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Abstract. Code-based cryptographic schemes are promising candidates
for post-quantum cryptography since they are fast, require only basic
arithmetic, and because their security is well understood. While there is
strong evidence that cryptosystems like McEliece and Niederreiter are
secure, they have certain weaknesses when used without semantic con-
versions. An example is a broadcast scenario where the same message is
send to different users, encrypted with the respective keys.

In this paper, we show how an attacker can use these messages to
mount a broadcast attack, which allows to break the Niederreiter and
the HyMES cryptosystem using only a small number of messages. While
many code-based cryptosystems use certain classes of codes, e.g. binary
Goppa codes, our attack is completely independent from this choice and
solves the underlying problem directly. Since the number of required
messages is very small and since the attack is also possible if related,
not identical messages are sent, this has many implications on practi-
cal cryptosystem implementations. We discuss possible countermeasures,
and provide a CCA2-secure version of the Niederreiter cryptosystem us-
ing the Kobara-Imai conversion.

Keywords: Broadcast Attack, Niederreiter, McEliece, codes, post
quantum, cryptography.

Introduction

In 1988, J. H̊astad [9] presented an attack against public key cryptosystems. This
attack was originally aimed at the RSA cryptosystem, when a single message is
sent to different recipients using their respective public keys. H̊astad showed how
to recover the message in this broadcast scenario. While this result is known for
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a long time, this type of attack has not been considered for cryptosystems based
on error-correcting codes.

Our Contributions

In the following, we show how and under what conditions an attacker can mount
a broadcast attack against two code-based encryption schemes: the Niederreiter
and the HyMES cryptosystem. Our attack allows to recover the secret message.
We show that if the public keys corresponding to the intercepted messages are
independent from each other, we expect to require no more than Nr recipients
to run the attack:

Nr :=

⌈
n+ 2

r

⌉
,

where n and r = n−k denote the code parameters of the users’ secret keys. That
means that with near certainty, N ≥ Nr recipients suffice to run the attack. Ta-
ble 1 shows the number of required recipients for selected parameter sets taken
from Bernstein et al. [2] and Biswas [5]. In most cases, a very small number of
identical (or similar) message is sufficient to completely break the schemes. We
achieve this by combining the intercepted information into a large set of linear
equations until the system has full rank and can be solved.

In addition to that, we treat the cases when the attacker receives less mes-
sages than required for this attack, and when the cleartexts are related, instead
of identical. In the former case, the attack complexity is higher compared with
the broadcast attack before, but lower than a generic attack: after setting up the
linear equation system, the attacker runs an ISD attack, the complexity of which
is smaller the more messages are intercepted. In the latter case, more messages
are required to perform the broadcast attack: N ′

r := � n+2
r−(u+2)�, where u denotes

the number of bits where not all messages are identical to each other.
While many code-based cryptosystems use certain classes of codes, e.g. binary

Goppa codes, our attack is completely independent of this choice and solves the
underlying problem directly. That means, no matter what class of codes is used,
the attack complexity cannot be greater than our results; it might be possible,
though, to achieve even better results against certain classes by exploiting the
structure of the code. To illustrate our results, we apply our broadcast attack
implementation against the Niederreiter cryptosystem in the FlexiProvider pack-
age [6], recovering the message in only a few seconds to minutes (see Table 2 on
page 15). We conclude this section with a discussion on possible countermeasures
and provide a CCA2-secure version of the Niederreiter cryptosystem using the
Kobara-Imai conversion.

Related Work

Our attack is related to the one by Plantard and Susilo [15] who studied
broadcast attacks against lattice-based schemes. Our analysis, however, is more
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thorough since we prove an explicit bound for the expected number of recipients
that is required to run our attack. We also cover the case where too few messages
are intercepted by an attacker and analyze the situation where the broadcasted
messages are not identical but similar to each other. Finally, we discuss in detail
the use of semantic conversions to protect against broadcast attacks. An imple-
mentation of our attack successfully demonstrated its efficiency, even though it
is in Java and not at all optimized for speed.

A recent paper [18] by Pan and Deng presents a broadcast attack against the
NTRU cryptosystem. The authors use a Learning with Errors (LWE) algorithm
by Ding for their attack.

Organization of the Paper

In Section 1 we begin with a review on code-based encryption schemes. The next
section covers our broadcast attack, including the two variants of insufficient
number of messages and related-messages. We discuss possible countermeasures
in Section 3. In the subsequent Section 4 we present our implementation and
provide numerical results. We conclude in Section 5.

1 Code-Based Encryption Schemes

Code-based cryptographic schemes are based on the difficulty of two hard prob-
lems: Code distinguishing and syndrome decoding. In this paper, we will focus
on the latter, which is defined as follows:

Problem 1 (Syndrome-decoding problem). Given a matrixH and a vector c, both
over Fq, and a non-negative integer t; find a vector x ∈ F

n
q of (Hamming) weight

t such that HxT = cT .

Among these are the McEliece and Niederreiter cryptosystems. They are both
encryption schemes, and the latter is the basis for the CFS signature scheme.
Another cryptosystem we analyze in this paper is HyMES (Hybrid McEliece En-
cryption Scheme)1, which uses techniques from both schemes above: It encrypts
similar to the McEliece scheme, but encodes part of the messages in the error
vector, similar to the Niederreiter scheme.

In this section, we will briefly describe these three cryptosystems. In the fol-
lowing, let G be a k× n generator matrix for an (n, k = n− r, t) Goppa code C,
H be a corresponding r× n parity check matrix, and c a vector of length r. Let
the message m be a vector of length k, and ϕ a bijective function mapping an
integer to a word of length n and weight t. All matrices and vectors are defined
over a finite field Fq, where q is a prime power.

1 http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
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Notation. In our algorithms, we use the following notation:
wt(v) : The (Hamming) weight of vector v
PRG(x) : Cryptographically secure pseudo random number generator
l : �logq

(
n
t

)�
ϕ() : Bijective function mapping an integer in Zql = Z/qlZ to a word

of length n
and weight t. We apply ϕ to vectors in F

k
q by enumerating

these vectors first,
and then apply ϕ

MSBx(v) : The left x bits of v
LSBx(v) : The right x bits of v
len(v) : Length of vector v
h() : Cryptographic secure hash function to a word of length l

Additionally, we write A = (B|C) and A′ = 〈B,C〉 to denote the horizontal and
vertical concatenation of B and C, respectively, where these can be vectors or
matrices. For a matrix A and J ⊆ {1, 2, . . . n}, A·J denotes the submatrix of A
consisting of those columns indexed by J .

1.1 McEliece

The McEliece public-key encryption scheme was presented by R. McEliece in
1978 [12]. The original scheme uses binary Goppa codes, for which it remains
unbroken (with suitable parameters), but the scheme can be used with any class
of codes for which an efficient decoding algorithm is known.

1.2 Niederreiter

In 1986, H. Niederreiter proposed a cryptosystem [14] which can be seen as dual
to the McEliece scheme. It uses the parity check matrix of a (usually binary
Goppa) code to compute the syndrome of the message, which serves as the
ciphertext. Even though the Niederreiter cryptosystem has been proven equally
secure as the McEliece system [11], it is threatened by broadcast attacks.
Since the underlying Goppa code can only correct a certain number t < n of
errors, the Niederreiter scheme uses a function ϕ which maps the message to a
word of weight t, which is then encrypted.

1.3 HyMES

The HyMES hybrid McEliece cryptosystem developed by N. Sendrier and
B. Biswas increases the efficiency of the McEliece scheme by encoding part of
the message into the error vector. While in the usual scenario this scheme is as
secure as the original McEliece scheme, we will show that it is vulnerable to a
broadcast attack.

The HyMES scheme works as follows: The message m is split into two parts
m = (m1|m2). The first part m1 corresponds to the message in the original
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Algorithm 1. The McEliece cryptosystem

Notation for Algorithm 1:
G : A k × n generator matrix
P : An n× n random permutation matrix
S : A k × k invertible matrix
DG : A decoding algorithm for the underlying (n, k, t) code C

Encryption EncMcEliece

INPUT: Message m ∈ F
k
q and random seed r ∈ {0, 1}∗

OUTPUT: Ciphertext c ∈ F
n
q

̂G← SGP
e← PRG(r), such that wt(e) = t

c← m ̂G+ e

Return c

Decryption DecMcEliece

INPUT: Ciphertext c
OUTPUT: Message m

ĉ← cP−1 = mSG+ eP−1

mSG← DG(ĉ)
� Let J ⊆ {1, . . . , n} be a set such that G·J is invertible

m← mSG ·G−1
·J · S−1

Return m

Algorithm 2. The Niederreiter cryptosystem

Notation for Algorithm 2:
H : A r × n parity check matrix
DH : A decoding algorithm for the underlying (n, k = n− r, t) code C

Encryption EncN

INPUT: Message m ∈ F
l
q

OUTPUT: Ciphertext c ∈ F
r
q

c← H · ϕ(m)T

Return c

Decryption DecN

INPUT: Ciphertext c
OUTPUT: Message m

m← ϕ−1(DH(c))

Return m
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McEliece scheme, while the second part is encoded into a word of weight t and
serves as the error vector e = ϕ(m2). There are many possible encoding functions
ϕ, e.g. enumerative encoding or encoding into regular words, but the choice of
ϕ is not relevant in our context.

Algorithm 3. The HyMES cryptosystem

Notation for Algorithm 3:
G : A k × n generator matrix
P : An n× n random permutation matrix
S : A k × k invertible matrix
DG : A decoding algorithm for the underlying (n, k, t) code C

Encryption EncHyMES

INPUT: Message m ∈ F
k+l
q

OUTPUT: Ciphertext c ∈ F
n
q

̂G← SGP
m1 ← MSBk(m)
m2 ← LSBl(m)

c← m1
̂G+ ϕ(m2)

Return c

Decryption DecHyMES

INPUT: Ciphertext c
OUTPUT: Message m

ĉ← cP−1 = m1SG+ ϕ(m2)P
−1

mSG← DG(ĉ)
� Let J ⊆ {1, . . . , n} be a set such that G·J is invertible

m1 ← mSG ·G−1
·J · S−1

m2 ← ϕ−1(c−m1
̂G)

Return (m1|m2)

2 Broadcast Attacks against Niederreiter/HyMES

In this section, we will show how to mount a broadcast attack against the Nieder-
reiter and HyMES schemes. The problem solved by a broadcast attack is the
following:

Problem 2 (Broadcast attack). Given N ciphertexts ci of the same message m,
encrypted using N corresponding public keys Gi (HyMES) or Hi (Niederreiter),
find m.

Both the McEliece and the Niederreiter cryptosystem rely on the hardness of
the decoding prob- lem, i.e. finding a codeword in a certain distance to a given
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word. The main difference is that in McEliece the cleartext determines the code-
word, and the error vector is random, while Niederreiter works essentially vice
versa. This difference results in a weakness of the McEliece cryptosystem, the
malleability of its ciphertexts: Adding rows of the public key to a ciphertext
results in a new valid ciphertext.

Another implication is McEliece’s weakness to message-resend and related-
message attacks. Two ciphertexts of messages m1 and m2, where the messages
have a known relation (or are identical), allow an attacker to easily find at least
k error-free positions, which allows efficient guessing of error bits. See [2] for
more details. The Niederreiter cryptosystem, however, is not vulnerable to these
attacks. It is interesting to note that, facing a broadcast attack, the situation is
reversed.

2.1 Attacking Niederreiter

Niederreiter ciphertexts are generated by computing cTi = Hiϕ(m)T . Attempting
to solve this equation for m can be done by solving the corresponding linear
equation system with n variables and r equations. Since ϕ(m) is identical in
all computations, we can (vertically) append the matrices H = 〈H1, . . . , HN〉
and the syndromes c = (c1| . . . |cN ). The number of variables stays constant,
whereas the number of equations increases. Some of the new equations might be
combinations of old ones, so the new number of equations can be smaller than
Nr. In Section 2.3, we will show that the number of redundant equations is very
small. Since usually n ≈ 2r, we need very few ci to increase the rank of H to n,
at which point we can solve the system. We will compute the expected number
of messages required to break the system in Section 2.3.

Algorithm 4. Broadcast attack against the Niederreiter cryptosystem

INPUT: Parity check matrices Hi ∈ F
r×n
q and corresponding ciphertexts ci ∈ F

r
q for

i ∈ ZN , and finite field Fq

OUTPUT: Message m ∈ F
n
q

H ← 〈H1, . . . ,HN〉
c← (c1| . . . |cN )

Solve the linear equation system HmT = cT over Fq

Return m

Remark 1. There is a different way to describe our attack, seen from another
perspective: By adding ci as the (n + 1)-th column of Hi (for all i), we add
(ϕ(m)|(q − 1)) as a codeword to every code, since

(Hi|ci) · (ϕ(m)|(q − 1))T = Hi · ϕ(m)T + (q − 1)ci = qci = 0.
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The message can be found by intersecting these new codes. There are several
implementations to compute the intersection of codes, e.g. in Magma. However,
we have chosen the approach above since it allows easier understanding of the
required number of recipients.

2.2 Attacking HyMES

While the HyMES implementation does provide methods for padding, a tech-
nique used to prevent attacks that exploit relations between cleartexts and/or
ciphertexts, this method seems to be a placeholder, since it does not add any
security.

Similar to our description of the scheme above, in the broadcast scenario we
have

ci = m1Gi + ϕ(m2)

as the ciphertexts, where m = (m1|m2) and i = 1 . . .N . Attacking this scheme
can be done by finding ϕ(m2), since this allows to find m1 by simple linear
algebra. We can reduce this problem to the Niederreiter case:

First, the attacker uses the matrices Gi to compute the respective parity
check matrices Hi. One way to do this is to compute the standard form of
Gi, G′

i = UGiQ = (Ik|R), where Ik is the identity matrix of size k. Then
H ′

i = (−RT |In−k) and Hi = H ′
iQ

−1.
Then the attacker computes the syndromes si = Hi · cTi . Since

si = Hi(m1Gi + ϕ(m2))
T = Hi · ϕ(m2)

T ,

we have reduced the problem to the Niederreiter case above.

Algorithm 5. Broadcast attack against the HyMES cryptosystem

INPUT: Generator matrices Gi and corresponding ciphertexts ci, for i ∈ ZN , and
finite field Fq

OUTPUT: Message m ∈ F
n
q

∀i ∈ Zn perform the following computations
Find Ui and Qi such that G′

i = UiGiQi = (Ik|Ri)
H ′

i ← (−RT |In−k)
Hi ← H ′

iQ
−1
i

si ← Hi · cTi

H ← 〈H1, . . . ,HN〉
c← (c1| . . . |cN )

Solve the linear equation system HmT = cT over Fq

Return m
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Remark 2. As we noted above, the McEliece cryptosystem does not show a vul-
nerability to broadcast attacks as Niederreiter/HyMES do. We can sum the in-
formation contained in the ciphertexts and public keys into a single equation by
(horizontal) concatenation: G = (G1| . . . |GN ), c = (c1| . . . |cN ), e = (e1| . . . |eN),
and writing c = mG+ e.

This code has length nN , dimension k and minimum distance dN , the weight
of e is tN . While this concatenated code is somewhat weaker than the original
codes, this can be compensated by larger parameters, and it shows no struc-
tural weakness like in the Niederreiter case. Figure 1 shows the work factor to
break the concatenated code using an Information Set Decoding (ISD) based
attack.

Fig. 1. Work factor to perform an ISD attack against the McEliece cryptosystem
with parameters (n, k, t) = (1024, 524, 50) using an increasing number of broadcasted
messages

2.3 Expected Number of Recipients Required to Break the
Niederreiter/HyMES Scheme

In order to estimate the number of recipients Nr and thus encrypted messages
we need to recover the message encrypted by the above Niederreiter/HyMES
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schemes, we first assume that the parity check matrices Hi are actually random
matrices of full rank (even though it has been shown recently in [7] that we can
distinguish random codes from binary Goppa codes for certain parameters, e.g.
CFS parameters). We will do the analysis using the Niederreiter scheme, since
we reduced the HyMES problem to this one.

We start by estimating the probability that a random vector x is linearly
independent from all vectors in A, where A is a given set of r linearly independent
vectors over Fq.

A vector is linearly independent from a set of vectors if it cannot be expressed
by a linear combination of these vectors. There are qr (different) linear com-
binations of vectors in A, and the whole space has dimension qn. Thus, the
probability that x is linearly independent from A is

P = 1− qr−n =
qn − qr

qn
. (1)

Therefore, when we start from the system of linear equations

H1 · ϕ(m)T = cT1

and add the first row of H2 to H1, with probability P = 1− qr−n we add a new
equation to the system. Hence, if we assume the vectors in H2 to be independent
from each other, we expect to add P−1 rows to get one new equation. The
fact that the vectors in H2 are not independent from each other does in fact
slightly increases the chance to find a new equation: subsequent vectors in H2 are
guaranteed to be linearly independent to the previous ones already considered,
so a small subset of undesired vectors is excluded.

Thus, in order to increase the number of linearly independent equations to n,
which allows us to solve the system, we need to add

T =

n−1∑
i=r

qn

qn − qi

rows on average.
The codes used in the two cryptosystems are not random, but Goppa codes.

Since every non-zero vector in F
n
q has the same probability to be contained

in a Goppa code chosen uniformly at random, the probability P and thus the
subsequent arguments above remain valid. For example, for the Niederreiter
parameters [n, k] = [1024, 644], we need to add 646 rows, which corresponds to
3 recipients.

The expected number D of linearly dependent rows encountered when setting
up the system is nearly constant: We add T rows in order to be able to solve the
system, out of which (n − r) are not redundant (they complement the initial r
rows to a linearly independent set of n rows), and hence
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D =

n−1∑
i=r

qn

qn − qi
− (n− r)

=

n−1∑
i=r

(
qn

qn − qi
− 1

)

=

n−1∑
i=r

qi

qn − qi

=

n−r∑
i=1

1

qi − 1
< 1.7.

The last sum converges quickly, and it decreases with increasing q:

n−r∑
i=1

1

qi − 1
≤

∞∑
i=1

1

2i − 1
=

4∑
i=1

1

2i − 1
+

∞∑
i=5

1

2i − 1
≤

4∑
i=1

1

2i − 1
+

∞∑
i=4

1

2i
< 1.7

Therefore, we have

Nr =

⌈
n+ 2

r

⌉
.

Table 1 shows the number of required recipients for selected parameter sets
taken from Bernstein et al. [2,3,4] and Biswas [5]. The first column shows the
cryptosystem for which the parameters were developed. The number of required
recipients, however, does not depend on whether the parameters are used with
the Niederreiter or the HyMES cryptosystem.

Table 1. Number of required recipients for Niederreiter and HyMES parameter sets

Cryptosystem n k q Number of recipients

Niederreiter

2048 1696 2 6
2048 1608 2 5
4096 3832 2 16
4096 3556 2 8

HyMES

1024 524 2 3
2048 1608 2 5
2048 1696 2 6
4096 3604 2 9
8192 7815 2 22

Niederreiter

3009 2325 2 5
1931 1491 5 5
1608 1224 7 5
1696 1312 9 5

McEliece
1616 1253 2 5
2928 2244 2 5
6544 5010 2 5
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2.4 Performing a Broadcast Attack When N < Nr

When an attacker receives less than Nr broadcast messages, the resulting system
H · xT = cT is under-determined. It can be used nonetheless to mount an ISD
attack. There are different ISD-like attacks, but the basic steps are as follows:

1. Choose a random n× n permutation matrix Q and compute H ′ = QH .
2. Perform Gaussian elimination on H ′ and s to get (IK |R) = s′, where IK is

the identity matrix of size K, and n−K is the number of rows of H .
3. Search for p ≤ t columns of R such that their sum S has Hamming distance

t− p to the syndrome s.
4. The non-zero entries of S − s locate the remaining t− p entries of ϕ(m).

The work factor of this attack can be computed using the formulae in [13].
Figure 2 shows the corresponding attack complexity.

Fig. 2. Work factor for a broadcast attack against McEliece with parameters (n, k, t) =
(1024, 524, 50) using ISD when N < Nr

This result is supported by [17], where N. Sendrier points out that ISD-based
algorithms have an approximate complexity of

C(n,R) = a(n) · 2−t·log2(1−R),

where R = k/n is the information rate and a(n) a polynomial in n. Increasing
the number of rows in the parity check matrix decreases R, so C(n,R) decreases
exponentially.
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2.5 Related-Message Broadcast Attack

In the previous sections, the message m sent to all recipients has been identical.
In the following, we show how a broadcast attack can be performed if the mes-
sages are not identical, but related. More concretely, let M = {mi : i = 1..N}
and we define the following property:

Definition 1. A set M of messages mi ∈ F
n
q is called b-related if there are ex-

actly b ≤ n coordinates such that all messages are identical on these coordinates.
We denote this property by

ρ(M) = b.

Since the Niederreiter and HyMES cryptosystems do not encrypt mi ∈ M di-
rectly, but ϕ(mi) instead, the choice of the encoding function ϕ will influence
ρ(ϕ(M)). To keep our analysis independent of the choice of ϕ, we will assume
that

ρ(ϕ(M)) = b,

where n−b is small (this is the case, for instance, if ϕ is a regular words encoding).

Solving the Linear Equation System. For simpler notation, let the messages
in M be identical on the left b bits, and (potentially) different on the rightmost
u := n − b bits. Since the messages are not identical, the parity check matrices
cannot be used directly to form the final system of equations.

Let

Hi = (H1
i |H2

i ), i = 1..N,

where H1
i contains the leftmost b columns of Hi.

For 2 recipients, we have the following system of equations

(
H1

1 H2
1 0

H1
2 0 H2

2

)
=

(
c1
c2

)
,

and similarly for N recipients.
A solution (e0|e1| . . . |eN ) (where e0 has length b, and the other blocks have

size n− b) yields solutions to the original problem with mi = (e0|ei).
In contrast to the identical-message broadcast attack above, every additional

recipient adds equations as well as unknowns to the system. The system will
eventually be solvable if (and only if) the number of new equations is greater
than the number of new variables. Since we expect a total of at most 2 linearly
dependent rows for the system, it is sufficient if r > n− b+ 2 = u+ 2.

The number of recipients N ′
r required to solve the system of a related-message

broadcast attack is

N ′
r =

⌈
n+ 2

r − (u+ 2)

⌉
.
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3 Countermeasures

Our broadcast attack exploits the fact that the received ciphertexts are related
since they correspond to the same messagem. A similar fact is used in other types
of attack like message-resend, related message, chosen ciphertext etc. Therefore,
broadcast attacks can be prevented by using one of the CCA2 conversions that
have been proposed for these other types of attacks.

3.1 Unsuitable Conversions

Padding schemes like the well-known Optimal Asymmetric Encryption Padding
(OAEP) by Bellare and Rogaway [1] are unsuitable for the McEliece/Niederreiter
cryptosystems since they do not prevent reaction attacks: By randomly flipping
bits and observing the reaction of the receiver, an attacker can recover the clear-
text, and apply the conversion to reveal the message.

There are (at least) two generic conversion, proposed by Pointcheval [16] and
by Fujisaki and Okamoto [8], that work with the McEliece and Niederreiter
cryptosystems. However, they have the disadvantage of adding a large amount
of redundancy to the ciphertexts. In both cases, the general idea is the follow-
ing: Instead of encrypting the message with the (asymmetric) cryptosystem, say
McEliece, it is encrypted with a symmetric system, and the corresponding key
is encrypted with McEliece. Both outputs are appended to form the ciphertext.
Since the output block size of McEliece and Niederreiter is large, a lot of redun-
dancy is thereby added, which decreases the efficiency.

3.2 Kobara-Imai Conversion

More suitable is the conversion by Kobara and Imai [10]. This conversion was
proposed for the McEliece cryptosystem, and for large messages it manages to
reduce the redundancy of the ciphertext even below that of the unconverted
cryptosystem. This conversion can also be applied to the Niederreiter cryptosys-
tem. It can not be applied to the HyMES cryptosystem, since it uses a similar
technique to encode part of the message into the error vector, hence applying
the Kobara-Imai-conversion to the McEliece cryptosystem will achieve a similar
efficiency improvement as the HyMES scheme. For the sake of completeness, we
will briefly describe this conversion here. A more detailed description can be
found in [2]. The resulting cryptosystem is a CCA2-secure variant of Niederre-
iter, which allows to implement secure and efficient cryptographic applications.

This conversion consists of two modifications. Firstly, it introduces random-
ness into the message, thereby rendering the output indistinguishable from a
random ciphertext. This prevents attacks that rely on the relation of ciphertexts
and/or cleartexts, e.g. message-resend, related-message, or broadcast attacks.
Secondly, both the message vector m as well as the error vector e are computed
from the message. This prevents reaction attacks, since a modified error vector
results in a different cleartext, which can be detected by the honest user.

The pseudo code of the conversion can be found in the appendix.
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4 Implementation

We have implemented the broadcast attack described above in Java. Target was
the Niederreiter cryptosystem in the FlexiProvider package [6]. Table 2 shows
the runtime for different parameters on an Intel i5-2500 CPU using one core.
Note that our attack is not tweaked for performance, so we expect that this
time can be improved further.

Table 2. Runtime of our algorithm for different parameters sets for the Niederreiter
encryption scheme

Parameters Security level Number of Runtime
(n, k, t) against ISD recipients in sec

(1024, 764, 26) 57 4 6
(1024, 524, 50) 58 3 6

(2048, 948, 100) 97 2 35
(2048, 1498, 50) 101 4 50
(4096, 3136, 80) 174 5 460
(4096, 2896, 100) 184 4 430
(4096, 2716, 115) 188 3 352

Note that the runtimes increase cubic in n. This is expected, since the main
work of the attack is to solve a system of linear equations, the complexity of
which is in O(n3).

5 Conclusion and Outlook

In this paper we have shown how a broadcast attack can be mounted against
the Niederreiter and HyMES cryptosystem. We have calculated the number of
recipients that are required in order to run our attack. Even though this number
is usually very small, it is possible that an attacker intercepts only a smaller
number of messages.We have shown that is it still possible to use this information
to run a broadcast attack using Information Set Decoding, and the complexity
of this attack decreases exponentially with the number of messages intercepted.

Our results have been tested experimentally, and our Java implementation
was able to recover the secret message in < 20 seconds. The tests were run on
an Intel Core i5 3.3 GHz CPU (one core), using the Niederreiter parameters
(n, t) = (2048, 50).

Finally, we showed that this type of attack can be prevented by applying a
conversion on the message, e.g. Kobara-Imai’s γ conversion.

As further work we propose to analyze if a structured code, e.g. a quasi-cyclic
or quasi-dyadic code, is more vulnerable to this attack, resulting in a smaller
number of required messages.
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Appendix: Pseudo Code for the Kobara-Imai Conversion

Algorithm 6. Kobara-Imai’s γ conversion, modified for the Niederreiter cryp-
tosystem.

Notation for Algorithm 6:
EncN : The Niederreiter encryption

DecN : The Niederreiter decryption

Additional system parameters: The length of the random seed lens, and a con-
stant const.
Encryption Encγ

INPUT: Message m ∈ F
∗
q

OUTPUT: Ciphertext c ∈ F
t
q, where t = r + len(m) + len(c) + len(s)− l

Generate a random seed s of length lens

y1 ← PRG(s)⊕ (m|const)
y2 ← s⊕ h(y1)

(y4|y3)← (y2|y1), such that
len(y3) = l
len(y4) = len(m) + len(c) + len(s)− l

z ← ϕ(y3)
c← y4|EncN(z)

Return c

Decryption Decγ

INPUT: Ciphertext c ∈ F
t
q, where t = r + len(m) + len(c) + len(s)− l

OUTPUT: Message m ∈ F
∗
q

y4 ← MSBlen(c)−n(c)
z ← DecN(LSBn(c))
y3 ← ϕ−1(z)
(y2|y1)← (y4|y3)
r ← y2 ⊕ h(y1)
(m|const′)← y1 ⊕ PRG(s)

if const’=const then
Return m

else
Reject c

end if
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