
S. Aier et al. (Eds.): TEAR 2012 and PRET 2012, LNBIP 131, pp. 198–217, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A Metamodel for Web Application Injection Attacks  
and Countermeasures 

Hannes Holm and Mathias Ekstedt 

Industrial Information and Control Systems 
Royal Institute of Technology 

Osquldas väg 10, 100 44 Stockholm, Sweden 
{hannesh,mathiase}@ics.kth.se 

Abstract. Web application injection attacks such as cross site scripting and 
SQL injection are common and problematic for enterprises. In order to defend 
against them, practitioners with large heterogeneous system architectures and 
limited resources struggle to understand the effectiveness of different 
countermeasures under various conditions. This paper presents an enterprise 
architecture metamodel that can be used by enterprise decision makers when 
deciding between different countermeasures for web application injection 
attacks. The scope of the model is to provide low-effort guidance on an 
abstraction level of use for an enterprise decision maker. This metamodel is 
based on a literature review and revised according to the judgment by six 
domain experts identified through peer-review.  

Keywords: Cyber security, web applications, enterprise architecture. 

1 Introduction 

Cyber security is a critical concern for enterprises as successful cyber attacks can 
result in severe economic deficits due to losses of data confidentiality, integrity or 
availability. Depending on the IT asset in question and the intent of the attacker, there 
are various cyber attacks that can be considered. For example, an attacker could try to 
harvest sensitive data through seemingly legitimate emails (i.e., phishing) or exploit a 
cross site scripting vulnerability (XSS) in a web application. A XSS vulnerability 
allows an attacker to execute client side script in the web browser of any visitor of the 
website (which could lead to a range of issues, including complete control of the 
visitors computer). 

Of the various types of cyber attacks available, code injection is often considered 
the most troubling type of attack [1]. That is, to introduce code into a computer 
program or system by taking advantage of unchecked assumptions the system makes 
about its inputs. Code injection attacks can be classified into binary code injection 
attacks and source code injection attacks [2]. A binary code injection involves 
insertion of malicious code in a binary program to alter how the program behaves, and 
is generally carried out through a buffer overflow [3]. Source code injection attacks 



 A Metamodel for Web Application Injection Attacks and Countermeasures 199 

involve interaction with applications written in programming languages that do not 
require compilation, e.g., JavaScript, PHP and SQL statements. As source code 
injections primarily concerns Web Applications (WA) we hereafter refer to this attack 
type as web application injections, or WA injections.  

WA injections includes a number of different attack types, for example, injections 
using SQL statements (i.e., SQL injections), XSS and OS Command Injection. These 
are highly critical software flaws according to OWASP [4] and SANS 2011 Top 25 
[5] (which sample all known IT security vulnerabilities).  

While large amounts of research have been committed to studying WA injections 
and organizations such as MITRE, SANS and OWASP have developed security 
awareness programs to help organizations to mitigate the issue, application developers 
are still unable to implement effective countermeasures to mitigate these 
vulnerabilities [6].  

One possible reason behind the frequent occurrence of WA injection vulnerabilities 
is that most IT security related matters involve security tools such as specific 
vulnerability scanners, static code analyzers and intrusion detection systems. As the 
security landscape on an abstraction level of tools is rapidly changing and there are 
various tools available for the same purpose, it is difficult for practitioners to 
understand what security measures that are worth employing, given different 
scenarios. This is especially the case if the practitioner has a managerial position such 
as Chief Security Officer (CSO); this type of practitioner needs to consider the 
security of system-of-systems as a whole.  

Enterprise architectures are typically very complex structures that involve various 
aspects of relevance other than web applications. Consequently, WA injections only 
constitute a small part of the overall “security puzzle”. Thus, the effort spent to 
manage countermeasures for this attack type is often very limited and information on 
the general effectiveness of different countermeasures would be valuable to 
enterprises.  

There are works that have attempted to quantify the general effectiveness of 
different types of countermeasures. However, every such study has been conducted in 
the presence of various assumptions that are likely to affect their validity. For 
example, [7] studied the effectiveness of eight WA firewalls and intrusion prevention 
systems but did not differentiate between what types of WA injection attacks they 
prevented. As such, an assumption was made that the tools would be equally effective 
against all types of such security flaws. Another common assumption is regarding the 
severity of the concerned vulnerability; most studies do not differentiate between 
vulnerabilities of the same category (e.g., different cross site scripting (XSS) 
vulnerabilities), even though vulnerabilities within the same category clearly can be 
of different importance in practice. For example, CVE-2010-3753 and CVE-2008-
5718 are both OS Command Injection vulnerabilities; however, only one of them can 
provide high level privileges if successfully exploited (CVE-2008-5718). 

This paper presents an Enterprise Architecture (EA) metamodel that can be used to 
aid enterprise decision makers deciding upon different countermeasures for WA 
injection attacks. A hypothesized metamodel was constructed through a literature 



200 H. Holm and M. Ekstedt 

review; this metamodel was then revised by interviews with six domain experts 
identified through peer-review.  

The rest of the paper unfolds as follows: Section 2 describes the literature review 
used to construct the hypothesized metamodel and Section 3 describes its result. 
Section 4 presents the methodology for gathering expert judgment. Section 5 presents 
the findings from the expert study and the revised EA metamodel. Section 6 critically 
examines these findings. Finally, Section 7 concludes the paper.  

2 A Literature Review of Web Application Injection Attacks 

While there are several categorizations describing different areas of WA injection 
attacks there is no holistic work on the topic. Thus, there is a need to compile the 
domain theory on WA injection attacks in order to construct a valid metamodel. This 
chapter describes the method and result of this literature review. 

2.1 A Methodology for Categorizing Variables 

In order to assemble the currently available work in the field there is a need to both 
have a way to classify it and a way to collect it. This chapter describes these aspects. 

2.1.1 Classifying Current Approaches 
Hansman and Hunt [8] present a taxonomy for categorizing network and computer 
attacks in general that is influenced by Howard’s taxonomy [9]. This well established 
taxonomy is constructed along a set of dimensions, which in combination gives a 
holistic view of the variables of interest for cyber attacks in general.  

Table 1. Used categories from the taxonomy by [8] 

Criterion Description 

Main means of 
attack 

The attack vector of the cyber attack, 
e.g., if it is a physical attack or a 
brute-force password attack. 

Vulnerabilities 
and exploits 

The vulnerabilities and exploits that 
the attack uses are either known or 
unknown to the public at large (i.e., 
shared on the public domain such as 
on the US National Vulnerability 
Database [10]). 

Result of the 
attack 

The outcome of an attack (denial of 
service, corruption of information, 
theft of service, disclosure of 
information, and/or subversion)  

Countermeasures How to defend against the attack. 



 A Metamodel for Web Application Injection Attacks and Countermeasures 201 

As this taxonomy is well established and sufficiently comprehensive to capture the 
whole domain of WA injections it is chosen to compare the currently available 
approaches. The criteria target(s) of the attack, Damage, Cost, and Propagation are 
however not included in the categorization utilized in this study as they significantly 
involve context-dependent attributes such as the actual targeted software, something 
which is not useful for the concept of generalizing the attack type. As such, four 
criteria are used when comparing current WA injection categorization approaches; 
these criteria are described in Table 1. 

2.1.2 Collecting Current Approaches 
The online databases ACM, IEEE, SCOPUS and ISI Web of Knowledge were chosen 
as primary sources for collecting current approaches regarding categorizing different 
types of WA injections. Articles published between January 2000 and March 2012 
found using keywords related to the topic of the study had their titles studied. 
Example searches include “XSS”, “SQL injection”, “PHP injection”, “Web 
Application attacks” and “XPath attacks”. Through this approach a set of articles 
possibly related to the topic of the study were gathered. A second brief study of the 
abstracts of these articles delimited this set even further. The final set of papers were 
thoroughly read. In addition to this approach, any significant work discussed in any of 
the studied papers was also chosen for further study. This approach resulted in a 
collection of 12 works that each covers at least one of the four criteria in Table 1.  

2.2 The Main Means of Attack 

Six out of the 12 gathered works [2, 11–15] involves classifying different types of 
WA injections.  

All the studied works [2, 11–15] in one way or another discuss means of attack in 
terms of programming languages. This paper continues this tradition, using a 
categorization similar to that of [2]. It is possible to inject data through two different 
types of languages – domain specific languages (DSL) and dynamic languages (DL). 
These criteria can furthermore be more detailed in terms of actual programming 
languages, e.g., SQL (DSL), XPath (DSL), JavaScript (DL) or PHP (DL). For 
example, an SQL injection vulnerability due to an unsanitized input parameter in a 
PHP application can be exploited through input using a DSL (SQL command). In the 
same way, a vulnerable exec() variable in a PHP application can be exploited through 
a dynamic language (an OS command injection through a PHP script). While it 
certainly is possible to go into further detail, e.g., regarding SQL injection tautologies 
[14], this would significantly add complexity to the categorization – thus not viable 
for the purpose of the present study. 

2.3 Vulnerabilities and Exploits 

Three out of 12 studied works discuss topics related to known and unknown WA 
injection vulnerabilities and exploits [11–13]. 



202 H. Holm and M. Ekstedt 

Pietraszek and Berghe [11] propose that the CVE (Common Vulnerabilities and 
Exposures) identification number should be included in the vulnerability information, 
if applicable. That is, the vulnerability can be known to the public at large. This is 
contingent to the taxonomy of Hansman and Hunt [8]. Vorobiev and Han [13], and 
Sidharth and Liu [12] propose that vulnerabilities can be found through querying the 
WA implementation of Universal Description, Discovery and Integration (UDDI) or 
Web Service Description Language (WSDL). While this type of information is shared 
on the public domain, it still involves finding vulnerabilities in a WA, rather testing 
vulnerabilities known to the public at large (for instance, shared on the US National 
Vulnerability Database (NVD)).  

The categorization used in this paper distinguish, as [11],  between known and 
unknown vulnerabilities. A vulnerability known to the public at large is an easy target 
for an attacker as it often also has publicly known exploits, or at least ideas for how to 
conceive an exploit available. Also, a known vulnerability likely has, or is soon to 
have, a software patch or work-around remediating it available. This makes it an 
important vulnerability to manage as it (typically) requires little skill to exploit but 
(typically) is easily mitigated. There are numerous WA injection vulnerabilities 
publicly available. For example, the NVD presently describes more than 3300 SQL 
injection vulnerabilities and almost 3400 XSS vulnerabilities.  

2.4 Result of the Attack 

Four of the 12 studied articles discuss possible results of WA injection attacks  
[2, 11, 14, 16].  

One commonly applied categorization for describing the outcome of an attack is 
through its impact on confidentiality, integrity and availability (CIA) [2, 16]. While 
the concept of CIA is somewhat holistic, it can be difficult to relate to as most attacks 
affect a combination of these criteria. The two remaining works [11, 14] describes 
attacks on significantly lower abstraction levels (e.g., SQL Union Queries and SQL 
PiggyBacked Queries). Employing such an abstraction level is however not useful 
given the purpose of the study; it would simply be too detailed.  

A useful categorization for the purpose of this paper is the five criteria proposed by 
[8]. These criteria constitute a holistic and usable view of possible results from a WA 
attack. All of the studied approaches [2, 11, 14, 16] are possible to map to it. That is, 
theft of service, corruption of information, subversion, disclosure of information, and 
denial of service. 

2.5 Countermeasures 

Nine of the 12 studied works classify different types of countermeasures [2, 11, 12, 
14, 17–21]. This section describes the classifications by these authors. Many 
properties of these categorizations are similar. However, no categorizations fully 
overlap and the used terminology is highly varied. For example, developing a 
software using a “secure” API is referred to as new API’s [2], new query development 
paradigms [14], and serialization API’s [11]. This section summarizes existing 



 A Metamodel for Web Application Injection Attacks and Countermeasures 203 

attempts to categorize countermeasures against WA injection attacks, and suggests 
addition of a variable that is not covered by these. 

The two main types of countermeasures in the used categorization are static and 
runtime approaches, as discussed by [2, 14, 21]. An important distinction between 
static and runtime countermeasures is that runtime countermeasures do not suggest 
patches for vulnerabilities in the application codebase, but rather make exploitation of 
existing vulnerabilities more difficult. In the same fashion, static countermeasures 
detects (and recommends patches for) vulnerabilities in the application code base, but 
cannot thwart attacks against any remaining issues. Thus, static measures are often 
useful before deployment of a WA when code patching is reasonably simple to 
perform and runtime measures after deployment when code patching can be costly to 
perform. There is also a combination of them, hybrid approaches, which involve both 
static analysis for vulnerabilities and run-time analysis of incoming requests. An 
example of this type of tool is AMNESIA [22]. 

Static approaches involve measures to find and remove vulnerabilities in the 
application codebase. This category includes black box testing, disabling unnecessary 
responses, software patching, type-safe API’s, and static code analysis.  

Black box testing [14, 20, 21] involves running automated scanners or fuzzers on 
deployed WAs without viewing server-side source code. One such example is 
WAVES [23]. 

Disabling unnecessary responses [12, 14, 17, 19] involves removing any 
application response messages that are not needed to provide its desired service. For 
example, any SQL database errors should be eliminated, unnecessary WSDL and 
UDDI information should be removed and Web server software query responses 
should be limited. If this countermeasure is successfully implemented it forces the 
attacker to use “blind” techniques.  

Software patching is not discussed by any of the studied papers. However, it is 
clear that it is of importance towards the success of an attack – many organizations do 
not aim to “reinvent the wheel” and instead deploy commercial-of-the-shelf (COTS) 
software. Such applications are maintained through software updates by developers 
which address known vulnerabilities found in their products. Typically, software 
patching is implemented through an automated patch management tool such as 
Shavlik [24].  

Type-safe API’s [2, 14] involves using a development environment that is built to 
function in a secure and reliable fashion. In essence, this countermeasure defines a 
rule set for allowed code and how different parts of an application exchange 
information. For instance, how a PHP application is allowed to communicate with an 
SQL database. If a developer writes code that does not comply with the rule set 
defined within the type-safe API an error is produced, notifying the developer of the 
proper syntax as defined by the API.  An examples of this type of countermeasure is 
SQL DOM [25]. 

Static code analysis [2, 11, 14, 20, 21] involves detecting vulnerabilities by 
analyzing the application source code. That is, to learn of the control or data would 
flow at runtime without actually executing the code. An example static code analysis 
tool is Pixy [26]. 



204 H. Holm and M. Ekstedt 

Runtime approaches involve detecting and thwarting ongoing attacks through, e.g., 
a set of predefined signatures. This category includes content based rejection, query 
modification and intrusion detection systems.  

Content based rejection [2, 14, 21] involves analyzing the structure of requests to 
see if they conform to a model of expected queries. If not, the request is considered to 
be malicious and as such rejected. One such approach involves creating two 
grammatical representations of input statements using finite state machines or parse 
trees, one with and one without user input. If the representations do not match the user 
input is considered to involve a malicious command. An example of this approach is 
SQLGuard [27]. The perhaps most common type of content based rejection 
countermeasure in practice is proxy filters [12, 14, 17–21] (e.g., application firewalls 
and gateways) which intercepts calls to WAs to check if requests are malicious (i.e., if 
they match blacklisted signatures). An example of such countermeasure is Cisco 
Application Velocity [28]. Thirdly, a popular approach is dynamic taint analysis; to 
mark certain input (e.g., POST) as dangerous and evaluate if it is used in a malicious 
fashion. An example of this approach is SecuriFly [29]. 

Query modification [2, 11, 14, 20, 21] involves countermeasures aimed to modify 
queries using predefined functions such as cryptographic keys [2, 14] or through 
escaping characters [11, 20, 21]. This is also the main difference from content based 
rejection – query modification accepts modified versions of all input. Both methods as 
such naturally have pros and cons. An example query modification countermeasure is 
SQLrand [30]. 

Intrusion detection systems (IDS) [14, 20, 21] involves detecting source code 
injection attacks. This category differs from the other runtime approaches in the sense 
that an IDS merely detect, and not thwart, malicious requests. As such, if an IDS is 
setup to thwart detected issues this categorization treats it as a content based rejection 
technique (or query modification technique in case it accepts modified input). 
Intrusion detection systems can be both signature and anomaly based [31]. A 
signature based IDS have a predefined set of signatures for malicious requests and 
alarms if a request matches such a signature. An anomaly based IDS is trained on 
what type of requests that are “normal” and can thus in theory differentiate regular 
traffic from malicious traffic. A common WA IDS is Apache Scalp [32]. 

3 Hypothesized Metamodel 

An EA model describes an organization in terms of the artifacts of business and IT, as 
well as their interrelationships. An EA metamodel is a description language used 
when creating EA models. Various EA metamodels have been proposed, for example, 
general metamodels such as ArchiMate [33] and metamodels for analysis of specific 
properties such as modifiability [34] and data accuracy [35]. The metamodel 
presented in this paper is based on the concepts of an existing EA metamodel for 
cyber security risk analysis, namely, the Cyber Security Modeling Language 
(CySeMoL) [36]. This section gives a brief overview of the concepts of CySeMoL of 
relevance to this paper. The reader is referred to [36] for a more detailed description 
of CySeMoL. 



 A Metamodel for Web Application Injection Attacks and Countermeasures 205 

3.1 The Cyber Security Modeling Language 

The CySeMoL covers a variety of attacks such binary code injections, flooding 
attacks, abuse of obtained privileges and social-engineering attacks (it does however 
not cover WA injections). The main objective of CySeMoL is to allow users to create 
models of their architectures and make calculations on the likelihood of different 
attacks being successful. Security expertise is not required from the user as the model 
includes theory on how attributes in the object model depend on each other. In other 
words, users must only model their system architectures and properties. 

The entities in CySeMoL includes various IT components such as Operating 
System (e.g., Windows XP) and Firewall, processes such as Security 
Awareness Program (i.e., IT security training) and Zone Management (i.e., 
security maintenance of network zones), and personnel (Person). Each entity has a 
set of attributes that can be either attacks or countermeasures. These attributes are 
related in various ways. For example, the credentials of personnel can be social 
engineered – but the likelihood of this attack being successful depends on whether the 
person has undergone security awareness training or not. Each attribute in CySeMoL 
has a binary range (True / False), i.e., the likelihood of an attack being successful and 
the likelihood of a countermeasure being functional. 

3.2 A Hypothesized Metamodel 

The attributes found during the literature review (cf. Section 2) can be mapped to four 
entities: the WA itself (WebApplication), the process for developing the WA 
(SoftwareDevelopmentProcess), the process for maintaining the WA 
(SoftwareMaintenanceProcess) and whether there is an intrusion detection 
system monitoring the WA (IntrusionDetectionSystem). An overview of the 
metamodel can be seen in Fig. 1. Each entity is associated with a set of attributes with 
binary ranges (i.e., true or false). An attribute can be either an attack (a means of 
compromising the entity) or a countermeasure (a means to counter attacks). 
WebApplication is the only entity which is associated to attacks – an attacker 
can achieve an intended result (e.g., denial of service) by exploiting a known or 
unknown domain-specific language or dynamic language vulnerability. The presence 
of vulnerabilities in turn depend on the presence of countermeasures applied during 
development and maintenance of the WA, and if there is an intrusion detection system 
present, i.e., whether IntrusionDetectionSystem.Deployed = True. 
Due to these relational dependencies, the user of the model only needs to specify the 
states of attributes without parents (i.e., attributes without any arrows directed 
towards them), which in practice means the countermeasures. 

The countermeasures corresponding to SoftwareDevelopmentProcess and 
SoftwareMaintenanceProcess next to completely overlap. However, two 
measures differ between them: Type-safe API’s are only used during development of 
a WA as they require the application codebase to be written using specific constraints. 
Similarly, automated patch management is a tool that only can be used for finished 
applications. Also, automated patch management can unlike the remainder of the 
countermeasures due to its nature only mitigate known vulnerabilities.  



206 H. Holm and M. Ekstedt 

 

Fig. 1. A hypothesized metamodel for WA injections 

4 Methodology for Revising the Hypothesized Metamodel 

The complexity of this research means that it will be difficult to validate the 
metamodel using an experimental approach. Given such a scenario expert judgment 
can be justified as a means of estimation [37]. This study utilizes a combination of 
interviews and a workshop in order to revise the hypothesized metamodel (cf. Fig. 1).  

4.1 Population and Sampling 

In terms of the expert categories described in [38] individuals that are expert judges 
are desirable. Studies of experts’ calibration have concluded that experts are well 
calibrated in situations with learnability and with ecological validity [39]. Learnability 
comes with models over the domain, the possibility to express judgment in a coherent 
quantifiable manner and the opportunity to learn to from historic predictions and 
outcomes. Ecological validity is present if the expert is used to making judgments of 
the type of questions they are asked. An individual that has significant and up to date 

WebApplication

DisclosureOfInformation

DenialOfService

Maintains

IntrusionDetectionSystem

Deployed

SoftwareMaintenance
Process

AutomatedPatchManagement

BlackBoxTesting

StaticCodeAnalysis

1..*

0..*

0..*

0..*

TheftOfService

CorruptionOfInformation

Subversion

Observes

DisablingUnnecessary
Responses

HybridApproaches

ContentBasedRejection

QueryModification

FindKnownDomainSpecific
LanguageVulnerability

FindUnknownDomainSpecific
LanguageVulnerability

FindKnownDynamic
LanguageVulnerability

FindUnknownDynamic
LanguageVulnerability

SoftwareDevelopment
Process

BlackBoxTesting

StaticCodeAnalysis

Type-safeAPI’s

HybridApproaches

ContentBasedRejection

QueryModification

Develops
1..*

0..*

 



 A Metamodel for Web Application Injection Attacks and Countermeasures 207 

professional experience from working with WA security testing should likely possess 
both learnability and ecological validity. This type of individual can be seen as the 
population of the present study. 

The respondents used during the present study were identified through peer-review 
by prominent members of Swedish OWASP chapters. Each of the six individuals 
participating in the study had significant and fresh experience from professional work 
with WA security.  

4.2 Data Collection  

This study utilizes a combination of three semi-structured interviews and a workshop 
with three individuals, all carried out face-to-face. Due to the complexity of the matter 
effort was spent to enforce reliability of results. That is, the original layout and scope 
of the data collection was somewhat changed according to the focus area(s) of the 
respondents. For example, no answers were forced, the scales were allowed to be 
switched for a ranking system, and the respondents were allowed to traverse from the 
original scope if needed. For example, if they wanted to discuss a particular 
countermeasure in greater detail. As a consequence, more time was spent on those 
matters the respondents perceived to be of greater importance for the topic of the 
study.  

The interviews and the workshop all had the same general approach. A summary of 
this methodology is described below. The approach consisted of two main objectives: 
(i) to study what aspects of the hypothesized metamodel that should be revised, and 
(ii) to estimate the general effectiveness of different countermeasures given the 
revised metamodel defined by the respondent(s), i.e., what attribute relations that 
should be present in the metamodel. 

4.2.1 Revision of Hypothesized Metamodel 
The first part of the interview or workshop concerned describing the topic of the study 
and the outline of the event. After this the respondents were given a graphical 
description of the proposed metamodel (cf. Fig. 1) and introduced to the concepts of 
it. The second part concerned the countermeasures of the metamodel. Effort was spent 
to identify if the abstraction levels of the countermeasures were reasonable given the 
scope of the study and if any countermeasures should have been changed, removed or 
added. A specific focus during this phase was placed on that the countermeasure must 
be applicable in practice, i.e., it must be readily available to practitioners and 
reasonably effortless to deploy and manage. The third part concerned the difference 
between known and unknown vulnerabilities; if this concept should be changed, and 
elicit the dependencies between countermeasures and the variables of this type. The 
fourth part involved if the employed types of WA injection attacks were useful (i.e., 
attacks for domain specific and dynamic language vulnerabilities), or if some aspects 
should have been revised. It also involved eliciting the dependencies between 
countermeasures and attack types – if any countermeasure was more competent at 
mitigating some attack types than others. The fifth part concerned the different 



208 H. Holm and M. Ekstedt 

categorized results of successful attacks (e.g., denial of service); if anything should be 
revised, and whether any countermeasure was more viable for mitigating attacks of 
different outputs than others.  

4.2.2 Estimations of the Effectiveness of Countermeasures 
The sixth part concerned identifying dependencies between the different 
countermeasures (using the information identified in step 1-5). That is, what 
combination of approaches that provide significantly greater effectiveness (and which 
that do not). The seventh part involved quantitatively scoring each countermeasure 
according to its mean effectiveness and variance (using the dependencies and 
information identified in the previous steps) through a scale of 1-5. In terms of mean 
effectiveness, 1 meant “do not increase the difficulty of successful attack” and 5 
“greatly increases the difficulty of successful attack”, and in terms of variation 1 
meant “very small variation” and 5 “very high variation”. To decrease ambiguity, the 
respondents were told that the variation was “if you would pick two countermeasures 
at random from the countermeasure category, how much would their effectiveness 
typically differ?”. This quantitative scoring was carried out for one countermeasure at 
a time until all had been scored.  

4.2.3 Respondents Part of the Study 
The first interview (I1) lasted for 1.5 hours. The respondent of this interview had 7 
years of relevant professional experience and works with software penetration testing 
in general; finding vulnerabilities in software written in, for example, C++, 
JavaScript, and PHP. Respondent 1 had also significant previous professional 
experience from network penetration testing.  

The second interview (I2) lasted for 2.5 hours and involved a respondent with 10 
years of WA security experience that works within the area of WA security. For 
instance, penetration tests of software written in PHP, Perl or .NET, and 
communications with database solutions such as SQL. This individual also performed 
occasional network penetration tests.  

The third interview (I3) lasted for 1.5 hours and involved a respondent with 12 
years experience who did not presently work, but had previously done so, with 
software penetration testing. This individual works as the chief technology officer of 
an enterprise specializing in WA security. For instance, penetration tests of WAs and 
security awareness training of developers. This individual is required to inhibit 
knowledge of all of these aspects.  

The workshop (WS) lasted for 3 hours and involved three respondents whom all 
performed similar work as the second respondent. These individuals had 7, 3, and 3 
years of professional experience from WA security. Notable is that the two 
respondents with 3 years of professional experience of WA injections had worked 
extensively for many years on the matter before having it as a main profession. 



 A Metamodel for Web Application Injection Attacks and Countermeasures 209 

5 A Metamodel Revised by Expert Judgment 

This section concerns data collected through three interviews and a workshop. To 
make results more pedagogical, the opinions by the three respondents of the workshop 
are unified at all occurrences where complete consensus was reached between them. 
Agreement among experts is also used as a basis for revising the hypothesized 
metamodel (cf. Fig. 1). Consensus was chosen for this purpose as it has been shown 
to outperform competing indicators of expert calibration [40].  

5.1 Changes to the Metamodel Prescribed by the Experts 

This section describes the revisions that the experts recommended for the 
hypothesized metamodel.  

5.1.1 Type of Attacker 
This variable is not part of the hypothesized metamodel. However, the type of 
attacker in question came up very early during each session – the skill level of the 
studied attacker was perceived to greatly affect the effectiveness of the 
countermeasures. Each of these discussions resulted in two basic categories of 
attackers: Advanced Persistent Threats (APT) and Noise. An APT is an experienced 
attacker that knows how to cover its tracks [41]. Noise, or a script kiddie, is an 
attacker that has a very limited cyber security experience and depend a lot on 
automated tools created by more experienced hackers [41]. It is expected that the 
effort required to defend against an APT is much higher than for a noise attack [41]. 

5.1.2 Changes to Attack Types 
None of the respondents thought that the effectiveness of any of the studied 
countermeasures were significantly dependent on the type of attack that is conducted 
– at least not on a level that would suit the purpose of the current study.  For example, 
the respondents of the workshop denoted that it can be more difficult to find dynamic 
language vulnerabilities (e.g., OS Command injections) than domain-specific 
language vulnerabilities (e.g., SQL injections) as there traditionally are no error 
messages provided during the probing. Such vulnerabilities are likely easier to find 
through white box analysis rather than black box analysis. However, given the 
purpose of the study, the respondents did not perceive it is useful to detail these 
aspects. Consequently, this category is removed from the metamodel. 

5.1.3 Changes to Results of Attacks 
As for the type of attack, all respondents thought that the variables of the attack result 
category (cf. Section 2.4) should be aggregated into a single variable. That is, the 
different countermeasures are not significantly more effective at preventing, for 
example, denial of service attacks compared to attacks which aim to corrupt 
information. Thus, this category is removed from the metamodel. 



210 H. Holm and M. Ekstedt 

5.1.4 Changes to Vulnerabilities 
All of the respondents perceived that there was a significant difference in 
effectiveness of the countermeasures depending on whether the vulnerability and 
exploit was known to the public at large or not. As such, the qualitative structure 
regarding this variable is the same as the variables presented in Section 2.3. 

5.1.5 Changes to Countermeasures 
The results from each data collection event are fairly similar in terms of 
recommended changes to the concepts of the hypothesized metamodel (cf. Fig. 1). 
There are however a few notable suggestions by the experts. 

Table 2. Recommended revisions to countermeasures 

Countermeasure I1 I2 I3 WS 
Software patching   None None None None 
Disabling unnecessary responses  None None None Revisea 
Black box testing  None None None Reviseb 
Type-safe API’s Remove None None None 
Static code analysis None None None - 
Hybrid approaches  Remove Remove Remove Removec 
Content based rejection None Revised Revised Revised 
Query modification Remove Remove Remove None 
Intrusion detection systems  None Revisee Revisee Revisee 
Disabling unnecessary services Add - - - 
Developer security training Addf Add Add Addf 
A formalized development process - - Add - 
a Change for Configuration management. 
b Change for Vulnerability scanning.  
c Effective, but not used in practice.  
d Change for Web Application Firewall (prevent). 
e Change for Web Application Firewall (detect). 
f Important, but difficult to estimate and categorize. 

 
One notable recommendation was to replace Content based rejection and Intrusion 

Detection Systems for Web Application Firewalls (WAF), a common type of 
countermeasure that often is employed after deployment of a WA. A WAF can be 
configured to automatically prevent detected attacks or to report of their occurrence to 
human operators.  

Another notable revision prescribed by the experts was removal of hybrid 
approaches. The experts believed that this would be an effective solution in the future, 
but not something that was practically available at the time of the study.  

A third notable revision made by suggestion of the experts was replacing query 
modification by the broad category of developer security training. A developer that 
have been security trained can be perceived to both be able to produce more secure 



 A Metamodel for Web Application Injection Attacks and Countermeasures 211 

code and be able to apply countermeasures such as static code analysis in a more 
effective way [14, 20].  

5.2 Estimates on the Significance of Relations between Attributes 

This section describes the estimates made by the experts on the effectiveness of the 
countermeasures, both alone and in combination with others’. I.e., it analyzes the 
significance of the attribute relations of the metamodel. 

5.2.1 Effectiveness of Individual Countermeasures 
The quantitative estimates made by the respondents can be seen in Table 3. These 
estimates are made under the assumption that no countermeasure other than the one 
studied is present. The effectiveness of the countermeasures was studied based on the 
revised metamodel as seen by the experts (cf. Section 5.1). As the respondents 
prescribed removing attributes related to the type of attack and the results of attacks 
the hypothesized dependencies regarding these attributes were not analyzed. While 
the experts made estimations for both known and unknown vulnerabilities, data is 
only provided for known vulnerabilities. This as the experts depicted exactly the same 
values for them - the only difference is that software patching per definition is not 
effective for unknown security issues.  

Table 3. Estimates on the effectiveness of countermeasures by experts 

Countermeasure  

Mean effectiveness (1-5) Mean variance (1-5) 

Noise APT Noise APT 

I1* I2 I3 WS I1* I2 I3 WS I1 I2 I3 WS I1 I2 I3 WS 

Software patching** (SP) A 4 5 5 A 1 4 2 4 5 1 1 4 5 1 2.5 
Disabling unnecessary responses 
(DUR) D 2 5 4 D 2 3 4 4 5 2 4 4 5 2 4 

Black box testing (BBT) B 3 3 4 B 3 2 4 2 2 2 4.5 2 2 3 3.5 
Type-safe API’s (API) - 4 5 5 - 4 3 5 - 4 1 1 - 4 2 1 
Static code analysis (SCA) E 4 5 - E 3 4 - 2 2 2 - 2 2 3 - 
Web Application firewall, reject 
(WAFr) C 4 5 3.5 C 3 5 2 3 3 2 3 3 3 2 2 
Web Application firewall, detect 
(WAFd) F 1 5 2 F 1 4 1 3 3 3 2 3 3 3 2 
Developer security training (DST) - 4 4 - - 4 4 - - 4 4 - - 4 4 - 
* Ranked from A: most effective to F: least effective. 
** Only effective for known vulnerabilities. 

 
Notable is that the first interview respondent did not feel comfortable providing 

quantitative estimates, and thus instead ranked the countermeasures according to their 
effectiveness (from A: most effective to F: least effective).  

The consensus is rather low regarding mean effectiveness and mean variance for 
most countermeasures. There is however agreement regarding some aspects: all 
respondents perceive software patching to be the most effective countermeasure given 
known vulnerabilities and noise attacks. Each respondent perceives black box testing 



212 H. Holm and M. Ekstedt 

to be fairly effective against noise attacks, and all interview respondents seemingly 
agree that the variance in effectiveness between tools in this category is fairly low. It 
is however clear that all attribute relations are required to be modeled. 

5.2.2 Effectiveness of Countermeasures in Combination 
Oftentimes, the effectiveness of one countermeasure can be thought of as dependent 
on the presence of another. None of the respondents however perceived that the 
dependencies between countermeasures would depend on the type of attacker in 
question. As a consequence, two dependence matrixes were scored during each data 
collection event: one for known vulnerabilities (cf. Table 4) and one for unknown 
vulnerabilities. As for the estimates on the effectiveness of individual 
countermeasures, the only difference between the two dependence matrixes analyzed 
by the respondents is that software patching is not applicable for unknown 
vulnerabilities. As a consequence, all combinations including software patching in the 
matrix for unknown vulnerabilities were denoted as not effective by all respondents. 
This is also the reason for why it is not shown in the paper. 

In Table 4, a “0“ means that the combination of countermeasures is not perceived 
to result in a significant increased effectiveness. A “+” means that the combination is 
perceived to result in a significantly increased effectiveness. A “*” means that a data 
collection event did not detail the perceived dependency, i.e., it was not part of the 
metamodel proposed by the respondent(s) (cf. Section 5.1). Interview 1 is the first 
symbol in each cell, interview 2 the second, interview 3 the third, and the workshop 
the fourth. For example, the combination between type-safe API’s and prevention 
based WA firewalls has the symbols “*++0“. That is, respondent 1 (I1) did not have 
type-safe API’s in the perceived metamodel; and thus the first symbol is“*”. The 
second and third respondents (I2 and I3) perceived a significant increased 
effectiveness of the combination, and thus the second and third symbols are “+”. The 
respondents of the workshop (WS) did not perceive the combination to result in any 
significant increased effectiveness, and as such the fourth symbol is “0“. 

Table 4. Dependencies between countermeasures regarding known vulnerabilities. “+” denotes 
perceived increased effectiveness, “0“denotes no perceived increased effectiveness, and 
“*”denotes that the combination was not scored. 

SP DUR BBT API SCA WAFr WAFd
DUR ++++ 
BBT 0+++ ++++
API *0++ *+++ *+++
SCA 00+* +++* +++* *++*
WAFr +0++ ++++ +++0 *++0 +++*
WAFd 00+0 00+0 00+0 *0+0 00+* 00+0 
DT *0+* *++* *++* *++* *++* *++* *++* 

 



 A Metamodel for Web Application Injection Attacks and Countermeasures 213 

Most combinations are perceived to have significant increased effectiveness. 
However, the perceived non-significance of combinations involving WAFd could 
seem curious. The reason behind this is that all respondents except the third interview 
respondent perceived that the attack would be successful long before the eventual 
response by operators seeing the alarm. The third respondent viewed a WAFd as a 
good indicator of overall threat, something the respondent believed to be of 
importance. 

5.3 Revised Metamodel for Web Application Injections 

An overview of revised metamodel, formulated from the consensus by the six 
respondents, can be seen in Fig. 2. All attributes except Attacker.Skill and 
WebApplicationFirewall.Functionality have state-spaces of {True, 
False}. Attacker.Skill can take the states {Noise, Advanced Persistent Threat} 
and WebApplicationFirewall.Functionality can take the states 
{Prevent, Detect and report}.   

 

Fig. 2. A revised metamodel of WA injections 

As can be seen, while the entity Attacker has been added, the revised 
metamodel is significantly smaller than the hypothesized metamodel (cf. Fig. 1). A 
less detailed metamodel is preferable due to two main reasons: (i) it requires less 
effort to manage by the modeler and (ii) it performs better when simulating attacks 
using the CySeMoL calculation engine (due to a smaller total state-space). 



214 H. Holm and M. Ekstedt 

6 A Critical Discussion of Research Findings 

While the hypothesized metamodel is constructed from peer-reviewed domain theory, 
the revised metamodel is subject to potential bias, for example, bias due to the chosen 
sample [42]. The findings from this study are based on assessments by a small 
number of individuals. Even though these individuals were selected based on 
recommendations by their peers and had significant experience on the topic it is 
difficult to say that their estimates are representative for the population at large. 
Nevertheless, while it is important to recognize these delimitations, the results 
provided by this paper give valuable input that no previous study has analyzed.  

Another bias that is important to address is the bias due to the data collection 
methodology [42]. Moser [42] argue that there are three possible bias in terms of data 
collection methodology through interviews: (i) bias due to the interaction of 
interviewer and respondent, (ii) bias due to factors connected with the questionnaire, 
and (iii) bias due to factors connected with the setup and circumstances of the 
interview. The author describes a list of factors that are of importance in order to limit 
bias due to these three factors; these suggestions were consulted when formulating 
interview questions and collecting data during the present study. A few significant 
decisions made due to recommendations by [42] are described below. 

The interviews and the workshop were carried out using the same procedure (cf. 
Section 4.2), using a structured procedure. Also, no respondent had any previous 
affiliation with the interviewer. These aspects should serve to reduce the threat of 
interview bias. 

To handle the complexity of the research purpose, the questionnaire was broken 
down into a sequence of different topics (cf. Section 4.2). The sub-session 
corresponding to each of these topics were introduced by the interviewer at the 
beginning of them. 

The outcomes of the interviews and the workshop were presented to the 
corresponding respondents to enable them to correct any issues. No respondent found 
any issues which they wanted to address. 

Another potential bias is that respondents, if pressured, can provide answers which 
they do not really believe in [43]. This is of particular significance to a study such as 
the present, with complex high-level questions that can be perceived as difficult to 
answer. To counter this issue, no answers were forced. Furthermore, the format of the 
estimates could be changed to better suit the respondent. These options were utilized 
twice in the present study: the respondents of the workshop did not feel comfortable 
addressing static code analyzers, and the first respondent did not feel comfortable 
with the measurement scale of “mean effectiveness”. As a consequence, the interview 
instrument was revised during these occasions to accommodate their needs.   

7 Conclusions  

While decision support on an abstraction level of actual security tools (e.g., WAVES 
or AMNESIA) is useful in the sense that it provides accurate information it would 



 A Metamodel for Web Application Injection Attacks and Countermeasures 215 

end up with a significant number of options which would require large amounts of 
resources to parse – something which rarely is available, especially as WA injection 
attacks only constitute one small piece of the “security puzzle”. The present work 
presents a metamodel that can aid enterprise decision makers with a language for 
modeling WA injections and estimating the effectiveness of different 
countermeasures for the attack type. However, in order to decide upon a specific WA 
security solution, practitioners’ are naturally in need to consider more precise and 
valid knowledge.   

The results also indicate that some countermeasures do seem to outperform others 
(i.e., some attribute relations are more significant than others). The expert judgment 
indicate that type-safe API’s is the most effective approach – given that there is a 
possibility to manipulate the software code base. Under other circumstances, things 
are a bit different. Software patching is the most effective means of handling publicly 
known security issues and noise attacks. Static code analysis is the most effective for 
known security issues and APT, and for unknown security issues for both noise and 
APT. Hybrid based countermeasures are not a useful method of countermeasure as of 
yet, but are perceived to be a more viable solution in the future. It is also often times 
perceived to be useful to employ combinations of different countermeasures.  

Finally, it is important to acknowledge that the results presented in this paper only 
provide tentative findings - in order to enable sound conclusions regarding the topic 
of the study there is a need to perform further studies with more samples that can be 
perceived representative of the population.  

References 

1. Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: A taxonomy of 
software security errors. IEEE Security & Privacy 3, 81–84 (2005) 

2. Mitropoulos, M.D., Karakoidas, V., Louridas, P., Spinellis, D.: Countering Code Injection 
Attacks: A Unified Approach. Information Management & Computer Security 19, 3 
(2011) 

3. One, A.: Smashing the stack for fun and profit (1996), http://ezano-
secu.fr/securite/Applicatif/Smashing_the_stack_for_fun_and_p
rofit.pdf 

4. OWASP: 2010 OWASP Top 10 (2010) 
5. Martin, B., Brown, M., Paller, A., Kirby, D., Christey, S.: 2011 CWE/SANS Top 25 Most 

Dangerous Software Errors (2011) 
6. Scholtea, T., Balzarottib, D., Kirdac, E.: Have things changed now? An empirical study on 

input validation vulnerabilities in web applications. Computers and Security (2012) 
7. Suto, L.: Analyzing the Effectiveness of Web Application Firewalls (2011) 
8. Hansman, S., Hunt, R.: A taxonomy of network and computer attacks. Computers & 

Security 24, 31–43 (2005) 
9. Howard, J.D.: An analysis of security incidents on the Internet 1989-1995 (1997) 

10. NVD: National Vulnerability Database, http://nvd.nist.gov/ 
11. Pietraszek, T., Berghe, C.: Defending Against Injection Attacks Through Context-

Sensitive String Evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, 
vol. 3858, pp. 124–145. Springer, Heidelberg (2006) 



216 H. Holm and M. Ekstedt 

12. Sidharth, N., Liu, J.: IAPF: A Framework for Enhancing Web Services Security. The 
Computer Society (2007) 

13. Vorobiev, A., Han, J.: Security attack ontology for web services. In: Second International 
Conference on Semantics, Knowledge and Grid, SKG 2006, p. 42. IEEE (2006) 

14. Halfond, W., Viegas, J., Orso, A.: A classification of SQL-injection attacks and 
countermeasures. In: Int’l Symp. on Secure Software Engineering, Citeseer (2006) 

15. Zuchlinski, G.: The Anatomy of Cross Site Scripting (November 2003) 
16. Álvarez, G., Petrovi, S.: A new taxonomy of web attacks suitable for efficient encoding. 

Computers & Security 22, 435–449 (2003) 
17. Stamos, A., Stender, S.: Attacking Web Services: The Next Generation of Vulnerable 

Enterprise Apps. In: BlackHat 2005 (2005) 
18. Klein, A.: Blind XPath Injection. Whitepaper from Watchfire (2005) 
19. Ghourabi, A., Abbes, T., Bouhoula, A.: Experimental analysis of attacks against web 

services and countermeasures. In: Proceedings of the 12th International Conference on 
Information Integration and Web-based Applications & Services, pp. 195–201. ACM 
(2010) 

20. Nystrom, M.: Sql injection defenses. O’Reilly Media, Inc. (2007) 
21. Shin, Y., Williams, L.: Toward A Taxonomy of Techniques to Detect Cross-site Scripting 

and SQL Injection Vulnerabilities (2008) 
22. Halfond, W.G.J., Orso, A.: AMNESIA: analysis and monitoring for NEutralizing SQL-

injection attacks. In: Proceedings of the 20th IEEE/ACM International Conference on 
Automated Software Engineering, pp. 174–183. ACM (2005) 

23. Huang, Y., Huang, S.: Web application security assessment by fault injection and behavior 
monitoring. In: Proceedings of the 12th International Conference on World Wide Web, pp. 
148–159. ACM (2003) 

24. Shavlik: Shavlik Technologies, http://www.shavlik.com/ 
25. McClure, R.A., Krüger, I.H.: SQL DOM: compile time checking of dynamic SQL 

statements. In: Proceedings of the 27th International Conference on Software Engineering, 
pp. 88–96 (2005) 

26. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web 
application vulnerabilities (short paper). In: Proceedings aof the 2006 IEEE Symposium on 
Security and Privacy, pp. 258–263. IEEE Computer Society (2006) 

27. Buehrer, G., Weide, B.W., Sivilotti, P.A.G.: Using parse tree validation to prevent SQL 
injection attacks. In: Proceedings of the 5th International Workshop on Software 
Engineering and Middleware, pp. 106–113. ACM (2005) 

28. Cisco: Cisco Application Velocity System, 
http://www.cisco.com/en/US/products/ps6499/index.html 

29. Livshits, B., Martin, M., Lam, M.S.: Securifly: Runtime protection and recovery from web 
application vulnerabilities (2006) 

30. Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL Injection Attacks. In: Jakobsson, 
M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–302. Springer, 
Heidelberg (2004) 

31. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software 
Engineering, 222–232 (1987) 

32. apache-scalp: Apache log analyzer for security, http://code.google.com/p/ 
apache-scalp/  

33. Lankhorst, M.: Enterprise architecture at work: Modelling, communication and analysis. 
Springer-Verlag New York Inc. (2009) 



 A Metamodel for Web Application Injection Attacks and Countermeasures 217 

34. Lagerström, R.: Analyzing system maintainability using enterprise architecture models. 
Journal of Enterprise Architecture 3, 33–42 (2007) 

35. Närman, P., Holm, H., Johnson, P., König, J., Chenine, M., Ekstedt, M.: Data accuracy 
assessment using enterprise architecture. Enterprise Information Systems 5, 37–58 (2011) 

36. Sommestad, T., Ekstedt, M., Holm, H.: The Cyber Security Modeling Language: A Tool 
for Assessing the Vulnerability of Enterprise System Architectures. IEEE Systems Journal 
(to be available) 

37. Cooke, R.: Special issue on expert judgment. Reliability Engineering & System Safety 93, 
655–656 (2008) 

38. Weiss, D.J., Shanteau, J.: Empirical Assessment of Expertise. Human Factors: The Journal 
of the Human Factors and Ergonomics Society 45, 104–116 (2003) 

39. Bolger, F., Wright, G.: Assessing the quality of expert judgment: Issues and analysis. 
Decision Support Systems 11, 1–24 (1994) 

40. Holm, H., Sommestad, T., Ekstedt, M., Honeth, N.: Indicators of expert judgment and their 
value: an empirical investigation in the area of cyber security. Expert Systems: The Journal 
of Knowledge Engineering (to be available) 

41. Bodeau, D.J., Graubart, R., Fabius-Greene, J.: Improving Cyber Security and Mission 
Assurance Via Cyber Preparedness (Cyber Prep) Levels. In: 2010 IEEE Second 
International Conference on Social Computing, pp. 1147–1152. IEEE (2010) 

42. Moser, C.: Interview bias. Review of the International Statistical Institute, 28–40 (1951) 
43. Crespi, L.: The interview effect in polling. Public Opinion Quarterly 12, 99–111 (1948) 


	A Metamodel for Web Application Injection Attacks
and Countermeasures
	Introduction
	A Literature Review of Web Application Injection Attacks
	A Methodology for Categorizing Variables
	The Main Means of Attack
	Vulnerabilities and Exploits
	Result of the Attack
	Countermeasures

	Hypothesized Metamodel
	The Cyber Security Modeling Language
	A Hypothesized Metamodel

	Methodology for Revising the Hypothesized Metamodel
	Population and Sampling
	Data Collection

	A Metamodel Revised by Expert Judgment
	Changes to the Metamodel Prescribed by the Experts
	Estimates on the Significance of Relations between Attributes
	Revised Metamodel for Web Application Injections

	A Critical Discussion of Research Findings
	Conclusions
	References




