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Department of Electrical Engineering,
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Abstract. Universal hash functions are important building blocks for
unconditionally secure message authentication codes. In this paper, we
present a new construction of a class of ε-Almost Strongly Universal2
hash functions with much smaller description (or key) length than the
Wegman-Carter construction. Unlike some other constructions, our new
construction has a very short key length and a security parameter ε
that is independent of the message length, which makes it suitable for
authentication in practical applications such as Quantum Cryptography.
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1 Introduction

Universal hash functions were first introduced byWegman and Carter [7] in 1979,
and since then they have been extensively studied. They are used in diverse cryp-
tographic tasks such as unconditionally secure authentication, error-correction
and randomness extraction (or privacy amplification, within Quantum Cryptog-
raphy). Over the years, various Universal hash function families are constructed
by Wegman and Carter, Stinson, and others [3, 4, 6, 13, 14, 17, 20–24]. The im-
portant properties are the description length (key consumption), the security
parameter, and the computational efficiency, more on this below.

This paper addresses a new construction of Universal hash functions. In par-
ticular, we present a new construction of ε-Almost Strongly Universal2 (ε-ASU2)
hash functions, that not only have small description length but also a security pa-
rameter ε that is independent of the message length. The construction combines
the LFSR-based hashing proposed by Krawczyk in [13] with the composition
theorem by Stinson in [20] for constructing Universal hash functions. Given its
properties, the new construction is also computationally efficient.

1.1 Universal Hash Function Families

First, let us recall the definitions of Universal and ε-ASU2 hash functions and
the composition theorem for Universal hash functions.

Definition 1 (Universal2 hash functions). Let M and T be finite sets. A
class H of hash functions from M to T is Universal2 (U2) if there exist at
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most |H|/|T | hash functions h ∈ H such that h(m1) = h(m2) for any two distinct
m1,m2 ∈ M.

If there are at most ε|H| hash functions instead, the class H is ε-Almost
Universal2 (ε-AU2).

Definition 2 (XOR Universal2 hash functions). Let M and T be as before.
A class H of hash functions from M to T is XOR Universal2 (XU2) if there
exists at most |H|/|T | hash functions h ∈ H such that h(m1) = h(m2) ⊕ t for
any two distinct m1,m2 ∈ M and any t ∈ T .

If there are at most ε|H| hash functions instead, the class H is ε-Almost
XOR Universal2 (ε-AXU2).

Definition 3 (Strongly Universal2 hash functions). Let M and T be as
before. A class H of hash functions from M to T is Strongly Universal2
(SU2) if the following two conditions are satisfied:

(a) The number of hash functions in H that takes an arbitrary m1 ∈ M to
an arbitrary t1 ∈ T is exactly |H|/|T |.

(b) The fraction of those functions that also takes an arbitrary m2 �= m1 in
M to an arbitrary t2 ∈ T (possibly equal to t1) is 1/|T |.

If the fraction in (b) instead is at most ε, the class H is ε-Almost Strongly
Universal2 (ε-ASU2).

Note that ε ≥ 1/|T | [21] so that SU2 hash functions are the optimal case,
corresponding to 1/|T |-ASU2 hash functions.

There are several ways to construct classes of ε-ASU2 hash functions, and in
this paper we will use the following theorem from [20].

Theorem 1 (Composition). Let F be a set of ε1-AU2 hash functions from
M → Z, and let G be a set of ε2-ASU2 hash functions from Z → T . Then,
H = G ◦ F is an ε-ASU2 hash function family from M → T with ε = ε1 + ε2.

We will also use ideas from [13,14], in which an ε-AXU2 family is composed with
a one-time pad, resulting in an ε-ASU2 family (note that the above theorem does
not apply). The resulting family has a security parameter ε that depends on the
message length. In this paper, we will use a different approach that enables use
of the theorem, and keeps |H| small while giving a security parameter ε that
only depends on the tag length, not the message length.

1.2 Information-Theoretically Secure Authentication

The class of ε-ASU2 hash functions can straightforwardly be applied for
information-theoretically secure message authentication. In this scenario, two
legitimate users (Alice and Bob) share a secret key k long enough to identify
a hash function hk in a family of ε-ASU2 hash functions. When Alice wants to
send a message m to Bob, she computes t = hk(m) and sends it along with m.
Upon receiving m and t, Bob checks the authenticity of m by computing hk(m)
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using his share of the key and comparing it with t. If hk(m) and t are identical,
then Bob accepts m as authentic; otherwise, he rejects it.

Now, if an adversary tries to impersonate Alice and sends m′ without know-
ing the key k, or hk, the best he/she can do is to guess the correct tag for m′.
The probability of success in this case is P1 = 1/|T |. If the adversary inter-
cepts a message-tag pair (m, t) from Alice and substitutes m with m′, then the
probability P2 of guessing the correct tag t′ for m′ increases somewhat but is
bounded by ε (≥ 1/|T |). In other words, even seeing a valid message-tag pair
does not increase the adversary’s success probability above ε. Therefore, by us-
ing a family of ε-ASU2 hash functions with suitably chosen ε, one can achieve
information-theoretically secure message authentication.

In addition to requiring ε to be small, practical applications require also the
length l of the key k identifying a hash function in the family of ε-ASU2 hash
functions to be as small as possible. This latter requirement is especially impor-
tant in Quantum Cryptography (QC).

1.3 Application to Authentication in Quantum Cryptography

Quantum Cryptography (QC), also known as QuantumKey Distribution (QKD),
is a key agreement technique based on the laws of quantum mechanics. The users
first exchange quantum signals over a so-called quantum channel to generate a
raw key by measuring the quantum signals. Then, they extract a common secret
key from the raw key by performing a joint post-processing by communicating
on an immutable public channel. The first QKD protocol known as BB84 was
proposed by Bennett and Brassard in 1984 [2].

QKD is proven to be information-theoretically secure, provided that the pub-
lic channel is immutable; see, for example, [19]. In the case that the public
channel is not immutable (not authentic), QKD can easily be broken by a man-
in-the-middle attack. Therefore, ensuring the authenticity of the public channel
is a must. More specifically, the adversary must not be able to insert or modify
the classical messages exchanged over the public channel between the legitimate
users during the post-processing phase of the QKD protocol. Also, to guar-
antee information-theoretic security of QKD the authentication used must be
information-theoretically secure.

This is achieved via ε-ASU2 hashing, and thus needs shared secret key. In
the first round the users must use pre-shared secret key, which should be long
enough to authenticate the classical messages in the round. In the following
rounds, key generated in the previous rounds must be used. Hence, the key-
consumption rate of the authentication protocol used in QKD directly influences
the key output rate. Because of this, one needs an authentication with small
key-consumption rate. Furthermore, in QKD very long messages need to be
authenticated, so it is desirable to have a scheme where it is simple to do this,
without changing parameters of the communication protocol. Thus, there is a
need for a hash function family that is small but still has a security parameter
ε that only depends on the tag length, not the message length.
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1.4 Lower Bounds

There are lower bounds on the description length (or key length) for ε-ASU2 hash
functions derived by Stinson [20], Kabatiankii et al. [12], Gemmel and Naor [9],
and Nguyen and Roscoe [16]. In [16], the authors provided new combinatorial
bounds that are tighter than the other bounds for the key length. They also
identified a value for ε that represents a threshold in the behaviour of the various
bounds and classified different lower bounds in relation to the threshold value
of ε. Here, we only recall the lower bound by Stinson in [20]. Interested readers
may refer to the above references for details of the other bounds.

Theorem 2 (Lower bound for ε-ASU2 hash function families [20]). If
there exists an ε-ASU2 family H of hash functions from M to T , then

|H| ≥ |M|(|T | − 1)2

|T |ε(|M| − 1) + |T | − |M| + 1. (1)

The proof can be found in [20]. In the SU2 case, this simplifies to

|H| ≥ |M|(|T | − 1) + 1. (2)

Otherwise, if |M| � |T | the bound simplifies to (in terms of key length)

log |H| ≥ 2 log(|T | − 1)− log(ε|T | − 1) + 1. (3)

Here and below “log” denotes the base 2 logarithm. If in addition ε = c/|T | for
some constant c and |T | is large, the right-hand side is close to 2 log |T |. If one
allows ε to increase when |M| increases, the bounds decrease which makes it
easier to approach 2 log |T |, as we shall see below.

1.5 Comparison of Some Existing Constructions

Now, let us briefly compare the key length and security parameter ε of a few
constructions of ε-ASU2 hash function families. In Table 1, the value of ε and
the key length for five different constructions are listed for comparison. One can
find a more detailed overview of various constructions of ε-ASU2 hash functions
by different authors in Refs. [1, 17].

As can be seen from the table, the constructions by Wegman-Carter and
Bierbrauer et al. have ε = 2/|T | while the others have values of ε that depend
on the message length either logarithmically (Stinson) or linearly (den Boer and
Krawczyk). In terms of key length, den Boer’s construction is the best followed
by Krawczyk, having key lengths 2 log |T | and 3 log |T | + 1, respectively, and
both are determined only by the tag length. The next good scheme in terms
of key length is the construction by Bierbrauer et al., for which the key length
≈ 3 log |T |+ 2 log log |M|. The key length for the constructions by Stinson and
Wegman-Carter are logarithmic in the message length, but the construction by
Stinson consumes approximately a quarter of the key that is needed for the
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Table 1. The key length and ε for different constructions. The key length for Bier-
brauer et al is approximate because of the need to invert ses in the construction. This
involves the Lambert W function (see, e.g., [8]), whose asymptotics for large s gives
the expression below.

Construction ε Key length

Wegman-Carter [24] 2/|T | 4(log |T | + log log log |M|) log log |M|
Stinson [20] (log log |M| − log log |T | + 1)/|T | (log log |M| − log log |T | + 2) log |T |
den Boer [6] (log |M|/ log |T |)/|T | 2 log |T |

Bierbrauer et al. [3] 2/|T | ≈ 3 log |T | + 2 log log |M|
Krawczyk [13] (1 + 2 log |M|)/|T | 3 log |T | + 1

Wegman-Carter. As mentioned earlier, we aim for a construction with small key
length and ε independent of message size.

There are also other constructions such as Bucket hashing by Rogaway [18],
MMH (Multilinear Modular Hashing) by Halevi and Krawczyk [10], and UMAC
by Black et al. [5]. All three are very fast but have some properties that make
them undesirable from the point of view of this paper. Bucket hashing has a very
long key and output and is only ε-AU2 and so the hash output has to be further
mapped by an (A)SU2 hash function to make it ε-ASU2. Another paper [11]
proposes a bucket hashing scheme with small key, but this does not have fixed
ε and still has a comparatively long output. MMH [10] and UMAC [5] are not
economical in terms of key length; the key lengths are very large in comparison
to the above schemes.

1.6 Our Contribution

In this paper, we use LFSR-based hashing [13] and compose with an SU2 hash
function family. This enables the composition theorem, and gives a new ε-ASU2

hash function family. One particular choice of parameters in the construction
gives ε = 2/|T | just as in Wegman-Carter’s initial construction, while retaining
a small description length. This construction is suitable for use in authentication,
especially in Quantum Cryptography because of its low key-consumption prop-
erty and the small fixed ε. Also, the new construction is also computationally
efficient because the LFSR can efficiently be implemented in both software and
hardware; the subsequent SU2 hash function family operates on a much shorter
intermediate bitstring, and is therefore also comparatively efficient.

2 The New Construction

In this section, we present our new construction of an ε-ASU2 hash function
family. To do this we need the first step in the construction by Krawczyk, the
LFSR-based hashing [13].
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2.1 LFSR-Based Hashing

In [13], Krawczyk presented an elegant way of constructing ε-AU2 hash functions.
The basic idea is to use an LFSR with a short key, a secret initial string and a
secret feedback polynomial, to generate a longer key that selects a hash function
in an ε-AU2 hash function family. This can be viewed as selecting a certain
subset of the linear maps from binary vectors m in M to binary vectors t in T .

The full set of linear maps from M to T was found to be an SU2 hash
function family already by Wegman and Carter in [7], there denoted H3. In
matrix language, H3 consists of log |T | × log |M| binary matrices, so that the
description length of the hash functions in H3 is (log |M|)(log |T |), which makes
it impractical. However, if the matrices are restricted to be Toeplitz matrices
(constant on diagonals), then the corresponding set of hash functions is still
Universal2, see [15]. The description length of the hash functions is now reduced
to log |M| + log |T | − 1, since a Toeplitz matrix can be uniquely identified by
the first column and the first row of the matrix.

With a further restriction on the Toeplitz matrix, it is possible to obtain
an ε1-AXU2 hash function family with a much smaller description length. In
particular, if the consecutive columns of the Toeplitz matrix are restricted to be
the consecutive states of an LFSR of length log |T |, then the hash functions with
these matrices form an ε1-AXU2 hash function family with ε1 = (2 log |M|)/|T |.
The description length of the hash functions in this family is 2 log |T |+1, which
is the sum of the length of the initial state and the feedback polynomial; see [13]
for details.

Krawczyk’s construction continues with a composition with a one-time pad.
In the next section, we will take a different route and not use the XOR prop-
erty of the family, but only the ε-AU2 property. In Krawczyk’s construction, as
mentioned in the introduction, the composition of an ε1-AXU2 family with a
one-time pad (of length |T |) is an ε-ASU2 family with ε = ε1 + 1/|T | [13]. The
one-time pad has length log |T |. Therefore, the construction by Krawczyk has
ε = (1 + 2 log |M|)/|T | and the key length 3 log |T |+ 1, which is the sum of the
length of the key for LFSR-based hash function and of the one-time pad. We
note that the feedback polynomials used in the LFSR-based hashing are irre-
ducible, so that the actual key length is slightly less than 3 log |T |+1, see [13,14]
for details on usage and key length.

2.2 LFSR-Based Hashing Followed by an SU2 Hash Function
Family

Our goal is to construct an ε-ASU2 hash function family from M to T with
ε = 2/|T | and with a small key length. To this end, we use LFSR-based hashing
and the composition theorem. Recall that the composition theorem states that
if h = g ◦ f is the composition of an ε1-AU2 hash function f from M → Z with
an SU2 hash function g from Z → T , then h is ε-ASU2 with ε = ε1+1/|T | from
M → T . Also, if f is an LFSR-based hash function from M → Z, then f is an
ε1-AU2 with ε1 = (2 log |M|)/|Z|. Therefore, to make
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2 log |M|
|Z| +

1

|T | =
2

|T | , (4)

we need to have
2 log |M|

|Z| =
1

|T | , (5)

which gives us
|Z| = 2|T | log |M|. (6)

This gives the following construction: let F be a set of LFSR-based hash func-
tions from M → Z, where Z is an intermediate set of bit strings of length
log |T |+ log log |M|+1. From eqn. (5), we see that F is an ε-AU2 hash function
family with ε = (2 log |M|)/|Z| = 1/|T |. Let G be a set of SU2 hash functions
from Z → T , and H = G ◦F . Then, by the composition theorem, it follows that
H is a family of ε-ASU2 hash functions from M → T with

ε = 2/|T |. (7)

As before, the family F of LFSR-based hash functions from M → Z has de-
scription length lF = 2 log |Z| + 1. And since Z is a set of strings of length
log |T |+ log log |M|+ 1 we obtain lF = 2 log |T |+ 2 log log |M|+ 3.

For the SU2 family of hash functions G, the shortest possible description
length is slightly smaller than log |Z| + log |T | because of the bound (2). The
construction in Lemma 10 of Bierbrauer et al. [3] almost reaches this with a key
length of exactly log |Z| + log |T |, which gives a description length of the SU2

hash functions in G of lG = 2 log |T |+log log |M|+1. Explicitly, let π be a linear
map from Z → T . Then, the family G of hash functions g : Z → T defined
as gz,t(r) = π(zr) + t, where z, r ∈ Z and t ∈ T , is SU2. This family works
well as G, but note that any SU2 family with key length equal to the message
(intermediate bit string) length plus the tag length would give the same total
key length

lH = lF + lG = 4 log |T |+ 3 log log |M|+ 4. (8)

3 Comparison with Existing Constructions

Let us now compare the above construction with existing constructions in terms
of the key length, security parameter, and performance. Table 2 lists the relevant
data in terms of the key length and the security parameter ε.

As can be seen from the table, the new construction like the constructions
by Wegman-Carter [24] and Bierbrauer et al. [3] has a fixed ε = 2/|T |, while
the others have ε dependent logarithmically or linearly on the message length
log |M|. In terms of the key length, our construction clearly consumes much
less key than the constructions by Wegman-Carter [24] and Stinson [20], but
not as little as the constructions by den Boer, Krawczyk, and Bierbrauer. The
construction by den Boer has the lowest key length 2 log |T | at the cost of an
increase in ε.
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Table 2. The key length and ε for the new and the existing constructions. Approxi-
mations as before.

Construction ε Key length

Wegman-Carter [24] 2/|T | 4(log |T | + log log log |M|) log log |M|
Stinson [20] (log log |M| − log log |T | + 1)/|T | (log log |M| − log log |T | + 2) log |T |
den Boer [6] (log |M|/ log |T |)/|T | 2 log |T |

Bierbrauer et al. [3] 2/|T | ≈ 3 log |T | + 2 log log |M|
Krawczyk [13] (1 + 2 log |M|)/|T | 3 log |T | + 1

This construction 2/|T | 4 log |T | + 3 log log |M| + 4

Another way to compare the schemes is to fix the security parameter ε, and
from that and the message length log |M| determine tag length log |T | and key
length. This is done in Table 3, but only for the four last alternatives of Table
2. As we can see from the table, the tag length does not depend on log |M| for
Bierbrauer et al. and the present scheme, while it increases when the message size
increases for den Boer [6] and Krawczyk [13]. In terms of key length dependence
on log |M|, the constructions by den Boer [6] and Bierbrauer et al. are somewhat
better than Krawczyk [13] and the current constructions.

Table 3. The key length and tag length, given ε and |M|. Here, also the entries for
den Boer are approximate; an approximation of the inverse to |T | log |T | again involves
the asymptotics of the Lambert W function.

Construction log |T | Key length

den Boer [6] ≈ − log ε+ log log |M| ≈ −2 log ε+ 2 log log |M|
Bierbrauer et al. [3] − log ε+ 1 ≈ −3 log ε+ 2 log log |M|

Krawczyk [13] − log ε+ log(1 + 2 log |M|) −3 log ε+ 3 log(1 + 2 log |M|) + 1

This construction − log ε+ 1 −4 log ε+ 3 log log |M|+ 8

Finally, simplicity of use and setup and performance should be briefly ad-
dressed. It is simpler to aim for a given security if there is only one parameter
to adjust, and this would be a benefit of the present construction and the one
by Bierbrauer et al. [3]. If the security parameter ε is fixed, so is the tag length
in these two. The other two need to change tag length when the message length
changes.

In terms of performance, the present construction and the one by Krawczyk
[13] seem to have an advantage, since both decrease the size of the long mes-
sage by using an LFSR which can efficiently be implemented in hardware and
software. The other two use modular arithmetic in larger fields, which is some-
what less efficient. After shortening the message, Krawczyk’s construction uses
an OTP, again using efficient binary arithmetic, while the construction in this
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paper maps the intermediate short string into a tag by an SU2 hash function.
The difference between the two operations is not so large, since the length of the
intermediate string is not so long in our construction. In all, the hash function
family proposed in this paper compares well to the others in both cases, in that
it is the only family that has both a simple relation between security parameter
and construction parameters, and is efficient.

4 Conclusion

We have presented a simple new construction of an efficient ε-ASU2 hash func-
tion family with small description length, for which the security parameter is
independent of message length. The construction uses the idea of LFSR-based
hashing together with Stinson’s composition theorem for Universal hash func-
tion families. The resulting family has a key consumption that is logarithmic in
the message length and linear in the tag length or logarithmic in the security pa-
rameter, with small (constant) coefficients. It is efficient, given that it requires a
short key. These properties make our construction very suitable for information-
theoretically secure authentication purposes in practical applications, especially
in Quantum Cryptography.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments on an earlier version of the paper.

References

1. Atici, M., Stinson, D.R.: Universal Hashing and Multiple Authentication. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 16–30. Springer, Heidel-
berg (1996)

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proc. IEEE Int. Conf. Comput. Syst. Signal Process., Bangalore,
India, pp. 175–179 (1984)

3. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On Families of
Hash Functions via Geometric Codes and Concatenation. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994)

4. Black, J.: Message authentication codes. Ph.D. thesis, University of California
Davis, USA (2000)

5. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and
Secure Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

6. den Boer, B.: A simple and key-economical unconditional authentication scheme.
J. Comp. Sec. 2, 65–72 (1993)

7. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18, 143–154 (1979)

8. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the
Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)



108 A. Abidin and J.-Å. Larsson
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