK ; EK) has elements

AK(i, j) =

{
1 if(vi, vj) ∈ EK ;
0 otherwise.

(3)

The vertex degree matrix of GK(VK ; EK) is a diagonal matrix DK whose ele-
ments are given by DK(vi, vi) = dK(i) =

∑
vi,vj∈VK

AK(i, j). From the matrixes
DK and AK we can construct the Laplacian matrix LK = DK − AK . The

normalized Laplacian matrix is given by L̂K = D
−1/2
K LKD

−1/2
K . The spectral

decomposition of the normalized Laplacian matrix is L̂K = Φ̂KΛ̂KΦ̂
T
K where

Λ̂K = diag(λ̂K1 , λ̂K2 , ..., λ̂K|VK |) is a diagonal matrix with the ordered eigenval-

ues as elements (0 = λ̂K1 < λ̂K2 < ... < λ̂K|VK |) and Φ̂K = (φ̂K1 |φ̂K2 |...|φ̂K|VK |)
is a matrix with the corresponding ordered orthonormal eigenvectors as columns.
The normalized Laplacian matrix is positive semi-definite and so has all eigen-
values non-negative. The number of zero eigenvalues is the number of connected
components in GK(VK ; EK). In [12], the von Neumann entropy of GK(VK ; EK)
associated with the normalized Laplacian eigenspectrum is defined as HV N =

−
∑|VK |

i=1

λ̂Ki

2 log
λ̂Ki

2 . Since the computation of the von Neumann entropy re-
quires cubic number of vertices operations, Han et al. [3] have shown how the
computation can be rendered quadratic in the number of the vertices. By ap-
proximating the von Neumann entropy by its quadratic counterpart, the approx-
imated von Neumann entropy for GK(VK ; EK) is given by

HV N (GK) =
|VK |
4
−
∑

(vi,vj)∈EK

1

4 dK(i)dK(j)
(4)
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Furthermore, the probability of a steady state random walk on GK(VK ; EK)
visiting vertex vi is PK(i) = dK(i)/

∑
vj∈VK

dK(j). The Shannon entropy of

GK(VK ; EK) with the probability distribution P{GK} = PK is then given by

HS(P{GK}) = HS(PK) = −
|VK|∑
i=1

PK(i) logPK(i). (5)

3 Jensen-Shannon Complexity Traces of Graphs

In this section, we investigate how to use the Jensen-Shannon divergence as a
means of constructing a depth-based complexity trace of graph-structure.

3.1 Jensen-Shannon Divergence Measure

The Jensen-Shannon divergence is a nonextensive mutual information measure.
It is defined on probability distributions over structured data [4]. The Jensen-
Shannon divergence JSD(Pm, Pn) between probability distributions Pm and Pn

is given by:

JSD(Pm, Pn) = HS(
Pm + Pn

2
)− HS(Pm) +HS(Pn)

2
(6)

where HS(Pm) is the Shannon entropy for the probability distribution Pm.

3.2 Composite Structure of Subgraphs

Before we use the Jensen-Shannon divergence as a means of constructing a com-
plexity trace of a graph, we required a composite structure graph of a pair of
(sub)graphs. For a pair of subgraphs GK(VK , EK) and GK′ (VK′ , EK′ ), their com-
posite structure graph GK⊕GK′ has vertex and edge sets VK⊕VK′ and EK⊕EK′

respectively. The most common algorithms to create a composite structure graph
of two initial (sub)graphs are formed by taking graph product and graph union.
For reason of the efficient computation here we take the (sub)graph union. To
construct an union graph GU (VU , EU ) of GK(VK , EK) and GK′ (VK′ , EK′ ), we per-
form pairwise correspondence matching. Details of the construction are outside
the scope of this paper. Our approach follows that of Han et.al’s work in [11].

3.3 Complexity Characterisation of Graph Structure

Wedefine a depth-based Jensen-Shannon complexity trace for a graph.For a graph
G(V,E) the full set of its centroid expansion subgraphs isGvC

C ={G1, ...,GK , ...,GL}
where vC is the centroid vertex ofG, L is the greatest length of shortest paths from
the centroid vertex vC to the remaining vertices inG(V,E), and GK is theK-layer
centroid expansion subgraph ofG(V,E). The essentiality of theL layer subgraph is
the graphG(V,E) itself. Suppose we have probability distributions resulting from
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steady state randomwalks on each of theK layer centroid expansion subgraph GK
denoted by P{G1}, ..., P{GK}, ..., P{GL}. The complexity trace is computed as

CT =[JSD(P{G1},P{GL}), ..., JSD(P{GK}, P{GL}), ...,JSD(P{GL}, P{GL})]T
(7)

where JSD(P{GK}, P{GL}) is the Jensen-Shannon divergence between the K
layer centroid expansion subgraph and the L layer centroid expansion subgraph
(i.e. graph G(V,E)). This complexity trace encapsulates an mutual information
based interior dissimilarity transformation between the graph G(V,E) and its
K, which is from 1 to L, layer centroid expansion subgraphs with their steady
state random walk probability distributions. The Jensen-Shannon divergence
JSD(P{GK}, P{GL}) is defined as:

JSD(P{GK}, P{GL}) = HS(
P{GK} ⊕ P{GL}

2
)− HS(P{GK}) +HS(P{GL})

2
(8)

where P{GK}⊕P{GL}
2 represents the probability distribution of the steady state

random walk over the union graph GU (VU , EU ) of GK(VK , EK) and GL(VL, EL).
As the L layer expansion subgraph GL(VL, EL) contains the full structure of the
K layer expansion subgraph GK(VK , EK), using the graph union mentioned in
Section 3.3, GU (VU , EU ) can be represented by GL(VL, EL). As a result (8) can
be rewritten as:

JSD(P{GK}, P{GL}) =
HS(P{GL})−HS(P{GK})

2
(9)

Since we also use the von Neumann entropy in (4) to construct the complexity
trace CT , then CT in (7) can also be written as

CT = [JSD(G1,GL), ..., JSD(GK ,GL), ..., JSD(GL,GL)]T (10)

where JSD(GK ,GL) is given by

JSD(GK ,GL) =
HV N (GL)−HV N (GK)

2
(11)

3.4 Graphs of Different Size

The L layer expansion subgraph is the undirected graph itself, and the dimension
of a Jensen-Shannon complexity trace vector is thus equal to greatest layer L.
However, the complexity trace vectors for graphs of different sizes may exhibit
various lengths. To compare these graphs by using complexity trace vectors, we
need to make vector lengths uniform. This is achieved by padding out the dimen-
sions of the complexity trace vectors. Hence, for complexity trace vectors CTm
and CTn of two graphs Gm and Gn with dimensions Lm and Ln respectively,
where Lm > Ln, we use the Ln-th element value of CTn as the added padding
value for the extended Ln + 1-th to Lm-th elements of CTn. Since the Ln-th
element Jensen-Shannon divergence value is 0, the padding values are 0.
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3.5 Computational Complexity Evaluation

The computational complexity of proposed complexity trace is governed by four
computational step. Consider a sample graph G(V,E) with size s and high-
est shortest path length L for the centroid vertex. The Dijkstra shortest path
calculation requires O(s2) operations. The processing of centroid expansion sub-
graphs requires O(Ls2) operations. Since the L layer centroid expansion sub-
graph possesses the full structures of any K layer centroid expansion subgraphs,
the union graph is the L layer centroid expansion subgraph. As a result the
union graph construction approximately requires O(s) operations. The Jensen-

Shannon divergence calculation approximately requires O(
3
√
s2) operations. The

L is approximated equal to 3
√
s.

4 Experimental Evaluation

4.1 Interior Complexity Evaluation

We commence by illustrating how the representational power of the proposed com-
plexity traces of graphs, and demonstrate that these can be used to distinguish
different objects. The evaluation utilizes graphs extracted from images of a box
and a house, taken respectively from the ALOI and CMU databases. For each
object we use 18 images captured from different viewpoints. The graphs are the
Delaunay triangulations of feature points extracted from the different images. For
each graph, we identify the centroid vertex and construct centroid expansion sub-
graphs.The interior complexity values are computed using (9) or (11). Figs.1(a)(b)
and (c)(d) show the sets of complexity histograms of complexity traces using Shan-
non or von Neumann entropy (18 per object) for each object in turn respectively.
The main features to note are that the distributions from the same object are sim-
ilar to each other, whereas those from different objects are dissimilar.
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Fig. 1. Complexity histograms of complexity traces of different graphs

4.2 Stability Evaluation on Centroid Vertex

To evaluate the stability of our proposed complexity trace from the centroid ver-
tex, we explore the relationship between graph edit distance and the pattern vec-
tors resulting from our complexity trace vectors of graphs. The evaluation utilizes
two randomly generated seed graphs. The two seed graphs have 500 vertices and
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300 vertices respectively. For each seed graph, we first identify its centroid ver-
tex as the original centroid vertex, then we apply random edit operations of edges
fraction addition to simulate the effects of noise. The feature distance of the orig-
inal seed graphGO and its noise corrupted counterpartGE is defined as their Eu-

clidean distance dGO,GE =

√
(CTO − CTE)T (CTO − CTE) where CTO and CTE

are complexity traces of GO and GE from the same centroid vertex, i.e.the origi-
nal centroid vertex. The experimental results are shown in Fig.2. Fig.2(a)(b) and
(c)(d) show the feature distance between pattern vectors using Shannon or von
Neumann entropy for the two seed graphs and their edited graphs respectively.
In each subfigure, the x-axis shows the 1% to 35% of edges randomly added, and
the y-axis shows the value of the Euclidean distance dGO,GE betweenGO andGE .
FromFig.2 it is clear that when less than 5% are added the fluctuation is small, and
when around 20% are added the fluctuation becomes moderate. This implies that
the proposed complexity trace from the centroid vertex is robust even when the
seed graph structures undergo relatively large perturbations. As a whole, there’s
an approximately linear relationship between the graph edit distance and the Eu-
clidean distance. This implies that the proposed method possesses the ability to
distinguish graphs under controlled structural error.
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Fig. 2. Distance distribution between feature vectors versus graph edit operation

4.3 Real-World Datasets

We compare our proposed complexity trace method with several state of the art
methods. The methods for comparison include 1) Jensen-Shannon graph kernel
(JSGK) [6], 2) von-Neumann thermodynamic depth complexity (VNTD) [2,3],
3) information functionals fV (FV) (e=1) and fP (FP) (e=1) [8], and 4) Ihara
coefficients for graphs (CIZF) [7]. We use three standard graph based datasets
abstracted from bioinformatics datasets [9,2] for experimental evaluation. For
the FV and FP, we set the parameters α as 2, and ck and bk as ρ− k + 1 [8].

MUTAG: The MUTAG benchmark is based on graphs representing 188 chem-
ical compounds, and aims to predict whether each compound possesses muta-
genicity. The maximum and average number of vertices are 28 and 17.93 re-
spectively. As the vertices and edges of each compound are labeled with a real
number, we transform these graphs into unweighted graphs.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs).
The graphs describe the interaction relationships between histidine kinase in dif-
ferent species of bacteria. Histidine kinase is a key protein in the development of
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signal transduction. If two proteins have direct (physical) or indirect (functional)
association, they are connected by an edge. There are 219 PPIs in this dataset
and they are collected from 5 different kinds of bacteria. We select Proteobac-
teria40 PPIs and Acidobacteria46 PPIs as the second group test graphs. The
maximum, minimum and average number of vertices of selected graphs are 238,
6 and 109.60 respectively.

D&D: The D&D dataset contains 1178 protein structures. Each protein is rep-
resented by a graph, in which the nodes are amino acids and two nodes are
connected by an edge if they are less than 6 Angstroms apart. The prediction
task is to classify the protein structures into enzymes and non-enzymes. The
maximum and average number of virtices are 5748 and 284.32 respectively.

ENZYMES: The ENZYMES dataset is a dataset based on graphs representing
protein tertiary structures consisting of 600 enzymes from the BRENDA enzyme
database. In this case the task is to correctly assign each enzyme to one of the 6
EC top-level classes. The maximum and average number of vertices are 126 and
32.63 respectively.

4.4 Performance Comparison

We evaluate the performance of our proposed Jensen-Shannon complexity trace
using Shannon (JSCTS) or von Neumann (JSCTV) entropy on the mentioned
standard datasets and compare them with several alternative state of the art
graph based methods. We perform 10-fold cross-validation associated with SMO-
Support Vector Machine Classification to evaluate the performance of our method
and the alternatives, using nine samples for training and one for testing. All pa-
rameters of the SVMs were optimized. The codes of our previous work in [6]
and the other methods were also re-optimized. We report the average predic-
tion accuracies and runtime of each method in Table 1(-:infeasible runtime; =:
over computing), the runtime were measured under Matlab R2011a running on
a ThinkPad T61p with an Intel 2.2GHz 2-Core processor and 2GB RAM.

Table 1. Experimental Comparison on Bioinformatics Datasets

Datasets JSCTS JSCTV JSGK VNTD FV FP CIZF

MUTAG 85.63 82.44 87.76 83.51 84.57 85.63 80.85
PPIs 76.74 77.90 69.85 67.44 70.93 70.93 70.93

Enzymes 29.00 32.16 27.05 30.50 24.17 23.33 32.00
D&D 75.32 76.15 78.00 − = = − =

Datasets JSCTS JSCTV JSGK VNTD FV FP CIZF

MUTAG 1” 1” 2” 19′21” 1” 1” 1”
PPIs 1” 1” 2” 52′27” 1” 1” 55”

Enzymes 1” 1” 19” 4h37′ 1” 1” 11”
D&D 42” 44” 14′59” − = = − =
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In terms of the runtime and graph size, our method can efficiently compute
graph complexity traces even for graphs with thousands of vertices, while VNTD
and CIZF prove computationally burdensome or can not be finished in one day
on D&D dataset. Our method outperforms all the alternatives on classification
accuracy, only the JSGK is competitive to ours on D&D and MUTAG datasets.
Our method outperforms all the alternatives on runtime for datasets of large
graphs. Compare to depth-base complexity measures VNTD, FV and FP, our
depth-based Jensen-Shannon complexity trace using Shannon or von Neumann
entropy outperforms all of them on classification and runtime.

5 Conclusion

In this paper, we have shownhow to construct a depth-based Jensen-Shannon com-
plexity trace for a graph. Our method is based on the graph decomposition and
Jensen-Shannon divergence. For a graph, we have identified a centroid vertex by
computing the minimum variance of its shortest path lengths, and thus obtained
a family of expansion subgraphs with increasing layers. The proposed complexity
trace of a graphhas been constructedbymeasuring how the Jensen-Shannondiver-
gence varies with increasing layers of the subgraphs. We use the Shannon entropy
or vonNeumann entropy to calculate the required entropies in the Jensen-Shannon
divergence.Experiments on graphdatasets abstracted frombioinformatics demon-
strate effectiveness and efficiency of the proposed complexity trace.
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Abstract. Geometric trees can be formalized as unordered combinato-
rial trees whose edges are endowed with geometric information. Exam-
ples are skeleta of shapes from images; anatomical tree-structures such
as blood vessels; or phylogenetic trees. An inter-tree distance measure is
a basic prerequisite for many pattern recognition and machine learning
methods to work on anatomical, phylogenetic or skeletal trees. Standard
distance measures between trees, such as tree edit distance, can be read-
ily translated to the geometric tree setting. It is well-known that the tree
edit distance for unordered trees is generally NP complete to compute.
However, the classical proof of NP completeness depends on a particular
case of edit distance with integer edit costs for trees with discrete labels,
and does not obviously carry over to the class of geometric trees. The
reason is that edge geometry is encoded in continuous scalar or vector
attributes, allowing for continuous edit paths from one tree to another,
rather than finite, discrete edit sequences with discrete costs for discrete
label sets. In this paper, we explain why the proof does not carry over
directly to the continuous setting, and why it does not work for the im-
portant class of trees with scalar-valued edge attributes, such as edge
length. We prove the NP completeness of tree edit distance and another
natural distance measure, QED, for geometric trees with vector valued
edge attributes.

1 Introduction

Trees are basic structures in mathematics and computer science, as well as in
nature. Tree-structures appear, for instance, as airway trees in the lungs [20,21],
as blood vessel trees [13], or as skeleta of more general shapes [4,9,10,15,17,19].
Anatomical and biological trees carry information about the organ or organism
that contains them, and many pattern recognition algorithms, e.g., in computer
vision and medical image analysis, require a distance measure between tree-
structures as input [5, 10, 15]. Tree edit distance (TED) is a classical distance
measure between trees, which has been used in many applications [9, 10, 14, 15,
17]. Anatomical trees are geometric trees, in the sense that they carry useful
geometric information about their branches’ shape, size and position. TED is
readily translated to handle geometric properties, but anatomical trees are often
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Fig. 1. For many applications, each edge e is represented by an edge attribute consisting
of a set of n equidistant landmark points ai ∈ Rm, where m = 2, 3, giving a point
a = (ai)

n
i=1 ∈ Rmn. We typically assume that the first landmark point a1 is translated

to the origin. The cost of deforming one edge attribute, or shape, a into another edge
attribute, or shape, b is the Euclidean norm ‖a− b‖2 =

√
d21 + . . .+ d2n.

not adorned with a natural branch labeling or order. This means that we need
to be able to compare unordered trees.

Tree edit distance for unordered trees is generally NP complete to compute [1,
22]. However, the classical proof of NP completeness is made for a particular case
of edit distance with integer edit costs for trees with discrete labels, and it does
not obviously carry over to the class of geometric trees. This is because the
geometric trees have branch descriptors that are vectors or scalars, which thus
form a path-connected set of branch attributes, with continuous edit costs.

1.1 Geometric Trees

By a tree we shall mean a rooted combinatorial tree T = {V,E, r} where V is a
set of vertices, E ⊂ V ×V is a set of edges, and r ∈ V is a designated root vertex.
By geometric tree we shall mean a pair (T , x) where T is a combinatorial tree
and x : E → A is a map from the edge set of T into a space A of geometric
attributes, which attaches an edge attribute xe ∈ A to every edge e ∈ E. The
space A of geometric attributes could, for instance, be a space of edge lengths,
(R≥0), a space of edge embeddings into plane or space ({f : [0, 1] → Rm}, m =
2, 3), or, as a discretization of the latter, a space of landmark point sets that
describe the shape of the edge in plane or space ((Rm)n, where n is the number
of landmark points per edge, and m = 2, 3), see fig. 1. In this paper, we shall
consider situations where the attribute space is R≥0 or RN for some N ∈ N.

1.2 Related Work

Tree edit distance, or TED [1,11, 16, 22], is defined as the minimal total sum of
costs of edit operations needed in order to turn the first tree into the second. In
its most general form, TED is formulated for combinatorial trees T = (V,E, r)
endowed with edge (or vertex) labels given by a mapping x : E → L , where L
is a space of labels. The set of labels could be a vector space, as in the case of
geometric trees, but in many applications previously studied, the set of labels
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is a finite dictionary. The set of edit operations typically consists of deletion of
edges, insertion of edges, and relabeling of edges1 (although extra edit operations
have been introduced in some cases [9]). Note that insertion and deletion can
also happen to edges which are not leaves. A sequence of edit operations that
turn one tree into another is called an edit path between the two trees. When
restricted to classes of trees with additional assumptions, such as edge order or
bounded size, there exist a number of polynomial time algorithms [3, 11, 22] for
computing the tree edit distance, and with further restrictions on the allowed
complexity of the edit paths, there are linear time algorithms available [18].
However, for general, unordered trees, the edit distance computation problem
has been shown to be NP complete by Zhang, Statman and Shasha [22]. Their
proof can be simplified to the trick explained in section 2 below, originally used
by Matousek and Thomas to prove NP completeness of the subtree problem [12].
However, as we shall see below, this proof does not automatically transfer to
geometric trees with continuous edge labels, and in fact it fails for trees with
scalar valued labels. The same is true for the original, slightly more complicated
proof in [22]. Using a construction similar to the NP completeness proof of [12],
we prove that the computation of tree edit distance is NP complete for the space
of geometric trees with vector valued edge labels.

From a statistical point of view, TED is not an optimal distance between
geometric trees, as it does not define unique geodesics [6]. Feragen et al. [7] have
defined a metric on geodesic trees called the QED metric and showed that it
has better statistical properties [6]. In section 3 we give a brief account of this
metric and prove that it, too, is NP complete to compute for geometric trees
with vector edge attributes.

2 Tree Edit Distance

The original proof of NP completeness for edit distance between unordered,
rooted trees, is formulated for the class of rooted trees T = (V,E, r) with
edge labels x : E → L where L is a discrete set of labels. The available edit
operations are edge deletion, edge insertion and edge relabeling, which have cost
1 each. This measure is called integer TED.

TheExact 3-Cover Problem. The NP completeness proof for integer TED [12,
22] is based on the exact 3-cover problem. Let L = {l1, . . . , l3q} be a set, and let
S = {Ci|i = 1 . . .N} be a cover2 of L by sets Ci ⊂ L, all with 3 elements.
The exact 3-cover problem is the problem of deciding whether there is an exact

1 In some papers, e.g. [22] the edit operations (delete, add, edit) are performed on
vertices rather than edges. This is equivalent to the approach taken here: Represent
the branches of an anatomical tree as attributed nodes, joined together in the obvi-
ous tree structure. By defining edit operations on nodes, we would get exactly the
same definition as the one used here. We, however, prefer to represent branches in
geometric trees as edges, as this is more intuitive, and also quite standard [9,15].

2 A cover of L is a family of subsets Ci ⊂ L such that L ⊂ ⋃N
i=1 Ci.
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Fig. 2. Any instance of the exact 3-cover problem can be solved by computing the edit
distance between these two trees

subcover3 of S (and identifying such a subcover). The exact 3-cover problem is a
classical NP-complete problem [8].

TED and the Exact 3-Cover Problem. We first review the original proof
of NP completeness for integer TED [12, 22]. Assume given an instance of the
exact 3-cover problem, i.e. assume given a finite set L = {l1, . . . , l3q} with a
cover S = {Ci|i = 1 . . .N} by sets Ci that have 3 elements each. Build the
edge-labeled trees T1 and T2 with labels from L ∪ {Φ}, as in fig. 2, where Φ is
some label not in L. We shall see that

i) by computing the TED distance between T1 and T2, we can determine
whether there exists an exact subcover of S , and

ii) if there is an exact subcover, we can retrieve it from the optimal edit path
from T1 to T2.

Let us ignore the tree-structure of T1 and T2 for a second and only consider the
two sets of attributed edges. To find the minimal total cost of editing one set
to become the other, note that the set of edge attributes L1 = x1(E1) in T1 is
contained in the set of edge attributes L2 = x2(E2) in T2. There are N +2q+1
edge attributes in L1 and 4N +1 edge attributes in L2, so in order to transform
L1 ⊂ L2 into L2, we only need to insert 3N − 2q edges, at a total cost of

bl = (4N + 1)− (N + 2q + 1) = 3N − 2q.

This number bl is a lower bound for the edit distance between T1 and T2.
If there is a solution to the exact 3-cover problem on S, consisting of a set

S ′ = {Ci|i = 1 . . . q} of 3-sets, then the following edit path from T1 to T2
actually has length bl:

– insert an edge with attribute Φ above each triple of elements in some Ci ∈
S ′, i = 1 . . . q.

3 An exact subcover of S is a sub-family S ′ = {Cij}Mj=1 of S such that S ′ is a cover
of L and Cij1

∩ Cij2
= ∅ for all j1 	= j2.
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Fig. 3. The edit path indicated by the colored edge matches has minimal length, even
though the corresponding exact 3-cover problem does not have a solution. Thus, the
proof from integer TED does not carry over to the case of continuous edge attributes.

– insert the remaining 3(N−q) edges with attributes belonging to the remain-
ing N − q yellow subtrees below each of the Φ branches in T1.

Since this edit path has length bl, which is also the lower bound for the length,
the TED distance between T1 and T2 is bl. Thus, a solution to the exact 3-cover
problem yields a) a solution to the TED problem and b) a total distance bl
between T1 and T2. If we can show that edit paths that do not yield solutions
to the exact 3-cover problem are longer than bl, then we have proven our claim.
But this is easy, since any mapping from T1 to T2 which does not correspond to
a solution to the exact 3-cover problem must involve either changing some label
li to another label lj, or deleting edges, or both. This has to cost more than bl.

It follows that the computation of integer TED is NP complete.

2.1 Example: Geometric Trees with Scalar Branch Attributes

To see that the same idea of proof does not carry directly over to geometric trees,
consider the following set L = {10, 10.5, 11, 11.5, 12, 12.5} and the following cover
of L by 3-sets: S = {{10, 10.5, 11}, {10.5, 11, 11.5}, {11, 12, 12.5}}. Clearly, S
does not have an exact subcover. As above we form trees T1 and T2 as in fig. 3,
where the lengths of edges labeled by elements in L are the corresponding real
numbers, and the lengths of edges labeled with Φ are, say, 1.

A lower bound bl for the edit distance between T1 and T2 is, just like above,
found by just considering sets of edge attributes, forgetting about tree topology
for a second, matching the sets of edge attributes up, and adding the costs of
the entire matching process. Again, all edge attributes from T1 can be matched
to an identical edge attribute from T2, so the only nonzero matching costs come
from the additional edges in T2, namely 2 ∗ ‖Φ‖+ 10.5 + 11 + 11 = 34.5.

We already know that there is no exact 3-cover of S ; nevertheless, we can, in
fact, find an edit path from T1 to T2 of length bl, where the branches indicated
by colors in fig. 3 are matched (deformed to match) and all branches appearing
in black in T2 are inserted. The total cost of deformation edits is 1 and the total
cost of insertion edits is 33.5, giving an edit distance of 34.5 = bl between T1
and T2, although the edit path does not correspond to a solution of the exact
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3-cover problem. It follows that the proof from the integer edit distance does not
carry over to TED for geometric trees.

2.2 Tree Edit Distance for Geometric Trees

Building on the original proof described in the previous section, we consider the
class X of all geometric trees (T , x) with edge attributes x : E → RN , N ∈ N.
These edge attributes could, e.g., be edge length, or shape descriptors as in fig. 1.

Define the tree edit distance (TED) between two geometric trees T1 and T2 in
X as the smallest possible total cost of transforming T1 into T2 through a finite
sequence of edit operations, which belong to the following three categories:

i) Delete an edge e ∈ E (and correspondingly a vertex from V ), which costs
‖x(e)‖, where ‖ · ‖ is the Euclidean norm,

ii) Insert an edge e to E (and correspondingly a vertex from V ), which costs
‖x(e)‖, and

iii) Deform an edge e ∈ E by changing its attribute from x(e) to a new value a;
this costs ‖a− x(e)‖.

Theorem 1. If N ≥ 2, then computing tree edit distance in X is NP-complete.

Proof. As for the combinatorial edit distance, this is proven by reducing an
arbitrary instance of the exact 3-cover problem to an instance of the edit distance
problem. We prove the theorem for N = 2; the proof trivially generalizes to
N ≥ 2. Denote by T1, T2 the trees in fig. 2, labeled with elements from L and an
additional label Φ, where the li and Φ represent distinct vector edge attributes
of length 1.

As before, we can forget about the tree structure and only consider sets of
edges. The set of edge attributes in T1 is, again, contained in the set of edge
attributes in T2, and the minimal total edit cost of transforming the set of
N +2q+1 edge attributes in T1 to the set of 4N +1 edge attributes in T2 is the
cost of inserting the rest of the edge attributes from T2, which all cost 1 each.
This gives us total cost

bl = (4N + 1)− (N + 2q + 1) = 3N − 2q.

Again, we need to prove that any edit path that does not correspond to a solution
to the exact 3-cover problem must have length > bl. An edit path that does not
correspond to a solution to the exact 3-cover problem will have to either:

a) map some edge with (nonzero) attribute li to an edge with (nonzero) at-
tribute lj which is not li, or

b) delete some edge, or
c) map the edges from T1 into edges in more than q subtrees Ci in T2.

Note that

a) the cost of mapping li to some lj �= li has cost ‖li − lj‖, which is > 0 since
the li are distinct. This cost comes in addition to inserting at least 3N − 2q
branches, which gives total cost > 3N − 2q = bl.
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b) this means we have to insert more than 3N − 2q branches, giving total cost
> 3N − 2q = bl.

c) this means we will have to delete some of the branches with attribute Φ from
T1, and thus we have to grow out more than 3N − 2q branches, giving total
cost > 3N − 2q = bl.

Thus, any edit path which does not correspond to a solution to the exact 3-cover
problem has length > bl. This concludes the proof of theorem 1. �

Remark 2. In a), the crucial part is, in fact, that the vectors li are not parallel.
This is to avoid examples like the scalar attribute case in section 2.1.

3 NP Completeness for Quotient Euclidean Distance

In order to use geometric tools for statistical analysis of geometric trees, e.g., use
of geodesics in the spirit of manifold statistics, it is useful to construct a space of
geometric trees, and endow it with a geodesic metric. The non-uniqueness of
TED geodesics disqualifies TED as a metric of choice in such a framework. A
more suitable metric is the QEDmetric on the space of tree-like shapes as defined
by Feragen et al. [6,7], which has been used to study the shapes of airway trees
from human lungs.

By a tree-shape, we shall mean a tree which is embedded in Rd, where d is
typically 2 or 3. In this paper, we are mainly concerned with the case d = 3,
since planar trees (d = 2) typically induce a canonical edge ordering. The space
of tree-like shapes is constructed as follows: Consider a combinatorial rooted,
binary tree T = (V,E, r,<) which is sufficiently large to span all the tree-like
shapes of interest (T could be infinitely large). The space

X =
∏
e∈E

(Rm)n, m = 2, 3, (3)

contains representatives of all tree-shapes spanned by T , whose edges are repre-
sented by landmark point shape descriptors as in fig. 1. That is, a point x ∈ X
corresponds to a map x : E → (Rm)n. Trees with fewer edges are represented
by collapsing (contracting) redundant branches, and higher-order vertices are
represented in a similar fashion, also using collapsed branches, as in fig. 4. Some
tree-shapes will have more than one representative in X , also shown in fig. 4.
In the space of tree-like shapes, these representations are all identified through
an equivalence relation. That is, whenever two points x1, x2 ∈ X represent the
same tree-shape, they are said to be equivalent: x1 ∼ x2. The space of tree-like
shapes ¯̄X is defined as the quotient space of X by the equivalence ∼:

¯̄X = X/ ∼ .

The induced tree-shape space ¯̄X is highly nonlinear, and has self-intersections
that stem from the identifications made by the equivalence. From the Euclidean
metric on X , Feragen et al. work with the quotient metric on ¯̄X , which in this
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Fig. 4. Higher-order vertices can be represented by the binary tree by collapsing inter-
nal branches, shown as dotted lines

case is called the QED metric. The quotient metric is a standard mathematical
construction [2], which here creates a piecewise Euclidean metric on ¯̄X . Note that
¯̄X geometrically corresponds to a folded Euclidean space. This construction is
actually closely related to the TED metric: If the Euclidean metric on X is
replaced with an l1 product of Euclidean metrics on (Rm)n in the product in
(3), the geometric TED metric studied in section 2 above is retrieved as quotient

metric on ¯̄X [7].
It turns out that computing the QED distance is generally also NP complete:

Theorem 4. Computing QED distances in ¯̄X is NP-complete.

Proof. Just as for TED, the QED shortest paths consist of deleting, inserting
and deforming edges. Using the same two trees T1 and T2 shown in fig. 2, we see
that again, if we disregard the tree structure, the lower bound bl for the QED
distance from T1 to T2 is given by bl =

√
3N − 2q, which can be obtained as

a shortest QED path length if and only if there exists a solution to the exact
3-cover problem, using the same matchings as in the TED case. Again, the non-
parallel property as noted in Rem. 2 is essential. �

Remark 5. As in section 2.1 the proof would not hold if we replaced the edge
shape space (Rm)n by scalar edge descriptors R, because the proof depends on
the non-parallel assumption on attributes.

4 Discussion and Conclusion

In this paper we see that the most common distances between unlabeled, un-
ordered geometric trees with vector edge attributes are generally NP complete
to compute, just like the edit distance between purely combinatorial unordered,
unlabeled trees. NP completeness is a result of the exponential search space
which arises when there is no or little formal limitation to the possible mappings
between the trees. For trees with scalar edge attributes, such as edge length, the
proofs of NP completeness do not hold, and we conjecture that computing these
distances is, in fact, also NP complete.

Acknowledgements. The author would like to thank Sean Skwerer and Scott
Provan for valuable discussions on complexity of tree algorithms.
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Abstract. We propose a method to perform active graph matching in which the 
active learner queries one of the nodes of the first graph and the oracle feedback 
is the corresponding node of the other graph. The method uses any graph 
matching algorithm that iteratively updates a probability matrix between nodes 
(Graduated Assignment, Expectation Maximisation or Probabilistic 
Relaxation). The oracle’s feedback is used to update the costs between nodes 
and arcs of both graphs. We present and validate four different active strategies 
based on the probability matrix between nodes. It is not needed to modify the 
code of the graph-matching algorithms, since our method simply needs to read 
the probability matrix and to update the costs between nodes and arcs. Practical 
validation shows that with few oracle’s feedbacks, the algorithm finds the 
labelling that the user considers optimal because imposing few labellings the 
other ones are corrected automatically. 

Keywords: Machine Learning, Active Graph Matching, Interactive Graph 
Matching, Least Confident, Maximum Entropy, Expected Model Change. 

1 Introduction 

Generally speaking, machine learning is a discipline concerned with the design and 
development of algorithms that allow computers to evolve behaviours based on 
examples [1]. In this discipline, a learner can take advantage of examples to capture 
characteristics of interest from the data respect of their class and to be able to deduct the 
class that new examples could belong to. Error-tolerant graph matching [2] is another 
discipline that aims to find the best labelling between nodes of both graphs such that the 
cost of this optimal labelling is the minimum among all possible labellings. If we put 
together machine learning and error-tolerant graph matching disciplines, we can define 
a model in which examples are composed by the set of nodes of one of the graphs and 
classes are the nodes of the other graphs. Therefore, what we want to learn is which is 
the matching between two graphs that is considered to be the best. 

The key idea behind active learning [3, 7, 20] is that a machine learning algorithm can 
achieve a greater accuracy with fewer classified training examples if it is allowed to 
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choose the data from which it learns. Active learning is well motivated in many modern 
machine-learning problems, where unclassified examples may be abundant but finding the 
class is difficult, time-consuming or expensive to obtain [1, 21]. Active learning has been 
applied in several fields such as speech recognition [6, 21], information extraction [10, 13, 
15, 17], robotics [12], transcription of text images [22, 28] or object classification in 
general [4, 5, 6, 9, 14, 18]. And in general, for parameter selection [8]. 

We present a model in which we have put together the active learning and graph 
matching concepts. In this case, the learner queries the node that it is supposed to 
produce a greater impact on the labelling between both graphs. In our case, the active 
learner may ask queries in the form of graph nodes and asks which are the nodes of 
the other graph that they have to be matched. The answerer of the query might be 
another automatic system or a human annotator (in general, it is called an oracle). 

Active learning scenarios are usually classified in three classes. The active learner 
generates a query de novo [18], the active learner receives a stream of objects and 
decides whether query them or not [19] and the pool-based active learning, in which the 
active learner decides to query an element from a sub-set of unlabelled objects [4, 11], 
or with sub-sampling [5]. In our case, we always have nodes of both graphs, for this 
reason, our scenario can be classified as the third scenario: pool-based active learning. 

All active learning scenarios are involved in evaluating the informativeness of 
unclassified examples, which can either be generated de novo or sampled from a 
given distribution. It has been proposed many ways of formulating such query 
strategies in the literature [3]. We have considered two main strategies: Uncertainly 
Sampling and Expected Model Change. We have modelled the first one in three 
different strategies and the second one in one strategy. 

The rest of the paper is organised as follows. In the next section, we present the 
graph-matching problem. In section 3, we present four different active strategies 
applied to the problem of finding the best labelling. In section 4, we show the 
algorithm to compute the active graph matching. Finally, in section 5 we show the 
practical evaluation and we conclude the paper in section 6. 

2 Graph Matching and Isomorphism between Graphs 

Let  and  be two attributed graphs. We suppose that  and  have the same 
number of nodes  since they have been enlarged enough to incorporate null nodes. 
We define nodes in  and  as  and  and we define arcs as  
and , , , , 1, … , . Moreover, let  be a bijective labelling between 
nodes of both graphs. The cost of matching graphs  and , given this isomorphism 

, is represented by , , ,  (1)

where  and . That is, the cost is defined as the addition of the 
pairwise costs of matching nodes and arcs [10]. These local costs can be represented 
through two matrices , , ,  and , , , ,,  and their definition depends on the application. Usual examples are  



100 X. Cortés, F. Serratosa, and A. Solé-Ribalta 

the Euclidean distance, when attributes have the position of the node in the image or the 
distance between local features such as SIFTs or HOGs. 

There are several error-tolerant graph-matching algorithms that, using a 
minimization criteria, such as eq. (1), return the best isomorphism f  between two 
graphs. For instance: probabilistic relaxation [23], Graduated-Assignment [24] or 
Expectation-Maximisation [25]. In fact, the input of these algorithms can be matrices 

 and  instead of graphs  and  since matrices capture all the differences 
between graphs and the minimisation cost is defined through these matrices (eq. 1). 
Considering that the involved graphs have a degree of disturbance and also the 
exponential complexity of the problem, these algorithms do not return exactly the 
isomorphism f  but a probability matrix related to it. We represent this matrix by P 
where each cell contains , . Thus, given the probability 
matrix P it is necessary to derive the final labelling f  by a discretization process. 
There are several techniques to perform this discretization, e.g. [30]. Figure 1 
represents the probabilistic graph-matching paradigm. 

 

Fig. 1. Probabilistic graph matching framework 

In the next section, we present four different strategies that, with the information of 
the probability matrix P, derive the node that has to be queried. Besides in section 4, 
we show how to use the interactive algorithm presented in [31] that modifies matrices 

 and  to consider the oracle feedback. 

3 Active Learning Strategies 

In this section, we present four strategies to select a node  of  that have to be 
queried to an oracle since the model assumes the exact knowledge of its mapping will 
increase the accuracy of the system. Therefore, given the selected node  we ask for 

 and the oracle feedback is . In all strategies, the pool of nodes to be queried 
is composed by the nodes that have never been queried before. The logical function 

 shows if node  has been queried. When the active algorithm is initialised,  
takes the  value for all nodes of  and this value is changed to  in each 
query. This logical function is used to assure a node is not queried several times. Note 
that in the case that  for all nodes of  then the following strategies 
return a null value. Nevertheless, in this case, the active algorithm (section 4) has to 
stop since the whole nodes have been queried. Besides, the computation of the 
following strategies is performed at function _  in the algorithm. 

The four strategies we present are classified on Uncertainly Sampling and Expected 
Model Change [3]. 
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Uncertainly Sampling. The active learner queries the instances about which it is least 
certain how to classify. We define three different strategies. 

Least Confident (LC): This strategy queries the element that its highest probability 
of belonging to a class is the lower one between all the elements. In our model, the 
learner queries the node  of  that has not been previously queried and whose 
maximum probability given the nodes of  is the lower. Node  is obtained in two 

steps. Firstly, we obtain the set of nodes in : , … , , … ,  such that, argmax,.., , ; 1, . . ,  (2)

note that some of the nodes in this set can appear several times, ; . 
And secondly, we select the node in  such that its respective node in the set 

obtains the minimum probability, argmin,.., | ,  (3)

Least Confident given the Current Labelling (LCCL): The aim of this strategy is to 
query the nodes that are matched through the current labelling but they have not been 
queried. Therefore, it could be seen as the method tries to minimise the hamming 
distance between the current labelling and the ideal labelling (the labelling that would 
have been predicted by the oracle if all the nodes were queried). The learner queries 
node  of  that has not been previously queried and it has the minimum 
probability given the current labelling . Formally, argmin,.., | ,  (4)

Maximum Entropy (ME): This strategy queries the element with maximum Shanon 
Entropy given the probabilities. The main idea of the method is to query the elements 
that they are more difficult to be classified. In our model, the selected node  is, 

argmax,.., |  , ,  (5)

Expected Model Change (EMC): An active learner queries the instances that would 
impart the greatest change to the current model if we knew its class. A possible query 
strategy could be the “expected gradient length”. Since graph-matching probabilistic 
models are usually trained using gradient-based optimisation; the change imparted to 
the model can be measured by the length of the training gradient. In other words, the 
learner should query the instance that if changed its labelling, the gradient between 
the current labelling and the new one would have the largest magnitude. Considering 
this aim, we propose to query the node  defined through the following equation, argmax,..,  (6)
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The value  shows the maximum magnitude of any possible change of the current 
labelling at node . max,..,  , ,  (7)

If 0, the current labelling of  is not the ideal one, considering only 
probabilities , , 1, . . , . On the contrary, if 0 then the current 
labelling is the one that obtains the maximum probability, so, it is the ideal case. Note 
that 0 is not possible. 

4 Active Algorithm 

Algorithm Interactive Graph Matching presented in [31] obtains a labelling between 
nodes of attributed graphs  and  considering the human feedback. That is, it 
computes several times a sub-optimal graph-matching algorithm (for instance [23, 24, 
25]), but in each step, the cost matrices  and  are modified through the current 
user feedback. In fact, we assume the input of the algorithm is not both graphs but 
matrices  and . The feedback of the user is introduced into the algorithm  
through a vector of simple actions . One of the actions is , , in 
which the user imposes that the labelling has to be . The matrix costs  

 and  are updated considering the human feedback through functions _ _  and _ _ . See [31] for more details. 
The active algorithm we present has a similar structure. We have only added 

function _  and the expression ,  with the aim of 
functions _ _  and _ _  being compatible 
with the interactive algorithm in [31]. The algorithm stops when the oracle returns a 
special node (for instance a negative value) or all the nodes of  have been queried. 
The final labelling cost obtained at the end of the algorithm is computed through the 
original costs,  and  . 

 
Algorithm Active Graph Matching 
Input: Attributed Graphs  and  
Output: Labelling  and Cost   , _  , ; ; . _ , . 
Do  
  _ , . 
  _  ,  , , . 

  , . 
  _ _ , . 
  _ _ , . 
  _ , . 
Since  
Compute  ,        
End Algorithm 
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Figure 2 shows the probabilistic graph-matching framework with active learning. 
Dashed lines connect the active modules that do not appear in the classical framework 
shown in figure 1. Moreover, we have added the original costs  and , since the 
labelling cost  is computed through these costs. 

 

Fig. 2. Probabilistic graph matching framework with active learning 

5 Practical Evaluation 

We have used the CMU “house” and “castle” sequences. There are two datasets 
consisting of 111 frames of a toy house and a castle. Each frame in these sequences 
has been hand-labelled, with the same 30 landmarks identified in each frame [29]. 
From each landmark, we have only considered their bidirectional position in the 
image.  From each frame, we have defined an attributed graph of 30 nodes using the 
3-nearest neighbour technique. Nodes represent these landmarks and arcs represent 
proximity.  Attributes on nodes are the position of the landmarks and arcs do not have 
attributes. The cost between nodes ,  is the Euclidean distance of their image 
positions. The cost between arcs ,  is 0 if both arcs exist or do not exist and 
1 if only on of the arcs exists. We have used all pairs of graphs that have been 
extracted from images that the separation between frames is 60. The final result 
values are the average of these experiments. We have used the Graduated Assignment 
algorithm [24] and, in each iteration of the active algorithm, we only permitted a 
maximum of 30 iterations of the external loop and 20 iterations of the internal loop.  

We assess the quality of the current labelling through the Hamming distance 
between the current labelling and the hand-made labelling [29]. Figure 3 shows this 
Hamming distance throughout the number of iterations of the active algorithm and 
using the four previously commented active strategies and also a random strategy. In 
this random strategy, the _  sequentially returns the nodes of . The 
algorithm stops when all the 30 nodes have been queried. 
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Fig. 3. Hamming distance respect of the number of iterations on the Hotel and House. 
LCCL: ,  LC: ,  ME: , EMC:  and Random: . 

 
Table 1 shows the ratio between the initial hamming distance with respect to the 

maximum number of iterations. For instance, in the case of Hotel and LCCL, initial 
hamming distance = 16, number of iterations = 14, so 16/14 = 1.14. This value 
represents the average decrease of the hamming distance in each iteration. The case 
that the value is higher than 1 appears when, in average and in each iteration, not only 
the labelling of the queried  node is amended but also other ones. It seems as the 
LCCL method obtains the best results. 

Looking at table 1 and figure 1 we realise that the random method, that is, without 
“intelligent” active learning, obtains the worst results. Moreover, the EMC method is 
very sensitive to the number of iterations of the Graduated Assignment. This method 
can deduct few information if most of the probabilities are 0 or 1 (a lot of iterations) or 
if most of the iterations are near to 1/n being n the number of nodes (few iterations). 

Table 1. Ratio between hamming distance and iterations of the Hotel and House 

 LCCL LC ME EMC Random 
Hotel 1.14 0.84 0.88 0.94 0.59 
House 1.10 1.10 1.06 0.87 0.85 
Average 1.12 0.97 0.97 0.90 0.72 
 
Figure 4 shows the evolution of the current labelling cost . As described in the 

algorithm, this cost is computed through the original costs. All methods tend to obtain 
the optimal labelling, for this reason, at the end, the cost is similar for all of them. 
Note that in some steps, the cost increases. This means that forcing some nodes to be 
mapped, the sub-optimal graph-matching algorithm finds a worse labelling. 

 
Fig. 4. Labelling cost respect of the number of iterations on the Hotel and House.  
LCCL: ,  LC: ,  ME: , EMC:  and Random: . 
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6 Conclusions and Future Work 

We have presented four different strategies to be applied on an active graph-matching 
algorithm. These strategies are based on classical active machine learning but they are 
applied to the case of searching for the best labelling between nodes. Moreover they 
are based on the probability matrix between nodes that some sub-optimal algorithms 
use to iteratively find the best labelling. Due to the active algorithm only updates the 
costs between nodes and arcs and reads the probability matrix; it is not needed to 
modify the code of these well-known algorithms. Experimental validation shows that 
the Least Confident method that uses the current labelling (LCCL) tends faster to find 
the optimal labelling. 

We have planned to apply this method to Expectation-Maximisation and 
Probabilistic Relaxation algorithms. Moreover, we have obtained different results 
while using different number of iterations of the two main loops of the Graduated 
Algorithm. These results have not been shown due to space problems and we have 
shown in this paper the ones we considered being the best ones. We wish to publish in 
a journal the whole method presented in this paper together with [31] and the other 
experiments commented before. 
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Abstract. In structural pattern recognition, given a set of graphs, the
computation of a Generalized Median Graph is a well known problem.
Some methods approach the problem by assuming a relation between the
Generalized Median Graph and the Common Labelling problem. How-
ever, this relation has still not been formally proved. In this paper, we
analyse such relation between both problems. The main result proves
that the cost of the common labelling upper-bounds the cost of the me-
dian with respect to the given set. In addition, we show that the two
problems are equivalent in some cases.

1 Introduction

In many pattern recognition applications, we are given a set of different repre-
sentations of the same object and the goal is to summarize these representations
into a single one. The resulting representation should capture the important
features of the object and discard noisy or unexpected variations. When the
representation is made using attributed graphs, this graph is identified as the
Generalized Median Graph [1], or simply the Median Graph. Given a training
set of graphs, the Median Graph is formally defined as a graph which minimizes
the sum of costs to all other graphs in the set.

If we assume that vertices are not uniquely labelled, like in [2], the problem of
finding the Median Graph is, in its general form, at least as difficult as the prob-
lem of matching two graphs under a particular cost function, e.g. the Graph Edit
Distance, which is a NP-Hard problem [3]. Indeed, the Median Graph cannot be
computed in closed form since its synthesis depends on the matchings between it-
self and the given graphs and the matchings to the Median Graph clearly require
having the Median Graph. A usual way to deal with this chicken-egg problem is
using an incremental approach where the Median Graph is coarsely constructed
and then iteratively refined until all graphs in the training set are considered.
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Several approaches address the problem in this fashion [4–9]. A completely dif-
ferent approach to compute the Median Graph is to decouple the matchings and
the synthesis process. This approach relies on the assumption that given the
vertex labellings that compute the Median Graph, its computation can be, in
most applications, done efficiently in polynomial time, e.g. averaging the vertices
and edge attributes. This approach can be summarized in two steps. In the first
step, we obtain a Common Labelling between the given graphs. The objective of
the Common Labelling, initially defined in [10, 11], is to minimize the pair-wise
labellings among a set of graphs with some transitivity restrictions. Once we
know this information, we can easily compute an Approximated Median Graph.
Figure 1 illustrates the complete process to generate a Median Graph using a
Common Labelling. Note the given set of graphs is labelled to a virtual node
set and Median Graph is not computed until the end of the process. The main
advantage of using a Common Labelling approach for approximating the Median
Graph relies on the fact that the Median Graph does not need to be computed
until the end of the process. In this way, labellings of the initial graphs to the
Median Graph are not needed and the initial chicken-egg problem disappears.

Several works exist in the literature which decouple the problem of the Median
Graph computation. The first method to completely decouple the matching pro-
cess from the synthesis process was presented by Hlaoui and Wang [7]. Another
recent method, based on linear programming, has been proposed in [12] and [13].
But possibly the most complete work on these kind of methods is presented in
[14]. Experiments in [14] show that using the Common Labelling for computing
the Median Graph gives satisfactory results, but up to now a formal relation
between the Common Labelling problem and the Median Graph synthesis was
missing. In this work, we show that, if the cost for matching graphs is a metric,
the two problems are tightly connected because we can bound the Median Graph
error using the Common Labelling value. The obtained bounds show that, when
the error of the Common Labelling is low, the obtained graph median is close
to the real one. In addition, in the specific case of unattributed graphs with the
squared Euclidean distance as cost function, the two problems are equivalent.

2 Definitions

Let H be a set of attributed graphs representing the input/output space of
our problems. Each graph is represented as a tuple G = (V,E,AV , AE), where
V = {v1, ..., vn} represents the vertex set, E ⊆ {ea,b, ∀a, b ∈ 1..n} the edge set,
and functions AV : V → DV and AE : E → DE assign attributes to vertex and
edges respectively.

Given a set ofm attributed graphs S = {G1, ..., Gm}, Gi = (Vi, Ei, AV , AE) ∈
H, we assume that each of these graphs have the same number of vertices n.
If this is not the case, several solutions have been proposed to extend the size
of the graphs [9, 15]. However, the most common approach is to include null
vertices [15] which represent deletions and insertion of vertices in the resulting
labelling. In the general graph matching setting, vertices of each graph are not
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Compute Common Labelling

Extract Attributed Graphs

Compute Prototype

Graphs that represent resistors

Common Labelling

Virtual node set

Prototype

Fig. 1. The process for computing an Approximated Median Graph with the Common
Labelling. After representing the given objects, which in this figure are sketches of
electrical circuits, with attributed graphs we look for labelling the nodes of each graph.
The virtual set of nodes does not have structure and is used to compare the labelling
for each graph and evaluate their pairwise matching cost. After choosing a labelling
for each graph we convert the virtual set of nodes into the actual graph prototype. See
section 3 for a formal definition of the Common Labelling problem.

uniquely identified by their index, i.e. we cannot assign or identify v3 ∈ V1
with v3 ∈ V2 only because they have the same index 3. Indeed, the difficult
part of comparing a pair of graphs relies in finding a suitable bijection π of
vertices which provides the right ordering. In the following, given a bijection
π, the notation Gπ means that vi(π) = vπ(i), so that vertices of V and edges
E are permuted accordingly to π. The bijection id ∈ Π represents the identity
vi(id) = vi. Figure 2 (a) shows how graphs are permuted to a common reference
system with permutations πi and ρi. The function c : H×Π×H×Π → R+ is a
user-defined cost between two graphs whose vertices have a fixed bijection. We
assume that c(·, ·, ·, ·) can be computed efficiently in polynomial time because
the vertex to vertex correspondence is fixed, and consequently also the edge to
edge correspondence and their attributes. We use the shorthand c(Gπi

i , G
πj

j ) =
c(Gi, πi, Gj , πj) and c(Gi, Gj) = c(Gi, id,Gj , id). If the cost function is a metric
we denote it as cM in this case, given a fixed set of bijections π1,...,m, the following
axioms hold:

identity cM (Gi, Gj) = 0⇔ Gi = Gj ,

positivity cM (Gi, Gj) ≥ 0,

symmetry cM (Gi, Gj) = cM (Gj , Gi),

triangle inequality cM (Gi, Gj) ≤ cM (Gi, Gk) + cM (Gk, Gj).



110 N. Rebagliati et al.

We define the distance d between two graph as the minimum cost among all
possible bijections of attributes in vertices and edges. That is,

d(G1, G2) := min
π1, π2 ∈ Π

cM (Gπ1
1 , Gπ2

2 ) (1)

Given a set of graphs S = (G1, ..., Gm) ⊆ H, the Generalized Median Graph [1]
is defined as a graph G∗, taken from the set H, which minimizes the average
sum of costs to all graphs in S:

GM∗(H) := min
ρ1, . . . , ρm ∈ Π

G ∈ H

1

m

m∑
i=1

c(Gρi

i , G) (2)

If not explicitly stated the argument of GM∗ is H. In the following, and as Figure
2 (a) shows, we will denote with ρi the permutations which obtain the Median
Graph.

3 The Common Labelling Problem

Given a set of graphs S = (G1, ..., Gm) ⊆ H, the Common Labelling problem
aims at finding a, possibly low cost, consistent multiple isomorphism between the
graphs, such that for every three mappings πi,j , πj,r and πi,r we have πi,j ◦πj,r =
πi,r. Equivalently, we look for m consistent bijections assigning vertices of the
graph of a virtual vertex set and that minimize the average sum of pairwise
distances between graphs in S. Its normalized objective function is the following:

CL∗ := min
π1, . . . , πm ∈ Π

1

m2

m∑
i=1

m∑
j=1

c(Gπi

i , G
πj

j ) (3)

Once the Common Labelling and them bijections π1,...,m that computes the value
are obtained, we assume that we can efficiently estimate a median graphG:

G ∈ argmin
G ∈ H

m∑
i=1

c(Gπi

i , G) (4)

which we call Approximated Median Graph. In the following, and as Figure 2 (a)
shows, we will denote with πi the permutations which obtain the Approximated
Median Graph through the Common Labelling.

4 Relating the Common Labelling with the Generalized
Median Graph

In this section, we show two main results of this work. The first theorem shows
the relationship between the objective function of the Common Labelling, CL∗,
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and the objective function of the Median Graph, GM∗. The second theorem
shows that, if the functional of the Common Labelling CL∗ has a low value, the
Approximated Median Graph G is close to the Median Graph G∗.

Theorem 1. Let H be a set of graphs and S = {G1, . . . , Gm} a subset of H. In
addition, let G be the Approximated Median Graph computed considering S and
the bijections obtained by the Common Labelling, π1,...,m. Let the cost function
cM be a metric. Then

CL∗ ≥ GM∗({G}) ≥ GM∗ ≥ 1

2
CL∗ (5)

Proof. We start with the left hand side of (5):

CL∗ =
1

m2

m∑
i=1

m∑
j=1

cM (Gπi

i , G
πj

j )

≥ 1

m2

m∑
i=1

m∑
j=1

cM (G,G
πj

j )

≥ 1

m

m∑
j=1

cM (G,G
πj

j )

= GM∗({G})
≥ GM∗

(6)

The second step comes from optimality of the Approximated Median Graph,
see (4).

The right hand side of (5) follows from:

GM∗ =
1

m

m∑
i=1

cM (Gρi

i , G
∗)

=
1

2m2

m∑
i=1

m∑
j=1

cM (Gρi

i , G
∗) + cM (G∗ , G

ρj

j )

≥ 1

2m2

m∑
i=1

m∑
j=1

cM (Gρi

i , G
ρj

j )

≥ 1

2m2

m∑
i=1

m∑
j=1

cM (Gπi

i , G
πj

j )

=
1

2
CL∗

(7)

The third step uses the triangle inequality and the forth step comes from con-
sidering the optimality of πi and πj .

Theorem 2. Let H be a set of graphs and S = {G1, . . . , Gm} be a subset of H.
In addition, let G be the Approximated Median Graph computed considering S
and G∗ the Generalized Median Graph. Then,

d(G,G∗) ≤ 2CL∗ ≤ 4GM∗ (8)
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Fig. 2. (a) Notation for Theorems 1 and 2. (b) Graphical representation of (9), which
is the basic inequality for proving Theorem 2.

Proof. Let π1,...,m be the bijections obtained by the Common Labelling and
ρ1,...,m the bijections related to G∗ and cM a metric cost function. Since cM is a
metric we have for each single graph Gi:

cM (G∗, G) ≤ cM (G∗, Gi
ρi) + cM (G,Gi

ρi)
≤ cM (G∗, Gi

ρi) + cM (Gi
ρi , Gi

πi) + cM (G,Gi
πi)

(9)

since ρi and πi may be different cM (Gi
ρi , Gi

πi) �= 0. However, applying bijection

π−1
i ρi to Gi

πi and G costs are preserved cM (G,Gi
πi) = cM (G

π−1
i ρi

, Gi
ρi) and

cM (Gi
ρi , Gi

πiπ
−1
i ρi) = 0. This reasoning is visualized in Figure 2 (b). Hence,

cM (G
π−1
i ρi

, G∗) ≤ cM (G
π−1
i ρi

, Gρi

i ) + cM (Gρi

i , G
∗) . (10)

In (10), vertices and edges of G1, . . . , Gm and G have been permuted accordingly
to G∗. To ease notation, assume that πi correspond to the identity. Consequently,

d(G,G∗) ≤ cM (G
ρi
, G∗) ≤ cM (G

ρi
, Gρi

i ) + cM (Gρi

i , G
∗). (11)

Then, adding inequality (11) for the different Gi’s we get:

d(G,G∗) ≤ 1

m

∑m
i=1 cM (G

ρi
, Gρi

i ) + cM (Gρi

i , G
∗)

= GM∗({G}) + GM∗

≤ 2CL∗
(12)

A desirable output for the user is that the Approximated Median Graph is an ε
approximation of the given objects. The following corollary shows that, in this
case, this Approximated Median Graph is close to the actual Median Graph.

Corollary 1. Let S = {G1, . . . , Gm} admit an Approximated Median Graph G
such that GM∗({G}) ≤ ε. Then d(G,G∗) ≤ 3ε.
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The proof is based on equation (12) of theorem 2 and is left to the reader.
Theorem 1 and 2 are proven considering the optimal computation of CL∗. If

we relax this assumption with a suboptimal computation we get the following
corollary.

Corollary 2. Let H be a set of graphs and S = {G1, . . . , Gm} be a subset of

H. In addition, let G′ be the Approximated Median Graph computed considering
S and the, possibly suboptimal, bijections obtained by Common Labelling whose
value is CL. Let the cost function cM be a metric. Then CL ≥ GM(G′) ≥ GM∗

and d(G′ , G∗) ≤ 2CL.

5 Median Graph of Weighted Graphs

Clearly, the notion of Median Graph can be used with a large set of different
cost functions. In this section, we will show how using the original proposed
cost [1] between graphs and restricting to weighted graphs, the Median Graph
problem reduces exactly to the Common Labelling problem. Let AV : V → [0, 1]
and AE : E → [0, 1] be the domain of vertices and edges attributes. In this
case, the value “1” indicates that the graph vertex, or edge, exists and value “0”
that the vertex, or edge, does not exist. We use a vector/matrix representation,
so that Vi(r) = AV (vr) and Ei(r, s) = AE(er,s) where vr ∈ Vi and er,s ∈ Ei

and bijections πi are represented as permutation matrices pi. In case no vertex
position is indicated, Vi, we refer to the complete vector.

As cost function we use the squared Euclidean distance, c(vr, vs) = ‖Vi(r)−
Vj(s)‖2 where vr ∈ Vi and vs ∈ Vj . The edge cost function is defined in an
equivalent form. This cost was also used in the genetic algorithm of [1] where
authors proved the best prototype for a set of graphs, with fixed labellings, is
the average of attributes ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V(r) =
1

m

m∑
k=1

Vk(r)

E(r, s) =
1

m

m∑
k=1

Ek(r, s)

(13)

Under these considerations, we can state the following theorem:

Theorem 3. Let H be a set of weighted graphs, S = {G1, . . . , Gm} a given
subset of H. and p1,...,m ∈ RN×N m permutation matrices. Considering the cost
given by the squared Euclidean distance, we have:

1

2
CL∗ = GM∗. (14)

Proof. The scalar product of two vectors is:

〈Vi,Vj〉 =
n∑

r=1

Vi(r)Vj(r).
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The proof follows the lines of the Huygens theorem [16].

1
2
CL∗ =

1

2m2

m∑
i=1

m∑
j=1

‖piVi‖2 − 2〈piVi,pjVj〉+ ‖pjVj‖2

=
1

m2

m∑
i=1

m∑
j=1

‖piVi‖2 − 〈piVi,pjVj〉

=
1

m

m∑
i=1

‖piVi‖2 +
m∑
i=1

m∑
j=1

− 2

m2
〈piVi,pjVj〉+ 1

m2
〈piVi,pjVj〉

=
1

m

m∑
i=1

(‖piVi‖2 − 2

m
〈piVi,

m∑
j=1

pjVj〉) + 〈 1
m

m∑
i=1

piVi,
1

m

m∑
j=1

pjVj〉

=
1

m

m∑
i=1

‖piVi‖2 − 2〈piVi,V〉+ ‖V‖2

≥ GM∗

(15)

The converse inequality is similarly proved and the process is equivalent for the
edge costs.

As an immediate consequence of theorem 3 we have that the Approximated
Median Graph error is the same as the Generalized Median Graph. The proof is
based on theorem 3 and is left to the reader.

Corollary 3. Under the hypothesis of theorem 3 we have:

GM∗({G}) = GM∗ (16)

By exploiting the particular properties of the squared Euclidean distance, which
is not a metric, we get a much stronger result than theorem 1.

6 Discussion

In this paper we analysed the relation between two structural pattern recogni-
tion problems, the Median Graph and the Common Labelling. We proved that
these problems are closely related and in some special cases they are in fact
equivalent, thereby formalising a connection which up to now was unknown.
This connection confirms that algorithms based on the Common Labelling, to
compute the Median Graph, are theoretically sound. In addition, the proposed
bounds are useful in practice, when the Common Labelling is computed using
non-exact algorithms, like in [11].
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Abstract. Hierarchical image segmentation provides a region-oriented
scale-space, i.e., a set of image segmentations at different detail levels in
which the segmentations at finer levels are nested with respect to those
at coarser levels. Most image segmentation algorithms, such as region
merging algorithms, rely on a criterion for merging that does not lead to
a hierarchy. In addition, for image segmentation, the tuning of the pa-
rameters can be difficult. In this work, we propose a hierarchical graph
based image segmentation relying on a criterion popularized by Felzen-
szwalb and Huttenlocher. Quantitative and qualitative assessments of
the method on Berkeley image database shows efficiency, ease of use and
robustness of our method.

Keywords: hierarchical segmentation, edge-weighted graph, saliency
map.

1 Introduction

Image segmentation is the process of grouping perceptually similar pixels into
regions. A hierarchical image segmentation is a set of image segmentations at
different detail levels in which the segmentations at coarser detail levels can
be produced from simple merges of regions from segmentations at finer detail
levels. Therefore, the segmentations at finer levels are nested with respect to
those at coarser levels. Hierarchical methods have the interesting property of
preserving spatial and neighboring information among segmented regions. Here,
we propose a hierarchical image segmentation in the framework of edge-weighted
graphs, where the image is equipped with an adjacency graph and the cost of
an edge is given by a dissimilarity between two points of the image.

Any hierarchy can be represented with a minimum spanning tree. The first
appearance of this tree in pattern recognition dates back to the seminal work
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of Zahn [1]. Lately, its use for image segmentation was introduced by Morris
et al. [2] in 1986 and popularized in 2004 by Felzenszwalb and Huttenlocher
[3]. However the region-merging method [3] does not provide a hierarchy. In
[4,5], it was studied some optimality properties of hierarchical segmentations.
Considering that, for a given image, one can tune the parameters of the well-
known method [3] for obtaining a reasonable segmentation of this image. We
provide in this paper a hierarchical version of this method that removes the
need for parameter tuning.

The algorithm of [3] is the following. First, a minimum spanning tree (MST) is
computed, and all the decisions are taken on this tree. For each edge linking two
vertices x and y, following a non-decreasing order of their weights, the following
steps are performed:

(i) Find the region X that contains x.
(ii) Find the region Y that contains y.
(iii) Merge X and Y according to a certain criterion.

The criterion for region-merging in [3] measures the evidence for a boundary
between two regions by comparing two quantities: one based on intensity differ-
ences across the boundary, and the other based on intensity differences between
neighboring pixels within each region. More precisely, in step (iii), in order to
know whether two regions must be merged, two measures are considered. The
internal difference Int(X) of a region X is the highest edge weight among all the
edges linking two vertices of X in the MST. The difference Diff (X,Y ) between
two neighboring regions X and Y is the smallest edge weight among all the edges
that link X to Y . Then, two regions X and Y are merged when:

Diff (X,Y ) ≤ min{Int(X) +
k

|X| , Int(Y ) +
k

|Y | } (1)

where k is a parameter allowing to prevent the merging of large regions (i.e.,
larger k forces smaller regions to be merged).

The merging criterion defined by Eq. (1) depends on the scale k at which the
regions X and Y are observed. More precisely, let us consider the (observation)
scale SY (X) of X relative to Y as a measure based on the difference between X
and Y , on the internal difference of X and on the size |X | of X :

SY (X) = (Diff (X,Y )− Int(X))× |X |. (2)

Then, the scale S(X,Y ) is simply defined as:

S(X,Y ) = max(SY (X), SX(Y )). (3)

Thanks to this notion of a scale, Eq. (1) can be written as:

k ≥ S(X,Y ). (4)

In other words, Eq.(4) states that the neighboring regions X and Y merge when
their scale is less than the threshold parameter k.

Even if the image segmentation results obtained by the method proposed in
[3] are interesting, the user faces two major issues:
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(a) Original (b) k = 7500 (8) (c) k = 9000 (14)

Fig. 1. A real example illustrating the violation of the causality principle by [3]: the
number of regions (in parentheses) increases from 8 to 14, instead of decreasing when
the so-called “scale of observation” increases

– first, the number of regions may increase when the parameter k increases.
This should not be possible if k was a true scale of observation: indeed, it
violates the causality principle of multi-scale analysis, that states in our case
[6] that a contour present at a scale k1 should be present at any scale k2 < k1.
Such unexpected behaviour of missing causality principle is demonstrated on
Fig. 1.

– Second, even when the number of regions decreases, contours are not stable:
they can move when the parameter k varies, violating a location principle.
Such a situation is illustrated on Fig. 2.

Given these two issues, the tuning of the parameters of [3] is a difficult task.
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(a) Original image
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(b) k = 5
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1 3
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(c) k = 8

Fig. 2. An example illustrating the violation of the location principle by [3]: the con-
tours are unstable from one “scale” to another

Following [6], we believe that, in order for k to be a true scale-parameter, we
have to satisfy both the causality principle and the location principle, which leads
to work with a hierarchy of segmentations. Reference [7] is the first to propose
an algorithm producing a hierarchy of segmentations based on [3]. However, this
method is an iterative version of [3] that uses a threshold function, and requires
a tuning of the threshold parameter.

The main result of this paper is an efficient hierarchical image segmentation
algorithm based on the dissimilarity measure of [3]. Our algorithm has a compu-
tational cost similar to [3], but provides all scales of observations instead of only
one segmentation level. As it is a hierarchy, the result of our algorithm satisfies
both the locality principle and the causality principle. Namely, and in contrast
with [3], the number of regions is decreasing when the scale parameter increases,
and the contours do not move from one scale to another.

Figure 3 illustrates the results obtained by applying our method to the same
image of Fig. 1(a), with segmentations at two different scales of observations, as
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(a) Saliency map (b) k = 1000 (22) (c) k = 5000 (6)

Fig. 3. A real example illustrating the saliency map of Fig. 1(a) computed with our
approach. We display in (b) and (c) two image segmentations extracted from the hier-
archy at scales 1000 and 5000, together with their numbers of regions (in parentheses).

well as a saliency map [8,4,5] (a map indicating the disparition level of contours
and whose thresholds give the set of all segmentations).

This work is organized as follows. In Section 2, we present our hierarchical
method for color image segmentation. Some experimental results performed on
Berkeley image database are given in Section 3. Finally, in Section 4, some
conclusions are drawn and further works are discussed.

2 A Hierarchical Graph Based Image Segmentation

In this section, we describe our method to compute a hierarchy of partitions
based on observation scales as defined by Eq. (3). Let us first recall some impor-
tant notions for handling hierarchies [2,4,5].

To every tree T spanning the set V of the image pixels, to every map w : E →
N that weights the edges of T and to every threshold λ ∈ N, one may associate
the partition Pw

λ of V induced by the connected components of the graph made
from V and the edges of weight below λ. It is well known [2,5] that for any two
values λ1 and λ2 such that λ1 ≥ λ2, the partitions Pw

λ1
and Pw

λ2
are nested and

Pw
λ1

is coarser than Pw
λ2

. Hence, the set Hw = {Pw
λ | λ ∈ N} is a hierarchy of

partitions induced by the weight map w.
Our algorithm does not explicitly produce a hierarchy of partitions, but in-

stead produces a weight map L (scales of observations) from which the desired
hierarchy HL can be inferred on a given T . It starts from a minimum spanning
tree T of the edge-weighted graph built from the image. In order to compute the
scale L(e) associated with each edge of T , our method iteratively considers the
edges of T in a non-decreasing order of their original weights w. For every edge
e, the new weight map L(e) is initialized to ∞; then for each edge e linking two
vertices x and y the following steps are performed:

(i) Find the the region X of Pw
w(e) that contains x.

(ii) Find the the region Y of Pw
w(e) that contains y.

(iii) Compute the hierarchical observation scale L(e).

At step (iii), the hierarchical scale S′
Y (X) of X relative to Y is needed to obtain

the value L(e). Intuitively, S′
Y (X) is the lowest observation scale at which some

sub-region of X , namely X∗, will be merged to Y . More precisely, using an
internal parameter v, this scale is computed as follows:



120 S.J.F. Guimarães et al.

1 12 7

2 3 4

1

11 5

9 3

11

(a) Original graph

a b c

d e f

1

5

3

11

(b) MST

a b c

d e f

1

10

8

11

(c) Hierarchy
a d e f c b

AB

AB

AB
AB

(d) Dendrogram

a

d e f

b c

1

11

(e) k = 2

a c

d e f

b

1 8

11

(f) k = 9

Fig. 4. Example of hierarchical image segmentations. In contrast to example in Fig. 2,
the contours are stable from a scale to another, providing a hierarchy.

(1) Initialize the value of v to ∞.
(2) Decrement the value of v by 1.
(3) Find the the region X∗ of PL

v that contains x.
(4) Repeat steps 2 and 3 while SY (X

∗) < v
(5) Set S′

Y (X) = v.

With the appropriate changes, the same algorithm allows S′
X(Y ) to be com-

puted. Then, the hierarchical scale L(e) is simply set to:

L(e) = max{S′
Y (X), S′

X(Y )}. (5)

Figure 4 illustrates the result of our method on a pedagogical example. Starting
from the graph of Fig. 4(a), our method produces the hierarchical observation
scales depicted in Fig. 4(c). As for the method of [3], our algorithm only considers
the edges of the minimum spanning tree (see Fig. 4(b)). The whole hierarchy is
depicted as a dendrogram in Fig. 4(d), whereas two levels of the hierarchy (at
scales 2 and 9) are shown in Fig. 4(e) and (f).

2.1 Implementation Issues

To efficiently implement our method, we use some data structures similar to
the ones proposed in [5]; in particular, the management of the collection of
partitions is due to Tarjan’s union find and Fredman and Tarjan’s Fibonnacci
heaps. Furthermore, we made some algorithmic optimizations to speed up the
computations of the observation scales. In order to illustrate an example of
computation time, we implemented all our algorithm in C++ on a standard
single CPU computer under windows Vista, we run it in a Intel Core 2 Duo,
4GB. For the image illustrated in Fig. 1(a) (with size 321x481), the hierarchy is
computed in 2.7 seconds, and the method proposed in [3] spent 1.3 seconds.

3 Experimental Results

In this section, we present a quantitative and a qualitative assessments in order
to better compare our method to the method proposed in [3] (called method FH
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(a) (b) (c) 41 (d) 22 (e) 3 (f) 2 (g) 1

Fig. 5. An example of a hierarchical image segmentations of a synthetic image con-
taining three perceptually big regions. The saliency map of the image (a) is shown in
(b). The number of regions of the segmented images is written under each figure.

(a) (b) (c) (d)

Fig. 6. Top row: some images of the Berkeley database [9]. Middle row: saliency maps
of these images according to our hierarchical method. The numbers of scales of these
hierarchies are (a) 240, (b) 443, (c) 405 and (d) 429. Bottom row: according to our sub-
jective judgment, the best segmentations extracted from the hierarchies. The numbers
of regions are (a) 3, (b) 18, (c) 6 and (d) 16.

Table 1. Performances of our method and the method FH [3] using two different
measures: Ground-truth Covering (GT Covering) and Probabilistic Rand Index. The
presented scores are optimal considering a constant scale parameter for the whole
dataset (ODS) and a scale parameter varying for each image (OIS). See [9] for more
details on the evaluation method.

Area
GT Covering Prob. Rand. Index

ODS OIS ODS OIS
Ours FH Ours FH Ours FH Ours FH

20 0.42 0.43 0.52 0.52 0.75 0.75 0.81 0.79
50 0.44 0.43 0.52 0.52 0.76 0.75 0.81 0.79
500 0.46 0.43 0.53 0.53 0.76 0.76 0.81 0.79
1000 0.46 0.44 0.53 0.53 0.76 0.76 0.80 0.80
1500 0.46 0.44 0.52 0.54 0.76 0.76 0.80 0.80
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(a) 16 (b) 52

(c) 26 (d) 18

Fig. 7. Comparison between our method and the method FH [3]. For each pair of
images, the right image shows the best result (according to our judgment and our
experiments) from [3] and the left image shows a segmentation extracted from our
hierarchical result, with the same number of regions.

hereafter). The former is based on evaluation framework proposed in [9], and
the later one is based on three experiments in which we tune the parameters
to (visually) evaluate the quality of the segmentations. A major difficulty of
experiments is the design of an adequate edge-cost, well adapted to the content
to be segmented. A practical solution is to use some dissimilarity functions, and
many different functions are used in the literature. In this work, the underlying
graph is the one induced by the 4-adjacency pixel relation, where the edges are
weighted by a simple color gradient computed by the Euclidean distance in the
RGB space. Before presenting the quantitative and qualitative assessments, we
illustrate some results of our method.

(a) (b)

(c) (d)

Fig. 8. Examples of image segmentation where the number of regions has been set
to 15. For each pair of images, the left one shows a segmentation extracted from our
hierarchy; and the right one shows the result obtained with [3] by varying the parameter
k until the desired number of regions is found.
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(a) (b) (c)

Fig. 9. Examples of segmentations for images corrupted by a random salt noise. The
corrupted images (at different levels - 70% and 90%) are shown on the first column.
The results of our method and [3] are illustrated in the second and third columns,
respectively.

In Fig. 5, we present some results on an artificial image containing three per-
ceptually large regions. With this example, one can easily verify the hierarchical
property of our method by looking at the segmentations at scales resp. 1000,
2000, 5000, 140000 and 224000 (resp. Fig. 5(c), (d), (e), (f) and (g)). Since
the resulting segmentations are nested, the whole hierarchy can be presented
in a saliency map (see Fig. 5(b)). Figure 6 illustrates the performance of our
method when applied to some images of the Berkeley’s database [9]. Note that,
as in [3], an area filtering is applied to eliminate small regions (smaller than 500
pixels).

In the sequel, we present the quantitative assessment followed by the qual-
itative one. Table 1 assesses the equivalent performances of our method and
of the method FH [3], according to the evaluation framework proposed in [9],
in terms of Ground-truth Covering and Probabilistic Rand Index, when ap-
plied on 200 test images of the Berkeley’s database [9]. For this experiment,
an area filtering is applied to eliminate small regions varying from 20 to 1500
pixels.

For the qualitative assessment, we made three experiments. First, we try to
set the reasonable parameter for [3], i.e. the parameter that produces the best
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(subjective) visual result (Fig. 7). We can compare this result with the segmen-
tation result at a scale in our hierarchy such that it contains the same number
of regions that of [3] (Fig. 7). In a second experiment, we fixed the number of
regions to 15 for all images, and tune the parameter for [3] to obtain this number
of regions. For our method, we use breadth-first traversal in the hierarchy (tree
structure) to find the scale that givens 15 regions. We compare those segmenta-
tions in Fig. 8. The last illustration (Fig. 9) is designed to assess the robustness
to random impulse noise. From these experiments, we observe that in general,
our method produces “objects” (or regions) better defined with respect to the
results obtained by the method FH. Moreover, the contours are stable, i.e., the
contours do not move from one scale to another, and the number of regions is
decreasing when the scale parameter increases.

4 Conclusions

This paper proposes an efficient hierarchical segmentation method based on the
observation scales of [3]. In contrast to [3], our method produces the complete
set of segmentations at every scale, and satisfies both the causality and location
principle defined by [6]. An important practical consequence of these properties
is to ease the selection of a scale level adapted to a particular task. We assess our
method and the method of [3] on the Berkeley database following the method-
ology introduced in [9]. We visually assessed our method on some real images
by comparing our segmentations to those of [3]. From theses quantitative and
qualitative assessments, the produced segmentations are promising, in particu-
lar w.r.t. robustness. As future work, we will investigate using more information
into the definition of observation scale as well as learning which information is
pertinent for a given practical task. Moreover, we will investigate theoretical
properties of our method.
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Abstract. Linear or Gaussian scale space is a well known multi-scale represen-
tation for continuous signals. The exploration of its so-called deep structure by
tracing critical points over scale has various theoretical applications and allows
for the construction of a scale space hierarchy tree. However, implementational
issues arise, caused by discretization and quantization errors. In order to develop
more robust scale space based algorithms, the discrete nature of computer pro-
cessed signals has to be taken into account. Aiming at a computationally prac-
ticable implementation of the discrete scale space framework, we investigated
suitable neighborhoods, boundary conditions and sampling methods. We show
that the resulting discrete scale space respects important topological invariants
such as the Euler number, a key criterion for the successful implementation of
algorithms operating on its deep structure. We discuss promising properties of
topological graphs under the influence of smoothing, setting the stage for more
robust deep structure extraction algorithms.

1 Introduction

In the field of computer vision, deriving information from observed images is a cen-
tral problem. Various strategies have been invented to do so in a performant manner,
usually by applying some kind of operator. Their performance depends on the inner
scale, the sampling density or resolution of the image they operate on. To overcome
this dependence between operator and inner scale, various strategies of multi-scale rep-
resentations have been proposed. Almost all those strategies consist of transforming the
given images into a scale independent representation first before applying an operator
on this representation. A common requirement for such preliminary transformations is
to mask as little information present in the original image as possible. The Gaussian
scale space satisfies these requirements and can be thought of as the natural generaliza-
tion of the lowpass pyramid. It is also popular for its theoretical foundation. A Gaussian
scale space representation of a given signal is a family of derived signals, progressively
smoothed with a Gaussian filter.

Its deep structure consists of critical points or zerocrossings traced over scale. An
implementation of important scale space based algorithms can be found in the software
tool ScaleSpaceViz [1]. ScaleSpaceViz has, according to the authors, “proven to be
useful in exploring the deep structure of images and constructing applications involv-
ing scale space interest points, such as reconstruction and matching”. Admittedly, this
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holds true under certain conditions. Nevertheless, ScaleSpaceViz suffers from robust-
ness problems. As it is the case with many such scale space applications, its implemen-
tation is based on a discretized continuous scale space.

The discrete scale space proposed by Lindeberg [2] takes the discrete nature of com-
puter processed signals into account. It is based on equivalent assumptions and axioms
that have been used to derive the continuous Gaussian scale space adapted to discrete
signals. It is our belief that porting scale space algorithms from a discretized continu-
ous to the discrete scale space will eventually lead to more accurate, robust and possibly
faster implementations. The discrete scale space formalized by Lindeberg however does
not respect important topological invariants such as the Euler number. Since most algo-
rithms that operate on the deep structure of the Gaussian scale space require this topo-
logical invariant to hold, we present in this paper a modified definition of the discrete
scale space respecting the Euler number. A subsequent investigation of various proper-
ties of this discrete scale space then results in a fast and robust sampling algorithm [3].
We propose the application of topological graphs together with adaptive sampling in
order to reliably extract the deep structure of the discrete scale space.

2 Discrete Signals

Important discrete operators, including those needed to build a scale space over f , op-
erate on functions of infinite domain Z2. Therefore, signals with bounded domain must
be expanded to cover the whole range of Z2. Imposing a Dirichlet or zero-border con-
dition implies assuming the signal to be of constant or zero-value outside the originally
bounded domain. A zero-border condition may reduce the computational complexity of
certain operations, namely discrete convolution with infinitely large kernels. However,
a zero-border has drawbacks concerning the computation of a scale space over f . These
can be avoided by assuming f to be periodic instead with period M for the first and N
for the second dimension, thus imposing a periodic boundary condition.

Image structures or features are often defined in terms of limited subsets of image
points, so called interest points. These include stationary points such as minima, max-
ima and saddles in the two-dimensional case. If the discrete signal f is interpreted as
lattice height data, these critical points are then called peaks, pits and passes. They re-
veal important topological characteristics. Critical point detection has to be performed
in order to find their positions.

Provided that f is a sampled continuous signal and the sampling operator is known,
it is often possible to reconstruct and perform critical point detection on a functional
representation of the original signal using the well known gradient or slope based defi-
nitions of critical points on continuous data [4]. In the general case however, this is not
possible and we need a separate definition of critical points on discrete data.

2.1 Euler Number

A well known topological invariant stating a stable relation between the number of
extrema and saddle points on closed continuous surfaces is the Euler number. The Euler
number, also called Euler formula or mountaineer’s equation [5] for a closed continuous
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surface is given by m+ − s +m−, where m+, s and m− denote the number of local
maxima, saddles and minima on that surface.

Various algorithms that exploit the deep structure of the continuous scale space rely
on a stable relation between the number of these critical points. This invariant should
therefore equally hold true for discrete critical points on discrete signals. Firstly, we
need a definition of the Euler number for a discrete signal f and then a definition of
discrete critical points that respects this invariant. An important aspect of this definition
is the neighborhood of each point in D (f). The neighborhood of a point consists of
all those points it is adjacent to. This relation is usually expressed as a mapping from
a point to the set of its neighbors N : Z2 → P

(
Z2
)
. In order to reason about critical

points and the relations between the number of critical points in a given neighborhood,
we resort to a graph representation of f .

The discrete signal f and a symmetric neighborhood N can be represented as an
undirected graph Gf = (V,E) with vertices V = {vx,y : (x, y) ∈ D (f)}, edges E =
{{vx,y, vx′,y′} ∈ P (V ) : (x′, y′)∈N (x, y)} and a function fG : V → R+ relating
each vertex to a value fG (vx,y) = f (x, y). A bijection between D (f) and V relates
each point (x, y) ∈ D (f) to a vertex vx,y ∈ V . For each pair of points (x, y), (x′, y′)
that is adjacent given the neighborhoodN , E contains an edge {vx,y, vx′,y′}. Thus, the
domain of f is represented via V , the neighborhood via E and the mapping f via the
mapping fG over the set of vertices.

If the graph Gf can be embedded into a closed surface such that its edges do not
intersect, the graph genus g then denotes the minimal genus of the closed surface the
graph can be embedded in [6]. For closed continuous surfaces, the Euler characteristic
of that surface χ = 2− 2g coincides with the Euler number [4]. The value of the Euler
characteristic and thus the Euler number depends on the chosen neighborhood. A graph
with no edges for example can always be embedded into a sphere, a closed surface with
genus 0. By contrast, the complete graph K5 on 5 vertices is not planar and can only be
embedded into a torus, a closed surface with genus 1. Intuitively, the 4-neighborhood
N4 (x, y) =

{
(x′, y′) ∈ Z2 : ‖(x− x′, y − y′)‖1 = 1

}
seems to be a natural choice

given the square lattice f is defined upon, but we will later see that a 6-neighborhood
N6 resulting from a Delaunay triangulation of the square lattice is a more practical
choice. For bounded signals, Gf also has to reflect the chosen boundary condition. For
positive signals, a zero-border condition can be modeled by introducing a virtual pit
vo ∈ V with fG (v0) = 0 connected to all boundary points (Fig. 1a) [5]. In this case,
the neighborhood of boundary points might deviate from N , but this does not matteras
long as we are only interested in topological properties. Modeling a periodic boundary
condition however requires a strict correspondence between the chosen neighborhood
and the graph representation, modeled by duplication of D (f) in all directions and
connecting opposing boundary points through additional edges (Fig. 1b). A periodic
replication of the square grid D (f) does not affect the Euler number.

If we impose a zero-border and not a periodic boundary condition, the graph repre-
sentation of a signal f with bounded domain [1, 3] × [1, 3] ⊆ D (f) ⊂ Z2 and both
4-neighborhood N4 or 6-neighborhood N6 can be embedded into a sphere, i.e. Gf is
planar (Fig. 1a). Intersection-free embedding into a sphere is not possible for periodic f .
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(a) 4-neighborhood with virtual pit
(gray), graph genus 0, embedded in a
sphere (spherical polyhedron).

(b) periodic 4-neighborhood, graph
genus 1, embedded in a torus (toroidal
polyhedron).

Fig. 1. Embedding an undirected graph with 4-neighborhood N4 into a closed surface

Proof. Using Kuratowski’s theorem stating that a finite graph is not planar if it does
contain a subgraph that is homeomorphic to K5, it can be shown that the graph repre-
sentation Gf of a periodic signal f with D (f) = [1, 3] × [1, 3] ⊂ Z2 is not planar.
Since the graph representation of a periodic signals f whose domain is a superset of
D (f) is a supergraph of Gf , it is homeomorphic to K5 as well. The same holds for
arbitrary neighborhoodsN with N4 (x, y) ⊆ N (x, y), since their graph representation
is also a supergraph of Gf . �
The surface with the next higher genius is a torus. From Fig. 1b it becomes clear that
it is possible to embed Gf into a torus for periodic f . For the Euler characteristic and
therefore the Euler number then holds χ = 2− 2g = 0⇔ m+ +m− = s.

Now that we have transfered the invariant stated by the Euler number for closed
continuous surfaces to the graph representationGf and thus the periodic discrete signal
f for the N4 neighborhood and its triangulations N6, we can reduce the number of
reasonable discrete critical point definitions upon these neighborhoods to those that
respect the Euler number. Eventually, such a critical point definition allows for easier
adaption of algorithms that work well in the continuous case to discrete signals.

2.2 Detecting All Critical Points

There are principally two different ways to define critical points in the continuous case,
gradient and local path based definitions [4]. This translates to the discrete case if proper
definitions of gradient and local paths are given, both depending on the chosen neigh-
borhood. According to Kovalevsky [7], a stationary (homogeneous) neighborhood suit-
able to formulate a definition of discrete critical points respecting the Euler number
in the discrete n-dimensional space must contain 2 (2n − 1) points. Any stationary 6-
neighborhood given by a triangulation of the square lattice meets this condition. Later,
it was shown by Takahashi [5] that any arbitrary triangulation of the lattice is equally
topologically consistent. However, a stationary neighborhood is inherently simpler and
introduces no perturbations in the position of critical points, thus we will use a station-
ary hexagonal neighborhood N6 (x, y) = {(x± 1, y) , (x, y ± 1) , (x± 1, y ∓ 1)} as
proposed by Kuijper [8].

We can now give a definition of discrete critical points respecting the Euler num-
ber on the hexagonal neighborhood N6: (x0, y0) ∈ Z2 is said to be a local maxi-
mum (minimum) for a signal f : Z2 → R within neighborhood N (x0, y0) ⊆ Z2 iff
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∀ (x, y) ∈ N : (x0, y0) > (<) (x, y). This definition is only valid as long as there
are no local extremal regions. In order to incorporate these plateaus, we introduce an
arbitrary strict second ordering on points of equal value.

A common definition of saddle points is via sign-changes in the neighborhood, given
a clockwise or counterclockwise order of the neighbors. Given a neighborhood N , the
lexicographic order with minor adaptations to the boundary provides such an arrange-
ment. We will use the definition given by Takahashi [5] who differs between regular
and degenerated saddles. Four sign changes indicate a regular, six sign changes a de-
generated saddle. At degenerated saddle points, more than two contour lines intersect.
Degenerated saddles on N6 can be split into two regular saddles.

Provided a neighborhood and a suitable critical point definition as outlined above,
we can extract the surface network and other topological graphs such as the Reeb graph
from f . This can be done using the algorithms outlined by Takahashi [5] and Scott [4]
with minor adaptations to periodic signals whose representative graph is of genus 1.

3 Neighborhood and Discrete Scale Space

In this section, we will give a concise definition of the Gaussian scale space [9, 10] for
two-dimensional discrete signals comprising a continuous scale parameter. The scale
space representation of a discrete signal f : Z2 → R is a one-parameter family of
derived signals L : Z2×R+ defined by a set of discrete scale space axioms. It was first
described by Lindeberg [2], who introduced a discrete version of the non enhancement
of local extrema axiom based on weak local extrema within the 8-neighborhood (Fig. 2).

An equivalent definition via convolution with a scale space kernel yields L (·, ·; t) =
k (·, ·; t) ∗ f (·, ·) where k : Z2 × R+ → R is the discrete analogue of the continuous
Gaussian scale space kernel.

L (x, y; t) =
∞∑

m=−∞
k (m; t)

∞∑
n=−∞

k(n; t)f(x−m, y − n)

The scale space representation L of a signal f is the solution of the diffusion equation.
For the axioms chosen by Lindeberg, it takes the form

∂tL = α∇5
2L+ β∇2

×L (1)

with L (·, ·; 0) = f (·, ·) as initial condition and some α, β ≥ 0. The five-point operator
∇5

2 and the cross operator ∇2
× approximate the continuous Laplacian operator. They

correspond to convolution of L (·, ·; t) with kernel

⎡⎣ 1
1 −4 1

1

⎤⎦ respectively

⎡⎣ 1
2 0 1

2
0 −2 0
1
2 0 1

2

⎤⎦.

For α = 1 and β = 0 Eq. (1) simplifies to ∂tL = ∇5
2L and results in k being separable.

If one wishes to choose a strict local extrema definition and another neighborhood be-
cause of topological reasons, the axiomatic scale space definition may change. Only the
strict local extrema definition within a 6-neighborhood has proven to respect the Euler
number. However, not every spatial extremum in L within an arbitrary 6-neighborhood
satisfies the aforementioned non-enhancement axiom based on weak local extrema
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Fig. 2. Different neighborhoods (left: N8, right: N6) over the same signal. Only the central maxi-
mum satisfies the non-enhancement axiom ∂tL ≤ 0 for both neighborhoods and arbitrary α ≥ 0,
β > 0.

within the 8-neighborhood chosen by Lindeberg. Thus, in order to incorporate the Eu-
ler number as topological invariant into the discrete scale space, either L and therefore
the discretized diffusion equation has to be modified or the 6-neighborhood has to be
chosen in a way that the extrema within such neighborhood represent a subset of the
weak extrema within the 8-neighborhood.

3.1 Discretized Scale Space for N6

We want to show that the discrete scale space over f with N = N6 is defined by the
solution of a discretized version of the differential equation as it is the case forN = N8.

Necessity. Let N = N6. Then, following the approach given by Lindeberg [2], it
becomes evident that the scale space representation L : Z2 × R+ → R of signal
f : Z2 → R satisfies the differential equation ∂tL = α∇2

5L for some α ≥ 0 with
initial condition L (·, ·; 0) = f (·, ·).

Proof. Strictly following the proof given by Lindeberg and resulting from his set of
proposed discrete scale space axioms without the non-enhancement of local extrema
axiom and thus not depending on the chosen neighborhood, ∂tL = AL holds for all
t ≥ 0 and a linear shift-invariant operator A. Because of the shift-invariance, this can
be written as

(AL) (x, y; t) =

∞∑
m=−∞

∞∑
n=−∞

am,nL (x−m, y − n; t) .

Let N+
6 (x, y) = N6 (x, y) ∪ {(x, y)} . Now, from using the non-enhancement of local

extrema axiom for extrema within N6, it follows that am.n = 0 for (m,n) ∈ N+
6 .

Otherwise, assuming that am̃.ñ �= 0 for one (m̃, ñ) ∈ N+
6 , we could define a function

f1 : Z2 → R with

f1 (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε > 0 if (x, y) = (0, 0)

0 if (x, y) ∈ N6 (0, 0)

1 if (x, y) = (m̃, ñ)

0 otherwise
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and ∂tL (0, 0; 0) = ∂tf (0, 0) = εao,o+ am̃,ñ ≥ 0 for well-chosen ε, violating the non-
enhancement axiom since (0, 0) is a local maximum of f within N6. The same holds
for local minima and ε < 0. Thus, ∂tL can be written as

(AL) (x, y; t) =
∑

m,n∈N+
6

am,nL (x−m, y − n; t) .

Imposing symmetry conditions in analogy to Lindeberg [2],AL equals a convolution of

Lwith kernel

⎡⎣0 b 0b c b
0 b 0

⎤⎦ for some b and c. Considering another function f2 (·, ·) = 1 with

f2 (0, 0) = 1 + (−) ε According to the strict definition of local extrema given earlier,
the point (0, 0) is a local maximum (minimum), thus ∂tL (0, 0; 0) = ∂tf2 (0, 0) = 4b+

c = 0. Therefore,

⎡⎣0 b 0b c b
0 b 0

⎤⎦ = α

⎡⎣0 1 0
1 −4 1
0 1 0

⎤⎦ for some α. Finally, from ∂tL (0, 0; 0) =

∂tf1 (0, 0) = αεc ≤ 0 it becomes evident that α ≥ 0. �

Following this proof, it becomes apparent that not only the hexagonal 6-neighborhood,
but arbitrary 6-neighborhoods (arbitrary triangulations) as well as the 4-neighborhood
N4 result in the same differential equation ∂tL = α∇2

5L. For simplicity, the parameter
α, which only affects the scaling of the scale parameter, is usually set to 1.

Sufficiency. The solution L : Z2 × R+ → R of the differential equation ∂tL = α∇2
5L

for some α ≥ 0 with initial condition L (·, ·; 0) = f (·, ·) for f : Z2 → R is a scale
space representation of f .

Proof. Let L̃ be a scale space representation of f . According to the previous definition,
L̃ is then also the solution of ∂tL = α̃∇2

5L for some α̃ ≥ 0 with initial condition
L (·, ·; 0) = f (·, ·). Since α̃ is only a linear scaling parameter along the direction of

t, ˜̃L (·, ·; t) = L̃
(
·, ·; α

α̃ t
)

is the solution of ∂tL = α∇2
5L and therefore ˜̃L = L. It is

obvious that ˜̃L still satisfies all the discrete scale scape axioms, thus L is a scale space
representation of f . �

Linking. In order to extract critical curves, the discrete scale space has to be sampled
along its continuous scale parameter, since we do not know how to compute the exact
occurrences of the zerocrossings in the neighborhood as stated above. The known way
to extract critical curves is to compute several scale images of L at preselected scales,
then detecting spatially critical points on these scales and finally linking spatially close
critical points on subsequent scales into critical curves. We need a criterion that tells
us when further subsampling is required and when the sampling density is high enough
to guarantee a correct result. Such a criterion is found in topological graphs or more
precisely in the difference of topological graphs of subsequent scales. Tracking changes
in the surface network over scale is a promising approach, since the set of possible
changes between scale space events such as creations or annihilations of critical points
is strictly limited.
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Fig. 3. A sampled discrete scale space. From the critical points alone (left), the subsequent anni-
hilation and creation between scale t1 = 0.05 and t2 = 0.125 is not visible and might lead to
incorrect linking. However, the surface networks (middle, incomplete) of these scales differ, thus
providing a criterion whether further subsampling might be necessary. The Reeb graphs (right,
incomplete) are identical, though.
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4 Conclusion and Future Work

The discrete scale space as an equivalent to the two-dimensional Gaussian scale space
has been discussed and some important properties have been derived. A computa-
tionally practicable implementation of the discrete scale space framework has been
outlined. The regular 6-neighborhood, a periodic boundary condition and a suitable
critical point definition respecting the Euler number have led to discrete scale space
axioms that differ from those proposed by Lindeberg. It has been shown that the dis-
cretized diffusion equation inducing the discrete scale space derived from the modified
axioms resembles the one found by Lindeberg but has one less degree of freedom. Us-
ing our computationally efficient sampling method, based on properties of the Laplacian
kernel [3], we gave a first investigation of the deep structure of the discrete scale space
illustrating the need for a more robust algorithm for critical curve extraction. Topolog-
ical graphs have shown promising properties under the influence of changes in scale.
However, further and more formal investigation of the deep structure of the discrete
scale space is necessary.
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Abstract. Graph embeddings in vector spaces aim at assigning a pat-
tern vector to every graph so that the problems of graph classification
and clustering can be solved by using data processing algorithms origi-
nally developed for statistical feature vectors. An important requirement
graph features should fulfil is that they reproduce as much as possible the
properties among objects in the graph domain. In particular, it is usu-
ally desired that distances between pairs of graphs in the graph domain
closely resemble those between their corresponding vectorial represen-
tations. In this work, we analyse relations between the edit distance in
the graph domain and the L1 distance of the attribute statistics based
embedding, for which good classification performance has been reported
on various datasets. We show that there is actually a high correlation
between the two kinds of distances provided that the corresponding pa-
rameter values that account for balancing the weight between node and
edge based features are properly selected.

1 Introduction

The comparison of relational structures has been widely studied over the past
years [3]. Graph edit distance constitutes a major paradigm due to its ability to
handle arbitrary graph structures [2,10]. It is defined as the minimum amount
of distortion that is needed to transform one graph into another. This distance
measure is very intuitive in nature since the edit path it looks for is based on
substituting, deleting and inserting nodes and edges such that the source and
the target graph become isomorphic.

Graph edit distance, however, has a high computational complexity. Modern
ways for graph matching try to avoid this high complexity. Extracting graph
features and building up pattern vectors for the analysis of graphs —known as
graph embedding— is a common way to reduce the computational complexity
and make efficient learning algorithms available for the domain of graphs. A
desired property of any generic graph embedding scheme is that it should be
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able to approximate the original distribution of patterns in the graph domain.
In other words, distances between objects in the graph domain should be similar
to their corresponding distances in the embedding space. For instance, for the
dissimilarity space embedding proposed in [9] it has been shown that the graph
edit distance between two graphs is an upper bound of the Euclidean distance
between the corresponding vectorial maps. Similarly, in [6], the Ihara coefficients
have been experimentally shown to be a set of features with distances that
correlate linearly with the edit distance.

In this paper, we investigate how the edit distance is related to a discrete
version of the embedding methodology proposed in [5]. The features under this
embedding methodology account for the number of nodes with a certain label
that appear in a graph, and the number of edges with a given label that exist
between two nodes with certain labels. In other words, this kind of embedding
is based on occurrence and co-occurrence statistics of labels in the underly-
ing graph. Absolute differences between node-based features indicate how many
nodes with a certain label exist in one graph that are not present in the other
graph. This is, in fact, exactly the same situation that occurs when performing
the edit distance computation between graphs with discrete attributes under
a cost function that disregards substitution of nodes with different labels and
forces node deletions and insertions instead. This observation is one of the main
motivations of our work.

In particular, we express both ways of computing graph distances —the edit
distance and the L1 distance for the embedding methodology— in terms of a
weighting parameter balancing the impact of nodes and edges in the resulting
distance values. We investigate how distances are correlated as a function of these
two parameters, and also how corresponding distance-based classifiers behave.

The rest of the article is organized as follows. Graph edit distance is reviewed
in the next section, and the edit cost function used for the case of discretely
attributed graphs is specified. Section 3 describes the embedding methodology
based on statistics of labelling information. Correlation experiments of both ways
of comparing graphs and a discussion of the results are presented in Section 4.
Finally, Section 5 draws conclusions from this work.

2 Graph Edit Distance

A graph g = (V,E, μ, ν) is a 4-tuple where V is the set of nodes, E ⊆ V × V
the set of edges, and μ : V → LV and ν : E → LE are the labelling functions of
nodes and edges, respectively. In this work, we use undirected graphs where the
labels come from finite discrete domains.

As already stated above, the main idea of graph edit distance is to define a
dissimilarity measure between graphs by the minimum amount of distortion that
is needed to transform one graph into the other [2,10]. Distortions are defined
in terms of edit operations between two graphs, such as node and edge deletion,
insertion and substitution. A sequence of edit operations transforming the source
graph into the target graph is called an edit path. Edit costs define whether a
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Table 1. Edit cost function

Deletion / Insertion Substitution

Nodes c(u → ε) = c(ε → v) = 1− ρ c(u → v) =

{
0, if μ(u) = μ(v)

2 · (1− ρ), otherwise

Edges c(e1 → ε) = c(ε → e2) = ρ c(e1 → e2) =

{
0, if ν(e1) = ν(e2)

2 · ρ, otherwise.

given operation constitutes a large deformation between the two involved graphs
or not. Between similar graphs there should exist an inexpensive edit path, while
dissimilar graphs are characterized by an edit path with high cost. The edit
distance between two graphs is thus defined as the cost of the edit path with the
minimum cost among all possible edit paths between two graphs.

The exact computation of the edit distance is a computationally hard task
and many approximations have been proposed in the literature. In this work,
we use the suboptimal approach of [8] where an approximate solution of graph
edit distance is provided by means of solving the assignment problem of nodes
of one graph to nodes of the other. A cost matrix regarding the substitution of
the local structure of every node of the source graph by the local structure of
every other node in the target graph is built. Then the optimal assignment is
extracted by the Munkres’ algorithm, and an edit path can be inferred from this
assignment.

As a prerequisite, we need to assign costs to every edit operation between
graph elements, i.e., nodes and edges. In particular, in this work we focus on
the same cost function used in [1], where substitutions of nodes and edges with
different labels are heavily penalized, forcing the (sub)optimal path to, first,
delete the source node (or edge) and then insert the target node (or edge).
Formally, deleting or inserting a given node (or edge) has a constant cost c,
while substituting it has at least twice that cost if the corresponding labels are
different. Without loss of generality, we set c = 1. Furthermore, we assume
null cost of substituting two nodes (or edges) with the same label. In order to
weight the node operations against those on the edges we introduce a parameter
ρ ∈ [0, 1] and multiply the node costs by 1 − ρ and the edge costs by ρ. The
resulting cost function is summarized in Table 1.

3 Attribute Statistics Based Embedding

Consider a set of graphs G = {g1, . . . , gN}, with gi = (Vi, Ei, μi, νi) being the
ith graph in the set with labelling alphabet LVi for the nodes and LEi for the
edges. We assume that all graphs in G have the same labelling alphabets, this
is LVi = LVj and LEi = LEj for all i, j ∈ {1, . . . , N}. We do not assume,
however, that each node and edge label necessarily occurs in each graph. Let
LV = {α1, . . . , αp} and LE = {ω1, . . . , ωq} be the discrete common labelling
alphabets.
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For each graph g = (V,E, μ, ν) ∈ G, we define p unary features measuring the
number of times each label in LV appears in the graph, this is

Ui = #(αi, g) = | {v ∈ V |αi = μ(v)} |, ∀i ∈ {1, . . . , p}. (1)

We also define 1
2 · q · p · (p+1) binary features counting the frequency of an edge

with a specific label (ωk) between two nodes with two given labels (αi and αj).
Formally,

Bk
ij = #([αi ↔ αj ]ωk

, g)

= | {e = (u, v) ∈ E |αi = μ(u) ∧ αj = μ(v) ∧ ωk = ν(e)} | (2)

where k ∈ {1, . . . , q} and 1 ≤ i ≤ j ≤ p. These features describe the local
structure of every graph in terms of how frequently a simple substructure —an
edge with a given label between two given node labels— occurs in a given graph.

These two sets of features can be combined in order to give a more global
structural representation of the graphs by bringing together various pieces of
local information. Formally, we define the embedding of graphs in the following
way.

Definition 1 (Graph Embedding). Given a graph g ∈ G, let ϕn(g) and ϕe(g)
be the vectors

ϕn(g) =
(
{Ui}1≤i≤p

)
(3)

ϕe(g) =
({
Bk

ij

}1≤k≤q

1≤i≤j≤p

)
(4)

where Ui and Bk
ij are defined in Eqs. (1) and (2), respectively. The embedding

of graph g is defined as the concatenation of these two vectors,

ϕ(g) = [ϕn(g) ϕe(g) ]. (5)

The abovedefinition has been proved successful in our previouswork [5]. In the cur-
rent paper, we go one step further and assign a different weight to the node related
vectorϕn(g) and the edge related vectorϕe(g). This leads to a generalized distance
between themap of two graphs,where the information included in the nodes can be
weighted differently from the information included in the edges. Given two graphs
g1 and g2, we define the vectorial distance between them by

D(g1, g2) = (1− α) · dL1(ϕn(g1), ϕn(g2)) + α · dL1(ϕe(g1), ϕe(g2)), (6)

where α ∈ [0, 1] and dL1(·, ·) is the L1 distance dL1(x, y) =
∑n

i=1 |xi−yi|. Clearly,
the case α = 0.5 is identical to the scenario in [5]. Now parameter α of Eq. (6)
can be related to parameter ρ of the edit distance introduced in Section 2.
As a matter of fact, Eq. (6) emulates the edit operations defined by the cost
function of the edit distance. As described above, the cost function maintains all
nodes and edges with identical labels, but deletes and subsequently inserts all
nodes and edges with different labels. Concerning the features we have defined,
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these operations translate into checking the absolute differences between vector
coordinates. Note that the distance of Eq. (6) can alternatively be obtained if
we would first weight both components of vector in Eq. (5) with 1 − α and α,
respectively, and then compute the L1 distance between the weighted vectors.

The parameter α measures the strength we give to the components of ϕn(g)
relative to ϕe(g). In this way, there is a clear resemblance with ρ which weights
the cost of operations on the nodes relative to the cost of operations on the edges.
In Section 4.2, we experimentally check for the correlation of these parameters.
From the definitions given above, it follows that the pair (ρ, α) = (0, 0) will
result in a correlation coefficient equal to 1.

4 Experiments

4.1 Databases

We work with four datasets of discretely attributed graphs. These datasets are
divided into two categories: object image datasets and molecule datasets. The
object images are subsets of the ALOI and ODBK collections [4,11]. Images are
segmented and a region adjacency graph is built, where nodes are labelled with
a color name of the color naming theory and edges are labelled according to
whether the common border of two adjacent regions is short, medium or long.

The molecule datasets are the AIDS and MUTAG collections from the IAM
repository [7]. Nodes correspond to atoms labelled with the corresponding chem-
ical element and edges represent chemical bonds with the corresponding covalent
number.

All four dataset are divided into a training, a validation and a test sets. In the
following, we will use the training and the validation sets for computing pairwise
distances. The test sets are not used.

4.2 Distance Correlation

Given a pair of values (ρ, α), we compute the sets of all pairwise graph distances
Xρ and Yα between all graphs in the training set and all graphs in the validation
set, using parameter value ρ for the edit distance and parameter value α for
the embedding distance. For these two sets of distance values, Xρ and Yα, we
compute the correlation coefficient by

C(ρ,α) =
cov(Xρ, Yα)

σXρσYα

, (7)

where cov(Xρ, Yα) is the covariance between distributions Xρ and Yα, and σXρ

and σYα are the corresponding standard deviations. We compute such a coeffi-
cient for all pairs (ρ, α) ∈ [0, 1]2 and plot the corresponding 3D functions and
correlation maps. Results can be seen in Fig. 1 (because of limited space we omit
the ALOI and MUTAG cases but their behavior is very similar to that of ODBK
and AIDS, and thus all discussions are valid for them as well).
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Fig. 1. Correlation values as a function of the weighting parameters

First of all, we note how values close to (ρ, α) = (0, 0) have, both in the object
and molecule datasets, a high correlation coefficient. This confirms that the
embedding features under the L1 metric replicate the edit distances when node
information is considered as more relevant than edge information. If this is the
case in the underlying application, we suggest to use the attribute statistics based
graph embedding rather than working with graph edit distance because, first,
the relative graph distribution is well maintained and, second, the computation
efficiency is much higher.

In Fig. 1, we can also observe the biased effect of the correlation values with
respect to the ideal case, where a diagonal behavior should be observed. The
explanation for the biased relation is the fact that the edge-based embedding
features still keep quite some information of the node labels. In particular, the
co-occurrence of a certain pair of node labels at the end of an edge tells us that
these particular node labels do appear in the graph. Therefore, it is clear that
considering edge-based features only, the embedding representation still keeps
information about the node attributes. As a consequence of this phenomenon,
the correlation of the embedding distances for α = 1 is maximized by values
ρ � 0.2, suggesting that 80% of the node information in the graph domain is
still included in the embedding representation when only edge-based features are
considered.
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In Fig. 1, when both ρ and α tend to 1, low correlation values result. This
might be explained by the fact that the edit distance computation looks for an
edit path that completely disregards the information of the nodes. Thus, since
edge-based embedding features still keep some of this information, the behavior
of distances in both domains becomes different.

Also worth noting is the shape of the correlation regions, which is more ellipse-
like in the molecule datasets than in the object datasets. This observation has
an interpretation in terms of how important the actual structural configuration
of graphs is in each dataset. In the molecule datasets edge information is more
salient than in the object datasets. The more weight we put on the edge-based
features (α → 1) the faster the correlation values for ρ � 0.2 descend, which
means that edge-based features are less correlated with the node information in
the graph domain and thus we should put more attention on the edges.

4.3 Classifier Correlation

Another way to check how well the edit distances are reproduced in the embed-
ding space is to see how a distance based classifier performs. In this paper, we
use a kNN classifier with both ways of computing the distances between graphs
and look for the difference in performance. In particular, we compare the perfor-
mance of the classifier based on the distances in the vector space for all values
of α with the performance of the classifier using the edit distances in the graph
domain for those values of ρ that maximize the correlation for every value of α.
We indicate by

ρα = argmax
ρ∈[0,1]

C(ρ,α) (8)

the ρ value that maximizes the correlation coefficient for a given α value. In Fig. 2
we show the corresponding classification curves on the validation sets. The x-
axis shows the range of parameter α and the y-axis the classification rates. In
particular, the results’ curves for the embedding distances are stretched in such a
way that the value α = 1 coincides with the ρ values maximizing its correlation,
and the corresponding intermediate values of α are maximally correlated with
the respective ρ values in the curve. This is, for each value of α, the corresponding
result of the edit distance curve is that of ρα. We also show the corresponding
scatter plots of the accuracies of both classifiers, for all pairs (α, ρα) and give
the correlation coefficient for these scatter plots on top of Figs. 2(b) and 2(d).

With regards to the correlation of the classifiers, we observe a great degree
of similarity of both curves, supporting the hypothesis of a high correlation.
We notice that the classifiers’ correlation is higher for the object datasets than
for the molecule ones. This result is explained by the same reason we have
been discussing before. The fact that the embedding features correlate with edit
distance whenever the node information of graphs is actually relevant makes the
classifiers perform in similar ways. On the other hand, the molecules need some
more attention on the edge structure and therefore the edit distance and the
embedding based distance differ more.
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Fig. 2. Classifiers performance: L1 embedding as a function of α, edit distance as a
function of ρα, and scatter plots of the accuracies of all pairs (α, ρα)

With respect to the performance of the classifier on the molecules dataset, we
observe how the embedding curve obtains its highest result for an intermediate
value of the parameter, thus confirming that here edges have higher importance
than in the objects case, where the highest result is obtained by a value of the
parameter closer to 0. Another point supporting this idea is the fact that for the
object datasets the case α = 0 gives a better result than that of α = 1, and for
the molecule datasets this is the other way around.

As a final comment, we note how in most of the cases the performance of
the embedding classifier for a given α outperforms that of the edit distance
classifier for ρα. This suggests that whenever both ways of computing distances
are regarding the same type of information, the embedding distances are more
capable to distinguish among graph categories. Because of this observation and
because of its much higher efficiency, the use of the embedding methodology for
graph comparison is recommended.

5 Conclusions

In this work we have established a relation between graph edit distance and the
L1 vectorial distance in the attribute statistics embedding space. It has been
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shown that under a special class of cost functions, where node and edge label
insertions and deletions are favored over substitutions, there is a close relation
between the graph edit distance and the L1 distance of the corresponding vectors
obtained through graph embedding. Our formal analysis has been confirmed in
a series of experiments. We have experimentally shown that there exists a high
correlation between both types of graph distances and between the correspond-
ing classifiers, provided that corresponding parameter values are chosen for both
distances. The analysis provided in this paper may help in developing a better
understanding of label statistics based embedding [5], which has been demon-
strated to perform very well in practice but has been lacking, until now, a more
rigorous formal investigation of its properties.

The current paper is limited to graphs with discrete labels. However, in fu-
ture, a similar study for the case of continuous attributed graphs is planned.
In addition, it would be interesting to exploit the embedding features to de-
rive necessary conditions for subgraph isomorphism in terms of component-wise
relations between the corresponding vectorial representations of graphs.
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Abstract. The analysis of complex networks is usually based on key
properties such as small-worldness and vertex degree distribution. The
presence of symmetric motifs on the other hand has been related to re-
dundancy and thus robustness of the networks. In this paper we propose
a method for detecting approximate axial symmetries in networks. For
each pair of nodes, we define a continuous-time quantum walk which is
evolved through time. By measuring the probability that the quantum
walker to visits each node of the network in this time frame, we are able
to determine whether the two vertices are symmetrical with respect to
any axis of the graph. Moreover, we show that we are able to success-
fully detect approximate axial symmetries too. We show the efficacy of
our approach by analysing both synthetic and real-world data.

Keywords: Complex Network, Symmetry, Quantum Walk.

1 Introduction

The study of complex networks [1] has recently attracted considerable interest
because of the large variety of complex systems that can be modeled and analysed
using graphs. A non-exhaustive list of examples includes metabolic networks [2],
protein interactions [3], brain networks [4], vascular systems [5], scientific collab-
oration networks [6] and road maps [7]. Properties such as small-worldness and
the power-law distribution of vertex degrees [1] have been observed in several
real-world networks, suggesting a marked difference with Erdös-Rényi random
graphs [8].

More recently there has been some interest in characterizing the presence
of symmetries in networks [9] [10]. Recall that, given a graph G = (V,E), an
automorphism is a permutation σ of the set of vertices V of the graph which
preserve the adjacency relations, i.e. if (u, v) ∈ E then (σ(u), σ(v)) ∈ E. Hence
we can view the group of automorphisms Aut(G) of a graph as a representation
of its symmetries. MacArthur et al. [9] observe that many real-world graphs
possess a very large automorphism group, in contrast to classical random graph
models. In particular the authors observe the presence of a certain number of
small symmetric subgraphs, such as tree-like or clique-like structures, and relate
this to the redundancy and thus robustness of real-world networks. Note however
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that the problem of finding the set of automorphisms of a graph is actually an
instance of the graph isomorphism problem, and thus it belongs to the NP class.
Xiao et al. [10] study the origin of symmetry in real-world networks. In common
with [9], their work is based on the analysis of local symmetric motifs such as
symmetric bicliques, i.e. an induced complete bipartite subgraph, denoted as
KV1,V2 , in which every vertex of V1 is connected to every vertex of V2. Their
analysis reveals that the symmetry of complex networks is a consequence of
a particular linkage pattern, where vertices with similar degrees tend to share
common neighbors. It is also worth mentioning the work of Mowshowitz [11],
which links the complexity of a graph to the entropy of the distribution of
symmetric orbits.

Recently there has been a considerable interest in quantum walks, as an al-
ternative to the well studied classical random walks. Although similar in its def-
inition, the quantum walk is remarkably different from its classical counterpart.
Most notably, its evolution is governed by a unitary matrix instead of a stochas-
tic one and the state vector is complex valued instead of real valued. This in turn
produces interference effects which yield completely different probability distri-
butions on the graph. Moreover, these interference effects seem to be enhanced
by the presence of symmetrical motifs in the graph. Emms et al. [12] showed
that quantum commute time embeddings are tightly related to the presence of
symmetries. In particular the authors found that the embedding co-ordinates
of nodes are degenerate in dimensions that correspond to global symmetries. In
a related paper, Emms et al. [13] demonstrate how to lift the cospectrality of
strongly regular graphs using the third power of the support matrix derived from
a discrete time quantum walk. Thus it seems reasonable to investigate the use
of quantum walks as a means of detecting symmetries in networks.

In real-world data, however, we have to deal with the presence of noise, which
will eventually break the symmetries of the network. In this paper we propose
a new method for detecting the approximate axial symmetries of a graph using
continuous time quantum walks. The remainder of this paper is organised as
follows. First we review the definition of the continuous time quantum walk on
a graph, then we show how to exploit the interference patterns to detect both
exact and approximate axial symmetries and then we briefly discuss the proposed
algorithm. Finally our approach is evaluated on a set of synthetic graphs and
real-world networks.

2 Continuous-Time Quantum Walks

Quantum walks are the quantum analogue of classical random walks [14]. In this
paper we consider only continuous-time quantum walks, as first introduced by
Farhi and Gutmann in [15].

As in the classical random walk, given a graph G = (V,E), the state space
of the continuous-time quantum walk defined on G is the set of the vertices
V of the graph. Unlike the classical case, where the evolution of the walk is
governed by a stochastic matrix (i.e. a matrix whose columns sum to unity), in
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the quantum case the dynamics of the walker is governed by a complex unitary
matrix i.e., a matrix that multiplied by its conjugate transpose yields the identity
matrix. Hence the evolution of the quantum walk is reversible, which implies that
quantum walks are non-ergodic and do not possess a limiting distribution. Using
Dirac notation, we denote the basis state corresponding to the walk being at
vertex u ∈ V as |u〉. A general state of the walk is a complex linear combination
of the basis states, such that the state of the walk at time t is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex.
At each point in time the probability of the walker being at a particular vertex

of the graph is given by the square of the norm of the amplitude of the relative
state. More formally, let Xt be a random variable giving the location of the
walker at time t. Then the probability of the walker being at the vertex u at
time t is given by

Pr(Xt = u) = αu(t)α
∗
u(t) (2)

where α∗
u(t) is the complex conjugate of αu(t). Moreover

∑
u∈V αu(t)α

∗
u(t) = 1

and αu(t)α
∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R+.

We now introduce the evolution operator of the quantum walk. First though,
recall that the adjacency matrix of the graph G has elements

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(3)

Let D be the diagonal degree matrix with elements du =
∑n

v=1A(u, v), where
n = |V | is the number of vertices of the graph. The Laplacian of G is then
defined as the degree matrix minus the adjacency matrix, i.e. L = D −A.

The evolution of the walk is then given by Schrödinger equation, where we
take the Hamiltonian of the system to be the graph Laplacian, which yields

d

dt
|ψt〉 = −iL |ψt〉 (4)

Given an initial state |ψ0〉, we can solve Equation 4 to determine the state vector
at time t

|ψt〉 = e−iLt |ψ0〉 (5)

Given the Laplacian matrix we can compute its spectral decomposition L =
ΦΛΦT , where Φ is the n×n matrix Φ = (φ1|φ2|...|φn) with the ordered eigenvec-
tors as columns and Λ = diag(λ1, λ2, ..., λn) is the n × n diagonal matrix with
the ordered eigenvalues as elements, such that 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Using the spectral decomposition of the graph Laplacian and the fact that
exp[−iLt] = Φ�exp[−iΛt]Φ we can finally write

|ψt〉 = Φ�e−iΛtΦ |ψ0〉 (6)
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3 Approximate Axial Symmetries Detection

In order to detect the axial symmetries of a graph, we exploit the interference
properties exhibited by quantum walks. In particular, our analysis will rely on
the destructive interference which arises when a symmetrical structure is present.
Note, however, that we are interested in both exact and approximate axial sym-
metries. In fact, due to the presence of different noise sources, most real-world
networks are not perfectly symmetric. In consequence, the search for exact axial
symmetries would fail to discover those global symmetries which are more likely
to be affected by noise. On the other hand, we argue that our algorithm is ca-
pable of detecting both exact and approximate axial symmetries, thus making
it suitable for real-world network analysis.

3.1 Methodology

Given a pair of vertices u, v, we initialise the quantum walk as follows

αj(0) =

⎧⎨⎩
+ 1√

2
if j = u

− 1√
2
if j = v

0 otherwise

(7)

If u and v are symmetrical with respect to a symmetry axis A, then it is easy
to show that when the walk is initialised as above we have αw(t) = 0, ∀w ∈ A
and ∀t.

Theorem 1. If u, v are symmetrical with respect to a symmetry axis A and
αu(0) = −αv(0), then αw(t) = 0, ∀w ∈ A and ∀t.

Sketch of Proof. Assume that the graph G has at least one symmetry axis A,
and w ∈ A is a vertex of G. Then, for each path from u to w, there will be a
symmetrical path from v to w. As a consequence of this, both walkers starting
from u and from v will arrive at w at the same time t. Moreover, since we
initialised the amplitudes such that αu(0) = −αv(0), the two walkers will be in
antiphase and thus their contribution to the observation probability of w will
cancel out, i.e. Pr(Xt = w) = 0, ∀t.

Note that due to its oscillatory behaviour, the observation probability of the
quantum walker on any node might temporarily collapse to zero. However, only
if the vertex belongs to a symmetry axis its observation probability will remain
constantly null.

Hence the procedure to detect the symmetry axes in a graph is as follows. First
we define a quantum walk according to Equation 7. We then let the quantum
walk evolve for a time interval T and we measure the total observation proba-
bility πw =

∑
t∈T Pr(Xt = w) for each node w �= u, v during T . If πw = 0, then

we say that the node belongs to the symmetry axis. We repeat this procedure
for each pair of nodes of the graph, and we detect all the exact symmetry axes
of the network. Finally, we can estimate the symmetry axes sizes by counting,
for a given pair of nodes, the number of nodes w where πw = 0.
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(a) 3x3 grid (b) noisy 3x3 grid

Fig. 1. When applied to a 3x3 grid, our algorithm is able to detect all its 4 symmetry
axes. Moreover, even if some noise is present, a suitable choice of τ will still allow us
to detect the original axes

Figure 1(a) shows the result of running the proposed algorithm on a 3x3
grid. If we initialise the bottom corners of the graph with equal but opposite
amplitudes, we see that the observation probabilities of the vertices belonging
to the vertical axis remain constantly equal to zero. In particular here we let
the quantum walk evolve from t = 0 to t = 10, sampling this time interval 100
times uniformly. For each axial node w we have πw = 0, while the nodes with
initial non-zero amplitudes have the highest total observation probability. The
remainder of the vertices of the graph have πw > 0, and symmetrically placed
nodes with respect to the vertical axis share the same πw. Note that we detect
the same axis if we choose another pair of vertices which are symmetrical with
respect to this axis, such as the top corners.

Moreover, we argue that we can detect approximate axial symmetries as well,
i.e., axial symmetries which are affected by noise, by selecting those vertices in
which π < τ , where τ is a suitably chosen threshold. Figure 1(b) shows what
happens if we add some noise the the 3x3 grid by removing one edge. Note that
due to the small size of the graph the deletion of one single edge can actually
deeply change the graph structure. Although the total observation probability
has clearly changed and it is now non-zero everywhere, we still see that it is
lower on the vertices corresponding to the vertical axis. Hence, by choosing a
suitable value for τ , we are still able to detect this approximate symmetry.

4 Experimental Results

In this section, we validate the proposed approach by performing a series of
experiments on both synthetic data and real-world data.

4.1 Synthetic Data

The synthetic data is composed of Erdös-Rényi random graphs [8], small-world
graphs, scale-free graphs, stochastic Kronecker graphs [16] (which exhibit both
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(a) τ = 0.2 (b) τ = 0.15

(c) τ = 0.1 (d) τ = 0.01

Fig. 2. Symmetry axes distribution. Note that as the threshold varies, the shape of
the strongly-regular graphs distribution remains unaltered, as the symmetry present
in this category are all exact.

small-world and scale-free properties), and strongly regular graphs. A regular
graph with ν vertices and degree k is said to be strongly regular if there are
two integers λ and μ such that every two adjacent vertices have λ common
neighbours and every two non-adjacent vertices have μ common neighbors. We
choose strongly regular graphs because they are known to be highly symmetric
and this should be reflected in the experimental results.

For each graph in the dataset, we compute its symmetry axes together with
their sizes, as explained in the previous section. Figure 2 shows the distribution
of the symmetry axes length for each type of network, for different choices of the
threshold τ . Note that local symmetries correspond to larger axes, since the axis
size is equal to the number of nodes of the graph minus the size of the symmetric
orbit, which in the case of a local symmetry is clearly small. On the other hand,
a global symmetry will correspond to smaller symmetry axis. In other words,
a left peaked distribution indicates the presence of global symmetries, while a
right peaked distribution indicates the presence of local symmetries.

Note that the distribution for the strongly-regular graphs remains unaltered
when we change τ . This is because the graphs in this category possess exact
symmetries, due to their regular structure. Hence the probability of the walker
being found at a node belonging to a symmetry axis is exactly zero and we
recover the same axes independently of the threshold value. Note, moreover,
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Fig. 3. Sample cities embeddings and their corresponding axes length distributions.
Note how different layouts give rise to different symmetries.

that the high number of symmetry axes belonging to this class of graphs is
exactly what we would expect given the high degree of symmetry displayed by
strongly-regular graphs.

As for the other network models, Figure 2 shows that the number of exact
symmetries is clearly lower. We observe the presence of a high number of exact
local symmetries in the scale-free graphs, which are probably due to the presence
of small trees rooted in a hub node. It is interesting to note that the behaviour of
the stochastic Kronecker graphs, which possess both scale-free and small-world
properties, seems to be dominated by their scale-free behaviour, although the
number of local symmetries is clearly reduced. More generally, Figure 2 shows
that we can easily separate graphs belonging to different network models on the
basis of their symmetry axes distributions.
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Fig. 4. City maps embeddings obtained using the mean of the symmetry axes plot dis-
tributions for three different values of τ as co-ordinates (left). The cities are coloured
according to the labels induced by k-means. The labeling is consistent when the embed-
ding is done using Communicability Distance [1], the classical Commute Time and the
zeta function as co-ordinates (right), but there are still some differences which suggest
that the information extracted with our algorithm is meaningful and novel.

4.2 Real-World Data

Road networks are a typical example of technological networks, i.e. man-made
networks designed for the distribution of resources. Other examples include
power grids, airline routes, river networks and the Internet. In this paper we
apply our algorithm to a dataset of 33 city maps. For each city, we compute the
approximate symmetry axes and their length. Figure 3 shows the embeddings
of 3 different cities and the corresponding plots. We observe that different lay-
outs of the cities give rise to different symmetries. As expected, the first city,
which shows a very regular grid-like structure, seems to possess only approx-
imate global symmetries, but no perfect symmetries. On the other hand, the
second city displays a wide variety of approximate symmetry axes, and a few
exact local symmetries, similarly to those displayed by the scale-free network
model. A visual inspection of its embedding confirms the presence of several
small hubs, as predicted. Finally, the third city shows a large number of local
symmetries, which arise as a consequence of its very particular linkage pattern,
where pairs of nodes are connected in an quasi-bipartite fashion.

In order to take the analysis on step further, we describe each city with a three-
dimensional feature vector whose co-ordinates are respectively the means of the
axes length distributions for decreasing thresholds. The resulting embedding is
shown in Figure 4 (left). Here we can clearly see 3 well separated clusters, where
the labels of the clusters have been assigned using k-means. Note that each city of
Figure 3 actually belongs to a different cluster of Figure 4. Moreover, we compare
our embedding with the one obtained using the Communicability Distance [1],
the classical Commute Time and the zeta function ζ(s) =

∑
λi �=0 λ

−s
i associated

with the Laplacian eigenvalues as co-ordinates. Figure 4 (right) shows that the
result is still quite consistent with our labeling, although we can clearly see
some differences. This indicates that the our algorithm is indeed extracting some
meaningful and novel information from the data.
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5 Conclusions

In this paper we proposed a method for detecting approximate axial symmetries
in networks. For each pair of nodes of the graph, we define a continuous-time
quantum walk which is evolved through time. By measuring the probability of
the quantum walker to visit each node of the network in this time frame, we are
able to tell whether if two vertices are symmetrical with respect to any axis of
the graph. Moreover, we showed that we are able to successfully detect approx-
imate axial symmetries as well. We demonstrated the efficacy of our approach
by analysing both synthetic and real-world data.

Acknowledgments. Edwin Hancock was supported by a Royal Society Wolfson
Research Merit Award.
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Abstract. Ensemble techniques have been very successful in pattern
recognition. In this work we investigate ensemble solution for shape de-
composition. A clustering-based approach is proposed to determine a fi-
nal decomposition from an ensemble of input decompositions. A recently
published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures
is used to demonstrate the benefit of the proposed ensemble technique.

1 Introduction

Ensemble techniques have been very successful in pattern recognition. In addi-
tion to the classification problem [1], the fundamental fusion approach has been
introduced to many other domains including strings [2], graphs [3], clusterings
[4], and segmentations [5]. In this work we investigate ensemble solution of shape
decomposition.

The shape decomposition methods from the literature have their respective
strengths and weaknesses, and their performance varies for different shapes.
There exists no dominating approach that outperforms the others for all shapes.
The variety of decomposition results is exemplarily demonstrated in Fig. 1(a)
with overlayed five decompositions (produced by five different algorithms). Some
cuts cross each other while there are cuts, which are almost congruent.

Combination (fusion) is a useful technique for taking advantages of the
strengths and compensating the weaknesses of different approaches. In this par-
ticular case, a simple union of all cuts from different decompositions is obvi-
ously not meaningful. Instead, it suggests itself that some cuts should be re-
moved and almost congruent cuts should be unified. In this paper we present an
ensemble technique for combining shape decompositions. Although there exist
quite a number of shape decompositions algorithms (see [6–8] and the references
therein), multiple decomposition combination has not been studied before.

The remainder of this paper is organized as follows. Section 2 describes our
decomposition ensemble technique. A performance evaluation framework from
[9] applied in this work is summarized in Section 3, followed by the evaluation
results in Section 4. Finally, some discussions conclude this paper.
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(a) (b) (c) (d)

Fig. 1. (a) Overlayed five decompositions; (b) representative cuts of clusters; (c) com-
bined decomposition with threshold 3 (majority voting); (d) combined decomposition
with threshold 2

2 Combined Shape Decomposition Approach

Our combination approach consists of two steps. First, the set of all cuts from
the input decompositions is clustered into groups of similar cuts and each cluster
is represented by one single cut by averaging all cuts within it. Then, a selection
procedure is performed to determine the cuts of the result decomposition. An
outline of the decomposition ensemble algorithm is given in Fig. 2. It is invariant
to transformations like scaling and rotation (although the baseline decomposition
algorithms may be effected by such transformations).

2.1 Cut Clustering

The set of all cuts from the input decompositions can be partitioned into groups
of similar ones by clustering. In case of agglomerative hierarchical clustering,
for instance, each cut builds its own cluster at the very beginning. Then, the
clusters are merged until the distance between any two clusters is larger than
a threshold t1. Depending on how the distance between clusters is computed,
different types of hierarchical clustering can be distinguished. In our work the so-
called unweighted pair group method with arithmetic mean is used. This distance
between two clusters X and Y of size |X | and |Y |, respectively, is defined by:

D(X,Y ) =
1

|X | · |Y |
∑
x∈X

∑
y∈Y

dist(x, y)

where dist(x, y) is the distance between two cuts x and y, which can be com-
puted based on distances between cut endpoints along shape boundary. The
distance between two boundary points is defined by the minimal arc length of
boundary curve between these points. Then, the distance between two cuts x
(with endpoints a and b) and y (with endpoints c and d), respectively, can be
simply defined as a sum of distances between corresponding endpoints:

dist(x, y) = min{pdist(a, c) + pdist(b, d), pdist(a, d) + pdist(b, c)}

where pdist is the distance along shape boundary.
Since after clustering each cluster contains similar cuts, we can determine one

representative cut for a cluster by averaging all cuts in it. In order to guarantee
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Input: n decompositions of a shape;
Output: combined decomposition;
Parameter: thresholds t1 and t2;

Cluster the cuts of all n input decompositions (t1 needed);
Determine a representative cut for each cluster;
Compute the weight for each representative cut;
Select representative cuts based on the weights (t2 needed);
Resolve intersecting selected cuts;

Fig. 2. Outline of ensemble decomposition algorithm

that the endpoints of the average cut lie on the shape boundary, the averaging is
performed based on boundary parametrization. Assuming that γ : [0, 1] → R2

is a boundary curve. The parameter p ∈ [0, 1] describes the position of curve
point γ(p) relative to start point γ(0). The endpoints of the average cut are
not computed by averaging the positions of left (right) endpoints of the cuts
in a cluster geometrically, but in the parameter space. For averaging the left
endpoints x1, x2, . . . , xk of k representative cuts, for instance, let’s assume their
corresponding parameter values be p1, p2, . . . , pk, then the average endpoint is
γ( 1k
∑k

i=1 pi). Fig. 1(b) shows the representative cuts of the clusters computed
from the cuts in Fig. 1(a).

2.2 Selection of Cuts

After clustering and computing representative cuts, the cuts for the combined
decomposition should be selected. This selection step should reject perceptu-
ally unreasonable cuts and resolve intersections of cuts. This can be performed
based on weights derived from clusters. Each representative cut represents one
cluster consisting of one or more cuts. Since all involved shape decomposition
methods try to mimic human being’s behavior, it can be assumed that most
of the cuts created are perceptually reasonable. Therefore, the more methods
create one cut, the larger is the likelihood that this cut is perceptually reason-
able and should thus be kept. At the same time, it can be surely assumed that
the likelihood of a perceptually unreasonable cut, which is coevally produced by
two different methods, is relatively small. According to these considerations, the
representative cut of a cluster can be weighted by the number of input shape
decompositions, whose cuts are contained in the cluster. Note that by this def-
inition the weight is usually smaller than the number of cuts in a cluster, since
two cuts from a decomposition can be clustered into the same cluster.

Given the weight of representative cuts, the selection of cuts can be performed
by using thresholding. As a first thresholding scheme, the majority voting can
be realized. In this case the threshold t2 is equal to the half of the number
of input shape decompositions to be combined. All representative cuts, which
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appear in at least 50% of shape decompositions, are selected. Alternatively, a
smaller threshold t2 can be used.

After the cut selection it can happen that some of the remaining cuts intersect
each other. Such intersection can be resolved based on the same weights by
simply removing the lower weighted cut of two crossing cuts.

The decomposition ensemble algorithm described above is summarized in
Fig. 2. Fig. 1(c) and 1(d) show two combined decompositions created from the
representative cuts in Fig. 1(b). The first one corresponds to the majority voting
scheme, while the second one rejects all cuts created by one decomposition only.
As expected, the majority voting rule results in a coarser shape decomposition
and a smaller threshold retains more representative cuts for a finer shape decom-
position. In this particular case, the second combined decomposition contains all
important cuts. In general, however, the lower the threshold value is, the higher
likelihood is that some perceptually unreasonable cuts would be selected for the
combined decomposition.

Our ensemble approach introduces two extra thresholding parameters t1 and
t2. They can be optimized using training data, similarly as we have to deal with
the parameters of the involved shape decomposition methods. This issue will be
further discussed in Section 4.1.

3 Performance Evaluation Framework

In computer vision there exist today a lot of ground truth data and quantita-
tive evaluations. However, shape decomposition is an exception. In this domain
performance evaluation still remains qualitative. This is even true in recent pub-
lications (e.g. [10]). Typically, statements like ”As we can see, ..., our method
decomposes shapes into parts with high visual naturalness comparable to [x]”
[10] are made1.

Recently, a supervised quantitative performance evaluation framework was
proposed [9], which consists of a benchmark database with manually specified
ground truth (GT) and dissimilarity measures. A decomposition generated by
an algorithm is compared with the GT decomposition of the same shape and
quantitative dissimilarity measures are computed for performance comparison.
We apply this framework to demonstrate the benefit of our ensemble technique.
In the following its main components are briefly summarized.

3.1 Dissimilarity Measures

A dissimilarity measure is a distance function: γ : DS × DS → R, where DS

denotes the set of all valid decompositions of a given shape S. It is reasonable to
require that this distance function be semi-metric, i.e. it fulfils the following three
conditions: ∀x, y ∈ DS , 1) non-negativity: γ(x, y) ≥ 0; 2) identity: γ(x, y) = 0 if
and only if x = y; 3) symmetry: γ(x, y) = γ(y, x). Several variants of distance

1 Note that the quantitative comparison presented in [10] concerns the number of
computed parts in the sense of data reduction, which is not related to the perceptual
quality of decomposition.
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measures have been discussed in [9]. In this work we apply the following two
measures for experimental work.

Hamming Distance. A shape can be regarded as a non-rectangular image
and a shape decomposition as a region-based segmentation accordingly. Thus,
comparison of shape decompositions becomes that of comparing image segmen-
tations. There exist a number of distance measures for this purpose [11]. One
such measure is the Hamming distance (DH). Considering two decompositions
A = {A1, . . . , An} and B = {B1, . . . , Bm} of the same shape S, the directional
Hamming distance between A and B is defined by: DH(A→ B) =

∑
i |Ai \Bki |,

where Bki , ki = argmax
j
|Ai ∩ Bj |, is the best fitting of Ai in B. The reversed

distance DH(B → A) can be similarly computed. Finally, the overall Hamming
distance is given by:

DH(A, B) =
DH(A→ B) +DH(B → A)

2|S|

Obviously, HD ∈ [0, 1] is semi-metric.

Jaccard Measure. If we interpret a shape as a set of pixels and a decomposition
as a clustering, then the distance measures for comparing clusterings can be
applied to quantify the difference between two shape decompositions. Several
such measures have been proposed in the literature [11]. Particularly intuitive
are those measures based on counting pairs. Given two decompositions A and B,
we consider all pairs of pixels and count: a) n11: #pairs of pixels, which are in
the same part of A and in the same part of B; b) n10: #pairs of pixels, which are
in the same part of A and in different parts of B; c) n01: #pairs of pixels, which
are in different parts of B and in the same part of A; d) n00: #pairs of pixels,
which are in different parts of both A and of B. Several distance measures for
comparing clusterings are based on these four counts. For instance, the Jaccard
measure is defined by:

J(A, B) =
n10 + n01

n10 + n01 + n11

Obviously, J ∈ [0, 1] is semi-metric.

3.2 Benchmark Database

To perceptually evaluate shape decomposition methods, i.e. how well they mimic
decompositions created by human beings, we need a database with manually
specified GT. In [9] it is proposed to use the benchmark database from a large-
scale psychological study [12], which fits the requirement perfectly and is publicly
available. It consists of human-generated decompositions of 88 different shapes.
Each shape is decomposed by 38 human subjects on average. Fig. 3 (upper row)
shows overlayed decompositions (represented by cuts) of five shapes. As can be
seen, a high degree of decomposition consistency was achieved among human
subjects. Nevertheless, there are a lot of outliers among the cuts. Some shapes,
e.g. the fourth shape in Fig. 3, are decomposed less consistently.
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Fig. 3. Top: human–generated decompositions. Bottom: corresponding majority-voted
decompositions.

Whenusing this database, thequestionarises howtohandle the one-to-many sit-
uation (one decompositionD generatedby an algorithmvs.multiple GTdecompo-
sitions). The standard practice is to average the dissimilarity measures computed
betweenD and eachGTdecomposition.An alternative solution is as follows. In the
ideal case, the automatic decomposition shouldmimic as well as possible the shape
decomposition performed by the majority of the involved human beings. Thus, it
makes sense to determine a ”majority-voted” decomposition from the decomposi-
tions created by human beings. The ensemble technique presented in this paper is
a suitable tool for this task and thus will be used in our experimental testing. Fig. 3
(bottom row) shows majority-voted decompositions computed by our method.

4 Experimental Validation

For validation purpose we have performed a study using five shape decomposition
methods and the quantitative performance evaluation framework.

4.1 Shape Decomposition Algorithms

In order to involve as many shape decomposition approaches as possible, we
contacted several authors for their code. Unfortunately, only very few authors
responded and finally, only one working implementation [6] (with source code)
was provided. Thus, we implemented four other shape decomposition methods.
In total, we have the following five algorithms for our study: 1) ACD: approxi-
mate convexity-based approach [6]; 2) DCE: evolution-based approach [13]; 3)
IFD: flow-based approach [14]; 4) MD: morphology-based approach [7]; 5) SD:
skeleton-based approach [8].

In order to treat all approaches equally, their parameters were individually
adapted to the benchmark database. All five algorithms depend on a single
parameter, which essentially specifies the fineness of shape decomposition. Its
optimal value was trained by computing the average Hamming distances and
the average Jaccard distances for different parameter values and selecting the
best one. Taking ACD as an example, Table 1 shows the Hamming and Jaccard
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Table 1. Distances for different values of the single parameter θ of ACD

θ 0.04 0.05 0.06 0.07 0.08

Hamming 0.142 0.132 0.128 0.132 0.133

Jaccard 0.350 0.329 0.323 0.330 0.332

distances for different values of its single parameter θ. In both cases an optimal
parameter value θ = 0.06 is found and used for performance evaluation.

Our ensemble approach introduces two extra thresholding parameters t1 and
t2. In our experiments the majority voting scheme for t2 turns out to clearly
outperform lower threshold values. For this reason this option is chosen for the
experimental testing. For t1 the same training procedure was done to find its
optimal parameter value.

4.2 Validation Results

The first part of Table 2 shows the average dissimilarity measures over all shapes
of the benchmark database for the five individual shape decomposition methods
(sorted by their performance). For each shape the computed decomposition is
either compared to all corresponding GT instances and the average value is re-
ported (left half of the table). Alternatively, the ”majority-voted” decomposition
determined by our ensemble technique is used to compute the measures (right
half of the table). It is important to mention that the performance listed in Ta-
ble 2 and the resulting ranking of the involved shape decomposition algorithms
must be treated with care. Only ACD was provided by the algorithm developer.
The other four algorithms were implemented by ourselves and we may not reach
the optimal performance, partly due to the missing details in the algorithm de-
scription. However, this fact is not harmful for our study because our goal is to
demonstrate improved performance by means of ensemble solution.

The performance of combining four (five variants in total) and all five shape
decomposition algorithms are listed in the second part of of Table 2. All
combinations outperform the individual baseline algorithms. In the former case
the combination ACD/IFD/MD/SD dominates because the worst-performer
DCE (in our implementation) is not involved. It is remarkable that the four
test configurations (all GT instances vs. majority-voted, Hamming vs. Jaccard)
produced virtually the same ranking list.

Table 2 reveals that a comparison against the ”majority-voted” decomposition
consistently leads to higher performance measures than against all corresponding
GT instances. This fact may be credited to the majority voting rule used in the
evaluation.

Fig. 4 shows the decompositions of four selected shapes. The results of the
quantitative comparison coincide well with visual comparison of decompositions.
It is also confirmed that the ensemble technique outperforms the baseline algo-
rithms. This superiority of combination is attributed to the fact that they can
compensate the absence of some important cuts. For example, the cut separating
the front wheel of tricycle in Fig. 4 (fourth shape) is not created by IFD and
SD, but contained in the combined decomposition due to the support of other
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Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186

ACD IFD

MD SD

DCE ACD/IFD/MD/SD/DCE

Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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selection problem as done in [15, 16]. The parameter space is explored without
the need of ground truth and combined towards high-quality results.
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[6] for our tests.
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Laplacian Eigenimages in Discrete Scale Space
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Abstract. Linear or Gaussian scale space is a well known multi-scale represen-
tation for continuous signals. However, implementational issues arise, caused by
discretization and quantization errors. In order to develop more robust scale space
based algorithms, the discrete nature of computer processed signals has to be
taken into account. Aiming at a computationally practicable implementation of
the discrete scale space framework we used suitable neighborhoods, boundary
conditions and sampling methods. In analogy to prevalent approaches, a dis-
cretized diffusion equation is derived from the continuous scale space axioms
adapted to discrete two-dimensional images or signals, including requirements
imposed by the chosen neighborhood and boundary condition. The resulting dis-
crete scale space respects important topological invariants such as the Euler num-
ber, a key criterion for the successful implementation of algorithms operating on
its deep structure. In this paper, relevant and promising properties of the discrete
diffusion equation and the eigenvalue decomposition of its Laplacian kernel are
discussed and a fast and robust sampling method is proposed. One of the proper-
ties leads to Laplacian eigenimages in scale space: Taking a reduced set of images
can be considered as a way of applying a discrete Gaussian scale space.

1 Introduction

In the field of computer vision, deriving information from observed images or signals
is a central problem. Various strategies have been invented to do so in a performant
manner, usually by applying some kind of operator. These operators often detect or rely
on the presence of image structure or features such as edges or stationary points and are
of fixed size. Their performance then depends on the inner scale, the sampling density
or resolution of the image they operate on.

To overcome this dependence between operator and inner scale, various strategies
such as integral images used by the Viola-Jones Framework [1] or a whole range of
multi-scale representations have been proposed [2]. Almost all those strategies consist
of transforming the given images into a scale independent representation first before
applying an operator on this representation. A common requirement for such prelim-
inary transformations is to mask as little information present in the original image as
possible, that is, not to rely on prior information not present in the image data itself and
therefore not unnecessarily limiting the range of tasks they can be applied to.

Various scale-invariant or multi-scale signal representations satisfying these require-
ments exist, such as the lowpass pyramid, wavelet and scale space representations, how-
ever there are qualitative differences. A pyramid representation consists of several fixed

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 162–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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images or scales with preselected resolution, each computed by smoothing and sub-
sampling a finer scale with the first and finest scale being the initial image. A sliding
window approach is then used to evaluate a fixed-size operator at every position and on
every scale of the pyramid. Because of its fixed number and decreasing size of scales,
the pyramid representation can be efficiently computed and stored. The subsampling
operator however, primarily implemented for performance reasons, introduces often
undesired subsampling artifacts. It also complicates and sometimes prevents tracing of
image features over multiple scales. The Gaussian scale space is used to overcome these
drawbacks and can be thought of as the natural generalization of the lowpass pyramid.
It is also popular for its theoretical foundation. A Gaussian scale space representation
of a given signal is a family of derived signals, progressively smoothed with a Gaussian
filter.

The focus of this paper is on the linear or Gaussian scale space representation of
discrete images or signals and the various implementational issues that have to be ad-
dressed in order for this representation to be useful and applicable to real world data.

The discrete scale space proposed by Lindeberg [3] takes the discrete nature of com-
puter processed signals into account. It is based on equivalent assumptions and axioms
that have been used to derive the continuous Gaussian scale space adapted to discrete
signals. It is our belief that porting scale space algorithms from a discretized continu-
ous to the discrete scale space will eventually lead to more accurate, robust and possibly
faster implementations. The discrete scale space formalized by Lindeberg however does
not respect important topological invariants such as the Euler number [4]. Since most
algorithms that operate on the deep structure of the Gaussian scale space require this
topological invariant to hold [5, 6], we had to give a modified definition of the discrete
scale space respecting the Euler number [7]. In this paper we investigate and discuss
relevant and promising properties of the discrete diffusion equation and the eigenvalue
decomposition of its Laplacian kernel. We propose a fast and robust sampling method.
One of the properties leads to what we coined as Laplacian eigenimages in scale space,
where taking a reduced set of images can be considered as a way of applying a discrete
Gaussian scale space.

2 Continuous and Discrete Scale Space

Linear or Gaussian scale space was introduced in western literature by Witkin [8] and
extended into two dimensions by Koenderink [9] and has become a useful framework
for multi-scale signal representation. However, Gaussian scale space was first described
in Japan as of 1959 [10]. In 1962, Taizo Iijima proposed convolution with the Gaussian
kernel as the canonical way to construct the Gaussian scale space [11]. Other, more
general scale spaces exist besides the Gaussian scale space. Hereafter, scale space will
refer to the two-dimensional linear Gaussian scale space.

2.1 Continuous Scale Space

The scale space representation of a continuous two-dimensional signal f : R2 → R is
a one-parameter family of derived signals L : R2×R+ defined by one of the following
equivalent definitions.
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Convolution with a Scale Space Kernel: L (·, ·; t) = g (·, ·; t) ∗ f (·, ·) where

g (x, y; t) = 1
4πte

−x2+y2

4t . Commonly, the factor 4t is taken instead of 2σ2. The
Gaussian g is also called the canonical scale space kernel.

Scale Space Axioms: A common definition of the scale space is by a limited set of
scale space axioms derived from real world requirements. Koenderink [9] formulated
the axioms of causality, homogeneity and isotropy. Another equivalent set of axioms
states that L (·, ·, t) = Ltf (·, ·) where Lt is a linear shift invariant operator and
thus representable as a convolution. Together with non-enhancement of local extrema
stating that ∂tL < 0 for maxima and ∂tL > 0 for minima and some other additional
requirements, these axioms all lead to the Gaussian kernel as a unique choice as the
scale space kernel. An overview of a wide range of continuous Gaussian scale-space
axiomatics used by different authors can be found in [10].

Diffusion Equation: The scale space representation L of a signal f is the solution of
the diffusion equation

∂tL = ΔL = ∂xxL+ ∂yyL

with L (·; 0) = f (·) as initial condition. Δ denotes the Laplacian operator.

2.2 Discrete Scale Space

In this section, we will give a concise definition of the Gaussian scale space for
two-dimensional discrete signals comprising a continuous scale parameter. The scale
space representation of a discrete signal f : Z2 → R is a one-parameter family of
derived signals L : Z2 × R+ defined by one of the following equivalent definitions:

Convolution with a Scale Space Kernel: L (·, ·; t) = k (·, ·; t) ∗ f (·, ·) where k :
Z2 × R+ → R is the discrete version of the Gaussian scale space kernel.

L (x, y; t) =

∞∑
m=−∞

k (m; t)

∞∑
n=−∞

k(n; t)f(x−m, y − n)

Scale Space Axioms: For a complete set of axioms describing the discrete scale space,
we refer to those chosen by Lindeberg [3].

Diffusion Equation: The scale space representation L of a signal f is the solution of
the diffusion equation

∂tL = α∇5
2L+ β∇2

×L (1)

with L (·, ·; 0) = f (·, ·) as initial condition and some α, β ≥ 0. The five-point operator
∇5

2 and the cross operator ∇2
× approximate the continuous Laplacian operator. They

correspond to convolution of L (·, ·; t) with kernel

⎡⎣ 1
1 −4 1

1

⎤⎦ respectively

⎡⎣ 1
2 0 1

2
0 −2 0
1
2 0 1

2

⎤⎦
for fixed scale t. For α = 1 and β = 0 (1) simplifies to ∂tL = ∇5

2L and results in k
being separable.
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3 Eigenbasis Decomposition of the Laplacian

The discrete scale space representation L of signal f holds various useful properties.
Sampling of the scale space for example requires the ability to efficiently compute a
scaleL(·, ·; t0) for fixed t0 and relies on certain characteristics of the Laplacian operator.

The discrete scale space representation L of f is continuous in scale t. A compu-
tational investigation of L however must rely on a finite number of sampled scales.
There are multiple approaches to sampling L differing in accuracy, runtime complexity
and memory usage. One apparent approach is given by the definition of L via discrete
convolution with a scale space kernel. The scale space kernel is of infinite domain and
must be truncated in order to compute an individual scale, thus introducing truncation
errors. A periodic boundary condition for f further complicates the computation. In this
case, circular convolution with a Laplacian kernel provides for a more elegant but still
computationally complex solution. Applied in its eigenspace however, the circular con-
volution operator reduces to a simple and much less complex scaling transformation.
This section details how to efficiently decompose a scale ofL and its derivative ∂tL into
a sum of eigenimages of the Laplacian circular convolution operator. The next section
then provides a simple solution of the discretized diffusion equation, enabling for fast
and accurate sampling of L.

For periodic discrete signals f with discrete domain D (f) = [1,M ] × [1, N ], the
diffusion equation ∂tL = ∇2

5L can be written as a circular convolution with finite
Laplacian kernel

∂tL = ∇2
5L =

⎡⎣ 1
1 −4 1

1

⎤⎦� L,

where � denotes the circular convolution operator.
The discrete circular convolution is a linear operator and can be expressed in matrix

form if we consider L (·, ·; t) to designate a vector. Scale L (·, ·; t) of the scale space
representation L can be represented as a vector L (t) ∈ RMN with f= L (0).

L (t) =

⎡⎢⎢⎢⎣
L (1, 1; t)
L (1, 2; t)

...
L(M,N ; t)

⎤⎥⎥⎥⎦ ∈ RMN

For periodic f , the diffusion equation can be written in matrix form as ∂tL = ∇2
5L =

ΔM,NL where ΔM,N ∈ RMN×MN denotes a circulant block matrix corresponding to
the Laplacian operator∇2

5. For M,N ≥ 3 it takes the form

ΔM,N =

⎡⎢⎢⎢⎢⎣
AN IN IN

IN
. . .

. . .
. . .

. . . IN
IN IN AN

⎤⎥⎥⎥⎥⎦ ∈ RMN×MN ,AN =

⎡⎢⎢⎢⎢⎣
−4 1 1

1
. . .

. . .
. . .

. . . 1
1 1 −4

⎤⎥⎥⎥⎥⎦ ∈ RN×N ,
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where IN is the identity of RN×N . Let the normalized eigenvectors and eigenval-
ues of ΔMN be ui,j and λi,j . Since ΔMN is a real, symmetric and therefore diag-
onalizable matrix, its M · N orthonormal eigenvectors ui,j form an eigenbasis U =[
u1,1, u2,1, · · · ,uM,N

]
and ΔMN = UΛUT with Λ = diag(λ1,1, λ2,1, · · · , λM,N )

and λi,j ≤ 0 since ΔMN is a negative-semidefinite matrix.
The scale L (t) of the scale space representation L can be written as a weighted sum

of eigenimages of the Laplacian operator, i.e. as a scalar product of the orthonormal
eigenvectors ui,j of ΔM,N and the scalar coefficients ci,j (t) = 〈L (t) ,ui,j〉 resulting
from the projection of L (t) to ui,j :

L (t) =
∑
i,j

ci,j (t)ui,j

Its partial derivative ∂tL (t) can then be computed from scaling each projected compo-
nent separately by the corresponding eigenvalue.

∂tL (t) = UΛUTL (t) =
∑
i,j

ci,j (t)λi,jui,j .

Fig. 1. Eigenimages and eigenvalues of the Laplacian ΔMN ∈ R6×6 and ΔMN ∈ R10×10

4 Efficient Computation of the Eigenimages

The size and values of the Laplacian matrix ΔM,N depend uniquely on the dimension
of f equal to the cardinality of D (f). They are easily computed following the speci-
fication given in the previous section. Unfortunately, even for images of moderate size
of e.g. 128× 128 pixel, f would have 27·2 dimensions, resulting in a Laplacian matrix
of 228 entries taking up to 2GB memory. Even under consideration of less computa-
tionally and memory intensive sparse matrix formats, such matrices are too large to be
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handled efficiently. Therefore, in order to reduce the overall complexity of e.g. comput-
ing the eigenbasis U, we have to exploit the symmetric structure of the Laplacian. The
Laplacian kernel is of rank > 1, thus not separable. However, using the distributivity
of the circular convolution, it can be rewritten as a summation of two one dimensional
kernels.

∂tL =

⎡⎣ 1
1 −4 1

1

⎤⎦� L =

⎡⎣ 1
−2
1

⎤⎦� L+
[
1 −2 1

]
� L

In matrix form, this translates to a direct summation of two substantially smaller matri-
ces. The Laplacian matrix ΔM,N ∈ RMN×MN can be written as the direct sum of two
∇2

3 operators ΔM ∈ RM×M and ΔN ∈ RN×N

ΔM,N = ΔM ⊕ΔN = (ΔM ⊗ IN ) + (IM ⊗ΔN )

whereΔM and ΔN are the matrix representations of the row wise applied central dif-
ference operator of second order. They differ only in their dimensions. ⊗ denotes the
Kronecker product. For M ≥ 3, ΔM has the form of a Toeplitz matrix.

ΔM =

⎡⎢⎢⎢⎣
−2 1 1
1 −2 1

. . .
. . .

. . .
1 1 −2

⎤⎥⎥⎥⎦ ∈ RM×M

Each eigenvector ui,j of ΔM,N can be expressed as the outer product of two eigenvec-
tors vi and wj of ΔM and ΔN . The corresponding eigenvalue λi,j is then the sum of
the corresponding eigenvalues υi and ωj of ΔM and ΔN .

ΔM,Nui,j = λi,jui,j

⇔ (ΔM ⊕ΔN ) (vi ⊗wj) = (υi + ωj) (vi ⊗wj)

Omitting all details that can be found in [12], we finally have an analytic formula ex-
pressing the eigenvalues λi,j and eigenvectors ui,j of the Laplacian matrix ΔM,N with
i = 0 . . .M − 1, j = 0 . . .N − 1.

λi,j = υi + ωj =

(
λFM,i

)2(
λFM,i + 1

) + (
λFN,j

)2(
λFN,j + 1

) =

(
e(

2πι
M i) − 1

)2
e(

2πι
M i)

+

(
e(

2πι
N j) − 1

)2
e(

2πι
N j)

ui,j = vi ⊗ wj = dFM,i ⊗ dFN,j = dFM,i =[
exp

(
2πι

M
i

)0
, . . . , exp

(
2πι

M
i

)M−1
]
⊗
[
exp

(
2πι

N
j

)0
, . . . , exp

(
2πι

N
j

)N−1
]

These eigenvectors are not guaranteed to be real, although ΔM,N always possesses a
real eigenbase. Exploiting further symmetries of the eigenvectors vi and wj , we can
derive a real eigenbase Ũ given by ũi,j = ṽi ⊗ w̃j with ṽi = " (vi) + # (vi) and
w̃j = " (wj) + # (wj).
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5 Discrete Scale Space Eigenbasis Decomposition

As shown in a previous section, scale L (t) and its partial derivative ∂tL (t) of the scale
space representation L can be written written as a weighted sum of the eigenimages
u1,1, . . . ,uM,N of the Laplacian operator. This implicit change of base allows us to
give a simple solution for the discretized diffusion equation.

∂tL (t) = Δ2
5L (t)

⇔
∑
i,j

∂tci,j (t)ui,j =
∑
i,j

ci,j (t)λijui,j

Multiplying both sides with uk,l and exploiting the orthonormality 〈ui,j ,uk,l〉 =
δi,kδj,l where δ represents the Kronecker symbol gives us the partial derivate ∂tL pro-
jected onto eigenvector uk,l. This differential equation can be easily solved for c (t).

〈
uk,l,
∑
i,j

∂tci,j (t)ui,j

〉
=

〈
uk,l,
∑
i,j

ci,j (t) λi,jui,j

〉
⇔ ∂tck,l (t) = ck,l (t)λk,l

⇔ ck,l (t) = exp (λk,lt) ck,l (0)

We finally get an explicit formula for L (t): The scale space representation L is the
solution of the discretized diffusion equation and has the form

L (t) =
∑
i,j

ci,j (t)ui,j =
∑
i,j

exp (λi,jt) ci,j (0)ui,j

with scalar coefficients ci,j (t) = 〈L (t) ,ui,j〉. In matrix representation, the solution
simplifies to L (t) = U exp (Λt)UTL (0). Partial derivatives of any order ∂tnL (t)
can be easily computed using

∂tnL (t) =
∑
i,j

∂tn exp (λi,jt) ci,j (0)ui,j =
∑
i,j

λni,j exp (λi,jt) ci,j (0)ui,j

which, in matrix representation, simplifies to L (t) = UΛn exp (Λt)UTL (0).

5.1 Reduced Eigenimages

Analyzing the time evolution L (t) =
∑

i,j exp (λi,jt) ci,j (0)ui,j , which is merely a
weighted sum of eigenimages, it becomes obvious that eigenimages with smaller eigen-
values have less influence on scales for t > 0 than those with eigenvalues near 0.

Omitting less influential eigenimages allows us to reduce memory and time complex-
ity with only moderate changes in the scale space representation. The sum of squared
differences SSD between the L (t) and L̃ (t) with

L̃ (t) =
∑

i,j,λi,j>λmin

exp (λi,jt) ci,j (0)ui,j

converges rapidly to 0.
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Fig. 2. Lossy compression of signal f . Each image is a reconstruction of f from a reduced set of
eigenimages. The number of eigenimages is shown above each image.

Fig. 3. Sampled scale space representation L (left top), sampled scale space representation L̃
with reduced eigenimages (left bottom) and the sum of squared differences from low scale to
high scale images (right)

This confirms the intuitive expectation that eigenimages with lower eigenvalues cor-
respond to those high frequency components that vanishing very fast with increasing
scale. The low frequency components or eigenimages with bigger eigenvalues are more
robust against smoothing. Therefore, eliminating eigenimages with small eigenvalues
roughly compares to smoothing.

The aforementioned method is comparable to a dimensionality reduction in
eigenspace of the Laplacian operator. It is independent of prior information of the con-
tent of L. Taking the initial image L (0) and thus ci,j (0) into account would allow for
further error reduction.
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6 Conclusion and Future Work

The discrete scale space as an equivalent to the two-dimensional Gaussian scale space
has been discussed and important properties have been derived. A computationally prac-
ticable implementation of the discrete scale space framework has been outlined. Our
regular 6-neighborhood, a periodic boundary condition and a suitable critical point defi-
nition respecting the Euler number [7] have led to discrete scale space axioms that differ
from those proposed by Lindeberg. A computationally efficient sampling method, based
on properties of the Laplacian kernel. A first investigation of the deep structure of the
discrete scale space was illustrated with Laplacian eigenimage in scale space. However,
further and more formal investigation of the deep structure (structural changes under
the influence of changes) of the discrete scale space is necessary. We note that the de-
composition can borrow useful insights from the area of heat kernels on graphs [13].
Since our grid can be considered as a well-structured graph on which we apply a heat
kernel-like approach, exploiting such properties [14,15] under changing scale may give
new insights.
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Abstract. While relational representations have been popular in early work on
syntactic and structural pattern recognition, they are rarely used in contempo-
rary approaches to computer vision due to their pure symbolic nature. The recent
progress and successes in combining statistical learning principles with relational
representations motivates us to reinvestigate the use of such representations. More
specifically, we show that statistical relational learning can be successfully used
for hierarchical image understanding. We employ kLog, a new logical and rela-
tional language for learning with kernels to detect objects at different levels in the
hierarchy. The key advantage of kLog is that both appearance features and rich,
contextual dependencies between parts in a scene can be integrated in a princi-
pled and interpretable way to obtain a qualitative representation of the problem.
At each layer, qualitative spatial structures of parts in images are detected, classi-
fied and then employed one layer up the hierarchy to obtain higher-level semantic
structures. We apply a four-layer hierarchy to street view images and successfully
detect corners, windows, doors, and individual houses.

1 Introduction

Understanding images by recognizing its constituent objects is a challenging task and
it could be solved, in principle, using computer vision techniques that employ low- to
medium-level features, such as geometric primitives, patches, or invariant features [1].
Although helpful for the recognition process, these features do not suffice for higher-
level tasks dealing with more complex patterns. In this case, it is more intuitive to de-
scribe visual scenes in terms of structural hierarchical (or graph-like) representations
that build on visual image parts. They reflect the natural composition of scenes into
objects and parts of objects. In particular, man-made (vs. natural) scenes exhibit con-
siderable structure that can be captured using qualitative spatial relations. For example,
a typical house consists of aligned elements such as: a roof, some windows, one or more
doors and possibly a chimney. A hierarchical aspect is that a window itself is composed
of rectangular-like corner configurations with a certain appearance.

This view on hierarchical image representation was embraced by early ideas that
hierarchical structure and relations are key components of an image understanding sys-
tem [2]. A key advantage of using relational representations [3] is their capability of
exploiting contextual knowledge in images via symbolic relations. In addition, they ab-
stract spatial information away from exact locations making it independent of metric de-
tails. Although popular in early work on syntactic or structural pattern recognition [4],
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relational approaches have been rarely used to solve computer vision problems (ex-
cept [5, 6]). One reason is that low-and mid-level vision features were not always as
mature as today to support such ambitious representations. Another reason is the lim-
itation of pure relational approaches in handling noisy data. Yet, when combined with
statistical techniques, they show robustness to noise [3, 7]. Motivated by our previous
results on using distances between logical interpretations to hierarchically detect struc-
tures in images [5], we solve the same problem using kLog, a general purpose relational
language for kernel-based learning. The resulting approach is more principled, as it is
grounded in a statistical learning framework, is computationally more tractable and pro-
vides improved results. Our earlier approach relied on more expensive logical matching
and generalization operations and was more tailored towards this particular application.

kLog [8] is a new statistical relational learning framework, which builds on ideas
from statistics to address uncertainty, while incorporating a relational representation of
the domain. Images are described in terms of automatically extracted semantic parts
and relationships between them, thus as relational databases or (hyper)-graphs. Domain
knowledge can easily be incorporated using logical rules. The novelty of kLog is that,
starting from existing visual features, it can take relational contextual features into ac-
count in a principled and natural way. Furthermore, its declarative approach offers a
flexible and interpretable way to consider both appearance and spatial information in
an image. Finally, kLog transforms the relational databases into graph-based represen-
tations and uses graph kernels to extract the feature space. Thus, our contribution is a
new approach to hierarchical image understanding, in which spatial configurations of
scenes are combined with kernel-based learning for structured data to recognize objects
throughout all layers of a hierarchy, in a unified way.

The goal of this paper is to understand images by recognizing objects at different
layers of a hierarchy. The base layer relies on local interest points and their descriptors.
A subsequent layer consists of objects, while higher layers consist of configurations
of objects. We focus on the recognition of structures in street view images, yet, our
approach can be used for other domains as well. We learn to recognize objects from a
set of manually labeled examples of object categories, i.e., houses, windows and doors.
Each house is annotated with the locations and shapes of its constituent windows and
doors. The approach is evaluated on a dataset of 60 street view images.

2 Related Work

Thus far, most work in computer vision has focused on fixed compositional structures [9]
or constellation models [10]. Recently, more attention was devoted to using high-level
relational representations for image understanding or object recognition [11–13]. Yet,
most of this work is restricted to a model-based approach and perform interpretation
through image grammars. These have been well-studied [14], but need considerably
more input from the user in terms of a set of grammar rules. This in contrast to our
approach, which is based on learning from annotated examples and which uses domain
knowledge to specify only basic qualitative spatial relations between image parts.

Several papers have addressed the problem of understanding images of house fa-
cades. In [15], structure models of meaningful facade concepts are learned from ex-
amples, while in [16], the authors tackle the house delineation problem by generating
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x = {part(p1, botL, door),part(p2, topL, door),
part(p5, botL,win), part(p6, botR,win),
part(p7, topR,win), cUp(p2, p1, d3, edge),
cRight(p3, p1, d2, edge),cRight(p6, p5, d3, edge),
cRight(p4, p2, d5, noedge), . . . ,
cand(o1, thin, size3, h1), cand(o5, thin, size2, h1),
cand(o3, squared, size2, h2), . . . , partOf(p5, o2),
partOf(p6, o2), partOf(p2, o1), . . .
inside(o7, o2), touch(o6, o2), . . . }.
y = {class(o1, door), class(o5, window),
class(o3, none), . . . }.

Fig. 1. A hierarchical description of a house image. Parts are squares (purple, yellow, red); rela-
tions are diamonds (green/blue – spatial/functional constraints, grey –memberships); properties
are circles (pink). Parts not belonging to a class of interest are empty squares. A visual interpre-
tation i = (x, y) is on the right; x specifies the input features, while y is the learning target.

vertical separating lines on the facade and using a dissimilarity measure between these
features. Finally, the works in [17, 18] assume having the structure or grammar of a
building facade and estimate the parameters of the model. Closely related are graph
matching and other kernel-based techniques for image understanding [19]. Different
from these, our work combines the best of both worlds by using a kernel-based ap-
proach to learn from logical interpretations. The paper extends our recent results in [20]
with more complex relationships and, thus, a richer feature space.

3 Hierarchical Image Understanding

In our hierarchical framework an image is described at several layers (0), . . . , (k) in
a hierarchy, with 0 the base layer and k the top layer. Figure 1 shows the hierarchical
structure of a partial house facade. At each layer, the image consists of a set of parts,
their properties and (spatial) relationships among them. The task then is to use this
information at layer i to generate and classify candidate parts at the next higher layer
i + 1 in the hierarchy. Thus, at each layer, parts belonging to classes of interest are
detected and employed at the next layer to detect higher-level concepts. As training
data, annotated images are available at all layers.

In the house facade problem, the base layer consists of the image itself, with the
pixels as parts. In the primitive layer the parts are local patterns, e.g., a corner or an
edge. The object layer is built from spatial configurations of such local patterns, form-
ing higher-level parts that are doors and windows. These are then used at the next layer,
i.e., the house layer, to find even higher-level parts representing houses. Each layer
consists of parts and classes they belong to, and it is formed by making use of spatial
configurations of parts from the previous lower-level layer. The hierarchical framework
propagates the detected parts using a pipeline through each layer.
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4 Object Detection at One Layer

Next, we describe how an image is relationally represented at one layer in the hierarchy
and how our object detection problem is formalized and modeled with kLog. It is a
domain specific language embedded in Prolog which allows to specify, in a declarative
way, logical and relational learning problems. Figure 2 illustrates the information flow
in kLog. We use the object layer as running example. Here, image parts are extracted
from raw images via the primitive layer and using low-to medium-level features detec-
tors, as described below. At the house layer the relational representation is built in a
similar way using as parts the detections from the object layer.

Raw data 
(image)

Ground atoms 
(image "parts") Graph Feature 

vector
Ground 
atoms

Image preprocessing 
(object layer: kAS, edges) Extensionalization Graphicalization Feature 

generation

kLog
Declarative 
knowledge 

Graph kernel 
(NSPDK)

Statistical
learner

Fig. 2. From images to feature vectors in kLog

4.1 From Images to Primitive Parts

The primitive layer takes as input image pixels and groups them in corner-like fea-
tures representing image parts at the object layer together with their properties. We em-
ploy the KAS detector [21] to detect corners formed by chains of 2 connected, roughly
straight contour segments. Because we can get many detections we only keep square-
like corners with an angle of ≈ 90◦. Also, we train a binary classifier to discard ir-
relevant corners found on other structures than buildings (e.g., car), using the HOG
descriptor [22] on the corners. We use the training annotations of windows and doors.

Each corner-like part can be one of the types in the set {topR, topL, botR, botL}
representing top-right, top-left, bottom-right and bottom-left corners, respectively. The
corner type is given by the orientation of the segments composing the 2AS. We use the
HOG descriptor1 to characterize the appearance of each corner. Yet, instead of the raw
descriptor we train another classifier to map each HOG to a discrete attribute, either a
window or a door label. A final characteristic of a part is its estimated bounding box.

4.2 Data and Problem Modeling

We represent this information at a higher level using the classic entity/relationship (E/R)
data model, a paradigm frequently used in database theory [23]. The E/R model for our
problem, with some further assumptions required by kLog, is shown in Figure 3(a). It
provides an abstract representation of the examples, i.e. class of interest candidate in-
stance in this case. The elements of an E/R model are entity sets (in Figure 3(a) depicted

1 A variation of the HOG descriptor with 16 orientation bins, window size of 128x128 pixels
and a block size of 8x8 cells showed improved results.
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as rectangles), relationships linking entity sets (depicted as diamonds) and attributes
that describe objects and relationships (depicted as ovals). In kLog, the database scheme
is directly derived from the E/R model, and contains two kinds of relations: those intro-
ducing entity sets (E-relations) and those introducing relationships (R-relations). As in
database theory, they correspond to tuples (or facts) in the database.

In our problem, E-relations are parts of the image and candidate objects of interest.
Each entity has properties and a unique identifier (underlined ovals). They can be visu-
alized as relational facts, in Figure 1 (right). The tuple part(p1, botL, door) specifies
a part entity, where p1 is the identifier and the other arguments are properties extracted
by the previous layer in the hierarchy. As already indicated, they are the corner type
and category. The tuple cand(o1, thin, size3) represents a possible object of interest.
It has identifier o1 and properties describing its discretized aspect ratio and size. These
are estimated from the extracted bounding box of the candidate. R-relations are linked
to the entities that participate in the relationships. In our problem, we have spatial rela-
tionships amongst parts and, respectively, amongst candidates, as well as membership
relations between parts and candidates. Spatial R-relations are derived from the spa-
tial localization of the entities, i.e., bounding boxes, and extension. An example is the
relationship cRight(p3, p1, d2, edge), which indicates that part entities p3 and p1 are
spatially close to each other and aligned on the X axis with p3 to the right of p1. It
has as properties the discretized Euclidian distance between the bounding boxes and a
property indicating if the two part entities are linked by a detected contour segment.

A key advantage of kLog is that it supports extensional as well as intensional rela-
tions. Extensional relations are explicitly listed sets of given relations, whereas inten-
sional relations are defined implicitly using logical rules. In other words, intensional
relations are derived from other intensional or extensional relations given a set of rules
and they represent domain-related feature construction.

Declarative Feature Construction. Intensional relations are cUp/4, cRight/4,
inside/2 and touch/2, derived using notions of spatial theory, cand/4 and
partOf/2. As an example, the spatial relation cRight/4 is defined as a logical rule
in the following way:

cRight(A,B,D,Edge)← part(A, , ), part(B, , ), edge(Edge,A),
edge(Edge,A), right(A,B), close(A,B,D).
where close(A,B,D)← bb(A,BB1), bb(B,BB2), dist(BB1, BB2, D), D < th.
and right(A,B) is similarly defined based the bounding boxes BBi of the part en-
tities. In words, A is to the right of B if the min and max X coordinates of BB1 are
smaller than the minimum and the maximum X coordinates of BB2, respectively, and
if A is not too much above or below (in a fuzzy way) of B. The R-relation cUp/2 is
defined in a similar way. The atom edge(Edge,A) is true if the entity A belongs to a
contour segment Edge.

The intensional E-relation cand/4 defines possible objects of a class of interest at
one layer, i.e., doors/windows at the object layer. It is defined using the rule:

cand(Id,Ar,A,H)← sprl(A,B), sprl(B,C), edge(Eab, A), edge(Eab, B, ),
edge(Ebc, B), edge(Ebc, C), getid([A,B,C], Id), getprop([A,B,C], Ar,A,H).
where sprl/2 brings the pairs of parts that satisfy any of the spatial relations {cRight,
cUp, cDown, cLeft}; getid/2 associates a unique identifier to the newly generated
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(a) (b)

Fig. 3. a) E/R modeling of the object detection problem. Rectangles denote entity vertices, dia-
monds denote relationships, and circles denote properties. b) Part of the graphicalized interpreta-
tion of the image.

candidate (based on the combination of parts) and getprop calculates the discretized
properties of the candidate relation, i.e., aspect ratio, area and height, based on the
bounding box of the candidate, given the set of parts. Each candidate relation groups
the three parts that satisfy a square-like spatial constraint. The membership relation
partOf/2 indicates that a part belongs to a candidate.

Other intensional relations are touch/2, indicating if two candidate entities are
spatially touching and inside/2, which holds if one candidate is spatially inside the
other. The grounding of intensional relations is computed using Prolog’s deduction
mechanism and represents the extensionalization step in kLog’s information flow. In
the setting established above, each image is an instance of a relational database or an in-
terpretation. An interpretation of an image at the object layer is exemplified in Figure 1.

Problem Definition. kLog learns from interpretations, a well-established setting in
relational learning [3]. We are given a training set of n independent interpretations
D = {(x1, y1), (x2, y2), . . . , (xn, yn)} sampled identically from some unknown but
fixed distribution; xi is a set of input ground atoms and yi a set of output target ground
atoms. In our problem and in Figure 1 the target is the unary relation category/1. The
goal is to learn a mapping h : X → Y , from the inputs X to the outputs Y . During
prediction, we are given a partial interpretation of an image consisting of ground atoms
x, and are required to complete the interpretation using h to predict the output atoms y.

4.3 Graphicalization and Feature Generation

Next, each interpretation x is converted into a bipartite graph G that has a vertex for
each ground relation. Vertices correspond to grounded atoms, either E-relations or R-
relations, but identifiers are removed. Edges connect E-relations and R-relations: there
is an undirected edge {e, r} if the entity identifier in e appears as an argument in r (see
Figure 3(b)). Thus, edges connect vertices that share identifiers in the tuples. Role infor-
mation (i.e., the position of an entity in a relationship) is retained as an edge annotation.
The graph can be seen as the result of unrolling (or grounding) the E/R diagram for a
particular image. There is no loss of information associated with this step.

Once interpretations are represented as graphs, any graph kernel in conjunction with
a statistical learner can be used to solve the classification problem in the supervised
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setting. The kLog implementation uses a variant of the fast neighborhood subgraph
pairwise distance kernel (NSPDK) [24]. It has two advantages: i) it allows fast compu-
tations with respect to the graph size, as the graphicalization step can yield large graphs;
ii) it is a general purpose kernel with a flexible bias, allowing us to integrate multiple
heterogeneous features and context knowledge through the way it is defined.

NSPDK belongs to the large family of decomposition kernels [25] that count the
number of common parts between two objects. Parts in this case are pairs of subgraphs
defined as follows. Given a graph G = (V,E) and a radius r ∈ N, we denote by
Nv

r (G) the subgraph of G rooted in v and induced by the set of vertices V v
r

.
= {x ∈

V : d�(x, v) ≤ r}, where d�(x, v) is the shortest-path distance between x and v. For
a given distance d ∈ N, the neighborhood-pair relation is then defined as Rr,d =
{(Nv

r (G), Nu
r (G), G) : d�(u, v) = d}. The kernel between two graphs is then the

decomposition kernel defined by relations Rr,d for r = 0, . . . , R and d = 0, . . . , D:,

K(G,G′) =
R∑

r=0

D∑
d=0

∑
A,B : Rr,d(A,B,G)

A′, B′ : Rr,d(A
′, B′, G′)

κ((A,B), (A′, B′)). (1)

Several choices are possible for κ. In our experiments we used an exact matching kernel
where κ((A,B), (A′, B′)) = 1 iff (A,B) and (A′, B′) are pairs of isomorphic graphs,
but also a soft matching kernel (see [8] for details). The maximum radius R and the
maximum distanceD are kernel hyperparameters. kLog provides a flexible architecture
in which only the specification language is fixed. The actual features are determined by
the choice of the graph kernel but also by the definition of intensional relations.

5 Summary of Experiments

We experimented on a dataset containing 60 street view images of rows of houses [5].
They commonly display a rich structure (and variety), yet, same row houses are quite
consistent in terms of structure. All images show near-frontal views of the houses and
no further rectification was performed. On these images, windows, doors and houses
were manually annotated. We used three layers in the hierarchy: primitive, object
and house layers. We experimented with kLog at the object and house layers, since
these provide the most structure. The primitive layer serves as a preprocessing step.
We measure performance in terms of precision P, recall R and F1 score and use the
PASCAL VOC criterion2 to compare the positive predicted candidate’s bounding box
to the ground-truth. If the overlap is larger than 50%, it is a true positive, otherwise a
false positive.

Primitive Layer. To asses the accuracy of the parts categories the object layer
builds on, we also report results at the primitive layer. For the first classification step
establishing whether a corner is relevant or not we obtain F1 = 0.85. For the second
classification steps distinguishing between window and door corners, F1 = 0.64.

2 Available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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Method R P F1

RD hierarchy [5] 0.61 0.65 0.63
Boosting60 0.54 0.49 0.51
Boosting120 0.57 0.48 0.52
kLog 0.74 0.64 0.68

Method R P F1

RD window 0.61 0.35 0.44
RD door 0.42 0.47 0.44
kLog window 0.60 0.55 0.57
kLog door 0.51 0.42 0.50

Fig. 4. kLog performance compared to baselines; classes house (left), door and window (right).
For the feature boosting detector we use a different number of weak classifiers (Boosting60/120).

Object Layer. The experiments at the object layer are performed starting from sparse,
previously detected, 2AS at the primitive layer that belong to windows or doors. We
used the following features: part entity relation part, spatial relationships between
parts cRight, cUp, candidate entity relation cand, membership relationship partOf

and other spatial/functional relationships between candidate entities (such as inside
and touch). At this layer, similarly, we solve the problem in two steps. First, we
establish whether a candidate is relevant or not and then we distinguish between
windows and doors. We vary the parameters of the kernel r and d to assess the impact
of contextual features on the performance of detecting windows and doors. We obtain
the best result, F1 = 0.57 for class window and F1 = 0.50 for class door, when
r = 2, d = 4.

House Layer. Candidates classified as window or door become parts at the house
layer. We used a variation of the same relations (e.g., the absence of property edge).
Again, we vary the parameters r and d to assess the impact of contextual features on
the performance of detecting houses and obtain P = 0.64, R = 0.74, F1 = 0.68.

Many alternative statistical learners can be used on the feature vectors created by
kLog. In our experiments, we used a standard implementation of support vector ma-
chines [26], which was integrated via a wrapper in kLog, together with a linear kernel.
We performed 5-fold cross-validation on the dataset with fixed folds. The cost c of the
SVM was chosen via internal 5-fold cross-validation on the training set, for each split.

Comparison to Baselines. Our aim is not to compete with strong detectors using
dense features, but to evaluate how structure and contextual knowledge can be flexibly
exploited in our problem. We show that even if we start from sparse cues, the detection
problem is solvable with good results thanks to the use of relational representations
and kLog’s flexible language and kernel. One baseline is the feature boosting approach
with template matching [27]. We train an ensemble of weak detectors for the class
house. Individual houses can be more effectively detected using a template matching
approach than a texture-based one, since houses in the same row have the same tex-
ture and street scenes greatly vary in texture across the dataset. A second baseline is
our relational distance-based approach (RD) [5]. It uses the same sparse features and
data splits. Figure 4 shows results for comparison. The baselines perform well for our
detection problem, however, by incorporating more structural context, kLog improves
results. Also, in [5] we employed an extra candidate selection step, which resulted in
higher precision. This step is not performed in the experiments with kLog.
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6 Conclusions

We presented a new statistical relational learning approach to hierarchically understand
images of houses. To this end, we employ kLog, a framework for logical and relational
learning with kernels. The declarative, relational representation used by kLog allows
a flexible exploitation of the structural and contextual knowledge in visual scenes. We
show that even if we start from sparse cues, our problem is solvable with good results
thanks to the use of relational representations and kLog’s flexible language and kernel.
This work explores a new relational scheme for solving computer vision problems. This
result can be improved using a collective classification setting, in which target predic-
tions are also considered during training and testing. Additionally, hierarchical features
could be used as top-down feedback. For example, a detected house can constraint the
number of doors composing the house, and thus, improve door detection results.

Acknowledgements. Laura Antanas is supported by the grant agreement First-MM-
248258.
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Abstract. In this paper we explore how to construct a Jensen-Shannon
kernel for hypergraphs. We commence by calculating probability distri-
bution over the steady state random walk on a hypergraph. The Shannon
entropies required to construct the Jensen-Shannon divergence for pairs
of hypergraphs are obtained from steady state probability distributions
of the random walk. The Jensen-Shannon divergence between a pair of
hypergraphs is the difference between the Shannon entropies of the sep-
arate hypergraphs and a composite structure. Our proposed kernel is
not restricted to hypergraphs. Experiments on (hyper)graph datasets ex-
tracted from bioinformatics and computer vision datasets demonstrate
the effectiveness and efficiency of the Jensen-Shannon hypergraph kernel
for classification and clustering.

1 Introduction

Hypergraph based strategies have recently been investigated for representing and
processing structures where the relations present between objects are higher or-
der. A hypergraph is a generalization of a graph. Unlike the pairwise edges in
a graph, hypergraph representations allow a hyperedge to encompass an arbi-
trary number of vertices, and can hence capture multiple relationships among
features. There have been several successful methods for characterizing hyper-
graphs, which include a) marginalizing higher order relationships to unary order
[14], b) marginalizing the higher order relationships to pairwise order and then
adopt pairwise graph matching methods [3], c) performed visual clustering by
adopting tensors for representing uniform hypergraphs [10], and d) exploiting
a set of coefficients from hypergraph Ihara zeta function to capture frequency
of the cycle structures in a hypergraph [9]. One main limitation of the exist-
ing methods for hypergraph characterization is that they are usually limited to
uniform structures, and do not fully capture hypergraph characteristics. On the
other hand, existing hypergraph characterization methods also tend to require
prohibitive computational overheads. In order to overcome these problems, an
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attractive alternative is to use kernel methods. Kernel methods are popular in
statistical learning theory and offer an elegant way to formulate efficient algo-
rithms to deal with high dimensional data, without the need to construct an
explicit high dimensional feature space. As one of the special case of ILP [13],
a number of graph kernels have been developed and proven to be powerful in
graph clustering and classification. These graph kernels can be generally catego-
rized into three classes [11], i.e. graph kernels based on a) walks, b) paths and
c) restricted subgraph and subtree structures. To generalize the graph kernels
to construct hypergraph kernels, Wachman has summarized the existing graph
kernels based on walks and then proposed a rooted kernel for hypergraphs [13].
However, the definitions of these kernels, no matter for graphs or hypergraphs,
highly rely on the enumerations of topology features such that most of them
cannot be efficiently computed in an algebraic manner.

Recently, information theory has been used to define a new family of ker-
nels based on probability distributions over the elements of the objects being
compared, and these have been applied to structured data [7]. These so-called
nonextensive information theoretic kernels are derived from the mutual infor-
mation between probability distributions on different structures, and are related
to the Shannon entropy. An example is the Jensen-Shannon kernel [7]. Our aim
in this paper is to explore whether the Jensen-Shannon kernel can be applied
to hypergraphs. The kernel is computed using the Jensen-Shannon divergence
between pairs of hpyergraphs. The Jensen-Shannon divergence between a pair of
hypergraphs is defined as the difference in entropies between a composite hyper-
graph formed from the two hypergraphs, and the sum of the entropies for the two
separate hypergraphs. The required entropies are computed using the Shannon
entropy with the probability distributions associated with the steady state ran-
dom walks on the separate hypergraphs and their composite hypergraph. Since
the probability distribution of a hypergraph can be calculated directly from the
incidence matrix of the hypergraph, and the adjacency matrix of a graph can
be easily converted into an incidence matrix representation. Hence, our kernel
can be applied to undirected graphs. We perform experiments on several bioin-
formatics and computer vision datasets. We empirically demonstrate that our
kernel can not only readily accommodate nonuniform hypergraphs but also eas-
ily scale to large hypergraphs. The performance of our kernel is competitive to
state of the art graph kernels and hypergraph based methods.

2 Definitions and Notations

2.1 Hypergraph Fundamentals

A hypergraph is a generalization of a undirected graph, it is usually denoted by a
pair set G(V,E) where V is a set of vertices and E is a set of non-empty subsets
of V called hyperedges. A hypergraph can be represented in terms of a matrix.
For a hypergraph G(V,E) with I vertices and J hyperedges, its incidence matrix
H is defined as a I × J matrix with element H(i, j) as follows:
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H(i, j) =
{
1 if vi ∈ ej
0 otherwise.

(1)

An example hypergraph is shown in Fig.1(a). Here the vertex set is V =
{v1, v2, v3, v4, v5, v6} and the hyperedge set is E = {e1 = {v1, v2, v3}, e2 =
{v3, v4, v5}, e3 = {v5, v6}}. The incidence matrix is shown in Fig.1(b)

(a) (b)

Fig. 1. (a) Hypergraph example. (b) Incidence matrix

2.2 Jensen-Shannon Kernel

The Jensen-Shannon kernel is a nonextensive mutual information kernel [7].
It is defined on probability distributions over structured data. The kernel for
structures p and q is positive definite (pd) with the following kernel function

kJSK(Pp, Pq) = log 2− JSD(Pp, Pq) (2)

where JSD(Pp, Pq) is the Jensen-Shannon divergence between the probability
distributions Pp and Pq defined as

JSD(Pp, Pq) = HS(
Pp + Pq

2
)− 1

2
(HS(Pp) +HS(Pq)) (3)

where HS is the Shannon entropy. We are interested in computing a hypergraph
kernel between pairs of hypergraphs using the Jensen-Shannon divergence. For a
pair of hypergraphs Gp(Vp, Ep) and Gq(Vq , Eq), the Jensen-Shannon divergence
is given by

JSD(P{Gp}, P{Gq}) = HS(P{Gp ⊕Gq})−
HS(P{Gp}) +HS(P{Gq})

2
(4)

where P{Gp} and P{Gq} are the probability distributions on Gp(Vp, Ep) and
Gq(Vq, Eq), and P{Gp ⊕ Gq} is the probability distribution on the composite
hypergraph Gp ⊕ Gq of Gp(Vp, Ep) and Gq(Vq , Eq). Here HS(P{Gp}) is the
Shannon entropy for the probability distribution P{Gp} given by

HS(P{Gp}) = −
|Vp|∑
k=1

P{Gp}(k) logP{Gp}(k) (5)

where P{Gp}(k) is the k-th element of the probability distribution P{Gp}. We
will use the disjoint union to construct the composite hypergraph Gp ⊕Gq.
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3 Jensen-Shannon Hypergraph Kernel

In this section, we show how to establish a Jensen-Shannon kernel for hyper-
graphs. We commence by defining the probability distribution associated with
the steady state random walk on a hypergraph. Then we show how the probabil-
ity distributions of hypergraphs can be used to compute the required Shannon
entropies for the Jensen-Shannon kernel between pairs of hypergraphs.

3.1 Probability Distribution over Steady State Random Walk

We use the steady state random walk on a hypergraph to calculate the prob-
ability distribution for the Shannon entropy. For a hypergraph G(V,E) with
the incidence matrix H defined in (1), the vertex degree d(vi) for vi ∈ V is
d(vi) =

∑
ej∈E H(i, j). Based on the definition in [4], the probability of a steady

state random walk through hyperedges on G(V,E) visiting vertex vi is

P{G}(i) = PG(vi) = d(vi)/
∑
u∈V

d(u) (6)

3.2 Composite Structure: Disjoint Union Hypergraph

We use the disjoint union of a pair of hypergraphs as the composite structure
to compute the Jensen-Shannon kernel of hypergraphs. Based on the definition
in [1], the disjoint union of a pair of hypergraphs is a binary operation that
combines all distinct elements of the pair of hypergraphs, while retaining the
original set of memberships as a distinguishing characteristic. For a pair of hyper-
graphs Gp(Vp, Ep) and Gq(Vq, Eq), the disjoint union hypergraph GU (VU , EU )
of Gp(Vp, Ep) and Gq(Vq, Eq) is denoted as

GU (VU , EU ) = Gp(Vp, Ep) ∪Gq(Vq , Eq) = {Vp ∪ Vq, Ep ∪ Eq} (7)

where Gp(Vp, Ep) and Gq(Vq , Eq) is the connected components of the dis-
joint union hypergraph GU (VU , EU ). The probabilities of the steady state
random walks visiting vertices vp and vq through hyperedges in the individ-
ual components Gp(Gp, Gp) and Gq(Gq , Gq) of the union are P{Gp}(ip) =
d(vpip)/

∑
up∈Vp

d(up) and P{Gq}(iq) = d(vqiq )/
∑

uq∈Vq
d(uq) respectively. A

steady state random walk which departs from a vertex in one of the components
is unable to visit any vertices in the other component. In the disjoint union,
the probabilities of a steady state random walk departing from Gp(Vp, Ep) and
Gq(Vq, Eq) are αp = |Vp|/(|Vp| + |Vq|) and αq = |Vq|/(|Vp| + |Vq|) respectively.
Then the probabilities of such a steady state random walk departing from a
random vertex in GU (VU , EU ) and visiting vertices vpip and vqiq in components

Gp(Vp, Ep) and Gq(Vq , Eq) are αpP{Gp}(ip) and αqP{Gq}(iq) respectively. In
this context, we obtain the probability distribution of a steady state random
walk visiting vertices through hyperedges in GU (VU , EU ) as

P{GU} = PGU = αpP{Gp}+ αqP{Gq} (8)
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where P{Gp} and P{Gq} are the probability distributions of individual com-
ponents of Gp(Vp, Ep) and Gq(Vq, Eq) associated with their own steady state
random walks respectively. The Shannon entropy of the disjoint union hyper-
graph GU (VU , EU ) is then defined as

HS(GU ) = HS(P{GU}) = HS(αpP{Gp}+ αqP{Gq}) (9)

3.3 Jensen-Shannon Kernel on Hypergraphs

We define a Jensen-Shannon kernel on hypergraphs. Suppose the hypergraphs
under consideration are represented by the set {G1, · · · , Gp, · · · , Gq, · · · , GN}.
For a pair of hypergraphs Gp(Vp, Ep) and Gq(Vq , Eq), we construct the disjoint
union hypergraph GU (VU , EU ) as the composite structure of Gp(Vp, Ep) and
Gq(Vq, Eq). Associated with the function defined in (4) and (9), the Jensen-
Shannon hypergraph kernel based on GU (VU , EU ) is defined as

kJSHK(P{Gp}, P{Gq}) = log 2− (αp −
1

2
)HS(P{Gp})− (αq −

1

2
)HS(P{Gq})

= log 2− 2|Vp| − (|Vp|+ |Vq|)
2(|Vp|+ |Vq|)

HS(P{Gp})−
2|Vq| − (|Vp|+ |Vq|)

2(|Vp|+ |Vq|)
HS(P{Gq})

= log 2− |Vp| − |Vq|
2(|Vp|+ |Vq|)

HS(P{Gp})−
|Vq| − |Vp|

2(|Vp|+ |Vq|)
HS(P{Gq}) (10)

Since the probability distributions associated with the steady state random walks
and the disjoint union hypergraphs of pairs of hypergraphs can be established
through the incidence matrices directly, our proposed hypergraph kernel can
hence accommodate both uniform and nonuniform hypergraphs.

3.4 Algorithmic Complexity

The computational complexity of the proposed Jensen-Shannon hypergraph ker-
nel depends on three factors, these include 1) the construction of the disjoint
union of hypergraphs, 2) the computation of probability distributions for pairs
of hypergraphs and their disjoint union hupergraphs, and 3) the construction of
the kernel matrices. Consider a hypergraph dataset with size N and two sam-
ple hypergraphs Gp(Vp, Ep) and Gq(Vq, Eq) with number of vertices m and n
respectively. The construction of the disjoint union hypergraph GU (VU , EU ) of
Gp(Vp, Ep) and Gq(Vq , Eq) requires O((m+n)2) operations. Then the computa-
tion of the probability distribution for the disjoint union hypergraphGU (VU , EU )
requires O(m+n) operations. The computations of the probability distributions
from Gp(Vp, Ep) and Gq(Vq , Eq) require O(m) and O(n) operations respectively.
The construction of the kernel matrix requires O(N2/2) operations.

4 Experimental Results

4.1 Stability Evaluation

We commence by evaluating the stability of our Jensen-Shannon hypergraph ker-
nel based on the disjoint unions on pairs of hypergraphs. The evaluation employs
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Fig. 2. Stability evaluation under hyperedge edit operation

three seed hypergraphs which have 350 vertices, 300 vertices and 250 vertices
respectively. For each seed hypergraph, we perform random edit operations to
simulate the effects of noise. The edit operations are based on hyperedge dele-
tions. Since our proposed kernel can accommodate both uniform and nonuniform
hypergraphs, these edit operated hypergraphs are easily accommodated by our
proposed kernel. Fig.2 shows the effects of hyperedge deletions. In each plot the
x-axis represents the fraction of hyperedges deleted, and the y-axis represents
the value of the kernel kJSHK(Go, Ge) between the original hypergraph Go and
its noise corrupted counterpart Ge. The plots show that there is an approxi-
mately linear relationship between the Jensen-Shannon hypergraph kernel and
the number of the deleted hyperedges, i.e. the hypergraph edit distance. This
implies that our method possess the ability to distinguish hypergraphs under
controlled structural-errors.

4.2 Real-World Datasets

We compare our proposed Jensen-Shannon hypergraph kernel (JSHK) with
several alternative state of the art structural characterization methods, these
include 1) hypergraph characterizations using the Ihara zeta function (HCIZF)
[9], 2) the truncated Laplacian spectra (TLS) and truncated normalized
Laplacian spectra (TNLS) [8], 3) the Weisfeiler-Lehman subtree kernel [12], 4)
the Ramon & Gaertner graph kernel [5], 5) the p-random walk graph kernel [6]
6) the random walk graph kernel [5], 7) the shortest path graph kernel [2], and
8) graphlet count graph kernel. We use three stantard graph based datasets
extracted from bioinformatics datasets [12] and a hypergraph based dataset
extracted from the COIL image dataset for experimental evaluation.

MUTAG: The MUTAG benchmark is based on graphs representing 188
chemical compounds, and aims to predict whether each compound possesses
mutagenicity. The maximum and average number of vertices are 28 and 17.93
respectively. As the vertices and edges of each compound are labeled with a real
number, we transform these graphs into unweighted graphs.

ENZYMES: The ENZYMES dataset is a dataset based on graphs representing
protein tertiary structures consisting of 600 enzymes from the BRENDA enzyme
database. In this case the task is to correctly assign each enzyme to one of the 6
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EC top-level classes. The maximum and average number of vertices are 126 and
32.63 respectively.

D&D: The D&D dataset contains 1178 protein structures. Each protein is
represented by a graph, in which the nodes are amino acids and two nodes are
connected by an edge if they are less than 6 Angstroms apart. The prediction
task is to classify the protein structures into enzymes and non-enzymes. The
maximum and average number of vertices are 5748 and 284.32 respectively.

COIL: The COIL dataset consists of images of 100 objects. In our experiments,
we use selected images for three similar cups, three similar bottles and three pieces
of similar vegetable. For each object we employ 18 images captured from different
viewpoints. The hypergraph are extracted using feature hypergraph method [9]
Themaximumandminimumvertices ofCOILdataset are 549 and213 respectively.

4.3 Experiments on Graphs Extracted from Bioinformatics Datasets

We evaluate the performance of our kernel (JSHK) on the graphs extracted from
the bioinformatics datasets. We then perform 10-fold cross-validation associated
with SMO-Support Vector Machine Classification to evaluate the performance of
our kernel and the alternative methods, using nine samples for training and one
for testing. All parameters of the SVMs were optimized. We report the average
prediction accuracies of each method in Table 1, the runtime were measured
under Matlab R2011a running on a ThinkPad T61P with 2.2GHz Intel 2-Core
processor with 2GB RAM. We also compare our kernel with several state of the
art graph kernels. Shervashidze et al.[12] have reported the accuracies of the
graph kernels based on the same classification method and datasets as ours. The
runtime of these methods were measured under Matlab R2008a running on an
ApplePro with 3.0GHz Intel 8-Core processor with 16GB RAM. We report these
accuracies and runtimes in Table.1.

The graphs in the D&D dataset are on average more than 284 nodes and at
maximum 5748 nodes. The accuracy and runtime of our JSHK is competitive to
that of the Weisfeiler-Lehman subtree kernel, graphlet count graph kernel and
the shortest path kernel. The other alternative kernels did not finish in two days.

The graphs of the MUTAG dataset are of similar sizes, but correspond to very
different structures. On this dataset, the accuracy of our JSHK outperforms
all the other alternatives. The runtime of JSHK is competitive to that of the
Weisfeiler-Lehman subtree kernel,graphlet count graph kernel and the shortest
path kernel, and outperforms the other alternatives.

The graphs in the ENZYMES are of variable sizes. On this dataset, the ac-
curacy of the JSHK is 27.05%. It is lower than the accuracies of the Weisfeiler-
Lehman subtree kernel, graphlet count kernel and the shortest path kernel, but
higher than that of the other alternatives. The runtime of JSHK outperforms
the alternatives.

On the whole, the accuracy and runtime of our JSHK outperforms or is com-
petitive to that of all the alternative kernels. Only the Weisfeiler-Lehman subtree
kernel and the shortest path kernel are competitive to our JSHK.
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Table 1. Performance and CPU Runtime Comparison
on Bioninformatics Datasets

Datasets MUTAG ENZYMES D&D

JSHK 87.76% 27.05% 78.00%

Weisfeiler-Lehman 82.05% 46.42% 79.78%

Ramon& Gaertner 83.78% 13.35 57.27

p-random walk 79.19% 27.67% 66.64

random walk 80.72% 21.68% 71.70

shortest path 87.28% 41.68% 78.45

graphlet count 75.61% 32.70% 78.59

Datasets MUTAG ENZYMES D&D

JSHK 2” 19” 14′59”
Weisfeiler-Lehman 6” 20” 11′

Ramon& Gaertner 40′60” 38days 103days

p-random walk 4′42” 10′ 4days

random walk 12” 12′19” 48days

shortest path 2” 5” 23h17′2”
graphlet count 3” 25” 30′21”

4.4 Hypergraph Clustering Comparisons

In this subsection, we illustrate the clustering performance of proposed JSHK on
the hypergraph dataset extracted from the COIL image dataset. We also compare
our methods with several alternative state of the art hypergraph based learning
methods which include HCIZF, TLS and TLNS. We compute the kernel matri-
ces or embedding vectors using our methods and the alternatives respectively.
Then we apply the K-means clustering method to compute the classification
accuracies for the three groups of testing hypergraphs. We report the highest
prediction accuracies of each method in Table.1(-:over computing, i.e.infinite
value). Table.2 indicates that high accuracies for our methods are achievable.
Our JSHK outperforms all the alternatives. For the cup object images based
hypergraphs which the maximum and minimum vertices are 310 and 213 respec-
tively, the accuracy of HCIZF is competitive to that of our methods. But for the
bottle and vegetable object images based hypergraphs, HCIZF generates over
computing (i.e.infinite value), since the maximum and minimum vertices are 549
and 305 respectively. The experiments reveal that our proposed JSHK can easily
scale up even to large size hypergraph data.

Table 2. Accuracy of Classification Comparison
on Hypergraphs

Datasets JSHK TLS TNLS HCIZF

Cups 97.55% 86.60% 52.78% 96.29%

Bottles 100% 77.41% 83.39% −
Vegetable 94.44% 77.20% 69.65% −
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5 Conclusion

In this paper, we have shown how to construct a Jensen-Shannon kernel for
hypergraphs using the Jensen-Shannon divergence. The method is based on the
probability distribution over the steady state random walk on a hypergraph. We
ues the Shannon entropy to measure the mutual information between a pair of
hypergraphs and establish hypergraph kernel. Experimental results reveal that
our kernel is competitive to the state of the art graph kernels and hypergraph
based learning methods.
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5. Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and effi-
cient alternatives. In: Proceedings of the Conference on Computational Learning
Theory, pp. 129–143 (2003)

6. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of the International Conference on Machine Learning, pp.
321–328 (2003)

7. Martins, A.F.T., Smith, N.A., Xing, E.P., Aguiar, P.M.Q., Figueiredo, M.A.T.:
Nonextensive information theoretic kernels on measures. Journal of Machine Learn-
ing Research 10, 935–975 (2009)

8. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of
the spatial envelope. International Journal of Computer Vision 42, 145–175 (2001)

9. Ren, P., Aleksic, T., Wilson, R.C., Hancock, E.R.: A polynomial characterization
of hypergraphs using the ihara zeta function. Pattern Recognition 44, 1941–1957
(2011)

10. Shashua, A., Levin, A.: Linear image coding for regression and classification using
the tensor-rank principle. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 42–49 (2001)

11. Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Proceedings
of the Neural Information Processing Systems, pp. 1660–1668 (2009)

12. Shervashidze, N., Schweitzer, P., van Leeuwen, E., Mehlhorn, K., Borgwardt, K.:
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48
(2010)

13. Wachman, G., Khardon, R.: Learning from interpretations: a rooted kernel for
ordered hypergraphs. In: Proceedings of the International Conference on Machine
Learning, pp. 943–950 (2007)

14. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (2008)



Heat Flow-Thermodynamic Depth Complexity

in Directed Networks

Francisco Escolano1, Boyan Bonev1, and Edwin R. Hancock2

1 University of Alicante
{sco,boyan}@dccia.ua.es

2 University of York
erh@cs.york.ac.uk

Abstract. In this paper we extend the heat diffusion-thermodynamic
depth approach for undirected networks/graphs to directed graphs. This
extension is motivated by the need to measure the complexity of struc-
tural patterns encoded by directed graphs. It consists of: a) analyzing and
characterizing heat diffusion traces in directed graphs, b) extending the
thermodynamic depth framework to capture the second-order variability
of the diffusion traces to measure the complexity of directed networks. In
our experiments we characterize several directed networks derived from
different natural languages. We show that our proposed extension finds
differences between languages that are blind to the classical analysis of
degree distributions.

1 Introduction

The quantification of the complexity of patterns plays a fundamental role in
pattern recognition and machine learning. Information theory [1] provides prin-
cipled approaches to the analysis complexity that include minimum description
length (MDL) and minimum message length (MML) which allow us to find the
model that parsimoniously describes vectorial data. However, the latter prin-
ciples have not been incorporated to the graph domain until recently (see [2]
for trees and [3] for edge-weighted undirected graphs). In fact, the intersection
between structural pattern recognition and complex networks has proved to be
fruitful and has inspired several interesting measures of graph complexity. Most
of these measures rely on quantifying the degree of randomness of the structural
representation. For instance, Körner entropy was motivated by the need to mea-
sure how much information can flow through a graph, when pairs of symbols can
be confused [4]. This implies admitting a probability that a memoryless source
emits a symbol. For each node in the graph there is a symbol, and two nodes are
adjacent if their symbols are distinguishable. In this setting entropy is defined as
the minimal cross entropy between the probability distribution and the vertex
packing polytope of the graph. Since the vertex packing polytope is the convex
hull of all characteristic vectors of stable sets of the graph, the task of measur-
ing Körner entropy relies on solving an NP problem. More recently, Passerini
and Severini have applied the quantum (von Neumann) entropy to graphs [5].
The state of a quantum mechanical system of a finite dimension is defined by a
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density matrix for networks that can be modeled the combinatorial Laplacian.
As a result the von Neumann entropy is given by the Shannon entropy of the
Laplacian eigenvalues (normalized by the volume of the graph). This definition
of graph entropy is maximal for random graphs, minimal for complete ones and
intermediate for star graphs. Although the computation of the von Neumann en-
tropy is cubic with the size of the network, it has recently been shown how this
can be approximated using quadratic degree statistics and successfully applied
to structural discrimination [6].

The Körner and von Neumann entropies are two examples of randomness
complexity applied to graphs. An alternative is to use the so called statistical
complexity and to quantify the regularities of the structure beyond its random-
ness [7]. The general underlying principle of statistical complexity is that it is
zero for both random and regular/complete (completely ordered) graphs. A very
recent example of statistical complexity is the Estrada heterogeneity index [8].
This index is defined as the Dirichlet sum of root squared degree differences. The
obtained index is related to the Randić index [9]. Estrada’s heterogeneity index
is obviously zero for both random graphs and regular or complete ones. Another
method which goes beyond randomness complexity is our recent application of
thermodynamic depth [10] to the domain of graphs [11]. This involves defining
both the macro-states (the graph) and the micro-states (the nodes). Complexity
is quantified in terms of the amount of structural variability as a node evolves
through a subgraph containing adjacent nodes (first order expansion) and even-
tually encompasses the full graph (if possible). Each expansion step is character-
ized by the temporal trace of heat flowing through the network. The sequence
of expansions for a given node is referred to as a history [12], which contains
the heat flow traces of each node. The variability of a given history quantifies
how uniformly the full graph emerges from the corresponding node. The aver-
age heat flow traces of all the nodes can be combined to yield a second-order
variability measure, the so called thermodynamic depth of the graph. Shallow
(low-variability) graphs are characterized by similar histories with low variance
and this means that heat flows satisfies similar topological constraints at each
node. In contrast, deep graphs emerge from histories with large variance. Both
random and complete graphs have zero depth, whereas grids and linear graphs
have larger depths. A nice property of our thermodynamic depth approach is
that it can be applied not only to heat flow traces but also to the heterogeneity
index and the von Neumann entropy. It has been successfully used to correlate
PPI networks with the phyla of bacteria.

All of the above approaches are confined to undirected graphs since many net-
works or graphs in the real world can be modeled with them: (e.g. protein-protein
interaction (PPI) networks, shapes as Delaunay triangulations, adjacency graphs
in images). However, considering the orientation of edges (e.g. directed trees and
causal graphs in Bayesian networks) adds meaningful information which allows
us to model networks such as metabolic pathways (cascades of chemical reac-
tions) as well as natural languages (where the relative order of words matters)
together with social networks (e.g. citation networks). The Internet is a clear
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example of a directed network and Pagerank is an example of well known algo-
rithm [13] which exemplifies the formal difficulty of analyzing directed graphs
and the study of how the information flows through them in the context of
the Internet. When a sink node (a node with zero outdegree) is reached by a
random walk, there is a given (small) probability of making a transition to any
other node in the network (this is called teleporting). The Laplacian of a directed
graph can be defined through a symmetrization process provided that the tran-
sition matrix for the random walks allows for teleporting. Given a symmetric
semi-definite operator such as the directed Laplacian, it is straightforward to
compute heat kernels and thus to evaluate diffusion flow traces. A natural way
of quantifying the complexity of directed graphs is to extend our thermodynamic
depth approach to deal with oriented edges.

In this paper we will address that challenging point as follows. In Section 2
we will describe the directed Laplacian. Section 3 is devoted to the analysis
of the fundamental formal differences between undirected and directed graphs
in terms of heat flow diffusion using heat kernels. In Section 4 we redefine the
thermodynamic depth for digraphs. Experiments and discussion (Section 5) are
focused on the analysis of directed networks derived from natural languages
and the quantification of their complexities. For instance, we show that our
proposed extension can identify differences between languages that are blind
to the classical analysis of degree distributions. We conclude this paper with a
summary of our contributions and suggestions for future work.

2 The Laplacian of a Directed Graph

A directed graph (digraph) G = (V,E) with n = |V | vertices and edges E ⊆
E × E is encoded by and adjacency matrix A where Aij > 0 if i → j ∈ E and
Aij = 0 otherwise (this definition includes weigthed adjacency matrices). The
outdegree matrix D is a diagonal matrix where Dii =

∑
j∈V Aij . The transition

matrix P is defined by Pij =
Aij

Dii
if (i, j) ∈ E and Pij = 0 otherwise. The

transition matrix is key to defining random walks on the digraph and Pij is the
probability of reaching node j from node i. Given these definitions we have that∑

j∈V Pij �= 1 in general. In addition, P is irreducible iff G is strongly connected
(there is path from each vertex to every other vertex). If P is irreducible, the
Perron-Frobenius theorem ensures that there exists a left eigenvector φ satisfying
φTP = λφT and φ(i) > 0 ∀i. If P is aperiodic (spectral radius ρ = 1) we have
φTP = ρφT and all the other eigenvalues have an absolute value smaller that
ρ = 1. By ensuring strong connection and aperiodicity we also ensure that any
random walk in a directed graph satisfying these two properties converges to a
unique stationary distribution.

Normalizing φ so that
∑

i∈V φ(i) = 1, we encode the eigenvector elements as
a probability distribution. This normalized row vector φ corresponds to the sta-
tionary distribution of the random walks defined by P since φP = φ. Therefore,
φ(i) =

∑
j,j→i φ(j)Pji, that is, the probability of that the random walk is at

node i is the sum of all incoming probabilities from all nodes j satisfying j → j.
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If we define Φ = diag(φ(1) . . . φ(n)), we have that the j−th column of ΦP has
the form (ΦP)j = [φ(1)Pj1 φ(2)Pj2 . . . φ(n)Pjn ]

T , that is,
∑n

i=1(ΦP)j = φ(i).
Since (ΦP)T = PTΦ the i−th row of PTΦ is identical to the j−th column of
ΦP and thus

∑n
j=1(P

TΦ)i = φ(i). Consequently, the matrix ΦP +PTΦ is also
symmetric and the sum of the elements in the columns in i−th row (or the sum
of the elements in the rows in the same column) is like

n∑
j=1

(ΦP+PTΦ)i =

n∑
j=1

(ΦP+PTΦ)i =
∑
i,i→j

φ(i)Pij +
∑
j,j→i

φ(j)Pji︸ ︷︷ ︸
φ(i)

, (1)

i.e. the sum of both incoming and outcoming probabilities. Since φ corresponds
to the stationary distribution we have that

∑
i,i→j φ(i)Pij = φ(i) for (ΦP)T =

PTΦ = φT . Consequently,
∑n

j=1(ΦP + PTΦ)i = 2φ(i) ∀i. This leads to the
definition of the following matrices:

L = Φ− ΦP+PTΦ

2
and L = I − Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2

2
, (2)

where Φ = diag(φ(1) . . . φ(n)), L is the combinatorial directed Laplacian and L
is the normalized directed Laplacian [14]. Focusing on L we have

Lij =

{
φ(i) if i = j

−
(

φ(i)Pij+φ(j)Pji

2

)
otherwise .

, (3)

where it is assumed that Pii = 0 ∀i. Otherwise Lii = φ(i)(1 − Pii).
Symmetrizing P leads to real valued eigenvalues and eigenvectors. In addition

Φ plays the role of a degree matrix and off-diagonal entries are designed so
that the all-ones vector 1 is the eigenvector f1 of the combinatorial Laplacian
(the vector with eigenvalue λ1 = 0). This is due to the fact that the sum of
the i−th row of L is

∑n
j=1(L)

i = φ(i) − 2φ(i)/2 = 0. In any case, satisfying
irreducibility is difficult in practice since sink vertices may arise frequently. For
instance, a circular graph Cn given by 1 → 2 → 3 → . . . → n → 1 is clearly
irreducible. However, the linear graph Ln obtained by removing n→ 1 from the
cycle is reducible since we have a sink at n and the graph is no longer strongly
connected. Sink vertices introduce rows of zeros in A and consequently in P. The
consequence is the non-existence of a left Perron eigenvector and this renders
computing the Laplacians is impossible. A formal trick consists of replacing P
by P′ so that P ′

ij = 1
n if Aij = 0 and Dii = 0. This strategy is adopted in

Pagerank [13] and allows for teleporting acting on the random walk to any other
node in the graph. Teleporting is modeled by redefining P in the following way:

P = ηP′ + (1 − η)11
T

n with 0 < η < 1. The new P ensures both irreducibility
and aperiodicity and this allows us to both apply P′ with probability η and to
teleport from any node with Aij = 0 with probability 1 − η. In [15] a trade-off
between large values η (preserving more the structure of P′) and small ones
(potentially increasing the spectral gap) is recommended. For instance, in [16],
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where the task is to learn classifiers on directed graphs, the setting is η = 0.99.
When using the new P we always have that Pii �= 0 due to the Pagerank masking.
Such masking may introduce significant interferences in heat diffusion when the
Laplacian is used to derive the heat kernel.

3 Directed Heat Kernels and Heat Flow

The definition of P is critical for finding both the directed combinatorial Lapla-
cian L and the directed normalized Laplacian L. Consequently it is also critical
in determining the behavior of the heat kernel derived from the latter matrices.
If the graph is strongly connected and aperiodic the original P has a unique
equilibrium distribution and the components of the combinatorial Laplacian are
given by Eq. 3. Otherwise the above conditions are enforced by exploiting the
Pagerank transformation. In any case, the n × n heat/diffusion kernel Kβ(G)

of the graph is the solution to the heat/diffusion equation:
∂Kβ

∂β = −LKβ , and

is given by the matrix exponentiation Kβ(G) = exp(−βL), for β ≥ 0. Using
the Taylor series (which may be useful for large n) we have: Kβ(G) = e−βL =

In−βL+ β2

2! L
2− β3

3! L
3+ . . ., where In is the n×n identity matrix. In this regard,

the matrix W = ΦP+PTΦ
2 can be seen as the weight matrix of the undirected

graph Gu associated with G (which may be also weighted) through P and Φ.
Therefore, the analysis of how the heat flows through G is equivalent to the
analysis of how it flows through Gu.

We commence by reviewing the concept of heat flow [11]. Firstly, the spectral
decomposition of the diffusion kernel isKβ(G) = exp(−βL) ≡ ΨΛΨT , where Λ =
diag(e−βλ1 , e−βλ2 , . . . , e−βλn), Ψ = [ψ1, ψ2, . . . , ψn], and {(λi, ψi)}ni=1 are the
eigenvalue-eigenvector pairs of Φ−W. HenceKβij =

∑n
k=1 ψk(i)ψk(j)e

−λkβ , and
Kβij ∈ [0, 1] is the (i, j) entry of a doubly stochastic matrix. Doubly stochasticity
for all β implies heat conservation in the system as a whole. That is, not only
in the nodes and edges of the graph but also in the transitivity links eventually
established between non-adjacent nodes (if i is not adjacent to j, eventually will
appear an entry Kβij > 0 for β large enough). The total directed heat flowing
through the graph at a given β (instantaneous directed flow) is given by

Fβ(G) =
∑
i→j

Aij

(
n∑

k=1

ψk(i)ψk(j)e
−λkβ

)
, (4)

A more compact definition of the flow is Fβ(G) = A : Kβ, where X : Z =∑
ij XijZij = trace(XZT ) is the Frobenius inner product. While instantaneous

flow for the heat flowing through the edges of the graph, it accounts neither
for the heat remaining in the nodes nor for that in the transitivity links. The

limiting cases are F0 = 0 and Fβmax = 1
n

∑
i→j Aij which is reduced to |E|

n
if G is unattributed (Aij ∈ {0, 1} ∀ij). Defining Fβ in terms of A instead of
W, we retain the directed nature of the original graph G. The function derived
from computing Fβ(G) from β = 0 to βmax is the so called directed heat flow
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trace. These traces exhibit the following differences with respect to those of
unattributed undirected graphs:

1. They satisfy the phase transition principle [11] (although the formal proof
is out of the scope of this paper).

2. In general heat flow diffuses more slowly than in the undirected case and
phase transition points (PTPs) appear later. This is due to the constraints
imposed by A.

3. PTPs may coincide with equilibrium points even when the directed graph is
not the complete one. This happens in strongly connected graphs with many
cycles (where connectivity constraints are relaxed) but the traces of single
cycles do not have this behavior.

4. The sum of all walks connecting every pair of nodes is maximal (if we exclude
the sum of all cycles for each node) for all components corresponding to non-
zero values in A. This is straightforward to prove by expressing the kernel
in terms of sums of walks.

5. Graphs with at least one sink require the Pagerank mastering strategy which
introduces noise in the diffusion process. This noise has no practical effect
even for moderate/small values of η (e.g. η = 0.15).

6. The heat diffusion process does not only allow increasing heat values for set-
ting transitivity links but it may also happen at directed edges. The main rea-
son is that Kβ is expressed in terms of an undirected attributed graph given
by W even for non-attributed strongly connected and aperiodic digraphs.

4 Heat Flow - Thermodynamic Depth Complexity

The application of thermodynamic depth (TD) to characterize the complexity
of directed graphs demands the formal specification of the micro-states whose
history leads to the macro-state (of the network). Here we define such micro-
states in terms of expansion subgraphs.

Let G = (V,E) with |V | = n. Then the directed history of a node i ∈ V
is hi(G) = {e(i), e2(i)), . . . , ep(i)} where: e(i) ⊆ G is the first-order expansion
subgraph given by i and all j : i → j. If there are nodes j also satisfying j → i
then these edges are included. If node i is a sink then e(i) = i. Similarly e2(i) =
e(e(i)) ⊆ G is the second-order expansion consisting on j → z : j ∈ Ve(i), z �∈
Ve(i), including also z → j if these edges exists and j → z. This process continues
until p cannot be increased. If G is strongly connected ep(i) = G, otherwise ep(i)
is the strongly connected component to which i belongs.

Every hi(G) defines a different causal trajectory which may lead to G it-
self, if it is strongly connected, or to one of its strongly connected components
otherwise. Thus, in terms of TD the full graph G or the union of its strongly
connected components is the macro-state (macroscopic state). The depth of such
macro-states relies on the variability of the causal trajectories leading to them.
The higher the variability, the more complex it is to explain how the macro-
state is reached and the deeper is this state. Therefore, in order to characterize
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each trajectory we combine the heat flow complexities of its expansion sub-
graphs by means of defining minimal enclosing Bregman balls (MEBB) [18].
Here we use the I-Kullback-Leibler (I-KL) Bregman divergence between traces

f and g: DF (f ||g) =
∑d

i=1 fi log
fi
gi
−
∑d

i=1 fi +
∑d

i=1 gi with convex generator

F (f) =
∑d

i=1(fi log fi − fi).
Given hi(G), the heat flow complexity f t = f(et(i)) for the t − th expan-

sion of i, a generator F and a Bregman divergence DF , the causal trajectory
leading to G (or one of its strongly connected components) from i is charac-
terized by the center ci ∈ Rd and radius ri ∈ R of the MEBB Bci,ri = {f t ∈
X : DF (ci||f t) ≤ ri}.Solving for the center and radius implies finding c∗ and
r∗ minimizing r subject to DF (ci||f t) ≤ r ∀t ∈ X with |X | = T . Considering

the Lagrange multipliers αt we have that c∗ = ∇−1F (
∑T

t=1 αtf t∇F (f t)). The
efficient algorithm in [18] estimates both the center and multipliers. This idea is
closely related to Core Vector Machines [19], and it is interesting to focus on the
non-zero multipliers (and their support vectors) used to compute the optimal
radius. More precisely, the multipliers define a convex combination and we have
αt ∝ DF (c

∗||f t), and the radius is simply chosen as: r∗ = maxαt>0DF (c
∗||f t).

Given the directed graph G = (V,E), with |V | = n and all the n pairs
(ci, ri), the heat flow-thermodynamic depth complexity of G is characterized by
the MEBB Bc,r = {ct ∈ Xi : DF (c||ci) ≤ r}. As a result, the TD depth of the
directed graph is given by D(G) = r. This definition of depth is highly consistent
with summarizing node histories with second-order variability operators to find
a global causal trajectory which is as tightly bounded as possible.

5 Experiments: Analysis of Language Complexity

We analyse networks extracted from the adjacency of words for different lan-
guages. We used a subset of the parallel corpora published in the Official Jour-
nal of the European Union. We used 100,000 lines of text from each language,
all of them corresponding to the same text (human translation). The languages
included in this study are: Bulgarian (BG), Czech (CS), Danish (DA), German
(DE), Greek (EL), English (EN), Spanish (ES), Estonian (ET), Finnish (FI),
French (FR), Hungarian (HU), Italian (IT), Lithuanian (LT), Latvian (LV),
Maltese (MT), Dutch (NL), Polish (PL), Portuguese (PT), Slovak (SK), Slovene
(SL) and Swedish (SV).

The directed adjacency graph represent words which appear consecutively in
a text. We take the words as they appear in the text (surface form) and not
only their lemmas. In this way we retain morphology, which imposes different
restrictions in each language. In the graphs we construct the edges commencing
from each node (word) Vi connect to the words which follow Vi. Thus a language
with no restrictions is represented by a fully connected graph. We also take into
account the frequency of each connection occurring in the corpus, and we store
this information as attributes for the directed edges. This means that we give
a greater importance to those adjacencies between words which are used more
frequently (in the corpus). Although we do not store the frequency of each word
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Fig. 1. Left: Log-log plot of the degree distribution of three languages (MT, FR, ES).
The remaining languages are represented as well. All distributions behave in a similar
way. We found no significant difference between the degree distributions of different
languages. Right: The coverage measures the amount of text covered by the n most
frequent surface forms.

in the graph representation we do use it for selecting the n most frequent words
which constitute the nodes Vi.

In Fig. 1-left we show that the classical analysis based on the degree distri-
bution is blind to differences of complexities between languages (all languages
follow a similar degree distribution). In Fig. 1-right we compare the thermo-
dynamic depth for different languages and show the amount of text that was
covered by the graph of each language. Each of the graphs have n = 500 nodes
which correspond to the n most frequent surface forms. These n surfaces cover
part of the corpus of the language and the remainder of the surfaces in the corpus
are not represented by the graph because of their lower frequency. We may take
as a baseline for the complexity of a language the coverage ratio of n surface
forms. An intuitive explanation is that if all the languages had a similar number
of different lemmas in the parallel corpora, then the number of different surface
forms would depend on the morphology of each language. A simpler morphology
would enable the n surfaces to cover a larger amount of text than that covered
by a rich morphology. This baseline does not capture all the subtle complexities
of the network formed by the adjacency relation between words. The bar plot
shows that there are some languages which do have the same tendencies both
for thermodynamic depth and coverage. This is not the case of FR and MT.

6 Conclusions and Future Work

In this work we extend the heat-diffusion TD initially designed for unattributed
undirected graphs to digraphs. We analyze the Laplacian operator used to that
end and the consequences of using it to compute the heat flow. We enunciate
several properties of heat diffusion traces in digraphs. In our experiments we
compute the complexity of several languages and find differences that are blind
to degree distribution analysis. Our future work includes the formal proof of the
properties and the exploration of other graph-based representations of languages.
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CNRS UMR 7279 - LIF

francois-xavier.dupe@lif.univ-mrs.fr
3 ENSICAEN

GREYC CNRS UMR 6072
{luc.brun,myriam.brun}@ensicaen.fr

Abstract. Several shape similarity measures, based on shape skeletons,
are designed in the context of graph kernels. State-of-the-art kernels act
on bags of walks, paths or trails which decompose the skeleton graph,
and take into account structural noise through edition mechanisms. How-
ever, these approaches fail to capture the complexity of junctions inside
skeleton graphs due to the linearity of the patterns. To overcome this
drawback, tree patterns embedded in the plane have been proposed to
decompose the skeleton graphs. In this paper, we reinforce the behaviour
of kernel based on tree patterns by explictly incorporating an edition
mechanism adapted to tree patterns.

Keywords: shape similarity, kernel methods, tree patterns, edition.

1 Introduction

Several 2D shape representations and signatures have been proposed as a basis
of shape recognition and classification, in particular the medial axis (or skeleton)
and the associated medial axis transform. Indeed, the medial axis is a geometric
graph homotopic to the shape and the medial axis transform allows to recon-
struct the shape. However, the medial axis does not highlight enough the local
shape properties needed for shape comparison, especially for the design of simi-
larity measures. To overcome this drawback, suitable local shape properties are
attached to the elements of the graph encoding the skeleton, leading to graph-
based similarity measures.

Graph comparison can be performed by various methods, for example, graph
edit distance and graph matching algorithms [1] form a first family. However,
they are defined in graph space which almost contains no mathematical struc-
ture, thus prohibiting the use of many common tools. One solution is to project
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graphs into a richer (or more flexible) space. Such a projection can be done
through graph kernels. With appropriately defined kernels, graphs can be im-
plicitly (sometimes explicitly) mapped into a vector space whose dot product
corresponds to the kernel. Most of graph kernels rely on graph decomposition
into walks, paths or trails [2–5]. However, these patterns fail to capture the com-
plexity of junctions inside graphs, and so the branching points of the skeletons.
One solution has been proposed in the chemioinformatics framework, where sev-
eral graph kernels based on nonlinear patterns have been proposed. These pat-
terns include unlabeled subgraphs [6], tree patterns [7], i.e. trees where a node
can appear more than once, and subtrees of limited size [8]. Following [8], we
have recently proposed a kernel based on a decomposition of skeletons into bags
of subtrees embedded in the plane [9]. While this kernel provides good classi-
fication results compared to more sophisticated ones, it does not include any
mechanism that would allow to be robust to spurious branches inside skeletons.

As the skeleton is very sensitive to small variations of the shape boundary
(noise or small elongations), spurious nodes and edges (structural noise) are
present inside its graph structure. In order to tackle such problems, an edition
mechanism has been proposed for kernels based on bags of paths [4, 5]. Given a
pertinence measure of each egde and node, the idea is to compute for each path,
a sequence of reduced paths by successively removing their less pertinent part.
Then, the resulting graph kernels are based on hierarchical comparisons between
features attached to the elements of the rewritten paths.

This paper presents an extension of the treelet kernel proposed in [9] by in-
corporating an edition mechanism inspired by [4, 5]. First we recall our shape
representation, which is based on a combinatorial map encoding of the skeleton,
allowing to explicitly take into account its embedding in the plane (Section 2).
Based on this encoding, we describe our extension of the treelet kernel which
improves its robustness against structural noise (Section 3). Finally, several ex-
periments are proposed in order to evaluate the performance of the resulting
kernel and to measure the performances of our edition mechanism (Section 4).

2 Shape Representation

Usual graph-based encoding of the skeleton of a 2D shape do not take into ac-
count its planar properties, and thus remain invariant for any permutation of
adjacent branches. To overcome this drawback, the skeleton can be encoded by
a 2D combinatorial map [9]. Such a model may be understood as an encoding
of a planar graph taking explicitly into account the orientation of the plane.

Combinatorial Map Encoding. As illustrated by Fig.1(b), a 2D combinato-
rial map (e.g. [10]) is defined by the triplet M =(D, σ, α), where D corresponds
to the set of darts (or half-edges) obtained by decomposing each edge into two
darts, σ :D→D is a permutation whose cycles correspond to the sequence of
darts encountered when turning counter-clockwise around each node. Note that
permutation σ explicitly encodes the orientation of edges around each node. Fi-
nally, α :D→D is a fixed point free involution whose cycles correspond to pairs
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Fig. 1. Skeleton encoding: σ=(−1)(1 2 3)(−2)(−3), α=(1 − 1)(2 − 2)(3 − 3)

of darts, each pair corresponding to an edge. The encoding of a skeleton by such
a map is performed by representing each branch by two darts defining one edge
(a cycle of α). The orientation of branches, around branching points, is explictly
encoded by the cycles of permutation σ.

The kernel between two shapes, described in Section 3, is based on the de-
composition of their associated combinatorial maps into submaps having a tree
structure. The identification of similar submaps relies on the computation of the
symmetry group between submaps. The symmetry group Sym(M1,M2) from
a map M1 =(D1, σ1, α1) to a map M2 =(D2, σ2, α2) defines the set of bijec-
tions ψ :M1→M2 that align the edges of M1 onto the edges of M2, while
preserving or reversing their orientation around the nodes. Such bijections de-
scribe both rotational and mirror symmetries needed to align the two maps.
They satisfy the following relations: (i) ψ ◦α1 =α2 ◦ψ, and (ii) ψ ◦σ1 =σ2 ◦ψ or
(iii) ψ ◦σ1 =σ−1

2 ◦ψ. Relations (i) and (ii) correspond to a rotational symmetry,
in which case ψ is a map isomorphism [11]. Relations (i) and (iii) correspond to
a mirror symmetry and ψ is considered as a reflection [9, 12]. If M1 =M2 =M ,
then the symmetry group Sym(M1,M2) is equal to the set of permutations
ψ :M→M which satisfy (i), and (ii) or (iii). This set is respectively composed
of the automorphism group of M , noted Aut(M), and the automorphism group
of the trivial mirror symmetric of M 1, noted AutR(M) [9]. These two groups
can be computed by Cori’s algorithm (see [11, 12] for more details).

Shape Features. In order to attach features to a combinatorial map encoding
a skeleton, we define a set of node and edge labels (V and E), each node and
edge label being respectively associated to a single cycle σ and α of the map [10].
We use mainly the same shape features as [9]. Let fE =(fE,i(e))i be the features
attached to each edge of E, and fV =(fV,i(v))i the ones attached to each node.

Following [3, 5], a first edge feature corrresponds to the 4 polynomial coeffi-
cients of a regression polynomial of order 4 that modelize the evolution of the
radius (of the inscribed disk) along the branch. The second edge feature asso-
ciates the length of the shape boundary which contributes to the creation of
the branch, normalized by the total length of the shape boundary in order to be
invariant to scaling (see [5] for more details). This measure, defined as a function
w :E→R+, may thus be understood both as a relevant feature of an edge and
as a measure of its relevance according to the shape.

1 The trivial mirror symmetric of M is the map M ′ =(D, σ−1, α) constructed by
reversing the orientation of the darts around nodes (see Fig.1(c)).
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Fig. 2. The set T of tree patterns

Regarding nodes of V , the first feature corresponds to the sum of the rel-
evances of its incident edges. The second feature associates to each node its
Euclidean distance to the gravity center of the shape, normalized by the square
root of the shape area in order to be invariant to scaling.

3 Shape Similarity

Based on the previous combinatorial map representation, similarity between two
shapes relies on a decomposition of each map into a bag of subtrees [9], and on
a hierarchical kernel between these subtrees in order to be robust to structural
noise. This kernel replaces the edition mechanisms proposed in [5] in the context
of subtrees.

3.1 Bag of Treelets

Given a shape represented by a combinatorial map M , and features attached
to its nodes and edges, M is transformed into a bag of submaps having a tree
structure. Each submap, together with its corresponding features, represent a
part of the shape. Following [8, 9], the enumeration of the submaps is restricted
to unlabeled and unrooted trees having between 2 and 6 nodes. As illustrated by
Fig. 2, these trees of limited size form a dictionary of 13 tree patterns, denoted by
T= {Tp}p=2,...,13. The choice of the bounds on the number of nodes corresponds
to a compromise between the expressiveness of the resulting bag and the time
required to enumerate predefined subtrees.

An instance t of a tree pattern of T in M is called a treelet. It is represented
as a 5-uplet (V,E, fV , fE , w), where fV and fE denote the features associated
to the part of the shape described by t, and w(t)=

∑
e∈E(t) w(e) represents

its relevance according to the shape (the normalized boundary length induced
by the edges of t). In practice, a treelet can be encoded by the index p of the
corresponding tree pattern Tp ∈T, and an injection from edges of Tp to edges of
M . The extraction of all the treelets fromM can be performed by an enumeration
process similar to the one proposed by [8]. The only difference is the preservation
of the orientation of edges around each node.
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3.2 Kernel between Bags of Treelets

Let B and B′ denote two bags of treelets extracted from combinatorial maps
M and M ′ respectively. Inspired by marginalized kernels [2], we have proposed
in [9] a kernel defined as a weighted sum of minor kernels between all pairs of
treelets of (B×B′) \ {(t, t′)∈B×B′ : |V (t)|= |V (t′)|=2} (we do not consider
treelets isomorphic to tree pattern T1):

KT(M,M ′) = 1
|B||B′|

∑
t∈B

∑
t′∈B′

λB(t)λB′ (t′)K(t, t′). (1)

Kernel K corresponds to a minor kernel between treelets (see the following sec-
tions). The function λB :B→R+ represents the relevance of each treelet rela-
tively to its bag, which is defined by λB(t)=w(t)/maxt′∈B w(t

′). This weight
allows to reduce the influence of treelets encoding non relevant parts of a shape.

3.3 Treelet Kernel

Let t and t′ be two treelets representing parts of shapes. When they correspond
to the same tree pattern Tp ∈T (t and t′ are structurally isomorphic to Tp), they
can differ according to the features attached to their nodes and edges. Also,
depending on the tree pattern, several matches between the two treelets are
possible. In order to take into account both rotational and mirror symmetries of
the shapes, the set of mappings between t and t′ must preserve their orientations,
but also reverse their orientations. This set corresponds to the symmetry group
Sym(t, t′), which is equivalent to Aut(Tp)∪ AutR(Tp), and which can thus be
easily pre-computed for each tree pattern [12].

In order to measure the similarity between the treelets, we have proposed in
[9] a positive-definite kernel defined as the average of similarities between their
different matches derived from Sym(t, t′):

Ktreelet(t, t
′) =

⎧⎪⎨⎪⎩
1

| Sym(t,t′)|

∑
ψ∈Sym(t,t′)

Kψ(t, t
′) if Sym(t, t′) �= ∅,

0 else.

(2)

KernelKψ is defined as the product of the similarities between each pair of nodes
and each pair of edges provided by the mapping ψ : t→ t′:

Kψ(t, t
′) =
∏

v∈V (t)

KV (v, ψ(v))
∏

e∈E(t)

KE(e, ψ(e)),

where kernelKV (resp.KE) encodes the similarity between node’s features (resp.
edge’s feature). It is defined as a tensor product of Gaussian kernels between each
feature:

KA(a, a
′) =

nA∏
k=1

exp

(
− ‖fA,k(a)− fA,k(a

′)‖2

2σ2
k

)
,
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Fig. 3. Edition rules for the tree patterns of T. Arcs represent transitions between
treelets by either node suppression or edge contraction.

where A corresponds to V or E and a corresponds to a node v or an edge e.
Kernel KSym can be seen as an extension of kernels on paths, trails or walks
[2, 5] to trees embedded in the plane.

Experiments in [9] show the efficiency of treelet kernel Ktreelet. In particular,
the results are close to the one obtained by [5], which includes an edition pro-
cess to reduce structural noise and to enhance similarity between closely related
treelets. In the sequel, we extend this process to treelets in order to improve the
robustness of kernel KT.

3.4 Hierarchical Treelet Kernel

Since shape skeletons are sensitive to small deformations of the shape, the sim-
ilarity measure Ktreelet between two treelets can be affected by structural noise.
Also, two treelets not corresponding to the same tree pattern (Sym(t, t′)= ∅)
may be similar up to some node suppressions or edge contractions. Following
[5] in the case of paths, each treelet of a bag is transformed into a sequence of
smaller ones through an edition process. Since deformations of the shape can be
formalized by additions of nodes and edges, the two operations used to construct
the sequence of treelets are node suppression and edge contraction. Node sup-
pression corresponds to cut the parts of the shape connected to the treelet by
the node. Edge contraction corresponds to a contraction of the shape. Each edge
of the treelet is candidate to this operation. Node suppression is restricted to
nodes of degree 2. This operation is topologically equivalent to the contraction
of one of the two edges incident to the node. The set of possible rewritings of
treelets defines an acyclic graph on the set T of tree patterns (see Fig. 3).

Let t be a treelet with k nodes, structurally equivalent to a tree pattern Tp ∈T.
Depending on Tp, several nodes or edges can be suppressed or contracted in order
to obtain a treelet with k− 1 nodes. The operation which induces a minimal
distortion of the shape is retained. In order to encode this notion of distortion,
a cost is assigned to each operation. This cost corresponds to the boundary of
the part of the shape which is deleted: the relevance of the edge in the case
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Table 1. Matching on Kimia25 dataset

Method k=1 k=2 k=3

1 Edit distance [13] 23 19 18

2 SID [14] 23 21 20

3 KT with Ktreelet only restricted to paths [9] 24 22 21

4 Syntactic matching [15] 25 21 19

5 Shape Context [16] 25 24 22

6 KT with Ktreelet only [9] 25 24 22

7 ID-Shape Context [17] 25 24 25

8 KT with Kedit 25 25 24

of contraction, and the sum of relevances of the deleted edges in the case of
suppression (see [5] for more details). The retained operation is the one having
a minimal cost. Let κ be the application of this cheapest treelet edition, and let
κk be the application of k successive editions. Then, the similarity between two
treelets is measured by the kernel:

Kedit(t, t
′) =

mt∑
k=0

mt′∑
l=0

exp

(
− wk(t)+wl(t

′)

2σ2
edit

)
Ktreelet(κ

k(t), κl(t′))

wheremt is the number of editions needed to transform t into a treelet equivalent
to the tree pattern T1 (an edge), and wk(t) is the cost associated to each reduced
treelet operation κk(t), defined as the sum of the costs of the k editions. Each
feature associated to a reduced treelet is defined as a modification of the initial
features associated to t according to the deformation of the shape (see [5] for
more details).

Contrary to Ktreelet, Kedit allows to compare two treelets which are not equiv-
alent to a same tree pattern. Also, one can note that Kedit relies upon reacher
structures than its counterpart based on paths [5], and thus more candidate op-
erations need to be tested during the construction of the sequence of reduced
treelets. But the sequences can be easily pre-computed for each treelet during
the construction of the bags, as well as the associated features which have been
modified by the edition process. So the proposed extension does not affect the
computation of the kernel, and since the maximal number of editions is always
4, it is less time consuming than [5] (as long as the number of editions used in
[5] is more than 4).

4 Experiments

In order to illustrate the behaviour of the proposed kernel KT with the treelet
kernel Kedit, we have considered the same experiments as in [9], that is k-NN
matching and classification of the shapes of Kimia25 and Kimia99 datasets [14].
They contain respectively 25 and 99 discrete shapes, which are organized into 6
and 11 classes.
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Table 2. Classification accuracy

Method
Accuracy

Kimia25 Kimia99
k-NN Maha. k-NN Maha.

Edit distance [13] 0.89 0.84 0.927 0.907

Trails [5] 0.96 0.952 0.921 0.92

KT with Ktreelet only [9] 0.953 0.946 0.936 0.933

KT with Kedit 0.981 0.975 0.962 0.958

k-NN Matching. For each shape of Kimia25 dataset, its k=1, 2, 3 closest
shapes are computed according to a similarity measure, ours being defined by
kernel KT. Values displayed in Table 1 represent, for each value of k, the number
of closest shapes belonging to the same class than the input one. The parameters
of KT (the σk associated to each feature as well as σedit) have been optimized
through experiments in order to obtain the best global match. As shown by lines
3 and 6 of Table 1, the use of nonlinear patterns over linear ones improves the
efficiency of kernel KT. Line 8 shows the improvement obtained by incorporating
Kedit into KT. One can also remark that the proposed kernel provides a result
very close to the optimum, and slightly improves the one obtained by [17]. A sim-
ilar behaviour has been observed on Kimia99 dataset. Note that [17] proposed a
matching method which does not induce a definite positive similarity measure.
Such a drawback prevents [17] to readily combine its similarity measure with
complex numerical tools such as PCA or SVM.

Classification. The second experiment compares the proposed kernel KT with
two state-of-the-art kernels. For each method, the best kernel parameters have
been estimated with a cross-validation on a reduced training set of Kimia25
or Kimia99 datasets. Then, a k-fold cross-validation, based on a Mahalanobis
distance to each class and a k-NN, is computed to evaluate the efficiency of
the kernels (k=4 for Kimia25, and k=5 for Kimia99). The resulting accuracies
(number of true positive divided by the total number of shapes) are reported in
Table 2. Again, our kernel with edition outperforms our previous kernel based
on treelets, as well as the the one based on a Gaussian edit distance [13] and the
one provided by trail kernels [5]. Note that this last kernel also use convering
mechanisms to reduce the size of the bags.

5 Conclusion

To measure the similarity between 2D shapes, we have presented an extension of
the kernel based on a decomposition of skeleton graphs into treelets embedded
in the plane [9]. The extension, designed to take explicitly into account struc-
tural noise, relies on a hierarchical comparison of the treelets through an edition
mechanism. Experiments show that the proposed kernel improves the results
obtained with our previous kernel without edition mechanisms, as well as the
ones obtained by several state-of-the-art methods.
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5. Dupé, F.X., Brun, L.: Tree Covering within a Graph Kernel Framework for Shape
Classification. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS,
vol. 5716, pp. 278–287. Springer, Heidelberg (2009)

6. Shervashidze, N., Vishwanathan, S.V.N., Petri, T.H., Mehlhorn, K., Borgwardt,
K.M.: Efficient graphlet kernels for large graph comparison. In: Proc. of the 12th
Int. Conf. on Artificial Intelligence and Statistics, pp. 488–495 (2009)
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3D Shape Classification Using Commute Time

Muhammad Haseeb and Edwin R. Hancock�

Department of Computer Science, The University of York, UK

Abstract. This paper describes a commute-time based 3D shape descriptor that
is robust with respect to changes in pose and topology. A new and completely
unsupervised mesh segmentation algorithm is proposed, which is based on the
commute time embedding of the mesh and the k-means clustering using the em-
bedded mesh vertices. We use the discrete Laplace-Beltrami operator to construct
the graph Laplacian.

Keywords: 3D Mesh Clustering, Commute Time Embedding, Shape Descriptor.

1 Introduction

Despite significant efforts in the past 10 to 15 years, graph clustering and classifica-
tion remain an open challenge in the machine learning community. One of the most
promising approaches is to use spectral clustering methods which exploits graph repre-
sentations of the data and locate clusters by partitioning the graph that optimize an edge
cut criterion. Early spectral approaches recursively compute the normalized cut [1]
over the graph using the first non-zero Laplacian eigenvector (also known as the Fiedler
vector [2] and are referred to as spectral bi-partitioning (SB) methods. Unfortunately,
this does not guarantee good clusters as the normalized cut is computed recursively
irrespective of the global structure of the data [3]. Qiu and Hancock [4] have used
commute time for the purpose of image segmentation and show that the commute time
method outperforms the normalized cut.

Recently, the graph spectral methods defined in the context of clustering have been
applied to 3D shape processing. Here the discrete representation of 3D shape in the
computer is a mesh, or sometimes a point set. In this context, spectral invariants such
as the eigenfunctions of the Laplacian operator can be used for near-isometric shape
matching. For instance, Mateus et al. [5] used eigenmaps obtained by the first k eigen-
functions of the Laplace operator as low-dimensional Euclidean representations of non-
rigid shapes for the purpose of 3D point registration. Cuzzolin et al. [6] and Yamasaki et
al. [7] have performed segmentation for mesh sequences. However, the former method
computes only protrusions, while the latter uses an additional skeleton. In [6], the au-
thors use locally linear embedding (LLE) to represent a cloud of points and perform
segmentation in the LLE space. The segments obtained are then propagated across time
to obtain a temporally coherent segmentation of a voxel-sequence into protrusions of
the shape. The method works well for rigid body parts (such as head, hands and legs
etc), but cannot be used directly for identifying rigid body-parts (for example, separat-
ing the upper-arm from the lower-arm).
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Spectral methods can also be used to measure the similarity of 3D shapes. For in-
stance, diffusion geometry methods were used to define low dimensional representa-
tions for manifolds. Rustamov [8] has suggested using the eigendecomposition of the
Laplace-Beltrami operator to construct an isometric invariant surface representation,
aiming to measure similarity between non-rigid shapes, rather than for correspondence
detection. The Global Point Signature (GPS) suggested by Rustamov [8] for shape
comparison employs the discrete Laplace-Beltrami operator, which globally captures
the shapes geometry. The Laplace-Beltrami operator was later employed by many other
researchers. For instance, Sun et al. [9] defined a point signature based on the proper-
ties of the heat diffusion process on a shape, referred to as the Heat Kernel Signature
(HKS). HKS is obtained by restricting the well-known heat kernel to the temporal do-
main. Ovsjanikov et al. [10] employed a heat diffusion process to construct the Heat
Kernel Maps for the shape matching. Castellani et al. [11] have extended Heat Kernel
Signature (HKS). The local heat kernel values observed at each point are accumulated
into a histogram for a fixed number of scales leading to the so-called Global Heat Kernel
Signature (GHKS).

In this paper we construct a novel 3D shape distribution for the purpose of 3D object
classification. The method commence from a modification of the 3D shape distribution
reported in [12]. Firstly, instead of using Euclidean distances between pair of points on
the shape, we use commute time distance computed from the eigenvalues and the eigen-
functions of the Laplace-Beltrami operator. Secondly we put a restriction on the pair of
points being selected more than once. The empirical results show that the distribution
computed using our method gives a better shape signature than [12] and [8].

2 Commmute Time

In this section, we briefly review how to compute the commute time and describe the re-
lationships to the graph Laplacian. Commute time is the time taken by a random walker
on a graph walking from a node u to node v and then back to node u. The commute
time can be computed from the Laplacian spectrum as it has a close relationship with
the graph Laplacian and heat kernel.

Consider a weighted graph by the triple Γ = (V,E,Ω), where V is the set of nodes,
E ⊆ V × V is the set of edges, and Ω is the weighted adjacency matrix.

Ω(u, v) =

{
w(u, v) if (u, v) ∈ E
0 otherwise

wherew(u, v) is the weight on the edge (u, v) ∈ E. Furthermore, let T = diag(du;u ∈
V ) be the diagonal weighted degree matrix with elements given by the degrees of the
nodes, du =

∑|V |
v=1 w(u, v). The unnormalized weighted Laplacian matrix is given

by L = T − Ω and the normalized weighted Laplacian matrix is defined to be L =
T−1/2LT−1/2 and has elements

L(u, v) =

⎧⎪⎨⎪⎩
1 if u = v

−w(u,v)√
dudv

if u �= v and (u, v) ∈ E
0 otherwise
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The spectral decomposition of the normalized Laplacian is L = ΦΛΦT where Λ =
diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigenvalues as the ele-
ments satisfying the condition 0 = λ1 ≤ λ2 ≤ ...,≤ λ|V | and Φ = (φ1|φ2|...|φ|V |) is
the matrix with the ordered eigenvectors as columns.

The hitting time O(u, v) of a random walk on a graph is defined as the expected
number of steps before node v is visited, commencing from node u. The commute time
CT (u, v), on the other hand, is the expected time for the random walk to travel from
node u to reach node v and then return. As a result CT (u, v) = O(u, v) + O(v, u).
In terms of the eigenvectors of the normalized Laplacian the commute time matrix is
given by

CT (u, v) = vol

|V |∑
i=2

1

λi

(
φi(u)√
du
− φi(v)√

dv

)2
(1)

where vol =
∑

v∈V dv is the volume of the graph.
The commute time embedding is a mapping from the data space into a Hilbert sub-

space, which preserves the original commutes times. It has some properties similar to
existing embedding methods including principal component analysis [13] (PCA), the
Laplacian eigenmap [3] and the diffusion map [14]. The embedding of the nodes of
the graph into a vector space that preserves commute time has the co-ordinate matrix

Θ =
√
volΛ−1/2ΦTT−1/2 (2)

The columns of the matrix are vectors of embedding co-ordinates for the nodes of the
graph.

3 Laplace-Beltrami Operator

Let f be a real valued funtion defined on a differentiable manifoldM with Rieman-
nian metric. The LaplaceBeltrami operator, like the Laplacian, is the divergence of the
gradient of f i.e.

Δf = div(grad(f)) (3)

where grad and div are the gradient and divergence on the manifold respectively. The
Laplace-Beltrami operator is a semi-positive definite operator. Most of the techniques
[8] [15] for characterizing points on non rigid 3D shapes use the eingenpairs of the
Laplace-Beltrami operator. The combinatorial Laplacian is suitable for the meshes
and its does not contain much information about the shape. The discrete Laplacian
or Laplace-Beltrami operator captures the geometric and topological properties of the
surface. There are many schemes proposed to construct the discrete Laplacian that es-
timates the Laplace-Beltrami operator. Majority of them use the method of cotagents.
However, the method described by Destrun et al. [16] and Meyer at al. [15] are more
stable than the others. Xu [17] modified the method proposed by Meyer et al. This mod-
ification gives better convergence properties. In this paper we will follow Xu’s method
to construct the discrete Laplacian (Laplace-Beltrami operator).
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3.1 The Generalized Eigenvalue Problem

For a function f defined on the surface, the Laplacian Δf is approximated as

Δf ≈ 1

si

∑
j∈N(i)

wij [f(pj)− f(pi)]

where N(i) are the neighbors for the vertex pi and wij is the weight assigned to the
edge between point pi and pj . The above formula can be written as Δf ≈ Lf . Here L
is the discrete Laplacian matrix. The weight wij of the edge is given by

wi,j =
cotαij + cotβij

2
(4)

The angles appearing in this formula i.e. αij and βij are shown in the figure 1. The area
si is also shown as the shaded region in the same figure. We compute the Laplacian,
which has the entries as follows

L(i, j) =

⎧⎪⎨⎪⎩
∑

k w(i, k)/si if i = j

−w(i, j)/si if i and j are adjacent

0 otherwise

The standard eigenvalue problem for L is Lφ = λφ, where λ is the eigenvalue of L and
φ is the corresponding eigenvector. The area si at each vertex is computed as

si =
cotαij + cotβij

8
||pi − pj||2 (5)

Since the areas si computed at the vertices of the mesh are different, hence, the discrete
Laplacian matrix L computed is not symmetric. This may cause the eigenvalues and
eigenfunction to be complex. Therefore, we solve the generalized eigenvalue problem.
Let S be the diagonal matrix with entries Sii = si and Wij = wij be the symmetric
weight matrix. Since L = S−1W , therefore, we can rewrite the equation Lφ = λφ as
S−1Wφ = λφ or

Wφ = λSφ (6)

p
i

p
j

β ij

α ij

Fig. 1. Definitions of the angles and the area appearing in the discrete Laplace-Beltrami operator
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Once we have the eigenvalues and eigenfunction of L to hand, we can compute the
commute time matrix using the equation 1. Where we replace the degree of the nodes
(i.e. du and dv) by the area associated with the vertices (i.e. si. and sj respectively). We
replace the vol in the original equation by

∑
i si.

4 Shape Classification Using Commute Time

The commute time embedding gives a deformation independent embedding of a 3D
shape into a high dimensional space. In this paper, we compute a shape descriptor from
the commute time embedding. We use Laplace-Beltrami operator detailed in Section 3
to estimate the Laplacian of the shape. From the eigenvalues and eigenvectors of the
Laplacian obtained, we compute the commute time matrix using the procedure given
in Section 2. We use a modification of D2 distributions introduced in [12]. D2 distri-
bution is essentially, the histogram of pairwise Euclidean distance between the points
uniformly sampled from the surface. To compute our new shape descriptor, we use the
commute time distance instead of the Euclidean distance. We also restrict a pair of point
from being sampled more than once.

5 Experimental Results

In this section, we provide some experimental investigations. We focus on the use of
commute time embedding of 3D shapes in two different settings. The first is an investi-
gation of using the the commute time embedding for the purpose of partitioning the 3D
shape into its parts. The second investigation is about using the modified shape distri-
bution of Osada et al [12] computed by employing the commute time distance instead
of the Euclidean distance.

In our first experiment we use the commute time embedding coordinates computed
using equation 2 to partition six deformations of a human body selected from the
Nonrigid world 3D database [18] shown in figure 2. The database contains a total of
148 objects, including 9 cats, 11 dogs, 3 wolves, 17 horses, 15 lions, 21 gorillas, 1 shark,
24 female figures, and two different male figures, containing 15 and 20 poses. The
database also contains 6 centaurs, and 6 seahorses for partial similarity experiments.

Fig. 2. The k-means clustering on the Commute Time coordinates results in segmentation of six
deformations of a 3D shape
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Fig. 3. The histogram for the six 3D shapes shown in figure 2. a) The commute time histogram
b) The Euclidean histogram.

Each object contains approximately 3500 vertices. Figure 2 shows the result of the 3D
shape, pose invariant segmentation using the k-means clustering on the commute time
coordinates.

In the second experiment, we construct the shape distribution for different six dif-
ferent deformations of each of the three 3D shapes shown in figure 4(a). Figure 3(a)
shows the shape descriptors for the six deformations using commute times. The shape
descriptors for the same six deformations using Euclidean distances are shown in figure
3(b). This shows that the shape descriptor computed using commute time is more ro-
bust to shape deformations. We find the distance between each pair of the distributions
using Bhattacharyya distance [19]. We project the distance matrix into vector space us-
ing classical multi-dimensional scaling (MDS). Figure 4 shows that the commute time
shape distribution clusters similar shapes better than the Euclidean shape distribution.

For the final experiment we use the Watertight Benchmark which contains 400 closed
surface shapes, grouped into 20 classes with 20 shapes each. We query every shape
in the benchmark against all the other shapes. We compute three retrieval statics i.e.
nearest first tier (FT), second tier (ST) and nearest neighbor (NN) for Osada’s D2, Ras-
tamov’s GPS, Rastamov’s Volumetric Shape Descripor (VSD) and the commute time.
The shape retrieval results of the experiment are summarized in the table 1 which
suggest that the commute time gives a better shape signature.

Table 1. Shape retrieval statistics

Descriptor FT ST NN

Osada’s D2 49.2% 67.8% 71.5%
Rustamov’s GPS 46.3% 58.0% 79.1%
Rustamov’s VSD [20] 48.7% 62.0% 81.3%
Commute Time 49.7% 69.2% 86.7%
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Fig. 4. a) Three shapes used in clustering experiment (six deformations of each shape are used).
b) The classical MDS projection of the shape similarities as computed using the commute time
distributions. c) The classical MDS projection of the shape similarities as computed using the D2
distributions.

6 Conclusions

In this paper we have investigated how the commute time between the vertices on mesh
can be used to partition the 3D shape. We also used commute time distance to construct
the 3D shape distribution for the purpose of 3D shape clustering and 3D shape classifi-
cation. The empirical results show that commute time is a better choice for shape clas-
sification problem. In future we would like to extend our shape descriptor by employing
the geodesic distances between each pair of vertices.
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Abstract. Developing a complex region detection algorithm that is aware of its 
contextual relations with several classes necessitates statistical frameworks that 
can encode contextual relations rather than simple rule-based applications or 
heuristics. In this study, we present a conditional random field (CRF) model that 
is generated over the results of a robust local discriminative classifier in order to 
reveal contextual relations of complex objects and land use/land cover (LULC) 
classes. The proposed CRF model encodes the contextual relation between the 
LULC classes and complex regions (airfields) as well as updates labels of the 
discriminative classifier and labels the complex region in a unified framework. 
The significance of the developed model is that it does not need any explicit pa-
rameters and/or thresholds along with heuristics or expert rules. 

Keywords: conditional random fields, land use/land cover, complex region 
de-tection, satellite imagery. 

1 Introduction 

Visual patterns and object occurrences in remote sensing images exhibit high intra-
class variance, meaning that two or more instances of the same object or object 
groups may look coercively different. For example, two airfields may have entirely 
different color structures, composing roads, shapes, sizes and configurations of their 
sub-parts (e.g. one may have just one, crossing, parallel runway(s) having hammer 
shaped, circular, polygonal dispersal areas and located in sandy, snowy, coastal or 
urban terrain). Occasionally these objects and object groups may even look more 
similar to instances within other classes that to instances within their own class, e.g. 
circular oil tanks of a refinery and circular dispersal area of a military airfield.  

Contextual models are significantly useful in order to handle the huge variability 
within classes in the image because of their expressive representations. By forming a 
contextual framework, any object can be accurately classified not only by considering 
its low-level vision features but also its local context (spatial relations) over a proba-
bilistic graphical model. Figure 1 illustrates some real world examples that exhibit 
high intra-class variance.  

                                                           
* Corresponding author. 



 CRF for LULC Classification and Complex Region Detection 217 

 

Fig. 1. Examples of airfields from satellite images. Despite the high variance in color, texture, 
deployment terrain and composition, we can still recognize them as remotely sensed views of 
airfields. 

The ability to recognize such complex objects comes from both appearance cues of 
the object itself and contextual relations of the complex objects with their 
surroundings. These contextual relations can be defined as co-occurrence frequency 
of other classes in a predefined neighborhood of the complex object. For instance, if 
the complex object in consideration is an airfield, we would expect urban, vegetation, 
water existence nearby to be less than a certain ratio. This information comes either 
from domain knowledge or by explicit observations. However, deciding this ratio by a 
static threshold is not desirable, since less likely configurations are not allowed at all. 
As in the case of urban areas in the surrounding of an airfield, we may set a 20% 
urban co-occurrence threshold in a 300-meters neighborhood by domain knowledge. 
Yet, Figure 1 demonstrates cases contradicting with such a threshold. Hence rather 
than determining crisp thresholds for the recognition task of a complex object, 
constructing a probabilistic model is much more flexible and suitable.  

Probabilistic graphical models are the state-of-art approach for modeling 
contextual relations between semantic classes [1] and have many applications in 
remote sensing [2-3]. Since labels in spatial data are not independent as well as 
observations, assumptions on data being “independent and identically distributed” 
(i.i.d.) is violated by using traditional classifiers. Therefore such classifiers may 
produce undesirable results when applied to such data.  

This problem motivates the use of Markov Random Fields (MRFs) and more re-
cently Conditional Random Fields (CRFs) for spatial data. In the proposed approach, 
contextual relations between a complex object and its surroundings, which is charac-
terized by LULC classes, are modeled within a CRF framework. The major 
contribution of the proposed model is that a random field is constructed over semantic 
classes rather than pixels or super-pixels as in the literature. Our model aims to 
correctly identify the complex object by recognizing the co-occurrence pattern of all 
other classes in its surrounding as well as updating previously assigned class labels 
which can be obtained by any kind of classification method.  
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The rest of this paper is organized as follows: In section 2, recent motivating stud-
ies in the field of probabilistic graphical models are stated, followed by section 3, the 
adopted methods are explained. In section 4, proposed algorithm is introduced and in 
section 5 dataset and experiments are described. Finally in section 6 some conclusion 
remarks and future work are given. 

2 Recent Studies 

Studies modeling spatial structures vary both in their representations used to encode 
the spatial information and their approaches for learning. Inference on the generated 
graphical models depends on the model selection in the studies and may be thought as 
a representation dependent step.  

One of the pioneering studies employs both contextual and hierarchical representa-
tions with a relationship learning process and Bayesian inference algorithm is pro-
posed by Porway et. al [4]. Their approach presents a grammar-based hierarchical and 
contextual model for object recognition. This grammar-based model combines a sto-
chastic context free grammar (SCFG) [5] with a Markov Random Field (MRF) to 
capture both local and global context and combines bottom-up information with top-
down knowledge. They represent the frequency of occurrence and type of object parts 
with a SCFG and model the spatial and appearance relationships between them using 
MRFs, thus create a constrained grammar that can represent a huge number of in-
stances for a single category. Another contribution of this study is that, this contextual 
and hierarchical model learns statistical constraints on the appearances and relation-
ships between different parts of the image classes with a minimax entropy framework 
[6]. This framework selects the set of contextual relationships necessary for modeling 
the object class; begins with a large set of relationships that could potentially exist 
between parts, then iteratively selects only those relationships that help the model best 
match true statistics for that image class. They separated hierarchy into two sets for 
objects and scene which enables to plug-in any object detection algorithm for bottom-
up detection procedure. They employed compositional boosting [7] for some specific 
bottom-up proposals. 

In [8], a region and object based model for object-detection is proposed through a 
hierarchy of CRFs. In the bottom level, a CRF is comprised of pixels as probabilistic 
graphical model nodes and features are extracted in pixel level accordingly, a unified 
energy function made it possible to incorporate bottom-middle and top level random 
fields. In the middle level, segments are formed as the model nodes and contextual 
relations between segments are revealed with region statistics. Finally as the top-most 
level of the proposed hierarchical graphical model, segments and objects are 
connected to each other and contextual relations between objects are tried to be 
extracted from positional relations of the objects both considering segment level 
interactions at once. The model employed for this graphical model is a conditional 
MRF (CRF) that is trained by labeled images from both levels with logistic regression 
and inference is conducted by use of hill-climbing.  
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Jiang et.al. propose a context based concept fusion model for semantic concept de-
tection [9]. In this study, posterior probabilities for several classifiers are fed to a CRF 
model for generating updated posterior probabilities through a fully-connected CRF 
where each node represents a concept. This corresponds to class labels in our case.  

Lee et.al. propose a model, namely support vector random fields (SVRF), which 
combines the ability of CRFs to model different types of spatial dependencies and the 
appealing generalization properties of support vector machines (SVMs) [10]. Their 
approach employs an observation-matching potential by changing the association 
potential in CRF model. Therefore they combined the discriminative classification 
power of SVMs with spatial context encoding power of CRFs. 

3 Methods Adopted 

SVM is a supervised classification approach which makes use of kernels (mapping 
functions) and sparsity [11]. By the help of kernels, samples in n-dimensional space 
are carried to a higher dimensional Hilbert space, therefore samples become linearly 
separable by a hyper plane. In this model a hyper plane that separates nearest samples 
from different classes with maximum margin is selected and named as support vec-
tors. Tolerance and cost parameters can be used to allow or penalize outliers. SVM is 
also known as max-margin classifier.  

As stated previously, spatial relations between neighboring pairs can be modeled by 
MRFs and CRFs. More specifically, the class labels can be assigned by maximum a 
posterior (MAP) estimation in image classification task as | . 
This can be interpreted as CRF framework that models directly the posterior 
probability of labels given the observed data. Consequently, besides the contextual in-
formation in labels, the CRF framework has ability to capture the contextual infor-
mation in observed data.  

The discriminative CRF framework considers Markovian property of  condi-
tioned on  and directly models the posterior as a Gibbs distribution with the follow-
ing form: | ,  1 exp , ,     (1) 

where  ∑ exp ∑ , ,  is partition function (normalization con-
stant),  is potential defined on clique  with parameters ,  is set of cliques, and 

 is set of labels over clique . Then the pair-wise CRF models can be written as 

| ,  1 exp , , φ y , y , x, v  (2)

where  is the set of neighbors of site ,  and  are the unary and pair-wise 
clique potentials with parameters  and , respectively, then  denotes the parame-
ter set , . The unary potential  represents the association of a single site to 
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semantic labels, whereas pair-wise potentials  can be seen as a measure of how the 
labels at neighboring sites at i and j should interact given image . In fact, the unary 
and pair-wise potentials in CRF should be designed as discriminative as possible 
according to the domain it is applied to. 

In our approach, we construct a fully connected random field over classes similar to 
concepts proposed by Jiang et.al. SVM is an intermediate step to assign class labels to 
segments. We could have applied other methods here, but preferred SVM due to its high 
performance. With this step, initial class map for LULC classes is obtained and they are 
then updated in the proposed CRF model according to context of the complex object.  

4 Proposed Algorithm 

In this study, airports are chosen as the complex regions and water, forest, green-
land, urban, concrete, soil as LULC classes. The most significant cue of an airfield is 
the existence of runway(s), which consists of basically long straight parallel lines. We 
propose an algorithm for categorization of Parallel Line Bounded Regions (PLBR) 
which is stated as a strong indicator and invariant of airfields in highly variant contex-
tual environments [12]. In the proposed algorithm, context information of airfields is 
formulated over LULC classes. Proposed model is also for updating labels assigned to 
LULC classes in the means of airport context.  

Proposed model is a fully-connected conditional random field which can be seen in 
Figure 2. Fully-connected graphical model is selected in order to reveal contextual 
relations between all classes and their mutual influence. 

 

Fig. 2. Proposed CRF model, which is a fully connected graph aiming to capture all possible 
pairwise relations between semantic categories 

Figure 3 illustrates workflow of the proposed algorithm. In the proposed algorithm, 
the first step is the preprocessing step in which segmentation of the input image via the 
mean-shift algorithm [13] and PLBRs extraction. The PLBRs are extracted by finding 
the line segments [14] on the steerable-filter [15] response of the image first and then 
extracting the parallel ones. Note that PLBRs are treated as regular seg-ments.  

Pre-processing step is followed by a feature extraction step. For each segment, fea-tures 
are extracted as illustrated in Figure 4. For this purpose, fundamental maps are obtained 
first. These are spectral values (red, green, blue, near-infrared), DTED map, Gabor filter 
response, normalized difference water index (NDWI) map [16] and nor-malized differ-
ence vegetation index (NDVI) map calculated using (3) and (4) respectively. 
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  (3) 

  (4) 

Gabor response image is obtained by taking maximum response of a pixel at eight 
directions and one scale.  

An initial labeling for LULC classes over segments is obtained with an SVM clas-
sifier by using features extracted. SVM is trained with a labeled dataset and the pa-
rameters are determined using cross-validation in validation set. Note that, the initial 
labeling in this step is conducted only for segments, rather than PLBRs, with 
considering only LULC classes (6 classes).  

For each PLBR, a fully-connected CRF model as depicted in Figure 2 is 
constructed. No further operation is conducted over a PLBR before embedding them 
into this CRF model as a node. For each PLBR, the 300-meter neighborhood is 
analyzed in the ini-tial class label map obtained by SVM classifier. All segments with 
the same class label are treated as one single node in the CRF model of the 
corresponding PLBR. As an example, in Figure 5, there are several segments initially 
labeled as urban class (cyan) by SVM. For the Urban node in the CRF model, we 
extract unary potentials considering all these urban segments.  

After obtaining the CRF model for a PLBR, node and edge features are extracted 
for all seven nodes. Node features for a node in the CRF model are extracted as in 
Figure 4, but this time; extraction is conducted over all segments of the corresponding 
7 class label not separately but as a whole (e.g. mean and standard deviation of urban 
class in Figure 5, is computed over all cyan area and used as the node features of the 
Urban node). 

 

Fig. 3. Workflow of the algorithm 
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For the edge features, overlapping, adjacent and in-neighborhood class frequencies 
are used (see Figure 5). These are calculated based on pixel counts of each class in 
corresponding area.  

For the CRF framework to be function reasonably, node features and edge features 
are converted into unary and pair-wise potentials using multi-class logistic function.  

Then potentials are fed to energy function and parameters are learnt for the model 
by minimizing this energy function (2). In test phase, CRF model for each PLBR is 
decoded according to trained parameters.  

During parameter estimation in training phase, L-BFGS is used. It is a limited-
memory quasi-Newton method for unconstrained optimization. Two distinct loss 
functions are applied during training, namely loopy belief propagation (LBP) and 
pseudo negative log-likelihood (NLL). As the decoding method, Iterated Conditional 
Modes (ICM) is used [17]. 

 

Fig. 4. Feature extraction 

5 Dataset and Experiments 

In this study, 4 GEOEYE multispectral images with size of ~3800x3800 pixels 
are used. Each image contains between 23 and 89 PLBRs either corresponds to an 
air field or one of the LULC classes. 112 PLBRs in two images are used for 
training having 53 of them being actually airfield and 77 PLBRs in remaining two 
images are  

 

Fig. 5. Proposed edge features over SVM labels 
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used for testing having 49 of them actually airfield. Ground truths are prepared by 
labeling segments around each PLBR region. 

There are seven classes in this study, namely water, urban, forest, green land, soil, 
concrete, and airfield. In our experiments, we used an eighth state, an extra state to 
enable the model to reject. Since we combine segments according to their prior labels, 
mixing cases may confuse the CRF model. Eighth state corresponds to "other" or 
"mixing" class.  

As performance measures, recall and precision are used for airfield detection. 

Table 1. Performance results of the proposed algorithm using ICM decoding 

Loss Function 

Pseudo Negative Log-likelihood  92 46.94 
Negative Log-likelihood with LBP 93.33 57.14 

 Precision Recall 

6 Conclusion and Future Work 

The proposed model categorizes PLBRs and corrects/updates SVM results in the con-
text of an airport-PLBR. The actual goal of this paper is focusing on detecting actual 
complex objects, airfields in our case, accurately. Recall values in Table 1 demon-
strate that it is a hard task. PLBRs could be decoded as urban or forest-green land 
which may semantically correspond to roads and edges between green lands respec-
tively. Other studies about airfield detection in the literature have specific datasets and 
employ generally heuristic or threshold-based approaches. This makes comparison 
with our approach inapplicable.  

Instead of using SVM output of training images for training the CRF model, 
ground truth of training images can be directly employed. This would probably be 
better for CRF to learn true relationships among classes. However, in this case, train 
and test phases would have different steps, since SVM would not be involved in train-
ing phase to obtain areas under each class node.  

The proposed CRF model is able to embed spatial information around complex ob-
jects in terms of LULC classes; however it is open to improvements. The model can 
be designed as a star shape to make pair-wise relations more representative. For the 
CRF model corrects SVM results in segment level, not as a whole semantic class, 
segments layer can be added to the model which is connected to class nodes in the 
originally proposed model. This hierarchical model would make our model more 
relaxed and capable. However, computational tractability would be lost in this dense 
graph structure and only approximate methods could be applied. 
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Abstract. Human behavior understanding from visual data has appli-
cations such as threat recognition. A lot of approaches are restricted to
limited time actions, which we call short-term actions. Long-term behav-
iors are sequences of short-term actions that are more extended in time.
Our hypothesis is that they usually present some structure that can be
exploited to improve recognition of short-term actions. We present an
approach to model long-term behaviors using a syntactic approach. Be-
haviors to be recognized are hand-crafted into the model in the form of
grammar rules. This is useful for cases when few (or no) training data is
available such as in threat recognition. We use a stochastic parser so we
handle noisy inputs. The proposed method succeeds in recognizing a set
of predefined long-term interactions in the CAVIAR dataset. Addition-
ally, we show how imposing prior knowledge about the structure of the
long-term behavior improves the recognition of short-term actions with
respect to standard statistical approaches.

Keywords: long-term behavior, stochastic context-free grammars,
human activity analysis, visual surveillance.

1 Introduction

Automated recognition of long-term behavior is relevant for many applications,
where particular events have to be signaled. As examples: theft of truck cargo;
dwelling of people in elderly homes; shopping behavior inside a mall.

Where short-term action recognition has received much attention [5,2,3], au-
tomated recognition of long-term behavior has been studied less. Long-term
behavior is an interesting research topic, as it requires temporal modeling of
sequences of short term actions. In this paper, we consider long-term behavior
as a sequence of short-term actions. As contribution, we will provide a method
to improve the recognition of such sequences by a parsing mechanism.

A complicating factor for recognition of behaviors, is that the potential num-
ber of temporally ordered combinations of actions is very high. One way to
deal with this is to learn the limited set of likely combinations. The learning
of temporal sequences has been studied intensively in the past, for instance, by
a HMM [3] or by the related discriminative CRF [4]. They have both shown
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their merit for solving various problems, for a comparison see [9]. A problem
with these methods is that they are known to require a large training set to
learn the sequences. For the applications that we envisage in this paper, like
the prevention of an unwanted or even hazardous situation, typically only very
few positive examples are available. This makes the HMM and CRF intractable.
Often world-knowledge is available on how situations evolve. The goal of this
paper is to exploit such prior knowledge explicitly for the recognition of long-
term behaviors. We consider an alternative modeling of sequences that requires
few learning examples by including world-knowledge by means of a hand-crafted
rule set which is enforced using a stochastic grammar.

Grammars enable the encoding of sequences by simple expressions that limit
the possibilities and capture the world-knowledge about how long-term behaviors
evolve [8,6]. An example of such a sequence is browse, consisting of the actions:
walk standing still look around walk etc. Such sequences are perfectly suited
to be specified by a grammar. For the recognition of behaviors grammars have
been studied previously. Our starting point is that we have only few learning
examples, so the learning of grammar rules is out of this papers scope [10].
Grammars have mostly been used as a second-stage recognizer of situations or
long-term behaviors, based on first-stage detectors of the constituent short-term
actions [10,8]. We will follow the same strategy in this paper. In [8], context-free
grammars were considered. A disadvantage of context-free grammars is that they
cannot be directly interpreted as finite-state machines (FSM). Often, a FSM is
the means by which expert knowledge is encoded, because it is an easy tool to
model and understand. Instead, we will use a regular grammar which is built on
top of an FSM, thus allowing to model the expert knowledge as a state diagram.

Our contributions in this paper are two-fold. First, we propose a regular gram-
mar that exploits world-knowledge that is encoded by a FSM. To demonstrate
the power of this grammar, we show it on the publicly available CAVIAR dataset
that includes videos of realistic long-term behaviors. CAVIAR defines the in-
cluded behaviors in terms of FSMs, which we will integrate into the grammar.
Second, we show experimentally that long-term interactions can be recognized
by the proposed grammar, and thereby the recognition of the constituent short-
term actions is improved.

In section 2 we introduce the method used for recognition of short-term actions
which is based on [2]. In section 3 our method for behavior recognition based on
stochastic parsing is presented. In section 4 experimental validation is presented
and some discussion is given. Finally, we conclude in section 5.

2 Short-Term Action Detection

As the basic observations, we are interested in recognizing a vocabulary of short-
term interactions between two people from a set A = {action1, . . . , actionL}We
use the non-parametric approach by [2]. This approach uses trajectory informa-
tion from a set of previously extracted tracks by some standard method. So, for
each clip we have a set of N tracks X i, i = 1, . . . , N each one corresponding to
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the trajectory followed by one person. This is, for i-th track, X i =
{
xi
t, t ∈ T i

}
,

where T i =
[
ti1, . . . , t

i
m

]
is the index-set of the frame interval that track X i is

present on the scene.
For each pair of persons (i, j) at each time t we compute the following feature

vector.
f (ij)

t =
[
sti, s

t
j , a

t
ij , d

t
ij , d

dif

ij , s
dif

ij

]
(1)

where sti is the distance covered by person i in between frames t− w and t, atij
is the alignment between persons, dtij is the distance between two persons, ddif

ij is

the difference of distances w frames apart, and sdif

ij is the difference in velocities
(check [2] for more details).

We segment the clips into windows of ws frames with a certain overlap con-
trolled by the offset wo. Therefore, for each window k we obtain the following
set of feature vectors

F (ij)

k =
{
f (ij)

t , t ∈ T k
}

(2)

where T k =
[
τka , . . . , τ

k
b

]
contains the indices of the frames belonging to the k-th

window.
The goal of this section is to compute the probability P (F test |actionp) of a test

window given the action actionp ∈ A. Ground truth action labels l(ij)t ∈ A are

attached to each feature vector f ijt in the training set. We define a label indicator
function that returns the prevalence of an action inside a window (normalized
to sum up to one). This is,

L
(
F (ij)

k ; actionp

)
= #
{
l(ij)t | l(ij)t = actionp ∧ t ∈ T k

} /
|F (ij)

k | (3)

where #{•} corresponds to the cardinality of a set and |F (ij)

k | is the amount of
vectors in the window.

In order to remove noise, we compute the PCA projections of the feature
vectors f̃ (ij)

t , ∀i, j, t in the training set so as to retain an 80% of the total variance,
obtaining also the projected windows F̃ (ij)

k . Given a test window of projected

features F̃ test , we define the probability of being produced by a certain actionp

in the following way:

P
(
F̃ test |actionp

)
= K-nn

(
F̃ test , actionp

)/
K , (4)

where the function K-nn(F̃ , actionp) accumulates the prevalence of the action

actionp over theK nearest windows of F̃ in the training set. As distance measures
to do the sort we use two variants, namely, the originally used Hausdorff distance
[2] and, as an alternative, the Earth Mover’s Distance (EMD) [11].

3 Behavior Recognition by Stochastic Parsing

Consider a sequence of observations F1, . . . , FT generated by the interaction be-
tween two people as explained in the previous section. With the model developed
in the previous section each short-term action observable Ft in the sequence is
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classified regardless their relationships with past or future observables. Short-
term actions usually follow some activity patterns which, on the other hand,
depend on the context in which they are found. Often, such patterns, or long-
term behaviors, can only be characterized at long time extents comprising tens
or even hundreds of short-term action observations. Therefore, we claim that
more robust detection of short-term actions is achieved when shifting up to the
level of long-term behavior analysis.

Inspired by the work in [8], we model long-term behaviors as grammar pro-
duction rules. Recognition of long-term behaviors transforms then to finding the
sequence compatible with the rules that best fits to the observables, which is
essentially a parsing problem.

Stochastic grammars provide a proper framework to do so since they allow for
probabilistic measurements both in the observations and the production rules.
Stolcke [12] proposed an efficient parsing algorithm for stochastic grammars.
A stochastic grammar is a tuple G = (N , Σ,R, S,P), where N are the non-
terminals, Σ the terminals, R the rules, S the starting non-terminal and P the
rule probabilities. We mainly restrict to the sub-type of regular grammars. Reg-
ular grammars have the same expressive power as finite-state machines (FSM)
[7], the latter ones traditionally used for representing human activity. Moreover,
it is possible a direct interpretation of rule probabilities as transition probabili-
ties, which facilitates the task of estimating them. In the FSM formalism, which
we use to illustrate our method, observations and states correspond to terminal
and non-terminal symbols in the grammar. The rules of a regular grammar have
the following forms.

C → s , where C is in N and s is in Σ
C → sD, where C,D are in N and s is in Σ

As a more appropriate abstraction, we transform the sequence of observables
F1 . . . FT into a sequence S1 . . . ST , where each position Sactionp

t = P (Ft|actionp)
accounts for the probability of observation of each short-term action at each time
step. Given any sub-sequence Sa . . .Sb, the stochastic parser delivers:

– The Viterbi parse. This is, the most likely sequence of (unambiguous) short-
term actions that we would observe if they were produced following the rules
of behavior C ∈ N ,

sa . . . sb = Viterbi parse (Sa . . .Sb|C) , (5)

where st ∈ A.
– The Viterbi probability of such a sequence, which in our case is a product

of observation probabilities and transition probabilities as defined by the
Viterbi parse. This is,

P (Sa . . .Sb|C) = P (Fa|sa)
b∏

t=a+1

P (st|st−1)P (Ft|st) (6)

where sa . . . sb is the Viterbi parse of Sa . . .Sb, and P (si|sj) is the probability
of transition from action si ∈ A to action sj ∈ A.
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A novel contribution of our method is that we divide our grammar into two parts:
the constrained and the unconstrained part. The constrained part is responsible
for interpreting the sequence of incoming short-term actions S according to the
specified rules of the behaviors. The unconstrained part provides a straightfor-
ward interpretation that does not impose any structure at all. Separation of the
grammar in constrained and unconstrained part has two advantages. On one
hand it allows to parse any input sequence without interruptions (since the un-
constrained part accepts any sequence). On the other hand it also provides a
reference to validate candidate recognitions (as we will see later).

To illustrate this idea suppose that we want to recognize a set ofM predefined
long-term behaviors. Suppose that the i-th long-term behavior is composed by
the sequence of short-term actions join - interact - split, and that the terminals
of our grammar are Σ = {join , interact , split}. Figure 1 shows a representation.

Fig. 1. Terminals and non-terminals are in non-captials and capitals, respectively. Non-
terminal S is the starting symbol. The unconstrained part is encapsulated in non-
terminal U and represented in grey. As an example of this part we show the production
rules of the SPLIT non-terminal. The unconstrained part is encapsulated in non-
terminals Ci which contain the rules of the i-th pre-specified behavior. Solid arrows
represent transitions associated with observations. Dashed arrows represent transitions
not associated with any observation that have a fixed probability ε. They give the
capability of detecting behaviors starting at any moment in time.

The procedure for recognizing long-term behaviors is the following. At each
time step t, the stochastic parser processes the whole set of detections from that
time, Sactionp

t , ∀actionp. Operation consists of a series of prediction, scanning and
completion steps. Each time step that a non-terminal Ci is completed means that
the parser has found a sub-string that is compatible with the rules of Ci. This
traduces to a candidate detection of the long-term behavior Ci from which the
time interval [a, b] can be easily retrieved (check [12] for details). Final decision
is based upon comparison of the constrained and unconstrained interpretations.
This is, behavior is recognized if the probability of the sequence Sa . . .Sb being
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generated by the constrained rule Ci is not too low with respect to the probability
of being generated by the unconstrained rule U . More precisely, behavior is
recognized if

P (Sa, . . . ,Sb|Ci)

P (Sa, . . . ,Sb|U)
≥ ρ(b−a+1) (7)

where 0 ≤ ρ ≤ 1 controls the tolerance to false positives / false negatives, and
the exponent makes this measure invariant to the length of the sequence.

As previously stated, the aim of our method is to deliver an unambiguous
sequence of short-term action detections s1 . . . sT from an input sequence of
probabilistic observations S1 . . .ST . We define the null action ignore for the
cases when no decision can be made. Final action detection is decided as

st =

⎧⎨⎩ ignore if �a, b, Ci s .t . a ≤ t ≤ b ∧ P (Sa, . . . ,Sb|Ci)

P (Sa, . . . ,Sb|U)
≥ ρ(b−a+1)

s′t otherwise
, (8)

where

s′a . . . s
′
b = Viterbi parse (Sa . . .Sb|C)

such that {C, a, b} = argmax
C′,a′,b′

P (Sa′ , . . . ,Sb′ |C′)

P (Sa′ , . . . ,Sb′ |U)
(9)

In the case that multiple partly overlapping parses we only select the one with
maximum value of equation (7).

We show how we estimate transition probabilities from training data:

P (actionq|actionp) =

∑
(i,j)

∑
k

L
(
F

(ij)
k ; actionp

)
·L

(
F

(ij)

next(k)
; actionq

)

∑
actionq′

∑
(i,j)

∑
k

L
(
F

(ij)
k ; actionp

)
·L

(
F

(ij)

next(k)
; actionq′

) (10)

where F k
ij is a particular window, next(k) is a function that returns the next

window in time to k, and L (•) is the label indicator function of equation (3).

4 Experiments and Results

We have performed experiments on the CAVIAR dataset [1]. The CAVIAR
database consists of a set of clips showing long-term behaviors. There are annota-
tions of the bounding boxes as well as labels of short-term interactions between
pairs of people. Such interactions are: join, fight, interact, move, leave victim,
leave object and split. We have created an additional label ignore corresponding
to the null action for the cases when two people are close to each other with-
out interacting. Due to the extremely low prevalence of the labels leave victim
and leave object as well as to some arbitrariness of the human annotator in the
case of the leave object label discard them by assigning to the ignore label. In
terms of positional features, the actions fight and interact are equivalent (i.e.,
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both consist on two people interacting close to each other). Therefore, we have
decided to merge both labels into one called fighteract.

According to the structure of the behaviors defined in the CAVIAR docu-
mentation [1] and the modifications that we have made to the labels, we have
identified the two long-term behaviors of figure 2 as the ones represented in
the clips.

Fig. 2. Long-term behaviors shown by the CAVIAR clips.

From a total of 27 clips 7 of them are discarded because they contain no pair-
wise interactions of people at all (neither from the ignore class). From the 20
videos used in the experiments, 8 of them contain exclusively interactions of the
type ignore (i.e., they do not show any interaction between actors but some of
them get close to each other at some moment). The remaining 12 clips contain
relevant interactions and eventually also ignore-type interactions.

We segment videos into windows of size ws with an overlap defined by off-
set wo, identical to our learning framework for the observations of short-term
actions. We use ground truth annotations of bounding boxes to get the trajec-
tories of each person by projecting the position of the feet with the homography
relating the image plane with the ground plane. Because of the low prevalence of
certain classes in the dataset (e.g., split), we use the data from all videos except
the current test one as training set for the short-term action detectors.

In order to see the benefits of imposing the structure of the behavior through
a grammar, we compare the accuracy of short-term action detection obtained
using either the K-nn classifier of equation (4) or the output of the stochastic
parsing as defined in equation (8).

We show both meanMatthew’s Correlation Coefficient (MCC) between classes
and confusion matrices. MCC is a measure of quality of two-class classification
defined as

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (11)

where TP,TN,FP,FN account for true positives, true negatives, false positives
and false negatives, respectively. An MCC value of 1 means perfect prediction.
A value of 0 means not better than random prediction. A value of −1 indicates
total disagreement.

In the table below we show both the mean MCC among the classes and the
MCC between the ignore and the rest of the classes obtained by each method.
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Per-class (MCC) ignore vs. all (MCC)
K-nn (Hausdorff) 0.33
K-nn (EMD) 0.37
Grammar + K-nn (Hausdorff) 0.46
Grammar + K-nn (EMD) 0.48

Grammar + K-nn (Hausdorff) 0.77
Grammar + K-nn (EMD) 0.75

As we see in the per-class results, grammar-based methods obtain better clas-
sification accuracies than the others, specially the EMD-based one. EMD-based
variants usually outperform Hausdorff-based ones. This is especially true when
not using grammars, when the differences are more noticeable. From these re-
sults we deduce that recognition of short-term actions in the CAVIAR dataset
is improved when imposing their expected long-term structures as shown in fig-
ure 2. As we see in the ignore vs. all results, grammar-based methods are quite
successful in discriminating between the ignore class and the rest. It means that
they succeed in detecting when some predefined behavior happens.

Confusion matrices are shown in figure 3. Rows represent actual detections
while columns represent ground truth classes. Perfect detections would show a
matrix with ones in the diagonal and zeros elsewhere.
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Fig. 3. Values for the parameters corresponding to the best results are shown under
each confusion matrix. The methods are: (a) K-nn (Hausdorff), (b) K-nn (EMD), (c)
Grammar + K-nn (Hausdorff) and (d) Grammar + K-nn (EMD).

As we see in the confusion matrices (and from the tables above) the EMD-
based variant of the grammar method outperforms the rest. Short-term detectors
tend to overestimate the ignore class. The split action has a significantly low
prevalence in the training set. Due to this, short-term detectors tend to confuse
it with the most prevalent classes ignore and move. Grammar-based methods
correctly deduce that they are part of some long-term behavior but miss-classify
them as move because action detectors tend to do so and also due to the struc-
tural compatibility between split and move states in the rules of figure 2.

5 Conclusions

We have presented a method to improve the recognition of short-term actions as
well as to recognize long-term behaviors by imposing a behavior structure. It is
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useful for the cases when few (or no) training data about long-term behaviors is
available. It uses non-parametric detection of short-term actions in the bottom
layer which are input to a stochastic parser in the top layer.

We propose a new methodology for estimating probabilities of the grammar
rules as well as we introduce a novel criterion for recognizing long-term behav-
iors based on the allowed deviation from the straightforward interpretation. We
propose a new variant of the short-term action detector based on the EMD.

We perform experiments of recognition of long-term interactions between peo-
ple in the CAVIAR dataset [1]. Results show that the EMD variants usually
outperform the Hausdorff-based ones. Moreover, grammars are quite successful
in recognizing pre-defined behaviors in the CAVIAR dataset as we see in the
ignore vs. the rest classification results. Regarding per-label classification, they
present an average improvement of � 25%. This demonstrates that imposing
long-term behavior structure improves short-term action detection.
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project ARENA.
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Abstract. Structural pattern recognition is a well-know research field
that has its birth in the early 80s. Throughout 30 years, structures
such as graphs have been compared through optimization of functions
that directly use attribute values on nodes and arcs. Nevertheless, in
the last decade, kernel and embedding methods appeared. These new
methods deduct a similarity value and a final labelling between nodes
through representing graphs into a multi-dimensional space. It seems
that lately kernel and embedding methods are preferred with respect to
classical structural methods. However, both approaches have advantages
and drawbacks. In this work, we compare structural methods to embed-
ding and kernel methods. Results show that, with the evaluated datasets,
some structural methods give slightly better performance and therefore,
it is still early to discard classical structural methods for graph pattern
recognition.

1 Introduction and Literature Review

Classical graph approaches for pattern recognition applications rely on com-
puting distances between graphs on the graph domain. That is, the distance
between two graphs is obtained by directly optimizing some objective function
which consider node and edge attributes. However, in the graph domain these
distances cannot be computed in polynomial time. To overcome this problem,
a large set of approximation algorithms have been developed since the 80 [1].
Undoubtedly, pattern recognition applications which work on the graph domain
need to rely on graph class prototypes to represent sets of data. The synthesis
of these representatives is usually done using either a sequential or hierarchi-
cal synthesis. In this type of synthesis, the graph prototype is constructed in
an iterative fashion. These iterative approaches start from a model computed
using two graphs and they iteratively refine the current model by sequentially
considering all the graphs in the training set. This process of synthesis, simi-
lar to generative models, relies on the fact that the model is able to capture
the global information also in the initial steps. If this is not the case, usually
the process derives in a bad model and so performance of the application at
hand decreases. To overcome this drawback of classical models one can rely on
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new procedures to synthesize the prototype such as a Common Labelling so-
lutions [2–4]. Traditional graph prototypes seems that lately have been move
apart in favour of graph embeddings and kernels. These methods allow exploit-
ing existing classical pattern recognition algorithms such as Bayes Classifiers,
SVM or K-Means. Both methods, graph embeddings and kernels, rely on the
same intuition, in both cases the graph is somehow encoded in a vector which
correspond to a point in a multi-dimensional vector space. The main difference
between kernels and embeddings rely on how the embeddings are performed.
In graph embeddings, one knows the destination space and the transformation
function. In this way, one explicitly does the embedding by transforming the
graph into a vector. Since in graph embeddings the destination space is known,
the similarity/distance/dissimilarity function is directly applied to vectors in the
destination vector space. On the contrary, graph kernels go one step forward by
embedding this initial vectorial representation in a larger vectorial space. This
destination space is usually unknown. However, by using the so-called kernel
trick, one is able to compute distances on the destination space by using the
dot product between the initial vectorial representations of the graphs. Graph
embeddings and graph kernels share the basic intuition. That is, they rely in
encoding the graph in a some-dimensional vector space and performing opera-
tions on that space. Consequently, they share some drawbacks. Two of the main
drawbacks are the following. The first one is related to the fact that usually,
both approaches rely on a non-complete representation of the graphs such as
[5–7], the Laplacian matrix [8] or the walk kernel [9], sacrificing, in some cases,
performance for speed. The second one is related to the unfolding of the em-
bedding in case graph information needs to be used or represented. This process
might be of crucial importance if learned or classified data must be shown to
the user, to either perform supervised learning or just validation. This unfolding
process might be of great difficulty [10] if not impossible. The objective of this
paper is manifold. On the one hand, we introduce the graph prototype synthe-
sis from the Common Labelling point of view. This new formulation defines in
a clear and uniform way the synthesis of graph under a global framework. On
the other hand, we present a comparative study of state-of-the-art methods for
graph classification based on graph embeddings and common labelling synthesis
for graph prototyping.

2 Graph Prototypes

In this section, the graph prototypes that are evaluated are introduced, and a
synthesis based on the common labelling is defined. To this aim, we start by
giving some notation and basic definitions.

Attributed Graphs. Given vertex attribute domain Δv and edge attribute do-
mainΔe, we define an attributed graph with a four-tupleGp = (Σp

v , Σ
p
e , γ

p
v , γ

p
e ) ⊆

H, whereΣp
v = {vpk|k = 1, , N} is the set of vertices,Σp

e = {epij |i, j ∈ 1, , N, i �= j}
is the set of arcs and γpv : Σp

v → Δv and γpe : Σp
e → Δe assign attribute values to

vertices and arcs respectively. Since the article is focussed on graph prototyping
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for pattern recognition, usually, a training set of elements is provided for learning
this prototype. In this case, we denote the training set of prototypes by symbol
S = {G1, ..., GP }, we consider that all graphs in S have the same order. If this is
not the case, graphs can be extended with null nodes and arcs. These null nodes
and arcs are labelled with a special attribute ∅ ∈ Δv for nodes and ∅ ∈ Δe for
edges. This is the usual mechanism to deal with graphs of different cardinality,
the reader is referred to [11].

2.1 Generalized Median Graph

Given a set of graph S = {G1, ..., GP } and a dissimilarity/distance function
d(·, ·), the Median Graph M [12] is the attributed graph that minimizes the
sum of distances between it and all the graphs in the set of Attributed Graphs.
That is,

M = arg min
M∈H

∑
Gp∈S

d(Gp,M) (1)

Notice that the Generalized Median Graph is usually not a member of the set,
and in general, more than one Generalized Median Graph may exist for a given
set of graphs. The computation of a Median Graph is at least NP-complete since
the general graph matching problem it is. Nevertheless, several suboptimal meth-
ods to obtain approximate solutions for the Median Graph, in reasonable time,
have been presented [2, 3, 5, 10, 12–14]. These methods apply some heuristic
functions in order to reduce the complexity of the graph distance computation
and the size of the search space. Most of the existing methods to compute the
Generalized Median Graph use a classical synthesis, that is, either sequential
or hierarchical. Here, we present a synthesis based on the Common Labelling
framework [4]. In this way, given a Common Labelling H = {h1, ..., hP } where
hp : Σv− > L, a Median Graph M = (Σv, Σe, γv, γe) is defined as another
Attributed Graph where attributes on nodes and arcs are computed as:

γv(vi) =
1

ζv

∑
Gp∈S

(1− δ(hp−1

(vi), ∅))γv(hp
−1

(vi)) (2)

γe(ei,j) =
1

ζe

∑
Gp∈S

(1 − δ(εGp

i,j , ∅))εG
p

i,j (3)

where,
εG

p

i,j = γ(ehp−1(vi),hp−1(vj)
) (4)

ζv =
∑
Gp∈S

(1− δ(hp−1

(vi), ∅)), ζe =
∑
Gp∈S

(1− δ(εGp

i,j , ∅) (5)

and δ represents the Kronecker Delta function and hp
−1

the inverse function
of hp. The main idea of (2) and (3) is that the attribute values of the Median
Graph is the mean of the values of all the nodes or arcs of the Attributed Graphs
that their nodes or arcs have been matched to a concrete node of the virtual
structure L. Moreover, in the case that there does not exist a node or arc in the
Attributed Graph, its value is not considered to compute the mean.
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2.2 Set Median Graph

The Set Median Graph [12] is an alternative to Generalized Median Graphs. The
difference between the two models consists in the search space where the Median
Graph is searched. The search space for the Median Graph is the domain of the
Attributed Graphs H. In contrast, the search space for the Set Median Graph is
restricted the set of graphs that represents S. The computation of Set Median
Graph is, in general, exponential with respect to the order of the graphs, due to
the complexity of graph isomorphism problem, but quadratic with respect to the
number of graphs in S. In some applications, Set Median Graphs are preferred
to Median Graphs due to two main reasons. Firstly, practical evaluations show
that the capacity of Set Median Graphs to represent a set is almost similar to
the capacity of Median Graphs [10]. Secondly, the synthesis (using the whole set
of graphs or incrementally) is less computationally demanding. The Set Median
Graph is the Attributed Graph in the set such that it has the minimum distance
between it and the rest of the Attributed Graphs. Note the computation of the
set median does not need any labelling only just graph-to-graph distances.

2.3 Closure Graphs

The closure graph [15] is a graph prototype originally applied to graph databases.
In the closure graph, attributes of nodes or edges in the training set are repre-
sented with a set of attributes. Closure graphs are restricted to discrete at-
tributes, if this is not the case, an extra discretization step must be performed
in order to discretize them. Closure graphs need more physical space than me-
dian graphs. Formally, a closure graph M = (Σv, Σe, γv, γe) is a graph where
node and arc attributes are a set of domains of the nodes and arcs in the training
set, Δv = {Δv, Δv, ..., Δv} and Δe = {Δe, Δe, ..., Δe}. We synthetize a Closure
Graph from a set of Attributed Graphs S and a Common Labelling ϕ as follows:

γv(vi) = {a|a = γ(hp
−1

(vi)), 1 ≤ p ≤ P, γ(hp
−1

(vi)) �= ∅} (6)

γe(ei,j) = {bk|bk = ε
Gp

i,j , ε
Gp

i,j �= ∅} (7)

The basic intuition of (6) and (7) is that nodes and edges of the Closure graph
can take all values that nodes and edges of the training set have taken. In the
case that there does not exist a node or arc in the Attributed Graph, its value
is not considered. Practical evaluations show that Median Graphs and Closure
Graphs tend to generalize too much the set that they represent; allowing graphs
that are distant from the ones that have not been used to synthesize them. To
alleviate this weakness, the following probabilistic models have been defined.

2.4 First Order Random Graphs

A First-Order Random Graph (FORG) [11] is a model graph that contains first-
order probabilities on nodes and arcs to describe a set of Attributed Graphs. To
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deal with the first-order probabilities, there is a random variable associated with
each vertex or arc, which represents the attribute information of the correspond-
ing graph nodes and arcs in the set of Attributed Graphs. This random variable
has a one-dimensional probability density function defined over the same at-
tribute domain of the Attributed Graphs, including a null value, ∅, that denotes
the non-instantiation of a FORG graph node or arc in an Attributed Graphs.
This was the first probabilistic model that appeared in the literature to repre-
sent a set of Attributed Graphs. It assumes that the Attributed Graphs in a set
or cluster have similar local parts. Nevertheless, in practical applications, some
graphs can be quite different despite of belonging to the same class. For this
reason, in several applications representing a set of attributed graphs with only
first order probabilities seems to be too restrictive. A First Order Random Graph
M = (Σv, Σe, Pv, Pe) is a graph where the node and arc attribute domains are
random variables with values in Δv and Δe. Probabilities at the nodes and arcs
of the FORG are related to the number of times the values have appeared at the
nodes or arcs of the Attributed Graphs related to this node or arc. In the case
of the nodes,

pi(a) =
1

P

∑
∀p∈1..P

δ(hp
−1

(vi), a) (8)

where P corresponds to the number of graphs given to construct the prototype.
Arc probabilities are computed in an equivalent form.

2.5 Function Described Graphs

A Function Described Graph (FDG) [16, 17] is a model graph that appeared
with the aim of overcoming the representational power of FORGs. It contains
first-order probabilities of attributes and second-order structural information
to describe a set of Attributed Graphs. The first order information was rep-
resented in the same way than FORGs trough probability density functions.
The second-order structural information represents qualitative information of
the second-order joint probability of each pair of vertices or arcs. This infor-
mation is represented by binary relations called Antagonisms, Occurrences and
Existences between nodes and arcs. FDGs increased the representational power
at the cost of increasing also the required physical space. Two nodes or arcs are
antagonistic if they have never taken place together in any graph used to syn-
thesise the FDG although these two nodes or arcs are included in the FDG as
different elementary parts. There is an occurrence relation between two nodes or
arcs of the FDG if always that one of related nodes or arcs in the graph has ap-
peared; also the other node or arc of the same graph has appeared. Finally, there
is an existence relation between two nodes or arcs if all the graphs in the class
described by the FDG have at least one of the two nodes or arcs. A Function-
Described Graph M = (Σv, Σe, Pv, Pe, Rv) is a graph where Σv, Σe, Pv and Pe

are defined exactly in the same way than FORGs; including, in addition, a set
of binary relations R. See [16] for the construction of these binary relations.
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2.6 Second Order Random Graphs

A Second-Order Random Graph (SORG) [18] is a probabilistic model closely
related to FDGs. The main difference lies in the fact that the second-order
structural information is not defined as binary relations but with the specific
information of the second-order joint probability. Thus, the physical space needed
to represent SORGs is much higher than FDGs but also its ability to represent
the set of Attributed Graphs increases. In [17], it is shown how to convert a SORG
to an FDGs simply by analysing the second-order probabilities and deciding if the
binary relations hold. A Second-Order Random Graph M = (Σv, Σe, Pv, Pe) is
a graph where Σv and Σe are defined similarly to FORGs but in P there are first
order and also second order probability densities. See [18] for the construction
of these second-order probability densities given a Common Labelling.

3 Performance Evaluation

3.1 Datasets

To evaluate the structural graph prototypes for graph classification and compare
its results with embedding methods, we have selected three datasets form the
repository presented in [19]. The datasets are Letter HIGH and LOW and GREC.
Table 1 summarizes the characteristics of the datasets. The Letter HIGH /
LOW database contains examples of the 15 capital letters (classes) of the Roman
alphabet which are composed of straight lines. Each class contains 150 graph
examples. The straight lines are represented by edges and the terminal points of
the lines are represented by the nodes. The GREC database is composed of a
set of 150 symbols from architecture, electronics and other technical fields. We
have used a subset of 22 different symbols (classes) which are composed only of
straight lines. These images are converted into graphs by assigning a node to
each junction or terminal point and an edge to each line.

Table 1. Summary of graph data set characteristics, viz. the size of the training (tr),
the validation (va) and the test set (te), the number of classes (Ω), the label alphabet
of both nodes and edges, the average number of nodes and edges (mean nodes/edges)

Dataset Size (tr, va, te) |Ω| V labels E labels mean nodes mean edges

Let. L-H 750,750,750 15 (x,y) coord. None 5 9

GREC 286,286,528 22 (x,y) coord. None 11 23

3.2 Results

Table 2 presents classification accuracies achieved with different structural
[11, 12, 15, 16, 18] and embedding [7, 10, 20] methods. The embedding meth-
ods in [7, 20] are based on representing each graph with a vector of distances
which related each graph to a set of prototypes extracted from the training set.
Different prototype selection methods are presented: sps-c, bps-c and k-cps-c.
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Once selected the prototypes and the embedding is performed, training is done
using a SVM. In the original article, these methods are compared with the K-
NN classifier under the Graph Edit Distance. The method in [10] is addressed to
compute the Median Graph to later apply a K-NN classifier. The Median Graph
is computed in an iterative form using an embedding space, the selected embed-
ding is inspired in [7, 20]. For the structural methods on the Letter dataset, in
addition to the standard procedure of constructing a single prototype to repre-
sent the class, we also analyzed the effect of representing the class using several
prototypes. Specifically, we also test the system using 5 prototypes to represent
each class of the Letters datasets (elements have been chosen randomly). Intu-
itively, representing the class using several prototypes may increase performance
since the representer should reduce overgeneralization of the elements it repre-
sents. It is important to highlight that, results extracted from [7, 20] may not
be evaluated with the same version of the dataset presented here, since, even
the dataset we used is downloaded from the same website cited in [7, 20], the
number of training, validation and test elements do not seem to correspond.
Even though, we assume that results can be compared since the results we ob-
tained with the reference K-NN (Table 2 (T4)) method seem to correlate with

Table 2. Comparative study between embedding and structural methods for graph
classification. Numbers indicate: (T1) results extracted from [7], (T2) results extracted
from [20], (T3) distance computed with the Graduated Assigment [21], (T4) results ex-
tracted from [10], (T5) with 5 prototypes to model the class and (T6) with 1 prototype
to model the class.

Alg. type Method Let. LOW Let. HIGH GREC

Ref. System
K-NN (T1) 91.1 61.6 86.1
K-NN (T2) 89.1 - -
K-NN (T3) 94.3 82.2 95.0
K-NN (T4) - - 97.9

Embed. Mthds

Embed. Kernel(T1) 91.8 74.3 89.2
sps-c (T2) 92.3 - -
bps-c (T2) 92.9 - -
k-cps-c (T2) 92.0 - -
Set Median (T4) - - 76.7
Generalized Median (T4) - - 78.5

Struct. Mthds

Generalized Median
90.3 (T5) 70.0 (T5) 90.9 (T5)
89.2 (T6) 70.9 (T6) -

Set Median
96.4 (T5) 74.5 (T5) 80.5 (T5)
96.3 (T6) 68.9 (T6) -

Closure Graph
93.6 (T5) 49.1 (T5) 57.0 (T5)
69.2 (T6) 22.1 (T6) -

FORG
93.9 (T5) 80.1 (T5) 85.8 (T5)
92.3 (T6) 79.2 (T6) -

FDG
93.9 (T5) 81.6 (T5) 85.8 (T5)
92.3 (T6) 81.7 (T6) -

SORG
94.0 (T5) 80.9 (T5) 91.2 (T5)
92.8 (T6) 79.9 (T6) -
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the results obtained in [7, 20]. Under these considerations, obtained results show
that structural/classical methods achieve recognition ration on the same range
as new methodologies based on graph embeddings. Some structural methods,
such as the Generalized Median Graph, obtain less classification ration than the
embedding methodologies. However, more advanced structural methods, such as
First Order Random Graphs, Function Described Graphs, Second Order Graphs
and Closure Graphs, obtain greater recognition ration, even if the classification
algorithm, i.e. the K-NN, is much simpler than the SVM used in [7, 20]. With
respect to the embedding method in [10], which also uses a K-NN classifier, we
see that the improvement of structural methods is notable. More advanced clas-
sification algorithms may further increase the recognition ratio. With respect to
the approach with different representers per class on structural algorithms, it is
possible to note a general tendency on the decrease of the recognition ration.
This tendency increases in Closure Graphs. Thus, we could conclude that, in
these datasets, it is better to use all the information available to generate a sin-
gle prototype. One could think that some clustering schema to group elements,
instead of random selection, should improve results. However, since, in this par-
ticular dataset, noise on elements is uniformly distributed, a random selection
algorithm is as valid as any other grouping scheme.

4 Conclusions and Discussion

In this article, we presented a comparison between the two main approaches
to perform graph classifications. The comparison is focussed in structural and
embedding methods for graph data. The main objective of embedding methods
is to encode/embed each graph as a point in some-dimensional vector space.
In this way, they take the advantage of classical classification mechanisms for
vector spaces to work with graph data in the embedding space. Once vectors are
embedded in the vectorial space, operations between them are usually done in
polynomial time. However, in most of the cases the process embedding requires
non-polynomic computations. The main drawback of embedding methods is that
usually vectorial representations of graphs are not complete, so they do not con-
tain all the information available. On the other hand, most of the structural
methods required either non-polynomic or approximated algorithms to compute
the distance between two graphs. However, good approximation methods exist.
Results presented in this article, show that classical graph prototype with com-
bination with advanced synthesis mechanisms, such as the common labelling,
improve or at least give the same classification accuracy than embedding meth-
ods. In addition, if embedding is done in non-polynomic time the classification
phase is faster with structural methods since the queried graph do not need to
be embedded and fewer graph-to-graph comparisons are required.
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Abstract. Graphs are themost powerful, expressive and convenient data
structures but there is a lack of efficient computational tools and
algorithms for processing them. The embedding of graphs into numeric
vector spaces permits them to access the state-of-the-art computational
efficient statistical models and tools. In this paper we take forward our
work on explicit graph embedding and present an improvement to our
earlier proposed method, named “fuzzy multilevel graph embedding -
FMGE”, through feature selection technique. FMGE achieves the
embedding of attributed graphs into low dimensional vector spaces by per-
forming amultilevel analysis of graphs and extracting a set of global, struc-
tural and elementary level features. Feature selection permits FMGE to
select the subset of most discriminating features and to discard the con-
fusing ones for underlying graph dataset. Experimental results for graph
classification experimentation on IAM letter, GRECand fingerprint graph
databases, show improvement in the performance of FMGE.

Keywords: graphics recognition, graph classification, explicit graph
embedding, feature selection.

1 Introduction and Related Works

Over decades of research in pattern recognition, the research community has
developed a range of expressive and powerful approaches for diverse problem
domains. Graph based structural representations are widely employed for ex-
tracting the structure, topology and geometry, in addition to the statistical de-
tails of underlying data [1]. During next step in the processing chain, generally
these representations could not be exploited to their full strength because of
limited availability of computational tools for them. On the other hand, the effi-
cient and mature computational models offered by statistical approaches, work
only on vector data and cannot be directly applied to these high-dimensional
representations. The emerging domain of graph embedding in pattern recogni-
tion, addresses this problem of the lack of efficient computational tools for graph
based representations.

Graph embedding is a methodology aimed at representing a whole graph,
along-with the attributes attached to its nodes and edges, as a point in a suitable
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vector space. Graph embedding is a natural outcome of parallel advancements
in structural and statistical pattern recognition. It offers a straightforward solu-
tion, by employing the representational power of symbolic data structures and
the computational superiority of feature vectors [2]. It acts as a bridge between
structural and statistical approaches [3][4], and allows a pattern recognition
method to benefit from computational efficiency of state-of-the-art statistical
models and tools along-with the convenience and representational power of clas-
sical symbolic representations [5]. This permits the last three decades of research
on graph based structural representations in various domains [1], to benefit from
the state-of-the-art machine learning models and tools. Graph embedding has
its application to the whole variety of domains that are entertained by pattern
recognition and where the use of a relational data structure is mandatory for
performing high level semantic tasks. Apart from reusing the computational ef-
ficient methods for vector spaces, another important motivation behind graph
embedding methods is to solve the computationally hard problems geometri-
cally [6]. We refer the interested reader to [7][8] for further reading on graph
embedding.

The graph embedding methods are formally categorized as implicit graph
embedding or explicit graph embedding. The implicit graph embedding methods
are based on graph kernels. A graph kernel is a function that can be thought of
as a dot product in some implicitly existing vector space. Instead of mapping
graphs from graph space to vector space and then computing their dot product,
the value of the kernel function is evaluated in graph space. Such an embedding
satisfies the main mathematical properties of dot product. However, since it
does not explicitly map a graph to a point in vector space, a strict limitation
of implicit graph embedding is that it does not permit all the operations that
could be defined on vector spaces. We refer the interested reader to [7][9][10] for
further reading on graph kernels and implicit graph embedding.

On the other hand, the more useful, explicit graph embedding methods ex-
plicitly embed an input graph into a feature vector and thus enable the use of
all the methodologies and techniques devised for vector spaces.

Definition 1. Attributed graph (AG). Let AV and AE denote the
domains of possible values for attributed vertices and edges respectively.
These domains are assumed to include a special value that represents a
null value of a vertex or an edge. An attributed graph AG over (AV , AE)
is defined to be a four-tuple:

AG = (V,E, μV , μE)
where,

V is a set of vertices,
E ⊆ V × V is a set of edges,
μV : V −→ Ak

V is function assigning k attributes to vertices and
μE : E −→ Al

E is a function assigning l attributes to edges.

Definition 2. Explicit graph embedding. Explicit graph embedding
maps a graph to a point in suitable vector space. It encodes the graphs
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by equal size vectors and produces one vector per graph. Mathematically,
for a graph AG = (V,E, μV , μE), explicit graph embedding is a function
φ, which maps graph AG from graph space G to a point (f1, f2, ..., fn) in
n dimensional vector space Rn:

φ : G −→ Rn

AG &−→ φ(AG) = (f1, f2, ..., fn)

The vectors obtained by an explicit graph embedding method can also be
employed in a standard dot product for defining an implicit graph embedding
function between two graphs [11]. An interesting property of explicit graph em-
bedding is that the graphs are embedded in pattern spaces in a manner that
similar structures come close to each other and different structures goes far
away i.e. an implicit clustering is achieved [12]. Another important property of
explicit graph embedding is that the graphs of different size and order need to
be embedded into a fixed size feature vector. This means that for constructing
the feature vector, an important step is to mark the important details that are
available in all the graphs and are applicable to a broad range of graph types. We
refer the interested reader to [7] for further reading on explicit graph embedding.

1.1 Related Works

Recently, two interesting series of works on explicit graph embedding for pattern
recognition, with an application to graphics recognition, have been proposed in
literature.

The first method is from Bunke et al. [11] and is based on dissimilarity of a
graph from a set of prototypes. The main idea of this work is to construct a vector
of graph edit distances from the graph to be embedded and a set of k prototypes
selected in the graph database. The embedding of the graph is thus a vector of k
distances. Formally, let Γ = g1, ..., gn be a set of graphs and p = p1, ..., pk ⊂ Γ be
a subset of selected prototypes from Γ . The graph embedding is defined as the
function Φ : Γ &−→ (R)k, such that Φ(g) = [d(g, p1), ..., d(g, pk)] where d(g, pi)
is the graph edit distance between graph g and the ith prototype graph in p. In
[13], the authors propose an improvement of the graph embedding method by
using feature selection methods. This type of projection is very interesting as
it offers computational advantages over the traditional graph based algorithms.
However, the limitation of setting the edit distance is found in this method.
In addition, the choice of prototype graphs is also a significant parameter as it
determines the size of the vector and its capacity to effectively represent the
graph in the vector space. Also, it remains highly dependent on the application
and its learning set.

The second method is from Gibert et al. [14] and is based on the frequencies of
appearance of specific knowledge-dependent substructures in graph. The main
idea of this work is to construct vector representation of graphs by counting
the frequency of appearance of specific set of representatives of node labels and
their corresponding edges. In [15] the authors propose an improvement of their
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graph embedding technique by dimensionality reduction of the obtained feature
vector. In [16] the authors have applied multiple classifiers to their graph embed-
ding method. In [14] the authors have studied the application of feature selection
algorithms for their graph embedding method. This type of graph embedding
algorithms provides an embedding of graph into feature vector, in linear time
complexity. Their simplicity of implementation is an important advantage. How-
ever, the features that have been used, are very localized to nodes and arcs. The
graph embedding contains little information on the topology, which can have a
negative impact on the classification results.

1.2 Main Contribution of This Paper

This paper is a continuation of our work on explicit graph embedding. The
method is originally proposed in [17][18] and is named as “fuzzy multilevel graph
embedding - FMGE”. FMGE embeds a graph into feature vector space by ex-
tracting a large number of features from graph. The use of high dimensional
feature vector permits FMGE to achieve generalization to diverse graphs in an
unsupervised fashion. However this also results into high dimensionality and
sparsity of feature vector. In [19] we studied the application of dimensionality
reduction techniques on FMGE extracted features. Motivated from the similar
works in [13] and [14] where the authors have applied feature selection algorithms
on explicit graph embedding methods, in this paper we take forward our work
on graph embedding and study the application of feature selection algorithms
on FMGE extracted features.

The rest of this paper is organized as follows. In Section 2, we briefly outline
the Fuzzy Multilevel Graph Embedding (FMGE). In Section 3 we describe the
application of feature selection algorithms on FMGE. Experimentation and dis-
cussion is presented in Section 4. In Section 5 we conclude this paper with future
lines of research.

2 Fuzzy Multilevel Graph Embedding (FMGE)

Most of the existing works on graph embedding deal only the graphs that are
comprised of edges with a single attribute and vertices with either no or only
symbolic attributes. These methods are only useful for specific application do-
mains for which they are designed. FMGE does not require any dissimilarity
measure between graphs and to the best of our knowledge, FMGE extends the
methods in literature by offering the embedding of attributed graphs with many
numeric as well as symbolic attributes on both nodes and edges. It is applica-
ble to directed as well as undirected attributed graphs. The time complexity
of FMGE is linear to number of attributes and size of the graphs [18]. Many
existing solutions for graph embedding offer to utilize the statistical significant
details in graphs for embedding them into feature vectors. FMGE exploits the
topological, structural and attribute information of the graphs along-with the
statistical significant information, for constructing feature vectors of adapted and
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optimal size. It employs fuzzy overlapping trapezoidal intervals for minimizing
the information loss while mapping from continuous graph space to discrete fea-
ture vector space. The proposed feature vector is very significant for application
domains where the use of graphs is mandatory for representing rich structural
and topological information, and an approximate but computational efficient
solution is needed. The unsupervised learning abilities of FMGE and the fact
that it does not require a labeled graph dataset for learning allows its inexpen-
sive deployment to various application domains [18]. FMGE performs multilevel
analysis of graph to extract discriminatory information of three different lev-
els. These include the graph level information, structural level information and
the elementary level information (see Fig. 1). The three levels of information
represent three different views of graph for extracting global details, details on
topology of graph and details on elementary building units of graph. The feature
vector of FMGE is named Fuzzy Structural Multilevel Feature Vector - FSMFV
(see Fig. 2).

The features for graph level information represent a coarse view of graph and
give general information about the graph. These features include graph order
and graph size.

The features for structural level information represent a deeper view of graph
and are extracted from the node degrees and subgraph homogeneity in graph.
Subgraph homogeneity is represented by computing resemblance attributes for
the nodes and edges of graph. The resemblance attributes for an edge is computed
from the attributes on its neighboring nodes. The resemblance for a numeric
attribute (a) is computed as a ratio of this attribute’s values on neighboring
nodes of an edge (a1 and a2) (see Eq. 1). Whereas the resemblance for a symbolic
attribute (b) is computed as a ratio of this attribute’s values on neighboring nodes
of an edge (b1 and b2) (see Eq. 2).

Graph level information 
      [macro details]

Structural level information
    [intermediate details]

Elementary level 
    information
  [micro details]

Fig. 1. Multi-facet view of discriminatory information in graph

Graph 
order

Graph 
size

Embedding of 
node degree

Embedding(s) of 
node attribute(s)

Embedding(s) of 
edge attribute(s)

Embedding(s) of 
subgraph(s) homogenity

Fig. 2. Feature vector of FMGE
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resemblance(a1, a2) = min(|a1|, |a2|)/max(|a1|, |a2|) (1)

resemblance(b1, b2) =

∣∣∣∣1 b1 = b2
0 otherwise

∣∣∣∣ (2)

The third level of information is extracted by penetrating into further depth and
more granular view of graph and employing details of the elementary building
blocks of graph. These features represent the information extracted from the
node and edge attributes.

The node degree, numeric resemblance attributes, numeric node attributes
and numeric edge attributes are embedded by fuzzy histograms whereas the
symbolic resemblance attributes, symbolic node attributes and the symbolic edge
attributes are embedded by crisp histograms. FMGE learns the intervals for con-
structing these histograms, during an unsupervised learning phase and employs
these parameters during graph embedding phase [17][18][19].

Length of Feature Vector (FSMFV): The length of the feature vector is
strictly dependent on the size of histograms used for encoding the three levels
of information. The length of feature vector is uniform for all graphs in an input
collection and is given by Eq.3.

Length of FSMFV = 2 +
∑

si +
∑

cj (3)

where,
- 2 refers to the features for graph order and graph size.
- si refers to the number of bins in fuzzy interval encoded histogram

for each numeric attribute i, in graph.
- cj refers to the number of bins in crisp interval encoded histogram

for each symbolic attribute j, in graph.

3 Feature Selection by Ranking Discriminatory Features

The feature vector obtained by FMGE is based on histogram encoding of the
multilevel information extracted from graph. The number of features in the vec-
tor is directly dependent on the number of bins employed for constructing these
histograms. The use of high dimensional histograms is explicitly built into the
method as it enables FMGE to provide a more robust encoding of information
and enables it to generalize to unseen graphs. However, this results into a serious
drawback as well, that the feature vector becomes sparse and confuses between
classes of graphs. Previously we have tried to reduce the dimensionality of the
feature vector by using principal component analysis (PCA) [19]. PCA is based
on linear transformation of data to a low dimensional space that describes most
of variance in data. But we feel that instead of an unsupervised dimensionality
reduction technique like PCA, the use of a supervised dimensionality reduction
technique (a.k.a. feature selection) will result into a more meaningful ranking
of the FMGE extracted features. This ranking will permit to select the high
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discriminatory features and ignore the confusing features in the FMGE embed-
ded vector space. Thus producing more compact feature vector representation
of graphs and adding strength to the discriminatory power of the feature vector.

We have employed the Relief algorithm based feature selection [20]. The Relief
algorithm is a classical ranking method that is based on the ability of features to
discriminate between different classes. For each instance of a given feature, the
near-hit (closest value among elements of same class) and the near-miss (closest
value among element of other classes) are computed. A weight is calculated for
every feature in terms of the distances of each sample to its near-hit and near-
miss. Mathematically, for a set S of m samples of feature fi, the rank value ωfi

is computed as:

ωfi =
1

m

∑
x∈S

|x− Z−
x | − |x− Z+

x | (4)

where,
- Z−

x is near-miss of sample x.
- Z+

x is near-hit of sample x.

A high ranking value of ωfi is desirable as it indicates that the feature is im-
portant and has high discriminatory capabilities. In order to reduce the size of
FMGE feature vector and to remove the unimportant features from it, we select
the subset of top-ranked features, on the basis of ranks obtained through the
Relief algorithm.

4 Experimentation

The experimentation has been performed on ‘IAM Graph Database Repository
for Graph Based Pattern Recognition and Machine Learning’. The IAM graph
database repository is publicly available from the website of IAPR technical com-
mittee on graph based representations (TC-15)1, and contains graph datasets
from the field of document image analysis and graphics recognition, describing
both synthetic and real data [21].

4.1 Datasets

The summary of the letter, GREC and fingerprint datasets, together with some
characteristic properties, is given in Table 1. The letter graph dataset is com-
prised of graphs extracted from drawings of 15 capital letters of Roman alpha-
bet that consists of straight lines only. The prototype drawing of letters are
converted into prototype graphs by representing lines by undirected edges and
ending points of lines by nodes. Each node is labeled with a two-dimensional at-
tribute giving its position relative to a reference coordinate system. The GREC
graph dataset is comprised of graphs representing 22 symbols from architec-
tural and electronic drawings. Graphs are extracted from the denoised images

1 http://www.greyc.ensicaen.fr/iapr-tc15/index.php
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Table 1. IAM graph database

Letter LOW GREC Fingerprint

Size Train 750 836 500

Valid 750 836 300

Test 750 1628 2000

Classes 15 22 4

Average |V | 4.7 11.5 5.4

|E| 3.1 12.2 4.4

Maximum |V | 8 25 26

|E| 6 30 25

Numeric attribute |V | 2 2 2

|E| 0 1 1

Symbolic attribute |V | 0 1 0

|E| 0 1 0

by representing ending points, corners, intersections and circles by nodes and
labeled with a two-dimensional attribute giving their position. The nodes are
connected by undirected edges that are labeled as line or arc and have the angle
with respect to the horizontal direction as attribute. Fingerprint images are con-
verted into graphs by representing the ending points and bifurcation points of
the skeletonized regions as nodes. Each node is labeled with a two-dimensional
attribute giving its position. The edges are attributed with an angle denoting
the orientation of the edge with respect to the horizontal direction.

4.2 Experimental Setup and Results

We have evaluated the application of Relief feature selection algorithm on FMGE,
by classification rate obtained by a nearest neighbor classifier. The experiments
are performed by first tuning the parameters on the validation set and then using
the best configuration on the test set.

The first validation parameter is the number of fuzzy intervals for embed-
ding numeric information in graph i.e. the node degree, numeric resemblance
attributes, numeric node attributes and numeric edge attributes. Starting from
2 intervals, the number of fuzzy intervals for embedding the numeric information
is increased until 25 (in steps of 1).

The second validation parameter is selection of top-ranked features. For each
of the 25 configurations of FMGE, we applied the Relief feature selection algo-
rithm (with a neighborhood size of 10 for calculating near-hit and near-miss), to
obtain rankings of features. We used this ranking information to generate all sub-
sets of high to low ranked features (for each of the 25 configuration of FMGE),
i.e. subset containing top-1 feature, subset containing top-2 feature, subset con-
taining top-3 feature and so on. We validated the classification rate for all of
these subsets of features and selected the subset of features that produced the
best classification rate on validation set (for each of the 25 configurations of
FMGE). Fig. 3 shows the validation results for letter LOW, GREC and Fin-
gerprint datasets. The colored curves in the plot represent the first validation
parameter i.e. number of the fuzzy intervals for encoding numeric information.
Whereas, each point on a curve gives the classification rate obtained on the n
top-ranked features. The plots clearly demonstrate that the method can obtain
its maximum classification rates on only a small subset of top-ranked features.
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(a) letter LOW
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(b) GREC
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(c) Fingerprint

Fig. 3. Validation results showing the classification rates obtained for different subsets
of top-ranked features for the 25 configurations of FMGE. The horizontal axis contains
sorted (high to low ranked by Relief algorithm) features extracted by FMGE.

Table 2. Results on test sets - IAM graph database. CR is the classification rate (%)
obtained by k-nn classifier and DIM is the dimensionality of feature vector.

Letter LOW GREC Fingerprint

CR DIM CR DIM CR DIM

Reference system [21] 99.6 95.5 76.6

Gibert et al. [14] (best CR) 100 98.7 80.5

Gibert et al. [14] (Relief feature selection) 99.1 96.4 77.6

Full FMGE vector 96.5 58 97.2 79 76.6 127

FMGE vector (PCA reduced [19]) 96.3 10 96.8 14 77.2 16

FMGE vector (Relief feature selection) 99.2 37 99.8 47 85.5 61

The configuration of FMGE with optimized subset of top-ranked features
(w.r.t. classification rate on validation set), was used to embed the test set and
to compute the final classification rates on test set.

Table 2 presents the classification rates of a k-nn classifier in FMGE embedded
vector space on test set, before and after the application of feature selection
technique. The PCA dimensionality reduction results are reported from [19].
For comparison of results, the k-nn classification rates are reported for the graph
edit distance plus k-nn classifier based reference system [21] and k-nn classifier
based system of Gibert et al. [14].

The results show that the application of feature selection technique success-
fully improves the performance of FMGE representation of graphs. The Relief
feature selection technique selects much lower number of features (as compared
to full FMGE vector) and in all cases improves the classification rates obtained



252 M.M. Luqman, J.Y. Ramel, and J. Lladós

by k-nn classifier in FMGE embedded vector spaces. Although the vectors ob-
tained after feature selection have slightly higher dimensionality than PCA re-
duced vectors. However, feature selection technique enables FMGE to obtain
better classification rates than those of PCA reduced vectors. The feature selec-
tion technique also provides a deep insight into the groups of features that are
discriminatory and the features that are not very useful for a graph dataset. The
application of feature selection algorithm on FMGE vectors permits to improve
the quality of FMGE embedding and eventually the performance of FMGE. Dur-
ing classification step, as a result of lower dimensionality of the feature vector
the computation time of classifier was reduced as well.

5 Conclusion

In this paper we have studied the application of feature selection algorithms
to our earlier proposed unsupervised learning based explicit graph embedding
method (the Fuzzy Multilevel Graph Embedding - FMGE). The use of a feature
selection technique on FMGE extracted features enables to obtain a ranking of
features, for selecting the top-ranked features and discarding the unimportant
features. This permits to increase the quality of embedding and improves the
performance of FMGE. Feature selection step also improves the unsupervised
learning capabilities of FMGE by adapting its feature-set to underlying graph
dataset. The initial experimental results are very encouraging and in future we
plan to study the application of sophisticated feature selection techniques for
further improving the quality of Fuzzy Multilevel Graph Embedding.
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Abstract. This paper investigates the feature selection and contextual
classification of hyperspectral images through the sparse conditional ran-
dom field (SCRF) model. To relieve the heavy degeneration of classifi-
cation performance caused by the characteristics of the hyperspectral
data and the oversparsity when SCRF selects a small feature subset, we
develop a dynamic learning framework to train the SCRF. Under the
piecewise training framework, the proposed dynamic learning method of
SCRF can be implemented efficiently through separated dynamic sparse
trainings of simple classifiers defined by corresponding potentials. Exper-
iments on the real-world hyperspectral images attest to the effectiveness
of the proposed method.

Keywords: Conditional random field, classification, feature selection.

1 Introduction

Hyperspectral image analysis is attracting a growing interest in real world appli-
cations, such as urban planning, mapping, agriculture, forestry, and disaster pre-
vention and monitoring. Many these applications can be finally transformed into
some classification tasks. In the literature, many techniques have been developed
for the classification purpose, including support vector machines [1, 2], neural
networks[3], graph method[4–6], and others. Many algorithms take into consid-
eration only spectral variations, ignore spatial correlations, and treat each site
independently. However, hyperspectral images show strong correlations across
spatial and spectral neighbors[6], which have been proved to be very useful for
image analysis in both the remote sensing and computer vision communities.

Markov random fields (MRFs) are the classical probabilistic approaches for
modeling the contextual information in label images. However, for computational
tractability, the observed data are assumed to be conditional independent, which
neglects the contextual information in the observed data of a given class. Con-
ditional random fields (CRFs) have recently gained popularity since they have
the ability to incorporate contextual information in the labels as well as the
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and 61271439) and NDTF Project of ATR Lab. (Grant No. 9140C8004011005).
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observations[7]. But as for other supervised classifiers, excessive large number of
spectral features may bring on the well-known overfitting problem for CRFs[8, 9].
Moreover, it is inefficient to use many irrelevant features due to the increased
computational complexity.

Reduction in the number of features thus can be a direct way to overcome
the overfitting and save the computational cost. Recently, there have several
approaches to select the relevant features for the classical log-linear CRFs with
potentials defined as simple linear combinations of features. But for the extended
CRF with potentials defined as discriminative classifiers, the log-likelihood can-
not guarantees to be an additive function of features. Thus it may be difficult to
use the methods directly to select features for the extended CRFs. In contrast,
we addressed the feature selection problem during training by adding a sparsity-
promoting regularizer to the log-likelihood in the form of a log Laplacian prior
on the model parameters[9]. The trained sparse model is named sparse CRF
(SCRF) model.

In this work, we go one step further to demonstrate that as the generalized
linear models (GLMs), SCRFs may suffer from the heavy degeneration of classi-
fication performance when they select small feature subset. This work develops
a dynamic learning method of the SCRF (D-SCRF, for short) to relieve the
negative effects of the problem on the classification performance. Moreover, we
will show that under the piecewise training framework, the dynamic learning of
SCRF can be efficiently implemented through two separated dynamic trainings
of Sparse Multinomial Logistic Regression (SMLR) models.

2 SCRF for Feature Selection and Classification

In hyperspectral image classification, the observed data y is considered to be
a set of spectral vectors {y1, y2, ..., yI}, where yi = [yi1, yi2, ..., yiD]

T
denotes a

spectral vector associated with an image site i ∈ S. D is the number of spectral
bands and S = {1, 2, ..., I} is the set of image sites. The label set is given by
x = {x1, x2, ..., xI}, where xi ∈ {1, 2, ..., L} and L is the number of classes.

The CRF for hyperspectral image classification directly models the posterior
as

P (x|y, θ) = 1

Z
exp

⎧⎨⎩∑
i∈S

φi (xi, y, w) +
∑
i∈S

∑
j∈ηi

ξij (xi, xj , y, v)

⎫⎬⎭ (1)

where Z is a normalizing constant known as the partition function. The unary
clique potential φi (.) is defined as multinomial logistic regression (MLR) model:

φi (xi, y, w) =

L∑
l=1

δ (xi = l) logP (xi = l|y, w) (2)

where

P (xi = l|y, w) =

⎧⎪⎨⎪⎩
exp(wT

l yi)
1+

∑L−1
k=1 exp

(
wT

k
yi

) if l < L

1

1+
∑L−1

k=1 exp
(
wT

k
yi

) if l = L
(3)
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wk is the parameter vector [wk1, ..., wkD]T for k th class. The pairwise clique
potential ξij (.) is defined as a generalization of the Ising model[10]:

ξij (xi, xj , y, v) =
∑

k,l∈{1,...,L}
vTklμij (y) δ (xi = k) δ (xj = l) (4)

where vkl is the parameter vector and μij (y) is a spectral feature vector obtained
by concatenating all elements of two vectors yi and yj .

The parameters θ = {v, w} is said to be sparse if and only if many of its
entries are exactly zero. The sparsity is associated with the definition of feature
selection. So the feature selection can be implemented by the sparse trainings of
the model parameters. Let {x̃, ỹ} = {x̃c, ỹc}c∈C̃ be the selected training samples.
The sparse training is implemented as a maximum a posteriori (MAP) estimate

θ̃ = argmax
θ

Q (θ) = argmax
θ

(L (θ)− λθ ‖θ‖1) (5)

where ‖θ‖1 =
∑

n |θn| denotes the l1 norm of the parameters θ in the sparsity-
promoting Laplacian distribution and L (θ) is the log-likelihood.

3 Dynamic Learning of SCRF

The sparsity of the parameter set θ is controlled by the regularization param-
eter λθ. The larger is λθ, the greater is sparsity. Excessively large values of
λθwill result in under-fitting, while excessively small values of λθ could result
in over-fitting. In the literature of l1 regularization, the cross-validation method
is usually used to select the optimum λθ from predefined values [11], which are
fixed through the whole training procedures. However, as for the generalized lin-
ear model (GLM), the fixed-value-based method may bring two problems for the
SCRF. Firstly, to select relative small feature subset, SCRF should be trained
with large values of λθ. But the fixed excessively large parameter can result in
the over-sparsity. Secondly, each band of hyperspectral data contains some in-
formation but only some of the bands have significant effects on output. Such
characteristics also prevent the optimal λθ derived from fixed-value-based meth-
ods from obtaining high level of performances[12].

Both the problems are derived essentially from negative effects of the too many
irrelevant or weakly relevant features on the classifier. So a direct method dealing
with the problems is to get rid of the obvious irrelevant features on the basis of
their relevance or discriminant powers with regard to the targeted classes before
training. But the primary feature selection procedure is not correlated to the
SCRF model. In contrast, we develop a dynamic learning method to incorporate
the primary feature selection procedure into the training of SCRF. As mentioned
earlier, the larger is λθ, the greater is the sparsity, which means more features
are discarded. Based on this conclusion, the dynamic learning makes the λθ vary
during iterative training: the large values of the λθ are utilized to get rid of the
obvious irrelevant or weakly relevant features at the earlier iterations; then the
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later iterations arrives the convergence and obtains the superior classifier. For
the remainder of this work, the variable parameter is denoted as λαθ , and then
we get the objective function of dynamic learning framework as

Qα (θ) = L (θ)− λαθ ‖θ‖1 (6)

3.1 Piecewise Implementation of Dynamic Learning

Because ‖θ‖1 =
∑

n |θn| is a nondifferentiable term at the origin, the usual
gradient-based methods cannot be directly utilized to maximize the objective
function. In this work, we develop an efficient sparse training method under the
piecewise training framework. Firstly, L (θ) is divided according to the types
of the cliques. Let C̃m be the set of the type of cliques with m sites selected
for model training. Then the divided graph factor a is a clique c in the set

A =
{
C̃m

}
m=1,2,...

� C̃, and consequently, the divided factor fa (x̃a, y) of L (θ)

is exactly the potential ψc (x̃c, ỹ, θ). Finally, the piecewise dynamic training of
SCRF with the special division is to maximize the objective function

Qα
PW (θ) =

∑
c∈C̃

log
ψc (x̃c, ỹ, θ)∑
xc
ψc (xc, ỹ, θ)

− λαθ ‖θ‖1 (7)

Consider only up to pairwise clique potentials, then Eq. (7) can be rewritten as

Qα
PW (w, v) =

⎛⎝∑
i∈C̃1

log
exp {φi (x̃i, ỹ, w)}∑
xi
exp {φi (xi, ỹ, w)}

− λαw ‖w‖1

⎞⎠
︸ ︷︷ ︸

Qα
w

+

⎛⎝ ∑
(i,j)∈C̃2

log
exp {ξij (x̃i, x̃j , ỹ, v)}∑

xi,xj
exp {ξij (xi, xj , ỹ, v)}

− λαv ‖v‖1

⎞⎠
︸ ︷︷ ︸

Qα
v

(8)

Eq. (8) shows that under piecewise training framework with the special division,
D-SCRF can be trained by independently dynamic training the local sparse
classifiers over each kind of cliques.

In the first term in Eq.(8), the unary potential modeled as MLR in Eq. (3) has

the normalization condition as
∑L

l=1 P (xi = l|y, w) = 1. So the denominator of
the first term in Eq. (8) is just the constant one. We then immediately have

Qα
w =
∑
i∈C̃1

logP (x̃i|ỹ, w)− λαw ‖w‖1 � LMLR (w) − λαw ‖w‖1 (9)

Since P (x̃i|ỹ, w) is defined as MLR (Eq. (4)), LMLR (w) is log-likelihood of MLR
and then Eq. (9) is exactly the objective function of D-SMLR [13].
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In the second term in Eq.(8), Qα
v can be written as

Qα
v =
∑

i,j∈C̃2

logP (x̃i, x̃j |μij (ỹ) , v)− λαv ‖v‖1 � LMLR (v)− λαv ‖v‖1 (10)

where

P (x̃i = k, x̃j = l|μij (ỹ) , v) =
exp
(
vTklμij (ỹ)

)∑L
m=1

∑L
n=1 exp

(
vTmnμij (ỹ)

) (11)

Eq. (11) shows that P (x̃i, x̃j |μij (ỹ) , v) acts as a MLR model with L2 classes,
and then LMLR (v) is also the log-likelihood of MLR and Eq. (10) is exactly the
objective function of D-SMLR.

Therefore, we can draw the conclusion that with the potentials defined as Eq.
(3) and (4), the dynamic training of the SCRF can be implemented as exactly two
kinds of dynamic sparse MLR (D-SMLR) models under the piecewise training
framework. The D-SMLR is implemented through changing the hyperparameter
λαθ under the iterative training framework.Then the varied hyperparameter is

relevant to the iterations and λαθ can be further denoted as λ
(t)
θ . In this work,

we use the following function of varied hyperparameter with the variable t

λ
(t)
θ = ρθ,1 ∗ βt + ρθ,2 (12)

where 0 ≤ β < 1, ρθ,1 and ρθ,2 are positive constants. More details of derivation
of the D-SMLR algorithm can be found in [13].

3.2 Model Combination in Inference

We noted that the D-SCRF training through independent D-SMLR trainings
may leads to problems with over-counting during inference[14].We introduce
scalar powers for each term, and then combine the independently trained models
during inference as

P (x|y) ∝ exp

⎧⎨⎩γ1
[∑
i∈S

φi (xi, y, w̃)

]
+

⎡⎣∑
i∈S

∑
j∈ηi

ξij (xi, xj , μij (y) , ṽ)

⎤⎦⎫⎬⎭ (13)

where w̃ and ṽ are the optimal D-SMLR parameters learned independently, and
γ1 is the fixed power for the unary potential. The inference of the form (13) can
be efficiently implemented by loopy belief propagation (LBP).

4 Experimental Results

4.1 Data Set for Experiments

The proposed algorithm was tested on real world hyperspectral image. The data
consist of a 145x145 pixels portion of an AVIRIS image acquired over NW Indian
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Fig. 1. Indian Pine data set. (a) is original image produced by the mixture of three
bands. (b) is ground truth with five classes. (c) is map colour and number of samples.

Table 1. Number of total, training, and test Samples in Indian Pine data set

class Name total training test

corn-notill 1434 500 934

grass/Tree 747 260 487

hay-windrowed 489 172 317

soybeans-notill 968 340 628

woods 1294 452 842

total 4932 1724 3208

Pine in June 1992[15]. In our experiments, all of the 220 original spectral channels
were employed and five classes were selected from the efficiency point of view
only (see Fig. 1). We randomly select the spatially joint pairwise pixels to create
the training dataset. The details of training and testing pixels for each class are
listed in table 1.

4.2 Convergence

At first, we evaluate performances of the dynamic training method. The con-
vergence property of the training method is illustrated in Fig. 2 through the
plots of gradients with change of iteration times. Since there are total 880
wij (i = 1, ..., 220, j = 1, ..., 4) and 2200 vij (i = 1, ..., 440, j = 1, ..., 5) in this ex-
periment setup, it is impossible to demonstrate the gradients of all parameters.
Without losing generality, we present only the gradients of the parameters corre-
sponding to the first dimension in the feature vectors. As shown in Fig. 2, both
the training processes show convergences with more than 100 iterations.

4.3 Classification Behavior with Different Number of Selected
Features

Then, we present the classification performances of SCRF and D-SCRF with the
different number of selected features. The SCRF is also trained by the piecewise



260 P. Zhong, Z. Qian, and R. Wang

Fig. 2. Convergence of the training method. (a) is the plots of the gradients of
{w1j , j = 1, ..., 4}. (b) is the plots of the gradients of {v1j , j = 1, ..., 5}.

training method presented in Section 3.1. At first, we demonstrate the classifi-
cation behaviors of the two models with only unary (setting v as 0) or pairwise
(setting w as 0) clique potentials respectively. Then we combine the unary and
pairwise clique potentials to get the full SCRF and full D-SCRF through Eq.
(13). Similar to that in work[14], the power parameter γ1 in Eq. (13)was learned
as 0.1 through cross validation.

In all the figures, SCRFs and D-SCRFs show similar classification accuracies
when relatively large numbers of features are selected. However, with the de-
creasing number of selected features, the plot of the SCRFs drops sharply for
the undersparsity and the characteristics of the hyperspectral data, while the
D-SCRFs show more stable classification performance. This means that the D-
SCRFs relieves the heavy degeneration of classification performance caused by
the undersparsity in the SCRFs and can be more fit for the feature selection in
the classification of hyperspectral data. Fig. 3(a) also demonstrates that the full
CRFs show better results than the corresponding CRF models with only unary
(Fig. 3(b)) or pairwise (Fig. 3(c)) clique potentials since the full CRFs combine
their strengths.

4.4 Quantitative Evaluation

Table 2 presents the performances of SCRF and D-SCRF with the selected 5% of
total features over the Indian Pine. The SCRF obtained 90.85% overall classifica-
tion accuracies, in contrast the D-SCRF achieved higher 93.56% accuracies. The
inspection of the accuracy for each class confirms that except the grass/tree,
D-SCRF obtained higher accuracies than SCRF for other classes. The higher
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Fig. 3. Classification accuracies of different SCRFs and D-SCRF against number of se-
lected features. (a) is results of full SCRF and full D-SCRF. (b) and (c) show the results
of SCRFs and D-SCRFs with only unary and pairwise clique potentials respectively.

accuracy of SCRF for the grass/tree class may derive from the fact that the
D-SCRF used the same varied hyperparameter for all the classes. The D-SCRF
model can further improve the classification accuracy of each class by setting dif-
ferent varied hyperparameters for different classes. We also give the performance
of D-SMLR, which uses only single site spectral data to predict the correspond-
ing label, with the selected 5% of total features and compare it with the SCRF
and D-SCRF. It can be noted from table 2 that the classification accuracies of
both the SCRF and D-SCRF are much higher than the 87.87% accuracy of D-
SMLR. This comparison demonstrates the importance of contextual information
for the hyperspectral image classification.

Table 2. Classification Accuracies of D-SMLR, SCRF and D-SCRF

class D-SMLR SCRF D-SCRF

corn-no till 81.91 85.97 90.26

grass/trees 97.74 98.77 98.36

hay-windrowed 98.06 99.05 99.68

soybeans-no till 71.34 77.39 84.55

woods 97.28 98.57 98.81

overall accuracy 87.87 90.85 93.56

5 Conclusion

In this work, we investigated the D-SCRF on the feature selection in the con-
textual classification of hyperspectral data and developed a dynamic learning
framework to relieve heavy degeneration of classification performance caused by
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over-sparsity in SCRF and the characteristics of the hyperspectral data. The
results on real-world hyperspectral data validate the efficiency and effectiveness
of the D-SCRF. The experimental results of current form also indicate several
future works. We developed the dynamic training framework to use the varied
hyperparameters and thus can relieve the heavy degeneration of classification
performance. But the optimality of the varied hyperparameters is difficult to be
investigated. In the future, we hope to develop the methods to select the opti-
mal hyperparameters, or to use the adaptive sparseness methods to avoid the
adjusting or estimating of the hyperparameters[16].
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Abstract. This paper addresses the problem of local histogram-based
image feature selection for learning binary classifiers. We show a novel
technique which efficiently combines histogram feature projection with
the conditional mutual information (CMI) based classifier selection
scheme. Moreover, we investigate cost-sensitive modifications of the CMI-
based selection procedure, which further improves the classification per-
formance. Extensive evaluations show that the proposed methods are
suitable for object detection and recognition tasks.

Keywords: classifier selection, mutual information, histogram feature.

1 Introduction

Histogram-based local image features are widely used in many pattern recog-
nition and computer vision applications. In object detection, categorization,
or recognition algorithms such features are usually combined with an efficient
classification technique. Among the vast variety of histogram features, local bi-
nary patters (LBP) [1] or histogram of oriented gradients (HOG) [2] are widely
adopted in many applications, because they can be calculated easily, and they
are robust against small deformations and varying illumination. In monolithic
classification approaches a single feature vector is constructed by concatenating
the local features extracted over a dense predefined 2D grid. Finally, the feature
vector is combined with a classifier, e.g. linear support vector machine (SVM)
[3]. However, such monolithic approaches suffer from high computation costs
since either (a) features are extracted at a large number of locations, or (b) the
combined feature vector has a high dimension, resulting in slow classification.

One possible solution to overcome the above drawbacks is to limit the feature
extraction step to grid locations where the extracted feature has a high discrim-
inative power for classification. In each location we can train a weak learner,
which usually has moderate classification accuracy. However, from the combina-
tion of several weak learners we can construct a strong classifier, which achieves
a high classification performance. AdaBoost [4] is one of the most widely used
techniques for boosting weak learners, and has been successfully applied e.g. for
face detection using local Haar-like image features [5].
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The binary feature selection technique proposed in [6] is based on the fun-
damental concepts of information theory to quantify the uncertainty of random
variables and to measure the information shared between them. The Conditional
Mutual Information (CMI) estimates the information shared between the train-
ing data and a classifier, given another classifier. This can be utilized to select
the feature which best describes the training data, and is the most independent
from other features selected previously. One main advantage of this technique
is that it is able to cope with overfitting, while AdaBoost is known to be sen-
sitive to this phenomenon. The CMI-based feature selection technique has been
successfully applied for facial expression recognition using LBP features [7].

Fisher Linear Discriminant (FLD) [8] analysis is frequently used to find the
projection of histogram features which best separates two object classes, e.g.
[9] embedded the projected features into the AdaBoost learning framework to
detect faces. [10] proposed the Weighted Fisher Linear Discriminant (WFLD)
as the weak learner in the AdaBoost framework. Thereby the WFLD minimizes
the weighted classification error computed from the sample weights, which are
updated by the AdaBoost procedure. The main advantage of this technique is
that it eliminates the need of re-sampling the training data, and it leads to a
more efficient use of the training samples.

In the proposed method we adopt the CMI-based feature selection technique,
but we employ weak learner parameter optimization during the feature selection
process to further improve classification accuracy, as opposed to previous meth-
ods [6] where these parameters are assumed to be already set. In AdaBoost the
sample weights are used for WFLD, which are updated in each iteration using the
weights of misclassified samples. However, sample misclassification is not defined
in the CMI-based feature selection. Therefore, by using the concepts of infor-
mation theory we introduce a novel method for updating the sample weights.
Finally, we introduce cost-sensitive modifications of the CMI feature selection,
which improves the classification accuracy of imbalanced datasets, where learn-
ing methods usually end up preferring the larger class.

The rest of the paper is organized as follows. In Sec. 2 we briefly overview the
AdaBoost classifier learning method [4] and the WFLD weak learner technique
[10]. In Sec. 2.1 we discuss the CMI-based feature selection [6] in more detail.
The proposed method is presented in Sec. 3. Finally, in Sec. 4 we show our
experimental results using two public image databases.

2 Classifier Learning with WFLD

We denote by X = {x1, . . . , xN} a set of N training images, where each im-
age xi has a binary class label yi ∈ {1, 0} and Y = {y1, . . . , yN}. We extract
F = {f1, . . . , fK} a set of K features from an image x, where fk(x) ∈ Rm is a
histogram feature extracted at a given position. Finally, each feature is projected
by the gk :Rm → R function. In our case g is the WFLD [10], which guarantees
optimal classification of the two classes, and is defined as g = wᵀf , such that

w = (Σ1 +Σ0)
−1

(μ1 − μ0) , (1)
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where μ denotes the weighted mean and Σ is the weighted covariance matrix of
the training set of a given class, i.e.

μ =
1

n
∑

i di

∑
i

dif(xi) , Σ =
1

(n−1)
∑

id
2
i

∑
i

d2i (f(xi)−μ) (f(xi)−μ)
ᵀ
, (2)

where n denotes the number of samples in the given class, and di denotes the
weight of a particular sample. Hereafter we use gk(·) = gk(fk(·)) as a shorthand.
Similarly to [5] our weak classifier hk at a given position is defined in the form

hk(x) =

{
1 if pkgk(x) < pkθk

0 otherwise
, (3)

where pk is the parity and θk is a threshold. Having a subset of weak learners
the strong classifier H(x) is defined as

H(x) = sgn

(
T∑

t=1

αthν(t)(x)− b
)

, (4)

where T denotes the number of selected weak learners, ν(t) returns the index
of the t th weak learner, {αt} are the weights and b is the bias. In an iterative
boosting scheme the weak learner is selected in each step , which minimizes
an error function εk = ε (hk) describing the fitness of the weak learner on the
labeled training data (X,Y). In AdaBoost εk is the classification error, which
is expressed as the sum of the D = {d1, . . . , dN} weights of the misclassified
samples, αt is estimated from εk, and the bias is expressed as b = 1

2

∑
t αt.

Thus in iteration t first the optimal WFLD projection wk is determined from
D using Eqs. 1–2, then the optimal p�k and θ�k parameters are determined in a
brute force manner, and the hν(t) classifier with minimal εk is selected, i.e.

(p�k, θ
�
k) = argmin

pk,θk

{εk} , (5)

ν(t) = argmin
k
{εk} . (6)

2.1 CMI-Based Classifier Selection

[6] proposed an iterative binary feature selection method based on CMI. In each
iteration the feature is selected, which maximizes the mutual information on
training samples (X,Y), depending on the output of any feature selected in
previous iterations. This procedure can be formalized as follows. Let x̂ki ∈ {1, 0}
denote the response of the kth classifier on the ith sample, i.e. x̂ki is a binary
feature, and X̂k =

{
x̂ki
}
. In the first step the feature which maximizes the

I(Y;X) mutual information (MI) on the samples is selected, i.e.

ν(1) = argmax
k

{
I
(
Y; X̂k

)}
. (7)
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Note that the mutual information I(Y;X) of two random variables Y and X
can be expressed in terms of entropy as I(Y;X) = H(Y)−H(Y|X), where the
conditional entropy H(Y|X) quantifies the uncertainty of Y when X is selected.
By minimizing this uncertainty in Eq. 7 we obtain the classifier which best
describes the training data. By similar considerations in subsequent iterations
the I(Y;X|Z) CMI is utilized for feature selection, thus for t = 2, . . . , T

ν(t) = argmax
k

{
min
s<t

I
(
Y; X̂k|X̂ν(s)

)}
. (8)

3 Proposed Method

We introduce the generalization of the CMI-based technique of Sec. 2.1 for boost-
ing arbitrary features, where the optimal p�k and θ�k parameters of the weak
learners are determined using the

ε = 1−min I(Y;X|Z) (9)

error function in Eq. 5, and the weak learner with minimal εk is selected as in
Eq. 6. Finally, the classifier weights {αt}, and the bias b of the strong classifier
are estimated by a linear SVM [3]. During the SVM learning we also utilize
cost factors c1 and c0 for the two classes C1 and C0, which are chosen to satisfy
c0/c1 = n1/n0 [11], where n1 and n0 denote the cardinality of the two classes.
This re-balancing technique is necessary when the training data is imbalanced,
i.e. when the size of one of the two classes is significantly larger then the other’s.
Without re-balancing the resulting classifier will tend to favor the larger class,
and the samples of the smaller class will be misclassified with a higher probability.

3.1 Sample Weights for CMI-Based Feature Selection

The generalized CMI feature selection technique uses the error function Eq. 9
to determine the optimal parameters of the weak learners in Eq. 5, and to select
the optimal weak learner using Eq. 6. However, in the original CMI procedure no
sample weights and no update procedure are available for computing the WLFD
projection vector w of Eq. 1. Therefore, we extend this method with sample
weights together with an update procedure, and we use information theory con-
cepts to define sample misclassification for the update.

Recall that in AdaBoost the sample weights are updated using the weights of
the misclassified samples, i.e. by defining the

ei = 1{h(xi) �= yi} ∈ {0, 1} (10)

indicator function the classifier error εi is calculated as εi =
∑
di · ei, and the

sample weights are updated as dt+1,i = dt,iβ
1−ei , such that β = ε

1−ε for ε < 0.5.
In the proposed CMI-based method we assume that a particular sample xi is
misclassified by the weak learner hk when changing its response x̂ki would imply
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an increase of the MI (t = 1) or of the CMI (t = 2, . . . , T ). We use the following
notations to formally define our technique. Let p(ϕ, υ) = pX,Y (ϕ, υ) denote the
joint distribution of the two random variables, similarly p(ϕ) = pX(ϕ), and
p(υ) = pY (υ), where ϕ and υ are boolean variables. By definition MI is

I
(
Y; X̂
)
:=
∑
ϕ,υ

p(ϕ, υ) log
p(ϕ, υ)

p(ϕ) p(υ)
. (11)

However, in our case the above probabilities are determined from a limited train-
ing set havingN elements. Therefore, we can re-write it using a fast look-up-table
(LUT) solution as follows.We express the above distributions in terms of frequen-
cies of the random variables’ occurrences as p(ϕ, υ) = 1

N n(ϕ, υ), p(ϕ) =
1
N n(ϕ),

and p(υ) = 1
N n(υ), where n(·) denotes the cardinality. Note that n(υ=0) = n0,

n(υ=1) = n1 denote the cardinality of the two classes C0 and C1 of the training
set. We create a LUT L on the 0 ≤ n ≤ N integer range as L[n] = n logn, and
we rewrite Eq. 11 as

I
(
Y; X̂
)
=

1

N

(∑
ϕ,υ

L[n(ϕ, υ)]−
∑
ϕ

L[n(ϕ)]−
∑
υ

L[n(υ)] + L[N ]

)
. (12)

We can see that the terms
∑
L[n(υ)] and L[N ] in the above equation are con-

stants during feature selection. Furthermore, the 1/N normalizing constant can
be neglected, and we refer to this unnormalized MI as Ĩ(Y; X̂). According to
our original assumption, changing the value of response x̂i will affect n(ϕ) and
n(ϕ, υ) only, since n(υ) depends solely on the training set. For example assum-
ing class label yi = 0 and changing the response value x̂i = 0 to 1 will increase
n(0, 1) and n(1) but will decrease n(0, 0) and n(0). Using this property we can
express the change of the unnormalized MI denoted by ĨΔ(yi = υ; x̂i = ϕ) as

ĨΔ(υ;ϕ) = L[n(υ, ϕ)−1] + L[n(υ, 1−ϕ)+1]− L[n(υ, ϕ)] − L[n(υ, 1−ϕ)]
+ L[n(ϕ)] + L[n(1−ϕ)]− L[n(ϕ)− 1]− L[n(1−ϕ) + 1] .

(13)

Similarly to [5] in our method the sample weights are initialized to di =
1

2n0
, 1
2n1

for yi = 0, 1 respectively, but for updating their value we utilize Eq. 13. First,
we define the indicator function

ei = 1{ĨΔ(yi; x̂i) > 0} ∈ {0, 1} (14)

to indicate whether sample xi is misclassified or not. Then we define the clas-
sification error γ of the selected weak learner as the sum of the weights of the
misclassified samples, i.e. γ =

∑
di · ei. Finally, sample weights are updated as

dt+1,i = dt,iγ
1−ei . (15)

Thus the above update rule decreases the weights of the samples which were
classified correctly by the selected weak learner. Note that in the case of CMI we
can define the rules similarly to Eqs. 12–13 in a straightforward way, but these
were omitted in the present paper due to space limitations. In the following we
refer to this method as CMISVM.
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3.2 Balanced Feature Selection and Weight Update

The method presented in Sec. 3 uses cost factors in the final step of constructing
the strong classifier. In our second method first we incorporate re-balancing into
the weak learner selection by utilizing the weighted mutual information (wMI),
which is defined as

Iw

(
Y; X̂
)
=
∑
ϕ,υ

w(ϕ, υ) p(ϕ, υ) log
p(ϕ, υ)

p(ϕ) p(υ)
, (16)

where we use the cost factors of Sec. 3 to define the weights as w(ϕ, 1) = 1
and w(ϕ, 0) = n1/n0. The weighted conditional mutual information (wCMI)
is defined similarly. Finally, we incorporate a re-balancing technique into the
weight update rule defined in Eq. 15 by taking into account the distribution
of ĨΔ(yi; x̂i). Our goal is to achieve a more aggressive change in the weight of
the correctly classified samples (where ĨΔ(·; ·) ≤ 0), which do not change the
MI significantly, i.e. if |ĨΔ(yi; x̂i)| < |ĨΔ(yj ; x̂j)| then di can be decreased more
aggressively. Therefore, we modify Eq. 15 as

dt+1,i = dt,iγ
1−ei · I(Y; X̂) + minj{ĨΔ(yj ; x̂j)}

I(Y; X̂) + ĨΔ(yi; x̂i)
. (17)

In the rest of the paper this method will be referred as wCMISVM.

4 Experiments

In our experiments we used two public datasets. From the FERET face database
[12,13] we used the annotations to align the heads into the same eye positions.
For detection the smaller class contains faces cropped from the aligned images
and are resized to 112×128 pixels. Moreover, the other class contains randomly
cropped parts from background images. For recognition we used a slightly larger
part of the head and a 128×128 pixels size. From the available annotations we
defined three classification problems for recognition: a) race: Asian or White, b)
glasses : wearing or not, and c) gender : female or male. The second dataset we
used is the MIT CBCL Car [14] database, which contains front and rear view
of cars, and the size of the images were 128×128 pixels. Again, the samples
of the other class are random background images not containing any cars. We
extended the datasets by adding the mirrored version of each sample in the
set. Note that there is a significant difference between the two experiments. In
case of recognition the samples of a class are similar, while in the detection
experiment the larger class contains very different samples as they are random
parts of backgrounds.

Our features are HOG blocks[2] which are computed in a single cell of 8×8
pixels, and a 9-bin histogram (0◦−180◦) is calculated using linear gradient voting
and L2-Hys normalization. In our evaluation we selected AdaBoost with WFLD
weak learners [10] (see Sec. 2) as baseline, and the number of weak learners T
was limited to the {2, 4, . . . , 20} range.
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4.1 Recognition

For the race recognition experiment the C1 class contains faces of Asian people,
the size of training data is n1 =512 and for testing 98 samples were used. The
C0 class contains 3080 faces of White people, from which we used n0=2628 for
training and 452 for testing. For recognizing people wearing glasses we trained
the classifiers with n1 = 194 faces with glasses, and n0 = 1698 without glasses.
For testing 68 and 446 samples were used. Finally, in the gender recognition
experiment the C1 class contains 1828 female faces, from which we used n1=1532
samples for training and 296 for testing. C0 contains n0 = 2574 male faces for
training and 428 for testing. All these datasets are imbalanced, in order to present
the advantages of the proposed approach, and we can also see that the glasses
dataset is the most imbalanced (approx. 1 :9 ratio). Fig. 1 shows sample images
from recognition experiment.

Fig. 1. Example images from the recognition experiment. Left: Asian vs White; Center:
glasses vs no glasses; Right: female vs male.

4.2 Detection

In the face detection experiment the C1 class contained 4818 faces, from which
we used n1=3170 samples for training and 1648 for testing. C0 contained 18880
non-faces, from which n0 = 12208 samples were used for training and 6672 for
testing. For the car detection the training set of C1 contained n1=828 car images,
and the size of the testing set was 204. The C0 class contained n0=4990 training
samples, and 1282 test samples. Examples from the datasets are shown in Fig. 2.

4.3 Evaluation

For evaluation we selected the G-mean from the available metrics [15], which
is accepted as a good metric for imbalanced classification problems. After ob-
taining the G-mean values for the three classifiers containing T ∈ {2, 4, . . . , 20}
weak learners we selected the classifier with maximal G-mean then we compared
the other classifiers to this value and computed the difference which was con-
sidered as the error score of the classifier. Summing these differences for all T
configurations we obtained a total error score for each method in a particular
classification problem. Table 1 shows the error scores of the three methods both
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Fig. 2. Example images from the detection experiment. Top: face vs non-face; Bottom:
car vs non-car.

for recognition and detection tasks. We can see that the re-balancing techniques
of Sec. 3.2 are beneficial for the feature selection, as the wCMISVM classifier
clearly outperformed the other methods. However, this method is slightly less
effective for detection tasks. This may be due to the nature of the data since
in this experiment the samples of the larger class contain very different images,
and a single cost-factor may not suitable to represent such a large variation.

Table 1. Error scores of the three methods in different classification tasks

AdaBoost [10] CMISVM wCMISVM

Race 0.1822 0.1001 0.0527

Glasses 0.2049 0.2129 0.0251

Gender 0.0889 0.2389 0.1240

Recognition 0.4760 0.5519 0.2018

Car 0.0388 0.0112 0.0453

Face 0.0334 0.0606 0.0593

Detection 0.0722 0.0718 0.1046

5 Conclusions

In this paper we investigated the difficulties of CMI-based classifier selection
using WFLD as weak learners. We proposed a novel technique for updating the
sample weights of the training data. To improve the efficiency of the CMI-based
method on imbalanced datasets we proposed re-balancing techniques for both
the feature selection and the weight update procedures. We performed extensive
evaluations on two public datasets. The experiments confirmed that the proposed
methods improve the efficiency of CMI-based boosting in case of imbalanced
datasets. As a part of our future work we plan to extend our experiments with
additional datasets and with more tests with various degree of data imbalance.
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2D Shapes Classification Using BLAST

Pietro Lovato and Manuele Bicego
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Abstract. This paper presents a novel 2D shape classification approach,
which exploits in this context the huge amount of work carried out by
bioinformaticians in the biological sequence analysis research field. In
particular, in the approach presented here, we propose to encode shapes
as biological sequences, employing the widely known sequence alignment
tool called BLAST (Basic Local Alignment Search Tool) to devise a
similarity score, used in a nearest neighbour scenario. Obtained results
on standard datasets show the feasibility of the proposed approach.

Keywords: 2D shape classification, sequence alignment, biological
sequences.

1 Introduction

The classification of 2D shapes represent an old and widely investigated research
field in computer vision and pattern recognition. Many approaches have been
proposed in the past (see e.g. the reviews [1–3]), many of them based on the anal-
ysis of the boundary: actually, object contours have shown to be very effective
in many applications, with several different approaches presented over the past
years, exhibiting different characteristics: robustness to noise and occlusions, in-
variance to translation, rotation, and scale, computational requirements, and
accuracy.

In this paper, a novel approach for contour-based 2D shape classification is
proposed, which exploits techniques and solutions coming from the biological
sequence alignment context [4]. From a very general point of view, the proposed
approach starts from the observation that, in the past, the huge and profitable
interaction between pattern recognition and biology/bioinformatics was mainly
unidirectional, namely devoted at studying and applying PR tools and ideas to
the analysi of biological data [5]1. In this paper a somehow unexplored alter-
native way of interaction is investigated: the idea is to employ advanced bioin-
formatics solutions to solve pattern recognition problems. Actually, there are
application scenarios in the bioinformatics field – like sequence modelling, phy-
logeny, database searches – which have been deeply and successfully investigated

1 In some other cases, biological/bioinformatics problems have led to the definition of
novel methodological pattern recognition issues – a clear example is the biclustering
problem (simultaneous clustering of features and patterns), which was initially in-
troduced to analyse expression microarray data in order to discover subsets of genes
with a coherent behaviour in subsets of samples [6].

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 273–281, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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for many years by bioinformaticians. We are convinced that such fields can offer
interesting solutions to pattern recognition problems, if we are able to encode
our problem in biological terms. A very recent and interesting example of such
an alternative way of thinking is the Video Genome Project2, where internet
videos were encoded as “video DNA sequences” and analysed with phylogenetic
related tools [7].

In this paper we follow this line of investigation by exploiting the huge amount
of work carried out in the field of biological sequence analysis [4] to face the 2D
shape classification problem. In particular, we propose to transform a sequence
contour into an aminoacid sequence, employing the most famous biological se-
quence alignment tool – the BLAST (Basic Local Alignment Search Tool [8]), –
to devise a similarity measure between sequences. Such similarity is then used in
a standard nearest neighbour classification scenario. The proposed approach has
been tested with two standard datasets, the Chicken Pieces Database [9] and the
Vehicle Shape dataset [10]; even if we applied a very simple “shape to biological
sequence” mapping, obtained results were very promising, also in comparison
with the state of the art.

2 Background: Sequence Alignment with BLAST

Research in biology is very often based on the analysis of biological sequences,
both nucleotide sequences – i.e. strings made with the 4 symbols of DNA, namely
ATCG – and aminoacid sequences – i.e. strings with symbols coming from a
22 letters alphabet. Many different kinds of biological analyses are based on
a preliminary sequence alignment step. As can be intuitively understood, the
alignment of two sequences is aimed at finding the best registration between
them (namely the best way of superimposing one sequence on the other); the
registration is done by taking into account the biological nature of the input
sequence, so that biological (usually evolutionary) events, such as mutations
and rearrangements, can be clearly expressed [4].

From a practical point of view, alignment is obtained by inserting spaces inside
the sequences (the so called gaps) in order to maximize the point-wise similarity
between them – see Fig. 1.

In the past, a huge amount of approaches have been proposed to deal with this
task (see [11–13] for recent reviews and perspectives on the topic), with already
effective methods aged in the seventies or early eighties [14, 15]. A thorough
treatment of this topic is of course out of the scope of this paper. Two distinctions
are important from our perspective: the former distinguishes between pairwise
and multiple alignment approaches, with the former devoted at finding the best
registration of two sequences and the latter aimed ad finding a simultaneous
alignment of more than two sequences. The latter subdivides the approaches in
global and local alignment methods: the global ones try to find the best overall
alignment between sequences, whereas the local ones aim at finding short regions
of high similarity.

2 See http://v-nome.org/about.html
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Sequence 2

Aligned Sequence 1
Aligned Sequence 2

Sequence 1 TACTAGGCATGAC
ACAGGTCAGTC

TACTAGG−CATGAC
−AC−AGGTCA−GTC

Match Mismatch

Gap

Fig. 1. Alignment of two sequences

The BLAST (Basic Local Alignment Search Tool) algorithm is for sure the
most widely known alignment tool (the Scopus database indicates more than 30
thousands citations to the orignial paper, whereas for GoogleScholar they are
more than 40 thousands), introduced by Altschul and colleagues in the 1990.
Many different versions have been lately introduced, some of them being now
very popular (e.g. psiBLAST [16]). In few words, the BLAST algorithm permits
to find the sub-optimal alignment of a query sequence with respect to a dataset
of other sequences, providing also a score to every pairwise alignment. BLAST is
an approximate algorithm (only giving a sub-optimal yet accurate result), whose
success is devoted to the simple but effective heuristics implemented inside which
permit a really fast implementation (dynamic programming solutions to the same
problem are nowadays absolutely not employable).

Briefly, given in input a sequence (query) to be aligned to a dataset, the
algorithm performs the following steps:

1. remove low complexity regions from the query sequence
2. extract from the query sequence all the K-mers (i.e. all the possible subse-

quences, with overlap, of length K). These subsequences are called “words”
3. search, in the whole database, all the words having a reasonably good match

with the words of the query sequence – these words are called “hits”
4. use these words as seeds, attempting to extend both forward and backward

from the match to produce an alignment. The algorithm will continue this
extension as long as the alignment score continues to increase or until it
drops by a critical amount owing to the negative scores given by mismatches.
These extended segments are called HSP (High Scoring segment Pairs), and
represent the aligned part of the two sequences. In other words, the the
alignment is local, namely is based on the alignment of a small part of the
two sequences.

5. To the alignments found by BLAST during a search a statistical value is
assigned, called the “Expect Value” (E-value). This number represents the
number of times that an alignment as good as or better than that found by
BLAST would be expected to occur by chance.
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For more details about this algorithm, interested readers can refer to the
book [17]3.

3 The Proposed Approach

The proposed approach is carried out in two steps: first, shapes should be trans-
formed into biological sequences; then, the similarity score between two shapes
should be extracted from the alignment of the two corresponding sequences. A
nearest neighbour classifier can be finally used for the classification.

1. From 2D shapes to biological sequences Even if many different trans-
formations can be adopted, involving complicate shape descriptors as well
complicated mappings from them to aminoacids4, here we adopted a rather
simple scheme, in order to analyse the basic potentialities of our approach.
In particular, every shape is described by encoding the contour with the 8
directional chain code [18], representing one of the simplest shape coding
strategy; then, each chaincode value is directly mapped into one of eight
aminoacids: A, R, N, D, C, Q, E, and G – which are the first 8 as given in
Matlab ordering.

2. From alignment to similarity Given two shapes encoded as biological se-
quences, it is natural to link similarity between two shapes to the alignment
similarity score: such quantity, which is a by-product of the alignment pro-
cess, measures how “well aligned” the two shapes are, and is the objective
function which is maximed during the alignment process. The computa-
tion of this quantity is based on the so called “scoring matrix”, represent-
ing a matrix which, in a position i, j, gives a measure of the “price” we
have to pay in a given alignment when substituing the aminoacid i with the
aminoacid j. Different scoring matrices have been presented in the biolog-
ical literature, each one starting from different biological assumptions and
observations5.

Given a testing sequence, we use the BLAST algorithm to align it to all the
sequences in the training set, assigning it to the class of the most aligned training
sequence. Clearly, since BLAST is a local alignment technique, multiple hits can
be found of the same sequence. Nevertheless, similarly to what done in biology,
we retain and consider only the first (and thus best) match. A further note: the
BLAST algorithm returns a matching score (of the HSP) and the E-value. It is
widely accepted in the biology to rank the aligments on the base of the E-value
(the smaller the better) rather than on the alignment scores. Actually, after some

3 Available from http://www.ncbi.nlm.nih.gov/books/NBK1734/
4 Reasonably, we decided to encode shapes into aminoacid sequences, these allowing
more sophisticated description if compared with nucleotide sequences (alphabet of
22 symbols rather than 4).

5 The possibility of defining a scoring matrix which is specific for the shape problem
is currently under investigation.
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preliminary experiments, we noticed that results obtained with the E-value are
substantially better than those obtained with the matching score, therefore we
chose to use such value for our classification scheme.

As a final comment, we can observe that this scheme is rather simple and in
some cases approximated: for example the closeness of the boundary in 2D shapes
does not have a clear biological counterpart in biological sequences; moreover,
many enhancements can be derived – as learning the mapping from a dataset,
using quantized continuous shape descriptors to cover all the 22 aminoacids,
defining a proper shape specific scoring matrix and so on. In any case, the ob-
tained results are already very promising, encouraging us in going ahead along
this research direction.

4 Results

The proposed idea has been tested on two different benchmarks, the Chicken
Pieces dataset6 [9] and the Vehicle Shape dataset7 [10]. The first set is com-
posed by 446 silhouettes of chicken pieces, each belonging to one of five classes
representing specific chicken parts: wing (117 samples), back (76), drumstick
(96), thigh and back (61), and breast (96). This represents a really challenging
classification task, with the baseline classification accuracy of about 67% [19].
The second dataset contains 120 vehicle shapes extracted from traffic videos us-
ing motion information – as described in [10] –, classified in four classes: sedan,
pickup, minivan or SUV. Some examples of shapes belonging to the two datasets
are shown in Fig. 2 and 3. The classification accuracies have been computed in
two different ways, in order to compare the proposed approach with the state of
the art. In particular, for the chicken dataset we used Leave One Out accuracy
(as in many nearest neighbour approaches dealing with the chicken dataset),
whereas in the vehicle shape dataset we used 10-fold cross validation (as speci-
fied in [10]). As specified in the previous section, the classification, in both cases,
has been carried out with the nearest neighbour rule.

In the alignment process of two sequences there are two crucial parame-
ters that should be defined: the scoring matrix and the gap opening/extending
penalty. As explained in the previous Sections, the former defines the price we
have to pay in the alignment score for every substitution, whereas the latter
defines the penalty in the similarity introduced by opening (or extending) a gap
region. It is important to note that in biology these two parameters have a clear
meaning, and can change drastically the final result. In this preliminary evalua-
tion, we performed two sets of experiments: in the former (first row of Table 1)
we tried to keep the easiest possible scheme, leaving such parameters as set by
default in the BLAST implementation8. The only change we did was to remove
the filter, applied within BLAST, which removes zones of low complexity (such

6 http://algoval.essex.ac.uk:8080/data/sequence/chicken/
7 http://visionlab.uta.edu/shape data.htm
8 Downloadable from
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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Wing

Back

Drumstick

Thigh and back

Breast

Fig. 2. Some examples from the Chicken Dataset

Seda

Pickup

Minivan

SUV

Fig. 3. Some examples from the Vehicle Dataset

as repetitions of the same symbol). Of course this has a clear meaning in biology,
whereas in shapes such parts are indeed very informative (representing straight
parts of the shape, for example) and should not be removed.

Table 1. Accuracies for the proposed methods

Method Chichen Vehicle

BLAST - Default Settings 0.7892 0.8208
BLAST - Reduced gap penalty 0.8206 0.8437
BLAST - Reduced gap penalty and BLOSUM90 0.8341 0.8542

In the second set of experiments we tried to exploit the fact that we are work-
ing with 2D shapes, using this information to properly set the two parameters.
As a first trial, we relax one biological assumption which does not hold in the
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2D shape classification case: in biology the gap penalty is typically high: it’s not
really desirable to break a biological sequence. In the shape case, nevertheless,
such a strong constraint does not hold: actually, gaps can really help in dealing
with occlusions and – mainly – scale changes. The second row of the Table 1
report results obtained by setting the gap opening penalty to 6 and the gap ex-
tending penalty to 2 (default values are 11 and 1, respectively9). It seems evident
the beneficial effect of such operation.

As a second trial, we chose a substitution matrix which highly penalizes
changes in the sequences (namely the algorithm is forced to try to align the
sequences in the best possible way). The idea here is that whereas in biology
there are somehow “equivalent” aminoacids (which can likely exchanged), in the
2D shapes context an exact matching can preferred. Results obtained by using
a BLOSUM90 matrix (default is BLOSUM62, the higher the number after the
word “BLOSUM” the more “conservative” the substitution matrix is) are re-
ported in the third line of Table 1 (the gap opening/gap extending penalties
were set as in previous experiment). Also in this case it can be noted the benefi-
cial impact of such choice, even if not so evident as in the gap penalty case. We
are currently continuing with further analysis of the impact of the substituion
matrix on the performances and on the alignments.

Table 2. Comparative results: (a) Chicken dataset; (b) Vehicle dataset

Methodology Accuracy

1-NN + Levenshtein edit distance ≈ 0.67
1-NN + approximated cyclic distance ≈ 0.78
K-NN + cyclic string edit distance 0.743
1-NN + mBm-based features 0.765
1-NN + HMM-based distance 0.738
1-NN + IT kernels on n-grams 0.814
Our best 0.834

(a)

Methodology Accuracy

SVM + curvature 0.6250
SVM + Fourier Descriptors 0.8250
SVM + Zernike moments 0.7917
Ergodic HMM + Max Lik. 0.6250
Circular HMM + Max Lik. 0.7333
Left Right HMM + Max Lik. 0.7083
HMM + Weighted likelihood 0.8417
Our best 0.8542

(b)

9 Unfortunately, in the BLAST implementation the choice should be made among a
pre-fixed set of pair gap opening-gap extending penalties.
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As a final comment, in Table 2 we reported some other recent results from
the state of the art on the same datasets. Many different approaches have been
tested on the Chicken dataset, using simple as well complicated classifiers (see
for example comparisons reported in [20, 21]): in Table 2(a) we reported only
those based on nearest neighbour rules – taken from [20]. Even if in some cases
different experimental protocols have been employed, it seems evident that the
proposed approach represents a promising alternative to classic as well as to
advanced schemes. It is interesting to observe that the proposed approach, based
on approximated matching, also outperforms exact matching techniques, as those
based on edit distance. Moreover, as can be seen from Table 2(b), our approach
also comparably compares with other techniques employing more sophisticated
classifiers (as SVM) – here the results, all taken from [10], are fully comparable
(the same validation protocol was employed).

5 Conclusions

In this paper we preliminary investigated the idea of exploiting bioinformatics
tools to solve Pattern Recognition problems. In particular we cast the 2D shape
analysis problem into the biological sequence aligment problem, for which a huge
amount of approaches have been proposed in the bioinformatics community.
Obtained results encourage us to go ahead along this research line.
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2 Université de Liège, Department of EECS et GIGA-Research, Grande Traverse, 10 - B-4000
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Abstract. We propose a new one-class classification method, called One Class
Random Forest, that is able to learn from one class of samples only. This method,
based on a random forest algorithm and an original outlier generation procedure,
makes use of the ensemble learning mechanisms offered by random forest algo-
rithms to reduce both the number of artificial outliers to generate and the size of
the feature space in which they are generated. We show that One Class Random
Forests perform well on various UCI public datasets in comparison to few other
state-of-the-art one class classification methods (gaussian density models, Parzen
estimators, gaussian mixture models and one-class SVMs).

Keywords: One-class classification, decision trees, ensemble methods, random
forests, outlier generation.

1 Introduction

One-class classification (OCC) is a binary classification task for which only one class
of objects (the target class) is available for learning. OCC paradigm mainly deals with
applications for which collecting counter-example samples (outliers) is impossible,
like authorship verification, handwritten character or typist recognition [1,2], mobile-
masquerader detection, machine or structure health monitoring [3], etc. As for tradi-
tional supervised learning, OCC literature usually opposes density-based methods to
discriminative (or frontier-based) methods [4]. Density-based methods aim at estimat-
ing the probability density function of the target data and are thus straightforwardly
applicable to OCC. The most used techniques among these methods are Parzen win-
dowing and Mixtures of Gaussians (MoG) [5]. However, density-based methods are
rarely effective for high dimensional data and usually require a large number of training
samples to provide a reasonably good estimate of the distribution [5]. Discriminative
approaches, based on the construction of a decision frontier between classes to discrim-
inate, have also been introduced for OCC [2]. Their main difficulty is to synthesize the
class of outliers in order to model the decision frontier. This is usually done by either
using kernels, as in SVM-based methods [2], or by artificially generating outliers dur-
ing training as in [1]. In this latter case, artificially generated outliers are often assumed
to be uniformly distributed, so as to cover the whole domain of variation of the feature
space. This implies to generate an exponential and thus expensive amount of outliers
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with respect to the dimension of the feature space, and as a consequence, this way of
generating outliers is often inaccurate or unusable, especially with high dimensional
data.

Ensemble methods are not so used to tackle OCC [4,5], though these methods are
known to be powerful for traditional learning tasks [6]. As we will show, they offer some
interesting randomization mechanisms that may be used to reduce both the number
of outliers to generate and the dimension of the feature space in which outliers are
generated. We investigate in this paper the use of ensembles of decision trees, such
as random forests [7], that embed the interesting randomization mechanisms evoked
above and that have proved their efficiency over single classifiers on various standard
classification tasks [6]. We thus propose a new ensemble approach for OCC, called
One-Class Random Forest (OCRF), based on a random forest algorithm and designed
to tackle issues relative to the generation of outliers. The remainder of the paper is
organized as follows. In Section 2, our method is detailed. Section 3 is devoted to the
experimental protocol and results, and Section 4 gives conclusions and future works.

2 One-Class Random Forests

The new discriminative approach for OCC proposed in this paper, and named One-Class
Random Forests (OCRF), is an ensemble approach based on a random forest algorithm.
Let us recall that the random forest (RF) principle is one of the most successful and
general purpose ensemble techniques, and has shown to be competitive with state-of-
the-art classifiers like SVM and Adaboost [7,8]. It uses randomization to produce a
diverse pool of individual tree-based classifiers. In the reference RF learning algorithm,
two powerful randomization processes are used: bagging and Random Feature Selec-
tion (RFS). The first principle, bagging, consists in training each individual tree on a
bootstrap replica of the training set. It is typically used to create the expected diversity
among the individual classifiers and is particularly effective with unstable classifiers,
like tree-based classifiers, in which small changes in the training set result in large
changes in predictions. The second principle, RFS, is a randomization principle specif-
ically used in tree induction algorithms. It consists, when growing the tree, in randomly
selecting at each node of the tree a subset of features from which the splitting test is
chosen. RFS contributes to the reduction of the dimensionality and has been shown to
significantly improve RF accuracy over bagging alone [9,10].

Our OCRF algorithm includes these two randomization principles (bagging and
RFS), combined with an original outlier generation process. This latter technique is
usually difficult to implement since the number of outliers to generate for having rea-
sonably good performance is exponential with respect to the size of the feature space,
and may also increase as the number of available training samples increases. This issue
may be addressed by sub-sampling the training set for each component classifier of the
ensemble, as it is done in RF with bagging and RFS. Another popular randomization
principle, the Random Subspace Method (RSM) [11], may also contribute to solve the
dimensionality issue for outlier generation. It consists in randomly selecting a different
subset of features for the training of each individual classifier. These two latter princi-
ples, RFS and RSM, are thus used in our method to generate outliers in smaller feature
spaces.
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Now let us describe our outlier generation process. The first naive approach would
be to generate outliers uniformly, before the induction of the RF. But, as mentioned
above, such a process is difficult to use because of computational costs with quite large
datasets, and in addition would not allow to take full advantage from ensemble methods.
We thus propose to generate outliers in each bootstrap sample before the induction of
each individual tree, as shown in Figure 1. It allows to reduce the number of outliers
to generate, thanks to RFS and RSM that reduces the dimensionality upstream. Then,
regarding the distribution of outliers, our idea is to identify areas where the target data
are sparsely located in the original feature space, and to generate a lot of outliers in
these areas. Conversely, fewer outliers are generated in areas containing a lot of target
samples. The distribution of outliers is designed to be complementary to the distribution
of targets.

The OCRF algorithm is thus made of two main steps: (i) extraction of prior infor-
mation from the target data in the original feature space, in order to guide the learning
process, and (ii) induction of a random forest using both RSM, that notably reduces the
dimension of the feature space, and so the number of outliers to generate, and, bagging
and RFS that create diversity in the pool of tree classifiers (see Figure 1). Algorithm 1
presents the detailed training algorithm of OCRF.

In summary, the OCRF method takes advantage of: (i) combining a diverse ensemble
of weak and unstable classifiers, which is known to be accurate and to increase the
generalization performance over single classifiers, and (ii) sub-sampling the training
dataset, in terms of training samples and features, in order to efficiently generate outliers
by controlling their location and their number.

Training set

Bootstrap T2 +
RSM projection

Bootstrap T1 +
RSM projection

. . . Bootstrap TL +
RSM projection

Outlier generation Outlier generation . . . Outlier generation

Tree 1 Tree 2 . . . Tree L

Combination rule for final decision

Sparsity
information
extraction

Fig. 1. Overview of the OCRF induction. Additional procedures, in comparison to a traditional
RF, are highlighted (in green and boldface).
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Algorithm 1. OCRF training algorithm
Require: a training set T , the number of outliers to be generated Noutlier , the domain

of definition for the generation of outliers Ωoutlier, the number of trees in the forest
L, the parameter of RSM KRSM

Ensure: a one-class random forest classifier

1: (A) Prior information extraction
2: Compute Htarget the normalized histogram of the target data
3: Compute Houtlier the normalized histogram of the outlier data, so that Houtlier is the

complementary of Htarget , i.e. Houtlier = 1−Htarget

4: (B) Outlier generation and forest induction
5: for l = 1 to L do
6: (i) Draw a bootstrap sample Tl from the training set
7: (ii) Project this bootstrap sample onto a random subspace of dimension KRSM

8: (iii) Generate Noutlier outliers according to the complementary histogram Houtlier

in the domain Ωoutlier, so that the probability that a generated outlier falls in a
bin of the histogram Houtlier is proportional to the value associated to that bin

9: (iv) Train a random tree on the augmented dataset composed of the target data
and the newly generated outlier data

10: end for
11: return one-class random forest model

3 Experiments

In this section, we propose to experimentally assess the performance of OCRF on sev-
eral public datasets and compare our approach with a few state-of-the-art one-class
methods. In the following, we present the public datasets, the evaluation metrics, the
one-class methods used in our comparison, and the parameters fixed for this experi-
ment.

Datasets. Genuine one-class datasets are rare as outliers may be difficult or even im-
possible to sample. For testing OCC methods, authors generally transform multi-class
problems into several binary classification tasks “target versus outlier“, for each class
of the dataset. Some authors select one class as target and label the remaining classes as
outliers [1,2]; other authors do exactly the opposite, i.e. select one class as outlier and
consider the remaining classes as the target class [12]. Thus, elaborating fair compar-
isons with other works based on such datasets is difficult as no clear consensus exists.
We will use in our experiment the first approach that is more frequent in the literature,
with one class as target and the others as outliers. We tackled in this experiment several
problems of the literature, taken from 14 datasets of the recognized UC Irvine Machine
Learning public repository (see Table 1). We have selected these datasets as they are
often used for OCC comparison.

Evaluation Criteria. In our experiments, results are presented in terms of accuracy, but
also in terms of target and outlier recognition rates, in order to allow for an analysis
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Table 1. Description of the datasets taken from the UC Irvine repository [13]

Number of
Dataset attributes classes instances
Sonar 60 2 208
Ionosphere 34 2 351
OptDigits 64 10 5620
Iris 4 3 150
Breast Cancer W. (bcw) 9 2 699
PenDigits 16 10 10994
Diabetes 8 2 768
Mfeat-factors 216 10 2000
Total number of one-class datasets 41

of the ”target vs outlier performance” trade-off. However, these evaluation measures,
widely used in the binary classification literature, do not take into account the imbal-
anced nature of OCC datasets [14]. Since, there is still no consensus for the performance
assessment of OCC algorithms we have also used in our experiments the Matthews cor-
relation coefficient (MCC) or ”phi coefficient”. It is particularly well-adapted to imbal-
anced problems since it takes into account the disparities in the data [14]. The MCC is
based on the contingency table from the confusion matrix and is given by:

MCC =
T P×TN−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

where TP, TN, FN and FP respectively stands for true positive, true negative, false
negative (or non-detection) and false positive (or false alarm). MCC values range from
−1 if all predictions are wrong to +1 for perfect classification, zero values indicate that
one of the two classes has not been correctly classified at all (the classifier predicts only
one of the two classes).

A standard 10-fold stratified cross-validation has been repeated 5 times. The classi-
fier performance are then averaged over the different runs.

State-of-the-Art OCC Methods and Parameterization. The OCRF algorithm is com-
pared to four state-of-the-art OCC algorithms: the one-class SVM (OCSVM) [2] taken
from the LibSVM toolbox and three density estimators, Gaussian estimator (Gauss),
Parzen windows (Parzen) and Mixture of Gaussians models (MoG) taken from the Pat-
tern Recognition Toolbox (PRTools) [15]. Each algorithm is run with the default pa-
rameterization of its toolbox1. Note that the definition of the threshold on the density
estimator output is defined thanks to the parameter f racre j = 0.05 of PRTools. This
parameter corresponds to the fraction of legitimate target cases that will be considered
as outliers during training. OCRF is also run with standard values for the parameters
[10,16]:

– the number of trees in the random forest is L = 200, a value commonly considered
as sufficient in practice to ensure statistical convergence of the algorithm;

1 Except for the ν coefficient of the OCSVM, a lower bound on the fraction of support vectors,
which is set to a more frequently cited value ν = 0.1, instead of ν = 0.5.
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Table 2. OCC results with MCC (accuracy is indicated in % in brackets)

Dataset OCRF OCSVM Gauss Parzen MoG
iris versicolour 0,579 (81,5) 0,897 (95,3) 0,903 (95,6) 0,685 (85,6) 0,607 (82,9)
iris virginica 0,614 (82,7) 0,900 (95,5) 0,813 (90,9) 0,716 (87,3) 0,604 (82,5)
iris setosa 0,722 (87,1) 0,903 (95,6) 0,921 (96,4) 0,799 (90,9) 0,643 (83,3)
bcw benign 0,919 (96,2) 0,848 (92,1) 0,902 (95,3) 0,709 (83,2) 0,867 (93,3)
bcw malignant 0,629 (81,3) 0,208 (68,2) 0,179 (46,3) 0,273 (69,1) 0,084 (49,6)
ionosphere good 0,683 (83,3) 0,785 (89,5) 0,781 (89,3) 0,180 (40,8) 0,584 (75,4)
ionosphere bad 0,169 (56,7) -0,348 (28,2) -0,410 (26,0) 0,106 (64,7) -0,346 (33,2)
sonar mines 0,048 (53,3) 0,882 (93,6) 0,342 (65,9) 0 (46,2) 0,222 (47,8)
sonar rocks 0,179 (59,0) 0,889 (94,0) 0,120 (56,3) 0 (53,8) 0,274 (56,1)
diabetes positive 0,139 (46,4) 0 (65,2) 0,147 (35,2) 0,188 (55,3) 0,219 (39,2)
diabetes negative 0,241 (68,7) 0 (34,8) -0,046 (66,5) 0,064 (53,9) 0,020 (68,3)
pendigits 0 0,976 (99,6) 0 (89,6) 0,970 (99,4) 0,100 (89,7) 0,961 (99,3)
pendigits 1 0,585 (85,8) 0 (89,6) 0,652 (90,0) 0,212 (90,1) 0,835 (96,6)
pendigits 2 0,835 (96,3) 0 (89,6) 0,957 (99,2) 0 (89,6) 0,956 (99,2)
pendigits 3 0,918 (98,5) 0 (90,4) 0,969 (99,5) 0,092 (90,4) 0,949 (99,1)
pendigits 4 0,961 (99,3) 0 (89,6) 0,969 (99,4) 0 (89,6) 0,953 (99,1)
pendigits 5 0,756 (94,1) 0 (90,4) 0,880 (97,8) 0,092 (90,4) 0,942 (99,0)
pendigits 6 0,985 (99,7) 0 (90,4) 0,970 (99,5) 0 (90,4) 0,954 (99,2)
pendigits 7 0,887 (97,6) 0 (89,6) 0,887 (97,7) 0 (89,6) 0,937 (98,8)
pendigits 8 0,634 (89,3) 0 (90,4) 0,716 (93,2) 0 (90,4) 0,951 (99,2)
pendigits 9 0,577 (85,9) 0 (90,4) 0,577 (86,9) 0,093 (90,4) 0,936 (98,9)
optdigits 0 0,776 (94,2) 0,165 (90,5) 0,954 (99,2) 0 (90,1) 0,745 (95,9)
optdigits 1 0,147 (26,2) 0,054 (89,9) 0,937 (98,9) 0 (89,8) 0,803 (96,7)
optdigits 2 0,143 (25,8) 0 (90,1) 0,953 (99,2) 0 (90,1) 0,755 (96,0)
optdigits 3 0,121 (21,7) 0 (89,8) 0,914 (98,4) 0 (89,8) 0,727 (95,5)
optdigits 4 0,077 (15,6) 0 (89,9) 0,905 (98,3) 0 (89,9) 0,766 (96,1)
optdigits 5 0,041 (11,5) 0 (90,1) 0,954 (99,2) 0 (90,1) 0,738 (95,8)
optdigits 6 0,410 (70,3) 0,026 (90,1) 0,956 (99,2) 0 (90,1) 0,778 (96,3)
optdigits 7 0,264 (48,2) 0 (89,9) 0,933 (98,8) 0 (89,9) 0,777 (96,3)
optdigits 8 0,043 (11,7) 0 (90,1) 0,719 (93,6) 0 (90,1) 0,696 (95,2)
optdigits 9 0,077 (15,2) 0 (90,0) 0,860 (97,4) 0 (90,0) 0,739 (95,7)
mfeat factors 0 0,844 (97,2) 0 (90,0) 0,737 (95,8) 0 (10,0) 0 (10,0)
mfeat factors 1 0,873 (97,8) 0 (90,0) 0,712 (95,4) 0 (10,0) 0 (10,0)
mfeat factors 2 0,879 (97,9) 0 (90,0) 0,740 (95,8) 0 (10,0) 0 (10,0)
mfeat factors 3 0,887 (98,0) 0,017 (90,0) 0,695 (95,1) 0 (10,0) 0 (10,0)
mfeat factors 4 0,884 (98,0) 0 (90,0) 0,743 (95,8) 0 (10,0) 0 (10,0)
mfeat factors 5 0,843 (97,3) 0,013 (90,0) 0,738 (95,8) 0 (10,0) 0 (10,0)
mfeat factors 6 0,910 (98,5) 0,068 (90,2) 0,770 (96,2) 0 (10,0) 0 (10,0)
mfeat factors 7 0,879 (97,9) 0,017 (90,0) 0,841 (97,3) 0 (10,0) 0 (10,0)
mfeat factors 8 0,613 (90,6) 0 (90,0) 0,647 (94,5) 0 (10,0) 0 (10,0)
mfeat factors 9 0,866 (97,6) 0,026 (90,1) 0,751 (96,0) 0 (10,0) 0 (10,0)

– the number of attributes for the Random Subspace Method is empirically set to
KRSM = 10 or K = M if M < 10, where M is the dimension of the feature space;

– the number of attributes for the Random Feature Selection is KRFS =
√

KRSM.
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Table 3. Case study for results of OCRF on (a) Optical Digit and (b) MFeat-factors datasets

OCRF OCSVM Gauss

optdigits 0

MCC 0,776 0,165 0,954
Acc 0,94 0,90 0,99
T 0,99 0,04 0,92
O 0,94 1,00 1,00

optdigits 1

MCC 0,147 0,054 0,937
Acc 0,26 0,90 0,99
T 1,00 0,01 0,90
O 0,18 1,00 1,00

optdigits 2

MCC 0,143 0,000 0,953
Acc 0,26 0,90 0,99
T 1,00 0,00 0,92
O 0,18 1,00 1,00

optdigits 3

MCC 0,121 0,000 0,914
Acc 0,22 0,90 0,98
T 1,00 0,00 0,92
O 0,13 1,00 0,99

optdigits 4

MCC 0,077 0,000 0,905
Acc 0,16 0,90 0,98
T 1,00 0,00 0,92
O 0,06 1,00 0,99

optdigits 5

MCC 0,041 0,000 0,954
Acc 0,12 0,90 0,99
T 1,00 0,00 0,92
O 0,02 1,00 1,00

optdigits 6

MCC 0,410 0,026 0,956
Acc 0,70 0,90 0,99
T 1,00 0,00 0,92
O 0,67 1,00 1,00

optdigits 7

MCC 0,264 0,000 0,933
Acc 0,48 0,90 0,99
T 1,00 0,00 0,91
O 0,42 1,00 1,00

optdigits 8

MCC 0,043 0,000 0,719
Acc 0,12 0,90 0,94
T 1,00 0,00 0,91
O 0,02 1,00 0,94

optdigits 9

MCC 0,077 0,000 0,860
Acc 0,15 0,90 0,97
T 1,00 0,00 0,90
O 0,06 1,00 0,98

OCRF OCSVM Gauss

mfeat factors 0

MCC 0,844 0,000 0,737
Acc 0,97 0,90 0,96

T 0,86 0,00 0,58
O 0,98 1,00 1,00

mfeat factors 1

MCC 0,873 0,000 0,712
Acc 0,98 0,90 0,95

T 0,79 0,00 0,54
O 1,00 1,00 1,00

mfeat factors 2

MCC 0,879 0,000 0,740
Acc 0,98 0,90 0,96

T 0,85 0,00 0,58
O 0,99 1,00 1,00

mfeat factors 3

MCC 0,887 0,017 0,695
Acc 0,98 0,90 0,95

T 0,87 0,00 0,51
O 0,99 1,00 1,00

mfeat factors 4

MCC 0,884 0,000 0,743
Acc 0,98 0,90 0,96

T 0,82 0,00 0,58
O 1,00 1,00 1,00

mfeat factors 5

MCC 0,843 0,013 0,738
Acc 0,97 0,90 0,96

T 0,82 0,00 0,58
O 0,99 1,00 1,00

mfeat factors 6

MCC 0,910 0,068 0,770
Acc 0,98 0,90 0,96

T 0,85 0,02 0,62
O 1,00 1,00 1,00

mfeat factors 7

MCC 0,879 0,017 0,841
Acc 0,98 0,90 0,97

T 0,83 0,00 0,73
O 1,00 1,00 1,00

mfeat factors 8

MCC 0,613 0,000 0,647
Acc 0,91 0,90 0,94

T 0,83 0,00 0,45
O 0,91 1,00 1,00

mfeat factors 9

MCC 0,866 0,026 0,751
Acc 0,98 0,90 0,96

T 0,85 0,01 0,60
O 0,99 1,00 1,00

(a) (b)

Regarding the generation of outliers during training, one must define their number and
the range of their values. We have chosen the generation domain of outliers to be 1.2
times greater than the target domain estimated through the training set, assuming that
the outlier domain needs to cover the whole target domain. The number of outliers to
generate is empirically set to Noutlier = 10 ·Ntarget where Ntarget is the sample size of the
available training data.
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Experimental Results. The results of these experiments, in terms of accuracies and
Matthews correlation coefficient (MCC) values, are presented in Table 2. In this table,
the compared algorithms have MCC values of zero mostly when they always predict
the outlier class except for MoG, for which MCC values of zero occur when it always
predict the target class. The OCSVM classifier performs very well on Iris, bcw, Iono-
sphere datasets and even the best on Sonar dataset but it fails to identify outlier data on
the remaining datasets.

We can observe that our method (OCRF) has no negative MCC values nor MCC
values of zero. OCRF has the highest MCC values for 16 datasets among 41 while be-
ing competitive on all datasets except OptDigits datasets for which it fails to identify
correctly the outlier data. The results show that all methods, except OCRF, have sev-
eral negative MCC values or MCC values of zero. These methods seem to be rather
unstable when dealing with some datasets: 33 datasets for OCSVM, 27 for Parzen, 11
for MoG and 2 datasets over 41 for Gauss. Gauss has an important negative value for
Ionospherebad dataset while it has good results in turn with Ionospheregood dataset.
This latter observation often appears in Table 2: in a two-class problem, when the clas-
sifier performs well on the target class, it often fails if the second class is considered in
turn as the target class.

We present in Table 3 detailed results for two handwritten digit datasets: OptDigits
and MFeat-factors. For these datasets, OCRF has different results: the method performs
poorly on OptDigits as it fails to identify correctly the outlier data whereas it performs
the best on MFeat-factors. We can observe that, for all digit datasets, Gauss seems to be
well adapted to describe each target digit cluster while OCSVM, for the same datasets,
always predicts the outlier class. If we compare the MCC values to the accuracy (Acc),
we can observe that MCC is more reliable to assess the performance of the method.
For instance for optdigits0 dataset, the accuracy of OCSVM is 90% while the target
recognition rate is as low as 4%.

4 Conclusion and Future Works

In this paper, we have proposed a new OCC method that is general purpose and has
proved its efficiency on various public datasets. The proposed method, called One-Class
Random Forest, is based on the reference random forest algorithm combined with an
original procedure for generating artificial outliers. This kind of process is often used
with discriminative learning methods but is difficult to implement since the number
of outliers to generate for having reasonably good performance is exponential with
respect to the dimension of the feature space, and may also increase as the number of
available training samples increases. We have shown that the random principles used
in traditional RF can be powerful tools to overcome this issue: by sub-sampling the
training set for each component classifier of the ensemble, through the selection of both
the training samples (with bagging) and the features (with Random Feature Selection
and Random Subspace method), and by then combining all of them, we reduce the
minimum number of outliers to generate and increase the generalization accuracy of
the ensemble.

To assess the efficiency of our method, experiments have been conducted on several
public datasets from the UCI repository and OCRF has been compared to the four most
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used OCC algorithms. On most of these datasets and using the default parameterization
of each method, results have shown that OCRF performs equally well or better than
these state-of-the-art OCC algorithms. Besides, OCRF appears to be rather stable on
these various applications.
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Abstract. This article adresses the problem of assessing how close two
strict and/or fuzzy partitions are. A new index based on a measurement
of the sparsity of the contingency matrix crossing the partitions is pro-
posed that satisfies the required properties formulated within the paper
and presents a low complexity. It is compared to well-known existing
indices of the literature, such as the Rand and the Jaccard indices, the
transfert distance and some of their recent fuzzy counterparts.
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1 Introduction

A partition of a setX = {x1, ...,xn} of n objects is a set of c non-empty subsets of
X , called clusters, that group objects along common attributes they share. Parti-
tions are usually characterized by a (c×n) partition matrix U = (uik)i=1,c;k=1,n,
identified with a c-partition of X for the sake of simplicity. Each uik represents
the degree with which the kth datum is associated to the ith cluster, each column
uk gathers the degrees for the kth object and each row U i defines the ith cluster.
In this paper, we focus on fuzzy/probabilistic partitions such that uik ∈ [0, 1] and∑c

i=1 uik = 1, and on strict partitions such that uik are binary and sum up to
unity, e.g.:

u1 u2 u3 u4

Uh =

(
1 1 0 1
0 0 1 0

)
U1
h

U2
h

and

u1 u2 u3 u4

Uf =

(
0.6 0.8 0.3 0.9
0.4 0.2 0.7 0.1

)
U1
f

U2
f

.

Since clustering algorithms always produce a partition U even if there is no clus-
ter structure in the data, assessing the quality of U is a problem of great interest.
It can be tackled using the data itself, by mean of an internal index as in cluster
validity [1, 2] or by assessing how close U is to a ground truth/ expert assessed
(mostly strict) partition or a set of ordinary partitions, respectively by mean
of an external and a relative index, both refered as comparison indices [3, 4].
This approach have been largely explored for both strict and fuzzy domains,
see section 2. We propose to use sparsity measures [5] and fuzzy residual im-
plications [6] to define a new fuzzy index in section 3. In section 4, numerical
experiments show its good properties as compared to other indices.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 291–300, 2012.
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2 Necessary Tools for the Index Construction

2.1 Comparing Partitions

Plenty of indices have been proposed in the literature for comparing partitions.
Depending on the nature of the latter, i.e. strict or fuzzy, these indices rely on
multiple and different techniques or theoretical frameworks. For the strict case,
let us cite the well-known Rand and Jaccard indices [7] based on a set-theoretical
approach and repectively denoted RI and JI hereafter, and the transfert dis-
tance TD based on graph theory [8]. Among fuzzy comparison indices, let us
cite the recent Anderson et al. [9] and the Quéré and Frélicot’s [10] extensions,
both relying on fuzzy logics and denoted respectively RIA, JIA, RIQF , JIQF ,
the Huellermeier and Rifqi extension of the Rand index HR based on a ge-
ometrical approach [11], and the Campello’s fuzzy extension of the transfert
distance FTD [12]. The ideal index I�, no matter the nature of the partitions
U and V it is meant to compare, must satisfy the following properties (see
Table 1 for mentioned indices): (I1) I�(U, V ) = 1 ⇔ U ≡ V (identity), (I2)
I�(U, V ) ≥ 0 (non-negativity), (I3) I�(U, V ) = I�(V, U) (symmetry). Moreover,
we consider that such an index should satisfy an additional informal property:
(I4) I�(U, V ) >> I�(U,W ) if V is known to be much more closer to U than W
(dynamics). If a practitioner decides whether or not two partitions are compati-
ble by thresholding the index value, such an informal property ensures him that
the index is known to present very different values while comparing close and
distant partitions. Because of lack of space, we do not go further into the details
of each index. It is not the purpose of this paper and we invite the interested
reader to refer to surveys of quality [7, 9]. Yet, let us describe a well-known
construction to go one step further in our proposition.

Table 1. Properties satisfied by some indices of the literature

Property RI JI TD RIA JIA RIQF JIQF HR FTD

(I1) Identity • • • • •
(I2) Non-negativity • • • • • • • • •
(I3) Symmetry • • • • • • • • •

Crossing a c-partition U and a r-partition V results in a (c× r) contingency
matrix N(U, V ) = (nij)i=1,c;j=1,r whose general term nij represents the number
of data being in the ith cluster of U and in the jth cluster of V . If both U and V
are strict, the cardinal of the intersection between each pair (U i,V j) of clusters
is given by [13]:

N(U, V ) = U tV. (1)

where tV stands for the transpose of V . This is the basis of some set-theoretical
indices such as the strict Rand and Jaccard indices, or the fuzzy Anderson et
al. extension [9] where a new computation of N is proposed, whose elements nij

are replaced by:

n�
ij(U, V ) =

n∑
k=1

'(uik, vjk) (2)
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where ' is t-norm1, see [14]. Basic t-norms are the minimum 'M (a, b) =
min(a, b) and the product 'P (a, b) = a b. There also exist parametrized families
of t-norms, e.g. the Hamacher’s one 'Hγ (a, b) =

a b
γ+(1−γ) (a+b−a b) , γ ∈ [0,+∞).

Note that nij induced by (1) is strictly equivalent to (2) computed with 'P .

2.2 Sparsity Measures

A fundamental problem in many data analysis problems is to find a suitable
representation of the data, say y = {y1, ...,yc} ∈ Rc. A sparsity (or spareness)
measure aims at assessing to which extend most values in y are close to zero
while only few ones are non-zero so that they can be used to represent the
data. Many sparsity measures are found in the literature, mainly coming from
fields such as signal analysis, e.g. in [15]. For a comparison of fifteen well-known
sparsity measures, the reader should refer to [5]. With no loss of generality, we
restrict ourselves to sparsity measures S : Rc → [0, 1]. Among the properties
such measures may have, let us cite the two that are required for the comparison
index we propose: (S1) adding a constant to each value decreases sparsity, (S2)
as one value becomes infinite, as sparse as possible is the distribution. Two of
the sparsity measures reviewed in [5] have these properties. The first one is the
Hoyer’s sparsity measure which is based on the relationship between the L1 norm
and the L2 norms. It is defined as:

H(y) =

√
c−

∑c
j=1 yj√∑
c
j=1 y2

j√
c− 1

. (3)

It varies from 0, i.e. y is not sparse, if all components are equal (up to signs)
to unity if y contains a single non-zero element. The second one is called kurto-
sis sparsity measure by analogy to the well-known measure of peakedness of a
probability distribution. It is defined as:

κ4(y) =

∑c
j=1 y

4
j(∑c

j=1 y
2
j

)2 . (4)

In order to show how these two measures behave, we have driven a short exper-
iment inspired by the work in [5]. Consider a vector y of 500 values in {0, 1}
drawn from a Bernoulli distribution, so that 1 and 0 have a respective probabil-
ity of occurence of p and q = 1 − p. When q is barely null, y is then composed
of very few zeros while only a small number of values are 1 when q is close to
1. Thus as q increase so should the sparsity measure as exhibited in Fig. 1. One
can observe that H presents more granularity than κ4 which only gives a strong
response for q > 0.9.

1 A t-norm is binary operation on the unit interval � : [0, 1]2 → [0, 1] which is com-
mutative, associative, non decreasing and has 1 for neutral element.
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Fig. 1. Sparsity measures of 500 data drawn from a Bernoulli distribution

2.3 Fuzzy Implications

A fuzzy residual implication is an application I : [0, 1]2 → [0, 1] , (a, b) &→ I(a, b),
such that:

I(a, b) = sup
t
{t ∈ [0, 1] : '(a, t) ≤ b} (5)

where ' is t-norm. We speak about an implication function if I is non-increasing
in the first variable, non-decreasing in the second variable and I(0, 0) = I(1, 1) =
1, and I(1, 0) = 0, see [6] for a large survey on fuzzy implication functions. Within
theses implications, the well-known Gödel is obtained with 'M and given by:

IM (a, b) =

{
1 if b ≥ a
b if b < a

(6)

As well, parametrical fuzzy implications are defined, e.g. the Hamacher’s ones,
defined by [16]:

IHγ (a, b) =

{
1 if b ≥ a

b (γ+a−γa)
b (γ+a−γa)+a−b if b ≤ a

. (7)

3 The New Index

Let us consider, for pedagogical purpose, the following two strict partitions :

u1 u2 u3 u4

Uh =

(
1 1 0 1
0 0 1 0

)
U1
h

U2
h

and

v1 v2 v3 v4

Vh =

⎛⎝ 0 1 0 1
1 0 0 0
0 0 1 0

⎞⎠ V 1
h

V 2
h .
V 3
h

Both share in common the information that elements x2 and x4 belong to the
same cluster, while x3 belongs to another one. Actually, the only difference
between Uh and Vh is about x1, which is grouped with x2 and x4 in Uh while
it is put aside in its own cluster in Vh because it probably differs in some subtle
ways of x2 and x4. The idea here is that Vh can be seen as a refinement of Uh, so
that V 1

h is included in U1
h , as pointed out by the contingency matrix crossing the

two partitionsN(Uh, Vh) =

(
2 1 0
0 0 1

)
by (1). Indeed, the 1st row n1 = (2 1 0) and

the 1st column tn1 = (2 0) of N(Uh, Vh) show that the only two elements of V 1
h
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also belong to U1
h , leading thus to conclude that V 1

h ⊂ U1
h . Moreover, let us have

a look at the matrices N(Uh, Uh) =

(
3 0
0 1

)
and N(Vh, Vh) =

⎛⎝2 0 0
0 1 0
0 0 1

⎞⎠ crossing

each partition with itself. Both logically present only one non-zero element on
each of their rows and columns, so that it can be directly connected with the
concept of sparsity. This is the main idea of our proposition : the closest the
partitions, the more sparse the rows and columns of their contingency matrix.
This idea is also valid when crossing two fuzzy partitions Uf and Vf . The inner

product between U i
f and V j

f induced by (1) will be high if and only if both clusters
are similar and are not too fuzzy, i.e. they have a certain amount ns < n of same
components close to 1, so that U i

f
tV j

f tends to ns. Follows that considering the
whole set of clusters of Uf and Vf , the elements of N will be large for crossed
fuzzy clusters having a lot of values in common, and will be small for frankly
different ones, so that the idea of sparsity as defined in section 2.2 is preserved.
The same reasoning holds while N is computed with (2), whatever the t-norm
'. The t-norm only slightly emphasizes or reduces the gaps between high and
low values, in the same manner as exhibited in [10].

Concretely, the new index is constructed as follows. Given a sparsity measure
S, it is easy to compute RS = {S(n1), ...,S(nr)} and CS = {S(tn1), ...,S(tnc)}
from the contigency matrix N crossing two partitions U and V . For each set, we
propose to combine the sparsities using a suitable aggregation function A, e.g.
the arithmetic meansRS and CS , to get two representative values. Many families
of aggregation functions exist, see [17] for a recent monograph. In our proposi-
tion, we restrict to functions A taking values in [0, 1] while computed for RS
and CS , so that the resulting two representatives of the sparsities in row/column
of N can be inputs of a fuzzy residual implication to assess wether partitions U
and V are compatible or not. Therefore, we propose a new comparison index of
strict/fuzzy partitions as follows:

QF(S,A,I)(U, V ) = min

(
I
(
A(RS),A(CS)

)
, I
(
A(CS),A(RS)

))
. (8)

This index is in [0, 1] by construction, and it is required that I satisfies the so-
called ordering property2, so that QF(S,A,I)(U, V ) = 1 whenever U ≡ V . Finally,
it is worthy on note that the asymptotic complexity of this new index is O(n),
as Anderson et al. and Campello’s ones, while the other considered indices are
in O(n2). To sum up, the proposed comparison index satisfies properties (I1),
(I2), (I3) and (I4), and has a triple of user-defined parameters (S,A, I):
– a sparsity measure S : R× ...×R &→ [0, 1], e.g. the Hoyer H and the kurtosis
κ4 ones given by (3) and (4),

– an aggregation function A : [0, 1] × ... × [0, 1] &→ [0, 1], e.g. the arithmetic
mean M(R) = 1

card(R)

∑
s∈R s,

– a fuzzy residual implication I : [0, 1] &→ [0, 1], e.g. the Gödel IM and the
Hamacher IHγ ones respectively given by (6) and (7).

2 ∀a, b ∈ [0, 1], a ≤ b iff I(a, b) = 1.
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4 Numerical Experiments

Some of the tested comparison indices require to choose a t-norm for their com-
putation, some others use the product. For sake of simplicity and fairness, we
choose 'P whenever a t-norm is required.
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Fig. 2. From top to bottom and from left to right : ground truth clustering Uk	 and
clusterings Vk (k = 2, ..., 12) obtained with the standard k −means algorithm

4.1 Strict Partitions

First, we compare strict partitions of a 2-dimensional synthetic dataset composed
of k� = 5 Gaussian clusters centered at (−1, 6), (1, 1), (−1, 2), (5, 4) and (3, 5)
with the same standard deviation Σ = 1

2Id, so that two pairs of them present a
slight overlap, see Fig. 2 (top-left). Remaining subfigures present the clusterings
Vk obtained with the standard k − means algorithm for k = 2, ..., 12. Each
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partition Vk is compared to the ground truth partition Uk	 using different strict
indices, resulting in the curves plotted in Fig. 3 (left). The tested indices are
the Rand Index RI, the Jaccard Index JI, the Transfert Distance TD, and
the new sparsity based index QF(S,A,I) with different triples of parameters:
(κ4,M, IM ), (H,M, IM ), (κ4,M, IH5) and (H,M, IH5). As expected, all the
indices exhibit their maximum value when k = k� = 5, but they do not have the
same dynamics. In particular, the Rand index presents the smallest dynamics,
so that we will stop using it and prefer the Jaccard indices in the remaining
experiments. For QF(S,A,I), this property clearly depends on S. The difference
of sparsity between the contingency matrices crossing U with each Vk is less
marked with H because the Hoyer’s sparsity measure presents more granularity
than the kurtosis κ4 in its measurement of the sparsity, as previously exhibited
in Fig. 1. Another interesting point is that the proposed index better exhibit
compatibility of partitions with respect to cluster refinements. Indeed, one can
see that QF(S,A,I) considers that V4 is closer to Uk	 more than the other indices
do. We think it represents a slight improvement since V4 differs with Uk	 about
only one cluster, so that the clusters should be considered as being quite close,
see cluster refinements in Fig. 2. Moreover, this behaviour is clearly reinforced
with the Hamacher fuzzy implication IH5 , as shown for instance for V6 and V7.
This is because IHγ > IM by construction. However, since QF(S,M,IM) and
QF(S,M,IHγ )

mostly give analogous results for both sparsities measures H and
κ4, the influence of the chosen fuzzy residual implication is no more studied.
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Fig. 3. Comparison of the ground truth strict partition Uk	 to the 11 strict partitions
Vk shown in Fig. 2 (left). Comparison of the ground truth strict partition Wk	 to the
10 fuzzy 3-partitions Vσ with increasing overlap (right).

4.2 Strict vs. Fuzzy Partitions

Inspired by the work in [18], this second experiment aims at comparing a strict
reference partition to a collection of fuzzy ones. Ten 3-dimensional datasets com-
posed of k� = 3 isotropic Gaussian clusters centered at (1, 0, 0), (0, 0, 0) and
(−1, 0, 0) are generated for increasing standard deviations σ = { 1k}k=10,9,...,1, so
that they evolve from no overlap to a strong one. The Fuzzy C-Means (FCM)
algorithm is run for each dataset to produce 10 fuzzy 3-partitions Vσ, with a
fuzzifier exponent and a termination parameter respectively set to 2 and 10−3.
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Fig. 3 (right) shows the resulting curves of comparison of those 10 partitions to
the strict ground truth partition Wk	 for different indices. As expected, all in-
dices achieve their maximum value for the smaller σ and decrease as σ increases.
However, four of them present a higher dynamics so that their value for the most
overlapping dataset is significantly lower: our fuzzy QF(H,M,IM ), the Anderson
et al. JIA, the strict3 JI, and the Quéré and Frélicot’s JIQF . Hoyer’s H spar-
sity measure gives a better result than κ4 because increasing σ can be seen as
increasing a kind of amount of noise within the data, and Hoyer’s measure is
known to overperform κ4 in such cases, see [15].

4.3 Fuzzy Partitions : Real Datasets

The last experiment is driven for several datasets from the UCI Machine Learn-
ing Repository [19], presenting various characteristics in terms of: number n of
observations, number p of attributes, true number c� of classes/clusters and de-
gree of overlap between clusters. Since it has lead to convergent outcomes, we
only give the results obtained on the following three well-known ones:

– Fisher iris (n = 150, p = 4, c� = 3, slight overlap between two classes),
– Pima diabetes (n = 768, p = 8, c� = 2, strong overlap between both classes),
– Italian wine (n = 178, p = 13, c� = 3, (slight overlap between 3 classes).

For each dataset, the FCM algorithm is run under the same parametrization as
in the previous experiment to produce a reference fuzzy c�-partition Uc	 and a
collection of 14 fuzzy c-partitions Uc, c varying from 2 to 15. Each partition Uc

is compared to Uc	 using the same indices than in the previous experiment. The
resulting curves are plotted in Fig. 4 as a function of c. Unsurprisingly, each
index reaches its maximum value at c = c� for each dataset and drops from its
maximum toward an asymptotic value, with different dynamics. According to
this criterion, our QF(κ4,M,IM) outperforms the others (since even if HR and
FTD exhibit higher values, they also present a poor dynamics). The performance
of QF(H,M,IM) is not as good as in the previous experiment. The reason is that
the number of clusters was not changing while it increases here, so that the
partitions Vc frankly differ from one to another and lead QF(κ4,M,IM) to be
more discriminant thanks to the drastic behaviour of κ4, see Fig.1.
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Fig. 4. Indices values obtained for the Iris, Pima and Wine datasets (from left to right)

3 For the strict Jaccard Index JI , hardened partitions obtained from fuzzy partitions
Vσ are considered.
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5 Conclusion

In this article, we propose a new index for comparing strict and fuzzy partitions,
lying on the original idea of measuring the sparsity of the contingency matrix
crossing two partitions. Its construction, involving sparsity measures and fuzzy
residual implications, is simple but efficient, so that as shown by numerous ex-
perimental results, this index outperforms the existing ones, in particular with
respect to the dynamics property. Moreover, by its low computational complex-
ity, the proposed index could become a privilegied tool for many practitioners.
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Abstract. A key issue in machine learning is the ability to cope with recognition
problems where one or more classes are under-represented with respect to the
others. Indeed, traditional algorithms fail under class imbalanced distribution re-
sulting in low predictive accuracy over the minority classes. While large literature
exists on binary imbalanced tasks, few researches exist for multiclass learning. In
this respect, we present here a new method for imbalanced multiclass learning
within the One-per-Class decomposition framework. Once the multiclass task is
divided into several binary tasks, the proposed reconstruction rule discriminates
between safe and dangerous classifications. Then, it sets the multiclass label us-
ing information on both data distributions and classification reliabilities provided
by each binary classifier, lowering the effects of class skew and improving the
performance. We favorably compare the proposed reconstruction rule with the
standard One-per-Class method on ten datasets using four classifiers.

1 Introduction

In data mining and machine learning, we deal with imbalanced (or skewed) recogni-
tion problem when one of the classes is largely under-represented in comparison to the
others. Most traditional learning algorithms cannot cope with this case since they are
biased towards the majority classes, resulting in poor predictive accuracy over the mi-
nority ones. This happens because they are designed to minimize errors over training
samples, ignoring classes composed of few instances.

In real world applications, such as text classification, currency validation, and med-
ical diagnosis, very often the a priori distributions of samples are different among the
classes, thus resulting in an imbalanced classification task. Due to the relevance of the
topic and its potential impact on the development of learning algorithms, in the recent
years there have been several works proposing learning methods coping with skewed
training set (TS). In particular, most of the existing literature focus on class imbalance
learning methods for binary problems (also referred to as dichotomies), proposing so-
lutions both at data and algorithmic levels, e.g. [1, 2]. Approaches working at data level
provide different forms of resampling, e.g. random or direct oversampling and under-
sampling, whereas those working at algorithmic level introduce a bias to compensate
the skewness of the classes, e.g. adjusting the costs of classes, adjusting decision thresh-
olds and recognition-based learning.

Otherwise, learning under a skewed multiclass TS has received little attention despite
the fact that such problems can be found in a large number of domains. The few recent
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works focused on multiclass learning (also named as polichotomy) can be roughly di-
vided into two categories [3–7].

The first compensates class imbalance directly on the polychotomy [3, 5, 7]. In [5]
the authors present a two-stage evolutionary neural network algorithm with the entropy
and area fitness functions, under the assumption that a good classifier should combine
a high classification rate level in the global dataset with an acceptable level for each
class. In [7] the authors propose a small sphere and large margin approach for novelty
detection problems, where the majority of training data are normal examples, and the
training data also contain a small number of abnormal examples or outliers. Their basic
idea is to construct a hypersphere solving a convex optimization problem containing
most of the normal examples, such that the volume of this sphere is as small as possible,
while at the same time the margin between the surface of this sphere and the outlier
training data is as large as possible. In [3] the authors introducing several cost functions
in the learning algorithm of a neural network in order to improve its generalization
ability and speed up the convergence process.

The second category faces with polychotomy using a decomposition approach [4, 6],
which consists in reducing the multiclass problem complexity in less complex binary
subtasks, each one addressed by a classifier usually referred to as dichotomizer [8–11].
To provide the final classification, dichotomizers’ outputs are combined according to a
reconstruction rule. We found only two attempts proposing reconstruction rule suited
for imbalance datasets [4, 6]. In particular, in [4] the authors applied the SMOTE algo-
rithm [1], i.e. an oversampling method for binary skewed task, in each dichotomizer and
then combine their outputs via a fuzzy model. In [6] the authors applied in the learning
phase of each dichotomizer several methods compensating binary class imbalance.

The short analysis of the literature reported so far shows that multiclass learning
in class imbalance circumstances is an issue deserving more research efforts. In this
respect, we propose here a new reconstruction rule combining dichotomizers’ outputs
within the One-per-Class decomposition framework, thus falling into the second of the
aforementioned branch. Once distinguished between safe and dangerous dichotomizers
classifications on the basis of sample classification reliability, it applies different recon-
struction rules for each of these two cases thus permitting to reduce effects due to the
skewness between classes. We test our approach on ten databases using four different
classification architectures, and we compare its results with those provided both by a
well known One-per-Class reconstruction rule and by a multiclass classifier.

2 Background

In this section we first introduce decomposition methods with particular reference to
the One-per-Class approach, and then we discuss performance metrics suited for class
imbalance classification tasks.

2.1 One-per-Class Decomposition Method

Decomposition methods reduce multiclass problem complexity in less complex di-
chotomies, each one addressed by a classifier. Their rationale lies in observing that, on
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the one hand, discriminating between two classes is much easier than simultaneously
distinguishing among many classes [12] and, on the other hand, most of the available
classification algorithms are best suited to learn binary functions [13, 14].

Decomposition methods can be unified in a common framework wherein the output
space is represented by a binary code matrix named as decomposition matrix. On its
basis, it is then possible to distinguish between the different approaches as follows. Let
Ω = {ω1, ω2, . . . , ωK} represents the label set of the K-classes problem, with K > 2.

The decomposition of the polychotomy generates a pool of L dichotomizers, with
the value of L depending upon the decomposition approach adopted. The dichotomizer
Mi is a discriminating function that classifies each input sample in two separate su-
perclasses, represented by the label set Ωi = {−1, 1}, each label identifying a subset
of polychotomy classes. Therefore, the overall decomposition scheme can be set by a
decomposition matrix D ∈ "L x "c, whose elements are defined as:

dij =

⎧⎨⎩
1 if class j is in the subgroup associated to label 1 of Mi

−1 if class j is in the subgroup associated to label -1 of Mi

0 if class j is in neither groups associated to label -1 or 1 of Mi

(1)

Hence, the dichotomizer Mi is trained to associate patterns belonging to class ωj with
values dij . Within this framework, the main decomposition approaches are named as
One-per-Class (OpC) [8, 11], Error-Correcting Output Code [8, 9], and PairWise Cou-
pling [10]. In the following we further present the OpC approach for four reasons. First,
it is applied in the reconstruction rule proposed in this paper; second, it introduces
a strong degree of imbalance for each dichotomizer since it collapses samples of all
classes except one into a superclass; third, it is a very popular method with the lowest
computational complexity and, fourth, it is very often used to derive multiclass classifier
from learning algorithms which are intrinsically binary.

OpC reduces the multiclass problems into K binary problems (i.e. L = K), each one
addressed by one dichotomizer, thus achieving a squared decomposition matrix. We say
that the jth dichotomizer is specialized in the jth class when it aims at recognizing if the
input sample belongs either to the jth class or, alternatively, to any other class. Without
loss of generality and to simplify the notation we use label 0 instead of -1. Therefore,
the binary label of the jth dichotomizer is 1 if the sample x belongs to the jth class, and
0 otherwise.

It is worth noting that dichotomizers, besides labelling each pattern, may supply
other information typically related to the degree that the sample belongs (or does not
belong) to the corresponding class. Indeed, it has been proved that exploiting infor-
mation derived from classifiers working at the measurement level permits to define
reconstruction rules that are potentially more effective [15]. Since measurement clas-
sifiers can provide more information than other classifiers, we assume that only mea-
surement experts are used in OpC scheme. This assumption is not a limitation since it
is always possible to obtain a measurement for each classification act of any kind of
classifiers [16].



304 R. D’Ambrosio and P. Soda

2.2 Performance Metrics

The confusion matrix is usually used to assess the performance of a recognition system
permitting to compute several indexes. The most used one is the global recognition

accuracy (acc) defined as acc =
∑K

j=1 njj

N , where njj is the number of elements of
class j correctly labelled and N is the total number of samples.

However, in case of imbalanced TS the recognition performance cannot be measured
in terms of classification accuracy only, since this measure is strongly biased to favor
the majority class. Hence, it would be more interesting to use a performance measure
dissociating the hits (or the errors) that occur in each class. To this aim, we can compute
the accuracy by class as accj =

njj

Nj
, where Nj is the number of samples in the j-th

class. Notice that accj is independent of prior probabilities and, thus, it is robust when
class distribution might be different in training and test sets or change over time. From
such metrics we can compute an overall index by extending the geometric mean of
accuracies (g) typically used to assess the performance in binary skewed problems. It
is given by g = (

∏K
j=1 accj)

1
K , being a non-linear measure since a change in one of

its arguments has a different effect on g depending on its magnitude. For instance, if a
classifier misses the labels of all samples in the jth class, it results accj = 0, and g = 0.

3 Compensated Reconstruction Rule

In this section we propose a reconstruction rule suited for OpC scheme that, combining
dichotomizers’ outputs, reduces drawbacks given by learning under data skewness and
improves system performance. Indeed, the typical error rate minimisation performed by
most of learning algorithms over the TS introduces a bias in favour of the the majority
class, resulting in low accuracies on classes composed of few instances. Hereinafter, the
proposed rule is referred to as Compensated Reconstruction Rule (CRR).

On the basis of the outputs provided by the pool of dichotomizers we distinguish be-
tween safe and dangerous classifications. Safe classifications are those in which each di-
chotomizer is strongly confident about its output. Dangerous classifications are those in
which two or more dichotomizers are weakly confident about their predictions. Consid-
ering the skewed nature of the dataset, the low confidence of two or more dichotomizers
with their outputs increases the likelihood of providing wrong classification. The confi-
dence of a classifier on its output should be measured by using classification reliability,
i.e. a measure lying in [0, 1] computed by any measurement classifier [16, 17]. Now, let
us introduce the following notation:

– Ω = {ω1, ω2, . . . , ωK} is the set of class labels, as reported in section 2.1;
– N is the total number of samples as reported in section 2.2;
– Nj is the number of samples belonging to the class ωj , as reported in section 2.2;
– x ∈ "n is a sample;
– the binary profile M(x) is the K-bit codeword of x collecting dichotomizers’ out-

puts as M(x) = [M1(x),M2(x), . . . ,MK(x)]. Mj(x) is 1 if x ∈ ωj , 0 otherwise;
– the reliability profile Ψ (x) is a K elements vector collecting dichotomizers’ reli-

abilities; each entry measures the reliability of the jth dichotomizer’s output and
represents the degree that x belong or not to predicted class. It is given by Ψ (x) =
[ψ1(x), ψ2(x), . . . , ψK(x)];
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– the reverse a-priori probability profile R contains the knowledge on the a-priori
classes distribution; it is a K elements vector R = [r1, r2, . . . , rK ], where rj =
1−Nj/N ;

– τ0 is a threshold for detecting classifications more likely to be corrected in case of
dichotomizer suggesting that x does not belong to its class (Mj(x) = 0). Its value
is estimated on a validation set maximizing accj;

– τ1 is a threshold for detecting classifications more likely to be corrected in case of
dichotomizer suggesting that x belongs to its class (Mj(x) = 1). Its value is set as
for τ0.

On this basis, the classification of x is said to be a safe classification if:

(α1(x) > τ1 ∧ α0(x) > τ0) ∨ (α1(x) > τ1 ∧ α0(x) < τ0 ∧ α0(x) > τ0) (2)

where α1(x) = maxj(ψj(x)|Mj(x) = 1) is the largest value of reliability among
those provided by dichotomizers whose outputs is 1, i.e. the dichotomizers suggesting
that x belongs to their corresponding class. α0(x) = minj(ψj(x)|Mj(x) = 0) is the
lowest reliability value among those provided by dichotomizers whose outputs are 0,
i.e. the dichotomizers suggesting that x does not belong to their corresponding class.
Furthermore, α0(x) = E(ψj(x)|Mj(x) = 0) is the average value of reliabilities asso-
ciated with dichotomizers whose outputs are 0. In the following, for brevity we omit to
indicate that α0, α1 and α0 depend on (x) when this does not introduce any ambiguity.

The classification of x is defined as dangerous when:

(α1 < τ1 ∧ α0 < τ0) ∨ (α1 > τ1 ∧ α0 < τ0 ∧ α0 < τ0) (3)

To set the final classification, CRR applies different criteria for safe and dangerous
classifications. In the former case, the index s of the dichotomizer setting the final class
ωs ∈ Ω is given by:

s =

{
argmaxj(Mj(x) · ψj(x)) if m ∈ [1,K]

argmimj(Mj(x) · ψj(x)) if m = 0
(4)

where Mj(x) is the negate output of the dichotomizer and m =
∑K

j=1 Mj(x). Notice
that in such a case the final decision depends on both M(x) and Ψ (x) without consid-
ering data related to the degree of imbalance presented in the dataset.

In case of dangerous classification, when an error due to class skew is more likely
to occur, we advantage the minority class in order to compensate classifier bias. To this
aim, we exploit information contained in R, whereas information provided by M(x) and
Ψ (x) has been used to detected the dangerous situation itself. To set the final decision
we consider only two dichotomizers. The first is the dichotomizer which more likely
suggests that x belongs to its class, since its output is one and it has the largest reliability
among the others providing the same output. The second is the dichotomizer which
more likely suggests that x does not belong to class j where the jth dichotomizer is
specialized on, but x should belong to class i, with j �= i. Indeed, the output Mj(x) of
this dichotomizer is zero and it has the lowest reliability among the others providing the
same output (i.e. α0). The CRR sets the index s as follows:

s =

{
argmaxj(r

0
j , r

1
j ) if α1 ≥ α0

argmimj(r
0
j , r

1
j ) if α1 < α0

(5)
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where
rij = (rj |Mj(x) = i ∧ ψj = αi), with i = {0, 1} (6)

To explain the rationale of eq. 5, recall that we are considering dangerous classification
where an error due to class skew is more likely to occur. Indeed, when α1 ≥ α0 and
taking into account eq. 3, two cases may happen. In the first one, values of both α0 and
α1 should be below the thresholds τ0 and τ1 respectively. In the second one, α1 is large
but the average reliability α0 of dichotomizers suggesting that the x does not belong to
their class (Mj(x) = 0) is below a threshold τ0. In both cases, it is reasonable to assume
that wrong classification is given by the bias in favor of majority class; hence, CRR sets
the final label as the class where the dichotomizer with the largest value of the reverse
a-priori probability is specialized, i.e. the minority class among those considered.

Ortherwise, when α1 < α0, CRR sets the final class as the one where the di-
chotomizer with the lowest reverse a-priori probability is specialized. In this case, con-
sidering again that this is a dangerous classification, α0 is smaller than threshold τ0
(eq. 3), and α1 is smaller than τ1 but it is smaller than α0 (eq. 5) . This observation
implies that reliabilities values are small and noisy, suggesting that there isn’t a clear
trend among the dichotomizer outputs to set the final decision: hence, the class with the
largest a-priori probability should be preferred to set the final classification.

Table 1. Summary of the used datasets. Symbols ∗ and + marks public and private datasets,
respectively

Dataset
FER∗ GLASS∗ ISOLET∗ LETTER∗ OPTDIGIT∗ IIFI∗ IIFH2+ SAT∗ WFRN∗ WINE∗

N. of samples 876 205 2000 2561 5620 600 573 6425 5456 178
N. of classes 6 5 26 26 10 3 5 6 4 3
N. of features 50 9 30 16 60 57 159 36 24 13
Majority class 28.1% 37.0% 4.7% 4.5% 10.2 % 36.0% 37.0% 23.9% 40.4% 39.9%
Minority class 7.5% 6.3 % 3.1% 2.9% 9.8% 31.5% 8.2% 9.7% 6.0% 27.0%

4 Experimental Evaluation

The method proposed in this paper has been compared to both a multiclass classi-
fier and a well established OpC reconstruction rule, namely the Hamming decoding
(HAMDEC) [8]. According to its original definition and assuming that each dichotomizer
provides 1 or -1 labels, the index s of the dicothomizer setting the final class ωs ∈ Ω is
given by:

s = argminidH(D(ωi),M(x)) (7)

where

dH(D(ωi),M(x)) =

K∑
j=1

(
1− sign(D(ωi, j)Mj(x))

2
) (8)

The experiments have been carried out by employing three different paradigms for the
base dichotomizers: a k-Nearest Neighbor (kNN) as a statistical classifier, a Multi-Layer
Perceptron (MLP) as a neural network, and a Support Vector Machine (SVM) as a
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kernel machine. With reference to multiclass classifier, we have considered the kNN
and MLP network. Note that we have not considered multiclass SVM since it is usually
implemented using a decomposition approach.

In particular, we used a kNN classifier choosing the k value within the range
{1, 3, 5, 7} that optimize performance on five validation set. To evaluate the reliabil-
ity of kNN decisions we adopted a method that estimates the test patterns credibility on
the basis of their quality in the feature space [17].

For the MLP, the neural network has a number of hidden layers equal to half of the
sum of features number plus class number. The number of neurons is given in the input
layer by the number of the features, whereas in the output layer is equal to the number
of the classes. As with the kNN classifier, to evaluate the reliability of MLP decisions
we adopted the method reported in [17].

In case of SVM we used both a SVMs with a Gaussian Radial Basis Function
(RBF) and linear kernels, denoted as SVMrbf and SVMl, respectively. For SVMrbf ,
the values of regularization parameter C and scaling factor σ have been selected within
{1, 10, . . . , 104} and {10−4, 10−3, . . . , 10} , respectively. For SVMl, the values of cost
C is selected within {2±4, 2±3, 2±2, 2±1, 20}. Each parameter value is selected accord-
ing to average performance of classifier on five validation set. The reliability of a SVM
classification is estimated as proposed in [18].

In our experiments, we used nine public and one private datasets. These datasets
are characterized by a large variability in the number of features, classes and sam-
ples, allowing the assessment of the performance in different conditions (Table 1). They
are: Facial Expression recognition (FER) [19, 20], Indirect Immunofluorescence Inten-
sity (IIFI) [21], Indirect Immunofluorescence HEp-2 cells staining pattern (IIFH2) [22],
Glass Identification (GLASS) [23], ISOLET [23], Letter Recognition (LETTER) [23],
Optical Recognition of Handwritten Digits Data Set (OPTDIGIT) [23], Statlog (SAT)
[23], Wall Following Robot Navigation Data (WFRN) [23], and Wine (WINE) [23]. For
every dataset classification accuracy acc and geometric mean of accuracies g are com-
puted averaging out values obtained performing ten fold cross validation. Each fold is
computed maintaining the a-priori distribution of data showed by by original TS.

Results reported in Table 2 permit us to compare performance of CRR-based classi-
fication with those achieved both by a multiclass approach and a popular OpC scheme,
employing also different classification paradigms.

With regard to the comparison between the CRR approach and the multiclass classi-
fication we observe that, generally, the first performs better than the latter both in term
of acc and g. Indeed, the kNN with the CRR approach achieves better results than the
corresponding multiclass scheme on all the tested datasets. In case of MLP neural net-
work, the CRR scheme outperforms the multiclass classifier in eight cases out of ten
datasets. In both cases acc and g values improvements are up to 88%.

Let us now focusing our attention to the comparisons between CRR and HAMDEC re-
construction schemes. With reference to the kNN classification paradigm, we notice
that CRR outperforms the HAMDEC scheme in nine out of ten datasets both in terms of
acc and g,showing improvements up to 18.0% and 14.0%, respectively. Exploring MLP
results in terms of acc, we observe that CRR scheme outperforms HAMDEC in eight case
out of ten, with the improvements ranging between from 1.1% up to 8.7%. In case of
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Table 2. MLP, kNN and SVM performance (acc% and g% values) on ten public datasets
Dataset

Metrics FER GLASS ISOLET LETTER OPTDIGIT IIFI IIFH2 SAT WFRN WINE

K
N

N

Multiclass
acc 40.3 51.00 4.3 4.1 10.0 67.2 48.7 86.1 87.5 78.4
g 38.8 49.11 3.6 3.5 10.0 67.0 25.6 84.2 84.6 78.1

CRR
acc 81.8 71.1 41.1 83.5 98.0 69.2 63.7 90.3 87.8 94.5
g 79.1 14.1 3.9 82.4 98.0 69.9 55.7 87.9 87.3 98.0

HAMDEC
acc 76.4 70.9 33.1 77.2 97.9 67.5 55.0 72.5 84.5 95.9
g 70.8 0 0 75.2 97.8 65.2 55.7 88.1 83.3 96.5

M
L

P

Multiclass
acc 86.6 58.4 4.5 4.3 10.0 65.7 52.4 87.9 89.6 71.9
g 85.8 55.9 0 0 10.1 61.8 28.9 83.9 86.6 71.8

CRR
acc 73.6 69.0 54.8 77.8 98.3 71.5 62.1 90.8 88.3 97.6
g 69.9 0 23.8 61.0 98.3 69.4 59.0 88.4 83.5 94.6

HAMDEC
acc 85.8 66.7 46.1 76.0 97.2 67.2 62.6 89.1 87.5 96.5
g 79.0 0 7.8 58.8 97.2 63.2 48.7 84.7 84.1 96.1

S
V

M
l CRR

acc 72.3 44.7 47.0 52.6 88.9 51.6 53.7 61.4 49.1 97.6
g 45.3 13.8 0 0 88.4 49.4 23.3 44.4 47.7 97.8

HAMDEC
acc 41.0 42.5 7.7 6.7 43.7 65.8 53.6 49.8 48.2 94.6
g 0 0 0 0 33.3 62.7 24.1 0 38.8 93.9

S
V

M
r
b
f CRR

acc 88.1 68.5 24.5 72.9 11.8 55.5 59.5 90.9 65.6 98.8
g 84.7 7.0 0 56.7 0 67.2 41.8 88.0 88.3 97.2

HAMDEC
acc 85.2 58.9 9.9 55.7 10.4 56.5 46.1 88.6 59.8 95.9
g 33.3 80.7 0 40.3 0 61.2 30.4 84.4 87.2 93.3

g values, we observe that CRR has performance improvement up to 16.0% in seven case
out of ten. SVM architecture employing CRR scheme shows larger accuracy than the
one adopting HAMDEC scheme, independently of the used kernel. In particular, in nine
out of ten datasets SVMl and SVMrbf improvements are up to 46% and 17%, respec-
tively. In term of g and using SVMrbf CRR scheme outperforms HAMDEC in eight out
of ten cases with improvements up to 55%. Using SVMrbf improvements concern nine
out of ten datasets, with the gvalue raising up to 16%.

Before concluding the paper, let us introduce two further considerations on the re-
sults measured in terms of g. First, it is worth noting that g improvements are large
(up to 55%), especially when the base classifier is the SVMl. Second, in several cases
where the application of the HAMDEC reconstruction rules provides values of g equal to
zero, which correspond to misclassifying all samples of one or more minority classes,
the CRR rule attains larger and non zero g values.

These last observations together with the results previously discussed point out that
CRR scheme provides larger relative accuracies among all classes, thus achieving better
classifications on classes with few samples and reducing class imbalance effects.

5 Conclusion

In this paper we presented a reconstruction rule for the One-per-Class decomposition
framework overcoming issues related to learning under class skew in a multiclass sce-
nario. It applies different criteria to set the final decision on the basis of both the outputs
of the dichotomizers and the a-priori probabilities of the classes. The approach has been
tested on ten datasets and successfully compared against a multiclass classifier and a
well established OpC reconstruction rule.
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Abstract. One typically expects classifiers to demonstrate improved
performance with increasing training set sizes or at least to obtain their
best performance in case one has an infinite number of training sam-
ples at ones’s disposal. We demonstrate, however, that there are clas-
sification problems on which particular classifiers attain their optimum
performance at a training set size which is finite. Whether or not this
phenomenon, which we term dipping, can be observed depends on the
choice of classifier in relation to the underlying class distributions. We
give some simple examples, for a few classifiers, that illustrate how the
dipping phenomenon can occur. Additionally, we speculate about what
generally is needed for dipping to emerge. What is clear is that this kind
of learning curve behavior does not emerge due to mere chance and that
the pattern recognition practitioner ought to take note of it.

1 On Learning Curves and Peaking

The analysis of learning curves, which describe how a classifier’s error rate
behaves under different training set sizes, is an integral part of almost any
proper investigation into novel classification techniques or unexplored classifi-
cation problems [7]. Though sometimes interest goes only to its asymptotics [9],
the learning curve is especially informative in the comparison of two or more
classifiers when considering the whole range of training set sizes. It indicates
at what samples sizes the one classifier may be preferable over the other for a
particular type of problem. Also, by means of extrapolation, the curve may give
us some clue on how many additional samples may be needed in a real-world
problem to reach a particular error rate. Such analyses are readily impossible
on the basis of a point estimate as, for example, obtained by means of leave one
out cross-validation on the whole data set at hand.

The learning curve one typically expects to observe falls off monotonically with
increasing training set size (see Figure 1). The rate of decrease depends on the
particular problem considered and the complexity of the classifier employed. Such
behavior can indeed be demonstrated in certain settings in which the classifier
selected typically fits the underlying data assumptions well, see for instance
[1,10]. In a similar spirit, various bounds on learning curves also show monotonic
decrease for the expected true error rate with increasing training set sizes [5,16].
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Fig. 1. An idealized learning curve in which the error rate drops monotonically with
an increasing training set size

That such monotonic behavior can, however, not always be guaranteed has
already been known at least since the mid nineties. Both Opper and Kinzel [12]
and Duin [4] describe what is nowadays referred to in pattern recognition as the
peaking phenomenon for learning curves: the error rate attains a local maximum
that does not coincide with the smallest training sample size considered. This
phenomenon has been described and investigated, for instance, for the Fisher
discriminant classifier [4,13,14], for particular perceptron rules [12,11], and for
lasso regression [8]. The naming of this phenomenon alludes to the peaking
phenomenon for increasing feature sizes (as opposed to increasing training set
sizes, which this paper is concerned with) as originally identified by Hughes [6]
in the 1960s. Hughes’ phenomenon for such feature curves shows that, for a fixed
training sample size, the error initially drops but beyond a certain dimensionality
typically starts to rise again.

On the basis of what we know about peaking, we may adjust our expecta-
tion about learning curves and speculate classifiers to at least obtain their best
performance when an infinite number of training samples is used. But also this
turns out to be false hope as this work demonstrates. It appears there are classifi-
cation problems on which particular classifiers attain their optimal performance
at a training set size which is finite. In contrast with peaking, we term this
phenomenon dipping as it concerns a minimum in the learning curve, in fact, a
non-asymptotic, global minimum.

The next three section of the paper, Sections 2, 3, and 4, give some sim-
ple examples, for three artificial classification problems in combination with
specific classifiers, which demonstrate how the dipping phenomenon emerges.
Though artificial, the examples clearly illustrate that this kind of learning curve
behavior does not merely emerge due to chance, e.g. due some unfortunate
draw of training data, but that it is an issue structurally present in particular
problem-classifier combinations. The final section, Section 5, speculates on what
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generally is needed for dipping. It also offers some further discussions and con-
cludes this contribution.

2 Basic Dipping for Linear Classifiers

Consider a two-class classification problem consisting of one Gaussian distribu-
tion and one mixture of two Gaussian distributions (Figure 2). The Gaussians
of the second class appear on either side of the Gaussian of the first class. A per-
fectly symmetric situation is considered here: there is symmetry in the overall
distribution and the class priors are equal. It should be stressed, however, that
this perfect symmetry is definitely not needed to observe a dipping behavior,
just like there is no need to stick to Gaussian distributions. This configuration,
however, enables us to easily explain why dipping occurs.
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Fig. 2. Distribution of two-class data used to illustrate basic dipping

Let us consider what happens when we would make an expected learning curve
for the nearest mean classifier (NMC, [3]). In the case of large total training
set sizes, both means will be virtually on top of each other and the expected
classification error will reach a worst case performance of 0.5. If, however, we go
to smaller and smaller sample sizes, these means will in expectation be further
and further apart due to their difference in variance. In the extreme case in
which we have one observation from both classes, the one mean will be around
the mode of class one and the other will be near one of the two modes of class
two. Though one will still have means that lead to an error rate of about 0.5,
chances are very slim. There will, however, be many configurations that both
classify the first class and one lobe of the second class more or less correctly,
which gives an expected error of around 0.25 as only the second lobe of the
second class gets misclassified.

In conclusion, the smaller the sample size is the higher the probability is that
the NMC delivers a performance considerably better than chance. Figure 3 gives
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Fig. 3. Dipping learning curves for three linear classifiers, viz., NMC, Fisher discrim-
inant, and logistic regression, based on the one-dimensional distribution presented in
Figure 2

the expected learning curve (an average over 1000 repetitions) for training set
sizes ranging from 21 to 212 (compare to Figure 1). The same figure displays
learning curves for the Fisher discriminant and logistic regression as well. Both
linear classifiers also suffer from dipping and an explanation for this goes along
the same lines as for the NMC.

3 Delayed Dipping

The following example demonstrates that the occurrence of the dip can be at
any point along the learning curve. Let us again consider the NMC but now the
classification problem changes to the one illustrated in Figure 4. The first class
is a Gaussian distribution and the second class is a noisy ring positioned around
the first class with a variable radius. Again the priors are taken equal.

When the radius of the ring is small, we are basically back in a situation
similar to the one in Section 2 and one would observe dipping as in Figure 3.
The more training samples one would have, the closer the two means would get.
Though this is bad in case the ring is near the center class, when the ring grows
larger and larger, while the noise level stays the same, more observations in fact
lead to improved performance up to a certain level. Having one observation per
class would mean that the larger part of the ring is going to be misclassified to
the center class. Increasing the total training set size, however, moves the mean
of the second class closer and closer to the mean of the first class. As long as the
second class mean does not move into the region where the first class becomes
dense, moving closer to the center will lead to a better classification of class
two and therefore a better overall performance. When the ring grows infinitely
large, the two means can be virtually the same (relative to the size of the ring)
while the first class is classified nearly perfect and as good as half of the ring is
correctly classified. This happens when the training set grows infinite as well.
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Fig. 4. Single instantiation of a distribution of two-class data used to illustrate early
and late dipping for the NMC. The outer ring can vary in diameter based on which
the time of dipping can be controlled.
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Fig. 5. Learning curve for the NMC based on the two-class distribution in Figure 4. It
shows the dipping phenomenon to occur away from the smallest sample sizes.

In conclusion, by means of the variable ring diameter, one can tune the occur-
rence of the dip for the NMC to an arbitrary position along the learning curve.
Figure 5 gives a learning curve that dips at a training sample of 16, which is
obtained for a radius of 20 with a Gaussian standard deviation and a ring noise
level standard deviation of 1.

4 Dipping of QDA

Our final example shows that dipping is not limited to linear discriminants
but may also be encountered when employing more flexible classifiers. Here we
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consider classical quadratic discriminant analysis (QDA, [10]). Figure 6 shows
the class configurations used—a variation to the one from Section 2. Figure 7
displays the learning curve obtained by QDA1. A reason rather similar to the
one given in Section 2 can be given for the observed dipping, though it is slightly
more involved because of the more complex classifier considered. Here we merely
note that in case of large sample sizes the decision boundary is close to the mid-
dle and the error rate gets close to the worst case solution, which is slightly less
than 0.5. For smaller sample sizes the decision boundary shifts away from the
middle, which on average leads to an improvement in classification error as can
be observed in the learning curve from Figure 7.
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Fig. 6. Distribution of two class data used to let QDA dip
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Fig. 7. Learning curve for QDA related to the two-class distribution in Figure 6, illus-
trating that dipping is not limited to the simplest of classifiers.

1 As the per class sample sizes sometimes equals one, the covariance matrices in QDA
were moderately regularized in this experiment.
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5 Discussion and Conclusion

For four different classifiers we have demonstrated that the dipping phenomenon
can be observed. We explained why it emerges in a basic setting using linear clas-
sifiers, sketched how the dipping point can attain an arbitrary location along the
learning curve, and illustrated the possibility that also discriminants more com-
plicated than linear can show dipping behavior. What seems to be a essential
requirement is that the model underlying the classifier does not suit the classifi-
cation problem considered very well. Curves similar to those on Figure 2 can be
generated for linear discriminant analysis (LDA), the perceptron, or the linear
support vector machine. All in all, it raises the question at what complexity
classifiers will not suffer from dipping any longer. More specifically: can we find
problems for which k nearest neighbors or the Parzen classifier show this type
of behavior? Or are nonparametric techniques immune to dipping? Certainly
for the Parzen classifier, when one would keep the kernel’s bandwidth fixed, we
would not be surprised if particular data configurations will even make this clas-
sifier dip. To date, however, we have been unsuccessful in finding an illustration
of such behavior.

It may even be that still less is needed for dipping to potentially happen. Even
if the type of decision boundaries that can be modeled by a particular classifier is
in principle rich enough to include the Bayes decision boundary for the problem
at hand, the learning routine or estimation procedure might be unable to find
the correct fit. An example is the Fisher discriminant, which is not always able
to separate linearly separable classes. The underlying problem is that we want to
minimize the expected classification error but in reality we always have to settle
for a surrogate loss that is all but a bad approximation to the 0-1 loss. Maybe
due to this discrepancy, “anything” can happen: for any classifier one might be
able to find a, potentially rather pathological, data set for which the classifier
dips. That this state of affairs may not be completely accurate is, however,
demonstrated by the existence of so-called universally consistent classifiers (see,
for instance, [15]). Though such results on universality should, in turn, also be
interpreted with care [2].

A completely different question this work also raises is whether one should
treat the training set size just like any other free parameter a classifier has.
Should one, for example, also cross-validate over the number of training sam-
ples to be used for training? Another issue of interest is whether the phe-
nomenon can be observed in any real-world problem and how it affects such
setting.

Irrespective of the previous questions, we think dipping is a phenomenon
that one should keep in mind when studying learning curves. When observed,
it may not be ascribed blindly to chance or a bad training sample. It might
just be inherent in the combination of problem at hand and classifier
employed.
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Abstract. In this paper, we aim at learning the colour matching func-
tions making use of hyperspectral and trichromatic imagery. The method
presented here is quite general in nature, being data driven and devoid of
constrained setups. Here, we adopt a probabilistic formulation so as to re-
cover the colour matching functions directly from trichromatic and hyper-
spectral pixel pairs. To do this, we derive a log-likelihood function which
is governed by both, the spectra-to-colour equivalence and a generative
model for the colour matching functions. Cast into a probabilistic setting,
we employ the EM algorithm for purposes of maximum a posteriori in-
ference, where the M-step is effected making use of Levenberg-Marquardt
optimisation. We present results on real-world data and provide a quan-
titative analysis based upon a colour calibration chart.

1 Introduction

The accurate capture and reproduction of colours as acquired by digital camera
sensors is an active area of research. This is not a straightforward task since
digital cameras are comprised by three spectral broad-band color sensors which
are not colorimetric. This implies that the RGB values yielded by the camera
are not a linear combination of the device-independent CIE color matching func-
tions [1]. Further, colours, as acquired by digital cameras, are, in general, device
dependent.

Whereas colorimetry focuses on the accuracy of the colours acquired by the
camera, spectroscopy has as object of study the spectrum of light absorbed,
transmitted, reflected or emitted by objects and illuminants in the scene. In
contrast with trichromatic sensors, multispectral and hyperspectral sensing de-
vices can acquire wavelength-indexed reflectance and radiance data in tens of
hundreds of bands across a broad spectral range. Recently, there has been re-
newed interest in multispectral imaging as related to color constancy [2], the
analysis of the spectral properties of objects in the scene [3] and the optimal
multiplexing of bandpass filtered illumination [4,5].

Moreover, making use of photogrammetry and spectroscopy techniques based
upon monochromatic narrow-band illuminants, it is possible to recover the spec-
tral response of the camera under study [6]. Methods which employ calibration

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.
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targets and charts have also been proposed. These methods employ quadratic
programming [7], monochromators [8] or spectrophotometers [9].

The methods above require calibration charts and, in many cases, compli-
cated setups and constrained environments. Here we present a method which
employs two sets of images, one trichromatic and another one hyperspectral so
as to learn the colour matching functions. The method presented here hinges
in an inference process based upon a maximum-likelihood formulation which
leads to the application of the EM (Expectation-Maximisation) algorithm. In
the following section, we provide some background on the relationship between
the colour output of the camera, the colour matching functions and the spectral
image radiance.

2 Background

To better understand the relation between the spectra in hyperspectral imagery
and the color output of trichromatic cameras, we commence by providing some
background on the expression of the image radiance at pixel v as given in [10].
Let the image radiance be given by

I(λ, v) = L(λ)P (ϕi, φi, ϕs, φs)S(v, λ) (1)

where P (·) is the mean scattered power in the direction (ϕs, φs), L(λ) is the
power spectrum of the light impinging on the object surface in the direction
(ϕi, φi) and S(v, λ) is the surface reflectance at wavelength λ.

The expression above is important since it allows the use of the shorthand
R(λ, v) = P (ϕi, φi, ϕs, φs)S(v, λ) so as to write the image radiance as follows

I(λ, v) = L(λ)R(λ, v) (2)

This expression has been used widely in the literature [11] and is consistent with
reflectance models in the computer vision literature, such as that in [12].

Recall that in a trichromatic camera, a fraction of the light incident on the
surface of the object being observed is reflected towards the camera. The light
then pases through the camera lens, which focuses the incoming light beam
onto the image plane of the camera. After reaching the image plane, the colour
channel values for each pixel in the image are determined by the responses to
the incoming light of the R, G, B receptors of the camera.

This is important since it permits us to consider two sample-sets. We denote
the first of these, which corresponds to trichromatic pixels, as ARGB. The sec-
ond sample-set, AHS , corresponds to the spectra at hyperspectral pixels. If the
trichromatic pixel u is a match to the hyperspectral pixel v, i.e. u ∼ v, then,
using the notation above we can write

Ik(u) = κk

∑
λ∈Λ

Qk(λ)L(λ)R(λ, v) (3)

where κk is a constant that depends on the sensor geometry, Ik(u) is the colour
value for the channel k = {R,G,B}, Λ is the visible spectral range,
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i.e. Λ = [400nm, 700nm], and the colour matching functions for the three colour
channels are denoted by Qk(λ), k = {R,G,B}.

Here, we note that the illuminant power spectrum may be recovered making
use of methods elsewhere in the literature such as that in [13]. We can assume
it to be in hand. Also, in the following section, we assume that the matches
between pixels are available. We will ellaborate further on this in Section 4.

3 Maximum Likelihood Formulation

Note that the treatment above permits us to view each pixel value as a product
of a per-pixel, per-wavelength factor which applies equally to all the pixels in the
sample sets ARGB and AHS . This in turn allows a statistical treatment of the
problem. In this section, we cast the problem into an Expectation-Maximization
setting.

3.1 Log-Likelihood Function

The idea underpinning the EM algorithm is to recover maximum likelihood so-
lutions to problems involving missing or hidden data. To do this, we view the
colour matching functions as a set of hidden variables to be estimated. Thus, we
cast the problem as a maximum a posteriori (MAP) one which aims at maximiz-
ing the probability of the colour matching function given the input trichromatic
and hyperspectral image pixels. This can be expressed as follows

P (Qk(λ) | Ω,Θk) = P (Qk(λ) | Ω)P (Qk(λ) | Θk)

where Ω is the set of matching spectra-colour pixel tuples and Θk is the set of
hyperparameters for the colour matching function Qk(λ).

Note that, in the expression above, the first term of the right-hand side is
the conditional probability governed by the hyperspectral image radiance value
and the corresponding colour value. Thus, the maximization of the probability
P (Qk(λ) | Ω) implies that the colour matching function Qk(λ) should satisfy the
relationship between the spectral radiance and the trichromatic colour values.
The second term accounts for the dependency of the colour matching function
Qk(λ) upon the hyperparameters in Θk. Note that these hyperparameters can be
viewed as a means to enforcing a cumulative distribution function in a manner
akin to histogram equalization methods [14].

We can take our analysis further by considering a probability distribution
function for P (Qk(λ) | Ω) of the form

P (Qk(·) | Ω) =
1

γk
√
2π

∏
u∈ARGB

v∈AHS

u∼v

exp

{
− 1

2γ2
k

∣∣∣∣Ik(u)−κk

∑
λ∈Λ

Qk(λ)I(λ, v)

∣∣∣∣2} (4)

where γk is the variance variable and the second term in the argument of the
exponential function arises from Equations 2 and 3.
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In a similar fashion, we can consider the colour matching function values
to be distributed in accordance to a mixture of N Gaussians. This is a good
approximation for the colour matching functions used in practice by camera
manufacturers [15]. As a result, we can write

P (Qk(·) | Θk) =
∏
λ∈Λ

N∑
q=1

αq,k
1

σq,k
√
2π

exp

{
−
(
μq,k − λ

)2
2σ2

q,k

}
where, Θk = {θq,k}Nq=1 and, as usual, θq,k = {μq,k, σq,k} are the mean and the

covariance for the kth colour response and the qth Gaussian in the mixture and
αq,k is the mixture weight.

With these ingredients, the log-likelihood function becomes

L(Qk(·) | Ω,Θk) = −
1

2γ2
k

∑
u∈ARGB

v∈AHS

u∼v

∣∣∣∣Ik(u)− κk

∑
λ∈Λ

Qk(λ)I(λ, v)

∣∣∣∣2+
∑
λ∈Λ

log

{ N∑
q=1

αq,k
1

σq,k
√
2π

exp
{
−
(
μq,k − λ

)2
2σ2

q,k

}} (5)

where we have removed the term log
{

1
γk

√
2π

}
from further consideration since it

does not depend on the colour matching function Qk(·) or the hyperparameter
set and, hence, does not affect the inference process.

3.2 Expectation-Maximization

Note that, in the equation above, only the last term in the right-hand side
depends on the hyperparameter-set Θk. This is an important observation, since
it suggests an iterative update scheme in which the hyperparameters and the
colour matching functions Qk(λ) can be recovered using the EM algorithm [16],
which we describe in the following.

Expected Log-Likelihood Function. In Equation 5, the two terms on the
right-hand side are log-likelihoods in their own right. That is, the first of these is
the log-likelihood of Qk(λ) given the colour responses and spectral values. The
second term corresponds to the likelihood of Qk(λ) given the hyperparameters
Θk.

Thus, we can index the expected log-likelihood to iteration number n and
write

Q(Qn+1
k (·) | Ω,Θn

k ) = −τ
∑

u∈ARGB

v∈AHS

u∼v

∣∣∣∣Ik(u)− κk

∑
λ∈Λ

Qn+1
k (·)I(λ, v)

∣∣∣∣
2

+

∑
λ∈Λ

log

{ N∑
q=1

αn
q,k

1

σn
q,k

√
2π

exp
{−

(
μn
q,k − λ

)2
2(σn

q,k)
2

}}
(6)
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where we have used the shorthand τ = 1
2γ2

k
.

M-Step. In the M-step, we aim at maximising the expected log-likelihood with
respect to the colour matching functions. Note that the maximisation of the
log-likelihood can also be cast as a minimisation of the form

argmin
Qn+1

k (·)

{
τ
∑

u∈ARGB

v∈AHS

u∼v

∣∣∣∣Ik(u)− κk

∑
λ∈Λ

Qn+1
k (·)I(λ, v)

∣∣∣∣2−
∑
λ∈Λ

log

{ N∑
q=1

αn
q,k

1

σn
q,k

√
2π

exp
{
−
(
μn
q,k − λ

)2
2(σn

q,k)
2

}} (7)

This observation is important since it allows the M-step to be viewed as a reg-
ularised nonlinear least-squares minimsation which can be tackled using the
Levenberg-Marquardt algorithm (LMA), which is an iterative trust region pro-
cedure [17] aimed at recovering a numerical solution to the problem of minimising
a function over a space of parameters.

E-Step. To estimate the hyperparameter set θn+1
q,k , we introduce the posterior

probability

P (θnq,k | Qn+1
k (λ)) =

P
(
θnq,k | Qn+1

k (λ)
)
P
(
Qn+1

k (λ)
)

P (θnq,k)
(8)

so as to write the gradient of the log-likelihood function as follows

∇Θn
k
L(Qn+1

k (·) | Θn
k ) =
∑
λ∈Λ

P (Θn
k | Qn+1

k (λ))∇Θn
k
log
{
P (Θn

k | Qn+1
k (λ))

}
(9)

Recall that the maximum likelihood corresponds to the values of Θn+1
k for

which ∇Θn+1
k
L(Qn+1

k (·) | Θn
k ) = 0. Since we have assumed P (Qn+1

k (λ) | Θn
k ) to

be a mixture of Gaussians, we can recover the maximum likelihood estimates of
Θn

k by differentiating Equation 5 with respect to Θn
k , substitute the results into

Equation 9 and solve ∇Θn
k
L(Qn+1

k (λ) | Θn
k ) = 0.

This is a well-known estimation problem [18], which after some algebraic ma-
nipulation, yields the following update rules

μn+1
q,k =

∑
λ∈Λ λ hn

q,k(λ)∑
λ∈Λ hn

q,k(λ)

σn+1
q,k =

∑
λ∈Λ

(
μn+1
q,k − λ

)2
hn
q,k(λ)∑

λ∈Λ hn
q,k(λ)

(10)

αn+1
q,k =

1

| Λ |
∑
λ∈Λ

hn
q,k(λ) (11)
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where P (Qn+1
k (λ) | θnq,k) can be computed, in a straightforward manner, making

use of Equation 5 and

hn
q,k(λ) =

P (Qn+1
k (λ) | θnq,k)∑N

r=1 P (Qn+1
k (λ) | θnr,k)

(12)

where we have followed [19] and set

P (Qn+1
k (λ) | θnq,k) =

1

Ψ

N∑
q=1

αn
q,k

Qn+1
k (λ)

σn
q,k

√
2π

exp
{
−
(
μn
q,k − λ

)2
2(σn

q,k)
2

}
and Ψ is a normalisation constant.

4 Implementation Issues

Having presented the theoretical background of our approach, we now turn to
the implementation of the method. Note that our method is not limited to a par-
ticular number of bands and applies equally to each of the three colour channels.
Moreover, so far, we have assumed that the colour-spectra matches, i.e. Ik(u)
and I(·, v) with u ∼ v are available. In practice, this is not the case. Moreover,
acquiring spectro-colourimetric image pairs is impractical in many cases due the
error that may be introduced by registering the two views, i.e. that captured by
a trichromatic camera and that acquired using the hyperspectral imager.

Thus, we opt for a discriminative approach based upon two code books [20]
with sufficient amount of samples so as to have statistical relevance. We com-
mence by building two pixel sets. The first of these from images taken using the
colour camera for which we aim at learning the colour matching functions and
the other one from imagery captured using the hyperspectral imager. Then, we
build the two codebooks, one for each of these pixel-sets. We do this making use
of k-means clustering [18].

The codebook for the hyperspectral sample is then converted into RGB values
making use of the current estimate of the colour matching functions. This permits
matches between the two codebooks to be recovered making use of nearest-
neighbours in the RGB chromaticity colour space. These codebooks are, hence,
used as an alternative to ARGB and AHS , where the elements indexed u and v
in the respective sets are a match to each other if they are the nearest neighbour
to one another.

5 Experiments

Here we show results on real-world multispectral and trichromatic imagery. To
this end, we have used two trichromatic commercial cameras, i.e. Nikon D80 and
Nikon D5100, so as to acquire 210 pictures, 105 images with each camera. For
each of the color cameras, we have used approximately 5.2 Mega pixels sampled
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(a) CIE [1] (b) Nikon D80 (c) Nikon D5100

Fig. 1. Colour matching functions for the CIE 1955 standard and those recovered by
our algorithm for the Nikon D80 and Nikon D5100 camera models

Fig. 2. From left-to-right: imagery rendered with the CIE colour matching functions
and those recovered by our algorithm for the Nikon D80 and Nikon D5100 camera
models

over the 105 images in a grid like fashion. All our trichromatic imagery has been
acquired in raw output mode with manual exposure calibration.

For our hyperspectral data, we have used 1 Mpixel taken from 131 images.
Similarly to our trichromatic data, these have been sampled in a grid like fashion
with 7.6 Kpixels selected from each image using 16× 16 pixel tiles. All our hy-
perspectral imagery was acquired with a Liquid Crystal Tunable Filter (LCTF)
at 2 Mpixel resolution and 33 spectral bands in the visible range in 10nm steps.
In all our experiments, the number of mixtures N is set to two and initialised
the colour matching functions and hyperparameters making use of the CIE1955
standard [1]. Here we have used τ = 1 and iterated until the L2-norm between
the hyperparameter set Θn and Θn+1 is below a user-provided threshold, which
we set to 1e−15. In average, the algorithm converged in 10 iterations.

In Figure 1, we show the colour matching functions for the CIE 1955 standard
[1] and those recovered using our approach. Note that the CIE standard does
contain negative values, whereas the colour matching functions for commercial
cameras, by definition, should be positive. In Figure 2, we show example results
for one of our input images. In the figure, we show the image rendered with the
CIE colour matching functions and those recovered by our algorithm. Note the
differences between the images. In particular, with respect to the CIE colour
matching functions.

To provide a more quantitative result, we have acquired imagery, hyper-
spectral and trichromatic, for the XRite Color Checker chart. This is a tiled
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Table 1.Mean and standard deviation for the error when using the CIE color matching
functions and those learnt by our method

Nikon Nikon Nikon Nikon
D80 D5100 D80 D5100

CIE Matching 0.048 ± 0.025 0.040 ± 0.019 Our 0.032 ± 0.017 0.036 ± 0.0215
Functions [1] Method

colorimetric calibration board containing 12 colours and 6 shades of gray. We
have rendered the hyperspectral image of the colour chequer with the CIE colour
matching functions and those learnt by our method. Once the RGB images are
generated, we compare the colours on the chart with those on the imagery ac-
quired with the trichromatic cameras. To do this, we have performed white
balancing using the shades of gray and computed the mean-squared differences
between the trichromatic imagery and that yielded by the colour matching func-
tions applied to the hyperspectral image.

In Table 1, we show the mean and standard deviation for the CIE colour
matching functions and those learnt by our method. In the table, the mean
and standard deviation have been normalised to be between zero and unity.
This is so as to allow scale variations between the two sets of colour matching
functions. This also permits comparison with colour difference measures often
used in colorimetry. Note that our learning method outperforms the CIE color
matching functions for both cameras.

6 Conclusions

In this paper, we have introduced an approach aimed at learning the colour
matching functions from hyperspectral and trichromatic imagery. We do this
based upon a probabilistic formulation where the EM algorithm is employed
so as to recover the colour matching functions directly from trichromatic and
hyperspectral pixel pairs. We have derived a log-likelihood function which is
governed by both, the accordance of the spectra-to-colour equivalence and a
generative model for the colour matching functions. The method is quite general
in nature, being data driven and devoid of constrained setups. Our results on
real-world data show that our method is capable of learning colour matching
functions which deliver colours in close accordance to those acquired by sample
trichromatic cameras.
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Abstract. A novel approach to semi-supervised learning for classical
Fisher linear discriminant analysis is presented. It formulates the prob-
lem in terms of a constrained log-likelihood approach, where the semi-
supervision comes in through the constraints. These constraints encode
that the parameters in linear discriminant analysis fulfill particular re-
lations involving label-dependent and label-independent quantities. In
this way, the latter type of parameters, which can be estimated based
on unlabeled data, impose constraints on the former. The former pa-
rameters are the class-conditional means and the average within-class
covariance matrix, which are the parameters of interest in linear dis-
criminant analysis. The constraints lead to a reduction in variability of
the label-dependent estimates, resulting in a potential improvement of
the semi-supervised linear discriminant over that of its regular super-
vised counterpart. We state upfront that some of the key insights in this
contribution have been published previously in a workshop paper by the
first author. The major contribution in this work is the basic observation
that a semi-supervised linear discriminant analysis can be formulated in
terms of a principled log-likelihood approach, where the previous solu-
tion employed an ad hoc procedure. With the current contribution, we
move yet another step closer to a proper formulation of a semi-supervised
version of this classical technique.

1 Introduction

Supervised learning aims to learn from examples. That is, given a limited num-
ber of instances of a particular input-output relation, its goal is to generalize
this relationship to new and unseen data in order to enable the prediction of the
associated output given new input. Specifically, supervised classification aims
to infer an unknown feature vector-class label relation from a finite, potentially
small, number of input feature vectors and their associated, desired output class
labels. Now, an elementary question is whether and, if so, how the availability
of additional unlabeled data can significantly improve the training of such clas-
sifier. This is what constitutes the problem of semi-supervised classification or,
generally, semi-supervised learning [3,22].
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The hope or, rather, belief is that semi-supervision can bring enormous
progress to many scientific and application areas in which classification problems
play a key role, simply by exploiting the often enormous amounts of unlabeled
data available (think computer vision, text mining, retrieval, medical diagnos-
tics, but also social sciences, psychometrics, econometrics, etc.). The matter of
the fact, however, is that up to now semi-supervised methods have not been
widely accepted outside of the realms of computer science, being little used in
other domains. Part of the reason for this may be that current methods offer no
performance guarantees [2,20] and often deteriorate in the light of large amounts
of unlabeled samples [4,5,18].

References [10] and [11] identify as main reason for the frequent failure of
semi-supervision that current semi-supervised approaches typically rely on as-
sumptions extraneous to the classifier being considered. A similar point has been
raised in [13]. Indeed, the main current approaches to semi-supervised learning
stress the need for presuppositions such as the cluster assumption: points from
the same class cluster, the smoothness assumption: neighboring point have the
same label, the assumption of low density separation: the decision boundary is
located in low density areas, and the like [3,22]. Given a particular assumption
holds, one is able to extract relevant information not only from the labeled, but
especially from the unlabeled examples. While it is undeniably true that having
more precise knowledge on the distribution of data could, or even should, help
in training a better classifier, in many real-world settings it may be questionable
if one can at all check if such conditions are indeed met. Moreover, as soon as
these additional model assumptions do not fit the data, there obviously is the
real risk that adding unlabeled data actually leads to a severe deterioration of
classification performance [4,5,10,11,18]. Note that this is in contrast with the
supervised setting, where most classifiers, generative or not, are capable of han-
dling mismatched data assumptions rather well, in the sense that adding more
training data generally improves the performance of the classifier.

This work continues in the spirit of the earlier research presented in [10]
and [11]. Reference [10] introduces a semi-supervised version of the simple, at
times still topical [9,19], nearest mean classifier (NMC, [16]). It suggests to ex-
ploit known relationships between the class means and the label-independent
overall mean. Enforcing these constraints during semi-supervision, yields label-
dependent estimates that have smaller expected deviation from the true param-
eter value, which, in turn, leads to reduced classification errors. In fact, despite
its simplicity, semi-supervised NMC in some cases provides error rates that are
competitive with state-of-the-art methods (compare [10] and [3]). Where [10]
presents a straightforward way to enforce labeled-unlabeled constraints merely
involving class means and overall means, [11] shows how to deal with a known
constraint on the average within-class covariance matrix as well. The constraint
is relevant to linear discriminant analysis (LDA) but more difficult to deal with.
Results in [11] show the overall good performance of semi-supervised LDA, not
only when compared to standard supervised LDA setting but also in the light
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of earlier approaches to semi-supervised LDA, which often show detrimental
performance with large amounts of unlabeled samples indeed.

Where the earlier approach provide an ad hoc ways to enforce the constraints,
this paper casts the problem into a principled log-likelihood framework, basi-
cally proposing to optimize the regular likelihood underlying LDA under the
constraint proposed in [11].

After the next section, which presents a brief overview of related work, Section
3 briefly recapitulates the relevant details of the approach presented in [10]. The
main focus in that section will, however, be on semi-supervised LDA as presented
in [11] and the better founded approach to semi-supervision through the log-
likelihood. Section 4 offers an experiment by means of which we try to get an
initial impression about how different the new principled approach is from the
earlier ad hoc technique. In addition, it reports on the results obtained. Section
5 wraps up the work with a discussion and conclusion.

2 Related Work

There are few works that focus on semi-supervised LDA. Most relevant contri-
butions come from statistics and have been published mainly in the 1960s and
1970s. Reference [8] suggests to maximize the likelihood over all permutations
of possible labelings of unlabeled objects. A computationally more feasible ap-
proach is proposed by McLachlan [14,15], which follow an iterative procedure.
Firstly, the linear discriminant is trained on the labeled data only and used to la-
bel all unlabeled instances. Using the now-labeled data, the classifier is retrained
and employed to relabel the initially unlabeled data. This process of relabeling
originally unlabeled data is repeated until none of the samples changes label.

The above approach to semi-supervised learning is basically a form of so-
called self-training or self-learning, which has been suggested in different guises
[14,17,21]. This iterative method also relates directly to the well-known approach
to semi-supervision based on expectation maximization (see [18] and the discus-
sion papers related to [6]). We note that employing expectation maximization
to infer the missing labels will in many cases also lead to worsened error rates,
particularly if too many unlabeled examples are included.

Finally, we remark that there are also semi-supervised approach to LDA as a
dimensionality reduction technique (as opposed to LDA as a classifier) but we
refrain from reviewing these works here.

3 Constrained Log-Likelihood-Based LDA

3.1 Semi-supervised NMC Basics

The semi-supervised version of the (NMC) proposed in [10] is simple but has been
proven to be effective notwithstanding. To start with, note that when employing
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a regular supervised NMC, the K class means, mi with i ∈ {1, . . . ,K}, and the
overall mean of the data, m, fulfill the linear constraint [7]

m =
K∑
i=1

pimi , (1)

where pi is the prior of class i. Having additional unlabeled data, one can improve
the estimate ofm because it does not depend on any labels. In this case, however,
the constraint in Equation (1) will typically be violated. The core idea in [10] is
that one can get improved estimates of the class means by adapting them such
that the constraint is satisfied again. The solution chosen is to simply alter the
K sample class means mi by the same shift such that the new total sample mean
m′ =

∑K
i=1 pim

′
i of the shifted class means m′

i coincides with the total sample
mean μ. The total mean m′ has been obtained using all data available. All in
all, the following update of the class means is suggested

m′
i = mi −

K∑
i=1

pimi + μ . (2)

3.2 Ad Hoc Semi-supervised LDA

For LDA, next to Equation (1), an additional known constraint equates the
sum of the estimates of the between-class covariance matrix B and within-class
covariance W to the total covariance over all data T (cf. [7]). That is

T = W +B , (3)

where

T :=
1

N

K∑
i=1

Ni∑
j=1

(xi,j −m)(xi,j −m)t , (4)

in which xi,j is the jth feature vector from class i, m is the estimated overall
mean, Ni is the number of samples from class i, and N is the total number of
samples. The remaining variables in the equation have the following definitions:

W :=

K∑
i=1

piCi , (5)

where Ci is the sample covariance matrix for class i, and

B :=

K∑
i=1

pi(mi −m)(mi −m)t . (6)

The parameters of interest are the class means mi, the within-class covariance
matrix W, and the priors pi. These parameters should be estimated from both
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labeled and unlabeled data under the constraints provided in Equations (1) and
(3), in which the left hand side is fixed and determined by all data available.

Now, denote the estimated total mean based on all the data by μ, as in
Subsection 3.1, and let the corresponding total covariance matrix be denoted by
Θ. The corresponding mean m and covariance matrix T are based merely on
the labeled data. Reference [11] now suggests the following easy and effective
solution in order to meet the constraints. To start with, transform every labeled
datum x as follows:

x← Θ
1
2T− 1

2 (x −m) + μ . (7)

The transformation sees to it that the overall mean and covariance statistics of
the labeled data match the respective statistics as measured on all data. That
is, on the transformed data, the corresponding m and T equal μ and Θ, re-
spectively. The next step is to simply train a regular LDA on this transformed
training data, providing the semi-supervised estimates for mi and W. By means
of Equation (6), the corresponding B in the transformed space can be deter-
mined. By construction, one has

μ =

K∑
i=1

pimi (8)

and
Θ = W +B . (9)

As the transformation applied is affine, we can actually directly estimate the mis
and the W in the original space. Given the class means m′

i and the within-class
covariance matrix W′ determined on the untransformed labeled data only, the
following holds:

mi = Θ
1
2T− 1

2 (m′
i −m) + μ (10)

W = T− 1
2Θ

1
2W′Θ

1
2T− 1

2 . (11)

This expresses the mis and W in terms of first and second order moment statis-
tics in the original space.

Experiments have demonstrated that this approach outperforms standard
LDA in most cases. What might be even more important, however, is that it
is better behaved than the self-learning and EM-type of approaches, not show-
ing the extreme detrimental behavior the latter methods can display at times.

3.3 Constrained Log-Likelihood-Based LDA

A basic problem with the foregoing solution is that it is unclear in which way
it can be considered optimal. It delivers the necessary means and covariance
matrices such that the constraints are satisfied but there are infinitely many
solutions fulfilling the same constraints. Some of these can be easily constructed
by assigning arbitrary labels to the unlabeled data and training a standard LDA.
As can be checked easily, the parameters estimated in this way will necessarily
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satisfy the constraints given in Equations (1) and (3). The simplicity of the
solution from [11] may be appealing but there really seems to be little reason
to prefer it over any of the others1. There is, however, a solution to this matter
that, by now, should not come as a surprise (see [11]).

The maximum likelihood solution typical employed for LDA, finds the pa-
rameters pi, mi, and W by optimizing the log-likelihood of the complete model
(see, for instance, [16]). In the paper’s notation, for a given labeled data set, this
log-likelihood L can be expressed as follows:

L(pi,miW) =

K∑
i=1

Ni∑
j=1

(
log pi − d

2 log 2π −
1
2 log |W| −

1
2 (xi,j −mi)W

−1(xi,j −mi)
t
)
.

(12)

Maximizing this expression directly leads to the standard sample estimates for
the class priors, the class means, and the average within-class covariance matrix,
provided all pis are positive and add up to 1. Now, next to the constraint on
the priors, as an elegant solution to the semi-supervised estimation problem, the
constraints in Equations (1) and (3), which rely on unlabeled data as well, could
be imposed in addition.

This choice is much more attractive than the ad hoc solution from [11], in
the sense that there is a clear optimality criterion at the basis of this semi-
supervised solution to LDA. In addition, it is based on the log-loss that is at
the basis of LDA in the first place. The price we pay is that we run into a more
complicated optimization problem as the constrained log-likelihood formulation
does not allow for a closed-form solution nor is it convex.

4 Experiment and Results

A small experiment was conducted, basically to get an impression of how our
new approach to semi-supervision compares to the earlier suggestion from [11].
Experiments with standard supervised LDA are included as well, for comparison
but also to remind us that we are still not there: occasionally supervised LDA
will still outperform its semi-supervised variants.

The constrained log-likelihood is optimized by means of a Hessian-corrected
gradient ascent on the constrained means mi (Newton’s method). In every itera-
tion, given the updated means, the new within-class covariance matrixW can be
determined and we can check if it fails to be positive definite. If this happens, we
decrease the step size of the ascend and reevaluate W. A similar action is taken
in case the log-likelihood decreases. In the experiments, two different starting
points satisfying the various constraints are employed. The first one, which is
referred to as α, initializes all class means by the total data mean μ and the

1 Maybe, though, one might be able to demonstrate that the data transformation as
suggested in Subsection 3.2 is the one that deforms the original data in some sort of
minimal way. Up to now, however, we have been unsuccessful in showing this.
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within covariance matrix by the total covariance T. The second starting point is
provided by the ad hoc solution from Subsection 3.2 as presented in [11], which
is referred to as Ω.

Table 1. Some basic properties of the fourteen real-world data sets

data set number of dimensionality dimensionality number of smallest largest
objects (original) (after PCA) class class size class size

glass 214 9 6 6 9 76
haberman 306 3 3 2 81 225
ionosphere 351 33 30 2 126 225
iris 150 4 3 3 50 50
parkinsons 195 22 3 2 48 147
pendigits 10992 16 13 10 1055 1144
pima 768 8 5 2 268 500
sat 6435 36 16 6 626 1533
segmentation 210 19 5 7 30 30
sonar 208 60 29 2 97 111
spambase 4601 57 2 2 1813 2788
transfusion 748 3 3 2 178 570
vowel 990 10 9 11 90 90
wdbc 569 30 2 2 212 357

For the experiments, fourteen real-world data sets are taken from the UCI
Machine Learning Repository [1]. The data sets used together with some spec-
ifications can be found in Table 1. To avoid any problems with singular total
covariance matrices, the dimensionality of all data sets is initially reduced using
PCA so to retain a fraction of 0.99 of the total variance. The data dimensional-
ities after PCA can be found in column four of the table.

The largest effect of semi-supervision may be expected when the labeled train-
ing set is small. Training set sizes are therefore set to equal the dimensionality
plus the number of classes, which makes sure that the within-class covariance is
still invertible. The remainder of the data set is both used as unlabeled data for
the semi-supervised learners and as test set, meaning that we are in a transduc-
tive setting. This random split of data is repeated 10 times for every experiment
from which averaged error rates are calculated. Table 2 reports on these results
and, in addition, compares the four different LDAs by means of a paired t-test.

5 Discussion and Conclusion

A more sound and appealing approach to semi-supervised learning for classical
LDA has been suggested. It is based on a direct optimization of the log-likelihood
subject to the constraints that have been studied before in [11]. It is through
these constraints that unlabeled data has its influence on the final solution.

By construction, the approach using the Ω initialization will give a higher
log-likelihood than the ad hoc solution. As it turns out, experimentally, the α
initialization shows the same: it gives a log-likelihood higher than the ad hoc
procedure. The resulting error rates show, however, that this does not necessar-
ily lead to a significant performance improvement in terms of classification error
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Table 2. Results for the supervised and the three semi-supervised approaches to LDA
are displayed. Underlining indicates the best performing method. Bold faced fonts
indicate that these results do not differ significantly from the best result (based on a
t-test).

data set supervised constrained constrained constrained
(ad hoc, [11]) (α) (Ω)

glass .604 .607 .607 .621
haberman .426 .385 .376 .396
ionosphere .367 .239 .244 .231
iris .090 .169 .191 .201
parkinsons .392 .383 .348 .357
pendigits .559 .558 .580 .454
pima .385 .346 .345 .341
sat .538 .501 .505 .444
segmentation .503 .553 .431 .570
sonar .440 .358 .350 .344
spambase .414 .489 .494 .496
transfusion .444 .388 .406 .402
vowel .730 .744 .768 .715
wdbc .181 .219 .322 .261

(cf. [12]). Therefore, even though our approach is another step in the right di-
rection, we did not arrive at the point yet where we can guarantee reductions in
expected error rates. Overall, however, the results in Table 2 at least show that
the constrained approach is to be preferred over the original suggestion made in
[11] when compared on the basis of classification performance.

We suspect that one of the key issues that should be studied in more depth
in the future is the optimization of the constrained log-likelihood. At this point,
we have little insight in how close we come to a global optimum or, generally,
what would be the most effective way of reaching a satisfactory solution.
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Abstract. A critical aspect of non-linear dimensionality reduction techniques is
represented by the construction of the adjacency graph. The difficulty resides
in finding the optimal parameters, a process which, in general, is heuristically
driven. Recently, sparse representation has been proposed as a non-parametric so-
lution to overcome this problem. In this paper, we demonstrate that this approach
not only serves for the graph construction, but also represents an efficient and
accurate alternative for out-of-sample embedding. Considering for a case study
the Laplacian Eigenmaps, we applied our method to the face recognition prob-
lem. Experimental results conducted on some challenging datasets confirmed
the robustness of our approach and its superiority when compared to existing
techniques.

1 Introduction

In recent years, a new family of non-linear dimensionality reduction techniques for
manifold learning has emerged. The most known ones are: Kernel Principal Compo-
nent Analysis (KPCA) [1], Locally Linear Embedding (LLE) [2,3], Isomap [4], Super-
vised Isomap [5], Laplacian Eigenmaps (LE)[6,7]. This family of non-linear embedding
techniques appeared as an alternative to their linear counterparts which suffer of severe
limitation when dealing with real-world data: i) they assume the data lie in an Euclidean
space and ii) they may fail to get a faithful representation of data distribution when the
number of samples is too small. On the other hand, the non-linear dimensionality tech-
niques are able to discover the intrinsic data structure by exploiting the local topology.
In general, they attempt to optimally preserve the local geometry around each data sam-
ple while using the rest of the samples to preserve the global structure of the data.

The non-linear embedding approaches model the structure of data by preserving
some geometrical property of the underlying manifold. For instance, while the Isomap
method attempts to maintain global properties, LE and LLE aim at preserving local
geometry which implicitly tends to keep the global layout of the data manifold.

An inherent limitation of these approaches is that they do not provide an explicit
mapping function between low and high dimensional spaces. Such function is essen-
tial for ensuring continuity of low dimensional representation and projecting data be-
tween spaces. This issue has been addressed quite satisfactorily by applying Radial
Basis Function network to approximate the optimal mapping function [8]. However,
the quality of RBFN relies on the careful selection of a few parameters which are cho-
sen empirically. In [9], the authors cast MDS, ISOMAP, LLE, and LE in a common

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 336–344, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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framework, in which these methods are seen as learning eigenfunctions of a kernel.
The authors try to generalize the dimensionality reduction results for the unseen data
samples.

Due to this limitation, the ’out-of-sample’ problem (projection of unseen samples
on the embedded space) is not a straightforward process and it is less intuitive than in
the case of linear manifolds. For this reason, it hasn’t received too much attention so
far. In this paper, we adopt the sparse representation approach as an optimal solution
to the ’out-of-sample’ problem. In the past, it was used as an efficient alternative [10]
to the parametric construction of the adjacency graph. Without any loss of generality,
we chose the Laplacian Eigenmaps as one of the non-linear dimensionality reduction
techniques to test our method.

The paper is structured as follows. In section 2, we briefly review the Laplacian
Eigenmaps. In section 3, we introduce our proposed approach for the out-of-sample
problem based on sparse representation. Section 4 contains the experimental results.
We evaluate the performance of proposed out-of-sample method for the face recognition
problem. Finally, in section 5 we present our conclusions and provide the guidelines for
future work.

2 Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality reduction technique that
aims to preserve the local structure of data [6]. Using the notion of the Laplacian of the
graph, this non-supervised algorithm computes a low-dimensional representation of the
data set by optimally preserving local neighborhood information in a certain sense. We
assume that we have a set of N samples {xi}Ni=1 ⊂ RD . Let’s define a neighborhood
graph on these samples, such as a K-nearest-neighbor or ε-ball graph, or a full mesh, and
weigh each edge xi ∼ xj by a symmetric affinity function Wij = K(xi; xj), typically
Gaussian:

Wij = exp(−‖xi − xj‖2
β

) (1)

where β is suitable positive scalar. It is usually set to the average of squared distances
between all pairs.

LE seeks latent points {yi}Ni=1 ⊂ RL that minimize 1
2

∑
i,j ‖yi − yj‖2Wij , which

discourages placing far apart latent points that correspond to similar observed points. If
W ≡ Wij denotes the symmetric affinity matrix and D is the diagonal weight matrix,
whose entries are column (or row, since W is symmetric) sums of W, then the Laplacian
matrix is given L = D−W. The objective function can also be written as:

1

2

∑
i,j

‖yi − yj‖2 Wij = tr(ZT L Z) (2)

where ZT = Y = [y1, . . . , yN ] is the L × N embedding matrix and tr(.) denotes the
trace of a matrix. The ith row of the matrix Z provides the vector yi—the embedding
coordinates of the sample xi.
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The embedding matrix Z is the solution of the optimization problem:

min
Z

tr(ZT L Z) s.t. ZT D Z = I, ZT L 1 = 0 (3)

where I is the identity matrix and 1 = (1, . . . , 1)T . The first constraint eliminates the
trivial solution Z = 0 (by setting an arbitrary scale) and the second constraint eliminates
the trivial solution 1 (all samples are mapped to the same point). Standard methods show
that the embedding matrix is provided by the matrix of eigenvectors corresponding to
the smallest eigenvalues of the generalized eigenvector problem,

L z = λD z (4)

Let the column vectors z0, . . . , zN−1 be the solutions of (4), ordered according to their
eigenvalues, λ0 = 0 ≤ λ1 ≤ . . . ≤ λN−1. The eigenvector corresponding to eigen-
value 0 is left out and only the next eigenvectors for embedding are used. The em-
bedding of the original samples is given by the row vectors of the matrix Z, that is,
Y = [y1, y2, . . . , yN ] = ZT .

xi −→ yi = (z1(i), . . . , zL(i))
T (5)

where L < N is the dimension of the new space.
From equation (4), we can observe that the dimensionality of the subspace obtained

by LE is limited by the number of samples N .

3 Proposed Out-of-Sample Embedding

3.1 Projection of New Samples

Assume we have obtained a LE embedding Ys = (y1, . . . , yN ) of seen samples Xs =
(x1, . . . , xN ) and consider unseen (out-of-sample) sample in observed space xN+1. The
natural way to embed the new sample would be to recompute the whole embedding
(Ys, yN+1) for (Xs, xN+1) from Eq. (3). This is computationally costly and does not
lead to defining a mapping for new samples; we seek a way of keeping the old embed-
ding fixed and embed new sample based on that. Then, the next most natural way is to
recompute the embedding but keeping the old embedded samples fixed and imposing
that the embedding of the new sample (vector yN+1) should minimize the following
target function:

N∑
i=1

‖yN+1 − yi‖2W(N+1)i (6)

N∑
i=1

(yN+1 − yi)
T (yN+1 − yi)W(N+1)i (7)

The above should correspond to a minimum, and thus the derivative with respect to
yN+1 of the target function should vanish:

2

N∑
i=1

(yN+1 − yi)W(N+1)i = 0 (8)
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From the above, we can conclude that the embedding yN+1 is given by:

yN+1 =

∑N
i=1 W(N+1)i yi∑N
i=1 W(N+1)i

(9)

The above formula stipulates that the embedding of an unseen sample is simply the
linear combination of all fixed embedded samples where the linear coefficients are set
to the similarity between the unseen sample and the existing sample.

Whenever W(N+1)i is set to a Kernel function (i.e., W(N+1)i = K(xN+1, xi), Eq.
(9) is equivalent to the Laplacian Eigenmaps Latent Variable Model (LELVM) intro-
duced in [11].

3.2 Computation of the Similarity Coefficients via Sparse Representation

The problem of out-of-sample embedding boils down to the estimation of the similari-
ties W(N+1)i, i = 1, . . . , N . In [11], these W(N+1)i were computed using a K nearest
neighbor and a Heat Kernel. However, it is well known that the neighborhood size as
well as the Kernel parameter may affect the embedding process. We will bypass this
limitation by using the coding provided by sparse representation.

In traditional graph construction process, the graph adjacency structure and the graph
weights are derived separately. It was argued that the graph adjacency structure and the
graph weights are interrelated and should not be separated. Thus it is desired to develop
a procedure which can simultaneously completes these two tasks within one step. In
[10], the authors proposed to simultaneously build the adjacency graph and its weights.
To this end, they used the sparse representation of each training sample as a linear
superposition of basis functions (rest of the training samples) plus the noise.

We apply the sparse coding/representation principle for computing the set of coeffi-
cients W(N+1)i. Let the vector a = (W(N+1)1,W(N+1)2, . . . ,W(N+1)N )T . Thus, the
objective is to compute the vector a given the unseen sample and the training data.
Based on sparse coding, the unseen sample xN+1 can be written as

xN+1 =
N∑
i=1

ai xi + e = X a + e (10)

The goal is to minimize both the reconstruction error and the L1 norm of the vector a:

min
a,e

(‖a‖L1 + ‖e‖L1) s.t. xN+1 = X a + e (11)

Let a′ denote the vector a′ = (aT , eT )T and I denote the D ×D identity matrix, then
the objective function (11) can be written as:

min ‖a′‖L1 s.t. [X I] a′ = xN+1 (12)

Although no sparse priors are imposed, the sparse property of the coefficient vector a
is generated naturally by the L1 optimization. Once the vector (aT , eT )T is computed,
the similarity coefficients W(N+1)i are set to:

W(N+1)i = |ai|, i = 1, . . . , N
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3.3 Advantages of the Proposed Out-of-Sample Embedding Scheme

Although our proposed out-of-sample formula (Eq. (9)) is similar to that of the Latent
Variable Model [11], it has the two following interesting differences and advantages:

1. For the LVM scheme, the neighborhood size must be set manually, and the optimal
setting may be different for different data sets. In our scheme, the computation of
similarity coefficients adapts to the dataset through the use of sparse coding. No
parameter is required.

2. There have been many ways to compute the similarity coefficients and the most
popular one among them is the typical Heat Kernel (Gaussian weighting function)
described in Eq.(1). However, the Gaussian aperture may affect the final classifi-
cation results significantly, and how to optimally determine this parameter is still
an open problem. Our scheme get rid of this since we exploit the sparseness prop-
erty of the deduced coefficients in order to express both adjacency structure and the
associated weights without any predefined parameter.

4 Performance Evaluation

To validate the effectiveness of our proposed approach, we applied it to the face recog-
nition problem.

4.1 Data Sets

We considered in our experiments four public face data sets. All these databases are
characterized by a large variation in face appearance.

1. Yale1: The YALE face data set contains 165 images of 15 persons. Each individ-
ual has 11 images. The images demonstrate variations in lighting condition, facial
expression. Each image is resized to 32×32 pixels.

2. ORL2:. There are 10 images for each of the 40 human subjects, which were taken
at different times, varying the lighting, facial expressions (open/closed eyes, smil-
ing/not smiling) and facial details (glasses/no glasses). The images were taken with
a tolerance for some tilting and rotation of the face up to 20o.

3. UMIST3:. The UMIST data set contains 575 gray images of 20 different people.
The images depict variations in head pose.

4. Extended Yale - part B4:. It contains 16128 images of 28 human subjects under 9
poses and 64 illumination conditions. In our study, a subset of 1800 images has been
used. Figure 1 shows some face samples in the extended Yale Face Database B.

1 http://see.xidian.edu.cn/vipsl/database_Face.html
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html

3 http://www.shef.ac.uk/eee/research/vie/research/face.html
4 http://vision.ucsd.edu/ ∼ leekc/ExtYaleDatabase/ExtYaleB.html

http://see.xidian.edu.cn/vipsl/database_Face.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html
http://www.shef.ac.uk/eee/research/vie/research/face.html
ExtYaleB.html
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Fig. 1. Some samples in Extended Yale data set

4.2 Experimental Results

To make the computation of the embedding process more efficient, the dimensionality
of the original face samples was reduced by applying random projections [12]. It has a
similar role to that of PCA yet with the obvious advantage that random projections do
not need any training data.

We have compared our method with other two approaches. One of them is the Latent
Variable Model (LVM), proposed in [11]. The other one, is a linearization of the exist-
ing mapping Xs → Ys. To this end, we use simple linear regression in order to infer a
linear matrix transform A that best approximates the existing mapping through the lin-
ear equation Ys = AT Xs. We stress the fact the linearization has not been thoroughly
tested as an out-of-sample method. Instead, this linearization was used for spectral re-
gression (e.g., [13]).
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Fig. 2. Experimental results on all 4 datasets for the 30-70 modality
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Table 1. Maximum average recognition rate

Dataset \ Method Sparse Rep. LVM Linearization

30%-70% ε = 3 ε = 5 ε = 7

YALE 72.36% 51.84% 41.66% 33.15% 65.43%

ORL 69.25% 51.35% 37.71% 30.25% 41.71%

UMIST 87.56% 69.72% 60.49% 52.65% 58.31%

Ext. Yale 87.29% 46.66% 31.33% 24.25% 49.90%

50%-50% ε = 3 ε = 5 ε = 7

YALE 81.85% 70.12% 61.60% 52.09% 68.14%

ORL 82.50% 72.05% 60.35% 49.25% 46.38%

UMIST 95.03% 85.90% 76.04% 70.03% 76.25%

Ext. Yale 91.46% 61.09% 46.85% 39.03% 53.14%

70%-30% ε = 3 ε = 5 ε = 7

YALE 86.73% 77.15% 73.87% 67.95% 75.51%

ORL 88.75% 82.16% 73.66% 65.41% 53.25%

UMIST 97.74% 93.06% 85.20% 79.94% 80.52%

Ext. Yale 92.12% 70.97% 58.36% 48.74% 57.14%

0 10 20 30 40 50 60 70 80
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n 

ra
te

 (
%

)

YALE

 

 

Linearization method
LVM method
Proposed method

0 20 40 60 80 100 120 140 160 180
30

40

50

60

70

80

90

Dimension

R
ec

og
ni

tio
n 

ra
te

 (
%

)

ORL

 

 

Linearization method
LVM method
Proposed method

0 50 100 150 200 250
40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n 

ra
te

 (
%

)

UMIST

 

 

Linearization method
LVM method
Proposed method

0 100 200 300 400 500 600 700
20

30

40

50

60

70

80

90

100

Dimension

R
ec

og
ni

tio
n 

ra
te

 (
%

)

Extended Yale

 

 

Linearization method
LVM method
Proposed method

Fig. 3. Experimental results on all 4 datasets for the 50-50 modality

For each face data set and for every method, we conducted three groups of experi-
ments for which the percentage of training samples was set to 30%, 50% and 70% of the
whole data set. The remaining data was used for testing. Here, the testing implies: (i) the
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Fig. 4. Experimental results on all 4 datasets for the 70-30 modality

out-of-sample embedding of the unseen sample (face), and (ii) recognizing it through
the use of the Nearest Neighbor classifier in the embedded space. The partition of the
data set was done randomly. For a given embedding method, the recognition rate was
computed for several dimensions belonging to [5, Lmax], where Lmax is a parameter
directly related with the number of training samples.

In figures 2, 3, and 4 we show the average recognition rates for all 4 datasets, based
on the average of 10 random splits.

In table 1, we present the best (average) performance obtained by each ’out-of-
sample’ method, based on 10 random splits. For the case of LVM method, the ε param-
eter corresponds to the number of neighbors used to approximate the unseen sample.
We could appreciate that the smaller this number is, the better the result.

The above results confirm the superiority of our approach when compared with ex-
isting ones. We can observe that this superiority was obtained for all data sets and for
all dimensions tested for the obtained embedding space. We can also observe that the
linearization method provided the poorest results, which can be explained by the fact
that the linear method is global and does not take into account the local adjacency in-
formation.

5 Conclusion

In this paper, we demonstrated that sparse representation can serve as an efficient and
accurate alternative for out-of-sample embedding. Considering for a case study the
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Laplacian Eigenmaps, we applied our method to the face recognition problem. The
experimental results demonstrate that our algorithm can maintain an accurate low-
dimensional representation of the data without any parameter tuning. A natural exten-
sion of our approach is its application to online learning.
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Abstract. Learning based on kernel machines is widely known as a
powerful tool for various fields of information science such as pattern
recognition and regression estimation. An appropriate model selection
is required in order to obtain desirable learning results. In our previous
work, we discussed a class of kernels forming a nested class of reproducing
kernel Hilbert spaces with an invariant metric and proved that the kernel
corresponding to the smallest reproducing kernel Hilbert space, including
an unknown true function, gives the best model. In this paper, we relax
the invariant metric condition and show that a similar result is obtained
when a subspace with an invariant metric exists.

Keywords: kernel regressor, reproducing kernel Hilbert space, orthog-
onal projection, invariant metric.

1 Introduction

Learning based on kernel machines [1], represented by the support vector ma-
chine (SVM) [2] and the kernel ridge regression [3,4], is widely known as a pow-
erful tool for various fields of information science such as pattern recognition,
regression estimation, and density estimation. In general, an appropriate model
selection is required in order to obtain a desirable learning result by kernel ma-
chines. Although the model selection in a fixed model space such as selection of
a regularization parameter is sufficiently investigated in terms of theoretical and
practical senses (See [5,6] for instance), the selection of a model space itself is
not sufficiently investigated in terms of a theoretical sense, while practical algo-
rithms for selection of a kernel (or its parameters) such as the cross-validation
are revealed. The difficulty of the theoretical analyses for selection of a kernel
(or its parameters) lies on the fact that the metrics of two reproducing kernel
Hilbert spaces (RKHS)[7,8] corresponding to two different kernels may differ
in general, which means that we do not have a unified framework to evaluate
learning results obtained by different kernels. In order to avoid this difficulty,
we considered a class of kernels whose corresponding RKHS’s have an invariant
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metric and proved that the kernel corresponding to the smallest reproducing
kernel Hilbert space, including an unknown true function, gives the best model
in [9].

In this paper, we relax the invariant metric condition for the whole space and
prove that a similar result is obtained when a subspace with an invariant metric
exists in the smallest reproducing kernel Hilbert space.

2 Mathematical Preliminaries for the Theory of
Reproducing Kernel Hilbert Spaces

In this section, we prepare some mathematical tools concerned with the theory
of reproducing kernel Hilbert spaces [7,8].

Definition 1. [7] Let Rn be an n-dimensional real vector space and let H be
a class of functions defined on D ⊂ Rn, forming a Hilbert space of real-valued
functions. The function K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of
H, if

1. For every x̃ ∈ D, K(·, x̃) is a function belonging to H.
2. For every x̃ ∈ D and every f ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert space H.

The Hilbert space H that has a reproducing kernel is called a reproducing kernel
Hilbert space (RKHS). The reproducing property Eq.(1) enables us to treat a
value of a function at a point in D. Note that reproducing kernels are positive
definite [7]:

N∑
i,j=1

cicjK(xi,xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D. In addition, K(x, x̃) = K(x̃,x)
holds for any x, x̃ ∈ D [7]. If a reproducing kernel K(x, x̃) exists, it is unique
[7]. Conversely, every positive definite function K(x, x̃) has the unique corre-
sponding RKHS [7]. Hereafter, the RKHS corresponding to a reproducing kernel
K(x, x̃) is denoted by HK .

Next, we introduce the Schatten product [10] that is a convenient tool to
reveal the reproducing property of kernels.

Definition 2. [10] Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)
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Note that (g ⊗ h) is a linear operator from H1 onto H2. It is easy to show that
the following relations hold for h, v ∈ H1, g, u ∈ H2.

(h⊗ g)∗ = (g ⊗ h), (h⊗ g)(u⊗ v) = 〈u, g〉H2(h⊗ v), (4)

where the superscript ∗ denotes the adjoint operator.
We give some theorems concerned with sum and difference of reproducing

kernels used in the following contents.

Theorem 1. [7] If Ki is the reproducing kernel of the class Fi with the norm
|| · ||i, then K = K1+K2 is the reproducing kernel of the class F of all functions
f = f1 + f2 with fi ∈ Fi, and with the norm defined by

||f ||2 = min
[
||f1||21 + ||f2||22

]
, (5)

the minimum taken for all the decompositions f = f1 + f2 with fi ∈ Fi.

Theorem 2. [7] If K is the reproducing kernel of the class F with the norm
|| · ||, and if the linear class F1 ⊂ F forms a Hilbert space with the norm || · ||1,
such that ||f ||1 ≥ ||f || for any f ∈ F1, then the class F1 possesses a reproducing
kernel K1 such that Kc = K −K1 is also a reproducing kernel.

Theorem 3. [7] If K and K1 are the reproducing kernels of the classes of F
and F1 with the norms || · ||, || · ||1, and if K −K1 is a reproducing kernel, then
F1 ⊂ F and ||f1||1 ≥ ||f1|| for every f1 ∈ F1.

3 Formulation of Regression Problems

Let {(yi,xi)|i = 1, . . . , �} be a given training data set with yi ∈ R, xi ∈ Rn,
satisfying

yi = f(xi) + ni, (6)

where f denotes the unknown true function and ni denotes a zero-mean additive
noise. The aim of regression problems is to estimate the unknown function f by
using the given training data set and statistical properties of the noise.

In this paper, we assume that the unknown function f belongs to the RKHS
HK corresponding to a certain kernel function K. If f ∈ HK , then Eq.(6) is
rewritten as

yi = 〈f(·),K(·,xi)〉HK + ni, (7)

on the basis of the reproducing property of kernels. Let y = [y1, . . . , y�]
′ and

n = [n1, . . . , n�]
′ with the superscript ′ denoting the transposition operator,

then applying the Schatten product to Eq.(7) yields

y =

(
�∑

k=1

[e
(�)
k ⊗K(·,xk)]

)
f(·) + n, (8)
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where e
(�)
k denotes the k-th vector of the canonical basis ofR�. For a convenience

of description, we write

AK,X =

(
�∑

k=1

[e
(�)
k ⊗K(·,xk)]

)
, (9)

where X = {x1, . . . ,x�}. Note that AK,X is a linear operator that maps an
element in HK onto R� and Eq.(8) can be written by

y = AK,Xf(·) + n, (10)

which represents the relation between the unknown true function f and an out-
put vector y. Therefore, a regression problem can be interpreted as an inversion
problem of the linear equation Eq.(10) [11]. In general, an estimated function

f̂(x) is represented as

f̂(·) = Ly, (11)

where L denotes a learning operator such as the support vector machine and the
kernel ridge regressor.

4 Kernel Specific Generalization Ability and Some
Known Results

In general, a learning result by kernel machines is represented by a linear com-
bination of K(x,xi), which means that the learning result is an element in
R(A∗

K,X) (the range space of the linear operator A∗
K,X) since

f̂(·) = A∗
K,Xα =

(
�∑

k=1

[K(·,xk)⊗ e
(�)
k ]

)
α =

�∑
k=1

αkK(·,xk) (12)

holds, where α = [α1, . . . , α�]
′ denotes an arbitrary vector in R�. The point at

issue of this paper is to discuss goodness of a model space, that is, the generaliza-
tion ability of R(A∗

K,X) which is independent from criteria of learning machines.
Therefore, we define the generalization ability of kernel machines specified by a
kernel K and a set of input vectors X as the distance between the unknown true
function f and R(A∗

K,X) written as

J(f ;K,X) = ||f − PK,Xf ||2HK
, (13)

where PK,X denotes the orthogonal projector onto R(A∗
K,X) and || · ||HK denotes

the induced norm of HK . Note that the orthogonality of PK,X is also defined by
the metric of HK . Selection of an element in R(A∗

K,X) as a learning result is out
of the scope of this paper since the selection depends on learning criteria. We
also ignore the observation noise in the following contents since the noise does
not affect Eq.(13).

Here, we give some propositions as preparations to evaluate Eq.(13).
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Lemma 1. [9]

PK,X =
�∑

i=1

�∑
j=1

(G+
K,X)i,j [K(·,xi)⊗K(·,xj)] , (14)

where GK,X denotes the Gramian matrix of K with X and the superscript +

denotes the Moore-Penrose generalized inverse[12].

Lemma 2. [9] For any f ∈ HK and X,

||PK,Xf ||2HK
= f ′G+

K,Xf (15)

holds, where f = [f(x1), . . . , f(x�)]
′.

Since PK,X = A+
K,XAK,X , the learning result

f̂(·) = A+
K,Xy (16)

gives the minimum norm least-squares solution of f and it gives the orthogonal
projection of f onto R(A∗

K,X) in noise free cases.
In [9], we discussed a class of nested RKHS’s with an invariant metric. We

review important results given in [9].
Let K1 and K2 be reproducing kernels satisfying

HK1 ⊂ HK2 (17)

and
||f ||2HK1

= ||f ||2HK2
for any f in HK1 . (18)

Then we have the following theorem.

Theorem 4. [9] Let K1 and K2 be kernels. If Eqs.(17) and (18) hold, then for
any f ∈ HK1 and X,

||f − PK1,Xf ||2HK2
≤ ||f − PK2,Xf ||2HK2

(19)

holds.

This theorem claims that the kernel corresponding to the smallest RKHS in
the class of RKHS’s with an invariant metric gives the best model space if an
unknown function f belongs to the smallest one. Note that Theorem 4 does
not hold in general without the invariant metric condition. In fact, we gave an
example that Theorem 4 does not hold without the invariant metric condition
in [13].

From Eq.(18) and Theorem 2, there exists the reproducing kernel Kc satisfy-
ing

K2 = K1 +Kc. (20)

In [14], we discussed the relationship between these kernels (or corresponding
RKHS’s) and the condition of the invariant metric; and obtained the following
theorem.
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Theorem 5. Let K1 and K2 = K1+Kc be kernels whose corresponding RKHS’s
satisfy HK1 ⊂ HK2 . The following three statements are equivalent each other.

1) For any f ∈ HK1 , ||f ||2HK1
= ||f ||2HK2

,

2) HK1 ∩HKc = {0},
3) For any f1 ∈ HK1 and f2 ∈ HKc , 〈f1, f2〉HK2

= 0.

5 Analyses under Relaxed Invariant Metric Condition

Let K1 and K2 = K1 + Kc be kernels where Kc is also a kernel, then corre-
sponding RKHS’s satisfy

HK1 ⊂ HK2 (21)

from Theorem 1; and we have

||f ||HK1
≥ ||f ||HK2

(22)

for any f ∈ HK1 from Theorem 3.
We assume that a linear class F ⊂ HK1 forms a Hilbert space with the norm

|| · ||F and assume that

||f ||F = ||f ||HKi
for any f ∈ F , (i ∈ {1, 2}). (23)

Then on the basis of Theorems 2, there exists a kernel KF such that

Kc
i = Ki −KF , (i ∈ {1, 2}) (24)

is also a kernel and
HKF ∩HKc

i
= {0} (25)

holds from Theorem 5. Note that it is trivial that Eq.(24) can be rewritten as

Ki = Kc
i +KF , (i ∈ {1, 2}). (26)

Since KF is guaranteed to be a kernel, we use HKF instead of F , hereafter. Note
that we can also represent K2 as

K2 = KF +Kc
1 +Kc. (27)

If we have an explicit form of KF , then R(A∗
KF ,X) gives a better model than

R(A∗
K1,X

) and R(A∗
K2,X

) for any f ∈ HKF according to Theorem 4. However in
general, we can not always obtain KF from K1 and K2 (or Kc). When HKc

1
∩

HKc = {0}, R(A∗
K1,X

) gives a better model than R(A∗
K2,X

) for any f ∈ HK1

according to Theorems 4 and 5. However, when HKc
1
∩ HKc �= {0}, R(A∗

K2,X
)

may be a better model than R(A∗
K1,X

) for some f ∈ HK1 since the metrics of
HK1 and HK2 may differ.

The aim of this paper is to show that for any f ∈ HKF , R(A∗
K1,X

) gives a
better model than R(A∗

K2,X
) even if HKc

1
∩HKc �= {0}.
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Lemma 3. [9] Let H1 and H2 be n.n.d. Hermitian matrices and let y ∈ R(H1),
then

J = y∗(H+
1 − (H1 +H2)

+)y ≥ 0 (28)

holds.

The following theorem is the main result of this paper.

Theorem 6. Let K1 and K2 = K1 +Kc be kernels where Kc is also a kernel.
If Eq.(23) holds, then for any f ∈ HKF and X,

‖f − PK1,Xf‖2HK2
≤ ‖f − PK2,Xf‖2HK2

(29)

holds.

Proof. From Eq.(22), we have

Z = ‖f − PK2,Xf‖2HK2,X
− ‖f − PK1,Xf‖2HK2,X

≥ ‖f − PK2,Xf‖2HK2,X
− ‖f − PK1,Xf‖2HK1,X

= Z1

and from Lemma 2, the Pythagorean theorem, the invariant metric condition,

Z1 = ||f ||2HK2
− f ′G+

K2,X
f − (||f ||2HK1

− f ′G+
K1,X

f)

= ||f ||2HK2
− f ′G+

K2,X
f − (||f ||2HK2

− f ′G+
K1,X

f)

= f ′G−1
K1,X

f − f ′G−1
K2,X

f

= f ′
(
G−1

K1,X
−G−1

K2,X

)
f = Z2

is obtained. Since

GK1,X = GKF ,X +GKc
1 ,X

(30)

and

GK2,X = GKF ,X +GKc
1 ,X

+GKc,X (31)

hold, the fact that

f ∈ R(AKF ,X) = R(AKF ,XA∗
KF ,X) = R(GKF ,X) ⊂ R(GKF ,X +GKc

1 ,X
)

and Lemma 3 yield Z2 ≥ 0 which concludes the proof. )*

According to Theorem 6, it is concluded that if the smaller RKHS include a
subspace with an invariant metric, the kernel corresponding to the smaller RKHS
gives a better model than larger one for any function in the subspace, which is
an extension of the results obtained in [9].
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6 Conclusion

In this paper, we discussed a class of kernels forming a nested class of RKHS’s;
and proved that if the smallest RKHS in the class has a subspace with an invari-
ant metric, the kernel corresponding to the smallest RKHS gives the best model
for any function in the subspace, which is a direct extension of our previous
result obtained in [9]. Drastic relaxation of the invariant metric condition and
extending the obtained results to practical learning machines such as the SVM
and the kernel ridge regressor are ones of our future works.
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Abstract. Kernel classifiers have demonstrated their high performance
for many classification problems. For the proper selection of kernel func-
tions, multiple kernel learning (MKL) has been researched. Furthermore,
the localized MKL (LMKL) enables to set the weights for the kernel
functions at each point. However, the training of the weight functions
for kernel functions is a complex nonlinear problem and a classifier can
be trained separately after the weights are fixed. The iteration of the two
processes are often necessary. In this paper we propose a new framework
for MKL/LMKL. In the framework, not kernel functions but mappings
to the feature space are combined with weights. We also propose a new
learning scheme to train simultaneously weights for kernel functions and
a classifier. We realize a classifier by our framework with the Gaussian
kernel function and the support vector machine. Finally, we show its
advantages by experimental results.

1 Introduction

Kernel classifiers such as the support vector machine (SVM) [8], the kernel Fisher
discriminant (KFD) [5], etc. have demonstrated their high performance for many
classification problems. By mapping an input vector into a high dimensional fea-
ture space, nonlinear classification functions in the input space are provided
even if they are linear in the feature space. However, to realize such excellent
performances, the proper selection of kernel functions is very important. For
the purpose the multiple kernel learning (MKL) has been intensively researched
[6,1,4,7,3]. Their kernel function is given as a weighed combination of simple
kernel functions. In MKL, the weights for kernel functions are spatially uni-
form. Because the spacial distribution of samples may not be uniform, the best
kernel function should depend on its position. To solve this problem, Gönen
and Alpaydin proposed the localized multiple kernel learning (LMKL) that can
change the weights for kernel functions at each point [2]. However, because the
weights are necessary for an unknown input pattern, we have to train the weight
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functions for kernel functions before training SVM. It is a complex nonlinear
problem. Therefore, their proposed learning process consists of the iteration of 2
processes, training of weight functions for kernel functions and training of SVM.

In this paper, we propose a new framework for MKL or LMKL. A kernel
function is given by a weighted combination of kernel functions, and weights
for kernel functions and coefficients of classifiers are separated in the original
framework, whereas a nonlinear mapping to the feature space is given by a
weighted combination of feature mappings, and combined weights for nonlinear
mappings and classifiers are introduced in the proposed framework. We also
propose a learning process to train the combined weights. We call this learning
framework the simultaneous LMKL (SLMKL).

We apply the framework to SVM with the Gaussian kernel function (GKF).
This classifier is called SLMKL-SVM. The problem to train the combined weights
for SLMKL-SVM is given as a standard convex quadratic problem that can be
calculated by using a optimization package such as CPLEX. We also show the
advantages of SLMKL-SVM over SVM by experimental results.

We explain the framework of SLMKL in Section 2, and SLMKL-SVM in
Section 3. We show experimental results in Section 4, and we conclude this
paper and provide future works in Section 5.

2 Framework for SLMKL

Let {(xn, yn)}Nn=1 be a set of samples, where xn is a sample pattern and yn is
its label (±1). The inner product of x and z is denoted by 〈x, z〉. In this paper,
we consider a linear discriminant model for a binary problem.

In case of the standard kernel method, we fix a Mercer kernel function k(x, z)
and the discriminant function is given by

d(x) =

N∑
n=1

αnk(xn,x) + θ, (1)

where αn and θ are coefficients and a threshold, respectively. From Mercer’s
theorem, we can consider there exists a feature mappingΦ(x) such that k(x, z) =
〈Φ(x),Φ(z)〉. Then, the eq.(1) can be written as

d(x) = 〈w,Φ(x)〉+ θ, w =
N∑

n=1

αnΦ(xn). (2)

In MKL, we prepare several kernel functions kj(x, z) (j = 1, 2, . . . , J) and con-
struct a kernel function as

k(x, z) =
J∑

j=1

ηjkj(x, z), (3)

where ηi (j = 1, 2, . . . , J) are weights for kernel functions. The discriminant
function is also given by eq.(1). In this framework, αi and ηi are separately
trained and the problem to obtain ηi is very complex and nonlinear.



356 N. Inoue and Y. Yamashita

In LMKL, the position dependent weight functions ηj(x) (j = 1, 2, . . . , J) are
used. The kernel function is given by

k(x, z) =
J∑

j=1

ηj(x)kj(x, z)ηj(z), (4)

The discriminant function is given by

d(x) =

N∑
n=1

αn

J∑
j=1

ηj(xn)kj(xn,x)ηj(x) + θ, (5)

The weights for kernel functions can be chosen at every point. However, it seems
to be very difficult to obtain ηj(x) from training data because x is an unknown
data in the classification stage so that another training process is necessary
to obtain ηj(x). Therefore, its learning process consists of the iteration of 2
processes, training of ηj(x) and training of αn and θ.

In the proposing SLMKL, we assume that we can prepare Φj(x) (j =
0, 1, 2, . . . , J) of which inner product can be calculated analytically. Their kernel
functions are denoted by

ki,j(x, z) ≡ 〈Φi(x),Φj(z)〉. (6)

Although the existence of inner product seems to be a strong condition, in Sec-
tion 4, we show the inner product of GKFs of which kernel parameters are differ-
ent. Because GKF is widely used in many recognition problems, the proposing
framework can be used widely.

The model of w in eq.(2) is defined by J feature mappings as

w =

N∑
n=1

J∑
j=1

αj,nΦj(xn). (7)

The parameters αj,n express both weights for kernel functions and coefficients
for a classifier. Since it is difficult to fix weights for feature mappings for an
unknown input pattern, we used only Φ0 for the feature mapping into which
an unknown input pattern is substituted. Then, the discriminant function is
given by

d(x) = 〈w,Φ0(x)〉+ θ =
N∑

n=1

J∑
j=1

αj,nkj,0(xn,x) + θ. (8)

The advantages of this frame work are as follows. (1) The weights for feature
mappings can be changed at each sample point individually. (2) It does not
need a continuous weight functions for feature mappings whereas LMKL has
ηj(x). (3) The coefficients αj,n can express simultaneously weights for kernel
functions and coefficients for a classifier and can be trained similarly to the
original classifier.



Simultaneous Learning of Localized Multiple Kernels and Classifier 357

3 SLMKL-SVM

The criterion of SVM is given as minimizing

‖w‖2 + C
N∑

n=1

ξi (9)

under the condition that for n = 1, 2, . . . , N ,

ynd(xn)− 1 + ξn ≥ 0, ξn ≥ 0, (10)

where C is a constant. The first term of eq.(9) comes from minimizing the margin
1/‖w‖. It can be considered as a regularization term. The second term is the
hinge loss.

In this section, we consider the simplest case of SLMKL in order to investigate
basic features of SLMKL. Let J = 2 and we use two feature mappings Φ1 and
Φ2. We use Φ2 for Φ0 that is the feature mapping into which an unknown input
pattern is substituted. Then, w can be expressed by w = w1 +w2, where

wj =

N∑
n=1

αj,nΦj(xn) (j = 1, 2). (11)

However, even if we substitute eqs.(8) and (11) to eqs.(9) and (10), respectively,
the result of the training is reduced to a standard SVM. The representer theorem
[9] ensures thatw has to be spanned only by {Φ2(xn)}Nn=1. That implies α1,n = 0
for all n and the classifier is a standard SVM.

We have another problem in the framework of SLMKL with respect to the
ratio of weights between for α1,n and for α2,n. The main term in the discriminant
function or the hinge loss is

〈w,x〉 =
N∑

n=1

2∑
i=1

αi,nki,2(xn,x). (12)

In the training stage, sample points are substituted into x. The dominant weights
for α1,n and α2,n are given by k1,2(xn,xn) and k2,2(xn,xn), respectively. For
example, we assume that GKF in eq.(16) is used and we let M = 20 and σ1 =
3σ2. Then, the former is approximately 10−8 and the latter is 1. On the other
hand, in the regularization term

‖w‖2 =

N∑
m=1

N∑
n=1

2∑
i=1

2∑
j=1

ki,j(xm,xn)αi,mαj,n, (13)

their dominant weights for them are k1,1(xn,xn) and k2,2(xn,xn), respectively,
and both are 1. Accordingly, the regularization for α1,n is much stronger than
that for α2,n.
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We explain this problem in the point of view of linear algebra. Let Sj be
the subspace spanned by {Φj(xn)}Nn=1 (j = 1, 2). When k1,2(xn,xn) is small,
S1 and S2 are nearly orthogonal. The vector w is included in S1 + S2, and w
is evaluated with vectors in S1 + S2 in the regularization term. However, it is
evaluated only with vectors in S2 in the hinge loss term. Then, in the term, the
weight for α1,n becomes smaller than that for α2,n.

In order to solve this problem, we have to weaken the regularization for α1,n

and we introduce the following five new weighted regularization terms.

(1) Projected regularization (PrR): Let P2 be the orthogonal projection operator
onto S2. The regularization term is defined by ‖P2w‖2. By projectingw onto
S2 in the regularization, the norm of projection of a vector in S1 becomes
be comparable with the values of inner products with a vector in S2.

(2) Training sample regularization (TSR): The regularization term is given by∑N
n=0 |〈w,Φσ2(xn)〉|2. Because the sum of squared norms of 〈w,Φ2(xn)〉,

which are the same terms in the hinge loss, is used for the regularization,
the strength of regularization is balanced.

(3) Peak Regularization (PkR): αj,n in the regularization term is replaced by
kj,2(xn,xn)αj,n. It weaken the regularization of α1,n by multiplying k1,2(xn,
xn) whereas that of α2,n does not change it because k2,2(xn,xn) = 1. The
regularization term is given by

N∑
m=1

N∑
n=1

2∑
i=1

2∑
j=1

ki,2(xm,xm)kj,2(xn,xn)ki,j(xm,xn)αi,mαj,n. (14)

(4) Sum of kernel function regularization (SKFR): αj,n in the regularization term

is replaced by
∑N

m=1 kj,2(xn,xm)αj,n. The strengths of the regularizations

for α1,n and α2,n are changed by
∑N

m=1 k1,2(xn,xm) and
∑N

m=1 k2,2(xn,xm),
respectively. PkR uses the value of a kernel function with xn itself for αj,n

but SKFR uses sum with all samples.
(5) Square root of sum of kernel function regularization (SSKFR):

αj,n in the regularization term is replaced by

√∑N
m=1 kj,2(xn,xm)αj,n.

Since the change of weights in SKFR seems to be large, we use the square
root of SKFR although it seems to be heuristic.

With each regularization term, the criterion can be transformed to a constrained
quadratic optimization problem.

4 Experiments

We show experimental results of a toy problem and 13 types of UCI datasets
used in [5]. We use the Gaussian kernel function (GKF) for a feature mapping.
We prepare two kernel parameters σ1 and σ2. Then, the feature mapping with
σj from a point x to a function is defined by

(Φj(x)) (z) =

(
2

πσ2
j

)M
2

exp(−‖z − x‖2/σ2
j ). (15)
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Fig. 1. Results for artificial data

for j = 1, 2. From eq.(6), the kernel function for SLMKL is given by

ki,j(x, z) =

(
2σiσj
σ2
i + σ2

j

)M

exp

(
−‖x− z‖2

σ2
i + σ2

j

)
. (16)

We let σ2
1 = rσ2 and σ2

2 = (2− r)σ2. If r = 1, it reduces to the standard SVM.
We set r = 1.5 and r = 1.8 for SLMKL-SVM.

In order to see the basic performance of SLMKL-SVM, we conducted an ex-
periment with artificial data. As shown in Fig. 1, the domain is a two-dimensional
region D = {(x, y)|x ∈ [0, 1], y ∈ [0, 0.6]}. The original boundary (dashed line)
consists of two kinds of sinusoidal functions. It is more complex in the right
section of D. Furthermore, samples (small square or cross points) are denser in
the region [0.4, 1]× [0.1, 0.5]. The error rate is evaluated by 201 × 201 uniform
samples in D. The parameters (σ2 and C) are set to provide the best recognition
rate for each classifier. The error rates for SVM, and SLMKL-SVM with PrR,
TSR, PkR, SKFR, and SSKFR are 12.95%, 11.18%, 14.07%, 11.42%, 10.79%,
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Table 1. Properties of datasets

Dataset # of training # of test # of dimension
name patterns patterns realizations of data

banana 400 4900 100 2
breast cancer 200 77 100 9
diabetis 468 300 100 8
flare solar 666 400 100 9
german 700 300 100 20
heart 170 100 100 13
image 1300 1010 20 18
ringnorm 400 7000 100 20
splice 1000 2175 20 60
thyroid 140 75 100 5
titanic 150 2051 100 3
twonorm 400 7000 100 20
waveform 400 4600 100 21

Table 2. Error rates for UCI datasets

DN SVM SLMKL-SVM r = 1.5
PrR TSR PkR SKFR SSKFR

Ba 11.53±0.66 10.43±0.42 11.21±4.25 10.47±0.50 10.71±0.53 10.91±0.63
Br 26.04±4.74 26.43±4.77 25.70±4.32 25.48±4.53 27.49±4.74 27.60±4.81
Di 23.53±1.73 23.97±1.65 24.15±4.54 23.49±1.64 24.09±1.77 23.27±1.70
Fl 32.43±1.82 32.33±1.80 33.70±1.98 32.37±1.78 32.86±3.50 32.36±1.78
Ge 23.71±2.20 23.47±2.10 24.19±2.21 23.54±2.23 23.68±2.16 23.49±2.37
He 15.95±3.26 15.65±3.28 16.63±7.29 15.96±3.31 15.79±3.19 15.53±3.37
Im 2.96±0.60 3.10±0.53 2.89±0.48 3.04±0.51 3.63±0.88 3.68±1.52
Ri 1.66±0.12 1.47±0.11 30.31±21.77 1.48±0.11 1.72±0.12 1.58±0.10
Sp 10.88±0.66 10.80±0.67 10.79±0.68 11.00±0.66 11.06±0.70 11.09±0.75
Th 4.80±2.19 4.31±2.21 7.47±3.20 4.97±2.25 4.72±2.25 4.60±2.40
Ti 22.42±1.02 22.77±1.11 23.06±5.34 22.75±1.12 22.77±1.18 22.36±1.00
Tw 2.96±0.23 2.39±0.12 2.95±0.34 2.41±0.13 2.42±0.13 2.49±0.16
Wa 9.88±0.43 9.98±0.49 10.52±4.94 9.99±0.52 10.07±0.40 10.19±0.47

(Values in bold font indicates the best result in the row.)

and 12.23%, respectively. The calculated boundaries (solid lines) of SVM and
SLMKL-SVM with SKFR are shown for their best parameters.

In Fig. 1 (b), a small square point expresses training data xn where
〈w1,Φ2(xn)〉 > 〈w2,Φ2(xn)〉 and a small cross point expresses the opposite. We
can see large and small kernel parameters are selected in smooth and complicated
region, respectively, by the training.

We also conducted experiments using the 13 UCI datasets listed in Table 1.
For example, the ’banana’ dataset has 100 realizations and each realization has
400 training and 4900 test patterns of which dimension is two.
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Table 3. Error rates for UCI datasets

DN SVM SLMKL-SVM r = 1.8
PrR TSR PkR SKFR SSKFR

Ba 11.53±0.66 10.41±0.44 10.80±0.50 10.69±0.55 10.69±0.53 10.70±0.54
Br 26.04±4.74 25.56±4.71 26.23±5.67 25.74±4.71 27.58±4.78 27.38±4.76
Di 23.53±1.73 23.38±1.67 23.37±1.81 23.85±1.59 23.60±1.76 23.67±1.79
Fl 32.43±1.82 32.37±1.78 33.42±1.51 32.36±1.78 32.59±2.85 32.36±1.79
Ge 23.71±2.20 23.66±2.19 24.15±2.13 23.73±2.17 23.55±2.33 23.70±2.14
He 15.95±3.26 15.26±3.16 15.62±3.09 16.00±3.23 15.57±3.22 16.10±3.28
Im 2.96±0.60 3.08±0.56 2.85±0.45 3.05±0.54 3.14±0.62 3.25±0.58
Ri 1.66±0.12 1.45±0.10 28.45±22.68 1.45±0.10 1.91±0.20 1.63±0.12
Sp 10.88±0.66 10.77±0.71 10.84±0.61 10.77±0.71 11.14±0.71 11.11±0.71
Th 4.80±2.19 4.44±2.22 6.55±3.12 4.83±2.26 4.64±2.22 4.36±2.06
Ti 22.42±1.02 22.43±1.02 22.46±1.07 24.91±8.47 23.00±4.81 22.69±1.56
Tw 2.96±0.23 2.45±0.14 3.00±0.23 2.40±0.12 2.54±0.16 2.45±0.13
Wa 9.88±0.43 10.60±2.30 9.73±0.45 10.38±0.47 10.49±0.43 10.55±0.35

(Values in bold font indicates the best result in the row.)

Table 4. p-value of t-test against SVM

DN r = 1.5 r = 1.8
PrP TSR PkR SKFR SSKFR PrP TSR PkR SKFR SSKFR

Ba 0.000 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Br 0.718 0.299 0.198 0.984 0.989 0.238 0.601 0.328 0.988 0.976
Di 0.966 0.897 0.434 0.987 0.144 0.268 0.263 0.912 0.611 0.712
Fl 0.349 1.000 0.407 0.860 0.392 0.407 1.000 0.392 0.681 0.393
Ge 0.319 0.971 0.410 0.592 0.352 0.565 0.964 0.655 0.424 0.618
He 0.260 0.801 0.509 0.364 0.187 0.066 0.233 0.543 0.205 0.626
Im 0.775 0.347 0.670 0.995 0.969 0.736 0.263 0.685 0.816 0.931
Ri 0.000 1.000 0.000 1.000 0.000 0.000 1.000 0.000 1.000 0.040
Sp 0.356 0.341 0.711 0.790 0.817 0.312 0.424 0.312 0.875 0.846
Th 0.059 1.000 0.705 0.400 0.270 0.126 1.000 0.538 0.305 0.073
Ti 0.989 0.879 0.984 0.987 0.338 0.527 0.606 0.998 0.879 0.924
Tw 0.000 0.404 0.000 0.000 0.000 0.000 0.889 0.000 0.000 0.000
Wa 0.936 0.900 0.947 0.999 1.000 0.999 0.009 1.000 1.000 1.000

The parameters σ and C were selected by 5-fold cross validation as explained
in [5]. The averaged error rate and its standard deviation over all realizations
are shown in Tables 2 and 3. Their p-values of t-test against SVM are shown in
Table 4. The results of SVM are referred from [5].

We can see the advantage of the proposed method especially for ’banana’,
’ringnorm’, ’twonorm’ and ’waveform’. However, because the result for ’ring-
norm’ with TSR is very bad, we have to research on the combination of mappings
to the feature space and regularization in the criterion.
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5 Conclusion

In this paper, we proposed a new framework for MKL or LMKL. In the frame-
work, not kernel functions but feature mappings are linearly combined. We also
proposed the SLMKL-SVM with weighted regularizations. We conducted exper-
iments and showed its advantages.

For future work, we have to research on feature mappings of which inner
product can be obtained analytically and investigate regularization terms to
improve its performance.
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7. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel
learning. J. Mach. Learn. Res. 7, 1531–1565 (2006),
http://dl.acm.org/citation.cfm?id=1248547.1248604

8. Vapnik, V.N.: Statistical Learning Theory. Wiley, New-York (1998)
9. Wahba, G.: Spline Models for Observational Data (CBMS-NSF Regional Conference

Series in Applied Mathematics). Society for Industrial and Applied Mathematics,
Philadelphia (1990)

http://doi.acm.org/10.1145/1390156.1390201
http://doi.acm.org/10.1145/369133.369228
http://dl.acm.org/citation.cfm?id=1248547.1248604


Change-Point Detection in Time-Series Data

by Relative Density-Ratio Estimation

Song Liu1, Makoto Yamada2, Nigel Collier3, and Masashi Sugiyama1

1 Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

{song@sg.,sugi@}cs.titech.ac.jp
2 NTT Communication Science Laboratories

2-4, Hikaridai, Seika-cho, Kyoto, Japan 619-0237
yamada.makoto@lab.ntt.co.jp

3 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

collier@nii.ac.jp

Abstract. The objective of change-point detection is to discover abrupt
property changes lying behind time-series data. In this paper, we present
a novel statistical change-point detection algorithm that is based on non-
parametric divergence estimation between two retrospective segments.
Our method uses the relative Pearson divergence as a divergence measure,
and it is accurately and efficiently estimated by amethod of direct density-
ratio estimation. Through experiments on real-world human-activity sens-
ing, speech, and Twitter datasets, we demonstrate the usefulness of the
proposed method.

Keywords: change-point detection, distribution comparison, relative
density-ratio estimation, kernel methods, time-series data.

1 Introduction

Detecting abrupt changes in time-series data, called change-point detection, has
attracted researchers in the statistics and data mining communities for decades
[1–6].

Some pioneer works demonstrated good change-point detection performance
by comparing the probability distributions of time-series samples over past and
present intervals [1]. As both the intervals move forward, a typical strategy is to
issue an alarm for a change point when the two distributions are becoming sig-
nificantly different. Various change-point detection methods follow this strategy,
for example, the cumulative sum [1], the generalized likelihood-ratio method [2],
and the change finder [3].

Another group of methods that have attracted high popularity in recent years
is the subspace methods [4, 5]. By using a pre-designed time-series model, a sub-
space is discovered by principle component analysis from trajectories in past
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and present intervals, and their dissimilarity is measured by the distance be-
tween the subspaces. One of the major approaches is called subspace identifica-
tion [5], which compares the subspaces spanned by the columns of an extended
observability matrix generated by a state-space model with system noise.

However, the methods explained above rely on pre-designed parametric mod-
els such as underlying probability distributions [1, 2], auto-regressive models
[3], and state-space models [4, 5], for tracking some specific statistics such as
the mean, the variance, and the spectrum. Thus, they are not robust against
different types of changes, which significantly limits the range of applications in
practice. To cope with this problem, non-parametric estimation methods such as
kernel density estimation may be used. However, non-parametric methods tend
to be less accurate in high-dimensional problems because of the so-called curse
of dimensionality.

To overcome this difficulty, a new strategy was introduced recently which
estimates the ratio of probability densities directly without going through density
estimation [7]. In the context of change-point detection, a direct density-ratio
estimation method called the Kullback-Leibler importance estimation procedure
(KLIEP) [8] was reported to outperform competitive approaches [6] such as the
one-class support vector machine [9] and singular-spectrum analysis [4].

The goal of this paper is to further advance this line of research. More specif-
ically, our contributions in this paper are two folds.

• We apply a recently-proposed density-ratio estimation method called the
unconstrained least-squares importance fitting (uLSIF) [10] to change-point de-
tection. Notable advantages of uLSIF are that an analytical solution can be
obtained, it achieves the optimal non-parametric convergence rate, it has opti-
mal numerical stability, and it has higher robustness [7].
• We further improve the uLSIF-based change-point detection method by em-
ploying a state-of-the-art extension of uLSIF called relative uLSIF (RuLSIF)
[11], which was proved to have an even better non-parametric convergence prop-
erty than plain uLSIF [11], with other advantages of uLSIF maintained.
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2 Problem Formulation

In this section, we formulate our change-point detection problem (see Figure 1).
Let y(t) ∈ Rd be a d-dimensional time-series sample at time t. Let

Y (t) := [y(t)�,y(t+ 1)�, . . . ,y(t+ k − 1)�]� ∈ Rdk

be a subsequence of time series at time t with length k, where � represents the
transpose. Following the previous work [6], we treat the subsequence Y (t) as
a sample, instead of a single point y(t), by which time-dependent information
can be incorporated naturally. Let Y(t) be a set of n retrospective subsequence
samples starting at time t:

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ n− 1)}.

For change-point detection, let us consider two consecutive segments Y(t) and
Y(t+n). Our strategy is to compute a certain dissimilarity measure between Y(t)
and Y(t + n), and use it as the plausibility of change points. More specifically,
the larger the dissimilarity is, the more likely the point is a change point.

Now the problems that need to be addressed are what kind of dissimilarity
measure we should use and how we estimate it from data. We will discuss these
issues in the next section.

3 Change-Point Detection via Density-Ratio Estimation

In this section, we first define our dissimilarity measure, and then show methods
for estimating the dissimilarity measure.

3.1 Divergence-Based Dissimilarity Measure

We use a dissimilarity measure of the following form:

D(Pt‖Pt+n) +D(Pt+n‖Pt), (1)

where Pt and Pt+n are probability distributions of samples in Y(t) and Y(t+n),
respectively. D(P‖P ′) denotes the f -divergence [12, 13]:

D(P‖P ′) :=

∫
p′(Y )f

(
p(Y )

p′(Y )

)
dY ,

where f is a convex function such that f(1) = 0, and p(Y ) and p′(Y ) are
probability density functions of P and P ′, respectively. Because the f -divergence
is not symmetric, we use a symmetrized divergence in Eq.(1).

The f -divergence includes various popular divergences such as the Kullback-
Leibler (KL) divergence by f(t) = t log t and the Pearson (PE) divergence by
f(t) = 1

2 (t− 1)2:

KL(P‖P ′) :=

∫
p(Y ) log

p(Y )

p′(Y )
dY and PE(P‖P ′) :=

1

2

∫
p′(Y )

(
p(Y )

p′(Y )
−1
)2
dY .
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In the rest of this section, we explain three methods of directly estimating the

density ratio p(Y )
p′(Y ) from samples {Y i}ni=1 and {Y ′

j}nj=1 drawn from p(Y ) and

p′(Y ): the KL importance estimation procedure (KLIEP) [8] in Section 3.2, un-
constrained least-squares importance fitting (uLSIF) [10] in Section 3.3, and rel-
ative uLSIF (RuLSIF) [11] in Section 3.4.

3.2 Kullback-Leibler Importance Estimation Procedure (KLIEP)

KLIEP [8] is a direct density-ratio estimation algorithm that is suitable for
estimating the KL divergence.

Density-Ratio Model: Let us model the density ratio p(Y )
p′(Y ) by the following

kernel model:

g(Y ; θ) :=

n∑
�=1

θ�K(Y ,Y �), (2)

where θ := (θ1, . . . , θn)
� are parameters to be learned from data samples, and

K(Y ,Y ′) is a kernel basis function. In practice, we use the Gaussian kernel and
the kernel width is chosen by cross-validation (see [8] for details).

Learning Algorithm: The parameters θ in the model g(Y ; θ) are determined
so that the empirical KL divergence from p(Y ) to g(Y ; θ)p′(Y ) is minimized:

max
θ

1

n

n∑
i=1

log

(
n∑

�=1

θ�K(Y i,Y �)

)
s.t.

1

n

n∑
j=1

n∑
�=1

θ�K(Y ′
j ,Y �)=1, θ1, . . . , θn ≥ 0.

The equality constraint is for normalization purposes because g(Y ; θ)p′(Y )
should be a probability density function. The inequality constraint comes from
the non-negativity of the density-ratio function. Since this is a convex optimiza-
tion problem, the unique global optimal solution θ̂ can be simply obtained, for
example, by a gradient-projection iteration. Finally, a density-ratio estimator is
given as

ĝ(Y ) =

n∑
�=1

θ̂�K(Y ,Y �). (3)

KLIEP was shown to achieve the optimal non-parametric convergence rate [8].

Change-Point Detection by KLIEP: Given a density-ratio estimator ĝ(Y ),
an approximator of the KL divergence is given as

K̂L :=
1

n

n∑
i=1

log ĝ(Y i).

In the previous work [6], this KLIEP-based KL-divergence estimator was applied
to change-point detection and demonstrated to be promising in experiments.
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3.3 Unconstrained Least-Squares Importance Fitting (uLSIF)

Recently, another direct density-ratio estimator called uLSIF was proposed [10],
which is suitable for estimating the PE divergence.

Learning Algorithm: In uLSIF, the same density-ratio model g(Y ; θ) as
KLIEP (see Eq.(2)) is used. However, its training criterion is different; the
density-ratio model is fitted to the true density ratio under the squared loss.
More specifically, the parameter θ in the model g(Y ; θ) is determined so that
the following squared loss J(Y ) is minimized:

J(Y ) :=
1

2

∫ (
p(Y )

p′(Y )
− g(Y ; θ)

)2
p′(Y ) dY

=
1

2

∫
p(Y )

p′(Y )

2

p′(Y ) dY −
∫

p(Y )g(Y ; θ) dY +
1

2

∫
g(Y ; θ)2p′(Y ) dY .

Since the first term is a constant, we focus on the last two terms. By approximat-
ing the expectations by the empirical averages, the uLSIF optimization problem
is given as follows:

min
θ∈Rn

[
1

2
θ�Ĥθ − ĥ

�
θ +

λ

2
θ�θ

]
, (4)

where the penalty term λ
2θ

�θ is included for regularization purposes, and λ
(≥ 0) denotes the regularization parameter, which is chosen by cross validation.

(see [10] for details). Ĥ is the n × n matrix and ĥ is the n-dimensional vector
defined as

Ĥ�,�′ :=
1

n

n∑
j=1

K(Y ′
j ,Y �)K(Y ′

j ,Y �′) and ĥ� :=
1

n

n∑
i=1

K(Y i,Y �).

It is easy to confirm that the solution θ̂ of (4) can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ, (5)

where In denotes the n-dimensional identity matrix. Finally, a density-ratio
estimator is given by Eq.(3) with Eq.(5).

Change-Point Detection by uLSIF: Given a density-ratio estimator ĝ(Y ),
an approximator of the PE divergence can be constructed as

P̂E := − 1

2n

n∑
j=1

ĝ(Y ′
j)

2 +
1

n

n∑
i=1

ĝ(Y i)−
1

2
.

This approximator is derived from the following expression of the PE divergence:

PE(P‖P ′) = −1

2

∫ (
p(Y )

p′(Y )

)2
p′(Y )dY +

∫ (
p(Y )

p′(Y )

)
p(Y )dY − 1

2
. (6)
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Notable advantages of uLSIF are that its solution can be computed analytically,
it possesses the optimal non-parametric convergence rate, it has the optimal
numerical stability, and it has higher robustness [7]. As experimentally demon-
strated in our supplementary technical report [14], uLSIF-based change-point
detection compares favorably with the KLIEP-based method.

3.4 Relative uLSIF (RuLSIF)

Depending on the condition of the denominator density p′(Y ), the density-ratio

value p(Y )
p′(Y ) can be unbounded (i.e., they can be infinity). This is actually prob-

lematic because the non-parametric convergence rate of uLSIF is governed by

the “sup”-norm of the true density-ratio function: maxY
p(Y )
p′(Y ) . To overcome this

problem, relative density-ratio estimation was introduced [11].

Relative PE Divergence: Let us consider the α-relative PE-divergence for
0 ≤ α < 1:

PEα(P‖P ′) := PE(P‖αP + (1 − α)P ′) =

∫
p′α(Y ) (rα(Y )− 1)

2
dY ,

where p′α(Y ) = αp(Y )+(1−α)p′(Y ) and rα(Y ) = p(Y )
p′
α(Y ) . We refer to rα(Y ) as

the α-relative density ratio. The α-relative density ratio is reduced to the plain
density ratio if α = 0, and it tends to be “smoother” as α gets larger. Indeed, the
α-relative density ratio is bounded above by 1/α for α > 0, even when the plain

density ratio p(Y )
p′(Y ) is unbounded. This was proved to contribute to improving

the estimation accuracy [11].

Learning Algorithm: In the same way as the uLSIF method, the parameter
θ of the model g(Y ; θ) is learned by minimizing the squared difference between
true and estimated ratios:

J(Y ) =
1

2

∫
p′α(Y )(rα(Y )− g(Y ; θ))2 dY

=
1

2

∫
p′α(Y )r2α(Y )dY −

∫
p(Y )rα(Y )g(Y ; θ) dY

+
α

2

∫
p(Y )g(Y ; θ)2 dY − 1− α

2

∫
p′(Y )g(Y ; θ)2 dY ,

where the first term is a constant term. Note that we still use the same kernel
model (2) as g(Y ; θ) for approximating the α-relative density ratio.

Again, by ignoring the constant and approximating the expectations by em-
pirical averages, the α-relative density ratio can be learned in the same way as
the plain density ratio. Indeed, the optimization problem of a relative variant of
uLSIF, called RuLSIF, is given as the same form as uLSIF; the only difference

is the definition of the matrix Ĥ, which is now given by
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Ĥ�,�′ :=
α

n

n∑
i=1

K(Y i,Y �)K(Y i,Y �′) +
(1− α)

n

n∑
j=1

K(Y ′
j ,Y �)K(Y ′

j ,Y �′).

RuLSIF inherits the advantages of uLSIF, i.e., its solution can be computed
analytically, it has the superior numerical stability, and it has higher robust-
ness; furthermore, RuLSIF possesses an even better non-parametric convergence
property than uLSIF [11].

Change-Point Detection by RuLSIF: By using an estimator ĝ(Y ) of the
α-relative density ratio, the α-relative PE divergence can be approximated as

P̂Eα := − α

2n

n∑
i=1

ĝ(Y i)
2 − 1− α

2n

n∑
j=1

ĝ(Y ′
j)

2 +
1

n

n∑
i=1

ĝ(Y i)−
1

2
.

As experimentally demonstrated in our supplementary technical report [14],
the RuLSIF-based change-point detection performs even better than the plain
uLSIF-based method. Thus, we focus on RuLSIF in the experiments in Section 4.

4 Experiments

In this section, we experimentally investigate the performance of the proposed
and existing change-point detection methods.

First, we use a human activity dataset and a speech dataset. The human
activity dataset is a subset of the Human Activity Sensing Consortium (HASC)
challenge 2011, which provides human activity information collected by portable
three-axis accelerometers. The speech dataset is the IPSJ SIG-SLP Corpora and
Environments for Noisy Speech Recognition (CENSREC) dataset provided by
National Institute of Informatics (NII), which records human voice in a noisy
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Fig. 2. HASC human-activity dataset (http://hasc.jp/hc2011/)
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Fig. 3. NII speech dataset (http://research.nii.ac.jp/src/eng/list/index.html)
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Fig. 4. Twitter dataset (http://www.ark.cs.cmu.edu/tweets/)

environment. We compare our RuLSIF-based method with several state-of-the-
art methods: Singular spectrum transformation (SST) [4], subspace identification
(SI) [5], auto regressive (AR) [3], and one-class support vector machine (OSVM)
[9]. Examples of RuLSIF-based change score and ROC curves over 10 datasets
are plotted in Figures 2 and 3, showing that the proposed RuLSIF-based method
outperforms other methods.

Finally, we apply the proposed change-point detection method to the CMU
Twitter dataset, which is an archive of Twitter messages that have been collected
from April 2010 to October 2010 via the Twitter API. Here we track the degree
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of popularity of a given topic by monitoring the frequency of selected keywords.
More specifically, we focus on events related to “Deepwater Horizon oil spill in
the Gulf of Mexico” which occurred on April 20, 2010, and was widely broadcast
among the Twitter community. We use the frequency of 10 keywords: “gulf ”,
“spill”, “bp”, “oil”, “hayward”, “mexico”, “coast”, “transocean”, “halliburton”,
and “obama” (see Figure 4(a)). For quantitative evaluation, we referred to the
Wikipedia entry “Timeline of the Deepwater Horizon oil spill” as a real-world
event source. The change-point score obtained by the proposed RuLSIF-based
method is plotted in Figure 4(b), where four occurrences of important real-world
events show the development of this news story.

As we can see from Figure 4(b), the change-point score increases immediately
after the initial explosion of the deepwater horizon oil platform and soon reaches
the first peak when oil was found on the sea shore of Louisiana on April 30.
Shortly after BP announced its preliminary estimation on the amount of leaking
oil, the change-point score rises quickly again and reaches its second peak at the
end of May, at which time President Obama visited Louisiana to assure local
residents of the federal government’s support. On June 25, the BP stock was at
its one year’s lowest price, while the change-point score spikes at the third time.
Finally, BP cuts off the spill on July 15, as the score reaches its last peak.

5 Conclusion

We extended the existing KLIEP-based change detection method and proposed
to use uLSIF or RuLSIF as a building block. Through experiments, we demon-
strated that the RuLSIF-based change detection method is promising.

SL was supported by NII internship fund and the JST PRESTO program.
MY and MS were supported by the JST PRESTO program. NC was supported
by NII Grand Challenge project fund.
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Abstract. Online metric learning using margin maximization has been
introduced as a way to learn appropriate dissimilarity measures in an
efficient way when information as pairs of examples is given to the learn-
ing system in a progressive way. These schemes have several practical
advantages with regard to global ones in which a training set needs to be
processed. On the other hand, they may suffer from a poor performance
depending on the quality of the examples and the particular tuning or
other implementation details. This paper formulates several online met-
ric learning alternatives using a passive-aggressive schema. A new for-
mulation of the online problem using least squares is also introduced.
The relative behavior of the different alternatives is studied and com-
parative experimentation is carried out to put forward the benefits and
weaknesses of each alternative.

1 Introduction

Organizing, classifying and/or representing sets of data is of key importance
in many different application domains from fields like image analysis, pattern
recognition or data mining. Distance-based methods form a well established
group of approaches to tackle classification, regression, estimation and clustering
problems. The performance of such methods, depends on the metric that relates
input instances which is intimately tied to the way objects are represented.

In recent years, Distance Metric Learning (DML) has been an active area
of research. In most cases, DML aims at learning an appropriate Mahalanobis-
like distance matrix. Although there are many approaches, the most common is
to define a (usually convex) criterion function which expresses the desired goal
[1,2] which basically consists of keeping similar objects close and dissimilar ones
far away at the same time. Determining the solution of such global optimiza-
tion problems can be computationally expensive specially when dealing with
large-scale problems [3]. Consequently, the need of effective and efficient learn-
ing methods has led to the emergence of sequential methods [4,5], mainly based
on optimizing a convenient criterion over only one instance (pair of objects) that
is made available for learning at every time step.
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Unfortunately, many practical and theoretical problems arise. On one hand,
different ways of sequentially enforcing additional constraints may lead to dif-
ferent solutions requiring different amount of computation. On the other hand,
the performance of the final solution may deviate significantly from the ideal
(global) goal depending of the particular instances used in the last iterations.

The present work jointly introduces a family of online metric learning al-
gorithms which use margin maximization [4]. A novel formulation of the same
online optimization problem is proposed using a least square formulation instead
of the passive-aggressive schema [6]. Exhaustive comparative experimentation is
carried out in order to fully characterize the advantages and drawbacks of each
online algorithm with regard to other state of the art alternatives.

2 Online Metric Learning

Assume Rd is a real d−dimensional feature space and consider a set of points
{xi}Ni=1 ∈ Rd, and a labeling function yij which indicates when a pair of points
xi, xj is similar (yij = 1), or dissimilar (yij = −1). This labeling can come from
a user or an appropriate oracle according to the practical problem at hand.
A distance function (or simply distance) is a real function defined on Rd × Rd

satisfying nonnegativity, identity and triangle equality. This function is a pseudo-
metric if identity (it can be zero even for different objects) is not enforced. It
is possible to represent a vast family of pseudo-metrics (including the Euclidean
distance) by using a Positive Semi Definite (PSD) matrix M as:1

dMij = dM (xi, xj) = (xi − xj)
�M(xi − xj). (1)

The main goal of metric learning is to obtain a matrix M that reflects the
(dis)similarity between pairs of points, xi, xj , leading to appropriately different
distance values depending on whether these points are really (dis)similar or not.
An idealized situation can be visualized as having a convenient threshold value,
b, in such a way that all similar distance values are under b and all dissimilar
distance values are above b.

2.1 The Separable Case

A pseudo-metric function is better if the corresponding separation between
(dis)similar distance values is bigger. This condition can be expressed as max-
imizing the margin around the threshold value, b. In the separable case and
following a similar approach as with support vector machines [7], maximizing
the margin can be turned into fixing a margin value and minimizing the (Frobe-
nius) norm of the matrix M . Setting a fixed value of 2 between both kind of
distance values can be compactly expressed as

yij(b − dMij ) ≥ 1. (2)

1 By convenience, we consider in this work squared versions of the distances.
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Instead of considering constrained optimization using all information (examples)
available, the above problem can be solved in a more convenient way both from
the point of view of computation and robustness by using an online learning
approach [4,8] . Under this sequential scheme, at each step k, a particular model
formed by the pair (Mk, bk) is available to make a prediction over the labeled
pair tk = (xi, xj , yij) which is revealed to the system at this step. First, a pre-
diction with the previous model (Mk, bk) is made and a loss corresponding to
the violation of this particular constraint is measured. In particular, the hinge
loss is used

�H(M, b, tk) = max
{
0, 1− yij(b− dMij )

}
. (3)

Only in the case when the predictor (Mk, bk) fails, i.e. the hinge-loss is greater
than zero, �H(Mk, bk, tk) > 0, the system is forced to retrain their current model.

The aim is to find the nearest model (M̂k+1, b̂k+1) to the previous one that
attains zero loss in the received pair (provided that it exists). This can be written
as the following (online) optimization problem

(M̂k+1, b̂k+1) = argmin
M,b

1

2
‖M −Mk‖2Fro +

1

2
(b− bk)2, (4)

s.t. �H(M, b, tk) = 0, (5)

where ‖ . ‖Fro is the Frobenius norm. As was shown in [4] the corresponding
update becomes:

M̂k+1 = Mk − τyij(xi − xj)(xi − xj)
�, (6)

b̂k+1 = bk + τyij , (7)

where

τ =
�H(Mk, bk, tk)

1 + ‖(xi − xj)(xi − xj)�‖2Fro
. (8)

Two additional constraints are needed in the definition of the problem [4]. The
first one is that the matrixM must be Positive Semi Definite (PSD),that is, M +
0 and consequently the threshold bmust be above 1, b ≥ 1. Since τ is nonnegative,
the constraint M + 0 is straightforwardly taken taken into account if yij = −1
when using the rank-one update in Eq. (6). In the case yij = 1, this update may
introduce one negative eigenvalue in M at most. The closest PSD matrix can
be found by setting this negative eigenvalue to zero after eigendecomposing M .
Alternatively and equivalently, both the eigenvalue along with its corresponding
eigenvector can be added to M after computing them using the Lanczos method
[4].

2.2 Soft Margin Formulation

The previous formulation only makes sense if feasible solutions exist. Which
means that similar/dissimilar pairs can be strictly separated. As in [6], different
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alternatives for the inseparable case can be considered. In particular, the insep-
arable case can be solved by adding the slack variable ξij ∈ R to the original
formulation and enforcing its positiveness by adding a new constraint to the
problem. This slack variable ξij is weighted by a hyper-parameter C ∈ [0,+∞[,
that preserves the trade off between closeness to the previous model and loss
minimization. Following the passive-aggressive approach [6] the corresponding
online optimization problem can be stated as:

(Mk+1, bk+1) = argmin
M,b,ξij

1

2
‖M −Mk‖2Fro +

1

2
(b − bk)2 + Cξij , (9)

s.t. �H(M, b, tk) ≤ ξij , ξij ≥ 0 (10)

Alternatively, the objective function can be scaled quadratically with respect to
ξij . This fact avoids the need to restrict ξij to be nonnegative. That is,

(Mk+1, bk+1) = argmin
M,b,ξij

1

2
‖M −Mk‖2Fro +

1

2
(b − bk)2 + Cξ2ij , (11)

s.t. �H(M, b, tk) ≤ ξij . (12)

These two formulations lead to different update rules that will be referred to
as PA-I and PA-II, respectively as in [6]. These update rules are the ones in
Equations (6) and (7) but changing the rate τ by τ1 and τ2, respectively.

τ1 = min

{
C,

�H(Mk, bk, tk)

1 + ‖(xi − xj)(xi − xj)�‖2Fro

}
, τ2 = �H(Mk,bk,tk)

1+ 1
2C

+‖(xi−xj)(xi−xj)
�‖2

Fro

. (13)

2.3 Least Squares Formulation

An alternative formulation inspired on a Least-Squares approach [9] is also pos-
sible. Instead of forcing a soft margin and minimize the amount of violation on
this condition, it is possible to force similar and dissimilar distance values to
fall close to the “representative” values b − 1 and b + 1, respectively. To this
end, one can sequentially minimize the corresponding squared error. This can
be formulated as:

(Mk+1, bk+1) = argmin
M,b,ξij

1

2
‖M −Mk‖2Fro +

1

2
(b − bk)2 + Cξ2ij , (14)

s.t. 1− yij(b − dMij ) = ξij . (15)

The main change in this formulation is that the inequality in the restriction (12)
has been changed by an equality at restriction (15) and, the loss function is now
a function which measures how far is the distance value from its corresponding
idealized one (b−1 or b+1). This fact brings more aggressiveness to the problem
formulation and the final number of updates will consequently expected to be
greater. In fact, the update rule can be derived in a very similar way as in the
previous cases leading to a different rate given by
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τ3 =
1− yij(b

k − dM
k

ij )

1 + 1
2C + ‖(xi − xj)(xi − xj)�‖2Fro

. (16)

Note that τ3 can take negative values and it holds that τ2 = max{0, τ3}.
The corresponding algorithm will be referred to as PA-LS here, although it

cannot be properly considered as passive-aggressive because only in the partic-
ular case when it holds 1− yij(b − dMij ) = 0, the system does a passive step (do
nothing) and this only occurs when the distance value takes exactly its desired
value. This is in contrast with the above PA-I and PA-II approaches which perform
a passive step in the case when �H = 0 that corresponds to 1− yij(b− dMij ) ≤ 0.

2.4 Tuning and Implementation Details

The performance of the different online learning algorithms using the above
update rules strongly depend on the value of the parameter C (which needs to
be adapted for each database) and also on the initial model given by M and b
(that have been set to the zero matrix and 0 following considerations in [4]).

On the other hand, the PSD constraint needs to be enforced at each learning
step but it is possible to relax this by allowing negative models during a fixed
amount of learning steps after enforcing positiveness [3]. In fact, in our exper-
iments we have obtained better results in general if the PSD constraint is not
enforced until the end of the online learning process. Consequently, for each one
of the above algorithms we consider a positive (+) version in which the PSD
constraint (and b ≥ 1) are enforced at each iteration, and a negative (-) one in
which these constraints are only enforced at the end of the process.

3 Experiments and Results

In order to compare all the above online methods, an exhaustive experimen-
tation has been designed. It has been mainly focused on classification, time
execution and convergence-optimality trade off. Several different publicly avail-
able databases from [10,11] are taken into account. Moreover, a more realistic
database previously used in CBIR tasks [12] has also been selected. This database
is extracted from a commercial collection called “Art Explosion”, distributed by
the company Nova Development (http://www.novadevelopment.com). To per-
form more meaningful classification experiments, only classes with more than
100 elements have been selected. In all cases, objects are considered similar only
if they share the same class label. Datasets used in the comparative study and
their particular characteristics are shown in Table 1.

Table 1. Characteristics of Databases

wine ionosphere balance soybean BDG100 nist16
Size 178 351 625 266 1710 2000

Dimension 13 34 4 35 104 256
no. of classes 3 2 3 15 10 10

http://www.novadevelopment.com
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Experimentation setup has been fixed as suggested in the work [5], where
one of the most competitive metric learning algorithms has been introduced
and studied. Precisely this algorithm, the Information Theoretic Metric Learn-
ing (ITML), has been adopted in the present study as a baseline. The ITML
algorithm has been used as suggested in [5] using the software made available
by the authors that has its own tuning mechanism which assigns appropriate
parameters to the algorithm.

To study the behavior of all the online methods, initial values have been fixed
as (M0, b0) = 0. In all cases, C is tuned using a validation set taking from
the available training set. In particular, exponentially spaced values between
[10−4, 102], have been considered. In order to feed all the methods considered
with the same amount of information, a subset of 40c(c − 1) pairs has been
randomly selected for each run on each of the databases. The online algorithms
are feed with random pairs from this subset. The subset of pairs is presented
several times with different random order until the total number of time steps
exceeds 20% of total number of pairs in each training set. As will be shown in the
following, this amount of iterations has been proved as a good trade off between
computational cost and performance. All results presented are the average of
10 independent runs with different random initializations but with exactly the
same data for each one of the alternative algorithms.

To illustrate the behavior of the different approaches throughout the learn-
ing process, several loss and performance measures have been taken during
the learning process. First, Figure 1 shows the predictive 0-1 loss defined as
� = 1

2T

∑T
k=1 |yk − ŷk|, where T is the learning sequence length, k represents the

corresponding pair supplied at (k + 1)-th step and yk and ŷk are the true and
predicted labels using the model (Mk, bk). This measure illustrates the behavior
of the different online algorithms throughout time when discriminating between
similar and dissimilar objects.

All online learning algorithms have lead to reasonably good behavior in the
experiments carried out according to this loss measure. In 5 out of 6 databases,
negative methods have led to better results compared to positive versions of the
same methods. The case of the two biggest databases is specially remarkable.
On the other hand, the LS methods exhibit significantly worse behavior in wine,
balance, soybean and BDG10 databases.

To measure the quality of the final outcome of the different algorithms, the
corresponding matrices, M , have been used to construct a k-NN classifier. The
classification error using up to the first 25 neighbors has been computed and the
best results for each database and method are shown in Table 2.

The classification errors obtained with all algorithms including ITML, are all
good classification results in the context of the experimentation carried out in
this work. It must be noted that the differences among different classification
results are not significant in most of the cases. Nevertheless, it can be concluded
that all algorithms lead to very competitive results. Also worth noting is the
fact that the combination of LS approach with negative matrices lead to the
best results in the three last databases.
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Fig. 1. Predictive error of the online algorithms
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Table 2. Average classification errors and best number of neighbors (in brackets). Best
result for each database is shown in bold.

ITML PA-I+ PA-I− PA-II+ PA-II− PA-LS+ PA-LS−

wine 3.33(3) 1.76(5) 1.68(6) 1.59(3) 1.68(9) 2.42(7) 1.87(3)
ionosphere 15.46(2) 12.87(2) 13.59(2) 14.00(2) 13.87(2) 14.26(2) 13.84(2)
balance 26.27(3) 21.88(3) 21.92(2) 25.81(3) 23.40(2) 31.23(6) 25.79(6)
soybean 8.63(1) 10.73(1) 10.00(1) 9.87(1) 9.70(1) 9.77(1) 8.27(1)
BDG10 20.27(6) 20.93(7) 21.74(6) 20.72(7) 21.40(7) 20.25(9) 20.20(9)
nist16 5.65(1) 5.67(1) 5.86(1) 5.67(1) 6.03(1) 6.64(1) 5.62(1)

All experiments on all databases have been run using the same computer. In
particular, an AMD Athlon(tm) 64 X2 Dual Core Processor 4200+ has been
used but restricting the code to use only one CPU to obtain more accurate
measurements (except for the two biggest databases). Figure 2 shows the relative
averaged running time spent by each online learning algorithm with regard to
the time used by the ITML algorithm.
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Fig. 2. Relative averaged execution CPU time with regard to ITML

From the running times shown, it can be seen that all online algorithms are
very efficient compared to ITML. The case of positive versions on ionosphere,
BDG10 and nist16 databases that get close to 200% is an exception. But more
importantly, we see that the negative online algorithms reduce dramatically the
time spent by their corresponding positive versions while preserving good per-
formance results. The running times are kepts relatively low even in the case of
PA-LS(-) that need about twice the number of updates with regard to the other
negative online algorithms.

4 Concluding Remarks and Further Work

A family of online metric learning algorithms has been considered. The formula-
tion using a soft margin and a passive-aggressive scheme has been extended by
considering a least squares formulation. The algorithms have been implemented
as positive versions in which the PSD constraint is enforced at each iteration,
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and negative ones in which the constraint is enforced only at the end. Perfor-
mance results show that under an appropriate implementation and tuning, all
online methods are able to arrive at good results, but the negative versions are
appealing due to their low running times. All online methods presented in this
work still have room for improvement. In particular, the number of iterations
can be adapted by introducing convergence criteria that are now under study.
Also, with regard to LS methods, we are currently improving its running time
by adding an updating tolerance when the value of τ3 is close enough to zero.
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Abstract. This paper presents a novel analysis and application of the
eigensystem of the edge-based Laplacian of a graph. The advantage of
using the edge-based Laplacian over its vertex-based counterpart is that
it significantly expands the set of differential operators that can be imple-
mented in the graph domain. We commence by presenting a new mesh
characterization based on the adjacency matrix of the mesh that cap-
tures both the geometric and topological properties of the shape. We
use the edge-based eigenvalues to develop a novel method for defining
pose-invariant signatures for non-rigid three-dimensional shapes based
on the edge-based heat kernel. To illustrate the utility of our method, we
perform numerous experiments applying the method to correspondence
matching and classifying non-rigid three-dimensional shapes represented
in terms of meshes.

1 Introduction

The key idea in the analysis of three-dimensional deformable shapes is to de-
fine an informative and discriminative feature descriptor that characterizes each
point on the surface of the shape. Generally these techniques use a feature
vector in Rn [1,2], which contains both local and global information for that
point. These feature descriptors can be used in many ways for analyzing three-
dimensional shapes. For correspondence matching, the descriptors are used to
find potential correspondence among pairs of points on two different shapes [1,2].
For clustering the parts of a shape, the signatures can be used to identify se-
mantically coherent parts of an object[3,4]. Local descriptors can be combined in
different ways to define a global shape signature and this can be used for shape
classification or recognition[5,6].

Recently, there is an increasing interest in descriptors obtained from the spec-
tral decomposition of the Laplace-Beltrami operator associated with a shape.
For example, Rustamov[3] has defined the Global Point Signature (GPS) that
uses the spectrum of the discrete Laplace-Beltrami operator to represent three-
dimensional non-rigid shapes. Sun et al[2] have used a heat diffusion process
to define signatures and this is referred to as the Heat Kernel Signature (HKS).
Castellani et al[5] have used HKS to define Global Heat Kernel Signature (GHKS)
and have used this for brain classification. Aubry et al[1] have proposed the Wave
Kernel Signature (WKS) which represents the average probability of measuring
a quantum mechanical particle at a specific location. All of these techniques use

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 382–390, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the spectrum of the discrete Laplacian, Δ, an operator which is defined only on
the vertices of a graph.

The discrete Laplacian defined over the vertices of a graph has found applica-
tions in many areas including computer vision and complex networks[7]. However
one of the limitation of discrete Laplacian is that it cannot link most results in
analysis to a graph theoretic analogue. For example the wave equation utt = Δu,
defined with the discrete Laplacian, does not have finite speed of propagation. In
[8,9], Friedman and Tillich develop a calculus on graphs which provides a strong
connection between graph theory and analysis. Their work is based on the fact
that graph theory involves two different volume measures. i.e., a “vertex-based”
measure and an “edge-based” measure. This approach has many advantages.
Moreover it allows the direct application of many results from analysis to the
graph domain.

Recently we have presented a new approach to characterizing points on a non-
rigid three-dimensional shape[10]. This is based on the eigenvalues and eigenfunc-
tions of the edge-based Laplacian, constructed over a mesh that approximates
the shape. This leads to a new shape descriptor signature, called the Edge-based
Heat Kernel Signature (EHKS). The EHKS was defined using the heat equation,
which is based on the edge-based Laplacian. As first step we explored the ap-
plication of the EHKS to shape segmentation. In this paper we take this study
one step further. We use the EHKS for correspondence matching and show its
robustness under noise. We also define a global signature (the GEHKS), which is
based on the EHKS for shape classification. We perform numerous experiments
and demonstrate the performance of the proposed methods on non-rigid three
dimensional shapes and compare it to WKS.

2 Edge-Based Eigensystem

In this section we briefly review the eigenvalues and eigenfunction of the edge-
based Laplacian[9]. Let G = (V , E) be a graph with a boundary ∂G. Let G be
the geometric realization of G. The geometric realization is the metric space
consisting of vertices V with a closed interval of length le associated with each
edge e ∈ E . We associate an edge variable xe with each edge that represents the
standard coordinate on the edge with xe(u) = 0 and xe(v) = 1. For our work, it
will suffice to assume that the graph is finite with empty boundary (i.e., ∂G = 0)
and le = 1.

The eigenpairs of the edge-based Laplacian can be expressed in terms of the
eigenpairs of the normalized adjacency matrix of the graph. Let A be the adja-
cency matrix of the graph G, and Ã be the row normalized adjacency matrix.
i.e., the (i, j)th entry of Ã is given as Ã(i, j) = A(i, j)/

∑
(k,j)∈E A(k, j). Let

(φ(v), λ) be an eigenvector-eigenvalue pair for this matrix. Note φ(.) is defined
on vertices and may be extended along each edge to an edge-based eigenfunction.
Let ω2 and φ(e, xe) denote the edge-based eigenvalue and eigenfunction. Here
e = (u, v) represents an edge and xe is the standard coordinate on the edge (i.e.,
xe = 0 at v and xe = 1 at u). Then the eigenpairs of the edge-based Laplacian
are given as follows:
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1. For each (φ(v), λ) with λ �= ±1, we have a pair of eigenvalues ω2 with
ω = cos−1 λ and ω = 2π − cos−1 λ. Since there are multiple solutions to
ω = cos−1 λ, we obtain an infinite sequence of eigenfunctions; if ω0 ∈ [0, π] is
the principal solution, the eigenvalues are ω = ω0 + 2πn and ω = 2π − ω0 +
2πn, n ≥ 0. The eigenfunctions are φ(e, xe) = C(e) cos(B(e) + ωxe) where

C(e)2 =
φ(v)2 + φ(u)2 − 2φ(v)φ(u) cos(ω)

sin2(ω)

tan(B(e)) =
φ(v) cos(ω)− φ(u)

φ(v) sin(ω)

There are two solutions here, {C,B0} or {−C,B0 + π} but both give the
same eigenfunction. The sign of C(e) must be chosen correctly to match the
phase.

2. λ = 1 is always an eigenvalue of Ã. We obtain a principle frequency ω = 0,
and therefore since φ(e, xe) = C cos(B) and so φ(v) = φ(u) = C cos(B),
which is constant on the vertices.

3. If the graph is bipartite, then ω = −1 is an eigenvalue of Ã. We obtain a
principle frequency ω = π, and then since φ(e, xe) = C cos(B + πxe), so
φ(v) = C cos(B) = φ(u) implying an alternating sign eigenfunction.

4. The sets {π + 2nπ : n ≥ 0} and {2π + 2nπ : n ≥ 0} occur with multiplic-
ity |E| − |V |. Note that although the eigenfunctions corresponding to these
eigenvalues are zero on vertices, they are not zero on edge interiors.

This comprises all the principal eigenpairs which are supported on the vertices.
Note that although these eigenfunctions are orthogonal, they are not normal-

ized. To normalize these eigenfunctions we need to find the normalization factor
corresponding to each eigenvalue. Let ρ(ω) denotes the normalization factor cor-
responding to eigenvalue ω. Then

ρ2(ω) =
∑
e∈E

∫ 1

0

φ2 (e, xe) dxe

Evaluating the integral, we get

ρ(ω) =

√∑
e∈E

C(e)2
[
1

2
+

sin (2ω + 2B(e))

4ω
− sin(2B(e))

4ω

]

Once we have the normalization factor to hand, we can compute a complete set
of orthonormal bases by dividing each eigenfunction with the corresponding nor-
malization factor. Therefore the orthonormalized eigenfunctions corresponding

to eigenvalues ω2 are φ(e, xe) = C(e)
ρ(ω) cos(B(e) + ωxe). Once normalized, these

eigenfunctions form a complete set of orthonormal bases for L2(G, E).
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3 Shape Descriptors

Once the edge-based eigenpairs are known, we can use them to link most of
the results in analysis to the graph domain. Our goal is to use the solution of
partial differential equations based on the edge-based Laplacian over a mesh for
characterizing points on non-rigid 3D shapes. The signatures we propose here
are based on the heat diffusion process governed by the equation

∂Ht

∂t
= −ΔEHt (1)

where ΔE is the edge-based Laplacian and Ht is the heat kernel. The solution
to above equation is called the heat kernel. The heat kernel has the following
eigen-decomposition:

Ht(x, y) =

∞∑
i=0

e−ω2tφ(x)φ(y) (2)

where (φ, ω2) are the edge-based eigenpairs.

3.1 Local Descriptor

Given a point x on the surface of a three-dimensional shape, its Edge-based Heat
Kernel Signature (EHKS) is given as[10]:

EHKS(x) = [Ht0(x, x), Ht1 (x, x), ..., Htk (x, x)] (3)

In [10], we have experimentally shown the applications of EHKS for shape seg-
mentation. In this paper we show the applications of EHKS for correspondence
matching.

3.2 Global Descriptor

To extend our method to the problem of shape classification we define a global
signature (GEHKS) for the whole shape which is based on the EHKS. Our
approach of defining a global signature for the shape is closely related to the
approach of [5]. Given a shape S, we define its global edge-based heat kernel
signature as

GEHKS(S) = hist (EHKS(x1), EHKS(x2), ..., EHKS(xn)) (4)

where hist(.) is the histogram operator. Since the GEHKS is defined on small
and large values of t, it encodes both local and global information about the
shape.
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3.3 Discrete Settings

A three dimensional shape can be conveniently represented by a mesh which ap-
proximates the shape. Therefore to find the corresponding edge-based Laplacian
we need to find the adjacency matrix of the mesh. The simplest way of defining
the adjacency matrix of the mesh using the un-weighted (0-1) or the weighted
(distance or proximity) matrix is sensitive to the regularity of the particular
triangulation and give little information about the shape itself. In [10] we have
proposed a new method for for constructing the adjacency matrix of the mesh
that uses the angle information between the edges and the area around each
vertex (see Figure 1).

Fig. 1. Angles and the area appearing in the adjacency matrix

Let M is a matrix whose (i, j)th entry is defined as

M(i, j) =

{
cotαij+cotβij

2 if (i, j) ∈ E

0 otherwise
(5)

where αij and βij are the angles opposite to the edge (i, j), as shown in Figure 1.
Let S be a diagonal matrix whose ith diagonal entry is the area associated with
the triangles abetting the vertex i. We define the symmetric adjacency matrix
as A = S1/2MS1/2. The (i, j)th entry of the adjacency matrix, in terms of the
elements of the matrices M and S, is given as follows[10]:

A(i, j) =

{√
S(i, i)S(j, j)M(i, j) if (i, j) ∈ E

0 otherwise
(6)

The matrix defined above not only captures more information about the ge-
ometric and topological properties of the shape itself but also minimizes the
dependence of the adjacency matrix on the mesh.

4 Experiments

In this section we will present both the qualitative and the quantitative analysis
of the proposed edge-based heat kernel signature. We perform our experiments
on the SHREC 2010 dataset, which contains 10 different shapes each with 20
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different non-rigid deformations. Figure 2 shows some of these shapes. To find the
edge-based eigenpairs, we first construct the adjacency matrix, as described in
the previous section. We compute the area associated with each vertex using the
method proposed in [11]. We then find the eigenpairs of the normalized adjacency
matrix. To find signatures for shape we compute first 300 smallest eigenvalues
and corresponding eigenvectors using the eigs routine in Matlab which is used to
solve the sparse eigenvalue problem. We compute the scaled EHKS by uniformly
sampling 100 points for different values of t over the time interval [tmin, tmax]
where tmin = 4 ln 10/λ300 and tmax = 4 ln 10/λ2[2]. In Figure 3(a) we have

Fig. 2. The SHREC 2010 database of shapes

represented the values of EHKS with different colors on 6 different shapes of a
human body, which shows the stability of the EHKS under different deformations
of shapes. To prove the stability of our method, we illustrate the method on the
problem of segmenting and classifying parts of a human body using EHKS. We
select points on hands, feet, and head of 15 different poses a human body and
compute their EHKS. To visualize the results, We apply PCA on these signatures
and embed them in a three dimensional space. Figure 3(b) shows that EHKS can
not only distinguish between different classes of features, it can also distinguish
classes of features of different shapes.

(a) EHKS for six
shapes

(b) Feature Points segmenta-
tion

Fig. 3. Performance of EHKS

In our next experiment, we show the stability of EHKS under controlled noise.
For this purpose we take three-dimensional shapes of a human body and a bear
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and their deformed shapes. We add gaussian noise to the deformed shapes with
mean μ = 0, and standard deviation σ = 0.3. We select three different points
on each of the given shape and compute their EHKS. Next we compute EHKS
for each point on the deformed shapes corrupted by gaussian noise. We com-
pute the Euclidean distance of the feature descriptor of the selected points with
feature descriptor of each point on the deformed shape. In Figure4, the lines
between shapes show the first 50 best matches of each of the three points on the
given shapes with the points on deformed shapes. Results show that the proposed
method is robust under controlled gaussian noise. To demonstrate the usefulness

Fig. 4. Robustness under noise

of the proposed adjacency matrix, we compare the performance of the EHKS
using different adjacency matrices. We select two different three-dimensional
shapes of a human body. Next we randomly select a points on three different
parts of the the shape and, for each point, find the first 50 best matches on the
deformed shape. Figure 5 shows the results EHKS when computed from the pro-

posed matrix(left), the matrix A =
(

P+PT

2

)
where P = S−1M(middle), and the

symmetric matrix M that uses the angle information only(right). Results shows
that EHKS constructed using the proposed adjacency matrix is more stable. To

Fig. 5. Comparison of EHKS on different adjacency matrices

evaluate the performance of the proposed feature descriptor for correspondence
matching, we select three-dimensional shapes of a human body, ant and glasses.
We also select a deformed shape corresponding to each of these shape. For each
three-dimensional shape we select a random point on five different parts of the
shape and compute EHKS for each of these points. Next We compute the Eu-
clidean distance of the feature descriptor of selected points on each shape with
the feature descriptors of each point on the corresponding deformed shape. Fig-
ure 6(a) shows the first 50 best matches of each of the point on the shape with the
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points on deformed shapes. We perform a similar experiment for WKS(Figure
6(b)). Results show that EHKS is more robust and stable as compared to WKS.
To compare the performance of EHKS with WKS, we select a three dimensional

(a) EHKS on three different shapes

(b) WKS on three different shapes

Fig. 6. Comparing EHKS and WKS

shape of a human body and its deformed shape. we randomly select a point on
10 different parts of the shape and find the best match for each point on the
deformed shape using both the EHKS and WKS. We repeat this experiment
for five times. The number of successful matches for both methods are given in
table 1.

Table 1. Number of best matches

1 2 3 4 5

EHKS 8 8 8 9 8

WKS 6 8 7 7 8

In our final experiment, we show the applications of GEHKS for shape clas-
sification. For this purpose, we select three-dimensional shapes of ant, plier and
octopus from SHREC 2010 dataset with all of their deformations and compute
GEHKS for each of these shapes. To visualize the results, We apply PCA on these
GEHKS and embed them in a three dimensional space. Figure 7 shows that the
proposed method can be useful for clustering different shapes. To compare the
accuracy of the proposed method we perform a similar experiment with WKS
and compute the rand indices for both methods. The accuracy of the proposed
method was 0.8514 while the that of WKS was 0.7893. These results show that
the EHKS is more informative than the WKS, and gives higher performance for
correspondence matching and shape classification.
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Fig. 7. Clustering of different shapes

5 Conclusion and Future Work

We have presented a method for analyzing three-dimensional non-rigid shapes
which is based on heat equation defined over the edge-based Laplacian. Experi-
mental results show that our method can be used for clustering, correspondence
matching and classifying 3D shapes. In future, we would like to use the solutions
of other partial differential equations over graph defined using the edge-based
Laplacian, which have close relation to equation in analysis.

Acknowledgements. Edwin Hancock was supported by a Royal Society Wolf-
son Research Merit Award.
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Abstract. In the dissimilarity representation paradigm, several prototype selec-
tion methods have been used to cope with the topic of how to select a small
representation set for generating a low-dimensional dissimilarity space. In addi-
tion, these methods have also been used to reduce the size of the dissimilarity
matrix. However, these approaches assume a relatively balanced class distribu-
tion, which is grossly violated in many real-life problems. Often, the ratios of
prior probabilities between classes are extremely skewed. In this paper, we study
the use of renowned prototype selection methods adapted to the case of learning
from an imbalanced dissimilarity matrix. More specifically, we propose the use of
these methods to under-sample the majority class in the dissimilarity space. The
experimental results demonstrate that the one-sided selection strategy performs
better than the classical prototype selection methods applied over all classes.

1 Introduction

In the traditional approach to Statistical Pattern Recognition, each object is represented
in terms of n observable features or attributes, which can be regarded as a vector in an n-
dimensional feature space. An alternative is the dissimilarity space proposed by Duin
and Pekalska [1, 2]. To build the dissimilarity space, a representation set of r objects
(or prototypes), R = {p1, . . . , pr}, is needed. The dissimilarity representation allows
to symbolize individual feature-patterns by pairwise dissimilarities computed between
examples from the training set T and objects from the representation set R. Thus the
dissimilarity vectors can be interpreted as numerical features and describe the relation
between each object with the rest of objects [3].

Given a training set of m objects in the feature space, T = {x1, . . . , xm}, the classi-
fier is built using a dissimilarity matrix D(T,R) that describes the proximities between
the m training set objects and the r prototypes. The representation set can be chosen as
the complete training set T , a set of constructed prototypes, a subset of T that covers
all classes, or even an arbitrary set of labeled or unlabeled objects.

The dimensionality in the dissimilarity space is determined by the amount of pro-
totypes in the set R. When R = T , the dissimilarity matrix D(T, T ) might impose
high computational requirements on the classifier [4] and adversely affect the perfor-
mance [5]. To face this drawback, several works have proposed to reduce the dimension-
ality of the dissimilarity space by selecting a small representation set from the training
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data [6]. Obviously, a pruned representation set will lead to reduce the distance matrix
D(T, T ) to D(T,R). In this context, prototype selection constitutes one of the most ac-
tive research lines, which has primarily been addressed in two ways: (i) finding a small
representation set capable of generating a low-dimensional dissimilarity space [4, 6, 7],
and (ii) reducing the original dissimilarity matrix [8, 9].

Prototype selection methods have demonstrated to perform well in dissimilarity space
classification when the classes are balanced. However, in many real-life problems the
ratios of prior probabilities between classes can be extremely skewed. This situation is
known as the class imbalance problem [10,11]. A data set is said to be imbalanced when
the examples from one class (the majority class) heavily outnumber the examples from
the other (minority) class. This topic is particularly important in practical applications
where it is costly to misclassify examples from the minority (or positive) class, such as
medical diagnosis and monitoring, fraud/intrusion detection, credit risk and bankruptcy
prediction, information retrieval and filtering tasks.

In this work, we explore the use of well-known prototype selection procedures (orig-
inally designed to be applied in the feature space) on the dissimilarity matrix D(T, T )
when this is imbalanced. Here, we propose to exploit these methods in a biased fashion,
where only the majority class is pruned. In fact, this can be viewed as an under-sampling
strategy, which is one of the common solutions to the class imbalance problem in fea-
ture spaces [12]. The experimental results show that this one-sided strategy performs
significantly better than the standard application of prototype selection on both classes.

2 Prototype Selection Methods

Several prototype selection algorithms have been adapted and/or developed in order
to select a small representation set R or to reduce the dissimilarity matrix D(T,R).
For example, Lozano et al. [13] employed prototype optimization methods often ap-
plied in vector spaces, such as editing and condensing, for constructing more general
dissimilarity-based classifiers. Kim and Oommen [8] used the well-known condensed
nearest neighbor rule [14] to reduce the original training set before computing the
dissimilarity-based classifiers on the entire data. Other new methods have been evolved
to be applied in the dissimilarity space, such as Kcentres, Edicon, ModeSeek, Featsel
and a genetic algorithm [6, 9].

However, all these proposals do not consider the skewness in the class distribution. In
this work, we concentrate on using four prototype selection methods, commonly applied
to feature-based classification models, for the reduction of the Euclidean distance repre-
sentation D(T, T ) (here called the original dissimilarity matrix) in domains with class
imbalance. Two different families of prototype selection methods exist in the literature:
editing and condensing. Editing removes erroneously labeled and atypical examples
from the original set and “cleans” possible overlapping between classes, which usually
leads to significant improvements in performance. Condensing, on the other hand, aims
at selecting a sufficiently small subset of examples that yields approximately the same
performance as using the whole training set.

The simplest procedure to pick up a small subset corresponds to random selection
(RS). However, this may throw out potentially useful data. Paradoxically, it has em-
pirically been shown to be an effective prototype selection method. Unlike the random
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approach, many other proposals are based upon a more intelligent selection strategy.
For example, Wilson [15] introduced a popular editing algorithm (WE) that tries to re-
move noisy instances and/or border points. This algorithm discards training examples
whose label does not agree with that of their majority k neighbors. Another early proto-
type selection method is the condensed nearest neighbor (CNN) proposed by Hart [14],
which is focused on selecting a consistent subset from the training set but keeping or
even improving the classification accuracy. Nevertheless, as this approach could retain
noisy objects, the joint use of editing and condensing algorithms (e.g., WE+CNN) is
commonly employed to select an appropriate reduced subset.

3 Performance Evaluation in Imbalanced Domains

Traditionally, standard performance metrics have been classification accuracy and/or
error rates. For a two-class problem, these can be easily derived from a 2× 2 confusion
matrix as that given in Table 1.

Table 1. Confusion matrix for a two-class problem

Predicted as positive Predicted as negative

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

However, as pointed out by many authors [16,17], the performance of a classification
process over imbalanced data sets should not be expressed in terms of the plain accuracy
and/or error rates because these measures are strongly biased towards the majority class.
This has motivated to search for new performance evaluation metrics based upon simple
indices, such as the true positive rate (TPr) and the true negative rate (TNr). The TPr
(or TNr) is the percentage of positive (or negative) examples correctly classified.

One of the most widely-used evaluation methods in the context of imbalanced class
distributions is the ROC curve. Here, we will utilize the area under the ROC curve
(AUC), which is a quantitative representation of a ROC curve. For a binary problem,
the AUC criterion defined by a single point on the ROC curve is also referred to as
balanced accuracy [18]:

AUCb =
TPr + TNr

2
(1)

where TPr = TP
TP+FN measures the percentage of positive examples that have been

classified correctly, whereas TNr = TN
TN+FP corresponds to the percentage of negative

cases predicted as negative.

4 Experimental Setup

Eight real data sets were employed in the experiments. In order to force the class im-
balance, all data sets were transformed into two-class problems by keeping one original
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Table 2. Data sets used in the experiments

Data Set #Positive #Negative #Classes Majority Class Source

Breast 81 196 2 1 UCI1

Ecoli 35 301 8 1,2,3,5,6,7,8 UCI
German 300 700 2 1 UCI
Haberman 81 225 2 1 UCI
Laryngeal2 53 639 2 1 Library2

Pima 268 500 2 1 UCI
Vehicle 212 634 4 2,3,4 UCI
Yeast 429 1055 10 1,3,4,5,6,7,8,9,10 UCI
1UCI Machine Learning Database Repository http://archive.ics.uci.edu/ml/
2Library http://www.vision.uji.es/˜sanchez/Databases/

class (the minority one) and joining the objects of the remaining classes. The fifth col-
umn in Table 2 indicates the original classes that were joined to shape the majority
class.

A stratified five-fold cross-validation method was adopted for the present experi-
ments. For each fold, four parts were pooled as the training data T , and the remaining
block was employed as an independent test set S. Ten repetitions were run for each trail.
The results from classifying the test samples were averaged across the 50 runs. For each
database, the whole training set (R = T ) was used to compute the original dissimilarity
matrix D(T, T ), with the Euclidean distance as a dissimilarity measure. This procedure
was also applied to the test set, D(S, T ), to be represented in the dissimilarity space.

The four prototype selection methods described in Sect. 2 were utilized for the ex-
periments: random selection (RS), condensed nearest neighbor (CNN), Wilson’s editing
(WE), and the combination of this with Hart’s condensing (WE+CNN). All these meth-
ods were implemented following two different strategies: (i) hard selection over both
existing classes, and (ii) one-sided selection only over the majority (negative) class. In
this latter case, like occurs in typical under-sampling processes, we did not remove mi-
nority (positive) examples because they are too limited and important to be discarded.
The Fisher and the nearest neighbor (1-NN) learning algorithms were used to each
original dissimilarity matrix and also to matrices that were previously pruned by the
different prototype selection methods.

Note that the RS procedure allows to control the number of prototypes to be chosen.
Here, we extracted 50% out of each class for the hard selection strategy, and a number of
negative examples equal to the size of the positive class |P | for the one-sided selection
strategy.

5 Results

In order to analyze the effect of the class imbalance on the performance of the predic-
tion models, we generated different dissimilarity matrices, each one with an amount
of positive examples, by randomly increasing the minority class size until reaching its

http://archive.ics.uci.edu/ml/
http://www.vision.uji.es/~sanchez/Databases/
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original size. The number of objects in the majority class keeps constant for all dis-
similarity matrices. Figure 1 shows the TPr and TNr for two illustrative examples of
these data sets when using the Fisher classifier, where the x-axis represents the number
of positive samples in the dissimilarity matrix. Note that both TPr and TNr have been
plotted in a different scale in order to make these graphics clearer.

As expected, when the dissimilarity matrices are strongly imbalanced, the Fisher
performance on the minority class is significantly worse than that on the majority class:
the TNr is close to 0.90, but the TPr is below 0.40. As the size of the minority class
increases, the TPr improves and the TNr lessens. It is worth noting, however, that
the poor results of TPr remain even when all the positive examples are put into the
dissimilarity matrix. In such an imbalance scenario, this effect demonstrates the need
of using some strategy to generate more appropriate (balanced) dissimilarity matrices.
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Fig. 1. Effect of the class imbalance on Fisher classifier performance for the Breast (left) and
Haberman (right) databases

Tables 3 and 4 report the average AUCb with the 1-NN and the Fisher classifiers
respectively, when using the original dissimilarity matrix D(T, T ) and after pruning
this by means of the prototype selection methods. The column “One-S” contains the
results from applying the prototype selection procedures only over the majority class,
whereas the column “Hard” refers to the results obtained when pruning both classes.
For each data set, the best case has been highlighted in bold type. Average rankings of
the Friedman statistic (distributed according to chi-square with 8 degrees of freedom)
have also been included.

From the results in Tables 3 and 4, one can observe that both classifiers are affected
by the class imbalance problem when they are trained with the original dissimilarity
matrix, yielding relatively low AUCb values. On the other hand, when employing the
prototype selection methods over both classes (hard selection), the behavior varies from
one data set to another: the AUCb values are even worse than those achieved with the
original dissimilarity matrix for some databases and better for others.

The results obtained with the application of prototype selection over the majority
class (one-sided selection) show that all these techniques perform better, in terms of
AUCb, than the original dissimilarity matrix. It is also interesting to remark that this bi-
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Table 3. Average AUCb results obtained with the 1-NN classifier

Original RS CNN WE WE+CNN
matrix One-S Hard One-S Hard One-S Hard One-S Hard

Breast 0.575 0.574 0.562 0.620 0.598 0.646 0.587 0.626 0.610
Ecoli 0.791 0.866 0.774 0.706 0.668 0.838 0.776 0.815 0.676
German 0.535 0.551 0.539 0.699 0.693 0.681 0.587 0.692 0.623
Haberman 0.575 0.575 0.578 0.575 0.565 0.600 0.585 0.602 0.589
Laryngeal2 0.775 0.846 0.746 0.830 0.793 0.887 0.741 0.849 0.738
Pima 0.624 0.632 0.625 0.687 0.674 0.707 0.686 0.694 0.690
Vehicle 0.579 0.606 0.580 0.699 0.673 0.679 0.572 0.728 0.588
Yeast 0.660 0.668 0.641 0.692 0.676 0.719 0.662 0.710 0.653

Average rankings 7.125 5.375 7.375 3.875 5.500 1.875 6.125 2.000 5.750

Table 4. Average AUCb results obtained with the Fisher classifier

Original RS CNN WE WE+CNN
matrix One-S Hard One-S Hard One-S Hard One-S Hard

Breast 0.629 0.625 0.609 0.567 0.560 0.596 0.530 0.583 0.552
Ecoli 0.736 0.857 0.738 0.794 0.773 0.860 0.760 0.861 0.737
German 0.678 0.693 0.658 0.535 0.530 0.570 0.553 0.566 0.552
Haberman 0.575 0.604 0.580 0.586 0.575 0.586 0.601 0.592 0.600
Laryngeal2 0.872 0.883 0.833 0.792 0.766 0.815 0.694 0.834 0.704
Pima 0.693 0.687 0.676 0.612 0.604 0.657 0.673 0.649 0.671
Vehicle 0.660 0.742 0.647 0.584 0.580 0.606 0.573 0.611 0.574
Yeast 0.690 0.710 0.672 0.659 0.643 0.688 0.663 0.680 0.654

Average rankings 3.437 1.500 4.375 6.312 7.687 4.312 6.375 4.125 6.875

ased selection is significantly better than the classical approaches to prototype selection
over both classes.

As a further confirmation of the findings with the AUCb values, we have run a
Wilcoxon signed-ranks test [19] between each pair of techniques. The upper diago-
nal half of Tables 5 and 6 summarizes this statistic for a significance level of 0.10 (10%
or less chance), whereas the lower diagonal half corresponds to a significance level of
0.05. The symbol “•” indicates that the method in the row significantly improves the
method of the column, and the symbol “◦” means that the method in the column per-
forms significantly better than the method of the row. The two bottom rows show how
many times the algorithm of the column has been significantly better than the rest of
procedures for α = 0.10 and α = 0.05.

It is worth pointing out that, as can be observed in Tables 5 and 6, the one-sided se-
lection has been significantly better than the hard selection strategy for all the prototype
selection algorithms (for α = 0.10 and α = 0.05), both with the 1-NN classifier and
the Fisher classifier. This allows to assert that such a biased selection of prototypes for
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Table 5. Summary of the Wilcoxon statistic for the prototype selection methods with the 1-NN
classifier

(1) (2) (3) (4) (5) (6) (7) (8)

(1) One-sided RS - • ◦ ◦
(2) Hard RS ◦ - ◦ ◦
(3) One-sided CNN - • ◦ ◦ •
(4) Hard CNN ◦ - ◦ ◦
(5) One-sided WE • • • • - • •
(6) Hard WE ◦ - ◦
(7) One-sided WE+CNN • • • • - •
(8) Hard WE+CNN ◦ ◦ -

α = 0.10 1 0 2 0 6 0 6 0

α = 0.05 1 0 1 0 6 0 5 0

Table 6. Summary of the Wilcoxon statistic for the prototype selection methods with the Fisher
classifier

(1) (2) (3) (4) (5) (6) (7) (8)

(1) One-sided RS - • • • • • • •
(2) Hard RS ◦ - • •
(3) One-sided CNN ◦ - • ◦ ◦
(4) Hard CNN ◦ ◦ ◦ - ◦ ◦
(5) One-sided WE ◦ • • - • •
(6) Hard WE ◦ ◦ - ◦
(7) One-sided WE+CNN ◦ • • - •
(8) Hard WE+CNN ◦ ◦ -

α = 0.10 7 2 1 0 4 0 4 0

α = 0.05 7 1 1 0 4 0 2 0

the construction of a more balanced dissimilarity matrix (with all the positive examples
and only a subset of negative examples) can be deemed as an appropriate solution to
the class imbalance problem in dissimilarity spaces.

In the case of the 1-NN classifier, it seems that the best prototype selection method
corresponds to Wilson’s editing, whose one-sided version has performed significantly
better than other six algorithms at both significance levels. The WE+CNN procedure
presents a very similar behavior, being significantly better than other five algorithms at a
significance level of 0.05. Clearly, the random selection and Hart’s condensing methods
have achieved the worst results when statistically compared in terms of AUCb.

Paradoxically, for the Fisher classifier, Table 6 shows that the one-sided random se-
lection constitutes the best procedure, with a performance significantly better than any
other algorithm. Not too far from the best alternative, one can see that the Wilson’s
editing with one-sided selection has been significantly better than other four strategies.
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6 Conclusions

Prototype selection methods have been widely used in the dissimilarity-based approach
for the selection of a small representation set (from the whole training set) and/or the
reduction of the original dissimilarity matrix. When the data set and/or the dissimilarity
matrix are imbalanced, however, the selection process could produce reduced data sets
and/or dissimilarity matrics that do not accurately represent the true class distribution,
what may lead to an increase in the class skewness.

In this paper, we have carried out some experiments using four renowned prototype
selection algorithms for under-sampling the original dissimilarity matrix in domains
with class imbalance. The empirical results suggest that the application of these tech-
niques to both classes produces poor performance on the minority class. On the con-
trary, the strategy based upon the biased selection on the majority class significantly
increases the prediction rate on the positive class and the value of average AUCb, being
statistically demonstrated by means of a Wilcoxon signed-ranks test.
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Abstract. In this paper we develop a practical method for estimating
shape, color and reflectance using only three images taken under po-
larised light. We develop a novel and practical framework to optimise
the estimates and eliminate the redundant information, then investigate
three different methods to compare their class discriminating capaci-
ties. We present experiment to demonstrate the validity of the proposed
method for a database of fruit objects from 5 different classes, and we
show that the proposed method is capable of accurately extracting the
features of the input examples. The framework can further be applied
in a variety fields of computer vision and pattern recognition domains
including object recognition and classification.

1 Introduction

Accurately estimating and reproducing surface appearance is a task of pivotal
importance in computer vision and graphics. Applications include object recog-
nition and classification, and image rendering. The appearance of surfaces is
determined by shape, color and reflectance [1]. These intrinsic surface properties
are independent of each other and affect the observed image intensity in a com-
plicated way. Therefore a robust way of simultaneously estimating these surface
properties is required for successful object recognition.

There have been a number of attempts in the literature aimed at accurately
measuring surface characteristics. However existing methods are limited by their
requirement of high cost measurement systems, and a large number of input
images. BRDF was firstly introduced in [2]. The direct measurement of the
reflectance function requires a gonioreflectometer [3], which is both expensive
and cumbersome to use. Other available methods use complicated devices such
as light stages and geometric domes to build reflectance functions from image
intensity variations under different light source directions [4]. Recently Ma et
al.[5] presented a method to estimate surface normal maps of an object using
four spherical gradient illumination patterns from either diffuse or specular re-
flectance components. The technique relies on structured light, and hence adds
scanning time and system complexity to the overloads.

� Edwin Hancock was supported by a Royal Society Wolfson Research Merit Award.
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Polarisation has proven to be an effective method in the analysis of light reflec-
tion in computer vision. Its applications are in reflectance component separation
[6] and surface normal estimation. There have been a number of attempts in the
literature aimed at surface orientation estimation of objects using polarisation,
where the incident light is unpolarised. The specular and diffuse reflections from
the objects become partially polarised, and their values analysed by placing a
linear polariser in front of the camera and rotating its orientation. Such effects
can be exploited for shape recovery using the Fresnel theory, which was used by
Wolff and Boult to describe the direct reflection of electromagnetic waves with
the given polarisation state of the incident light [7]. This leads to a means of sur-
face normal estimation since the zenith angle of the reflected or re-emitted light
is constrained by the degree of polarisation, and the azimuth angle is constrained
by the phase angle.

In this paper we introduce a novel statistical framework for simultaneously
obtaining shape, texture and reflectance properties from a single view using the
theory of polarisation. We commence by acquiring the polarised images under
retro-reflection settings, and separate the reflectance components by applying
the method of blind source separation (BSS) following the work of Zhang et
al.[8]. Then we optimise the estimates and eliminate redundant information.
The estimates are converted into long vectors which is used for statistical feature
extraction.

We also apply three statistical methods to the data for feature extraction.
These are the tradiation method of principal component analysis (PCA), and
the improved approaches which includes weight map, that are weighted PCA
(WPCA) and supervised weighted PCA (SWPCA). The weight map indicates
the importance of different locations in discriminating objects, thus the accuracy
of results produced by feature extraction methods can be improved. The meth-
ods are developed based on the works of Wu et al. [9]. In summary, the novel
contributions of this paper are:

1. We provide a novel framework which estimates shape, color and reflectance
information using polarisation measurements, that only requires three input
images for each object and low-cost devices.

2. We develop optimization methods which eliminate redundant information
from the reflectance estimates, so that the feature extraction approaches can
produce results accurately and efficiently.

3. We use three statistical methods for feature extraction, which are PCA,
WPCA and SWPCA. All the approaches are also optimised to be applied in
multi-class recognition.

2 Modeling Surface Characteristics

In this section we present the methods used for estimating reflectance, shape
and color properties from polarised images. When light arrives at a surface, part
of it undergoes isotropic subsurface scattering before being re-emitted which is
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denoted as diffuse reflection. The remainder is reflected in a specular manner.
According to the dichromatic model [10], for every pixel in the images its inten-
sity I is decided by two reflectance components which are diffuse Id and specular
Is by I = Id + Is. The process of detailed reflectance estimation can be simpli-
fied if the specular and diffuse components are separated beforehand. Using the
blind source separation (BSS) method introduced in [8], we obtain the separated
reflectance components from the polarised images.

Reflectance and Shape Estimation: We apply two reflectance models to
reflectance measurements. They are Lambertian model used for diffuse compo-
nent, and Torrance-Sparrow (T-S)[11] for specular component estimation. The
two models are simplified under retro-reflection and isotropy. Let the specular
and diffuse reflectance models be Rs(θs, Es) and Rd(θd, Ed) respectively, and let
Es and Ed be their parameter value sets. The estimated surface normal zenith
angles for the two models are θs and θd. Associated with each model is a scaling
coefficient, denoted by scaler ks and kd. We numerically invert the reflectance
function to recover the surface zenith angle using

θs = R−1
s (Is/ks, Es) = R−1

s (I ′s, Es) , (1)

θd = R−1
d (Id/kd, Ed) = R−1

d (I ′d, Ed) . (2)

We compute ks and kd so that the two components I ′s = Is/ks and I ′d = Id/kd
are normalized. Since they correspond to the same image location, θs and θd
should be identical. As Is and Id are known, the parameter values can be found
when the distributions of θs and θd are closest to each other. Because of its rapid
(quadratic) convergence we use Newton’s method to estimate the parameters Es

and Ed, using a mutual information criterion (M) for the distributions of θd and
θs. Details of mutual information computation can be found in [12]. The Newton
method for updating the parameter sets is W (t+1) = W (t) − γQ[R(t)]−1∇R(t),

where W (m) = [E
(m)
s , E

(m)
d ]T , Q[R(t)] is the Hessian of the error-function and

∇R its gradient. Here we use E
(0)
s = 0.5 and E

(0)
d = 0.5 as it is valid for the

parameter coefficient values of the chosen reflectance models.
The two zenith angle estimates θs and θd are ideally identical as they represent

the same object. However, they differ from each other due to shadows and texture
in the input images and the limited capacities of the chosen reflectance models.
Here for simplification we follow the constraint that the actual surface normal θ
is the mean value of the two estimates, which is θ = (θs + θd)/2.

Color Estimation: From the dichromatic reflection model [10], each color vec-
tor (IR, IG, IB)

T is determined by a linear combination of specular reflection
(IRs, IGs, IBs)

T and diffuse reflection (IRd, IGd, IBd)
T , which is written as⎛⎝ IR

IG
IB

⎞⎠ = ks

⎛⎝ IRs

IGs

IBs

⎞⎠+ kd

⎛⎝ IRd

IGd

IBd

⎞⎠ . (3)

The weights ks and kd depend only on the geometry of the objects in the input
images, and we only focus on the color vector of diffuse reflection as it represent
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the hue properties of objects. We also assume that the estimated color vector is
normalised for simplification. Using the diffuse reflectance component estimate
Id we can obtain the corresponding values of three color channels as I ′Rd, I

′
Gd

and I ′Bd, thus we can have IRd, IGd and IBd using the equations I ′Rd = wdIRd,

I ′Gd = wdIGd, I
′
Bd = wdIBd and

√
I2Rd + I2Gd + I2Bd = 1.

3 Estimates Analysis

The surface properties of shape, color and reflectance are stored in the form of
matrices which correspond to every pixel of input images. In this section we show
how to eliminate the redundant information in the estimates and convert them
into long vectors.

Reflectance: For simplification we assume the illumination and viewing direc-
tion are identical, and the reflectance properties are independent of the sur-
face azimuth angle. The reflectance functions for each experimental objects
are created by using the method described in [13]. For every pixel in the im-
age, its intensity has the corresponding value of the surface radiance function
g(θ(x, y)) = I(x, y). By tabulating these two values against each other, we have
a dense but noisy sampling of the function g. Then we bin the values of g(θ(x, y))
into η bins whose width is τ . Let Γi = (x, y)|(i − 1)τ ≤ θ(x, y) < iτ be the set
of pixels (x, y) for which θ(x, y) falls into the ith bin. For each bin we find the
median value of g : h(i) = median

(x,y)∈Γi

I(x, y). Then the reflectance function is stored

as a long vector (h(1), ..., h(η)).

Color: The hue value in HSI color representation ranges from 0 to 360 degrees,
and each degree stands for a specific color which can be converted from RGB
triplet. The aim here is to compute hue values from every pixel in the image,
and create hue distribution vector which is the histogram of all hue values. We
convert RGB values to hue by using the equations described in [14], which are

⎡⎣YC1

C2

⎤⎦ =

⎡⎣1/3 1/3 1/3
1 −1/2 −1/2
0 −

√
3/2
√
3/2

⎤⎦⎡⎣ IRd

IGd

IBd

⎤⎦ , (4)

Hue =

{
arccos(C2/

√
C2

1 + C2
2 ) , C1 ≥ 0 ;

2π − arccos(C2/
√
C2

1 + C2
2 ) , C1 < 0 .

(5)

Shape: Wu et al. [9] developed a framework which uses methods based on prin-
cipal geodesic analysis (PGA) to extract surface shape features of facial needle-
map recovered by shape from shading (SFS), and implement gender classification
based on the estimates. PGA is a generalisation of PCA which can be applied
to feature extraction for 3D shape analysis. However, there are two drawbacks.
Firstly, as SFS is proved to be an ill-posed problem the method can not be
used for general objects. Secondly, there is a requirement that the input images



404 L. Zhang, E.R. Hancock, and J. Wu

should be fully-aligned and subjects have no boundaries. Here we present a novel
method to solve these problems.

Denote θ as the data matrix containing zenith angle information obtained in
the previous section. We recover a height map B using shapelets method [15]
without the need of azimuth angle estimates. The values of height are represented
in Cartesian coordinate, which can lead to a loss of information and poor per-
formance in feature extraction. To overcome this problem we embed the points
on a spherical manifold system, which represents the size of object and shape
variations in a convenient way. Suppose the center point of the object locates at
(x0, y0, z0), for any point in the surface whose location is (x, y, z) its spherical
coordinate triplet (r, ϑ, ϕ) is computed by the following equations

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 , (6)

ϑ = cos−1[
√
(x− x0)2 + (y − y0)2/r] , (7)

ϕ =

{
cos−1[(y − y0)/

√
(x− x0)2 + (y − y0)2] , x ≥ x0 ;

2π − cos−1[(y − y0)/
√
(x− x0)2 + (y − y0)2] , x < x0 .

(8)

where r is the radial distance between the surface point and the center point
of object, the zenith angle ϑ and the azimuth angle ϕ are the directions from
(x0, y0, z0) to (x, y, z). Suppose a 3×xy matrix B′ = (b′1, b

′
2, b

′
3) as the height map

presented in spherical coordinate, in which the three rows represent the values of
r, ϑ and ϕ respectively. We create a 2D radius distribution matrix T in which the
row is for azimuth angle ranges in [0, 2π] while as the column is for zenith angle
lies in the closed interval [0, π/2]. We bin the values of B′ into 30× 120 sqaure-
shaped windows of size 3 × 3. Let w(x, y) in B′ be the set of rows that follows
w(x, y) = {(x, y)|3(x − 1) ≤ h′

1 < 3x, 3(y − 1) ≤ h′
2 < 3y}, for each set we find

the median value of b′3(w(x, y)) and stored in T as T (x, y) = median
(x,y)∈w(i,j)

B′(x, y).

The values in T which the corresponding set is empty with B′ in their range are
set to be 0. The 2D matrix T is then converted to be long vectors for the feature
extraction.

4 Feature Extraction

From a set of sample data, Principal Component Analysis (PCA) aims to find a
linear subspace which maximises the variance of the projected data. It is widely
applied in the fields of dimensionality reduction and feature extraction. However,
the projections calculated by PCA usually are not those that best separate the
data into distinct classes. Wu et. al [9] proposed several weighting schemes to
improve the discriminating capacity of the leading PCA eigenvectors for gender
classification. Here we extend their idea to multiple class recognition.

Firstly we incorporate a pre-computed weight map into PCA, namely weighted
PCA (WPCA). The weight map is a representation of the discriminating capacity
for each location in the long vectors. The locations that better identify objects
are assigned higher weights than the rest part. Suppose there are m classes from
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the n input data X = [x1, x2, ..., xn], and the mean vectors for each class are
denoted [x̄1, x̄2, ..., x̄m]. The weight at location l is computed as

wl = 1− exp

{
−[

m∑
i=1

(x̄i,l − x̄l)]
2/m2

}
, (9)

where x̄ is the mean vector of all the data in X . By making use of the mean
vectors, the constructed weight map is less influenced by the difference in the
data of the same class. Next, the weight map W = [w1, w2, ..., wn]

T is multiplied
component-wise with each long vector in X , and we have the set of weighted
data X ′ = [W. ∗ x1,W. ∗ x2, ...,W. ∗ xn], where .∗ denotes componentwise matrix
multiplication. We apply Singular Vector Decomposition (SVD) to X ′ which
gives X ′ = CSV T , where C is the left eigenvector matrix represented as feature
components, S the diagonal matrix of singular values, and V the right eigenvector
matrix which consists of d dimensional feature vectors.

We also extend the above approach by learning the weight map in a supervised
way, which is termed supervised weighted PCA (SWPCA). Suppose we apply
PCA to a data set X = [x1, x2, ..., xn], and obtain the leading k eigenvectors
Φ = [e1, ..., ek] and the corresponding eigenvalues Λ = [λ1, ..., λk]. The PCA
feature vector for data x ∈ X is v = ΦTx, which can be expressed component-
wise as

vi =

d∑
l=1

ΦT
ilxl , (10)

where d is the dimension of data x, Φi denotes the ith eigenvector, and Φil

is its value at the location l. SWPCA extends the above component-wise fea-
ture extraction by incorporating a weight map as vSW

i =
∑d

l=1 Φ
T
ilwlxl, where

wl is the weight at the location l. Because the weight map has a large ab-
solute value in class-discriminating regions, SWPCA increases the influence of
class-discriminating regions over the extracted features and decreases that of
the non-discriminating regions. Suppose there are m classes in the data set
X = [x1, x2, ..., xn], which are denoted classi, i = 1, ...,m. The weight map
is initialized as the one used in WPCA, and is optimised by minimising an error
function,

ξ =

m∑
i=1

∑
j∈classi

D(vj , v̄i)
2

D(vj , ¯̃vi)2
, (11)

where vj is the WPCA feature vector (normalized by eigenvalues S) of data
xj ∈ X , v̄i is the mean feature vector for classi, and ¯̃vi is mean of the data
not belonging to classi. Function D calculates the Euclidean distance between
the feature vectors. Substituting Equation (10) into Equation (11), we have ξ to
update the weight map W using W (t+1) = W (t) − �ξ(W (t)). We use gradient
descent method to optimise each wl in the weight map.
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5 Experiment Results

In this section we present experimental evaluations of our framework for surface
characteristics estimation. During the acquisition we placed a vertical polarisa-
tion filter in front of a collimated light source, so that the object are illuminated
by polarised light in the direction of the camera (frontal illumination). There
is also a polariser in front of the camera, which can be rotated and change
the intensities of input images following the equation of Transmitted Radiance
Sinusoid (TRS)[16].

There are 35 fruits in 7 different categories for the experiments, and there
are 5 objects in each class. The experimental objects include red and green
apples, oranges, pears, tomatoes, lemons and apricots. The results of reflectance
functions and hue distributions for all inputs are shown in Fig.1. The reflectance
information of fruits in different classes is hard to distinguish, as it is easily

(a) Hue Distribution

(b) Reflectance Function

Fig. 1. The estimated hue distribution and reflectance functions for 35 fruit objects
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(a) PCA of Ref. (b) WPCA of Ref. (c) SWPCA of Ref.

(d) PCA of Hue (e) WPCA of Hue (f) SWPCA of Hue

(g) PCA of Shape (h) WPCA of Shape (i) SWPCA of Shape

Fig. 2. The three feature extraction methods used for three characters of fruit surface
appearance

influenced by dirts such as dusts and oil. The hue distributions are easier to
recognise as the light source conditions are identical for all inputs, however some
objects in different classes have similar or even identical colors. Therefore using
only color information cannot discriminate fruits accurately, but the properties
of shape and reflectance should also be considered.

In Fig.2 we show the feature extraction results using the three methods, i.e.
PCA, WPCA and SWPCA. From the figure, the features extracted using SW-
PCA are better separated by different classes, and are more concentrated within
the same class than those extracted using the other two methods. It is also clear
that using techniques such as nearest neighbour or SVM the fruit classification
results can be much improved when considering the three properties simultane-
ously. This is one of the topics for future research.

6 Conclusion

In this paper we provide a novel framework for obtaining shape, color and re-
flectance information using the polarisation techniques and then uses three fea-
ture extractions methods on the estimates. We demonstrate experimentally that
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the proposed methods are robust and reliable, which can be applied in object
recognition and classification. Future research will explore these applications.
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Abstract. Fisher’s linear discriminant analysis (FLDA) has been at-
tracting many researchers and practitioners for several decades thanks
to its ease of use and low computational cost. However, FLDA implicitly
assumes that all the classes share the same covariance: which implies
that FLDA might fail when this assumption is not necessarily satisfied.
To overcome this problem, we propose a simple extension of FLDA that
exploits a detailed covariance structure of every class by utilizing re-
vealed by the class-wise auto-correlation matrices. The proposed method
achieves remarkable improvements classification accuracy against FLDA
while preserving two major strengths of FLDA: the ease of use and low
computational costs. Experimental results with MNIST and other several
data sets in UCI machine learning repository demonstrate the effective-
ness of our method.

1 Introduction

This paper proposes a simple extension of Fisher’s linear discriminant analysis
(FLDA) that exploits a detailed covariance structure of every class. The major
advantage of our method lies on its ease of use and low computational cost. This
makes our method more useful for practitioners.

FLDA is widely used as a discriminative feature extractor, especially in the
field of pattern recognition, computer vision and machine learning. Its appli-
cation areas have a wide variety, which include character recognition and face
recognition [3,4]. FLDA has been attracting a lot of researchers and practitioners
for a long time thanks to its simple formulation and low computational costs.
However, FLDA implicitly assumes that a distribution of each class should be
Gaussian and all the classes share the same covariance matrix. When facing a
classification problem with other circumstances, its classification performance
might degrade drastically.

Many extensions of FLDA have been proposed to overcome this problem. They
are roughly classified into two categories. The first category is (1) non-linear or

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 409–416, 2012.
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piecewise linear extensions of FLDA. Hastie, et al.[8],Zhu, et al.[9],Gkalelis, et
al.[10] employed cluster analysis to fit multi-peak feature distributions. Baudat[6]
and Sierra[7] studied non-linear transformation extension to represent complex
feature distributions. This approach is very popular, however, it requires high
computational cost that may eliminate one of the strengths of FLDA. Further,
this approach may incur model selection difficulties such as the number of peaks
and the type of transformations. Another approach is: (2) incorporating between-
distribution metrics such as Kullback-Leibler divergence or Chernoff distance
into the computation of between-class scatter matrices [13,12], instead of simple
Euclidean norms. One major problem of this approach lies on the asymmet-
ric structure of metrics, which leads to inconsistent formulations of the entire
method. In other words, the second approach is attractive if we can avoid this
problem.

Based on the above observations, this paper proposes yet another extension of
FLDA along with the second approach. The main problem is how to inject covari-
ance information of every class into between-class scatter matrix. Inspired by the
class description of Class Featuring Information Compression (CLAFIC) [14,11],
we describe this covariance information as a subspace spanned by eigenvectors
of a class-specific auto-correlation matrix. Thus, we can acquire rich information
of class-wise feature distributions by simply concatenating the subspace induced
from auto-correlation matrix to the subspace obtained from the original FLDA.
Our proposed formulation consists of simple matrix operations only, and the al-
gorithm is still easy to use and enjoy low-computational cost. Further it is easy
to extend the formulation to multi-class categorization problems.

The rest of the paper is organized as follows. Section 2 reviews the classi-
cal FLDA and clarify its fundamental problems. Section 3 describes our new
criterion function for FLDA based on the description of class-wise feature distri-
bution. Section 4 demonstrates the effectiveness of the proposed method through
some experimental evaluations with standard benchmark datasets. Finally Sec-
tion 5 concludes this paper and poses some future work.

2 Fisher’s Discriminant Analysis and Its Problems

This section reviews the classical FLDA and clarifies its fundamental problems.
Let Xc = {x1, . . . ,xnc} be a set of D-dimensional samples in class c, where nc

is the number of samples assigned to the class c. To find the most discriminative
basis for C-class classification problem, FLDAmaximizes between-class distances
represented as the following between-class scatter matrix:

ΣB =
1

C

C∑
c=1

(μ− μc)(μ− μc)
�, (1)

and minimizes within-class distances represented as the following within-class
scatter matrix:

ΣW =
1

C

C∑
c=1

Σc, (2)
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where μ is the mean vector of all samples, μc is the mean vector of samples
assigned in the class c, and Σc is the scatter matrix of the class c:

Σc =
1

nc

nc∑
i=1

(μc − xci)(μc − xci)
�. (3)

The problem is easily solvable as the following generalized eigenvalue problem:

ΣBa = ΣWaλ, (4)

where a is an eigenvector and λ is an eigenvalue obtained from the above gener-
alized eigenvalue problem. Eigenvectors correspond to the most distinctive axes
(projections) to the given dataset.

The number of valid eigenvectors of the above generalized eigenvalue problem
should be less than C, since the number of class means is C and therefore
the maximum rank of the between-class scatter matrix is C − 1 if D > C − 1.
When dealing with 2-class classification problems, only one dimensional subspace
is available. If common covariance assumption is violated in high dimensional
feature space, since most of samples are distributed out of discriminant axis
true discriminant plane may be close to discriminant axis. This dimensionality
limitation is the fundamental problem of FLDA.

3 DFDA: Describing Covariance Structure of Classes in
FLDA

In this section we propose a new FLDA criterion that reflects unique covariance
structures of each class. Our observation is that one reason of the dimensionality
limitation of FLDA is that FLDA only focuses on separating class mean vectors.
In other words, FLDA does not consider the difference of covariance matrices of
classes, or information about sample distributions of classes, which might have
certain discriminative power to the classification problem. From this point of
view, a straightforward extension of FLDA has been proposed in [12] that is
based on Kullback-Leibler divergence. However, its optimization procedure is
much complex than the original FLDA and it weakens the usefulness of FLDA.
A more simpler extension, which is based on the Chernoff criterion, has been
proposed in [13]. However, this method does not scale to large class problems
such as Chinese character classification because this model requires pairwise
classification procedure for multiclass problems.

Our proposed method is inspired CLAFIC[14]: representing sample distribu-
tion information of classes as subspaces. ψck denotes the k-th eigenvector of the
c-th class auto-correlation matrix Γc:

Γc =
1

nc

∑
x∈ωc

xx�. (5)
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ψck is not an eigenvector of the covariance matrix, but obviously has information
about the distribution of samples of the class c (because this is an eigenvector
of auto-correlation). Our key idea is to use ψck to compute dispersions between
classes: intuitively, a classifier that separates ψcks from ψs of other classes is a
good classifier because it segregates “shapes” of class distributions. Our criterion
is described as maximization of

ΣB2 =
∑
c

∑
d �=c

du∑
k=1

du∑
l=1

(ψck − ψdl)(ψck − ψdl)
�. (6)

du denotes a number of eigenvectors of auto correlation matrix used for compu-
tation, which must be predefined by users. Based on this criterion, we define a
new between scatter matrix as

ΣBnew = ΣB +ΣB2. (7)

If the rank of ΣBnew , r = rank(ΣBnew ) is greater than C − 1, then we can
expect improvement of classification accuracy. We call this extension of FLDA
as Detailed FLDA (DFDA), which maximizes ΣBnew . A concept sketch of DFDA
illustrate in Fig.11.

Figure 1(a) illustrates when classes share the same covariance as assumed
implicitly in FLDA. In such a case, the FLDA provides optimal projections.
However, FLDA is not optimal in the case (b) because classes have different
covariances (distributions, or “shapes” of shaded regions). On the other hand,
DFDA projection also tries to separate eigenvectors of class auto-correlation
matrices ψ and there is no assumption of shared covariances among classes.
Thus we can expect improvement of classification accuracy when covariances
among classes are different.

(a) (b)

Fig. 1. Conceptual sketch of the proposed method. (a)conventional FLDA (b)proposed
DFDA. The vectors ψ implicitly reveal the distributions (shapes) of the classes. The
proposed DFDA tries to take the class distribution away from the others by incorpo-
rating ψ into the original FLDA.

1 Though this figure is not truly correct, we expect the figure helps readers to under-
stand the concept of the proposed method.
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4 Experiments

In this section, we present the experimental evaluations. As the first experiment,
we employ MNIST handwritten digit database 2. The MNIST dataset is known
as a standard benchmark data for statistical pattern recognition and machine
learning researches. We would like to understand and present behaviors of pro-
posed DFDA by this experiment. Second experiment employs a few datasets
taken from UCI machine learning repository. A goal of the second experiment is
to confirm effectiveness of the proposed DFDA over various datasets3.

4.1 Experiments with MNIST Dataset

MNIST database consists of 10 digits (=classes, C = 10) handwritten character
images. Images are 28× 28 real valued matrices. We used vectorized matrices as
feature vectors, thus feature space dimensionality is D = 784.

One of the characteristics of MNIST dataset is “FLDA hard.”[15] So far many
researchers have evaluated various classifiers and feature extractors with MNIST
dataset. However the accuracy score is relatively low if we employ FLDA: for
example classification accuracy of 1-NN classifier in original pixel value space
is 97.3% that in FLDA space is 90.5%. We guess this difficulty is caused by
dimension limitation of FLDA.

Since we would like to understand behaviors of FLDA and DFDA as feature
extractors, we employ a 1-NN classifier in reduced spaces induced by FLDA
or DFDA. We used PRTools 4.34 and a Matlab implementation of proposed
method. We used 60000 samples as training data and 10000 samples as test
data. We tested several values of du, the number of used eigenvectors ψ of auto-
correlation matrices.

The results are shown in Table 1, Fig. 2, and Fig. 3.

Table 1. Classification accuracy of FLDA and DFDA

Method du r Classification Accuracy (%)

FLDA 0 9 90.5

DFDA 50 51 94.3

DFDA 100 77 95.2

DFDA 200 120 95.3

DFDA 400 229 93.5

From the Table 1, it is obvious that the rank of augmented between-class scat-
ter matrix ΣBnew , r, grows as the number of used ψ, du, increases. This indicates
that the information from auto-correlation matrices actually augments the in-
formation for class separations. Figure 2 illustrates the evolution of classification

2 http://yann.lecun.com/exdb/mnist
3 http://archive.ics.uci.edu/ml
4 http://www.prtools.org

http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml
http://www.prtools.org
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accuracies against du, the number of used eigenvectors ψ of auto-correlation ma-
trices in DFDA. The classification accuracy score hits the highest at du = 200.
This result indicates that there is an balancing point in adding ψs, possibly be-
cause of the ranks of auto-correlations matrices: these auto-correlations matrices
may not be full-rank, too.

Finally, Fig.3 shows a comparison of classification accuracy of the original
FLDA and the proposed DFDA (du = 200). The horizontal axis denotes the
dimensionality of the extracted features. In other words, the number of eigenvec-
tors (projections) obtained by DFDA. Note that the dimensionality of extracted
features by FLDA is 9 = C − 1. If we employ very few number of eigenvectors
(less than 20), the DFDA performs poor, even worse than FLDA. However, as
the number of eigenvectors increases, the performance of DFDA outperforms the
FLDA, and saturates around 60 dimensions.

4.2 Experiments with Dataset from UCI Machine Learning
Repository

To confirm effectiveness of DFDA, we evaluated the proposed DFDA with several
datasets from UCI machine learning repository. The selection of datasets is based
on the following conditions:

– The number of classes, C, is smaller than dimensionality of the feature vec-
tors, D.

– The number of samples in each class, nc, is larger than the dimensionality
of the feature vectors, D.

Table 2 summarizes the computed classification accuracies. As evident from the
table, DFDA surprisingly performs better than the FLDA in all the datasets.
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Table 2. Evaluation of proposed method on UCI MLR data

Data D C # of training samples (nc × C) r FLDA DFDA

Breast cancer 9 2 200 8 78.0% 79.9%

magic 10 2 200 8 55.8% 69.6%

wine 13 3 60 13 40.0% 72.9%

spambase 8 2 200 8 55.8% 62.7%

image segmentation 19 7 210 19 48.9% 86.0%

ionosphere 34 2 100 8 56.6% 75.7%

statlog(Landsat) 36 6 1800 36 26.1% 75.3%

statlog(Shuttle) 9 7 43500 9 91.4% 99.7%

statlog (vehicle) 18 4 400 18 37.2% 69.7%

madelon 500 2 2000 500 54.2% 60.7%

optdigits 64 10 3823 64 45.4% 97.9%

Cardiotocography 21 3 1000 21 73.5% 78.3%

5 Conclusion

This paper proposed an extension of Fisher’s Linear Discriminant Analysis
(FLDA) by injecting inherent differences of distributions among classes. The
proposed method exploited the auto-correlation matrix of each class samples in-
spired by CLAFIC. The proposed Detailed Fisher Discriminant Analysis (DFDA)
integrates the subspace spanned by eigenvectors obtained from the auto-
correlation matrix into the between-class scatter matrix of FLDA. Experimental
evaluations with MNIST dataset and several dataset in UCI machine learning
repository demonstrated the effectiveness of proposed method. Our proposed
method is composed of only simple matrix operations, and therefore it can be
naturally applied to multi-class categorization. The method might provide some
new direction of FLDA.

The major weakness of the proposed method is its theoretical foundations.
Since our idea is intuitively sound, we need more theoretical justification for
this extension. It is also interesting to compare the proposed method with other
extensions of FLDA such as [13,9,10,8]. Finally, some extensions of canonical
correlation analysis can be achieved in a similar way, which might be fruitful for
many applications.
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Abstract. Adaptive biometric recognition systems have been proposed
to deal with natural changes of the clients’ biometric traits due to mul-
tiple factors, like aging. However, their adaptability to changes may be
exploited by an attacker to compromise the stored templates, either to
impersonate a specific client, or to deny access to him. In this paper we
show how a carefully designed attack may gradually poison the template
gallery of some users, and successfully mislead a simple PCA-based face
verification system that performs self-update.

Keywords: Biometric recognition, Adaptive biometric systems, Tem-
plate self-update, Principal component analysis, Poisoning attack.

1 Introduction

Adaptive biometric recognition systems have been proposed to deal with changes
of the clients’ biometric traits over time, like aging. Biometric data acquired over
time during system operation can be exploited to account for the natural tem-
poral variations of biometric traits. One of the proposed approaches, inspired by
semi-supervised learning techniques, is template self-update. It consists of pe-
riodically updating the template gallery of a user, using samples assigned with
high confidence to the corresponding identity during operation. Adaptation may
allow a biometric system to maintain a good performance over time. However,
an attacker may exploit it to compromise the stored templates, either to imper-
sonate a specific client or to deny access to him, violating system security.

In this paper we present a preliminary investigation on how to exploit the
above discussed vulnerability in the context of adaptive biometric systems, using
as a case study a simple PCA-based face verification system that performs self-
update. We show that an attacker can submit a carefully designed set of fake
faces to the camera while claiming the identity of another user (i.e., the victim),
to gradually compromise the stored templates of the victim. The fake faces can
be obtained by printing a face image on paper. This is a well-known procedure
in the literature of spoofing of biometric traits (see, e.g., [2]). The goal of the
attacker is to eventually be able to impersonate the victim without presenting
any fake face to the sensor, i.e., to include at least one of her templates into the
victim’s gallery.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 417–425, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We derive the optimal attack, i.e., the one that minimizes the number of fake
faces to be submitted to the sensor, under two distinct template update policies.
To this end, we exploit the results reported in [4] about poisoning attacks against
a different, but related application (online anomaly detection). Our results show
that an attacker may effectively compromise the system with relatively small
effort, i.e., by submitting a few, carefully designed fake faces. We also highlight
a trade-off between the ability of a system to adapt to changes, and its security.

In Sect. 2 we summarize background concepts on adaptive biometric systems.
Poisoning attacks and our application example are described in Sect. 3 and 4,
respectively. Conclusions are drawn in Sect. 5.

2 Adaptive Biometric Recognition Systems

One of the issues that affect the performance of biometric systems in real oper-
ational scenarios is that biometric data can exhibit a large intra-class variability
due to multiple factors, like illumination changes, pose variations and aging. This
can make the templates stored for each client during enrollment not representa-
tive of the biometric traits submitted during verification (or identification) [10].
In particular, it is very difficult to deal with temporal changes of biometric pat-
terns, like the ones due to aging. To this end, the exploitation of biometric data
acquired over time during system operation has recently been proposed [3,8,7].
The reason is that such data stream naturally contains temporal variations of the
considered biometric trait, which may allow one to implement adaptive systems
that improve with use. In the following, we focus on the template self-update
technique, that will be considered in the rest of this work.

Template Self-update. Template self-update is a semi-supervised learning
technique that can be easily implemented in many biometric recognition sys-
tems, to enable adaptation to temporal changes. It consists of updating the
stored templates of each enrolled client over time, exploiting unlabelled biomet-
ric data acquired during system operation [7]. In this work we consider a simple
biometric verification system that stores one template for each client, computed
by averaging the set of n enrolled images of the same client. It will thus be
referred to as centroid. Denoting the feature vectors of the enrolled images of
a given client c as {xc,1, . . . ,xc,n}, their centroid is xc = 1

n

∑n
k=1 xc,k. During

verification, a user submits a sample x and claims an identity c. A matching
score s(x,xc) is then computed, e.g.:

s(x,xc) = 1/(1 + ‖x− xc‖) , (1)

where ‖·‖ is the Euclidean distance. The user is accepted as genuine, if s(x,xc) ≥
tc, otherwise it is rejected as an impostor, where tc is a predefined, client-
dependent acceptance threshold. Template self-update can be implemented by
updating xc using x, if s(x,xc) ≥ θc, where θc is an update threshold, usually
more conservative, i.e., θc > tc. The centroid xc can be updated to x′

c according
to different policies, more or less adaptive. We will consider two policies discussed
in [4], which can be expressed as:
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x′
c = xc + (x− xc)/n . (2)

The infinite window policy updates xc without discarding any of the past n
samples [4,6]. Thus, n increases by 1 before each update, and the impact of new
samples reduces as n grows. A more adaptive policy is finite window (average-
out), that discards the current centroid at each iteration, and keeps n fixed to
its initial value.

3 Poisoning Attacks

Biometric recognition is an example of the use of machine learning in adversarial
environments, in which a human “adversary” can be interested in subverting a
recognition system, e.g., to impersonate a given client [5,1]. In particular, if the
adversary has some degree of control on training data (e.g., in scenarios like
template self-update), she may “contaminate” it by adding carefully designed
attack samples. This attack, known as poisoning, has been investigated in [4,6]
for online anomaly detection tasks. Since their results apply also to biometric
template self-update, we summarize them below.

In template self-update, a poisoning attack exploits adaptation to gradually
compromise the template xc of the targeted client, until it is replaced by a
sample xa chosen by the attacker. To this end, the adversary may be required to
iteratively submit to the system a carefully designed sequence of attack samples.
We consider the case when the attacker aims to gain access with the identity
of user c without using any fake trait. In this case, xa must be a representative
sample of the attacker’s biometric trait. The type and number of attack samples
depend on the template update policy, and on the capability and knowledge of
the attacker. The analysis of [4,6] was made under the worst-case assumption
that the attacker perfectly knows the targeted system, which is typical in security
problems. In our case, this amounts to knowing the feature vector representation
of samples, the initial template gallery of the targeted client and the template
updating policy, the matching score function s(·, ·), and the thresholds tc and
θc of the victim. The optimal attack can be derived, in terms of the minimum
number of attack samples required to replace xc with xa, as well as a lower
bound on such number, depending on the update policy.

The optimal poisoning attack against the policies mentioned in Sect. 2 is

depicted in Fig. 1. At iteration i, it amounts to place the attack sample x
(i)
a on

the line joining xa and the initial centroid xc, in the so-called attack direction a =
xa−xc

‖xa−xc‖ , at the maximum distance from the current centroid x
(i)
c that satisfies

the update condition s(x
(i)
a ,x

(i)
c ) ≥ θc. Given the matching score of Eq. 1, this

distance is dc(θc) = ‖x(i)
a − x

(i)
c ‖ = 1/θc − 1. This leads to: x

(i)
a = x

(i)
c + dc · a.

The minimum number of attack samples needed to replace xc with xa, for the
infinite and finite window policies, is respectively lower bounded by:

n [exp (‖xa − xc‖/θc)− 1] , n (‖xa − xc‖/θc) . (3)
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Fig. 1. Illustration of a poisoning attack, similar to [4]

It is worth noting that: (i) in both cases the number of attack samples scales
linearly with the initial number of averaged samples n; (ii) in the infinite win-
dow case, the number of attack samples increases exponentially as ‖xa − xc‖
grows; (iii) in the finite window case, such number scales linearly with ‖xa−xc‖.
Therefore, although more adaptive to changes, the latter policy may be misled
by a poisoning attack with a significantly lower number of attack samples. This
quantifies the intuitive trade-off between the ability of the system to adapt to
changes and its security to poisoning attacks. To better characterize this trade-
off in the context of biometric systems, one should also evaluate the probability
for an attacker (and the victim) to be accepted as the targeted victim, as the
attack proceeds. However, this can be only done empirically, as shown in the
next section.

4 Application Example

In this section we describe the case study, related to PCA-based face verification,
that we used to investigate the vulnerability of template self-update techniques.

PCA-Based Face Verification. The standard PCA-based face recognition
method works as follows [9,11]. During enrollment, a set of face images is acquired
for each user and pre-processed (e.g., the background is removed by applying a
specific mask to each image, and face images are normalized to have the same
size and eye position). Each image is then stored as a column vector of d pixels
to constitute the training set Z = {z1, . . . , zn} ∈ Rd×n, and the PCA is applied
as follows. (i) The average face image and the covariance matrix are respectively
computed as zμ = 1

n

∑n
k=1 zk, and C = (Z − zμ)(Z − zμ)

T. (ii) The eigenvalues
and eigenvectors of C can be more efficiently computed from the matrix K =
(Z − zμ)

T(Z − zμ) instead of C, as explained in [11,9]. Usually only a subset of
them (those associated to the highest eigenvalues) is retained for computational
efficiency. (iii) Samples in Z can be now projected onto the eigenspace as xi =
V t(zi − zμ), i = 1, . . . , n, where V is the matrix of the eigenvectors (one per
column). (v) For each user c, a face template xc is stored. Such template is
often computed as the mean (or centroid) of the projected faces of that user.
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Fig. 2. FAR and GAR for each client under no attack. The FAR is averaged over all
possible attackers. Standard deviation is also shown as error bars.

During verification, the input image z is pre-processed and projected onto the
eigenspace as x = V t(z−zμ). Then, it is compared to the centroid of the claimed
identity through the matching score s(x,xc), either to accept or reject the user
(see Sect. 2).1 Template self-update was implemented as explained in Sect. 2,
using the two update policies of Sect. 3. In our experiments we set the initial
template gallery size to n = 10. We also assume that the PCA projection is not
updated during verification, since it is too computationally expensive [7].

Data Set. We collected a data set consisting of 40 different clients with 60
images each, for a total of 2,400 face images. The face images of each client were
collected into two sessions, using a commercial webcam, with a time interval of
about two weeks between them, under different lighting conditions and facial
expressions. This induced a high intra-class variability of the face images, which
makes face recognition particularly challenging. The data set is available under
request to the authors, and it was also used in [2].

Experimental Setup. We split the face images as follows. We randomly se-
lected 10 images for each client as training data, to compute the PCA eigenvec-
tors and the clients’ centroids. A further set of 10 images for each client was used
as validation data, to tune the acceptance threshold tc and update threshold θc
for each client. We set θc by computing the 0% FAR operational point for the
corresponding client, and tc to a less conservative value, namely, at the 1% FAR
operational point. The remaining 40 images per client were retained as testing
set. We observed that randomly choosing different data splits do not substan-
tially affect our results. For the sake of ease of interpretation, we thus chose not
to average them on different data splits.

Performance under No Attack. We first computed the performance of the
considered face verification system on the testing set, when no attack is consid-
ered, in terms of the Genuine Acceptance Rate (GAR) and False Acceptance
Rate (FAR), namely, the fraction of clients correctly verified and of impostors
wrongly accepted as genuine clients. For each client (i.e., claimed identity), the

1 Note that more than one template per user may be also used, to better capture the
high intra-class variability typical of biometric images. This would however slightly
complicate the verification process, and the consequent poisoning attack; thus, we
only consider here the simplest case in which only one centroid per user is stored.
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Fig. 3. Poisoning attack under finite window (average-out) update policy. Top-left plot:
illustration of the attack in the space spanned by the first two principal components.
Top-right plot: Variation of the attacker’s FAR and victim’s GAR during the attack
progress. Bottom plot: attack samples and victim’s centroids during the attack progress,
at iterations 1, 5, 10, 15, 20.

corresponding GAR and FAR are shown in Fig. 2. The FAR of each client was
estimated as the average FAR of the other 39 users, considered as attackers. As
expected from the choice of tc, the average FAR is around 1% for most of the
clients. A rather low GAR is attained for several users (lower than 50%), due
to the high-intra class variability. Further, we observed that for most clients no
update actually occurred, due to the very conservative choice of θc.

Poisoning under the Finite Window (average-out) Update Policy. We
implemented the poisoning attack as described in Sect. 3. We simulated the
simplest scenario in which the template gallery of the targeted client (victim) is
updated by a sequence of attack samples only, in a given period of time.2

In Fig. 3, we report the results attained when considering a specific attacker
(user 13) and victim (user 31). The attack progress is depicted in the top-left
plot, where it can be noted how the victim’s centroid drifts toward the attacker’s
centroid. In particular, we report the initial victim’s and attacker’s centroids,
and the drifted victim’s centroid after 5 iterations (i.e., after submitting 5 at-
tack samples). The top-right plot shows how the victim’s GAR decreases, and,

2 The scenario when the gallery is updated with interleaved attack and genuine sam-
ples (i.e., samples coming from genuine verification attempts by the targeted client)
can be however investigated in a similar manner, as done in [4].
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Fig. 4. Poisoning attack under the finite window (average-out) update policy

simultaneously, the FAR relative to the attacker identity increases, as a function
of the number of attack iterations. Although the number of iterations required
to replace the victim’s centroid with the attacker’s centroid is 20, the attacker’s
FAR raises quite quickly, being equal to 40% after only 10 iterations. The bottom
plot shows some attack samples, and the corresponding change in the victim’s
centroid. Note how the initial victim’s face (victim’s centroid at iteration 1) is
eventually replaced by the attacker’s face (victim’s centroid at iteration 20).

Fig. 4, and Fig. 5 (left plot) summarize the results obtained considering all
possible pairs of attacker and victim (39 × 40 = 1560). The latter depicts the
average number of iterations and the standard deviation, over the 39 possible
attackers, required to replace the victim’s centroid with the attacker’s one. Note
that most of the attacks are successfully completed after 10 to 20 iterations.

Since in many cases it is not realistic for an attacker to perform more than
10 attempts without being caught, we focused on the GAR of each victim, and
the FAR relative to the corresponding attacker, after 5 and 10 iterations, which
are reported in Fig. 4. As in the previous case, for each victim we average the
GAR and FAR with respect to all possible 39 attackers. In other words, the
FAR represents the probability that a randomly chosen attacker cracks a specific
victim account. Similarly, the GAR represents the probability of a specific victim
being correctly accepted as a genuine user, under a poisoning attack carried
out by a randomly chosen attacker. It can be seen that the FAR is relatively
high even at the early stages of the attack: it ranges from 10% to 20% after
only 5 iterations, and approaches 50% for most of the targeted victims after 10
iterations. The GAR remains instead almost the same after 5 iterations, but
significantly decreases after 10 iterations for most of the victims. This means
that an attacker may significantly increase the chance of being accepted after
few iterations (e.g., from 1% FAR to 10% FAR with just 5 iterations) without
causing a substantial denial of access to the victim. Lastly, note that after 10
iterations, the FAR is much higher than the GAR, although most of the poisoning
attacks are not complete at this stage.
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Fig. 5. Number of attack samples required to replace the victim’s centroid with the
attacker’s centroid. For each victim, we reported the number of iterations averaged
over all possible attackers. Standard deviation is also shown as error bars. Left plot:
finite window (average-out) update policy. Right plot: infinite window update policy.
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Fig. 6. Poisoning attack under the infinite window update policy

Poisoning under the Infinite Window Update Policy. Poisoning is much
harder under this policy, since it requires an exponential number of attack sam-
ples with respect to the relative displacement (see Eq. 3). We report the evalu-
ation involving all pairs of attacker and victim, as above, in Fig. 6, and Fig. 5
(right plot). As expected, the latter plot shows that the number of iterations
required to complete a poisoning attack is much higher in this case, and its ef-
fectiveness (in terms of FAR at the same number of iterations) is lower. However,
Fig. 6 shows that the increase in FAR is still significant, even after few iterations.

Finally, we repeated the experiments reducing the initial number of templates
per client to n = 5. As predicted by Eq. 3, the number of attack iterations
scaled linearly with n for both policies, without substantially changing the attack
effectiveness in terms of FAR and GAR. In particular, almost the same values
were attained after half of the iterations.
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5 Conclusions and Future Work

In this work, we demonstrated that adaptive biometric recognition systems can
be vulnerable to poisoning attacks, namely, carefully designed attacks that ex-
ploit system adaptation. Such attacks can significantly violate system security
from the early stages, i.e., with few attack iterations. To our knowledge, this is
the first time that such vulnerability is highlighted in the context of biometric
adaptive systems. Further, we observed that more adaptive update policies (e.g.,
finite window), which may be more beneficial in the standard scenario without
attacks, can be more vulnerable to poisoning than less adaptive policies (e.g.,
infinite window). This highlights that a trade-off between security and ease of
adaptation is required in adaptive biometric systems, and that it should be inves-
tigated more in detail in future work; e.g., considering different adaptive systems
and more update policies.
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Abstract. Multivariate Gaussian densities are pervasive in pattern
recognition and machine learning. A central operation that appears in
most of these areas is to measure the difference between two multivariate
Gaussians. Unfortunately, traditional measures based on the Kullback–
Leibler (KL) divergence and the Bhattacharyya distance do not satisfy all
metric axioms necessary for many algorithms. In this paper we propose a
modification for the KL divergence and the Bhattacharyya distance, for
multivariate Gaussian densities, that transforms the two measures into
distance metrics. Next, we show how these metric axioms impact the
unfolding process of manifold learning algorithms. Finally, we illustrate
the efficacy of the proposed metrics on two different manifold learning
algorithms when used for motion clustering in video data. Our results
show that, in this particular application, the new proposed metrics lead
to significant boosts in performance (at least 7%) when compared to
other divergence measures.

1 Introduction

There are various applications in machine learning and pattern recognition in
which the data of interest D are represented as a family or a collection of sets
D = {Si}ni=1, where Si = {xi

j}ni

j=1, and xi
j ∈ Rp. For some of these applications, it

is reasonable to model each Si as a Gaussian distribution Gi(μi,Σi) with mean
vector μi and a covariance matrix Σi.

1 In these settings, a natural measure
for the (dis)similarity between two Gaussians, G1 and G2 say, is the divergence
measure of probability distributions [3,6]. For instance, some of the well known
divergence measures with closed form expressions for Gaussian densities are the
symmetric Kullback–Leibler (KL), or Jeffreys, divergence dJ(G1,G2) [12], the
Bhattacharyya distance dB(G1,G2) and the Hellinger distance dH(G1,G2) [9].
1 Notations: Bold small letters x,y are vectors. Bold capital letters A,B are matrices.
Calligraphic and double bold capital letters X , Y, X, Y denote sets and/or spaces.
Positive (semi-)definite matrices, PD (and PSD) are denoted by A � 0 and A � 0
respectively. tr(·) is the matrix trace. | · | is the matrix determinant. I is the identity
matrix.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 426–436, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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When considering a learning problem such as classification, clustering, or low
dimensional embedding for the family of sets D, via its representation as the set
of Gaussians {Gi}ni=1, a natural question that arises is that of which divergence
measure will yield a better performance? At first glance, one can consider an
answer along two main dimensions: 1) the learning algorithm that shall be used
for the sought task, and 2) the data set under consideration. In this research,
however, we show that the metric properties of these divergence measures form a
third crucial dimension that has a direct impact on the algorithm’s performance.
In particular, we show that when modifying the closed form expressions for
dJ(G1,G2) and dB(G1,G2) such that both measures satisfy all metric axioms2, the
resulting new measures yield significant improvements in the discriminability of
the embedding spaces obtained from two different manifold learning algorithms,
classical Multidimensional Scaling (cMDS) [21] and Laplacian Eigenmaps (LEM)
[4]. These improvements in discriminability, in turn, result in consistent and
significant boosts in clustering accuracy. For the application considered in this
paper, motion clustering in video data, an improvement in discriminability of at
least 7% is observed.

Starting with the closed form expressions for dJ(G1,G2) and dB(G1,G2), in
Section (2) we take, a closer look on how each term in these expressions violate
the desired metric axioms. Then, we propose modifications for these expressions
that result in new distances that satisfy all metric axioms. In Section (3), we
show how the metric properties of divergence can impact the unfolding process of
manifold learning algorithms such as cMDS and LEM. In Section (4), we compare
the performance of cMDS and LEM using the proposed divergence measures in
the context of clustering human motion in video data. Finally, conclusions are
drawn in Section (5).

2 Characteristics of dJ(G1,G2) and dB(G1,G2)

Our discussion begins with the characteristics of dJ (G1,G2) and dB(G1,G2) in
terms of structure and metric properties. Let Gp be the family of p–dimensional
Gaussian densities, where the density G(μ,Σ) ∈ Gp is defined as:

G(x;μ,Σ) = (2π)−
p
2 |Σ|− 1

2 exp{− 1
2 (x− μ)�Σ−1(x− μ)},

x,μ ∈ Rp, Σ ∈ Sp×p
++ , and Sp×p

++ is the manifold of symmetric positive definite
(PD) matrices. For G1,G2 ∈ Gp, Jeffreys divergence has the closed form expres-
sion:

dJ(G1,G2) = 1
2u

�Ψu+ 1
2 tr{Σ

−1
1 Σ2 +Σ−1

2 Σ1 − 2I}, (1)

2 A metric space [11, p. 3] is an ordered pair (X , d), where X is a non-empty abstract
set (of any objects/elements whose nature is left unspecified), and d is a distance
function, or a metric, defined as: d : X × X �→ R, and ∀ a, b, c ∈ X , the following
axioms hold : (i) d(a, b) ≥ 0, (ii) d(a, a) = 0, (iii) d(a, b) = 0 iff a = b, (iv) Symmetry
: d(a, b) = d(b, a), and (v) The triangle inequality : d(a, c) ≤ d(a, b) + d(b, c). Semi-
metrics satisfy axioms (i), (ii), and (iv) only. Note that the axiomatic definition
of metrics and semi-metrics, in particular axioms (i) and (ii), produce the positive
semi-definiteness of d. Hence metrics and semi-metrics are PSD.
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where Ψ = (Σ−1
1 +Σ−1

2 ), and u = (μ1 −μ2). The Bhattacharyya coefficient ρ,
which is a measure of similarity between probability distributions, is defined as:

ρ(G1,G2) = |Γ |−
1
2 |Σ1|

1
4 |Σ2|

1
4 exp{− 1

8u
�Γ−1u}, (2)

where Γ = (12Σ1+
1
2Σ2). From ρ(G1,G2), the Hellinger distance dH is defined as√

2[1− ρ(G1,G2)], while the Bhattacharyya distance dB is − log ρ(G1,G2), which
also yields an interesting closed form expression:

dB(G1,G2) = 1
8u

�Γ−1u+ 1
2 ln
{
|Σ1|−

1
2 |Σ2|−

1
2 |Γ |
}
. (3)

It is well known that the KL divergence is not a metric since it does not satisfy
the triangle inequality [12], and hence dJ in (1) is not a metric. Similarly, dB in
(3) is not a metric for the same reason, however, dH is indeed a metric [9].

The two closed form expressions in Equations (1) and (3) have the same
structure which is a summation of two components in terms of their first and
second order moments. The first term in Equations (1) and (3) measures the
difference between the means μ1 and μ2 weighted by the covariance matrices
Σ1 and Σ2. The second term, however, measures the difference or discrepancy
between the covariance matrices Σ1 and Σ2 only, and is independent from the
means μ1 and μ2.

The first term in Equations (1) and (3), up to a scale factor and a square root,
is equivalent to the generalized quadratic distance (GQD) between x,y ∈ Rp:
d(x,y;A) =

√
(x− y)�A(x− y), where A ∈ Sp×p

++ . If Σ1 = Σ2 = Σ, then
Equations (1) and (3) reduce to:

dJ(G1,G2) = 1
2u

�Ψu, and (4)

dB(G1,G2) = 1
8u

�Γ−1u. (5)

Note that the squared GQD d2(x,y;A) is a semi-metric, and if A is PSD, then
d(x,y;A) is a pseudo-metric. Both, semi-metrics and pseudo metrics, do not
satisfy the triangle inequality, and hence Equations (4) and (5) are semi-metrics.
Further, if Σ1 = Σ2 = I, then Equations (4) and (5), up to a scale factor, reduce
to the squared Euclidean distance. Note that the squared Euclidean distance is
also a semi-metric. The second term in Equations (1) and (3) is the distance or
discrepancy measure between Σ1 and Σ2, and is independent of μ1 and μ2. If
μ1 = μ2 = μ then:

dJ(G1,G2) = 1
2 tr{Σ

−1
1 Σ2 +Σ−1

2 Σ1 − 2I}, and (6)

dB(G1,G2) = 1
2 ln
{
|Γ ||Σ1|−

1
2 |Σ2|−

1
2

}
. (7)

Since Equations (1) and (3) by definition, do not satisfy the triangle inequality,
and hence are semi-metrics, then Equations (6) and (7) are also semi-metrics
between Σ1 and Σ2.

We note that it is easy to satisfy all the metric properties for Equations (4)
and (5) by taking their square root, and ensuring that Ψ and Γ−1 are PD.
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In practice, the positive definiteness of Ψ and Γ−1 can be achieved by ensuring
that Σ1 and Σ2 are PD. For high dimensional data, shrinkage estimators for
covariance matrices [5] are usually used to estimate regularized versions of Σ1

and Σ2. These estimates are statistically efficient, PD, and well conditioned3.
The problem, however, remains with Equations (6) and (7). Covariance ma-

trices Σ1 and Σ2 are elements of Sp×p
++ , which is a metric space with a defined

metric for its elements. The semi-metrics in Equations (6) and (7), although
naturally derived from divergence measures [3,6], do not define proper metrics
for Sp×p

++ , and hence violate its geometric properties.
The set of symmetric PD matrices is a set of geometric objects that define

the Riemannian manifold Sp×p
++ . A Riemannian manifold is a differentiable man-

ifold equipped with an inner product that induces a natural distance metric,
or a Riemannian metric between all its elements. Förstner and Moonen [7] and
independently X. Pennec [17] derived this metric for Sp×p

++ , however its history

goes back to C. R. Rao in 1945 [18]. For Σ1,Σ2 ∈ Sp×p
++ , the Riemannian metric

is defined as:

dR(Σ1,Σ2) =
(∑p

j=1 log
2 λj

) 1
2

, (8)

where diag(λ1, . . . , λp) = Λ is the generalized eigenvalue matrix for the gener-
alized eigenvalue problem (GEP): Σ1V = ΛΣ2V, and V is the column matrix
of its generalized eigenvectors. Note that dR satisfies all metric axioms and is
invariant to inversion and to affine transformations of the coordinate system [7].

2.1 Modifying dJ(G1,G2) and dB(G1,G2)

Modifying the divergence measures dJ(Gi,Gj) and dB(Gi,Gj) in Equations (1)
and (3) respectively, will rely on (i) their special structure which decomposes the
difference between two Gaussian densities into the difference between their first
and second order moments, and (ii) the fact that the second term in Equations
(1) and (3) is independent from the means μ1 and μ2. This split of the Gaus-
sian parameters encourages us to exchange the second term in dJ (G1,G2) and
dB(G1,G2), i.e. the semi-metrics for covariance matrices in Equations (6) and (7),
with the Riemannian metric dR in Equation (8). More specifically, we propose
the following metrics as measures for the difference between two Gaussians:

dJR(G1,G2) = (u�Ψu)
1
2 + dR(Σ1,Σ2), and (9)

dBR(G1,G2) = (u�Γ−1u)
1
2 + dR(Σ1,Σ2), (10)

where Ψ � 0, and Γ −1 � 0. Note that each term of the proposed measures satisfy
all metric axioms. Further, Equations (9) and (10) keep the same structure
and characteristics of Equations (1) and (3); in particular the second term is
independent from μ1 and μ2. If μ1 = μ2 = μ then Equations (9) and (10)

3 See for instance [5] and its affiliated references for a nice overview on these methods,
and some recent developments in this direction.
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reduce to the Riemannian metric dR in Equation (8). If Σ1 = Σ2 = Σ, then
Equations (9) and (10) will yield the exact GQD with symmetric PD matrices Ψ
and Γ−1 respectively, and if Σ = I, then the two metrics will yield the Euclidean
distance. In the case when μ1 �= μ2 and Σ1 �= Σ2, an α–weighted version of (9)
and (10) can be expressed as:

dJR(G1,G2;α) = α(u�Ψu)
1
2 + (1− α)dR(Σ1,Σ2), and

dBR(G1,G2;α) = α(u�Γ −1u)
1
2 + (1 − α)dR(Σ1,Σ2),

where α ∈ (0, 1) weights the contribution (or importance) of each term in dJR
and dBR. Note that when the α–weighted version of the measures are plugged
in a learning algorithm, α can be optimized by methods of cross validation, or
jointly optimized with the intensity/shrinkage parameters used to regularize the
covariance matrices Σ1 and Σ2.

3 Manifold Learning with Divergence Measures

Given a set vectors X = {xi}ni=1, xi ∈ Rp, manifold learning algorithms [20,4]
construct a neighbourhood graph in which the input points xi act as its vertices.
This graph is an estimate for the topology of an underlying low dimensional
manifold on which the data are assumed to lie on. The learning algorithm then,
tries to unfold this manifold – while preserving some local information – to
partition the graph (as in clustering), or to redefine metric information (as in
dimensionality reduction). The algorithm’s output is the set Y = {yi}ni=1 that
lives in a subspace of dimensionality p0 , p, where yi ∈ Rp0 is the embedding
of the input xi.

A different setting occurs when each vertex vi on the graph represents a set Si,
where Si = {xi

j}
nj

j=1 is a set of vectors. For instance, Si can be the feature vectors
describing a multimedia file [16], an image [10], or a short video clip [1]. In these
settings, each Si is modelled as a Gaussian distribution Gi, and the pairwise
dissimilarity between all the Gaussians {Gi}ni=1 is measured using divergence
measures. This, however, turns the problem into obtaining a low dimensional
embedding for the family of Gaussians {Gi}ni=1. Again, the algorithm’s output
is the set Y = {yi}ni=1, with yi ∈ Rp0 being the low dimensional embedding
(representation) of the Gaussian Gi.

Before proceeding to obtain such an embedding, it is important to understand
how the metric properties of divergence measures can affect the graph embedding
process of these algorithms. To illustrate these properties, we pick two different
types of algorithms: cMDS [21] and LEM [4].

It turns out that the metric properties of divergence measures are intimately
related to the positive semi-definiteness of the affinity matrix A ∈ Rn×n ex-
tracted from the graph’s adjacency matrix. Let D ∈ Rn×n be the matrix of
pairwise divergences where Dij = div (Gi,Gj), ∀i, j, and div is a symmetric di-
vergence measure.

For cMDS, the affinity matrix A is defined as Aij = − 1
2D

2
ij , ∀i, j. The matrix

A is guaranteed to be PSD if and only if div (Gi,Gj) is a metric; in particular
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satisfies the triangle inequality. This result is due to Theorem (3) in [21] and
Theorem (4) in [8]. Therefore, div in the case of cMDS can be dH , dJS , dJR, or
dBR since they are all metrics.

For LEM, and for input vectors xi,xj , the affinity matrix A is defined as
Aij = K(xi,xj), ∀i, j, where K is a symmetric PSD kernel that measures the
similarity between xi and xj . From Mercer kernels [15], it is known that A is
PSD if and only if K is symmetric and PSD. Note that for any two probability
distributions P1 and P2, and by definition of divergence [3], div (P1, P2) ≥ 0, and
equality only holds when P1 = P2. Hence div (P1, P2) is PSD by definition and
it can also be symmetric as dJ , dB, dH , dJS , dJR, and dBR.

A possible kernel for Gi and Gj using a symmetric div is: K(Gi,Gj) =
exp{− 1

σdiv (Gi,Gj)} = exp{− 1
σDij}, where σ > 0 is a parameter that scales the

affinity between two densities. Since div is PSD and symmetric, then K(Gi,Gj)
is PSD and symmetric as well. This simple fact is due to Theorems (2) and (4) in
[19], and a discussion on these particular kernels can be found in [2]. Further, if
div is a metric, then the isometric embedding exp{−div} will result in a metric
space (see footnote in pp. 525 of [19]), and the resulting embedding of LEM will
be isometric as well. Therefore, for LEM, a symmetric PSD affinity matrix can
be defined as Aij = K(Gi,Gj), ∀i, j, and using any symmetric div to define the
kernel K. Note that LEM is more flexible than cMDS since it only requires a
symmetric divergence, while cMDS needs all metric axioms to be satisfied.

4 Experiments

To test the validity and efficacy of the proposed measures dJR and dBR, and to
compare their performance to dJ , dB , and dH , we conduct a set of experiments
in the context of clustering human motion from video sequences. Our main
objective from these experiments is to show that the proposed measures dJR
and dBR can consistently outperform other divergence measures in a nontrivial
and rather challenging task such as human motion clustering in video data.

For the purpose of our experiments, we use the KTH data set for human action
recognition4. The data set consists of video clips for 6 types of human actions
(boxing, hand clapping, hand waving, jogging, running, and walking) performed
by 25 subjects in 4 different scenarios (outdoors, outdoors with scale variation,
outdoor with different clothes, and indoors), resulting in a total number of video
clips n = 6 × 25 × 4 = 600. All sequences were taken over homogeneous back-
grounds with a static camera with a frame rate of 25 fps. The spatial resolution
of the videos is 160× 120, and each clip has a length of 20 seconds on average.

4.1 Representing Motion as Sets of Vectors

In these experiments, a long video sequence V = {Ft}τt=1 with intensity frames
Ft is divided into very short video clips VClip of equal length k where it is as-
sumed that an apparent smallest human action can occur; i.e. V = {VClipi}ni=1.

4 http://www.nada.kth.se/cvap/actions/

http://www.nada.kth.se/cvap/actions/
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Depending on the video sampling rate, k = {20, 25, 30, 35} frames/clip. This is
the first column in Tables in (1) and (2).

To extract the motion information, a dense optical flow is computed for each
video clip using the Lucas-Kanade algorithm [13]5, resulting in a large set of
spatio-temporal gradients vectors describing the motion of pixels in each frame.
To capture the motion information encoded in the gradient direction, first we
apply an adaptive threshold based on the norm of the gradient vectors to elim-
inate all vectors resulting from slight illumination changes and camera jitter.
Second, each video frame is divided into h×w blocks – typically 3× 3 and 4× 4
– and the motion in each block is encoded by an m–bins histogram of gradient
orientations. In all our experiments, m is set to 4 and 8 bins. The histograms
of all blocks for one frame are concatenated to form one vector of dimension-
ality p = m × h × w. Therefore, a video clip VClipi with k frames is finally
represented as a set Si = {xi

1, . . . ,x
i
k}, where xi

j is a p-dimensional vector of
the concatenated histograms of frame j. Last, for each subject, the video clips
for the 6 actions from one scenario were concatenated to form one long video
sequence. This resulted in 25× 4 = 100 long video sequences that were used in
our experiments. To validate the accuracy of clustering, each video frame was
labeled with the type of action it contains.

4.2 Experimental Setting

Once the motion information in video V is represented as a family of sets {Si}ni=1,
motion clustering tries to group together video clips (or sets) with similar motion
vectors. To this end, we use a recently proposed framework for learning over sets
of vectors [1] to obtain such a clustering for the Si’s. In this framework, each
Si = {xi

j}ni

j=1 is modelled as a Gaussian distribution Gi with mean vector μ̂i =
1
ni

∑ni

j=1 x
i
j , and a covariance matrix Σ̂i =

1
ni−1

∑ni

j=1(x
i
j − μ̂i)(x

i
j − μ̂i)

�+γI,
where γ is a regularization parameter. This forms the family of Gaussians {Gi}ni=1

which represents the motion in V . Note that regularization is necessary for high
dimensional data especially when ni ≤ p (rank deficient covariance matrix) to
avoid over fitting, leverage noise effect in the data, and outlier reliance6.

Using cMDS and LEM together with the divergence measures discussed here,
dJ , dB , dH , dJR and dBR, we obtain a low dimensional embedding for the family
of Gaussians as the set {yi}ni=1, where yi ∈ Rp0 , and p0 , p. Finally, the k-
Means clustering is run on the data set {yi}ni=1. To summarize, a video sequence
goes through the following transformations:
V &−→ {VClipi}ni=1 &−→ {Si}ni=1 &−→ {Gi}ni=1 &−→ {yi}ni=1.

The dimensionality p0 of the embedding space is a hyperparameter for cMDS
and LEM. For cMDS this is allowed to change from 2 up to 100 dimensions,
while for LEM it is usually set equal to the number of clusters which is 6 in this
case [14]. This is due to our a priori knowledge that there are 6 types of motion

5 Implemented in Piotr’s Image and Video Toolbox for Matlab
http://vision.ucsd.edu/~pdollar/toolbox/doc/

6 In all our experiments γ = 1.

http://vision.ucsd.edu/~pdollar/toolbox/doc/
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Table 1. Average clustering accuracy (with standard deviations) over 100 video
sequences in 4 different embedding spaces obtained using cMDS+dJ , cMDS+dB,
cMDS+dH , and cMDS+dJR

p = m× h×w = 8× 3× 3

frames/clip cMDS+dJ cMDS+dB cMDS+dH cMDS+dJR

20 70.9 (11.9) 71.0 (12.0) 75.5 (12.1) 80.3 (10.9)

25 62.8 (10.9) 62.8 (11.0) 68.2 (12.3) 75.5 (13.1)

30 66.7 (11.7) 66.7 (11.8) 71.5 (12.7) 77.4 (12.7)

35 62.8 (10.9) 62.8 (11.1) 68.2 (12.3) 75.3 (13.1)

p = m× h×w = 8× 4× 4

frames/clip cMDS+dJ cMDS+dB cMDS+dH cMDS+dJR
20 68.3 (12.1) 68.9 (11.6) 74.2 (12.0) 79.5 (11.7)

25 66.5 (12.0) 66.5 (12.4) 72.5 (12.2) 78.6 (12.1)

30 61.9 (10.9) 63.0 (10.6) 68.9 (11.4) 75.5 (12.3)

35 71.3 (12.1) 71.8 (12.3) 76.5 (11.8) 80.7 (10.1)

in each video. Another hyperparameter to optimize for LEM is the kernel width
σ which was allowed to take 4 different values from all the pairwise divergences;
the median, 0.25, 0.75, and 0.9 of the quantile.

For the k-Means algorithm, the number of clusters k was set to 6, and to avoid
local minima, the algorithm was run with 30 different initializations and the run
with the minimum sum of squared distances was selected as the final result for
clustering. The clustering accuracy here is measured using the Hungarian score
used in [22] which finds the maximum matching between the true labeling of
each video clip and the labeling produced by the clustering algorithm. Note that
this is the accuracy for clustering one and only one long video sequence. The
values recorded in Columns 2, 3, 4, and 5 in Tables (1) and (2) are the average
accuracies (with standard deviations) over the 100 video sequences created for
these experiments (§4.2). During these experiments, it was noted that the per-
formance for dJR and dBR are very similar under both algorithms, and hence,
due to space limitations, we show the results of cMDS+dJR in Table (1) and
the results for LEM+dBR in Table (2).

4.3 Analysis of the Results

Our hypothesis, before running the experiments, is that clustering accuracy in
the embedding space obtained through the modified divergences dJR and dBR
will be higher than the clustering accuracy in the embedding spaces obtained by
other divergence measures. Note that the k-Means accuracy here is a quantitative
indicator on the quality of the embedding and its capability to define clusters,
or regions of high density (manifolds), which correspond to clusters of different
motion types. Therefore, each embedding space is optimized to maximize the
clustering accuracy, and then the highest accuracy obtained is compared against
all other highest accuracies of other embedding spaces.
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Table 2. Average clustering accuracy (with standard deviations) over 100 video se-
quences in 4 different embedding spaces obtained using LEM+dJ , LEM+dB, LEM+dH ,
and LEM+dBR

p = m× h× w = 8× 3× 3

frames/clip LEM+dJ LEM+dB LEM+dH LEM+dBR

20 55.7 (11.2) 56.0 (10.9) 60.1 (11.5) 65.1 (13.2)

25 58.2 (12.0) 58.1 (11.9) 63.6 (13.1) 69.6 (13.6)

30 60.0 (12.7) 59.9 (12.6) 64.8 (12.9) 70.3 (13.4)

35 63.0 (13.3) 62.9 (13.3) 67.4 (13.1) 71.8 (13.6)

p = m× h× w = 8× 4× 4

frames/clip LEM+dJ LEM+dB LEM+dH LEM+dBR
20 54.0 (12.5) 54.6 (12.7) 60.8 (12.2) 66.3 (12.7)

25 57.7 (14.0) 57.7 (13.9) 64.7 (13.2) 69.5 (13.2)

30 59.5 (13.4) 59.5 (13.2) 66.3 (12.5) 70.5 (12.6)

35 59.5 (13.4) 59.5 (13.2) 66.3 (12.5) 70.5 (12.6)

Tables (1) and (2) show that, under the embeddings of cMDS and LEM with
dJR and dBR, the clustering accuracy is consistently superior to the accuracy of
both algorithms with other divergence measures. This implies that the embed-
ding spaces obtained via the new proposed measures can better characterize the
cluster structure in the data, and hence the high clustering accuracies in Tables
(1) and (2). Another observation to note from Tables (1) and (2) is that the
clustering accuracies under the embedding of cMDS and LEM with dH (which
is a metric) are higher than the accuracies obtained with the same algorithms
but using dJ and dB. Again, this implies that the obtained embedding space
via dH can better characterize the cluster structure in the data. However, when
comparing dH on one hand, versus dJR and dBR on the other, we note that
the embeddings obtained via dH yield consistently lower performance than dJR
and dBR do. In our understanding, this is due to its measure for the difference
between covariance matrices7, (2− 2|Γ |− 1

2 |Σ1|
1
4 |Σ2|

1
4 )

1
2 , which is not a metric

on Sp×p
++ and hence it violates its geometry.

The low performance for dJ and dB with both algorithms when compared
to the other divergence measures is again due to their lack of metric properties
(in particular the triangle inequality), which in turn impacts the characteristics
preserved (or relinquished) by the embedding procedure. Note that the difference
in performance is more clear for the cMDS case in Table (1). None of dJ and
dB them is a true metric, and hence, they can result in embeddings that do not
preserve the relative dissimilarities among all objects assigned to the graph’s
vertices. This can easily collapse a group of objects to be very close to each other
in the embedding space thereby misleading the k–Means clustering algorithm.

In summary, it can be seen that, on the same data sets, and despite the
differences between cMDS and LEM as dimensionality reduction algorithms,
both algorithms showed consistent and identical behaviour in terms of relative

7 By setting μ1 = μ2 = μ in dH(G1,G2).
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responses to the different divergence measures discussed here which validates
our hypothesis with regards to the proposed metrics dJR and dBR.

5 Concluding Remarks

Our research presented here is motivated by the following question: Do metric
properties of divergence measures have an impact on the output hypothesis of
a learning algorithm, and hence on its performance? In this paper, we tried to
answer this question through the following: First, we analyzed some well known
divergence measures for the particular case of multivariate Gaussian densities
since they are pervasive in machine learning and pattern recognition. Second,
based on our analysis, we proposed a simple modification to two well known
divergence measures for Gaussian densities. The modification led to two new
distance metrics between Gaussian densities in which their constituting elements
respect the geometry of their corresponding spaces. Next, we showed how the
metric properties can impact the graph embedding process of manifold learning
algorithms, and demonstrated empirically how the proposed new metrics yield
better embedding spaces in a totally unsupervised manner.

Our study suggests that metric properties of divergence measures constitute
an important aspect of the model selection question for divergence based learning
algorithms. Further, the proposed metrics developed here are not restricted to
manifold learning algorithms, and they can be used in various contexts, such as
metric learning, discriminant analysis, and feature selection to mention a few.
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Abstract. M-trees are well-know structures used to speed-up queries in 
databases. In this paper, we evaluate the applicability of m-trees to graph 
databases. In classical schemes based on metric-trees, the routing information 
kept in a metric-tree node is a selected element from the sub-cluster that 
represents. Nevertheless, defining a graph that represents a set of graphs is not a 
trivial task. We evaluate different graphs-class prototype as routing nodes in the 
metric tree. The considered prototypes are: Median Graphs, Closure Graphs, 
First-Order Random Graphs, Function-Described Graphs and Second-Order 
Random Graphs. 

Keywords: Metric-tree, Graph Indexing, Median Graph, First-Order Random 
Graph, Function-Described Graph, Second-Order Random Graph. 

1 Introduction 

Indexing structures are fundamental tools in database technology; they are used to 
obtain efficient access to large collections of elements. Traditional image database 
systems manage global properties of images, such as histograms [1]. Many techniques 
for indexing one-dimensional data sets have been defined. Since a total order function 
over a particular attribute domain always exists, this ordering can be used to partition 
the data and moreover it can be exploited to efficiently support queries. Several multi-
dimensional indexes have appeared, such as, colour, texture, shape, with the aim of 
increasing the efficiency in executing queries on sets of objects characterized by 
multi-dimensional features. 

Effective access to image databases requires queries addressing the expected 
appearance of searched images [2]. To this end, it is needed to represent the image as 
a set of entities and relations between them. The effectiveness of retrieval may be 
improved by registering images as structural elements rather than global features [3, 
4]. In the most practiced approach to content-based image retrieval, the visual 
appearance of each spatial entity is represented independently by a vector of features. 
Mutual relationships between entities can be taken into account in this retrieval 
process. Thus, local entities and mutual relationships may be considered to have the 
same relevance and to be defined as parts of a global structure that captures mutual 
                                                           
* This research is supported by Consolider Ingenio 2010: project CSD2007-00018 & by the 
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dependencies [5]. In this case, the model of content takes the structure of an 
Attributed Graph. 

While the distance between two sets of independent features can be computed in 
polynomial time [6,7], the exact distance between two graphs is computed in 
exponential time with respect to the number of nodes of the graphs. Although some 
sub-optimal solutions have been presented to compare a pair of graphs, in which, the 
computational complexity is reduced to polynomial cost, few contributions of 
practical interest have been proposed supporting the application of graphs to content-
based retrieval from image databases [8, 9]. 

Out of the specific context of content-based image retrieval, the problem of 
comparing an input graph against a large number of model graphs has been addressed 
in several approaches. In some applications, the classes of objects are represented 
explicitly by a set of graphs, which means that a huge amount of model graphs must 
be matched with the input graph and so the conventional error-tolerant graph 
matching algorithms must be applied to each model-input pair sequentially. As a 
consequence, the total computational cost is linearly dependent on the number of 
model graphs and exponential (or polynomial if suboptimal methods are used) with 
the size of the graphs. For applications dealing with large databases, this may be 
prohibitive. To alleviate these problems, some attempts have been designed with the 
aim of reducing the computational time of matching the unknown input patterns to the 
whole set of models from the database. Those approaches assume that the graphs that 
represent a cluster or class are not completely dissimilar in the database and, in this 
way, only one structural model is defined from the graphs that represent the cluster. 
These structures are called Graph-Class Prototypes. In the classification process, only 
one comparison is needed for each cluster. 

In this paper, we evaluate an indexing scheme, modelled by an m-tree, in which the 
cluster knowledge embedded in each node of the m-tree is represented by one of the 
six Graph-Class Prototypes presented in the literature. The different representations of 
Graph-Class Prototypes are: 1) Set Median Graph [8]; 2) Generalise Median Graph 
[10, 11, 12, 13] synthesised through a hierarchical method [14], synthesised through a 
genetic algorithm [15] or synthesised through an extension of the Graduated 
Assignment algorithm [16]; 3) First-Order Random Graphs [17]; 4) Function-
Described Graphs [18, 19]; 5) Second-Order Random Graphs [20]; 6) Closure Graphs 
[21]. Moreover, we evaluate two types of graph queries; the ones that the user 
imposes the number of graphs to be queried and the ones that the user imposes the 
maximum distance between the query graph and the returned graphs. It is not the aim 
of this paper to explain the structural representation of each graph prototype but to 
evaluate its representational power in metric trees. Some of the methods presented in 
this paper have been presented in [14, 23] but only applied to Median Graphs. The 
aim of this paper is to evaluate the representational power of the Graph-Class 
Prototypes presented in the literature. 

In this paper, we have performed more experiments with more databases and we 
have put together both types of queries and we have used more Graph-Class 
Prototypes with the aim of obtaining a more general results and conclusions. 
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The rest of the paper is organised as follows. In section 2, we comment the few 
approaches that have been presented for indexing Attributed Graphs. In chapter 3, we 
introduce metric-trees. In section 4, we explain the methods used to synthesise the 
graph prototypes. In section 5, we experimentally evaluate the graph prototypes as 
routing elements of m-trees. We finish the paper drawing some conclusions. 

2   Indexing Databases of Graphs 

Some indexing techniques have been developed for graph queries. We divide these 
techniques into two categories. In the first ones, the index is based on several tables 
and filters [25, 26]. In the second ones, the index structure is based on m-trees 
[8,21,27]. 

In the first group of techniques, the ones that are not based on trees, we emphasize 
the method developed by Shasha et. al. [26] called GraphGrep. GraphGrep is based 
on a table in which each row stands for a path inside the graph (up to a threshold 
length) and each column stands for a graph. Each entry in the table compounds to the 
number of occurrences of a particuar path in the graph. Queries are processed in two 
phases. The filtering phase generates a set of candidate graphs for which the count of 
each path is at least that of the query. Since indexing schemes based on paths do not 
ensure graph isomorphism, in a verification phase, each candidate is strictly compared 
to the query graph and only isomorphic graphs are returned. More recently, Yan et. al. 
[25] proposed GIndex that uses frequent patterns as indexing features. These frequent 
patterns reduce the index space as well as improve the filtering rate. The main 
drawback of these models is that the construction of the indices requires an exhaustive 
enumeration of the paths or fragments that increases the memory and time 
requirements of the model. Moreover, since paths or fragments carry little information 
about a graph, the lost of information at the filtering step seems to be unavoidable. 

Considering the second group, the first time that metric trees were applied to graph 
databases was done by Berretti et. al. [8]. Attributed graphs were clustered 
hierarchically according to their mutual distances and indexed by m-trees [22]. 
Queries are processed in a top-down manner by routing the query along the index 
tree. Each node of the index tree represents a cluster and it has one of the graphs of 
the cluster as a representative. The graph matching problem, in the tree construction 
and at query time, was solved by an extension of the A* algorithm that uses a look-
ahead strategy plus a stopping threshold. A drawback of this method is that the 
computational cost is exponential respect the number of nodes in the graphs. Lee et. 
al. [27] used this technique to model graphical representations of foreground and 
background scenes in videos. The resulting graphs were clustered using the edit-
distance metric, and similarity queries were answered using a multi-level index 
structure. 

More recently, He and Singh [21] proposed what they called a Closure-tree. It uses 
a similar structure than the one presented by Berretti [8] but, the representative of the 
cluster was not one of the graphs but a graph prototype (called closure graph) that 
could be seen as the union of the Attributed Graphs that compose the cluster. The 
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structurally similar nodes that have different attributes in the graphs are represented in 
the Closure graph with only one node but with more than one attribute. Closure trees 
have two main drawbacks. First, they can only represent discrete attributes at nodes of 
the attributed graphs. Second, they tend to generalize too much the set of graphs they 
represent, allowing graphs that have not been used to synthesize the closure graph.  

Finally, Median Graphs have been used as a new prototype to represent Attributed 
Graphs in [14, 15]. More specifically, in [14], they defined queries in which a 
maximum distance between the query and the graphs was considered. And in [23], 
they performed k-nearest neighbour queries. 

3   Database Indexing Based on Metric-Trees 

A metric-tree (m-tree) [22] is a scheme to partition a database in a hierarchical set of 
clusters, collecting similar objects. Each cluster has a routing object and a radius 
providing an upper bound for the maximum distance between the reference object and 
any other object in the cluster. Triangle inequality can be used during the access to the 
database to prune clusters that are bound out of an assigned range from the query. 

Formally, a metric-tree is a tree of nodes. Each node contains a fixed maximum 
number of m entries, < node > := {< entry >}m. In turn, each entry is constituted by a 
routing element M; a reference to the father rH of a sub-index containing the element 
in the so-called covering region of M; and a radius dM providing an upper bound for 
the distance between M and any element in its covering region, < entry > := {M, rM, 
dM}. During retrieval of an element Q, triangular inequality is used to support efficient 
processing of queries. To this end, the distance between Q and any element in the 
covering region of a routing element M can be max-bounded using the radius dM plus 
the distance between Q and M. 

Two different types of queries can be performed to databases organised by m-trees: 
k-Nearest-Neighbour queries [23] and Similarity queries [14]. The aim of the k-
Nearest Neighbour Queries is to retrieve the k elements in a database that have 
minimum distance between them and the query element. On the contrary, the aim of 
the Similarity queries is to retrieve all the elements in the database which its distance 
to the queried element is lower than a threshold dmax.  

The m-tree can be constructed using different schemes for the insertion of a new 
element and the selection of the routing element [22]. In this paper, we use a general 
construction methodology from which we are able to construct an m-tree 
independently of the type of the routing element. We use a non-balanced tree 
constructed through a hierarchical clustering algorithm and complete linkage 
clustering [24]. In this way, given a set of graphs, the distance matrix over the whole 
set is computed and then a dendogram is constructed. Using the dendogram and some 
horizontal cuts, a set of partitions that clusters the graphs in the database is obtained. 
With these partitions the m-tree is generated. Finally, the information on the routing 
elements in the m-tree is inserted, M and dM. 

In our case, M is a Graph-Class Prototype and dM is the maximum distance 
between the Graph Prototype and any of the graphs in the covering region. Figure 1 
shows an example of a dendogram. Elements Gi are placed on the leaves of the 
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Fig. 1. Example of a dendogram       Fig. 2. The obtained m-tree 

dendogram and the routing elements Mj are placed on the junctions between the cuts 
and the horizontal lines of the dendograms. Dendogram of figure 1 defines 4 different 
partitions. Figure 2 shows the obtained m-tree. Note that in some tree nodes, there are 
Class-Graph Prototypes (Mj) together with original graphs (Gi).  

4   Synthesis of Graph Prototypes Related to Metric-Trees 

Two types of methods exist to generate Graph Prototypes from a given set of graphs 
[18, 20]. We assume the structure of the metric-tree has been computed (section 3) 
and we have to compute the Graph Prototype and the radius of the cluster dM. The 
first method is based on a hierarchical synthesis. The second one is based on a Global 
Synthesis based on a Common Labelling [28, 29, 30]. 

In the Hierarchical method, each Graph Prototype is computed only using two 
Graph Prototypes or Attributed Graphs at a time. Therefore, a Common Labelling is 
not needed and Graph Prototypes are computed as pairwise consecutive computations 
of other Graph Prototypes obtained in lower levels of the tree.  

In the Global Synthesis, each Graph Prototype is computed using the whole set of 
Attributed Graphs in the cluster that the m-tree node represents, independently of 
whether the m-tree node has other nodes as descendants in the tree. The first step of 
this method computes a Common Labelling from the Attributed Graphs of the sub-
cluster and the second step obtains the Graph Prototype. In this paper, we have used 
two different Common Labelling algorithms, which have the main feature that are 
independent of the prototype graph to be synthesised. The first one is based on the 
Graduated Assignment [16] and the second one is based on a genetic algorithm [15]. 

Note that the Set Median is a special prototype since it does not need to be 
synthesised. The Set Median is the graphs of the cluster that has the minimum 
distance between it and the other graphs. 

5   Practical Evaluation 

Test Parameters: In each test, only one m-tree is constructed with 50 graphs of the 
reference set. The parameters used to construct each m-tree are: 
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- Evaluated Datasets: COIL, Letter (low), Letter (high) and GREC. 
- Type of routing element: Set Median [8], Hierarchical Median [14], Genetic 

Median [15], Graduated Assignment Median [16], Closure Graph [21], 
Function Described Graph [18], First Order Random Graph [17] and Second 
Order Random Graphs [20]. 

- Number of dendogram partitions: 7. The partitions are the number of cuts 
used to generate the m-tree (section 3). This number also corresponds to the 
levels of the m-tree. Distances to set the cuts are (see figure 1); distance of 
cut 0 = Dmax, distance of cut 1 = Dmax·6/7, distance cut 2 = Dmax·5/7, ... 
distance of cut 6 = Dmax/7. Where Dmax is the maximum distance of any two 
graphs of the m-tree. 

Parameters for each query are: 
- Graph query. The graph has been extracted from the test set. 
- Number of queries: 50. Results values are the mean of these 50 queries. 
- Metric-tree. 

o If k-NN query:  Number of elements to be retrieved: k = 3. 
o If similarity query: Range of the query: dmax = 0.6·Dmax.  

Evaluation Indices: Three indices have been used: Access ratio, Precision and 
Recall. Access ratio evaluates the capacity of the m-tree to properly route the queries 
[14, 23]. It is obtained as the normalised number of accessed nodes and leaves of the 
m-tree given a query. Precision is the fraction of retrieved documents that are relevant 
to the search and Recall is the fraction of the documents that are relevant to the query 
that are successfully retrieved. Ground truth of precision and recall are computed by 
exhaustive search of the elements in the dataset. Note that Precision and Recall values 
depend on the construction of the m-tree due to we use sub-optimal algorithms to 
synthesise the prototypes and to compute dM. In addition, at query time, since 
distances are also sub-optimally computed, the algorithm may violate triangle 
inequality restrictions and so return not accurate results.  

Datasets: COIL, Letter (low), Letter (high) and GREC (presented in [31]). The 72 
images of each element of COIL dataset have been clustered in 4 classes instead of 
one class. Each class is composed by 18 consecutive images. 

Results: Tables 1 and 2 show the access ratio in nearest neighbour and similarity 
queries. Lower is the access ratio faster is the query. Besides, if the access ratio is 
greater than 1, the number of comparisons done using the m-tree is higher than if 
there was no m-tree and the graphs of the whole database where all compared. This 
situation does not appear in the K-nn queries, which means that it is worth to structure 
the database in an m-tree. On the contrary, some values of table 2 (similarity query) 
are greater than 1. To reduce this problem, dmax whole have to be reduced but we 
preferred to use the same value for all the experiments for the compactness of the 
result values. Besides, some cells of table 2 have value 0.02. This is because, given a 
query, only the root node of the m-tree is explored. Considering that the m-tree has 
been built using 50 graphs, the value comes from 0.02 = 1/50. Again, this problem 
could be solved by adapting dmax value to each Graph-Class Prototype. 

In general, Median Graphs are the prototypes with better access ratio. So, they 
obtain faster queries (except for the commented extreme values, 0.02). 
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Table 1. Access ratio on nearest neighbour queries 

Access Ratio (k=3) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.54 0.34 0.35 0.45 

Generalise Median Hierarchical 0.38 0.31 0.33 0.37 

Generalise Median Genetic 0.40 0.38 0.36 0.57 

Generalise Median  0.44 0.34 0.37 0.40 

Closure Graph  0.65 0.33 0.57 0.80 

FORG Graduated 0.42 0.35 0.42 0.47 

SORG Assignment 0.35 0.33 0.36 0.38 

FDG  0.45 0.36 0.45 0.56 

Table 2. Access Ratio on similarity queries 

Access Ratio (similarity) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.02 1.03 1.46 0.06 

Generalise Median Hierarchical 0.47 0.99 1.34 1.07 

Generalise Median Genetic 0.92 1.65 1.66 0.78 

Generalise Median  0.89 0.98 1.30 0.94 

Closure Graph  0.02 0.02 0.02 0.02 

FORG Graduated 0.02 0.02 0.02 0.02 

SORG Assignment 0.02 2.27 2.78 0.02 

FDG  0.02 0.47 0.04 0.02 

 
Tables 3 and 4 show the mean precision. SORGs and Closures are the prototypes 

that obtain the best results although there are other prototypes with similar values. In 
general, prototypes computed using the Graduated Assignment obtains better results 
than the Hierarchical and Genetic synthesis. Considering values on tables 1 and 3  
(k-NN), we can conclude that the probabilistic prototypes are slower but obtain 
greater precision. And considering values on tables 2 and 4 (similarity), we realise 
that the fact that some queries only explore the root node penalises the obtained 
precision. 

Table 3. Precision on nearest neighbour queries 

Precision (k=3) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.46 0.76 0.42 0.48 

Generalise Median Hierarchical 0.37 0.62 0.34 0.22 

Generalise Median Genetic 0.11 0.16 0.22 0.34 

Generalise Median  0.32 0.94 0.46 0.32 

Closure Graph  0.62 0.98 0.38 0.59 

FORG Graduated 0.58 0.86 0.42 0.57 

SORG Assignment 0.65 0.81 0.50 0.37 

FDG  0.48 0.84 0.44 0.53 
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Table 4. Precision on similarity queries 

Precision (similarity) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.75 0.99 0.99 0.78 

Generalise Median Hierarchical 0.81 0.99 0.99 0.98 

Generalise Median Genetic 0.89 1 0.99 0.92 

Generalise Median  0.99 0.99 0.99 0.97 

Closure Graph  0.75 0.62 0.74 0.77 

FORG Graduated 0.75 0.62 0.74 0.77 

SORG Assignment 0.75 1 1 0.77 

FDG  0.75 0.82 0.78 0.77 

 
Finally, tables 5 and 6 show the recall results. In general, probabilistic prototypes 

obtain greater recall than non-probabilistic ones, except in some cases. Note that in 
cases that the access ratio is 0.02, the recall is always 1. This is because, if all graphs 
of the database are accepted, then the recall has to be 1 by definition. 

Table 5. Recall on nearest neighbour queries 

Recall (k=3) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 0.26 0.58 0.32 0.50 

Generalise Median Hierarchical 0.24 0.48 0.26 0.22 

Generalise Median Genetic 0.06 0.12 0.18 0.34 

Generalise Median  0.18 0.72 0.36 0.34 

Closure Graph  0.38 0.76 0.30 0.60 

FORG Graduated 0.38 0.66 0.32 0.58 

SORG Assignment 0.40 0.62 0.38 0.38 

FDG  0.30 0.64 0.32 0.54 

Table 6. Recall on similarity queries 

Recall (similarity) Synthesis COIL Letter L Letter H GREC 

Set Median ---- 1 0.99 1 0.99 

Generalise Median Hierarchical 1 1 0.98 0.90 

Generalise Median Genetic 0.92 1 1 0.96 

Generalise Median  1 0.98 0.98 0.90 

Closure Graph  1 1 1 1 

FORG Graduated 1 1 1 1 

SORG Assignment 1 1 1 1 

FDG  1 0.60 0.90 1 
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Table 7 summarises the results presented in the last 6 tables. Each value is the 
average of the eight corresponding values. Statistically best values are bolded. FORGs 
obtain the fastest queries (lower access ratio). Generalise Median (with Graduated 
Assignment) and SORGs obtain the greatest Precision. Closure Graphs, FORGs and 
SORGs obtain the greatest Recall. Finally, SORGs obtain the best F-measure. 

Table 7. Average results of Access Ratio, Precision, Recall and F-measure 

 Synthesis Access Precision Recall F-measure 

Set Median ---- 0.53 0.70 0.70 0.70 

Generalise Median Hierarchical 0.65 0.66 0.63 0.64 

Generalise Median Genetic 0.84 0.57 0.57 0.57 

Generalise Median  0.70 0.74 0.68 0.71 

Closure Graph  0.30 0.68 0.75 0.71 

FORG Graduated 0.21 0.66 0.74 0.70 

SORG Assignment 0.81 0.73 0.72 0.72 

FDG  0.29 0.64 0.32 0.67 

6   Conclusions 

We have evaluated a graph indexing technique based on metric-trees and several 
Graph-Class Prototypes. Specifically, we have studied the behaviour of Graph-Class 
Prototypes as routing elements of m-trees. Several papers have been published that 
compare the accuracy of the evaluated prototypes. In this paper, we evaluated the 
goodness of those prototypes on speeding-up queries on graph databases. The 
evaluation has been performed using four different datasets with different 
characteristics. We see from the practical validation that probabilistic prototypes seem 
to achieve better results on k-nn queries. On the contrary, the Generalise Median 
together with the Set Median seem to give better results on similarity queries at the 
cost of giving a larger access ratio. Up to now, Set Median Graphs and Closure 
Graphs where the only prototypes used as routing elements of metric trees. The 
general conclusion of this work is that other existing Graph-Class Prototypes can also 
be successfully used as routing elements of metric trees in graph databases.  
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Abstract. This paper develops PAC (probably approximately correct)
error bounds for network classifiers in the transductive setting, where
the network node inputs and links are all known, the training nodes class
labels are known, and the goal is to classify a working set of nodes that
have unknown class labels. The bounds are valid for any model of network
generation. They require working nodes to be selected independently, but
not uniformly at random. For example, they allow different regions of the
network to have different densities of unlabeled nodes.

Keywords: network classifier, collective classification, validation, error
bound, worst likely assignment.

1 Introduction

Networks play fundamental roles in our lives. A network of interactions among
genes determines how our bodies grow. Neural networks enable us to think and
learn. We participate in social networks. The ecosystem we live in is a com-
plex web of interactions between all living things and our shared environment.
Electrical grids supply power; transportation systems bring us goods, and the
internet supports information sharing around the world.

Data analysis based on networks has a deep history in social science and
telecommunications. Networks are emerging as a basis for data analysis in many
other fields, including biology, economics, and engineering [10]. Network data
analysis builds on well-established foundations in graph theory [4], including
study of small-world [17,16] and other random graphs [3], and statistics [7],
including analysis of Markov chains.

Classification of network data [12,9,18], sometimes called collective classifica-
tion [14], is an emerging sub-field of machine learning. Collective classification
techniques have been developed for these transductive network classification
problems. These techniques include Loopy Belief Propagation or the Iterative
Classification Algorithm [13], which assign an initial set of labels to working
nodes, then iteratively apply a model to re-label working nodes based on their
network neighbors’ input data and labels. Other collective classification tech-
niques, such as Weighted-Vote Relational Classifiers [11], can also be applied
in the transductive setting. For a study comparing some collective classification
techniques, refer to [14].

In machine learning, data usually consists of examples, each containing input
data and output data. In classification problems, the output is a label that
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takes one of a finite set of values. To illustrate, consider a medical application.
Each example corresponds to a person. The input data include the person’s age,
gender, and levels of some proteins measured in their blood. The output label
indicates whether the person has a certain type of infectious disease.

In classification, there is a set of in-sample training examples with known
labels and a set of out-of-sample test examples with unknown labels. The training
examples are used to develop a classifier, which is used to label the test examples.
(The classifier is a function that maps from example inputs to labels.) The
primary goal of classification is accuracy – developing a classifier that has a low
error rate on the test examples. A secondary goal is to validate classifier accuracy
– producing probabilistic error bounds for the classifier. Since accuracy is the
primary goal, we prefer to use all available examples for training, introducing
the challenge that we lack independent data for validation.

This paper addresses classification problems with network data, where the in-
puts include links. In our example, a link between two people could indicate they
share a water source. In traditional machine learning, examples are assumed to
be drawn i.i.d. from an underlying joint input-output distribution. With net-
work data, this is often not the case. For example, medical researchers may have
invited an initial ”seed” set of people to join the study and be represented by
network nodes, and then participants may have invited people they know to join
the study, growing the network by non-uniform sampling.

In the transductive setting for machine learning [15,6], the test example inputs
are available for training; only the test labels are unknown. In the transductive
setting, the test examples are called working examples. This paper focuses on
collective classifier validation in the transductive setting, where all node input
data and links are known, the training node labels are known, and only the
working node labels are unknown. The classifier may take advantage of training
node inputs and labels, all links, and working node inputs.

This paper develops worst likely assignment error bounds [2] for network
classifiers. These error bounds validate a classifier by computing how much an
assignment of labels to the working nodes may disagree with the classifier’s labels
and still be likely to be the actual unknown labels, according to some statistical
criteria. The statistics are based on the fact that training and working nodes
are interchangeable a priori, so it is unlikely that the unknown labels for the
working examples have very different statistics than the known labels for the
training examples.

This paper is organized as follows. Section 2 develops an error bound algorithm
and some variations. Section 3 presents experimental results showing bound
effectiveness. Then Section 4 concludes with ideas for future work.

2 Algorithms

This section presents algorithms to compute error bounds for network classifiers
based on worst likely assignments. Subsection 2.1 develops a basic algorithm
that is effective for problems with small working sets but requires too much
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computation for larger problems. Subsection 2.2 develops an algorithm for larger
problems, using the basic algorithm as a component. Subsection 2.3 shows how
to modify the algorithm to control the relationship between component and
whole-network bound failure probabilities. Subsection 2.4 shows how to adapt
the algorithms for network labeling processes where different nodes have different
probabilities of being selected for the working set.

2.1 Basic Algorithm

Let n be the number of nodes in the network. Let (X1, Y1), . . . , (Xn, Yn) be the
input-label pairs for the nodes. The inputs may be from any domain. The labels
are drawn from a finite set.

Assume all network nodes and links are known, and all node inputs Xi are
known. Assume some node labels Yi are known and others are unknown. Refer
to nodes with known labels as training nodes and nodes with unknown labels
as working nodes. (Working nodes are sometimes called test nodes.) Define T to
be the set of training nodes and W to be the set of working nodes. Let t = |T |
and w = |W |.

For now, suppose that the working set was selected by applying i.i.d. Bernoulli
trials to the nodes, with success indicating the node is a working node and failure
indicating the node is a training node. Then each training-working split with t
training and w working nodes is equally likely. (The constraint that all nodes
are equally likely to be working nodes will be removed later, in Subsection 2.4.)

The algorithm uses a concept of continuous rank to assess likelihood. Define
the continuous rank r(s0, {s0, . . . , sm−1}) of a value s0 among values s0, . . . , sm−1

to be the sum of

– The number of values in s1, . . . , sm−1 less than s0,
– a value drawn uniformly at random from the integers zero to the number of

values in s1, . . . , sm−1 equal to s0, and
– a value drawn uniformly at random from the real numbers in [0, 1].

Note that if s0, . . . , sm−1 are drawn i.i.d., then r(s0, {s0, . . . , sm−1}) is uniformly
distributed over the real numbers in [0,m].

The basic algorithm is:

1. Select bound failure probability δ > 0. Select sample size m > 0. Choose
m − 1 comparison training-working splits (T1,W1), . . . , (Tm−1,Wm−1) uni-
formly at random from the

(
t+w
t

)
splits that have t training and w work-

ing nodes. Either choose them without replacement and prohibit the ac-
tual training-working split (T,W ), or choose them with replacement. Let
(T0,W0) = (T,W ).

2. Use a set M to store error counts for likely assignments. Initially, M = ∅.
3. Let A be the set of assignments a′ that agree with the labels on nodes in T

and assign any labels to the nodes in W . ∀a′ ∈ A:
(a) Assign a′ to the node labels.



Validation of Network Classifiers 451

(b) Train g0, . . . , gm−1, using T0, . . . , Tm−1 as the training nodes and
W0, . . . ,Wm−1 as the working nodes. (The training procedure for gi may
use all node inputs, all links, and the labels on Ti, but not the labels onWi.)

(c) For i ∈ {0, . . . ,m − 1}, let score si be the number of errors gi makes
when classifying the nodes in Wi under assignment a′:

si =
∑
x∈Wi

I(gi(x) �= a′(x)),

where x is a node, I() is the indicator function – one if the argument is
true and zero otherwise, and a′(x) is the label a′ assigns to x.

(d) If
r(s0, {s0, . . . , sm−1}) ≤ (1− δ)m,

then insert s0 into set M , because a′ is a likely assignment: a′ ∈ L.
4. Return maxM as the error bound, because it is the maximum error count

for a likely assignment.

Theorem 1. With probability at least 1− δ, the basic algorithm returns a valid
error bound:

�{
∑
x∈W

I(g(x) �= a(x)) ≤ maxM} ≥ 1− δ,

where maxM is the value returned by the basic algorithm, g is the algorithm’s
g0 when a′ = a, and a(x) is the actual (unknown) label for x.

Proof. Let si(a
′) be the value of si for assignment a′ in the algorithm. Then the

theorem states:
�{s0(a) ≤ maxM} ≥ 1− δ.

At the end of the algorithm,

M = {s0(a′)|r(s0(a′), {s0(a′), . . . , sm−1(a
′)}) ≤ (1− δ)m}.

Since each training-working split with t training and w working nodes is equally
likely to be each of (T0,W0), . . . , (Tm−1,Wm−1), the values s0(a), . . . , sm−1(a)
are i.i.d. So

r(s0(a), {s0(a), . . . , sm−1(a)}) ∼ U(0,m).

Hence
�{r(s0(a), {s0(a), . . . , sm−1(a)}) ≤ (1− δ)m} = 1− δ.

So
�{s0(a) ∈M} ≥ 1− δ,

which implies
�{s0(a) ≤ maxM} ≥ 1− δ.

The basic algorithm requires O(wcm) classifier trainings, where c is the number
of different class labels, and O(wcmw) node classifications. So the basic algorithm
requires too much computation to be feasible for large working sets.
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2.2 Partition the Working Set to Speed Computation

Since the basic algorithm has running time exponential in the size of the working
set, one way to reduce computation is to partition the working set, apply the
basic algorithm to each partition, and combine error bounds over partitions to
produce an error bound over the whole working set. When applying the basic
algorithm to a subset of the working nodes, the remaining working nodes are
also unlabeled. Modify the basic algorithm to accommodate these reserved nodes
as follows:

– Withhold the reserved nodes from all training-working splits, so all compar-
ison splits have the same reserved nodes.

– Leave the reserved nodes unlabeled in assignments a′.
– Allow the training procedure to use the reserved nodes, but not their labels,

which are unknown.

The partitioning algorithm is:

1. Select bound failure probability δ > 0.
2. Partition the working set W into subsets W 1, . . . ,W p.
3. For each partition W i, apply the basic algorithm, using δp = δ

p as the bound

failure probability and W −W i as the reserved nodes. Let bi be the bound
returned.

4. Return b1 + . . .+ bp as an error bound.

Theorem 2. With probability at least 1 − δ, the partitioning algorithm returns
a valid error bound:

�{
p∑

i=1

∑
x∈W i

I(gi(x) �= a(x)) ≤ b1 + . . .+ bp} ≥ 1− δ,

where gi is the classifier trained as g0 in the modified basic algorithm when
a′ = a, with working set W i and reserved nodes W −W i.

Note that for most (non-random) training procedures, g1, . . . , gp are the same
classifier, because each g0 classifier training in the modified basic algorithm ig-
nores all labels in W .

Proof. By Theorem 1,

∀i ∈ {1, . . . , p} : �{
∑

x∈W i

I(gi(x) �= a(x)) ≤ bi} ≥ 1− δ

p
.

So

∀i ∈ {1, . . . , p} : �{
∑

x∈W i

I(gi(x) �= a(x)) > bi} ≤
δ

p
.

Using sum bounds on the probability of a union:

�{∃i ∈ {1, . . . , p} :
∑

x∈W i

I(gi(x) �= a(x)) > bi} ≤ p
δ

p
= δ.
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So
�{∀i ∈ {1, . . . , p} :

∑
x∈W i

I(gi(x) �= a(x)) ≤ bi} ≥ 1− δ,

and this implies

�{
p∑

i=1

∑
x∈W i

I(gi(x) �= a(x)) ≤ b1 + . . .+ bp} ≥ 1− δ.

The partitioning algorithm requires O((|W 1|c+. . .+|W p|c)m) classifier trainings
and O((|W 1|c+1 + . . . + |W p|c+1)m) node classifications. So as the number of
partitions increases, the computation required decreases. The tradeoff is weaker
bounds, because δ is divided by the number of partitions to produce δp, the
bound failure probability in the basic algorithm for each partition.

2.3 Use Nearly Uniform Validation to Strengthen Bounds

One way to prevent slicing δ too thinly over partitions is to employ nearly uni-
form error bounds [1]. Instead of insisting that all partition bounds bi hold to
ensure that the sum bound b1 + . . . + bp holds, nearly uniform bounds allow
some partition bound failures. For example, suppose one partition bound failure
is allowed. Then the error bound b1 + . . .+ bp becomes

b1 + . . .+ bp +max
i

(|W i| − bi),

since when a partition bound fails, all nodes in the partition may be misclassified.
Since this bound accounts for a single failure, it is invalid only if there are two or
more partition bound failures. The distribution that maximizes the probability
of two or more failures has each single bound failure accompanied by exactly
one more. So the worst-case probability of two or more failures is at most p

2δp,
where δp bounds each single-bound failure probability. (Recall that the worst-
case probability of one or more failures is pδp.) So

�{
p∑

i=1

∑
x∈W i

I(gi(x) �= a(x)) ≤ b1 + . . .+ bp +max
i

(|W i| − bi)} ≥ 1− p

2
δp,

making it possible to set partition bound failure probabilities δp = 2 δ
p and still

achieve a valid overall bound with probability at least 1− δ.
Similarly, allowing k partition bound failures produces an error bound

b1 + . . .+ bp +maxi1 �=...�=ik(
k∑

j=1

|W ij | − bij ).

Since this bound is valid with probability at least

1− p

k + 1
δp,

setting δp = (k + 1) δp for each partition achieves a valid bound with probability
at least 1− δ.
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2.4 Cohorts and Non-identical Selection for the Working Set

The error bounds and algorithms in the previous subsections require that each
node is equally likely to be unlabeled. Consider the case when there are subsets of
nodes that are equally likely to be unlabeled, but the probability varies between
subsets. Refer to each subset as a cohort. Within each cohort, nodes may be
selected for the working set by i.i.d. Bernoulli trials or by uniform selection over
subsets of a fixed size.

To illustrate, recall the example problem from Section 1. Nodes represent
people, and each label indicates whether a person has an infectious disease. Sup-
pose the study began with 100 volunteers, who all received testing for the disease.
Then suppose those volunteers recruited another 250 volunteers, of whom 100
were selected at random for testing. In this case, the initial 100 volunteers are
one cohort, and the next 250 are another.

To apply the algorithms to cohorts, limit the selection of comparison training-
working splits (T1,W1), . . . , (Tm−1,Wm−1) to splits that have the same number
of nodes from each cohort as T in each Ti and as W in each Wi. Select the
comparison splits uniformly among such splits. Then each such split is equally
likely a priori to be (T,W ). So the error bounds are valid.

Now consider the general case where nodes are selected for the working set
based on independent Bernoulli trials with different probabilities. In the algo-
rithms, select working sets for the comparison training-working splits by inde-
pendent Bernoulli trials over T ∪W , using each node’s a priori probability to
determine whether it is in the working set. Since the working sets in different
comparison splits may have different sizes, consider ranking by error rate (er-
ror count divided by size of working set) rather than error count to determine
which assignments are likely. Whether ranking by error rate or error count, when
a′ = a, the scores for (T,W ) and the comparison splits are i.i.d. over selection
of (T,W ) and the comparison splits. So the error bounds are valid.

3 Experiments

This section describes experiments using the bounds developed in this paper. The
experiments are based on a network generated at random using the procedure
outlined in Section 5.1 of [5] (with their ms = 32). The network has 1000 nodes
and 7882 edges. Each node has one of two labels.

For each of 100 trials, 400 nodes are selected to be the training set and an-
other 16 nodes are selected to be the working set. The selections are uniformly
at random and without replacement. The classifier assigns each working node
the label of the majority of its neighboring training nodes, with ties broken at
random. The test error rate is the fraction of working set examples misclassified.

For each trial, error bounds are computed for δ ∈ {0.1, 0.2, 0.3}, for num-
bers of comparison working-training sets m ∈ {100, 200}, and with and without
partitioning. With partitioning, the working set is divided in half, making 8 ex-
amples in each partition, and the bounds are computed using the algorithm in
Subsection 2.2. Without partitioning, the algorithm in Subsection 2.1 is used.
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Over the 100 trials, the test error rate averages 0.216, with standard deviation
0.098. (We state all results to three decimals.) Table 1 shows the averages and
standard deviations of differences between bounds and test error rates for the
various bound computation methods and values of δ. The table shows sample
standard deviations; standard deviations of the estimates of the means are one
tenth of these values, indicating that the differences among means are statisti-
cally significant.

The unpartitioned bounds are stronger than their partitioned counterparts –
the decreased computation bears a price in bound strength.This is partly because
δ is halved for each partition, but also because having smaller working sets in
the partitions produces weaker bounds. To see this, observe that the partitioned
bounds with δ = 0.2 are weaker than the unpartitioned bounds with δ = 0.1.
Increasing the sample size m increases bound strength for all but one bound,
but the effect is not as large as for partitioning.

Table 1. Bound - Test Error Rate

unpartitioned partitioned

m δ difference δ difference

100
0.1 0.170 ± 0.094 0.1 0.284 ± 0.097
0.2 0.113 ± 0.094 0.2 0.212 ± 0.099
0.3 0.075 ± 0.099 0.3 0.171 ± 0.098

200
0.1 0.166 ± 0.095 0.1 0.286 ± 0.102
0.2 0.108 ± 0.096 0.2 0.206 ± 0.106
0.3 0.069 ± 0.101 0.3 0.168 ± 0.096

4 Discussion

This paper presents a method to validate network classifiers, computing PAC
error bounds for a classifier over working examples in a transductive setting.
The method is based on the idea that training and working sets of nodes are
interchangeable a priori, so the likelihood of substantial differences between the
two sets is small. The method does not depend on which underlying process
generated the network. The only requirement is that whether each node is labeled
is determined independently from the labeling determination of other nodes. The
bounds do not require that labeling has the same probability for each node –
using cohorts produces error bounds when nodes in some sets are more likely
than others to be in the working set a priori.

One direction for future research is to remove the constraint that nodes are
selected independently for the working set. In practice, this constraint may not
hold. For example, in a social network, if one person provides the data to label
her node, that may encourage her friends to do the same. For some types of
correlation, it may be possible to alter the selection of comparison training-
working splits, as we do to accommodate cohorts. If a sampling technique, such
as snowball sampling [8], is known to mimic how the working set is selected,
then perhaps the technique can be used to generate comparably likely training-
working splits.
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Another challenge for future research is to develop faster algorithms. There is
an efficient algorithm to compute error bounds for 1-nearest neighbor classifiers,
based on dynamic programming [2]. The method depends on avoiding long cycles
of dependency, where the label for one example influences the classification of
another, which influences the classification of another, and so on, returning to
influence the first example. It may be possible to develop a similar error bound
algorithm for network classifiers by partitioning the examples in the working set
into subsets in which the examples do not influence one another’s classifications.
Then the error bounds over subsets could be combined to produce an error bound
over the whole working set, as in this paper.

The error bounds developed in this paper apply to the transductive setting,
where the working nodes and their links are known. In the future, it would
be interesting to extend these bounds to cases where the working nodes are
unknown. If the working nodes have a known distribution, that information could
be used to sample working nodes to develop samples of bounds. Probabilistic
error bounds can be based on the statistics over these samples. Even without a
known distribution, the training nodes may be used to estimate a distribution
for working nodes, if they are known to be drawn from the same distribution.
In some cases, with growing networks, only the most recent training nodes may
be drawn from a similar distribution to the next nodes to be drawn, which are
the nodes of interest for error bounds.
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Abstract. In this paper, we develop a tracking method for the de-
formable boundary curves of biological organs using variational regis-
tration method. We first define the relative distortion of a pair of curves
using curvatures of curves. This minimum distortion aligns correspond-
ing points of a pair of curves. Then, we derive the mean of curves as
the curve which minimises the total distortion of a collection of shapes.
We compute the intermediate boundary curve of a pair of curves as the
mean of these curves.

1 Introduction

Morphing is a fundamental technique in computer graphics to interpolate and
generate shapes and objects. In medical application, morphing is used for the
description of deformation process of biological organs. This process predicates
deformable motion of biological organs in human torso such as beating heart,
deformation of lungs during blessing. Follow up analysis of tumors in censer di-
agnosis tracks and predicates deformation of censer. In this paper, we develop
a tracking method for the deformable boundary curves of biological organs us-
ing variational registration method. This registration process between images
clarifies the difference between images which is used for medical diagnosis. This
registration process is mainly achieved by the matching process, which is an
established fundamental idea in pattern recognition. In both structure pattern
recognition [4, 5] and variational registration [1, 3], the mean shape of a collection
of given shapes is interested.
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Shape retrieval categorises and classifies shapes, and finds shapes from por-
tions of shapes. In shape retrieval, the matching of shapes based on the defomor-
phorism of shapes [8, 9, 16, 19] and descriptor of shape boundary contours [10]
are used. In the matching process for discrete shapes, the string edit-distance
[4, 6] computed by dynamic programming is a fundamental tool. Moreover, in
the matching process of images, the variational registration strategy [1, 2] is a
typical tool. Since, in registration of grey-valued images, the deformation is as-
sumed to be relatively small, the point correspondences between the target and
reference images are estimated as a local deformation of images [1–3]. For the
matching of planar curves, we are required to estimate both alignments and local
deformation of curves. In this paper, we separate this problem into alignment
estimation [16, 17] in the normalised set of curves and deformation of curves.

2 Alignment of Curves

For a pair of planar curves c(s) = (c1(s), c2(s))
� and c̄(s) = (c̄1(s), c2(s))

�,
whose lengths are C and C̄, respectively, assuming c(s+C) = c(s) and c(s+C̄) =
c̄(s), the alignment of curves is obtained as

Align(c, c̄) = min
t,ψ

∫ C

0

|c̄(ψ(s) − t)− c(s)|2ds, (1)

where ψ(τ) is a monotone function from the interval [0, C] to the interval [0, C̄]
[13, 14, 16]. The function τ = ψ(s) and the displacement t define the correspon-
dences of points on a pair of curves c(s) and c̄(τ).

The dynamic time warping (DTW) is a fundamental procedure to achieve
curve alignment employing dynamic programming [13]. The time warping some-
times maps a point on a curve to a relatively long interval of another curve.
The derivative dynamic time warping technique (DDTW) [14], which computes
alignment of derivative curves, solves this pathological mapping. Therefore, we
can also use

Align(c, c) = min
t,ψ

∫ C

0

| ˙̄c(ψ(s) − t)− ċ(s)|2ds, (2)

for the derivative of curves [14] ċ and ˙̄c.
For a planar curve Si, the normal curve si is the curve whose length are nor-

malised to unity is a normalised curve. For the normal curve x(s) the unit normal
vector is n(s) = (− sin θ(s), cos θ(s))�, if ẋ(s)/|ẋ(s)| = (cos θ(s), sin θ(s))�. We
call θ(s) the p-expression of the curve. The p-expression is invariant for Euclidean
motion, that is, for curve x(s), y(s) = x(s) + a derives the same p-expression.

We define the log measure between two normal curves as

H(θ1, θ2) =

∫ 1

0

∣∣∣∣ln exp(iθ1(s− t1))

exp(iθ2(s− t2))

∣∣∣∣2 ds, (3)
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using p-expression of each curve of a pair. Using p-expression of each curve of a
pair, the p-distance of a pair of simple polygonal curve Si and Sj is defined by

D(Si, Sj)
2 = minH(θi, θj) = min

t

∫ 1

0

|θi(s− t)− θj(s)|2ds. (4)

where θi and θj are the p-expressions of the normalised curve si and sj of Si

and Sj , respectively. Then, setting

tij = arg

(
min
t
(

∫ 1

0

|θi(s− tij)− θj(s)|2ds
)
, (5)

we define the alignment of si and sj as θi(s− tij) and θj(s).
The p-expression θ(k) of a normalised polygonal curve, whose vertices are

{xk}nk=1, is computed as

xk − xk−1

|xk − xk−1|
= (cos θ(k), sin θ(k))�. (6)

Furthermore, setting θki = θi(kΔ), the distance between a pair of normalised
curves is approximately computed by

dij ≈ min
p

m∑
k=1

|θki − θk−p
j |2 (7)

for an appropriately large m such that Δm = 1.
Next, we define the mean φij(s) of a pair of p-expressions θi(s) and θj(s) as

the minimiser of the functional

J(φi, φj , φij , ti, tj) =

∫ 1

0

{
|(θi(s− ti)− φi(s))− φij(s)|2

+|(θj(s− t2)− φj(s))− φij(s)|2

+λ|θ̇ij(s)|2 + μ|φ̇i(s)|2 + μ|φ̇j(s)|2
}
ds. (8)

Equation (8) is converted to the problem,

J2(φij) =

∫ 1

0

{
|(θi(s− tij)− φi(s)− φij(s))|2

+|(θj(s)− φj(s)− φij(s)|2

+λ|φ̇ij(s)|2 + μ|φ̇i(s)|2 + μ|φ̇j(s)|2
}
ds (9)

since tij aligns a pair of p-expressions, for a generalisation of eq. (9), the initial
points of a collection of curves are required to be aligned.
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Fig. 1. Geometric property of the image boundary of curve. (a) Configuration of the
normal and tangent vectors on a planar simple curve. (b) Morphing of temporal curves.

3 The Mean of Polygonal Curves

Assuming that the correspondence of the vertices of curves Si and Sj in a collec-
tion of curves {Sα}nα are established by minimising eq. (3), we define the distance
between a pair of polygonal curves Si = {fik}nk=1 and Sj = {fjk}nk=1 where
f·k = (x·k, y·k)

� is the vertex of the curve S· with the condition f·m+k = f·k, as

d(Si, Sj) = min
uij

k

{
m∑

k=1

{(fik − uij
k )− fjk}2 + μ

m∑
k=1

(∇uij
k )

2

}

= min
uij

k

{
m∑

k=1

{fik − (fjk − uji
k )}

2 + μ

m∑
k=1

(∇uji
k )

2

}
= d(Sj , Si), (10)

where uij
k = −uji

k is the displacement between fik and fjk and ∇ stands for the
discrete differential operation along a polygonal curve 1.

Definition 1. Setting uki to be deformation of the vertex fki of the shape Si,
the vertices g of the mean curve S of Si and Sj is the minimiser of the discrete
variational problem

J(Si(fi), S(g), Sj(fj)) = d(Si, S) + d(S, Sj) + λP (S) (11)

1 ∇gk = gk+ 1
2
− gk− 1

2
and ∇2

gk = 1
2
(gk+1 − 2gk + gk−1).
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where

d(Si, S) =

n∑
k=1

{(fik − uik)− gk}2 +
n∑

k=1

|∇|uik|2,

d(S, Sj) =

n∑
k=1

{(fjk − ujk)− gk}2 +
n∑

k=1

|∇|ujk|2, (12)

P (S) =

n∑
k=1

|∇gk|2.

Setting

D =
1

2

⎛⎜⎜⎜⎝
−2 1 0 · · · 0 1
1 −2 1 0 · · · 0
...
1 0 · · · 0 1 −2

⎞⎟⎟⎟⎠ , A =

(
I2 e
e� m

)
, M = Diag(μ, μ︸︷︷︸, λ). (13)

where e = (1, 1)�, we have the Euler-Lagrange equation of eq. (13)

(Im+1 ⊗D)s = (M−1A⊗ I2)s− (M−1 ⊗ In)c, (14)

where Ik is the k × k identity matrix and

s = (u�
i ,u

�
j , g

�)�, c = (f�
i ,f�

j ,f�
i + f�

j )�. (15)

Rewriting eq. (14) as

Bs = Ks− c, (16)

the semi-implicit discretisation of the diffusion equation

∂s

∂t
= Bs−Ks+ c (17)

derives the iteration form

(I + τK)s(k+1) = (I + τB)s(k) + τc. (18)

This iteration form implies that

g = (0n, · · · ,0n︸ ︷︷ ︸
m

, In)s
(∞), s(∞) = lim

k→∞
s(k). (19)

Setting uti and u(t+1)i to be deformations from the vertices fti of the mean
curve St+ 1

2
to vertices fti and f(t+1)i of St and St+1, respectively, we define

an interframe curve. Fig. 2 shows morphing and tracking of a temporal curve
sequence using variational mean curve.
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Definition 2. The vertices ft+ 1
2
of the intermediate shape St+ 1

2
is the min-

imiser of the discrete variational problem

J(St(ft), St+ 1
2
(ft+ 1

2
), St+1(ft+1)) = D(St, St+ 1

2
) +D(St+ 1

2
, St+1) + λP (St+ 1

2
)

(20)
where

D(St, St+ 1
2
) =

n∑
k=1

{(fik − uik)− gk}2 +
n∑

k=1

|∇|uik|2,

D(St+ 1
2
, St+1) =

n∑
k=1

{(fjk − ujk)− gk}2 +
n∑

k=1

|∇|ujk|2, (21)

P (St+ 1
2
) =

n∑
k=1

|∇gk|2.

4 Numerical Examples

Fig. 2 shows Images of the boundary curves of tumors observed in the years,
1996, 19980, 2000, 2002, and 2004.

Fig. 3 comparative results between the means and the linear averages of the
years Y . Y ∗, and Y � express the images of the year Y computed by our method
and linear average of corresponding vertices of the curve. In Fig. 4, we have
evaluated the distances D(Y, Y ∗) and D(Y, Y �). These results show our method
derives smooth intermediate curves, by computing the alignment of correspond-
ing vertices and by minimising the relative distortion of curves.

Fig. 2. Images of the boundary curves of tumors. The boundary curves observed in
the years, 1996, 19980, 2000, 2002, and 2004.
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Fig. 3. Performance evaluation. from top to bottom the original images, the means,
and the linear averages of the years Y . Y ∗, and Y 	 express the images of the year Y
computed by our method and linear average of corresponding vertices of the curve.
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Fig. 4. Evaluation. (a) For the results Fig. 3, we have evaluated the distances D(Y, Y ∗)
and D(Y, Y 	). (b) Tracking of corresponding vertices between 1996 data and 2004 data.

Fig.5 shows shape morphing results. From the boundary curves observe by
the years, 1996, 1998, 2000, 2002, and 2004, the boundary curves of the years
1996 + 1

2 , 1997 + 1
2 , 1998 + 1, 2000 + 1, and 2002 + 1 are computed. Fig. 4

(b) shows the result for tracking of corresponding vertices between 1996 data
and 2004 data. The results show that our method estimates intermediate tumor
shapes during the therapy.
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Fig. 5. Shape morphing results. from the boundary curves observe by the years, 1996,
19980, 2000, 2002, and 2004, the boundary curves of the years 1996 + 1

2
, 1997 + 1

2
,

1898 + 1, 2000 + 1, and 2002 + 1 are computed.

5 Conclusions

We first define the relative distortion of a pair of curves using curvatures of
curves. This minimum distortion aligns corresponding points of a pair of curves.
Then, we derive the mean of curves as the curve which minimises the total
distortion of a collection of shapes. We compute the intermediate boundary
curve of a pair of curves as the mean of these curves.

Our method automatically detects and tracks corresponding vertices of the
temporal-deformation curves.
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Unsupervised Clustering of Human Pose
Using Spectral Embedding
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Abstract. In this paper we use the spectra of a Hermitian matrix and the coef-
ficient of the symmetric polynomials to cluster different human poses taken by
an inexpensive 3D camera, the Microsoft ’Kinect’ for XBox 360. We construct a
Hermitian matrix from the joints and the angles subtended by each pair of limbs
using the three-dimensional ’skeleton’ data delivered by Kinect. To compute the
angles between a pair of limbs we construct the line graph from the given skele-
ton. We construct pattern vectors from the eigenvectors of the Hermitian matrix.
The pattern vectors are embedded into a pattern-space using Principal Component
Analysis (PCA). We compere the results obtained with the Laplacian spectra pat-
tern vectors. The empirical results show that using the angular information can
be efficiently used to clusters different human poses.

1 Introduction

Graph partitioning/clustering and classification is one of the most extensively studied
topics in computer vision and machine learning community. Clustering is closely related
to unsupervised learning in pattern recognition systems. Graphs are structures formed
by a set of vertices called nodes and a set of edges that are connections between pairs of
nodes. Graph clustering is grouping similar graphs based on structural similarity within
clusters. Bunke et al. [1] proposed a structural method referred to as the Weighted Min-
imum Common Supergraph (WMCS), for representing a cluster of patterns. There has
been significant amount of work aimed at using spectral graph theory [2] to cluster
graphs. This work shows the common feature of using graph representations of the data
for the graph partitioning. Luo et al. [3] have used the discriminatory qualities of a num-
ber of features constructed from the graph spectra. Using the leading eigenvalues and
eigenvectors of the adjacency matrix they found that the leading eigenvalues have the
best capabilities for structural comparison. There are a number of examples of applying
pairwise clustering methods to graph edit distances [4]. Recently, the properties of the
eigenvectors and eigenvalues of the Laplacian matrix of graph have been exploited in
many areas of computer vision. For instance, Shi and Malik [5] used the eigenvector
corresponding to second smallest (none zero) eigenvalue (also called Fielder vector) of
the Laplacian matrix to iteratively bi-partition the graph for image segmentation. The
information encoded in the eigenvectors of the Laplacian has been used for shape regis-
tration [6] and clustering. Veltkamp et al. [7] developed a shape retrieval method using
a complex Fielder vector of a Hermitian property matrix. Recent spectral approaches
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use the eigenvectors corresponding to the k smallest eigenvalues of the Laplacian matrix
to embed the graph onto a k dimensional Euclidian space [8], [9].

In this paper we propose a clustering method using the angular information and the
distance between each pair of joints, from the skeleton extracted from the Microsoft
Kinect 3D sensor [10]. We construct a Hermitian matrix using the distance as real part
and the angles between each pair of limb as imaginary part. We use the spectra of the
Hermitian matrix to cluster similar human poses. We construct a feature vector from the
eigenvalues and eigenvectors of the Hermitian matrix of the graph. Once the feature-
vectors for all the poses are to hand, we subject these vectors to Principal Component
Analysis (PCA).

The remainder of the paper is organized as follows. In Section 2 the Hermitian
matrix is defined. The symmetric polynomials are briefly reviewed in Section 3. Section
4 details the construction of the feature vectors. Experimental results are provided in
Section 5 and finally Section 6 concludes the paper.

2 Complex Laplacian (Hermitian) Matrix

A Hermitian matrix H (or self-adjoint matrix) is a square matrix with complex ele-
ments that remains unchanged under the joint operation of transposition and complex
conjugation of the elements. That is, the element in the ith row and jth column is equal
to the complex conjugate of the element in the jth row and ith column, for all indices
i and j, i.e. ai,j = aj,i. Complex conjugation is denoted by the dagger operator † i.e.
H† = H . Hermitian matrices can be viewed as the complex number extension of the
symmetric matrix for real numbers. The on-diagonal elements of a Hermitian matrix
are necessarily real quantities. Each off-diagonal element is a complex number which
has two components, and can therefore represent a 2-component measurement.

To create a positive semi-definite Hermitian matrix of a graph, there should be some
constraints applied on the measurement representations. Let {x1, x2, ..., xn} be a set of
measurements for the node-set V and {y1,2, y1,2, ..., yn,n} be the set of measurements
associated with the edges of the graph, in addition to the graph weights. Each edge then
has a pair of observations (Wa,b, ya,b) associated with it. There are a number of ways in
which the complex number Ha,b could represent this information, for example with the
real part asW and the imaginary part as y. However, here we follow Wilson, Hancock
and Luo [11] and construct the complex property matrix so as to reflect the Laplacian.
As a result the off-diagonal elements of H are chosen to be Ha,b = −Wa,be

ιya,b .
The edge weights are encoded by the magnitude of the complex number Ha,b and the
additional measurement by its phase. By using this encoding, the magnitude of the
number is the same as the original Laplacian matrix. This encoding is suitable when
measurements are angles, satisfying the conditions−π ≤ ya,b < π and ya,b = −ya,b to
produce a Hermitian matrix. To ensure a positive definite matrix, Haa should be greater
than −Σb�=a|Hab|. This condition is satisfied if Haa = xa + Σb�=aWa,b and xa ≥ 0.
When defined in this way the property matrix is a complex analogue of the weighted
Laplacian matrix for the graph.

For a Hermitian matrix there is an orthogonal complete basis set of eigenvectors
and eigenvalues i.e. Hφ = λφ. The eigenvalues λi of Hermitian matrix are real while
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the eigenvectors φi are complex. There is a potential ambiguity in the eigenvectors,
in that any multiple of an eigenvector is a solution of the the eigenvector equation
Hφ = λφ. i.e. Hαφ = λαφ. Therefore, we need two constraints for them. Firstly,
make each eigenvector of unit length vector i.e. |φi| = 1, and secondly impose the
condition arg

∑
i φij = 0.

3 Symmetric Polynomials

A symmetric polynomial is a polynomial P (x1, x2, . . . , xn) in n variables, such that if
any of the variables are interchanged, the same polynomial is obtained. A symmetric
polynomial is invariant under permutation of the variable indices. There is a special
set of symmetric polynomials referred to as the elementary symmetric polynomial (S)
that form a basis set for symmetric polynomial. Any symmetric polynomial can be
expressed as a polynomial function of the elementary symmetric polynomials. For a set
of variables x1, x2, . . . , xn the elementary symmetric polynomials can be defined as:

S1(v1, v2, . . . , vn) =
n∑

i=1

vi

S2(v1, v2, . . . , vn) =

n∑
i=1

n∑
j=i+1

vivj

...

Sn(v1, v2, . . . , vn) =

n∏
i=1

vi

The power symmetric polynomial functions (P) defined as

P1(v1, v2, . . . , vn) =

n∑
i=1

vi

P2(v1, v2, . . . , vn) =

n∑
i=1

v2i

...

Pn(v1, v2, . . . , vn) =

n∑
i=1

vni

The elementary symmetric polynomials can be efficiently computed using the power
symmetric polynomials using the Newton-Girard formula

Sr =
(−1)r+1

r

r∑
k=1

(−1)k+rPrSr−k (1)

here the shortcutSr is used for Sr(v1, v2, . . . , vn) andPr is used for Pr(v1, v2, . . . , vn).
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Fig. 1. Poses for Experiments

4 Feature Vectors

The skeleton of human body with twenty, 3-dimensional points representing the joints
connected by the lines representing the limbs, is acquired using the Microsoft Kinect
SDK. Kinect provides the skeletal data with the rate of 30 frames per second. Figure
1 shows examples of the skeletons captured with the Kinect sensor. Each point in the
skeleton is represented by a three dimensional vector wi = (xi, yi, zi)

T .
We used the limb joint angles and the limb length assigned by the Microsoft Kinect

SKD. We convert the skeleton to its equivalent line graph. The line graph of undirected
graph G is another graph that represents the adjacency between edges of G. The nodes
in the line graph represents the edges of the original graph G. We construct a Hermitian
matrix from the difference between the lengths of each pair of edges and the angles
subtended by those edges. Given two adjacent edges ei and ej , with the nodes wk−1,
wkand wk+1, where wk is the common node. The angle between the edges ei and ej is
given by

θij =
cos((wk − wk−1)

T (wk − wk+1))

||(wk − wk−1)|| × ||(wk − wk+1)||
(2)

The Hermitian matrix H has element with row index i and column index j is

H(i, j) = −Wi,je
ιθi,j (3)

whereWi,j is the difference of the lengths of the edges ei and ej and θi,j is the angle
between the edges ei and ej . To obey the antisymmetric condition θi,j = −θj,i we
multiply θi,j with −1 if length of edge ei > ej .

With the complex matrix H to hand, we compute its eigenvalues and eigenvectors.
The eigenvector of a Hermitian matrix are complex and the eigenvalues are real. We
order the eigenvectors according to the decreasing magnitude of the eigenvalues i.e.
|λ1| > |λ2| > . . . > |λn|. From the eigenvectors the symmetric polynomial coef-
ficients are computed by first computing the power symmetric polynomial. From the
power symmetric polynomials elementary symmetric polynomials are computed using
the Newton-Girard formula [11] (equation 1) as described in Section 3. We take only
the first ten coefficients as the rest of the coefficients approach to zero because of the
product terms appearing in the higher order polynomials. Since the components of the
eigenvector are complex numbers, therefore each symmetric polynomial coefficient is
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also complex. The real and imaginary components of symmetric polynomials are inter-
leaved and stacked to form a long feature vector Fi for the graph representing the pose
frame.

5 Experimental Results
In this section, we provide some experimental investigations of the clustering of differ-
ent human poses. We focus on its use in two different settings. In the first setting we
choose five different poses for the experiment which are shown in Figure 1. We take
200 different instances of each pose. We construct the feature vectors using a complex
Laplaican property matrix detailed in Section 2. We embed the graph feature vectors
into a three dimensional pattern-space by performing the PCA for visualization. Figure
3(a) shows the result of the clustering using the first three eigenvectors. We compare
our clustering result with the clustering result of the Laplacian spectral pattern vectors
[12]. Figure 3(c) shows the result of the clustering using the Laplacian spectral pattern
vectors.
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Fig. 2. Rand Indices Comparison

Under the second setting we choose first three poses shown in Figure 1 and take 100
different instances of each pose. We construct the feature vectors according to the steps
mentioned in Section 4. We then embed the feature vectors into a three dimensional
pattern-space by performing the PCA. Figure 3(b) shows the result of the clustering
using the fist three eigenvectors. We compare the result with the result of the Lapla-
cian spectral pattern vectors. Figure 3(d) shows the result of the clustering using the
Laplacian spectral pattern vectors.

The Laplacian spectral pattern vectors are formed by taking the second smallest
through to the nineteenth smallest eigenvalues of graph Laplacian as components.

Table 1 shows the Rand indices obtained when clustering is attempted using differ-
ent number of poses. The first row shows the Rand indices obtained using the Laplacian
spectral pattern vectors (referred to as Laplacian), while the second row shows the Rand
indices obtained using the pattern vectors detailed in Section 4 (referred to as Hermi-
tian). The same statistics have been shown in the Figure 2 visually which shows that the
clustering results using the angular information is better than the that of the Laplacian
spectral pattern vectors.
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Fig. 3. Performance of clustering

Table 1. Rand Indices Comparison

Rand Indices

# of poses 2 3 4 5

Laplacian 0.9189 0.8659 0.7212 0.6393
Hermitian 0.9816 0.9395 0.9042 0.8617

6 Conclusion and Future Work

In this paper we construct feature vectors for the Microsoft Kinect skeletal data from the
spectra of a Hermitian property matrix employing the angle between the limbs and the
lengths of the limbs. The empirical results show that the angular information clusters
different poses efficiently. In future, we would like to extend the Hermitian property
matrix to four components complex number representation known as quaternion.

Acknowledgement. Edwin R. Hancock was supported by a Royal Society Wolfson
Research Merit Award.



Unsupervised Clustering of Human Pose Using Spectral Embedding 473

References

1. Bunke, H., Foggia, P., Guidobaldi, C., Vento, M.: Graph Clustering Using the Weighted
Minimum Common Supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS,
vol. 2726, Springer, Heidelberg (2003)

2. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)
3. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral Feature Vectors for Graph Clustering. In:

Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 190–201. Springer,
Heidelberg (2003)

4. Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering. In: Proceedings 9th IEEE
Conference on Computer Vision and Pattern Recognition I, pp. 362–369 (2003)

5. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22, 888–905 (2000)

6. Mateus, D., Cuzzolin, F., Horaud, R.P., Boyer, E.: Articulated shape matching using laplacian
eigenfunctions and unsupervised point registration. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, CVPR (2008)

7. van Leuken, R.H., Symonova, O., Veltkamp, R.C., De Amicis, R.: Complex Fiedler Vectors
for Shape Retrieval. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos,
M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 167–176.
Springer, Heidelberg (2008)

8. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In:
Advances in Neural Information Processing Systems (2002)

9. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: International Conference on Computer
Vision (2003)

10. Microsoft: MS Kinect for XBOX 360, http://www.xbox.com/kinect
11. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE

Transactions on Pattern Analysis and Machine Intelligence 27, 1112–1124 (2005)
12. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36,

2213–2223 (2002)

http://www.xbox.com/kinect


Human Action Recognition in Video
by Fusion of Structural and Spatio-temporal Features

Ehsan Zare Borzeshi1, Oscar Perez Concha2, and Massimo Piccardi1

1 School of Computing and Communications, Faculty of Engineering and IT,
University of Technology, Sydney (UTS), Sydney, Australia

{ehsan.zareborzeshi, massimo.piccardi}@uts.edu.au
2 Centre for Health Informatics, Australian Institute of Health Innovation,

University of New South Wales, Sydney (UNSW), Australia
o.perezconcha@unsw.edu.au

Abstract. The problem of human action recognition has received increasing at-
tention in recent years for its importance in many applications. Local represen-
tations and in particular STIP descriptors have gained increasing popularity for
action recognition. Yet, the main limitation of those approaches is that they do
not capture the spatial relationships in the subject performing the action. This pa-
per proposes a novel method based on the fusion of global spatial relationships
provided by graph embedding and the local spatio-temporal information of STIP
descriptors. Experiments on an action recognition dataset reported in the paper
show that recognition accuracy can be significantly improved by combining the
structural information with the spatio-temporal features.

Keywords: Graph, Graph embedding, Human action recognition, STIP, Markov
models.

1 Introduction and Related Work

Human action recognition has been the focus of much recent research for its increas-
ing importance in applications such as video surveillance, human-computer interaction,
multimedia and others. Recognising human actions is a challenging task, especially
when the background is not fixed or known and the lighting conditions are changeable.
Local representations and in particular appearance descriptors centred around spatio-
temporal interest points (STIPs) [1] have gained increasing popularity for action recog-
nition since they describe salient points in space and time and have demonstrated strong
recognition performance. Nevertheless, spatio-temporal features may fail when the ac-
tivities become complex since they are unable to capture the global spatial relationships
in the subject performing the action [2]. Conversely, graphs are a powerful tool to rep-
resent structured objects and as such have been used for action recognition in a recent
work from Ta et al [3]. Nevertheless, in [3] graphs are directly compared to assess the
similarity of two action instances, a procedure that is prone to significant noise. An
efficient alternative to the direct comparison of action graphs is offered by graph em-
bedding [4]: in each frame, the graph representing the actor’s shape can be converted
to a finite set of distances from prototype graphs, and the distance vector then used as
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a feature vector with conventional statistical classifiers. Other approaches leveraging
on a graphical representation of the actor are based on models akin to Pictorial Struc-
tures [5]. Such models were originally proposed for limb motion tracking and require
higher resolution imagery to ensure accurate fitting. In all cases, purely structural ap-
proaches do not take advantage of the useful information offered by spatio-temporal
appearance descriptors.

In this paper, we introduce a novel framework for the fusion of the structural informa-
tion provided by graph embedding and the spatio-temporal information given by STIP
descriptors, thus benefitting from both powerful representations and overcoming their
respective limitations. Experiments are performed over the popular dataset KTH [6].

The remainder of this paper is organised as follows. Firstly, in section 2 we define the
feature set used in our framework. The proposed approach is then described in section
3. In section 4, we present an experimental evaluation of the proposed method on the
KTH action dataset. Finally, conclusions and discussion of future work (section 5).

2 Features

The following section provides a description of the structural and spatio-temporal fea-
tures provided by graph embedding and typical descriptors such as those extracted from
STIPs, respectively.

2.1 Structural Features

Graphs can represent many patterns very effectively by adjusting the graphs’ complex-
ity to that of the patterns. However, their main limitation is that they are computationally
cumbersome for pattern analysis. One method of circumventing this problem is that of
transforming the graphs into a vector space by means of graph embedding. This section
briefly provides an overview of prototype-based graph embedding and then describes
its use for incorporating structural information into feature vectors.

Overview of Prototype-Based Graph Embedding
In this work, we avail of the definition of attributed graph, noted as g = (V,E, α, β)
with:

– V = {1, 2, ...,M}, a set of vertices (nodes),
– E ⊆ (V × V ), a set of edges,
– α : V → LV , a vertex labeling function, and
– β : E → LE , an edge labeling function.

Vertex and edge labels are restricted to fixed-size tuples, (LV = Rp, LE = Rq , p,
q ∈ N ∪ {0}). When attributed graphs are used to represent objects, the problem of
pattern recognition changes to that of graph matching. One of the most widely used
methods for error-tolerant graph matching is the graph edit distance (GED), defined
as the cost of a transformation “morphing” a given graph into another [7]. GED mea-
sures the (dis)similarity of arbitrarily structured and arbitrarily labeled graphs and is
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flexible thanks to its ability to cope with any kind of structural errors [7]. The edit
transformation is usualy broken up into atomic edit operations which can be of six
basic types: insertion, deletion and substitution, for either nodes or edges, and noted
as (ei,n, ed,n, es,n, ei,e, ed,e, es,e). It can be proven that every arbitrary graph can be
transformed into another, equally arbitrary graph by applying a finite sequence of edit
operations (also called an edit path). The distance between the two graphs is defined as
the minimum cost amongst all edit paths transforming the first graph into the other. Let
gi = (Vi, Ei, αi, βi) and gj = (Vj , Ej , αj , βj) be a pair of graphs in a set. The graph
edit distance of such graphs is formally defined as:

d(gi, gj) = min
(e1,...,ek)∈E(gi,gj)

k∑
l=1

C(el) (1)

where E(gi, gj) denotes the set of edit paths between the two graphs, C denotes the
edit cost function and el denotes the individual edit operation. Based on (1), the prob-
lem of evaluating the structural similarity of two graphs is changed into that of finding
a minimum-cost edit path between them. Among the various methods, the probabilis-
tic graph edit distance (P-GED) proposed in [8] is capable of automatically inferring
the cost function from a training set of manually-paired graphs. P-GED measures the
similarity of two graphs by a learned probability, p(gi, gj), and defines the dissimilarity
measure as: d(gi, gj) = − log p(gi, gj). A further advantage of P-GED is its claimed
ability to learn from large sets of graphs with huge distortion between samples of the
same class, which makes it suitable for application to vision problems [8].

Graph Embedding. In the literature, “graph embedding” refers interchangeably to the
embedding of a graph as a whole into a point in vector space, or the embedding of its
set of nodes into a set of corresponding points in vector space. In this work, we as-
sume the former meaning, although similar embedding techniques can be applied in the
two cases and for other types of non-vectorial objects such as strings or trees [9]. The
embedding assumes that a set of objects is given alongside distance values between
any two objects in the set. The goal is that of converting the set of objects into a set
of points in a vector space of given dimensionality while ensuring certain properties or
constraints. Well-known embedding techniques include Laplacian eigenmaps, commute
times, symmetric polynomials, amongst others [10], [11], [12]. After the embedding of
the initial set of objects, it is also possible to embed new, out-of-sample objects, al-
beit not always straightforward. An alternative embedding approach is to make use of
a given set of “prototype” objects (or prototypes, for short) which can equally embed
in-sample and out-of-sample data, in a way not unlike that of eigenvectors in principal
component analysis. Let G = {g1, g2, ..., gm} be a set of graphs, P = {p1, p2, ..., pn}
be a set of prototype graphs with n < m, and d be a dissimilarity measure. For embed-
ding any graph gj ∈ G by way of P , the dissimilarity measure dji = d(gj , pi) of graph
gj to prototype pi ∈ P is computed ∀i. Then, an n-dimensional vector (dj1, ..., djn)
is assembled from all the n dissimilarities. With this procedure, any graph can be indi-
vidually transformed into a vector of real numbers [13]. Prototype-based embedding is
certainly the simplest and fastest embedding approach and for these reasons is adopted
hereafter.



Human Action Recognition in Video 477

Prototype Selection. Selecting informative prototypes from the underlying graph do-
main plays a vital role in graph embedding [13]. In order to obtain a meaningful as well
as class-discriminative vector representation in the embedding space, a set of selected
prototypes P = {p1, p2, ..., pn} should be adequately distributed over the whole graph
domain, at the same time avoiding redundancies in terms of selection of similar graphs
[13] ,[14]. Among various prototype selection algorithms [13], [15], [16], the discrim-
inative prototype selection method [15] was chosen in this study. This approach select
prototypes from a graph set by adequately balancing within-class and between-class
scattering.

Structural Features Extraction

The approach used for extracting structural features consists of the following main steps:

1. Use of a modified tracker [17] to extract a bounding box of each actor in each
frame, and detection of the scale-invariant feature transform (SIFT) keypoints [18]
within such a bounding box by using the software of Vedaldi and Fulkerson [19].
Based on the chosen threshold, this number for the selected dataset (KTH [6]; de-
tails provided in section 4) typically varies between 5 and 8. After detection, the
location of each SIFT keypoint, (x, y), is expressed relatively to the actor’s cen-
troid and employed as a node label for an attributed graph describing the human’s
shape. In a preliminary study, we found that graphs with only labeled nodes granted
comparable accuracy to graphs with both labeled nodes and labeled edges, yet re-
sulted in faster processing. We therefore decided to employ graphs consisting only
of labeled nodes (labeled edgeless graphs).

2. Next, in order to identify a prototype set which could lead to meaningful feature
vectors in the embedded space, a number of different reference postures was cho-
sen to describe all human shapes in the action dataset. For the dataset at hand (KTH
[6]), we arbitrarily chose a set of 16 different reference postures across all human
actions (running, walking, boxing, jogging, hand-waving, hand-clapping). Such se-
lected postures should prove adequate for recognising human actions also in any
other dataset where the actors are approximately in full view such as UCF Sports
[20] and MuHAVi [21]. For training purposes, we manually selected a number of
different frames varying in scenario (e.g. outdoor, outdoor with different clothes,
indoor), action (e.g. hand waving, hand clapping, jogging) and actor (e.g. person01,
person25, person12).

3. Finally, the graph is embedded into the feature vectors by means of P-GED with
the prototype set of choice.

2.2 Spatio-Temporal Features

In this paper, in order to establish a fair comparison and focus the scope on the benefits
of structural information, we have chosen to adopt the same features - STIP descriptors
- of a deservedly much-cited paper from Laptev [1]. STIP descriptors have gained in-
creasing popularity for action recognition since they describe salient points in space and
time and do not require a preliminary step of foreground extraction which is generally
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regarded as inaccurate. A STIP descriptor consists of the concatenation of a histogram
of quantised gradient (HOG) and a histogram of quantised optical flow (HOF) com-
puted over a small spatio-temporal volume of pixels [1]. In this paper, we have used a
combination of HOG and HOF for an overall dimensionality of 145. The main differ-
ence with [1] is that we do not convert descriptors into codewords; rather, we use each
descriptor individually as an observation for our model (details in section 3).

3 Graphical Model

In this paper, we have used the hidden Markov model with multiple, independent ob-
servations (HMM-MIO) [22], a modified hidden Markov model (HMM) [23] capable
of dealing with sequences of observations that include outlier, high-dimensional, and
sparse measurements typical of action recognition.

Robustness to outliers is obtained by modelling the observation densities with Stu-
dent’s t distributions [24]. Dimensionality reduction is implemented by using the prob-
abilistic principal component framework [25], and multimodality is taken into account
by using a mixture distribution. Finally, modifications to the Baum-Welch algorithm
allow for a variable number of observations per frame (single, multiple or none) by the
assumption of independence and identical distribution of observations given the state of
the HMM. This is a simplifying assumption given that in reality dependencies between
these observations may exist. By noting as Ot ≡ O1:Nt

t the set of observations at time
t, Nt their number, and Qt the corresponding hidden state, we define:

P (O1:Nt
t |Qt) ≡ P (O1

t , ..., O
Nt
t |Qt) =

Nt∏
n=1

P (On
t |Qt), ifNt > 1 (2)

and

P (O1:Nt
t |Qt) ≡ 1, ifNt = 0 (3)

Posing P (O1:Nt
t |Qt) = 1 in the case of no observations is equivalent to a missing

observation and has neutral effect in the chain evaluation of the HMM-MIO.
In this study, the probability for all the observations in a frame, t, is calculated by

the fusion of two likelihoods which model two types of measures:

– Spatio-Temporal Texture or Appearance Observations (Oa,t) provided by the STIP
descriptors: the different numbers of STIP points per frame introduced a scale prob-
lem in the resulting probability that is solved in HMM-MIO by means of the fol-
lowing normalization:

Pa(O
1:Nt
at |Qt) =

Nt

√√√√ Nt∏
n=1

P (On
a,t|Qt) (4)

– Structural Observations (Os,t) provided by graph embedding: In our experiments,
the embedding of a graph with 16 different selected prototypes leads to a 16-
dimensional feature vector describing the shape of a single actor in each frame.
This feature vector is modelled statistically by likelihood P (Os,t|Qt).
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The combination of the two likelihoods (equation 5) is performed as a weighted sum of
weights Wa and Ws, such that Wa +Ws = 1.

P (Ot|Qt) = Wa · Pa(O
1:Nt
a,t |Qt) +Ws · P (Os,t|Qt) (5)

The graphical model for the modified HMM-MIO can be seen in Figure 1. The gen-
erative model is then obtained as the joint probability P (O1:T , Q1:T |λ) of a sequence
of observations, O1:T ≡ {O1, ..., Ot, ..., OT }, and a sequence of corresponding hidden
states, Q1:T ≡ {Q1, ..., Qt, ..., QT }.

P (O1:T , Q1:T |λ) ≡ p(O1, Q1, ..., Ot, Qt, ..., OT , QT |λ) (6)

Fig. 1. Modified HMM-MIO (hidden Markov model with multiple, independent observations);
Ot are the observations at time t (appearance observations provided by the STIP descriptors,
Oa, and the structural observation provided by graph embedding, Os); Qt is the corresponding
hidden state; Wa and Ws are the two weights for computing the total observation probability
P (Ot|Qt) = Wa · Pa(O

1:Nt
a,t |Qt) +Ws · P (Os,t|Qt); Wa +Ws = 1

4 Experiments

This section provides the experimental evaluation of the proposed approach and shows
the advantages of combining the structural information provided by graph embedding
with the spatio-temporal information provided by STIPs. As dataset, we have chosen the
KTH human action dataset containing 2,391 video sequences (from 25 different actors)
and acquisition conditions, inclusive of four different scenarios and mild camera move-
ments. The action classes include walking, jogging, running, boxing, hand waving and
hand clapping [6]. Although KTH is becoming saturated in recent years with results re-
porting high accuracies, it still offers the widest platform for comparison with previous
work [26]. For accuracy evaluation, we have used the evaluation procedure proposed
by Schuldt et al. in [6]. In this procedure, all sequences are divided into three sets with
respect to the actors: training (8 actors), validation (8 actors) and test (9 actors). Each
classifier is then tuned using the first two sets (training and validation sets), and the
accuracy on the test set is measured “blindly” by using the parameters selected on the
validation set, without any further tuning. In order to assess the individual contribution
of the features and show the advantages of the proposed fusion, we have conducted
experiments with different weights (Table 1). A value of (Wa,Ws) = (1, 0) means
that only appearance features are used, whereas structural features are solely utilised
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Table 1. Accuracy (%) of our approach over the KTH dataset with variable weights over the
appearance and structural components.

Wa Ws Test accuracy (%)

1.0 0.0 85.7 [22]
0.9 0.1 85.9
0.8 0.2 86.8
0.7 0.3 87.9
0.6 0.4 88.9
0.5 0.5 89.8
0.4 0.6 87.9
0.3 0.7 85.8
0.2 0.8 82.2
0.1 0.9 77.9
0.0 1.0 48.7 [4]

when (Wa,Ws) = (0, 1). As shown by Table 1, recognition accuracy is significantly
improved by combining the structural information with the spatio-temporal features,
reaching its maximum when (Wa,Ws) = (0.5, 0.5).

To position our work properly, it is very important to state that current results on
KTH are well in excess of 90% accuracy [27]. The goal of our paper is not that of
proposing a more accurate action recognition method; rather, assessing the fusion of
structural information with spatio-temporal features in a significant classification exer-
cise. As for what action recognition is concerned, we have gathered empirical evidence
that the graphs built by using SIFT keypoints as their nodes are rather unstable and
noisy, and we are working on the use of graph-cut techniques to substantially improve
nodes’ extraction [28]. However, we believe that the work conducted to date already
provides evidence that the fusion of structural information obtained by graph embed-
ding with spatio-temporal information provided by STIPS is capable of encoding the
human action to a significant extent.

5 Conclusions and Future Work

In this paper, we have presented a novel approach for human action recognition based
on the fusion of structural and spatio-temporal information. To this aim, the structural
information provided by graph embedding and the local spatio-temporal information
provided by STIP descriptors are jointly modelled by a modified hidden Markov model
with multiple, independent observations (HMM-MIO) [22]. Although our approach
does not yet outperform the state-of-the-art accuracy, it shows that structural and spatio-
temporal features can be fused constructively to obtain higher accuracy than from ei-
ther separately. In the near future, we plan to further investigate other keypoint sets to
improve the stability of the graph-based representation along the frame sequence and
extend our study to other challenging action datasets.
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Abstract. The state-of-the-art image classification methods usually re-
quire many training samples to achieve good performance. To tackle this
problem, we present a novel incremental method in this paper, which
learns a part model to classify objects using only a small number of
training samples. Our model captures the inherent connections of the se-
mantic parts of objects and builds structural relationship between them.
In the incremental learning stage, we use high entropy images that have
been accepted by users to update the learned model. The proposed ap-
proach is evaluated on two datasets, which demonstrates its advantages
over several alternative classification methods in the literature.

Keywords: Image classification, semantic parts, structural relationship,
incremental learning.

1 Introduction

Image classification is one of the most important tasks in computer vision and
pattern recognition. A number of methods based on the bag-of-words (BOW)
model [1] have been proposed to fulfill this task and have shown to be effective
for object and scene classification [2,3]. The BOW method represents an image
as a histogram of its local features. It is robust against spatial translations of
features, and has demonstrated decent performance in the whole-image classifi-
cation. However, the BOW method does not sufficiently characterize the spatial
relationship between features. Therefore, it is incapable of capturing structural
shapes or locating objects in an image.

Structure based methods extract invariant structures to characterize objects
in an image [4]. One popular solution is to use graph structure because graph
can be used to represent high level vision information. This property has made
the graph based methods capable of bridging the low-level local invariant feature
with the high-level vision information in images [5,6]. More recently, part based
models have been proposed [7,8], which operate on image structure rather than
solely extracting discrete features.

Learning frameworks have been introduced to further improve the adaptability
of statistical and structural image classification methods. Of particular interest

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 483–491, 2012.
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is the spatial pyramid matching (SPM) method [9]. It partitions an image into
increasingly finer spatial subregions and computes a histogram of local features
from each subregion. The same rationale has been employed by several methods,
such as sparse coding for linear spatial pyramid matching (ScSPM) [10] and
locality-constrained linear coding (LLC) [11]. Similar work also includes the
coarse-to-fine learning framework presented by Li et al [12]. In this work, a novel
automatic dataset collecting and model learning approach, OPTIMOL, has been
developed to refine online picture selection in an incremental way.

Enlightened by these work, we propose an approach to improve the image
classification performance via learning semantic parts of objects and exploring
their structural relationship. It includes a feature learning method [13] to enrich
the part description, and an incremental framework to iteratively update the
learned model. Figure 1 illustrates the framework of this classification method.
To validate the effectiveness of this method, we have compared it against several
state-of-the-art methods in the literature.

Fig. 1. Framework of the incremental structured part model for image classification.
(a) Extracted relevant semantic parts. (b) Training an SVM classifier for each seman-
tic part and building the structured part model. (c) Initial classification results. (d)
Iterative model updating using selected images. After several iterations, the model is
then updated to a refined model.

The main contribution of this paper is three-fold. Firstly, we propose a part
description method that provides abundant mid-level features for image clas-
sification. Secondly, the structured part model combines both appearance and
structure information of objects in images, which leads to improved classifica-
tion performance. Thirdly, the incremental learning algorithm can adapt to novel
image features and structures introduced from unseen testing objects. This has
greatly reduced the number of training images required.
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2 Incremental Structured Part Model

The proposed approach is a combination of both statistical and structural pat-
tern recognition methods. It is based on the observation that different parts of
objects in the same class normally share similar spatial relationship. For exam-
ple, all birds have beaks, legs, and tails, and they follow similar spatial layout.
Therefore, we only need to recognize these three parts and model their spatial
relationship in order to distinguish birds from other objects (Figure 1(a)).

2.1 Semantic Part Learning

We commence by semantic part learning which allows the treatment of each part
as mid-level semantic attribute. We first define the part classes that are impor-
tant to object classification, then image patches for these parts are manually
selected from the training set. From each of these patches, SIFT, texture, color,
and edge direction features are extracted. The SIFT features [14] are extracted
in a grid-based manner, while the texture descriptors [15] are computed at each
pixel using a set of filter banks. To extract the color feature, we use the LAB
values [16] of densely sampled pixels. Edges are generated via standard Canny
edge detector [17]. Using the bag-of-words model, these four types of features
are quantized into vectors with 1000, 256, 128 and 8 dimensions, respectively,
and are concatenated into a vector of length 1392.

Using the part feature vectors, a multi-class support vector machines (SVMs)
can be learned. LetM be the number of part classes, xn denotes the n-th training
sample and yn denotes its part class label. The multi-class SVM generates an
M -dimensional weight vector {w∗

m}Mm=1, with one weight for each class. Let
W denote a matrix whose columns are wm. To estimate W , we minimize the
following loss function:

W ∗ = argmin
∑
n

M∑
t=1

d(wT
t xn, ynt) + γ

∑
m

‖wm‖22 (1)

where γ ≥ 0 is a tradeoff parameter that regularizes the model complexity, and
is set to 0.8 by threefold cross-validation. d(· , ·) is the loss function.

After solving this optimization problem, we get a semantic part classifier.
When an unlabeled image is given, this classifier can be applied to detect relevant
parts in the image. In the next section, we explore the structural relationship
between these parts.

2.2 Structured Part Model Matching

In this step, we effectively arrange the semantic parts in a deformable configura-
tion to represent an object. The structure model here is inspired by the pictorial
structure method [7].

Given an image, let pi(li) be a function measuring the degree of part similarity
when part vi is placed at location li. Let pij(li, lj) be a function measuring the



486 H. Zhang et al.

degree of deformation when part vi is placed at location li and part vj is placed
at location lj. We define the problem of matching a structured part model to an
image as a statistical function to be maximized

L∗ = argmax
L

(

n∑
i=1

pi(li) + λ
∑

(vi,vj)∈E

pij(li, lj)) (2)

This function maximizes the sum of the matching probabilities pi(li) of each
individual part and the deformation similarities pij(li, lj) for connected pairs of
parts. Therefore, it can be decomposed into two equations as follows:

L∗
1 = argmax

L

n∑
i=1

pi(li) (3)

L∗
2 = argmax

L

∑
(vi,vj)∈E

pij(li, lj) (4)

where Eq. 3 is a standard part model and Eq. 4 is a structure model. λ is a
parameter that adjust the contribution from the part model and the structure
model. It leads to the extension of [7] to a more flexible setting and is self-
adaptive through the incremental process to be described later.

We use a sliding windowmethod to detect parts in an unseen image and to com-
pute pi(li).This is achievedby searching the testing images at three different scales,
i.e., 0.7, 1, 1.3 times the reference part scale (50×50 pixels), respectively. Using the
learned multi-class SVM classifier, we can compute the probability of these candi-
date patches by fitting a sigmoid function to the original SVM decision values [18].
To compute pij(li, lj), we use the same method as [7] to calculate the degree of de-
formation, and fit it to (0, 1] via an exponential function.

The proposed structured part model is robust to missing parts in an image. In
Eq. 2, even if one or twopi is incorrect, highprobability still canbeachievedonparts
from object in the same class due to the contribution from the structure model.

2.3 Coarse-To-Fine Updating

Given a very small number of training images of an object class, our algorithm
learns the optimal structured part model L∗ that best describes this class us-
ing the steps introduced above. Now we introduce a coarse-to-fine process to
iteratively update L∗, which further improves the robustness of the proposed
method.

We randomly separate testing images into several batches and feed them se-
quentially into the system. Each batch is treated as an iteration. Our incremental
process is performed when a new batch comes in. It continuously classifies the
images while learning a more robust model. On each image batch, we compute
the probability that the current optimal structured part model matches the im-
ages using Eq. 2. The model update is dependent on the image matching results.
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Images with low matching probability are discarded, while the rest are divided
into two sets based on the entropy value generated from the following equation

H(I) = −
∑
i

pi ln pi − λ
∑
E

pij ln pij (5)

According to Shannon’s entropy theory, Eq. 5 relates to the amount of uncer-
tainty of an image I. High entropy indicates high uncertainty of an image, which,
in turn, suggests possible new structures. Thus, we choose those images with high
probability and high entropy for model updating. Images with high likelihood
and low entropy are classified to be positive images. The model updating follows
the method introduced in the previous two subsections. It allows refinement of
the part classifiers and the corresponding structure model.

At the same time, the weight parameter λ is updated iteratively to make
the learned model more robust. In each iteration, the image probabilities are
calculated using L∗

1 and L∗
2. This can be achieved by setting λ to 0 and 100 (a

large enough number) respectively. Let ϕi= {x|x be an image belongs to the
positive part using L∗

i }; ϕ= {x|x is an image belongs to the positive part using
L∗}; coni represents the contribution of model L∗

i to L∗. Then

coni =
#{ϕi ∩ ϕ}

#{ϕ} , i = 1, 2 (6)

λ =
con2

con1
=

#{ϕ2 ∩ ϕ}
#{ϕ1 ∩ ϕ}

(7)

Eq. 7 determines the weights of the part model and the structure model. By
calculating λ in each batch, more refined model can be achieved. The proposed
coarse-to-fine framework is an iterative process that continuously classifies an
image data set with high accuracy while learning a more robust object model.
We summarize the steps of our algorithm in Algorithm 1.

Algorithm 1. Incremental Structured Part Model for Classification

Input: Set of N positive images (N is a small number), set of novel unlabeled images,
part number n, and weight λ=1.

Output: Set of classified positive images, and the final Structured Part Model
Initialize Manually select n parts in each training image
Repeat
Learn Calculate the features of each part in the latest input images and train

SVM models. (Sec. 2.1)
Learn the Structured Part Model. (Sec. 2.2)

Classify Classify images using the current Structured Part Model. (Sec. 2.2)
Incremental Use the images with high probability and high entropy for model

updating. (Sec. 2.3)
until User satisfied or images exhausted
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3 Experimental Results

We evaluate the performance of the proposed incremental structured part model
on two widely used datasets, Caltech-256 [19] and Pascal VOC 2007 [20], and
show that only a small number of training images is required for the proposed
model (Section 3.1). We also compare our method with other classification meth-
ods such as the model by Gritfin et al. [19], ScSPM [10], and LLC [11].

The Caltech-256 dataset contains 30,607 images in 256 categories, with each
class containing at least 80 images. The Pascal VOC 2007 dataset consists of
9,963 images from 20 classes. Objects in this dataset reside in cluttered scenes
with a high degree of variation in viewing angle, illumination and object appear-
ance. Before the experiments, each image is resized to less than 300×300 pixels
with the aspect ratio unchanged. We used all classes in these two datasets for
the experiments.

3.1 Incremental Structured Part Model Evaluation

In the first experiment, we randomly chose 5, 10, 15, 20, 25 and 30 training im-
ages per class respectively to validate the effectiveness of the proposed method.
We consider three baselines to compare our system with: 1) a standard part
model L∗

1 as in Eq. 3, 2) a structure model L∗
2 of Eq. 4, and 3) our struc-

tured part model without a coarse-to-fine process. The results are shown in
Figure 2. It can be seen that our incremental structured part model outperforms
the the baselines by nearly 10 percent. The proposed model is very stable on
both datasets when different training sizes are used. At the 5% level, our method
achieves classification accuracies that are nearly 10 and 20 percent higher than
the alternatives, respectively.

The reason that our model can achieve good performance under small number
of training images is due to the effect of the coarse-to-fine process. By choosing
those images with high entropy, large amount of novel information can be ac-
quired for model updating. The effect of the incremental process is three-fold.

Fig. 2. The average classification results of all the categories in the Caltech-256 dataset
(left) and Pascal VOC 2007 dataset (right), when different training sizes is used.
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Firstly, it can refine the multi-SVM part model. As illustrated in Figure 1, part 2
of the first model is actually a coarse model, as marked by bars in different colors.
After several incremental iterations, this model is well refined, which is repre-
sented by bars in the same color. Secondly, this process can refine the structural
model both in shape and in edge relationships. Take the last model in Figure 1
for example, the dotted line between part 2 and 3 shows that this relationship
should be week compared with others, because it’s changes in accordance with
different birds’ postures. Thirdly, the iteration refines the parameter λ in Eq. 2,
which leads to a refined global model.

Figure 3 shows some example images with high classification accuracy in the
Caltech-256 dataset. We have also tracked those image data with missing parts.
The results show that most of them can be classified correctly, which proves the
robustness of the proposed method.

Fig. 3. Example images from categories with high classification accuracy in the
Caltech-256 dataset. The percentages in the brackets represent the corresponding clas-
sification accuracy.

3.2 Comparison with other Classification Methods

In this experiment, we first compared the proposed method with several state-
of-the-art classification methods on the Pascal dataset. The classification perfor-
mance is evaluated using the Average Precision (AP) measure. It computes the
area under the Precision/Recall curve, in which higher score means better per-
formance. Table 1 shows the classification accuracy on all 20 classes compared
against several other classification methods [11,21,20]. Our method has achieved
the highest accuracy in most classes, especially those with similar shapes such
as bicycle and motorbike, cat and dog, cow and sheep. The results show that our
semantic part model is capable of extracting features and their structural rela-
tionships in order to distinguish similar objects. We also tested the method on
Caltech-256 dataset, in which we used 5, 15, and 30 training images per class.
Detailed results are shown in Table 2. It suggests that our method leads the
performance with a small number of training images.
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Table 1. Image classification results on Pascal VOC 2007 dataset

Category aero bicyc bird boat bottle bus car cat chair cow

PASCAL 07 Best [20] 77.5 63.6 56.1 71.9 33.1 60.6 78 58.8 53.5 42.6
LLC [11] 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6
Su [21] 76.2 66.4 59.2 70.3 35.4 63.6 79.4 62.4 59.5 47.9

ours 77.1 73.0 54.8 75.2 37.2 70.3 72.4 65.7 60.6 50.8

Category table dog horse mbike personplant sheep sofa train tv

PASCAL 07 Best [20] 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2
LLC [11] 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5
Su [21] 58.8 44.9 78.3 67.4 87.9 32.9 46.9 53.8 78.6 58.9

ours 57.5 49.3 75.7 72.9 77.2 42.1 47.9 51.5 80.6 58.6

Table 2. Image classification results on Caltech-256 dataset

Algorithms 5 training 15 training 30 training

Gritfin et al. [19] 18.40 28.30 34.10
ScSPM [10] - 27.73 34.02
LLC [11] - 34.36 41.19

ours 31.15 35.22 36.87

4 Conclusion

In this paper we have proposed a novel incremental structured part model for
image classification. This method first builds image classification models by in-
corporating both advantages from semantic parts and their structural relation
description. Then an incremental framework is employed to refine the model it-
eratively, which makes the proposed method more robust. This method requires
only a small number of training images to achieve good classification perfor-
mance. Future work will explore the use of hierarchical segmentations to find
the semantic parts at the training stage. We will also investigate other features
to train the part classifier.
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Abstract. Real-time 3D pose estimation from monocular image se-
quences is a challenging research topic. Although current methods are
able to recover 3D pose, they are severely challenged by the computa-
tional cost. To address this problem, we propose a tracking and 3D pose
estimation method supported by three main pillars: a pyramidal struc-
ture, an aspect graph and the checkpoints. Once initialized the systems
performs a top-down tracking. At a high level it detects the position of
the object and segments its time-space trajectory. This stage increases
the stability and the robustness for the tracking process. Our main ob-
jective is the 3D pose estimation, the pose is estimated only in relevant
events of the segmented trajectory, which reduces the computational ef-
fort required. In order to obtain the 3D pose estimation in the complete
trajectory, an interpolation method, based on the aspect graph describing
the structure of the object’s surface, can be used to roughly estimate the
poses between two relevant events. This early version of the method has
been developed to work with a specific type of polyhedron with strong
edges, texture and differentiated faces, a die.

Keywords: tracking, 3D pose estimation, pyramid, checkpoints, aspect
graph.

1 Introduction

The proliferation of high speed videos, high-end computers and the need for auto-
mated video analysis have generated an increasing interest in visual tracking and
pose estimation algorithms. The higher resolution of the images and the higher
frame rate increase the data rate by a higher factor than the increase in comput-
ing power. This paper addresses the challenging problem of real-time tracking
and 3D pose estimation exploring the efficient use of knowing the past for pre-
dicting and for verifying the future. Selecting the right features for tracking plays
a critical role [3]. Nowadays, the illumination changes, the partial occlusion and
the matching errors are simple to achieve with localized features [7]. However,
computation of descriptors that are invariant across large view changes is usually
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expensive [15]. To overcome this weakness, the state of the art feature descrip-
tors, detect and match points in successive images, in a non-recursive way, [10],
[1], [8]. SIFT [8] is known to be a strong, but computationally expensive feature
descriptor and on the contrary Ferns [10] classification is fast, but requires large
amounts of memory. Therefore, our work investigates the applicability of a new
markerless tracking method based on the checkpoints. Checkpoints are a small
group of 3D points on the known object surface, which allow reliable tracking
and preserve the structure. These are robust to illumination changes, computa-
tionally cheap and do not require large amount of memory. Moreover, they are
3D points. Therefore, once initialized their positions in the next frame can be
predicted assuming smooth movement, without the need to back-project the 2D
locations to obtain the 3D pose.

Top-down tracking encodes the current frame into a hierarchical structure, a
pyramid, which reduces the search cost and allow large view changes. The use of a
hierarchical approach for tracking have been widely used in the literature [16], [5],
[9]. The main drawback of theses approaches have been the high computational
cost to build a pyramid per frame. To overcome this weakness, we can use the
computational power and increasing programmability of the graphics processing
unit (GPU) present in modern graphics hardware that provides great scope for
acceleration of computer vision algorithms which can be parallelized [13].

In order to reduce the computational effort our method distinguishes relevant
(frame with only one visible face of the die) and normal events (with two or three
visible faces) of the time-space trajectory of the object. The changes between
two relevant events are handle by the aspect graph [12], [11].

The rest of the paper is organized as follows: Sec.2 describes the different
structures and processes of this approach. Sec. 3 presents the top-down tracking
and 3D pose estimation method. The experimental results revealing the efficacy
of the method are shown in Section 4. Finally, the paper concludes along with
discussions and future work in Section 5.

2 Definitions

We begin by providing some necessary definitions.

2.1 Checkpoints

Checkpoints are a small group of points characterizing local and salient features
embedded in the object’s surface and allowing to detect and correct displace-
ments in the image frame. They require to distinguish between the background
and the foreground of the object. This early version of the method is based on
a strong foreground-background contrast, the background and the foreground
points are differentiated by their gray values.

Let S= (It, It+1..., It+k) be an image sequence. The initial estimation of a
group of checkpoints location in time t (x1t= (x11t , x1

2
t , x1

3
t , x1

4
t and x15t )) can

be found by giving some correspondences between 3D points in the object model
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and their projections in It [7]. Checkpoints are projected into the current image
x1′t+1 frame and the corresponding pixel values checked whether they belong to
the object or the background. Based on the result the correction is estimated
that brings the object back to a location where the checkpoints are appropriately
placed in the image x1t+1 . The correction (C= (s or/and T or/and R)) is the
uniform scale (s), the translation (T) and the rotation (R) to get x1t+1 from
x1′t+1 in the current frame It+1. For this purpose, considering a circular target,
five checkpoints (x1′t+1), which preserve the order, placed as shown Fig. 1 a),
x11, x12, x14, x15 in the background and x13 in center of the object, in the
foreground, are enough to detect the translation and the scale error. However,
to estimate the rotation error, at least two groups of checkpoints are needed (x1t
and x2t) (Fig. 1 b)).

x11t x12t

x13t

x14t x15t

x11t+1

x1′1t+1
x12t+1

x1′2t+1

x13t+1 x1′3t+1

x14t+1
x1′4t+1

x15t+1
x1′5t+1

x11t+1

x1′1t+1

x12t+1

x1′2t+1

x13t+1

x1′3t+1

x14t+1

x1′4t+1

x15t+1

x1′5t+1

x21t+1

x2′1t+1

x22t+1

x2′2t+1

x23t+1 x2′3t+1

x24t+1

x2′4t+1

x25t+1

x2′5t+1

a) Translation b) Rotation

Fig. 1. Predicting and correcting translations and rotations of checkpoints

2.2 Prediction-Estimation-Correction

This section defines the Prediction-Estimation-Correction method (PEC) of the
checkpoints’ positions. Let It be the current frame and xt be the checkpoints’
locations in time t. Using a motion model1, the checkpoints are predicted for-
ward for one frame, x′t+1. First, it checks if x′1t+1, x

′2
t+1, x

′4
t+1, x

′5
t+1 are placed

in the background(0) and x′3t+1 in the foreground(1) of the image, otherwise the
prediction is incorrect. When an error has been detected, it estimates the lo-
cation where the checkpoints are appropriately placed in the image x′t+1. The
estimation method is based on a table with the possible cases of prediction errors
and their respective estimation (Tab. 1). The table has been built considering
all the possible movements of the prediction with respect to the real projection
and their optimal improvement. Moreover, its efficacy has been demonstrated
in the experimental results. In the table there are five columns (x′1, x′2, x′3,

1 here is used the 3D affine motion model.
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x′4, x′5), which represent one group of checkpoints illustrated in Fig. 1 a) and
the last column (x”) is the translation or the scale needed to get the estimated
appropiate position from x’.

Table 1.

values at prediction
x′1 x′2 x′3 x′4 x′5 x′′

0 0 ∗ 0 1 ↘
0 0 ∗ 1 0 ↙
0 0 ∗ 1 1 ↓
0 1 ∗ 0 0 ↗
0 1 ∗ 0 1 →
0 1 ∗ 1 1 ↘
1 0 ∗ 0 0 ↖
1 0 ∗ 1 0 ←
1 0 ∗ 1 1 ↙
1 1 ∗ 0 0 ↑
1 1 ∗ 0 1 ↗
1 1 ∗ 1 0 ↖
0 0 1 0 0 s
1 1 1 1 1 1/s

The zeros in the table mean that the value of x′i

is close to the background, the one appears when it
is more similar to the foreground and the * means
that this checkpoint does not have any effect in the
estimation. For instance, the case of Fig. 1 a) corre-
sponds to the box in Tab. 1, x′1, x′3, x′4 are equal to 1
while x′2 and x′5 are equal to 0. Therefore, the estima-
tion(x”) is a translation of the prediction to the left.
The direction and the sense of the arrows describe the
translations for correction. The correction step finds
the relationship between the estimated position of all
groups (x′′1, x′′2 ...x′′i) of the current frame and their
prediction (x′1, x′2 ...x′i).

This least-squares problem in the 3D space is solved
by using Horn [4], which returns the uniform scale fac-
tor (s), the rotation matrix (R3x3) and the translation
vector (T3x1) needed to get the correction (x) from the
prediction (x’)(eq. 1)

x = (s · R3x3 + T3x1) · x′; (1)

2.3 Recall of the Maximum Pyramid

The structure of a regular pyramid can be described as an array hierarchy in
which each level lt is at least defined by a set of nodes Nl. A node of a regular
pyramid can be determined by its position (i, j, l) in the hierarchy, being l
the level of the pyramid and (i, j) its (x, y) coordinates within the level. On
the base level of the pyramid, the nodes are the pixels of the input image.
Each pyramid level is recursively obtained by processing the level below. The
children-parent relationships are fixed and for each node in level l+1, there is a
reduction window of children at level l. We have selected a 2x2/4 pyramid [2]
other types are also under investigation. To detect bright spots in images we use
the Maximum pyramid, which uses the maximum as reduction function. The
top of the pyramid receives the maximum gray value of the base image. There
is a closed chain of links between the maximum in the base and the top. This
can effectively be used to find its location top-down. Small non-maxima holes
disappear quickly [6].

2.4 Aspect Graph

An aspect describes the appearance of an object from a specific view point.
Views of one aspect may differ by continuous deformations but they all have the
same topology. The appearance from one aspect to another aspect changes, i.e.
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a new surface patch becomes visible, another one disappears. The aspect graph
is a graph with a node for every aspect and edges connecting adjacent aspects.
Therefore, it allows us to know the relationship between each aspect (Fig. 2).

3 Top-Down Tracking and Pose Estimation

The novel approach for target localization and 3D pose estimation is described
in this section. The first step of tracking is to obtain a hierarchical representation
of the current frame. In order to decrease the computational cost, we assume
that the object does not move very much from one frame to the next one as
well as their backgrounds are quite similar. Having the pyramid for the previous
frame, it subtracts two consecutive frames to update in this pyramid only the
information corresponding to their differences. Once the pyramid is available, the
system performs the top-down tracking method (Fig. 3). This method segments
the time-space trajectory of the object. It recovers the object position in all
the frames, which increases the stability and the robustness for the tracking
process. Although, the pose estimation is obtained only in the relevant events.
We can use an interpolation method, based on the aspect graph, between two
pose estimations to roughly estimate the pose in the intermediate frames. The
top-down process is the following:

1. Target localization: works at the top level of the pyramid ltT . In this level
the target region has approximately homogeneous color. It selects the nodes
with this color, where the object is placed N t

lT
.

2. Trajectory Segmentation: Each node below the target object in the top
level N t

lT
is linked to its children. This top-down process continues until

the method estimates if the current frame is a relevant or a normal event.
In the case of a normal event, the object position is estimated. Otherwise,
it determines its 3D pose estimation.

3.1 Object Position

The position of an object is determined in normal events and at the first level
where the number of nodes of the target is bigger than a given threshold. It

Fig. 2. a) Different viewing angles. b) As-
pect graph of a die.

Fig. 3. Illustration of the Top-down
tracking and pose estimation algorithm
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is chosen in such a way that the completed target region has approximately
homogeneous color, which is a compromise between homogeneous color in ROItli
and precision in the PEC method. If the threshold raises, the precision increases
but the homogeneity in the color decreases. At the highest level where ROItli <
threshold, a group of checkpoints (x1t,l) and the PEC method are used to to
estimate the position of the object in the current frame.

3.2 Pose Estimation

This method works with relevant events. Two groups of checkpoints (x1t,0 and
x2t,0) and the PEC method are used at the base level to estimate the 3D pose[14].

4 Experiments

In this section we demonstrate the effectiveness of our approach using a video
sequence S= (It, It+1..., It+k) of a die. Figs. 5 a) and 5 b) have the same nine
frames of the video sequence (I1, I2..., I9). They show the prediction of the
checkpoints’s positions (green points) and the result of the PEC method (red
points).

The object position method (Sec. 3.1) allows abrupt displacements and large
view changes (Fig. 5 a)). Although, it does not detect rotation changes and its
prediction is not very accurate, as can be seen in Tab. 2. This shows the biggest
error in pixels between the estimated position of the center point of the die
and its real position in the base level. We calculated the biggest error in the
prediction and also in the correction in the frames I1, I10, I20, I30, I40, I50.

Otherwise, the isolated pose estimation method (Sec. 3.2) is not robust to
large view changes and translations (Fig. 5 b)). But this refinement step increases
the accuracy of the method. As shown in Tab. 2 the errors are smaller than 5
after of the PEC method, except in the case of I50, where the die is lost.

We have observed that the size of the target in ROI at the different levels
of the pyramid strongly depends of the number of visible faces of the die in
the current frame. Fig. 4 shows a graph with the size of the die in ROI for
the different frames of a video sequence at a given level. As can be seen in the
minimum values of the graph there are frames with only one visible face and in
the maximum values there are views with three visible faces. Our current method

Table 2. Errors in pixels at the base level with two methods

object position method (Sec. 3.1)

Frame Prediction error Correction error

I1 8.6 4.4
I10 12.6 12.6
I20 13 10
I30 10 13.1
I40 14.5 19
I50 10.5 8

pose estimation method (Sec. 3.2)

Frame Prediction error Correction error

I1 6.9 1.5
I10 9 1
I20 13.29 0
I30 5.5 2.7
I40 11 5
I50 28.9 42.3(lost)
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Fig. 4. Size of the target in ROI for each frame of a video sequence

to segment the time-space trajectory fails in some cases, which strongly depend
on the position of the die in the frame (related to the shift variance problem of
non overlapping pyramids). We are working to overcome this weakness.

Finally, the strengths of our method have been proven with different
experiments:

– Robustness to illumination changes: We changed the illumination in the
training sequence Fig. 6 a). As can be seen in the bottom row the checkpoints
handle a very abrupt lighting changes.

– Insensitivity to large view changes: Thanks to the object position method
(Sec. 3.1), the algorithm can handle large view changes and it also updates
the motion model. Fig. 6 b) shows in the top row the frames It, It+12, It+13

and It+14 of a video sequence. As can be seen in the bottom row, it localizes
the die in the frame It+12 and updates the motion model. Therefore, the
prediction in the frame It+14 is quite accurate.

– Computationally Cheap: Once initialized, the pyramid of the current frame
It+1 is the same pyramid as the previous frame It, where only the differ-

I1 I2 I3 I1 I2 I3

I4 I5 I6 I4 I5 I6

I7 I8 I9 I7 I8 I9

a) Object position b) Pose estimation

Fig 5. Prediction and correction of checkpoints
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It It+1 It+2 It It+12 It+13 It+14

a) Robustness to illumination changes. b) Insensitivity to large view changes.

Fig 6. Experiments to prove the strengths of our method

Fig 7. Two consecutive frames and their differences at the base level (l0) and at l1

respectively

ences between It+1 and It have been updated. Fig. 7 shows two consecutive
frames and their differences on the top row, while the row below shows the
differences at the higher level(l1). In this particular example, the dimensions
of It and It+1 are equal to 640x480= 307200 pixels, there are 5020 nodes
different at the base level (l0), 17 at l1, 10 at l2 , 2 at l3 and 0 in the rest of
levels.

5 Conclusions and Future Work

This paper has proposed a novel approach to track and to estimate the 3D pose
of a (partially) known object. To demonstrate the new concept we have chosen a
die because of it’s simple structure: six well distinguished faces. We have devel-
oped a marker-less 3D tracking, which extracts the checkpoints with a top-down
method and matches them across images, in a recursive way. This is robust to
changes to illumination, computationally cheap and do not require large amount
of memory. In order to reduce the search cost and allow large view changes, the
method is based on the Maximum Pyramid. Moreover, the time-space trajectory
of the object was divided into relevant and normal events, that reduces the com-
putational effort and allows us to focus only on those relevant frames of the video
stream. The 3D pose was estimated only in the relevant events. Although, the
target was localized in all the events to increase the stability and the robustness
for the tracking process. Finally, in order to obtain the 3D pose estimation in
the complete trajectory, the future work will be an interpolation method, based
on the aspect graph describing the structure of the object’s surface, can be used
to roughly estimate the poses between two relevant events [11].
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Abstract. Fingerprint liveness detection consists in extracting measurements, 
from a fingerprint image, allowing to distinguish between an "alive" fingerprint 
image, that is, an image coming from the fingertip of the claimed identity, and 
an artificial replica. Several algorithms have been proposed so far, but the 
robustness of their performance has not yet been compared when varying 
several environmental conditions. In this paper, we present a set of experiments 
investigating the performance of several feature sets designed for fingerprint 
liveness detection. In particular we assessed the decrease of performance when 
varying the pressure and the environmental illumination as well as the size of 
the region of interest (ROI) used for extracting such features. Experimental 
results on a large data set show the different dependence of some features sets 
on the investigated conditions. 

1 Introduction 

Identification of a person based on the so-called biometrics, namely physical 
(fingerprints, face, iris) or behavioural (gait, signature) attributes is an alternative 
paradigm to those relying on what he/she possesses (e.g. a card that can be lost or 
stolen) or remembers (e.g. a password that can be forgotten) [1]. Nowadays, more 
than ever, it is very important to be able to tell if an individual is authorized to 
perform actions like entering a facility, access privileged information or even cross a 
border. Therefore, biometric systems are considered to be more reliable for the 
recognition of a person than traditional methods. 

A biometric system is a pattern recognition system that acquires biometric data from 
an individual, extracts a features set from the data, compares these features against those 
stored in a database and executes an action based on the comparison result. 

Fingerprints are the most used, oldest and well-known biometric measurements [2]. 
Fingerprints exhibit important properties as uniqueness and permanence. They are 
composed of epidermic ridges and valleys flow, which smoothly varies around two or 
more singular points named core and delta. 

Although fingerprints were often claimed difficult to be steal and reproduced, it 
has been recently shown that artificial replication is possible [3]. Furthermore, the 
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related image obtained by electronic sensors can be difficult to distinguish from 
"alive" ones, even by visual inspection. Therefore, the development of "liveness" 
detection techniques is important to try to distinguish if a fingerprint image is coming 
from an alive person or from a replica. Liveness detection seeks additional data to 
verify if a biometric measure is authentic. Fingerprint liveness detection, with either 
hardware-based or software-based systems, is used to check if a presented fingerprint 
originates from a live person or an artificial finger [4]. It is based on the principle that 
additional information can be obtained from the data acquired by a standard 
verification system. This additional data can be used to verify if an image is authentic. 

To detect liveness, hardware-based systems use additional sensors to gain 
measurements outside of the fingerprint image itself while the software-based ones 
use image processing algorithms to gather information directly from the collected 
fingerprint. These systems classify images as either live or fake [4-9]. 

Software-based approaches are cheaper than hardware-based, since these require 
additional and invasive hardware to measure the liveness directly from the fingertip of 
people. Instead, software-based must detect liveness from features extracted from the 
fingerprint images captured by the sensor. In other words, the liveness detection 
problem is treated as a pattern recognition problem, where a set of features must be 
selected in order to train an appropriate classifier.  

Although several feature sets have been proposed to this aim, it is difficult to 
assess the state-of-the-art appropriately. Moreover, the variables to be taken into 
account are so much, that it is often impossible to perform an exhaustive and fair 
comparison among methods: for example, the sensor type, materials used for 
fabricating the fingerprint replicas, the environmental conditions as temperature, 
illumination, the ability of the attacker in pressing the replica on the sensor surface, 
the fingerprint region used to extract liveness features (ROI), and so on.  

Therefore, in this paper we assess a fair comparison of several state-of-the-art 
approaches to fingerprint liveness detection on a large data set made up of live and 
fake fingerprint images acquired by the Crossmatch sensor LSCAN Guardian USB. In 
particular, after analyzing the baseline performance of such algorithms, we focus on 
three environmental conditions: illumination, pressure and selected ROI. In all cases, 
we measure the effect on the system performance and point out some 
countermeasures in order to improve the system robustness. 

This paper is organized as follows. Section 2 briefly describes the investigated 
algorithms. Section 3 describes data set, protocol and experiments performed al 
results and performance obtained. Section 4 concludes the paper. 

2 Investigated Algorithms and Open Issues 

In this paper, we reported experimental results on several state-of-the-art fingerprint 
liveness detection algorithms. We briefly describe them in the following. Further 
details can be found in the related references. 

Local Binary Patterns (LBP) [5]: local binary patterns were first employed for two-
dimensional textures analysis and excellent results were obtained due to their 
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invariance with respect to grey level, orientation and rotation. It extracts certain 
uniform patterns corresponding to micro-features in the image. The histogram of 
these uniform patterns occurrence is capable of characterize the image as it combines 
structural (it identify structures like lines and borders) and statistical (micro-structures 
distribution) approaches. According to [5], a 54-sized feature vector has been 
obtained. 

Power Spectrum [6]: Coli et al. analyzed fingerprints images in terms of high 
frequency information loss. In the artificial fingerprint creation, the ridge-valley 
periodicity is not altered by the reproduction process but some micro-characteristics 
are less defined. Consequently, high frequency details can be removed or strongly 
reduced. It is possible to analyze these details by computing the image Fourier 
transform modulus also called “power spectrum”. We selected twenty sub-bands on 
the power spectrum, so obtaining a 20-sized feature vector. 

Wavelet Energy Signature and Gray-Level Co-occurrence Matrix (GLCM) [7]: 
The gray-level co-occurrence matrix (GLCM) takes account of how often a pixel with 
gray-level (grayscale intensity) value i is adjacent to a pixel with the value j. Actually, 
the element (i, j, d, θ) represents the probability that a couple of pixels x, y at distance d 
and orientation θ have gray levels i and j respectively.We considered a distance d = 1, so 
the GLMC matrix is related of local characteristic of the image, and four orthogonal 
directions for θ, as done in [7]. Therefore we computed four matrices ),( jiCθ , and, for 

each of them, a group of ten features, so obtaining a 40-sized feature vector. 

Wavelet 2D [8]:  wavelet decomposition of an image lead to the creation of four sub-
bands: the approximation sub-band containing global low frequency information, and 
three detail sub-bands containing high frequency information. The image is 
decomposed in four levels, three sub-bands for each one, and three different wavelet 
filters (Haar, Daubechies (db4) and Biorthogonal (bior2.2)), so obtaining a 70-sized 
feature vector. 

Curvelet [9] decomposition is very efficient for representing edges and other 
singularities along fingerprint ridges due to his high directional sensitivity and his high 
anisotropy. We consider two different sets of features, also called “signatures” in [9]: 

• Curvelet energy signature: the energies of the 18 sub-bands are measured by 
computing means and variances of curvelet coefficients. 

• Curvelet co-occurrence signature: for each of the 18 sub-bands, the GLCM 
(Gray Level Co-occurrence Matrix) is calculated together with 10 
corresponding features. 

In order to test the accuracy of these algorithms, Refs. [5-9] use appropriate data sets, 
but different, one each others, with respect to the size, the materials used for 
replicating fingerprints. Classifiers used are different too. Therefore, methods cannot 
be compared by simply considering results reported in those papers. 
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Moreover, no experimental investigation has been done on the environmental 
conditions affecting the liveness detection performance, especially if these algorithms 
must be intergrated in real fingerprint verification systems [8]. From this point of 
view, we can consider characteristics “intrinsic” to the feature set chosen, like the 
location of the region of interest selected for feature extraction, and “intrinsic” to the 
sensor adopted that, like the pressure of the attacker on the fingerprint sensor surface, 
and the environmental illumination. These points may impact on the quality of the 
liveness feature set extracted, thus being crucial to analyze the “robustness” of such 
feature sets against attacks based on fake fingerprints. In fact, if the system can be less 
robust where environmental illumination changes, a person can take advantage of this, 
by choosing the best moment to attack the system or modifying the environmental 
light. The same holds for the pressure. Finally, if the features are sensitive to the ROI 
position, a wrong ROI extraction could lead to misclassification errors. However, it is 
unknown at which extent they are important, and, eventually, which countermeasures 
can be adopted to reduce their impact. This is the scope of the present paper, where 
these characteristics are analyzed by experiments, and some preliminary observations 
are drawn from the obtained results. 

3 Experimental Results 

3.1 Data Sets and Experimental Protocol 

We used a four data sets for our investigations: 

1) D.1. This data set is made up of 1816 live fingerprints and 1624 fake fingerprints 
created with commonly used materials, uniformly distributed along replicas: 
silicone, gelatin, wood glue and latex. Molds are made up of plastiline-like 
material which allows to replicate the 2d contour of the fingertip. Fingerprint 
images have been acquired by the Crossmatch LSCAN Guardian USB electronic 
sensor. The data set has been subdivided in two parts, namely, training set and 
test set, according to the protocol adopted in the recent Second edition of 
Fingerprint Liveness Detection Competition (LivDet2011) [10]. A multi layer 
perceptron (MLP) has been trained on the first part of data, so obtaining the 
baseline fingerprint liveness detector. The MLP  output is interpreted, as usual, as 
liveness detection score in the range [0,1]. Features sets are extracted from ROIs 
located on the core of fingerprint images (the core is centre of the fingerprint 
image according to [1]), as shown in Fig. 1(a). Such ROIs are quadrangular 
regions. Two sizes has been used: 80x80 pixels and 160x160 pixels. 

2) D.2. This data set has been built to test the variability of the feature set 
performance when ROIs are not correctly located. Four different location errors 
are studied, as reported in Fig. 1(b). We tested the performance on the baseline 
system with 80x80 pels ROIs, but also the performance which can be obtained by 
adding to the training set also patterns extracted from wrongly located ROIs. 
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3) D.3. This data set has been built for evaluating the impact of the pressure of the 
fake fingerprint on the sensor surface when baseline system is used with 80x80 
pels for ROIs. In order to generate novel images, we put a increasing weight from 
500 g to 4000 g on the fake fingerprint, thus simulating the different pressure. 
Obtained data set is thus made of 500 fake fingerprint frames (with increasing 
weight over frames) per three different types of silicon-like materials, gelatin and 
latex for replicating fingerprints. On overall, 2,100 test images have been used 
(not overlapped with the training/test set used for the baseline system). Effect is 
studied by evaluating the variation and correlation degree of the liveness 
detection score with the related weight on the fake fingerprint. 

4) D.4. This data set has been built for evaluating the impact of the environmental 
illumination on the features sets related to fake fingerprints. It has been organized 
as follows: 103 fake fingerprint images simulate device initialization in dark 
room without any enviromental illumination (condition 1); 103 fake fingerprint 
images simulate device initialization with directed light (condition 2). Influence 
of environmental illumination has been tested by evaluating average and standard 
deviation of the liveness score for conditions 1-2. 

 

 
(a) 

 
(b) 

Fig. 1. ROI positions. (a) Baseline ROI. (b) Wrong locations: up, down, left, right. 

3.2 Baseline Results 

Figs. 2(a-b) show the ROC curves of the baseline system according to D.1 data set.  
It can be seen that LBP feature set leads to the best performance, whilst the feature 

set Power spectrum one leads to the worst one. Experiments show that the error 
slightly depends on the size of the ROI. Doubling the size of the ROI, that is, from 
80x80 to 160x160 pixels, the error decreases of about 3% on average. It is worth 
noting that, using a ROI of 160x160 pixels, a fraction of background could be present 
during feature extraction, but this does not seem relevant on the basis of reported 
results. 

Moreover, the rank of investigated feature sets, from the best one to the worst one, 
is: LBP, Wavelet2D, Curvelet Energy, Curvelet Glcm, GLCM, PS. It is independent 
on the ROI size. Therefore, all feature sets are sensitive to the ROI size, in a very 
similar manner. 
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(a) (b) 

Fig. 2. ROC curves showing the expected performance on the D.1 test set. (a) ROI size: 80x80 
pixel. (b) ROI size: 160x160 pixel. 

3.3 Performance on Wrongly Located ROIs 

Table 1 summarizes results as follows. For each feature set (first column), EER is 
reported when training the classifier on centered images (second column), that is, on 
the baseline system. This is used as reference result. Third column reports the same 
classifier when tested on different ROI positions.  

It is possible to see that a wrong ROI position weakly affects the system 
performance (second-third column of Table 1). In all cases, a loss of performance is 
about 1%. In particular, LBP and Wavelet appear as the preferred feature sets. 

In order to recover this performance difference, one could think that training set 
should be “empowered” with the addition of wrongly located ROIs. Therefore, we re-
trained the baseline classifier with such novel information, and test the performance of 
the same test sets. Results are reported in Table 2. It is easy to see that recovering above 
performance variation by adding to the training set bad centered images is not possible.  

These results allow to observe that ROI location does not appear a very crucial 
point for all feature sets, so estimation errors of the ROI do not impact on the final 
system performance, independently on features sets adopted among the ones 
investigated here. 

Table 1. EER for all feature sets and different ROI positions 

Feature set Baseline test Wrongly located ROIs test 
LBP 10.90 12.45 

GLCM 27.32 28.03 
Wavelet2D 20.94 22.07 

Curvelet Energy 23.34 24.56 
Curvelet GLCM 27.32 27.99 
Power Spectrum 28.84 28.59 
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Table 2. EER for all features sets on the classifier “empowered” with patterns extracted from 
wrongly located ROIs 

Feature set Empowered 
classifier 

 
Wrongly located 

ROIs test 

Empowered 
classifier 

 
Baseline test 

LBP 12.66 11.84 
GLCM 26.07 25.68 

Wavelet2D 21.36 20.21 
Curvelet Energy 24.15 23.74 
Curvelet GLCM 27.31 26.66 
Power Spectrum 29.24 29.76 

3.4 Effect of Pressure Variation 

We summarise basic results in Table 3, where we report, for each material and each 
feature set, the sign of the correlation between the system output (1 – liveness score) 
and the applied pressure. If this correlation is more than 0.5 we write ‘+’ on the 
related cell in Table 3; if it is less than -0.5, ‘-’ is written; if correlation is averagely 
“low”, that is, between -0.5 and 0.5, we indicate this fact by ‘*’. 

The most promising feature set is still LBP, because is positive in almost every 
case. This means that, if a fingerprint is spoof, the more the pressure, the more this 
evidence. The same holds for the live class. This can be also desired in optical sensors 
as the one adopted for these tests, because the more the pressure, the more the 
sharpness of related image.  Worth noting, all feature sets are positively correlated 
with pressure when live fingerprints are submitted. This is good, but the decrease of 
the posterior probability for the fake class may lead to an increase of false acceptance 
rate (see for example Wave and PS columns). 

Table 3. Positive (‘+’), negative (‘-‘) or no correlation (‘*’) between system output (posterior 
probability of the correct class) and the applied pressure 

 LBP GLCM Wavelet2D Curv. Energy Curv. GLCM P.S. 
Silicone 1 + + - * * - 
Silicone 2 * - - - * - 
Silicone 3 + + - + - * 
Gelatine + - - + * - 
Latex + - - + * - 

 
We reported in Table 4 if the system outputs, for each feature set, fall into the 

related average range of spoof and fingers on D.1 Test. Symbols in Table 4 can be 
interpreted as follows: 

“+”: object is always in range from 500g-4000g; 
“*”: object is not in range for each weight, but there is a visible tendency (correlation 

exists); 
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“-”: object is not in range for each weight, but there is not a visible tendency (no 
correlation exists). 

Reported results largely confirm observations from Table 3. LBP, Curvelet GLCM 
and Curvelet Energy related outputs fall in the standard range in the most of cases, 
thus they cannot considered as preferred feature sets. 

Table 4. Positive (‘+’), negative (‘-‘) or no correlation (‘*’) between system output (posterior 
probability of the correct class) and the applied pressure when considering only standard output 
range (D1.1. Test) and related outputs 

 LBP GLCM Wavelet2D Curv. Energy Curv. GLCM P.S. 
Silicone 1 + + * - + + 
Silicone 2 + * * + + * 
Silicone 3 * * * + + - 
Gelatine + * * + - + 
Latex * - * + + + 

3.5 Effect of Environmental Illumination 

Results are shown in Table 5. Conditions 1-2 are the ones explained in Section 3.1. In 
all cases, similar output values, that is, liveness score, are obtained, thus illumination  
does not appear as a relevant environmental conditions for the system output. 

On the basis of available data set and reported experiment, LBP and Wavelet 
feature sets appear as the preferred ones. 

Table 5. Posterior probabilities of spoof samples by varying the illumination conditions, and 
related standard deviation (in brackets) 

   
Liveness score average and standard deviation 

Baseline Condition (1) Condition (2) 
LBP 0.960(0.019) 0.962(0.066) 0.969(0.028) 
GLCM 0.706(0.008) 0.660(0.066) 0.666(0.081) 
Wavelet2D 0.941(0.020) 0.934(0.022) 0.932(0.019) 
Curv. Energy 0.788(0.024) 0.747(0.043) 0.762(0.043) 
Curv. GLCM 0.684(0.064) 0.630(0.097) 0.659(0.084) 
PS 0.765(0.021) 0.805(0.028) 0.813(0.019) 

4 Conclusions 

In this preliminary set of large scale experiments on fingerprint liveness detection, we 
focused on the baseline system performance of several state-of-the-art feature sets, 
with respect to some of variability elements. In particular, we have studied an intrinsic 
characteristic of the feature sets, namely, the choice of the ROI (size and location), 
and two external characteristics of the fingerprint sensor, that is, the pressure of the 
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fake fingerprint on the sensor surface, and the environmental illumination, which may 
impact on the captured image, and, thus on the feature set extracted. 

On the basis of reported experiments, we noticed that, in almost all cases, the 
larger is ROI size, the better is the system performance, but the location of the ROI is 
not relevant. It has also been obtained that the most of features sets are sensitive to the 
pressure, thus improving or worsening the liveness detection result depending on how 
much an individual tend to press the fake fingerprint (see in particular the LBP and 
Curvelet Energy cases). Finally, environmental illumination is not crucial, since the 
system output is substantially stable independently on rough changes of the light 
intensity. 

These results point out that performance is not yet acceptable for their integration 
in standard fingerprint verification algorithms, but also that they have some invariant 
characteristics to some settings and environmental conditions which make them 
worthy of further theoretical and experimental investigations.  
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Abstract. Defining similarities or distances between graphs is one of
the bases of the structural pattern recognition field. An important trend
within this field consists in going beyond the simple formulation of simi-
larity measures by studying properties of graph’s spaces induced by such
distance or similarity measures . Such a problematic is closely related to
the graph embedding problem. In this article, we investigate two types
of similarity measures. The first one is based on the notion of graph
edit distance which aims to catch a global dissimilarity between graphs.
The second family is based on comparisons of bags of patterns extracted
from graphs to be compared. Both approaches are detailed and their
performances are evaluated on different chemoinformatics problems.

1 Introduction

Graphs allow to encode not only the elementary features of a set of objects but
also the relationships between these objects. Graphs constitute thus an efficient
tool to model complex objects or phenomenons. Classification, regression or
clustering operations applied on graphs constitute an important sub field of
the structural pattern recognition framework, all these operations being based
either implicitly or explicitly on a distance or a similarity measure.

Definition of graph distances or graph similarity measures constitute an active
field within the structural pattern recognition framework. Main distance defini-
tions are based on one hand on the size of the minimum common super graph or
the maximum common sub graph and on the other hand on the minimal num-
ber of vertex/edge insertion/removal/relabeling required to transform one graph
into an other. This last measure called the edit distance is related to the notion
of maximum common sub graph [2] and provides a nicely interpretable measure
of distance between two graphs. Moreover, assuming basic properties on the ele-
mentary edit costs, one can show that this distance satisfies the 4 properties of a
distance (positivity, separation, symmetry and triangular inequality). However,
the number of calculus required by edit distance computation grows exponen-
tially with the number of nodes of both input graphs and several heuristics have
been proposed to obtain efficient but sub optimal edit distances [8, 14].
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Restricting structural pattern recognition to pairwise comparisons of graphs
leads to restrict the field to efficient but often basic classification or clustering al-
gorithms such as the k-nearest neighbor or the k-median algorithms. Computing
efficiently more global feature on a set of graphs requires additional properties
of the topology of the graph’s space implicitly defined by a distance measure
between graphs. Such a problem may be solved by defining a natural embedding
of graphs. Such an embedding leads to associate explicitly or implicitly a vector
to each graph and to define a metric between these vectors which corresponds
to the metric defined by the graph distance. However, the fact that a distance
satisfies the 4 usual distance’s axioms does not insure that an embedding within
an Hilbert space may be associated to graphs [3]. More precisely, given a set of
n graphs, and a matrix D encoding all pairwise distances between the graphs of
the set, the type of space induced by D is provided by the spectrum of the matrix
Sc = − 1

2 (I −
1
nee

t)D(I − 1
nee

t) where e is the vector of ones (Section 2). The
metric space encoding similarities between graphs is a Krein space if this spec-
trum contains negative eigen values and an Hilbert space otherwise. Krein spaces
have unusual properties such as possibly negative distances between graphs. In
order to avoid to use such spaces, several authors [8] regularize the matrix Sc in
order to remove its negative eigen values hereby slightly modifying the original
metric defined by D. An alternative approach consists in associating a vector to
each graph using for example spectral analysis [12]. The approach is in this case
slightly different since the metric defined between vectors does not correspond
to a metric initially defined in the graph’s space. A last approach consists in
defining a symmetric similarity measure between graphs. The matrix encoding
all pairwise similarities between the graphs of a set is called the Gram matrix of
this set. If for some sets of graphs the Gram matrix is non definite positive the
embedding space associated to this similarity measure is a Krein space. Other-
wise, the embedding space corresponds to an Hilbert space and the similarity
measure is called a kernel. In this last case the similarity function corresponds to
a scalar product between the vectors associated to both input graphs. One may
note the symmetry between embeddings based on distances and similarity mea-
sures. Both problems are indeed related, since within an Hibert space or a Krein
space a distance measure may be defined from scalar products and conversely.

This paper provides a comparison of both distance and similarity approaches.
We first present two important methods within the distance based embedding
framework in Section 2. Then we provide an overview of graph kernels meth-
ods in Section 3. Both approaches are finally compared in Section 4 on several
chemoinformatics data sets.

2 Graph Embedding

Embedding graph in vector space aims to define points in a vector space such
that their mutual distances is as close as possible to the initial graph dissimi-
larity matrix wrt a cost function (eg. graph edit distance). More precisely, let
G={g1, ..., gn} be a set of graphs and d: G × G → R a graph distance function
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between pairs of its elements and let D = Dij = d(gi, gj) ∈ Rn×n be the dissim-
ilarity matrix. The aim in the graph embedding is to provide n p-dimensional
vectors xi such that the distance between xi and xj is as close as possible to
the similarity Dij between gi and gj. Thus, embedding graph into a vector space
make the graph available to numerous machine learning techniques which require
vectorial representation.

Numerous approaches [4,8,12,18] have been proposed in the literature. In this
paper we recall the approach proposed in [8] and which is based on the constant
shift embedding [15]. Originally, the constant shift embedding was introduced in
order to embed pairwise data into Euclidean vector spaces. In [8], the authors
adapt this method to the domain of graphs. The key issue is to convert general
dissimilarity data into metric data.

Constant Shift Embedding. We briefly describe the method of Roth et al. [15]
to embed D (restricted by the constraint that self-dissimilarities are equal to
zero) into a Euclidian space, without influencing the distribution of the initial
data. The aim of this approach is to determine a matrix D̃ close to D such that
it exists a set of vectors (xi)i∈{1,...,n} with D̃ij = ‖xi − xj‖2. The solution of
this problem is of course not unique since any translation of vectors xi would
provide a same distance matrix. In order to overcome this problem we perform

a centralization of matrix D by considering Sc = −1

2
Dc, where Dc = QDQ is

the definition of the centralization and Q = In − 1
nene

ᵀ
n is the projection matrix

on the orthogonal complement of en = (1, . . . , 1). Such a matrix Sc satifies:

Dc
ij = Sc

ii + Sc
jj − 2Sc

ij (1)

If Sc is semidefinite positive, its singular value decomposition is equal to Sc =
V ΛV t where columns of V encode the eigen vectors of Sc and Λ is a diagonal

matrix encoding its positive eigen values. Setting X = V (Λ)
1
2 , we obtain Sc =

XXt. Hence, each element Sc
ij of Sc is equal to a scalar product < xi, xj >

between the lines i and j of X . Equation 1 may thus be intepreted as a classical
result on Euclidean norms stating that the squared distance between two vectors
is equal to the sum of the squared norms of these vectors minus twice their scalar
product. The scaled eigen vectors (xi)i∈{1,...,n} provide thus a natural embedding
of matrix D when matrix Sc is definite positive.

Following the constant shift embedding Sc can be transformed into a positive
semidefinite matrix (see Lemma 2 in [15]):

S̃ = Sc − λn(S
c)In

where λn(S
c) is the minimal eigenvalue of the matrix Sc. The diagonal shift of the

matrix Sc transforms the dissimilarity matrix D in a matrix representing squared
Euclidean distances. The resulting embedding of D is defined by (minimal shift
theorem):

D̃ij = S̃ii + S̃jj - 2S̃ij ⇐⇒ D̃ = D − 2λn(S
c)(ene

ᵀ
n − In)
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Setting Dimension. In PCA it is known that small eigenvalues contain noise.
Therefore, the dimensionality p can reduced by choosing t ≤ p. Consequently, a
n× t map matrix Xt=Vt(Λt)

1/2 will be computed where Vt is the column-matrix
of the selected eigenvectors and Λt the diagonal matrix of the corresponding
eigenvectors.

Graph Similarity Measure. Let us recall how the similarity (or dissimilarity)
in the domain of graphs can be computed. Similarity between two graphs is
almost always referred as a graph matching problem. Graph matching is the
process of finding a correspondence between nodes and edges of two graphs
that satisfies some constraints ensuring that similar substructures in one graph
are mapped to similar substructures in the other. Many approaches have been
proposed to solve the graph matching problem. Among these, the graph edit
distance has been widely used as the most appropriate similarity measure for
representing the distance between graphs. In this paper we use two approaches [7,
14] based both on an approximation of the graph edit distance as an instance
of an assignment problem where the edit distance between two graphs is based
on a bipartite graph matching. In both approaches, the authors formulate the
assignment problem by cost matrix where the optimal match is solved by the
Hungarian algorithm.

In [14], each entry of the cost matrix encodes the cost of a node substitu-
tion, deletion or insertion. Substitution costs are defined using the Hungarian
algorithm on the set of incident edges of both vertices. The substitution cost of
two incident edges takes into account the label of the edges and the label of the
incident vertices.

In [7], the cost matrix is encoded differently using a distance (HEOM distance)
between node signatures. A signature describes the node (degree, attributes), the
incident edges attributes but also the degrees of the adjacent nodes. The main
differences with the previous approach is that no prior computation (learning
phase) of the edit cost function are needed and more global information are
taken into account on the graph in the signature.

3 Graph Kernels Methods

Graph embedding methods aim to associate coordinates to graphs. Such an
embedding allows us to define similarity or distance measures from graph’s co-
ordinates. An alternative strategy consists in computing directly a similarity
measure between graphs. Graph kernels can be understood as symmetric graph
similarity measures. Using a semi definite positive kernel, the value K(G,G′),
where G and G′ encode two input graphs corresponds to a scalar product be-
tween two vectors φ(G) and φ(G′) in some Hilbert space, called feature space.
Distance between two graphs G and G′ can be retrieved from kernel function
by the relation (Equation 1) d2(G,G′) = K(G,G) + K(G′, G′) − 2K(G,G′).
Thanks to this possibly implicit embedding of graphs into an Hilbert space,
graph kernels can be combined with machine learning methods based on scalar
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products between input data, such as the well-known SVM. This use of kernels
into statistical machine learning method, called kernel trick, provides a natural
connection between structural pattern recognition and graph theory on one hand
and statistical pattern recognition on the other hand.

A large family of graph kernels are based on the extraction of a bag of patterns
from each graph. Methods corresponding to this family consists in three key
steps. First, bags of pattern are built from graphs by enumerating a given set
of patterns P within graphs. This enumeration, possibly implicit, defines an
embedding of graphs into a feature space where each dimension is associated to
a pattern. Second, global similarity between graphs is defined by the similarity
of their bags of patterns. Finally, this similarity between bags is based on a sub
kernel between pattern kp : P×P → R. This sub kernel kp encodes the similarity
of two patterns extracted from graphs.

A common approach defines the set of patterns as all possible walks included
within a graph. A first method, defined by Gärtner and al., proposes a formu-
lation of a kernel based on graph product and powers of adjacency matrix [5]
which computes the number of common walks of the two graphs to be compared.
A second method proposed by Kashima and al. [9] defines a random walk kernel
by considering the probability p(w|G) of encountering a random walk w within
a graph G. Using such probabilities, the kernel is defined as:

krw(G,G′) =
∑

w∈W(G)

∑
w′∈W(G′)

p(w|G)p(w′|G′)k(w,w′) (2)

with W(G) denoting the set of walks extracted from G. Vishwanathan [16] has
proposed an unified and efficient computation of both methods by means of
Sylvester equations. However, comparison of graphs based on random walks
suffers from tottering. Tottering corresponds to possible infinite oscillations be-
tween two nodes which leads to artificially long walks not representative of the
structure of the graphs.

The major drawback of methods based on linear patterns is that linear struc-
tures can not represent most of the structural information encoded within com-
plex and non linear structures such as molecular graphs. In order to tackle this
limitation, Ramon and Gärtner [11] and Mahé and Vert [10] have proposed a
kernel based on the comparison of non linear patterns. This set of non linear pat-
terns is defined as the set of tree patterns, denoted TP , i.e. trees where a same
node can appears more than once. This kernel maps each tree pattern having a
different labeling to a specific dimension in an infinite feature space represent-
ing all possible tree patterns. This embedding may be encoded by projection
φTP (G) and graph kernel is defined as an inner product between these projec-
tions: KTP (G,G′) = 〈φTP (G), φTP (G

′)〉. Computation of this kernel is based on
a recursive comparison of neighborhood matching sets up to a given depth [10].

Mahé and Vert have proposed in [10] an extension of tree pattern kernel which
weights each tree pattern according to its structural complexity. This measure
of structural complexity may be encoded by the branching cardinality or the
ratio between number of nodes and depth of tree patterns. However, since the
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number of occurrences of each tree pattern is not explicitly computed during
kernel computation, only an a priori weighting of tree patterns can be applied to
each tree pattern. In addition, as observed on walks, tree patterns suffers from
tottering. However, Mahé and Vert [10] have proposed an extension to prevent
tottering based on a transformation of input graphs.

Another method based on non linear patterns computes an explicit distri-
bution of each pattern within a graph. This method, called treelet kernel [6],
explicitly enumerates treelets included within a graph, the set of treelets being
defined as the 14 trees having a size lower than or equals to 6 nodes. Thanks
to the limited number of different patterns encoding treelets, an efficient algo-
rithm allows to enumerate the number of occurrences of each pattern within a
graph. Given this first enumeration, a first kernel on unlabeled graphs can be
defined. When applying this method to set of labeled graphs, labeling informa-
tion included within treelets is encoded by a canonical key. This canonical key is
defined such that given two treelets with a same structure, their canonical key is
similar if and only if the two treelets are isomorphic. Each treelet being uniquely
identified by the index of its pattern and its canonical key, any graph G can
be associated to a vector f(G) which explicitly encodes the number of occur-
rences of each treelet t by ft(G). Using this vector representation, treelet kernel
between graphs is defined as a sum of sub kernels between common treelets of
both graphs:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (3)

where k(., .) defines any positive definite kernel between real numbers such as
linear, Gaussian or polynomial kernel. In the same way as tree pattern kernel,
each pattern can be weighted in order to improve kernel accuracy as follows:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

w(t)k(ft(G), ft(G
′)) (4)

However, conversely to tree pattern kernel, the explicit enumeration of each sub
structure provided by treelet kernel method allows to weight each pattern ac-
cording to a property to predict and not only according to an a priori function.
This weighting may be computed using variable selection algorithms [6] or mul-
tiple kernel learning [1].

4 Experiments

Our first experiment is based on two regression problems1 which consist in pre-
dicting molecule boiling points. The first dataset is composed of 150 alkanes, an
alkane corresponding to an acyclic molecule solely composed of carbons and hy-
drogens. A common encoding is to implicitly encode hydrogen atoms using the

1 These databases are available on the IAPR TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry

http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry
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Table 1. Boiling point prediction

Method
RMSE (◦C) Computation

Alkane Acyclic Time (s)
(1) Gaussian edit distance 10.01 10.27 1.35
(2) Random Walks Kernel 16.28 18.72 19.10
(3) Treelet Kernel 1.92 8.10 0.07
(4) Tree Pattern Kernel 3.48 11.02 4.98
(5) Graph Embedding 6.15 12.3 7.21

valency of carbon atoms. Such an encoding allows to represent alkanes as un-
labeled graphs. The second dataset is composed of 183 acyclic molecules, each
molecule being composed of heteroatoms and thus encoded as acyclic labeled
graphs. We evaluate the boiling point of each molecule using several test sets
composed of 10% of the database, the remaining 90% being used as training set.

First, we can note that linear patterns (Table 1, Line 2) do not encode enough
structural information to correctly predict boiling points of molecules. Con-
versely, methods based on bags of non linear patterns obtain better results (Ta-
ble 1, Lines 3 and 4). Differences between Treelet Kernel and Tree Pattern Kernel
may be explained by the use of a Gaussian kernel for Treelet kernel, which is not
possible within the tree pattern computational scheme. In addition, limitation
on the size of patterns induced by explicit enumeration of treelets does not have
a large influence on these problems since molecules have a low number of atoms.
Second, Table 1 shows results obtain by graph embedding method (Line 5) and
a Gaussian kernel applied on the approximate edit distance as defined by [14]
(Line 1). Graph embedding results have been computed using different subsets
of eigenvalues obtained by applying a threshold on variance encoded within the
matrix.We can note that the improvement on edit distance approximation leads
to better results than approximation defined in [14] when applied to unlabeled
graphs. Finally, the last column of Table 1 shows the time required to compute
the Gram matrix on acyclic dataset. Note that while most of the methods are
computed within the same order of magnitude (seconds), Treelet Kernel can be
computed in 0.07 seconds thanks to the efficient enumeration of a limited set of
patterns.

The second experiment consists of two classification problems. The first one is
taken from the Predictive Toxicity Challenge [17] which aims to predict carcino-
genicity of 416 chemical compounds applied to female (F) and male (M) rats (R)
and mice (M). This experiment consists of ten different datasets for each class
of animal, each of them being composed of one train set of about 310 molecules
and one test set of about 35 molecules. The second dataset is provided by [13].
This database defined from the AIDS Antiviral Screen Database of Active Com-
pounds is composed of 2000 chemical compounds. These chemical compounds
have been screened as active or inactive against HIV and they are split into
three different sets. A train set composed of 250 compounds used to train SVM,
a validation set composed of 250 compounds used to find parameters giving the
best prediction accuracy and a test set composed of remaining 1500 compounds.
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Table 2. Classification accuracy on the two classification experiments

Method
PTC

AIDS
MM FM MR FR

(1) Gaussian Edit Distance 223 212 194 234 99.7%
(2) Random Walks Kernel 216 221 201 232 98.5%
(3) Treelet Kernel (TK) 208 205 209 212 99.1%
(4) TK with variable weighting 217 224 223 250 99.7%
(5) Graph Embedding 218 227 206 239 99.7%

Table 2 shows the amount of correctly classified molecules over the ten test
sets for each class of animal for the first dataset and the accuracy obtained
by differents methods on AIDS dataset. Note however that results obtained by
tree pattern kernel are not displayed since the source code provided by the
authors is restricted to molecules with a degree bounded by 4. First, we can
note that method based on graph embedding (Table 2, Line 5) leads to globally
better results than Gaussian kernel applied on an approximation of the graph
edit distance (Table 2, Line 1). In the same way, graph embedding methods
outperforms RandomWalks Kernel (Table 2, Line 2) and Treelet Kernel (Table 2,
Line 3). However, combination of a variable weighting scheme with Treelet Kernel
(Table 2, Line 4) improves the prediction accuracy of Treelet Kernel and obtains
the best results on 3 over 5 datasets a slightly lower prediction accuracy than
graph embedding methods on the two others. However, weighting each treelet
according to a property to predict requires about 30 minutes for each train set
of PTC dataset whereas computational time of graph embedding is performed
in about 74 seconds for each PTC dataset. The accuracy provided by variable
weighting can thus be obtained at the cost of an high computational time.

5 Conclusion

As shown in our experiments graph kernels and graph embeddingmethods provide
close results in most of experiments. This last point is expected since as stressed
in this paper both approaches are closely related. The main difference of both ap-
proaches should rather be determined from their potential usage. On one hand,
Graph embedding methods provide an explicit embedding in a finite dimensional
space for each input data sets. Hence, this approach is not restricted to kernel
methods but can use explicitly the coordinates associated to graphs. On the other
hand, this approach requires the whole data set to compute an embedding. Graph
kernels based on bag of patterns, only require to compute the similarity between
an input graph and the one of the training set. These methods may thus be used
on unbounded data sets. The choice between both approaches should thus be de-
termined from the ability for a given application to obtain the whole data set and
from the ability of algorithms applied on graphs to be kernelized.

Acknowledgments. The authors thanks Salim Jouili for providing the graph
embedding code.
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Abstract. The new Interactive Pattern Recognition (IPR) framework
has been recently proposed. This proposal lets a human interact with a
Pattern Recognition system allowing the system to learn from the inter-
action as well as adapt it to the human behavior. The aim of this paper
is to apply the principles of IPR to the design of Spoken Dialog Systems
(SDS). We propose a new formulation to present SDS as an IPR problem.
To this end some extensions to the IPR approach are proposed. Addition-
ally a user model based on the IPR paradigm is also defined. We applied
the proposed formulation to compose a preliminary graphical model that
has been experimentally developed to deal with a Spanish dialog task. An
initial maximum likelihood strategy for the dialog manager actions along
with a stochastic simulation of user behavior have allowed to get new di-
alogs. The preliminary evaluation of these results allowed us to consider
this formulation as a promising framework to deal with SDS.

1 Introduction

Interactingwithmachines has proved to helpmanyhumanactivities. Butmachines
can also take advantage of the human feedback to improve their performances. In
this context the new Interactive PatternRecognition (IPR) framework has been re-
cently proposed [1]. This proposal lets a human to interactwith a PatternRecogni-
tion (PR) system allowing the system to learn from the interaction as well as adapt
it to the human behavior. IPR has been applied to some classical PRproblems such
as interactive transcription of handwritten and spoken documents, computer as-
sisted translation, interactive text generation and parsing, among others [1].

Speech-based human-computer interaction seems to be a straightforward appli-
cation of the IPR framework. However the management of a SDS is a very complex
task that involves many other problems to be solved like the Automatic Speech
Recognition (ASR), semantic representation and understanding, answer genera-
tion, etc. The DialogManager (DM) is the main component of a SDS. It is devoted
to manage the state of the dialog as well as the dialog strategy. According to the
information provided by the user the DM must decide the action to be taken. Due
to its complexity the design of DM has been traditionally related to rules based
methodologies, sometimes combined with some statistical knowledge [2] [3]. How-
ever during the last few years some proposal based on classical pattern recognition
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Fig. 1. a) Diagram of an Interactive Pattern Recognition system that provides an
hypothesis h given a stimulus x and a user feedback f . b) Diagram of an SDS where a
DM provides an hypothesis h given the previous hypothesis and the user feedback f .
In the next interaction step a simulated user provides the feedback f given its previous
feedback and the system hypothesis h.

methodologies canbe found in the literature [4] [5][6] [3] [7]. Some of themare based
onMarkov decision process and reinforcement learning. However, only small prob-
lems can be addressed in this frameworkup to now, since global optimization is still
a hard computational problem. This problem is addressed by factorization of the
states space [5] and partition of the dialog state distributions [8].

The aim of this paper is to apply the principles of IPR to the management
of SDS. We propose a new formulation to present SDS as an IPR problem. To
this end some extensions to the IPR approach presented in [1] are also proposed
(Section 2). We deal with both speech and text-based dialog systems, decoding
as well as with the relationship between SDS and decision theory. Additionally
a user model based on the IPR paradigm is also defined (Section 3). We have
applied the proposed formulation to compose a preliminary graphical model
that deals with both manager and user behavior (Section 4). The preliminary
evaluation of these models over a Spanish Dialog Task (Section 5) allowed us to
consider this formulation as a promising framework to deal with SDS.

2 Spoken Dialog Systems in the IPR Framework

Let x be an input stimulus, observation or signal and h an hypothesis or output,
which a classical PR system has to derive from x. Let M be a model or set of
models used by the system to derive its hypotheses. In general,M is obtained
through a batch learning procedure from a given set of training pairs (xi, hi)
from the task being considered. Under the IPR framework [1] the user of the
system provides some (perhaps null) feedback signals, f , which may iteratively
help the system to refine or to improve its hypothesis until it is finally accepted,
as diagram in Figure 1a) shows. The interaction allows to consider the human
feedback f . Thus, an adaptative on-line procedure can also be now considered.
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Under the decision theory point of view, after I iterations the system has
received F = f1, f2, . . . , f I user feedbacks and has produced H = h1, h2, . . . , hI

hypotheses. The loss function l(x, h, h�, H, F ) defines the cost incurred by the
system due to an erroneous hypothesis, being h∗ the correct one. A best hypoth-
esis is now given by:

ĥ = argmin
h∈H

Rl(h|x,H, F ) = argmin
h∈H

∑
h�∈H

l(x, h, h�, H, F )Pr(h�|x,H, F ) (1)

where Rl(h|x,H, F ) is the risk, or cost of proposing a hypothesis h. A basic sim-
plification is to ignore the user feedback except for the last interaction and/or hy-
pothesis; that is define the loss function as l(x, h, h�, h′, f). Then the classical PR
minimum-error criterion corresponds to a 0/1 loss function defined to be 0 if h =
h� and 1 otherwise. In such a case the Baye’s decision rule is simplified to maximize
the posterior Pr(h|h′, f), and a best hypothesis ĥ is obtained as follows:

ĥ = argmax
h∈H

P (h|x, h′, f) (2)

Equation 2 corresponds to a zero-order approach, where ĥ is derived using only
the feedback obtained in the previous iteration step and h′ is the history. In a
first-order approach h′ can be represented by the optimal hypothesis ĥ obtained
by the system in its previous interaction step for the given x.

Let now apply the IPR paradigm to provide a new formal framework for SDS.
We first assume that the system interacts with the user providing a first hypoth-
esis through a greeting turn that acts as unique stimulus x. So, we can ignore
it from now on. Then, the probability to be maximized in Equation 2 is now
P (h|h′, f). This maximization procedure defines the way the Dialog Manager of
a SDS choose the best hypothesis, i.e. the best action at each interaction step,
given the previous hypothesis h′ and the user feedback f . However, alternative
criteria can also be considered to make this decision. In fact, the 0/1 loss func-
tion may be substituted by a loss function proportional to the number of user
turns in a dialog or to an estimation of the number of turns required to success-
fully ending a dialog, at each interaction step. Thus, the estimation of the best
hypothesis ĥ given at each interaction step may not be based on the classical
minimum-error criterion criterium. Moreover, in SDS this decision is usually
taken according with a DM strategy that maximizes the probability of achieving
the unknown user goal at the end of the interaction procedure while minimizing
the cost of getting them [5] [9].

In a SDS, the interpretation of the user feedback can not be considered a
deterministic process. Let now D be the space of decoded feedback signals and
d ∈ D the decoding of f . Considering d as a hidden variable we can rewrite
Equation 2 as follows:

ĥ = argmax
h∈H

P (h|h′, f) = argmax
h∈H

∑
d

P (h, d|h′, f) (3)

Approximating the sum with the value of the mode, applying basic probabilities
rules, ignoring terms which do not depend on the optimization variables h, d and
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then assuming independence of P (h|d, h′, f) on f given h′, d and of P (f |d, h′)
on h′ given d, Equation 3 can be rewritten as follows [1]:

ĥ ≈ argmax
h∈H

max
d

P (h|d, h′)P (f |d)P (d|h′) (4)

where f is the user turn, d is the decoding of the user turn, h is the hypothesis
or output produced by the system and h′ is the history of the dialog.

The optimizing problem to be solved is to find ĥ according to Equation 4. A
suboptimal approach is a two step decoding. Find first an optimal user feedback:

d̂ = argmax
d

P (f |d)P (d|h′) (5)

Then, use d̂ to decode ĥ as follows:

ĥ ≈ argmax
h∈H

P (h|d̂, h′) (6)

A Particular Case: A Text-Based Dialog System Let now consider a
deterministic feedback that can be specified as a function d : F → D mapping
each user turn signal into its corresponding unique decoding d = d(f). For
instance, if f is a sequence of written words then d(f) is a deterministic decoding
of f in terms of semantic units, i.e. an unambiguous semantic tagging procedure.
In such a particular case Equation 4 becomes:

ĥ ≈ argmax
h∈H

max
d

P (h|d, h′)P (d|h′) (7)

Equation 7 stands for a text-based dialog system whereas Equation 4 stands for
a SDS. In both equations, P (d|h′) represents the semantic model of the task
that is constrained by the history h′. Finally P (h|d, h′) includes both the task
and dialog manager models since this distribution provides the hypotheses, i.e.
outputs of the system, given the history h′ and the user intervention d.

3 A Simulated User

Equation 3 summarizes a system that provides an hypothesis h given its previous
hypothesis h′ and a user feedback f , according with the distribution P (h|h′, f). In
fact, this system is the Dialog Manager of the SDS that needs to take decisions at
each interaction step.The probability distributionP (h|h′, f) canbe approachedby
some systemmodelMS whose parameters need to be estimated from data trough
a learning process. Thus, corpora consisting of sets of (h, h′, f) can be used to train
MS . However, loss functions that take into account the success in achieve the user
goals and the system cost minimization, which is measured in terms of number of
turns, are not very well supported. The final goal of a DialogManager is to achieve
the user goals and expectations, which are absolutely unknown for the system [5].
Thus, online learning, i.e., learning from the interaction, is the only way in this
case for the system to be trained by users. Therefore, a large amount of dialogs
as well as real users with different goals, expectations and behavior are required.
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This is the reason that statistical dialogmanagers are usually trained by simulated
users [3]. Accurate training of DM includes a first batch training step using large
dialog corpora and a second training step with simulated users. On line learning
algorithms would also allow the system to be adapted to the task and to the real
user behavior, when running.

No user model is considered up to now in the IPR framework [1]. A simu-
lated user must provide to the system the feedback f at each interaction step.
Let now the user feedback f depend on its previous feedback f ′ according to
some unknown distribution P (f |f ′, h), which represents the user response to the
history of system hypotheses and user’ feedbacks. This distribution stands for
user behavior and represents, to some extend, the user model defined in classical
statistical frameworks proposed for spoken dialog systems [5].

Let us define amodel of user behaviorMU that is applied by the user to produce
the feedback f . Such amodel can also be defined under the IPR framework consid-
ering now the user point of view. Thus, after I iterations the user has receivedH =
h1, h2, . . . , hI hypotheses from the system and has generated F = f1, f2, . . . , f I

feedbacks to the system.The loss function can nowbe defined as l(f, f�, F,H) such
that the estimation of the user best feedback is given by:

f̂ = argmin
f∈F

Rl(f |F,H) (8)

whereRl(f |F,H) is now the user interactive conditional risk. Ignoring the history
of system hypotheses except for the last user feedback and considering again a
0/1 loss function, a best user feedback f̂ is the one that maximizes the posterior
PMU (f |f ′, h).

f̂ = argmax
f∈F

P (f |f ′, h) ≈ argmax
f∈F

PMU (f |f ′, h) (9)

where f̂ is estimated using only the hypothesis produced by the system and the
optimal feedback produced by the user in the previous interaction step according
with its user model. Figure 1b) shows a Simulated User (SU) interacting with a
Dialog Manager according with a model of the user behavior.

Equation 9 represents the way the user decides the feedback f . As the case of
the system model, alternative criteria could be also considered to simulate the
user behavior. In fact, many simulated user models can be found in the SDS
bibliography [7][10].

Feedback f ′ produced by user in the previous interaction is not corrupted by
any noisy channel, such as an ASR system, before arriving to the user again.
Thus, a deterministic decoding d : F → D maps each user turn signal into its
corresponding unique decoding d = d(f). If f is a sequence of acoustic observa-
tions then d(f) is a deterministic decoding in terms of semantic units. We are
now representing d(f) just by d and d(f ′) by d′. Then Equation 9 can now be
rewritten as

d̂ = argmax
d∈D

P (d|d′, h) ≈ argmax
d∈D

PMU (d|d′, h) (10)

where D represents the set d(F).
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4 Modelling the DM and the User Behavior

In this section we are providing a preliminary approach to model both the dialog
manager hypothesis probability distributions P (h|d, h′) and the user feedback
probability distribution P (d|h, d′). We are defining a graphical model consisting
of sets of states representing (h, d) pairs. Some of these states correspond to the
DM and are labelled by (d, h′), being d the output of the Speech understanding
system given the user feedback f and h′ the system hypothesis at the previous
interaction. Then, states corresponding to the user are labelled by pairs (h, d′)
where h is the system hypothesis and d′ is the deterministic decoding of the
previous user feedback f ′. The DM generates a system hypothesis h at each
machine turn and the simulated user provides a feedback f at each user turn.
Figure 2 shows a diagram of a machine and a user turn. Additionally, each

di+1, hi+1di, hi

hi+1, di

hi+2

fi+1

di

di+1

hi+1
ASR

MACHINE TURN USER TURN

Fig. 2. Machine state at interaction turn i is labelled by the pair (di, hi) where di
has been updated. The system then generates a hypothesis hi+1 that updates the user
model state labelled by (hi+1, di). In the user turn a feedback fi+1, decoded as di+1

by the speech understanding module, is provided. di+1 updates the machine state for
interaction turn i+ 1.

state needs to be labelled by the values of all the relevant internal variables,
thus leading to an attributed model. Then, an additional alphabet appears to
represent variables and internal attributes.

The parameters of the model can be estimated in a three step learning pro-
cedure as follows:

1. Get a dialog corpus consisting of pairs of user and machine turns. Then get
an initial maximum likelihood estimation of the parameters of both models.

2. Define a Dialog Manager strategy and several simulated user model behav-
iors. Define also error recovery strategies. Run the system until desired dialog
goals are successfully achieved for different simulated user behaviors.

3. Run the SDS with real users while adapting the Dialog Manager using real
interaction feedbacks.
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5 Experimental Application

This work mainly focusses on the formulation of a SDS as an IPR problem. Thus,
the aim of this section is to put into practice the approach described in Sec. 4,
for a Spanish dialog task.

DIHANA Corpus. [11]. It is a set of spoken dialogs in Spanish, providing
information related to the Spanish railway system. The corpus is composed by
900 dialogs acquired by the Wizard of Oz technique. It consists of 225 speakers
(153 males and 72 females) asking for information about long-distance train
timetables, fares, destinations and services. In order to obtain more realistic
dialogs, the speakers had to reach a certain goal in each dialog, while they were
entirely free to express themselves as desired. The corpus consists of 9.133 system
turns and 6.280 user turns with a vocabulary of 823 words.

This corpus has been annotated in terms of Dialog Acts (DA), according to an
udapted version of the Interchange Format defined in the C-STAR project. Each
minimum segment of a turn is labelled with a single label composed by three
hierarchical levels [12]. The first one is the most generic and represent the ac-
tion of the segment: affirmation, opening, closing, confirmation, wait, undefined,
negation, not understood, new question, question, answer. The second level stores
the information directly related to the first level, and the third level contains
other data present in the segment. In DIHANA corpus second and third level
labels are combinations of the 13 variables that define the task: ticket class, des-
tination, day, arrival hour, departure hour, nil, origin, price, service, duration,
train type, relative order number and number of trains. Note that these variable
labels are just descriptors of the data and do not store real values, i.e. there are
not attributes in the sense defined in previous section. An example of a labelled
user turn in DIHANA corpus is:

(U:Question:Price:Day) I would like to know the fare on next Monday

where “U” indicates a user turn, “Question” is the first level that represents
the action performed in the segment, “Price” the second level as the user is
asking about the fare and “Day” is the third level because it is the additional
information provided by the user.

Building the Model.A graph like the one shown in Fig 2 has been obtained for
DIHANA corpus. This preliminary model only considers a list of 13 attributes
consisting of the values of the variables defining the task. The information pro-
vided by some of these attributes is required to successfully complete a dialog.
In the user turn I would like to know the fare on next Monday, the user is pro-
viding an attribute value to the variable day and expects the system to prompt
the attributed value of the variable price. To this end the dialog manager may
need additional values such as destination and hour. Thus, it needs to take into
account which attributes have been already provided by the user and which
of them are not still filled, throughout the dialog. A more sophisticated model
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Table 1. Sizes of the Dialog Manager and User Model (number of nodes and number
of edges) which have been trained with two subsets (equal size) of the corpus.

DIHANA
# nodes # no. edges

system 7,466 5,049

user 7,387 4,289

would include a larger list of attributes for each variable including, for instance,
confident measures provided by the ASR and other modules of the SDS system.

Each node associated to a system turn would be determined by a couple
of three-level DA labels associated to the previous system action and to the
previous user feedback, (di, hi) in Fig. 2, as well as the list of variables that has
been already provided. In the same way, each user turn node is determined by
two three-level DA labels associated to the previous user feedback and to the
system action, (hi+1, di) in Fig. 2, as well as the list of attributes.

We then wanted to get a separated maximum likelihood estimation of both the
system model probability distribution PMS (h|h′, d) defined in Section 2 and the
user model probability distribution PMU (d|d′, h) defined in Section 3. To this end,
the DIHANA corpus has been split into two equal subsets to train the DM and
the user model respectively. The sizes of both models are summarized in Table 1.
This table shows that the graph has an affordable size for vocabularies associated
to restricted domain tasks, which are the most frequent dialog applications.

We then put both models to interact with the aim to obtain new dialogs.
For these preliminary experiments the 0/1 loss function was selected as a DM
strategy, whereas a random behavior was set as simulated user behavior. Addi-
tionally, a smoothing strategy was required for unseen events. Let us note that
given a node in the user turn, the simulated user provides an output that may
lead to an unknown node of the graph. In the same way, given a node in the
system turn, the system model may provide an action that has not an associated
edge and a target node in the graph. In this work a simple smoothing strategy
was adopted; it consists on looking for the most similar state in the graph that
is closest to the end when an unseen node has to be reached. An example of a
dialog obtained with these preliminary approaches is given below:

(M:Open:Nil:Nil) Welcome to the railway information system. How can I help you?

(U:Question:Nil:Orig:U:Question:Nil:Dest:U:Question:Nil:Day:CITY,ORIG)

I’d like to know trains from $ORIG to $CITY to travel on a working day next week.

(M:Confirm:DepartHour:Dest:Day:Orig:M:Wait:Nil:Nil:M:Answer:

DepartHour:DepartHour:RelOrderNumber:TrainsNumber:M:NewQuestion:

Nil:Nil:CITY,DEST,ORIG,DATE,HOUR,DEPARTHOUR,

ORDNUMBER) I’m searching for trains from $ORIG to $DEST on $DATE

Wait a moment. There are several trains. $ORDNUMBER leave at $DEPARTHOUR

and the $ORDNUMBER leave at $HOUR. Do you need something more?

(U:Closing:Nil:Nil:CITY,DEST,ORIG,DATE,HOUR,DEPARTHOUR,

ORDERNUMBER) No, thank you.

(M:Closing:Nil:Nil:CITY,DEST,ORIG,DATE,HOUR,DEPARTHOUR,

ORDERNUMBER) Thank you for using this service. Have a nice journey.
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The previous example shows that coherent dialogs that successfully finish
can be generated with the formulation presented in previous sections. These
preliminary results give rise to an in depth study of the proposed strategies that
could lead to a promising approach in the field of DMs.

6 Concluding Remarks and Future Work

We have proposed a new formulation to model SDS in IPR problem framework.
To this end some extensions to the IPR approach have been proposed. We dealt
with both speech and text-based dialog systems, decoding as well as the rela-
tionship between SDS and decision theory. Additionally a user model based on
the IPR paradigm is also defined. We have applied the proposed formulation to
compose a preliminary graphical model dealing with both manager strategy and
user behavior. The preliminary evaluation of these models over a Spanish Dialog
task allowed us to consider this formulation as a promising framework to deal
with SDS. Future work includes choosing alternative smoothing schemas to deal
with more complex error recovering strategies. In the same way adequate loss
functions will define more sophisticated Dialog Manager strategies and simulated
user model behaviors.
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Abstract. Symbol spotting can be defined as locating given query sym-
bol in a large collection of graphical documents. In this paper we present
a hierarchical graph representation for symbols. This representation al-
lows graph matching methods to deal with low-level vectorization errors
and, thus, to perform a robust symbol spotting. To show the potential
of this approach, we conduct an experiment with the SESYD dataset.

Keywords: hierarchical graph representation, graph matching, maxi-
mal clique finding, symbol spotting, graphics recognition.

1 Introduction

Symbol spotting has experienced a growing interest among the graphics recogni-
tion community. It can be defined as locating a given query graphical symbol into
a set of graphical document images. Example applications of symbol spotting
are finding a mechanical part in a database of engineering drawings or retrieving
invoices of a provider from a large database of documents by querying a particu-
lar logo. The problem of symbol spotting in documents for real world situation is
difficult as the documents often suffer from different noises. Graphs are very ef-
fective tool to represent any graphical elements, especially line drawings. Hence,
in line drawings represented by graphs, the problem of symbol spotting can be
formulated as a subgraph matching problem, where graph theory offers robust
approaches to solve it. This explains our motivation to work with graphs.

The list of approaches proposed for spotting symbols in graphical documents
is long [10]. The current paper only mentions the recent works dealing with
the graph representations: Nayef and Breuel [7] proposed a branch and bound
algorithm for spotting symbols in documents, where they used geometric primi-
tives of images as features. Luqman et al. [6] proposed a graph embedding based
subgraph spotting method applied to symbol spotting. Here the candidate re-
gions containing symbols are filtered out beforehand using some criteria of loop.
Recently Dutta et al. [5] proposed graph factorization based symbol spotting
methods for architectural floorplans. Of course, the above set of algorithms deal
with some kind of error tolerance when matching the subgraphs but they seldom
can handle disconnection between nodes i.e. when two nodes are disconnected
but supposed to belong to the same graph. In case of such disconnection usually
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(a) (b) (c) (d)

Fig. 1. Examples for low-level segmentation errors

the methods just loose the connectivity which reduce some topological feature of
the graph. So handling these kinds of distortions is the inspiration of proposing
a hierarchical representation of graph where we deal with different kind of errors
propagated from the lower level to the graph level.

The construction of graph representations of documents is followed by some
inter-dependent pre-processing steps viz. binarization, skeletonization, polygo-
nal approximation. These low-level pre-processing steps result in the vectorized
documents which often contain some structural errors. In this work our graph
representation considers the critical points as the nodes and the lines joining
them as the edges. So often the graph representation contains spurious nodes,
edges, disconnection between nodes etc (see Figure 1). Our present work deals
with these kinds of distortion in the graph level. To do that we propose hierarchi-
cal representation of graphs. The hierarchical representation of graphs allows to
incorporate the various segmentation errors hierarchically. The main motivation
of our work comes from [1], where the authors introduced a hierarchical repre-
sentation of the segmented image regions to support an approximated maximal
clique finding algorithm in matching objects in natural images.

The rest of the paper is organized into four sections. In Section 2 we present
the hierarchical representation of graphs to represent a database in terms of the
descriptors of graph paths. Section 3 describes the hierarchical graph matching
methods we used. Section 4 contains the detailed experimental results. After
that, in Section 5, we conclude the paper and discuss future work.

2 Hierarchical Graph Representation

An essential part for graph-based symbol spotting methods is the representation
of symbols. This representation often contains low-level vectorization errors that
will affect later graph matching methods. In this section we present a hierarchi-
cal representation that overcomes these problems by covering different possible
vectorizations.

First we will give a brief overview of the initial vectorization and some errors
that can occur due to it. Afterwards we will describe our hierarchical represen-
tation and how this representation overcomes the vectorization errors.

2.1 Vectorization

Graph representation of documents follows some pre-processing steps, vector-
ization is one of them. Here vectorization can be defined as approximating the
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binary images to a polygonal representation. In our method we have done it
with the Rosin-West algorithm [8] which is implemented in the Qgar package1.
This particular algorithm works without any parameter except one to prune the
isolated components. The algorithm produces a set of critical points and the in-
formation whether they are connected. Our graph representation considers the
critical points as the nodes and the lines joining them as the edges.

Vectorization Errors. The resulting graph can contain vectorization errors.
Reasons for that can be inaccurate drawings, artefacts in the binarization or
errors in the vectorization algorithm. There are different kinds of vectorization
errors that can occur. Among these, we concentrated on the following ones:

Gaps. In the drawing there can be small gaps between lines that ought to be
connected. Reasons for that are inaccurate drawings and mistakes in the bina-
rization. The result are either two unconnected nodes at the border of the gap
or a node on one and an edge on the other side of the gap. Beside being caused
by errors, gaps can also be drawn intentionally to separate nearby symbols.

Split nodes. On the other hand, one original node can be split into two or more
nodes. This can happen, if lines in the drawing do not intersect exactly at one
point. Another reason are artefacts from the skeletonization step. Nearby nodes
that seem to be a split node can be the result of fine details instead of vector-
ization errors.

Dispensable nodes. The vectorization can create nodes of order two that divide a
straight edge into two or more parts. One reason for these nodes are small inac-
curacies in the drawing that cause a local change in direction. For a later symbol
spotting, these nodes are often undesired and should be removed. Nevertheless,
in some cases such structures reflect details of the symbol.

Though all these errors can be corrected in a post-processing step, a simple
post-processing causes other problems: often it is not clear for the system whether
a situation is an error or intentional. To deal with this uncertainty, we introduce
a hierarchical representation that will be described in the next part.

2.2 Hierarchical Graph Construction

This section describes the construction of hierarchical graph that is able to cover
different possible vectorizations. This enables a later graph matching algorithm
to deal with the uncertainties whether a part of the graph is intentional or caused
by a vectorization error.

The basic idea of our approach is to extend a given graph G so that it contains
the different possibilities. These possibilities are connected hierarchically. This
allows us to embed the constraint not to match two hierarchically connected
nodes into the graph matching and, thus, only accept one alternative. In Section
3 we will give further details for the graph matching and this constraint.

1 http://www.qgar.org/

http://www.qgar.org/
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(a) (b) (c)

Fig. 2. Three cases for simplification. Displayed are the original nodes and edges (black)
and the simplified nodes and their edges (gray): (a) Merge nodes (b) Remove dispens-
able node (c) Merge node and edge.

In order to create different possible vectorizations, we take the initial vector-
ization represented in G and simplify it step by step. For this purpose, we identify
three cases that allow a simplification. These three cases will be motivated in
the following. Afterwards, a formal definition of these cases is given.

Nearby nodes. Both gaps in drawing as well as split nodes result in nodes near
to each other and can be solved by merging these nodes. Since nearby nodes can
also be the result of correct vectorization, e.g. due to two nearby symbols, we
store both versions and hierarchically connect the merged node with the basic
nodes. The merged node inherits all connection of its basic nodes. Figure 2 (a)
shows an example for such a merging step.

Dispensable nodes. In case of dispensable nodes, the vectorization error can
be solved be removing the node. Again, a hierarchical structure can store both
versions. As described before, we only consider dispensable nodes that have two
neighbors. The simplified versions of these neighbors are directly connected. This
is shown in Figure 2 (b). Applying this rule multiple times allows us to remove
chains of dispensable nodes.

Nodes near to edges. The third simplification is the merging of nodes with
nearby edges. In this way the second kind of gaps can be corrected. To merge a
node with an edge, the edge has to be divided into two edges by a copy of the
node. This can be seen for an example in Figure 2 (c).

Recursive Definition. Based on the previous motivation we will give a recur-
sive definition of our hierarchical graphs that reflects the construction algorithm
based on the vectorization outcome.

The result of the vectorization is an undirected graph G = (VG, EG, σG) where
VG it the set of nodes, EG ⊆ VG × VG is the set of edges and σG : VG → R2 is a
labeling function that maps the nodes to their coordinates in the plane.

A hierarchical graph has two kinds of edges: undirected neighborhood edges
and directed hierarchical edges. Hierarchical edges represent simplification oper-
ations, i.e. they link nodes from the original graph arising from the vectorization
to successor nodes representing simplified vectorizations. Formally, we define a
hierarchical graphH as a tuple H = (V,EN , EH , σ) with the neighborhood edges
EN ⊆ V × V and the hierarchical edges EH ⊆ V × V .
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To detect the three previously described cases, we define:

1. function δ1 : V × V → {0, 1} to test for pairs of nearby nodes.
2. function δ2 : V → {0, 1} to test for dispensable nodes.
3. function δ3 : V × E → {0, 1} to test for nodes near to edges.

Furthermore, given two nodes u, v ∈ V , let u � v denote that v is a hierarchical
successor of u and L(u) denote the set of all predecessors of u that belong to
G: L(u) = {v ∈ VG|v � u}. Based on these functions and formulations we can
define the hierarchical simplification H = H(G) = (V,EN , EH , σ) of G by the
following rules:

Initial. As initialization for the recursion, G is a subgraph of H , i.e. VG ⊆ V and
for u, v ∈ VG : (u, v) ∈ EG ⇔ (u, v) ∈ EN

Merging. For u, v ∈ V with δ1(u, v) = 1 there is a merged node w ∈ V with

– w is a hierarchically successor of u and v:
∀s ∈ V : s � w⇔ s � u ∨ s � v ∨ s ∈ {u, v}

– w has all neighbors of u and v except u and v:
∀s ∈ V : (s, w) ∈ EN ⇔ ((s, u) ∈ EN ∨ (s, v) ∈ EN ) ∧ s �∈ {u, v}

– w lies in the center of its leaf nodes: σ(w) = 1
|L(w)|
∑

s∈L(w) σ(s)

Removing. For a dispensable node u ∈ V with δ2(u) = 1 there exist two nodes
v, w ∈ VG with (u, v), (u,w) ∈ EN . Since v and w can have hierarchical succes-
sors, these have to be included in the definition: for all vi : (vi, u) ∈ EN ∧ v ∈
L(vi) there exists a v̄i. In the same way a set of w̄j is defined.

– v̄i hierarchical successor of vi: (vi, v̄i), (wj , w̄j) ∈ EH

– to cover all possibilities, there is neighborhood connection between all of v̄i
and all w̄j . Furthermore, the v̄i has the same connections as vi with exception
of the removed node u:
(s, v̄i) ∈ EN ⇔ ((s, vi) ∈ EN ∧ s �= u) ∨ ∃js = wj . (analogous for wj)

– The coordinates do not change: σ(vi) = σ(v̄i), σ(wj) = σ(w̄j)

Node/Edge merging. For u ∈ V, e = (v, w) ∈ E with δ3(u, e) = 1 there exist
simplifications ū, v̄, w̄ with

– ū, v̄, w̄ are hierarchical successors of u, v, w:
∀s ∈ V : s � ū⇔ s � u ∨ s = u (analog for v,w)

– ū intersects the edge between v̄ and w̄:
∀s ∈ V : (s, ū) ∈ EN ⇔ ((s, u) ∈ EN ∨ s ∈ {v̄, w̄}

– The coordinates do not change: σ(u) = σ(ū), σ(v) = σ(v̄) and σ(w) = σ(w̄)

Based on these recursive rules, we construct the smallest hierarchical graph that
satisfies these rules, i.e. no additional nodes are added. For our hierarchical graph
we defined the testing functions δ1, δ2, δ3 by using thresholds: for δ1 define an
upper bound for the distance between two nodes, for δ3 we do the same for the
distance between edge and node. We define δ2 by a threshold for the relative
distance of the dispensable node from the direct line between it’s neighbors.
In contrast to other definitions like the angle at the dispensable node, this can
easily be extended to chains of dispensable nodes.
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(a) (b)

Fig. 3. Example for node labels for graphs based on angles between edges: (a) for plane
graphs and (b) for hierarchical graphs. Both will be labeled with (90, 210, 60).

Pre-processing. Depending on the chosen thresholds there can be a huge num-
ber of possibilities and, thus, a large hierarchical graph. To reduce the size of
the hierarchy, we perform a pre-processing step. The idea is that in some cases
the confidence in the simplification is strong enough not to store both versions,
e.g. it is not very likely that a one-pixel gap is intentional. For that purpose
we perform merging and removing steps on the graph with stricter thresholds.
With these thresholds we do not create hierarchically connected possibilities,
but change the original graph structure.

3 Graph Matching

In this section we will describe how to make use of the hierarchical graph rep-
resentation described in the previous section for subgraph matching in order
to spot symbols for vectorial drawings. Graph matching has a long history in
pattern recognition and there exist several algorithms for this problem [3]. Our
approach is based on solving the maximal weighted clique problem in associa-
tion graphs [2]. In this section we will first give a brief overview over the graph
matching algorithm. This method relies on similarities between nodes. Hence,
we will present a geometric node similarity for hierarchical graphs afterwards.

Given two hierarchical graphs Hi = (V i, Ei
N , Ei

H , σi), i = 1, 2, we construct
the association graph A. Each node of A consists of a pair of nodes of H1

and H2, representing the matching between these nodes. Two nodes (u1, u2),
(v1, v2) ∈ H1×H2 are connected in A, if the matchings are consistent with each
other. For hierarchical graphs, we define the constraints for edges in A: ui and
vi are different, not hierarchically connected and if u1 and v1 are neighbor, this
also holds for u2 and v2. By blocking the matching of hierarchically connected
nodes, we force the matching algorithm to select a version of the vectorization.
The first and the third constraint ensure that both subgraphs have the same
structure.

We use replicator dynamics [2] to find the maximal weighted clique of the as-
sociation graph and, hence, the best matching subgraphs of H1 and H2. Based
on the results of this, we perform the following steps to spot symbols. Let us
consider H1 be the query graph or the model graph and H2 be the input graph
where we want to spot the instances of H1. First of all, we perform n iterations
and in each iteration we perform the replicator dynamics to find the correspon-
dences of the H1 to H2. Since the replicator dynamics only provide a one-to-one
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Model symbols in the SESYD dataset used for our experiment

matching, in each iteration we obtain the correspondences from the nodes of
H1 to the nodes of H2. So for m nodes in H1 we get m nodes in H2. But it
is not constrained that these m nodes in H2 will belong to the same instance
of H1. So to obtain the different instances of the H1 we consider each of the m
nodes in the H2 and all the neighborhood nodes of a node which can be reached
within a k graph path distance. The graph path distance between two nodes is
calculated as the minimum total number of nodes between the two nodes. Let
us denote this set of nodes as V 1

s and consider all the hierarchical and normal
edges connecting the nodes in V 1

s as in H1, this forms a subgraph which we
can denote as H1

s = (V 1
s , E

1
sN , E

1
sH , σ

1
s ). We again apply the replicator dynamics

to get the best matching subgraph and compute the bounding box around the
nodes of best correspondences. The bounding box gives the best matching region
of interest expected to contain instance of a query symbol.

The complexity of replicator dynamics is O(|A|2) (see [1]). Since we perform
n iterations, we get a complexity of O(n · |A|2)

Node Attributes. The graph matching algorithm operates on the association
graph with similarity labels for the nodes. To use this algorithm, we have to define
the similarity between two nodes of the hierarchical graph. Since the matching
reflects geometric structures, we use geometric attributes for the similarity.

In a non-hierarchical plane graph, a single node can be labeled by the sequence
of adjacent angles which sum up to 360◦. Figure 3 (a) gives an example for
such a labeling. This naive approach will cause some problems for hierarchical
graphs since nodes can have several hierarchically connected neighbors. Thus, the
number of possible vectorizations has a strong influence on the node description.
Because the number of possibilities is also affected by the level of distortion of
the original image, such an approach is not robust to distortion.

To reduce the influence of the hierarchical structure and the distortion on the
node labeling, we use only edges to nodes that have no predecessor connected
with the central node. An example for that can be seen in Figure 3 (b): though
the central node is connected to four nodes, only three edges are used to compute
the node label, because D has the predecessor C and, thus, is not used.

To compute the similarity between two node labels, we define an editing dis-
tance on these labels. The editing operations are rotating one edge, i.e. lowering
one angle and rising another one, removing one edge, i.e. merging two angles,
and rotating the whole description. The last operation is cost-free and makes the
similarity rotation-invariant. The cost for rotating an edge is set to the angle of
rotation. The cost for removing an edge is set to a fixed value. Using this editing
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distance, we can define the similarity between nodes that is used to weight the
nodes of the association graph.

4 Experimental Results

We have evaluated the performance of our method on the SESYD (floorplans)2

database which is a synthetically generated graphical document benchmark [4].
Actually, this dataset contains 10 different subdatasets, each of which consists
of 100 different synthetically generated floorplans and 16 model symbols (see
Figure 4). For this work we have considered one such subdataset and eight
randomly chosen query symbols. All the floorplans in a subdataset are created
on a same floorplan template by putting different model symbols in different
places in random orientation and scale. The query symbol is always ideal and
does not contain any distortion. The average number of nodes in the query
graph and the input graph are 12 and 1500 respectively. Since we are focused on
the document retrieval aspect of the problem, we use the standard performance
measures of precision, recall, and F-measure for evaluating the performance of
our system. For a more detailed discussion on performance evaluation of spotting
systems we refer to [9]. Even though the set of images are synthetically generated,
the vectorization algorithm generates some distortion like disconnection between
nodes, insertion of spurious nodes etc. The aim of this experiment is to see how
the algorithm performs for these distortions in a moderately sized database.

The results obtained by our system are presented in Table 1 in a symbol
wise manner, which shows that the method is not equally successful for all the
symbols, in particular for the simple symbols with trivial nodes, for example
sofa1 (Figure 4(d)). This is because the nodes of the graph representing those
symbols contain similar attributes with the nodes from the floorplans that do
not belong to the symbol. In general, the precision of the algorithm is quite
good which ensures the confidence of the system for retrieving the system. The
recall values vary depending on the symbol but in most of the cases it is quite
satisfactory. This ensures that most of the instances of the query symbols can be
retrieved by the system. To get an idea about the results obtained the system,
in Figure 5 we present the symbol spotting results of querying armchair (Figure
4(a)) and table1 (Figure 4(f)). The average processing time for spotting a symbol
with number of nodes 12 into a floorplan with number of nodes 1500 is 0.9 min
on an Intel i5 processor with GB memory.

Table 1. Results with SESYD dataset

Symbol Precision Recall F-measure Symbol Precision Recall F-measure
armchair 92.71 83.86 88.06 sofa1 32.65 77.45 45.94

bed 23.67 87.17 37.23 sofa2 47.98 81.87 60.50
table1 98.56 97.23 97.89 table2 32.76 79.98 46.48
sink1 82.85 78.98 80.87 table3 23.51 78.23 36.15

2 http://mathieu.delalandre.free.fr/projects/sesyd/index.html

http://mathieu.delalandre.free.fr/projects/sesyd/index.html
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Fig. 5. Qualitative results of retrieving armchair (Figure 4(a)) and table1 (Figure 4(f)).

5 Conclusion and Future Work

In this paper we have presented a new hierarchical graph representation that
enables us to store different possibilities for the vectorization of a drawing in one
graph. With this representation, symbol spotting by graph matching can deal
with typical vectorization errors. We could show the efficiency in an experiment.

Though our method performs well for most symbols, we still have some prob-
lems with too simple symbols. In the future we want to improve the efficiency
for simple symbols and apply the approach to free-hand sketches, which have a
higher level of distortion.
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Abstract. The Conductance Electrical Model (CEM) transforms a
graph into a circuit and can be use to do ”inexact graph isomorphism”
as it was shown in [13]. In second stage of this process, we transform the
circuit req in a star circuit, using the Moore–Penrose pseudo–inverse of a
matrix for which there is a general formula that requires transpose, mul-
tiply and invert matrices with a time complexity of O(N4), where N is
the number of nodes of the graph. However, due to the special structure
of the star transformation, we are able to exploit this special structure
to compute the pseudo–inverse without using the general Moore–Penrose
formula. We have developed a closed formula that can compute the el-
ements of the pseudo–inverse without using that formula, that means
without multiplying matrices neither doing the matrix inversion and
that moreover can be computed in O(N3). This method also eliminates
the problems due to computer rounding and due to bad–conditioned
problems in mathematical terms.

1 Introduction

Graphs have been successfully applied in various fields such as chemistry and
biochemistry; transportation, telephony and computers networks, speech recog-
nition and computer vision [1]. Examples of graphs in computer vision can be
seen in [7] and they usually have a large number of nodes and/or edges.

The methods for graph and sub-graph matching are based on enumerative
techniques [2,3], edit operations [4,5,6], spectral methods [8], expectation-
maximization [9], random walks [10], genetics algorithms [11] and probabilistic
approximations [12]. The time complexity in the enumerative and edit operation
methods is NP–complete while in the other inexact methods it is polynomially
bounded. Only in the enumerative solutions there exist an exact solution, in the
other cases only graph matching approximations can be obtained.
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In [13], we proposed a model to replace a graph by a circuit and we use the
methods of Circuit Theory to solve the graph isomorphism. In order to compare
two graphs, the method transform a graph G into a star circuit G∗ using the
following stages (see article [13]):

First Stage: Computation of the equivalent circuit resistances rGeq
1. Obtain the adjacency matrix, AG

2. Compute the Laplacian matrix, Y G obtained from AG

3. Eliminate one row and one column; the one that belong to the node that
will be consider the reference node in the electrical circuit (any node can
be consider the reference node) and obtain the new matrix XG

4. Apply the Ohm Law and compute the rGeq
Second Stage: Computation of the star circuit G∗

5. Obtain the branch resistances of the star circuit r, by computing r =
B+req = (BtB)−1Btreq

In the first stage, each undirected weighted graph, G, of N nodes is transformed
in the circuit CEM model, a passive resistive circuit where the weights of the
edges are the conductance in siemens, and then in the adjacency matrix AG. In
the second stage, the CEM model is transformed in a star circuit, G∗, with N+1
nodes and N branches by minimizing the mean square error of the N(N − 1)/2
equivalent resistances. This operation requires the calculation of the Moore–
Penrose pseudo–inverse (hereinafter simply pseudo–inverse) of the B matrix by
the general formula involving the product and inversion of matrices. In this
work we have developed a new close form that computes the pseudo–inverse of
B without the need of matrix multiplication and inversion.

2 Star Approximation Using CEM

By using the first described stage, we obtain the N(N − 1)/2 equivalent resis-
tances (reqij ) which values can be represented by a column vector

req = (req1,2 , req1,3 , . . . , req1,N , req2,3 , . . . , req2,N , . . . . . . , reqN−3,N−1
, reqN−2,N−1

, reqN−1,N
)t

In the work [13] we proposed to approximate the original circuit by a star circuit
(with N branches and N +1 nodes including one node in the center of the star)
with one resistance (ri) for each branch. These values can be written as a column
vector

r = (r1, r2, . . . , rN )t

Also there are N(N − 1)/2 equivalent resistances in the star circuit. Note the
central node is not involved in the calculation of the equivalent resistances. The
equivalent resistances can be written as a column vector

r′
eq = (r′eq1,2 , r

′
eq1,3

, . . . , r′eq1,N , r′eq2,3 , . . . , r
′
eq2,N

, . . . . . . , r′eqN−3,N−1
, r′eqN−2,N−1

, r′eqN−1,N
)t
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It easy to see that r′eqij = ri + rj , since the equivalent resistance between two
nodes in the star circuit, is the association of two serial resistances. Then we
have r′

eq = Br where B is the matrix show in (1)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0 0
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
N − 1 rows

1 0 1 0 · · · 0 0 0
1 0 0 1 · · · 0 0 0
1 0 0 0 · · · 0 0 0
...
...
...
...
. . .

...
...
...

1 0 0 0 · · · 0 1 0
1 0 0 0 · · · 0 0 1
0 1 1 0 · · · 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
N − 2 rows

0 1 0 1 · · · 0 0 0
0 1 0 0 · · · 0 0 0
...
...
...
...
. . .

...
...
...

0 1 0 0 · · · 0 1 0
0 1 0 0 · · · 0 0 1
0 0 1 1 · · · 0 0 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭N − 3 rows
0 0 1 0 · · · 0 0 0
...
...
...
...
. . .

...
...
...

0 0 1 0 · · · 0 1 0
0 0 1 0 · · · 0 0 1
0 0 0 1 · · · 0 0 0

⎫⎪⎪⎬⎪⎪⎭N − 4 rows
...
...
...
...
. . .

...
...
...

0 0 0 1 · · · 0 1 0
0 0 0 1 · · · 0 0 1
...
...
...
...
. . .

...
...
...

...
...
...
...
. . .

...
...
...

0 0 0 0 · · · 0 1 1
}
1 row

(1)

The approximation discussed above must be understood as the search for the
values of r such that r′eq is approximately equal to req, in the sense of minimizing
the mean square error between req and r′eq is given by

r = (BtB)−1Btreq

where

B+ = (BtB)−1Bt (2)

is known as the pseudo–inverse of B, note that B+ has N rows and N(N − 1)/2
columns. The above equation we can finally be written

r = B+req
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3 Compact Form of the Pseudo–inverse

To obtain the pseudo–inverse (B+) of any matrix B by the (2) expression it
is necessary to make a matrix inversion, two products of matrices and matrix
transpose. But for the particular case that the matrix B has the form given in
(1), it is not necessary to use the (2) expression. This substantially simplifies
calculations as discussed in the following theorem.

Theorem 1. Let B be the matrix with the structure shown in (1) with N �= 1
and N �= 2, then its pseudo–inverse is

B+ =
1

(N − 1)(N − 2)

[
(N − 1)Bt − 1N,N(N−1)/2

]
(3)

where N is the number of columns of the matrix B and 1N,N(N−1)/2 is a matrix
full of ones with N rows and N(N − 1)/2 columns.

Proof. We call M the result of BtB then it is easy to see that

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · · · · 0
1 0 0 · · · 0 0 1 1 · · · 1 1 0 · · · 0 0 0 · · · 0 0 · · · · · · 0
0 1 0 · · · 0 0 1 0 · · · 0 0 1 · · · 1 1 0 · · · 0 0 · · · · · · 0
0 0 1 · · · 0 0 0 1 · · · 0 0 1 · · · 0 0 1 · · · 1 1 · · · · · · 0
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

. . .
. . .

.

.

.
0 0 0 · · · 1 0 0 0 · · · 1 0 0 · · · 1 0 0 · · · 1 0 · · · · · · 1
0 0 0 · · · 0 1 0 0 · · · 0 1 0 · · · 0 1 0 · · · 0 1 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
1 0 0 1 · · · 0 0

.

.

.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

1 0 0 0 · · · 1 0
1 0 0 0 · · · 0 1
0 1 1 0 · · · 0 0
0 1 0 1 · · · 0 0

.

.

.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

0 1 0 0 · · · 1 0
0 1 0 0 · · · 0 1
0 0 1 1 · · · 0 0

.

.

.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

0 0 1 0 · · · 1 0
0 0 1 0 · · · 0 1
0 0 0 1 · · · 0 0

.

.

.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

0 0 0 1 · · · 1 0
0 0 0 1 · · · 0 1

.

.

.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

. . .
.
.
.
.
.
.

0 0 0 0 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=

⎛
⎜⎜⎜⎜⎜⎝

N − 1 1 1 · · · 1
1 N − 1 1 · · · 1
1 1 N − 1 · · · 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 1 1 · · · N − 1

⎞
⎟⎟⎟⎟⎟⎠

(4)

where M is a square matrix of order N . To calculate M−1 we will use that

M−1 =
M∗

|M |
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where M∗ is the adjugate matrix and |M | is the determinant that must neces-
sarily be non-zero so that the inverse matrix does exist. Applying the formula
(8) of the Theorem 2 obtained in the Annex and substituting n by N and k by
N − 1 then

|M | = 2(N − 1)(N − 2)N−1 (5)

Performing the same substitutions in (9) of the Theorem 3 for the adjugate
matrix we obtain the following

M∗ = (N − 2)N−2

⎛
⎜⎜⎜⎜⎜⎝

2N − 3 −1 −1 · · · −1
−1 2N − 3 −1 · · · −1
−1 −1 2N − 3 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 2N − 3

⎞
⎟⎟⎟⎟⎟⎠ (6)

Dividing the expressions (5) and (6) we obtain

M−1 =
1

2(N − 1)(N − 2)

⎛
⎜⎜⎜⎜⎜⎝

2N − 3 −1 −1 · · · −1
−1 2N − 3 −1 · · · −1
−1 −1 2N − 3 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · 2N − 3

⎞
⎟⎟⎟⎟⎟⎠

Note that M−1 can be written as

M−1 =
1

2(N − 1)(N − 2)
[2(N − 1)IN − 1N,N ]

where IN is the identity matrix of order N . We finally have

B+ = M−1Bt =
1

2(N − 1)(N − 2)
[2(N − 1)IN − 1N,N ]Bt =

=
1

2(N − 1)(N − 2)

[
2(N − 1)INBt − 1N,NBt

]
=

=
1

2(N − 1)(N − 2)

[
2(N − 1)Bt − 21N,N(N−1)/2

]
=

=
1

(N − 1)(N − 2)

[
(N − 1)Bt − 1N,N(N−1)/2

]
The last step is due to the fact that all the columns of Bt add the constant 2. )*

4 Conclusions and Advantages of the Compact Form
of the Pseudo-inverse

We have shown in this article that there is a way of computing the pseudo–inverse
of the second stage of the inexact isomorphism computation, without requiring
matrix transpose, inversion and the multiplication of matrices, because we can
built the pseudo-inverse in a direct way.
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The advantages of the calculation of pseudo-inverse by the compact formula
(3) versus the general formula (2) are:

1) The computational complexity is reduced from O(N4) to O(N3).
2) This improvement avoids the problem of numerical resolution in matrix
pseudo-inversion on a computer (numerical stability is ensured) and also avoids
potential bad–conditioned problems in mathematical terms.
3) The elements of matrix B+ may be obtained on the fly. It is not necessary to
work in memory with the entire matrix, therefore this improvement is important
in systems with low memory.

5 Annex

Let be Q a matrix of order n

Q =

⎛⎜⎜⎜⎜⎜⎝
k 1 1 · · · 1
1 k 1 · · · 1
1 1 k · · · 1
...

...
...

. . .
...

1 1 1 · · · k

⎞⎟⎟⎟⎟⎟⎠ (7)

The following two theorems are fulfilled:

Theorem 2. The determinant of the matrix Q is

|Q| = (k + n− 1)(k − 1)n−1 (8)

Proof. Let us going to obtain the upper triangular matrix. For each row it has
to be added all the columns to first column

|Q| =

∣∣∣∣∣∣∣∣∣∣∣

k + n− 1 1 1 · · · 1
k + n− 1 k 1 · · · 1
k + n− 1 1 k · · · 1
...

...
...

. . .
...

k + n− 1 1 1 · · · k

∣∣∣∣∣∣∣∣∣∣∣
then |Q| = (k + n− 1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 k 1 · · · 1
1 1 k · · · 1
...

...
...

. . .
...

1 1 1 · · · k

∣∣∣∣∣∣∣∣∣∣∣
Each row is replaced, except the first row that is obtained by subtracting the
first row

|Q| = (k + n− 1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
0 k − 1 0 · · · 0
0 0 k − 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · k − 1

∣∣∣∣∣∣∣∣∣∣∣
Since the determinant of a triangular matrix is the product of the diagonal
elements, then

|Q| = (k + n− 1)(k − 1)n−1 )*
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Corollary 1. The determinant of Q is not zero if and only if k �= 1 and
k �= 1− n.

Theorem 3. The adjoint matrix (Q∗) of the matrix Q is

Q∗ = (k − 1)n−2

⎛
⎜⎜⎜⎜⎜⎝

k + n− 2 −1 −1 · · · −1
−1 k + n− 2 −1 · · · −1
−1 −1 k + n− 2 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · k + n− 2

⎞
⎟⎟⎟⎟⎟⎠ (9)

Proof. To proof this theorem we have to divide the problem in two parts: (i)
the calculation of the diagonal adjoints (Qii) and (ii) the calculation of the off-
diagonal adjoints (Qij).

(i) Calculation of the Diagonal Adjoints (Qii).
The adjoint of a diagonal element (all the adjoints of the diagonal elements are
identical) will be a determinant of order n − 1. Applying the formula (8) of
Theorem 2 we obtain the following expression

Qii =

∣∣∣∣∣∣∣∣∣∣∣

k 1 1 · · · 1
1 k 1 · · · 1
1 1 k · · · 1
...

...
...

. . .
...

1 1 1 · · · k

∣∣∣∣∣∣∣∣∣∣∣
= (k + n− 2) · (k − 1)n−2

(ii) Calculation of the Off-Diagonal Adjoints (Qij)
As it was shown in (10) to calculate the adjoint Qij (i �= j) it must be removed
the row i and column j (solid line) of Q.

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k · · · 1 1 1 · · · 1 1 1 · · · 1
...
. . .

...
...
...
. . .

...
...
...
. . .

...
1 · · · k 1 1 · · · 1 1 1 · · · 1
1 · · · 1 k 1 · · · 1 1 1 · · · 1
1 · · · 1 1 k · · · 1 1 1 · · · 1
...
. . .

...
...
...
. . .

...
...
...
. . .

...
1 · · · 1 1 1 · · · k 1 1 · · · 1
1 · · · 1 1 1 · · · 1 k 1 · · · 1
1 · · · 1 1 1 · · · 1 1 k · · · 1
...
. . .

...
...
...
. . .

...
...
...
. . .

...
1 · · · 1 1 1 · · · 1 1 1 · · · k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)
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Thereafter, it easy to see in (11) that only appears one row and one column with
all elements with value one (solid line) in the adjoint of Qij (with i �= j)

Cij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k · · · 1 1 1 · · · 1 1 · · · 1
...
. . .

...
...

...
. . .

...
...
. . .

...
1 · · · k 1 1 · · · 1 1 · · · 1
1 · · · 1 1 k · · · 1 1 · · · 1
...
. . .

...
...

...
. . .

...
...
. . .

...
1 · · · 1 1 1 · · · k 1 · · · 1
1 · · · 1 1 1 · · · 1 1 · · · 1
1 · · · 1 1 1 · · · 1 k · · · 1
...
. . .

...
...
. . .

...
...
...
. . .

...
1 · · · 1 1 · · · 1 1 1 · · · k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(11)

This row will be permuted to the first row. We will proceed in a similar way for
the column. For each permutation the determinant changes its sign.

Suppose that i < j then the column filled with ones will appear at position
i meanwhile the row with all ones will appear at position j − 1. Therefore the
number of permutations (and consequent changes of sign) of the row and column
with all ones is j − 2 and i − 1 respectively, and the determinant is affected by
(−1)i+j−3. Analogous results are obtained assuming j < i.

Summarizing, the coefficient that multiplies the determinant is (−1)i+j

(−1)i+j−3. It will always have the value −1, because the exponent is always
odd, as it can be seen in

(−1)i+j(−1)i+j−3 = (−1)2i+2j−3 = (−1)2(i+j)−3 = −1

Then the adjoint is as follows (i �= j)

Qij = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1
1 k 1 1 · · · 1
1 1 k 1 · · · 1
1 1 1 k · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · k

∣∣∣∣∣∣∣∣∣∣∣∣∣
The calculation of this determinant is similar to that of Theorem 2, for i �= j.

Cij = −(k − 1)n−2

Finally we will have

Q∗ = (k − 1)n−2

⎛
⎜⎜⎜⎜⎜⎝

k + n− 2 −1 −1 · · · −1
−1 k + n− 2 −1 · · · −1
−1 −1 k + n− 2 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · k + n− 2

⎞
⎟⎟⎟⎟⎟⎠

��
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{palazon,amarzal}@lsi.uji.es

Abstract. Cyclic Dynamic Time Warping (CDTW) is a good dissimilarity of
shape descriptors of high dimensionality based on contours, but it is computation-
ally expensive. For this reason, to perform recognition tasks, a method to reduce
the number of comparisons and avoid an exhaustive search is convenient. The Ap-
proximate and Eliminate Search Algorithm (AESA) is a relevant indexing method
because of its drastic reduction of comparisons, however, this algorithm requires
a metric distance and that is not the case of CDTW. In this paper, we introduce
a heuristic based on the intrinsic dimensionality that allows to use CDTW and
AESA together in classification and retrieval tasks over these shape descriptors.
Experimental results show that, for descriptors of high dimensionality, our pro-
posal is optimal in practice and significantly outperforms an exhaustive search,
which is the only alternative for them and CDTW in these tasks.

Keywords: Cyclic strings, cyclic sequences, cyclic dynamic time warping, shape
classification, shape retrieval, intrinsic dimensionality, metric spaces, AESA.

1 Introduction

Shape classification and retrieval are very important problems with applications in sev-
eral areas such as industry, medicine, biometrics and even entertainment.

Among the methods to solve this problem the ones related to Dynamic Time Warping
(DTW) [1] and descriptors of the contour with sequences of components of several
dimensions have had a significant presence [2–8]. In general, these shape descriptors
aim to have information from all of the contour with respect to each point, that is the
reason for their large size (see Figure 1 for an example of the shape descriptor used
in [6]). These methods offer very competitive results because of their full description
and the properties that DTW has as a dissimilarity (DTW is able to align parts instead of
points and it is robust with elastic deformations). Nevertheless, this combination has a
high computational cost. Besides, the problem of the starting point invariance appears,
i.e., where we have to start the comparison in the sequence. Although there are many
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Fig. 1. Shape context computation. Given a set of landmark points from the contour, for each
point is defined a histogram of the relative coordinates of the remaining points. (a) Diagram of
log-polar histogram bins used in computing the shape contexts. Five bins for log r and 12 bins
for θ, 60 dimensions. (b) Landmark points and the corresponding histogram of the point marked
by a black dot. (c) The same shape but using a different point. (d) Another shape similar to (b).

heuristic methods to obtain this invariance, they are not suitable in most of the domains.
Therefore, the literature accepts that to obtain a good starting point we must make the
comparison between every possible starting point of the sequence [2, 3, 9, 4]. Hence
the necessity to use cyclic sequences and then CDTW (Cyclic DTW) arises.

In [10], an algorithm is proposed to calculate the CDTW in time O(n2 logn) (being
n the size of the sequences). Although this algorithm considerably reduces the cost,
with the shape descriptors mentioned before, the local distance or dissimilarity [10]
between the components of the sequence has too much weight on the final cost, due to
its dimensionality. Thus, in recognition tasks to use solutions that avoid the computation
of CDTW over all the prototypes of the database is necessary, i.e., to avoid an exhaustive
search.

In [9], the authors, using a method similar to their previous work with DTW [11],
try to speed up the CDTW as well. In this work, they do not use the algorithm of [10],
but they make clusters of sequences based on their similarity, treating every possible
starting point as a different sequence and using indexing methods with lower bounds
of these clusters. This solution seems to be suitable just for shape descriptors with only
one dimension (such as the curvature) and not for much more dimensions [2–8]. For
instance, in [5], 60 dimensions are required for each point (Figure 1). Another problem
is that it cannot use more sophisticated local distances (in CDTW between elements of
the shape descriptors) such as χ2 [6], due to their lower bound.

AESA [12, 13] is characterised by a drastic reduction of the computation of distances.
It is then specially interesting when the distance has a high cost and that is precisely
our case. However, CDTW is not a metric because it does not satisfy the triangular
inequality, which is an indispensable property for using AESA. In [14–17], the authors
used AESA to speed up a speech recognition task based on DTW with good results
in spite of not satisfying this property. In the current work, we improve their heuristic
adding an important factor: the intrinsic dimensionality [18]. As far as we know the
heuristic presented here is the only alternative to an exhaustive search in the context of
shape classification and retrieval with cyclic sequences of high dimensionality.

The paper is organized as follows: The next section describes how the intrinsic di-
mensionality is affected in the search of nearest neighbours. In Section 3, the triangular
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inequality is related to the intrinsic dimensionality and how we can use AESA due to
this relation is explained, that is to say, we present our heuristic. In Section 4, we show
experiments to validate our proposal. Finally, conclusions are formulated in Section 5.

2 On the Intrinsic Dimensionality and Nearest Neighbours

Indexing methods based on metrics do not necessarily work with all databases and all
metrics. Their efficiency is affected by the distribution of distances of the database.
From this distribution we can obtain the intrinsic dimensionality. According to [18],
given a database D and a metric m, the intrinsic dimensionality,  , is:  (D,m) = μ2

2σ2 ,
where μ and σ2 are the mean and the variance of the distribution of distances.

In [18], it is shown, in an analytical and experimental way, that all the algorithms
based on metrics degrade in a systematic way as the dimensionality increases, i.e., the
computational cost is getting close to the one of an exhaustive search.

We can observe that the intrinsic dimensionality increases because of the two next
reasons: the variance decreases and/or the mean of the distribution of distances in-
creases. In Figure 2, we can see two distributions of distances showing a low and high
intrinsic dimensionality. Two extreme cases, where both variance and mean vary. If the
variance decreases, it means that the most distances have similar value, then we are
going to have less information for pruning (in the case of AESA, bounds are going to
be worse). On the other hand, if the mean increases, to obtain the nearest neighbours
we will have to explore more prototypes (in AESA, we will take more time to find a
prototype for a good pruning).

But, in our problem, what determines the distribution of distances?, i.e., what pro-
vokes that  increases?. We can consider two causes. One is the sequence or the shape
descriptor, especially affecting the number of points and the number of dimensions for
each point. For instance, the BAS descriptor [2] uses 4 dimensions for each point and
the shape contexts [5] 60 dimensions for each point. The second cause is the distance
for comparing the sequences. Even though, if we set as the distance the CDTW, the
local distance gains importance, which for the BAS descriptor is the euclidean distance
and for the shape contexts is χ2 [5].

 

Distances

 

Distances

(a) (b)

Fig. 2. Synthetic example of two distributions of distances. (a) With a low intrinsic dimensional-
ity. (b) With a high intrinsic dimensionality.
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3 Improving the Heuristic with the Intrinsic Dimensionality

The only problematic property for DTW to be a metric, is the triangular inequality:

d(x, z) ≤ d(x, y) + d(y, z),

since it is possible to find counterexamples where DTW does not satisfy it [14, 19] (thus,
CDTW is not a metric either). The correction of algorithms such as AESA (Figure 3)
depends on having a metric distance and then it has to satisfy this property.

In [14–17], a study was performed with a task of speech recognition with isolated
words using DTW. They aimed to see how not to satisfy the triangular inequality by
DTW affected in samples of the real world. These samples were speech frames that were
represented by sequences of components of eight dimensions. In [15], in 15 millions of
triplets there were no cases where the triangular inequality was violated. In [19], the
authors made experiments with synthetic time series (sequences of one dimension) of
three types: white-noise, random-walk and cylinder-bell-funnel. The most problematic
was random-walk where 20% of triplets violated the triangular inequality.

To see how many triplets x, y, z violate the triangular inequality we can use the next
formula:

H = d(x, y) + d(y, z)− d(x, z). (1)

All the triplets that have an H less than zero do not satisfy the triangular inequality.
In [14], distributions (or histograms) of the frequencies of triplets for each H are shown.
These distributions seem to have a gaussian form and when H = 0 the frequency is very
low.

In (1), we can observe that the distribution of H has a relation to the distribution
of distances (Section 2). That is to say, H is a composition of three random variables
with the same distribution (the distribution of distances). The greater the mean, μ, of
the distribution of distances, the greater the value of H of most of triplets, therefore,
there will be more positive values because we will be adding two distances of the same
distribution and subtracting another one of the same distribution too. In the case of the
variance, σ2, a similar thing will happen but with a lower variance, since the distances
will be similar, and then, there will be more values of H that are greater or equal to zero.
Therefore, we can say that, when the intrinsic dimensionality,  , is greater, we will very
probably find a lower number of triplets, x, y, z, that violate the triangular inequality.
In practice, and in the case of CDTW, this statement shows that it will be easier to find
triplets that violate triangular inequality in sets of sequences whose components have
one dimension, like the curvature descriptor, than in sequences with 60 dimensions,
like the shape contexts descriptor [5]. Thus, we can apply AESA with greater chances
of success the greater the dimensionality of our cyclic sequences.

In our experiments with real world data (Section 4) we obtained few cases that vio-
late the triangular inequality. However, in the curvature descriptor it arrives to almost a
3%. For the other types of descriptor the amount is very low as we expected and, given
the characteristics of AESA (Figure 3), the recognition rates are not going to be signif-
icantly affected in practice. The fact that the intrinsic dimensionality increases is good
for the triangular inequality but not for AESA, since it degrades the search [18], as we



552 V. Palazón-González and A. Marzal

Input: P : prototypes, x: sample to classify, D ∈ R|P |×|P |: distances between prototypes
Output: nn ∈ P : nearest neighbour
begin

for p ∈ P do
G[p] = 0

nn = unknown; dnn = ∞; s = any element from P
while |P | > 0 do

ds = d(x, s); P = P − s
if ds < dnn then

nn = s; dnn = ds
next = unknown; gmin = ∞
for p ∈ P do

G[p] = max(G[p], |D[s, p]− ds|) // lower bound based on the
// triangular inequality

if G[p] > dnn then
P = P − p

else
if G[p] < gmin then

gmin = G[p]; next = p

s = next

end

Fig. 3. AESA. In our case the distance d is the CDTW.

mentioned before. Even so, as we will see in the next section the results are satisfactory
both in time and in classification and retrieval rates.

4 Experiments

In order to assess the behaviour of our proposal, we performed experiments on an In-
tel i7 2.66GHz machine running under linux 3.2.0. The real world databases used were
the MPEG-7 Core Experiment CE-Shape-1 (part B) [20] and the Silhouette database
[21]. The shape descriptors were: curvature (as an example descriptor of one dimen-
sion for each point), BAS [2] (four dimensiones) and the shape contexts (SC) [5, 6]
(60 dimensions). The results achieved with these descriptors, and in particular the ones
with the shape contexts, can be applied to other ones of similar characteristics from
the bibliography [3, 4, 6–8]. We also used a synthetic corpus of sequences of sev-
eral dimensions (1, 5, 10, 20 and 60). We generated 1000 sequences (for each number
of dimensions) with a random walk (for each dimension of the sequence) defined by
xi = xi−1 +N(0, 1) and x1 = 0 as in [19].

In the following, we will observe how the intrinsic dimensionality affects CDTW to
satisfy the triangular inequality property. Subsequently, speeding up results are shown
with AESA with respect to an exhaustive search. Finally, we will see how using AESA
affects classification and retrieval rates.
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Fig. 4. Dimensions of the sequences, histograms of the distribution of distances, the distribution
of H and the percentage of triplets that violate the triangular inequality, for the experiments with
the random-walk synthetic corpus.

4.1 Intrinsic Dimensionality and Triangular Inequality

In Figure 4, we can see by means of histograms the relation between the distribution
of distances and the distribution of H (Section 3). We performed an experiment similar
to the one in [19], with random-walk sequences, but varying the number of dimen-
sions (in [19] this experiment was done for just one dimension). We generated 1000
sequences for each number of dimensions, then we checked 1000000000 triplets. The
fact of having the distribution of distances near to 0 (as it happens with sequences of one
dimension) makes more probable to find triplets that violate the triangular inequality in
the distribution of H . On the other hand, if the distribution of distances is far from the
value 0 (as it happens with sequences of 20 dimensions), the percentage considerably
decreases.

With respect to real world data, Table 1 shows the dimensionality and the corre-
sponding percentage of triplets that violate the triangular inequality for each shape de-
scriptor. As we can be observe, the greater the dimensionality the lower the percentage
of triplets. As it is commented in Section 3, a great value in the intrinsic dimensionality
makes the violation of the triangular inequality less probable.
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Table 1. Comparison of the dimensionality with the percentage of triplets that violate the trian-
gular inequality

Dimensions Violations
MPEG7B Curvature 1 2.95 %

BAS 4 7.25·10−3 %
SC 60 7.07·10−5 %

Silhouette Curvature 1 3.93·10−1 %
BAS 4 2.61·10−5 %
SC 60 6.54·10−7 %

4.2 Time

We also performed experiments of shape retrieval for the k most similar shapes, with
values of k: 1, 5, 10, 20 and 40. To use AESA to obtain the k nearest neighbours we can
keep a sorted list of them and prune with the last one. In classification, in many cases,
it would be enough k = 1, although we could also use greater values. In retrieval, 10
or 20 prototypes could be enough for a first answer (or even unique) for a user of a
concrete application of shape retrieval.

For BAS and SC we present a graph (Figure 5) with the average time of AESA, with
respect to an exhaustive search. There is a huge improvement.

4.3 Classification and Retrieval Rates Using AESA and CDTW

Finally, we need to mention the classification and retrieval rates for the k nearest neigh-
bours (Table 2). The only results that change are the ones of the curvature, but the
difference is not so great.

Table 2. Recognition rates for an exhaustive search and AESA

Curvature BAS SC
k Exhaustive AESA Exhaustive AESA Exhaustive AESA

MPEG7B 1 90.50 90.00 97.64 97.64 98.78 98.78
5 83.21 83.23 94.91 94.91 96.67 96.67

10 70.94 70.74 88.44 88.44 91.63 91.63
20 55.39 55.29 74.61 74.61 79.20 79.20
40 63.83 63.43 82.85 82.85 86.73 86.73

Silhouette 1 91.87 91.77 96.91 96.91 98.59 98.59
5 88.25 88.20 94.66 94.66 97.77 97.77

10 80.27 80.27 90.75 90.75 95.81 95.81
20 69.47 69.47 83.13 83.13 90.60 90.60
40 61.20 61.20 73.85 73.85 83.03 83.03
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Fig. 5. Average time of an exhaustive search and AESA for (a) BAS, and (b) the shape contexts
with the MPEG7B database. For (c) BAS, and (d) the shape contexts with the Silhouette database.

5 Discussion

From the experiments presented in the last section, it is clear that when the dimension-
ality of the cyclic sequences is sufficiently high we can obtain a very low percentage
of triplets that violate the triangular inequality. In real tasks of shape classification and
retrieval with AESA and CDTW, we have studied three shape descriptors with different
number of dimensions. In particular the curvature, despite having a significant percent-
age of violations of the triangle inequality, surprisingly obtains quite acceptable rates
with AESA (without being the same ones). With BAS and SC descriptors the rates are
the same with respect to an exhaustive search. But if the results of the curvature are
acceptable, with descriptors of higher dimensionality we can be more confident that
AESA will have a good behaviour. We want to remark as well that our proposal sig-
nificantly speeds up the classification and retrieval of these shape descriptors [2–8] and
that our heuristic is the only alternative to an exhaustive search for them.

Of course, this proposal can be applied to other contexts based on DTW, not just
the one of shape recognition and obviously it is possible to use other indexing methods
based on metric spaces. In posterior work we aim to explore these contexts.
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References

1. Sankoff, D., Kruskal, J. (eds.): Time Warps, String Edits, and Macromolecules: the Theory
and Practice of Sequence Comparison. Addison-Wesley, Reading (1983)

2. Arica, N., Yarman-Vural, F.T.: BAS: a perceptual shape descriptor based on the beam angle
statistics. Pattern Recognition Letters 24(9-10), 1627–1639 (2003)

3. Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with
a single closed contour. IEEE Trans. Circuits Syst. Video Techn. 14(5), 742–753 (2004)

4. Alajlan, N., Rube, I.E., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area repre-
sentation and dynamic space warping. Pattern Recognition 40(7), 1911–1920 (2007)

5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

6. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern
Anal. Mach. Intell. 29(2), 286–299 (2007)

7. Gopalan, R., Turaga, P., Chellappa, R.: Articulation-Invariant Representation of Non-planar
Shapes - Supplementary Material. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part III. LNCS, vol. 6313, pp. 286–299. Springer, Heidelberg (2010)

8. Wang, J., Bai, X., You, X., Liu, W., Latecki, L.: Shape matching and classification using
height functions. Pattern Recognition Letters (2011)

9. Keogh, E., Wei, L., Xi, X., Vlachos, M., Lee, S., Protopapas, P.: Supporting exact indexing
of arbitrarily rotated shapes and periodic time series under Euclidean and warping distance
measures. The VLDB Journal 18(3), 611–630 (2009)

10. Marzal, A., Palazón, V., Peris, G.: Shape Retrieval Using Normalized Fourier Descriptors
Based Signatures and Cyclic Dynamic Time Warping. In: Yeung, D.-Y., Kwok, J.T., Fred,
A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 208–216.
Springer, Heidelberg (2006)

11. Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf.
Syst. 7(3), 358–386 (2005)

12. Vidal, E.: An algorithm for finding nearest neighbours in (approximately) constant average
time. Pattern Recognition Letters 4(3), 145–157 (1986)

13. Vidal, E.: New formulation and improvements of the nearest-neighbour approximating and
eliminating search algorithm (AESA). Pattern Recognition Letters 15(1), 1–7 (1994)

14. Vidal, E., Casacuberta, F., Rulot, H.M.: Is the DTW distance really a metric? An algorithm
reducing the number of DTW comparisons in isolated word recognition. Speech Communi-
cation 4(4), 333–344 (1985)

15. Casacuberta, F., Vidal, E., Rulot, H.: On the metric properties of dynamic time warping.
IEEE Trans. Acoustics, Speech and Signal Processing ASSP-35(11), 1631 (1987)

16. Vidal, E., Casacuberta, F., Benedi, J., Lloret, M.: On the verification of triangle inequality by
dynamic time-warping dissimilarity measures. Speech Commun. 7(1), 67–79 (1988)

17. Vidal, E., Rulot, H.M., Casacuberta, F., Benedi, J.M.: On the use of a metric-space search
algorithm (AESA) for fast DTW-based recognition of isolated words. IEEE Trans. Acoustics,
Speech and Signal Processing ASSP-36(5), 651 (1988)
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Abstract. This paper presents a new method for selecting valuable
training data for support vector machines (SVM) from large, noisy sets
using a genetic algorithm (GA). SVM training data selection is a known,
however not extensively investigated problem. The existing methods rely
mainly on analyzing the geometric properties of the data or adapt a
randomized selection, and to the best of our knowledge, GA-based ap-
proaches have not been applied for this purpose yet. Our work was
inspired by the problems encountered when using SVM for skin seg-
mentation. Due to a very large set size, the existing methods are too
time-consuming, and random selection is not effective because of the set
noisiness. In the work reported here we demonstrate how a GA can be
used to optimize the training set, and we present extensive experimen-
tal results which confirm that the new method is highly effective for
real-world data.

1 Introduction

Support vector machines (SVM) [1] is a widely adopted classifier which has
been found highly effective for a variety of pattern recognition problems. Based
on a labeled training set, it determines a hyperplane that linearly separates two
classes in a higher-dimensional kernel space. The hyperplane is defined by a small
subset of the vectors from the entire training set, termed support vectors (SV).
Afterwards, the hyperplane is used to classify the data of the same dimensionality
as the training set data.

SVM training is a constrained quadratic programming problem of O(n3) time
and O(n2) memory complexity, where n is the number of samples in the training
set. This is one of the most important shortcomings of SVM, as it makes it
virtually inapplicable in case of huge amounts of training samples. Therefore,
some attempts have been made to refine the training sets and use only those
samples, from which the support vectors are selected. Existing techniques are
focused either on random selection or analysis of the data geometry.

Our contribution lies in using a genetic algorithm (GA) for selecting the rel-
evant data from the entire available set of training samples. From the work
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reported here we conclude that in certain cases it is better to use only a small
portion of the available data for training SVM. Moreover, we demonstrate that
the data must be selected carefully as it has a crucial impact on the obtained
classification score, and the selection process can be effectively managed using a
GA. Our work was motivated by the problems related to skin detection. SVM
have been already used for this purpose [2], however training set selection was
not investigated there. It is worth noting that due to huge amount of available
training data, proper data selection is very important in this case, which was
confirmed by obtained experimental results.

The paper is organized as follows. Existing training set reduction techniques
are outlined in Section 2. The details of proposed method are presented in
Section 3, while the validation results are shown and discussed in Section 4.
Conclusions and directions for our future work are given in Section 5.

2 Related Literature

Initial approaches towards dealing with large training sets were aimed at de-
composing the optimization problem into a number of sub-problems that can
be easily solved, reducing the overall training time [3]. However, for very large
training sets this is insufficient, and the number of training samples must be
significantly decreased. The simplest method for reducing large training sets is
to select a smaller subset randomly [4]. Such an approach was the basis for re-
duced support vector machines (RSVM) [5]. Not only does random sampling
help reduce the training time, but the classification is accelerated as well. This
is because the classification time is linearly dependent on the number of SV, and
generally for smaller training sets there are less SV determined.

Random sampling may be extended by analyzing the geometry of the training
data in the input space. In particular, k-means clustering has been found effective
here [6]. Another approach is to find crisp clusters with safety regions [7]. This
method rejects the vectors inside single-class clusters, preserving those positioned
at clusters’ boundaries. Recently, the clustering-based approach has also been
applied for one-class SVM [8]. The entire training set must be processed using
these methods, which increases the computation time.

In order to achieve better performance, the clustering can be performed only
in proximity of the decision boundary [9]. As the boundary is unknown before
the SVM is trained, it is estimated using heterogeneity analysis based on entropy
measure. Another approach to estimate the boundary is to classify the training
data based on their mutual Mahalanobis distances and use only the misclassified
vectors for training [10]. Mahalanobis distance-based data clustering was also
studied in [11]. The points that are closest to the decision boundary are selected
from every cluster. This process is well-demonstrated using artificial 2D data.
Another method that operates in the kernel space rather than in the input space,
applied to two-teachers-one-student problem was recently presented in [12].

There is also a group of methods which use alternative techniques to the clus-
tering to analyze the data geometry. In [13] the convex hulls are determined
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which embed the training data. Later, the vectors are selected using Hausdorff
distance between the convex hulls of opposite classes. It was presented there
that appropriate reduction of the training set makes it possible to achieve al-
most as good results as using the entire set. In [14] the points from the training
set are interpreted as a graph and subject to β-skeleton algorithm. This makes
it possible to reduce both training and testing time while being almost as effec-
tive as using the entire training set. Other geometry-based approaches include
minimum enclosing ball [15] and smallest enclosing ball with a ring region [16].

Huge training sets can also be reduced using active learning techniques [17,
18].They operate based on a large unlabeled set, and labels for the individual
samples are acquired dynamically. According to [17], these algorithms determine
the points near the decision boundary, similarly to the clustering methods.

The aforementioned methods report similar conclusions. Classification accu-
racy for reduced training sets is comparable to that obtained using the entire
training set. In some of the referenced works it is indicated that the results are
slightly better than using random sampling.

3 Genetic Training Set Optimization

It must be noted that the methods which analyze the data geometry or perform
clustering need to process the entire training set, and therefore their execution
time depends on the total number of samples. Contrary to these methods, ran-
dom sampling is applicable regardless of the number of available samples, but
it is not reliable for noisy sets or when the data may be mislabeled. In such
cases, it is difficult to select “good” vectors based on random drawing. In the
work reported here we have successfully solved this problem using a GA to select
appropriate subset of training samples. Our approach is based on the iterative
random sampling, during which different draws (i.e. individuals) are verified,
and optimal training set is selected using a GA process. This approach combines
the advantages of RSVM and geometry-based methods.

A GA, firstly introduced by Holland [19], is a heuristic search approach in-
spired by the biological mechanism of evolution and natural selection. Encoded
solutions belonging to the solution space S are called chromosomes. The ini-
tial population is a subset of N chromosomes, and it is successively improved
during the subsequent generations. The chromosomes pA and pB are selected
and recombined using the crossover operator to generate one or more offspring
solutions. Selected individuals are mutated with a certain probability to avoid
premature convergence of the search. The quality of each chromosome is assessed
by the fitness function corresponding to the objective function of the problem.
These with a high fitness survive and form the next generation.

3.1 Genetic Operators

For the problem reported here, a chromosome defines the content of a single sub-
set from the entire training set T , which consists of labeled samples belonging to
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Class C+

C ′
+

Class C−
C ′

−

Individual pi

K vectors

SVM training Validation

Validation set VT

Fitness η(pi)

Fig. 1. Creation and validation of an individual

two classes C+ and C−. The chromosome’s length (2K) is equal to the number
of samples that are used for training after the reduction. The first generation
of N individuals is created based on random sampling, which is illustrated in
Fig. 1. From each class, K vectors are selected randomly to create a new indi-
vidual pi. This initial selection is independent from the cardinality of T , which
means that the genetic operations are independent from the training set size.
Afterwards, SVM is trained using pi and its fitness η(pi) is determined based on
the classification score obtained for the validation set VT .

A set of individuals from every i-th generation are used for reproduction to
create the (i+1)-th generation. This process is similar to generating a new indi-
vidual. First, two individuals pA and pB create an initial training set consisting of
4K samples, from which 2K samples are selected randomly as individual pA+B.
Then, the new individual is subject to mutation with the probability Pm. It is
performed by random changes to the training subsets of the individual. Some
samples are randomly substituted with others from the entire training set T . At
every step it is reassured that the chromosome contains unique samples, and the
same sample cannot be selected twice to the same chromosome.

3.2 Operator Strategies

The performance of a GA depends on the genetic operators including parents
selection, crossover and mutation. The selection strategies address the problem
of choosing two individuals from the population for recombination. The offspring
solutions inherit the features of both parents pA and pB, thus the well-adapted
individuals should be drawn from the population with a larger probability. How-
ever, recombining only the best individuals may cause saturating the population
with the chromosomes of similar configurations, which in turn leads to the di-
versity crisis [20]. Four selection strategies are discussed here, namely: high-low
fit, AB-selection, truncation and enhanced truncation.

1. High-low fit– this selection method was proposed in [21]. The population is
sorted according to the fitness. The parent pA is selected from the ch·N fittest
individuals, where ch is the high-low coefficient. The parent pB is drawn from
the less-fitted part of the population. The offspring solutions are appended



Support Vector Machines Training Data Selection Using a GA 561

to the population forming a new population of size 2N . The N individuals
with the highest fitness survive to maintain the constant population size.

2. AB-selection– this selection strategy was successfully used in the memetic
algorithms to solve the vehicle routing problem with time windows [22, 23].
Each individual is selected for reproduction twice: first as pA, then as pB.
If the offspring solution pi generated for a pair of parents has higher fitness
than the parent pA then it replaces the parent pA.

3. Truncation. At first, the population is sorted according to the fitness. Both
parents pA and pB are selected from the ct ·N fittest individuals, where ct is
the truncation coefficient. The new population is composed of the offspring
solutions generated for N pairs of parents.

4. Enhanced truncation. At first, the population is sorted according to the
fitness. The cr · N pairs of parents pA and pB are selected from the ce · N
fittest individuals, where cr is the reproduction coefficient and ce is the
enhanced truncation coefficient. To maintain the constant population size
N , the N − cr · N individuals are generated randomly. The randomization
simulates additional mutation for the search diversification.

The individuals of the child population are mutated with a certain probability
as described in Section 3.1. In case of the AB-selection the best individuals will
survive the recombination. However, they may be mutated and their fitness can
decrease. Similarly, it is not guaranteed that the best chromosomes will survive
for the other selection and replacement strategies. In order to keep the well-
adapted individuals, the cc · N best chromosomes replace a set of randomly
chosen chromosomes with lower fitness, where cc is the restoring coefficient.

The best fitness η(pib) and the average fitness η̄(pi) in subsequent generations
determine the necessity of regenerating the population. More formally, if η(pib)−
η(pi−1

b ) < ε for sb consecutive steps and η̄(pi) − η̄(pi−1) < ε for sa consecutive
steps, where ε is the minimal improvement threshold, then the population is
regenerated. The regeneration is based on copying cg · N best individuals and
drawing N−cg ·N individuals randomly, where cg is the regeneration coefficient.
The GA finishes after r regenerations.

4 Experimental Validation

The proposed method (termed GASVM) has been validated using two data
sets, namely: 1) real-world data derived from ECU skin image database [24], and
2) artificial set of 2D points. ECU database consists of 4000 images coupled with
binary ground-truth skin masks. The training set T was formed out of 6938255
pixels from 100 images. Every pixel was represented by a three-dimensional
vector, indicating its color in Y CbCr. Two validation sets were created, namely:
VT for evaluating the individual’s fitness during the GA optimization and V ,
which was not fed back to the GA process (all the results are presented for V ).
The validation sets were created by sampling pixels from the remaining images.
As a result, 560732 pixels were selected to every validation set. The sets are
available at http://sun.aei.polsl.pl/~mkawulok/spr.

http://sun.aei.polsl.pl/~mkawulok/spr
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Fig. 2. Optimization process using different GA strategies compared with random sam-
pling: a) whole process, b) first 20 generations

The GA was implemented in C++ and the experiments were performed using
Intel Core i7 2.3 GHz with 16 GB RAM. We used LIBSVM [25], which is a pop-

ular SVM implementation, with RBF kernel: K (u,v) = exp
(
−‖u− v‖2/σ2

)
,

where σ is the kernel width. SVM parameters (i.e. σ and C) were selected based
on a grid search approach [25] using ranges 0.1 ≤ σ ≤ 10 and 0.1 ≤ C ≤ 1000
with a dynamic step. This simple approach was sufficient in the analyzed case
and more sophisticated methods [26] were not exploited here. For skin detection
we used σ = 1 and C = 10, and for 2D points σ = 0.26 and C = 100. The
GA parameters were tuned experimentally in a similar manner. The following
values were used: N = 50, Pm = 0.3, ch = 0.5, ct = 0.5, cr = 0.9, ce = 0.2,
cc = 0.1, cg = 0.1, ε = 10−5, sa = sb = r = 3. In order to verify performance
of RSVM [5], 20 independent tests were performed for every configuration, and
within each test N = 50 subsets were drawn and validated to make it compa-
rable to a single GA generation. Hence, a total number of 1000 random draws
were executed to validate each setting. The best result out of each test, averaged
over all the tests, is referred to as RSVM (best), while a global average result –
RSVM (average). Minimal and maximal scores for all the draws are presented
as RSVM (deviation) in Fig. 2 and as error bars for RSVM (best) in Fig. 3.

For each GA strategy discussed in Section 3.2, five optimization processes were
run. Average maximal fitness obtained in subsequent generations for K = 50
samples in each class is presented in Fig. 2 for the skin data. GA strategies are
compared here with RSVM. It can be seen from the graphs that after just a few
generations GASVM outperforms RSVM. Enhanced truncation offers the fastest
improvement, however it is the high-low fit strategy which delivers the best final
score, and it has been chosen for further validation. The premature convergence
of the search occurs in case of AB-selection strategy and after a relatively small
number of generations the best individual cannot be further improved.

For high-low fit strategy we ran extensive tests to validate performance for
various number of samples (K) in each class of the training set. In Fig. 3 our
method is compared with RSVM. Error bars present maximal and minimal value.
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Fig. 3. GA and random sampling results depending on the training set size for skin
segmentation set (a) and for artificial 2D data (b)

a) RSVM, η = 0.882 b) RSVM, η = 0.883 c) GASVM, η = 0.985 d) GASVM, η = 1

Fig. 4. Examples of training set selection using RSVM (a, b) and GASVM (c) for
K = 10 vectors in each class, and GASVM for K = 160 vectors in each class (d)

For RSVM (average) the error bars were skipped as RSVM (best) indicates the
maximal scores, and the minimal scores are irrelevant here. In addition, the de-
pendence between the training set size and the number of SV is presented. For
small value of K, GASVM selects definitely better training sets than those gen-
erated using random sampling, and this influences the final classification score.
It is less dependent on K than RSVM, and the scores achieved in different runs
are very similar. It is worth to note that the number of SV is linearly dependent
on K, which induces linear dependence between K and the classification time.
Theoretically, it is possible that using random sampling the same set is drawn
as in case of GASVM, but for huge training sets this is little probable and has
not been observed during our experiments– the best score achieved using RSVM
was always worse than the worst obtained after the GA optimization.

For the skin data (Fig. 3a), the best RSVM score drops drastically after ex-
ceeding a certain threshold (ca. K = 1500), and the score variance increases.
GASVM is more stable, but the decrease is observed as well. This can be ex-
plained by the fact that for larger sets it is hard to eliminate noisy data, which
seriously affects the effectiveness. However, it is still easier to eliminate them
using GASVM. We have not run GASVM for K greater than 5000 due to the
required computation time. For K = 5000 the GA process required 4800 min to
reach the stop condition, but for smaller sets the times were definitely shorter
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(e.g. 80 min for K = 30 and 210 min for K = 200). Due to the SVM training
complexity it would be virtually impossible to use the entire training set.

Contrary to the skin data, the artificial set of 2D points can be classified
without any error using the whole set for training, which is possible due to small
data set size. For smaller K, the classification error appears, however it is smaller
using GASVM. For K = 160 GASVM eliminated the classification error, which
has not been achieved using RSVM for K < 320. The data are visualized in
Fig. 4. Black and white points indicate the vectors from the entire set, and those
marked with white and black crosses show the data selected to the training set
(here the colors are altered for better visualization). Also, the decision boundary
is presented. It can be noticed that the selected points do not follow any specific
geometric pattern as proposed in [11]. In some cases they are located near the
decision boundary, but in others they are positioned in the centers of the point
groups. This can be observed in particular for K = 160 in Fig. 4d.

5 Conclusions and Future Work

In this paper we proposed to use a genetic algorithm for selecting SVM training
sets. Presented experimental results show that while in some cases our method
helps reduce the training set size, which means shorter training and validation
times, it also makes it possible to achieve higher classification scores for noisy
or mislabeled data. Although the GA process may require many generations to
converge, it is independent from the total number of available samples, which
cannot be offered by existing geometry-based approaches. Furthermore, after
just a few generations it manages to select better training sets than those found
using random sampling, so the optimization process can be terminated earlier,
if it is critical to reduce the training time.

Our ongoing research includes comparing GASVM with the geometry-based
methods using benchmark data sets. This should allow us to design a memetic
approach, which would combine a GA with the data structure analysis to further
improve the classification results. Also, our aim is to design a parallel GA to
accelerate the computations. Finally, we want to use the method for selecting
the training data from unlabeled data sets.
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Abstract. Recently, two-dimensional principal component analysis (2D-
PCA) and its variants have been proposed by several researchers. In
this paper, we summarize their 2DPCA variants, show some equiva-
lence among them, and present a unified view in which the non-iterative
2DPCA variants are interpreted as the non-iterative approximate algo-
rithms for the iterative 2DPCA variants, i.e., the non-iterative 2DPCA
variants are derived as the first iterations of the iterative algorithm
started from different initial settings. Then we classify the non-iterative
2DPCA variants on the basis of their algorithmic patterns and propose
a new non-iterative 2DPCA algorithm based on the classification. The
effectiveness of the proposed algorithm is experimentally demonstrated
on three publicly accessible face image databases.

Keywords: Dimensionality reduction, Principal component analysis,
Two-dimensional principal component analysis.

1 Introduction

Principal component analysis (PCA) and linear discriminant analysis (LDA) are
well-known techniques for dimensionality reduction. Since they are based on vec-
tors, matrices such as 2D face images must be transformed into 1D image vectors
in advance. However, the resultant vectors usually lead to a high-dimensional
vector space, where it is difficult to solve the (generalized) eigenvalue problems
for PCA and LDA.

Recently, Yang and Yang [1] and Yang et al. [2] have proposed two-dimensional
PCA (2DPCA) which can handle matrices directly without vectorizing them.
However, 2DPCA is approximately equivalent to the conventional PCA operated
only on the row vectors of matrices [3–5], and needs many more coefficients for
image representation than PCA. To overcome this problem, several variants of
2DPCA have been proposed recently. Since they have been proposed almost
independently and simultaneously, the relationship among them is not clear.
Therefore, the systematization of them is desired for a deeper understanding of
2DPCA variants.
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In this paper, we summarize the variants of 2DPCA [2] and show some equiv-
alence among them. Moreover, we present a unified view of 2DPCA variants,
where the non-iterative 2DPCA variants are interpreted as the non-iterative ap-
proximate algorithms for the iterative ones, i.e., we show that the non-iterative
ones are derived as the first iterations of the iterative algorithm started from
different initial settings. Then we classify the non-iterative ones on the basis of
their algorithmic patterns and present a new non-iterative 2DPCA algorithm
based on the classification result.

The rest of this paper is organized as follows: Section 2 briefly surveys the
related work. Section 3 summarizes the original 2DPCA and its variants and
shows some equivalence among them. Section 4 presents a unified view of 2DPCA
variants and classifies the non-iterative 2DPCA variants on the basis of their al-
gorithmic patterns. From the classification result, a new non-iterative algorithm
is derived. Section 5 shows experimental results which demonstrate the effec-
tiveness of the derived algorithm compared with the conventional non-iterative
2DPCA variants. Section 6 concludes this paper.

2 Related Work

Yang and Yang [1] and Yang et al. [2] proposed two-dimensional principal com-
ponent analysis (2DPCA) which is based on 2D image matrices rather than
1D vectors so the image matrix does not need to be transformed into a vec-
tor prior to feature extraction. Ye et al. [6] proposed generalized PCA (GPCA)
which is formulated as an optimization problem and derived an iterative pro-
cedure for GPCA. Kong et al. [7] proposed a framework of generalized 2DPCA
to extend the original 2DPCA in two perspectives: a bilateral-projection-based
2DPCA (B2DPCA) and a kernel-based 2DPCA. Zhang and Zhou [8] proposed
two-directional 2DPCA, i.e., (2D)2PCA which combines 2DPCA and alterna-
tive 2DPCA. Zhang et al. [9] proposed a method for representing 2D image
matrices using eigenimages, which are 2D matrices with the same size as the
original images and can be directly computed from the original image matrices.
Benito and Peña [10] proposed a method for dimensionality reduction based on
the projection of images as matrices. Xu et al. [11] proposed complete 2DPCA
(C2DPCA) in which two image covariance matrices are constructed and their
eigenvectors are derived for image feature extraction. Xu et al. [12] proposed
a two-stage strategy, parallel image matrix compression (PIMC), to compress
the image matrix redundancy among both row vectors and column ones. Zuo et
al. [13] proposed bi-directional PCA (BDPCA) and an assembled matrix distance
metric to calculate the distance between two feature matrices. Wen and Shi [14]
proposed image PCA (IPCA) in which a family of projective feature vectors,
which is called the projective feature image, is obtained by 2DPCA and then
the transpose of the projective feature image is processed by 2DPCA again. Lu
et al. [15] proposed doubleside 2DPCA (D2DPCA) and the constructive method
for incrementally adding observation to the existing eigen-space model, called
incremental D2DPCA. Xi and Ramadge [16] proposed separable PCA (SPCA)
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and unified 2DPCA [2], BDPCA [13] and generalized low rank approximations
of matrices (GLRAM) [17]. Yang et al. [18] proposed Bi-2DPCA which performs
2DPCA [2] twice: the first one is in horizontal direction and the second is in
vertical direction.

The above 2DPCA variants proposed almost independently and simultane-
ously. Therefore, the theoretical relationship among them is not clear. In the
following, we will discuss the relationship theoretically.

3 2DPCA and Its Variants

In this section, we summarize the original 2DPCA [2] and its variants which are
roughly divided into two categories: iterative and non-iterative algorithms, and
present some equivalence among them.

3.1 2DPCA

Suppose that there are M training image samples, the kth training image is
denoted by anm×n matrix Ak ∈ "m×n where " denotes the set of real numbers,
and the average image of all training samples is denoted by Ā = 1

M

∑M
k=1 Ak.

Then the image covariance (scatter) matrix [2] is defined by

G =
1

M

M∑
k=1

(
Ak − Ā

)T (
Ak − Ā

)
∈ "n×n, (1)

where T denotes the transpose of a matrix, and the generalized total scatter
criterion [2] is expressed by

J(X) = tr
(
XTGX

)
, (2)

where tr denotes the matrix trace and X ∈ "n×ñ for ñ < n is subject to
XTX = Iñ where Iñ is the ñ× ñ identity matrix. The optimal X that maximize
J(X) is obtained by X = [x1, . . . , xñ] where xj (j = 1, . . . , ñ) denotes the
eigenvector of G corresponding to the jth largest eigenvalue. Finally, each Ak is
transformed into

Bk = AkX ∈ "m×ñ. (3)

Although the above 2DPCA can reduce the number of columns from n to ñ in
(3), the number of rows, m, is unchanged. Therefore, 2DPCA needs many more
coefficients for image representation than PCA [2, 9]. To overcome this problem,
several variants of 2DPCA have been proposed recently. They can be classified
into two categories: iterative and non-iterative algorithms.

3.2 Non-iterative 2DPCA Variants

In this subsection, we summarize the non-iterative 2DPCA variants, which are
further divided into two sub-categories: parallel and serial methods.
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Parallel Method. Instead of the image covariance (scatter) matrix in (1),
another one can be defined as follows:

G̃ =
1

M

M∑
k=1

(
Ak − Ā

) (
Ak − Ā

)T ∈ "m×m, (4)

from which another criterion is obtained by

J̃(Y ) = tr
(
Y T G̃Y

)
, (5)

where Y ∈ "m×m̃ for m̃ < m is subject to Y TY = Im̃. The optimal Y that max-
imize J̃(Y ) is obtained by Y = [y1, . . . , ym̃] where yi (i = 1, . . . , m̃) denotes the
eigenvector of G̃ corresponding to the ith largest eigenvalue. Zhang and Zhou [8]
called this method the alternative 2DPCA. Finally, each Ak is transformed into

B̃k = Y TAkX ∈ "m̃×ñ. (6)

We call this type of 2DPCA variant the parallel method because X and Y
are calculated in a parallel manner. Essentially, (2D)2PCA [8], eigenimages [9],
C2DPCA [11], BDPCA [13], and D2DPCA [15] are equivalent to this parallel
method.

Serial Method. As opposed to the above parallel method, we can consider
the serial method as follows. First, 2DPCA [2] described in Subsection 3.1 is
conducted to obtain {Bk}Mk=1. Next, the image covariance (scatter) matrix is
constructed for the set of the transposed matrices {BT

k }Mk=1 as follows:

Ĝ =
1

M

M∑
k=1

(
BT

k − B̄T
)T (

BT
k − B̄T

)
∈ "m×m, (7)

where B̄ = 1
M

∑M
k=1 Bk. Then the total scatter criterion

Ĵ(Ŷ ) = tr
(
Ŷ T ĜŶ

)
(8)

for Ŷ ∈ "m×m̃ which is subject to Ŷ T Ŷ = Im̃ is maximized by Ŷ = [ŷ1, . . . , ŷm̃]
where ŷi (i = 1, . . . , m̃) denotes the eigenvector of Ĝ corresponding to the ith
largest eigenvalue. Each Ak is transformed into

B̂k = Ŷ TBk = Ŷ TAkX ∈ "m̃×ñ. (9)

Essentially, PIMC [12], IPCA [14], and Bi-2DPCA [18] are equivalent to this
serial method.
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3.3 Iterative 2DPCA Variants

In the above non-iterative 2DPCA variants, two matrices X and Y (or Ŷ ) are
derived from different criteria. On the other hand, the iterative 2DPCA variants
are formulated as an optimization of a single criterion as follows [19]:

max
X,Y

1

M

M∑
k=1

∥∥∥Y T ÃkX
∥∥∥2
F

(10)

subj.to XTX = Iñ, Y
TY = Im̃, (11)

where Ãk = Ak − Ā. Let F (X,Y ) be the objective function in (10). Then the
Lagrange function for (10)-(11) is given by

L = F (X,Y )− tr
[
ΛX

(
XTX − Iñ

)]
− tr
[
ΛY

(
Y TY − Im̃

)]
, (12)

where ΛX and ΛY are symmetric matrices of which the elements are the Lagrange
multipliers. From ∂L/∂X = 0 and ∂L/∂Y = 0, we have

GY X = XΛX , (13)

GXY = Y ΛY , (14)

respectively, where GY = 1
M

∑M
k=1 Ã

T
k Y Y T Ãk and GX = 1

M

∑M
k=1 ÃkXXT ÃT

k .
Hence, for a fixed Y , the optimal X is obtained by X = [x1, . . . , xñ] where
xj (j = 1, . . . , ñ) denotes the eigenvector of GY corresponding to the jth largest
eigenvalue, and similarly, for the obtained X , the optimal Y is obtained by Y =
[y1, . . . , ym̃] where yi (i = 1, . . . , m̃) denotes the eigenvector of GX corresponding
to the ith largest eigenvalue. This procedure is repeated until the convergence.
Essentially, GPCA [6], B2DPCA [7], Benito’s method [10], and SPCA [16] are
equivalent to this method.

4 A Unified View of 2DPCA Variants

In this section, we present a unified view of the 2DPCA variants described in the
above section. That is, we show that the non-iterative 2DPCA variants including
the original 2DPCA [2] can be interpreted as the non-iterative approximate
algorithms for the iterative algorithm in Subsection 3.3.

First, the original 2DPCA [2] is derived from the iterative algorithm in Sub-
section 3.3 as follows: if we initialize Y = Im, then F (X,Y ) becomes

F (X,Y ) = tr

[
XT

(
1

M

M∑
k=1

ÃT
k Y Y T Ãk

)
X

]
= tr
(
XTGX

)
= J(X). (15)

Therefore, X obtained by the first iteration coincides with that of 2DPCA [2].
On the other hand, if we initialize X = In, then we have F (X,Y ) = J̃(Y ).

Therefore, Y obtained by the first iteration in this setting coincides with that
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of the parallel method in Subsection 3.2. That is, the parallel method uses X
and Y obtained by the first iterations of the iterative algorithm started from
different initial settings: Y = Im and X = In, respectively.

The serial method in Subsection 3.2 can be derived by initializing Y = Im.
Since X obtained by the serial method coincides with that of 2DPCA [2], it can
be obtained by the first iteration. Next, the obtained X is used for computing
Y , i.e., we have

F (X,Y ) = tr

[
Y T

(
1

M

M∑
k=1

ÃkXXT ÃT
k

)
Y

]
= tr
(
Y T ĜY

)
. (16)

Therefore, Y obtained by the first iteration coincides with that of the serial
method; Y = Ŷ .

Thus, the conventional non-iterative 2DPCA variants can be derived as the
first iterations of the iterative algorithm started from different initial settings.
Furthermore, this viewpoint suggests the existence of the other non-iterative
variant, i.e., we can consider another (alternative) serial method which is ini-
tialized as X = In. Then we obtain a pair of Y and X̂ which is the solution to
maxX F (X,Y ). Finally, we can combine the two serial methods to obtain the
selective method as follows:

(X∗, Y ∗) = arg max
(X,Y )∈{(X,Ŷ ), (X̂,Y ), (X̂,Ŷ )}

F (X,Y ). (17)

Each Ak is transformed into

B∗
k = (Y ∗)T AkX

∗ ∈ "m̃×ñ. (18)

This method will achieve better performance than the conventional non-iterative
2DPCA variants because it is guaranteed that the objective function value ob-
tained by the selective method is greater than or equal to that of the serial
methods. The superiority of the proposed method to the other methods will be
experimentally demonstrated in the next section. Table 1 shows the classification
of the non-iterative 2DPCA variants. The proposed selective method in (17) fills
up the blank in Table 1.

Table 1. Classification of non-iterative 2DPCA variants

Renew X or Y Renew X and Y

Initialize X or Y (alternative) 2DPCA (alternative) serial
Initialize X and Y parallel selective (proposed)

5 Experimental Results

In this section, we show experimental results on the ORL face image database [20],
the Caltech Faces [21] and the UMIST face database [22]. The ORL database [20]
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Fig. 1. Difference of F for the ORL face image database [20]

 0

 1

 2

 3

 0  5  10  15

di
ffe

re
nc

e 
of

 F

dimension

selective (proposed)
serial

alternative serial

Fig. 2. Difference of F for the Caltech Faces [21]

 0

 1

 2

 0  5  10  15

di
ffe

re
nc

e 
of

 F

dimension

selective (proposed)
serial

alternative serial

Fig. 3. Difference of F for the UMIST face database [22]

contains face images of 40 persons. For each person, there are 10 different
face images. In our experiment, we used the first 5 images per person, i.e.,
M = 5 × 40 = 200. The height and width of each image are m = 112 and
n = 92, respectively. Fig. 1 shows the differences of the objective function val-
ues: F (ξ, η)−F (X,Y ), where ξ = X, η = Ŷ for broken line (the serial method),
ξ = X̂, η = Y for dotted line (the alternative serial method) and ξ = X̂, η = Ŷ
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for solid line (the proposed selective method), and F (X,Y ) denotes the objective
function value for the parallel method, i.e., X and Y are obtained by maximizing
(2) and (5), respectively. The horizontal axis denotes m̃ (= ñ). Since all lines
lie in the positive region, it is clear that the serial, alternative serial and selec-
tive methods achieve higher objective function values than the parallel method.
Furthermore, among the three methods, the proposed selective method achieves
the highest objective function value.

Figs. 2 and 3 show the results for the Caltech Faces [21] and the UMIST face
database, respectively. In the Caltech Faces [21], we used 445 cropped face im-
ages. The height and width of each image arem = 165 and n = 122, respectively.
In the UMIST face database, we used 380 face images. The height and width of
each image are m = 112 and n = 92, respectively. Figs. 2 and 3 also demonstrate
the superiority of the proposed selective method to the other methods.

6 Conclusion

In this paper, we summarized the 2DPCA variants which have been proposed
by several researchers recently, and presented a unified view of the 2DPCA
variants. We discussed some equivalence of the 2DPCA variants and classi-
fied them on the basis of their algorithmic patterns. Then we proposed a new
non-iterative 2DPCA algorithm based on the classification result. The proposed
method achieved higher objective function value than the other non-iterative
2DPCA variants. Future work will include the summarization of the variants of
two-dimensional linear discriminant analysis.
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Abstract. A very important aspect in manifold learning is represented by auto-
matic estimation of the intrinsic dimensionality. Unfortunately, this problem has
received few attention in the literature of manifold learning. In this paper, we
argue that feature selection paradigm can be used to the problem of automatic di-
mensionality estimation. Besides this, it also leads to improved recognition rates.
Our approach for optimal feature selection is based on a Genetic Algorithm. As a
case study for manifold learning, we have considered Laplacian Eigenmaps (LE)
and Locally Linear Embedding (LLE). The effectiveness of the proposed frame-
work was tested on the face recognition problem. Extensive experiments car-
ried out on ORL, UMIST, Yale, and Extended Yale face data sets confirmed our
hypothesis.

1 Introduction

In recent years, a new family of non-linear dimensionality reduction techniques for
manifold learning has emerged. The most known ones are: Kernel Principal Compo-
nent Analysis (KPCA) [1], Locally Linear Embedding (LLE) [2], Isomap [3], Super-
vised Isomap [4], Laplacian Eigenmaps (LE)[5,6]. This family of non-linear embedding
techniques appeared as an alternative to their linear counterparts which suffer of severe
limitation when dealing with real-world data: i) they assume the data lie in an Euclidean
space, and ii) they may fail when the number of samples is too small. On the other hand,
the non-linear dimensionality techniques are able to discover the intrinsic data structure
by exploiting the local topology. In general, they attempt to optimally preserve the lo-
cal geometry around each data sample while using the rest of the samples to preserve
the global structure of the data. Most of existing works on non-linear manifold learn-
ing techniques are focused either on the graph design [7] or on the objective function
that should be optimized. However, to the best of our knowledge, there is no work
attempting to automatically estimate the dimensionality of the non-linear embedding.
For classification tasks, the common way was to plot the performance over a validation
(test) data set as a curve from which the optimal dimension can be estimated. This as-
sumes that all dimensions below the found one will be considered as relevant and all
dimensions beyond it should be irrelevant. This assumption seems to be very simplistic
and does not take into account the effect of subsets of dimensions.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 575–583, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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For this reason, we address this problem in the current paper. The main contribution
of our work is represented by a generic framework associated with manifold learn-
ing which allows the extraction and selection of optimal features (dimensions) in the
embedded subspace (from the perspective of pattern classification). Our approach for
feature selection is guided by a Genetic Algorithm (GA). The advantage of the pro-
posed framework is twofold. First, by selecting the most relevant features (dimensions),
the classification performance is enhanced (as proven by the experimental results). Sec-
ond, by retaining only the most relevant dimensions, pattern classification task becomes
much more efficient1 (from the point of view of computational complexity).

The remainder of the paper is organized as follows. Section 2 reviews two non-
linear manifold learning techniques. Section 3 briefly describes the feature selection
paradigm. Section 4 provides some experimental results obtained with four public face
data sets. Finally, section 5 contains our conclusions.

2 Non-linear Embedding Techniques

2.1 Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality reduction technique that
aims to preserve the local structure of data [5]. Using the notion of the Laplacian of the
graph, this non-supervised algorithm computes a low-dimensional representation of the
data set by optimally preserving local neighborhood information in a certain sense. We
assume that we have a set of N samples {xi}Ni=1 ⊂ RD . Let’s define a neighborhood
graph on these samples, such as a K-nearest-neighbor or ε-ball graph, or a full mesh, and
weigh each edge xi ∼ xj by a symmetric affinity function Wij = K(xi; xj), typically

Gaussian Wij = exp(− ‖xi−xj‖2

β )

where β is usually set to the average of squared distances between all pairs. LE seeks
latent points {yi}Ni=1 ⊂ RL that minimize 1

2

∑
i,j ‖xi − xj‖2Wij , which discourages

placing far apart latent points that correspond to similar observed points. If W ≡ Wij

denotes the symmetric affinity matrix and D is the diagonal weight matrix, whose en-
tries are column (or row, since W is symmetric) sums of W, then the Laplacian matrix
is given L = D−W. The objective function can also be written as:

1

2

∑
i,j

‖yi − yj‖2 Wij = tr(ZT L Z) (1)

where ZT = Y = [y1, . . . , yN ] is the N × L embedding matrix and tr(.) denotes the
trace of a matrix. The ith row of the matrix Z provides the vector yi—the embedding
coordinates of the sample xi.

The embedding matrix Z is the solution of the optimization problem:

min
Z

tr(ZT L Z) s.t. ZT D Z = I, ZT L e = 0 (2)

1 This is a clear advantage for large data sets for which the dimensionality of the non-linear
embedded space is equal to the size of the data set.
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where I is the identity matrix and e = (1, . . . , 1)T . The first constraint eliminates the
trivial solution Z = 0 (by setting an arbitrary scale) and the second constraint eliminates
the trivial solution e (all samples are mapped to the same point). Standard methods show
that the embedding matrix is provided by the matrix of eigenvectors corresponding to
the smallest eigenvalues of the generalized eigenvector problem,

L z = λD z (3)

Let the column vectors z0, . . . , zN−1 be the solutions of (3), ordered according to their
eigenvalues, λ0 = 0 ≤ λ1 ≤ . . . ≤ λN−1. The eigenvector corresponding to eigen-
value 0 is left out and only the next eigenvectors for embedding are used. The em-
bedding of the original samples is given by the row vectors of the matrix Z, that is,
Y = [y1, y2, . . . , yN ] = ZT .

2.2 Locally Linear Embedding

One important geometric intuition behind the LLE algorithm is that each data point
and its neighbors lie on or are close to a locally linear patch of the manifold. LLE
tries to characterize the geometry of the local patches by finding the linear coefficients
that reconstruct each data point from its neighbors. In the first step, each sample is
approximated by a weighted linear combination of its K nearest neighbors, making
use of the assumption that neighboring samples will lie on a locally linear patch of the
nonlinear manifold. To find the reconstruction weight matrix W, where the entry Wij

contains the weight of neighbor j in the reconstruction of sample xi. The reconstruction
error is minimized subject to the constraint that the rows of the weight matrix sum to
one:
∑N

j=1 wij = 1.
Let Y be the non-linear embedding of the original data Y = [y1, y2, . . . , yN ]. Then

Y can be computed by minimizing the following embedding cost function:

N∑
i=1

||yi −
N∑
j=1

wijyj ||2 = tr(Y M YT ) (4)

where M is given by M = (I − W)(I − W)T . The eigenvectors of the matrix M
corresponding to the smallest eigenvalues then form the final embedding Y.

3 Feature Selection

3.1 Overview

In many fields, including pattern recognition and machine learning, the input data are
represented by a very large number of features, but only few of them are relevant for
classification task. Many algorithms become computationally intractable when the di-
mensionality of the data is too high. On the other hand, once an optimal set of se-
lected features has been chosen, even the basic classifiers (e.g., K-nearest neighbor)
can achieve desirable performance. Therefore, the process of feature selection, i.e. the
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task of choosing a small subset of features which is statistically relevant, can be critical
to minimize the classification error. At the same time, feature selection also reduces
training and inference time and leads to a better data visualization as well as to a re-
duction of measurement and storage requirements. Roughly speaking, feature selection
algorithms have two key problems [8,9]: (i) search strategy and (ii) evaluation criterion.
The first key problem refers to the strategy of the search in the space of all possible
solutions. Roughly speaking, the search strategies can be optimal or heuristic. Regard-
ing the second key problem, feature selection algorithms can be categorized into filter
model and wrapper model. In the wrapper model, the feature selection method tries to
directly optimize the performance of a specific predictor (classification or clustering al-
gorithm). The main drawback of this method is its computational deficiency. In the filter
model, the feature selection is done as a preprocessing, without trying to optimize the
performance of any specific predictor directly [10,11,12]. A comprehensive discussion
of feature selection methodologies can be found in [13].

3.2 Optimal Feature Subset Using a Genetic Algorithm

We adopt here a wrapper technique for feature selection. The adopted evaluation strat-
egy will attempt to maximize the recognition accuracy over a given validation set.

The adopted search strategy will be carried out using a Genetic Algorithm (GA).
Genetic Algorithms (GAs) are biologically motivated adaptive systems based on natural
selection and genetic recombination [14] whose main application is for optimization
problems. In the standard GA, candidate solutions are encoded as fixed length vectors–
strings. We use a bit string representation whose length is determined by the number of
eigenvectors obtained as a result of the embedding process. Thus, each eigenvector is
associated with one bit in the string. If the ith bit is 1, then the ith eigenvector is selected.
Otherwise, that component is discarded. Each string thus represents a different subset
of eigenvectors. The initial population of solutions is chosen randomly. These candidate
solutions are allowed to evolve over a certain number of generations. At each generation,
the fitness of each string is set to the recognition rate over a fixed validation set.

4 Performance Study

To verify the effectiveness of our proposed framework, we applied it to the face recog-
nition problem. Four public face data sets are considered.

4.1 Data Sets

1. The ORL face data set2. There are 10 images for each of the 40 human sub-
jects, which were taken at different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses). The
images were taken with a tolerance for some tilting and rotation of the face up to
20o. Some samples are shown in figure 1.

2 http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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2. The UMIST face data set3. The UMIST data set contains 575 gray images of 20
different people. The images depict variations in head pose. Some samples are show
in figure 2.

3. The Yale face data set4. It contains 11 grayscale images for each of the 15 individu-
als. The images demonstrate variations in lighting condition (left-light, center-light,
right-light), facial expression (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses. Figure 3 shows some instances from this dataset.

4. The Extended Yale Face Database B5. It contains 16128 images of 28 human sub-
jects under 9 poses and 64 illumination conditions. In our study, a subset of 1800
images has been used. Figure 4 shows some face samples in the extended Yale Face
Database B.

Fig. 1. Some samples in ORL data set

4.2 Experimental Results

The experiments consisted of two stages. In the first stage, the selection paradigm was
run over a fixed validation set. For every face data set, the validation set was randomly
set to 40% of the whole data set. In the second stage, we evaluated the generalization
capacity of the obtained features (generalization tests). For each face data set and for
every method, we conducted three groups of experiments for which the percentage of
training samples was set to 30%, 50% and 70% of the whole data set. The remaining
data was used for testing. The partition of the data set was done randomly. In all our
experiments the classification in the embedded spaces (selected or unselected) was car-
ried out by the Nearest Neighbor Classifier. Figure 5 shows the results of the first stage,

3 http://www.shef.ac.uk/eee/research/vie/research/face.html
4 http://see.xidian.edu.cn/vipsl/database_Face.html
5 http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html

http://www.shef.ac.uk/eee/research/vie/research/face.html
http://see.xidian.edu.cn/vipsl/database_Face.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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Fig. 2. Some samples in UMIST data set

Fig. 3. Some samples in YALE data set

Fig. 4. Some samples in Extended Yale data set

where the plots depict the validation results before (blue line) and after feature selection
(red line), for each data set.

In table 1, we summarize the face recognition performance using the Laplacian
Eigenmaps embedding on the four data sets (output of second stage). For every data
set and for every training percentage, three schemes were used: the original features/
dimensions (Orig.), the selected features using the GA (GA), and the sorted features
using the Fisher Score6 (FS). This table illustrates the average best recognition rate
(%) over 5 random splits. The number in parenthesis is the mean recognition over the
available dimensions. We can observe that: (i) the best recognition rate remains almost
the same for all schemes, however, the GA scheme got these results with a fraction of
the original features which varies between 30% and 40% of the total dimensions, and

6 This scheme re-ranks the features according to their Fisher Score.
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Fig. 5. Feature selection for LE embedding using a GA for four face data sets

Table 1. Comparison of recognition rates between the three schemes: maximum and average (in
parenthesis)

30% ORL UMIST Yale Ex.Yale

Orig. 67.8 (52.5) 90.7 (73.8) 75.9 (51.7) 67.8 (56.0)
GA 68.1 (66.9) 91.3 (83.8) 74.1 (61.7) 68.2 (65.2)
FS 71.8 (48.9) 89.7 (60.3) 73.3 (44.2) 69.1 (54.7)
50%

Orig. 73.5 (65.4) 94.1 (83.1) 79.2 (57.7) 73.5 (63.2)
GA 74.0 (79.8) 94.5 (90.0) 79.0 (66.2) 74.0 (70.8)
FS 84.0 (61.8) 94.0 (70.2) 77.5(49.5) 73.8 (61.4)
70%

Orig. 87.1 (72.9) 95.8 (88.9) 78.8 (64.0) 75.5 (64.2)
GA 87.3 (83.8) 95.6 (92.2) 78.4 (71.9) 76.0 (72.2)
FS 88.1 (69.1) 94.9 (77.7) 76.7 (54.7) 75.5(60.4)

(ii) the GA method provided the most stable recognition rate as a function of the fea-
tures used. Table 2 shows the face recognition performance using the LLE embedding
on UMIST data set. Table 3 provides a comparison between the original dimensional-
ity of the embedded space and the dimensionality discovered by our feature selection
approach (in bold).
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Table 2. Average best recognition rate (%) over 5 random splits using the LLE method

UMIST Train30% Train50% Train70%

Orig. 64.3 (47.4) 73.7 (60.1) 78.5 (66.4)
GA 61.6 (54.5) 73.1 (64.6) 77.7 (68.8)
FS 60.3 (45.5) 72.3 (58.2) 76.0 (63.9)

Table 3. The size of the selected features as obtained by the GA

ORL UMIST Yale Ex.Yale
LE 68 (200) 141 (300) 54 (120) 486 (1200)

LLE 77 (200) 82 (200) 32 (80) 243 (600)

5 Conclusion

In this paper, we proposed an automatic estimation of dimensionality for manifold
learning through an optimal feature selection framework, based on a Genetic Algo-
rithm. Experimental results show that the proposed approach can enhance the global
performance for classification tasks, while reducing the computational complexity by
removing the irrelevant features obtained by the non-linear embeddings.

Acknowledgment. This work was partially supported by the Spanish Government un-
der the project TIN2010-18856 and the Lebanese National Council for Scientific Re-
search (LCNRS) under the project 03-10-11.
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Abstract. A new Gabor-PHOG (GPHOG) descriptor is first introduced
in this paper for image feature extraction by concatenating the Pyramid
of Histograms of Oriented Gradients (PHOG) of all the local Gabor
filtered images. Next, a comparative assessment of the classification per-
formance of the GPHOG descriptor is made in six different color spaces,
namely the RGB, HSV, YCbCr, oRGB, DCS and YIQ color spaces, to
propose the novel YIQ-GPHOG and the YCbCr-GPHOG feature vectors
that perform well on different object and scene image categories. Third,
a novel Fused Color GPHOG (FC-GPHOG) feature is presented by inte-
grating the PCA features of the six color GPHOG descriptors for object
and scene image classification, with applications to image search and re-
trieval. Finally, the Enhanced Fisher Model (EFM) is applied for discrim-
inatory feature extraction and the nearest neighbor classification rule is
used for image classification. The effectiveness of the proposed feature
vectors for image classification is evaluated using two grand challenge
datasets, namely the Caltech 256 dataset and the MIT Scene dataset.

Keywords: Gabor-PHOG (GPHOG), YIQ-GPHOG, YCbCr-GPHOG,
FC-GPHOG, PCA, EFM, color spaces, image search.

1 Introduction

Color images provide powerful discriminating information than grayscale im-
ages [1], and color based image search can be very effective for face, object,
scene, and texture image classification [2], [3], [4]. Some desirable properties of
the descriptors defined in different color spaces include relative stability over
changes in photographic conditions such as varying illumination. Global color
features such as the color histogram and local invariant features provide vary-
ing degrees of success against image variations such as rotation, viewpoint and
lighting changes, clutter and occlusions [5]. Shape and local features also provide
important cues for content based image classification and retrieval. Local object
shape and the spatial layout of the shape within an image can be described
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by the Pyramid of Histograms of Oriented Gradients (PHOG) descriptor [6].
Several researchers have described the biological relevance and computational
properties of Gabor wavelets for image analysis [7], [8]. Lately, Donato et al.
[9] showed experimentally that the Gabor wavelet representation is optimal for
classifying facial actions.

We subject the image to a series of Gabor wavelet transformations, whose
kernels are similar to the 2D receptive field profiles of the mammalian cortical
simple cells [7]. In this paper, we design several novel feature vectors based on
Gabor filters. Specifically, we first introduce a novel Gabor-PHOG (GPHOG)
descriptor by concatenating the Pyramid of Histograms of Oriented Gradients
(PHOG) of the components of the images produced by the result of applying a
combination of Gabor filters in different orientations. We then measure the clas-
sification performance of our GPHOG descriptor on six different color spaces and
propose the novel YIQ-GPHOG and the YCbCr-GPHOG features. We further
extend this concept by integrating the Principal Component Analysis (PCA) fea-
tures of the six color GPHOG vectors to produce the novel Fused Color GPHOG
(FC-GPHOG) descriptor. Feature extraction applies the Enhanced Fisher Model
(EFM) [10], and image classification is based on the nearest neighbor classifica-
tion rule. Finally, the effectiveness of the proposed descriptors for image classifi-
cation is evaluated using two datasets: the Caltech 256 grand challenge dataset
and the MIT Scene dataset.

2 Novel Gabor-PHOG Features for Object and Scene
Image Classification

This section briefly reviews the color spaces in which our new descriptors are
defined, and then discusses the proposed novel descriptors and classification
methodology for image classification.

2.1 Color Spaces

A color image contains three component images. The commonly used color space
is the RGB color space, from which other color spaces are derived by means of
either linear or nonlinear transformations. The HSV color space is motivated
by human vision system as humans describe color by means of hue, saturation,
and brightness. Hue and saturation define chrominance, while intensity or value
specifies luminance [1]. The YIQ color space is adopted by the NTSC (National
Television System Committee) video standard in reference to RGB NTSC. The I
and Q components are derived from the U and V counterparts of the YUV color
space via a clockwise rotation (33◦) [3]. The YCbCr color space is developed
for digital video standard and television transmissions. In YCbCr, the RGB
components are separated into luminance, chrominance blue, and chrominance
red. The oRGB color space [11] has three channels L, C1 and C2. The primaries
of this model are based on the three fundamental psychological opponent axes:
white-black, red-green, and yellow-blue. The color information is contained in
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Fig. 1. Generation of the PHOG descriptor for a color image

C1 and C2. The value of C1 lies within [−1, 1] and the value of C2 lies within
[−0.8660, 0.8660]. The L channel contains the luminance information and its
values ranges between [0, 1]. The Discriminating Color Space (DCS) [12], is
derived from the RGB color space by means of discriminant analysis [13]. In
the RGB color space, a color image with a spatial resolution of m× n contains
three color component images R, G, and B with the same resolution. Each pixel
(x,y) of the color image thus contains three elements corresponding to the red,
green, and blue values from the R, G, and B component images. The DCS defines
discriminating component images via a linear transformation WD ∈ R3×3 from
the RGB color space. The transformation matrix WD ∈ R3×3 may be derived
through a procedure of discriminant analysis [13] and has been discussed in [12].

2.2 The Color Gabor-PHOG (GPHOG) and FC-GPHOG Image
Descriptors

A Gabor filter is obtained by modulating a sinusoid with a Gaussian distribution.
In a 2D scenario such as images, a Gabor filter is defined as:

gν,θ,φ,σ,γ(x, y) = exp(−x′2 + γ2y′2

2σ2
) exp(i(2πνx′ + φ)) (1)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, and ν, θ, φ, σ, γ denote the
spatial frequency of the sinusoidal factor, orientation of the normal to the parallel
stripes of a Gabor function, phase offset, standard deviation of the Gaussian
kernel and the spatial aspect ratio specifying the ellipticity of the support of the
Gabor function respectively. For a grayscale image f(x, y), the Gabor filtered
image is produced by convolving the input image with the real and imaginary
components of a Gabor filter [14].
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Fig. 2. The generation of the proposed Gabor-PHOG descriptor

The Pyramid of Histograms of Oriented Gradients (PHOG) [6] descriptor,
inspired from the Histograms of Oriented Gradients (HOG) [15] and the image
pyramid representation of Lazebnik et al. [16], represents local image shape and
its spatial layout, together with a spatial pyramid kernel. The local shape is
captured by the distribution over edge orientations within a region, and the spa-
tial layout by tiling the image into regions at multiple resolutions. The distance
between two PHOG image descriptors then reflects the extent to which the im-
ages contain similar shapes and correspond in their spatial layout [6]. Figure 1
illustrates the generation of the PHOG feature vector.

We used the Gabor wavelet representation for subsequent extraction of our
feature vectors as it captures the local structure corresponding to spatial fre-
quency (scale), spatial localization, and orientation selectivity. We subject each
of the three color components of the image to different combinations of Gabor
filters. For our experiments, we choose the parameter values as φ = 0, σ = 2,
γ = 0.5, and θ = [0, π/6, π/3, π/2, 3π/4]. We derive the novel Gabor-PHOG
(GPHOG) feature vector by concatenating the PHOG of the components of the
Gabor filtered images and normalize it to zero mean and unit standard devia-
tion. It should be noted that we computed the PHOG with two levels, and used

Fig. 3. An overview of multiple features fusion methodology, the EFM feature extrac-
tion method, and the classification stages
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Table 1. Comparison of the classification performance (%) with other methods on
Caltech 256 dataset. Note that [17] used 250 of the 256 classes with 30 training samples
per class.

#train #test GPHOG [4] [17]

YCbCr 30.4 oRGB-SIFT 23.9
12800 6400 YIQ 30.5 CSF 30.1

FC 33.2 CGSF 35.6 SPM-MSVM 34.1

ν = 16 as the spatial frequency of the Gabor filters for generating our GPHOG
descriptor. Figure 2 illustrates the creation of the proposed GPHOG descrip-
tor.We assess the performance of the GPHOG descriptor on six different color
spaces, namely RGB, HSV, oRGB, YCbCr, YIQ and DCS as well as on grayscale
and propose two new color feature vctors - the YIQ-GPHOG and the YCbCr-
GPHOG descriptors. For fusion, we first use PCA for the optimal representation
of our color GPHOG vectors with respect to minimum mean square error. We
then combine the PCA features of the six normalized color GPHOG descrip-
tors to form the novel Fused Color GPHOG (FC-GPHOG) descriptor which
outperforms the classification results of the individual color GPHOG features.

2.3 The EFM-NN Classifier

Learning and classification are performed using the Enhanced Fisher Linear
Discriminant Model (EFM) [10] and the nearest neighbor classification rule.
The EFM method first applies Principal Component Analysis (PCA) to reduce
the dimensionality of the input pattern vector. The Fisher Linear Discriminant
(FLD) is a popular classification method that achieves high separability among
the different pattern classes. However, the FLD method, if implemented in an
inappropriate PCA space, may lead to overfitting. The EFM method hence ap-
plies an eigenvalue spectrum analysis criterion to choose the number of principal
components to avoid overfitting and improves the generalization performance
of the FLD. The EFM method thus derives an appropriate low dimensional
representation from the GPHOG descriptor and further extracts the EFM fea-
tures for pattern classification. Similarity score between a training feature vector
and a test feature vector is computed using the cosine similarity measure and
classification is implemented using the nearest neighbor rule. Figure 3 gives an
overview of multiple feature fusion methodology, the EFM feature extraction
method, and the classification stages.

3 Experimental Results

3.1 Caltech 256 Dataset

The Caltech 256 dataset [17] holds 30,607 images divided into 256 object cate-
gories and a clutter class. The images have high intra-class variability and high
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Fig. 4. Some sample images from the Caltech 256 dataset

object location variability. Each category contains at least 80 images and at most
827 images. The mean number of images per category is 119. The images repre-
sent a diverse set of lighting conditions, poses, backgrounds, and sizes. Images
are in color, in JPEG format with only a small percentage in grayscale. The
average size of each image is 351x351 pixels. Figure 4 shows some sample images
from this dataset.

For each class, we choose 50 images for training and 25 images for testing. The
data splits are the ones provided on the Caltech website [17]. In this dataset,
YIQ-GPHOG performs the best among single-color descriptors giving 30.5%
success followed by YCbCr-GPHOG with 30.4% classification rate. Figure 5
shows the success rates of the GPHOG descriptors for this dataset. The FC-
GPHOG descriptor here achieves a success rate of 33.2%. Table 1 compares our
results with other methods.

Fig. 5. The mean average classification performance of the proposed color GPHOG
and FC-GPHOG descriptors on the Caltech 256 dataset
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Fig. 6. Some sample images from the MIT Scene dataset

Table 2. Comparison of the classification performance (%) with other methods on the
MIT Scene dataset

#train #test GPHOG [2] [18]

YCbCr 87.9 CLF 86.4 -
2000 688 YIQ 88.0 CGLF 86.6

FC 90.2 CGLF+PHOG 89.5

YIQ 84.6 CLF 79.3
800 1888 YCbCr 84.7 CGLF 80.0

FC 86.6 CGLF+PHOG 84.3 83.7

Table 3. Category wise descriptor performance (%) on the MIT Scene dataset. Note
that the categories are sorted on the FC-GPHOG results

Category FC YIQ YCbCr RGB DCS oRGB HSV Grayscale

forest 97 96 96 96 96 96 98 97
coast 94 91 89 91 89 90 88 87
mountain 91 88 85 89 87 88 88 83
inside city 91 88 90 89 88 86 86 87
highway 90 90 90 88 92 90 88 86
street 90 88 90 89 89 86 85 84
tall building 90 88 87 88 86 88 88 86
open country 79 75 75 73 75 74 72 68

Mean 90.2 88.0 87.9 87.8 87.7 87.3 86.5 84.8

3.2 MIT Scene Dataset

The MIT Scene dataset [18] has 2,688 images classified as eight categories: 360
coast, 328 forest, 260 highway, 308 inside of cities, 374 mountain, 410 open coun-
try, 292 streets, and 356 tall buildings. Some sample images from this dataset
are shown in figure 6. All of the images are in color, in JPEG format, and the
average size of each image is 256x256 pixels. There is a large variation in light
and angles along with a high intra-class variation.

From each class, we use 250 images for training and the rest of the images
for testing the performance, and we do this for five random splits. Here too,
YIQ-GPHOG is the best single-color descriptor at 88.0% followed closely by
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Fig. 7. The mean average classification performance of the proposed GPHOG descrip-
tor in individual color spaces as well as after fusing them on the MIT Scene dataset

YCbCr-GPHOG at 87.9%. The combined descriptor FC-GPHOG gives a mean
average performance of 90.2%. See Figure 7 for details. Table 2 compares our
result with that of other methods. Table 3 shows the class wise classification
rates for this dataset on applying the proposed GPHOG descriptors.

4 Conclusion

The contributions of this paper are in the generation of several novel descriptors
for object and scene image classification based on Gabor wavelet transforma-
tion. We have introduced a new Gabor-PHOG descriptor and further proposed
the robust YIQ-GPHOG and YCbCr-GPHOG features. The six color GPHOG
features beat the recognition performance of the Grayscale-GPHOG descrip-
tor which show information contained in color images can be significantly more
useful than that in grayscale images for classification. Experimental results us-
ing two datasets, the Caltech 256 object categories dataset and the MIT Scene
dataset, show that the proposed novel FC-GPHOG image descriptor exceeds or
achieves comparable performance to some of the best performance reported in
the literature for object and scene image classification.
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Abstract. The biometric template protection system requires a high-
quality biometric channel and a well-designed error correction code
(ECC). Due to the intra-class variations of biometric data, an efficient
fixed-length binary feature extractor is required to provide a high-quality
biometric channel so that the system is robust and accurate, and to allow
a secret key to be combined for security. In this paper we present a binary
palmprint feature extraction method to achieve a robust biometric chan-
nel for template protection system. The real-valued texture statistical
features are firstly extracted based on Gabor magnitude and phase re-
sponses. Then a bits quantization and selection algorithm is introduced.
Experimental results on the HongKong PloyU Palmprint database verify
the efficiency of our method which achieves low verification error rate by
a robust palmprint binary representation of low bit error rate.

Keywords: Palmprint verification, Binary feature extraction, Feature
template protection, Gabor filtering.

1 Introduction

It has been widely known that the typical biometrics system encounters some
security and privacy problems such as identity fraud, limited-renewability, cross-
matching, and leaking sensitive personal information [1]. Biometric template pro-
tection system, as a countermeasure to these security and privacy threats, has
become an important issue, which requires that biometric data is firstly quan-
tized into a fixed-length binary string as template. For typical (unprotected)
palmprint verification systems, there have been many feature representation ap-
proaches reported achieving high verification accuracy. Among them there are
some coding based methods which generate binary features [2,3]. However, most
of them require a template registration during the matching stage, which might
be not allowed for template protection system. Further, most of the current
reported binary representations give the bit error rates as high as 40% from
the genuine matching, which are too noisy to be corrected by the current error
correcting coding schemes [4,5].
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In this paper, we present a method of binary feature extraction from palm-
print image, aiming to achieve robust biometric channel, i.e. low bit error rate
(BER) for matching channel, and low verification error rate, which we indicate
by false rejection rate (FRR), false acceptance rate (FAR) and equal error rate
(EER). The robust binary representation gives a solution of combing the typical
biometric verification and the template protection. Besides, a fixed-length binary
representation also has additional advantages such as small template storage and
high matching speed. Since the over-complete information of Gabor filtering re-
sponses contributes to the discriminating ability, our method chooses to filter
the palmprint image by a group of two-dimensional Gabor functions firstly [2].
Figure 1 shows the flow chart of our proposed binary feature extraction method.
As can be seen from it, instead of employing the filtered Gabor magnitude (GM)
and Gabor phase (GP) responses directly which are generally high-dimensional,
we extract the statistic features from them respectively for real-valued represen-
tation (denoted by VGM and VGP ), then based on which the one-bit quantization
and reliable bits selection are subsequently processed. Finally a binary sequence
(denoted by B1...L) length of L is achieved as palmprint template for storage
and matching. From GM information the global statistical features are extracted
which we denote by LogGM [6], while from GP information the local statisti-
cal features are extracted after the local XOR pattern (LXP) operating which
we denote by LxpGP [7]. After quantizing the global and local statistical fea-
tures respectively, we fuse the obtained binary bits together and then from them
some reliable bits are selected to construct the final binary Gabor statistical
features. For verification the Hamming distance is employed as the dissimilarity
measurement.

GM
Real-valued LogGM

feature extraction Quantization

Bits 
selection

1 LBGabor 
filtering

Palm
GP

Real-valued LxpGP
feature extraction Quantization

GMV

GPV

GMB

GPB

Fig. 1. Flow chart of the proposed method

The main contributions of this paper are: a highly efficient scheme is proposed
to extract the binary features from the Gabor filtering responses by considering
the fusion of the local and global texture statistical information, which provides
a high-quality biometric channel achieving low bit error rate for the genuine
template matching and the corresponding low verification error rate so as to give
a solution of combining the typical palmprint verification system and template
protection scheme.

In this paper, we will firstly present the scheme of real-valued Gabor texture
statistical representation in Section 2, which includes the statistical analysis of
Gabor magnitude and phase responses respectively. Next, the quantization and
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reliable bits selection algorithm will be introduced in Section 3. The experimental
results will be given in Section 4. Finally, it is the conclusion.

2 Gabor Statistical Feature Extraction

In order to represent a palmprint by a binary string for template protection, we
need to firstly extract some real-valued features from it. Since the Gabor filtered
representation can provide the optimal localization of image details, we choose
a group of Gabor functions to perform a joint spatial-frequency multi-channel
transform on the palmprint image, which can be expressed as following [2]:

gm,n(x, y) =
1

2πσ2
exp

{
−(x2 + y2)

2σ2

}
× exp{2πi(umx cos θn + umy sin θn)}.

(1)

um is the frequency of sinusoidal wave along directional θn from x-axis, and
σ specifies the Gaussian envelope along x and y axes, which determines the
bandwidth of the Gabor filter. Each Gabor function gm,n(x, y) with the param-
eters (um, θn, σ) is commonly transformed into a discrete Gabor filter and its
direct current is turned to zero, which can be denoted by g̃m,n(x, y). Given an
image I(x, y), its Gabor-filtered images can be defined as follow: Jm,n(x, y) =
g̃m,n(x, y) ∗ I(x, y), where Jm,n(x, y) is a complex number. The Gabor magni-
tude and phase angle responses can be respectively denoted by GMm,n(x, y) =‖
Jm,n(x, y) ‖, and φm,n(x, y) = arctan(Jm,n(x, y)), where ‖ • ‖ denotes the mod-
ulus operator of a complex number. To alleviate the sensitivity of Gabor phase
to the varying positions, we transform φm,n(x, y) into four different ranges as
the Gabor phase (GP) information GPm,n(x, y) by the following expression:

GPm,n(x, y) = p, if 90 ∗ (p− 1) ≤ φm,n(x, y) < 90 ∗ p; p ∈ {1, 2, 3, 4} (2)

GMm,n(x, y) and GPm,n(x, y) will be respectively further processed to construct
the real-valued statistical features.

By investigating the histogram distribution of each GM, it has been found
that the lognormal densities fit the GMs very well, and the sub-blocks of each
GM are also close to lognormal distribution [6]. Figure 2 gives an example of GM
histogram fitting. After the lognormal transformation of each GM, some Gaus-
sian distributions are obtained, which can be expressed as LogGMm,n(x, y) =
log(GMm,n(x, y)). Since a Gaussian sequence can be represented specifically
by its mean ν and standard deviation ρ, the palmprint feature representa-
tion can be constructed by these Gaussian parameters. Assuming the Gabor
filter bank has E scales and F orientations, and each GM is partitioned into
A sub-blocks, we will get (G × R × A) pairs of ν and ρ values. By concate-
nating them together, the final real-valued feature vector can be formulated as
[ν1 . . . ν(E×F×A), ρ1 . . . ρ(E×F×A)]. Following the experimental results in Ref. 6,
the best verification performance is achieved when E = 5, F = 8, A = 21. To
obtain more discriminating feature components from which we expect to extract
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(a)

(b) (c)

(e)(d)

Fig. 2. Examples of histogram fitting. (a) The original palmprint image. (b) and (d)
hist Gabor magnitudes from two different Gabor parameters. (c) shows the logarithmic
transform of (b). (e) is the logarithmic transform of (d).

Gabor 
filtering

Palm
GM

Logarithmic 
transform

LogGM
Block 

partition          estimation LDA[ , ]
GMV

Fig. 3. Flow chart of real-valued LogGM feature extraction

bits, the linear discriminant analysis (LDA) projection is applied to get the fi-
nal real-valued representation VGM of GM, the process of which we denote by
real-valued LogGM feature extraction as Fig. 3 illustrates.

To extract some statistical features from GP, we firstly encode GPm,n(x, y) by
local XOR pattern (LXP) operator [7], which is expressed as LxpGPm,n(x, y) =
LXP (GPm,n(x, y)). As shown in Fig. 4, for each pixel P0, its eight neighborhoods
with one pixel interval Pi ∈ {1, 2, 3, 4}, i = 0, 1, . . . 8 need to be encoded into
Bi ∈ {0, 1}, i = 0, 1, . . . 8 by computing Bi = if{Pi �= P0}. Then P0 is mapped

into a decimal number S0 ∈ {0, 1, . . .255} by calculating S0 =
∑8

i=1 Bi × 2i.
Finally all the mapped S0 forms LxpGPm,n(x, y). Assuming the Gabor filter
bank has E scales and F orientations, and each GM is partitioned into D sub-
blocks, the histograms of each sub-block at all the scales and orientations are
concatenated. Then D histograms of E ×F × 256 bins will be obtained. LDA is
applied for each histogram respectively. In this paper, we set E = 5, F = 8, D =
5 by taking into account the computational complexity and the performance.
Finally the features from the D LDA modulus are concatenated into a vector
VGP as the real-valued representation of GP information, the flow chart of which
is shown in Fig. 5.

3 Bits Quantization and Selection

Feature quantization and bits selection procedures strongly affect the verification
performance of the template protection system. Based on the real-valued features
described in Section 2, we introduce our proposed bit quantization and selection
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Fig. 5. Flow chart of real-valued LxpGP feature extraction

method in this section, which is illustrated in Fig. 6. Since VGM and VGP are
processed in the same way, here we take VGM as an illustration of the main steps
as follows:

(1) Compute the averaged real-valued feature from the enrolled N samples of
one palm;

Assuming Vt palms are captured for training and N samples from one palm
are enrolled, we will get a feature set {V i

GM,Enroll, i = 1 . . .N} to represent each
palm after the LDA projection. The averaged feature vector for each palm needs
to be computed as expressed following:

V GM,Enroll =
1

N

N∑
i=1

V i,j
GM,Enroll, j = 1 . . . (Vt − 1) (3)

(2) Quantize the real-valued features by a threshold;
Here the threshold is set to 0. Each component of the real-valued features

V GM,Enroll is quantized into one bit Bj
GM,Enroll, j = 1 . . . Vt − 1 which can be

expressed as following:

(Bj
GM,Enroll | j = 1 . . . Vt − 1) =

{
1, V

j

GM,Enroll ≥ 0;
0, otherwise.

(4)

By the same process, VGM,Test from each test sample is quantized into a binary
string BGM,Test.

(3) Select some reliable bits as the final binary feature template.

During the enrollment phase, we assume that the larger |V j

GM,Enroll|, the more

reliable of its corresponding bit Bj
GM,Enroll. In the meanwhile, the positions of
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the most reliable bits need to be recorded as a index vector RGM,Enroll. For a
test sample, the bits are selected by following the position index of RGM,Enroll.
Assuming L bits are selected then our proposed binary Gabor statistical features
are B1...L

Enroll for enrollment palmprint and B1...L
Test for test palmprint respectively.

4 Experimental Results

The HongKong Polytechnic University (PolyU) palmprint database is used to
test our proposed method [8]. They were captured by a CCD camera from 386
different palms and collected in two sessions with two different illumination con-
ditions. There are 3889 images in session one and 3863 palms in session two
respectively. Because there is one palm which has only one sample captured in
session 2, we use the other 385 palms for our experiments. The resolution of
original captured images is 384×284 pixels at 75 dpi. By preprocessing each
captured image (as shown in Fig. 7), the central region size of 128×128 is used
for feature extraction.

a b c d

hge f

Fig. 7. (a) A typical palmprint image from HongKong PolyU Palmprint Database;
(b)-(f) show our used registration and region-crop method
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Experiment I: Since the verification performance is heavily depended on the
number of the selected bits, we test our algorithm by varying the bits number
from 20 to 400. For this experiment, the images in session one are used, which
are randomly split as the training set (185 palms) and the evaluation set (the
remaining 200 palms for enrollment and test), which can be referred as training-
evaluation-set split. For training, all the samples are used. For enrollment, five
samples are randomly selected and the remaining ones for test. The training-
evaluation-set split is performed six times. For matching genuine pairs, we test
all the samples in the test set. For matching imposter pairs, the first sample of
each palm in the test set is chosen for all the possible imposter combinations.
Thus, we have totally 6082 genuine scores and 238,800 imposter scores.

Figure 8 (Left) plots the comparison of the verification equal error rate (EER)
among the methods of LogGM (only GM information is used), LxpGP (only GP
information is used), Fusion (the proposed method by fusing GM and GP infor-
mation). As can be seen from it, the EER decreases as the bits number increases.
However, since more bits lead to be more noisy string, we determine 120 as the
optimal bits number for the proposed fusion method. Figure 8 (Right) plots the
comparison of ROC curves. As can be seen, the verification performance can
be greatly improved by fusing the bits generated from GM and GP informa-
tion respectively. Figure 9 shows the percentage distributions of bit error rate
(BER) for genuine and imposter matching respectively by the proposed method.
As we can see that the proposed method is able to achieve good verification
performance by adjusting the BER threshold of error correcting coding (ECC)
module to around 30% assuming the system works under the template protection
framework.
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Fig. 8. Verification performance. (Left) Verification EER (%) comparison when the
number of selected bits varies from 20 to 400; (Right) ROC curves when the number
of selected bits is set to 120.

Experiment II: Here the proposed method is compared with the binary co-
occurrence vector (BOCV) method on the verification error rate and the corre-
sponding BER threshold which is depended on the used ECC module [3,5]. For
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Fig. 9. Percentage distribution of Bit Error Rate (%) for genuine and imposter match-
ing respectively by the proposed method

this experiment, the samples for training (185 palms) are from session 1 while the
ones for evaluation (200 palms) from session 2. Other protocols are the same as
those in experimental I. For the BOCV method, no training procedure is needed.
Here we set the evaluation protocol the same as that for ours. In total, we have
6013 genuine scores and 236,412 imposter scores. BOCV requires to shift the
whole image by several pixel horizontally and vertically and then matches mul-
tiple times to get the final matching score. Here each bits plane is down-sampled
into a binary matrix size of 32×32. The range of shift is considered as [-2, 2].

Figure 10 plots the comparison of verification error rate which is indicated by
false acceptance rate (FAR) and false rejection rate (FRR) when adjust the BER
threshold of ECC module. As can be seen from it, the proposed method greatly
outperforms the coding based method BOCV when the applied ECC module
has an error correcting capability of lower than 25% . Besides, for the proposed
method there is no need to shift the feature templates multiple times for the
final matching score, which is not only time-consuming, but also challenges the
combination of palmprint verification and template protection system.
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5 Conclusion and Discussion

In this paper, we present a binary feature extraction method for palmprint
verification under consideration of feature template protection which requires
a robust biometric channel. Experimental results demonstrate that fusion of
the global and local statistical features extracted from Gabor magnitude and
phase responses respectively outperforms that of global or local features rep-
resented separately on the verification accuracy. Compared with the popular
coding based methods, the proposed approach achieves comparable verification
error rate while much lower bit error rate of the genuine matching which gives
a solution of combining palmprint verification and feature template protection
scheme so that the system could be robust and accurate.

However, the extracted discriminative binary string is still not long enough
to be secure. To alleviate the intra-class variations, how to extract the robust
binary palmprint features of more bits so that a long key can be combined for
security will be the point of our future work.
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Abstract. Multiple Instance Learning (MIL) is concerned with learn-
ing from sets (bags) of feature vectors (instances), where the individual
instance labels are ambiguous. In MIL it is often assumed that positive
bags contain at least one instance from a so-called concept in instance
space, whereas negative bags only contain negative instances. The classes
in a MIL problem are therefore not treated in the same manner. One of
the ways to classify bags in MIL problems is through the use of bag
dissimilarity measures. In current dissimilarity approaches, such dissimi-
larity measures act on the bag as a whole and do not distinguish between
positive and negative bags. In this paper we explore whether this is a
reasonable approach and when and why a dissimilarity measure that is
dependent on the bag label, might be more appropriate.

1 Introduction

Multiple-instance learning (MIL) [6] extends traditional supervised learning
methods in order to learn from objects that are described by a set (bag) of
feature vectors (instances), rather than a single feature vector only. MIL prob-
lems are often considered to be two-class problems, i.e., a bag of instances can
belong either to the positive or the negative class. The bag labels are available,
but the labels of the individual instances are not defined. Often assumptions are
made about the instance labels and their relationship with the bag labels.

Traditional MIL problems assume that positive bags contain one or more
positive instances from a so-called concept, whereas negative bags contain only
negative instances [6,9]. E.g. when classifying images represented by a bag of im-
age segments as “tiger” or “no tiger”, a segment containing black stripes could be
seen as a positive instance for the “tiger” concept, whereas segments containing
grass, sky e.t.c. would be considered negative, or background, instances.

Many traditional, “instance-based” MIL approaches try to model the concept
by identifying the “most positive” instances in bags, and classify new bags as
positive if they appear to have instances within this concept [6,9]. Other, “bag-
based” MIL approaches compare bags directly, using distances[18], kernels[7] or
dissimilarities [17,14]. It is possible to define a dissimilarity measure between
bags, represent each bag by its dissimilarities to other bags, and use these dis-
similarity values as features for supervised classifiers. A number of such dissimi-
larities are investigated in [14,17], where it is shown that some bag dissimilarities
can be effective even when a concept is not clearly defined.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 602–610, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The instance-based methods explicitly use the assumption that positive bags
are different from negative bags, whereas the bag-based methods typically do
not differentiate between classes. This may not be completely natural for a MIL
problem, because we have some information about how positive bags are differ-
ent from negative bags. In supervised learning problems where classes are ex-
pected to behave differently, class-dependent distances[10,5,19] or features[2,8]
have been suggested. In this work we examine whether a similar approach might
be reasonable for MIL problems.

2 Related Work

Using a class-dependent distance measure, rather than a fixed distance mea-
sure, is not a new idea. Quadratic Discriminant Analysis already allows different
classes to have different covariance matrices. More attention to class-dependent
distances is given in [10], where the goal is to learn weights for each feature/class
combination, and to use these weights in a Mahalanobis-type metric. A similar
approach is taken in [5] to improve performance in speech recognition. In [19],
the authors propose learning different metrics for different classes and show that
this improves classification results. In all cases, the goal is obtain high nearest
neighbor performance on the learnt distances.

Other authors have examined the importance of class-dependent features
rather than distances. In [2] several examples are provided where such class-
dependent features are important: classification of handwritten characters, tex-
tures and documents. For instance, in a bag of words approach to document
classification, it might be better to represent documents based on words that
frequently occur in a particular class, as opposed to words that frequently occur
in all documents. The same motivation is given in [8], where a weight is asso-
ciated with each (word, class) pair. Although here, the term “dissimilarity” is
used rather than distance, the learned dissimilarities are still used in a nearest
neighbor setting.

For MIL, the only example of using a class-dependent dissimilarity we are
aware of is from [20]. Here, bag dissimilarities are used for feature selection. The
authors propose to use different dissimilarity measures for two positive bags, two
negative bags, or a positive and a negative bags, to best capture the properties
of the classes, such as the presence of a concept. Because the purpose is feature
selection, only the dissimilarities between bags in the training set are computed.
The same class-dependent dissimilarity cannot be used for the purpose of clas-
sification, because the labels of test bags are not available.

3 Review of MIL and Bag Dissimilarities

In Multiple Instance Learning, an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ Rd of ni feature vectors or instances. The training set T =
{(Bi, yi)|i = 1, ...N} consists of positive (yi = +1) and negative (yi = −1)
bags. The traditional assumption for MIL is that there are instance labels yik
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which relate to the bag labels as follows: a bag is positive if and only if it contains
at least one positive instance[6]. In this case we can speak of concept (positive)
instances, which are assumed to be close together in a region of the feature
space called the concept C ⊂ Rd, and which directly affect the bag label by their
presence.

Alternatively, we can represent an object (and therefore, also a bag in a MIL
problem) by its dissimilarities to prototype objects in a representation set R[11].
Often, R is taken to be the training set T , and each bag is represented as
d(Bi, T ) = [d(Bi, B1), ...d(Bi, BN )]: a vector of dissimilarities. Therefore, each
bag is represented by a single feature vector and the MIL problem can be viewed
as a standard supervised learning problem.

There are various ways of defining the bag dissimilarity measure d(Bi, Bj).
Here we focus on defining d(Bi, Bj) through the pairwise instance dissimilarities
D = [d(xik,xjl)]Ni×Nj . We use the squared Euclidean distance for the instance
dissimilarity, but other choices are also possible. In all the dissimilarities con-
sidered here, the first step is to find, for each instance in Bi, the distance to its
closest instance in Bj . Using these minimum instance distances, we can define
the following dissimilarities:

– Overall minimum or minmin: dminmin(Bi, Bj) = mink minl d(xik,xjl)

– Average minimum ormeanmin: dmeanmin(Bi, Bj) =
1
ni

∑ni

k=1 minl d(xik,xjl)

– Maximum minimum or maxmin: dmaxmin(Bi, Bj) = maxk minl d(xik ,xjl)

Note that these dissimilarities are very similar to (variants) of the Hausdorff
distance. However, in literature, the name “modified Hausdorff distance” has
been used for a number of different distances (see [21] for some examples), so
we prefer to use these more straightforward names instead. Furthermore, the
Hausdorff distance is generally not symmetric, i.e. d(Bi, Bj) �= d(Bj , Bi), and
often a symmetric version is obtained by taking the average or the maximum
of the two values. In this paper we refrain from doing so for reasons that will
become apparent in the next section.

The three dissimilarities above have their advantages and disadvantages for
particular types of datasets. For instance,minmin performs well with a very tight
concept, whereas meanmin is more appropriate for cases where instances from
positive and negative bags arise from different distributions. A more detailed
explanation is available in [4]1.

4 Class-Dependent Dissimilarity

We argue that, in a MIL problem, it may be advantageous to exploit the bag
label information when defining a dissimilarity between two bags. Let’s assume
we are dealing with a MIL problem with a well-defined concept, such as in

1 In press, available online from
http://prlab.tudelft.nl/sites/default/files/icpr2012.pdf
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Figure 1(a). In this problem, if we consider all instances in a bag, any two
bags may be similar or dissimilar overall. However, in MIL problems with a
concept, we could speculate that the positive bags are similar at the concept
level. Figure 1(b) illustrates the a dissimilarity matrix corresponding with this
intuition. Each square here is a dissimilarity value between two bags, where
the color of the square represents the dissimilarity value (black = 0, i.e. similar
bags, white=1, i.e. dissimilar bags). Notice the difference between treating these
values as distances, or as dissimilarities. In terms of distances, this representation
is quite poor, because each bag has several neighbors in the opposite class.
However, in terms of dissimilarities, the situation is quite different: the positive
bags are clearly represented in a different way than the negative bags, so the
classes are well separated.

By using the same dissimilarity to compare positive and negative bags, we
risk overlooking an important difference between positive and negative bags,
producing a dissimilarity matrix where all values are nearly equal. It seems
that using the class information could help us capture the correct aspects of
dissimilarity between bags. Ideally, we would want to have the class information
of both bags when determining their dissimilarity (e.g. using the overall minimum
distance for two positive bags, as in [20], but for classification purposes, it is
obvious that only the labels of the prototypes are available.

(a) (b)

Fig. 1. (a) Artificial concept dataset, + and © represent instances from positive and
negative bags respectively. (b) Dissimilarity matrix reflecting the intuition we have
about the positive and negative bags. The intensity value reflects the dissimilarity of
two bags (black = 0, white = 1).

For positive prototypes, we want to find out something about the presence
of a concept in the test bag (denoted by B), i.e. the concept instance of the
prototype bag (denoted by R+ or R− depending on the prototype label) needs
to be involved. As illustrated in Figure 2, the asymmetry of the bag dissimilarities
becomes important here. If we measure the dissimilarity of the test bag to the
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prototype bag, denoted by d(B → R+), it may happen that none of the instances
in B are matched to the positive instance in R+. If we measure d(R+ → B)
instead, which measures the dissimilarity from the prototype to the test bag, the
positive instance of R+ has to be matched to an instance in B. In other words,
the distance from a positive prototype d(R+→ B) should be more informative.
For negative prototypes, we want to highlight the absence of the concept in the
prototype. In this case, we are interested in the dissimilarity to the prototype
d(B → R−) because this ensures that incorrect matches (of concept instances
in the test bag to background instances in the prototype) will be present.

(a) (b)

Fig. 2. Difference between the “from” d(R → B) and “to” d(B → R) dissimilarities for
a prototype bag (represented by �). Each row shows the situation for a test bag (rep-
resented by ©). The instance labels (red = positive, blue = negative) are unavailable
and only shown for explanation purposes. The arrows indicate the direction of how the
instance distances are measured.

4.1 Possible Dissimilarity Measure

Just the direction of measuring the dissimilarity does not yet provide us with
a way to produce a single dissimilarity, but with a vector of minimum instance
distances between a bag and a prototype. If the bags were very large, we could
see these vectors as distributions of distances. Assuming that these distributions
would be somehow different for positive and negative test bags, we could define
a dissimilarity value between two bags by comparing the distributions directly.

However, in real applications, some bags may be very small (e.g. in the Musk
datasets, bags with just one instance are present), so such comparisons would not
always be feasible. Instead we try to define cheap approximations for the overall
bag distance, given only finite samples from the instance distance distributions.
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Given our previous experiences with meanmin, we propose to approximate both
directions with the following dissimilarity:

dcd(·, R) =

{
dmeanmin(R→ ·) if R is positive

dmeanmin(· → R) if R is negative
(1)

Table 1. AUC performance and standard error (x100), 5x10-fold cross-validation for
1-NN classifier in the dissimilarity space. The numbers in bold indicate which dissimi-
larity is best (or not significantly worse than best) per dataset.

dataset dto dfrom dcd davg

Musk1 92.6 (1.1) 92.6 (1.1) 92.9 (1.2) 93.4 (1.1)
Musk2 89.7 (1.8) 87.2 (1.7) 89.7 (1.6) 88.5 (1.6)
Fox 57.2 (1.4) 65.3 (1.7) 68.7 (1.7) 66.2 (1.7)
Tiger 78.2 (1.6) 79.7 (1.3) 75.1 (1.3) 75.6 (1.6)
Elephant 83.0 (1.3) 87.1 (1.2) 90.8 (1.0) 88.9 (1.0)
Protein 62.1 (2.5) 61.0 (3.1) 63.0 (3.1) 64.2 (2.7)
Mutagen easy 89.6 (1.0) 89.0 (1.1) 88.4 (1.0) 88.8 (1.0)
Mutagen hard 79.5 (3.1) 73.3 (3.6) 79.7 (3.2) 77.3 (3.6)
African 89.9 (0.7) 88.5 (0.7) 90.8 (0.7) 89.3 (0.7)
Beach 82.2 (0.8) 82.1 (1.0) 83.3 (0.8) 82.4 (0.8)
Historical 87.0 (0.7) 85.9 (0.8) 87.1 (0.7) 87.6 (0.7)
Buses 96.6 (0.3) 97.2 (0.3) 97.1 (0.3) 96.9 (0.3)
Dinosaurs 99.2 (0.2) 99.7 (0.0) 99.0 (0.2) 99.3 (0.1)
Elephants 92.9 (0.5) 92.6 (0.8) 92.8 (0.6) 92.9 (0.5)
Flowers 98.0 (0.2) 97.7 (0.3) 98.1 (0.2) 97.6 (0.2)
Horses 98.9 (0.1) 96.1 (0.4) 98.9 (0.1) 97.8 (0.2)
Mountains 82.7 (0.9) 82.6 (0.8) 82.5 (0.8) 85.7 (0.7)
Food 95.9 (0.3) 97.0 (0.2) 96.8 (0.3) 97.3 (0.2)
Dogs 84.5 (0.9) 85.4 (0.8) 86.8 (0.8) 86.6 (0.7)
Lizards 93.0 (0.5) 91.7 (0.7) 92.0 (0.6) 92.2 (0.6)
Fashion 90.0 (0.5) 90.2 (0.6) 90.9 (0.5) 90.2 (0.5)
Sunset 94.3 (0.6) 93.3 (0.5) 94.1 (0.5) 94.7 (0.4)
Cars 88.8 (0.7) 87.9 (0.7) 89.8 (0.6) 88.2 (0.6)
Waterfalls 93.8 (0.4) 91.1 (0.6) 93.5 (0.4) 93.4 (0.4)
Antique 92.8 (0.7) 93.7 (0.5) 93.2 (0.6) 93.4 (0.6)
Battleships 92.7 (0.5) 92.8 (0.4) 93.9 (0.4) 94.5 (0.4)
Skiing 87.0 (0.8) 91.4 (0.6) 87.3 (0.7) 89.9 (0.6)
Desserts 72.0 (1.4) 68.6 (1.1) 71.0 (1.4) 72.7 (1.0)
AjaxOrange 81.6 (1.5) 85.2 (1.5) 86.7 (1.3) 86.7 (1.1)
Apple 69.3 (1.3) 62.4 (1.7) 68.6 (1.3) 66.3 (1.5)
Banana 65.4 (1.4) 61.5 (1.7) 66.6 (1.7) 65.4 (1.8)
BlueScrunge 72.3 (1.5) 81.2 (1.2) 76.2 (1.4) 81.6 (1.2)
CandleWithHolder 80.6 (1.4) 79.7 (1.3) 85.4 (1.2) 87.1 (1.0)
CardboardBox 72.3 (1.5) 83.4 (1.0) 76.7 (1.4) 86.4 (1.1)
CheckeredScarf 95.1 (0.4) 94.2 (0.3) 95.7 (0.4) 96.7 (0.3)
CokeCan 85.0 (1.2) 81.8 (1.2) 87.9 (1.1) 88.5 (1.1)
DataMiningBook 84.7 (1.1) 78.6 (1.3) 86.9 (1.1) 85.7 (1.2)
DirtyRunShoes 90.9 (0.9) 90.6 (0.9) 92.2 (0.8) 91.6 (0.9)
DirtyWorkGloves 75.5 (1.6) 75.9 (1.5) 78.5 (1.5) 82.8 (1.4)
FabricSoftener 89.0 (1.1) 88.9 (1.1) 95.7 (0.7) 89.7 (1.0)
FeltFlowerRug 83.7 (1.4) 86.3 (0.9) 88.4 (1.1) 90.2 (0.8)
GlazedWoodPot 58.7 (1.2) 63.5 (1.7) 59.9 (1.3) 68.1 (1.6)
GoldMedal 75.6 (1.5) 75.1 (1.3) 80.8 (1.2) 83.5 (1.1)
GreenTeaBox 81.8 (1.3) 79.6 (1.4) 85.9 (1.1) 83.4 (1.2)
JuliesPot 68.1 (1.5) 60.3 (1.7) 70.9 (1.5) 64.7 (1.4)
LargeSpoon 79.0 (1.4) 71.1 (1.7) 82.7 (1.2) 81.7 (1.5)
RapBook 70.3 (1.5) 71.4 (1.5) 71.5 (1.4) 74.1 (1.4)
SmileyFaceDoll 79.0 (1.4) 59.6 (2.0) 78.2 (1.4) 75.7 (1.4)
SpriteCan 77.7 (1.2) 71.0 (1.5) 79.5 (1.2) 80.2 (1.2)
StripedNotebook 76.6 (1.2) 78.1 (1.6) 78.8 (1.2) 77.8 (1.2)
TranslucentBowl 67.4 (1.4) 62.1 (1.4) 68.8 (1.5) 63.8 (1.5)
WD40Can 86.3 (1.3) 85.6 (1.1) 90.3 (1.0) 89.0 (1.1)
WoodRollingPin 78.8 (1.4) 79.2 (1.3) 82.6 (1.4) 82.2 (1.2)
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5 Experiments

We test our approach on several benchmark MIL datasets:

– Musk 1, Musk 2 [6], molecule activity prediction.
– Trx Protein [16], protein function prediction.
– Mutagenesis easy, Mutagenesis hard [15], drug activity prediction.
– Fox, Tiger, Elephant [1], image classification.
– 20 Corel datasets [3], image classification.
– 25 SIVAL datasets [13], image classification.

We compare the performance of the 1-nearest neighbor classifier in the dissimilar-
ity space using the class-dependent dissimilarity dcd and its “ingredients”, which
we denote by dto and dfrom for brevity. In addition, we provide results of the
symmetric mean davg = 1

2 (dfrom + dto) because before considering asymmetric
dissimilarities, we have achieved good results with this symmetrized measure.

The results are given in Table 1. The class-dependent dcd is performing better
than dfrom and dto, which is in line with our intuition about it being able to
capture more class differences. Overall, the performance of davg is comparable
to that of dcd, which might mean that averaging dfrom and dto captures some of
the same information as in dcd. For several datasets, one of these dissimilarities
does significantly better than the other, although it is not entirely clear what
these datasets have in common. However, it seems that in many cases where dto
outperforms dfrom, dcd also outperforms davg (e.g. SmileyFaceDoll).

The difference in the results of dfrom and dto is another interesting obser-
vations. For some datasets, these dissimilarities have comparable results, while
for others, especially SIVAL datasets, one outperforms the other greatly. Al-
though dto is often better than dfrom, for instance for the Apple dataset, in
other datasets, such as CardboardBox, the situation is reversed.

6 Discussion and Conclusion

We have emphasized that in Multiple Instance Learning problems, it might be
appropriate to treat the classes differently due to an important difference be-
tween positive and negative bags: the presence of concept instances. Most MIL
approaches which compare bags directly disregard this difference. Therefore, we
proposed to use a class-dependent dissimilarity based on the average minimum
instance distance, which adapts itself based on the labels of the prototype bags.
Experimental results showed that this class-dependent dissimilarity is indeed
more informative than the independent versions, and that it is comparable to
averaging of these two dissimilarities.

In several datasets, we have noticed large differences between measuring dis-
similarities from bags to prototypes (dto), or from prototypes (dfrom) to the test
bags. We believe these differences may be related to the class imbalance in the
Corel and SIVAL datasets, where only 4 to 5% of the bags are positive. Therefore,
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the representation dto is actually very similar to the class-dependent represen-
tation dcd. This also explains why the successes of dto and dfrom are related.
In fact, the correlation coefficient between the difference of performances of dto
and dfrom, and the difference of performances of dcd and davg, is equal to 0.55.
This suggests that dfrom contains some information which negatively affects the
performance of davg, but which can be avoided when using the dissimilarities in
a class-dependent manner.

To better understand the obtained results, we also examined the performances
of the individual “to” and “from” dissimilarities using only the positive, or only
the negative bags as prototypes. The results were surprising, because the perfor-
mances were comparable to the dissimilarities where prototypes of both classes
are available. In about half of the datasets, the dissimilarity from positive proto-
types outperformed all the dissimilarities in Table 1. This provides opportunities
for investigating how prototype selection [12] or assigning weights to the pro-
totype classes can further improve performance. Furthermore, this result might
be of interest in MIL problems with class imbalance such as in medical image
diagnosis, and is worth investigating further.
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Abstract. In order to improve the results of automatically recognized
handwritten text, information about the language is commonly included
in the recognition process. A common approach is to represent a text line
as a sequence. It is processed in one direction and the language infor-
mation via n-grams is directly included in the decoding. This approach,
however, only uses context on one side to estimate a word’s probability.
Therefore, we propose a bidirectional recognition in this paper, using
distinct forward and a backward language models. By combining decod-
ing hypotheses from both directions, we achieve a significant increase
in recognition accuracy for the off-line writer independent handwriting
recognition task. Both language models are of the same type and can be
estimated on the same corpus. Hence, the increase in recognition accu-
racy comes without any additional need for training data or language
modeling complexity.

Keywords: handwriting recognition, language models, neural networks.

1 Introduction

The recognition of handwritten text is a very active research field among re-
searchers on pattern recognition [12]. Promising approaches for handwriting
recognition are segmentation-free and learning-based, such as hidden Markov
models (HMM) [2,13], neural networks (NN) [6], or combinations thereof [3].

Still, the recognition of unconstrained text can not be considered a solved
problem. The main reason is the difficulty in dealing with the high variability
encountered in different handwriting styles. Often, a semantic understanding of
the text is necessary to be able to read a text. In case of automatic recogni-
tion systems, contextual understanding is usually emulated by estimating word
probabilities, such as n-grams [5,7]. Yet, despite their simplicity and inability to
capture any long-term relationships between words, n-gram approaches perform
remarkably well and are still state-of-the-art.

Current handwriting recognition systems represent the text line as a sequence
and perform the recognition usually in the direction of writing, i.e., left to right
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for Roman scripts. This allows to directly include n-gram language model infor-
mation in the decoding. In this form of language probability estimation, however,
only a limited context is used to estimate the occurrence probability of a word.
As a result, recognizers face the problem of error propagation. Correct word
that are required in a larger context might be dropped due to pruning. Instead a
wrong hypotheses propagates wrong language model information to the follow-
ing words and may disturb their recognition, hence creating a form of decoding
direction dependent error.

As a consequence, one-directional decoding seems to be an unnecessary restric-
tion, especially when the input data are off-line text images. A word’s probability
can be estimated more robustly by considering both n-grams, the one consider-
ing the words on the left, and the one considering the words on the right side.
Thus, taking also the reversed decoding direction into account could reduce the
recognition error-propagation.

In this paper we propose the use of bi-directional n-grams for improving the
recognition performance of unconstrained handwritten text. In order to do this,
N -best lists are created for both directions separately, using a distinct forward and
a backward language model. Then, these lists are combined to produce the final
recognition output. Note that the system used in this paper is based on Neural
Networks [6], but it could easily be extended to HMM-based approaches as well.

The rest of the paper is structured as follows. In Section 2 the proposed
bidirectional language model approach is introduced and explained in detail. The
experimental evaluation is presented in Section 3 and conclusions are drawn in
Section 4.

2 Bidirectional Language Models

The ambiguity of different handwritten text and the huge variances in different
writing styles require an integration of contextual information for an automatic
transcription. The standard way of doing this is to integrate a statistical language
model in the decoding process. However, language modeling using bi-grams do
not capture the language sufficiently well. One option is to increase the complex-
ity of the language model by using higher order n-grams, however, the number
of distinct n-grams increases exponentially with n. Hence, even in a large train-
ing corpus, many word combinations do not occur at all or they occur with a
frequency not high enough for a robust occurrence probability estimation.

Another challenge to handwriting recognition is the error propagation of a mis-
recognized word. As a sequential decoding problem, common recognition meth-
ods process the text line in one direction, left-to-right or right-to-left. Hence, any
mis-recognition propagates in the direction of recognition due to the language
model which takes the current recognition result to estimate the next word’s
probability.

To address both issues, the challenge to estimate sophisticated language mod-
els on sparse data as well as the problem of error propagation, we propose in this
paper to decode the text from both directions and combine the results. Forward
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and backward decoding require to different language models which can still be
estimated on the same corpus and the combination can successfully increase the
recognition accuracy.

The proposed approach is a step towards holistic language models to better
capture syntactic and semantic information. While such models have been pro-
posed for speech recognition in a sophisticated way [14], our approach does not
increase the language modeling and hence the computational complexity.

2.1 Contribution

From a mathematical point of view, continuous handwriting recognition systems
map a text image to a sequence of words wS

1 = w1w2 . . . wS . This is done by
using both, an observation model ϑ that assigns a probability value to a character
sequence according to the observed image and a language model LM that assigns
a probability value to a given character sequence according to the language at
hand. The character sequence that maximizes the combined score is then selected
as the final output.

In this paper we focus on the language model probability score which can be
factorized as

p(wS
1 ) = p(w1) · p(w2|w1) · · · p(wS |wS−1

1 ) (1)

= p(w1)

S∏
i=2

p(wi|wi−1
1 ) (2)

= p(wS) · p(wS−1|wS) · · · p(w1|wS
2 ) (3)

= p(wS)

S∏
i=1

p(wi|wS
i+1) . (4)

Note that we define wi = ε for i ≤ 0 and i > S to make the Equations more
readable. Following from the rules of probability, it does not matter whether the
LM probability is factorized such that the probability for a word wi is conditioned
on its left context wi−1

1 (see Eqn. 2) or its right context wS
i+1. However, keeping

track of the entire context is unfeasible for real word applications, hence state-of-
art recognition systems use n-gram models which only take a limited number of
words into account. Usually this is done in the direction of text processing, i.e.,
for languages that are written and recognized from left-to-right, the left hand
side context of a word is considered to estimate its probability. Here, we will
indicate this with LM→ and call it forward LM

p→(wS
1 |LM→) = p(w1|LM→)

S∏
i=2

p(wi|wi−1
i−n+1,LM→) . (5)

Obviously, every text image can also be recognized in the reversed direction,
requiring different n-grams, indicated here with LM← (backward LM )

p←(wS
1 |LM←) = p(wS |LM←)

S−1∏
i=1

p(wi|wi+n−1
i+1 ,LM←) . (6)
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(a) Recognition lattice

(b) Reversed recognition lattice

Fig. 1. In (a) the recognition lattice for the left-to-right decoding direction is given
for a sample text line. In (b) the reversed lattice with the modified language model
information is shown. Note that all node labels but only one edge label is shown for
the sake of readability. In the left-to-right decoding, the bi-gram information that the
word “This” occurs after the symbol “.” is used. In the right-to-left decoding, the
corresponding edge contains the probability of the symbol “.” occurring before the
word “This”.

Although the Equations (2) and (4) are a factorization of the same probability,
their n-gram simplification in Equations (5) and (6) is expected to produce dif-
ferent results. Yet, both can be estimated on the same corpus. Thus, we propose
in this paper to exploit this fact. We show that a significant improvement of the
recognition rate can be achieved by combining the recognition output of the two
systems using the forward LM and the backward LM of the same n-gram order.

2.2 Approach

We propose to generate two different N -best lists of recognition hypotheses,
one generated by a left-to-right and one generated by a right-to-left decoding.
Afterwards, these N -best lists can be combined to generate a new output.

A straightforward way to build both lists is to use a recognizer for handwrit-
ten text that produces a recognition lattice, such as HMMs or BLSTM Neural
Networks in conjunction with a Token Passing algorithm. A recognition lattice
(see Fig. 1), is a directed graph with node and edge labels and constitutes a
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comprehensive way of storing various decoding paths. From this, N -best lists
can easily be generated by searching the most likely paths across the lattice us-
ing A∗-search. The exact specifications, what information is stored in the nodes
and labels may vary, but usually a node represents a word and an edge indicates
a transition between two words. In our approach, nodes are labeled with the
position where the word ends. Edges are labeled with two probability scores,
the bi-gram transition probability between the word at the starting node and
the word at the ending node and the observation probability of the word at the
ending node. From this, we generate the N -best lists of the forward direction.

Next, we reverse the directions of the edges and adjust the bi-gram prob-
abilities. That is, an edge e = (u, v) ∈ V × V from node u to v labeled
with p→(v|u,LM) and pobs(v) is changed into an edge e = (v, u) with labeling
p←(u|v,LM) and pobs(v). A path in the new lattice now represents a decoding
using the reversed bi-gram language model and an N -best list is also generated.
Note that the word ordering of the hypotheses in this list is in reversed order
and needs to be changed back.

To make use of higher orderN -grams, the bi-gramword transition probabilities
on the edges are ignored. Instead, an A∗-search on the lattices is done using an
external language model file to generate the forward and backward N -best lists.

Finally, the two N -best lists can be combined using a generalized recognizer
output voting error reduction (ROVER) scheme [4,16]. In this system, the N -
best output word strings are first aligned and then combined in a weighted
voting scheme. The weights of the word hypotheses in the combination are based
on their posterior probabilities which are estimated from the N -best lists of
the recognizers. The combination was done using the SRILM toolkit [15]. The
toolkit allows the use of different weight parameters, which were optimized on
the validation set.

3 Experimental Evaluation

3.1 Setup

For the experiments, we have used the IAM off-line database [11], which contains
forms of unconstrained handwritten English text. The database is composed of
1,539 pages (13,353 text lines, 115,320 words) written by 657 writers. In our
experiments we have followed the benchmark defined by the authors, which
consists in 6,161 lines in the training set, and 920 lines in the validation set, and
2,781 lines in the test set.

First of all, each text line has been binarized and normalized in order to cope
with different handwriting styles. The normalization consists in correcting the
skew and slant, and normalizing the size and width of the text. The result of
the text line normalization process can be seen in Fig. 2. Once the text lines are
normalized, a sliding window moving from left to right over the text image. At
each column of width one pixel, the following nine features are extracted: the
0th, 1st and 2nd moment of the black pixels’ distribution within the window,
the position of the top-most and bottom-most black pixel, the inclination of the
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(a) The original text line image.

(b) The normalized text line.

Fig. 2. The text line preprocessing

top and bottom contour of the word at the actual window position, the number
of vertical black/white transitions, and the average gray scale value between the
top-most and bottom-most black pixel. For a more detailed description of the
normalization and feature extraction, we refer to [10].

As a recognizer, a bidirectional LSTM neural network (BLSTM NN) is used,
i.e., the sequence of feature vectors is fed into the network from both directions,
left-to-right and right-to-left. The output layer consists of one node for each
possible character. By normalizing the output activations, the result is a matrix
of posterior probabilities for each letter and each position. Given that matrix and
a bi-gram language model, a token passing algorithm can be used to generate
the recognition lattices. For details about BLSTM networks and the CTC token
passing algorithm, we refer to [6].

Both the forward and the backward N -grams with N = 2, 3, 4 are estimated
on the union of the Brown and Wellington corpus [1,8,9] as well as the part of
the LOB corpus not used in the validation or testing. The total amount of text
is 3.34M words in 162.6K sentences.

We chose the dictionary to be the 20,000 most frequent English words. Since
we consider the open vocabulary recognition task, some words in the training,
validation, and test set do not occur in the dictionary and can not be recognized.
This imposes an upper bound to the word recognition rate of 93.74%.

3.2 Results

In Fig. 3, the impact of the bidirectional language model on the handwriting
recognition task can be seen. The solid line indicate the standard left-to-right
language model and it can be seen that the recognition accuracy increases from
75.08% using a 2-gram LM, up to 75.47% (3-grams) and 75.50% (4-grams). The
results using bi-grams are comparable to the ones found in [6,3].

Using a right-to-left language model, the recognition rates are consistently
higher by reaching 75.25% (2-grams), 75.80% (3-grams), and 75.82% (4-grams).
The lack of significant increase when switching from a 3-gram to the 4-gram LM
can be explained by the size of the language corpus. Obviously the limit of the
generalization capability is reached.
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Fig. 3. Word level recognition accuracies of the different systems

The proposed, combined language model, however, achieves a significant in-
crease by combining the left-to-right and right-to-left models. With bi-gram
model, a recognition accuracy of 76.08% is reached, outperforming even the
4-gram recognition with an unidirectional model. The performance using the
3-gram combined model is 76.33% and slightly better than using the 4-gram
(76.29%) combined model. However, this difference is not statistically significant,
while all increases from the uni-directional models to the proposed bi-directional
model are statistically significant at α = 0.05 for every N .

4 Conclusion

The recognition of unconstrained handwritten text is still considered an open
problem mainly due to the high variability in the handwriting styles. Since state-
of-the-art handwriting recognition systems decode a text line sequentially, the
contextual information used for solving ambiguities is only taken from one side
of a word. To increase the robustness of estimating a word’s language model
probability one the one hand and to reduce the effect of error-propagation of
mis-recognized words, we propose bidirectional language models. In considering
contextual information from both sides of a word, our approach may be seen as
a step towards full sentence language models that capture the meaning of a text
holistically.

The experimental results obtained with bidirectional n-grams have shown a
significant improvement over current state-of-the-art approaches. The improve-
ment has been achieved without increasing the amount of training data, language
corpus, or the complexity of the language model.

Thus, we can conclude that bidirectional language models are promising ap-
proaches. Therefore, further work could be focused on investigating holistic whole
sentence analysis with bidirectional grammars and context-free grammars.
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Hypergraph Spectra for Unsupervised Feature Selection

Zhihong Zhang and Edwin R. Hancock�
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Abstract. Most existing feature selection methods focus on ranking individual
features based on a utility criterion, and select the optimal feature set in a greedy
manner. However, the feature combinations found in this way do not give op-
timal classification performance, since they neglect the correlations among fea-
tures. In an attempt to overcome this problem, we develop a novel unsupervised
feature selection technique by using hypergraph spectral embedding, where the
projection matrix is constrained to be a selection matrix designed to select the
optimal feature subset. Specifically, by incorporating multidimensional interac-
tion information (MII) for higher order similarities measure, we establish a novel
hypergraph framework which is used for characterizing the multiple relationships
within a set of samples. Thus, the structural information latent in the data can be
more effectively modeled. Secondly, we derive a hypergraph embedding view of
feature selection which casting the feature discriminant analysis into a regression
framework that considers the correlations among features. As a result, we can
evaluate joint feature combinations, rather than being confined to consider them
individually, and are thus able to handle feature redundancy. Experimental results
demonstrate the effectiveness of our feature selection method on a number of
standard datasets.

Keywords: Hypergraph representation, Hypergraph subspace learning.

1 Introduction

In order to render the analysis of high-dimensional data tractable, it is crucial to identify
a smaller subset of features that are informative for classification and clustering. Dimen-
sionality reduction aims to reduce the number of variables under consideration, and the
process can be divided into feature extraction and feature selection. Feature extraction
usually projects the features onto a low-dimensional and distinct feature space, e.g.,
kernel PCA [1], Locality preserving Projection (LPP) [2] and Laplacian eigenmap [3].
Unlike feature extraction, feature selection identifies the optimal feature subset in the
original feature space. By maintaining the original features, feature selection improves
the interpretability of the data, which is preferred in many real world applications, such
as face recognition and text mining. Feature selection algorithms can be roughly classi-
fied into two groups, namely a) supervised feature selection and b) unsupervised feature
selection.
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While the labeled data required by supervised feature selection can be scarce, there
is usually no shortage of unlabeled data. Hence, there are obvious attractions in devel-
oping unsupervised feature selection algorithms which can utilize this data. The typical
examples in unsupervised learning are graph-based spectral learning algorithms. Exam-
ples include the Laplacian score [6], SPEC [5], Multi-Cluster Feature Selection (MCFS)
[8] and Unsupervised Discriminative Feature Selection (UDFS) [10]. Given d features,
and a similarity matrix S for the samples, the idea of spectral feature selection algo-
rithms is to identify features that align well with the leading eigenvectors of S. The
leading eigenvectors of S contain information of concerning the structure of the sample
distribution and group similar samples into compact clusters. Consequently, features
that align closely to them will better preserve sample similarity [5]. For example, the
Laplacian score [6] uses a nearest neighbor graph to model the local geometric struc-
ture of the data, using the pairwise similarities between features are calculated using the
heat kernel. In this framework, the features are evaluated individually and are selected
one by one. The SPEC [5] algorithm is an extension of the Laplacian score that render
it more robust to noise. The method selects the features most consistent with the graph
structure. Note that SPEC also evaluates features independently.

However, there are two limitations to the above graph-based spectral feature se-
lection methods. Firstly, they evaluate features individually, and hence cannot handle
redundant features. Redundant features increase the dimensionality unnecessarily, and
worsen learning performance when faced with a shortage of data. It is also shown em-
pirically that removing redundant features can result in significant performance im-
provement. The second weakness is that in many situations the graph representation for
relational patterns can lead to substantial loss of information. This is because in real-
world problems objects and their features tend to exhibit multiple relationships rather
than simple pairwise ones. For example, consider the problem of classifying faces
which are under different lighting conditions [7]. Therefore, the higher order relations
cannot be suitably characterized by pairwise similarity measures.

A natural way for remedying the misleading representation described above is to
represent the dataset as a hypergraph instead of a graph. Hypergraph representations
allow vertices to be multiply connected by hyperedges and can hence capture multiple
or higher order relationships between features. Due to their effectiveness in represent-
ing multiple relationships, for the task of feature selection addressed in this paper, we
introduce a hypergraph embedding view of feature selection by subspace learning. The
method jointly evaluates the utility sets of features rather than individual feature. There
are three novel ingredients. The first is that by incorporating hypergraph representa-
tion into feature selection, we can be more effective capture the higher order relations
among samples. Secondly, inspired from the recent works on mutual information [16],
we determine the weight of a hyperedge using an information measure referred to as
multidimensional interaction information (MII) which precisely preserves the higher
order relations captured by the hypergraph. The advantage of MII is that it is sensitive
to the relations between sample combinations, and as a result can be used to seek third
or even higher order dependencies among the relevant samples. Thus, the structural in-
formation latent in the data can be more effectively modeled. Finally, we describe a
new feature selection strategy through hypergraph embedding, which casts the feature
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discriminant analysis into a regression framework that considers the correlations among
features. As a result, we can evaluate joint feature combinations, rather than being con-
fined to consider them individually, thus it is able to handle feature redundancy.

2 Hypergraph Construction

In this section, we establish a novel hypergraph framework which is used for charac-
terizing the multiple relationships within a set of samples. To this end, we commence
by introducing a new method for measuring higher order similarities among samples
based on information theory. According to Shannon’s study, the uncertainty of a ran-
dom variable X can be measured by the entropy H(X). For two random variables X
and Y , the conditional entropy H(Y |X) measures the remaining uncertainty about Y
when X is known. The mutual information I(X ;Y ) of X and Y quantifies the infor-
mation gain about Y provided by X . The relationship between H(Y ), H(Y |X) and
I(X ;Y ) is I(X ;Y ) = H(Y ) − H(Y |X). As defined by Shannon, the initial uncer-
tainty for X is H(X) = −

∑
x∈Y P (x) logP (x), where P (x) is the prior probability

density function over x ∈ X . The remaining uncertainty for Y if X is known is defined
by the conditional entropy H(Y |X) = −

∫
x
p(x){
∑

y∈Y p(y|x) log p(y|x)}dx, where
p(y|x) denotes the posterior probability for y ∈ Y given x ∈ X . After observing x, the
amount of additional information gain is given by the mutual information

I(X ;Y ) =
∑
y∈Y

∫
x

p(y, x)log
p(y, x)

p(y)p(x)
dx . (1)

The mutual information (1) quantifies the information which is shared by X and Y .
When the I(X ;Y ) is large, it implies that x and y are closely related. Otherwise, when
I(X ;Y ) is equal to 0, it means that two variables are totally unrelated. Analogically,
the conditional mutual information of X and Y given Z , denoted as I(X ;Y |Z) =
H(X |Z) − H(X |Y, Z), represents the quantity of information shared by X and Y
when Z is known. The conditioning on a third random variable may either increase
or decrease the original mutual information. In this context, the Interaction Information
I(X ;Y ;Z) is defined as the difference between the conditional mutual information and
the simple mutual information, i.e.

I(X ;Y ;Z) = I(X ;Y |Z)− I(X ;Y ) . (2)

The interaction information I(X ;Y ;Z) measures the influence of the variable Z on the
amount of information shared between variables X and Y . Its value can be positive,
negative, or zero. Zero valued Interaction Information I(X ;Y ;Z) implies that the rela-
tion between X and Y entirely depends on Z . A positive value of I(X ;Y ;Z) implies
that X and Y are independent of each other themselves, but are correlated with each
other when combined with Z . A negative value of I(X ;Y ;Z) indicates that Z can ac-
count for or explain the correlation between X and Y . The generalization of Interaction
Information to K variables is defined recursively as follow

I({X1, · · · , XK}) = I({X2, · · · , XK}|X1)− I({X2, · · · , XK}) . (3)
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Based on the higher order similarity measure, we establish a hypergraph framework for
characterizing a set of high dimensional samples. A hypergraph is defined as a triplet
H = (V,E,w). Here V denotes the vertex set, E denotes the hyperedge set in which
each hyperedge e ∈ E represents a subset of V , and w is a weight function which
assigns a real value w(e) to each hyperedge e ∈ E. We only consider K-uniform
hypergraphs (i.e. those for which the hyperedges have identical cardinality K) in our
work. Given a set of high dimensional samples X = [x1, · · ·xN ]T where xi ∈ Rd,
we establish a K-uniform hypergraph, with each hypergraph vertex representing an
individual sample and each hyperedge representing the Kth order relations among a
K-tuple of participating samples. A K-uniform hypergraph can be represented in terms
of Kth order matrix, i.e. a tensor W of order K , whose element Wi1,··· ,iK is the hy-
peredge weight associated with the K-tuple of participating vertices {vi1 , · · · , viK}. In
our work, the hyperedge weight associating with {xi1 , xi2 , · · · , xiK} is computed as
follows

Wi1,··· ,iK = K
I(xi1 , xi2 , · · · , xiK )

H(xi1 ) +H(xi2 ) + · · ·H(xiK )
. (4)

It is clear that Wi1,··· ,iK is a normalized version of Kth order Interaction Information.
The greater the value of Wi1,··· ,iK is, the more relevant the K samples are. On the other
hand, if Wi1,··· ,iK = 0, the K samples are totally unrelated.

3 Hypergraph Representation

Unlike matrix eigen-decomposition, there has not yet been a widely accepted method
for spanning a rationale eigen-space for a tensor [13]. Therefore, it is hard to directly
embed a hypergraph into a feature space spanned by its tensor representation through
eigen-decomposition. In our work, we consider the transformation of a K-uniform
hypergraph into a graph. Accordingly, the associated hypergraph tensor W is trans-
formed to a graph adjacency matrix A, and the higher order information exhibited in
the original hypergraph can be encoded in an embedding space spanned by the related
matrix representation. In this scenario, one straightforward way for the transforma-
tion is marginalization which computes the arithmetical average over all the hyperedge
weights Wi1,··· ,iK−2,i,j associated with the edge weight Ai,j

Ãi,j =

|V |∑
i1=1

· · ·
|V |∑

iK−2=1

Wi1,··· ,iK−2,i,j (5)

The edge weight Ãi,j for edge ij is generated by a uniformly weighted sum of hyper-
edge weights Wi1,··· ,iK−2,i,j . However,the form appearing in (5) behaves as a low pass
filter, and thus results in information loss through marginalization.

To make the process of marginalization more comprehensive, we use marginalization
to constrain the sum of edge weights and then estimate their values through solving an
over-constrained system of linear equations. Our idea is motivated by the so called
clique average introduced in the higher order clustering literature [11]. We characterize
the relationships between A andW as follows
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Wi1,··· ,iK =
∑

{i,j}⊆{i1,··· ,iK}
Ai,j (6)

There are
(|V |

2

)
variables and

(|V |
K

)
equations in the system of equations described in

(5). When K > 2, the linear system (5) is over-determined and cannot be solved ana-
lytically. We thus approximate the solution to (5) by minimizing the least squares error

Â = argmax
A

∑
i1,··· ,iK

⎛⎝ ∑
{i,j}⊆{i1,··· ,iK}

Ai,j −Wi1,··· ,iK

⎞⎠2

(7)

In practical computation, we normalize the compatibility tensor W by using the ex-
tended Sinkhorn normalization scheme [14], and constrain the element of A to be in the
interval [0, 1] to avoid unexpected infinities. Effective iterative numerical methods are
used to compute the approximated solutions [15].

The adjacency matrix A computed through (7) is one effective representation for a
K-uniform hypergraph, because it naturally avoids the operation of arithmetic average
and thus to a certain degree overcomes the low pass information loss arising in (5).
Furthermore, the Laplacian matrix L for a hypergraph can be defined as L = D − A,
where D is the diagonal matrix with its ith diagonal element being Aii =

∑
j Aij . In

this context, a hypergraph can be easily embedded into a feature space spanned by its
Laplacian matrix, which will be explained in detail in the next Section.

4 Feature Selection through Hypergraph Embedding

In this section, we formulate the procedure of feature extraction on a basis of hyper-
graph spectral embedding. One goal of spectral embedding is to represent the high di-
mensional data X ∈ RN×d by a low dimensional representation Y ∈ RN×C (C , d)
in the low dimensional feature space such that the structural characteristics of the high
dimensional data are well preserved or are more “obvious”. Here we use the representa-
tions X = [x1, · · ·xN ]T and Y = [y1, · · · , yk, · · · , yC ], where yk is a N -dimensional
vector and its N elements represent the N samples x1, · · ·xN separately in the kth
dimension of the low dimensional feature space.

Based on the hypergraph transformation described in Section 3 and the scheme of
Laplacian eigen-decomposition [3], the hypergraph spectral embedding can be easily
conducted as follows

D−1LY = λY . (8)

The hypergraph embedding procedure can be viewed as feature extraction, and can
be expressed as Y = XΦ where Φ ∈ Rd×C is a column-full-rank projection ma-
trix. However, unlike feature extraction, feature selection attempts to select the optimal
feature subset in the original feature space. Therefore, for the task of feature selec-
tion, the projection matrix Φ = [Φ1, . . . ΦC ] can be constrained to be a selection ma-
trix which contains the combination coefficients for different features in approximating
Y = [y1, . . . , yC ]. That is, given the kth column of Y, i.e yk, we aim to find a subset
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of features, such that their linear span is close to yk. This idea can be formulated as the
minimization problem

Φ̂ = argmin
Φ

C∑
k=1

‖yk −XΦk‖2 . (9)

where Φ = [Φ1, · · · , Φk, · · · , ΦC ] and Φk is a d dimensional vector that contains the
combination coefficients required to compute for different features in approximating
yk. However, feature selection requires to locate a optimal subset of features that are
close to yk. This is a combinatorial problem which is NP-hard. Thus we approximate
the problem in (9) subject to the constraint

|Φk| ≤ γ (10)

where |Φk| is the �1-norm and |Φk| =
∑d

j=1 |Φj,k|. When applied in regression, the
�1-norm constraint is equivalent to applying a Laplace prior on Φk. This tends to force
some entries in Φk to be zero, resulting in a sparse solution. Therefore, the representa-
tion Y is generated by using only a small set of selected features in X.

In order to efficiently solve the optimization problem in Equations (9) and (10), we
use the Least Angle Regression (LARs) algorithm [9]. Instead of setting the parame-
ter γ, LARs allow us to control the sparseness of Φk . This is done by specifying the
cardinality of the number of nonzero subset of Φk, which is particularly convenient for
feature selection.

We consider selecting m features from the d feature candidates. For a dataset con-
taining C clusters, we can compute C selection vectors {Φk}Ck=1 ∈ Rd. The cardinality
of each Φk is m and each entry in Φk corresponds to a feature. Here, we use the follow-
ing computationally effective method for selecting exactly m features based on the C
selection vectors. For every feature j, we define the HG score for the feature as

HGscore(j) = max
k
|Φj,k| . (11)

where Φj,k is the jth element of vector Φk. We then sort the features in descending
order according to their HG scores, and then select the top m features.

5 Experiments and Comparisons

We test the performance of our proposed algorithm on one publicly available face
database (ORL) and one handwritten digit databases (MNIST). Table. 1 summarizes
the coverage and properties of the two benchmark datasets.

Data Transformation: We compare the data transformation performance of our pro-
posed method using hypergraph embedding (HG embedding) with alternative methods,
including kernel PCA [1], the Laplacian eigenmap [3] and LPP [2]. In order to visualize
the results, we have used five randomly selected subjects from each dataset, and these
are shown in Fig. 1 and Fig. 2. In each figure, we have shown the projections onto the
leading two most significant eigenmodes from different spectral embedding methods,
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Table 1. Summary of benchmark datasets

Dataset Examples Features Classes
ORL 400 1024 40

MNIST 4000 784 10

(a) HG embedding (b) kernel PCA (c) Laplacian eigen-
maps

(d) LPP

Fig. 1. Distribution of samples of five subjects in ORL dataset

(a) HG embedding (b) kernel PCA (c) Laplacian eigen-
maps

(d) LPP

Fig. 2. Distribution of samples of five subjects in MNIST dataset

ordered according to their eigenvalues. This provides a low-dimensional representation
for the images. From the above figures, it is clear that our hypergraph spectral em-
bedding method demonstrates much clearer cluster structure than alternative spectral
clustering methods. This implies that the hypergraph representation is more appropri-
ate and more complete in describing feature relations and structures existing in these
datasets.

Classification Accuracy: In order to explore the discriminative capabilities of the in-
formation captured by our method, we use the selected features for further classifica-
tion. We compare the classification results from our proposed method (UFSHE) with
five alternative feature selection algorithms. For unsupervised learning, three alternative
feature selection algorithms are selected as baselines. These methods are the Laplacian
score [6], SPEC [5] and UDFS [10]. We also compare our results with two state-of-
the-art supervised feature selection methods, namely a) the Fisher score [4] and b) the
MRMR algorithm [12]. We use 5-fold cross-validation for the SVM classifier on the
feature subsets obtained by the feature selection algorithms to verify their classification
performance. Here we use the linear SVM with LIBSVM.
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(a) ORL dataset (b) MNIST dataset

Fig. 3. Accuracy rate vs. the number of selected features on two benchmark image datasets

Table 2. The best result of all methods and their corresponding size of selected feature subset on
two benchmark image datasets

Dataset MRMR Fisher Score Laplacian Score SPEC UDFS UFSHE

ORL 83.5%(95) 80%(99) 65.25%(99) 64.5%(95) 76.5%(99) 91%(75)

MNIST 82.5%(284) 81.25%(293) 82.05%(291) 82.1%(292) 81.3%(293) 84.33%(90)

The classification accuracies obtained with different feature subsets are shown in
Fig. 3. From the figure, it is clear that our proposed method UFSHE is, by and large, su-
perior to the alternative feature selection methods. Specifically, it selects both a smaller
and better performing (in terms of classification accuracy) set of discriminative fea-
tures on both datasets. Moreover, UFSHE rapidly converges, with typically around 30
features. Each of the alternative unsupervised methods, usually require more than 100
features to achieve a comparable result. The reason for this improvement is that the
hypergraph representation is effective in capturing the higher order relations among
samples and thus the structural information latent in the data can be effectively pre-
served. Additionally, our hypergraph based feature selection method casts the feature
discriminant analysis into a regression framework which suitably characterizes the cor-
relations among features. As a result, the optimal feature combinations can be located
so as to remove redundant features.

The best result for each method together with the corresponding size of the selected
feature subset are shown in Table. 2. In this table, the classification accuracy is shown
first and the optimal number of features selected is reported in brackets. Overall, UF-
SHE achieves the highest degree of dimensionality reduction, i.e. it selects a smaller
feature subset compared with those obtained by the alternative methods. For exam-
ple, in the MNIST dataset, the best result obtained by the alternative feature selection
methods is 82.5% with the MRMR algorithm and 284 features. However, our proposed
method (UFSHE) gives a better accuracy of 84.33% when only 90 features are used.
The results further verify that our feature selection method can guarantee the optimal
size of the feature subset, as it not only achieves a higher degree of dimensionality
reduction but it also gives better discriminability.
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6 Conclusion

In this paper, we have presented an unsupervised feature selection method based on
hypergraph embedding. The proposed feature selection method offers two major advan-
tages. The first is that by incorporating MII for higher order similarities measure, we
establish a novel hypergraph framework which is used for characterizing the multiple
relationships within a set of samples. Thus, the structural information latent in the data
can be more effectively modeled. Secondly, we derive a hypergraph embedding view
of feature selection which casting the feature discriminant analysis into a regression
framework that considers the correlations among features. As a result, we can evaluate
joint feature combinations, rather than being confined to consider them individually.
These properties enable our method to be able to handle feature redundancy effectively.
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Abstract. In this paper a novel feature selection scheme is proposed,
which exploits the potentialities of a recent probabilistic generative
model, the Counting Grid. This model is able to cluster together similar
observations, highlighting the compactness of a class and its underlying
structure. The proposed feature selection scheme is applied to the expres-
sion microarray scenario, a peculiar context with very few patterns and a
huge number of features. Experiments on benchmark datasets show that
the proposed approach is effective and stable, assessing state-of-the-art
classification accuracies.

Keywords: feature selection, gene selection, generative models.

1 Introduction

Feature selection techniques definitely represent an important class of prepro-
cessing tools in many Pattern Recognition applications: such methods, by elim-
inating uninformative features, can reduce the dimension of the problem space,
thus alleviating the curse of dimensionality issue [1]. Further, there are appli-
cation fields – like biology, where everyday lab procedures generate enormous
amount of data to be processed – where it is inconceivable to devise an analysis
procedure which does not comprise a feature selection step. A clear example can
be found in the analysis of expression microarray data, where the expression level
of thousands of genes is simultaneously measured. A typical classification task
implies few dozens of samples, each one characterized by the expression level of
thousands of genes (i.e. few points in a huge dimensional space). In this con-
text, feature selection techniques are even more important, since they can help
the medical/biological researchers in identifying a stable and informative set of
biomarkers for cancer diagnosis, prognosis, and therapeutic targeting [2, 3].

A large amount of approaches have been introduced in the past in the feature
selection field. Broadly, they can be divided in three major classes, depending
on how they interact with the classification technique. Filter approaches do not
interact with the classifier system, and perform selection just by looking at the
intrinsic properties of data. Usual examples are ranking of the features according
to criteria which spans from simple variance up to complicates statistics [2, 4].

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 629–637, 2012.
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Wrapper methods interact with a specific model trained on the subset of fea-
tures, using metrics such as the classifier performance / error estimate to assess
the quality of the selected features. Finally, in embedded techniques, the search
for an optimal subset of features is built into the classifier construction. In the
popular SVM-RFE algorithm [5], the weight given to each feature by the SVM
classifier is used as a score to rank features, from the most important to the
less important. In the specific field of expression microarray – where the feature
selection is called gene selection – a common problem of most methods proposed
in the past is the stability of the extracted features/genes: actually, datasets
which differ by a few samples can lead to complete different sets of genes selected
by the feature selection algorithm, still guaranteeing good classification perfor-
mances [6]. This issue has been often disregarded and has been addressed only
recently [7, 8].

This paper presents a novel feature selection scheme, which is based on the
Counting Grid (CG) model [9] – a probabilistic model which clusters together
similar observations, highlighting the compactness of a class and its underly-
ing structure. The proposed approach is specifically thought for the microarray
scenario, which is characterized by the presence of few points in a very high
dimensional space. In fact, in [9] it has been show that CGs provide a rich and
powerful description of a microarray dataset: samples and gene expressions can
be placed on an N-dimensional grid; samples coming from the same class are
placed close together in this grid, allowing easy and interpretable visualization
of the transition from one class to the other, which turns out to be smooth in
most of the cases. In this paper we make one step ahead along this direction,
proposing a method which starts from the embedding of the data into the grid
and permits to gain insights into which genes characterize a particular class. In
fact, starting from the dense embedding of the data provided by the CG, i) we
embed the class label on the grid, ii) we highlight the directions of maximum
variation between classes by means of directional derivatives, and finally iii) we
rank the genes based on how much they vary along these directions. Eventually
the ranking is used to extract a stable set of genes for classification or biomarker
identification. A further important note concerns the assumption made by most
of the gene selection techniques about the independence between genes (actually
the typical approach is to rank individually the genes): actually this assumption
oversimplifies the complex relationship between genes – which are well known to
interact with each other through gene regulative networks. Therefore, models like
Counting Grid which can measure and consider the relation and the influence
between genes should be preferred.

The experimental evaluation, performed on well-known datasets and com-
pared with state-of-the-art methodologies, shows the suitability of the proposed
approach in terms of classification accuracy. Furthermore, to assess the stability
of the selected genes, we show that slight alterations in the composition of the
training set do not change the selected features, giving confidence that the genes
may be somehow involved in the pathology of interest.
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Fig. 1. a) An example of a counting grid geometry. b) Label Embedding γi.

2 Background: Counting Grid Model

In Pattern Recognition, data samples are often represented as bags of features
without particular order; each t-th observation is characterized by a vector –
often called count vector {ctz} – containing the number of occurrences of each
feature z [10, 11]. For example, a text document may be described by the num-
ber of occurrences of the different words it contains (or an image with the num-
ber of occurrences of different visual features it contains). This choice is often
motivated by the difficulty or computational efficiency of modeling the known
structure of the data. Concerning microarray, it has been shown in [12–14] that
the bag-of-features representation is well-suited also for microarray data, pro-
viding interpretable and descriptive signatures. Each sample can be seen as an
independent observation; the gene expression value is then interpreted as the
“count” of that gene in the sample: the higher the expression level, the “more
present” the gene is in such experiment.

The counting grid model, recently introduced in [9], is a generative model for
such representations. Formally, the basic counting grid πi,z is a set of normalized
counts of features indexed by z on the 2-dimensional1 discrete grid indexed by
i = (i, j) where i ∈ [1 . . . E1], j ∈ [1 . . . E2] and E = [E1, E2] describes the extent
of the counting grid. Since π is a grid of distributions,

∑
z πi,z = 1 everywhere

on the grid (see Fig.1a for an illustration).
A given bag of features, represented by counts {cz} is assumed to follow a

count distribution found in a patch of the counting grid. In particular, using
a window of dimensions W = [W1,W2], each bag can be generated by first
selecting a position k on the grid and then by placing the window in the grid
such that k is its upper left corner. Then, all counts in this patch are averaged

1 N-dimensional in general, here we focus on 2 dimensions.
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to form the histogram hk,z = 1
W1·W2

∑
i∈Wk

πi,z , and finally a set of features in
the bag is generated. In other words, the position of the window k in the grid is
a latent variable given which the probability of the bag of features {cz} is

p({cz}|k) =
∏
z

(hk,z)
cz =

1

W1 ·W2

∏
z

(
∑
i∈Wk

πi,z)
cz

where with Wk we indicate the particular window placed at location k (see Fig.
1a). We will also often refer to the ratio of the CG area and the window area
κ = E1·E2

W1·W2
, as the capacity of the model.

Computing and maximizing the log likelihood of the data turns to be an
intractable problem; therefore it is necessary to employ an iterative EM algo-
rithm. The E step aligns all bags of features to grid windows, to match the bags’
histograms, inferring qtk ∝ exp

∑
z c

t
z · log hi,z, i.e., where each bag maps on the

grid. In the M-step the model parameter, i.e. the counting grid π, is re-estimated.
To avoid severe local minima it is important to consider the Counting Grid as
a torus, and perform all windowing operation accordingly. For details on the
learning algorithm and on its efficiency see [9].

3 The Proposed Approach

Once a Counting Grid is learned, each sample can be mapped on it through qtk,
which represents a map telling which part of the CG has more likely generated
the pattern t. As a first step of our procedure, we can map all samples belonging
to the same class to the CG, trying to obtain a class-related averaged map. This
step in [9] has been called class labels embedding, where the goal was to embed
the samples’ class labels yt = l, l = [1, . . . , L] to obtain a posterior probability of
each class p(l|i) = γl(i) in each position i: this indicates which positions of the
CG better “explain” that class. This is achieved using the posterior probabilities
qtk already inferred like illustrated in Fig.1b and described by Eq.1

γl(i) =

∑
t

∑
k|i∈Wk

qtk · [yt = l]∑
t

∑
k|i∈Wk

qtk
(1)

where [·] is the indicator function, which returns 1 if sample t belongs to class l
and 0 otherwise. Roughly speaking, the main idea is to “average” all the map-
pings qtk of the training samples belonging to a given class. If the CG is able to
capture the underlying behaviour of a specific class, then all the mappings will
be more or less coherent, and only a part of this averaged map will be differ-
ent than zero, possibly in a spatially coherent small region – the region which
more likely “explains” the training patterns of that class. In order to clarify this
concept, in Fig. 2a we show the label embedding for the prostate cancer dataset
[15], which comprises two classes. In the figure the tumoral class is embedded.
Please observe that the active (non zero) locations are all grouped in spatially
coherent zones of the averaged map. Therefore, even if the labels are not used
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Fig. 2. a) Label embedding γi. b) Gradient of the embedding. c) Counting grid for a
particular gene (πz) and its gradient. d) Fz,i.

during the learning of the CG, tumoral and non-tumoral samples are naturally
separated (since we are in a two class problem, the embedding of non tumoral
clas is simply obtained by reversing this image); this suggests that indeed CGs
are suitable to describe the latent structure which generates the data.

As a second step, we compute the gradient of the embedding,∇γi, which returns
information about where and how the classes separates (see Fig.2b). In this case
the idea is to find which are the regions in the CGwhere the first class “translates”
to the second class or vice versa. Please note that, in the two class case, we only
need to compute the gradient on one map, since the map of the second class is just
the complementary of the first. Even if the generalization to the multiclass case
is somehow straightforward (for example 1 versus all embeddings, or others), for
simplicity here we present the two class case.

As a final step, to get the feature score Fz , upon which we will base our feature
selection strategy, we rank the genes depending on how much their expression
vary along the borders between the classes. The idea is straightforward: to dis-
criminate between the two classes the most useful features are the ones which
vary most where we have the class transition. For example in Fig.2c we show
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for a particular gene ẑ the map πẑ,i, which represents where that gene is more
expressed in the grid. We also show its gradient in each position (yellow arrows).
After a quick glance at Fig.2b one can convince himself that the expression of
ẑ is mostly expressed in tumoral samples and often varies where a transition
between tumoral and non-tumoral samples is present; that suggets that the gene
is important for classification and related to the disease.

To capture this idea mathematically we compute the directional derivatives
of the πz,i in the direction v of the gradient of the class embedding v = ∇γi
and we sum over all the locations i in the grid. To reward more the variation in
expression where we have a high variation between classes, we also multiply by
the module of v.

In formulae we have that the feature score is equal to:

Fz =
∑
i

∣∣∣∣∣|v| · v

|v| · ∇πz,i

∣∣∣∣∣ =∑
i

∣∣∣v · ∇πz,i

∣∣∣ (2)

In Fig.2d we show that Fẑ,i �= 0 only along the borders between the 2 classes.
Fz represents the rank score of every feature, which permits to order the genes
from the most prominent (i.e. the one which varies the most in the direction of
“transition” of the classes) to the least.

Summarizing, the proposed approach consists in the following steps:

1. Training of the Counting Grid on the whole dataset (generative step, labels
are not used)

2. Label embedding of the training samples of one of the two classes
3. Computation of the gradient of the map, which estimates the regions of the

maps where there is the transition from one class to the other
4. Computation in such zones of the gradient of the genes
5. As a final score, each gene is ranked by its averaged variation in the direction

where the two classes vary most.

4 Experimental Evaluation

We tested the proposed approach on two well-known microarray benchmark
datasets for two-class problems; a brief description can be found on table 1.

Table 1. Summary of the datasets used

Name N. Features (genes) N. Samples Reference

Colon 2000 62 (40-22) [16]
Prostate 6033 102 (50-22) [15]

Since, as a base level, we are mostly interested in the quality of unsupervised
learning of the distributions over the microarray samples, the whole dataset
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Table 2. Classification results (AUC) for the dataset used

Colon dataset

Gene Signature Size
Sel. Method 10 50 100 150 200

SVM-RFE [8] 76.4 77.5 79.2 79.4 80.1
Ens.SVM-RFE [8] 80.3 79.4 78.6 78.6 79.4
SW SVM-RFE [8] 79.5 81.2 78.4 76.2 76.2
ReliefF [8] 78.8 80.1 78.5 77.5 76.1
Ens. ReliefF [8] 78.9 80.2 79.1 77.3 76.1
SW ReliefF [8] 78.3 79.6 78.1 76.4 75.4
[7] 85.0 86.0 87.0 87.5 86.5
Our method 81.38 89.53 89.64 89.25 88.97

Prostate dataset

Gene Signature Size
Sel. Method 10 50 100 150 200

SVM-RFE [8] 89.8 91.3 92.1 92.1 92.2
Ens.SVM-RFE [8] 92.9 92.0 92.0 92.6 92.7
SW SVM-RFE [8] 93.4 91.3 90.0 90.7 91.2
ReliefF [8] 93.3 93.0 91.4 91.4 91.7
Ens. ReliefF [8] 93.4 92.4 91.4 91.0 91.9
SW ReliefF [8] 93.3 92.7 91.4 91.3 91.4
[7] 95.5 96.0 95.0 94.0 94.0
Our method 78.21 88.30 92.45 94.99 95.73

has been used to train a CG (of course labels are ignored in this phase), in
a transductive way [14, 17]. Then, in order to have a fair comparison with the
state-of-the-art, we adopted the testing protocol of [8]: the data set was randomly
split 2:3/1:3 (training/testing). Labels have been embedded in the Counting
Grid, the score Fz has been calculated for each gene z and the top-ranked genes
have been extracted, ranging in the values [10 50 100 200]. In order to have a fair
evaluation, the gene ranking has been calculated using only the training samples,
and applied to the testing samples. The classification is performed using a linear
SVM with the parameter C = 1, using the area under the ROC curve (AUC)
as an estimate for the classification performance. The test has been repeated
100 times, and the mean of the computed AUCs is shown in table 2, along with
comparative state-of-the-art results (see the references between brackets). As for
the Counting Grid size, we varied its dimensions by selecting κ between 5 and
40, reporting in the table the mean of the obtained AUCs.

From table 2 it is evident that the proposed approach produces results compa-
rable, and in many cases superior, with state-of-the-art techniques. Furthermore,
we assessed the stability of the selected features using the Kuncheva index [18].
The idea is to compare the subsets of genes extracted while varying the train-
ing/testing splitting. Given two sets of features f1 and f2, the stability index is
defined as follows:
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Table 3. Stability of the proposed approach

Colon dataset

Gene Signature Size
Feat. Sel. 10 50 100 150 200

Best [8] 0.78 0.75 0.70 0.69 0.67
[7] 0.65 0.59 0.58 0.61 0.62
Our method 0.94 0.92 0.92 0.91 0.91

Prostate dataset

Gene Signature Size
Feat. Sel. 10 50 100 150 200

Best [8] 0.68 0.65 0.68 0.68 0.69
[7] 0.72 0.72 0.73 0.72 0.71
Our method 0.90 0.94 0.96 0.96 0.96

KI(f1, f2) =
r − (s2/N)

s− (s2/N)
(3)

where s denotes the signature size, r = |f1 ∩ f2| and N is the total number of
genes in the dataset. The Kuncheva index takes values in [-1, 1], and the higher
its value, the larger the number of commonly selected genes in both signatures.
The index is shown in Table 3, for our approach and other methods. Since the
proposed approach is aimed at explaining the data through a generative model,
and labels are used later on, the stability index is very high: for both datasets
and all different signature sizes, it is always above 0.9, while the best result found
in the references we used for comparison is 0.78.

5 Conclusions

In this paper we presented a filter algorithm to perform feature selection, which
is based on the recently proposed Counting Grid generative model. The repre-
sentation given by this model in terms of patterns placed on a 2-dimensional
grid has been tailored to derive a new feature selection algorithm. We applied
the proposed approach to expression microarray data validating through a se-
ries of experiments on benchmark microarray datasets found in the literature.
Obtained results were satisfactory.
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Abstract. Sound source separation in a real-world indoor environment is an
ill-formed problem because sound source mixing is affected by the number of
sounds, sound source activities, and reverberation. In addition, blind source sep-
aration (BSS) suffers from a permutation ambiguity in a frequency domain pro-
cessing. Conventional methods have two problems: (1) impractical assumptions
that the number of sound sources is given, and (2) permutation resolution as
a post processing. This paper presents a non-parametric Bayesian BBS called
permutation-free infinite sparse factor analysis (PF-ISFA) that solves the two
problems simultaneously. Experimental results show that PF-ISFA outperforms
conventional complex ISFA in all measures of BSS EVAL criteria. In particular,
PF-ISFA improves Signal-to-Interference Ratio by 14.45 dB and 5.46 dB under
RT60 = 30 ms and RT60 = 460 ms conditions, respectively.

Keywords: Blind source separation, Reverberant mixtures, Infinite sparse factor
analysis, Non-parametric Bayes.

1 Introduction

Machine listening functions, e.g. a robot audition system [1] or a distant speech recog-
nition [2], cannot dispense with a sound source separation technique because we often
observe a mixture of sound sources. For instance, HARK [1],a robot audition soft-
ware, provides functions of source localization, separation, and recognition of separated
speech signals. Since HARK may be deployed to various kinds of acoustic environ-
ments, parameter tuning is critical to avoid performance degradation.

In order to maximize the availability of a source separation function, the following
requirements should be fulfilled for the application to practical environments:

1. source separation under an unknown mixing process dependent on the locations of
sources and microphones,

2. separation under the condition of unknown number of sources,
3. robustness against the reverberation.

Many source separation methods need prior information such as the number of sources
or the mixing process. Since prior information is usually difficult to obtain in advance,
source separation methods should work without prior information, or at least with min-
imal prior information. Such a separation method is called blind source separation
(BSS).

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 638–647, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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For sound source separation in a practical environment, the system should separate
mixtures of reverberant speeches. This is because the mixed signals captured by micro-
phones are affected by room reverberation.

Frequency domain processing is effective to separate reverberant mixed signals, and
a lot of frequency domain BSS systems are proposed. One of the problems of frequency
domain processing is a permutation problem [3]. Conventional frequency domain BSS
systems separates signals for all frequency bins independently, and consequently, a per-
mutation ambiguity arises in output orders for all frequency bins. The source separation
system should resolve this permutation ambiguity to reconstruct separated signals.

Independent component analysis (ICA) [4] is a well known BSS method. Frequency
domain ICA [5] fulfills the first and the third requirements. However, ICA assumes the
number of sources because ICA cannot detect source activities. This means that ICA
does not satisfy the second requirement. In addition, Frequency domain ICA suffers
from the permutation problem. Independent vector analysis (IVA) [6] and permutation
free ICA [7] are BSS methods avoiding permutation problem. These methods are based
on ICA and also assume the number of sources. Thus they do not satisfy the second
requirement. In our previous work, frequency domain infinite sparse factor analysis
(FD-ISFA) is proposed [8]. This method achieves all the three requirements, but the
separation quality of FD-ISFA may be deteriorated by the subsequent permutation res-
olution process.

This paper presents permutation free ISFA (PF-ISFA), a BSS method which meets all
the requirements and offers permutation resolution. PF-ISFA is based on nonparametric
Bayesian framework, which allows BSS under the uncertainty of source numbers. The
key idea of our method is that all frequency bins of signals are processed at a time by
introducing a unified source activity variable for the joint optimization of the separation
and permutation resolution.

2 BSS in Frequency Domain

2.1 Problem Statement of BSS

The problem of BSS is stated as below:

Input: Sound mixtures of K sources captured by D microphones.
Output: Estimated K source signals

Assumption: K is not more than D.
The locations of microphones and those of sources are fixed.

The system extracts K source signals from the mixture signal captured with D micro-
phones without prior information of mixing process such as the location of sources,
the location of microphones, and impulse responses between microphone and sound
sources.

2.2 Frequency Domain Processing and Permutation Problem

In real environment with reverberation, the mixing process of speech signal is convo-
lutive. The observed signals consist of a mixture of sources and they are contaminated
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by their reverberations. To model these time-delayed signals, the convoluted mixture is
often employed.

x(t) =
J

∑
j=0

A( j)s(t− j) (1)

where x(t), s(t), and A( j) are observed signals, source signals, and transfer function
coefficients in the time domain, respectively. BSS problem aims to retrieve that con-
stituent sound sources s(t) only given the observation x(t) where the mixing process
including the reverberation A( j) is unknown.

When solving a BSS problem involving convoluted mixtures of signals, short time
Fourier transform (STFT) is often applied in order to convert a convoluted mixture in
a time domain into an instantaneous mixture in a frequency domain. In the case that
signals are separated for each frequency bin independently in frequency domain, the
permutation ambiguity of output order of separated signals has to be solved. This is
called ”permutation problem” [3]. The permutation problem is one of the well-known
problems of frequency-domain BSS.

Some methods are proposed to solve this problem. One method is based on the di-
rection of arrival estimation and the inter-frequency correlation of signal envelopes [3],
and another uses power ratio of signals as dominance measure [9]. However, existing
permutation resolution as a post-processing of a frequency-wise separation process, the
resulting sound sources may severely be affected by the preceding separation quality.
For example, if the frequency-wise separation is deteriorated by the reverberation, the
permutation resolution by the signal envelopes fails, which results in the failure of BSS
as well.

3 Permutation-Free ISFA

3.1 Outline of Our System

The flow of PF-ISFA is depicted in Fig. 1. After STFT, the complex spectra are whitened
in each frequency bin, and PF-ISFA is applied to these whitened signals. The output
order of PF-ISFA is already aligned, but the amplitude of the output signals may not
equals to that of original sources. This is called scaling ambiguity, and this is another
well-known problem of frequency domain BSS. The projection back method [10] is
an effective solution for this problem. After projection back processing, the separated
signals are reconstructed by inverse STFT.

3.2 Generative Model and Likelihood of PF-ISFA

Let K, D, F , and T be the number of sources, the number of microphones, the number
of frequency bins, and the length of the source signals, respectively. The ISFA model is
based on the instantaneous mixture model:

X f = A f (Z f 4S f )+E f ( f = 1, · · · ,F), (2)

where Z f = [z f 1, · · ·z f T ], X f = [x f 1, · · ·x f T ], S f = [s f 1, · · · s f T ], E f = [ε f 1, · · ·ε f T ],
x f t = [x1 f t ,x2 f t , · · · ,xD f t ]

T is a mixed signal vector at time t, s f t = [s1 f t ,s2 f t , · · · ,sK f t ]
T
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Fig. 1. Schematic overview for our method
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Fig. 2. Graphical model of PF-ISFA

is the source signal vector, and ε f t = [ε1 f t ,ε2 f t , · · · ,εD ft ]
T is the Gaussian noise vec-

tor. Here, A f is the D×K mixing matrix, z f t = [z1 f t ,z2 f t , · · · ,zK f t ]
T is the activity of

each source at time t in f -th frequency bin, and source activity zk f t is a binary variable:
zk f t = 1 if source k is active at time t in f -th frequency bin, otherwise zk f t = 0. Oper-
ator 4 indicates the element-wise product. PF-ISFA deals with F-tuple frequency bins
at the same time. Z, X, S. E, and A are defined as Z = [Z1, · · ·ZF ], X = [X1, · · ·XF ],
S = [S1, · · ·SF ], E = [E1, · · ·EF ], and A = [A1, · · ·AF ], respectively.

To unify activities of all frequency bins, the following model is introduced.

zk f t = bktφ , φ ∼ Bernoulli(ψk f ), (3)

where Bernoulli(x) is the Bernoulli distribution with parameter x. bkt is the unified
source activity of source k at time t, and ψk f is a activation probability of source k in
the f -th frequency bin. B represents K×T matrix of bkt and Ψ means K×F matrix of
ψk f .

PF-ISFA estimates the source signals S, their time-frequency activities Z, mixing
matrix A, unified activities B, activation probability Ψ , and other parameters by using
only the observed signal X.

The prior distributions of the variables are assumed as follows:

ε f t ∼NC(0,σ2
ε I), σ2

ε ∼I G (pε ,qε), (4)

sk f t ∼NC(0,1), (5)

ak f ∼NC(0,σ2
AI), σ2

A ∼I G (pA,qA), (6)

B∼ IBP(α), α ∼ G (pα ,qα), and (7)

Ψ ∼ Beta(β/K,β (K− 1)/K). (8)
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Table 1. Algorithm for estimating model parameters of Permutation-Free ISFA

Input: Observed signals X, Output: Source signals S.

1. Initialize parameters using their priors.
2. At each time t, carry out the following:

2-1 In each source k, sample bkt from Eq. (14).
2-2 If bkt = 1, sample zk f t from Eq. (11) and for each frequency bin f ; otherwise zk f t = 0.
2-3 If zk f t = 1, sample sk f t from Eq. (10); otherwise sk f t = 0.
2-4 Determine the number of new classes κt , and initialize the parameters.

3. In each source k and frequency bin f , sample the probability of activation ψk f from Eq. (16).
4. In each source k and frequency bin f , sample mixing matrix ak f from Eq. (17).
5. If there is a source that is always inactive, remove it.
6. Update σ2

ε , σ2
A, and α .

7. Go to 2.

Here, a f k is the kth row of A f , and pε , qε , pA, qA, pα , qα , and β are the hyperparame-
ters. NC, G , I G are the univariate complex normal, gamma, inverse gamma distribu-
tions, respectively. The prior for the variance of each parameter is the inverse Gamma
since the inverse Gamma distribution is conjugate to the normal distribution. IBP(α) is
the Indian buffet process (IBP) [11] with parameter α . IBP is a stochastic process that
provides the probability distribution over sparse binary matrices with infinite number
of columns. Therefore, IBP can deal with a potentially infinite number of signals.

The likelihood function of PF-ISFA is written as follows.

P(X|A,S,Z) =
F

∏
f=1

T

∏
t=1

P(x f t |A f ,s f t ,z f t) =
F

∏
f=1

T

∏
t=1

NC(x f t ;A f (z f t 4 s f t),σ2
ε I)

=
F

∏
f=1

1
(πσ2

ε )
T D exp

(
−

tr(EH
f E f )

σ2
ε

)
. (9)

where E f = X f −A f (Z f 4S f ). Here, each data point is assumed to be independent and
identically distributed.

3.3 Source Separation through the Inference of Latent Variables

The model parameters of PF-ISFA are estimated using an iterative algorithm. The al-
gorithm is given in Table 1, and a graphical model of PF-ISFA is shown in Fig. 2. This
method is based on the Metropolis-Hastings algorithm. Posterior distributions of la-
tent variables are derived from Bayes’ theorem by multiplying priors by the likelihood
function.

Sound Sources. When zk f t is active, sk f t is sampled by the following posterior.

P(sk f t |A f ,s−k f t ,x f tz f t) ∝ P(x f t |A f ,s f t ,z f t ,σ2
ε )P(sk f t ) = NC

(
sk f t ; μs, f ,σ2

s, f

)
, (10)

where
σ2

s, f = σ2
ε /
(
σ2

ε + aH
k f ak f
)
, μs, f = aH

k f ε−k f t/
(
σ2

ε + aH
k f ak f
)
.

s−k f t means s f t except for sk f t , and ε−k f t means ε|zk f t=0.
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Source Activity of Each Time-Frequency Frame. If bkt = 1, zk f t is sampled from its
posterior distribution. The posterior of zk f t is calculated as follows.

P(zk f t |bkt ,ψk f ,z−k f t ,x f t ,s f t ,A f ) ∝ P(zk f t |bkt ,ψk f )P(x f t |A f ,s f t ,z f t ,σ2
ε )

= Bernoulli(p1/(p0 + p1)) , (11)

where

log(p1) = log(ψk f )+ (2Re(s∗k f t a
H
k f ε−k f t)+ |sk f t |2aH

k f ak f )/σ2
ε

log(p0) = log(1−ψk f )

Unified Activity for Each Time Frame. The ratio of the probability that bkt becomes
active to the probability that bkt becomes inactive is calculated by Eq. (12). This ratio r
consists of the ratio of prior rp and the ratio of likelihood of each frequency bin rl, f .

r =
P(bkt = 1|A,S−kt ,Xt ,S−kt)

P(bkt = 0|A,S−kt ,Xt ,Z−kt )
= rp

F

∏
f=1

rl, f . (12)

where

rp =
P(bkt = 1|bkt)

P(bkt = 0|bkt)
=

mk,−t

T −mk,−t
,and

rl, f =
P(x f t |A f ,s−k f t ,z−k f t ,b−kt ,bkt = 1,ψk f )

P(x f t |A f ,s−k f t ,z−k f t ,b−kt ,bkt = 0,ψk f )
= ψk f σ2

s, f exp

(
|μs, f |2

σ2
s, f

)
+(1−ψk f ).

(13)

where mk,−t = ∑t′ �=t bkt′ . Here, Xt is x1t , · · · ,xFt , and S−kt and Z−kt , are S and Z except
for sk1t , · · · ,skFt and zk1t , · · · ,zkFt , respectively. The ratio of prior rp is derived from the
priors of source activity based on IBP [11].

The posterior probability of zkt = 1 is calculated using ratio r.

P(bkt = 1|A,S−kt ,Xt ,Z−kt ,b−kt ) = r/(1+ r) (14)

To decide whether or not bkt is active, we sample u from Uniform(0,1) and compare it
to r/(1+ r). If u≤ r/(1+ r), bkt becomes active; otherwise it is not.

Number of New Sources. Some source signals that were not active at the beginning
are active at time t for the first time. Let κt be the number of these sources.

First, the prior distribution of κt is P(κt |α) = Poisson
(α

T

)
. After sampling κt , we

initialize new sources and their activities. Next, we decide whether this update is accept-
able or not. The acceptance probability of the transition is min(1,rξ→ξ ∗). According to
Meeds [12] and Knowles [13], rξ→ξ ∗ becomes the ratio of the likelihood of the current
state to that of the next state. Let A∗f be the D×κt matrix of the additional part of A f .
The ratio can be calculated as follows.

rξ→ξ ∗ =
F

∏
f=1

(detΛξ , f )
−1 exp

(
μH

ξ , f Λξ , f μξ , f

)
, (15)

where
Λξ , f = I+A∗H

f A∗f /σ2
ε , Λξ , f μξ , f = A∗H

f ε f t/σ2
ε .
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Probability of Activation for Each Frequency Bin. ψk f is sampled by the following
posterior.

P(ψk f |zk f ,Ψ−k f ,B−kt) ∝ P(ψk f |β )
T

∏
t=1

P(zk f t |ψk f ,bkt)

= Beta
(
nk f +β/K,mk− nk f +β (K− 1)/K

)
, (16)

where nk f = ∑T
t=1 zk f t is the number of active time-frequency frames of source k in f -th

frequency bin, and mk = ∑T
t=1 bkt is the number of active time frames of source k.

Mixing Matrix. The mixing matrix is estimated in each column. The posterior distri-
bution is

P(ak f |A f ,−k,S f ,X f ,Z f ) ∝ P(X f |A f ,S f ,Z f ,σ2
ε )P(ak f |σ2

A)

= NC(ak f ; μA,Λ−1
A ), (17)

where

ΛA =

(
sH

k f sk f

σ2
ε

+
1

σ2
A

)
ID, μA =

σ2
A

sH
k f sk f σ2

A +σ2
ε

E f |ak f =0sk f .

Variance of Noise and Mixing Matrix. The variance of noise corresponds to the noise
level of the estimated signals, and the variance of the mixing matrix affects the scale of
the estimated signals. Their posteriors are as follows.

P(σ2
ε |E) ∝ P(E|σ2

ε )P(σ
2
ε |pε ,qε) = I G

(
σ2

ε ; pε +FT D,
qε

(1+ qε ∑F
f=1 tr(EH

f E f ))

)
.

(18)

P(σ2
A|A) ∝ P(A|σ2

A)P(σ
2
A|pA,qA) = I G

(
σ2

A; pA +FDK,
qA

1+ qA ∑F
f=1 tr(AH

f A f )

)
.

(19)

Parameter of IBP. Since the IBP parameter α can be updated in the same way as
FD-ISFA [8], the detailed explanation is omitted here.

4 Experimental Results

We test our method in a separation experiment using speech signals in order to evaluate
the separation performance of our method. In this experiment, our method is compared
with the baseline method, complex ISFA [8]. We use two kinds of mixed signals for this
experiment: convoluted mixture with impulse responses measured in anechoic chamber,
and convoluted mixture with impulse responses measured in meeting room (RT60 =
460 ms). Figure 4 shows the locations of the microphones and sources, and Table 2
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Table 2. Experimental conditions

Number of sources K 2
Number of microphones D 2

Test set ASJ-JNAS
Sampling rate 16000 Hz

Window length 64 ms
Shift length 32 ms
Iterations 300

24 cm

1 m

Source 1 Source 2

120°

Mic 1 Mic 2

1 m

Fig. 3. Locations of microphones and
sources in experiment
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Fig. 4. Spectrogram of
original source
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Fig. 5. Spectrogram of
PF-ISFA result
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Fig. 6. Spectrogram of
FD-ISFA result
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Fig. 7. Spectrogram of
permutation-aligned
FD-ISFA result

lists the conditions for this experiment. We used 200 utterances from JNAS phoneme
balanced sentences on each condition.

First, an example of experimental results of separation experiment using mixed sig-
nals in the anechoic chamber is shown. Figures 4–7 show the spectrograms of a source
signal, a signal separated with PF-ISFA, a signal separated with conventional FD-ISFA,
and a permutation-aligned signal separated with FD-ISFA. In the results of FD-ISFA,
many horizontal lines are seen in Figure 6, but in Figure 7, the number of these lines
decrease. These lines are the spectrogram of the other separated signal. This means that
the output orders of FD-ISFA result are not aligned for all frequency bins. In contrast,
there is no horizontal line in the spectrogram of PF-ISFA (Figure 5). This shows that the
output order is aligned, in other words the permutation problem is solved by PF-ISFA.

We also evaluate our method in terms of the Signal to Distortion Ratio (SDR), the
Image to Spatial distortion Ratio (ISR), the Source to Interference Ratio (SIR), and
the Source to Artifacts Ratio (SAR) [14]. Table 3 summarizes the results. “Non-Perm”
is calculated by output signals themselves, in other words, their permutations are not
aligned. “Perm” means that output signals are aligned their permutations using the cor-
relation between outputs and original sources. In other word, permutation is aligned by
using original source signals as reference. Our proposed method outperforms FD-ISFA
by all criteria in Non-Perm case. Especially, proposed method improves SIR by 14.45
dB in anechoic chamber reverberations and 5.46 dB in meeting room reverberations.

One of the reasons of poor performance of FD-ISFA is caused by the permutation
problem, because the difference between the performance of permutation-aligned re-
sults of FD-ISFA and that of FD-ISFA results without aligning permutations is large. In
contrast, that of PF-ISFA results is smaller. This means that the permutations of outputs
are automatically aligned when PF-ISFA is applied.
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Table 3. Average separation performance [dB]

Anechoic chamber Meeting room (RT60 = 460 ms)
FD-ISFA PF-ISFA FD-ISFA PF-ISFA

Non-Perm Perm Non-Perm Perm Non-Perm Perm Non-Perm Perm
SDR 0.38 11.96 10.26 12.59 0.35 5.85 3.56 5.31
ISR 4.98 18.23 15.96 18.75 4.73 10.41 8.08 9.88
SIR 1.38 18.58 15.83 19.20 1.12 9.86 6.58 9.22
SAR 5.22 14.39 13.91 15.16 5.72 10.36 9.30 10.36

This results show that the performance in meeting room reverberation is worse than
that in anechoic chamber reverberation. This is because the reverberation time of meet-
ing room (RT60 = 460 ms) is longer than STFT window length (64 ms). If the rever-
beration time is longer than STFT window length, reverberation affects multiple time
frames, and this degrades the performance.

5 Conclusion and Future Work

This paper presented PF-ISFA based on a non-parametric Bayesian framework for re-
verberant environments. PF-ISFA achieves BSS without the assumptions about observa-
tions such as the number of sources, reverberation, and the mixing process. This method
is processed in frequency domain to separate reverberant speeches without prior infor-
mation, and it can avoid permutation problem. Experimental results show that PF-ISFA
outperforms conventional FD-ISFA.

Future work includes the following. We focus on the source activity accuracy, and
achieve voice activity detection using the source activity estimated by PF-ISFA for an
effective speech recognition system. In addition, the time complexity of PF-ISFA should
be reduced for an accelerated separation system. If we attain a real-time processing, PF-
ISFA can be applied to many applications including robot audition.
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tific Research (S), and Honda Research Institute Japan Inc., Ltd.
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Abstract. Recently the kernel discriminant analysis (KDA) has been
successfully applied in many applications. However, kernel functions are
usually defined a priori and it is not known what the optimum kernel
function for nonlinear discriminant analysis is. Otsu derived the optimum
nonlinear discriminant analysis (ONDA) by assuming the underlying
probabilities similar with the Bayesian decision theory. Kurita derived
discriminant kernels function (DKF) as the optimum kernel functions in
terms of the discriminant criterion by investigating the optimum discrim-
inant mapping constructed by the ONDA. The derived kernel function
is defined by using the Bayesian posterior probabilities. We can define
a family of DKFs by changing the estimation method of the Bayesian
posterior probabilities. In this paper, we propose a novel discriminant
kernel function based on L1-regularized regression, called L1 DKF. L1
DKF is given by using the Bayesian posterior probabilities estimated by
L1 regression. Since L1 regression yields a sparse representation for given
samples, we can naturally introduce the sparseness into the discriminant
kernel function. To introduce the sparseness into LDA, we use L1 DKF
as the kernel function of LDA. In experiments, we show sparseness and
classification performance of L1 DKF.

1 Introduction

Recently the kernel discriminant analysis (KDA), a non-linear extension of linear
discriminant analyasis (LDA), has been successfully applied in many applications
[1, 8]. KDA constructs a nonlinear discriminant mapping by using kernel func-
tions. Usually the kernel function is defined a priori, and it is not known what
the best kernel function for nonlinear discriminant analysis (NDA) is. Also the
class information is usually not introduced in kernel functions.

On the other hand, Otsu derived the optimum nonlinear discriminant anal-
ysis (ONDA) by assuming the underlying probabilities [9–11] similar with the
Bayesian decision theory [2]. He showed that the optimum nonlinear discrimi-
nant mapping was obtained by using variational calculus and was closely related
to Bayesian decision theory (The posterior probabilities). The optimum nonlin-
ear discriminant mapping can be defined as a linear combination of the Bayesian
posterior probabilities and the coefficients of the linear combination are obtained
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by solving the eigenvalue problem of the matrices defined by using the Bayesian
posterior probabilities.

Kurita showed that the best kernel function is derived from the optimum
discriminant mapping constructed by ONDA by investigating the dual problem
of the eigenvalue problem of ONDA [7]. The derived kernel function, called the
discriminant kernel function (DKF), is also given by using the posteriori prob-
abilities. This means the class information is naturally introduced in the kernel
function. As like ONDA, the DKF is also optimum in terms of the discriminant
criterion. Kurita also showed that a family of DKFs can be defined by changing
the estimation method of the Bayesian posterior probabilities [7].

Recently, many researchers have actively studied about sparseness of features
or classifiers [3][13]. It is known that the sparse representation often brings several
good properties for classification problems; lower computational load, higher
classification accuracy or a feature representation which is easy to interpret.

One of the approach to give sparse representation to existing methods is to
introduce the L1-regularized penalty into optimization problems. Based on this
approach, Sparse principal component analysis (PCA) by Zou et al. [13] and
sparse LDA by Clemmensen et al. [3] were proposed.

In this paper, we propose a novel discriminant kernel function based on L1-
regularized regression, called L1 DKF. L1 DKF is obtained by using the Bayesian
posterior probabilities estimated by L1 regression. Since L1 regression yields a
sparse representation for given samples, we can naturally introduce the sparse-
ness into DKF.

We use L1 DKF as the kernel function of LDA to introduce the sparseness into
LDA indirectly. Our approach is different from Clemmensen’s approach which
brings the sparseness into LDA directly [3]. In experiments, we show sparseness
and classification performance.

In Sec. 2, we briefly summarize LDA and its nonlinear extensions, KDA and
ONDA. In Sec. 3, we describe about discriminant kernels. In Sec. 4, we propose
L1 regression based discriminant kernel function. The experiments are shown in
Sec. 5. The conclusions are described in Sec. 6.

2 Optimal Nonlinear Discriminant Analysis

2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [4] is defined as a method to find the linear
combination of features which best separates two classes of objects. LDA is
regarded as one of the well known methods to extract the best discriminating
features for multi-class classification.

Let an m−D feature vector be x = (x1, . . . , xm)T . ConsiderK classes denoted
by {C1, . . . , CK}. Assume that we have N feature vectors {xi|i = 1, . . . , N}
as training samples and they are labeled as one of the K classes. Then LDA
constructs a dimension reducing linear mapping from the input feature vector x
to a new feature vector y = ATx where A = [aij ] is the coefficient matrix.



650 A. Hidaka and T. Kurita

The objective of LDA is to maximize the discriminant criterion,

J = tr(Σ̂−1
T Σ̂B) (1)

where Σ̂T and Σ̂B are respectively the total covariance matrix and the between-
class covariance matrix of the new feature vectors y.

The optimal coefficient matrix A is then obtained by solving the following
generalized eigenvalue problem

ΣBA = ΣTAΛ (ATΣTA = I) (2)

where Λ = diag (λ1, . . . , λL) is a diagonal matrix of eigen values and I shows
the unit matrix. The matrices ΣT and ΣB are respectively the total covariance
matrix and the between-class covariance matrix of the input feature vectors x.

2.2 Kernel Discriminant Analysis

The kernel discriminant analysis (KDA) is one of the nonlinear extensions of
LDA. Consider a nonlinear mapping Φ from a input feature vector x to the new
feature vector Φ(x). For the case of 1−D feature extraction, the discriminant
mapping can be given as y = aTΦ(x). Since the coefficient vector a can be

expressed as a linear combinations of the training samples as a =
∑N

i=1 αiΦ(xi),
the discriminant mapping can be rewritten as

y =
N∑
i=1

αiΦ(xi)
TΦ(x) =

N∑
i=1

αiK(xi,x) = αTk(x), (3)

where K(xi,x) = Φ(xi)
TΦ(x) and k(x) = (K(x1,x), . . . ,K(xN ,x)) are the

kernel function defined by the nonlinear mapping Φ(x) and the vector of the
kernel functions, respectively.

Then the discriminant criterion is given as

J =
σ2
B

σ2
T

=
αTΣ

(K)
B α

αTΣ
(K)
T α

, (4)

where σ2
T and σ2

B are respectively the total variance and the between-class vari-

ance of the discriminant feature y, and Σ
(K)
T and Σ

(K)
B are respectively the total

covariance matrix and the between-class covariance matrix of the kernel feature
vector k(x) (details are denoted in [7]).

The optimum coefficient vector α can be obtained by solving the generalized

eigenvalue problem Σ
(K)
B α = Σ

(K)
W αλ.

For the multi-dimension case, the kernel discriminant mapping is given by
y = ATk(x), where the coefficinet matrix A is defined by AT = (α1, . . . ,αN ).
The optimum coefficient matrix A is obtained by solving the eigenvalue problem

Σ
(K)
B A = Σ

(K)
W AΛ. (5)

Usually the kernel function is defined a priori in KDA. However it is not noticed
what the best kernel function for nonlinear discriminant analysis is. Also the
class information is usually not introduced in these kernel functions.
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2.3 Optimal Nonlinear Discriminant Analysis

Otsu derived the optimal nonlinear discriminant analysis (ONDA) by assuming
the underlying probabilities [9–11]. This assumption is similar with the Bayesian
decision theory. Similar with LDA, ONDA constructs the dimension reduc-
ing optimum nonlinear mapping which maximizes the discriminant criterion J .
Namely ONDA finds the optimum nonlinear mapping in terms of the discrimi-
nant criterion J .

By using Variational Calculus, Otsu showed that the optimal nonlinear dis-
criminant mapping is obtained as

y =
K∑

k=1

P (Ck|x)uk (6)

where P (Ck|x) is the Bayesian posterior probability of the class Ck given the
input x. The vectors uk(k = 1, . . . ,K) are class representative vectors which are
determined by the following generalized eigenvalue problem

ΓU = PUΛ (7)

where Γ = [γij ] is a K ×K matrix whose elements are defined by

γij =

∫
(P (Ci|x)− P (Ci))(P (Cj |x)− P (Cj))p(x)dx (8)

and the other matrices are defined as U = [u1, . . . ,uK ]
T
, Λ = diag (λ1, . . . , λL),

P = diag (P (C1), . . . , P (CK)). It is important to notice that the optimal nonlin-
ear mapping is closely related to Bayesian decision theory, namely the posterior
probabilities P (Ck|x).

By using the eigen vectors obtained by solving the generalized eigenvalue
problem (7), we can construct the optimum nonlinear discriminant mapping
from a given input feature x to the new discriminant feature y as shown in
the equation (6) if we can know or estimate all the posterior probabilities. This
means that we have to estimate the posterior probabilities for real applications.
It also implies a family of nonlinear discriminant mapping can be defined by
changing the estimation method of the posterior probabilities.

3 Discriminant Kernel Functions

3.1 Dual Problem of ONDA

In the KDA, usually the kernel function is defined a priori. The polynomial
functions or the Radial Basis functions are often used as the kernel functions
but such kernel functions are general and are not related to the discrimination.
Thus the class information is usually not introduced in these kernel functions.
Also it is not known what the optimum kernel function for nonlinear discriminant
analysis is.
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Kurita showed the optimum kernel function, called discriminant kernel func-
tion (DKF), can be derived by investigating the dual problem of the eigenvalue
problem of ONDA [7]. The DKF is also optimum in terms of the discriminant
criterion.

The eigenvalue problem of ONDA given by the equation (7) is the generalized
eigenvalue problem. By multiplying P−1/2 from the left, this eigen equations can
be rewritten as the usual eigenvalue problem as

P−1/2ΓP−1/2P 1/2U = P 1/2UΛ. (9)

By denoting Ũ = P 1/2U , we have the following usual eigenvalue problem as

(P−1/2ΓP−1/2)Ũ = ŨΛ. (10)

Then the optimum nonlinear discriminant mapping of ODNA is rewritten as

y = UT B̃(x) = ŨTP−1/2B̃(x) = ŨTφ(x) (11)

where φ(x) = P−1/2B̃(x) and B̃(x) = (P (C1|x) − P (C1), . . . , P (CK |x) −
P (CK))T .

For the case of N training samples, the eigenvalue problem to determine the
class representative vectors (10) is given by

(ΦTΦ)Ũ = ŨΛ, (12)

where Φ = (φ(x1), . . . ,φ(xN ))T .
The dual eigenvalue problem of (12) is then given by

(ΦΦT )V = V Λ. (13)

From the relation on the singular value decomposition of the matrix Φ, these
two eigenvalue problems (12) and (13) have the same eigenvalues and there is
the following relation between the eigenvectors Ũ and V as Ũ = ΦTV Λ−1/2.

By inserting this relation into the nonlinear discriminant mapping (11), we
have

y = Λ−1/2V TΦφ(x) =

N∑
i=1

Λ−1/2viφ(xi)
Tφ(x) =

N∑
i=1

αiK(xi,x)−α0 (14)

where

K(xi,x) = φ(xi)
Tφ(x) + 1

=

K∑
k=1

P (Ck|xi)− P (Ck)(P (Ck|x)− P (Ck))

P (Ck)
+ 1

=

K∑
k=1

P (Ck|xi)P (Ck|x)
P (Ck)

. (15)
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This shows that the kernel function of the optimum nonlinear discriminant map-
ping is given by

K(x,y) =

K∑
k=1

P (Ck|x)P (Ck|y)
P (Ck)

. (16)

This is called the discriminant kernel function (DKF).
The derived DKF is defined by using the Bayesian posterior probabilities

P (Ck|x). This means that the class information is explicitly introduced in this
kernel function. Also there is no kernel parameters. This means that we do not
need to estimate the kernel parameters.

4 Sparse LDA Based on L1 DKF

There are many ways to estimate the Bayesian posterior probabilities. Depending
on the estimation method, we can define the corresponding DKF [6][7].

In this paper, we propose L1-regularized discriminant kernel function which is
defined by using the Bayesian posterior probability obtained from L1-regularized
regression. We use L1 DKF as the kernel function for LDA.

4.1 L1-Regularized Regression

Given training samples {xn, tn}Nn=1 where xn is n-th observation and tn is the
corresponding target value of xn, the objective of regression is to estimate the
value t for a new data x.

The simplest estimation model is given as the linear model:

y(x,w) = wTx (17)

where x = (1, x1, · · · , xD), w = (w0, w1, · · · , wD) and y(x,w) is the predicted
value of t. An appropriate cofficient vector w is obtained by minimizing a certain
error function ED(w). A sum-of-squares error function is commonly used:

ED(w) =
1

2

N∑
n=1

(tn −wTxn)
2. (18)

To control over-fitting, we can add a regularization term EW (w) with a regular-
ization parameter λ into the error function. Given general regularizer EW (w) =∑M

j=1 |wj |q, we obtain a regularized error function,

1

2

N∑
n=1

(tn −wTxn)
2 +

1

λ

M∑
j=1

|wj |q. (19)

The case of q = 1 is known as the L1-regularized regression [12]. L1 regression
has the property that if λ(> 0) is sufficiently large, some of the coefficients wj
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Table 1. Classification accuracy for the test set (agerage of 10 trials)

dataset bre dna ger hea iri seg sem spl veh win

# of classes 2 3 2 2 3 7 10 2 4 3
# of samples 683 2586 1000 270 4 2310 1593 3175 846 178
# of features 10 180 24 13 150 19 256 60 18 13

LDA 96.3% 93.0% 72.1% 83.9% 86.1% 88.9% 81.9% 83.9% 76.3% 98.5%
sparse LDA 96.4% 93.5% 72.8% 85.2% 89.6% 89.9% 85.7% 84.4% 77.3% 99.3%

are driven to zero. It leads to a sparse model in which the corresponding basis
functions play no role.

for K class classification problems, L1 regression can be used as the Baysian
posterior probability estimator by the one-vs-all manner. Let xn denote n-th
d-dimensional feature vector (n = 1, · · · , N). For all k = 1, · · · ,K, the regression
about k-th class vs other classes is performed between independent varible xn

and following dependent variable tkn,

tkn =

{
1 if sample xn belongs to class k,
0 otherwise.

(20)

After K times regression, we obtain summarized projection vector of xn,

p(xn) = (p1, · · · , pK) = (wT
1 xn, · · · ,wT

Kxn) (21)

where wk is k-th projection cofficients. Ideally, if xn belongs to class k, the k-th
component of p should be 1, and the others should be 0. By normalizing p(xn)
to satisfy the condition ∀k(pk ≥ 0) and p1 + · · ·+ pK = 1, we can consider pk as
the estimation of the Bayesian posterior probabilities P (Ck|x).

4.2 L1 DKF and Sparse LDA

In this paper, we use L1 regression for the estimator of the Baysian posterior
probability in the K class problems. For the input vector x, the regression
outputs probabilistic vector (p1, · · · , pK) in Eq. (21) as the estimation of the
Bayesian posterior probabilities (P (C1|x), · · · , P (CK |x)).

Then the corresponding discriminant kernel function, L1 DKF, is given as

K(x,y) =

K∑
k=1

pk(x)pk(y)

p(Ck)
. (22)

We use L1 DKF as the kernel function of LDA to introduce the sparseness into
LDA indirectly.

5 Experiments

We confirmed the performance of L1 DKF for the kernel of LDA, by using
several data sets in UCI machine learning repository [5]: Breast-cancer (bre),
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Fig. 1. Results for semeion data. The top figure shows the sparseness of the regres-
sion coefficients. The bottom figure shows the classification rate for the test set. The
horizontal line shows LDA’s performance. The curve shows sparse LDA’s performance.
Both graphs show the average of 10 trials’ results.

dna, german (ger), heart (hea), iris (iri), segment (seg), semeion (sem), splice
(spl), vehicle (veh) and wine (win) data. Each data set was divided into a training
set (2/3 of all samples) and a test set (remaining samples), at random. For
classification experiments, we made 10 different divisions of the training and
test sets. For all experiments, we used class prior P (Ck) = Nk/N where Nk is
the number of samples in Ck. We use a nearest mean classifier for usual LDA
and sparse LDA.

We train L1 DKF by using different regularization parameter λ = 2−15, 2−14,
· · ·, 210. Fig. 1 shows the training result for the semeion data. Note that the
figure shows the average of results of 10 trials.

The top figure shows the sparseness of the L1 DKF. The semeion data has
10 classes and 256 features, therefore the summarized projection matrix
[w1, · · · ,wK ] has totally 2560 elements. The vertical axis shows the number
of zero elements in 2560 elements. The number of zero elements is increasing in
proportion to the regularization parameter λ.

The bottom figure shows the classification accuracy for the test set. As the
baseline performance, LDA has 81.9% accuracy. The accuracy of sparse LDA is
better than LDA in some part. The highest averaged accuracy of sparse LDA is
85.7 % (λ = 23). In this case, about 1,400 features in 2,560 original features did
not be used in the classification task. It is considered that the features which are
not suitable for the classification task were removed by L1 regression.

Tab.1 shows the classification performances of LDA and sparse LDA for each
data set. In all cases, the highest performance of sparse LDA was better than
the performance of LDA.
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6 Conclusions

In this paper, we propose a novel discriminant kernel function based on L1
regression (called L1 DKF), and we use it for the kernel of LDA to introduce
the sparseness into LDA. In experiments, we show L1 DKF is appropriate as
the kernel for LDA. Our sparse LDA has better classification performance than
usual LDA.
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Abstract. This paper presents a new similarity measure, the sum of
conditional variance of differences (SCVD), designed to be insensitive to
highly non-linear intensity transformations such as the ones occurring
in multi-modal image registration and tracking. It improves on another
recently introduced statistical measure, the sum of conditional variances
(SCV), which has been reported to outperform comparable information
theoretic similarity measures such as mutual information (MI) and cross-
cumulative residual entropy (CCRE). We also propose two additional
extensions that further increase the robustness of SCV(D) by relaxing
the quantisation process and making it symmetric. We demonstrate the
benefits of SCVD and improvements on image matching and registration
through experiments.

1 Introduction

A robust similarity measure between different regions of images plays a funda-
mental role in several image analysis applications such as stereo matching, mo-
tion estimation, registration and tracking. Similarity measures commonly used
in these tasks, SSD or NCC for example, can at most cope with linear variations
of intensity, such as global changes in gain and bias. Matching and registration
techniques in general need to be robust to a wider range of transformations that
can arise from non-linear illumination changes caused by anisotropic radiance
distribution functions, occlusions or different acquisition processes [1] (e.g. visible
light and infrared, those employed in medical imaging). These more challenging
contexts, which represent the main focus of this article, have been extensively
explored in the literature.

Most of the existing methods for computing similarity measures across multi-
modal images are based on information theoretic approaches and make use of the
probability of the intensity co-occurrence. The seminal works on mutual infor-
mation (MI) [2,3] introduced the use of joint intensity distributions, recognising
the statistical dependence between intensities of corresponding pixels. Other sta-
tistical dependencies have also been explored: cross-cumulative residual entropy
(CCRE) [4] for example measures the entropy defined using cumulative distribu-
tions. The increased resilience to non-linear intensity transformations however
comes at the cost of a higher computational complexity than conventional sum-
comparing metrics, whose complexity is linear with respect to the number of
elements.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 657–665, 2012.
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A recently proposed method, called the sum of conditional variances (SCV)
[5], also uses the joint distribution of image intensities, but generates it directly
as a histogram. Intuitively, SCV exploits a statistical property assuming that a
group of pixels clustered by neighbouring intensities in the first image should be
similarly clustered in the second, even if their mapped ranges are very different.
SCV was originally developed in the context of medical image registration [6] and
therefore aimed at being robust against non-linear intensity variations such as
those occurring when capturing images through different acquisition modalities.
It has been shown to have a larger convergence basin than MI’s Parzen win-
dow approach in medical alignment tasks [7]. These results have been confirmed
in the context of visual tracking [8], showing SCV to have better performance
than several competing approaches in terms of convergence radius, computa-
tional complexity and stability (quantified by the number of iteration necessary
for convergence). SCV is closely related to the correlation ratio [9], but has
a lower computational complexity and is therefore more amenable to efficient
optimization strategies.

In this paper, we introduce a new similarity measure called the sum of con-
ditional variance of differences (SCVD). In the original SCV formulation, the
reference image is used solely in its quantized form for generating a partition to
be applied to the second image (i.e. the set of conditions). This process discards a
significant amount of information. Assuming the intensity map to be weakly or-
der preserving, whether directly or inversely, we show that the information loss
can be mitigated employing the variance of intensity differences, leading to a
more discriminative measure without increase in the computational complexity.
We also generalise the computation of conditions, improving both our matching
measure SCVD and the original SCV implementation.

The contribution of this paper is thus two-fold:

1. we introduce a novel similarity measure, the sum of conditional vari-
ance of differences (SCVD) and show its superior performance in
comparison to other metrics designed against non-linear intensity
variations,

2. we generalise the definitions of conditions, leading to improvements
for both our formulation and the original SCV approach.

The rest of the paper is organized as follows: the next section will contain a brief
description of the SCV algorithm, followed by the description of our proposal
(SCVD) and its extensions respectively in section 3 and 4. We will evaluate the
performance of the novel matching measure in section 5, focusing on matching
and registration tasks. Finally, section 6 will report our conclusions.

2 The Sum of Conditional Variances

Given a pair of images X and Y , the sum of conditional variances (SCV) match-
ing measure [5] prescribes to partition the pixels of Y into nb disjoint bins Y (j)
with j = 1, ..., nb, corresponding to bracketed intensity regionsX(j) of X (called
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Fig. 1. Joint intensity histograms. A joint histogram HXY can be interpreted as
non-injective relation that maps the ranges of two images. On the left: the resulting
joint histogram after linearly reducing the contrast of the reference image. On the
right: the joint histogram for a non-linear intensity map. Hotter (brighter) colors
correspond to more frequently occurring values.

the reference image). The value of the matching measure is then obtained sum-
ming the variances of the intensities within each bin Y (j).

SSCV (X,Y ) =

nb∑
j=1

E[(Yi − E(Yi))
2 | Xi ∈ X(j)] (1)

where Xi and Yi with i = 1, ..., Np indicate the pixel intensities of X and Y
respectively, Np being the total number of pixels. The conditions that appear in
the sum are obtained uniformly partitioning the intensity range of X .

The behaviour of SCV can be characterised by the joint histogram HXY

of X and Y . As shown in figure 1, the joint histogram can be interpreted as
non-injective relation that maps the range of the first image to the second one.
The set of pixels that contributed to the non zero entry of each column (row)
corresponds to one of the regions selected by the j-th condition.

The number of discretisation levels nb is problem specific; for images quan-
tised at byte precision, a typical choice is usually nb = 32 or 64 [8]. Larger
intervals can help in achieving a wider convergence radius and offer more re-
silience to noise (the matching measure will not change as long as the pixels do
not cross the current bin boundaries). On the other hand, narrow ranges will
boost the matching accuracy and reduce the information that is lost during the
quantisation step.

3 Sum of Conditional Variance of Differences

According to the SCV algorithm, the reference image is used solely to determine
the subregions in which the variances of equation 1 should be computed. In this
section, we present a new similarity measure based on the conditional variance
of differences, which uses all the information present in both images leading to
a more discriminative matching measure. We also propose two generalisations
of the conditionals computation, which further increase the robustness of our
approach.
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3.1 Variance of Differences

We first define the variance of differences (VD) as the second moment of the
intensity differences between two templates:

VD(X,Y ) = V ar[{Yi −Xi}i=1...Np ] (2)

The variance of differences is minimal when the distribution of differences is
uniform. It is bias invariant, scale sensitive and proportional to the zero-mean
sum of squared differences (sometimes called ZSSD or ASSSD in the literature).
This last fact can be trivially verified from eq. 2:

VD(X,Y ) = E[(Y −X − E(Y −X))2] (3)

∝
∑
i

[(Yi − E(Yi))− (Xi − E(Xi))]
2, (4)

where the mean of an image is understood to indicate its element-wise mean.

3.2 Sum of Conditional Variance of Differences

Given two images X and Y , we define the sum of the conditional variance of
differences (SCVD) as the sum of the variances over a partition of their difference.
As before, the subsets are selected bracketing the range of the reference image
to produce a set of bins X(j). In order for the difference to be meaningful,
the two signals should be in direct relation; since the matching measure need be
insensitive to changes in scale and bias, we maximise direct relation by adjusting
the sign of one of them in accordance with eq. 6. In symbols:

SSCVD(X,Y ) =

nb∑
j=1

VD(Xi, ΦYi | Xi ∈ X(j)), (5)

Φ = Γ

⎛⎝ nb∑
j=2

Γ (E(Yi | Xi ∈ X(j))− E(Yi | Xi ∈ X(j − 1)))

⎞⎠ , (6)

where Γ indicates the step function mapping R to {−1, 1}. Φ encodes a cumu-
lative result of comparisons between a pair of E(Yi) in the adjacent histogram
bins, so that the sign is properly adjusted. Hence, the requirement for the map-
ping from X and Y is to be weakly order preserving (the function should be
monotonic but is not required to be injective). This restriction, not present in
the original SCV formulation, makes it possible to make better use of the avail-
able information and largely valid, e.g. between signals captured for the same
target with different modes.

4 Generalising the Conditions

Uniformly partitioning the intensity range of X into equally sized bins X(j) can
lead subpar performances when the intensity distribution is uneven: poorly sam-
pled intensity ranges are noisy and their variance unreliable. Overly sampled re-
gions of the spectrum conversely lead to compressing many pixels into a single bin,
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Fig. 2. Effects of quantisation and displacement. On the top row: HXY for a
pair of aligned images. Bottom row: HXY for the same pair plus displacement. Left
column: HXY using uniform quantisation of intensity range. Right column: HXY by
using histogram equalised intensities for the reference image.

discarding a large amount of useful information in the process. The procedure is
also inherently asymmetric, producing in general different results when swapping
the images involved. In this section we discuss two non-mutually exclusive modifi-
cations of our proposal in order to deal with these issues. Each one of themprovides
an independent performance boost to the baseline approach described.

4.1 Uniform Quantizations

In fig. 2 (top-left) is shown the joint histogram between an image and its gray
scale inverse. As it can be seen, the bins corresponding to the low and high end
of the intensity spectrum are not receiving any vote, thus compressing the image
information into a smaller number of regions.

To achieve a uniform bin utilisation, we perform histogram equalisation on
the reference image X . Figure 2 (right) shows an HXY generated by replacing
the input reference image X with its histogram equalized version, achieving full
utilisation of the entire dynamic range.

On the bottom row of fig. 2 are shown the original and histogram equalised
version after applying a 5 pixel displacement to one of the images. As a result,
the entries are more scattered and less sharp. As in the previous case, the non
equalised version does not make full use of the available bins; the equalized one,
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shown at the bottom right spreads the vote over a larger area, affecting the
variance computation and resulting in a more discriminative measure.

4.2 Bi-directional Quantisations

Both SCV and SCVD are structurally asymmetrical since only one of the im-
ages is used to define the partitions in which to compute the variance. Generally,
S{SCV,SCVD}(X,Y ) �= S{SCV,SCVD}(Y,X) because the two quantities are com-
puted over different subregions which depends on the reference image. As far as
the task of image matching is concerned, no particular reason exists in choosing
one image over the other as the reference; the process of quantization can thus
be symmetrised computing S{SCV,SCVD} bi-directionally:

SB{SCV,SCVD} = (S{SCV,SCVD}(X,Y ) + S{SCV,SCVD}(Y,X)) / 2 . (7)

Given the characteristics of SCVD (SCV), in presence of uneven quantizations
one direction is usually much more discriminative than the other. The above
formula is capable of successfully disambiguating such situations.

5 Experimental Evaluation

Experiment I. In order to compare our proposal, its variations and the orig-
inal SCV approach, in this first experiment we study the discriminativeness of
each one of them for increasing, isotropic displacements. We selected an image
location, a direction and a displacement all at random, computing the mea-
sure between the selected reference window and the template after applying the
translation. Notice that the template is negated in order to simulate multi-modal
inputs. The size of the region was fixed to 50×50 pixels while the maximum dis-
tance was set to be half of its edge length, i.e. 25 pixels. The results are shown
for a single image (the peppers image included in Matlab) but the plot of figure 3
is similar for any non-periodic, non-uniform picture.

Figure 3 was produced averaging 20,000 iterations of this procedure, to remove
the effects of noise (each single trial is roughly monotonic). As it can be seen, all
SSCVD versions are better at discriminating the minimum. Histogram equalized
and symmetric variants obtain steeper gradients for both SCV and SCVD. When
utilising both improvements, SCVD shows a nearly constant slope, a crucial prop-
erty in order to use optimization algorithms based on implicit derivatives.

Experiment II. We now compare the performance of different similarity mea-
sures on a synthetic registration task using a gradient descent search; given a
random location and displacement as before, we optimize the cost function fol-
lowing the direction of the steepest gradient. The procedure terminates when
reaching a local minima or the maximum number of allowed iterations (set to
50 in our experiments). Figure 4 was obtained averaging 4000 different trials; as
it can be seen, each SCVD version beats the equivalent SCV measure using the
same set of variants, which provide a non negligible performance boost.
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Fig. 3. Matching measure vs. displacement. We compare our proposal, its vari-
ations and the original SCV approach over random displacements within an image.
SCVD plus both extensions results in the most discriminative measure, with a nearly
constant slope across the entire search domain.
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Fig. 4. Convergence vs. displacement. The plots show the convergence rate as
a function of the distance between the reference and displaced window. We compare
our proposal, its variations and the original SCV approach over random displacements
within an image.
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(a) (b) (c) (d) (e)

Fig. 5. Registration experiment. (a) Input frame with reference region marked
green. (b-e) Registrations by MI, CCRE, SCV and SCVD. On the second row are
shown the registered regions backwarped to the template (sequence part of the ESM
project, http://esm.gforge.inria.fr).

Experiment III. In our final experiment we compare the performance of sev-
eral similarity measures on a tracking task over a real image sequence. Figure 5
(a) shows one of the frames of the sequence, and its reference template. The
subsequent frame has both photometric and geometric deformations; in figure
5 (b-e) we display the registration results respectively for MI, CCRE, SCV and
SCVD, showing both the best matching quadrilateral on the frame and the re-
gions backwarped to the reference. The results with SCVD and SCV are by our
implementation while those with MI and CCRE are by an implementation by
[8] on the basis of the software presented in [10].

6 Conclusions

We presented a new statistical similarity measure, the sum of the conditional
variance of difference (SCVD), tailored for robustly matching two image regions
in presence of non-linear intensity transformations. Under the assumption of the
transfer function being weakly order preserving, we have shown our proposal to
outperform the sum of the conditional variance (SCV), a recent algorithm that
was already shown to be competitive with the current state of the art. We also
developed two non mutually exclusive improvements that can make both SCV
and SCVD more discriminative at a negligible computational cost. Although
we have demonstrated the benefit of SCVD in the context of image matching
and registration, its principle is applicable to measure the similarity of two 3D
volumes.
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Abstract. Music genre classification has attracted a lot of research
interest due to the rapid growth of digital music. Despite the availability
of a vast number of audio features and classification techniques, genre
classification still remains a challenging task. In this work we propose a
class centric feature and classifier ensemble selection method which devi-
ates from the conventional practice of employing a single, or an ensemble
of classifiers trained with a selected set of audio features. We adopt a bi-
nary decomposition technique to divide the multiclass problem into a
set of binary problems which are then treated in a class specific man-
ner. This differs from the traditional techniques which operate on the
naive assumption that a specific set of features and/or classifiers can
perform equally well in identifying all the classes. Experimental results
obtained on a popular genre dataset and a newly created dataset suggest
significant improvements over traditional techniques.

Keywords: music retrieval, feature selection, classifier ensemble, music
genre classification.

1 Introduction

Recent advancements in digital media encoding, storing and delivering technolo-
gies have led to a significant increase in the number of digital audio files. As a
result, managing music has become a challenging task. Genre is the most widely
used descriptor in organizing and searching large music collections [1]. It has
been shown that existing audio features and classifiers have reached a “glass
ceiling” [2], because most new features and classifiers only show a marginal im-
provement. Further investigation of existing literature reveals that majority of
the methods use a single classifier trained with a collection of different audio fea-
tures. Some of the recent works have investigated the effectiveness of employing
attribute selection methods for feature combination [3], while others[4,5] have
demonstrated the effectiveness of using classifier ensembles to improve classifi-
cation accuracy. However, these techniques operate on the assumption that a
specific set of features and/or a specific set of classifiers can perform well for
all music classes. But studies [5] have shown class-specific feature selection can
produce better performance. In this paper we take the existing research one
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step further by proposing a class centric feature and classifier ensemble selection
method.

Music genre classification has two steps: audio feature extraction and classi-
fication. Audio features are usually designed only to capture specific qualities of
sound; therefore, they are limited in terms of generalization. For example, fea-
tures like Zero Crossing Rate (ZCR), and Linear Predictive coefficients (LPC)
can be used to discriminate instrumental music (e.g. Classical) from vocal music
(e.g. Country) due to their ability in capturing certain characteristics of human
voice. However, they perform poorly at discriminating between pure instrumen-
tal genres (e.g. classical or jazz). The most common way to solve this problem is
to combine different features. However, fusing features should be done carefully,
since not all features contribute to the classification task equally.

Moreover, large feature vectors can also lead to high computational complexi-
ties and complications (generally known as the “curse of dimensionality”). There-
fore feature selection based on individual classes can provide an effective way to
reduce the number of features while preserving the discrimination power. Most
traditional techniques rely on multiclass classifiers working on all the classes;
therefore, class specific feature selection is not performed. An alternative to this
approach is the use of hierarchical classifiers where a multiclass problem can be
split into a set of smaller problems which can be optimized individually. Zhang
et.al [6] proposed the use of a manually generated classification hierarchy and
a set of manually selected features for each node, while Silla et.al [7] proposed
a node specific classifier and feature selection technique based on a predefined
genre taxonomy, however neither have provided empirical results on the effec-
tiveness of hierarchical classification against traditional techniques. Ariyaratne
et.al [8] has proposed a hierarchical classification technique based on an auto
generated tree which utilizes node specific feature and classifier selection, their
empirical results have shown the hierarchical approach to perform better, how-
ever despite high accuracies obtained at higher levels, the leaf level accuracies
were not significantly improved due to errors at higher levels propagating down-
ward. Therefore in this paper we focus on a nonhierarchical approach to class
centric classification based on a binary decomposition technique.

There are two main techniques for breaking down a multiclass problem into a
set of binary classification problems: One-Vs-One (OVO) and One-Vs-All (OVA).
OVA is the most simplest of the two, this technique creates n binary classifiers
for each n classes where one class is considered positive while all other classes are
considered negative. In comparison OVO technique builds n(n-1)/2 classifiers for
each possible combination of class pairs. These two approaches adopt different
techniques to aggregate the results of multiple classification problems to decide
the final outcome [9].

The rest of the paper is organized as follows: Section 2 presents the pro-
posed method which utilizes a binary decomposition technique for dissembling
the multiclass problem in order to perform class centric feature and classifier
selection. Section 3 presents experimental results and the paper is concluded in
section 4.
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2 The Proposed Method

In this section we present an overview of our proposed class centric feature and
classifier ensemble selection method. As indicated earlier, in order to perform
class centric feature and classifier selection, we need to address each class sep-
arately. Both OVA and OVO binary decomposition techniques let us focus on
each class individually. Galar et.al [9] has compared the performance of several
different classifiers for solving multiclass problems using OVA and OVO decom-
position methods on number of publicly available nonmusical datasets. They
have concluded that OVO methods generally perform better. Similar evidence
can be seen in Silla et.als work [10] where a new feature selection technique was
introduced for music genre classification. They have evaluated the performance
on a set of classifiers under OVA and OVO schemes. Both previous work have
used a relatively low number of features (less than 40), therefore we conducted
our own experiments to validate these claims with large number of features(183
features). We adopted a voting aggregation method for OVO and maximum con-
fidence level for OVA. Experimental results are shown in Table 3 under section
3.1. As indicated in previous work and as confirmed by our own experiments,
OVO noticeably outperforms OVA, hence we adopted the one-vs-one decom-
position technique for our class centric approach. Fig. 1 shows an overview of
our proposed method. We start by disassembling the multiclass genre classifica-
tion problem into a set of binary problems. Training data sets for each problem
are constructed of instances belonging to the corresponding class pairs. These
datasets are then preprocessed by performing feature selection to reduce dimen-
sionality and improve predictive accuracy (by removing irrelevant features that
can introduce noise into the data).

Fig. 1. Overview of the proposed method
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Afterwards, we generate a set of classifiers for each problem and then choose
the best classifier ensemble for each task through a classifier ensemble selection
method outlined in following section.

2.1 Classifier Ensemble Approach

There are many classifier ensemble techniques in the literature such as boost-
ing, bagging, random forests and stacking [11]. The main idea behind the use of
classifier ensembles is to combine multiple classifiers to improve classification ac-
curacy. However, as with feature selection, we hypothesize that selecting the best
set of classifiers out of a multitude of classifiers for each classification problem
is more important than randomly combining a set of classifiers in a multiclass
setting. Therefore we propose the use of a classifier ensemble selection technique
to choose the best performing set of classifiers (classifier ensemble) for each clas-
sification task. Caruana et.al [12] have proposed a classifier ensemble selection
technique to select a set of classifiers from a multitude of model libraries. We
have adopted this approach to choose the best classifier ensemble. The basic
steps of the algorithm are as follows:

• Separate training instances into individual classes
• Construct n(n-1)/2 datasets for OVO comparisons with each pair of classes
• Carry out feature selection for each dataset
• Generate a collection of classifiers with bagging and selection with replace-
ment
• Perform feature selection for each dataset based on the classifier optimum
feature selection method.
• Train the classifiers on the classifier optimal set of features
• Select the best classifier ensemble for each binary class by:
◦ Add to the ensemble, the classifier model which maximizes the ensem-
bles’ overall performance (measured using a certain error metric: i.e ac-
curacy,RMS etc.) in a hill climbing fashion. The overall performance is
computed by averaging the performance of each classifier.
◦ Repeat the above step until all the models have been examined.
◦ Return the ensemble that has maximum performance.

3 Experimental Results

In this section we present the details of the experiments carried out to measure
the impact of class-centric feature and classifier selection. As mentioned earlier,
previous work in MIR research has produced a wide variety of features, different
authors use different sets of audio features, however there are no “correct” set
of features for any particular MIR task. In our work, we chose a set of 13 widely
used features which are robust and computationally efficient low level features
as listed in Table 1. They comprise of six MPEG7 features and seven other most
commonly used audio features. We derive 4 statistical properties: i.e. mean,
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Table 1. Audio features used for the experiments

Feature Name No.of features

1. Total Energy 4
2. Fundamental Frequency 4
3. Loudness Sensation 32
4. Integral Loudness 4
5. Audio Spectral Centroid 4
6. Spectral Rolloff 4
7. Audio Spectrum Spread 4
8. Audio Spectrum Flatness 16
9. Audio auto correlation 13
10. Log Attack Time 1
11. Temporal Centroid 1
12. Zero Crossing Rate 4
13. Mel Frequency Cepstral Coefficients 96

Total 183

Table 2. Details of the HBA and GTZAN datasets

HBADS GTZAN

No. of genres 15 10
Genres Blues, Classical, Country, Disco, Blues, Classical, Country, Disco,

Hiphop, Indian, Jazz, Metal, Opera, Hiphop, Jazz, Metal, Pop, Reggae,
Pop, Reggae, Rock, Salsa, Techno, Rock
Ambient

No. of files 7500 (500 per genre) 1000 (100 per genre)
Format 22,000KHz, 64kbps MP3 22,000KHz, 16bit PCM
Size 2.6GB 1.2GB

variance, covariance, and their numerical partial derivatives (i.e. the differences
between successive elements).

Features 1, 10, 11 and 12 are time domain features while the rest are extracted
in the frequency domain. MFCC is a widely used feature in many different areas
of MIR, for our experiments we extracted the first 24 coefficients and their pre-
viously mentioned statistical properties. Features 2 ,5 through 8 provide various
statistical measurements related to the frequency spectrum of a sound. Features
3 and 4 capture the human perception of loudness while auto correlation fea-
ture can be used to analyze reoccurring patterns (i.e beats, tempo) in a signal.
We used two music datasets in our experiments. As our first dataset we chose
the widely used genre benchmarking dataset GTZAN[13], it contains 10 genres
with 100 clips each. In order to test the robustness of the proposed method on a
larger dataset, and due to the lack sufficiently large datasets in the literature, we
constructed our own dataset by extending the genre set of GTZAN to 15. The
new dataset contains a carefully selected set of songs with no duplicates or am-
biguous class labels. The genre labels are taken directly from official album/song
information to ensure maximum accuracy of the labels. Details of both datasets
are given in Table 2.
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3.1 Experimental Setup

We used the WEKA[14] machine learning platform as the test bed for conducting
our experiments. We chose the following 5 well known classifiers in our ensemble
approach: K-Nearest Neighbour (IBK), Naive Bayes (NB), Decision Tree (J48),
Logistic Regression (LR), and Sequential Minimal Optimization: Support Vector
Machine (SMO).

As mentioned in section 2 we conducted our own experiments to choose the
best binary multiclass decomposition scheme between OVA and OVO with the
GTZAN dataset. Results are presented in table 3.

Table 3. Classifier performance between OVA and OVO

Classifier One vs All One vs One

IBK 54.70 57.64
NB 47.35 56.74
J48 48.82 55.94
SMO 50.52 67.35

From these results we can conclude that OVO scheme has a notable advantage
over OVA. Therefore we primarily focus on OVO for implementing our proposed
approach. There are many feature selection algorithms available in the literature
which can be mainly classified into two groups: Filter methods and Wrapper
methods [14]. Filter methods rely on general characteristics of the data; they
attempt to measure the importance of each feature or feature subset using a
score metric such as information gain, Chi-squared distributions or correlation
coefficients, then choose (“Filter”) the best set. In contrast, wrapper methods
make use of a learning algorithm to search the feature space and evaluate the
usefulness of features for the classification problem at hand, in other words the
learning algorithm is “Wrapped” into the feature selection process. The later
produce a more optimum set of features; however, they are much more com-
putationally expensive and prone to over fitting. Sequential forward/backward
selection and hill climbing methods are some of the search methods commonly
used for searching the feature subsets in wrapper methods [14]. Since our pri-
mary aim is to investigate the effectiveness of class centric feature and classifier
selection, we choose the more computationally efficient filter based approach. We
used the following 4 widely used feature selection (FS) techniques [3]: Correla-
tion based Feature Selection (CSF), Chi-square Feature Evaluation (CHI), Gain
Ratio Feature Evaluation (GAIN), and Principal Component Analysis (PCA).

Table 4 list overall accuracies obtained for each classifier with and without
feature selection on GTZAN dataset. This experiment was conducted to analyze
the impact of different feature selection techniques on different classifiers, and
choose the best technique for each classifier.

As seen in table 4, feature selection methods do have a significant impact on
majority of the learning algorithms. These results also agree with the findings
of [3]. One interesting observation is how PCA has negatively impacted the ac-
curacy. Even though PCA can be used to reduce the dimensionality of data;
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Table 4. Impact of feature selection on classifiers - HBA dataset

Classifier No FS CSF CHI GAIN PCA

IBk 53.05 59.60 56.66 56.66 31.76
NB 58.94 62.74 57.64 57.64 54.31
J48 50.45 51.17 51.37 51.37 31.56
LR 65.00 69.45 68.63 68.12 67.56
DT 41.05 31.01 35.88 35.88 32.15
SMO 69.56 66.07 70.00 70.00 60.98

strictly speaking, PCA is not a feature selection technique, rather a feature ex-
traction method that constructs new features through linear projection of high
dimensional vector into a low dimensional vector while retaining characteristics
of the dataset that contribute to most variation. Therefore even though PCA ex-
tracted features are optimal for reconstructing original data, they are not always
better for classification [15]. We used these results as a guide for choosing the
best feature selection technique for different classifiers in our ensemble approach.

3.2 Classifier Ensemble Approach

We adopt the classifier ensemble selection technique proposed in [[12]] under
one-vs-one binary decomposition strategy to improve classification accuracy by
narrowing down the selection criteria focusing on each class. Once the final
classifier ensemble model has been constructed, classification for an unlabelled
test instance is performed by choosing the class which generated majority votes
among all n(n-1)/2 OVO problems. For each OVO problem, classifier ensembles
are also evaluated based on majority voting. Results obtained for both datasets
are listed in tables 5 and 6. The columns are labelled as follows:

• NoFS: Lists classification accuracies for each classifier on its own (without
any feature selection).
• FS: Best accuracy obtained with feature selection for each classifier (not
class centric).
• CCFS: Accuracies obtained for class centric feature selection through OVO
decomposition
• CES: Accuracy of classifier ensemble selection (i.e conventional multiclass
problem with classifier ensemble selection),
• CCFS+CES: Accuracy of class centric feature selection and classifier ensem-
ble selection based on OVO decomposition (our proposed approach).

From these results we can observe that classification accuracies are improved
across majority of the classifiers when class specific feature selection is performed,
except for support vector machine. The implementation of SMO Support Vector
Machine already performs OVO binary comparisons when handling multiclass
problems. Therefore using a SMO classifier in an OVO setting has no extra
advantage. Furthermore, a support vector machine is already a very efficient
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Table 5. Comparison of classification accuracies between different classification tech-
niques on the HBA Dataset

Classifier No FS FS CCFS CES CCFS+CES

IBk 53.05 59.60 62.74
NB 58.94 62.74 63.20
J48 50.45 51.37 59.11 71.37 77.88
LR 65.00 69.45 71.30
DT 41.05 35.88 38.80

SMO 69.56 71.00 69.70 70.11 76.56

Table 6. Comparison of classification accuracies between different classification tech-
niques on the GTZAN Dataset

Classifier No FS FS CCFS CES CCFS+CES

IBk 54.70 64.41 66.70
NB 57.05 60.88 61.80
J48 49.41 49.70 57.11 65.60 70.88
LR 50.0 61.05 64.00
DT 41.47 40.20 42.61

SMO 66.17 72.05 69.70 70.11 71.0

and highly optimized multi class classifier; this is why adding SMO into the
classifier ensemble didn’t have a significant impact on the ensemble approach
either.

Further analysis shows that classifier ensemble selection(CES) performs
slightly higher (71.30% and 65.60%) than the best individual classifier: CF
(69.45% and 64.41%) for HBA and GTZAN datasets respectively. Finally we
can see a significant improvement when class specific ensemble classifier selec-
tion is performed. The improvement is about 6.5% for the HBA dataset and
5.28% for the GTZAN dataset. From these results we can conclude that the use
of a class centric feature selection and classifier ensemble selection of otherwise
weak classifiers can perform equally or better than a highly efficient classifier
such as the support vector machine.

4 Conclusion

In this paper we proposed a class centric feature and classifier ensemble selection
technique for music genre classification. We presented experiments to validate
the selection the best multiclass decomposition technique and the best feature
selection technique for music genre classification. Building upon these findings
we tested our proposed method using two genre datasets and a set of weak classi-
fiers and low level features. The promising results obtained through experiments
validated our initial hypothesis that a class centric feature selection combined
with a classifier ensemble selection can improve genre classification accuracy.
In this work we tested our hypothesis using the most commonly used feature
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selection techniques (i.e: filter methods), aggregation of binary decomposition
methods (i.e: majority voting) and classifier ensemble selection method (hill
climbing forward selection by optimizing for accuracy). However better alterna-
tive techniques do exists and they may further improve performance, therefore
need further investigation.
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Abstract. In this paper we propose a shape recognition approach
applied to a dataset composed of 512 shoeprints where shapes are
strongly occluded. We provide a local adaptation of the HRT (Histogram
Radon Transform) descriptor. A shoeprint is decomposed into its connect
components and describes locally by the local HRT. Then, following this
description, we find the best local matching between the connected com-
ponents and the similarity between two images is defined as mean of
local similarity measures.

Keywords: Shape matching, local descriptor, histogram of Radon
transform.

1 Introduction

In pattern recognition, image descriptions can be broadly categorized into statis-
tical methods or structural methods. In the statistical method, many methods
for a whole image have been proposed in the literature. The generic Fourier
descriptor (GFD) proposed by Zhang and Lu [1] is a typical Fourier descrip-
tor. The Fourier-Mellin transform (FMT) proposed Q. Chen et al. [2] is useful
for many applications. Tabbone et al. propose methods called the histogram of
Radon transform (HRT) [3] using the Radon transform. Recently, a local de-
scriptor with vector of feature points in an image called SIFT is proposed by
Lowe [4]. Structural methods[5] offer a good description thanks to the graph
representation but they are not robust to noise.

In this paper, we consider a shoeprint dataset where shoeprints can be decom-
posed into connected components.The shoeprint can be decomposed into some
connected components using the connectivity of 8 pixels around each pixel and
each connected component is encoded using HRT for a local description. HRT
has useful properties for shape rotation, shape scaling, and shape translation;
then it is robust to geometric transformations of components. For a query shoe
print image, we find the best local matching between the connected components
of the query and the dataset and the similarity between two images is defined
as mean of local similarity measures.

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 675–683, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



676 M. Hasegawa and S. Tabbone

We have carried out our experiments using a dataset composed of 512
shoeprints and we will show that our approach is competitive compared to well-
known statistical descriptors (global HRT and FMT) and structural (graph edit
distance) one.

2 HRT Descriptor

We recall the Radon transform definition in this section. Let a coordinate (x, y) in
the two-dimensional x−y plane described as x, and an original image represented
as f(x). The Radon transform of f(x) is defined as:

Rf (θ, ρ) =

∫
f(x)δ(x · ξ − ρ)dx, (1)

(a) (b)

(c) (d)

Fig. 1. (a) Full-print of “Shoe A”; (b) rotation; (c) occlusion. (d) Full-print of “Shoe B”.
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Fig. 2. (a) A connected component of “Shoe print A”; (b) and (c) respectively its
Radon image and HRT descriptor

where ξ = (cos θ, sin θ), and δ(·) is a delta function. In other words, the Radon
transform is the integral of f(x) over lines

Lθρ = {x ∈ R2|x · ξ = ρ}, (2)

where ρ is the distance between the origin and Lθρ, the unit vector ξ and the
angle θ describe the orientation of the line Lθρ. The line integral is computed by
a delta function δ(·). An example of the Radon image using Fig. 2(a) is shown
in Fig. 2(b); Fig. 2(a) is a connected component of “Shoe A” shown in Fig. 1(a).

The HRT descriptor is defined as a matrix of frequencies computed on the
Radon image aggregated by the angle parameter of the Radon transform. The
HRT descriptor D(θ, y) of Ṙf (θ, ρ) for each orientation θ is:

D(θ, y) = H(Ṙf (θ, ·))(y), (3)
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where H(f)(y) is a histogram of f as:

H(f)(y) =
#{x ∈ X |y = f(x)}

|X | . (4)

# in this equation is the cardinality of a set, and |X | is the cardinality of the
universal set. The universal set X is composed of elements in the case of f(x) > 0
as: X = {x|f(x) > 0}. The number of bins in the histogram is defined by
experiments and we set it to 16 since it provide us the best performance.

Ṙf (θ, ρ) in Eq.(3) is a normalized Radon image; here a normalization is
defined as:

Ṙf (θ, ρ) =
Rf (θ, ρ)

N
, (5)

where
N = maxRf (θ, ρ). (6)

Our HRT descriptor has useful properties for shape rotation, shape scaling, and
shape translation. In the shape rotation, our HRT descriptor is translated relative
to the angle coordinate; in the shape scaling and translation, our HRT descriptor
is invariant.

Dq(θ, y) denotes a query descriptor, and Dt(θ, y) is for a template; we define
a matching error as:

E(Dq, Dt) = min
α∈[0,π)

∑
y,θ(Dq − D̄t)(Dq − D̄t)√

(
∑

y,θ(Dq − D̄t)2)(
∑

y,θ(Dq − D̄t)2)
, (7)

where Dq = Dq(θ, y), D̄q is the means of Dq, and
∑

y,θ =
∑

y

∑
θ.

3 Extension to Shape Matching Using Local Descriptor

We decompose shapes on images into its connected components using the connec-
tivity of 8 pixels around each pixel. Fig. 3 shows examples of the decomposition
for shoeprint images. Each color of the connected component shows its compo-
nent label.

Subsequently, each connected component is encoded using HRT, and we ob-
tain two sets of descriptors of components, one is for a query, and the other is
for a template.

We perform our local matching between the query descriptors and the tem-
plate and find the closest one to each query component from the template com-
ponents so that each best matching pair between the query and the template
is defined. Matching error for each component pair is computed by Eq. (7); a
mean value of the best matching pairs is the matching error between two im-
ages. Fig. 4 shows examples of our local shape matching between a query and a
shoeprint image. We can remark that in some cases the matching between two
connected components is not coherent and spatial constraints should be added to
improve it.
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(a) (b)

(c) (d)

Fig. 3. Connected component decomposition

4 Experimental Results

The shoeprint dataset composed of 512 shoeprints; each shoeprint is a binary
image with 512 × 512 pixels. Different example of shoes are shown in Fig. 5;
each shoe has 8 images (4 images are full-prints; 4 images are strongly occluded:
only toe, heel, light side, and left side). We will provide our dataset for a public
common use.

4.1 Recognition Performance

Examples of matching score of our local descriptor HRT are shown in Table 1. We
can see that shoes of the same class A are nearer than shoe B. The performance
on the whole dataset is performed using the precision-recall curves defined as:

Precision =
tp

tp+ fp
, Recall =

tp

tp+ fn
, (8)
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(a)

(b)

(c)

Fig. 4. Example of local shape matching using HRT local descriptors

Table 1. Matching errors using HRT local descriptor

Template
Shoe A Shoe B
Fig.1(a) Fig.1(b) Fig.1(c) Fig.1(d)

Query Shoe A Fig.1(a) 0.00 142.55 157.83 179.20
Fig.1(b) 140.71 0.00 161.81 170.98
Fig.1(c) 148.34 152.97 0.00 181.17

Shoe B Fig.1(d) 182.62 179.15 196.05 0.00
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Fig. 5. Shoeprint dataset

where tp is the number of items correctly labeled as belonging to the positive
class, fp is the number of items incorrectly labeled as belonging to the class,
and fn is the number of items which are not labeled as belonging to the positive
class but should have been.

We compare the precision-recall curves of our methods to the conventional
HRT applied to a whole image, the Fourier-Mellin transform (FMT) and graph
edit distance; the results are shown in Fig. 6. We can remark that global ap-
proaches are not suited for this kind of dataset and the performance provided by
our local descriptor are globally good even if images are strongly occluded. For
instance, as we can see in Table 1 the occluded shoeprint on Fig. 1(c) is nearer
to Fig. 1(a) and 1(b) than Fig. 1(d).

4.2 Processing Time

Processing time for one matching using each method is shown in Table 2. Each
method is performed by Intel Core i5-460 2.53 GHz CPU. HRT for local descrip-
tor, Conventional HRT, and FMT are implemented using MATLAB and the
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Fig. 6. Precision-recall curves of each method

Table 2. Processing time for one matching

Method Processing time (Sec)

HRT for local descriptor 0.825
Conventional HRT 0.014
Graph edit distance 6.998
FMT 0.036

graph edit distance code provided in [5] is in C++. The processing time for our
HRT local descriptor is high compared to the conventional HRT and FMT since
we apply it locally.

5 Conclusion

We discuss a shape matching method using local descriptor. We apply HRT to
connected components for local descriptions and find the best local matching
between connect components. The obtained results are promising and could be
improved by achieving a better decomposition of the image. Indeed, the per-
formance of our local descriptor is strongly depend on the quality of the seg-
mentation. In our case we use a simple decomposition based on the connected
component. However, in some cases this decomposition is not appropriate. For
instance, Fig. 7 show an original shape “Shoe B” and an connected component
extracted on this image. This connected component has not been sufficiently
decomposed, and in some cases a shoeprint is decomposed into one component
only. This decomposition error leads to recognition errors and decreases the
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(a) (b)

Fig. 7. (a) Original shape “Shoe B”; (b) A large connected component

recognition performance. In this perspective, future investigations will be de-
voted to an appropriate shape decomposition method.
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Abstract. In this paper we propose a Multiple Classifier System (MCS)
for classifying breast lesions in Dynamic Contrast Enhanced-Magnetic
Resonance Imaging (DCE-MRI). The proposed MCS combines the re-
sults of two classifiers trained with dynamic and morphological features
respectively. Twenty-one malignant and seventeen benign breast lesions,
histologically proven, were analyzed. Volumes of Interest (VOIs) have
been automatically extracted via a segmentation procedure assessed in
a previous study. The performance of the MCS have been compared
with histological classification. Results indicated that with automatic
segmented VOIs 90% of test-set lesions were correctly classified.

Keywords: breast DCE-MRI, multiple classification system, morpho-
logical and dynamic features.

1 Introduction

Breast cancer is the most common cancer among women in the Western world.
To date it is the second leading cause of cancer death in women (after lung
cancer) and is estimated to cause 15% of cancer deaths [2]. Therefore, screening
for early diagnosis of breast cancer is of great interest.

The currently widespread screening method is RX mammography [1]. How-
ever, this method has some drawbacks: it uses ionizing radiation; it is not ad-
equate for young women because of high density breasts; detection of breast
lesions is difficult because of the lack of functional information, moreover no
3D information is available but the whole breast is projected on one or two
planes. Although Magnetic Resonance Imaging (MRI) has some limitations such
as long scanning time, cost, possible side effects of contrast media injection, the
emerging methodology of Dynamic Contrast Enhanced-MRI (DCE-MRI) has

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 684–692, 2012.
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demonstrated a great potential in screening of high-risk women, in staging newly
diagnosed breast cancer patients and in assessing therapy effects [2] thanks to
its minimal invasiveness and to the possibility to visualize 3D high resolution
dynamic (functional) information not available with conventional RX imaging.

Therefore MRI, and in particular DCE-MRI, is gaining popularity as an im-
portant complementary diagnostic tool for early detection of breast cancer [3].

In the analysis of breast lesions on MRI, radiologists agree that both mor-
phological and dynamic features are important for distinguishing benign from
malignant [6,5]. On the one hand, morphological features aim to quantify le-
sion margins characteristics, and are well assessed in the breast-MRI lexicon [6]:
round shape and smooth margin for the benign lesions; more irregular shape for
the malignant lesions. On the other hand, dynamic features, have shown a great
potential in quantifying vascularity of tumors: malignant lesions usually show
early enhancement with rapid wash out, whereas benign lesions typically show
a slow increase followed by persistent enhancement [6].

Many recent works have attempted to take advantage of morphological fea-
tures and dynamic information in a separate manner: dynamic information has
been used for segmentation of volume of interests (VOIs) [13,12,11], while mor-
phological features of the VOIs have been used for lesion classification [10,7,6].
For example, Nie et al. [4] demonstrated that quantitative analysis of morphology
and texture features of breast lesions was feasible, and these features could be
selected by artificial neural network to form a classifier for differential diagnosis.
Agner et al. [9] showed that using a probabilistic boosting tree (PBT) classifier
in conjunction with textural kinetic features good performances could be yielded
but when the feature set included both textural kinetic and morphologic features
the performances were lower. Tzacheva et al.[8] reported good performances us-
ing morphological features and MLP classifier on 14 breast lesions; Zheng et al.
[10,18] has investigated the use of a feature set comprising dynamic, spatial, and
morphological features with a linear classifier on 31 subjects.

To the best of our knowledge, a Multiple Classification System for classifica-
tion of breast lesions using dynamic and morphological features in DCE-MRI
has not been presented yet, although the idea of combining multiple classifiers is
not new. For example, Keyvanfard et al. [21] proposed a multi classifier system
composed of three classifiers that used dynamic features to classify breast lesion
in DCE-MRI, but in their study morphological features were not used.

The aim of the present study is to propose a Multiple Classification System
(MCS) for classification of breast lesions using both dynamic and morphological
features in DCE-MRI.

The proposed MCS combines the results of two classifiers trained with dy-
namic and morphological features respectively. As classifiers, we used the best
suited for the problem at hand, according to our previous studies [16].

Twenty-one malignant and seventeen benign breast lesions, histologically
proven, were analyzed. Volumes of Interest (VOIs) have been both manually
extracted by an expert radiologists and automatically extracted via a segmen-
tation procedure assessed in a previous study. Both dynamic and morphological
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features were extracted. The performance of the MCS have been compared with
histological classification.

The paper is organized as follows: in section 2.1 we describe the characteris-
tics of the subjects enrolled in the study; in section 2.2 we give details on the
data acquisition via DCE-MRI; in section 2.3 we show how the volumes of in-
terest (VOIs) have been selected manually and automatically; in section 2.4 we
illustrate the main characteristics of the features used; in section 2.5 we present
the proposed multiple classifier system: in particular we summarise the charac-
teristics of the classifiers used, together with the classifiers for dynamic features
and morphological features respectively and the combination scheme. We subse-
quently report the performances of the system proposed in section 3 and finally
we compare our results to the literature in section 4.

2 Materials and Methods

2.1 Patients Selection

38 women (average age 46 years, range 16-69 years) with benign or malignant
lesions histopathologically proven were enrolled. 21 lesions were malignant and
17 were benign. The lesions were subdivided in two groups: training-test (12
benign and 16 malignant) and test-set (5 benign and 5 malignant).

2.2 Data Acquisition

The patients underwent imaging with a 1.5 T scanner (Magnetom Symphony,
Siemens Medical System, Erlangen, Germany) equipped with breast coil. Turbo
spin echo T2-weighted axial images (TR/TE: 4000/56 ms; flip angle: 180 degrees;
field of view 340 x 340 mm x mm; matrix: 384 x 385; thickness: 2 mm; gap: 0;
56 slices spanning entire breast volume) and Turbo spin echo T1-weighted fut
sat axial images (TR/TE: 564/12 ms; flip angle: 90 degrees; field of view 350 x
350 mm x mm; matrix: 512 x 256; thickness: 2 mm; gap: 0; 40 slices spanning
entire breast volume) were acquired for morphological imaging.

DCE T1-weighted FLASH 3-D coronal images were acquired (TR/TE: 9.8
/ 4.76 ms; flip angle: 25 degrees; field of view 330 x 247 mm x mm; matrix:
256 x 128; thickness: 2 mm; gap: 0; acquisition time: 56 s; 80 slices spanning
entire breast volume). One series was acquired before and 9 series after intra-
venous injection of 2 ml/kg body weight of a positive paramagnetic contrast
medium (Gd-DOTA, Dotarem, Guerbet, Roissy CdG Cedex, France). Automatic
injection system was used (Spectris Solaris EP MR, MEDRAD, Inc.,Indianola,
PA) and injection flow rate was set to 2 ml/s followed by a flush of 10 ml saline
solution at the same rate.

2.3 VOI Segmentation

Manual. Manual ROI selection slice-by-slice was performed by an expert ra-
diologist taking into account both morphological (Turbo spin echo T2- and T1
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weighted images) and functional imaging (DCE T1 weighted images) based on
the fat-suppressed image obtained subtracting the basal pre-contrast image from
the 5-th post-contrast image. Per each patient all the slices including the lesion
have been used. The segmentation was performed with OsiriX v.3.8.1 (fig. 1).

Fig. 1. Manual Segmentation

Automatic. In automatic selection the first step was the overall breast mask
segmentation by means of Otsu thresholding of the parametric map obtained
considering the pixel-by-pixel SOD followed by hole-filling and leakage removal
by means of morphological operators as in a previous study [15]. Successively,
automatic VOI segmentation has been obtained with pixel by pixel classifica-
tion of dynamic features by using an MLP classifier.

The dynamic features used in the classification were sum of intensities dif-
ference (SOD), basal signal and relative enhancement slope calculated pixel by
pixel on the breast mask: they were used as input of MLP classifier (learning
rate = 0.3, momentum = 0.2, and a training time of 100 epochs). The classifier
labeled each pixel as suspicious or not suspicious. The region of interest was
obtained by the union of all suspicious pixels.

2.4 Morphological and Dynamic Features

Starting from our previous studies [16,17], we considered a feature set including
54 morphological features and 98 dynamic features, respectively.

The main categories of morphological features included areas, circularity, com-
pactness, complexity, perimeter, radial length, smoothness, roughness, sphericity,
eccentricity, volume, rectangularity, solidity, spiculation, convexity, curvature,
edge [10,7,6]. For dynamic features the main categories included area, maximum
intensity ratio, relative enhancement, relative enhancement slope, basal signal,
perfusion index, sum of intensities difference (SOD), wash-in, wash-out, time to
peak [13,12,11].
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It is well known that training machine learning classifiers with large numbers
of morphological features can lead to classifier overfitting, reduces the generaliza-
tion capabilities of the classifiers and slows down the training process. Therefore,
the number of morphological and dynamic features were reduced by a feature
selection procedure to remove the unimportant and uninformative morphological
features. To keep the loss of information to a minimum we tested Correlation-
based Feature Selection (CFS) and Consistency feature Selection method with
several search: the forward search,the backward search, the bidirectional search,
the greedy search, feature ranking methods.

The dynamic features obtained by selection procedure were the sum of inten-
sities difference (SOD), basal signal and relative enhancement slope [13,12,11].

The morphological features obtained by the selection procedure were instead
area, eccentricity, compactness and perimeter.

The classifiers were trained with the morphological and dynamic feature
extracted both by manual that automatic VOI segmentation.

2.5 VOI Classification

The proposed Multiple Classifier System combines the results of two classifiers
trained separately with dynamic and morphological features respectively (fig. 2):
in particular it was considered the weighted sum of probability of malignity and
the probability of benignity of the two chosen classifiers as proposed in[20].

The choice of the classifier to be used was based on a previous study [16],
where a Decision Trees (DT) and a Bayesian classifier gave us the best results
when trained on morphological and dynamic features, respectively.

In order to combine the results of the two classifiers, each suspicious pixel
within the VOI has been first classified as benign or malignant on the basis
of the selected dynamic features. The whole VOI has been then classified as
malignant if the number of malignant pixels nm within the VOI was higher than
that of benign pixel nb within the same VOI.

The probabilities of malignant lesion (Dm) and benign lesion (Db) were cal-
culated as eq. 1:

Dm =
nm

N

Db =
nb

N
(1)

where N is the total number of pixels in the lesion.
Morphological features were instead calculated for the whole VOI and were

used to classify the lesion in malignant and benign. In this case the probability
of malignity and benignity were Mm and Mb respectively.

Finally, the VOI was classified as malignant if αDm + βMm > αDb + βMb,
where α and β were multiplicative coefficients (α + β = 1) that must be suit-
ably chosen in order to maximize the accuracy (fig. 2). In [20], a leave-one-out
procedure is suggested.
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Fig. 2. Multiple Classifier System

3 Results

The results were reported for automatic VOI segmentation that have obtained
the better findings. Table 1 shows the results obtained on the test set (10 pa-
tients) by the single classifiers that use dynamic and morphological features,
respectively. Table 2 reports the performance obtained on the test set (10 pa-
tients) by our multiple classifiers system, using automatic VOI segmentation.
The acronyms used in this table are the following: MC = Classifier trained with
morphological feature; DC = Classifier trained with dynamic feature.

As far as the choice of optimal values for α and β is concerned we report in
fig. 3 the percentage of correctly classified lesions vs. α. It is worth to notice that
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Table 1. Performance on the test set obtained by the single classifers

Classifer Feature accuracy[%]

Bayes Dynamic 80.00
DT Morphological 60.00

Table 2. Performance obtained by the proposed method on the test set

MC DC α β accuracy[%]

DT BC 0.75 0.25 90.00

there is an interval ([0.7, 0.8]) of values in which high performance can be ob-
tained. The best compromise among sensitivity, specificity and overall accuracy
resulted in α = 0.75.

4 Discussion and Conclusions

The aim of this study was to propose a Multiple Classifier System (MCS) for
classifying breast lesions in Dynamic Contrast Enhanced-Magnetic Resonance
Imaging (DCE-MRI).

The proposed MCS combines the results of two classifiers trained with dy-
namic and morphological features respectively.

Twenty-one malignant and seventeen benign breast lesions, histologically
proven, were analyzed. Volumes of Interest (VOIs) have been both manually ex-
tracted by an expert radiologists and automatically extracted via a segmentation
procedure assessed in a previous study [15]. Both dynamic and morphological
features were extracted. The performance of the MCS have been compared with
histological classification.

In our previous studies [16] and [17] we analysed the performance of several
classifiers (MLP, SVM, Bayes, DT) in conjunction with dynamic and morpholog-
ical features separately. We observed that manual or automatic selection of the
VOI affected the overall performance. In particular, when manual ROIs have
been used, higher performance have been obtained (dynamic features with a
DT classifier gave 70% accuracy; morphological features with Bayes gave 90%
accuracy) with respect to those reported in this paper (dynamic features with
DT gave 60% accuracy; morphological features with Bayes gave 80% accuracy),
where automatic ROIs segmentation has been performed. This notwithstanding,
by suitably combining the two classifiers, we were able to obtain the same re-
sults (90% accuracy) obtained by the best single classifier that uses manually
extracted VOIs.

The findings of this study are in line with recent literature. In fact, Wede-
grtner et al [19] reported a sensitivity of 85% using morphological features and
a receiver operating characteristic (ROC) curve for 62 breast lesions but with-
out automatic classification; Tzacheva et al. [8] reported a sensitivity of 90%,
a specificity of 91% and an accuracy of 91% using morphological features and
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MLP classifier on 14 breast lesions. However, these result must be carefully con-
sidered because of the small number of patients and because they did not use
an automatic segmentation step. Zheng et al [18] reported a sensitivity of 95%
using a combination of temporal, spatial, and morphological attributes and a
linear classifier for 31 subjects: even in this study the segmentation step was not
completely automatic.

It should be noticed that although previous studies obtained in some cases
higher accuracy in comparison to our findings, however, they did not employ a
completely automatic multi-classifier system such as the system presented in the
present study.

Moreover, further investigation is required for an optimal choice of α and β
because as is clear from fig. 3 the specific value could affect the overall accuracy
of the system.

In the future, our preliminary study will be extended on a larger number of
patients, manual segmentation will be done by multiple readers and morpholog-
ical, dynamic and texture [7] feature combination will be performed
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Abstract. The aim of this work is to make an objective comparison
between different forgery techniques and present a tool that helps taking
a more reliable decision about the integrity of a given image or part of it.
The considered techniques, all recently proposed in the scientific commu-
nity, follow different and complementary approaches so as to guarantee
robustness with respect to tampering of different types and character-
istics. Experiments have been conducted on a large set of images using
an automatic copy-paste tampering generator. Early results point out
significant differences about competing techniques, depending also on
complexity and side information.

Keywords: forgery detection, digital forensics, image tampering.

1 Introduction

With the ever increasing diffusion of simple and powerful software tools for
digital source editing, image tampering is becoming more and more common,
stimulating an intense quest for algorithms, to be used in the forensics field,
which help deciding about the integrity of digital images. In particular, passive
techniques draw the highest attention as they require no collaboration on the
part of the user through some types of watermarks or signatures.

A large variety of approaches have been proposed in the literature, which take
advantage of the inconsistencies (e.g., in the histogram or in the sampling grid)
arising from the various tampering types. Following [1], they can be classified as
pixel-based, format-based, camera-based, and phisics/geometric-based.

In extreme synthesis, pixel-based techniques analyze the correlation between
pixels either directly in the spatial domain or in some transformed domain.
Format-based methods, instead, exploit the usual adoption of some lossy com-
pression scheme, like JPEG, which introduces some recognizable marks in the
presence of manipulations. Camera-based techniques take advantage of features
specific of any different camera models, and even of individual cameras, to
use them as image signatures to exploit in forgery detection. Finally, phisics/
geometric-based methods study higher-level inconsistencies between the imaged
scene/object and the forgery source, such as illumination, object size, etc.
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The many existing approaches, which comprise in turn a very large and ever
growing number of individual detection techniques, testify both the interest to-
wards this problem and its complexity. In fact, no ultimate solution exists to the
image forgery detection problem. Each technique is based on some important
hypotheses which limit its applicability, and therefore it is always possible to
find cases where it fails. On the other hand, one should take for granted that a
malicious tamperer, aware of the principles on which each technique works, will
be able to trick it, given enough time and resources. Having a multiplicity of
different tools is therefore essential to guarantee a high probability of detecting
forgeries.

Given the great variety of approaches, comparing forgery detection algorithms
turns out to be a very challenging task, although a much needed one. To increase
confusion, many Authors, to support the claim of good performance of their pro-
posed algorithm, provide results on a restricted set of images, without facing the
problem of making an extensive comparison with other approaches in terms of
key performance indices. So, the habit of proposing more and more new algo-
rithms seems to prevail against the need of assessing the performance of the
existing ones in an objective way.

In this work we perform an experimental performance comparison of a limited
but significant set of forgery detection techniques. A similar work was presented
in [2] where several techniques were considered, all belonging to the format-based
category. Here, we consider four techniques chosen among the most popular and
promising in the recent literature, belonging to different categories: pixel-based,
format-based, and camera-based. As dataset, we used a set of images taken from
a standard database [3] while forgeries have been obtained by using the copy-
paste approach proposed in [4]. Tests have been carried out by varying the size
and statistics of the tampered area, and results are reported in terms of the
usual sensitivity and specificity parameters.

All algorithms are implemented in Matlab and integrated into an easy-to-use
software tool, written in JAVA, easily extensible to include new techniques and
functionalities. The tool allows one to process one or more images at once, select
one or more detection algorithms, so as to allow comparison of results, and look
for a forgery on the whole image or else only in a part of it.

In the following section we describe briefly the forgery detection algorithms
under comparison, while in section three the experimental setting is presented
and results are commented. Finally section 4 draws conclusions and outlines
future work.

2 Forgery Techniques under Analysis

For this comparative study, in order to sample solutions as different as possible,
we have chosen techniques that use various approaches: format based [5], pixel-
based [6] and camera-based [7] [8]. In the following we will briefly describe the
implemented algorithms.

Format-based methods take advantage of the specific format of images. Since
most images are JPEG compressed, to detect a tampering it is possible to exploit
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the blocking effect introduced by JPEG, which gives rise to the so-called Block
Artifact Grid (BAG).

In fact, manipulating images in this format causes an alteration of these
artifacts, mainly in the case of copy and paste processing, since the BAG of
the original image and that of the copied region very likely mismatch. In [5] a
simple method is proposed to identify this type of forgery, named here Li-2009
after the name of the first Author and the year of publication, a convention fol-
lowed for the other techniques as well. The basic idea is to extract the horizontal
and vertical edges due to JPEG artifacts by means of a second order derivative
followed by a thresholding operation in order to eliminate edges relative to sig-
nal discontinuities. A further enhancement is then realized to obtain the block
artifact grid. If the image has been subject to a copy-paste processing a BAG
mismatching can be detected when lines are present within a 8 × 8 block. The
procedure delineated in [5] tries to determine this presence through summations
along rows and columns both inside and at the boundaries of the block.

In [6] a pixel-based technique is proposed, Popescu-2005, relying on finding
traces of resampling in the image. The idea is based on the observation that
tampering may alter the underlying statistics. In fact, when an image is modified,
operations like resizing, rotating and stretching must be typically performed,
which require to resample the original image. This process introduces correlations
that, once detected, can be considered as evidence of a digital tampering. The
detection process is based on estimating, through the expectation/maximization
algorithm, a set of periodic samples that are correlated to their neighbors.

A very powerful approach in detecting forgeries relies on artifacts introduced
by the digital camera itself, and in particular the photo-response non uniformity
(PRNU) which can be considered as a sort of intrinsic fingerprint of a specific
digital camera. The PRNU arises from differences and imperfections in the sil-
icon wafer used to manufacture the imaging sensor: these physical differences
provide a unique sensor fingerprint which can be used for forgery detection. The
Chen-2008 algorithm, proposed in [7], requires the preliminary estimation of the
camera PRNU from a large number of images taken by the camera itself. Then,
the PRNU of the image under investigation is estimated and compared with the
reference. This step is quite challenging, since this fingerprint is much weaker
than the image, therefore a denoising step is used, which removes much of the
image content increasing the signal-to-noise ratio. In [9] we replaced the original
denoising algorithm with state-of-the-art nonlocal filtering, obtaining a signifi-
cant performance improvement. The PRNU comparison is carried out by sliding
an analysis window of dimension 128× 128 over the image: if the camera PRNU
is present, the block (or more correctly its central pixel) is labeled as genuine,
otherwise it is considered tampered. The test statistic used for detection is the
normalized correlation value with a decision threshold selected so as to obtain
the required false acceptance rate. A similar algorithm, Zhang-2010, has been
recently proposed in [8]. It makes use of canonical correlation analysis (CCA)
to measure the linear correlation between the two PRNU estimates. Only for
heavily textured areas, identified in advance in the image, a Neyman-Pearson
decision is used like in [7].
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3 Experimental Results

We now study the performance of the selected forgery detection techniques
through simulation experiments on a large number of tampered images.

Our test set is formed starting from 72 high-resolution photos of the Dres-
den Image Database [3]. Each image is then subject to copy-paste forgery by
means of the Photoshop scripts of the University of Catania [4], which allows
to superpose objects taken from a small library, scaled and translated at will,
over the target image. Some photos have been used several times with different
forgeries, reaching a total of 108 images, presenting one or more forgeries. Rela-
tively large forgeries are considered, cover about 20% of the image area, because
most techniques become too unreliable in the presence of small tampered re-
gions. PRNU-based techniques, for example, discard altogether dubious objects
smaller than 64×64 pixels, although a recent segmentation-based version [10]
allows one to deal also with somewhat smaller objects. Fig.1 shows one of the
original images together with its tampered version.

Fig. 1. An original test image (left) and its tampered version (right)

The selected techniques, as described in the literature, are not immediately
comparable since they provide different types of results: some are pixel-based,
some block-based, some require visual inspection. In order to provide homo-
geneous results, the image is divided in non-overlapping square blocks, of size
128×128 through 1024×1024 pixels, with decisions taken independently for each
of them considered as a whole.

For each technique we compute on the entire database the quantities

TP (true positive): # forged blocks declared forged
FP (false positive): # genuine blocks declared forged
TN (true negative): # genuine blocks declared genuine
FN (false positive): # forged blocks declared genuine
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Results are then given in terms of sensitivity, specificity and accuracy, com-
puted as

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

accuracy =
TN + TP

TN + FP + TP + FN

which measure, respectively, the ability to detect the presence of forgery, the
ability to confirm the absence of forgery, and the overall classification accuracy,
independent of the nature of the blocks.

Figures 2 through 5 report results for block-sizes 128×128, 256×256, 512×512,
and 1024×1024.
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Fig. 2. Results for blocks of size 128×128

Sensitivity Specificity Accuracy
0

10
20
30
40
50
60
70
80
90

100

Li

Popescu

Chen

Zhang

Fig. 3. Results for blocks of size 256×256
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Fig. 4. Results for blocks of size 512×512
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Fig. 5. Results for blocks of size 1024×1024

The first obvious consideration is that camera-based techniques, Chen-2008
and Zhang-2010, perform generally much better than the others, under all points
of view. On the other hand, these techniques rely on an important piece of in-
formation, the PRNU, obtained by means of significant pre-processing. In addi-
tion, they are applicable only if the camera or a collection of photos taken by
it are available, a requirement not always met in applications. The gap between
camera-based and other techniques reduces when larger blocks are considered,
probably for the increased number of blocks that are only partially forged, for
which all decisions become quite arbitrary. This is obviously a limit of the ex-
perimental protocol, but also of the block-based nature of most algorithms.

Turning to the non-camera-based algorithms, Li-2009 seems to perform
slightly better than Popescu-2005, in general, with a more significant gain when
small blocks are considered. This latter quality can be important in the pres-
ence of small-size forgeries which are intrinsically more difficult to detect and
therefore more challenging for a forgery detection algorithm.

As a visual example of results, Fig.6 shows the output provided for the image
of Fig.1 by the Chen-2008 and Li-2009 methods, where only the 128×128 blocks
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considered tampered are shown. As expected, the camera-based Chen-2008 is
clearly more accurate. In this case, however, the bad performance of Li-2009 is
also a consequence of the low compression ratio of the original JPEG image,
which therefore shows little or no trace of the block artifact grid needed to
detect forgeries. This gives us the opportunity to underline once again that no
single technique works in all cases and a judicious use of several complementary
techniques is always recommended.

Fig. 6. Results of Chen-2008 (left) and Li-2009 algorithms for the image of Fig.1

4 Conclusions and Future Work

In this work we dealt with the challenging task of comparing several forgery
detection techniques. Experimental results are quite reasonable, as performance
seems to depend strongly on complexity and side information available. Ob-
viously, we want is to extend this type of comparison including many more
techniques, a work which is currently under way.

The major problems encountered, besides the implementation of the indi-
vidual techniques, concern the interpretation of their results in terms of homo-
geneous and meaningful performance measures. Under this point of view, the
block-based approach represents just a reasonable compromise, upon which we
are already trying to improve.

Another important goal is to improve the overall detection reliability by im-
plementing an information fusion level in which the output of many different
detection algorithm is taken into account and properly combined. Some prelim-
inary experiments have been conducted by using a simple weighted sum of the
individual decisions [11]. Although only a very small set of detectors is available,
results are already encouraging.
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Abstract. If a binary decision is taken for each classifier in an ensemble, train-
ing patterns may be represented as binary vectors. For a two-class supervised 
learning problem this leads to a partially specified Boolean function that may be 
analysed in terms of spectral coefficients. In this paper it is shown that a vote 
which is weighted by the coefficients enables a fast ensemble classifier that 
achieves performance close to Bayes rate. Experimental evidence shows that ef-
fective classifier performance may be achieved with one epoch of training of an 
MLP using Levenberg-Marquardt with 64 hidden nodes.  

Keywords: Ensembles, Multilayer Perceptrons, Boolean Function, Walsh Co-
efficients. 

1 Introduction 

For an ensemble of classifiers it is often useful to think of each base classifier as be-
ing controlled by two main parameters, the capacity and the training strength of the 
learning algorithm [1]. The term capacity refers to the flexibility of the classifier 
boundary. By training strength we mean the effort that is put into training the classifi-
er. For an MLP, the capacity is the number of hidden nodes, and training strength is 
the number of epochs. In this paper we consider the trade-off between these two pa-
rameters, and what combination is suitable for a weighted majority vote. 

The weighted vote is computed using Walsh coefficients. If each base classifier in 
an ensemble is given a binary decision, and if the problem is two-class, a Boolean 
mapping is defined. This mapping may be analysed using Walsh spectral coefficients. 
First order Walsh coefficients were shown to provide a measure of class separability 
for selecting optimal base classifiers in [2], in which it is also shown that this does not 
imply optimality of the ensemble. In contrast, in [3] it was shown that second order 
Walsh coefficients may be used to determine optimal ensemble performance. The 
motivation for using Walsh coefficients in ensemble design is fully explored in [4] 
and [2]. For further understanding of the meaning and applications of Walsh coeffi-
cients see [5] and [6]. 

To understand the computation of the weighted vote, the Tumer-Ghosh model [7] 
for ensemble classifiers will be described. This model defines Added Classification 
Error as the difference between classifier error and Bayes error, and provides a 
framework for understanding the reduction in error due to combining. 
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Section 2 explains the computation of the Walsh coefficients, and Section 3 dis-
cusses the relationship with the model of Added Classification Error. In Section 4, the 
weighted vote using Walsh coefficients is compared as the number of nodes and train-
ing epochs of MLP base classifiers are systematically varied. 

2 Walsh Coefficients 

Consider an ensemble framework, in which there are N parallel base classifiers, and 
Xm is the N-dimension vector representing the mth training pattern, formed from the 
decisions of the N classifiers. For a two-class supervised learning problem of μ train-

ing patterns,  the target label given to each pattern Xm is denoted by )( mm XΦ=Ω  

where m = 1 … μ , }1,1{ −∈Ωm   and  Φ  is the unknown Boolean function that 

maps Xm to mΩ . Thus the binary vector Xm represents the mth original training  

pattern 

                                                
),,,( 21 mNmmm XXXX =

            (1) 

where }1,1{ −∈miX  is a vertex in the N-dimensional binary hypercube. The Walsh 

transform of Φ  is derived from the mapping Tn and defined recursively as follows   
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The first and second order spectral coefficients is  and ijs  derived from (2) are  

defined in [5] as 
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In (3) is  represents the correlation between  )( mXΦ  and miX
 

and 

),1,( jiNjisij ≠=   in (4) represents correlation between )( mXΦ  and 

mjmi XX ⊕ , where  ⊕ is logic exclusive-OR.  

Realistic learning problems are ill-posed [8], and therefore Φ  may be partially 
specified, noisy and possibly contradictory. Relationships for computing spectral 
coefficients for partially specified Boolean functions, are proved in [9], for which the 
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context is logic circuit design. The relevant ideas are presented here using different 
terminology, specifically minterms interpreted as patterns. 

In [9], the concept of a standard trivial function Ψ  is introduced. Each spectral 

coefficient gives a correlation value between the Boolean function Φ  and Ψ . For 

first order coefficients, iΨ  is the Boolean variable miX  in (3) while for second order 

coefficients ijΨ  is mjmi XX ⊕  in (4). Note in (4) 1=⊕ mjmi XX  implies pair of 

classifiers i and j disagree for pattern Xm and 0=⊕ mjmi XX  implies classifiers 

agree. For third order coefficients, ijkΨ  is  mkmjmi XXX ⊕⊕  and higher order 

follows, but in this paper we restrict ourselves to first and second order spectral coef-
ficients. 

The equations (3) and (4) require binary variables  }1,1{ −  but for computing coef-

ficients it is notationally more convenient to use }1,0{ . For }1,0{, ∈qp  define pqn  

to be the number of class p patterns of Boolean function Φ  for which both  Φ  and  

Ψ  have the logical value q. Then 11n  is the number of class 1 patterns (true 

minterms in [9]) for which both  Φ  and  Ψ   that have the logical value 1. Similarly  

00n   is the number of class 0 patterns (false minterms in [9]) for which both  Φ  and 

Ψ  have the logical value 0. Corresponding definitions follow for 01n  and 10n . Now 

define 1d  and 0d to be the number of unspecified patterns (don’t care minterms) for 

which   Ψ    has the logical value 1 and 0 respectively. It is clear that the sum of all 
patterns of an N-dimensional Boolean function  is given by 

                                        
Nddnnnn 20110010011 =+++++

 (5) 

According to [9], all spectral coefficients ls   may be computed as  

                                                 
)()( 10010011 nnnnsl +−+=

 
(6)

 

where l  may be i or ij. Substitution of (5) into (6) gives various equivalent formulae, 
but the advantage of (6) is that it is not necessary to include unspecified patterns  

01, dd  explicitly in the computation. 

3 Added Classification Error Model 

Figure 1 shows the two class ( 01 ,ωω ) model of Added Classification Error ( Ε   

darkly shaded region) according to [7], which for simplicity is restricted to one  
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dimension (x). The optimum (Bayes) boundary in Figure 1 is the loci of all points 

)~|()~|(:~
01 xPxPx ωω = . The output of the classifier representing class 1ω  is 

given by  )()|()|(ˆ
111 xxPxP εωω +=  where PP ˆ,  are the actual and estimated 

a posteriori probability distributions as shown in Figure 1, and )(1 xε  is the differ-

ence between them. A similar equation is obtained for class 0ω with 

)|(ˆ),|( 00 xPxP ωω  and error )(0 xε . In Figure 1 b is the amount that the kth 

classifier boundary (xb) differs from the ideal Bayes boundary ( x~ ), and assuming that 
b  is a Gaussian random variable with mean β and variance σb, in [7] it is shown that 

Added Classification Error for kth classifier is given by )( 22 βσ +∇= bk PE where

)~())~|()~|((5.0 01 xpxPxPP ωω ′−′=∇ and P ′  indicates differentiation. 

Figure 2 shows decision boundaries of (i,j)th classifiers for which it is assumed that 
the complexity is not sufficient to approximate the Bayes boundary, so that both clas-

sifiers under-fit. Note in Figure 2 that estimated probabilities )|(ˆ
0 xP ω and 

)|(ˆ
1 xP ω are omitted for clarity. Mutually exclusive areas under the probability 

distribution are labelled 1 – 8 in Figure 2, and denoting the number of patterns in area 
y by ay, the contribution from classifiers i,j  according to area is given in Table 1.  

The model assumptions are discussed in [3], in which the expression for the differ-

ence in Added Classification Error of ith and jth classifiers jiij EEE −=  is derived 

                                                   
)(5.0 γ+=−= ijjiij sEEE

 
(7)

 

where 021 p−=γ  and 0p is the prior probability of class 0ω . 

Averaging over all pairs of classifiers in (7) the mean difference in added error is 
given by  

                                                            


≠

=Δ
jiji

ijEE
,,  

(8)
 

Therefore from (7) and (8) we can approximate mean Added Error by subtracting γ  

and averaging over all pair-wise second order coefficients, call it S2M. In [3] it is 
shown that S2M is a good predictor of ensemble performance as number of epochs is 
increased. For the datasets in Section 4, optimal performance for majority vote occurs 
on average around 2-3 epochs.  

The usual idea in weighted voting is to reward individual classifiers that perform 
accurately [10]. In this paper, a different approach is taken. For classifiers with lower 
training strength, it is expected that classifiers maybe unevenly spread around the 
optimal boundary. The idea is to give larger weight to pairs of classifiers with low 
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Added Error. The classifiers are chosen based on the product of first order  
coefficients as follows. The first order coefficients in (3) are decomposed into the 

contributions from the two classes )( 0111 nn − and )( 0100 nn −  and the weight is 

proportional to their product. The weight of the ith classifier is given by 

                                                
))(( 01001011 nnnnwl −−=

 (9) 

with negative weights in (9) set to zero. Considering Figure 1, classifiers close to the 
Bayes boundary will receive larger weight, but as they move further away, weight is 
decreased and becomes zero as n11 approaches n10 or as n00 approaches n01. When 
classes are unbalanced, (9) tends to favour classifiers on either side of the Bayes 
boundary, in contrast to a weighting scheme based on training error. The weighting 
scheme using (9) is referred to as W1P in Section 4, and shown to reduce the mean 
Added Error given by (8). 

4 Experimental Evidence 

Natural two-class benchmark problems selected from [11] and [12] are shown in  
Table 2.The original features are normalised to mean 0 std 1, and for datasets with 
missing values the scheme suggested in [11] is used. Random perturbation of the 
MLP base classifiers is caused by different starting weights on each run. The number 
of hidden nodes and training epochs of homogenous (same number of nodes and 
epochs) MLP base classifiers are systematically varied over 1-5 epochs and 2-64 
nodes. The experiments are performed with two hundred single hidden-layer MLP 
base classifiers, using the Levenberg-Marquardt training algorithm with default pa-
rameters. Combining uses majority (MAJ) or weighted vote. The random train/test 
split is 20/80 and experiments are repeated twenty times and averaged. Note that, for 

each dataset the class with most patterns is assigned 0ω  to give the same sign to  γ in 

(7). 
Bias/Variance will refer to 0/1 loss function using Breiman’s decomposition [13], 

for which Bias plus Variance plus Bayes equals the base classifier error rate. Bias is 
intended to capture the systematic difference with Bayes, and requires Bayes proba-
bility. Patterns are divided into two sets, the Bias set containing patterns for which the 
Bayes classification disagrees with the ensemble classifier and the Unbias set contain-
ing the remainder. Bias is computed using the Bias Set and Variance is computed 
using the Unbias Set, but both Bias and Variance are defined as the difference be-
tween the probabilities that the Bayes and base classifier predict the correct class la-
bel. The Bayes estimation is performed for 90/10 split using original features, and a 
Support Vector Classifier (SVC) with polynomial kernel run 100 times. The polyno-
mial degree and regularisation constant are varied, and lowest test error is given in 
Table 2. 
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Figure 3 gives mean results over seven datasets, which clearly indicates the overall 
trend. Figure 3 (a) (b) shows base and ensemble (MAJ) test error rates.  
 
Figure 3 (c)-(f) shows difference between MAJ and various weighted vote schemes. 
Figure 3 (c) uses the first order Walsh coefficient (W1D) in (3), Figure 3 (d) is the 
proposed scheme (W1P) using (9), Figure 3 (e) uses the logarithmic weighting 
scheme used in Adaboost (ADA) [14]. Figure 3 (f) uses a trained linear perceptron 
(LIN) to learn the mapping.  All the weighting schemes give a large  improvement 
over MAJ at 1 epoch, the best being W1P, with a 13 percent improvement at 64 
nodes. The best MAJ error occurs at 3-4 epochs, and here there is a small improve-
ment W1P over MAJ of between 0.3 percent at 64 nodes and 1 percent at 4  
nodes. 

Fig. 4 shows various measures to help explain the results. Fig 4 (a) shows the mean 
second order coefficients (S2M), normalised by the total number of training patterns, 
and which is an estimate of the mean added error in (8). Figure 4 (b) is similar to (a) 
but shows coefficients weighted by (9) (for classifier i and j, weight is given by 

2)( ji ww + ). Figure 4 (c) – (f) show bias and variance for MAJ (Bias, Var) and 

W1P (BiasW, VarW). By comparing Figure 4 (a) and (b) the weighted coefficients 
(S2W) shows that weighted classifiers have reduced the Added Error. The Weighted 
bias (BiasW) in (d) is reduced in comparison with Bias in (c).  For 64 nodes, the best 
weighted error rate is at 1 epoch, shown in (d), which is within 1 percent of Bayes 
rate. On the other hand, at 1 epoch Figure 4 (e) (f) show that weighted variance has 
increased, indicating that more diverse classifiers are weighted. 

 

Fig. 1. Model of error region associated with a posteriori probabilities showing optimum 
(Bayes) boundary, kth classifier boundary with  Added Classification Error (Ek) 
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Fig. 2. Model showing pair of classifier boundaries and the difference in Added Classification 

Error between ith and jth classifiers ijE  (area 2) 

 

Fig. 3. Mean test errors over 2-class datasets for [4,8,16,32,64] nodes 1-5 epochs (a)  Base 
Classifier (b) Majority Vote (c) –(f) Weighted votes with MAJ subtracted 
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Fig. 4. (a) Mean measures over 2-class datasets for [4,8,16,32,64] nodes 1-5 epochs (a) Second 
order coefficients (b) Weighted Second order coefficients (c)  Bias (d) Bias W1P (e) Variance 
(f) Variance W1P 

Table 1. Areas under Distribution defined in Fig. 2, showing corresponding number of class ω1, 

ω0 patterns (1st subscript) for which the pair of classifiers agree or disagree (2nd subscript) 

 a1 a2 a3 a4 a5 a6 a7 a8 

ω1 n10 n11 n10 n10 n11 n10 n10  

ω0    n00 n01 n00 n00 n00 

Table 2. Datasets showing # patterns, prior probability ω0, #continuous and discrete features 
and estimated Bayes error 

DATASET #pat  p0 #con #dis %Bay 
cancer 699 .655 0 9 3.1 
card 690 .555 6 9 12.8 
credita 690 .555 3 11 14.1 
diabetes 768 .651 8 0 22.0 
heart 920 .553 5 30 16.1 
ion 351 .641 31 3 6.8 
vote 435 .614 0 16 2.8 
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5 Conclusion 

For two-class supervised learning problems, the spectral representation of the map-
ping between binary base classifier decisions and target class has been analysed with 
the help of the Tumer-Ghosh model of Added Classification Error. If the majority 
vote is weighted by the product of the class-dependent first-order coefficients, the 
ensemble has error rate that is close to optimal, even with fast inaccurate base classi-
fiers. 
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Abstract. Visual recognition of human fall incidents in video clips has
been an active research issue in recent years, However, most published
methods cannot effectively differentiate between fall-down and fall-like
incidents such as sitting and squatting. In this paper, we present a novel
shadow-assistant method for detecting human fall. Normally, complex
3-D models are used to estimate the human height. However, to reduce
the high computational cost, only the information of moving shadow is
used for this context. Because the system is based on a combination of
shadow-assistant height estimation, and a cascade of SVM classifiers,
it can distinguish between fall-down and fall-like incidents with a high
degree of accuracy from very short sequence of 1-10 frames. Our exper-
imental results demonstrate that under bird’s-eye view camera setting,
the proposed system still can achieve 100% detect rate and a low false
alarm rate, while the detection rate of other fall detection schemes have
been dropped dramatically.

Keywords: fall detection, SVM.

1 Introduction

In recent years, visual recognition of human fall incidents in video clips has been
an active research issue. In this paper, we consider the problem of using a mono
un-calibrated camera to detect if senior citizens fall over, called fall-down inci-
dents hereafter. Such incidents normally occur suddenly and take approximately
0.45 to 0.85 seconds. Both the posture and shape of the victim change rapidly,
and he/she usually lies inactive on the floor. Hence, drastic changes in the pos-
ture, shape and height of the body are key features in human fall detection.
However, modeling those features with low computational complexity is a not a
trivial task, especially for accurate human height estimation.

A number of fall detection schemes have been proposed [4-5]. Simple features
derived from shape analysis, such as the aspect ratio of the bounding box, the

� This work was supported by National Science Council of R.O.C. under contract NSC
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angle of the fall and a vertical projection histogram have been used for fall detec-
tion. Rougier [4] proposed a fall detection approach based on the Motion History
Image (MHI) [3] and changes in body shape. Hidden Markov Models (HMMs)
have also been utilized for fall detection. Hiseh [5] developed a triangulation-
based skeleton extraction approach to analyze human movements; however, it
is not designed specifically for detection fall-down incidents. No approach based
on simple features can detect all kinds of human falls. Most video-based fall
detection systems based on simple features suffer from high false alarm rates be-
cause they do not differentiate between fall-like and fall-down incidents. The high
computational cost of human skeleton extraction discourages researchers from
using it for real-time human fall detection. Hence, there is need for a reliable fall
detection system, a combination of several approaches, which can increase the
detection accuracy while still satisfying the real-time constraint.

1.1 A Motivation Example

Figure 1 illustrates the motivation for this paper, which attempted to differ-
entiate the falling posture through the shadow information. We can observe a
correlation between the height of standing, sitting down and falling postures and
their relevant shadow areas. In particular, the shadow area approaches 0 for a
falling posture. Hence, we attempt to investigate the possibility to utilize shadow
information for human fall detection. However, shadow is not a stable image cue,
especially, it is dependent on the capturing conditions. if a person stands just
below a light source, where the projection angle of a light is vertical, the length
of a person’s shadow is still cannot be detected. Hence, there is need an intel-
ligent combination of the shadow information with other approaches which can
increase detection accuracy.

In this paper, we propose a real-time video-based human fall detection system
which can support both bird-view and flat-view camera furnishing. The proposed
system applies a novel shadow-assistant human height estimation scheme to
differentiate between fall-down and fall-like incidents. Normally, complex 3-D
models are required to estimate human height in bird-view camera finishing.

Fig. 1. The shadow (blue) and human foreground (red) for standing, sitting and falling
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However, to reduce the high computational costs, the shadow-assistant approach
instead, even though it provides less information than 3-D models, but satisfies
the requirements of a real-time fall detection system. Furthermore, a fall into
any angle can be detected. Specifically, the proposed approach can successfully
detect fall toward camera with a low computational cost.

The contributions of this paper are two-fold:

1. We have address the use of shadow for visual recognition of human fall.
Although shadows have been used to measure the height of a building on
aerial images. To our knowledge, shadows are first introduced to human
activity recognition in this paper.

2. We develop a fall detection system based on intelligent combination of shadow
analysis,shape analysis and motion analysis, achieve 100% detect rate and a
low false alarm rate from very short sequence of 1-10 frames while satisfying
the real-time constraint.

The remainder of the paper is organized as follows. Section 2 presents foreground
objects and moving shadows segmentation. In Section 3, we describe the novel
shadow-assistant detection scheme. The results of experiments are detailed in
Section 4 and Section 5 concludes the paper.

2 Foreground Objects and Moving Shadows Detection

Foreground object segmentation and moving shadows detection are important
preprocessing steps in human fall detection schemes. We use the statistical back-
ground subtraction and shadow detection algorithm [1] developed by Horprasert
et al.for this context. However, other foreground ground extraction and moving
shadow detection algorithms still can be applied to the proposed fall detection
scheme.

2.1 Background Modeling

In background modeling, we attempt to obtain a background model and its
parameters by several selected images. Each pixel in the background model is
assumed to be independent, and it can be represented as a tuple with four
parameters The background is modeled statistically on a pixel by pixel basis. A
pixel is modeled by a 4-tuple < Ei, Si, ai, bi >. where Si is a standard deviation
of color value. It normalizes the pixel color in this work. It is given by

Si = [σR(i), σG(i), σB(i)] (1)

where σR(i), σG(i), σB(i) are the standard deviations of the i-th pixel’s red,
green, blue values over N training frames. The expected color value of pixel i is
given by

Ei = [μR(i), μG(i), μB(i)] (2)

where μR(i), μG(i), μB(i) denote arithmetic means of the i-th pixel’s red, green,
blue values over N training frames. Let Ii = [IR(i), IG(i), IB(i)] represent the
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pixel’s RGB color value in current image. We want to measure the distortion of
Ii from Ei by discomposing the distortion measurement into two components:
brightness distortion αi and and chromaticity distortion CDi respectively, which
are defined in Equations (3) and (4).

αi =

(
IR(i)μR(i)

σ2
R(i)

+ IG(i)μG(i)
σ2
G(i)

+ IB(i)μB(i)
σ2
B(i)

)
([

μR(i)
σR(i)

]2
+
[
μG(i)
σG(i)

]2
+
[
μB(i)
σB(i)

]2) (3)

CDi =

√(
IR (i)− αiμR (i)

σR (i)

)2(
IG (i)− αiμG (i)

σG (i)

)2(
IB (i)− αiμB (i)

σB (i)

)2
(4)

Furthermore, we consider the variation of the brightness and chromaticity dis-
tortions over space and time of the training background images. ai represents
the variation of the brightness distortion of i-th pixel, which is given by

ai =

√∑N
i=0 (αi − 1)

2

N
(5)

bi represents the variation of the chromaticity distortion of i-th pixel, which is
given by

bi =

√∑N
i=0 (CDi)

2

N
(6)

2.2 Pixel Classification

Since the different pixels yield different distribution of αi and CDi. In order to
use a single threshold for all of pixels, we re-scale αi and CDi as normalized
brightness distortion α̂i and chromaticity distortion ĈDi respectively.

α̂i =
αi − 1

ai
(7)

ĈDi =
CDi

ai
(8)

Each pixel M(i) is classified into one of the four categories: B (Background),
S (Shadow),H (Highlighted background), and F (Foreground object) by the
following decision rule:

M (i) =

⎧⎪⎪⎨⎪⎪⎩
F :
B :
S :
H :

ĈDi > τCD or α̂i < ταlo, else
α̂i < τα1 and α̂i > τα2, else
α̂i < 0 else

otherwise

(9)

where τCD, ταlo, τα1, and τα2 are selected threshold values to determine the sim-
ilarities of the chromaticity and brightness between the background image and
the current observed image.
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3 Human Fall Detection System

3.1 System Description

After Foreground object segmentation and object tracking, the system begins to
perform fall detection. The proposed fall detection scheme as shown in Figure 2
consists of cascaded classifiers which integrates height estimation, posture anal-
ysis, shape analysis, and inactivity detection. We assume that a person is in an
upright posture when first appearing in the video sequence and becomes immo-
bile on the floor after a fall. All video sequences are captured by a stationary
camera, which can be furnished in either a flat-view or a bird view.

Since Histograms of Oriented Gradients (HOG)[2] detectors have shown to
give significantly high performance in upright human detection, first, an input
image is sent to the HOG-based upright posture detector. Next, any non-upright
human foreground is sent to a shadow-assistant falling posture detector as shown
in Figure 3, which performs height estimation and shape analysis to detect a
falling posture. Finally, we confirm a fall incident by monitoring the inactivity
of the person by using a motion history image (MHI)[3].

For classification in the upright posture detection,the falling posture detec-
tor and inactivity detector, we use state-of-the-art machine learning techniques-
support vector machines, which have been a popular approach for pattern
classification and nonlinear regression because of its robustness even in the
absence of a rich set of training examples. The virtual height, the HOG vec-
tor, and MHI vector are major features in the proposed fall detection scheme,
which will be discussed in the following sections.

Fig. 2. The flowchart of the shadow-assistant fall detector
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Fig. 3. The flowchart of the falling posture detection scheme

3.2 Upright Posture Detection

The Histogram of Oriented Gradient (HoG) human detector [2] is applied to
detect the upright human posture. This detector combined locally normalized
histogram of oriented Gradient (HoG) descriptor and a linear support vector
machine classifier. The major idea behind the Histogram of Oriented Gradient
descriptors is to describe local object appearance and shape by the distribu-
tion of intensity gradients or edge direction. The HOG upright posture detector
consists of the following steps: gradient computation, orientation binning, block
normalization and SVM classifiers. The input to the SVM upright pose classifier
comes from a HOG vector in the foreground object. However, instead of using all
pixels in an image to compute HOG, only pixels within a bounding box enclosed
the foreground object. Similar to the SVM height classifier, The sign +1 of the
SVM output was assigned to the upright posture and -1 to the non- upright pos-
ture. The details of the Histogram of Oriented Gradient (HoG) human detector
can be found in [2].

3.3 Shadow-Assistant Falling Posture Detector

The virtual height, denoted as Vh, is defined as

Vh (B) =

{
HSa

WFa
ifB �= 0

H
W ifB = 0

(10)

where H and W are the height and the width of a bounding box respectively, Sa

represents the areas of a shadow, and Fa represent area of a foreground object,
which are given by:

Sa =

n∑
i=1

δ(M(i)− S) (11)
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Fa =

n∑
i=1

δ(M(i)− F ) (12)

If the shadow is occurring, both shadow analysis and shape analysis, such as the
aspect ratio of the bounding box, are used to detect the falling posture, whereas,
if the shadow is not available, only the shape analysis is considered to detect the
falling posture.

We assume that a person first appears in the scene with an upright posture.
We can use the first few images in the video sequence to detect the presence of
the shadow. If the upright detector is flagged as positive and the shadow area is
approximate to zero, the shadow information cannot be used for human falling
detection. However, if the upright detector is flagged as positive, and the shadow
area is larger than a threshold, the shadow information cannot be used to the
human fall.

B is the index of the shadow-assistant function in the human fall detection
system. If B = 1, the shadow-assistant function operates. On the other hand,
if B = 0 the shadow information will not be considered in the proposed human
fall detection scheme.

B =

{
1 if Ur(t) = 1 and S(t) = 1
0 if Ur(t) = 1 and S(t) = 0

(13)

where Ur(t) is the upright detector for frame(t) and Ur(t) = 1 if the upright
detector classifies frame(t) as an upright human posture and Ur(t) = 0 otherwise.
S(t) is the shadow index for frame(t) and S(t) = 1 if the area of the human
shadow in frame(t) is larger than a predefined threshold and S(t) = 0 otherwise.

3.4 Inactivity Detector

Motion History Image (MHI) [3] is defined by a simple replacement and decay
operators:

Hτ (x, y, t) =

{
τ if D(x, y, t) = 1

max (Hτ (x, y, t− 1)− 1) otherwise

whereD(x, y, t) is a binary image sequence indicating region of motion, generated
by image differing.

Motion History Image (MHI) is a scalar-value image where more recently
moving pixels are brighter. The Motion History Image can be used to represent
how motion the image is moving.

We check the following condition to confirm the occurrence of a fall-down
incident: the Motion History Image (MHI) of the human object is lower than
the threshold Tp. This condition confirms that the person is inactive for a period
of time after a fall.
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4 Experiments and Results

4.1 Experimental Settings

In order to validate the efficacy of the shadow-assistant shape analysis for hu-
man fall detection, we perform experiments on five datasets: NTUST bird-view
dataset, NTUST outdoor dataset, NTUST Lab dataset, ETHZ dataset, and
Shoaib dataset. Since the page is limited, only the performance of NTUST bird-
view dataset and Shoaib dataset are reported in this paper. We implemented the
proposed shadow-based fall detection system on Intel’s OpenCV library. The ex-
periments were run on a PC with Windows XP, an Intel Pentium D 3.2GHz CPU
and a 2 GB RAM. The performance metrics used in the fall detection experi-
ments are the detection rate Pd and the false alarm rate Pn. The detection rate,
i.e., the fraction of fall events detected correctly, is calculated as follows:

Pd =
TP

(TP + FN)
Pn =

FP

(TN + FP )

where true positive (TP ) and true negative (TN) are the counts of correct
detection while false positive (FP ) and false negative (FN) are the counts of
incorrect prediction.

We compared the performance of the proposed fall detection system with
that of existing approaches: approach 1: the proposed shadow assistant scheme,
approach 2: combination of shape analysis and MHI [4], approach 3: Skeleton
matching [5] and, approach 4: Shape analysis. shape analysis uses the aspect ratio
of the bounding box as a feature and Support Vector Machine as a classifier. In
skeleton matching, a skeletons is classified by near-neighbor scheme and the
distance map is used as the distance function.

4.2 Experiments on NTUST Bird-View and Shoaib Data-Sets

NTUST bird-view dataset as shown in Figure 4 contains 6 activities performed
by one actor in the NTUST design square, an outdoor environment and captured
in a bird-view by a single stationary and un-calibrated camera furnished on 8
meters height. The dataset consists of 54 actions in 1800 frames, including 27
falling actions, 7 sitting-down on the ground, 5 sitting on a chair, 4 squat actions,
8 bend actions and 12 walking actions. Shoaib data-set contains one actor in a
cluttered home environment.

The proposed shadow-assistant scheme outperforms other fall-detection ap-
proaches in both the NTUST bird-view dataset and Shoaib dataset as shown in
Table 1 and Table 2 since the only light source in the NTUST bird-view dataset is
the sunlight, a simple point light source, which can cast simple shadow contours.
The detection rate of other human fall-down detection schemes drop significantly
in bird-view dataset in compassion with they did in flat-view datasets since the
actual height of a human posture in a bird-view image by cannot be estimated
by conventional two-dimensional fall detection schemes. The average execution
time of the shadow-assistant scheme takes 0.156 second per frame, which satisfies
the real-time constraint.
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Fig. 4. Parts of the test videos:(left three) walking, sitting-down, and falling down from
brid-view dataset, and (right two) bending and falling down from Shoaib dataset

Table 1. Comparison of fall detection
schemes for outdoor bird view data sets

approach TP FN TN FP Pd Pn

our approach 27 0 34 2 1.00 0.055

approach 2 20 7 25 11 0.74 0.31

approach 3 24 3 33 3 0.889 0.08

approach 4 25 2 31 5 0.926 0.138

Table 2. Comparison of fall detection
schemes for Shoaib data sets

approach TP FN TN FP Pd Pn

our approach 10 0 24 4 1.00 0.166

approach 2 8 2 23 5 0.80 0.217

approach 3 4 6 26 2 0.40 0.077

approach 4 10 0 14 14 1.00 0.500

5 Conclusion

We have presented a novel shadow-assistant human fall detection system which
can support different viewpoints. The robust human fall detection scheme relies
on shadow and shape analysis to differentiate fall-down and fall-like incidents
under different viewpoints. Our experiment results demonstrate that the pro-
posed system can achieve a high detection rate and low false alarm rate while
satisfying real-time constraints.
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Abstract. Co-training is a well known semi-supervised learning algorithm, in
which two classifiers are trained on two different views (feature sets): the ini-
tially small training set is iteratively updated with unlabelled samples classified
with high confidence by one of the two classifiers. In this paper we address an
issue that has been overlooked so far in the literature, namely, how co-training
performance is affected by the size of the initial training set, as it decreases to the
minimum value below which a given learning algorithm can not be applied any-
more. In this paper we address this issue empirically, testing the algorithm on 24
real datasets artificially splitted in two views, using two different base classifiers.
Our results show that a very small training set, even made up of one only labelled
sample per class, does not adversely affect co-training performance.

Keywords: Semi-supervised learning, Co-training, Small sample size.

1 Introduction

Semi-supervised learning (SSL) methods are useful in many practical applications in
which a small set of labelled samplesL is available, but a large set of unlabelled samples
U can be exploited to improve the performance of learning algorithms. Typical exam-
ples are text (e.g., Web page) classification, and biometric authentication. Co-training is
a well known SSL algorithm originally proposed in [1], for binary classification prob-
lems in which two different views (feature spaces) X1 and X2 are available. Start-
ing from a small training set L = {(x1

i , x
2
i , yi)}nL

i=1, where x1
i ∈ X1, x2

i ∈ X2 and
y ∈ {−1,+1}, it consists of iteratively re-training a pair of classifiers f1 : X1 → Y
and f2 : X2 → Y , adding to L at each step the unlabelled samples from a given set
U = {(x1

i , x
2
i )}nU

i=1 that are classified with high confidence by one of the classifiers.
Under the assumption of conditional independence between the views, given the class
Y (i.e., P (X1, X2|Y ) = P (X1|Y )P (X2|Y ), and of sufficiency of each view (i.e., the
classes can be perfectly discriminated in each view, if there were a sufficient number
of samples), it was shown that co-training allows both classifiers to attain the same
performance as they were trained on a large set of labelled samples.

Several authors have theoretically or empirically investigated several aspects of co-
training; for instance, how it works when the original assumptions do not hold (which

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 719–726, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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can often happen in practice), or how it works under different and less restrictive as-
sumptions. Balcan et al. [2] provide a PAC-style analysis, and showed that it is possible
to relax the condition of independence between the views, if the classifiers are never
“confident but wrong”. Christoudias el al. [3] examined settings in which classifiers are
not compatible due to noise in one view (i.e., even in a ideal situation with a very large
training set, their decisions disagree). Didaci and Roli [4] investigated, form a Bayesian
point of view, the consequence of the non-sufficiency of the views. Du et al. [5] inves-
tigated the possibility of predicting whether co-training will work or not for a given
problem, and whether single-view problems can be artificially decomposed into two
views to exploit co-training. Zhou et al. [6] considered the limit case when only one la-
belled sample (x, y) is available, and thus co-training can not be applied, and proposed
a method for adding to (x, y) artificially labelled samples to enable the application of
co-training.

In this work we address a different aspect of co-training behaviour that has been
overlooked in the literature so far, namely, how it performs as the size of L decreases
toward the minimum possible value, below which a given learning algorithm can not
be applied anymore. As an example, to estimate the covariance matrix of a linear or
quadratic Gaussian classifier, at least two samples are needed for each class. In this
paper we address this issue empirically, using 24 single-view data sets from the UCI
Repository [7], and two different base classifiers. Our goal is to provide a first answer
to the questions of whether, and to what extent the performance of co-training is affected
by the size of the initial training set L.

After a summary of the co-training algorithm and of previous works in Sect. 2, in
Sect. 3 and 4 we present the results of our experiments. Conclusions are drawn in
Sect. 5.

2 Background

2.1 The Co-training Algorithm

In this paper we consider the standard version of the co-training algorithm given in [1],
which is reported as Algorithm 1. First, a subset U ′ of unlabelled samples is randomly
selected from the available data set U . Then, the following steps are repeated for a
predefined number of iterations. Two separate classifiers, f1 and f2, one for each view,
are trained on the initial, small, training set L, and are then used to label the samples in
U ′. For each classifier, the p samples of class +1 and the n samples of class−1 that are
labelled with the highest confidence among the ones of U ′ are added to L. Classifier
confidence can be evaluated, for instance, as the estimated posterior probability, while
p and n are chosen such that they are proportional to the (estimated) class priors. The
selected 2p + 2n samples are then removed from U ′, and other 2p + 2n samples are
randomly selected from U and added to U ′. The reason of using a subset U ′ of the
unlabelled samples U is that this forces f1 and f2 to select samples that are more
representative of the underlying distribution, even if they may be not the ones labelled
with highest confidence among the ones in U [1].

Previous works on co-training mainly considered Naive Bayes and decision trees as
base classifiers. Nevertheless, to the purpose of this work, we point out that each base
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Algorithm 1. Co-training algorithm
Input: L and U : sets of nL labelled and nU unlabelled samples, respectively, represented in two
views X1 and X2; k: number of iterations; nU′ < nU : number of samples to be drawn from nU;
n, p: number of pattern selected by each classifier at each step. n, p are proportional to priors.
Output: two trained classifiers f1 : X1 → Y and f2 : X2 → Y .

U ′ ← a set of nU′ samples randomly drawn from U
for k iterations do

Train a classifier f1 on the X1 view of L, and a classifier f2 on the X2 view of L
for i = 1, 2 do

Let f i labels all samples in U ′

U ′
i ← the p samples labelled as +1 and the n ones labelled as −1 with higher confidence

by f i

L ← L ∪ U ′
i , U ′ ← U ′ − U ′

i

end for
Randomly choose 2p+ 2n samples from U , and move them to U ′

end for

classifier has an intrinsic limit to the minimum number of labelled samples of each class
in the training set, that allows the corresponding learning algorithm to be applied. We
denote these values as |L+|min and |L−|min, respectively for y = +1 and y = −1.
Usually |L+|min = |L−|min. In some cases |L+|min = |L−|min = 1 (e.g., a support
vector machine), while in other cases both values can be greater than 1 (e.g., Gaussian
classifiers).

2.2 Previous Works

Among previous works on co-training, we mention here the ones that are most related
to this paper.

In [2] it was shown that the assumption of conditional independence given the class
label can be relaxed, provided that the learning algorithm is never “confident but wrong”,
i.e., it never misclassifies samples with high confidence. This result could in principle be
exploited to make co-training work even when the initial L is very small, as discussed
in Sect. 4.

In [6], the limit case when only one labelled sample is available was considered,
namely |L| = 1. This can happen in applications like content-based image retrieval,
and online web-page recommendation. In this case the standard co-training algorithm
can not be applied, since it requires a binary base classifier. The proposed solution is
first to label and add to L some samples of U , using a different SSL method, such
that both classes are represented, and then run co-training, starting from the updated L.
The resulting performance of co-training was evaluated for some different sizes of L.
However, sizes very close, or equal, to the minimum one required to run the considered
base classifiers were not considered.

Finally, in [5] the possibility of predicting whether co-training will work for a given
problem was investigated. To this aim, methods for estimating whether the original
assumptions of [1] hold or not were devised, using the samples of L. The conclusion
was that no reliable estimate can be obtained from a small L. The related problem of
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artificially decomposing single-view problems (with a small set of labelled samples)
into two views, to exploit co-training, was addressed in the same work. No effective
method was found to this aim. The reason is that this requires to find the “best” split of
the original feature set, according to the co-training underlying assumptions. However,
the validity of such assumptions can not be determined from a small L.

In our experiments we will exploit the methods of [5] to artificially split the con-
sidered data sets into two views, since for our purposes the best split can be estimated
using the whole labelled data sets.

3 Experimental Setup

Co-training was implemented as in Algorithm 1, with |U ′| = 0.3|U |, similarly to [1,5].
We chose the values of p and n, such that p/n is (approximately) equal to the estimated
class priors. According to [2], to this end we chose the smallest possible p and n. We set
the number k of co-training iterations in order to allow co-training to collect all samples
in U . The exact value of k depends thus on the size of the data set, and on the values of
n and p.

Two different base classifiers were used: Naive Bayes (NB), and K-nearest neigh-
bors (K-NN), with K = 1. In the case of real-valued features, NB was implemented
by subdividing their range into 10 bins of equal width. The experiments have been car-
ried out on 24 single-view two-class data sets, previously used in [5]. They have been
artificially subdivided into two views using the method proposed in [5], which aims at
minimising the correlation between the corresponding feature subsets, given the class,
and maximising the separability of classes in each view, to meet as much as possible
the assumptions of [1].

Ten different runs of the experiments have been made. At each run, each data set
was randomly subdivided into a labelled training set L, an unlabelled data set U , and
a testing set. We considered different sizes of L, as explained below. The size of the
testing set was 25% of the entire data set, whilst the remaining data was used as the
set U .

The goal of our experiments was to analyse the behaviour of co-training, as the size
of L decreases to |L|min = |L+|min + |L−|min. Note that, with the chosen base classi-
fiers, |L+|min = |L−|min = 1. To this aim, we considered values of |L| ranging from
2 (i.e., |L+| = |L−| = 1) to 50% of the entire data set. L was obtained by stratified
sampling from the whole data set, i.e., |L+| and |L−| were chosen such that |L+|/|L−|
was (almost) equal to the original proportion between the two classes. When the size of
L was reduced to the extent that the corresponding |L+| or |L−| (chosen as explained
above) attained its lowest possible value (respectively, |L+|min and |L−|min), then the
most populated class was undersampled. Note that, in this case, L was not representa-
tive of the underlying class priors.

At each run, and for each given L, we run co-training and computed its testing set
performance. We then checked whether co-training performance attained for |L| =
|L|min was better than the performance attained by the corresponding base classifier
trained on the same L, without co-training. If not, we checked for which size of L
(if any) co-training outperformed the base classifier trained on the same L, without
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co-training. We considered two performances significantly different, if the difference
between their average values over the ten runs was higher than the sum of the corre-
sponding standard deviations, divided by the square root of the number or runs.

4 Experimental Results

In Table 1 we report the characteristics of the data sets used in the experiments. Table 2
shows the comparison between co-training performance attained for |L| = |L|min, and
the performance attained by the corresponding base classifier trained on the same L,
without co-training, for both classifiers. The meaning of table entries is the following:
0: no statistically significant performance difference in both views; 1: co-training was
outperformed by the base classifier in both views; 1*: co-training was outperformed by
the base classifier in one view, no statistically significant performance difference in the

Table 1. Characteristics of the data sets used in the experiments. An asterisk after the data set
name denotes that its classes have been merged into two artificial classes, as in [5]. The numbers
between brackets in the “n. samples” column denote the number of samples per class. The column
“views size” reports the number of features in each view, obtained with the method of [5].

ID Dataset n.features n. samples views size

1 Audiology∗ 55 200 [48, 152] 31/24
2 Automobile∗ 24 193 [130, 63] 22/2
3 Breast Cancer W. 8 699 [458, 241] 5/3
4 Winsconsin D. 30 569 [212, 357] 11/19
5 Winsconsin Progn. 1 33 194 [46, 148] 12/22
6 Winsconsin Progn. 2 32 198 [47, 151] 13/19
7 Contraceptive Method 9 1473 [629, 844] 2/7
8 Horse colic 5 368 [232, 136] 4/1
9 Credit Approval 15 653 [296, 357] 9/6
10 Dermatology∗ 33 366 [112,254] 17/16
11 Pima Indians Diabetes 8 768 [500, 268] 6/2
12 E.Coli∗ 7 336 [143/193] 3/4
13 Flags∗ 28 194 [134/60] 15/13
14 Heart (Cleveland)∗ 11 303 [164, 139] 5/6
15 Heart (LongBeach)∗ 4 200 [144, 56] 2/2
16 Heart-statlog 13 270 [150, 120] 4/9
17 Hepatitis 1 19 80 [13, 67] 12/7
18 Ionosphere 33 351 [225, 126] 6/27
19 Chess (King Rook vs King Pawn) 36 3196 [1669, 1527] 13/23
20 SolarFlare 2∗ 10 1389 [1321, 68] 8/2
21 Sonar Mines vs. Rocks 60 208 [97, 111] 34/26
22 Spambase 57 4601 [2788, 1813] 21/36
23 Splice2∗ 60 3186 [1532, 1654] 32/28
24 Tic-Tac-Toe 8 958 [626, 332] 3/2
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Table 2. Comparison between the average co-training performance attained for |L| = |L|min,
and the average performance attained by the corresponding base classifier trained on the same L,
without co-training (see the text for the meaning of table entries)

ID Dataset Naive Bayes K-NN

1 Audiology∗ 2 2*
2 Automobile∗ 2* 2*
3 Breast Cancer W. 2 2
4 Winsconsin D. 2 2
5 Winsconsin Progn. 1 2* 2
6 Winsconsin Progn. 2 2 2
7 Contraceptive Method 1* 1
8 Horse colic 0 1*
9 Credit Approval 2 0
10 Dermatology∗ 2 2
11 Pima Indians Diabetes 0 2*
12 E.Coli∗ 2 0
13 Flags∗ 2 2
14 Heart (Cleveland)∗ 2 0
15 Heart (LongBeach)∗ 2* 2
16 Heart-statlog 2 -
17 Hepatitis 1 2 2*
18 Ionosphere 2 0
19 Chess (King Rook vs King Pawn) 1 1*
20 SolarFlare 2∗ 2 2
21 Sonar Mines vs. Rocks 0 0
22 Spambase 2 0
23 Splice2∗ 0 1*
24 Tic-Tac-Toe 0 2

other view; 2: co-training outperformed the base classifier in both views; 2*: co-training
outperformed the base classifier in one view, no statistically significant performance
difference in the other view; -: co-training outperformed the base classifier in one view,
and was outperformed by the base classifier in the other view.

When Naive Bayes was used, co-training outperformed in both views the base clas-
sifier trained only on L, in 14 data sets. It was instead outperformed in both views only
once (Chess data set). The performance was similar in the remaining 5 data sets. When
the K-NN classifier was used, results were similar: co-training was better than the base
classifier, on both views, in 9 data sets; it was outperformed by the base classifier in one
data set (Contraceptive Method); their performance was similar in the other 6 data sets.

We then evaluated co-training performance as above, for |L| > |L|min. The results
(not reported here due to lack of space) showed that, when co-training outperformed in
both views the base classifier for |L| = |L|min, the same happened for |L| > |L|min. A
representative example of this behaviour is reported in Fig. 1 for the Hepatitis 1 data set.
Note that co-training performance is almost constant for all the considered |L| values.
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Fig. 1. Co-training performance on the Hepatitis 1 data set, as a function of |L+| = |L−|, using
the NB classifier. “Before co-training”: average performance of the base classifier trained on L.
“After co-training”: average co-training performance, starting from the same L. The minimum
(MIN) and (MAX) co-training accuracy is also reported, over the ten runs. For reference, the
average performance of the base classifier trained on L + U , using the true class labels of the
samples in U , is also shown (“Supervision”).

These results suggest that co-training performance seems not affected by the size of
L, and that co-training can work (i.e., can outperform the base classifier trained only on
L) also for very small |L| values, including |L| = |L|min = 2.

5 Conclusions

We addressed the issue of evaluating co-training performance as a function of the size
of the labelled training set L, as it decreases to the minimum value below which the
considered base classifier can not be applied anymore. Results attained on 24 real data
sets, artificially splitted into two views, using two different base classifiers, showed
that: (i) co-training performance seems not affected when L reduces to the smallest set
of samples that allows the chosen learning algorithm to run; (ii) it can outperform the
base classifier trained on L, for any size of L, and, in particular, also in the limit case
|L| = |L|min. In other words, co-training can work even with one sample per class. This
behaviour could be explained by the results of [2], mentioned in Sect. 2.2. Even if the
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two base classifiers trained on the initial L have a poor accuracy (which is likely to hap-
pen, when L is very small), adding to L only a few unlabelled samples that are classified
with the highest confidence may prevent from introducing mislabelled samples in the
updated training set. This allows the training set to become more representative of the
underlying distribution at each iteration, especially if the two views are independent, or
at least exhibit a low correlation. Accordingly, a very conservative updating policy of L
could be beneficial to co-training, when L is very small.

We point out that these results do not allow one to reliably predict whether co-
training will work, for a given, real data set, i.e., whether it will outperform the base
classifier trained on L. This remains an open issue, as shown in [5]. Our results nev-
ertheless provide evidence that a very small L is not an adverse factor for co-training
performance.

Acknowledgment. This work has been partly supported by the project CRP-18293
funded by Regione Autonoma della Sardegna, L.R. 7/2007, Bando 2009.

References

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceed-
ings 11th Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)

2. Balcan, M.F., Blum, A., Yang, K., Saul, L.K.: Co-Training and Expansion: Towards Bridging
Theory and Practice. In: Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Process-
ing Systems 17, pp. 89–96. MIT Press (2005)

3. Christoudias, C.M., Urtasun, R., Kapoorz, A., Darrell, T.: Co-training with noisy perceptual
observations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2844–
2851 (2009)

4. Didaci, L., Roli, F.: A Bayesian Analysis of Co-Training Algorithm with Insufficient Views.
In: Proc. 11th International Conference on Information Science, Signal Processing and their
Applications, pp. 1141–1145. IEEE (2012)

5. Du, J., Ling, C.X., Zhou, Z.-H.: When Does Co-Training Work in Real Data? IEEE Transac-
tions on Knowledge and Data Engineering 23(35), 788–799 (2011)

6. Zhou, Z.-H., Zhan, D.-C., Yang, Q.: Semi-Supervised Learning with Very Few Labeled Train-
ing Examples. In: Proc. AAAI, pp. 675–680 (2007)

7. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School
of Information and Computer Science, Irvine, CA (2010),
http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml


Classification of High-Dimension PDFs Using

the Hungarian Algorithm

James S. Cope and Paolo Remagnino

Digital Imaging Research Centre, Kingston University, London, UK
{j.cope,p.remagnino}@kingston.ac.uk

Abstract. The Hungarian algorithm can be used to calculate the earth
mover’s distance, as a measure of the difference between two probability
density functions, when the pdfs are described by sets of n points sam-
pled from their distributions. However, information generated by the
algorithm about precisely how the pdfs are different is not utilized. In
this paper, a method is presented that incorporates this information into
a ‘bag-of-words’ type method, in order to increase the robustness of a
classification. This method is applied to an image classification problem,
and is found to outperform several existing methods.

1 Introduction

For many machine learning problems, an object of data, e.g. an item to be
classified, can be described as a single point within a feature space. Many dif-
ferent methods exist for classifying such objects, from simple methods, such
as k-nearest-neighbour, to more sophisticated methods, such as support vec-
tor machines. However it is sometimes more appropriate to describe an object
as a distribution within a feature space. A number of methods also exist for
classifying data of this type. When described using histograms, the difference
between two probability density functions (pdfs) can be calculated using bin-
by-bin methods, such as the Jeffrey-divergence metric, however these methods
encounter problems when the data has a high dimensionality, where a large num-
ber of bins makes the calculation expensive, whilst the sparse population of bins
causes poor results. The earth mover’s distance (EMD) [7] deals this by using
signatures, and provides an accurate and intuitive measurement. These ‘signa-
tures’ are weighted points within the feature space. This is akin to clustering
data points drawn from the distribution, and weighting each cluster centroid by
the number of points in the cluster. Another method is to use kernel density es-
timation to estimate a probability density function using points sampled from a
distribution, and then to use this estimation to predict the probability of another
sampling of points belonging to the same distribution. More recently, ‘bag-of-
words’ methods have enjoyed increasing usage for this problem, particularly in
the guise of ‘bag-of-visual-words’ [8] for image retrieval.

In this paper we utilize information generated in the calculation of the earth
mover’s distance in order to allow for more robust classification of pdfs, combin-
ing this with the strengths of the ‘bag-of-words’ method.
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In section 2 we describe the EMD and ‘bag-of-words’ methods in more de-
tail. In section 3 a new bag-of-words method is described. A comparison of this
methods to other common methods, using empirical results, is given in section 4.

2 Background

2.1 The Hungarian Algorithm and the Earth Mover’s Distance

The earth mover’s distance (EMD) [7] is a measure of the difference between two
pdfs. The analogy is that, to reform one mound of earth as another, the effort
required would depend on the sum the of distances that each unit of dirt must be
moved. Whilst bin-by-bin methods only consider the amount of ‘earth’ in each
location, the EMD considers how far it must be moved. There are two forms of
pdf descriptions that allow the EMD to be calculated, histogram binning, and
the aforementioned signatures. Since the binning is analogous to using evenly
spaced signatures, we need only consider the latter.

Whilst there may be many ways of reforming one pdf into another, the EMD
is calculated as being the one that requires the minimum total movement. The
standard way of determining this is to model it as the transportation problem.
There are a number of methods for solving the transportation problem, but
by reforming the data so that each signature has an equal weight, it becomes
equivalent to the simpler assignment problem, which can be solved using the
Hungarian algorithm [5]. Whilst the original Hungarian algorithm was O(n4),
an O(n3) version has since been found by Edmond and Karp [4].

The EMD only uses the minimum cost calculated by the Hungarian algorithm,
but in our usage here we will also record the corresponding mapping between
signatures, as it provides not only a measurement of the difference between the
pdfs, but also information about in what way they are different.

2.2 The Bag-of-Words Model

The ‘bag-of-words’ model was originally used for the retrieval of text docu-
ments [9]. The idea was to represent documents as the frequency of occurrence
of different words, and to find similar documents by comparing these frequen-
cies. In recent years this concept has been extended to allow for the classifi-
cation of more general forms of data. Typically, a large number of points are
sampled from the training distributions and then a clustering is performed on
these. The cluster centroids are used as the ‘codewords’ in a ‘dictionary’ used to
perform a quantization of the data, by assigning each data-point to its nearest
‘codeword’. A set of points from a distribution can then be described as the fre-
quency of occurrence of each ‘codeword’. This concept has seen much use recently
in the field of computer vision, for tasks such as image retrieval [1,8] and texture
analysis [6,10].
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3 Methodology

We define the problem as follows. An object, X , is described by a set of n data
points, X = {x̄1, x̄2, ...x̄n}, sampled from a distribution. Each data point x̄ is
a feature vector, x̄ = [x1, x2, ..., xd], where d is the number of features. Given
a number of different classes, where class i is described by another set of n
data points, Ci = {ȳ1, ȳ2, ...ȳn}, drawn from all objects in the training set that
belong to the class, we wish to determine the class to which object X most likely
belongs. This is calculated using Bayes theorem.

The method involves first generating a set of codewords from the training set,
suitable for representing the data. All points in the training and class objects are
assigned to their nearest codeword. A mapping is calculated between the data
points in each training object and its corresponding class object. For each pair of
codewords and each class, the probability is calculated of a mapping having its
training object point assigned to the first of these codewords and its class point
assigned to the second. For classification, the same codeword assignments and
mappings are performed, and the previously calculated probabilities are used to
determine the class which the object belongs to.

3.1 Generating a Vocabulary

Within the literature there has been much discussion on the appropriate methods
for generating, and ideal size of, the codeword dictionary. The simplest approach
is choose points evenly distributed throughout the feature space. The main dis-
advantage of this is that large portions of the space may not be used, resulting
in redundant codewords, whilst other, more useful areas may receive inadequate
representation. Another simple method is to use randomly selected points from
the training data as the codewords. This largely eradicates the above problems,
although using the centroids from a clustering performed on the training data
normally provides a better representation. Another approach is to perform a
separate clustering for each class and combining the generated codewords. This
ensures that each class has some appropriate codewords, but may result in very
similar codewords in the combined dictionary. We found that a k-means cluster-
ing of the whole training set produces an appropriate dictionary for our method.

There is no consensus on the size of a dictionary, with suggestions vary-
ing greatly, but for this method we found that, with objects described using
1024 point, a dictionary of size 256 produced good results, with larger dic-
tionaries providing little or no improvement. We call the ith codeword in the
dictionary Di.

3.2 Producing the Class Models

For each class, a class object is produced by randomly selecting n points from the
class’s example in the training set. For each training object, a mapping is found
from its data points to those its class object using the Hungarian algorithm.
This mapping pairs the points in one object to those in the other, such that the
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sum of the squared Euclidean distances between paired points is minimised. We
define the point in the class object Ci to which point x̄ is paired as M(x̄, Ci).

Each point in the training data is assigned to its nearest codeword. For each
class i, for each pair of codewords, (Da, Db), the conditional probability is cal-
culated of a point x̄ in that class’s training data being assigned to codeword Da,
given that the corresponding point in the class object has been assigned to Db.
This is calculated as follows:

P (x̄ ∈ Da|M(x̄, Ci) ∈ Db) (1)

=
P (x̄ ∈ Da,M(x̄, Ci) ∈ Db)

P (M(x̄, Ci) ∈ Db)
(2)

where

P (x̄ ∈ Da,M(x̄, Ci) ∈ Db) =
∑

Tij∈Da

M(Tij ,Ci)∈Db

1

|Ti|
(3)

P (M(x̄, Ci) ∈ Db) =

|D|∑
d=0

P (x̄ ∈ Dd,M(x̄, Ci) ∈ Db) (4)

where Tij is the jth point, |Ti| is the total number of points in the training data
for class i, |D| is the number of codewords, and x̄ ∈ Da indicates that point x̄
has been assigned to codeword Da (likewise, M(x̄, Ci) ∈ Db indicates that the
point which x̄ is paired with is assigned to codeword Db).

Equation 3 calculates the probability of a point in Da being mapped to a
point in Db as the fraction of training points for a class Ci for which this occurs.
The probablity of a point, from any codeword, being mapped to one in Db is
then the sum of these for all codewords (equation 4).

3.3 Performing the Classification

To classify an object, we again assign all of the object’s data points to determine
to their nearest codewords. The object is mapped using the Hungarian algorithm
to each of the class objects. We can then determine the class to which the object
belongs using a Bayesian classifier.

c∗ = argmax
i

P (X |Ci)P (Ci) (5)

P (Ci) =
|Ti|∑
j |Tj|

(6)

P (X |Ci) =
∏
x̄∈X

P (x̄ ∈ Da|M(x̄, Ci) ∈ Db) (7)
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4 Experiments

In this section the new algorithm is empirically evaluated by comparing it to a
selection of other techniques. For these experiments we have 32 different classes,
with 16 examples of each, performing a 16-fold cross validation. Each example’s
object has 1024 data-points. For the first method we use a dictionary of 64
codewords, and for the second method we use 16 clusters for each class.

To test the algorithm we apply it to a visual computing problem, the clas-
sification of plant species from images of their leaves. This is a problem which
has received much interest recently [2]. For each leaf image in the database, we
randomly select 1024 small windows. For each window we calculate 20 features
based on the responses from different filters applied to all the pixels in the win-
dow. The set of features for each window becomes one of the objects data-points
in a 20-dimension feature space.

4.1 Methods for Comparison

Three different methods are used for comparison:

1. Kernel Density Estimation - Kernel density estimation is used to predict the
probability density function for each class. This estimate of the pdf is then
used to calculate the likelihood of the object belonging to that class.

P (X |Ci) =
∏
x̄∈X

P (x̄|Ci)

=
∏
x̄∈X

∑
ȳ∈Ci

φ(||ȳ − x̄||)
|Ci|

where φ(x) is a normal distribution function with mean, μ = 0 and standard
deviation, σ = 0.1. This kernel function was used as it appeared to give the
best results for the dataset.

2. Earth Mover’s Distance - For the we use the pure value calculated by the
earth mover’s distance instead of utilizing the mapping between objects.
Each object is classified as belonging to the class whose object is closest to
it according to the EMD metric.

3. Naive-Bayesian Bag-of-Words - For the bag of words method, we use the
same codeword dictionary as for the new method, to allow fairer compar-
ison. We use a Naive-Bayes classifier, as it is both one of the most com-
mon classifiers used for bag-of-words [3], and is similar to that used in the
proposed method.

4.2 Results

Table 1 gives the results for the proposed method, using different numbers of
data points, and different dictionary sizes. The overall results of the experiments
are given in table 2.
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Table 1. Results for the proposed method, varying object and dictionary size (in %)

|D| n = 256 n = 512 n = 1024

16 67.97 73.05 75.39
32 75.39 80.66 81.64
64 84.77 85.35 88.09

128 86.13 90.04 90.06
256 90.02 91.02 92.97

Table 2. Overall results, using best parameter values for each method (in %)

n

Method 256 512 1024

Proposed Method 90.02 91.02 92.97
Kernel Density Estimation 69.73 73.83 77.73
Earth Mover’s Distance 73.83 79.88 85.35
Bag-of-Words 77.15 79.30 80.27

As the results show, the new method both performed far better than the stan-
dard bag-of-words method. This is because when the difference between pdfs
means that points are assigned to different codewords, the standard method
considers only that these points are no longer assigned to the same codeword,
whereas the new methods both consider where in the feature space those points
may exist, given that particular class. The kernel density estimation and earth
mover’s distance methods both performed worse than the other methods. These
methods both directly compare samplings from distributions, and so are suscep-
tible to noise produced by the sampling. The bag-of-words methods eliminate
much of this noise, by quantisation via assignment to codewords.

Given that the EMD must be calculated in performing the new method, it
may be possible to improve the results by incorporating the EMD metric. In our
experience, however, doing so produced no change in the results. As would be
expected, increasing the number of points used to describe objects increases the
quality of the classification, but the new method still performs better than the
other methods when a smaller number of points are used, making it particularly
suitable when larger samplings are not practicle.

5 Discussion

In this paper a new method for the classification of high-dimension probability
density functions has been proposed. The method utilizes the Hungarian algo-
rithm to calculate mapping between sets of points sampled from PDFs. This
information is incorporated into a ‘bag-of-words‘ type method by calculating
the probabilities of a pair of corresponding data-points being assigned to par-
ticular pairs of ‘codewords’. This allows for more robust classification than the
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traditional ‘bag-of-words’ method. For a visual object recognition problem the
algorithm was found to perform significantly better than a number of existing
techniques, achieving over 92% accuracy.
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Abstract. In this paper, we propose to represent a face image as a lo-
cal descriptor tensor and use a Multilinear Manifold Analysis (MMA)
method for discriminant feature extraction, which is used for face recog-
nition. The local descriptor tensor, which is a combination of the de-
scriptor of local regions (K*K-pixel patch) in the image, can represent
image more efficient than pixel-level intensity representation, and also
than the popular Bag-Of-Feature (BOF) model, which approximately
represents each local descriptor as a predefined visual word. Therefore it
should be more effective in computational time than the BOF model. For
extracting discriminant and compact features from the local descriptor
tensor, we propose to use the proposed TMultilinear Manifold Analysis
(MMA) algorithm, which has several benefits compared with conven-
tional subspace learning methods such as PCA, ICA, LDA and so on:
(1) a natural way of representing data without losing structure informa-
tion, i.e., the information about the relative positions of pixels or regions;
(2) a reduction in the small sample size problem which occurs in con-
ventional supervised learning because the number of training samples
is much less than the dimensionality of the feature space; (3) a neigh-
borhood structure preserving in tensor feature space for face recognition
and a good convergence property in training procedure. We validate our
proposed algorithm on Benchmark database Yale and PIE, and experi-
mental results show recognition rate with the proposed method can be
greatly improved compared with conventional subspace analysis methods
especially for small training sample number. . . .

1 Introduction

Many face recognition techniques have been developed over the past few decades.
One of the most successful and well-studied face recognition techniques is the
appearance-based method [1,2]. When using appearance-based methods, an im-
age of size n1 × n2 pixels is usually represented by a vector in an n1 × n2-
dimensional space. In practice, however, these n1 × n2-dimensional spaces are
too large to allow robust and fast face recognition. Previous works have demon-
strated that the face recognition performance can be improved significantly in
lower dimensional linear subspaces [2-3]. Two of the most popular appearance-
based face recognition methods include Eigenface [2] and Fisherface. Eigenface
is based on Principal Component Analysis (PCA). PCA projects the face images
along the directions of maximal variances. It also aims to preserve the Euclidean
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distances between face images. Fisherface is based on Linear Discriminant Anal-
ysis (LDA) [2]. Unlike PCA which is unsupervised, LDA is supervised. When
the class information is available, LDA can be used to find a linear subspace
which is optimal for discrimination. Recently there is considerable interest in ge-
ometrically motivated approaches to visual analysis. Therein, the most popular
ones include Locality Preserving Projection (LPP) [3], Neighborhood Preserving
Embedding (NPE) and so on, which can not only preserve the local structure
between samples, and also obtain acceptable recognition rate for face recog-
nition. In real application, all these subspace learning methods need to firstly
reshape the 2D face image into 1D vector for analysis, which usually suffers
”curse of dimension”. Therefore, some researchers proposed to solve the ”curse
of dimension” problem with 2D subspace learning such as 2D-PCA, 2D-LDA [4]
for analyzing directly on 2D image matrix, which was improved to be suitable to
some extent. However, all of the conventional methods usually perform subspace
analysis directly on the reshaped vector or matrix of pixel-level intensity, which
would be unstable under illumination or pose variance.

In this paper, we propose to represent a face image as a local descriptor ten-
sor, which is a combination of the descriptor of local regions (K*K-pixel patch)
in the image, and more efficient than the popular Bag-Of-Feature (BOF) model
[5] for local descriptor combination. In order to extract discriminant feature
from the local regions, we explore an improved gradient (intensity-normalized
gradient) of the face image, which is robust to illumination variance, and use
histogram of orientation weighed with the improved gradient for local region
representation. Furthermore, we propose to use a multilinear subspace learning
algorithm for discriminant feature extraction from the local descriptor tensor of
face images, which can preserve local sample structure in feature space. Com-
pared with tensorfaces [6] method which also directly analyze multi-dimensional
data, the proposed MMA uses supervised strategy, and thus can extract more
discriminant features for distinguishing different objects (here facial images of
different persons) and at the same time, can preserve samples’ relationship of
inner-person instead of only dimension reduction in tensorfaces. We validate our
proposed algorithm on benchmark database Yale[2] and CMU PIE[7], and exper-
imental results show recognition rate with our method can be greatly improved
compared conventional subspace analysis methods especially for small training
sample number.

The remaining parts of this paper are organized as follows. We introduce
the local descriptor tensor for face images in section 2. Section 3 propose a
Multilinear Manifold Analysis (MMA) for extracting discriminant feature for
face representation. Finally, we report experiment setup and results in section
4, and give conclusion remarks in section 5.

2 Local Descriptor Tensor for Face Image Representation

In computer vision, local descriptors (i.e. features computed over limited spa-
tial support) have proved well-adapted for matching and recognition tasks, as
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Fig. 1. Gradient image samples. Top row: Original face images; Middle row: the
intensity-normalized gradient images; Bottom row: the conventional gradient images.

they are robust to partial visibility and clutter. The current popular one for
local descriptor is SIFT feature, which is proposed by in [11] and is robust to
small illumination variance. However with large illumination variance usually ap-
peared in face recognition, it is still difficult to recognize correctly, and achieve
acceptable recognition rate. Therefore, we proposed a histogram of orientation
weighted with the improved gradient for local image representation. With the
local descriptor, usually there are two types of algorithms for object recognition.
One is to match the local point with SIFT feature in two images, and the other
one is to use the popular Bag-Of-Feature model (BOF), which forms a frequency
histogram of a predefined visual-words for all sampled region features [5]. For
matching algorithm, it is usually not enough to recognize the unknown image
even if there are several points well matched. How to combine more features is
not unsolved still. The popular BOF model usually can achieve good recognition
performance in most applications such as scene and object recognition. However,
In BOF model, in order to achieve acceptable recognition rate it is necessary to
sample a lot of points for extracting SIFT features (usually more than 1000 in
an image), and compare the extracted local feature with the predefined visual-
words (Usually more than 1000) to obtain the visual-word occurrence histogram.
Therefore, BOF model need a lot of computing time to extract visual-words oc-
currence histogram. In addition, BOF model just approximately represent each
local region feature as the predefined visual-words, and then, it maybe lose a
lot of information and will be not efficient for image representation. Therefor, in
this paper, we propose to represent a face image as a combined local descriptor
tensor.

In our work, we combine two types of local features as a tensor for face image
representation: SIFT feature and a intensity-Normalized Histogram of Orienta-
tion Gradient–NHOG.

(1) The SIFT descriptor computes a gradient orientation histogram within
the support region. For each of 8 orientation planes, the gradient image is sam-
pled over a 4 by 4 grid of locations, thus resulting in a 128-dimensional feature
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vector for each region. A Gaussian window function is used to assign a weight
to the magnitude of each sample point. This makes the descriptor less sensitive
to small changes in the position of the support region and puts more emphasis
on the gradients that are near the center of the region. To obtain robustness to
illumination changes, the descriptors are made invariant to illumination trans-
formations of the form aI(x) + b by scaling the norm of each descriptor to unity
[8]. For representing the local region of a color image, we extract SIFT feature
in each color component (R, G and B color components), and then can achieve
a 128 ×3 2D tensor for each local region.

(2) In order to extract robust feature to illumination variance, we need to
obtain the improved gradient. Given an image I, we calculate the improved
gradient (Intensity-normalized gradient) using the following Eq.:

Ix(i, j) =
I(i+ 1, j) − I(i− 1, j)

I(i+ 1, j) + I(i− 1, j)

Iy(i, j) =
I(i, j + 1)− I(i, j − 1)

I(i, j + 1) + I(i, j − 1)

Ixy(i, j) =
√

Ix(i, j)2 + Iy(i, j)2

(1)

where Ix(i, j) and Iy(i, j) means the horizontal and vertical gradient in pixel posi-
tion i, j, respectively, Ixy(i, j) means the global gradient in pixel position i, j. The
idea of the normalized gradient is from χ2 distance: a normalized Euclidean dis-
tance. For x-direction, the gradient is normalized by summation of the upper one
and the bottom one pixel centered by the focused pixel; for y-direction, the gradi-
ent is normalized by that of the right and left one. With the intensity-normalized
gradient, we can extract robust and invariant features to illumination changing in
a local region of an image. Some examples with the intensity-normalized and con-
ventional gradients are shown in Fig. 1. The local NHOG feature can be extracted
as shown in Fig. 2. given a local region IR in an face image, we firstly segment the
region into 4 (2×2) patches,and in each patch, we extract a 20-bin histogram of
orientation weighted by global gradient using the intensity-normalized gradients
IRx , I

R
y and IRxy. Therefore, each region in a face image can be represent by 80-bin

(20×4) histogram as shown in the left part of Fig. 2.
In order to efficiently represent a face image, we combine the extracted lo-

cal SIFT or NHOG descriptors for face image representation. Firestly, we grid-
segment an image, and can obtain M2 overlapping regions as shown in the
right part of Fig. 2, and then in each region, we extract a L-dimension (128
for SIFT, 80 for NHOG) local feature (1D tensor). Furthermore we combine
the M2 vectors (local descriptors) into a 2D tensor with of size L ×M2 in the
space R128or80

⊗
RM2 for representing a face image. The tensor NHPG feature

extraction procedure of a face image is shown in Fig. 2.

3 Multilinear Manifold Analysis

In order to model N-D data without rasterization (2D is a special case), tensor
representation is proposed and analyzed for feature extraction or modeling. In
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Fig. 2. Extraction procedure of local descriptor tensor from a face image. The red
rectangle in the right part of this figure is the first extracted region for calculating
local descriptor (a 80-bin edge histogram); The green rectangle is the next extracted
region after moving several pixels from the red one (predefined interval) along row, and
continue this step until the end of row pixels. The purple rectangle is the first extracted
region after moving several pixels for the red one along column, and then obtain next
regions through moving pixel in row. The total number of extracted regions is M2.

this section, we propose a tensor supervised neighborhood embedding to not
only extract discriminant feature but also preserve the local geometrical and
topological properties in same category for recognition. The proposed approach
decompose each model of tensor with objective function, which consider neigh-
borhood relation and class label of training samples.

Suppose we have ND tensor objects X from C classes. The cth class has nc

tensor objects and the total number of tensor objects is n. Let Xic ∈ RN1
⊗

RN2⊗
· · ·
⊗

RNL(ic = 1, 2, · · · , nc) be the ith object in the cth class. For a gray face
image, we can directly represent it as pixel-level intensity tensor, where L is 2,
N1 is the row number, N2 is the column number. We also can represent the face
image as a feature-based tensor such as local descriptor feature tensor introduced
in Sec. 2, where L is also 2, N1 is the local feature dimension, N2 is the sampled
region number in an image. Then, we can build a nearest neighbor graph G to
model the local geometrical structure and label information of X . Let W be the
weight matrix of G. A possible definition of W is as follows:

Wij =

{
exp−

Xi−Xj
t if sample i and j is in same class

0 otherwise
(2)
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Let Ud be the d-model transformation matrices(Dimension: Nd×Dd). A reason-
able transformation respecting the graph structure can be obtained by solving
the following objective functions:

min
U1,U2,··· ,UL

∑
ij

‖Xi×1U1×2U2 · · ·×L UL − Xj×1U1×2U2 · · ·×L UL‖Wij (3)

The objective function incurs a heavy penalty if neighboring points Xi and Xj

are mapped far apart. Therefore, minimizing it is an attempt to ensure that if Xi

and Xj are ′′close′′, then Xi×1U1×2U2 · · ·×L UL and Xj×1U1×2U2 · · ·×LUL are
′′close′′ as well. Let Yi = Xi×1U1×2U2 · · ·×L UL (Dimension: D1×D2×· · ·×DL)
, and (Yi)

d = (Xi×1U1×2U2 · · ·×LUL)
d (2D matrix, Dimension:Dd × (D1 ×

D2 × · · · ×Dd−1 ×Dd+1 × · · · ×DL)) is the d-mode extension of tensor Yi. Let
D be a diagonal matrix,Dii =

∑
j Wij . Since ‖A‖2 = tr(AAT ), we see that

1

2

∑
ij

‖Xi×1U1 · · ·×L UL − Xj×1U1 · · ·×L UL‖Wij

=
1

2

∑
ij

tr(((Yi)
d − (Yj)

d)((Yi)
d − (Yj)

d)T )Wij

=tr(
∑
i

Dii(Yi)
d((Yi)

d)T −
∑
ij

Wij(Yi)
d((Yj)

d)T )

=tr(UT
d (

∑
i

Dii((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)

(Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
T

−
∑
ij

Wij((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)

(Xj×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
T )Ud)

=tr(UT
d (Dd − Sd)Ud)

(4)

where Dd =
∑

i Dii((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL) (Xi×1U1 · · ·×d−1

Ud−1×d+1 Ud+1 · · ·×L UL)
T and Sd =

∑
ij Wij((Xi×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L

UL) (Xj×1U1 · · ·×d−1 Ud−1×d+1Ud+1 · · ·×L UL)
T .Therefore the linear transforma-

tion Ud can be obtained by minimizing the objective function under constraint:

Ud = argmin
UT

d
DdUd=1

(UT
d (Dd − Sd)Ud) (5)

In order to achieve the stable solution, we firstly regularize the symmetric matrix
D as Dii = Dii + α (α is a small value). Finally, the minimization problem can
be converted to solving a generalized eigenvalue problem as follows:

DdUd = λSdUd (6)

After obtaining the MMA basis of each mode, we can project each tensor ob-
ject into these MMA basis for each mode. For face recognition, the projection
coefficients can represent the extracted feature vectors and can be used for clas-
sification using Euclidean distance or other similar measurement.
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Fig. 3. Compared recognition rates using MMA for feature extraction with pixel-
intensity tensor, local SIFT tensor and local NHOG tensor, respectively. X-axis denotes
the number of retained row-mode components of the used tensor; Y-axis denotes the
number of retained column-mode components of the used tensor.

4 Experimental Results

In this paper, we use the benchmark face dataset YALE, which includes 15
people and 11 facial images of each individual with different illuminations and
expressions, and CMU PIE, which includes 68 people and about 170 facial images
for each individual with 13 different poses, 43 different illumination conditions,
and with 4 different expressions. For YALE dataset, we randomly select 2, 3,
4 and 5 facial images from each individual for training, and the remainders
for test. We do 20 runs for different training number and average recognition
rate. For comparison, we also do experiments using the proposed MMA analysis
directly on the gray face image (pixel-level intensity, denoted MMA), and our
proposed local descriptor tensor with SIFT descriptor (denoted MMA-SIFT)
and intensity-Normalized Histogram of Orientation Gradient (denoted MMA-
NHOG). Figure 3 gives the compared recognition rates after discriminant and
compact feature extraction by the proposed MMA with the three types tensor
(Pixel-intensity tensor, Local SIFT tensor and NHOG tensor), respectively. It is
obvious from Fig. 3 that the proposed two local descriptor tensor representations
for face image can achieve much higher recognition rates than those directly with
pixel intensity tensor on any extracted feature number, and then the recognition
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Table 1. Average recognition error rates (%) on YALE dataset with different training
number

Method 2 Train 3 Train 4 Train 5 Train

PCA 56.5 51.1 57.8 45.6

LDA 54.3 35.5 27.3 22.5

Laplacianface 43.5 31.5 25.4 21.7

O-Laplacianface 44.3 29.9 22.7 17.9

TensorLPP 54.5 42.8 37 32.7

R-LDA 42.1 28.6 21.6 17.4

S-LDA 37.5 25.6 19.7 14.9

MMA 41.89 31.67 24.86 23.06

MMA-SIFT 35.22 26.33 22.19 20.83

MMA-NHOG 29.74 22.87 18.52 17.44

Table 2. Average recognition error rates (%) on YALE dataset with different training
number

Method PCA LDA LPP MMA MMA-NGOG

5 Train 75.33 42.8 38 37.66 33.85

10 Train 65.5 29.7 29.6 23.57 22.06

rates with the proposed NHOG feature, which is robust to large illumination
variance, are better than those with SIFT feature, which just can deal with
small illumination variation. In order to validate our proposed MMA algorithm
with conventional subspace learning methods, we also give the compared results
shown in Table 1 using MMA analysis with different tensors and the state-of-
art subspace learning methods by He [3,9,10]. From Table 1, it is obvious that
our proposed algorithm can obtain the best recognition performance especially
using small training samples. For CMU PIE dataset, we randomly select 5 and
10 facial images from each individual for training, and the remainder for test.
We also do 20 runs for achieving average recognition error rate. The compared
recognition error rates between our proposed algorithms and the conventional
subspace learning methods by He [3,9,10] are shown in Table 2.

5 Conclusions

In this paper, we proposed to represent a face image as a local descriptor tensor,
which is a combination of the descriptor of local regions (K*K-pixel patch) in
the image, and more efficient than the popular Bag-Of-Feature (BOF) model
for local descriptor combination. Furthermore, we proposed to use Multilinear
Manifold Analysis (MMA) for discriminant feature extraction from the local
descriptor tensor of face images, which can preserve local sample structure in
feature space. We validate our proposed algorithm on Benchmark database Yale
and PIE, and experimental results show recognition rate with our method can be
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greatly improved compared conventional subspace analysis methods especially
for small training sample numbers.
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Abstract. In this work, we propose a novel Genetic Inspired Error Cor-
recting Output Codes (ECOC) Optimization, which looks for an efficient
problem-dependent encoding of the multi-class task with high generaliza-
tion performance. This optimization procedure is based on novel ECOC-
Compliant crossover, mutation, and extension operators, which guide the
optimization process to promising regions of the search space. The results
on several public datasets show significant performance improvements as
compared to state-of-the-art ECOC strategies.

Keywords: Error-Correcting Output Codes, Genetic Optimization,
Ensemble learning.

1 Introduction

A challenging task in Pattern Recognition is to develop efficient methodologies
to process huge amount of data. Concretely, classification procedures present a
lack of options when the number of categories is arbitrarily large. In this scope,
the Error Correcting Output Codes (ECOC) framework has shown great perfor-
mance results. At the ECOC coding step, a set of binary partitions of the original
problem are encoded in a matrix of codewords (one code per class, univocally
defined) which are learnt by binary classifiers. Then, at the ECOC decoding step
a final decision is obtained by comparing the set of binary predictions with every
class code, and choosing the class with the code at minimum ’distance’. Stan-
dard ECOC coding strategies need between N and

(
N
2

)
classifiers to deal with

a N−class problem (using the One vs. All and the One vs. One coding designs,
respectively). This implies a scalability problem when dealing with a large num-
ber of classes. Recently, some works applied Genetic Algorithms (GA) to find a
sub-optimal ECOC configuration. The underlying idea of GA is to reproduce the
natural evolution by means of computer programs, using a chromosome based
representation of the problems, and implementing from a functional point of
view the processes involved in nature (crossover and mutation). Various works

G.L. Gimel’ farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 743–751, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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have treated the optimization of ECOC matrices with GA [2,6,5]. Nevertheless,
they fail in taking into account the ECOC constraints, implying an unnecessary
enlargement of the search space.

In this work, we propose a novel framework for treating the optimization of
an ECOC matrix inspired on GA. In this framework the operators have been
completely redefined in order to avoid non-valid individual generation, and thus,
minimizing the search space in relation to previous works. In addition, the code
length is reduced to be sub-linear in the number of categories, building both
reduced and high-performance codes. This novel procedure is tested on several
public datasets, obtaining significant performance improvements compared to
state-of-the-art ECOC approaches.

The paper is organized as follows: Section 2 presents the novel genetic ap-
proach. Section 3 shows the experimental results and Section 4 concludes the
paper .

2 ECOC-Compliant Genetic Algorithm

In this section we review the ECOC framework, its properties, and present the
Genetic-ECOC.

2.1 ECOC Framework

The ECOC framework is composed of two different steps: coding and decoding [1].
At the coding step an ECOC coding matrix MN×n ∈ {−1,+1, 0} is constructed,
where N denotes the number of classes in the problem and n the number of
bi-partitions defined to discriminate the N classes. In this matrix, the rows (also
known as codewords) are univocally defined, since these are the identifiers of
each category in the multi-class problem. On the other hand, the columns of M
denote the set of bi-partitions, dichotomies, or meta-classes to be learnt by each
base classifier hj (also known as dichotomizer). Hence, classifier hj is responsible
for learning the bi-partition denoted on the j−th column of M 1. From the
learning point of view, the performance of the ECOC ensemble will increase as
more bi-partitions are taken into account. However, by taking into account the
problem idiosyncrasies the system is able to obtain great performance by using
few bi-partitions.

At the decoding step a new sample s is classified according to the N possible
categories. In order to perform the classification task, each dichotomizer predicts
a binary value for s whether it belongs to one of the bi-partitions defined by the
corresponding dichotomy. Once the set of predictions x(s) ∈ Rn is obtained, it
is compared to the codewords of M using a distance metric δ, known as the
decoding function.

1 For notation purposes we will refer to the entry of M at the i-th row and the j-th
column as Mi,j
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2.2 ECOC Coding Matrix Properties

We define an ECOC coding matrix MN×n ∈ {−1,+1, 0} to be constrained by,

min(δAHD(y
i
, y

k
)) ≥ 1, ∀i, k : i �= k, i, k ∈ [1, . . . , N ] (1)

min(δHD(d
j
, d

l
)) ≥ 1, ∀j, l : j �= l, j, l ∈ [1, . . . , n] (2)

min(δHD(d
j
,−d

l
)) ≥ 1, ∀j, l : j �= l, j, l ∈ [1, . . . , n] (3)

where δAHD and δHD are the Attenuated Hamming Distance (AHD) and the
Hamming Distance (HD) are defined as in [4].

2.3 Genetic Inspired ECOC Optimization

In this section we present the novel Genetic-ECOC.

Problem Encoding. In order to consider the ECOC properties and obtain
smart heuristics to guide the optimization process, a novel representation of
ECOC individuals is proposed. ECOC individuals are represented as structures
I =< M,C,H, P,E, δ >, where the fields are defined as follows,

• The coding matrix, MN×n ∈ {−1,+1, 0} where n ≥ 6log2 N7. For the
initial population we fix n = 6log2 N7, where n can grow along generations.
• The confusion matrix, CN×N , over the validation subset. Let ci and cj be
two classes of our problem, then the entry of C at the i-th row and the j-th
column, defined as Ci,j , contains the number of examples of class ci classified
as examples of class cj .
• The set of dichotomizers H =< h1, . . . , hn >.
• The performance of each dichotomizer, P ∈ Rn, P = [p1, . . . , pn].
This vector contains the proportion of correctly classified examples over a
validation subset for each dichotomizer in H .
• The error rate, E, over a validation subset. This scalar is the propor-
tion miss-classified samples of the validation subset using the Loss-Weighted
decoding [4]. Let the set of samples in the validation subset be V =<
(s1, l(s1)), . . . , (sv, l(sv)) >, then E is defined as,

E =
v∑

j=1

I(Δ(M,xsj ), l(sj))/v, (4)

Δ(M,x) = argmin
i

δ(yi, x), i ∈ {1, . . . , N} (5)

Fitness Function. The fitness function measures the environmental adaptation
of each individual, and thus, is the one to be optimized. Individuals are evaluated
according to the performance they obtain in the validation subset. Let EIK be
the error rate of individual IK and let nIK be the length of the coding matrix
M of IK , then, we define the fitness function as Ff (Ik) = EIk + λnIk .

2

2 This expression (similar to the one showed by regularized classifiers), serves us to
control the learning capacity of the ECOC matrix in order to not over-fit the training
data.
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ECOC Crossover and Mutation Operators In this section we introduce
the novel ECOC crossover and mutation operators. These operators do not only
take into account the restrictions of the ECOC framework (see Equations 1, 2,
and 3) but also are carefully designed in order to avoid a premature convergence
to local minima without generating non-valid individuals, and thus, converging
to satisfying populations in fewer generations. In this sense, the crossover and
mutation operators have two variants. The Generic one, which provides us with
a tool to avoid premature convergence, and the Specific one, which guides the
optimization to promising regions of the search space.

• ECOC Crossover Algorithm

Assume a N -class problem to be learnt and let IF and IM be two individuals
encoded as shown in Section 2.3. Then, the crossover algorithm will generate
a new individual IS which coding matrix M IS

N×n, n = min(nIF , nIK ) contains
dichotomies of each parent. Therefore, the key aspect of this recombination is the
selection of which dichotomies of each parent are suitable to be combined. We
introduce a dichotomy selection algorithm that chooses those n dichotomies that
hold the constraints shown in Equations 1, 2, and 3. The dichotomy selection
algorithm generates a dichotomy selection order τI ∈ Rn for each parent I.
Moreover, the selection algorithm checks if the separation between codewords
is congruent with the number of dichotomies left to be added. In this sense,
the (k − i)-th extension dichotomy will be only added if it splits the existing
codewords to define |Y | = r ≤ 2(k−i) codes at δAHD(ya, yb) = 0 ∀ ya, yb ∈ Y :
a �= b, where k is the final length of the ECOC matrix. The Generic and Specific
version of the ECOC crossover algorithm depend on how τ is defined. In the
Generic version, τ is randomly generated, while in the Specific version τ is a
classifier performance ranking.

In the crossover example shown in Figure 1 two individuals IM and IF are
combined to produce a new offspring IS . The crossover algorithm generates a
dichotomy selection order τ for each parent. The first parent from which a di-
chotomy is taken is IM , and d3 is valid since r ≤ 2(3−1) = 4, and it only defines
three codes without separation (y1, y2, and y5). Once this step is performed, the
parent is changed, and the following dichotomy will be extracted from IF based
on its selection order τIF . In this case, d4 is valid since r ≤ 2(3−2) = 2 and d3 of
IM together with d4 of IF define only two equivalent codewords (y1 and y5). In
the following iteration, the parent is changed again, and thus, IM is used. Since
δAHD(y1, y5) = 0, d1 can not be considered as an extension dichotomy, and
therefore, the next dichotomy to use is d2, which satisfies Equation 1 defining a
valid ECOC coding matrix.

• ECOC Mutation Algorithm

Picture an individual I encoded as shown in Section 2.3 to be transformed by
means of the mutation operator. This operator will select a set of positions μ =<
Mi,j , . . . ,Mk,l >, i, k ∈ {1, . . . , N}, j, l ∈ {1, . . . , n} of M I to be mutated. The
value of these positions is changed constrained to values in the set {−1,+1, 0}.
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Data: IF ,IM
Result: IS

1 n := min(MIF ,MIM ) // Minimum code length among parents

2 τIF ∈ R
n = selorder(IF ) // Dichotomy selection order of IF

3 τIM ∈ R
n = selorder(IM );

4 cp := IF // Current parent to be used

5 MIS := ∅ // Coding matrix of the offspring
6 for i ∈ {1, . . . , n} do
7 for j ∈ {1, . . . , ncp} : τcp

j �= ∅ do

8 f := 0 // Valid dichotomy search flag

9 if calcRepetitions (MIS , d
τ
cp
j ) ≤ 2(k−i) then

10 di := d
τ
cp
j // Inheritance of dichotomies

11 hi := h
τ
cp
j // Inheritance of dichotomizer

12 pi := p
τ
cp
j // Inheritance of performance

13 τcp
j := ∅ // Avoid using a dichotomy twice

14 f := 1 // Valid dichotomy found
15 break ;

16 end

17 end
18 if !f then

19 di := generateCol(MIS ) // If non ECOC matrix can be built

20 hi := ∅;
21 pi := ∅;
22 end
23 if cp = IF then
24 cp := IM // Dichotomy inheritance parent switch
25 else
26 cp := IF ;
27 end

28 end

Algorithm 1. ECOC Crossover
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Fig. 1. (a). An example of an ECOC coding matrix. (b) Example of the decoding pro-
cess. (c) Feature space and trained classifiers for parent IM . (d) Feature representation
and boundaries for parent IF . (e) ECOC coding matrix of parent IM . (f) Coding ma-
trix of parent IF . (g) ECOC coding matrix composition steps for the offspring IS. (h)
Feature space and inherited classifiers for IS.
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In the Generic version, the set of positions μ are those valued 0. Once μ is
defined, the positions are randomly recoded to one of the three possible values
in {−1,+1, 0}. In the Specific mutation algorithm, the set of positions μ is chosen
taking into account the confusion matrix C. Once these classes are obtained, the
algorithm will mutate the bits valued 0 of its codewords {yi, yj} in order to
increment the distance δAHD(yi, yj). The specific ECOC mutation algorithm is
shown in Algorithm 2.

Data: IT ,mtc
// Individual and mutation control value
Result: IX

1 C
IT
N×N // Confusion matrix of IT

2 k := 0// Number of recoded bits of MIT

3 while k < mtc do

4 (ci, cj) := argmax
i,j

(Ci,j + Cj,i) ∀i, j : i �= j;

5 for b ∈ {1, . . . , n} do

6 if |yi
b|+ |yj

b| ≤ 1 and k < mtc then

7 if yi
b = 0 and yj

b = 0 then

8 yi
b := +1 // Invert both bits valued 0

9 yj
b := −1;

10 else
11 if yi

b = 0 then

12 yi
b := −yj

b // Invert bit valued 0

13 else

14 yj
b := −yi

b;

15 end

16 end
17 k := k + 1;

18 end

19 end

20 C
IT
i,j := 0, C

IT
j,i := 0;

21 end

Algorithm 2. Specific ECOC-Compliant Mutation

In Figure 2 an example of the specific mutation algorithm is shown. Let IT
be an individual encoded as shown in Section 2.3. The confusion matrix CIT

has its non-diagonal maximum at C4,3 + C3,4. Then codewords y4 and y3 are
going to be mutated. The 0 valued bits of this codewords are changed in order
to increment δAHD(y4, y3), and thus, incrementing also the correction capability
between them. At the following iteration C4,3 is not taken into consideration and
the procedure will be repeated with y5 and y4 which are the following classes
that show confusion in C.

Problem-Dependent Extension Operator. We propose an operator to ex-
tend ECOC designs based on the confusion matrix, focusing the extension of
dichotomies on those categories which are difficult to be split. This methodology
defines two types of extensions, the One vs. One extension (Generic extension)
and the Sparse extension (Specific extension), which have the same probability of
being executed along the optimization process. In the former, the ECOC coding
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Fig. 2. Mutation example for a 5-class toy problem. (a) Feature space and trained
dichotomizers for and individual IT . (b) ECOC coding matrix of IT . (c) Confusion
matrix of IT . (d) Mutated coding matrix. (e) Mutated feature space with trained
dichotomizers.

matrix MN×n will be extended with a dichotomy dn+1 which will be valued 0
except for those two positions di and dj corresponding to the maximum confused
classes (ci, cj) = argmax

i,j
(Ci,j + Cj,i), which will be inverse valued. The latter,

follows the scheme in which two categories {ci, cj} that maximize the confusion
are discriminated.

3 Experimental Results

In order to present the results, we first discuss the data, methods, and evaluation
measurements.

• Data: We consider five muti-class problems from the UCI Machine Learning
Repository: Ecoli (8 classes), Vowel (11 classes), Yeast (10 classes), Shuttle
(7 classes), and Glass (7 classes). In addition, we test our methodology over
4 challenging Computer Vision multi-class problems: 70 visual object cate-
gories from the MPEG dataset, 20 classes of the ARFace database, a real
traffic sign categorization problem of 36 classes, and 7 handwritten music
cleafs classes [2]. Computer Vision datasets are described using PCA keep-
ing 99,9% of information.
• Methods: We compare the Genetic ECOC design with the One vs. All, One
vs. One, Dense Random [1], Forest [8] and DECOC [7] designs. The ECOC
base classifier is the libsvm implementation of a SVM with RBF kernel.
The SVM ζ and γ parameters are tuned via Genetic Algorithms for all the
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methods, minimizing the classification error of a two-fold evaluation over a
training sub-set [2].
• GA settings and parameters: The number of generations of each GA
optimization process was set to 3N where N is the number of classes of
each particular classification problem. The number of individuals of the GA
was set to 5N . Furthermore, elitism was applied at each generation, and
thus, the 10% fitter individuals are automatically selected to form part of
the next generation. On the other hand, the specific and generic variants of
the Crossover, Mutation and Extension operators where equiproportional.
• Evaluation Measurements: The classification performance is obtained by
means of a stratified ten-fold cross-validation. Finally, we test for statistical
significance using Friedman and Nemenyi statistics at 95% of the confidence
interval [3]. The classification results are shown in Table 1. The table shows
the classification performance of each ECOC design on each dataset, the
average performance ranking, and the mean number of classifiers of the en-
semble. In order to compare the performances provided for each strategy,
Table 2 shows the mean rank of each ECOC design considering the 18 dif-
ferent experiments (9 dataset performances and 9 PC values).

We use the Nemenyi test to check if one of the techniques can be singled out.
In our case with k = 7 ECOC approaches to compare and N = 9 · 2 = 18

experiments, the critical value for a 90% of confidence is CD = 1.415 ·
√

56
108 =

1.0189. Since none of the methods ranks intersect with the GA Inspired ECOC
rank for CD = 1.0189, we can state that the proposed ECOC design significantly
improves the rest of methods performances at 90% of confidence.

Table 1. Classification results and number of classifiers per coding design

Dataset Compact ECOC GA Ins. ECOC D. Random ECOC
Perf. Classif. Perf. Classif. Perf. Classif.

Ecoli 80.5±1.9 3 81.4±1.3 3.8 68.1±2.7 8
Vowel 48.6±3.5 3 54.4±4.3 3.2 42.8±1.1 7
Yeast 57.7±2.4 3 68.1±1.5 5.6 66.8±3.3 11
Shuttle 80.9±2.1 3 81.1±1.3 3.2 90.6±2.3 7
Glass 50.2±1.2 4 55.1±6.1 5 54.9±6.4 10
MPEG 90.8±4.1 6 95.3±3.2 6 83.3±1.0 36

ARFACE 61.5±3.2 5 86.3±1.2 6 73.0±1.3 20
TRAFFIC 81.2±1.2 3 96.3±2.4 4.2 82.3±1.1 7
CLEAFS 84.6±1.1 7 84.1±2.8 7 90.0±1.4 70

Mean Rank & #Class. 5.6 4.2 2.5 4.9 4.9 19.5

1vsAll 1vs1 DECOC FECOC
Perf. Classif Perf. Classif. Perf. Classif. Perf. Classif.

75.5±1.8 8 79.2±1.8 28 69.4±1.3 7 75.2±3.5 21
53.8±6.2 7 60.5±2.9 15 55.1±2.5 6 43.9±2.1 15
80.7±2.2 11 78.9±1.2 28 66.7±1.3 10 68.1±1.3 30
90.6±1.1 7 86.3±1.1 21 77.1±1.4 6 80.3±1.5 18
47.1±1.3 10 52.4±2.8 45 55.8±2.2 9 56.0±3.2 27
91.8±2.6 36 90.6±2.1 630 86.2±4.2 35 96.7±1.3 105
84.0±3.3 20 96.0±2.5 190 82.7±2.1 19 81.6±0.4 57
80.8±1.2 7 84.2±2.8 21 96.9±2.4 6 97.1±1.1 18
87.8±2.4 70 92.8±1.3 2415 83.4±1.5 69 81.9±2.3 207

3.9 19.5 1.5 377 5.2 18.5 4.8 55.3
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Table 2. Mean rank per coding design

Rank Compact ECOC GA ECOC Dense ECOC
Perf. rank 5.6 2.5 4.9

Perf. per Class rank 1 2 5
Mean rank 3.3 2.2 4.9

Rank 1vsAll 1vs1 DECOC FECOC
Perf. rank 3.9 1.5 5.2 4.8

Perf. per Class rank 4 7 3 6
Mean rank 3.9 4.2 4.1 5.4

4 Discussion and Conclusions

We presented the novel Genetic ECOC optimization procedure, which has been
carefully defined in order to take into account the ECOC properties. New ECOC
Crossover and Mutation operators have been defined to avoid non-valid coding
matrix generation, reducing the search space and the number of individuals
needed for convergence. Moreover, a new Extension ECOC operator has been
proposed, which allows the ECOC design to take benefit from error correction
in a problem dependent way. The methodology was tested on several public
Machine Learning and Computer Vision datasets, obtaining significant perfor-
mance improvements compared to state-of-the-art ECOC approaches using far
less number of dichotomizers, which results in a much more efficient coding.
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