
Breaking DVB-CSA

Erik Tews1, Julian Wälde1, and Michael Weiner2

1 Technische Universität Darmstadt, Fachbereich Informatik,
Hochschulstraße 10, 64289 Darmstadt

{e tews,jwaelde}@cdc.informatik.tu-darmstadt.de
2 Technische Universität München

michaelweiner@mytum.de

Abstract. Digital Video Broadcasting (DVB) is a set of standards for
digital television. DVB supports the encryption of a transmission using
the Common Scrambling Algorithm (DVB-CSA). This is commonly used
for PayTV or for other conditional access scenarios. While DVB-CSA
support 64 bit keys, many stations use only 48 bits of entropy for the
key and 16 bits are used as a checksum. In this paper, we outline a time-
memory-tradeoff attack against DVB-CSA, using 48 bit keys. The attack
can be used to decrypt major parts a DVB-CSA encrypted transmission
online with a few seconds delay at very moderate costs. We first propose a
method to identify plaintexts in an encrypted transmission and then use a
precomputed rainbow table to recover the corresponding keys. The attack
can be executed on a standard PC, and the precomputations can be
accelerated using GPUs. We also propose countermeasures that prevent
the attack and can be deployed without having to alter the receiver
hardware.

1 Introduction

Digital Video Broadcasting (DVB) is a set of standards for digital television in
Europe. It has been standardized by the European Telecommunication Stan-
dardization Institute (ETSI) in 1994. DVB defines multiple standards in the
field of digital television; well-known standards include terrestrial (DVB-T) [5],
satellite (DVB-S) [3], and cable television (DVB-C) [4]. However, there are many
more standards, e.g. for data broadcasting.

DVB supports encryption of payload using the proprietary Common Scram-
bling Algorithm (DVB-CSA). The main use cases are PayTV and conditional
access for TV stations that only have regionally limited broadcasting rights.
Other use cases are possible as well, e.g. encryption of IP-over-satellite data
traffic [7].

DVB-CSA was not intended for public disclosure and manufacturers imple-
menting it need to sign a non-disclosure agreement to get access to the spec-
ifications [1]. Only a few details about the structure of the encryption scheme
were known from the standard [2], a publication [8], and a patent application [6].
The breakthrough leading to the full disclosure of DVB-CSA took place when
FreeDec, a software implementation of DVB-CSA, appeared on the Internet in

F. Armknecht and S. Lucks (Eds.): WEWoRC 2011, LNCS 7242, pp. 45–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

46 E. Tews, J. Wälde, and M. Weiner

2002. This implementation was reverse-engineered to extract the missing details
of the cipher, such as the S-Box used.

The first academic publication analyzing DVB-CSA appeared one year later
[13]. Other publications we found about DVB-CSA consider physical attacks, i.e.
fault attacks [14] and side-channel attacks [9] or only analyze the stream cipher
part of DVB-CSA [12], while DVB-CSA also contains a block cipher (see Section
2). However, those attacks do not work in a real-life scenario.

Common PayTV setups consist of four core components: a Smart Card, a
Conditional Access Module (CAM), a set-top box and the television. The Smart
Card is personalized to the PayTV subscriber and provides the DVB-CSA keys,
which are changed frequently. It is able to compute the DVB-CSA keys based
on a secret stored on the card and control messages from the TV station. The
Conditional Access Module is the interface between the Smart Card and the
set-top box. The CAM is either a PCMCIA card connected to the set-top box
over the Common Interface (CI) or it is integrated into the set-top box. The
set-top box decodes the MPEG stream and forwards it to the television, and the
television finally displays the video.

All public practical attacks on encrypted DVB streams we know consider
attacking the DVB-CSA key derivation scheme – this includes physical attacks
against SmartCards as well as Card Sharing, i.e. distributing the DVB-CSA keys
generated by a SmartCard to multiple users.

1.1 Our Contribution

To the best of our knowledge, we provide the first practical attack on DVB-CSA
itself. It can be used to determine DVB-CSA session keys within a few seconds,
regardless of the key derivation scheme. We use pre-computed rainbow tables [10]
for our attack and reduce the key space by exploiting the fact that most 64-bit
DVB-CSA keys use 16 of the key bits as a checksum.

This paper is organized as follows: We first introduce the reader to the DVB-
CSA encryption algorithm in Section 2. In Section 3, we outline that DVB-CSA
keys (64 bit) usually contain only 48 bits of entropy and 16 bit of the key are
used as a checksum. In Section 4, we examine the MPEG2 Video broadcasted
by many TV stations, and show that it usually contains constant plaintexts. In
Section 5, we use this fact combined with the reduced key space to show that a
time-memory tradeoff can be used against DVB-CSA, using rainbow tables. In
Section 6, we show how tools that generate such tables can be efficiently imple-
mented on CPUs and GPUs, and benchmark their performance. In Section 7, we
suggest appropriate parameters for the generation of these tables. In Section 8,
we present experimental results with a small table. In Section 9, we outline the
overall attack scenario. In Section 10 we suggest countermeasures that prevent
the attack and can be implemented with very low costs. We finally conclude in
Section 11.

Breaking DVB-CSA 47

2 DVB-CSA in a Nutshell

DVB-CSA is the symmetric cipher used to protect content of MPEG2 Transport
Streams in DVB. To transmit multiple audio, video or general data streams on
a single transponder, MPEG Transport Stream (MPEG TS) encapsulates all
data streams in cells of 188 bytes. These cells consist of a 4 byte header and 184
bytes of payload. Optionally, an extended header can be embedded, reducing the
payload size by the size of the extended header.

A flag in the MPEG TS header indicates whether the packet is unencrypted,
or encrypted with the even or odd key. Usually, only one key is used, while
the other key is updated by the CAM/SmartCard. For encrypted cells, only the
payload is encrypted. The header or optional extended header is never encrypted.

DVB-CSA works in 2 passes. The first pass splits the plaintext of the payload
into blocks of 64 bit length and a remainder that is smaller than 64 bit; all
blocks except this remainder are then encrypted with a custom block cipher in
CBC mode, using reverse block order and all zero initialization vector. In the
second pass, a stream cipher using the first block (last block in the order used
with the block cipher) as initialization vector encrypts all data again, except
the first block. Note that DVB-CSA does not randomize the ciphertexts: Equal
plaintexts are always mapped to the same ciphertexts.

Fig. 1. DVB-CSA structure

2.1 The DVB-CSA Block Cipher

We will concentrate on the custom block cipher used by DVB-CSA as our attack
focuses on the first block of the ciphertext which does not depend on the stream
cipher (see Figure 1). We define the variables used for the block cipher as follows:

48 E. Tews, J. Wälde, and M. Weiner

Definitions

KEY the 64 bit KEY
Ki the ith byte of the 64 bit key

KS[i] the ith round key (1 byte)
R[i] the ith byte of the 64 bit plaintext
S a 8 bit permutation
P a 8 bit permutation that only swaps bits

Key Schedule. The block cipher encrypts a single block in 56 rounds without
any kind of additional input or output transformation. The key schedule of the
block cipher expands the 64 bit key into 56 8 bit round keys using the bit
permutation from Table 1.

X6 = KEY
for i = 6→ 0 do
Xi−1 ← permute block(Xi)

end for
for i = 0→ 6 do
KS[8 ∗ i . . . 8 ∗ (i+ 1)− 1]← Xi ⊕ (0x0101010101010101 ∗ i)

end for

Round Function. One round of the DVB-CSA block cipher consists of six 8
bit XORs, one S-Box lookup S (see the sourcecode in Appendix A) and a 8 bit
bit-permutation P .

P permutes bit indices as in this table:
in 0 1 2 3 4 5 6 7

out 1 7 5 4 2 6 0 3

3 Usage of DVB-CSA

In spite of the fact that DVB-CSA works with 64 bit keys, we observed that only
48 bit of entropy are used for many TV stations. The fourth and the eigth byte
of the key in this case are the sum of the previous three bytes modulus 256:

Table 1. permute block(X)

swaps the bits in X as in this table (decimal notation):

0 1 2 3 4 5 6 7 8 9

00 19 27 55 46 01 15 36 22 56 61

10 39 21 54 58 50 28 07 29 51 06

20 33 35 20 16 47 30 32 63 10 11

30 04 38 62 26 40 18 12 52 37 53

40 23 59 41 17 31 00 25 43 44 14

50 02 13 45 48 03 60 49 08 34 05

60 09 42 57 24

Breaking DVB-CSA 49

Fig. 2. DVB-CSA block cipher round function

k0 k1 k2 k0 + k1 + k2 mod 256 k4 k5 k6 k4 + k5 + k6 mod 256

This reduces the effort needed for an exhaustive search from 264 to 248 trial
decryptions. This fact was not mentioned in previous academic publications
[13,14,12] but is actually documented on the english Wikipedia (as of 2006)1.
Because DVB-CSA is a non public standard that has been reverse engineered, we
do not know whether these checksums are part of the specification or originate
from cryptography export restriction.

Since 248 trial decryptions are clearly possible for small corporations and even
individuals, DVB-CSA poses more likely a hindrance than a perfect protection of
the payload. All TV stations (broadcasted on Astra 19.2) we monitored change
the DVB-CSA key every 7 to 10 seconds using a smart card based key distri-
bution system instead of using one (then manually entered) key over a longer
period of time. Some TV stations use a constant DVB-CSA key for a longer pe-
riod, that is manually set at the receiver. This mode is called Basic Interoperable
Scrambling System (BISS).

4 Recovering Plaintexts

In order to attack DVB-CSA, we began searching for a constant known plaintext
in the MPEG-2 video data (H262). Because every bit of the ciphertext depends
on every bit of the plaintext, we were looking for a repeating plaintext spawning
a full MPEG-2 Transport Stream (TS) cell. Surprisingly, we found out that

1 http://en.wikipedia.org/w/index.php?title=Common Scrambling

Algorithm&diff=41583343&oldid=22087243

http://en.wikipedia.org/w/index.php?title=Common_Scrambling_Algorithm&diff=41583343&oldid=22087243
http://en.wikipedia.org/w/index.php?title=Common_Scrambling_Algorithm&diff=41583343&oldid=22087243

50 E. Tews, J. Wälde, and M. Weiner

the video stream of many TV stations contains a lot of cells with a payload
completely filled with zero-bytes. We had not expected this as MPEG-2 video
uses various compression techniques to reduce the bandwidth, and a video stream
which contains a lot of cells filled with zero bytes can be easily compressed.

In MPEG-2 video (H262, ISO 13818-2), the video compression codec used
for many DVB variants supports so-called stuffing bytes – they are used to
ensure a minimum bit rate. The ISO 13818-2 standard allows only zero bytes
to be inserted between elements of the bitstream [11]. Since DVB-CSA is a
completely deterministic encryption scheme: Encryptions of the same plaintext
with the same key always result in the same ciphertext. Therefore, if at least two
zero-filled frames are broadcasted during the lifetime of one key, these frames
result in colliding ciphertexts. Cells completely filled with zero-bytes were the
only constant plaintexts that are broadcasted very frequently. We can detect
the corresponding encrypted cells by looking for repeating cells (collisions) in
the encrypted video stream. We decided to assume that the most frequently
colliding cell during a key lifetime corresponds to an encrypted cell filled with
zeros.

 0

 25

 50

 75

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pr
ob

ab
ili

ty

in
 p

er
ce

nt

time in hours

Station 1

 0

 25

 50

 75

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pr
ob

ab
ili

ty

in
 p

er
ce

nt

time in hours

Station 2

 0

 25

 50

 75

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pr
ob

ab
ili

ty

in
 p

er
ce

nt

time in hours

Station 3

 0

 25

 50

 75

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pr
ob

ab
ili

ty

in
 p

er
ce

nt

time in hours

Station 4

Fig. 3. Plaintext recovery success probability

Breaking DVB-CSA 51

Unfortunately, the occurrence of zero-filled cells heavily depends on the video
content. For example, an interview with a person sitting in a chair without
any movement in the background produces many zero-filled stuffing frames. In
contrast, when old analog film that contains a lot of scratches and other artifacts
is digitized, nearly no cells are filled with zero. We also checked that these cells
usually occur when the data rate of the video stream slightly drops.

To make a quantitative statement about the occurrence of zero-filled cells, we
measured the relative occurrence of collisions of zero-filled cells on unencrypted
stations within intervals of 7 seconds. The detection of a zero-filled cell is con-
sidered successful if at least one collision is detected within an interval of seven
seconds, and if the most frequently occurring collision actually corresponds to
an all-zero cell. The evaluation is done with a granularity of 10 minutes on four
popular and unencrypted TV stations airing on the Astra 19.2 satellite for 24
hours.

This approach of analyzing unencrypted stations is equivalent to measuring
how often ciphertext collisions can be found on an encrypted stream for which the
key changes every 7 seconds, and evaluating how often these collisions actually
decrypt to all-zero cells.

The results of this experiment can be found in Figure 3. We also found a
station on Astra 19.2 sending so many zero-filled cells that the recovery rate
was 100% in our analysis interval.

This rate of intervals in which a zero cell appears most often is an upper bound
to the success rate of any kind of attack, that is based on this plaintext recovery
heuristic.

5 A Time Memory Tradeoff

Since DVB-CSA keys are changed frequently in most use cases, an attacker is
interested in recovering DVB-CSA keys very fast. To break DVB-CSA, we use
a time memory trade-off as described by Oechslin [10] to recover keys within
seconds from a single known plain-text/cipher-text pair. Oechslin invented a
general method known as Rainbow Tables to invert one way functions faster
than by exhaustive search, but precomputations need to be made.

As a one-way function upon which a rainbow table can be built, we propose a
mapping f that takes an 48 bit key (without the two checksum bytes) as input
and returns the first 6 ciphertext bytes of an all zero cell encrypted with this key.
Note that in order to compute f , only 23 calls of the block cipher are required
(as described in Section 2, one cell consists of 23 blocks of 8 bytes and all of
them need to be processed). As reduction function Ri one could simply XOR
the input of f with i.

If we can find the first 6 bytes of a ciphertext c that corresponds to a zero-
filled plaintext cell, then f−1(c) is a key (without checksum bytes) that encrypts
a zero-filled cell to that specific ciphertext. With some luck it is also the current
decryption key (multiple keys could exist encrypting a zero-filled cell to these
first 6 bytes of the specific ciphertext).

52 E. Tews, J. Wälde, and M. Weiner

5.1 Construction

To generate such a rainbow table, we need to generate many chains of length t
of the form:

k0
R0◦f−→ k1

R1◦f−→ k2 · · · kt−3
Rt−3◦f−→ kt−2

Rt−2◦f−→ kt−1

where f : k → csablock23k (0). Ri reduces the 64 bit output of csablock to a new
48 bit input for f and also is different for each i:

Ri(x) := x⊕ (i||tableid)
where tableid is an 16 bit unsigned and i is an 32 bit unsigned integer in little-
endian2 representation and || denotes concatenation.

For these chains we only store the head k0 and the tail kt−1 for each chain.
The table is sorted by the tail of the chains to make fast lookups possible.

5.2 Coverage and Costs

The time for the generation of the table as well as the storage and the lookup
time and success probability for the attack is controlled by four parameters:

t length of the rainbow chains
m number of chains in a table
N total number of distinct keys (248 for DVB-CSA)
T number of tables

The coverage of a single table is given by [10]:

R(t,m,N) :=

t∏

i=1

(
1− mi

N

)

with m1 = m and
mi+1 = N(1− e−

mi
N)

For T equivalent tables with different reduction functions we get:

C(t,m,N, T) := 1− (1−R(t,m,N))
T

as coverage of all tables combined.

The computational costs for a look-up in these tables is given by:

t∑

i=1

T ∗ i = T ∗ t ∗ (t+ 1)

2

and the number of accesses to external memory (i.e. seeks on a HDD) is T ∗ t.
To compute reasonable values for these parameters, we need an (efficient)

implementation of f first, so that we know how many calls to f can be made
during the attack.

2 100010 in little-endian is e8 03.

Breaking DVB-CSA 53

6 Implementation

For our attack, we need to evaluate many instances of the one-way function. It is
therefore desirable to either evaluate the one-way function in a very fast manner
or to compute multiple instances of the function at once.

For the evaluation of our one-way function we need to do 1288 invocations
(56 rounds × 23) of the DVB-CSA block cipher round function. As mentioned
before, the round function consists of 8 bit XORs and two 8 bit mappings S
and P. On most modern computer architectures, computations are carried out
on larger bit vectors (mostly 32 or 64 bit). Also, sometimes there are vector
instruction sets that allow to use even wider vectors, e.g. 128 or 256 bit.

We use a bitsliced implementation of the DVB-CSA block cipher encryption
(except for the S-Box lookup). We do not use a lookup table for the permutation
used in the key schedule but an bitsliced implementation of it. Many parts of
our implementation are inspired by libdvbcsa3, an open-source implementation
of the DVB-CSA cipher. However, the current version of libdvbcsa only supports
parallel encryption with the same key, but not with many different keys, as
required for our precomputations. Also, our key schedule has a lower memory
footprint, making it more suitable for GPUs.

6.1 SSE

SSE24 allows to do operations on 128 bit registers and thereby allows us to do e.g.
16 8 bit xor operations at the same time. Of course SSE2 has no implementation
of either S nor P so they have to be implemented in some other way. Since P
merely permutes the bit indices of a byte there is a very simple way to compute
many instances of it at once on larger bit vectors. The developers of libdvbcsa5

already implemented this in a very efficient way. Now for S it is a lot harder
to find an algorithmic description of the function that is faster then an lookup
table in memory. We decided to expand the 8 bit permutation S to an 16 bit
permutation

S′ : x||y → S(x)||S(y)
and store precomputed values for it in a lookup table. This way we only need
to do 8 instead of 16 lookups for 16 parallel computations of the block round
function. The 16 bit lookup table does not necessarily fit into the L1 cache of a
standard processor but will most likely fit into the L2 cache.

6.2 OpenCL

Modern Graphic Accelerators (GPU) are made up of many (hundreds) inde-
pendent computing units that can be used to run the same code on different
data. These so called compute units provide only limited amounts of fast mem-
ory/cache suited for lookup tables. We chose to implement the DVB-CSA block

3 http://www.videolan.org/developers/libdvbcsa.html
4 Streaming SIMD Extensions 2.

http://www.videolan.org/developers/libdvbcsa.html

54 E. Tews, J. Wälde, and M. Weiner

cipher here with a version of the permutation code that was originally written
by the developers of libdvbcsa and a normal 8 bit lookup table for S. Our GPU
implementation operates on 32 bit words and therefor computes 4 instances of
the function per compute unit at the same time. The source code of our OpenCL
kernel can be found in Appendix A.

7 Parameters

These high-speed implementations could be used to generate rainbow tables
for various attack scenarios. Assuming that a hard-disk is able to perform 100
random accesses per second, and an adversary can encrypt about 4,000,000 cells
on a GTX460 and about 500,000 cells on a single core CPU, we generated 3
parameter sets.

An adversary might be interested in recovering a DVB-CSA transmission in
real-time. He needs to recover a single DVB-CSA key in less than 7 seconds.
Using a GPU, the precomputations require 6 hard-disks and 6 TB of storage.
Such a table can be precomputed on a single graphics card in less than 9 years.
Using multiple graphics cards or faster graphics cards reduces the required time.
If the key changes only every 10 seconds, the same tables can be stored on just
4 hard drives, without having to recompute them.

Alternatively, an adversary might not be interested in decoding a transmission
in real time, or he would like to recover a static key from a station that only
changes the key manually. If a key should be recovered within 30 minutes, this
can be done with 120GB of precomputations on a graphics card (less than 8 years
of precomputations on a single graphics card) or 525GB of precomputations on
a CPU (less than 5 years of precomputations on a graphics card).

Some sets of possible rainbow table parameters are based on the desired speed
at which keys would be recovered. We aimed at about 90% coverage. One inter-
esting application of this attack would be PayTV with rapidly changing keys.
For the purpose of breaking long term keys, a slower recovery rate would suffice.

Table 2. Suggested parameters

Chains
Scenario # Tables per table Chain-length Coverage Storage

GPU 7sec per key 2 238 2000 93.457% 6TB
GPU 30min per key 3 232 68410 91.953% 120GB
SSE 30min per key 18 231.542 10000 85.722% 525GB

8 Experimental Results

We computed a small rainbow table with chains of 2000 elements and 232.9008

chains. The table is round about 100 GB in size and has approx 5.4 % coverage.
We created 23419 random keys and searched for their corresponding one-way

Breaking DVB-CSA 55

function outputs in this table we found 2464 preimages of which 1057 were the
actual preimage we had been looking for. This corresponds with our expected
success proabability.

9 Attack Options

There are several variants of this attack. First of all the rainbow table generation
can be optimized:

9.1 Rainbow Table Optimizations

For our largest suggested parameter set (GPU 7sec per key), there are 239 chains
in total, stored in two tables with 238 chains per table. Accordingly, chains with
238 different inputs need to be computed. We can choose to use a counter or a
similar method to generate the head of these chains. Therefor, only 5 instead of
6 bytes are required to encode the head of the chains. This allows us to save 1
byte per chain and reduce the size of the rainbow table without any side effects.

Also, for a table filled with 238 chains that is sorted by the tail of the chains
two consecutive chains will differ in 10 bits on average. Using a variable length
encoding for the tails here will allow us to store the tails of the chains in only
2 instead of 6 bytes, for most chains. This additionally reduces the size of the
table.

9.2 Harddisk Seek Performance

Our parameter sets have been chosen in a way that they allow the recovery of
a key in 7 seconds or less, if it can be recovered using the table. Even if an
adversary wants to decode a video stream in near real time, this requirement
can be relaxed.

Assuming that a single table with chain length 2000 and 240 chains is used,
the total coverage is 96%. If 10 keys should be recovered with this table, at most
20000 seeks need to be performed. However, the probability that more than 7765
seeks need to be performed is below 0.1%. As a result, one can use a much lower
number of harddisks, if the computed table has a high coverage. For tables with
a small coverage, unsuccessful searches are more common so that the average
number of seeks is closer to the maximum number of seeks for a lookup.

10 Countermeasures

For our attack, we exploit two properties: The key space of DVB-CSA is very
small (only 248 keys) and there are full MPEG TS cells that repeat often. Several
countermeasures against this attack are possible:

Only 248 possible keys is definitely a too small key space for an encryption
system that is used to protect sensitive data. If the two checksum bytes of the

56 E. Tews, J. Wälde, and M. Weiner

key would be chosen freely, 264 keys would be possible. That would slow down
our attack by a factor of 216 and render it impossible with today’s hardware
for an attacker with a small budget. However, we do not know if that would
cause interoperability problems with receivers and other equipment that check
the checksum bytes of the key, or with key distribution systems, that can only
generate keys with a correct checksum. Therefore, we cannot recommend this
solution until compatibility with existing hardware has been ensured.

Even 264 possible keys are not sufficient to protect highly sensitive data for
a long time. If really high security is required, DVB-CSA should be redesigned
and extended to at least 2128 possible keys. As far as we know, DVB-CSAv3 has
been designed with a key space of 128 bits, but the design of DVB-CSAv3 is not
open, so that we cannot evaluate the cryptographic strength of this algorithm.
To use DVB-CSAv3, all Conditional Access Modules (CAM) need to be updated.
If DVB-CSA is implemented in hardware, what we assume, they even need to
be replaced. We think that this solution cannot be used on the short term, but
is a great long term solution.

As a short-term countermeasure, we suggest a solution that can be deployed
by changing only the equipment used at the sender, and receivers do not need to
be updated. Our attack is based on the fact that MPEG TS cells filled completely
with zero-bytes repeat frequently. The MPEG TS header specifies separately for
every cell whether it is encrypted or not, and which key is used. We think that
an DVB-CSA encryption device should check all cells to be encrypted for all-zero
cells. Such cells should be sent unencryptedly. As a result, the attacker will not
get a single zero-filled encrypted cell and will not be able to launch the attack.
Depending on the video codec used, one should also check if there are other
common cell plaintexts, and send them in plaintext too.

If all these countermeasures are not possible, there is still another way to pre-
vent the attack, if only a single or a small number of tables have been generated
and are publicly available. A sender can generate a random key, and check if that
key can be recovered using these tables. If so, it is not used and the procedure
is repeated. As a result, all keys used by a sender cannot be recovered using the
public tables, but probably with tables that are not available to the public.

11 Conclusion

This paper shows that DVB-CSA can be broken in real time using standard
PC hardware, if precomputed tables are available. These precomputations can
be performed on a standard PC in years. This makes DVB-CSA useless for any
application where real confidentiality is required. DVB-CSA might still be used
to protect digital content, where an adversary is not interested in attacks on
the system that recover less than 99% of the payload, and can not be used to
produce pirated Smart Cards. The attack can be prevented with small changes
to the DVB-CSA encryption equipment without having to alter the receivers.

We would like to thank everybody contributing to this paper. This especially
includes Academica Senica in Taipei, Taiwan, that provided hardware to com-
pute parts of the rainbow table used in this paper.

Breaking DVB-CSA 57

References

1. DVB Common Scrambling Algorithm - Distribution Agreements. Technical report,
ETSI (June 1996)

2. ETSI Technical Report 289 - Digital Video Broadcasting (DVB); Support for use
of scrambling and Conditional Access (CA) within digital broadcasting systems.
Technical report, ETSI (October 1996)

3. ETSI EN 300 421 - Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for 11/12 GHz satellite services. Technical report, ETSI
(August 1997)

4. ETSI EN 300 429 - Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for cable systems. Technical report, ETSI (April 1998)

5. ETSI EN 300 744 - Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for digital terrestrial television. Technical report, ETSI
(January 2009)

6. Kühn, G.J., et al.: System and apparatus for blockwise encryption/decryption of
data. Technical report (August 1998)

7. Kühn, G.J., et al.: ETSI EN 301 192 - Digital Video Broadcasting (DVB); DVB
specification for data broadcasting. Technical report (April 2008)

8. Kim, W.-H., Chen, K.-J., Cho, H.-S.: Design and implementation of MPEG-2/DVB
scrambler unit and VLSI chip. IEEE Transactions on Consumer Electronics 43(3),
980–985 (1997)

9. Li, W.: Security Analysis of DVB Common Scrambling Algorithm. In: Data, Pri-
vacy, and E-Commerce, ISDPE 2007, pp. 271–273. IEEE (2007)

10. Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-Off. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

11. I. Rec. H. 262– iso/iec 13818-2. Information technology–Generic coding of moving
pictures and associated audio information–Video (2000)

12. Simpson, L., Henricksen, M., Yap, W.-S.: Improved Cryptanalysis of the Com-
mon Scrambling Algorithm Stream Cipher. In: Boyd, C., González Nieto, J. (eds.)
ACISP 2009. LNCS, vol. 5594, pp. 108–121. Springer, Heidelberg (2009)

13. Weinmann, R.-P., Wirt, K.: Analysis of the DVB Common Scrambling Algorithm
(2003)

14. Wirt, K.: Fault Attack on the DVB Common Scrambling Algorithm. In: Gervasi,
O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan,
C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 577–584. Springer, Heidelberg
(2005)

58 E. Tews, J. Wälde, and M. Weiner

A OpenCL Kernel

1 #define u8 unsigned char

2 #define u32 unsigned int

3 #define uint64_t ulong

4 #define TID tid

5 #define CHAINLEN chainlen

6

7 __constant uchar sbox[256] =

8 {

9 0x3a , 0xea , 0x68 , 0xfe, 0x33 , 0xe9 , 0x88 , 0x1a , 0x83 , 0xcf , 0xe1 , 0x7f , 0xba , 0xe2 , 0x38 , 0x12 ,

10 0xe8 , 0x27 , 0x61 , 0x95, 0x0c , 0x36 , 0xe5 , 0x70 , 0xa2 , 0x06 , 0x82 , 0x7c , 0x17 , 0xa3 , 0x26 , 0x49 ,

11 0xbe , 0x7a , 0x6d , 0x47, 0xc1 , 0x51 , 0x8f , 0xf3 , 0xcc , 0x5b , 0x67 , 0xbd , 0xcd , 0x18 , 0x08 , 0xc9 ,

12 0xff , 0x69 , 0xef , 0x03, 0x4e , 0x48 , 0x4a , 0x84 , 0x3f , 0xb4 , 0x10 , 0x04 , 0xdc , 0xf5 , 0x5c , 0xc6 ,

13 0x16 , 0xab , 0xac , 0x4c, 0xf1 , 0x6a , 0x2f , 0x3c , 0x3b , 0xd4 , 0xd5 , 0x94 , 0xd0 , 0xc4 , 0x63 , 0x62 ,

14 0x71 , 0xa1 , 0xf9 , 0x4f, 0x2e , 0xaa , 0xc5 , 0x56 , 0xe3 , 0x39 , 0x93 , 0xce , 0x65 , 0x64 , 0xe4 , 0x58 ,

15 0x6c , 0x19 , 0x42 , 0x79, 0xdd , 0xee , 0x96 , 0xf6 , 0x8a , 0xec , 0x1e , 0x85 , 0x53 , 0x45 , 0xde , 0xbb ,

16 0x7e , 0x0a , 0x9a , 0x13, 0x2a , 0x9d , 0xc2 , 0x5e , 0x5a , 0x1f , 0x32 , 0x35 , 0x9c , 0xa8 , 0x73 , 0x30 ,

17 0x29 , 0x3d , 0xe7 , 0x92, 0x87 , 0x1b , 0x2b , 0x4b , 0xa5 , 0x57 , 0x97 , 0x40 , 0x15 , 0xe6 , 0xbc , 0x0e ,

18 0xeb , 0xc3 , 0x34 , 0x2d, 0xb8 , 0x44 , 0x25 , 0xa4 , 0x1c , 0xc7 , 0x23 , 0xed , 0x90 , 0x6e , 0x50 , 0x00 ,

19 0x99 , 0x9e , 0x4d , 0xd9, 0xda , 0x8d , 0x6f , 0x5f , 0x3e , 0xd7 , 0x21 , 0x74 , 0x86 , 0xdf , 0x6b , 0x05 ,

20 0x8e , 0x5d , 0x37 , 0x11, 0xd2 , 0x28 , 0x75 , 0xd6 , 0xa7 , 0x77 , 0x24 , 0xbf , 0xf0 , 0xb0 , 0x02 , 0xb7 ,

21 0xf8 , 0xfc , 0x81 , 0x09, 0xb1 , 0x01 , 0x76 , 0x91 , 0x7d , 0x0f , 0xc8 , 0xa0 , 0xf2 , 0xcb , 0x78 , 0x60 ,

22 0xd1 , 0xf7 , 0xe0 , 0xb5, 0x98 , 0x22 , 0xb3 , 0x20 , 0x1d , 0xa6 , 0xdb , 0x7b , 0x59 , 0x9f , 0xae , 0x31 ,

23 0xfb , 0xd3 , 0xb6 , 0xca, 0x43 , 0x72 , 0x07 , 0xf4 , 0xd8 , 0x41 , 0x14 , 0x55 , 0x0d , 0x54 , 0x8b , 0xb9 ,

24 0xad , 0x46 , 0x0b , 0xaf, 0x80 , 0x52 , 0x2c , 0xfa , 0x8c , 0x89 , 0x66 , 0xfd , 0xb2 , 0xa9 , 0x9b , 0xc0 ,

25 };

26

27 inline uint64_t rol64(uint64_t word , unsigned int shift)

28 {

29 return (word << shift) | (word >> (64 - shift));

30 }

31

32 uint64_t permute_block (uint64_t k) {

33 uint64_t n = 0;

34 n = rol64(k & 0x0080000002000000UL , 5);

35 n ^= rol64(k & 0x0000000404000000UL , 6);

36 n ^= rol64(k & 0x0000000080000000UL , 7);

37 n ^= rol64(k & 0x0800000000000820UL , 10);

38 n ^= rol64(k & 0x0000000000020000UL , 12);

39 n ^= rol64(k & 0x1040000000108000UL , 13);

40 n ^= rol64(k & 0x0000008000200000UL , 14);

41 n ^= rol64(k & 0x0200002000000080UL , 15);

42 n ^= rol64(k & 0x0004000000000000UL , 16);

43 n ^= rol64(k & 0x0000020000000000UL , 18);

44 n ^= rol64(k & 0x0000200000000001UL , 19);

45 n ^= rol64(k & 0x0000000001000000UL , 23);

46 n ^= rol64(k & 0x8000000000000000UL , 25);

47 n ^= rol64(k & 0x0008000000000002UL , 26);

48 n ^= rol64(k & 0x0002000000000400UL , 29);

49 n ^= rol64(k & 0x0000000100000040UL , 30);

50 n ^= rol64(k & 0x0000000000040000UL , 33);

51 n ^= rol64(k & 0x0000000008004000UL , 36);

52 n ^= rol64(k & 0x0000080040000000UL , 38);

53 n ^= rol64(k & 0x0400001000000000UL , 40);

54 n ^= rol64(k & 0x0000000000001000UL , 42);

55 n ^= rol64(k & 0x0000400000000008UL , 43);

56 n ^= rol64(k & 0x2000000000002000UL , 45);

57 n ^= rol64(k & 0x0000000030000000UL , 46);

58 n ^= rol64(k & 0x0000010800000000UL , 47);

59 n ^= rol64(k & 0x0000000000000100UL , 48);

60 n ^= rol64(k & 0x0000100000080000UL , 51);

61 n ^= rol64(k & 0x0000000000000200UL , 52);

62 n ^= rol64(k & 0x0000000000000004UL , 53);

63 n ^= rol64(k & 0x0000000000010000UL , 55);

64 n ^= rol64(k & 0x0110000200800000UL , 57);

65 n ^= rol64(k & 0x4020000000000000UL , 59);

66 n ^= rol64(k & 0x0001800000000000UL , 60);

67 n ^= rol64(k & 0x0000000000000010UL , 61);

68 n ^= rol64(k & 0x0000000000400000UL , 62);

69 n ^= rol64(k & 0x0000044000000000UL , 63);

70 return n;

71 }

72

73 #define I(i) (i*0 x0101010101010101UL)

74

Breaking DVB-CSA 59

75 // 4*6byte in ... 4 * 56 byte out

76 void keyschedule (const __private uchar *in , __private uint *out) {

77 ulong ks[7];

78 uint i,j;

79 for (i = 0; i < 4; i++) {

80 ks[6] = in [3+(i*6)]+in[4+(i*6)]+in [5+(i*6)]; // checksum

81 ks[6] = (ks[6] << 8) ^ in [5+(i*6)];

82 ks[6] = (ks[6] << 8) ^ in [4+(i*6)];

83 ks[6] = (ks[6] << 8) ^ in [3+(i*6)];

84 ks[6] = (ks[6] << 8) ^ ((in [0+(i*6)]+in[1+(i*6)]+in [2+(i*6)])&0 xff); // checksum

85 ks[6] = (ks[6] << 8) ^ in [2+(i*6)];

86 ks[6] = (ks[6] << 8) ^ in [1+(i*6)];

87 ks[6] = (ks[6] << 8) ^ in [0+(i*6)];

88

89 for (j = 6; j > 0; j--) {

90 ks[j -1] = permute_block (ks[j]);

91 }

92 for (j = 0; j < 7; j++) {

93 ks[j] ^= I(j);

94 }

95 for(j = 0; j < 56; j++) {

96 out[j] = (out [j]<<8) ^ ((ks[j/8] > >(8*(j%8))) & 0xff);// << (24 - i*8);

97 }

98 }

99 }

100

101 // csa roundfunction for any implementation of SBOX and P

102 #define RX(w0,w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7 ,t0 ,t1 ,k){ \

103 t1 = SBOX(w7 ^ k); \

104 t0 = w1; \

105 w1 = w0 ^ w2; \

106 w2 = w0 ^ w3; \

107 w3 = w0 ^ w4; \

108 w4 = w5; \

109 w5 = w6 ^ P(t1); \

110 w6 = w7; \

111 w7 = w0 ^ t1; \

112 w0 = t0;} \

113

114 // lets keep it simple for the first shot

115

116

117 #define BS_BATCH_SIZE 32

118 #define BS_BATCH_BYTES 4

119

120 #define BS_VAL(n) ((uint)(n))

121 #define BS_VAL32(n) BS_VAL(0x##n)

122 #define BS_VAL16(n) BS_VAL32(n##n)

123 #define BS_VAL8(n) BS_VAL16(n##n)

124

125 #define BS_AND(a, b) ((a) & (b))

126 #define BS_OR(a, b) ((a) | (b))

127 #define BS_XOR(a, b) ((a) ^ (b))

128 #define BS_XOREQ(a, b) ((a) ^= (b))

129 #define BS_NOT(a) (~(a))

130

131 #define BS_SHL(a, n) ((a) << (n))

132 #define BS_SHR(a, n) ((a) >> (n))

133 #define BS_SHL8(a, n) ((a) << (8 * (n)))

134 #define BS_SHR8(a, n) ((a) >> (8 * (n)))

135 #define BS_EXTRACT8 (a, n) ((a) >> (8 * (n)))

136

137 #define BS_EMPTY ()

138

139 inline uint bsperm(uint sbox_out) {

140 return BS_OR(

141 BS_OR(

142 BS_OR (BS_SHL (BS_AND (sbox_out , BS_VAL8 (29)) , 1),

143 BS_SHL (BS_AND (sbox_out , BS_VAL8 (02)) , 6)),

144 BS_OR (BS_SHL (BS_AND (sbox_out , BS_VAL8 (04)) , 3),

145 BS_SHR (BS_AND (sbox_out , BS_VAL8 (10)) , 2))),

146 BS_OR(BS_SHR (BS_AND (sbox_out , BS_VAL8 (40)) , 6),

147 BS_SHR (BS_AND (sbox_out , BS_VAL8 (80)) , 4)));

148 }

149

150

151 #define P(x) bsperm(x)

152 #define SBOX(x) lookup(x,sbox)

60 E. Tews, J. Wälde, and M. Weiner

153

154 uint lookup(uint x, __constant uchar *lut) {

155 uint r = 0;

156 r = lut[x&0xff];x>>=8;

157 r ^= lut[x&0xff]<<(8);x>>=8;

158 r ^= lut[x&0xff]<<(16); x>>=8;

159 r ^= lut[x&0xff]<<(24); x>>=8;

160 return r;

161 }

162

163 void encrypt(__private const uint *key , __private uint *i) {

164 uint t1 ,t2 ,k;

165 uint w0 ,w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7;

166

167 w0 = i[0];

168 w1 = i[1];

169 w2 = i[2];

170 w3 = i[3];

171 w4 = i[4];

172 w5 = i[5];

173 w6 = i[6];

174 w7 = i[7];

175

176 int r;

177 for (r = 0; r < 56; r++){

178 k = key[r];

179 RX(w0 ,w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7 ,t1 ,t2 ,k)

180 }

181

182

183 i[0] = w0;

184 i[1] = w1;

185 i[2] = w2;

186 i[3] = w3;

187 i[4] = w4;

188 i[5] = w5;

189 i[6] = w6;

190 i[7] = w7;

191 }

192

193

194 #define expand(x) {x^=(x <<8);x^=(x< <16);}

195 void r(uint tid , uint idx , __private uint *in) {

196 int i;

197 for (i = 0; i < 4; i++) {

198 uint x = idx &0xff ;

199 expand(x)

200 in[i] ^= x;

201 idx >>=8;

202 }

203 for (i = 0; i < 2; i++) {

204 uint x = tid &0xff ;

205 expand(x)

206 in[i+4] ^= x;

207 tid >>=8;

208 }

209 }

210

211

212 __kernel void csa (__global const u8* input ,

213 __global u8* output ,

214 const int tid ,

215 const int chainlen,

216 const int num)

217 {

218 const int idx = get_global_id (0);

219 if (idx > num) return;

220 int i;

221 __private u8 k[24];

222 for (i = 0; i < 24; i++) {

223 k[i] = input[(24*idx)+i];

224 }

225 __private uint key [56];

226 __private uint zero[8];

227 int j,l;

228 for (j = 0; j < CHAINLEN; j++){

229 keyschedule (k,key);

230 for(i = 0; i < 8; i++)

Breaking DVB-CSA 61

231 zero[i] = 0;

232 for (i = 0; i < 23; i++){

233 encrypt(key ,zero);

234 }

235 r(TID ,j,zero);

236 for (i = 0; i < 4; i++) {

237 for (l = 0; l < 6; l++)

238 k[i*6+l] = (zero[l]>>(24-8* i));

239 }

240 }

241 for (i = 0; i < 24; i++)

242 output [24*idx+i] = k[i];

243 }

	Breaking DVB-CSA
	Introduction
	Our Contribution

	DVB-CSA in a Nutshell
	The DVB-CSA Block Cipher

	Usage of DVB-CSA
	Recovering Plaintexts
	A Time Memory Tradeoff
	Construction
	Coverage and Costs

	Implementation
	SSE
	OpenCL

	Parameters
	Experimental Results
	Attack Options
	Rainbow Table Optimizations
	Harddisk Seek Performance

	Countermeasures
	Conclusion
	References

