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Preface

The Western European Workshop on Research in Cryptology (WEWoRC) is a
bi-annual workshop with a specific focus on research performed by junior scien-
tists. The specific focus is exhibited by the rule that at least one of the authors
of a paper to be presented and, especially, included in the proceedings must be
a junior researcher.

WEWoRC 2011 was held at the Bauhaus-Universität Weimar in Germany,
organized by the Department of Media, Bauhaus-Universität Weimar, in coop-
eration with the Gesellschaft für Informatik e.V. (GI). It was the fourth of its
kind, after WEWoRC 2005 in Leuven, Belgium, WEWoRC 2007 in Bochum,
Germany, and WEWoRC 2009 in Graz, Austria.

Beyond the rule of requiring at least one junior researcher to (co-) author a
paper, the WEWoRC is special because:

1. The authors submit a short abstract for WEWoRC.
2. If the Program Chairs consider the paper on topic for WEWoRC, the authors

are asked to present their work at the workshop.
3. At the workshop, the Program Chairs invite the best presenters and the au-

thors of the best abstracts to submit a full version (or an extended abstract)
for the final proceedings.

4. These submissions are reviewed by the Program Committee(PC), which
eventually decides which will be included in the proceedings.

That means unfinished ideas and, sometimes, unpublishable work can still be
presented at the workshop, while the proceedings will only include mature work
and good results. We believe that this process addresses the specific needs of
junior researchers better than the traditional all-or-nothing approach at crypto-
graphic research meetings, where the review comes first and papers are either
presented and published in the proceedings, or neither presented nor published.

The technical program of WEWoRC 2011 consisted of 25 submitted and two
invited talks. The invited talks where given by two senior researchers, Heike Neu-
mann from NXP Semiconductors on “The Practice of Cryptography” and Marc
Fischlin from TU Darmstad on “Key Exchange – 35 Years and Still Rolling.”
The technical program was amended by a social program: A welcome reception
on the evening before the conference, the “Bauhaus Walk” at the places where
the famous Bauhaus school for crafts and fine arts was founded, and a conference
dinner.

After being invited for the final proceedings and reviewed by at least four
members of the PC (submissions with a member from the PC as one of the
authors where reviewed by six independent PC members), ten papers where
finally chosen for these proceedings.
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Thank you! We thank all the authors and co-authors of abstracts submitted to
WEWoRC for presentation, and, especially all the junior researchers and the
invited speakers, who came to Weimar to present their work and participate in
the discussions. We are grateful to the the local staff from Bauhaus-Universität
Weimar, who worked hard to make WEWoRC 2011 possible and successful (in
alphabetical order: Christian, Ewan, Jakob, Nadin, Theresa). We thank the PC
members for their reviews and lively discussions. Last, but not least, we thank the
sponsors, NXP Semiconductors and NEC Europe, whose contribution allowed us
to support some ill-funded presenters and to invite the speakers for the invited
talks.

July 2012 Frederik Armknecht
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Broadcast Attacks against Code-Based Schemes

Robert Niebuhr1 and Pierre-Louis Cayrel2

1 Technische Universität Darmstadt
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2 Laboratoire Hubert Curien, UMR CNRS 5516,
Bâtiment F 18 rue du Professeur Benôıt Lauras

42000 Saint-Etienne
France

pierre.louis.cayrel@univ-st-etienne.fr

Abstract. Code-based cryptographic schemes are promising candidates
for post-quantum cryptography since they are fast, require only basic
arithmetic, and because their security is well understood. While there is
strong evidence that cryptosystems like McEliece and Niederreiter are
secure, they have certain weaknesses when used without semantic con-
versions. An example is a broadcast scenario where the same message is
send to different users, encrypted with the respective keys.

In this paper, we show how an attacker can use these messages to
mount a broadcast attack, which allows to break the Niederreiter and
the HyMES cryptosystem using only a small number of messages. While
many code-based cryptosystems use certain classes of codes, e.g. binary
Goppa codes, our attack is completely independent from this choice and
solves the underlying problem directly. Since the number of required
messages is very small and since the attack is also possible if related,
not identical messages are sent, this has many implications on practi-
cal cryptosystem implementations. We discuss possible countermeasures,
and provide a CCA2-secure version of the Niederreiter cryptosystem us-
ing the Kobara-Imai conversion.

Keywords: Broadcast Attack, Niederreiter, McEliece, codes, post
quantum, cryptography.

Introduction

In 1988, J. H̊astad [9] presented an attack against public key cryptosystems. This
attack was originally aimed at the RSA cryptosystem, when a single message is
sent to different recipients using their respective public keys. H̊astad showed how
to recover the message in this broadcast scenario. While this result is known for

F. Armknecht and S. Lucks (Eds.): WEWoRC 2011, LNCS 7242, pp. 1–17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 R. Niebuhr and P.-L. Cayrel

a long time, this type of attack has not been considered for cryptosystems based
on error-correcting codes.

Our Contributions

In the following, we show how and under what conditions an attacker can mount
a broadcast attack against two code-based encryption schemes: the Niederreiter
and the HyMES cryptosystem. Our attack allows to recover the secret message.
We show that if the public keys corresponding to the intercepted messages are
independent from each other, we expect to require no more than Nr recipients
to run the attack:

Nr :=

⌈
n+ 2

r

⌉
,

where n and r = n−k denote the code parameters of the users’ secret keys. That
means that with near certainty, N ≥ Nr recipients suffice to run the attack. Ta-
ble 1 shows the number of required recipients for selected parameter sets taken
from Bernstein et al. [2] and Biswas [5]. In most cases, a very small number of
identical (or similar) message is sufficient to completely break the schemes. We
achieve this by combining the intercepted information into a large set of linear
equations until the system has full rank and can be solved.

In addition to that, we treat the cases when the attacker receives less mes-
sages than required for this attack, and when the cleartexts are related, instead
of identical. In the former case, the attack complexity is higher compared with
the broadcast attack before, but lower than a generic attack: after setting up the
linear equation system, the attacker runs an ISD attack, the complexity of which
is smaller the more messages are intercepted. In the latter case, more messages
are required to perform the broadcast attack: N ′

r := � n+2
r−(u+2)�, where u denotes

the number of bits where not all messages are identical to each other.
While many code-based cryptosystems use certain classes of codes, e.g. binary

Goppa codes, our attack is completely independent of this choice and solves the
underlying problem directly. That means, no matter what class of codes is used,
the attack complexity cannot be greater than our results; it might be possible,
though, to achieve even better results against certain classes by exploiting the
structure of the code. To illustrate our results, we apply our broadcast attack
implementation against the Niederreiter cryptosystem in the FlexiProvider pack-
age [6], recovering the message in only a few seconds to minutes (see Table 2 on
page 15). We conclude this section with a discussion on possible countermeasures
and provide a CCA2-secure version of the Niederreiter cryptosystem using the
Kobara-Imai conversion.

Related Work

Our attack is related to the one by Plantard and Susilo [15] who studied
broadcast attacks against lattice-based schemes. Our analysis, however, is more
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thorough since we prove an explicit bound for the expected number of recipients
that is required to run our attack. We also cover the case where too few messages
are intercepted by an attacker and analyze the situation where the broadcasted
messages are not identical but similar to each other. Finally, we discuss in detail
the use of semantic conversions to protect against broadcast attacks. An imple-
mentation of our attack successfully demonstrated its efficiency, even though it
is in Java and not at all optimized for speed.

A recent paper [18] by Pan and Deng presents a broadcast attack against the
NTRU cryptosystem. The authors use a Learning with Errors (LWE) algorithm
by Ding for their attack.

Organization of the Paper

In Section 1 we begin with a review on code-based encryption schemes. The next
section covers our broadcast attack, including the two variants of insufficient
number of messages and related-messages. We discuss possible countermeasures
in Section 3. In the subsequent Section 4 we present our implementation and
provide numerical results. We conclude in Section 5.

1 Code-Based Encryption Schemes

Code-based cryptographic schemes are based on the difficulty of two hard prob-
lems: Code distinguishing and syndrome decoding. In this paper, we will focus
on the latter, which is defined as follows:

Problem 1 (Syndrome-decoding problem). Given a matrixH and a vector c, both
over Fq, and a non-negative integer t; find a vector x ∈ F

n
q of (Hamming) weight

t such that HxT = cT .

Among these are the McEliece and Niederreiter cryptosystems. They are both
encryption schemes, and the latter is the basis for the CFS signature scheme.
Another cryptosystem we analyze in this paper is HyMES (Hybrid McEliece En-
cryption Scheme)1, which uses techniques from both schemes above: It encrypts
similar to the McEliece scheme, but encodes part of the messages in the error
vector, similar to the Niederreiter scheme.

In this section, we will briefly describe these three cryptosystems. In the fol-
lowing, let G be a k× n generator matrix for an (n, k = n− r, t) Goppa code C,
H be a corresponding r× n parity check matrix, and c a vector of length r. Let
the message m be a vector of length k, and ϕ a bijective function mapping an
integer to a word of length n and weight t. All matrices and vectors are defined
over a finite field Fq, where q is a prime power.

1 http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
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Notation. In our algorithms, we use the following notation:
wt(v) : The (Hamming) weight of vector v
PRG(x) : Cryptographically secure pseudo random number generator
l : �logq

(
n
t

)
�

ϕ() : Bijective function mapping an integer in Zql = Z/qlZ to a word
of length n
and weight t. We apply ϕ to vectors in F

k
q by enumerating

these vectors first,
and then apply ϕ

MSBx(v) : The left x bits of v
LSBx(v) : The right x bits of v
len(v) : Length of vector v
h() : Cryptographic secure hash function to a word of length l

Additionally, we write A = (B|C) and A′ = 〈B,C〉 to denote the horizontal and
vertical concatenation of B and C, respectively, where these can be vectors or
matrices. For a matrix A and J ⊆ {1, 2, . . . n}, A·J denotes the submatrix of A
consisting of those columns indexed by J .

1.1 McEliece

The McEliece public-key encryption scheme was presented by R. McEliece in
1978 [12]. The original scheme uses binary Goppa codes, for which it remains
unbroken (with suitable parameters), but the scheme can be used with any class
of codes for which an efficient decoding algorithm is known.

1.2 Niederreiter

In 1986, H. Niederreiter proposed a cryptosystem [14] which can be seen as dual
to the McEliece scheme. It uses the parity check matrix of a (usually binary
Goppa) code to compute the syndrome of the message, which serves as the
ciphertext. Even though the Niederreiter cryptosystem has been proven equally
secure as the McEliece system [11], it is threatened by broadcast attacks.
Since the underlying Goppa code can only correct a certain number t < n of
errors, the Niederreiter scheme uses a function ϕ which maps the message to a
word of weight t, which is then encrypted.

1.3 HyMES

The HyMES hybrid McEliece cryptosystem developed by N. Sendrier and
B. Biswas increases the efficiency of the McEliece scheme by encoding part of
the message into the error vector. While in the usual scenario this scheme is as
secure as the original McEliece scheme, we will show that it is vulnerable to a
broadcast attack.

The HyMES scheme works as follows: The message m is split into two parts
m = (m1|m2). The first part m1 corresponds to the message in the original
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Algorithm 1. The McEliece cryptosystem

Notation for Algorithm 1:
G : A k × n generator matrix
P : An n× n random permutation matrix
S : A k × k invertible matrix
DG : A decoding algorithm for the underlying (n, k, t) code C

Encryption EncMcEliece

INPUT: Message m ∈ F
k
q and random seed r ∈ {0, 1}∗

OUTPUT: Ciphertext c ∈ F
n
q

Ĝ← SGP
e← PRG(r), such that wt(e) = t

c← mĜ+ e

Return c

Decryption DecMcEliece

INPUT: Ciphertext c
OUTPUT: Message m

ĉ← cP−1 = mSG+ eP−1

mSG← DG(ĉ)
� Let J ⊆ {1, . . . , n} be a set such that G·J is invertible

m← mSG ·G−1
·J · S−1

Return m

Algorithm 2. The Niederreiter cryptosystem

Notation for Algorithm 2:
H : A r × n parity check matrix
DH : A decoding algorithm for the underlying (n, k = n− r, t) code C

Encryption EncN

INPUT: Message m ∈ F
l
q

OUTPUT: Ciphertext c ∈ F
r
q

c← H · ϕ(m)T

Return c

Decryption DecN

INPUT: Ciphertext c
OUTPUT: Message m

m← ϕ−1(DH(c))

Return m
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McEliece scheme, while the second part is encoded into a word of weight t and
serves as the error vector e = ϕ(m2). There are many possible encoding functions
ϕ, e.g. enumerative encoding or encoding into regular words, but the choice of
ϕ is not relevant in our context.

Algorithm 3. The HyMES cryptosystem

Notation for Algorithm 3:
G : A k × n generator matrix
P : An n× n random permutation matrix
S : A k × k invertible matrix
DG : A decoding algorithm for the underlying (n, k, t) code C

Encryption EncHyMES

INPUT: Message m ∈ F
k+l
q

OUTPUT: Ciphertext c ∈ F
n
q

Ĝ← SGP
m1 ← MSBk(m)
m2 ← LSBl(m)

c← m1Ĝ+ ϕ(m2)

Return c

Decryption DecHyMES

INPUT: Ciphertext c
OUTPUT: Message m

ĉ← cP−1 = m1SG+ ϕ(m2)P
−1

mSG← DG(ĉ)
� Let J ⊆ {1, . . . , n} be a set such that G·J is invertible

m1 ← mSG ·G−1
·J · S−1

m2 ← ϕ−1(c−m1Ĝ)

Return (m1|m2)

2 Broadcast Attacks against Niederreiter/HyMES

In this section, we will show how to mount a broadcast attack against the Nieder-
reiter and HyMES schemes. The problem solved by a broadcast attack is the
following:

Problem 2 (Broadcast attack). Given N ciphertexts ci of the same message m,
encrypted using N corresponding public keys Gi (HyMES) or Hi (Niederreiter),
find m.

Both the McEliece and the Niederreiter cryptosystem rely on the hardness of
the decoding prob- lem, i.e. finding a codeword in a certain distance to a given
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word. The main difference is that in McEliece the cleartext determines the code-
word, and the error vector is random, while Niederreiter works essentially vice
versa. This difference results in a weakness of the McEliece cryptosystem, the
malleability of its ciphertexts: Adding rows of the public key to a ciphertext
results in a new valid ciphertext.

Another implication is McEliece’s weakness to message-resend and related-
message attacks. Two ciphertexts of messages m1 and m2, where the messages
have a known relation (or are identical), allow an attacker to easily find at least
k error-free positions, which allows efficient guessing of error bits. See [2] for
more details. The Niederreiter cryptosystem, however, is not vulnerable to these
attacks. It is interesting to note that, facing a broadcast attack, the situation is
reversed.

2.1 Attacking Niederreiter

Niederreiter ciphertexts are generated by computing cTi = Hiϕ(m)T . Attempting
to solve this equation for m can be done by solving the corresponding linear
equation system with n variables and r equations. Since ϕ(m) is identical in
all computations, we can (vertically) append the matrices H = 〈H1, . . . , HN〉
and the syndromes c = (c1| . . . |cN ). The number of variables stays constant,
whereas the number of equations increases. Some of the new equations might be
combinations of old ones, so the new number of equations can be smaller than
Nr. In Section 2.3, we will show that the number of redundant equations is very
small. Since usually n ≈ 2r, we need very few ci to increase the rank of H to n,
at which point we can solve the system. We will compute the expected number
of messages required to break the system in Section 2.3.

Algorithm 4. Broadcast attack against the Niederreiter cryptosystem

INPUT: Parity check matrices Hi ∈ F
r×n
q and corresponding ciphertexts ci ∈ F

r
q for

i ∈ ZN , and finite field Fq

OUTPUT: Message m ∈ F
n
q

H ← 〈H1, . . . ,HN〉
c← (c1| . . . |cN )

Solve the linear equation system HmT = cT over Fq

Return m

Remark 1. There is a different way to describe our attack, seen from another
perspective: By adding ci as the (n + 1)-th column of Hi (for all i), we add
(ϕ(m)|(q − 1)) as a codeword to every code, since

(Hi|ci) · (ϕ(m)|(q − 1))T = Hi · ϕ(m)T + (q − 1)ci = qci = 0.
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The message can be found by intersecting these new codes. There are several
implementations to compute the intersection of codes, e.g. in Magma. However,
we have chosen the approach above since it allows easier understanding of the
required number of recipients.

2.2 Attacking HyMES

While the HyMES implementation does provide methods for padding, a tech-
nique used to prevent attacks that exploit relations between cleartexts and/or
ciphertexts, this method seems to be a placeholder, since it does not add any
security.

Similar to our description of the scheme above, in the broadcast scenario we
have

ci = m1Gi + ϕ(m2)

as the ciphertexts, where m = (m1|m2) and i = 1 . . .N . Attacking this scheme
can be done by finding ϕ(m2), since this allows to find m1 by simple linear
algebra. We can reduce this problem to the Niederreiter case:

First, the attacker uses the matrices Gi to compute the respective parity
check matrices Hi. One way to do this is to compute the standard form of
Gi, G′

i = UGiQ = (Ik|R), where Ik is the identity matrix of size k. Then
H ′

i = (−RT |In−k) and Hi = H ′
iQ

−1.
Then the attacker computes the syndromes si = Hi · cTi . Since

si = Hi(m1Gi + ϕ(m2))
T = Hi · ϕ(m2)

T ,

we have reduced the problem to the Niederreiter case above.

Algorithm 5. Broadcast attack against the HyMES cryptosystem

INPUT: Generator matrices Gi and corresponding ciphertexts ci, for i ∈ ZN , and
finite field Fq

OUTPUT: Message m ∈ F
n
q

∀i ∈ Zn perform the following computations
Find Ui and Qi such that G′

i = UiGiQi = (Ik|Ri)
H ′

i ← (−RT |In−k)
Hi ← H ′

iQ
−1
i

si ← Hi · cTi

H ← 〈H1, . . . ,HN〉
c← (c1| . . . |cN )

Solve the linear equation system HmT = cT over Fq

Return m
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Remark 2. As we noted above, the McEliece cryptosystem does not show a vul-
nerability to broadcast attacks as Niederreiter/HyMES do. We can sum the in-
formation contained in the ciphertexts and public keys into a single equation by
(horizontal) concatenation: G = (G1| . . . |GN ), c = (c1| . . . |cN ), e = (e1| . . . |eN),
and writing c = mG+ e.

This code has length nN , dimension k and minimum distance dN , the weight
of e is tN . While this concatenated code is somewhat weaker than the original
codes, this can be compensated by larger parameters, and it shows no struc-
tural weakness like in the Niederreiter case. Figure 1 shows the work factor to
break the concatenated code using an Information Set Decoding (ISD) based
attack.

Fig. 1. Work factor to perform an ISD attack against the McEliece cryptosystem
with parameters (n, k, t) = (1024, 524, 50) using an increasing number of broadcasted
messages

2.3 Expected Number of Recipients Required to Break the
Niederreiter/HyMES Scheme

In order to estimate the number of recipients Nr and thus encrypted messages
we need to recover the message encrypted by the above Niederreiter/HyMES
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schemes, we first assume that the parity check matrices Hi are actually random
matrices of full rank (even though it has been shown recently in [7] that we can
distinguish random codes from binary Goppa codes for certain parameters, e.g.
CFS parameters). We will do the analysis using the Niederreiter scheme, since
we reduced the HyMES problem to this one.

We start by estimating the probability that a random vector x is linearly
independent from all vectors in A, where A is a given set of r linearly independent
vectors over Fq.

A vector is linearly independent from a set of vectors if it cannot be expressed
by a linear combination of these vectors. There are qr (different) linear com-
binations of vectors in A, and the whole space has dimension qn. Thus, the
probability that x is linearly independent from A is

P = 1− qr−n =
qn − qr

qn
. (1)

Therefore, when we start from the system of linear equations

H1 · ϕ(m)T = cT1

and add the first row of H2 to H1, with probability P = 1− qr−n we add a new
equation to the system. Hence, if we assume the vectors in H2 to be independent
from each other, we expect to add P−1 rows to get one new equation. The
fact that the vectors in H2 are not independent from each other does in fact
slightly increases the chance to find a new equation: subsequent vectors in H2 are
guaranteed to be linearly independent to the previous ones already considered,
so a small subset of undesired vectors is excluded.

Thus, in order to increase the number of linearly independent equations to n,
which allows us to solve the system, we need to add

T =

n−1∑
i=r

qn

qn − qi

rows on average.
The codes used in the two cryptosystems are not random, but Goppa codes.

Since every non-zero vector in F
n
q has the same probability to be contained

in a Goppa code chosen uniformly at random, the probability P and thus the
subsequent arguments above remain valid. For example, for the Niederreiter
parameters [n, k] = [1024, 644], we need to add 646 rows, which corresponds to
3 recipients.

The expected number D of linearly dependent rows encountered when setting
up the system is nearly constant: We add T rows in order to be able to solve the
system, out of which (n − r) are not redundant (they complement the initial r
rows to a linearly independent set of n rows), and hence
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D =

n−1∑
i=r

qn

qn − qi
− (n− r)

=

n−1∑
i=r

(
qn

qn − qi
− 1

)

=

n−1∑
i=r

qi

qn − qi

=

n−r∑
i=1

1

qi − 1
< 1.7.

The last sum converges quickly, and it decreases with increasing q:

n−r∑
i=1

1

qi − 1
≤

∞∑
i=1

1

2i − 1
=

4∑
i=1

1

2i − 1
+

∞∑
i=5

1

2i − 1
≤

4∑
i=1

1

2i − 1
+

∞∑
i=4

1

2i
< 1.7

Therefore, we have

Nr =

⌈
n+ 2

r

⌉
.

Table 1 shows the number of required recipients for selected parameter sets
taken from Bernstein et al. [2,3,4] and Biswas [5]. The first column shows the
cryptosystem for which the parameters were developed. The number of required
recipients, however, does not depend on whether the parameters are used with
the Niederreiter or the HyMES cryptosystem.

Table 1. Number of required recipients for Niederreiter and HyMES parameter sets

Cryptosystem n k q Number of recipients

Niederreiter

2048 1696 2 6
2048 1608 2 5
4096 3832 2 16
4096 3556 2 8

HyMES

1024 524 2 3
2048 1608 2 5
2048 1696 2 6
4096 3604 2 9
8192 7815 2 22

Niederreiter

3009 2325 2 5
1931 1491 5 5
1608 1224 7 5
1696 1312 9 5

McEliece
1616 1253 2 5
2928 2244 2 5
6544 5010 2 5
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2.4 Performing a Broadcast Attack When N < Nr

When an attacker receives less than Nr broadcast messages, the resulting system
H · xT = cT is under-determined. It can be used nonetheless to mount an ISD
attack. There are different ISD-like attacks, but the basic steps are as follows:

1. Choose a random n× n permutation matrix Q and compute H ′ = QH .
2. Perform Gaussian elimination on H ′ and s to get (IK |R) = s′, where IK is

the identity matrix of size K, and n−K is the number of rows of H .
3. Search for p ≤ t columns of R such that their sum S has Hamming distance

t− p to the syndrome s.
4. The non-zero entries of S − s locate the remaining t− p entries of ϕ(m).

The work factor of this attack can be computed using the formulae in [13].
Figure 2 shows the corresponding attack complexity.

Fig. 2. Work factor for a broadcast attack against McEliece with parameters (n, k, t) =
(1024, 524, 50) using ISD when N < Nr

This result is supported by [17], where N. Sendrier points out that ISD-based
algorithms have an approximate complexity of

C(n,R) = a(n) · 2−t·log2(1−R),

where R = k/n is the information rate and a(n) a polynomial in n. Increasing
the number of rows in the parity check matrix decreases R, so C(n,R) decreases
exponentially.
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2.5 Related-Message Broadcast Attack

In the previous sections, the message m sent to all recipients has been identical.
In the following, we show how a broadcast attack can be performed if the mes-
sages are not identical, but related. More concretely, let M = {mi : i = 1..N}
and we define the following property:

Definition 1. A set M of messages mi ∈ F
n
q is called b-related if there are ex-

actly b ≤ n coordinates such that all messages are identical on these coordinates.
We denote this property by

ρ(M) = b.

Since the Niederreiter and HyMES cryptosystems do not encrypt mi ∈ M di-
rectly, but ϕ(mi) instead, the choice of the encoding function ϕ will influence
ρ(ϕ(M)). To keep our analysis independent of the choice of ϕ, we will assume
that

ρ(ϕ(M)) = b,

where n−b is small (this is the case, for instance, if ϕ is a regular words encoding).

Solving the Linear Equation System. For simpler notation, let the messages
in M be identical on the left b bits, and (potentially) different on the rightmost
u := n − b bits. Since the messages are not identical, the parity check matrices
cannot be used directly to form the final system of equations.

Let

Hi = (H1
i |H2

i ), i = 1..N,

where H1
i contains the leftmost b columns of Hi.

For 2 recipients, we have the following system of equations(
H1

1 H2
1 0

H1
2 0 H2

2

)
=

(
c1
c2

)
,

and similarly for N recipients.
A solution (e0|e1| . . . |eN ) (where e0 has length b, and the other blocks have

size n− b) yields solutions to the original problem with mi = (e0|ei).
In contrast to the identical-message broadcast attack above, every additional

recipient adds equations as well as unknowns to the system. The system will
eventually be solvable if (and only if) the number of new equations is greater
than the number of new variables. Since we expect a total of at most 2 linearly
dependent rows for the system, it is sufficient if r > n− b+ 2 = u+ 2.

The number of recipients N ′
r required to solve the system of a related-message

broadcast attack is

N ′
r =

⌈
n+ 2

r − (u+ 2)

⌉
.
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3 Countermeasures

Our broadcast attack exploits the fact that the received ciphertexts are related
since they correspond to the same messagem. A similar fact is used in other types
of attack like message-resend, related message, chosen ciphertext etc. Therefore,
broadcast attacks can be prevented by using one of the CCA2 conversions that
have been proposed for these other types of attacks.

3.1 Unsuitable Conversions

Padding schemes like the well-known Optimal Asymmetric Encryption Padding
(OAEP) by Bellare and Rogaway [1] are unsuitable for the McEliece/Niederreiter
cryptosystems since they do not prevent reaction attacks: By randomly flipping
bits and observing the reaction of the receiver, an attacker can recover the clear-
text, and apply the conversion to reveal the message.

There are (at least) two generic conversion, proposed by Pointcheval [16] and
by Fujisaki and Okamoto [8], that work with the McEliece and Niederreiter
cryptosystems. However, they have the disadvantage of adding a large amount
of redundancy to the ciphertexts. In both cases, the general idea is the follow-
ing: Instead of encrypting the message with the (asymmetric) cryptosystem, say
McEliece, it is encrypted with a symmetric system, and the corresponding key
is encrypted with McEliece. Both outputs are appended to form the ciphertext.
Since the output block size of McEliece and Niederreiter is large, a lot of redun-
dancy is thereby added, which decreases the efficiency.

3.2 Kobara-Imai Conversion

More suitable is the conversion by Kobara and Imai [10]. This conversion was
proposed for the McEliece cryptosystem, and for large messages it manages to
reduce the redundancy of the ciphertext even below that of the unconverted
cryptosystem. This conversion can also be applied to the Niederreiter cryptosys-
tem. It can not be applied to the HyMES cryptosystem, since it uses a similar
technique to encode part of the message into the error vector, hence applying
the Kobara-Imai-conversion to the McEliece cryptosystem will achieve a similar
efficiency improvement as the HyMES scheme. For the sake of completeness, we
will briefly describe this conversion here. A more detailed description can be
found in [2]. The resulting cryptosystem is a CCA2-secure variant of Niederre-
iter, which allows to implement secure and efficient cryptographic applications.

This conversion consists of two modifications. Firstly, it introduces random-
ness into the message, thereby rendering the output indistinguishable from a
random ciphertext. This prevents attacks that rely on the relation of ciphertexts
and/or cleartexts, e.g. message-resend, related-message, or broadcast attacks.
Secondly, both the message vector m as well as the error vector e are computed
from the message. This prevents reaction attacks, since a modified error vector
results in a different cleartext, which can be detected by the honest user.

The pseudo code of the conversion can be found in the appendix.
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4 Implementation

We have implemented the broadcast attack described above in Java. Target was
the Niederreiter cryptosystem in the FlexiProvider package [6]. Table 2 shows
the runtime for different parameters on an Intel i5-2500 CPU using one core.
Note that our attack is not tweaked for performance, so we expect that this
time can be improved further.

Table 2. Runtime of our algorithm for different parameters sets for the Niederreiter
encryption scheme

Parameters Security level Number of Runtime
(n, k, t) against ISD recipients in sec

(1024, 764, 26) 57 4 6
(1024, 524, 50) 58 3 6

(2048, 948, 100) 97 2 35
(2048, 1498, 50) 101 4 50
(4096, 3136, 80) 174 5 460
(4096, 2896, 100) 184 4 430
(4096, 2716, 115) 188 3 352

Note that the runtimes increase cubic in n. This is expected, since the main
work of the attack is to solve a system of linear equations, the complexity of
which is in O(n3).

5 Conclusion and Outlook

In this paper we have shown how a broadcast attack can be mounted against
the Niederreiter and HyMES cryptosystem. We have calculated the number of
recipients that are required in order to run our attack. Even though this number
is usually very small, it is possible that an attacker intercepts only a smaller
number of messages.We have shown that is it still possible to use this information
to run a broadcast attack using Information Set Decoding, and the complexity
of this attack decreases exponentially with the number of messages intercepted.

Our results have been tested experimentally, and our Java implementation
was able to recover the secret message in < 20 seconds. The tests were run on
an Intel Core i5 3.3 GHz CPU (one core), using the Niederreiter parameters
(n, t) = (2048, 50).

Finally, we showed that this type of attack can be prevented by applying a
conversion on the message, e.g. Kobara-Imai’s γ conversion.

As further work we propose to analyze if a structured code, e.g. a quasi-cyclic
or quasi-dyadic code, is more vulnerable to this attack, resulting in a smaller
number of required messages.
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Appendix: Pseudo Code for the Kobara-Imai Conversion

Algorithm 6. Kobara-Imai’s γ conversion, modified for the Niederreiter cryp-
tosystem.

Notation for Algorithm 6:
EncN : The Niederreiter encryption

DecN : The Niederreiter decryption

Additional system parameters: The length of the random seed lens, and a con-
stant const.
Encryption Encγ

INPUT: Message m ∈ F
∗
q

OUTPUT: Ciphertext c ∈ F
t
q, where t = r + len(m) + len(c) + len(s)− l

Generate a random seed s of length lens

y1 ← PRG(s)⊕ (m|const)
y2 ← s⊕ h(y1)

(y4|y3)← (y2|y1), such that
len(y3) = l
len(y4) = len(m) + len(c) + len(s)− l

z ← ϕ(y3)
c← y4|EncN(z)

Return c

Decryption Decγ

INPUT: Ciphertext c ∈ F
t
q, where t = r + len(m) + len(c) + len(s)− l

OUTPUT: Message m ∈ F
∗
q

y4 ← MSBlen(c)−n(c)
z ← DecN(LSBn(c))
y3 ← ϕ−1(z)
(y2|y1)← (y4|y3)
r ← y2 ⊕ h(y1)
(m|const′)← y1 ⊕ PRG(s)

if const’=const then
Return m

else
Reject c

end if
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Abstract. Hummingbird-2 is a recently proposed ultra-lightweight cryp-
tographic algorithm targeted for resource-constrained devices like RFID
tags, smart cards, and wireless sensor nodes. In this paper, we address the
security of the Hummingbird-2 cipher against side channel cube attacks
under the single-bit-leakage model. To this end, we describe an efficient
term-by-term quadraticity test for extracting simple quadratic equations
besides linear ones, obtainable from the original cube attack proposed by
Dinur and Shamir at EUROCRYPT 2009. Moreover, we accelerate the
implementation of the proposed term-by-term quadraticity test by fully
exploiting the power of a Graphic Processing Unit (GPU). Our experi-
mental results show that using a single bit of the internal state during
the initialization process of the Hummingbird-2 cipher we can recover the
48 out of 128 key bits of the Hummingbird-2 with a data complexity of
about 218 chosen plaintexts.

Keywords: Algebraic cryptanalysis, side channel attacks, cube attacks,
quadraticity test, Hummingbird-2.

1 Introduction

A cryptosystem can be seen as a set of Boolean functions, each of which is
represented as a polynomial modulo 2 in what is known as its Algebraic Normal
Form (ANF). The cube attack, announced by Dinur and Shamir in 2008 [7]
and published at EUROCRYPT 2009 [8], is a generic key-recovery attack that
may be applied to any cryptosystem, provided that the adversary can obtain
a bit of information that can be represented by a low-degree decomposition
multivariate polynomial in ANF of the secret and public variables of the target
cryptosystem. An interesting feature of the cube attack is that it only requires a
black-box access to a cryptosystem, that is, the internal structure of the target
cryptographic primitive is unknown. The basic idea of the cube attack can also
be found in some previous works such as the Algebraic IV Differential Attack
(AIDA) proposed by Vielhaber [17,18] and the Higher Order Differential Attack
proposed by Lai [14] and Knudsen [13]. In practice, the cube attack has been
successfully applied to the reduced-round variants of the stream ciphers Trivium
[8,17] and Grain [3,10], and to the reduced version of the hash function MD6 [4].
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In a typical design of iterated block ciphers, the degree of the Boolean function
representing the output bit increases exponentially with the number of rounds.
As a result, under the standard attack model (i.e., the attacker only has access
to the plaintext and ciphertext) the cube attack might become ineffective after
a few rounds. However, a stronger attack model, namely the side channel attack
model, is usually applicable to the practical implementations of symmetric-key
and public-key cryptosystems, especially on various embedded devices. In the
side channel attack model, an adversary is able to access some limited informa-
tion leaked about the internal state of a cryptographic primitive by analyzing
the power consumption or the electromagnetic radiations of the device under
attack [15]. Based on this observation, Dinur and Shamir [9] proposed the side
channel cube attack based on the combination of the original cube attack and
the single-bit-leakage model. More specifically, in the side channel cube attack
the adversary is assumed to have access to only one bit of information about the
internal state of a block cipher after each round. Since the introduction of the
side channel cube attack, it has been used to recover the secret key for a couple
of (lightweight) block ciphers such as Serpent and AES [9], PRESENT [2,19,20],
NOEKEON [1], and KATAN [5].

Hummingbird-2 [12] is a recently proposed lightweight cryptographic primitive
for resource-constrained smart devices such as RFID tags, smart cards, wireless
sensor nodes, etc. It has been demonstrated that Hummingbird-2 can be efficiently
implemented across a wide range of embedded software and hardware platforms
[12]. In this contribution, we investigate the security of the Hummingbird-2 ci-
pher against the side channel cube attack under the single-bit-leakage model.
To this end, we propose an efficient term-by-term quadraticity test that extracts
simple quadratic equations from the original cube attack, and implement the
proposed quadraticity test on a Nvidia graphic card in a massively parallel fash-
ion. Our experimental results show that one can recover the first 48 key bits of
Hummingbird-2 by using a single bit of the internal state during the initialization
process of the Hummingbird-2 cipher. Moreover, our attack has a time complexity
of 280 and a data complexity of about 218 chosen plaintexts.

The remainder of this paper is organized as follows. Section 2 gives a brief
review about the cube attack, followed by the description of the initialization
procedure of the Hummingbird-2 cryptographic algorithm in Section 3. In Sec-
tion 4, we present the term-by-term linearity and quadraticity tests in detail.
Section 5 describes the massively parallel implementation the side channel cube
attack against the Hummingbird-2 cipher and reports our experimental results.
Finally, Section 6 concludes this paper.

2 A Review on the Cube Attack

The cube attack is a generic attack that can be applied to block ciphers, stream
ciphers as well as keyed hash functions without necessarily knowing the inter-
nal structure of a cryptographic primitive. In the cube attack, a cryptographic
primitive is viewed as a set of multivariate polynomials p(v1, · · · , vm, k1, · · · , kn)
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over F2, each of them mapping m public variables vi (i.e., plaintext bits in block
ciphers and keyed hash functions or initial values in stream ciphers) and n se-
cret variables ki (i.e., key bits) to one of the ciphertext bits. The cube attack
works as long as at least one output bit of the ciphertext can be represented
by a low-degree multivariate polynomial of the public and secret variables. Let
I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . ,m} be a subset of the public variable indices and
tI = xi1xi2 · · ·xik be a monomial term. Then the polynomial p, which is called
a master polynomial, is decomposed as follows:

p(v1, · · · , vm, k1, · · · , kn) = tI · pS(I) + q(v1, · · · , vm, k1, · · · , kn),

where tI is called a cube that contains only a subset of public variables and pS(I)

is called the superpoly of tI in p. Note that the superpoly of I in p does not
contain any common variables with tI and each monomial in q does not contain
at least one variable from I. A term tI is called a L-maxterm if pS(I) is linear or
Q-maxterm if pS(I) is quadratic, which is not a constant.

The main observation of the cube attack is that the symbolic sum over F2 of
all evaluations of p by assigning all the possible combinations of 0/1 values to
the public variables vi’s with i ∈ I and fixing the value of all the remaining vi’s
with i ∈ I is exactly pS(I) modulo 2, the superpoly of tI in p. This observation
enables an adversary to derive a linear equation over secret variables for any
maxterm. After collecting enough linear equations, the adversary can recover
the value of secret variables by using the Gaussian elimination method.

The cube attack consists of a pre-processing (offline) and an online phase.
While the pre-processing phase aims to find monomials tI ’s that lead to linear
superpolys, the online phase solves the linear equations obtained from the pre-
processing phase to recover the secret key. In order to find a sufficient number
of maxterms tI ’s during the pre-processing phase, the attacker first fixes the
dimension of the cube as well as the value of public variables that are not in tI .
The attacker then performs a probabilistic linearity test (see Section 4 for details)
on pS(I) over the secret variables ki ∈ {k1, . . . , kn}. If pS(I) passes the linearity
test, with high probability pS(I) is linear over the secret variables and tI is a
maxterm. Since the maxterms are not key dependent, the pre-processing phase
is performed once for a given cryptographic primitive. After sufficiently many
linearly independent superpolys have been found, the online phase is conducted
by evaluating the superpolys (i.e., summing up the master polynomial p over the
same set of maxterms tI ’s that are obtained in the pre-processing phase). Then
the attacker can recover the secret key by solving the system of linear equations.

3 The Initialization of Hummingbird-2

Hummingbird-2 is a security enhanced version of its predecessor Hummingbird-1
[11], in response to the cryptanalysis work in [16]. The design of Hummingbird-
2 adopts the same hybrid structure of block cipher and stream cipher as the
Hummingbird-1 with 16-bit block size, 128-bit key size, and 128-bit internal state.
To launch the cube attack, we solely focus on the initialization process of the
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Hummingbird-2 as shown in Fig. 1(a), where � denotes an addition modulo 216,
⊕ an exclusive-OR operation, and ≪ (or ≫) a left (or right) circular shift
operation, respectively. The initialization process consists of four 16-bit block

ciphers Eki (i = 1, 2) and eight 16-bit internal state registers R
(t)
i (i = 1, . . . , 8

and t = 0, 1, . . .). Initially, the register R
(0)
i is set as follows:

R
(0)
i =

{
NONCEi for i = 1, 2, 3, 4
NONCEimod4 for i = 5, 6, 7, 8

,

where NONCEi (i = 1, . . . , 4) is the i-th 16-bit nonce. The 128-bit secret key K
is divided into two 64-bit subkeys k1 and k2 which are used in the four block
ciphers Eki (i = 1, 2), respectively.
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Fig. 1. Hummingbird-2 Initialization and Building Blocks
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The Hummingbird-2 initialization employs four identical block ciphers Eki(·)
(i = 1, 2) in a consecutive manner, each of which is a typical substitution-
permutation (SP) network with 16-bit block size and 64-bit key as shown in
Fig. 1(b). The block cipher consists of four rounds, each of which is comprised
of a key mixing step, a substitution layer, and a permutation layer. The key
mixing step is implemented using a simple exclusive-OR operation, whereas the
substitution layer is composed of four S-boxes 4, 5, 6 and 7 of the Serpent block
cipher [6] with 4-bit inputs and 4-bit outputs. The permutation layer in the 16-
bit block cipher is given by the linear transform L : {0, 1}16 → {0, 1}16 defined
as follows:

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10),

where x = (x15, x14, . . . , x0) is a 16-bit data block. The 64-bit subkeys ki (i =
1, 2) are split into four 16-bit round keys (see Figure 1(b)) that are used in
the four rounds, respectively. The entire initialization process consists of four
rounds and after each round the eight internal state registers are updated from

R
(t)
i to R

(t+1)
i (i = 1, . . . , 8) in an unpredictable way based on their current

states as well as the outputs of the 16-bit block ciphers. For more details about
the Hummingbird-2 cipher, the interested reader is referred to [12].

For applying the side channel cube attack to the Hummingbird-2 initialization
process under the single-bit leakage model, we assume that there is a single bit
leakage after the third round of the first 16-bit block cipher Ek1 . This enables
us to recover the first 48 bits of the secret key K in the Hummingbird-2. As an
example of the attack, we provide the analysis results for the least significant
bit of the internal state after the third round of Ek1 in this contribution.

4 Linearity and Quadraticity Tests

Let F
n
2 be an n-dimensional vector space over the finite field F2 and

f(x1, . . . , xn) : F
n
2 → F2 be a Boolean function of n variables. One of the crucial

steps in the cube attack is to test whether the Boolean function f is linear or
quadratic, and if so, we need to find out the expression of f . More specifically,
we need to consider the following two cases:

– A Boolean function f is linear in its inputs if it satisfies f(x ⊕ y) =
f(x) ⊕ f(y) ⊕ f(0) for all x, y ∈ F

n
2 . Such a linear function has a form

of f(x1, . . . , xn) =
⊕

1≤i≤n aixi ⊕ a0, where ai ∈ F2 and a0 = f(0).
– A Boolean function f is quadratic in its inputs if it satisfies f(x⊕ y ⊕ z) =

f(x⊕ y)⊕ f(x⊕ z)⊕ f(y⊕ z)⊕ f(x)⊕ f(y)⊕ f(z)⊕ f(0) for all x, y, z ∈ F
n
2 .

Such a quadratic function has a form of f(x1, . . . , xn) =
⊕

1≤i<j≤n aijxixj⊕⊕
1≤i≤n aixi + a0, where aij , ai ∈ F2 and a0 = f(0).

In [21], Zhu et al. proposed an efficient term-by-term linearity test (see Algorithm
1 in Fig. 2) in which the Boolean function f needs to be evaluated n+1+2·d1 ·C1

times in order to discover the linear secret variables within a superpoly equation
and test their linearity, where n is the number of secret variables, d1 is the number
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Algorithm 1 Term-by-Term Linearity Test [21]
Sl ← an empty set
for i ← 1 to n do

x ← (0, 0, . . . , 1, . . . , 0) where only the i-th bit is 1
if f(x)⊕ f(0) = 1 then

Add i into the set Sl

end if
end for
for each j ∈ Sl do

for c ← 1 to C1 do
Randomly choose an input value y ∈ F

n
2

y′ ← y
yj ← 0 and y′j ← 1
if f(y) = f(y′) then

Reject and halt
end if

end for
end for

Algorithm 2 Term-by-Term Quadraticity Test
Sl ← an empty set
Sq ← an empty set
Execute the term-by-term linearity test (see the Algorithm 1)
for i ← 1 to n− 1 do //Quadratic term discovery phase

for j ← i+ 1 to n do
x ← (0, . . . , 1, . . . , 1, . . . , 0) where only the i-th and j-th bits are 1
if (f(x)⊕ f(0) = 1 and (i, j ∈ Sl or i, j ∈ Sl)) or

(f(x)⊕ f(0) = 0 and (i ∈ Sl, j ∈ Sl or i ∈ Sl, j ∈ Sl))) then
Add (i, j) into the set Sq

end if
end for

end for
for each (i, j) ∈ Sq do //Quadraticity testing phase

for c ← 1 to C2 do
Randomly choose an input value y(1) ∈ F

n
2

y(2) ← y(1), y(3) ← y(1), and y(4) ← y(1)

(y
(1)
i , y

(1)
j ) ← (0, 0) and (y

(2)
i , y

(2)
j ) ← (0, 1)

(y
(3)
i , y

(3)
j ) ← (1, 0) and (y

(4)
i , y

(4)
j ) ← (1, 1)

if f(y(1))⊕ f(y(2)) = f(y(3))⊕ f(y(4)) then
Reject and halt

end if
end for

end for

Fig. 2. The Term-by-Term Linearity and Quadraticity Tests
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of linear terms, and C1 is the total number of linearity tests. We generalize this
approach to the quadratic case and obtain a faster term-by-term quadraticity
test (see Algorithm 2 in Fig. 2). The basic idea is to first find all linear and
quadratic terms in the superpoly equation, followed by a probabilistic linearity
(and/or quadraticity) test for each individual linear (and/or quadratic) term. In
Algorithm 2, we first define two sets Sl and Sq for storing the indices of linear
and quadratic terms, respectively. In order to check whether a quadratic term
kikj belongs to a Boolean function f , we take x = (0, . . . , 1, . . . , 1, . . . , 0) with
the i-th and j-th bits set to 1 and consider the following three cases:

– Case 1: i, j ∈ Sl. In this case, if kikj is a term of f , the Boolean function f
contains kikj ⊕ ki ⊕ kj . Hence we obtain f(x)⊕ f(0) = 1.

– Case 2: i, j ∈ Sl. In this case, if the quadratic term kikj belongs to f , the
condition f(x)⊕ f(0) = 1 still holds.

– Case 3: i ∈ Sl, j ∈ Sl or i ∈ Sl, j ∈ Sl. In this case, if kikj is a term of f ,
the Boolean function f contains kikj ⊕ ki or kikj ⊕ kj . Therefore, we obtain
f(x)⊕ f(0) = 0.

In this way, we are able to find out all the quadratic terms in the Boolean
function f . The next step is to perform a probabilistic quadraticity test C2 times
for each pair of indices (i, j) ∈ Sq. To this end, we first randomly generate an
n-bit vector y(1) ∈ F

n
2 . Then we vary the i-th and j-th bits of y(1) and generate

other three n-bit vectors y(2), y(3) and y(4) that are equal to y(1) except for the

i-th and j-th bits. More specifically, we have (y
(1)
i , y

(1)
j ) = (0, 0), (y

(2)
i , y

(2)
j ) =

(0, 1), (y
(3)
i , y

(3)
j ) = (1, 0) and (y

(4)
i , y

(4)
j ) = (1, 1). Finally, we test whether the

equation f(y(1)) ⊕ f(y(2)) = f(y(3)) ⊕ f(y(4)) holds. If it does, kikj is not a
quadratic term in f . Essentially, the above process eliminates ki from the Boolean
function f and checks whether kj is a linear term, which is clearly demonstrated
in the following example.

Example 1. Assuming that a Boolean function f(k1, k2, k3) = k3k2⊕k3k1⊕k2k1,
we obtain (3, 2), (3, 1), (2, 1) ∈ Sq after a quadratic term discovery phase in
Algorithm 2. To test whether k3k2 is a quadratic term in f , we first set k3 = 0
and 1, respectively, which gives us

f0 = f(k1, k2, 0) = k2k1, (1)

f1 = f(k1, k2, 1) = k2k1 ⊕ k1 ⊕ k2. (2)

Adding (1) and (2), we obtain f0 ⊕ f1 = k1 ⊕ k2. Therefore, the remaining task
is to check whether k2 is linear in f0 ⊕ f1, which is exactly what we have done
in the quadraticity testing phase of the Algorithm 2.

Using the term-by-term quadraticity test in Algorithm 2, the Boolean function

f needs to be totally evaluated (n+1+2 · d1 ·C1)+
(

n(n−1)
2 + 4 · d2 · C2

)
times

for a superpoly with d1 linear terms and d2 quadratic terms, where C1 and C2

are the number of linearity and quadraticity tests, respectively.
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5 Side Channel Cube Attack on Hummingbird-2

As shown in Fig. 1(b), the 64-bit subkey k1 in the block cipher Ek1 is divided
into four 16-bit round keys Ki = (Ki,15, . . . ,Ki,0), i = 1, 2, 3, 4. At the i-th round
the round key Ki is exclusive-ORed with the internal state of the block cipher
Ek1 . Hence, after the third round, the internal state of the block cipher Ek1

contains the information about the round keys K1,K2 and K3. In order to find
the maxterms from a master polynomial associated with the least significant
bit (LSB)1 of the internal state after the third round, we exhaustively test all
possible cube sizes ranging from 1 to 16 (Recall that in the first round of the
Hummingbird-2 initialization the input to the first block cipher Ek1 is the 16-bit
nonce NONCE1) with the help of a modern Graphic Processing Unit (GPU) (i.e.,
a GeForce GTX 285 graphics card) from Nvidia.

5.1 GPU Assisted Parallel Cube Attack

A general purpose GPU contains a large number of processor cores that run at
frequencies that are mostly lower than CPUs. When compared to a CPU, a GPU
provides a much larger computational power for specific parallel applications,
because of the large number of cores. The GTX 285 GPU is based on the Tesla
architecture, which features an array of multiprocessors (30 for the GTX 285)
that each contains 8 scalar processors. Each scalar processor is able to perform a
32-bit operation each cycle. The computational power of the GPU is exploited by
running many hardware threads in parallel: Each core handles threads in groups
of 32 called warps in a single-instruction-multiple-threads (SIMT) approach.
The Compute Unified Device Architecture (CUDA) programming framework
developed by Nvidia provides a C-like language to program Nvidia GPUs.

Regarding to the side channel cube attack on Hummingbird-2, we significantly
accelerate the evaluation of the master polynomial p(v1, · · · , vm, k1, · · · , kn) by
launching 2κ (κ is the size of a cube) threads simultaneously, each of which calcu-
lates the value of the master polynomial for one of 2κ different 0/1 combinations
of a subset of public variables (vi1 , vi2 , . . . , viκ ). After we obtain 2κ values of the
master polynomial, a parallel reduction process is conducted to exclusive-OR the
2κ values, yielding the value of the superpoly pS(I). The parallel implementation
of the evaluation of the superpoly pS(I) on the GTX 285 is illustrated in Fig. 3.
Based on the parallel superpoly evaluation in Fig. 3, the proposed term-by-term
quadraticity test can be efficiently implemented in a massively parallel fashion
on the target GPU.

5.2 Experimental Results

After running the faster term-by-term quadraticity test (see Algorithm 2 in Sec-
tion 4) on a single PC (with a GPU) for a few days, we have been able to

1 The cube attack can also be applied to any other single bit of the internal state after
the third round of the block cipher Ek1 in a straightforward way.
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Algorithm 3 Parallel Superpoly Evaluation on GPUs
Inputs: A master polynomial p(v1, · · · , vm, k1, · · · , kn) = tI ·pS(I)+q(v1, · · · , vm, k1, · · · , kn)

Cube indices : {i1, i2, . . . , iκ} and a certain key k = (k1, · · · , kn)
Output: The value of the superpoly pS(I)

parallel for l ← 0 to 2κ − 1 do // parallel evaluation
l = (l0, l1, . . . , lκ)
(vi1 , vi2 · · · , viκ) ← (l0, l1, . . . , lκ) and vj = 0 for j ∈ {1, 2, . . . ,m} \ {i1, i2, . . . , iκ}
Compute pl(v1, · · · , vm, k1, · · · , kn) // each thread computes one value

end parallel for

pS(I) ←
∑2κ−1

l=0 pl(v1, · · · , vm, k1, · · · , kn) // parallel reduction using shared memory

Fig. 3. Parallel Evaluation of the Superpoly pS(I) on GPUs

Table 1. The Cube Indices and Superpoly Equations for the Hummingbird-2 Initial-
ization from the Least Significant Bit Leakage after the Third Round of the First Ek1

Cube Indices Cube Size Linear Superpoly Equation
{11, 10, 9, 8, 7, 6, 5, 4, 3, 2} 10 K1,0 +K1,1 + 1
{15, 14, 13, 12, 7, 6, 5, 4, 3, 0} 10 K1,1

{11, 10, 9, 8, 7, 6, 5, 4, 3, 0} 10 K1,2 + 1
{11, 10, 9, 8, 7, 6, 5, 4, 2, 0} 10 K1,3

{11, 10, 9, 8, 7, 3, 2, 1, 0} 9 K1,4

{15, 14, 13, 12, 11, 10, 9, 8, 6, 4} 10 K1,5

{15, 14, 13, 12, 4, 3, 2, 1, 0} 9 K1,5 +K1,6

{11, 10, 9, 8, 4, 3, 2, 1, 0} 9 K1,7

{15, 14, 13, 12, 10, 9, 3, 2, 1, 0} 10 K1,8

{11, 8, 7, 6, 5, 4, 3, 2, 1, 0} 10 K1,9

{15, 14, 13, 12, 9, 8, 3, 2, 1, 0} 10 K1,10

{15, 14, 13, 12, 9, 8, 7, 6, 5, 4} 10 K1,11

{14, 13, 7, 6, 5, 4, 3, 2, 1, 0} 10 K1,12

{15, 12, 7, 6, 5, 4, 3, 2, 1, 0} 10 K1,13 +K1,14

{15, 12, 11, 10, 9, 8, 7, 6, 5, 4} 10 K1,14

{15, 12, 11, 10, 9, 8, 7, 6, 5, 4} 10 K1,15 + 1
{14, 13, 12, 10, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,5 +K2,6 +K2,7 +K2,9 +K2,11 +K2,13

{14, 13, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,3 +K2,5 +K2,6 +K2,7 +K2,10 +K2,11 +K2,13 + 1
{14, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,2 +K2,3 +K2,6 +K2,7 +K2,8 +K2,10+

K2,11 +K2,13 +K2,14 +K2,15 + 1
{14, 13, 12, 11, 10, 9, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,2 +K2,3 +K2,5 +K2,8+

K2,9 +K2,10 +K2,14 +K2,15

{14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2, 1, 0} 13 K2,2 +K2,3 +K2,4 +K2,5 +K2,7+
K2,9 +K2,10 +K2,11 +K2,13 +K2,14

{14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 1, 0} 13 K2,5 +K2,8 +K2,11 +K2,14

{14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 2, 0} 13 K2,0 +K2,10 +K2,12

{15, 13, 12, 10, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,5 +K2,7 +K2,9 +K2,11 +K2,13 + 1
{15, 13, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,1 +K2,3 +K2,4 +K2,5 +K2,10 +K2,11 +K2,13

{15, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,4 +K2,6 +K2,8+
K2,10 +K2,11 +K2,13 +K2,14 +K2,15

{15, 13, 12, 11, 10, 9, 7, 6, 4, 3, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,4 +K2,5 +K2,6+
K2,8 +K2,9 +K2,10 +K2,14 +K2,15

{15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,4 +K2,5+
K2,10 +K2,12 +K2,13 +K2,14 +K2,15 + 1

{15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 1, 0} 13 K2,1 +K2,2 +K2,5 +K2,6+
K2,7 +K2,9 +K2,12 +K2,14 +K2,15 + 1

{15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 2, 0} 13 K2,0 +K2,3 +K2,5 +K2,6 +K2,9 +K2,10 +K2,11 + 1
{15, 14, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,1 +K2,3 +K2,4 +K2,6 +K2,7 +K2,9

{15, 14, 12, 11, 10, 9, 8, 7, 6, 4, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,8 +K2,11 +K2,13 +K2,15
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find tens of linear and quadratic superpoly equations using different cube sizes.
For the linear superpolys, we use the Gaussian elimination to remove the lin-
ear dependent equations and obtain 32 linear independent equations with 32
key variables as a result. Table 1 lists the indices of the public variables in the
maxterms and the corresponding linear superpoly equations. For the quadratic
superpolys, we find that they are all redundant and cannot provide more infor-
mation about the secret key bits. As shown in Table 1, we have 3 maxterms of
size 9, 13 maxterms of size 10, and 16 maxterms of size 13. Therefore, in order
to recover the first 32 key bits of the secret key, the total number of chosen
plaintexts (i.e., the nonce NONCE1) at the online phase of the cube attack is
3×29+13×210+16×213 ≈ 217.155. After obtaining the first 32 key bits K1 and
K2, we can use those key bits to significantly simplify the master polynomial
associated with the LSB of the internal state of the block cipher Ek1 after the
third round. As an example, we assume that K1 = 0x35df and K2 = 0xac2b.
Using the Algorithm 2, we find 12 linear independent equations (see Table 2)
with 12 secret key variables K3,4,K3,5, . . . ,K3,15, which enable us to solve those
key variables at the online phase with 24 + 2 × 25 + 6 × 26 + 3 × 27 ≈ 29.755

chosen plaintexts. The remaining four secret key bits K3,0,K3,1,K3,2 and K3,3

can be obtained by conducting an exhaustive search. Moreover, one can also ob-
tain the relations among those four key bits by solving the quadratic equations
in Table 2 with another 2 × 25 = 64 chosen plaintexts. Consequently, the total
time complexity to find the correct 128-bit secret key of the Hummingbird-2 has
been reduced to 280.

Table 2. The Cube Indices and Superpoly Equations for the Hummingbird-2 Initial-
ization from the Least Significant Bit Leakage after the Third Round of the First Ek1

(K1 and K2 are known)

Cube Indices Cube Size Superpoly Equation
{7, 6, 5, 4} 4 K3,4 +K3,6 +K3,7 +K3,8 +K3,10 +K3,11 +K3,12 +K3,14 +K3,15 + 1
{7, 6, 5, 4, 0} 5 K3,4 + 1
{12, 10, 7, 4, 0} 5 K3,12 + 1
{11, 9, 5, 4, 3, 0} 6 K3,10

{11, 10, 9, 8, 6, 4} 6 K3,13

{7, 6, 5, 4, 3, 0} 6 K3,6 +K3,7 +K3,12

{6, 4, 3, 2, 1, 0} 6 K3,4 +K3,9 +K3,10 +K3,11 + 1
{11, 10, 9, 6, 4, 0} 6 K3,4 +K3,5 +K3,8 +K3,10 +K3,15 + 1
{9, 8, 3, 2, 1, 0} 6 K3,5 +K3,7 +K3,8 +K3,11 +K3,14 +K3,15 + 1
{8, 6, 5, 3, 2, 1, 0} 7 K3,6 +K3,7 +K3,8 +K3,9

{8, 7, 6, 3, 2, 1, 0} 7 K3,6 +K3,7 +K3,8 +K3,10 +K3,11 + 1
{8, 7, 6, 5, 4, 2, 1} 7 K3,5 +K3,6 +K3,8 +K3,9 +K3,10 +K3,13 +K3,14 +K3,15

{10, 8, 7, 6, 4} 5 K3,7 +K3,8 +K3,9 +K3,11 +K3,12 +K3,13 +K3,14+
K3,8K3,11 +K3,9K3,11 +K3,4K3,5 +K3,5K3,6 +K3,2K3,3

{9, 8, 6, 5, 2} 5 K3,4 +K3,7 +K3,9 +K3,10 +K3,12 +K3,9K3,11+
K3,10K3,11 +K3,5K3,7 +K3,4K3,5 +K3,1K3,2 +K3,0K3,2
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6 Conclusions

In this contribution we investigate the security of the Hummingbird-2 against
the side channel cube attacks under the single-bit-leakage model. Our experi-
mental results show that one can recover the first 48 bits of the secret key in
the Hummingbird-2, by taking advantage of a single bit information leakage from
the internal state after the third round of the first block cipher Ek1 . The data
complexity of the proposed attack is around 218. Moreover, an efficient term-
by-term quadraticity test is also proposed. Finally, we would like to point out
that in order to launch the side channel cube attack against the Hummingbird-2
an attacker needs to acquire the exact value of the least significant bit after the
third round of the block cipher Ek1 , which is, if not impossible, quite difficult and
expensive in practice according to the current manufacturing technology of em-
bedded systems. Therefore, the proposed attack is only of a theoretical interest at
the moment and does not directly jeopardize the security of the Hummingbird-2
implementations in practice.
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15. Le, T.-H., Canovas, C., Clédière, J.: An Overview of Side Channel Analysis Attacks.
In: The 2008 ACM Symposium on Information, Computer and Communications
Security - ASIACCS 2008, pp. 33–43. ACM Press (2008)

16. Saarinen, M.-J.O.: Cryptanalysis of Hummingbird-1. In: Joux, A. (ed.) FSE 2011.
LNCS, vol. 6733, pp. 328–341. Springer, Heidelberg (2011)

17. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA – an Algebraic IV
Differential Attack, Cryptology ePrint Archive, Report 2007/413 (2007),
http://eprint.iacr.org/2007/413

18. Vielhaber, M.: AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU Time,
Cryptology ePrint Archive, Report 2009/402 (2009),
http://eprint.iacr.org/2009/402

19. Yang, L., Wang, M., Qiao, S.: Side Channel Cube Attack on PRESENT. In: Garay,
J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 379–391.
Springer, Heidelberg (2009)

20. Zhao, X., Wang, T., Guo, S.: Improved Side Channel Cube Attacks on PRESENT,
Cryptology ePrint Archive, Report 2011/165 (2011),
http://eprint.iacr.org/2011/165

21. Zhu, B., Yu, W., Wang, T.: A Practical Platform for Cube-Attack-Like Cryptanal-
yses, Cryptology ePrint Archive, Report 2010/644 (2010),
http://eprint.iacr.org/2010/644

http://eprint.iacr.org/2009/127
http://eprint.iacr.org/2007/413
http://eprint.iacr.org/2009/402
http://eprint.iacr.org/2011/165
http://eprint.iacr.org/2010/644


Full Lattice Basis Reduction on Graphics Cards

Timo Bartkewitz1 and Tim Güneysu2
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Abstract. Recent lattice enumeration GPU implementations are very
useful to find shortest vectors within a given lattice but are also highly
dependent on a lattice basis reduction that still runs on a CPU. Therefore
we present an implementation of a full lattice basis reduction that makes
exclusive use of GPUs to close this gap. Hence, we show that GPUs are, as
well, suited to apply lattice basis reduction algorithms that were merely
of theoretical interest so far due to their enormous computational effort.
We modified and optimized these algorithms to fit the architecture of
graphics cards, in particular we focused on Givens Rotations and the All-
swap reduction method. Eventually, our GPU implementation achieved
a significant speed-up for given lattice challenges compared to the NTL
implementation running on an CPU of about 18, providing at least the
same reduction quality.

Keywords: Lattice Basis Reduction, Givens Rotations, All-Swap Algo-
rithm, Parallelization, Graphics Cards, CUDA.

1 Introduction

The lattice basis reduction is an important and interesting tool in linear algebra.
Various applications concern the factorization of polynomials and integer num-
bers as well as solving knapsack, hidden number problems, and many more prob-
lems [14,17] – all enabled by finding a relatively short lattice basis (Shortest Basis
Problem or SBP) and the shortest vector for a given lattice (Shortest Vector Prob-
lem or SVP). In particular, the latter method could also be used to break instances
of the RSA public-key cryptosystem [29]. Beside this factoring-based cryptosys-
tem, there is the class of lattice-based cryptosystems that are assumed to be secure
against attacks with quantum computers. Considering those crypto schemes, the
lattice basis reduction can be applied to determine the hardness of respective lat-
tice problems. Well-known lattice-based cryptosystems are NTRU [15], Merkle-
Hellman [23], Ajtai-Dwork [2], Goldreich-Goldwasser-Halevi [10], but also recent
cryptosystems by Regev [28], Peikert [27], as well as Applebaum-Cash-Peikert-
Sahai [3], Stehl-Steinfeld-Tanaka-Xagawa [7], Brakerski-Goldwasser-Kalai [5] and
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SWIFFT [22]. Each scheme relies on the hardness of finding short vectors or closely
related problems, respectively. Thus, the performance of lattice basis reduction is
indeed essential for reasonable security estimations.

The first practical algorithm to find a short lattice basis vector was pro-
posed in 1982 by Lenstra, Lenstra and Lovász, known as LLL-algorithm [21].
It provides polynomial runtime but involves a quality factor (i.e. a reduction
parameter) which is exponentially dependent on the magnitude of the lattice.
Additionally, the LLL-algorithm suffers from a further disadvantage: for cor-
rectness reasons, it applies exact integer arithmetic which has been shown to be
inefficient. Hence, there were many efforts made to improve this algorithm con-
cerning runtime behavior and the reachable reduction quality. Schnorr and Euch-
ner therefore proposed a variant of the LLL-algorithm that applies floating point
arithmetic and thus offers much better runtime results, namely the Schnorr-
Euchner-algorithm (SE) [31]. Simultaneously, Schnorr and Euchner presented
the hybrid BKZ-algorithm [31] that is most widely used for lattice basis reduc-
tion in practice today because it delivers the best reduction quality, especially
with respect to a shortest vector. Crucially, it is also built on the LLL-algorithm
and thus dependent on its performance. There are also recent LLL-algorithms
to mention whose running time provably grows only quadratically [24].

Motivation: Concerning graphics cards, many results on lattice enumeration has
been recently published but there are no results on the LLL, even less on the
combination of both (BKZ) (see also Sec. 2). In contrast to other platforms that
can potentially accommodate lattice basis reduction algorithms, graphics cards
using the OpenCL [19] or CUDA [26] programming model provide a very promis-
ing platform for computationally intensive tasks. This platform allows to run a
large number of parallel processors making it feasible to adopt parallel algorithms
which were currently designated to be impractical due to their demand for huge
computational resources (i.e. a large number of available processors), such as
the All-swap LLL-algorithm [33]. It is still an open issue whether GPU-based
lattice basis reduction algorithms are capable to compete with optimized CPU
implementations like those provided by the number theory library (NTL) [32] for
instance. Until today there are virtually no efforts made to port the lattice basis
reduction to graphic cards. For sure, there are still obstacles (e.g. the restriction
to double floating point precision) voting against graphics cards because accu-
racy is an important factor for lattice basis reduction in very high dimensions.
But it is a matter of time when these problems are going to be solved by even
more powerful devices and parallel algorithms then become highly important.

Our contribution: In this paper, we will adopt and improve parallel algorithms
for lattice basis reduction to achieve optimal results on graphics cards. A major
part of a LLL-based lattice basis reduction algorithm is the orthogonalization.
A suggestion in [18] is to implement the orthogonalization step by using so-
called Householder reflections [9]. Unlike, Givens rotations are assumed to be
inefficient on graphics cards but we are not aware of any comparison nor a
corresponding implementation on this platform. In this paper we thus present
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an implementation of the Givens rotations that offers a better runtime per-
formance (compared to the Householder reflections implementation by Kerr et
al. [18] for equivalent parameters) which is achieved by the idea of merging
matrix row computations. A further contribution is, mainly following the All-
swap LLL-algorithm approach, to pick up the improvement made to the original
LLL-algorithm of the so-called deep insertion technique [31] and apply it to our
modified algorithm resulting in a method we call sorted All-swap. Ultimately,
we present the first implementation of lattice basis reduction on graphics cards
and provide further strategies and incentives for future works. We provide per-
formance results for the lattice challenges published by TU Darmstadt [6] whose
construction is based on [1], random lattices, and random lattices in Hermite
normal form (HNF) using double floating point precision. Even though there
are better methods than LLL or BKZ respectively, these lattices should serve
as a common foundation for performance comparisons. For the given lattices,
our implementation provides a significantly higher performance compared to
the sequential Schnorr-Euchner-algorithm using Givens rotations contained in
the NTL. Hence, we would also expect a better runtime when using much higher
entries respectively dimensions which will be applicable with support for multi-
precision floating point arithmetic in future generations of graphics cards.

Organization of the paper: This paper is organized as follows: Section 2 briefly
introduces the previous work on parallel lattice basis reduction algorithms. In
Section 3, we briefly present the mathematical background on lattices. Section 4
grants a glimpse on modern graphics cards architecture considering their pro-
gramming and memory model. In Section 5, we describe the chosen implemen-
tation approach concerning algorithms and requirements when being applied on
a graphics card. Section 6 reports our results before we conclude in Section 7.

2 Related Work

Parallelizing the lattice basis reduction is not a new subject to research, dedi-
cated algorithms can be found in [34], [35], [11] and [16]. Recently, new attempts
to parallelize lattice basis reduction algorithms were published which mainly
focus on the SE-algorithm, respectively the BKZ-algorithm.

For the parallel variant of the SE-algorithm [4], POSIX threads are used to
make an effective use of recent multicore computer architectures. In experiments
with sparse and dense lattice bases, the algorithm shows a speed-up factor of
about 1.75 for a 2-thread and close to factor 3 for the 4-thread version.

Many variants of shortest lattice vector enumeration, virtually the main part
of the BKZ which targets the exact SVP, were ported to graphics cards: The lat-
tice vector enumeration [13], the simple sample reduction [30], and an approach
including extreme pruning [20]. But in order to obtain reasonable advances in
performance each GPU implementation still requires a strong pre-reduction of
the lattice basis and hence a fast LLL-algorithm that runs on a CPU to this day.

Further, another work also considered FPGAs for lattice enumeration [8].
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3 Mathematical Background

In linear algebra, a lattice in R
n is a discrete, additive, Abelian subgroup of Rn

consisting of points. The property being discrete implies that there are no cluster
points but all points have a minimum Euclidean distance from each other.

Definition 1 (Lattice). Let b1, b2, . . . , bk ∈ R
d, k ≤ d linear independent, the

set

L =

{
u ∈ R

d|u =
k∑

i=1

aibi, ai ∈ Z

}

is called a lattice.

Hence, every lattice L can be represented by a set B = {b1, b2, . . . , bk} of column
vectors. We call B the basis of the lattice L, thus L(B) is the set of all finite,
integer linear combinations of the basis vectors bi.

A basis B is never unique. Every basis B can be transformed into another basis
B′ such that L(B) = L(B′) while permuting columns, multiplying a column by−1
or adding an integer multiple of one vector to another vector. These operations
are also referred to as a unimodulary transformation. More detailed information
on lattices and their properties can be found in [9].

3.1 Problems in Lattices

The lattice theory is concerned with three major problems that are very briefly
discussed in the following.

Shortest and Approximated γ-Shortest Vector Problem. Let L be a d-
dimensional lattice and corresponding basis B ∈ R

d×k. By the shortest vector
problem (SVP), one obtains the basis B as input and searches for a vector
with Euclidean length λ1 (or γλ1 in case of an approximation). Here, λ1

is the minimal radius of a ball enclosing the origin in L that contains the
shortest lattice basis vector (first successive minimum).

Closest and Approximated γ-Closest Vector Problem. Let L be a d-di-
mensional lattice and corresponding basis B ∈ R

d×k. By the closest vec-
tor problem (CVP) one searches a vector u that is the closest to a given
target vector t, meaning ‖u− t‖ = minv∈L ‖v − t‖, respectively ‖u− t‖ =
γ ·minv∈L ‖v − t‖ for the γ-approximated version.

Shortest and Approximated γ-Shortest Basis Problem. Let L be a d-di-
mensional lattice and corresponding basis B ∈ R

d×k. By the shortest ba-
sis problem (SBP) one obtains the basis B as input and searches a basis
such that ‖bi‖2 = λi, bi ∈ B, respectively ‖bi‖2 = γ · λi, bi ∈ B for the
γ-approximated version.

3.2 Lattice Basis Reduction

The lattice basis reduction deals with the problem to find a short lattice basis for
a given lattice basis (SBP). In practice, finding a shortest vector (SVP) in this
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Algorithm 1. LLL-Algorithm

Input: Lattice basis B = (b1, b2, . . . , bk) ∈ R
d×k and reduction parameter δ with

1
4
< δ < 1

Output: δ-LLL-reduced basis B
1: Orthogonalization: Compute Gram-Schmidt coefficients μi,j

2: i = 2
3: while i ≤ k do
4: Size Reduction: Size reduce the vector bi
5: if δ ‖b∗i−1‖22 < ‖b∗i ‖22 + μ2

i,i−1 ‖b∗i−1‖22 then
6: Basis Permutation: Swap basis vectors bi and bi−1

7: Orthogonalization: Update Gram-Schmidt coefficients μl,j for l > i
8: i = max(i− 1, 2)
9: else
10: i = i+ 1
11: end if
12: end while

basis is of particular importance. In 1982 Lenstra, Lenstra and Lovász proposed
the first lattice basis reduction [21] that terminates in polynomial runtime, ac-
cording to the lattice dimension, which is known as the LLL-algorithm named
according to its inventors. The LLL-algorithm iteratively works in stages where
each such stage processes the vector bi. During the process, the algorithm can re-
turn to a certain stage several times before it terminates. A single stage consists
of the following operations. First, the vectors bi are reduced in their size by the
preceding vectors bi−1, bi−2, . . . , b1 according to the Gram-Schmidt coefficients,
which are defined by

μi,j :=

〈
bi, b

∗
j

〉〈
b∗j , b

∗
j

〉 , i > j

At beforehand, the orthogonal versions b∗i of the basis vectors bi are determined
by

b∗1 := b1; b∗i = bi −
i−1∑
j=1

μi,jb
∗
j .

Afterwards it is checked if the swap condition, the so-called Lovász condition, is
true involving the orthogonal version b∗i of bi. If so, then vector bi is interchanged
with vector bi−1. Being in stage i the basis vectors bi−1, bi−2, . . . , b1 are already
LLL-reduced by which means the vectors are

1. Size reduced : |μi,j | ≤ 1
2 , 1 ≤ j < i ≤ k and satisfy the

2. Lovász condition: δ ‖b∗i ‖
2
2 ≤

∥∥b∗i+1

∥∥2

2
+ μ2

i+1,i ‖b∗i ‖
2
2 for 1 ≤ i ≤ k, 14 < δ < 1.

4 Computations on Graphics Cards

General-purpose computing on graphics processing units (GPGPU) is the shift
of computations that are traditionally handled by the central processing unit
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Fig. 1. CUDA thread hierarchy

(CPU) or host processor, to the graphics processing unit (GPU), also denoted as
device. In this paper, we focus on nVidia GPUs and CUDA [25,26] that can be
programmed with C for CUDA, a C language derivative with special extensions.

The main unit of the device is the multiprocessor which is a set of a number of
stream processors or CUDA cores (the number depends on the generation and the
model) that share memory, caches, and an instruction unit. The multiprocessor
creates, manages, and executes threads in hardware. As Figure 1 shows, a
thread in CUDA is the smallest unit of parallelism that is executed concurrently
with other threads (warps) on the hardware. Threads are organized in a thread
block, a group of threads in which the threads can communicate with each other
and synchronize their state. A group of thread blocks is called a thread grid. A
thread grid forms the execution unit in the CUDA model since it is not possible
to execute a thread or thread block solely.

Threads in the CUDA programming model can access data from various mem-
ory spaces that differ in size and access time. The CUDA memory model (Fig. 2)
describes the accessible memory spaces from the view point of the thread. At
lowest level, a thread has read and write access to its own registers and ad-
ditionally its own copy of local memory. Threads within the same block have
read and write access to a shared memory on the next higher level. Beyond the
block, all threads can have read and write access to the largest memory space,
the global memory. Beside the global memory, there are two further spaces that
are read-only, the constant memory and the texture memory. Usually, mem-
ory spaces that are shared by threads contain potential hazards of conflicts such
as read-after-write, write-after-read, or write-after-write. Thus, the programming
model implements a barrier by defining a synchronization instruction. As a conse-
quence, a large number of divergent threads (i.e. threads which follow a different
execution flow of an algorithm) require frequent synchronization, reducing the
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overall computation time of the entire systems due to wait cycles. Accesses to
the global memory are crucial for the overall performance due to its latency. But
most of that latency can be hidden if there are enough independent arithmetic
instructions that are executed while waiting for the access to complete.

5 Lattice Basis Reduction on Graphics Cards

According to Algorithm 1, lattice basis reduction has three main phases: first
the basis orthogonalization (computation of Gram-Schmidt coefficients), second
the size reduction of the basis and third the basis permutation.

5.1 Parallel Orthogonalization

For parallel orthogonalization the QR decomposition is a tool that generates an
orthogonal basis in the sense of an unimodulary transformation. As this name
indicates, the QR decomposition disjoints an intended matrix A ∈ R

d×k into two
matrices Q and R. Here, Q is not of further interest but R, an upper triangular
matrix, which contains the Gram-Schmidt coefficients. There are several methods
to compute the QR decomposition. In this paper, we focus on a parallel variant
of the Givens rotations. Detailed informations on the QR decomposition and the
corresponding methods can be found in [9].

Givens Rotations are, beside Householder reflections and many other, an al-
ternative way to compute the QR decomposition. Whereas Householder reflec-
tions insert zeros column-wise by updating the entire basis matrix based upon
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a matrix-matrix multiplication, Givens rotations convert step by step the ba-
sis matrix B into the upper triangular form by inserting lower triangular zeros
from the most left column to the most right column. One Givens rotation is
represented by an usual identity matrix of the form

G(i, j)TB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 . . . 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 . . . c . . . s . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 . . . −s . . . c . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 . . . 0 . . . 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

B,

where gi,i = gj,j = c =
bi,i
r , gi,j = s =

bj,i
r , gj,i = −s, and r =

√
b2i,i + b2j,i, that

is multiplied from the left to the basis matrix B.
The Givens rotations matrix implies that only two rows of B are affected at

once, namely the ith and jth row. The order is important to obtain the correct
result, columns have to be zeroized step by step from left to right. Thus, one
has to follow a sequential order which can be partially parallelized. Nevertheless,
a parallelized variant exploits the fact that rows that are already processed by
their preceding rows can also be taken into account. Algorithm 2 shows such
a parallelized version to compute Givens rotations. Our implementation of this
algorithm considered two levels of optimizations:

One-Block-Per-Associated Rows (OBPA). This approach realizes an ef-
fective way to implement the Givens rotations whereas one thread block is
responsible for two affected rows implied by a Givens rotation to insert a
single zero. First the kernel computes the values c, s and then updates the
remaining entries of each row.

OBPA with Combined Stages (OPBA n-staged). This optimizations ex-
ploits the fact that consecutive iterations of the outer loop largely involve
the same rows (cf. Alg. 2). Accesses to the global memory of the graphics
card are a crucial factor concerning the overall performance. Hence, one can
reduce the access time to the global memory by almost n, if n iterations
(stages) are combined, while the upper row values reside in the threads’ reg-
isters as long as they are processed together with following lower row values.
For instance, the first row is processed together with the second in the first
stage and with the third row in the consecutive second stage, and thus the
updated values of the first row are stored back first after the second pro-
cessing with row three, that is, the first two iterations of the outer loop are
processed together (combined stages).

As a last step, the obtained matrixR needs to be transformed into Gram-Schmidt
coefficients that are required by the lattice reduction. This transformation is
simply given by a CUDA kernel that divides each element ri,j of each row i by
its respective diagonal element ri,i.
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Algorithm 2. Parallel Givens Rotations

Input: Lattice basis B = (b1, b2, . . . , bk) ∈ R
d×k

Output: R = [ri,j ]1≤i,j≤k

1: R = B
2: if d = k then
3: l = k − 1
4: else
5: l = k
6: end if
7: for e = 3 to d+ l do
8: for i = max(1, e− d) to e−1

2
−max(0, e−1

2
− k) parallel do

9: j = e− i

10: Compute c, s: r′ =
√

r2i,i + r2j,i, c =
ri,i
r′ and s =

rj,i
r′

11: R = G(i, j)TR
12: end for parallel
13: end for

5.2 Parallel Basis Size Reduction

A straightforward parallel method in order to reduce a basis in size (that can
easily adapted for use with graphics cards) does not exist. This is due to the
circumstance that a basis vector bi has to be reduced by a previous vector bj
after reducing bj itself. Commonly, previous works [35] use the pattern which
was introduced for the Givens rotations (lines 7−9, Alg. 2) but starting at basis
vector bk. We propose a novel pattern involving Algorithm 3 that optimally fits
the architecture of graphics cards. Beforehand, the matrix R is transposed to
facilitate a fast global memory access. However, we decoupled the size reduction
of the basis from that of the Gram-Schmidt coefficients. Hence, we first reduce
the Gram-Schmidt coefficients, except the coefficient that is currently used for
the size reduction (line 5, Alg. 3 is replaced by μi,j = �μi,j�), and compute

Algorithm 3. Parallel Basis Size Reduction

Input: Lattice basis B = (b1, b2, . . . , bk) ∈ R
d×k and Gram-Schmidt coefficients

[μi,j ]1≤i,j≤k

Output: Size reduced basis B
1: for e = 1 to k − 1 do
2: for i = k to k − e+ 1 parallel do
3: j = i− 1
4: bi = bi − �μi,j� bj
5: μi,j = μi,j − �μi,j�
6: for l = 1 to j − 1 do
7: μi,l = μi,l − �μi,j�μi,j

8: end for
9: end for parallel
10: end for
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the nearest integer (�•�) at a time. Roughly speaking, we start by reducing the
Gram-Schmidt coefficients vector of the most right basis vector with help of the
left Gram-Schmidt vectors.

Next, we reduce the basis with help of the pre-computed Gram-Schmidt co-
efficients in k − 1 iterations. Therefore, we calculate a weighted sum row-wise,
involving the respective basis vector entries and their dedicated integer versions
of the Gram-Schmidt coefficients and subtract it from the corresponding basis
vector entry.

5.3 Parallel Basis Permutation

The so-called All-Swap [33] lattice basis reduction intends to process as much as
possible of the entire basis with respect to orthogonalization, size reduction and
permutation by swapping. The basis is kept in both representations (precise and
floating point arithmetic) to eliminate the need for type conversions. The algo-
rithm works iteratively in competitive alternating phases, an odd and an even
phase. These phases facilitate performing as much vector swaps as possible on
disjoint vector sets. To cushion the appearance of round-off errors, the approxi-
mated basis is recomputed from the exact basis each time and thus concurrently
the orthogonalization and the size reduction is performed each time on the en-
tire lattice basis. The original All-Swap floating point algorithm was proposed
by Heckler and Thiele [12] (referred to as original All-swap in the following).

Here, we introduce a variant from that we expect a better reduction quality
due to a higher number of swap operations, the sorted All-swap phase which is
a generalized variant of the All-swap phase. Instead of swapping two adjoining
vectors by which means sorting them according to their squared 2-norms ‖b∗i ‖

2
2,

blocks of size 2l, with 2l ≤ k, vectors will be sorted. Obviously, l = 1 will give
the original All-swap phase. Our sorted approach is represented by Algorithm 4.
The reduction parameter δ′ is deduced from the original δ that is included in the
LLL-algorithm. Therefore, it is possible to state a simplified Lovász condition
such that

δ ‖b∗i ‖
2
2 ≤

∥∥b∗i+1

∥∥2

2
+ μ2

i+1,i ‖b∗i ‖
2
2 ⇒ ‖b∗i ‖

2
2 ≤ δ′

∥∥b∗i+1

∥∥2

2
,

with |μi,j | ≤ 1
2 and δ′ = (δ − 1

4 )
−1.

In our implementation we applied a partitioned insertion sort algorithm ac-
cording to the number of threads. The correctness of the presented algorithm
can be obtained by observing the lattice determinant (i.e. the matrix determi-
nant in the case of square matrices) which remains invariant during the entire
reduction process. Note that a parallel lattice basis reduction algorithm depends
on the reduction parameter (δ′) contrary to a sequential algorithm. However,
for low δ′ values dependent on the given lattice, the process can potentially lead
to an endless loop due to precision issues. For higher δ′ values, the algorithm
terminates with high probability.



40 T. Bartkewitz and T. Güneysu

Algorithm 4. Sorted All-Swap Lattice Basis Reduction

Input: Lattice basis B = (b1, b2, . . . , bk) ∈ R
d×k, reduction parameter δ′ with δ′ > 4

3

and block-size parameter l
Output: δ′-All-swap-reduced basis B
1: phase = 0
2: while sorting is possible for any block in phase do
3: Approximate basis B′ = (B)′
4: Compute Gram-Schmidt coefficients μi,j

5: Size reduce the basis B
6: Split the basis into m blocks of size 2l starting with b1+phase·2l−1

7: for i = 1 to m parallel do
8: Using an appropriate sorting algorithm to sort the block

b2l(i−1)+phase·2l−1+1, . . . , b2li+phase·2l−1 by its squared 2-norms, i.e.

‖b∗r‖22 ≤ δ′ ‖b∗s‖22 , 2l(i− 1) + phase · 2l−1 + 1 ≤ r < s ≤ 2li+ phase · 2l−1

9: phase = phase⊕ 1
10: end for parallel
11: end while
12: Approximate basis B′ = (B)′
13: Compute Gram-Schmidt coefficients μi,j

14: Size reduce the basis B

6 Results

For our experiments, we used an nVidia GTX 280 graphics cards with 1 GiB
video RAM and an Intel Core 2 Quad Q9550 at 3.6 GHz running Windows 7
64-bit. The results were obtained using the CUDA toolkit and SDK 3.2 and the
CUDA driver 260.89.

Experiments have shown that the OPBA n-staged method for Givens rota-
tions achieves a significant speed-up for n = 2, respectively n = 4 combined
stages. Combining more stages results in a negative effect concerning runtime
due to the severely increased sequential effort per thread. The OPBA methods
is executed complying with Algorithm 2, meaning several sufficient kernel calls
dependent on the magnitude of the basis matrix, the number of blocks accord-
ing to the number of affected rows. It turned out that 64 threads per block are
optimal.

To provide reasonable results for the full lattice basis reduction, we consider
lattice bases obtained from the TU Darmstadt Lattice Challenge1 , random lat-
tices (entries are chosen randomly within a certain range), and random lattices
in Hermite normal form. This choice also satisfies the requirement that graphics
cards only support double floating point precision yet.

For the CLB-200 (a lattice basis challenge of dimension 200), we obtain a
similar reduction quality for All-swap algorithms using different δ′ values as
shown in Table 1. Generally, we observe that methods that perform more
swaps than the original All-swap require much less runtime and deliver a similar

1 Available on http://www.latticechallenge.org

http://www.latticechallenge.org
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Table 1. Results for different All-swap implementations processing the CLB-200. Here,
vs is the shortest vector within the lattice basis with ‖vs‖2 < n = 30 to win CLB-200.
Blocked-sorted 2l = 2 corresponds to the original All-swap method.

l δ′ Determinant Overall size red. ‖vs‖2 Runtime

1 1.34 2.0589 · 1044 280 19.03 3.37 s
2 1.6 2.0589 · 1044 178 18.84 2.11 s
3 3.0 2.0589 · 1044 75 21.79 0.89 s
4 2.55 2.0589 · 1044 – 9.22 63.9 s

reduction quality at a time. Among all of our results, we found a shortest vector
with the Euclidean length 9.22 by application of the block-sorted All-swap with
block-size 16, δ′ = 2.55 after a computation time of 63.9 seconds. The CLB-500
challenge can be performed with a similar setup, more precisely block-size 16,
δ′ = 3.05 and a computation time of 104.63 seconds with Euclidean norm of
62.94 (n = 63). Although this is not an optimal value since it is very close to n,
it still provides a significant reduction with respect to runtime when employing
our lattice basis reduction. Compared to runtime results from NTL2, as shown
in Figure 3, that involves the Schnorr-Euchner algorithm in double floating point
precision using Givens rotations (G_LLL_FP() which is the sequentially executed
counterpart on a CPU), our implementation achieves a speed-up of about 12.5
(l = 1) and 18.6 (l = 2) on average considering the challenge lattices. In general,
we observe an increasing speed-up factor according to higher lattice basis di-
mensions. Moreover, the reduction quality is nearly about the same as depicted
in Figure 4(a) which compares the lengths of the shortest vectors found by each
algorithm. Note that this metric was chosen for the sake of simplicity, but it
also represents the different reduced bases as a whole. Second, note that other δ′

values lead to other vector length with almost the same runtime, hence the NTL
does not provide better results in general given a similar δ′. Figure 4(b) shows
the runtime performance for both randomly chosen lattice bases and randomly
chosen lattice bases in Hermite normal form using a logarithmic scale.

As can be seen, the reduction of these types of lattices on the GPU even out-
perform the reduction of the challenge lattice bases. The NTL copes better with
random lattices than with random lattices in Hermite normal form. To provide a
fair comparison between CPU-based and GPU-based lattice basis reduction, we
put the costs of two computing systems each for CPU and GPU-based lattice ba-
sis reduction into relation. In this model, we assume e500 for a system equipped
with a powerful CPU, such as an Intel quad core, and onboard-graphics and
e680 for a system containing a recent nVidia GTX graphics card but populated
with a low-end desktop processor. Normalizing the speed-up of the GPU-based
implementation according to the higher cost of its computing system, we still
have a 13.7 times higher performance compared to the corresponding CPU-based
system for the same amount of financial investment.

2 All measurements were performed on the same system as presented above.
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7 Conclusion and Future Work

In this paper we presented the first implementation of a full lattice basis re-
duction on graphics cards. Due to the memory model that enables the many-
core based GPU to compute the established algorithms massively in parallel, we
achieved promising results with respect to other CPU-based implementations,
such as NTL. We introduced a variant of the All-swap algorithm that delivers
better reduction results with decreased runtime with respect to challenge lattice
bases. Our implementation can also be used to find short vectors, however at
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the cost of a higher runtime. Still, our implementation requires some trials due
to find an optimal reduction parameter δ′.

Future work involves the OpenCL framework that offers quadruple floating
point precision in the next versions. Thus, it would become possible to reduce
either lattice bases with very high dimensions or lattice bases consisting of large
entries which is, as of now, restricted by the current GPU generation. Alter-
natively, future work could apply the proposed approach as a pre-reduction for
lattice enumeration.
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Abstract. Digital Video Broadcasting (DVB) is a set of standards for
digital television. DVB supports the encryption of a transmission using
the Common Scrambling Algorithm (DVB-CSA). This is commonly used
for PayTV or for other conditional access scenarios. While DVB-CSA
support 64 bit keys, many stations use only 48 bits of entropy for the
key and 16 bits are used as a checksum. In this paper, we outline a time-
memory-tradeoff attack against DVB-CSA, using 48 bit keys. The attack
can be used to decrypt major parts a DVB-CSA encrypted transmission
online with a few seconds delay at very moderate costs. We first propose a
method to identify plaintexts in an encrypted transmission and then use a
precomputed rainbow table to recover the corresponding keys. The attack
can be executed on a standard PC, and the precomputations can be
accelerated using GPUs. We also propose countermeasures that prevent
the attack and can be deployed without having to alter the receiver
hardware.

1 Introduction

Digital Video Broadcasting (DVB) is a set of standards for digital television in
Europe. It has been standardized by the European Telecommunication Stan-
dardization Institute (ETSI) in 1994. DVB defines multiple standards in the
field of digital television; well-known standards include terrestrial (DVB-T) [5],
satellite (DVB-S) [3], and cable television (DVB-C) [4]. However, there are many
more standards, e.g. for data broadcasting.

DVB supports encryption of payload using the proprietary Common Scram-
bling Algorithm (DVB-CSA). The main use cases are PayTV and conditional
access for TV stations that only have regionally limited broadcasting rights.
Other use cases are possible as well, e.g. encryption of IP-over-satellite data
traffic [7].

DVB-CSA was not intended for public disclosure and manufacturers imple-
menting it need to sign a non-disclosure agreement to get access to the spec-
ifications [1]. Only a few details about the structure of the encryption scheme
were known from the standard [2], a publication [8], and a patent application [6].
The breakthrough leading to the full disclosure of DVB-CSA took place when
FreeDec, a software implementation of DVB-CSA, appeared on the Internet in

F. Armknecht and S. Lucks (Eds.): WEWoRC 2011, LNCS 7242, pp. 45–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2002. This implementation was reverse-engineered to extract the missing details
of the cipher, such as the S-Box used.

The first academic publication analyzing DVB-CSA appeared one year later
[13]. Other publications we found about DVB-CSA consider physical attacks, i.e.
fault attacks [14] and side-channel attacks [9] or only analyze the stream cipher
part of DVB-CSA [12], while DVB-CSA also contains a block cipher (see Section
2). However, those attacks do not work in a real-life scenario.

Common PayTV setups consist of four core components: a Smart Card, a
Conditional Access Module (CAM), a set-top box and the television. The Smart
Card is personalized to the PayTV subscriber and provides the DVB-CSA keys,
which are changed frequently. It is able to compute the DVB-CSA keys based
on a secret stored on the card and control messages from the TV station. The
Conditional Access Module is the interface between the Smart Card and the
set-top box. The CAM is either a PCMCIA card connected to the set-top box
over the Common Interface (CI) or it is integrated into the set-top box. The
set-top box decodes the MPEG stream and forwards it to the television, and the
television finally displays the video.

All public practical attacks on encrypted DVB streams we know consider
attacking the DVB-CSA key derivation scheme – this includes physical attacks
against SmartCards as well as Card Sharing, i.e. distributing the DVB-CSA keys
generated by a SmartCard to multiple users.

1.1 Our Contribution

To the best of our knowledge, we provide the first practical attack on DVB-CSA
itself. It can be used to determine DVB-CSA session keys within a few seconds,
regardless of the key derivation scheme. We use pre-computed rainbow tables [10]
for our attack and reduce the key space by exploiting the fact that most 64-bit
DVB-CSA keys use 16 of the key bits as a checksum.

This paper is organized as follows: We first introduce the reader to the DVB-
CSA encryption algorithm in Section 2. In Section 3, we outline that DVB-CSA
keys (64 bit) usually contain only 48 bits of entropy and 16 bit of the key are
used as a checksum. In Section 4, we examine the MPEG2 Video broadcasted
by many TV stations, and show that it usually contains constant plaintexts. In
Section 5, we use this fact combined with the reduced key space to show that a
time-memory tradeoff can be used against DVB-CSA, using rainbow tables. In
Section 6, we show how tools that generate such tables can be efficiently imple-
mented on CPUs and GPUs, and benchmark their performance. In Section 7, we
suggest appropriate parameters for the generation of these tables. In Section 8,
we present experimental results with a small table. In Section 9, we outline the
overall attack scenario. In Section 10 we suggest countermeasures that prevent
the attack and can be implemented with very low costs. We finally conclude in
Section 11.
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2 DVB-CSA in a Nutshell

DVB-CSA is the symmetric cipher used to protect content of MPEG2 Transport
Streams in DVB. To transmit multiple audio, video or general data streams on
a single transponder, MPEG Transport Stream (MPEG TS) encapsulates all
data streams in cells of 188 bytes. These cells consist of a 4 byte header and 184
bytes of payload. Optionally, an extended header can be embedded, reducing the
payload size by the size of the extended header.

A flag in the MPEG TS header indicates whether the packet is unencrypted,
or encrypted with the even or odd key. Usually, only one key is used, while
the other key is updated by the CAM/SmartCard. For encrypted cells, only the
payload is encrypted. The header or optional extended header is never encrypted.

DVB-CSA works in 2 passes. The first pass splits the plaintext of the payload
into blocks of 64 bit length and a remainder that is smaller than 64 bit; all
blocks except this remainder are then encrypted with a custom block cipher in
CBC mode, using reverse block order and all zero initialization vector. In the
second pass, a stream cipher using the first block (last block in the order used
with the block cipher) as initialization vector encrypts all data again, except
the first block. Note that DVB-CSA does not randomize the ciphertexts: Equal
plaintexts are always mapped to the same ciphertexts.

Fig. 1. DVB-CSA structure

2.1 The DVB-CSA Block Cipher

We will concentrate on the custom block cipher used by DVB-CSA as our attack
focuses on the first block of the ciphertext which does not depend on the stream
cipher (see Figure 1). We define the variables used for the block cipher as follows:
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Definitions

KEY the 64 bit KEY
Ki the ith byte of the 64 bit key

KS[i] the ith round key (1 byte)
R[i] the ith byte of the 64 bit plaintext
S a 8 bit permutation
P a 8 bit permutation that only swaps bits

Key Schedule. The block cipher encrypts a single block in 56 rounds without
any kind of additional input or output transformation. The key schedule of the
block cipher expands the 64 bit key into 56 8 bit round keys using the bit
permutation from Table 1.

X6 = KEY
for i = 6 → 0 do
Xi−1 ← permute block(Xi)

end for
for i = 0 → 6 do
KS[8 ∗ i . . . 8 ∗ (i+ 1)− 1] ← Xi ⊕ (0x0101010101010101 ∗ i)

end for

Round Function. One round of the DVB-CSA block cipher consists of six 8
bit XORs, one S-Box lookup S (see the sourcecode in Appendix A) and a 8 bit
bit-permutation P .

P permutes bit indices as in this table:
in 0 1 2 3 4 5 6 7

out 1 7 5 4 2 6 0 3

3 Usage of DVB-CSA

In spite of the fact that DVB-CSA works with 64 bit keys, we observed that only
48 bit of entropy are used for many TV stations. The fourth and the eigth byte
of the key in this case are the sum of the previous three bytes modulus 256:

Table 1. permute block(X)

swaps the bits in X as in this table (decimal notation):

0 1 2 3 4 5 6 7 8 9

00 19 27 55 46 01 15 36 22 56 61

10 39 21 54 58 50 28 07 29 51 06

20 33 35 20 16 47 30 32 63 10 11

30 04 38 62 26 40 18 12 52 37 53

40 23 59 41 17 31 00 25 43 44 14

50 02 13 45 48 03 60 49 08 34 05

60 09 42 57 24
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Fig. 2. DVB-CSA block cipher round function

k0 k1 k2 k0 + k1 + k2 mod 256 k4 k5 k6 k4 + k5 + k6 mod 256

This reduces the effort needed for an exhaustive search from 264 to 248 trial
decryptions. This fact was not mentioned in previous academic publications
[13,14,12] but is actually documented on the english Wikipedia (as of 2006)1.
Because DVB-CSA is a non public standard that has been reverse engineered, we
do not know whether these checksums are part of the specification or originate
from cryptography export restriction.

Since 248 trial decryptions are clearly possible for small corporations and even
individuals, DVB-CSA poses more likely a hindrance than a perfect protection of
the payload. All TV stations (broadcasted on Astra 19.2) we monitored change
the DVB-CSA key every 7 to 10 seconds using a smart card based key distri-
bution system instead of using one (then manually entered) key over a longer
period of time. Some TV stations use a constant DVB-CSA key for a longer pe-
riod, that is manually set at the receiver. This mode is called Basic Interoperable
Scrambling System (BISS).

4 Recovering Plaintexts

In order to attack DVB-CSA, we began searching for a constant known plaintext
in the MPEG-2 video data (H262). Because every bit of the ciphertext depends
on every bit of the plaintext, we were looking for a repeating plaintext spawning
a full MPEG-2 Transport Stream (TS) cell. Surprisingly, we found out that

1 http://en.wikipedia.org/w/index.php?title=Common Scrambling

Algorithm&diff=41583343&oldid=22087243

http://en.wikipedia.org/w/index.php?title=Common_Scrambling_Algorithm&diff=41583343&oldid=22087243
http://en.wikipedia.org/w/index.php?title=Common_Scrambling_Algorithm&diff=41583343&oldid=22087243
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the video stream of many TV stations contains a lot of cells with a payload
completely filled with zero-bytes. We had not expected this as MPEG-2 video
uses various compression techniques to reduce the bandwidth, and a video stream
which contains a lot of cells filled with zero bytes can be easily compressed.

In MPEG-2 video (H262, ISO 13818-2), the video compression codec used
for many DVB variants supports so-called stuffing bytes – they are used to
ensure a minimum bit rate. The ISO 13818-2 standard allows only zero bytes
to be inserted between elements of the bitstream [11]. Since DVB-CSA is a
completely deterministic encryption scheme: Encryptions of the same plaintext
with the same key always result in the same ciphertext. Therefore, if at least two
zero-filled frames are broadcasted during the lifetime of one key, these frames
result in colliding ciphertexts. Cells completely filled with zero-bytes were the
only constant plaintexts that are broadcasted very frequently. We can detect
the corresponding encrypted cells by looking for repeating cells (collisions) in
the encrypted video stream. We decided to assume that the most frequently
colliding cell during a key lifetime corresponds to an encrypted cell filled with
zeros.
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Unfortunately, the occurrence of zero-filled cells heavily depends on the video
content. For example, an interview with a person sitting in a chair without
any movement in the background produces many zero-filled stuffing frames. In
contrast, when old analog film that contains a lot of scratches and other artifacts
is digitized, nearly no cells are filled with zero. We also checked that these cells
usually occur when the data rate of the video stream slightly drops.

To make a quantitative statement about the occurrence of zero-filled cells, we
measured the relative occurrence of collisions of zero-filled cells on unencrypted
stations within intervals of 7 seconds. The detection of a zero-filled cell is con-
sidered successful if at least one collision is detected within an interval of seven
seconds, and if the most frequently occurring collision actually corresponds to
an all-zero cell. The evaluation is done with a granularity of 10 minutes on four
popular and unencrypted TV stations airing on the Astra 19.2 satellite for 24
hours.

This approach of analyzing unencrypted stations is equivalent to measuring
how often ciphertext collisions can be found on an encrypted stream for which the
key changes every 7 seconds, and evaluating how often these collisions actually
decrypt to all-zero cells.

The results of this experiment can be found in Figure 3. We also found a
station on Astra 19.2 sending so many zero-filled cells that the recovery rate
was 100% in our analysis interval.

This rate of intervals in which a zero cell appears most often is an upper bound
to the success rate of any kind of attack, that is based on this plaintext recovery
heuristic.

5 A Time Memory Tradeoff

Since DVB-CSA keys are changed frequently in most use cases, an attacker is
interested in recovering DVB-CSA keys very fast. To break DVB-CSA, we use
a time memory trade-off as described by Oechslin [10] to recover keys within
seconds from a single known plain-text/cipher-text pair. Oechslin invented a
general method known as Rainbow Tables to invert one way functions faster
than by exhaustive search, but precomputations need to be made.

As a one-way function upon which a rainbow table can be built, we propose a
mapping f that takes an 48 bit key (without the two checksum bytes) as input
and returns the first 6 ciphertext bytes of an all zero cell encrypted with this key.
Note that in order to compute f , only 23 calls of the block cipher are required
(as described in Section 2, one cell consists of 23 blocks of 8 bytes and all of
them need to be processed). As reduction function Ri one could simply XOR
the input of f with i.

If we can find the first 6 bytes of a ciphertext c that corresponds to a zero-
filled plaintext cell, then f−1(c) is a key (without checksum bytes) that encrypts
a zero-filled cell to that specific ciphertext. With some luck it is also the current
decryption key (multiple keys could exist encrypting a zero-filled cell to these
first 6 bytes of the specific ciphertext).
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5.1 Construction

To generate such a rainbow table, we need to generate many chains of length t
of the form:

k0
R0◦f−→ k1

R1◦f−→ k2 · · · kt−3
Rt−3◦f−→ kt−2

Rt−2◦f−→ kt−1

where f : k → csablock23k (0). Ri reduces the 64 bit output of csablock to a new
48 bit input for f and also is different for each i:

Ri(x) := x⊕ (i||tableid)
where tableid is an 16 bit unsigned and i is an 32 bit unsigned integer in little-
endian2 representation and || denotes concatenation.

For these chains we only store the head k0 and the tail kt−1 for each chain.
The table is sorted by the tail of the chains to make fast lookups possible.

5.2 Coverage and Costs

The time for the generation of the table as well as the storage and the lookup
time and success probability for the attack is controlled by four parameters:

t length of the rainbow chains
m number of chains in a table
N total number of distinct keys (248 for DVB-CSA)
T number of tables

The coverage of a single table is given by [10]:

R(t,m,N) :=

t∏
i=1

(
1− mi

N

)
with m1 = m and

mi+1 = N(1− e−
mi
N )

For T equivalent tables with different reduction functions we get:

C(t,m,N, T ) := 1− (1−R(t,m,N))
T

as coverage of all tables combined.

The computational costs for a look-up in these tables is given by:

t∑
i=1

T ∗ i = T ∗ t ∗ (t+ 1)

2

and the number of accesses to external memory (i.e. seeks on a HDD) is T ∗ t.
To compute reasonable values for these parameters, we need an (efficient)

implementation of f first, so that we know how many calls to f can be made
during the attack.

2 100010 in little-endian is e8 03.
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6 Implementation

For our attack, we need to evaluate many instances of the one-way function. It is
therefore desirable to either evaluate the one-way function in a very fast manner
or to compute multiple instances of the function at once.

For the evaluation of our one-way function we need to do 1288 invocations
(56 rounds × 23) of the DVB-CSA block cipher round function. As mentioned
before, the round function consists of 8 bit XORs and two 8 bit mappings S
and P. On most modern computer architectures, computations are carried out
on larger bit vectors (mostly 32 or 64 bit). Also, sometimes there are vector
instruction sets that allow to use even wider vectors, e.g. 128 or 256 bit.

We use a bitsliced implementation of the DVB-CSA block cipher encryption
(except for the S-Box lookup). We do not use a lookup table for the permutation
used in the key schedule but an bitsliced implementation of it. Many parts of
our implementation are inspired by libdvbcsa3, an open-source implementation
of the DVB-CSA cipher. However, the current version of libdvbcsa only supports
parallel encryption with the same key, but not with many different keys, as
required for our precomputations. Also, our key schedule has a lower memory
footprint, making it more suitable for GPUs.

6.1 SSE

SSE24 allows to do operations on 128 bit registers and thereby allows us to do e.g.
16 8 bit xor operations at the same time. Of course SSE2 has no implementation
of either S nor P so they have to be implemented in some other way. Since P
merely permutes the bit indices of a byte there is a very simple way to compute
many instances of it at once on larger bit vectors. The developers of libdvbcsa5

already implemented this in a very efficient way. Now for S it is a lot harder
to find an algorithmic description of the function that is faster then an lookup
table in memory. We decided to expand the 8 bit permutation S to an 16 bit
permutation

S′ : x||y → S(x)||S(y)
and store precomputed values for it in a lookup table. This way we only need
to do 8 instead of 16 lookups for 16 parallel computations of the block round
function. The 16 bit lookup table does not necessarily fit into the L1 cache of a
standard processor but will most likely fit into the L2 cache.

6.2 OpenCL

Modern Graphic Accelerators (GPU) are made up of many (hundreds) inde-
pendent computing units that can be used to run the same code on different
data. These so called compute units provide only limited amounts of fast mem-
ory/cache suited for lookup tables. We chose to implement the DVB-CSA block

3 http://www.videolan.org/developers/libdvbcsa.html
4 Streaming SIMD Extensions 2.

http://www.videolan.org/developers/libdvbcsa.html
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cipher here with a version of the permutation code that was originally written
by the developers of libdvbcsa and a normal 8 bit lookup table for S. Our GPU
implementation operates on 32 bit words and therefor computes 4 instances of
the function per compute unit at the same time. The source code of our OpenCL
kernel can be found in Appendix A.

7 Parameters

These high-speed implementations could be used to generate rainbow tables
for various attack scenarios. Assuming that a hard-disk is able to perform 100
random accesses per second, and an adversary can encrypt about 4,000,000 cells
on a GTX460 and about 500,000 cells on a single core CPU, we generated 3
parameter sets.

An adversary might be interested in recovering a DVB-CSA transmission in
real-time. He needs to recover a single DVB-CSA key in less than 7 seconds.
Using a GPU, the precomputations require 6 hard-disks and 6 TB of storage.
Such a table can be precomputed on a single graphics card in less than 9 years.
Using multiple graphics cards or faster graphics cards reduces the required time.
If the key changes only every 10 seconds, the same tables can be stored on just
4 hard drives, without having to recompute them.

Alternatively, an adversary might not be interested in decoding a transmission
in real time, or he would like to recover a static key from a station that only
changes the key manually. If a key should be recovered within 30 minutes, this
can be done with 120GB of precomputations on a graphics card (less than 8 years
of precomputations on a single graphics card) or 525GB of precomputations on
a CPU (less than 5 years of precomputations on a graphics card).

Some sets of possible rainbow table parameters are based on the desired speed
at which keys would be recovered. We aimed at about 90% coverage. One inter-
esting application of this attack would be PayTV with rapidly changing keys.
For the purpose of breaking long term keys, a slower recovery rate would suffice.

Table 2. Suggested parameters

# Chains
Scenario # Tables per table Chain-length Coverage Storage

GPU 7sec per key 2 238 2000 93.457% 6TB
GPU 30min per key 3 232 68410 91.953% 120GB
SSE 30min per key 18 231.542 10000 85.722% 525GB

8 Experimental Results

We computed a small rainbow table with chains of 2000 elements and 232.9008

chains. The table is round about 100 GB in size and has approx 5.4 % coverage.
We created 23419 random keys and searched for their corresponding one-way
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function outputs in this table we found 2464 preimages of which 1057 were the
actual preimage we had been looking for. This corresponds with our expected
success proabability.

9 Attack Options

There are several variants of this attack. First of all the rainbow table generation
can be optimized:

9.1 Rainbow Table Optimizations

For our largest suggested parameter set (GPU 7sec per key), there are 239 chains
in total, stored in two tables with 238 chains per table. Accordingly, chains with
238 different inputs need to be computed. We can choose to use a counter or a
similar method to generate the head of these chains. Therefor, only 5 instead of
6 bytes are required to encode the head of the chains. This allows us to save 1
byte per chain and reduce the size of the rainbow table without any side effects.

Also, for a table filled with 238 chains that is sorted by the tail of the chains
two consecutive chains will differ in 10 bits on average. Using a variable length
encoding for the tails here will allow us to store the tails of the chains in only
2 instead of 6 bytes, for most chains. This additionally reduces the size of the
table.

9.2 Harddisk Seek Performance

Our parameter sets have been chosen in a way that they allow the recovery of
a key in 7 seconds or less, if it can be recovered using the table. Even if an
adversary wants to decode a video stream in near real time, this requirement
can be relaxed.

Assuming that a single table with chain length 2000 and 240 chains is used,
the total coverage is 96%. If 10 keys should be recovered with this table, at most
20000 seeks need to be performed. However, the probability that more than 7765
seeks need to be performed is below 0.1%. As a result, one can use a much lower
number of harddisks, if the computed table has a high coverage. For tables with
a small coverage, unsuccessful searches are more common so that the average
number of seeks is closer to the maximum number of seeks for a lookup.

10 Countermeasures

For our attack, we exploit two properties: The key space of DVB-CSA is very
small (only 248 keys) and there are full MPEG TS cells that repeat often. Several
countermeasures against this attack are possible:

Only 248 possible keys is definitely a too small key space for an encryption
system that is used to protect sensitive data. If the two checksum bytes of the
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key would be chosen freely, 264 keys would be possible. That would slow down
our attack by a factor of 216 and render it impossible with today’s hardware
for an attacker with a small budget. However, we do not know if that would
cause interoperability problems with receivers and other equipment that check
the checksum bytes of the key, or with key distribution systems, that can only
generate keys with a correct checksum. Therefore, we cannot recommend this
solution until compatibility with existing hardware has been ensured.

Even 264 possible keys are not sufficient to protect highly sensitive data for
a long time. If really high security is required, DVB-CSA should be redesigned
and extended to at least 2128 possible keys. As far as we know, DVB-CSAv3 has
been designed with a key space of 128 bits, but the design of DVB-CSAv3 is not
open, so that we cannot evaluate the cryptographic strength of this algorithm.
To use DVB-CSAv3, all Conditional Access Modules (CAM) need to be updated.
If DVB-CSA is implemented in hardware, what we assume, they even need to
be replaced. We think that this solution cannot be used on the short term, but
is a great long term solution.

As a short-term countermeasure, we suggest a solution that can be deployed
by changing only the equipment used at the sender, and receivers do not need to
be updated. Our attack is based on the fact that MPEG TS cells filled completely
with zero-bytes repeat frequently. The MPEG TS header specifies separately for
every cell whether it is encrypted or not, and which key is used. We think that
an DVB-CSA encryption device should check all cells to be encrypted for all-zero
cells. Such cells should be sent unencryptedly. As a result, the attacker will not
get a single zero-filled encrypted cell and will not be able to launch the attack.
Depending on the video codec used, one should also check if there are other
common cell plaintexts, and send them in plaintext too.

If all these countermeasures are not possible, there is still another way to pre-
vent the attack, if only a single or a small number of tables have been generated
and are publicly available. A sender can generate a random key, and check if that
key can be recovered using these tables. If so, it is not used and the procedure
is repeated. As a result, all keys used by a sender cannot be recovered using the
public tables, but probably with tables that are not available to the public.

11 Conclusion

This paper shows that DVB-CSA can be broken in real time using standard
PC hardware, if precomputed tables are available. These precomputations can
be performed on a standard PC in years. This makes DVB-CSA useless for any
application where real confidentiality is required. DVB-CSA might still be used
to protect digital content, where an adversary is not interested in attacks on
the system that recover less than 99% of the payload, and can not be used to
produce pirated Smart Cards. The attack can be prevented with small changes
to the DVB-CSA encryption equipment without having to alter the receivers.

We would like to thank everybody contributing to this paper. This especially
includes Academica Senica in Taipei, Taiwan, that provided hardware to com-
pute parts of the rainbow table used in this paper.
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A OpenCL Kernel

1 #define u8 unsigned char

2 #define u32 unsigned int

3 #define uint64_t ulong

4 #define TID tid

5 #define CHAINLEN chainlen

6

7 __constant uchar sbox[256] =

8 {

9 0x3a , 0xea , 0x68 , 0xfe, 0x33 , 0xe9 , 0x88 , 0x1a , 0x83 , 0xcf , 0xe1 , 0x7f , 0xba , 0xe2 , 0x38 , 0x12 ,

10 0xe8 , 0x27 , 0x61 , 0x95, 0x0c , 0x36 , 0xe5 , 0x70 , 0xa2 , 0x06 , 0x82 , 0x7c , 0x17 , 0xa3 , 0x26 , 0x49 ,

11 0xbe , 0x7a , 0x6d , 0x47, 0xc1 , 0x51 , 0x8f , 0xf3 , 0xcc , 0x5b , 0x67 , 0xbd , 0xcd , 0x18 , 0x08 , 0xc9 ,

12 0xff , 0x69 , 0xef , 0x03, 0x4e , 0x48 , 0x4a , 0x84 , 0x3f , 0xb4 , 0x10 , 0x04 , 0xdc , 0xf5 , 0x5c , 0xc6 ,

13 0x16 , 0xab , 0xac , 0x4c, 0xf1 , 0x6a , 0x2f , 0x3c , 0x3b , 0xd4 , 0xd5 , 0x94 , 0xd0 , 0xc4 , 0x63 , 0x62 ,

14 0x71 , 0xa1 , 0xf9 , 0x4f, 0x2e , 0xaa , 0xc5 , 0x56 , 0xe3 , 0x39 , 0x93 , 0xce , 0x65 , 0x64 , 0xe4 , 0x58 ,

15 0x6c , 0x19 , 0x42 , 0x79, 0xdd , 0xee , 0x96 , 0xf6 , 0x8a , 0xec , 0x1e , 0x85 , 0x53 , 0x45 , 0xde , 0xbb ,

16 0x7e , 0x0a , 0x9a , 0x13, 0x2a , 0x9d , 0xc2 , 0x5e , 0x5a , 0x1f , 0x32 , 0x35 , 0x9c , 0xa8 , 0x73 , 0x30 ,

17 0x29 , 0x3d , 0xe7 , 0x92, 0x87 , 0x1b , 0x2b , 0x4b , 0xa5 , 0x57 , 0x97 , 0x40 , 0x15 , 0xe6 , 0xbc , 0x0e ,

18 0xeb , 0xc3 , 0x34 , 0x2d, 0xb8 , 0x44 , 0x25 , 0xa4 , 0x1c , 0xc7 , 0x23 , 0xed , 0x90 , 0x6e , 0x50 , 0x00 ,

19 0x99 , 0x9e , 0x4d , 0xd9, 0xda , 0x8d , 0x6f , 0x5f , 0x3e , 0xd7 , 0x21 , 0x74 , 0x86 , 0xdf , 0x6b , 0x05 ,

20 0x8e , 0x5d , 0x37 , 0x11, 0xd2 , 0x28 , 0x75 , 0xd6 , 0xa7 , 0x77 , 0x24 , 0xbf , 0xf0 , 0xb0 , 0x02 , 0xb7 ,

21 0xf8 , 0xfc , 0x81 , 0x09, 0xb1 , 0x01 , 0x76 , 0x91 , 0x7d , 0x0f , 0xc8 , 0xa0 , 0xf2 , 0xcb , 0x78 , 0x60 ,

22 0xd1 , 0xf7 , 0xe0 , 0xb5, 0x98 , 0x22 , 0xb3 , 0x20 , 0x1d , 0xa6 , 0xdb , 0x7b , 0x59 , 0x9f , 0xae , 0x31 ,

23 0xfb , 0xd3 , 0xb6 , 0xca, 0x43 , 0x72 , 0x07 , 0xf4 , 0xd8 , 0x41 , 0x14 , 0x55 , 0x0d , 0x54 , 0x8b , 0xb9 ,

24 0xad , 0x46 , 0x0b , 0xaf, 0x80 , 0x52 , 0x2c , 0xfa , 0x8c , 0x89 , 0x66 , 0xfd , 0xb2 , 0xa9 , 0x9b , 0xc0 ,

25 };

26

27 inline uint64_t rol64(uint64_t word , unsigned int shift)

28 {

29 return (word << shift) | (word >> (64 - shift));

30 }

31

32 uint64_t permute_block (uint64_t k) {

33 uint64_t n = 0;

34 n = rol64(k & 0x0080000002000000UL , 5);

35 n ^= rol64(k & 0x0000000404000000UL , 6);

36 n ^= rol64(k & 0x0000000080000000UL , 7);

37 n ^= rol64(k & 0x0800000000000820UL , 10);

38 n ^= rol64(k & 0x0000000000020000UL , 12);

39 n ^= rol64(k & 0x1040000000108000UL , 13);

40 n ^= rol64(k & 0x0000008000200000UL , 14);

41 n ^= rol64(k & 0x0200002000000080UL , 15);

42 n ^= rol64(k & 0x0004000000000000UL , 16);

43 n ^= rol64(k & 0x0000020000000000UL , 18);

44 n ^= rol64(k & 0x0000200000000001UL , 19);

45 n ^= rol64(k & 0x0000000001000000UL , 23);

46 n ^= rol64(k & 0x8000000000000000UL , 25);

47 n ^= rol64(k & 0x0008000000000002UL , 26);

48 n ^= rol64(k & 0x0002000000000400UL , 29);

49 n ^= rol64(k & 0x0000000100000040UL , 30);

50 n ^= rol64(k & 0x0000000000040000UL , 33);

51 n ^= rol64(k & 0x0000000008004000UL , 36);

52 n ^= rol64(k & 0x0000080040000000UL , 38);

53 n ^= rol64(k & 0x0400001000000000UL , 40);

54 n ^= rol64(k & 0x0000000000001000UL , 42);

55 n ^= rol64(k & 0x0000400000000008UL , 43);

56 n ^= rol64(k & 0x2000000000002000UL , 45);

57 n ^= rol64(k & 0x0000000030000000UL , 46);

58 n ^= rol64(k & 0x0000010800000000UL , 47);

59 n ^= rol64(k & 0x0000000000000100UL , 48);

60 n ^= rol64(k & 0x0000100000080000UL , 51);

61 n ^= rol64(k & 0x0000000000000200UL , 52);

62 n ^= rol64(k & 0x0000000000000004UL , 53);

63 n ^= rol64(k & 0x0000000000010000UL , 55);

64 n ^= rol64(k & 0x0110000200800000UL , 57);

65 n ^= rol64(k & 0x4020000000000000UL , 59);

66 n ^= rol64(k & 0x0001800000000000UL , 60);

67 n ^= rol64(k & 0x0000000000000010UL , 61);

68 n ^= rol64(k & 0x0000000000400000UL , 62);

69 n ^= rol64(k & 0x0000044000000000UL , 63);

70 return n;

71 }

72

73 #define I(i) (i*0 x0101010101010101UL )

74
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75 // 4*6byte in ... 4 * 56 byte out

76 void keyschedule (const __private uchar *in , __private uint *out ) {

77 ulong ks[7];

78 uint i,j;

79 for (i = 0; i < 4; i++) {

80 ks[6] = in [3+(i*6)]+in[4+(i*6)]+in [5+(i*6)]; // checksum

81 ks[6] = (ks[6] << 8) ^ in [5+(i*6)];

82 ks[6] = (ks[6] << 8) ^ in [4+(i*6)];

83 ks[6] = (ks[6] << 8) ^ in [3+(i*6)];

84 ks[6] = (ks[6] << 8) ^ ((in [0+(i*6)]+in[1+(i*6)]+in [2+(i*6)])&0 xff ); // checksum

85 ks[6] = (ks[6] << 8) ^ in [2+(i*6)];

86 ks[6] = (ks[6] << 8) ^ in [1+(i*6)];

87 ks[6] = (ks[6] << 8) ^ in [0+(i*6)];

88

89 for (j = 6; j > 0; j--) {

90 ks[j -1] = permute_block (ks[j]);

91 }

92 for (j = 0; j < 7; j++) {

93 ks[j] ^= I(j);

94 }

95 for(j = 0; j < 56; j++) {

96 out[j] = (out [j]<<8) ^ ((ks[j/8] > >(8*( j%8))) & 0xff );// << (24 - i*8);

97 }

98 }

99 }

100

101 // csa roundfunction for any implementation of SBOX and P

102 #define RX(w0,w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7 ,t0 ,t1 ,k){ \

103 t1 = SBOX(w7 ^ k); \

104 t0 = w1; \

105 w1 = w0 ^ w2; \

106 w2 = w0 ^ w3; \

107 w3 = w0 ^ w4; \

108 w4 = w5; \

109 w5 = w6 ^ P(t1); \

110 w6 = w7; \

111 w7 = w0 ^ t1; \

112 w0 = t0;} \

113

114 // lets keep it simple for the first shot

115

116

117 #define BS_BATCH_SIZE 32

118 #define BS_BATCH_BYTES 4

119

120 #define BS_VAL(n) (( uint)(n))

121 #define BS_VAL32(n) BS_VAL(0x##n)

122 #define BS_VAL16(n) BS_VAL32(n##n)

123 #define BS_VAL8(n) BS_VAL16(n##n)

124

125 #define BS_AND(a, b) ((a) & (b))

126 #define BS_OR(a, b) ((a) | (b))

127 #define BS_XOR(a, b) ((a) ^ (b))

128 #define BS_XOREQ(a, b) ((a) ^= (b))

129 #define BS_NOT(a) (~(a))

130

131 #define BS_SHL(a, n) ((a) << (n))

132 #define BS_SHR(a, n) ((a) >> (n))

133 #define BS_SHL8(a, n) ((a) << (8 * (n)))

134 #define BS_SHR8(a, n) ((a) >> (8 * (n)))

135 #define BS_EXTRACT8 (a, n) ((a) >> (8 * (n)))

136

137 #define BS_EMPTY ()

138

139 inline uint bsperm(uint sbox_out) {

140 return BS_OR(

141 BS_OR(

142 BS_OR (BS_SHL (BS_AND (sbox_out , BS_VAL8 (29)) , 1),

143 BS_SHL (BS_AND (sbox_out , BS_VAL8 (02)) , 6)),

144 BS_OR (BS_SHL (BS_AND (sbox_out , BS_VAL8 (04)) , 3),

145 BS_SHR (BS_AND (sbox_out , BS_VAL8 (10)) , 2))),

146 BS_OR( BS_SHR (BS_AND (sbox_out , BS_VAL8 (40)) , 6),

147 BS_SHR (BS_AND (sbox_out , BS_VAL8 (80)) , 4)));

148 }

149

150

151 #define P(x) bsperm(x)

152 #define SBOX(x) lookup(x,sbox)
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153

154 uint lookup(uint x, __constant uchar *lut) {

155 uint r = 0;

156 r = lut[x&0xff ];x>>=8;

157 r ^= lut[x&0xff ]<<(8);x>>=8;

158 r ^= lut[x&0xff ]<<(16); x>>=8;

159 r ^= lut[x&0xff ]<<(24); x>>=8;

160 return r;

161 }

162

163 void encrypt(__private const uint *key , __private uint *i) {

164 uint t1 ,t2 ,k;

165 uint w0 ,w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7;

166

167 w0 = i[0];

168 w1 = i[1];

169 w2 = i[2];

170 w3 = i[3];

171 w4 = i[4];

172 w5 = i[5];

173 w6 = i[6];

174 w7 = i[7];

175

176 int r;

177 for (r = 0; r < 56; r++){

178 k = key[r];

179 RX(w0 ,w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7 ,t1 ,t2 ,k)

180 }

181

182

183 i[0] = w0;

184 i[1] = w1;

185 i[2] = w2;

186 i[3] = w3;

187 i[4] = w4;

188 i[5] = w5;

189 i[6] = w6;

190 i[7] = w7;

191 }

192

193

194 #define expand(x) {x^=(x <<8);x^=(x< <16);}

195 void r(uint tid , uint idx , __private uint *in) {

196 int i;

197 for (i = 0; i < 4; i++) {

198 uint x = idx &0xff ;

199 expand(x)

200 in[i] ^= x;

201 idx >>=8;

202 }

203 for (i = 0; i < 2; i++) {

204 uint x = tid &0xff ;

205 expand(x)

206 in[i+4] ^= x;

207 tid >>=8;

208 }

209 }

210

211

212 __kernel void csa (__global const u8* input ,

213 __global u8* output ,

214 const int tid ,

215 const int chainlen,

216 const int num)

217 {

218 const int idx = get_global_id (0);

219 if (idx > num) return;

220 int i;

221 __private u8 k[24];

222 for (i = 0; i < 24; i++) {

223 k[i] = input[(24*idx )+i];

224 }

225 __private uint key [56];

226 __private uint zero[8];

227 int j,l;

228 for (j = 0; j < CHAINLEN; j++){

229 keyschedule (k,key );

230 for(i = 0; i < 8; i++)
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231 zero[i] = 0;

232 for (i = 0; i < 23; i++){

233 encrypt(key ,zero);

234 }

235 r(TID ,j,zero);

236 for (i = 0; i < 4; i++) {

237 for (l = 0; l < 6; l++)

238 k[i*6+l] = (zero[l]>>(24-8* i));

239 }

240 }

241 for (i = 0; i < 24; i++)

242 output [24*idx+i] = k[i];

243 }
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Abstract. Providing security for a wireless sensor network composed of
small sensor nodes with limited battery power and memory can be a non-
trivial task. A variety of key predistribution schemes have been proposed
which allocate symmetric keys to the sensor nodes before deployment.
In this paper we examine the role of expander graphs in key predistri-
bution schemes for wireless sensor networks. Roughly speaking, a graph
has good expansion if every ‘small’ subset of vertices has a ‘large’ neigh-
bourhood, and intuitively, expansion is a desirable property for graphs of
networks. It has been claimed that good expansion in the product graph
is necessary for ‘optimal’ networks. We demonstrate flaws in this claim,
argue instead that good expansion is desirable in the intersection graph,
and discuss how this can be achieved. We then consider key predistribu-
tion schemes based on expander graph constructions and compare them
to other schemes in the literature. Finally, we propose the use of expan-
sion and other graph-theoretical techniques as metrics for assessing key
predistribution schemes and their resulting wireless sensor networks.

Keywords: Wireless Sensor Networks, Key Predistribution, Expander
Graphs.

1 Introduction

A wireless sensor network (WSN) is a collection of small, battery powered de-
vices called sensor nodes. The nodes communicate with each other wirelessly and
the resulting network is usually used for monitoring an environment by gather-
ing local data such as temperature, light or motion. As the nodes are lightweight
and battery powered, it is important to consider battery conservation in order
to allow the network to remain effective for the appropriate period of time, and
to ensure that the storage required of the nodes is not beyond their memory
capacity.

WSNs are suitable for deployment in many different environments, including
potentially hostile areas such as military or earthquake zones, where it would
be dangerous or impractical to carry out the monitoring of data gathering by
hand. In hostile environments it may be necessary to encrypt messages for se-
curity and / or authentication. Various cryptographic key management schemes
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have been proposed for such scenarios. In some cases there is an online key
server or base station to distribute keys to the nodes where needed; if not, key
predistribution schemes (KPSs) are required, which assign keys to nodes before
deployment. Due to the resource-constrained nature of the nodes, it may be
infeasible to use asymmetric cryptographic techinques in some WSN scenarios,
and so we consider symmetric key predistribution schemes.

Since networks may be modelled as graphs, tools from graph theory have been
used both to analyse and to design networks. In particular, we explore the role
of expander graphs in KPSs for WSNs. The expansion of a graph is a measure
of how well connected it is, and how difficult it is to separate subsets of vertices;
we will see the precise definition in Sect. 2.3. The term ‘expander graphs’ is used
informally to refer to graphs with good expansion.

In 2006, expander graph theory was introduced to the study of KPSs for
WSNs from two perspectives. On the one hand, Camtepe et al [5] showed that a
mathematical construction for an expander graph could be used to design a KPS,
resulting in a network which is well connected under certain constraints. On the
other hand, Ghosh [13] claimed that good expansion is a necessary condition for
‘optimal’ WSNs. We examine these claims and determine the role of expander
graphs in KPSs for WSNs.

Firstly, we show that Ghosh’s claim is flawed but identify where expansion
properties are desirable for WSNs, namely in the intersection graph rather than
the product graph. We then analyse the effectiveness of constructions for KPSs
based on expander graphs, showing that they provide perfect resilience against
an adversary but lower connectivity and expansion than many existing KPSs, for
the same network size and key storage. We argue that expansion is an important
metric for assessing KPSs to be used alongside the other common metrics of key
storage, connectivity and resilience for a given network size. However, we note
the difficulty of finding the expansion coefficient of a graph and so propose es-
timating the expansion and using other graph-theoretical techniques to indicate
weaknesses.

We begin by introducing the relevant terminology and concepts in Sect. 2. In
Sect. 3 we outline Ghosh’s claims and show by means of a counter-example that
his conclusion is misdirected towards expansion in product graphs rather than
intersection graphs. In Sect. 4 we discuss how to maximise the probability of a
high expansion coefficent in the intersection graph, and in Sect. 5 we analyse the
extent to which KPSs based on expander graph constructions achieve this, in
comparison to other schemes from the literature. Finally, in Sect. 6 we suggest
practical metrics for analysing and improving KPSs and the resulting WSNs,
and conclude in Sect. 7.

2 Background

2.1 Key Predistribution Schemes for Wireless Sensor Networks

A key predistribution scheme is a well-defined method for determining the com-
bination of keys which should be stored on each node before deployment. Once
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the nodes have been deployed in the environment, they broadcast identifiers
which uniquely correspond to the keys they store, and determine the other nodes
(within communication range) with which they share at least one common key,
in order to form a WSN.

There are many ways of designing a KPS, and different KPSs suit different
WSN applications. We consider KPSs which assign symmetric keys, since small
sensor nodes are resource-constrained with low storage, communication and com-
putational abilities, and are often unable to support asymmetric cryptography.
In order to make best use of the nodes’ limited resources, it is usually desirable
to minimise the key storage requirement whilst maximising the connectivity and
resilience of a network of n nodes. We now define these concepts more precisely.

– Key storage is the maximum number of keys which an individual node is
required to store for a particular KPS.

– Connectivity of a network can be measured or estimated both globally and
locally. We will refer again to global connectivity in Sect. 6 but in general
we will use the measure of local connectivity Pr1. This is defined to be the
probability that two randomly-chosen nodes are ‘connected’ because they
have at least q keys in common. Most KPSs require nodes to share just one
key before they can establish a secure connection, ie. q = 1, and so Pr1 is
simply the probability that a random pair of nodes have at least one key in
common. Some schemes such as the q-composite scheme of Chan et al. [6]
introduce a threshold such that nodes may only communicate if they have
at least q > 1 common keys. Where two nodes share more than q keys, some
protocols dictate that they should use a combination of those keys, such as
a hash, to encrypt their communications.

– Resilience is a measure of the network’s ability to withstand damage from an
adversary. We use the adversary model of a continuous, listening adversary,
which can listen to any communication across the network and continually
over time ‘compromise’ nodes, learning the keys which they store. We mea-
sure the resilience with the parameter fails: we suppose that an adversary
has compromised s nodes, and then compute the probability that a link be-
tween two uncompromised nodes in the network is compromised, that is,
the adversary knows the key(s) being used to secure it. Equivalently, fails
measures the fraction of compromised links between uncompromised nodes
throughout the network, after an adversary has compromised s nodes. No-
tice that high resilience corresponds to a low value of fails. We say that a
network has perfect resilience against such an adversary if fails = 0 for all
1 ≤ s ≤ n− 2.

To illustrate the trade-offs required between these three parameters, we consider
some trivial examples of KPSs.

1. Every node is assigned a single key k before deployment.
This would require minimal key storage and ensure that any pair of nodes
could communicate securely, so Pr1 = 1 for all pairs of nodes. However,
there would be minimal resilience against an adversary, as the compromise
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of a single node would reveal the key k, rendering all other links insecure.
Formally, fails = 1 for all 1 ≤ s ≤ n− 2.

2. A unique key is assigned to every pair of nodes.
That is, for all 1 ≤ i, j ≤ n, nodes ni and nj are both preloaded with a key
kij , where kij = klm for all pairs (l,m) = (i, j). This is called the complete
pairwise KPS. Such a KPS would have perfect resilience and maximum con-
nectivity, as Pr1 = 1 for all pairs of nodes. However, each node would have
to store n− 1 keys, which is infeasible when n is large.

3. Every node is assigned a single unique key.
Whilst providing minimal key storage and perfect resilience, this KPS has
no connectivity, as Pr1 = 0 for all pairs of nodes.

We see, then, that it is trivial to optimise any two of these three parameters.
However, for many WSN applications these schemes are inappropriate, and so we
consider KPSs which find trade-offs between all three of these metrics. A variety
of such KPSs have been proposed, both deterministic and random, a survey of
which is given in [4][7][19][23].

We now describe the Eschenauer Gligor KPS [12] as an example of a KPS
which provides values for the three metrics which are appropriate for many WSN
scenarios. It will also be used as a comparison for KPSs based on expander graph
constructions in Sect. 5.

Example 1. The Eschenauer Gligor KPS [12] works in the following way. A key
pool K is generated. To each node ni is assigned a random subset of k keys from
K. The probability of two nodes sharing at least one key is

Pr1 = 1−
(|K|−k

k

)(|K|
k

) . (1)

An equivalent formula is given in [12]. We verify (1) by considering the prob-
ability of two arbitrary nodes ni and nj sharing no common keys. If node ni

stores a set Si of k keys, node nj stores Sj and Si ∩ Sj = ∅, then every key of
Sj must have been picked from the key pool K \ Si, that is from a set of |K| − k
keys. Therefore the probability of two nodes having no keys in common is equal
to the number of ways of choosing k keys from a key pool of |K| − k, divided by
the number of ways of choosing k keys from the full key pool.

As explained in [6], the resilience after the compromise of s nodes is

fails =

(
1−

(
1− k

|K|

)s)q

. (2)

where q is the number of keys shared between two randomly-chosen uncompro-
mised nodes. This leads to the intuitive result that if the adversary has com-
promised one node, learning k keys, and two randomly-chosen uncompromised
nodes share q = 1 key k1, then the probability of the adversary knowing k1 is
fail1 = k

|K| . If q > 1 keys are shared between the nodes then the value of fail1 will

be smaller, as fail1 =
(

k
|K|

)q

.
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Table 1 demonstrates the value of Pr1 and upper bound for fail1 for some
different sizes of key pool and key storage. (We assume for this example that all
nodes are within communication range of one another.) It can be seen that by
adjusting the values of |K| and k, with k small, we can achieve arbitrarily large
Pr1 whilst keeping fail1 relatively small. This makes the Eschenauer Gligor KPS
appropriate for many WSN scenarios.

Table 1. Example values for an Eschenauer Gligor KPS

|K| k Pr1 fail1

500 25 0.731529 0.050
500 50 0.996154 0.100
1000 25 0.473112 0.025
1000 50 0.928023 0.050

In accordance with most papers in the literature, we will use key storage, con-
nectivity and resilience along with network size as metrics for comparing KPSs.
Network size is relevant since for small networks the complete pairwise KPS is
practical, and because some KPSs are not adaptable for all sizes of network. For
example we will see in Sect. 5 that the KPS proposed by Camtepe et al [5] is only
possible for networks of size n = t+ 1 where t is a prime congruent to 1 mod 4.

Later, in Sect. 6, we will propose that in addition to network size, key storage,
connectivity and resilience, it is important to consider expansion as a metric
when comparing KPSs.

2.2 Graph Theory

We now introduce some graph-theoretic definitions, beginning with general ter-
minology in this section before giving the specific definitions related to expander
graphs in Sect. 2.3.

A graph G = (V,E) is a set of vertices V = {v1, . . . , vn} and a set of edges E.
We use the notation (vi, vj) ∈ E to express that there is an edge between the
vertices vi and vj , and we say that the edge (vi, vj) is incident to its endpoints
vi and vj . Wherever an edge (vi, vj) exists, vi and vj can be said to be adjacent.

All graphs considered in this paper will be simple graphs, that is, they are
unweighted, undirected and do not contain self-loops or multiple edges. These
terms respectively mean that vertices are not assigned different weights, edges
are not directed from one vertex to the other, there are no edges from the a node
to itself, and any edge between two vertices is unique.

Given subsets of vertices X,Y ⊂ V , the set of edges which connect X and Y
is denoted

E(X,Y ) = {(x, y) : x ∈ X, y ∈ Y and (x, y) ∈ E} ,

and the complement X ofX is the vertices which are not inX , that is,X = V \X .
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An ordered set of consecutive edges {(vi1, vi2), (vi2, vi3), . . . , (vi(p−1), vip)} in
which all the vertices vi1, vi2, . . . , vip are distinct is called a path of length p−1. A
cycle is a ‘closed’ path which begins and ends at the same vertex, ie. a cycle is a
path {(vi1, vi2), (vi2, vi3), . . . , (vi(p−1), vip)} where vi1, vi2, . . . , vi(p−1) are distinct
but vi1 = vip. We say that a graph is connected if there is a path between every
pair of vertices, and complete if there is an edge between every pair of vertices.
The degree d(v) of a vertex v is the number of edges incident to that vertex. If
all nodes have the same degree r, we call the graph r-regular.

We draw a graph of a WSN by representing the nodes as vertices and the
‘connections’ as edges. To be precise in our analysis, we distinguish between the
two possible types of ‘connection’ and consider the separate constituent graphs
of a network: the communication graph G1 = (V,E1) where (vi, vj) ∈ E1 if
vi and vj are within communication range, and the key graph G2 = (V,E2)
where (vi, vj) ∈ E2 if vi and vj share at least q common keys. An example of a
communication graph and a key graph are given in Fig. 1.

v1 v2

v3 v4

(a) Comm. graph

{k1, k2} {k3, k4}

{k1, k3} {k1, k4}

(b) Key graph

v1 v2

v3 v4

k1 k3

k1

(c) Intersection graph

Fig. 1. Example of corresponding communication, key and intersection graphs

If the communication graph is complete, it is often omitted from the analysis
as there is no need to check whether nodes can communicate. However, as we
will explain in Sect. 4, the communication graph is commonly modelled using a
random graph, and it then becomes important to analyse how the communication
and key graphs relate to each other.

We say that two nodes vi and vj can communicate securely if (vi, vj) ∈ E1∩E2,
that is if they are adjacent in the intersection graph G1 ∩ G2 = (V,E1 ∩ E2).
This is illustrated in Fig. 1(c). We note that the standard definition of an inter-
section graph is G1∩G2 = (V1∩V2, E1∩E2), but throughout this paper V1 = V2

and so we simply refer to the set of vertices as V .
If two nodes are not adjacent in the intersection graph then there are usually

ways for them to communicate by routing messages through intermediary nodes
and/or establishing a new key. Since any protocol for either of these methods
requires extra communication overheads, it is desirable to minimise the diameter
of the intersection graph, that is to minimise the longest path length between
nodes. Similarly, it may also be desirable to minimise the average path length
of the intersection graph.
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Finally, we introduce another way of combining two graphs, which will be
needed for Sect. 3 where we consider Ghosh’s claims.

Definition 1. The (Cartesian) product graph of two graphs G = (VG, EG) and
H = (VH , EH) is defined as G.H = (VG × VH , EG.H), where the set of edges
EG.H is defined in the following way: (uv, u′v′) ∈ EG.H if

(u = u′ or (u, u′) ∈ EG)
and

(v = v′ or (v, v′) ∈ EH) .

We will now define expander graphs and explain why their properties are desir-
able for WSNs.

2.3 Expander Graphs

For a thorough survey of expander graphs and their applications, see [14]. The
expansion of a graph is a measure of the quality of its connectivity.

Definition 2. A finite graph G = (V,E) is an ε-expander graph, where the
edge-expansion coefficient ε is defined by

ε = min
S⊂V :|S|≤ |V |

2

(
|E(S, S)|

|S|

)
,

where |E(S, S)| denotes the number of edges from the set S to its complement.

The phrase ‘expander graph’ is used informally to refer to graphs with good
expansion, that is, graphs with a high value of ε, as we explain below. We note
that definitions vary across the literature, in particular some defintions use the

strict inequality |S| < |V |
2 . Another name for the edge-expansion coefficient is

the isoperimetric number, and in a graph where every vertex has the same weight
this is equivalent to the Cheeger constant ; see [9] for further details.

We now explore what the definition of the edge-expansion coefficient ε means,
and why a high value of ε is desirable, through the following observations:

– If ε = 0 then we see from the definition that there exists a subset S ⊂ V
without any edges connecting it to the rest of the graph. This implies that
the graph is not connected.

– A graph is connected if and only if ε > 0 (see proof of Proposition 1), hence
all connected graphs are ε-expander graphs for some positive value of ε.

– If ε is ‘small’, for example ε = 1
100 , then there exists a set of vertices S which

is only connected to the rest of the graph by one edge per 100 nodes in S.
This is undesirable for a WSN for the following reasons:
• The set S is vulnerable to being ‘cut off’ from the rest of the network
by a small number of attacks or faults. If S contains c× 100 nodes then
there are only c edges between S and S. A small number of compromises
or failures amongst the particular ≤ 2c nodes incident to these edges will
render all communication between S and S insecure.
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• Since S is connected to the rest of the network by comparatively few
edges, a higher communication burden is placed on the small set of ≤ 2c
nodes, since a higher proportion of data needs to be routed through
them. This will drain the batteries of the nodes nearest to the edges
between S and S faster than those of an average node, so that after
some period of time they will run out of energy, disconnecting S from
the rest of the network even though many nodes in S may still have
battery power remaining.

• Reliance on a small number of edges to connect large sets of nodes may
create bottlenecks in the transmission of data through the network, mak-
ing data collection and/or aggregation less efficient.

– If ε is larger, particularly if ε > 1, then there is no ‘easy’ way to disconnect
large sets of nodes, and communication burdens, battery usage and data flow
are more evenly spread.

We see from these observations that intersection graphs with higher values of ε
are more desirable for WSNs. A graph with a ‘large’ value of ε is often said to
have ‘good expansion’. The the size of ε is subject to the following bounds.

Proposition 1. For any connected graph G = (V,E) with |V | ≥ 2,

0 < ε ≤ min
v∈V

d(v) .

Proof. We begin by considering the lower bound. Suppose for a contradiction
that ε = 0. Then there exists a set S ⊂ V such |E(S, S)| = 0. This contradicts
the fact that G is connected. Since ε cannot be negative, we have that ε > 0.

For the upper bound, consider the set S = {v} where v ∈ V . It is clear that
|E(S, S)| = d(v), where d(v) is the degree of v as defined in Sect. 2.2, and so
|E(S,S)|

|S| = d(v)
1 = d(v). Since the definition of the edge-expansion coefficient

ε uses the minimum value over all S ⊂ V with |S| ≤ |V |
2 , we have that ε ≤

minv∈V d(v). ��
In addition to the observations made above, graphs with good expansion also
have low diameter, logarithmic in the size of the network [14] and contain multi-
ple short, disjoint paths between nodes [16], which is beneficial for schemes like
the multipath reinforcement of Chan et al. [6]. These properties mean that key
graphs with good expansion are particularly desirable for WSNs.

The papers by Camtepe et al. [5] and Shafiei et al. [21] propose KPSs based
on expander graph constructions. These methods of designing a KPS ensure that
the key graph has good expansion, and we further examine these proposals in
Sect. 5. First, we consider the claims made by Ghosh in [13] about the necessity
of good expansion for ‘optimal’ networks.

3 Expansion in Product Graphs

In [13] Ghosh considers KPSs with large network size, low key storage per node,
high connectivity and high resilience. He considers jointly ‘optimising’ these
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parameters, although exactly what this means is unclear, since different appli-
cations will prioritise them differently. Nevertheless, he argues that if a KPS is
in some sense ‘optimal’, the product graph of the key graph and communication
graph must have ‘good expansion properties’. We show by a counterexample that
expansion in the product graph is not a helpful measure because the product
graph is almost inevitably an expander graph. Additionally, we show that the
product graph is unable to capture the required detail to analyse a WSN, and
that it is the intersection graph where such analysis is relevant.

In Fig.s 2 and 3 we consider examples of product graphs and examine how
they relate to their constituent communication and key graphs. Figure 2 shows
a communication and a key graph, and their corresponding intersection and
product graphs. The product graph is represented in Fig. 2(d) in a way which
demonstrates its construction, and redrawn in Fig. 2(e) for clarity.

a b

c d

(a) Comm. graph

a b

c d

(b) Key graph

a b

c d

(c) Intersection graph

aa ab

ac ad

ba bb

bc bd

ca cb

cc cd

da db

dc dd

(d) Cartesian product graph

aa ab

ac

ad

ba

bb

bc

bdcacb

cc

cd

da

db

dc

dd

(e) Cartesian product graph re-drawn

Fig. 2. A product graph corresponding to an identical communication and key graph
pair

Figure 2(d) illustrates that the product graph construction results in four
copies of the key graph, connected to each other in a pattern which resembles
the communication graph. To provide an alternative perspective, we re-draw the
same graph with the vertices arranged in a circle in Fig. 2(e). To understand the
construction, recall Def. 1 which defines the vertices and edges of the product
graph.We find that there is an edge in the product graph (ac, ab) ∈ EG.H because
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a = a and (c, b) ∈ EH . Similarly, (ca, ba) ∈ EG.H because (c, b) ∈ EG and a = a.
However, we find that (aa, ab) /∈ EG.H because whilst a = a, (a, b) /∈ EH .

In Fig. 2 the communication and key graphs are identical, giving the best
possible case for intersection. We now calculate the expansion coefficient of the
product graph. Consider sets S of 1, 2, . . . , 8 vertices (recall from the definition

that we should consider subsets S with |S| ≤ |V |
2 , and here |V | = 16). We

observe that any single vertex is connected to the rest of the graph by at least
three edges, any set of two vertices is connected to the rest of the graph by at
least six edges, etc., so that

ε = min

{
3

1
,
6

2
,
9

3
,
9

4
,
11

5
,
16

6
,
12

7
,
10

8

}
.

That is, ε = 10
8 = 5

4 , so the product graph of Fig. 2 has expansion coefficient
ε = 5

4 .
Now consider Fig. 3, where we have the same key graph but the communica-

tion graph is altered. It has the same number of edges as in Fig. 2 but in such
a way that the intersection graph, shown in Fig. 3(c), has no edges. Clearly for
WSN purposes this would mean that no secure communication was possible.

However, the product graph does have edges, and indeed appears well con-
nected. By observation, we find that it too has expansion coefficient ε = 5

4 .

a b

c d

(a) Comm. graph

a b

c d

(b) Key graph

a b

c d

(c) Intersection graph

aa ab

ac ad

ba bb

bc bd

ca cb

cc cd

da db

dc dd

(d) Cartesian product graph

aa ab

ac

ad

ba

bb

bc

bdcacb

cc

cd

da

db

dc

dd

(e) Cartesian product graph re-drawn

Fig. 3. A product graph corresponding to a communication and key graph pair with
empty intersection
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Indeed, after some inspection, we find that the product graphs of Fig.s 2 and 3
are isomorphic, using a simple bijection to relabel vertices as follows:

Fig. 2(e) Fig. 3(e)
(a∗) → (c∗)
(b∗) → (d∗)
(c∗) → (b∗)
(d∗) → (a∗)

This means that all graph-theoretic properties of connectivity, expansion, degree,
diameter etc. are identical between the two product graphs. From this we see that
a product graph with good expansion can occur when the key and communication
graphs intersect ‘fully’, ie. when EG ∩ EH = EG = EH , and when there are no
edges in the intersection, ie. EG ∩ EH = ∅. This shows that the expansion of
the product graph certainly does not correspond to any degree of ‘optimality’
regarding the intersection graph and therefore the WSN. In particular, it strongly
suggests that expansion in the product graph is not a good tool for analysing
the connectivity of WSNs without reference to the intersection graph. Ghosh’s
claim that an ‘optimal’ combination of key and communication graph will result
in a product graph with good expansion tells us very little, since good expansion
in the product graph is almost inevitable, as we will now explain.

Proposition 2. A (Cartesian) product graph G.H = (VG × VH , EG.H) is con-
nected if and only if both G = (VG, EG) and H = (VH , EH) are connected.

Proof. If the product graph is connected then there is a path between all pairs
of vertices u1v1, upvq ∈ V × V , say

(u1v1, u2, v2), (u2v2, u3v3), . . . , (up−1vq−1, upvq) .

Using the definition of the product graph, this implies that either u1 = u2 or
(u1, u2) ∈ EG, and indeed for all 1 ≤ i ≤ p− 1, either ui = ui+1 or (ui, ui+1) ∈
EG. Thus either u1 = up or there is a path from u1 to up in G. Since this is true
for all pairs of vertices u1, up ∈ V , we have that G is connected. By the same
argument, H is also connected.

Suppose that G and H are both connected graphs. Then for each distinct pair
of vertices u1, up ∈ VG, there is a path between them, say

(u1, u2), (u2, u3), . . . , (up−1, up) .

Similarly, for each distinct pair of vertices v1, vq ∈ VH , there is a path, say

(v1, v2), (v2, v3), . . . , (vq−1, vq) .

By the definition of EG.H , we have that (u1v1, u2v2) ∈ EG.H . Thus we can
construct a path

(u1v1, u2v2), (u2v2, u3v3), . . . , (up−1vq−1, upvq)

in G.H between any pair of vertices, and therefore G.H is connected. ��
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Corollary 1. If G and H are connected, the product graph G.H has expansion
coefficient εG.H > 0.

Proof. Recall from Prop. 1 that a connected graph is an expander graph for
some value of ε. Therefore, if G and H are connected, the product graph will be
an expander graph for some value of εG.H > 0. ��

We conjecture that with high probability, εG.H > εG, εH and εG.H >> 0. We jus-
tify this by considering the comparatively large degrees of nodes in the product
graph, and the product graph’s similarity to an expander graph construction.

For any node v ∈ V with degrees dG(v), dH(v) in the communication and key
graphs respectively, we can compute its degree in the product graph as

dG.H(v) = dG(v)dH(v) + dG(v) + dH(v) . (3)

Using Prop. 1, we have that

εG.H ≤ min
v∈V

(dG(v)dH(v) + dG(v) + dH(v)) ,

a much higher bound than for the constituent graphs. Since, on average, vertices
of the product graph have higher degree than vertices in the constituent graphs,
and since the construction of the product graph makes ‘isolated’ sets of ver-
tices extremely unlikely, we see that εG.H is likely to be large, and in particular
greater than either of εG and εH . By comparison, the expansion coefficient of the
intersection graph εG∩H is forced to be no more than those of the constituent
graphs, εG and εH , as explained in the next section.

Additionally, the construction of the product graph is not dissimilar to that of
the zig-zag product graph presented in [20] as an expander graph construction,
and used by Shafiei et al in [21] to produce key graphs with good expansion.
We see then that expansion in the product graph is inevitable if the constituent
graphs are connected, is likely to be ‘good’, and does not imply anything about
the quality of the connectivity or expansion in the intersection graph, where it
is needed. Ghosh does not justify his choice of using the product graph as a
means of studying two graphs simultaneously, and we conclude that there are
no benefits to doing so. In order to capture the relevant interaction between the
key and communication graphs, the intersection graph is the relevant tool, and
it is in the intersection graph where good expansion is desired.

4 Expansion in Intersection Graphs

We claim that when comparing two WSNs of the same size with identical key
storage, connectivity and resilience parameters, the WSN represented by the
intersection graph with higher expansion will be the more robust, with a more
evenly distributed flow of data. We justify this using the following example.

Example 2. Consider Fig. 4 and suppose that these are two intersection graphs,
representing WSNs. Each graph is 3-regular on 10 nodes. We suppose that an
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(a) ε =
1
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(b) ε =
7

5

Fig. 4. Examples of 3-regular graphs on 10 nodes with different expansion parameters.

Eschenauer Gligor KPS (as described in Sect. 2.1) has been used to construct the
key graph, where each node stores three keys chosen randomly from a pool of 25
keys. To simplify the analysis, we say that where nodes have more than one key in
common, they select just one of them for use in securing their communications.

Using the formulae given in Sect. 2.1 we calculate that Pr1 = 1− (223 )
(253 )

≈ 0.33,

fail1 = 3
25 and fails = 1 −

(
1− 3

25

)s
for both graphs. Calculating the expansion,

we observe that in Fig. 4(a) ε = 1
5 . This minimum value is achieved by (for

example) picking the set of 5 vertices S = {a, b, c, d, e}, which is only connected
to the rest of the graph by the single edge (e, f). However, in Fig. 4(b) we find
that ε = 7

5 ; any set of 5 vertices is connected by at least 7 edges to the rest of
the graph.

For WSN applications, the network represented by Fig. 4(a) is less desirable,
because

– it is more vulnerable to a listening adversary, who could decrypt a high pro-
portion of communications through the network by the compromise of a single
node e or f

– nodes e and f are more vulnerable to battery failure

– battery failure of just one of the two nodes e and f would disconnect the
network
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– communication bottlenecks are likely to occur around nodes e and f , making
communication through the network less efficient.

Conversely, in Fig. 4(b) the communication burdens are distributed evenly across
the nodes so that battery power will be used more evenly and there are no weak
spots for an adversary to target in order to quickly damage the rest of the network.
The graph can only be split into disjoint sets by the removal of 4 or more nodes,
that is, almost half of the network. It is clear then that Fig. 4(b) represents the
less vulnerable WSN.

From this example we see that some strengths and weaknesses of the ‘layout’
of the WSN are hidden if we only consider the size, key storage, connectivity
and resilience, and in Sect. 6 we discuss the practicality of using expansion as
another metric for assessing networks. Before that, we consider how best to
probabilistically maximise the expansion in an intersection graph, and in Sect. 5
we will consider schemes which aim to produce key graphs with good expansion.

We now consider how to achieve high expansion in an intersection graphG∩H .

Proposition 3. An intersection graph G∩H = (V ∩V,EG∩EH) has expansion
parameter

εG∩H ≤ min{εG, εH} .

Proof. We begin by considering the degree of a node in the intersection graph,
which is

dG∩H(v) ≤ min (dG(v), dH(v))

because each edge (v, w) incident to a vertex v in G will be removed in the
intersection unless there is also an edge (v, w) in H . Using Prop. 1, we have that
εG∩H ≤ minv∈V {dG∩H(v)}.

Without loss of generality, suppose that εG ≤ εH . Consider a set S of vertices

in G which achieves the minimum |E(S,S)|
|S| = εG. If every edge of E(S, S) remains

in the intersection then εG∩H ≤ εG, otherwise εG∩H < εG, since no edges are
added elsewhere in the intersection. Therefore we have that εG∩H ≤ min{εG, εH}.

��

We see that it is necessary that G and H have high expansion coefficients for
G∩H to be a good expander. If the communication graph is complete then the
expansion of the key graph will be preserved in the intersection. If information
about the locations of the nodes is known a priori or if there is some control over
the communication graph, then keys can be assigned to nodes in a more efficient
manner; see [18] for a survey of KPSs for such scenarios.

However, we usually assume that there is little or no control over the commu-
nication graph and model it as a random graph, typically using either the Erdös
Rényi model [11] or the random geometric model, as in [5]. If the communication
graph is random, all that can be done to aid good expansion in the intersection
graph is to design the KPS so that the key graph has as high expansion as possi-
ble for a particular network size and for given levels of key storage, connectivity
and resilience.
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5 Analysing the Expansion Properties of Existing KPSs

Many KPSs produce key graphs with high expansion coefficients for chosen levels
of key storage and resilience, as demonstrated by the following examples.

– Random graphs are good expanders with high probability [14], and so Es-
chenauer and Gligor’s random KPS [12] is likely to produce key graphs which
are good expanders, as are other random KPSs such as those given in [6].

– Deterministic schemes based on combinatorial designs, as unified in [19],
typically guarantee properties such as constant node degree and μ common
intersection. That is, if two nodes are not adjacent then they have μ common
neighbours, meaning that the graph has diameter 2, and is therefore a good
expander. In particular, two deterministic KPSs based on constructions for
‘strongly regular’ graphs are given in [17].

– Camtepe et al. [5] and Shafiei et al. [21] propose KPSs based on expander
graph constructions and demonstrate that these schemes compare well to
other well-regarded KPS approaches.

We now consider the KPSs based on expander graph constructions in more detail,
and compare them to the other schemes listed above. Camtepe et al. [5] use the
Ramanujan construction which produces an ‘asymptotically optimal’ expander
graph (see [14]) for network size n = t+1 and key storage k = s+1, where t and
s are primes congruent to 1 mod 4. Shafiei et al. [21] use the zig-zag construction,
which has the benefit of being more flexible to produce key graphs for any sizes
of n and k. Both papers use the following method:

1. construct an expander graph G for the appropriate network size and degree
– in the case of [5], remove any self-loops or multiple edges and replace

with randomly-selected edges such that all nodes have the same degree
2. assign a unique pairwise key to every edge of G
3. preload each node with the set of keys which correspond to its set of edges

This ensures that the key graph has high expansion for the chosen network size
and node degree r which equals the key storage k.

However, we claim that it is possible to achieve higher expansion in a KPS
for the same network size and key storage. This is because in the KPSs based on
expander graph constructions, the node degree r is the same as the key storage
k, because unique pairwise keys are used. In other KPSs we usually expect that
k < d(v) for all vertices v, as illustrated by the following example.

Example 3. In the Eschenauer Gligor random KPS [12], the key storage k is
almost certainly less than the degree d(v) of each node v ∈ V in the key graph.
For example, if nodes store 50 keys randomly selected from a pool of 1000 keys,
then the expected degree of any node is

(n− 1)×
(
1−

(
950
50

)(
1000
50

)
)

.
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If the network has 1000 nodes, this means that the expected degree is ≈ 71.905.
This implies that for the same values of k and n, Pr1 is greater in the Eschenauer
Gligor scheme than in KPSs produced by expander graph constructions. Since
random graphs are known to be good expanders with high probability, this means
that, contrary to intuition, a key graph based on an expander graph construction
is likely to be a worse expander than a key graph generated by the Eschenauer
Gligor scheme.

Similarly, most schemes based on combinatorial designs also reuse keys so that
k < d(v), and therefore produce key graphs with higher average degree and
better expansion than those based on expander graph constructions. A benefit
of the KPSs based on expander graph constructions is that each key is only used
for one edge, meaning that the graphs have perfect resilience: fails = 0 for all
1 ≤ s ≤ n − 2. Therefore, in comparison to many other comparable schemes
with perfect resilience, these constructions do produce key graphs with good
expansion. However, for fixed values of k and n, if it is desirable to achieve high
expansion and higher connectivity at the cost of slightly lowered resilience, then
a KPS based on an expander graph construction is not the best choice.

6 Using Expansion as a Metric

We have seen that for two networks of the same size with fixed values of key
storage, connectivity and resilience, the WSN represented by the intersection
graph with the highest expansion coefficient ε is the more robust, with the more
evenly distributed flow of data. Therefore we suggest that expansion is an im-
portant metric to be considered alongside those listed above, when designing
KPSs and assessing their suitability for use in WSNs. However, we now state
some drawbacks to the use of expansion as a metric, and explain the extent to
which they can be overcome.

Difficulty of determining the expansion coefficient. Determining the expansion
coefficient of a given graph is known to be co-NP-complete [3], and so testing
KPSs for their expansion coefficient is not an easy task. Additionally, even if the
expansion coefficient of the key graph is known, the expansion of the intersection
graph will not be known a priori if the communication graph is modelled as a
random graph.

Nevertheless, a method for estimating the expansion coefficient using the
eigenvalues of the incidence matrix of the graph is given in [9], which could
be used in the comparison of KPSs. Indeed, if it is possible to determine the lo-
cations of the nodes after deployment, for example using an online base station
or GPS, it may be feasible to construct the intersection graph and therefore esti-
mate its expansion coefficient, once the WSN has been deployed. This is likely to
be relevant if post-deployment key management protocols are available such as
key refreshing [2] or key redistribution [10], for which it could be useful to know
as much as possible about the vulnerability of the WSN. Some key management
protocols are able to provide targeted improvements to specific weak areas of
the network, and we explain below how best to identify such weaknesses.



78 M. Kendall and K.M. Martin

Limitations of the expansion coefficient. We note that the expansion coefficient
alone does not claim to fully describe the structure of the graph, giving only a
‘worst case’ assessment. That is, the value of ε only reflects the weakest point of
the graph and tells us nothing about the structure of the graph elsewhere.

For example, consider an intersection graph on n nodes which is effectively
partitioned into two sets: a set of n − 1 nodes with high expansion, and a fi-
nal node which is disconnected from the rest of the graph, as demonstrated in
Fig. 5(b). We would find that ε = 0, and we would suspect that the graph is less
than desirable for WSN applications.

(a) ε = 0 (b) ε = 0

(c) ε = 0

Fig. 5. Distinguishing between cases where ε = 0

However, particularly in a network of thousands of nodes, the disconnection
of one is unlikely to be severely detrimental to the network; indeed, loss of some
nodes due to poor positioning or battery failure may be expected. Knowing only
that ε = 0 does not distinguish between the following cases:

1. the graph is completely disconnected (Fig. 5(a))
2. a single node is disconnected from the rest of the graph, which otherwise has

good expansion (Fig. 5(b))
3. the disconnected graph is a union of smaller graphs, some with good expan-

sion (Fig. 5(c))

If an intersection graph falls into Case 1 then it is likely that the key graph has
low connectivity, ie. a low value of Pr1. However, for the same values of network
size, key storage, connectivity and resilience, knowing only that ε = 0 in the



On the Role of Expander Graphs in Key Predistribution Schemes for WSNs 79

intersection graph cannot distinguish between the Cases 2 and 3, though Case 2
is likely to be much better for WSN applications.

Therefore, we suggest some graph-theoretic tools which also serve as indicators
of whether the structure of a graph is suitable for WSNs. These may be used
alone or in conjunction with (an estimate of) the expansion coefficient in order to
analyse a proposed KPS, and where possible to analyse the resulting intersection
graph.

Components. We note that to distinguish between the cases in Fig. 5 it is
relevant to know the number of components. A component of a graph is a con-
nected subgraph containing the maximal number of edges [8], that is, a subset
S of one or more vertices of the graph, where the vertices of S are connected
but E(S, S) = ∅. Hence Fig. 5(a) has nine components, Fig. 5(b) has two, and
Fig. 5(c) has three. For WSN applications where data must be routed throughout
the network, it is desirable to minimise the number of components.

Unlike finding the expansion coefficient of a graph, calculating the number
of components can be done in linear time using depth-first search, as described
in [15]. The global connectivity of a graph is the number of nodes in its largest
component divided by the total number of nodes. We wish the global connectivity
to be as close to one as possible.

Cut-edges. A cut-edge (also known as a bridge) is an edge whose deletion
increases the number of components. Equivalently, an edge is a cut-edge if it is
not contained in any cycle of the graph. This is illustrated in Fig. 4, where the
edge (e, f) is a cut-edge.

As we have seen, cut-edges in the intersection graph for a WSN are undesirable
because they can cause bottlenecks, increase communication burdens on the
nodes at their endpoints, and create weak points of the network where a small
fault or compromise by an adversary creates a lot of damage. Therefore, one of
the reasons why intersection graphs with high expansion are desirable for WSNs
is because they are less likely to have cut-edges:

– If ε > 1

� |V |
2 �

then we know that there is no cut-edge which, if removed, would

separate the graph into two components, each of size |V |
2 .

– If ε = 1
2 then it is possible that there are cut-edges which, if removed, would

disconnect at most two nodes from the network
– If ε > 1 then for all S ⊂ V with |S| ≤ |V |

2 ,

|E(S, S)| > |S| ≥ 1 ,

and so there can be no cut-edges in the graph.

Determining whether a graph contains cut-edges can also be done by a linear
time algorithm [22].
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Cutpoints. There is also a related notion of cutpoints in graphs, for which we
will need the following definitions from [8]. A subgraph of a graph G(V,E) is a
graph GS(VS , ES) in which VS ⊂ V and ES ⊂ E. If VS or ES is a proper subset
(that is, VS = V or ES = E), then the subgraph is a proper subgraph of G. If
VS or ES is empty, the subgraph is called the null graph.

In a connected graph G, if there exists a proper non-null subgraph GS such
that GS and its complement have only one node ni in common, then the node ni

is called a cutpoint of G. In an unconnected graph, a node is called a cutpoint if
it is a cutpoint of one of its components. If G has no self-loops, then a cutpoint
is a node whose removal increases the number of components by at least one.
We see then that in Fig. 4(a), nodes e and f are cutpoints, and that graphs with
good expansion will have few cutpoints.

If a graph contains no cutpoints it is said to be nonseparable or biconnected,
which again is clearly desirable for an intersection graph representing a WSN.
The website [1] gives examples of Java algorithms which find the nonseparable
components of given graphs and can even add edges to make graphs nonsepara-
ble.

These tools are just a few of the simple, effective ways to analyse an inter-
section graph of a deployed WSN, and to make intelligent improvements to the
structure of the graph wherever the post-deployment key management protocols
allow.

7 Conclusion

We have shown that if we fix levels of key storage, network size, connectivity
and resilience, then the larger the value of the expansion coefficient ε in the
intersection graph, the better suited it will be for WSNs. This is because graphs
with good expansion are well connected with low diameter and do not have
the vulnerabilities of cut-edges and cutpoints. We have shown that the expan-
sion coefficient of the product graph is not a relevant metric, but that it is the
intersection graph where good expansion is desired.

In a setting where there is control over the communication graph, the expan-
sion of the intersection graph should be an important consideration in the design
of the key graph. If there is no control over the communication graph, then after
choosing levels of network size, key storage, connectivity and resilience, the best
choice of KPS is the one with the highest expansion, since it will maximise the
probability of achieving good expansion in the intersection graph.

We have shown that KPSs based on expander graph constructions are able
to produce key graphs with high expansion for a given network size and key
storage, and use unique pairwise keys to give perfect resilience. However, many
existing KPSs are able to achieve better expansion for the same key storage and
network size, at the cost of lower resilience.

Finally, we have suggested that expansion is an important metric for compar-
ing KPSs proposed for WSNs, and a useful parameter for analysing intersection
graphs after deployment in order to improve weak parts of the network. Deter-
mining the expansion of a graph is co-NP-complete and gives only a worst-case
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assessment of the graph. Therefore we have proposed the use of linear time
algorithms to estimate the expansion, and introduced related graph-theoretic
properties which could be used to analyse the key and intersection graphs of
WSNs.
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Abstract. In this paper, we introduce a new class of universal hash
function families called almost regular universal (ε-ARU). Informally, an
ε-ARU hash function family is almost universal, and additionally pro-
vides almost regularity. Furthermore, we present Γ -MAC[H,P ], a new
MAC scheme based on a ε-ARU hash function family. It is the first state-
less MAC scheme based on universal hash functions, which requires only
one n-bit key. Γ -MAC[H,P ] is provable secure and an alternative to the
Wegman-Carter-Shoup (WCS) based MAC scheme, where the security
breaks apart in the nonce-reuse scenario [11,28].

In addition, we show that Γ -MAC[H,P ] can be implemented very
efficiently in software. For messages longer than one kilobyte, our
Γ -MAC[H,P ] implementation is even faster than the optimized AES-128
implementations from Schwabe and Bernstein from the eBash project1.

Keywords: universal hashing, provable security, message authentica-
tion code.

1 Introduction

Message Authentication Code. A message authentication code (MAC) is a widely
used cryptographic primitive – utilized to verify the integrity and authenticity of
messages, assuming a secret key k shared by sender and receiver. A MAC scheme
MA = (K, T ,V) consists of three algorithms K, T , and V . The randomized
key generation function K takes no input and returns a random key K. The
authentication function T is used by the sender to generate a security tag τ =
Tk(m) for a message m. Given the pair (m, τ), the receiver calls the verification
function Vk(m, t), which returns true if τ is the corresponding security tag of
m. We require that VK(M, TK(M)) = true holds for any given parameters.

The security tag τ ought to be short (typically 32–256 bit) to minimize the
overhead for authentication. An adversary attempts to forge a message, i.e., to
find new tuples (m′, τ ′) with Vk(m

′, τ ′) = true. We consider chosen-plaintext
existential forgery attacks, where the adversary is allowed to freely choose mes-
sages (and nonces), and succeeds by forging the tag for any new message. A
MAC is called secure, if it is hard for the adversary to succeed.

1 http://cr.yp.to/streamciphers/timings/estreambench-20080905.tar.bz2
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Universal hashing. Information-theoretically secure MACs have first been stud-
ied by Gilbert, MacWilliams and Sloane [26], and later by Wegman and Carter
[45]. A strictly information-theoretical approach would require very long keys
or greatly limit the number of messages to be authenticated under a given key.
Thus, one typically combines the information-theoretical part – a universal hash
function – with an additional function, which is modelled as a random function
or permutation. There are two families of such MACs, which were studied so far.

Universal MAC schemes. The first family is due to Wegman, Carter and Shoup.
We denote it as the “Wegman-Carter-Shoup” [43] (in short: “WCS[H,F ]”) ap-
proach. The WCS[H,F ]-MAC is based on a family of ε almost XOR universal
hash functions (ε-AXU) H , and a family of pseudorandom functions (PRF) F .
For h ∈ H and f ∈ F the WCS-MAC is defined as WCSf,h(m, z) = h(m)⊕f(z),
where m is the message and z is the nonce. The WCS approach allows to
use an ε-AXU hash function h several times, if and only if the nonce is never
reused. The nonce is essential for the security of this MAC scheme. Reusing it
leads to serious security breaches [28]. MACs following the WCS approach are
well studied and improved over the years for cryptographic purposes by Bern-
stein [4, 5] Brassard [18], Krawczyk [35], Rogaway [41], Stinson [44], and other
authors [5, 12, 16, 24, 27, 38]. The second family follows the UMAC[H,F ] resp.
FCH paradigm (we read this as “Function, Concatenation, Hash”) from Black
et al. [12]. We call MACs that fit into this scheme WMAC[H,F ], like Black
and Cochran in [11]. Let H be a family of ε almost universal (ε-AU) hash func-
tions and F a family of PRFs. For h ∈ H and f ∈ F the WMAC is defined
as WMACf,h(m, z) := f(h(m), z) for a message m and a nonce z. Alike, as
WCS[H,F ], the message is hashed using a randomly chosen hash function h out
of a family of universal hash functions. In contrast to WCS, the hash output
is not XOR-ed with the output of a random function, but is used as a part of
the random function’s input, jointly with the nonce z. Since the internal hash
values h(m) are only used as the input for a random function, the security of
WMAC[H,F ] remains intact even if the nonce z is re-used. In fact, one doesn’t
actually need a nonce, but can securely use τ = f(h(m)). Moreover, most mes-
sages have meta data such as a timestamp or a sequence counter. This auxiliary
information can be used as “nonce” to guarantee defense against “replay at-
tacks” – i.e., resending an old message and its corresponding authentication tag.
Here, the adversary hopes that the replayed message will be misunderstood in
the new context.

Our Contribution. At first we introduce ε-APU, a new class of universal hash
functions. Informally we say a family of hash functions H is ε-APU, for a ran-
domly chosen h ∈ H , if 1) the output of h is almost uniformly distributed, 2)
it is very unlikely that to distinct inputs m and m′ collide (h(m) = h(m′)).
Then we present Γ -MAC[H,P ], a stateless MAC scheme based on a family
of ε-APU hash functions H and a pseudorandom permutation p. A family of
permutations P : K{0, 1}n → {0, 1}n is called PRP, if p(k, .) is “computa-
tionally indistinguishable” from a random permutation on {0, 1}n. For sake of
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Table 1. Overview of published MAC Schemes. The Domain is normalized to
({0, 1}n)l. We denote Invocations as the sum of all BC, PRNG, and compression func-
tion calls as well as all n-bit multiplications. Note, a i/nj-bit multiplication counts an
i/nj invocation.

MAC Invocations Keylen Stateless

CBC-MAC [39] l n Yes
CWC-MAC [33] l + 3 n No

DMAC [40] l + 1 2n Yes
ECBC [13] l + 1 3n Yes
FCBC [13] l 3n Yes
GMAC [38] l + 3 n No

Γ ∗-MAC[H,P ] l + 1 n Yes
HMAC [2] l + 3 n Yes
OMAC [30] l + 1 n Yes
PMAC [14] l + 1 n Yes

Poly1305-AES [5] l + 1 2n No
RMAC [23] l + 2 2n No
TMAC [37] l + 1 2n Yes

UMAC8-128 [36] 3l + 1 2l + 1 No
WC-MAC [45] l + 1 ln+ 1 No
WMAC [11,28] l + 1 2n No
XCBC [13] l 3n Yes

convenience, we usually write pk for p(k, .). For h ∈ H , Γ -MAC[H,P ] is defined
as Γh(m) := ph(m)(|m|). In contrast to WCS[H,F ] and WMAC[H,F ], our MAC
scheme needs only one key. This key determines unambiguously the universal
hash function h from H . The PRP p is determined unambiguously from the
output value of h. Γ -MAC[H,P ] is the second stateless universal MAC scheme
– beside WMAC[H,F ]– that is known in literature. The major advantage of
Γ -MAC[H,P ] over WMAC[H,F ] is that we only need one key. On closer look,
this can be also a disadvantage because the used block cipher must be resis-
tant against related key attacks. Therefore, we present a ε-AXPU hash families.
Instantiated with such a hash family the used block cipher must not guaran-
tee resistance against related key attacks that exploit a XOR difference between
keys. Furthermore, the key scheduler is invoked each time if the authentication or
verification function is called. Our analysis showed that the performance of ΓX -
AES, a Γ -MAC[H,P ] instance based on AES-128, does not suffer significantly
from this key scheduler invocation issue.

Related Work. Modern universal hash function based MACs, like GMAC
from McGrew and Viega [38], VMAC from Krovetz and Dai [20, 36] or Bern-
stein’s Poly1305-AES [5] are similar in spirit to Γ -MAC[H,P ], but employ
two n-bit keys, while a single one suffices for Γ -MAC[H,P ]. Like GMAC, our
Γ -MAC[H,P ] instance uses a universal hashing function familiy based on Ga-
lois field multiplications. Handschuh and Preneel [28] pointed out that MACs
based on universal hashing are brittle, with respect to their combinatorial
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1 In i t i a l i z e ( )
2 k ← K() ;

3 Finalize ( )
4 return win ;

10 Tag(M)
11 τ ← TK(M) ;
12 S ← S ∪ {(M, τ)};
13 return τ ;

20 Verify(M, τ)
21 r ← VK(M, τ) ;
22 i f (r =true and (M, τ) /∈ S) then
23 win ← true ;
24 return r ;

Fig. 1. Game SUF-CMAMA whereMA = (K, T ,V)

properties, and that some are extremely vulnerable to nonce reuse attacks. Black
and Cochran [11] recently presented WMAC[H,F ]. This MAC scheme matches
the security bounds given by the best known attacks from Handschuh and Pre-
neel.

Table 1 compares the key length of known MAC schemes and the number of
basic operations such as block cipher invokation or n-bit multiplications. Fur-
thermore, it indicates whether a MAC is stateless or not.

Organization of the paper. Section 2 introduces the security notions of MAC
algorithms, and universal hash functions. Section 3 provides the formal defini-
tion of ε-ARU, ε-AXRU and Γ -MAC[H,P ] including security proofs. Section 4
introduces ΓX -AES a Γ -MAC[H,P ] instance, and in Section 5 their security is
proven. Section 6 is all about the software performance of an optimized ΓX -AES
implementation. The benchmarking took place on a Intel Core i5 M540 2.53
GHz. Finally, in Section 7 of this paper, we summarize our results and conclude.

2 Preliminaries

Notion. Let {0, 1}n denote the set of all n binary string, and {0, 1}∗ the set of all
binary strings of arbitrary length. Let a, b ∈ bset∗, then a||b denotes the concate-
nation of a and b. For a setA we denote |A| the order ofA, and if a ∈ A, the length
of a in bits is denoted |a| = �log2(A)�. Finally, {0, 1}n

∗
denotes the set that of all

binary strings whose length in bits is a multiple of n, including {0, 1}n.

2.1 Security Notions

The insecurity of a MAC scheme is quantified by the success probability of an
optimal resource-bounded adversary. The resource is the number of queries to
the functions Tag and Verify - from SUF-CMA game described in Figure 1 -
hereafter referred as tag oracle QT and as verify oracle QV . An adversary is a
computationally unbounded but always-halting algorithm A with access to Qv

and Qt

The security of a MAC scheme MA =(K,T ,V) is measured by the success
probability in the of winning the strong unforgeability against chosen message
attack (SUF-CMA) game described in Figure 1. We denote AdvSUF-CMA

MA (A) =
Pr[ASUF-CMA

MA ⇒ 1] as the probability that function Finalize returns true, after
A has made all its requests.
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Informally, MA is SUF-CMA secure if for every reasonable adversary A, the
probability to win the SUF-CMA game is suitably small. In the context of this
paper, we call an adversary reasonable, if it invokes QT and QV at most 2n/4

times.
We denote AdvSUF-CMA

MA (qs, qv, t, �) as the maximal value of AdvSUF-CMA
MA (A)

among adversaries that run in time at most t, query at most qs times the tag

oracle QT , query at most qv times verify oracle QV , and the total number
of n-bit blocks of all requested messages is at most l.

2.2 Universal Hash Families

Universal hash families (UHF)H = {h : M → T } are used frequently in building
blocks for message authentication codes [5, 11, 15, 24, 27, 33, 36, 38, 41, 45]. They
guarantee a low number of collisions in expectation, even if the data is chosen by
an adversary. In the following, we define several notions that are needed later.

Definition 1 ( [45] ε-almost universal hash functions (ε-AU))
Let H = {h : M → T } be a family of hash functions and ε ∈ R with 1/|T | ≤
ε ≤ 1. We say H is ε-almost universal, written ε-AU, if for all distinct message
pairs (m,m′) ∈ M×M with m = m′

Pr
h∈H

[h(m) = h(m′)] ≤ ε.

Note, that the probability only holds for input pairs, and ε specifies the degree
of uniform distribution.

Definition 2 ( [35] ε-almost XOR universal hash functions (ε-AXU))
Let H = {h : M → {0, 1}n} be a family of hash functions, and ε ∈ {0, 1}n with
1/2n ≤ ε ≤ 1. We say H is ε-almost XOR universal, written ε-AXU, if for all
distinct m,m′ ∈ M, and for all c ∈ {0, 1}n

Pr
h∈H

[h(m)⊕ h(m′) = c] ≤ ε.

The definition can be simply adapted to any group by exchanging XOR with the
specific group operation. In the current paper, we focus on arithmetic in GF(2n)
and thus we only need to consider XOR-differences.

Note, that each ε-AXU hash family H is ε-AU, because for c = 0 we have

Pr
h∈H

[h(m)⊕ h(m′) = 0] = Pr
h∈H

[h(m) = h(m′)] ≤ ε.

2.3 Universal MAC Schemes

The WCS-MAC Scheme

Definition 3 ( [43, 45] WCS[H,F ])
Let H = {h : M → {0, 1}r} be a family of ε-AXU hash functions and F = {f :
Z → {0, 1}r} be a family of pseudo-random functions. Let h ∈R H, f ∈R F ,
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m ∈ M a message and z ∈ Z be a nonce. The notation e ∈R S implies that
S is a finite set and e is chosen (uniformly) at random from S. The Wegman-
Carter-Shoup-MAC (WCS-MAC) is defined as

WCS-MACh,f(m, z) = h(m)⊕ f(z)

and

VF-WCSh,f (m, z, τ) =

{
true τ = h(m)⊕ f(z),

false else.

Lemma 1 ( [38] WCS[H,F ] security)
Let q = qv = qs then

AdvSUF-CMA
WCS[H,F ]

(q, q,∞, �) ≤ qε.

This lemma implies that WCS[H,F ] is secure – even for adversaries that have
unlimited computation power – while it is not possible to determine which hash
function h ∈ H is used. The “encryption” of the hash value h(m) by XOR f(z)
makes it impossible to determine which hash function h ∈ H is used.

The WMAC Scheme

Definition 4 ( [12] WMAC[H,F ])
Let F = {f : A → T } be a family of random functions, H = {h : M → A} be
an ε-AU family of hash functions, f ∈R F and h ∈R H. Let m ∈ M a message
then we define

WMACh,f (m) = f(h(m))

and

WMAC-VFh,f (m, τ) =

{
true τ = f(h(m)),

false else.
.

Lemma 2 ( [12] WMAC security)

AdvWMAC[H,F ](qs, qv,∞, �) ≤ qv(q
2
sε+ |T |).

3 The Gamma-MAC Scheme

In this section, we present two specifications of the Gamma-MAC schemes:
Γ -MAC[H,P ] and ΓX -MAC[H,P ]. We use the term Gamma-MAC as the generic
name for both schemes.

Definition 5 (ε-almost regular universal hash functions (ε-ARU))
Let H = {h : M → T } be an ε-AU hash function family. We say H is ε-almost
regular universal written ε-ARU, if for all m ∈ M and c ∈ T

Pr
h∈H

[h(m) = c] ≤ ε.
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Definition 6 (Γ -MAC[H,P ])
Let H = {h : M → K} be an ε-ARU family of hash functions, P = {g : K×T →
T } be a family of pseudorandom permutations, m ∈ M and |m| the bit length of
m. Then we define

Γ -MACh,P (m) = ph(m)(|m|)
and

Γ -VFh,P (m, τ) =

{
true τ = ph(m)(|m|),
false else.

.

Theorem 1 (Γ -MAC[H,P ] security)
Let H = {h(m) : {0, 1}n∗ → K} be an ε-ARU hash function family and P =
{pk : K × T → T } a family of pseudo-random permutations. Then,

AdvSUF-CMA
Γ-MAC[H,P ]

(qs, qv, t, �) ≤ qv

(
qsε+ qs(qs − 1)ε+

2 + qs(qs − 1)

2|T |

)
.

Note, that m ∈ {0, 1}n∗ is equivalent with n divides |m|.

Proof
In this proof we make a case analysis to upper bound the success probability
for adversaries with qv = 1. The generalization to qv ≥ 1 verification queries
increase the success probability for any adversary at most by qv. So, we have

AdvSUF-CMA
Γ -MAC[H,P ]

(qs, qv, t, �) ≤ qv ·AdvSUF-CMA
Γ -MAC[H,P ]

(qs, 1, t, �) .

Case 1: The adversary wins if it is able two find two distinct authentication
queries mi and mj (1 ≤ i < j ≤ qs) that are maped to the same authenti-
cation tag. This means that τi = pxi(|mi|) = pxj(|mj |) = τj for xi = h(mi)
and xj = h(mj). Therefore,

Prh∈H [τi = τj ]

=Prh∈H [τi = τj | xi = xj ] ·Pr[xi = xj ]︸ ︷︷ ︸
E1

+Prh∈H [τi = τj | xi = xj ] ·Pr[xi = xj ]︸ ︷︷ ︸
E2

.

Subcase E1: We distinguish between |mi| = |mj | and |mi| = |mj |.
– If |mi| = |mj | then for two distinct messages mi and mj is

Prh∈H [τi = τj | xi = xj ] = Prh∈H [pxi(|mi|) = pxj (|mj |) | xi = xj ] = 1.

The probability for the event “xi = xj” is equivalent to

Prh∈H [h(mi) = h(mj)] ≤
qs(qs − 1)ε

2
1 ≤ i < j ≤ qs.

– Else if |mi| = |mj | the probability for this case is zero, since
pxi(|mi|) = pxj (|mj |) for all |mi|, |mj |, xi, xj ∈ {0, 1}n and p ∈ P
for |mi| = |mj | and xi = xj .
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Subcase E2: Let xi, xj ∈ {0, 1}n be fixed and randomly chosen. In this
case we assume that Pr[xi = xj ] ≤ 1. For any tuple (zi, zj) ∈ T × T we
have

Pr[pxi(zi) = pxj (zj)] = 1/|T |.
Then, for 1 ≤ i < j ≤ qs we have

Pr[pxi(|mi|) = pxj (|mj |)] ≤
qs(qs − 1)

2|T | .

Case 2: The adversary wins if it is able two find two distinct authentication
queries mi and mj (1 ≤ i < j ≤ qs) that collide under h. Since H is ε-ARU,

we can upper bound the success probability for this case by qs(qs−1)
2|T | .

Case 4: The success probability for any adversary to guess the right output
h(m) for any verification query (m, τ) is at most εqs, since H is ε-ARU.

Assume that an adversary A does not win due to one of this three cases. this
means that A is now facing the task to guess the output of p under a new key
k. The success probability therefore is at most 1/|T |.

Our claim follows by adding up the individual bounds. ��

Let consider the scenario where = qs = qv and ε > |T |. Here, the term q(q−1)ε
2 de-

termines the security of Gamma-MAC and we haveAdvSUF-CMA
Γ -MAC[H,P ]

(q, q, t, �) ≤
O(q3ε), which corresponds approximately to the security of a stateless WMAC
based MAC scheme. The security bound for the statefull WCS-MAC scheme
O(qε) is significant better. This security is achieved by using a nonce. Though
the concept of a nonce is simple in theory, it is a challenge to ensure that a
nonce is only used once, ever. Flawed implementations of nonces are ubiqui-
tous [17, 29, 32, 42, 46]. Apart from implementation failures, there are funda-
mental reasons why application programmers can’t always prevent nonce reuse.
Consider a counter or a random generator state stored persistently and reloaded
after a restart. How should the application programmer defend old data from
being restored during a backup, or current date being duplicated if a virtual ma-
chine is cloned? The point of a virtual machine that it should hide its virtualness
from the applications.

Therefore we advise against the use of a statefull MAC scheme.
Besides the collision resistance, ε-ARU hash function families do not guar-

antee any other properties about the output relation of two distinct inputs.
Theoretically, this does not matter, since Bellare and Cash showed that a PRP
is provable secure against related-key attacks [3], where the adversary can par-
tially control an unknown key. But, in practice, a PRP is mostly implemented
with a block cipher which can be vulnerable to such an attack, due to weak-
nesses in the key schedule. In recent years it has been shown that common used
block ciphers like AES [19] or KASUMI [1] are vulnerable to related-key at-
tacks [8–10, 22]. The majority of related-key attacks consider XOR differences
between keys [8–10,21,22,25,31,34], what can be interpreted as flipping of certain
key bits.
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Hence, the presented Γ -MAC[H,P ] scheme does not provide protection
against such attacks. For this reason, we present ΓX -MAC[H,P ], a Gamma-
MAC scheme that offers protection against related-key attacks based on XOR
differences.

Definition 7 (ε-almost XOR regular universal hash functions
(ε-AXRU))
Let H = {h : M → T } be an ε-AXU hash function family. We say H is
ε-almost XOR regular universal written ε-AXRU, if for all m ∈ M and c ∈ T

Pr
h∈H

[h(m) = c] ≤ ε.

Definition 8 (ΓX-MAC[H,P ])
Let H = {h : M → K} be an ε-AXRU family of hash functions, P = {g :
A×K → B} be a family of keyed random permutations, and m ∈ M. Then we
define

ΓX -MACh,P (m) = ph(m)(|m|)

and

ΓX -VFh,P (m, τ) =

{
true τ = ph(m)(|m|),
false else.

Theorem 2 (ΓX-MAC[H,P ] security)
Let H = {h(m) : {0, 1}n∗ → K} be an ε-AXRU hash function family and P =
{pk : K × T → T } a family of pseudo-random permutations. Then,

AdvSUF-CMA
ΓX-MAC[H,P ]

(qs, qv, t, �) ≤ qv

(
qsε+ qs(qs − 1)ε+

2 + qs(qs − 1)

2|T |

)
.

The proof is similar to the proof of Theorem 1.

4 Gamma-MAC Instance: ΓX-AES

The ΓX -AES MAC is based on the common block chaining approach from the
CBC-MAC [13]. It takes as input a message of arbitrary length and produces
as output a 128-bit security tag τ . The message m = m1, ...,mb is divided into
b blocks with |mi| = 127 for i = 1, ..., b − 1, and |mb| ≤ 127. If necessary, the
final message block mb is extended to 127 bits by appending the bit sequence
10126−|mb|. A chaining value ci is recursively defined by ci = h(mi ⊕ ci−1).
This allows to use a single hash function h : {0, 1}n → {0, 1}n to authenticate
messages of arbitrary length.

Definition 9 (ΓX-AES)
Let G127 = {gk : GF(2127) \ {0, 1} × GF(2127) → GF(2127)} with gk(x) = k · x
for k ∈ GF(2127) \ {0, 1} and x ∈ GF(2127). Let m = m1, ...,mb with |mi| = 127
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for i = 1, ..., b, and G = {hk : GF(2127) \ {0, 1}×GF(2127)
b → GF(2127)} a hash

function family defined by

c0 := gk(1), ci := gk(mi ⊕ ci−1) i = 1, ..., b

hk(m) := cb = kb+1
b∑

i=1

kb+1−imi.

Let m be a message of arbitrary length and |m| a 128-bit value that contains the
message length of m in bits. Then ΓX-AES is defined as follows:

ΓX -MACG,AES(m) := AESG(m)||0(|m|)

and

ΓX-VFG,AES(m, τ) =

{
true τ = ΓX-MACG,AES(m),

false else.

5 Security Analysis of ΓX-AES

In this section we prove that ΓX -AES is SUF-CMA secure. For this it suffices to
show that the hash function family G : GF(2127)\{0, 1}×GF(2127)

∗ → GF(2127)
as defined in Definition 9 is ε-AXRU. Then we can apply Theorem 1 which tells
us that ΓX -AES is SUF-CMA secure.

Theorem 3 (G is ε-AXRU)
The hash function family G from Definition 9 is for b = 1, ..., 2127 − 2 ε-AXRU
with ε = b+1

2127−2 .

Proof. From Lemma 3 and 4 follows that G is ε-AXU.

Let m ∈ GF(2127)
b
with m = m1, ...,mb, and c ∈ GF(2127). Beginning

with G(m) = c, and moving c on the right side of the equation we get

kb+1
b∑

i=1

kb+1−imi︸ ︷︷ ︸
G(m)

−c = 0. The none-zero polynominal – on the left side of this

equation – has at most b+1 roots. Therefore, we have Prk∈GF(2127)\{0,1}[G(m) =

c] ≤ b+1
2127−2 . Note, the observation above holds for any tuple (m, c) ∈ GF(2127)

b×
GF(2127). ��

Lemma 3 (Galois field multiplication)
Let G127 = {gk : GF(2127) \ {0, 1} ×GF(2127) → GF(2127)} with gk(m) = k ·m
for k ∈ GF(2127) \ {0, 1}. Then G127 is 1

2127−2 -AXU.
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Proof
Each k ∈ GF(2127) \ {0, 1} is a primitive element of GF(2127), since 2127 − 1
is prime. Hence, the probability for y = 0 is always zero. So, for all m,m′, y ∈
GF(2127) with m = m′ we have

Prgk∈G127 [gk(m)⊕gk(m
′) = y] = Prk∈GF(2127)\{0,1}[m·k+m′ ·k = y] ≤ 1

2127 − 2
.

��

The proof of Lemma 3 implies that there exists no such thing as weak keys
ΓX -AES. Other universal hash functions based on multiplication in GF(2128),
e.g., Ghash [38]. Note,

3 · 5 · 17 · 257 · 641 · 65537 · 274177 · 6700417 · 67280421310721 = 2128 − 1.

This observation implies that 2128 − 1 is not a prime, which again implies that
GF(2128) has non trivial subfields. Let S a non trivial subfield of GF(2128).
Then there is at least one element e ∈ GF(2128) that is a primitive element of
S. The choice of e would imply that the probability that two distinct messages
m,m′ ∈ GF(2128) collide is at least 1/|S|. Since |S| < GF(2128), we can call e a
weak key.

This simple observation implies that GMAC [38] – which is based on Ghash
– has more weak keys as one would naively expect, namely elements of GF(22).
These weak keys are given by all elements of non trivial subgroups of GF(2128).

Lemma 4 (Block chaining property)
Let Hi = {hi

k : {0, 1}n × {0, 1}n → {0, 1}n} be ε-AXU hash function families
with i = 0, ..., b. Then the hash function family Hc = {hk : {0, 1}n × {0, 1}nb →
{0, 1}n} defined as follows is bε-AXU:

c0 = h0
k(a), ci = hi

k(mi ⊕ ci−1)hk(m) = cb.

Proof
For all y, a, k,mi,m

′
i ∈ {0, 1}n with i = 1, ..., b define xi = mi ⊕ ci+1. Assume

thatm1 = m′
1. Then we know that h0

k(a)⊕m1 = h0
k(a)⊕m′

1). From the definition
of ε-AXU, it follows that

Pr[h1
k(h

0
k(a)⊕m1)⊕ h1

k(h
0
k(a)⊕m′

1) = y] ≤ ε.

This gives us a new ε-AXU hash function which we write as ĥ1
k = h1

k ◦ h0
k. From

Lemma 5 follows that for any pair (m1,m2) = (m1,m2)

Pr[h2
k(ĥ

1
k(m1)⊕m2)⊕ h2

k(ĥ
1
k(m

′
1)⊕m′

2) = y] ≤ 2ε.

The new hash function we defined by ĥ2
k = h2

k ◦ ĥ1
k is a 2ε-AXU hash function.

Lets denote ĥj
k = hj

k ◦ ĥ
j−1
k for j = 3, ..., b. Applying Lemma 5 to every ĥj

k shows

that ĥj
k is a jε-AXU hash function. While hk is equivalent to ĥb

k, it follows that
Hc is a family of bε-AXU hash functions. ��
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Lemma 5 (Chaining combination property)
Let H1 = {h1 : A → B} be ε1-AXU and H2 = {h2 : B → C} be ε2-AXU. Let
H = {h : A×B → C} be a hash function family with h(a, b) = h2(h1(a)⊕ b) for
a ∈ A and b ∈ B, h1 ∈ H1 and h2 ∈ H2. Then H is ε-AXU with ε = ε1 + ε2.

Proof
The value ε is the maximum probability of the event Equal defined as
h(a, b) ⊕ h(a′, b′) = y ⊕ y ′ for any (a, b), (a′, b′) ∈ A × B with (a, b) = (a′, b′)
and any y, y′ ∈ C. Lets define x = h1(a)⊕ b and x′ = h1(a

′)⊕ b′. We distinguish
the two cases y ⊕ y′ = 0 and y ⊕ y′ = 0

Case y ⊕ y′ = 0:

Pr
h∈H

[h(a, b)⊕ h(a′, b′) = 0]

= Pr
h1∈H1
h2∈H2

[h2(h1(a)⊕ b︸ ︷︷ ︸
x

)⊕ h2(h1(a
′)⊕ b′︸ ︷︷ ︸
x′

) = 0]

= Pr
h2∈H2

[h2(x) = h2(x
′) | x = x′] · Pr[x = x′]

+ Pr
h2∈H2

[h2(x) = h2(x
′) | x = x′] · Pr[x = x′]

≤ Pr[x = x′] + Pr
h2∈H2

[h2(x) = h2(x
′) | x = x′]

From the definition of ε-AXU we know that Prh2∈H2 [h2(x) = h2(x
′) | x =

x′] ≤ ε2. If a = a′ then b = b′ since (a, b) = (a′, b′). Hence, Pr[x = x′] = 0
for a = a′. For a = a we define d = b⊕ b′. Then for any h1 ∈ H

Pr[x = x′] = Pr[h1(a)⊕ h1(a
′) = d].

From the definition of ε-AXU follows, that Pr[x = x′] ≤ ε1 for any a = a′.
Therefore, the probability that two authentication tags collide is at most

Pr
h∈H

[h(a, b)⊕ h(a′, b′) = 0] ≤ ε1 + ε2.

Case z = y ⊕ y′ = 0:
In this case, the event Equal occurs only if x = x′ and h2(x) ⊕ h2(x

′) = z,
since

Pr
h2∈H2

[h2(x) = h2(x
′) | x = x′] = 0.

Then,

Pr
h∈H

[h(a, b)⊕ h(a′, b′) = z] = Pr
h2∈H2

[h2(x) ⊕ h2(x
′) = z | x = x′] · Pr[x = x′].

From the definition of ε-AXU follows that

Pr
h2∈H2

[h2(x)⊕ h2(x
′) = z | x = x′] ≤ ε2.

Therefore,
Pr
h∈H

[h(a, b)⊕ h(a′, b′) = z] ≤ ε2, z = 0.

The Prh∈H [h(a, b) ⊕ h(a′, b′) = y ⊕ y′] is at most the maximum over the two
cases y ⊕ y = 0 and y ⊕ y = 0, which is ε1 + ε2 . ��



Γ -MAC[H,P ] - A New Universal MAC Scheme 95

6 Performance Analysis of ΓX-AES

This section gives software performance benchmarks of ΓX -AES. All measure-
ment results are based on the real time clock (RTC). We obtained the perfor-
mance benchmarks by measuring 2000 times the desired target function and
then computing the median of those results.

Table 2. Benchmark results in cycles per byte on Intel Core i5 M540 2.53 GHz; OS:
Linux 3.0.0-1; Compiler: GCC-4.61

Bytes ΓX-AES Poly1305-AES† [5] VMAC [36] AES-128 [19]
(Gamma-MAC) (WCS-MAC) (WCS-MAC) (Ctr mode)

4 191 735 99.8 103
10 76.4 276 39.7 41.2
16 58 167.2 25 16.3
40 27.3 74.5 10.4 19.2
128 16.2 28.7 3.5 11.62
256 13.3 17.3 2.2 11.3
576 11.6 10.1 1.5 11.1
1000 10.9 8.5 1.2 11.3
1300 10.9 7.7 1.4 11.3
1500 10.7 7.5 1 11.2
4096 10.4 6.2 0.9 11
10000 10.3 N/A 1 11
16384 10.3 N/A 0.8 11.1
32768 10.3 N/A 0.8 11.1

† Benchmarks are taken from [6] (Median of Section A4444–).

Target Platform. The benchmarking took place on a 64-bit Intel Core i5 M540
2.53 GHz computer. All the software for the benchmarking was written either
in C or assembler and compiled with the GNU C compiler (gcc) version 4.6.1
using the optimization flag -O3.

Implementation Remarks. The ΓX -AES implementation for the benchmarking
is based on 1) the MPFQ library from Gaudry and Thomé2 which performs a
GF(2127) multiplication in about 9.1 cpb and 2) the AES-128 eSTREAM imple-
mentation from Bernstein and Schwabe3 using optimization techniques from [7].

Results. Table 2 contains the results of our performance benchmarking. The
table shows that ΓX -AES outperforms AES-128 in counter mode for messages
longer than 1000 bytes. Hence, ΓAES would be faster than any variation of
CBC-MAC based on AES-128. Note, that all our measurements were done on
the specified 128-bit block size version of the MACs.

2 http://mpfq.gforge.inria.fr/mpfq-1.0-rc3.tar.gz
3 http://cr.yp.to/streamciphers/timings/estreambench-20080905.tar.bz2

http://mpfq.gforge.inria.fr/mpfq-1.0-rc3.tar.gz
http://cr.yp.to/streamciphers/timings/estreambench-20080905.tar.bz2
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7 Conclusion

In this work we presented Γ -MAC[H,P ], a new provable secure and stateless
MAC scheme based on universal hash functions. In contrast to other univer-
sal MAC schemes, Γ -MAC[H,P ] needs only one single n-bit key. Most other
universal MAC schemes like CWS-MAC and FH-MAC need at least two n-bit
keys. Finally, we presented ΓX -AES, an Γ -MAC[H,P ] instantiation based on
Galois field multiplication and AES-128 similar to GMAC. Our implementation
of ΓX -AES outperforms AES-128 for messages that are longer than one kilobyte,
on Intel Core i5 M540 2.53 GHz.

Acknowledgements. We would like to thank Emmanuel Thomé and Paul
Zimmermann for the helpful support on the MPFQ library.
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Abstract. Universal hash functions are important building blocks for
unconditionally secure message authentication codes. In this paper, we
present a new construction of a class of ε-Almost Strongly Universal2
hash functions with much smaller description (or key) length than the
Wegman-Carter construction. Unlike some other constructions, our new
construction has a very short key length and a security parameter ε
that is independent of the message length, which makes it suitable for
authentication in practical applications such as Quantum Cryptography.

Keywords: Universal hash functions, ε-Almost Strongly Universal hash
functions, authentication, Quantum Cryptography.

1 Introduction

Universal hash functions were first introduced byWegman and Carter [7] in 1979,
and since then they have been extensively studied. They are used in diverse cryp-
tographic tasks such as unconditionally secure authentication, error-correction
and randomness extraction (or privacy amplification, within Quantum Cryptog-
raphy). Over the years, various Universal hash function families are constructed
by Wegman and Carter, Stinson, and others [3, 4, 6, 13, 14, 17, 20–24]. The im-
portant properties are the description length (key consumption), the security
parameter, and the computational efficiency, more on this below.

This paper addresses a new construction of Universal hash functions. In par-
ticular, we present a new construction of ε-Almost Strongly Universal2 (ε-ASU2)
hash functions, that not only have small description length but also a security pa-
rameter ε that is independent of the message length. The construction combines
the LFSR-based hashing proposed by Krawczyk in [13] with the composition
theorem by Stinson in [20] for constructing Universal hash functions. Given its
properties, the new construction is also computationally efficient.

1.1 Universal Hash Function Families

First, let us recall the definitions of Universal and ε-ASU2 hash functions and
the composition theorem for Universal hash functions.

Definition 1 (Universal2 hash functions). Let M and T be finite sets. A
class H of hash functions from M to T is Universal2 (U2) if there exist at

F. Armknecht and S. Lucks (Eds.): WEWoRC 2011, LNCS 7242, pp. 99–108, 2012.
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most |H|/|T | hash functions h ∈ H such that h(m1) = h(m2) for any two distinct
m1,m2 ∈ M.

If there are at most ε|H| hash functions instead, the class H is ε-Almost
Universal2 (ε-AU2).

Definition 2 (XOR Universal2 hash functions). Let M and T be as before.
A class H of hash functions from M to T is XOR Universal2 (XU2) if there
exists at most |H|/|T | hash functions h ∈ H such that h(m1) = h(m2) ⊕ t for
any two distinct m1,m2 ∈ M and any t ∈ T .

If there are at most ε|H| hash functions instead, the class H is ε-Almost
XOR Universal2 (ε-AXU2).

Definition 3 (Strongly Universal2 hash functions). Let M and T be as
before. A class H of hash functions from M to T is Strongly Universal2
(SU2) if the following two conditions are satisfied:

(a) The number of hash functions in H that takes an arbitrary m1 ∈ M to
an arbitrary t1 ∈ T is exactly |H|/|T |.

(b) The fraction of those functions that also takes an arbitrary m2 = m1 in
M to an arbitrary t2 ∈ T (possibly equal to t1) is 1/|T |.

If the fraction in (b) instead is at most ε, the class H is ε-Almost Strongly
Universal2 (ε-ASU2).

Note that ε ≥ 1/|T | [21] so that SU2 hash functions are the optimal case,
corresponding to 1/|T |-ASU2 hash functions.

There are several ways to construct classes of ε-ASU2 hash functions, and in
this paper we will use the following theorem from [20].

Theorem 1 (Composition). Let F be a set of ε1-AU2 hash functions from
M → Z, and let G be a set of ε2-ASU2 hash functions from Z → T . Then,
H = G ◦ F is an ε-ASU2 hash function family from M → T with ε = ε1 + ε2.

We will also use ideas from [13,14], in which an ε-AXU2 family is composed with
a one-time pad, resulting in an ε-ASU2 family (note that the above theorem does
not apply). The resulting family has a security parameter ε that depends on the
message length. In this paper, we will use a different approach that enables use
of the theorem, and keeps |H| small while giving a security parameter ε that
only depends on the tag length, not the message length.

1.2 Information-Theoretically Secure Authentication

The class of ε-ASU2 hash functions can straightforwardly be applied for
information-theoretically secure message authentication. In this scenario, two
legitimate users (Alice and Bob) share a secret key k long enough to identify
a hash function hk in a family of ε-ASU2 hash functions. When Alice wants to
send a message m to Bob, she computes t = hk(m) and sends it along with m.
Upon receiving m and t, Bob checks the authenticity of m by computing hk(m)
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using his share of the key and comparing it with t. If hk(m) and t are identical,
then Bob accepts m as authentic; otherwise, he rejects it.

Now, if an adversary tries to impersonate Alice and sends m′ without know-
ing the key k, or hk, the best he/she can do is to guess the correct tag for m′.
The probability of success in this case is P1 = 1/|T |. If the adversary inter-
cepts a message-tag pair (m, t) from Alice and substitutes m with m′, then the
probability P2 of guessing the correct tag t′ for m′ increases somewhat but is
bounded by ε (≥ 1/|T |). In other words, even seeing a valid message-tag pair
does not increase the adversary’s success probability above ε. Therefore, by us-
ing a family of ε-ASU2 hash functions with suitably chosen ε, one can achieve
information-theoretically secure message authentication.

In addition to requiring ε to be small, practical applications require also the
length l of the key k identifying a hash function in the family of ε-ASU2 hash
functions to be as small as possible. This latter requirement is especially impor-
tant in Quantum Cryptography (QC).

1.3 Application to Authentication in Quantum Cryptography

Quantum Cryptography (QC), also known as QuantumKey Distribution (QKD),
is a key agreement technique based on the laws of quantum mechanics. The users
first exchange quantum signals over a so-called quantum channel to generate a
raw key by measuring the quantum signals. Then, they extract a common secret
key from the raw key by performing a joint post-processing by communicating
on an immutable public channel. The first QKD protocol known as BB84 was
proposed by Bennett and Brassard in 1984 [2].

QKD is proven to be information-theoretically secure, provided that the pub-
lic channel is immutable; see, for example, [19]. In the case that the public
channel is not immutable (not authentic), QKD can easily be broken by a man-
in-the-middle attack. Therefore, ensuring the authenticity of the public channel
is a must. More specifically, the adversary must not be able to insert or modify
the classical messages exchanged over the public channel between the legitimate
users during the post-processing phase of the QKD protocol. Also, to guar-
antee information-theoretic security of QKD the authentication used must be
information-theoretically secure.

This is achieved via ε-ASU2 hashing, and thus needs shared secret key. In
the first round the users must use pre-shared secret key, which should be long
enough to authenticate the classical messages in the round. In the following
rounds, key generated in the previous rounds must be used. Hence, the key-
consumption rate of the authentication protocol used in QKD directly influences
the key output rate. Because of this, one needs an authentication with small
key-consumption rate. Furthermore, in QKD very long messages need to be
authenticated, so it is desirable to have a scheme where it is simple to do this,
without changing parameters of the communication protocol. Thus, there is a
need for a hash function family that is small but still has a security parameter
ε that only depends on the tag length, not the message length.
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1.4 Lower Bounds

There are lower bounds on the description length (or key length) for ε-ASU2 hash
functions derived by Stinson [20], Kabatiankii et al. [12], Gemmel and Naor [9],
and Nguyen and Roscoe [16]. In [16], the authors provided new combinatorial
bounds that are tighter than the other bounds for the key length. They also
identified a value for ε that represents a threshold in the behaviour of the various
bounds and classified different lower bounds in relation to the threshold value
of ε. Here, we only recall the lower bound by Stinson in [20]. Interested readers
may refer to the above references for details of the other bounds.

Theorem 2 (Lower bound for ε-ASU2 hash function families [20]). If
there exists an ε-ASU2 family H of hash functions from M to T , then

|H| ≥ |M|(|T | − 1)2

|T |ε(|M| − 1) + |T | − |M| + 1. (1)

The proof can be found in [20]. In the SU2 case, this simplifies to

|H| ≥ |M|(|T | − 1) + 1. (2)

Otherwise, if |M| � |T | the bound simplifies to (in terms of key length)

log |H| ≥ 2 log(|T | − 1)− log(ε|T | − 1) + 1. (3)

Here and below “log” denotes the base 2 logarithm. If in addition ε = c/|T | for
some constant c and |T | is large, the right-hand side is close to 2 log |T |. If one
allows ε to increase when |M| increases, the bounds decrease which makes it
easier to approach 2 log |T |, as we shall see below.

1.5 Comparison of Some Existing Constructions

Now, let us briefly compare the key length and security parameter ε of a few
constructions of ε-ASU2 hash function families. In Table 1, the value of ε and
the key length for five different constructions are listed for comparison. One can
find a more detailed overview of various constructions of ε-ASU2 hash functions
by different authors in Refs. [1, 17].

As can be seen from the table, the constructions by Wegman-Carter and
Bierbrauer et al. have ε = 2/|T | while the others have values of ε that depend
on the message length either logarithmically (Stinson) or linearly (den Boer and
Krawczyk). In terms of key length, den Boer’s construction is the best followed
by Krawczyk, having key lengths 2 log |T | and 3 log |T | + 1, respectively, and
both are determined only by the tag length. The next good scheme in terms
of key length is the construction by Bierbrauer et al., for which the key length
≈ 3 log |T |+ 2 log log |M|. The key length for the constructions by Stinson and
Wegman-Carter are logarithmic in the message length, but the construction by
Stinson consumes approximately a quarter of the key that is needed for the
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Table 1. The key length and ε for different constructions. The key length for Bier-
brauer et al is approximate because of the need to invert ses in the construction. This
involves the Lambert W function (see, e.g., [8]), whose asymptotics for large s gives
the expression below.

Construction ε Key length

Wegman-Carter [24] 2/|T | 4(log |T | + log log log |M|) log log |M|
Stinson [20] (log log |M| − log log |T | + 1)/|T | (log log |M| − log log |T | + 2) log |T |
den Boer [6] (log |M|/ log |T |)/|T | 2 log |T |

Bierbrauer et al. [3] 2/|T | ≈ 3 log |T | + 2 log log |M|
Krawczyk [13] (1 + 2 log |M|)/|T | 3 log |T | + 1

Wegman-Carter. As mentioned earlier, we aim for a construction with small key
length and ε independent of message size.

There are also other constructions such as Bucket hashing by Rogaway [18],
MMH (Multilinear Modular Hashing) by Halevi and Krawczyk [10], and UMAC
by Black et al. [5]. All three are very fast but have some properties that make
them undesirable from the point of view of this paper. Bucket hashing has a very
long key and output and is only ε-AU2 and so the hash output has to be further
mapped by an (A)SU2 hash function to make it ε-ASU2. Another paper [11]
proposes a bucket hashing scheme with small key, but this does not have fixed
ε and still has a comparatively long output. MMH [10] and UMAC [5] are not
economical in terms of key length; the key lengths are very large in comparison
to the above schemes.

1.6 Our Contribution

In this paper, we use LFSR-based hashing [13] and compose with an SU2 hash
function family. This enables the composition theorem, and gives a new ε-ASU2

hash function family. One particular choice of parameters in the construction
gives ε = 2/|T | just as in Wegman-Carter’s initial construction, while retaining
a small description length. This construction is suitable for use in authentication,
especially in Quantum Cryptography because of its low key-consumption prop-
erty and the small fixed ε. Also, the new construction is also computationally
efficient because the LFSR can efficiently be implemented in both software and
hardware; the subsequent SU2 hash function family operates on a much shorter
intermediate bitstring, and is therefore also comparatively efficient.

2 The New Construction

In this section, we present our new construction of an ε-ASU2 hash function
family. To do this we need the first step in the construction by Krawczyk, the
LFSR-based hashing [13].
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2.1 LFSR-Based Hashing

In [13], Krawczyk presented an elegant way of constructing ε-AU2 hash functions.
The basic idea is to use an LFSR with a short key, a secret initial string and a
secret feedback polynomial, to generate a longer key that selects a hash function
in an ε-AU2 hash function family. This can be viewed as selecting a certain
subset of the linear maps from binary vectors m in M to binary vectors t in T .

The full set of linear maps from M to T was found to be an SU2 hash
function family already by Wegman and Carter in [7], there denoted H3. In
matrix language, H3 consists of log |T | × log |M| binary matrices, so that the
description length of the hash functions in H3 is (log |M|)(log |T |), which makes
it impractical. However, if the matrices are restricted to be Toeplitz matrices
(constant on diagonals), then the corresponding set of hash functions is still
Universal2, see [15]. The description length of the hash functions is now reduced
to log |M| + log |T | − 1, since a Toeplitz matrix can be uniquely identified by
the first column and the first row of the matrix.

With a further restriction on the Toeplitz matrix, it is possible to obtain
an ε1-AXU2 hash function family with a much smaller description length. In
particular, if the consecutive columns of the Toeplitz matrix are restricted to be
the consecutive states of an LFSR of length log |T |, then the hash functions with
these matrices form an ε1-AXU2 hash function family with ε1 = (2 log |M|)/|T |.
The description length of the hash functions in this family is 2 log |T |+1, which
is the sum of the length of the initial state and the feedback polynomial; see [13]
for details.

Krawczyk’s construction continues with a composition with a one-time pad.
In the next section, we will take a different route and not use the XOR prop-
erty of the family, but only the ε-AU2 property. In Krawczyk’s construction, as
mentioned in the introduction, the composition of an ε1-AXU2 family with a
one-time pad (of length |T |) is an ε-ASU2 family with ε = ε1 + 1/|T | [13]. The
one-time pad has length log |T |. Therefore, the construction by Krawczyk has
ε = (1 + 2 log |M|)/|T | and the key length 3 log |T |+ 1, which is the sum of the
length of the key for LFSR-based hash function and of the one-time pad. We
note that the feedback polynomials used in the LFSR-based hashing are irre-
ducible, so that the actual key length is slightly less than 3 log |T |+1, see [13,14]
for details on usage and key length.

2.2 LFSR-Based Hashing Followed by an SU2 Hash Function
Family

Our goal is to construct an ε-ASU2 hash function family from M to T with
ε = 2/|T | and with a small key length. To this end, we use LFSR-based hashing
and the composition theorem. Recall that the composition theorem states that
if h = g ◦ f is the composition of an ε1-AU2 hash function f from M → Z with
an SU2 hash function g from Z → T , then h is ε-ASU2 with ε = ε1+1/|T | from
M → T . Also, if f is an LFSR-based hash function from M → Z, then f is an
ε1-AU2 with ε1 = (2 log |M|)/|Z|. Therefore, to make
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2 log |M|
|Z| +

1

|T | =
2

|T | , (4)

we need to have
2 log |M|

|Z| =
1

|T | , (5)

which gives us
|Z| = 2|T | log |M|. (6)

This gives the following construction: let F be a set of LFSR-based hash func-
tions from M → Z, where Z is an intermediate set of bit strings of length
log |T |+ log log |M|+1. From eqn. (5), we see that F is an ε-AU2 hash function
family with ε = (2 log |M|)/|Z| = 1/|T |. Let G be a set of SU2 hash functions
from Z → T , and H = G ◦F . Then, by the composition theorem, it follows that
H is a family of ε-ASU2 hash functions from M → T with

ε = 2/|T |. (7)

As before, the family F of LFSR-based hash functions from M → Z has de-
scription length lF = 2 log |Z| + 1. And since Z is a set of strings of length
log |T |+ log log |M|+ 1 we obtain lF = 2 log |T |+ 2 log log |M|+ 3.

For the SU2 family of hash functions G, the shortest possible description
length is slightly smaller than log |Z| + log |T | because of the bound (2). The
construction in Lemma 10 of Bierbrauer et al. [3] almost reaches this with a key
length of exactly log |Z| + log |T |, which gives a description length of the SU2

hash functions in G of lG = 2 log |T |+log log |M|+1. Explicitly, let π be a linear
map from Z → T . Then, the family G of hash functions g : Z → T defined
as gz,t(r) = π(zr) + t, where z, r ∈ Z and t ∈ T , is SU2. This family works
well as G, but note that any SU2 family with key length equal to the message
(intermediate bit string) length plus the tag length would give the same total
key length

lH = lF + lG = 4 log |T |+ 3 log log |M|+ 4. (8)

3 Comparison with Existing Constructions

Let us now compare the above construction with existing constructions in terms
of the key length, security parameter, and performance. Table 2 lists the relevant
data in terms of the key length and the security parameter ε.

As can be seen from the table, the new construction like the constructions
by Wegman-Carter [24] and Bierbrauer et al. [3] has a fixed ε = 2/|T |, while
the others have ε dependent logarithmically or linearly on the message length
log |M|. In terms of the key length, our construction clearly consumes much
less key than the constructions by Wegman-Carter [24] and Stinson [20], but
not as little as the constructions by den Boer, Krawczyk, and Bierbrauer. The
construction by den Boer has the lowest key length 2 log |T | at the cost of an
increase in ε.



106 A. Abidin and J.-Å. Larsson

Table 2. The key length and ε for the new and the existing constructions. Approxi-
mations as before.

Construction ε Key length

Wegman-Carter [24] 2/|T | 4(log |T | + log log log |M|) log log |M|
Stinson [20] (log log |M| − log log |T | + 1)/|T | (log log |M| − log log |T | + 2) log |T |
den Boer [6] (log |M|/ log |T |)/|T | 2 log |T |

Bierbrauer et al. [3] 2/|T | ≈ 3 log |T | + 2 log log |M|
Krawczyk [13] (1 + 2 log |M|)/|T | 3 log |T | + 1

This construction 2/|T | 4 log |T | + 3 log log |M| + 4

Another way to compare the schemes is to fix the security parameter ε, and
from that and the message length log |M| determine tag length log |T | and key
length. This is done in Table 3, but only for the four last alternatives of Table
2. As we can see from the table, the tag length does not depend on log |M| for
Bierbrauer et al. and the present scheme, while it increases when the message size
increases for den Boer [6] and Krawczyk [13]. In terms of key length dependence
on log |M|, the constructions by den Boer [6] and Bierbrauer et al. are somewhat
better than Krawczyk [13] and the current constructions.

Table 3. The key length and tag length, given ε and |M|. Here, also the entries for
den Boer are approximate; an approximation of the inverse to |T | log |T | again involves
the asymptotics of the Lambert W function.

Construction log |T | Key length

den Boer [6] ≈ − log ε+ log log |M| ≈ −2 log ε+ 2 log log |M|
Bierbrauer et al. [3] − log ε+ 1 ≈ −3 log ε+ 2 log log |M|

Krawczyk [13] − log ε+ log(1 + 2 log |M|) −3 log ε+ 3 log(1 + 2 log |M|) + 1

This construction − log ε+ 1 −4 log ε+ 3 log log |M|+ 8

Finally, simplicity of use and setup and performance should be briefly ad-
dressed. It is simpler to aim for a given security if there is only one parameter
to adjust, and this would be a benefit of the present construction and the one
by Bierbrauer et al. [3]. If the security parameter ε is fixed, so is the tag length
in these two. The other two need to change tag length when the message length
changes.

In terms of performance, the present construction and the one by Krawczyk
[13] seem to have an advantage, since both decrease the size of the long mes-
sage by using an LFSR which can efficiently be implemented in hardware and
software. The other two use modular arithmetic in larger fields, which is some-
what less efficient. After shortening the message, Krawczyk’s construction uses
an OTP, again using efficient binary arithmetic, while the construction in this
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paper maps the intermediate short string into a tag by an SU2 hash function.
The difference between the two operations is not so large, since the length of the
intermediate string is not so long in our construction. In all, the hash function
family proposed in this paper compares well to the others in both cases, in that
it is the only family that has both a simple relation between security parameter
and construction parameters, and is efficient.

4 Conclusion

We have presented a simple new construction of an efficient ε-ASU2 hash func-
tion family with small description length, for which the security parameter is
independent of message length. The construction uses the idea of LFSR-based
hashing together with Stinson’s composition theorem for Universal hash func-
tion families. The resulting family has a key consumption that is logarithmic in
the message length and linear in the tag length or logarithmic in the security pa-
rameter, with small (constant) coefficients. It is efficient, given that it requires a
short key. These properties make our construction very suitable for information-
theoretically secure authentication purposes in practical applications, especially
in Quantum Cryptography.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments on an earlier version of the paper.
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Abstract. TWIS is a 128-bit lightweight block cipher that is proposed
by Ojha et al. In this work, we analyze the security of the cipher against
differential and impossible differential attacks. For the differential case,
we mount a full-round attack on TWIS and recover 12 bits of the 32-
bit final subkey with 221 complexity. For the impossible differential, we
present a distinguisher which can be extended to a key recovery attack.
Also, we showed that the security of the cipher is only 54 bits instead of
claimed 128 bits. Moreover, we introduce some observations that com-
promise the security of the cipher.

Keywords: TWIS, Lightweight Block Cipher, Differential Cryptanaly-
sis, Impossible Differential Distinguisher.

1 Introduction

The pace of ubiquitous devices in daily life has been increased drastically in
the last few years. As the usage increases, the privacy of the stored data
and the security of the communication between these devices become question-
able. The requirement for protection of data and communication makes the use of
cryptographic algorithms inevitable. However, the standardized algorithms like
AES [1] and SHA [2] or commonly used algorithms like Triple DES [3] and MD5
[4] are not suitable for constrained devices. Therefore, recently, new lightweight
algorithms which need low power consumption and hardware area, like Present
[5], KATAN/KTANTAN [6], DESL [7], Grain [8] and TWIS [9] are designed for
such constrained environments.

TWIS is a 128-bit block cipher designed to be used in ubiquitous devices.
The cipher, which is inspired by CLEFIA [10], is a 2-branch generalized Feistel
Network of 10 rounds. There is no key recovery attack on this cipher up to the
authors knowledge. The only analysis is done by Su et al. [11] in which n-round
iterative differential distinguishers are presented. However, as the probability of
the iterative distinguishers are 1, they cannot be extended to a differential attack
to get information about the key.

In this paper, we analyze the security of TWIS block cipher against differential
and impossible differential cryptanalysis. We mount a differential attack on full-
round TWIS and recover 12 bits of the 32-bit final subkey with a complexity of
221. This is the first key recovery attack on TWIS. Also, we present a 9.5-round
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impossible distinguisher which can be extended to a key recovery attack. Fur-
thermore, by making observations on the key schedule, we show that the cipher
offers at most 54-bit security instead of claimed 128-bit. Besides, we mention the
potential weaknesses due to the use of subkeys during the encryption and the
choice of whitening subkeys. The paper is organized as follows. Section 2 gives
a description of the round function and the key schedule of TWIS block cipher.
In Section 3, a 10-round differential attack is presented. Impossible differential
distinguisher is proposed in Section 4. Some observations on the algorithm are
given in Section 5. Finally, Section 6 concludes the paper.

2 Description of TWIS Block Cipher

TWIS is a lightweight block cipher with 128-bit plaintext and key sizes each.
Designers of the cipher are inspired by CLEFIA in order to design a lighter al-
gorithm without compromising the security. The algorithm is a 2-branch gener-
alized Feistel Network, running on 10 rounds. At each round, two 32-bit subkeys
are used. The key is mixed with the plaintext inside the G-function. Details of
the G-function is given in Section 2.1.

Round subkeys are generated via key scheduling algorithm. Key scheduling
part can be viewed as an NFSR which updates the content using an S-box and
a round constant. Details of the key scheduling algorithm is given in Section 2.2.

Notation. The following notations are used throughout this paper:

– a ⊕ b: bitwise XOR of a and b

– a ∧ b: bitwise AND of a and b

– <<< i: left rotation by i bits

– >>> i: right rotation by i bits

– ΔI: XOR difference between two inputs

Let P = (P0, P1, P2, P3) and C = (C0, C1, C2, C3) be the 128-bit plaintext and
ciphertext respectively where Pi and Ci, 0 ≤ i ≤ 3, are 32-bit words. Also, let
RKj be the 32-bit jth subkey for j = 0, .., 10. Then, the encryption process
can be summarized as in Algorithm 1. Likewise, Figure 2 shows the encryption
schematically.

2.1 G-Function

G-function is the round function of TWIS block cipher. It provides confusion
and diffusion between the branches. G-function takes three inputs of 32 bits;
32-bit subkey and 32-bit words from each two of the four branches, and outputs
two 32-bit words. The G-function can be written as in Algorithm 2.
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Algorithm 1. The Encryption Process of TWIS

(T0, T1, T2, T3) = (P0 ⊕RK0, P1, P2, P3 ⊕RK1)
for i = 1 to 10 do

(X0, X1) = G(RKi−1, T0, T1)
T2 = X0 ⊕ T2

T3 = X1 ⊕ T3

T1 = T1 <<< 8
T3 = T3 >>> 1
(T0, T1, T2, T3) = (T2, T3, T0, T1)
(X0, X1) = G(RKi, T0, T3)
T1 = X0 ⊕ T1

T2 = X1 ⊕ T2

T2 = T2 >>> 1
T3 = T3 <<< 8

end for
(C0, C1, C2, C3) = (T0 ⊕RK2, T1, T2, T3 ⊕RK3)

Fig. 1. Encryption Process

Algorithm 2. G-Function

G(RK,X0, X1) = (Y0, Y1)
Y1 = X1 ⊕ F (RK,X0)
Y0 = X1
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F -Function. F -function is the core of theG-function. Key mixing and confusion
occurs within this function. F -function takes two 32-bit inputs, one of which
is the subkey. It XORs the first parameter, the content of the corresponding
branch, with the subkey and divides the resulting 32-bit word into four 8-bit
words. Then, F -function applies a 6 × 8 S-box to each of the 8-bit words and
swaps them. Finally, it concatenates four 8-bit words to form a 32-bit word. The
F -function is formulated in Algorithm 3.

Algorithm 3. F -Function

F (RK,Q)
Q = Q⊕RK
Q = (Q0, Q1, Q2, Q3)
Q0 = S(Q0 ∧ 0x3f)
Q1 = S(Q1 ∧ 0x3f)
Q2 = S(Q2 ∧ 0x3f)
Q3 = S(Q3 ∧ 0x3f)
Q = (Q2, Q3, Q0, Q1)

S-Box. The S-box used in the F -function is a 6 × 8 S-box which is given in
Table 1. The first two bits of the 6-bit input determine the row, the remaining 4
bits determine the column of the table and the corresponding value is given as
the output. For example S(0x24) = 0xf7.

Although the output space is larger than the input space, there are some
inputs that are mapped to the same output, like S(30) = S(15). This enables
a non-zero difference to be mapped to zero difference which is a weakness that
can be exploited to mount differential type attacks.

Table 1. S-Box of TWIS

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 90 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c

1 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af

2 bf bf 19 65 f7 7a 32 20 16 ce e4 83 9d 5b 4c d8

3 ee 99 2e f8 d4 9b 0f 13 29 89 67 cd 71 dd b6 f4

2.2 Key Schedule

The key schedule part of TWIS generates subkeys which are used in the F -
functions. It produces 11 subkeys for the 10-round cipher.RK0 and RK1 are used
as the initial whitening keys, while RK2 and RK3 are used as the final whitening



Cryptanalysis of TWIS Block Cipher 113

keys. Notice that, RK1, RK2 and RK3 are used three times, RK10 is used once
and the rest of the subkeys are used twice. The key scheduling algorithm uses
the same S-box as in the F -function. In addition, it uses a diffusion matrix M
to generate the subkeys from the master key which is given as

M =

⎛
⎜⎜⎝

0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

⎞
⎟⎟⎠ .

The key scheduling algorithm can be formulated as in Algorithm 4 and is shown
in Figure 2.

Algorithm 4. The Key Scheduling Algorithm

K = (K1,K2, . . . ,K16)
for i = 1 to 11 do

K = K <<< 3
Ki = S(Ki ∧ 0x3f)
K15 = S(K15 ∧ 0x3f)
K16 = K16 ⊕ i
RKt

i−1 = M · (K13K14K15K16)
t

end for

Fig. 2. Key Scheduling Algorithm
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3 Differential Attack on TWIS

Differential cryptanalysis was introduced by Biham and Shamir [12] in 1990 and
is one of the most effective techniques in block cipher cryptanalysis. It analyzes
how the difference between two input values propagates after encryption of these
inputs for some number of rounds. For TWIS block cipher, no differential anal-
ysis is given and it is left as a future work [9]. In [11], security of TWIS against
differential cryptanalysis is evaluated by Su et al. and differential distinguishers
for 10-round TWIS cipher are presented. In this section, we propose a key recov-
ery attack on 10-round TWIS excluding the final key whitening. Our attack is
based on a 9.5-round differential distinguisher which is explained in the following
section.

3.1 9.5-Round Differential Characteristic

In order to construct a differential characteristic with high probability, we choose
the differences utilizing the following properties:

Property 1. The first 2 bits of 8-bit input which enters the S-box have no
effect on the output because of the bitwise AND operation with 0x3f.

Property 2. The input differences 0x01 and 0x25 cause zero output differ-
ences with probability 2−5.

Property 1 enables us to have 1-round differentials with probability 1. Also, using
Property 2, the number of active S-boxes can be decreased.

The inputs of the F -function are the 1st and the 3rd 32-bit words of the data
which are interchanging in the swap operation. There is no rotation operation
applied on the 3rd word and the rotation on the 1st word is a 1-bit right rotation.
Therefore, if we have 80000000x as input difference in the 3rd word, this difference
will produce zero differences after the F -function with probability 1 during the
next four rounds by the first property. We extend such a 4-round characteristic
by adding 3 rounds to the beginning and 2.5 rounds to the end of it. The best
characteristic that we found for TWIS has probability 2−18 and is given in Table
2. For simplicity, we use the alternative round function depicted in Figure 3. In
Table 2, the values ΔIi refer to the input differences of the corresponding round.
The output differences are not given additionally as they are the input differences
of the next round.

Notice that, in Table 2, the probability values of some rounds are marked
with an asterisk(*) and these values are also relatively higher when considering
the number of active S-boxes. The reason for high probability is that the cipher
uses the same subkey for two consecutive G-functions and this makes these G-
functions identical. To clarify, let x and x̄ be two input values to G and y, ȳ be
the two corresponding output values. Then, if x and x̄ are input to the next G-
function which uses the same subkey, the outputs will again be y and ȳ. Hence,
if an input pair with input difference Δx produces outputs with difference Δy
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Table 2. 9.5-round Differential Characteristic

Rounds ΔI0 ΔI1 ΔI2 ΔI3 # Active S-boxes
I/O Diff.
for S-box

Probability

1 02000000x 00000000x 00000000x 0000A600x 1 0x02→ 0xA6 2−4

2 00000000x 00000000x 01000000x 00000000x 1 0x01→ 0x00 2−5

3 01000000x 00000000x 00000000x 00000000x 1 0x01→ 0x00 1*

4 00000000x 00000000x 00800000x 00000000x 0 - 1

5 00800000x 00000000x 00000000x 00000000x 0 - 1

6 00000000x 00000000x 00400000x 00000000x 0 - 1

7 00400000x 00000000x 00000000x 00000000x 0 - 1

8 00000000x 00000000x 00200000x 00000000x 1 0x20→ 0x83 2−4

9 00200000x 00000000x 80000041x 00000000x 2
0x20→ 0x83
0x01→ 0x00

2−5*

9.5 80000041x 80000041x 00100000x 00000000x 1 0x01→ 0x00 1*

80000041x 00004180x 80100041x C0000020x - -

with some probability p in G, then the same output difference Δy is produced
with probability 1 when the input difference is Δx for the next G-function that
uses the same subkey. Therefore, the probability of a differential characteristic
that involves such G-functions is p instead of p2. If each G-function were using
different subkeys, the probability of the characteristic would be 2−32.

3.2 10-Round Differential Attack

We perform a key-recovery attack on 10-round TWIS, excluding the final
key whitening, by using the 9.5-round differential characteristic given in Sec-
tion 3.1 and recover 12 bits of the last round subkey RK10. Adding a half
round to the end of the given 9.5-round differential characteristic and simply
tracing the differences, we obtain the difference between ciphertext pairs as
(80100041x,C00041A0x, ????????x, 00418000x).

The attack proceeds as follows:

1. Take N = c.218 plaintext pairs P i = (P i
0 , P

i
1, P

i
2, P

i
3), P i∗ =

(P i
0
∗
, P i

1
∗
, P i

2
∗
, P i

3
∗
) such that P i⊕P i∗ = (02000000x, 00000000x, 00000000x,

0000A600x) and obtain their corresponding ciphertexts Ci =
(Ci

0, C
i
1, C

i
2, C

i
3), Ci∗ = (Ci

0
∗
, Ci

1
∗
, Ci

2
∗
, Ci

3
∗
) by encrypting these plain-

texts for 10 rounds of TWIS.
2. Check the first 64-bit and the last 32-bit ciphertext difference whether Ci

0 ⊕
Ci

0
∗
= 80100041x, C

i
1 ⊕ Ci

1
∗
= C00041A0x and Ci

3 ⊕ Ci
3
∗
= 00418000x and

keep the text pairs satisfying these equations.
3. As the input differences of the S-boxes in the 10th round are 0x3f ·80 = 0x0,

0x3f ·10 = 0x10, 0x3f ·00 = 0x0 and 0x3f ·41 = 0x01, one can attack the 2nd

and 4th 8-bit words of RK10. However, since two bits of each word vanish
after bitwise AND operation in the S-box, we can retrieve 12 bits of the
subkey. Therefore, keep a counter for each possible value of the 12 bits of
the subkey RK10 corresponding to the second and the fourth bytes.
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Fig. 3. Alternative Round Function

Fig. 4. Last Round of the Attack



Cryptanalysis of TWIS Block Cipher 117

4. Inputs of the last F -function are (Ci
0, RK10) and (Ci

0
∗
, RK10). XOR of out-

put difference of this F -function and ((00418000x) >>> 8) should be equal
to the XOR of 80000041x and (ΔCi

2 <<< 1). So, for each pair of plaintexts
and their corresponding ciphertexts (Ci, Ci∗), increment the counter for the
corresponding value of the subkey RK10 when the following equations holds:

F (Ci
0, RK10)⊕ F (Ci

0

∗
, RK10)⊕ 00004180x = 80000041x ⊕ (ΔCi

2 <<< 1).

5. Adopt the key with the highest counter as the right key.

The signal to noise ratio S/N of the attack is calculated as 25. This value can
be calculated from

S/N =
2k · p
α · β

where k is the key bits we try to derive, p is the probability, α is the average
count of the subkeys per counted plaintext pair and β is the ratio of the counted
pairs to all pairs. As we search for the 12 bits of the final subkey, k = 12, and
the probability is p = 2−18. The expected number of suggested subkeys is α = 2.
The checking condition for the output of the F -function is 12 bits. So, S/N ratio
can be computed as

S/N =
2−18 · 212
2 · 2−12

= 25.

According to [12], about c = 4 right pairs is enough to uniquely determine the 12
bits of RK10. Therefore, the number of required plaintext pairs is N = 4 · 218 =
220 and this makes the data complexity of the attack 221 chosen plaintexts. Step
(1) requires 221 10-round encryptions. After Step (2), there remains 220 · 2−18 =
22 right pairs. Step (3) requires 212 counters. For Step (4), 22 · 2 · 1

2 1-round
computations are required which can be ignored. Hence, time complexity of this
attack is 221 10-round encryptions and the memory complexity is 212. Moreover,
as the two attacked 6-bit words are independent from each other, one can keep
two counters of 6 bits instead of a single counter of 12 bits, which reduces the
memory complexity to 27.

The implementation of the attack verifies the results given in this section.
Using the reference implementation of TWIS and taking c = 4, it takes only 15
seconds on a laptop1 to get the 12 bits of the final subkey. By optimizing the
reference code, the attack time can be decreased.

4 Impossible Differential Distinguisher for TWIS

Impossible differential analysis [13,14] is a variant of differential analysis. The
fundamental difference between two analysis methods is that in differential crypt-
analysis the attacker tries to exploit possible input-output difference pairs to get

1 2.2 Ghz Intel Core2Duo Processor, 2 GB Ram, Ubuntu 10.10 64 bit Operating
System.
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information about the correct key, while in impossible differential cryptanaly-
sis the attacker tries to find events that never occur and use differentials with
probability zero, called impossible differentials. In this section, we analyze the se-
curity of TWIS with respect to impossible differential cryptanalysis and present
a distinguisher of 9.5 rounds.

While building the impossible differential characteristic, we were inspired from
the differential characteristic given in Table 2. We combine two differential char-
acteristics with probability one and obtain a contradiction by using the miss-in-
the-middle approach [15]. The impossible differential characteristic is depicted
in Figure 5, in which “0” denotes the 32-bit word consisting of all zeros.

In the left part of Figure 5, the input difference (0,0,Δy,0), Δy=00800000x, is
proceeded for 4.5 rounds in the forward direction and the difference (Δt,0,0,0),
Δt=00200000x, is obtained. On the other part, starting from the last round
of the characteristic, the output difference (Δt,0,0,0) is traced backwards for 5
rounds and (0,0,Δx,0) difference where Δx=01000000x, is acquired. However,
we cannot have (Δt,0,0,0) = (0,0,Δx,0) since both Δt and Δx are non-zero
differences. Therefore, (0,0,Δy,0) � (Δt,0,0,0) after 9.5 rounds.

This characteristic can be extended to an impossible differential attack by
adding half round to the beginning of the characteristic. By guessing the initial
subkeys, wrong values can be eliminated and one will be left with the actual
value of the subkeys.

5 Key Related Observations

This section is devoted to the observations on TWIS block cipher. These obser-
vations, which are mainly on key scheduling algorithm, include very basic design
flaws like actual key size and trivial related key distinguishers that compromise
the security of the algorithm.

The most important flaw with the key schedule is that it does not use all
bits of the master key. Instead, it uses only 54 bits of the 128-bit key. The first
subkey is generated from the first 3 and the last 29 bits of the master key. Each
remaining subkey is generated by rotating the modified key 3 bits to the left.
So, in order to generate 10 more subkeys, algorithm uses the first 33 bits of the
master key. Therefore, key scheduling algorithm uses the first 33 and the last 29
bits of the key to derive 11 subkeys which adds up to 62 bits. Considering the
bits eliminated by the S-Boxes in the key scheduling part, the actual key size of
the cipher further reduces to 54 bits.

Moreover, the unused 74-bits can be used to distinguish TWIS from other
ciphers: if one flips some of the unused key bits, the ciphertext will remain the
same. For example, take K and K such that K0 = K0 ⊕ 0x10. After the initial
3-bit rotation, the difference 0x10 becomes 0x80. Then, applying S-box to both
K0 and K0, one gets S(K0 ∧ 0x3f) = S(K0 ∧ 0x3f) and the difference between
the keys will be cancelled after S-box operation. Since there is no other difference
between the keys, all the subkeys will be exactly the same. This means, if one
encrypts P with K and K, he gets the same ciphertexts with probability one.
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Fig. 5. Impossible Differential Characteristic where Δx=01000000x, Δy=00800000x,
Δt=00200000x , and Δz=00400000x
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The number of related key distinguishers can be increased by choosing the key
differences that coincide the first two bit positions of 8-bit S-box input.

Also, in the data processing part, the data is XORed with the subkey and
then S-box is applied to the XORed data. As S-box ignores the first two bits of
the 8-bit input, 8 bits of the key is thrown away after this operation. So, the
actual subkeys are 24 bits instead of 32 bits.

The key whitening, which is introduced to increase the security, is used in an
inappropriate way. Notice that RK0 is XORed to P0 as the key whitening which
also again XORed to P0 in the first round inside the G-function. In this way
RK0 will be cancelled in G and it has no effect on the first G-function. So, if
one knows the plaintext or specifically P0, then he also knows the output of the
G-function without knowing the key. Therefore, the cipher can be considered as
9.5 rounds.

Furthermore, the choice of final whitening subkeys results in a weakness. If
one can determine the whole 32-bits of RK2 and RK10 by attacking the final
round, he can also determine the subkeys in between trivially. As the S-box is not
invertible (one has to guess the ignored two bits) and there are 3 unknown bits
coming from left rotation, it is not possible to go backwards fromRK10. Also, one
cannot go forwards from RK2 because of the rotation. However, knowing both,
one can determine the missing bits and recover the subkeys RK3, RK4, . . . , RK9

by going backwards from RK10, forwards from RK2, and checking the known
bits. One can recoverRK1, by going backwards from RK2, with 25 computations
since there are 3 unknown bits from the rotation and 2 unknown bits from
the inverse of the S-box. Similarly, RK0 can be recovered using RK1 with 25

complexity.
Besides, the diffusion of the key bits into the plaintext is not sufficient. This is

a result of using an 8-bit word-wise permutation instead of a bitwise permutation
and 8-bit S-box. This enables the attacker to mount an exhaustive search for a
32-bit subkey by dividing it into four 8-bit words without the knowledge of the
remaining 24 bits. The complexity of such a search will be 4 · 28 = 210 instead
of 232. However, in TWIS case, since the S-box ignores two input bits, one can
recover the active subkey with 4 · 26 = 28 complexity.

6 Conclusion and Future Work

In this paper, we analyze the security of TWIS block cipher against differential,
impossible differential attacks. Our results show that 10-round TWIS, when we
exclude the final key whitening, is not resistant against differential attack. We
recover half of the active key bits with 221 chosen plaintexts. Also, we present
distinguishers using the impossible differential technique. This distinguisher can
be extended to key recovery attack. Finally, we propose some important obser-
vations on the algorithm.

As future a work, we aim to apply the mentioned attacks on full TWIS and
mount related-key attacks by using the weaknesses in the key schedule.
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Abstract. The security of the RSA cryptosystem is based on the
assumption that recovering the private key from a public pair is a hard
task. However, if the private key is smaller than some bound the system
is considered to be insecure. An RSA modulus with a small difference
of its prime factors also significantly reduces the overall security. We
show that the bound on small private key with respect to small prime
difference can be further improved. Therefore, we adapt the technique
of unravelled linearization for constructing lattices and although the
adapted unravelled linearization is only a method for generating lattices
in more elegant way, we yield a benefit compared to known bounds.

Keywords: RSA, unravelled linearization, prime difference, small secret
exponent.

1 Introduction

The RSA cryptosystem is currently one of the most widely deployed asymmetric
cryptosystems. From a mathematical point of view we generally try to break
the RSA cryptosystem either by factorizing the modulus N or by exploiting
dependencies in modular equations. In 1990, Wiener [13] demonstrated how
one can reveal the private key from public pair if the original private key
is smaller than N

1
4 . He also mentioned that his attack may sometimes work

for private keys larger than N
1
4 [13]. This led to an intensive investigation

of the modular equation used in private key generation process. Boneh and
Durfee improved Wiener’s result and presented two approaches based on lattices
which can reconstruct the private key smaller than N0.292 in polynomial time
[1]. This attack was further extended by de Weger in case the modulus is
a product of primes with small difference [14]. De Weger derived bounds for
both variants where the upper bound for an extended Boneh-Durfee attack was
not analyzed in general due to complicated restrictions in forming an adequate
lattice. However, Herrmann and May [6] introduced the technique of unravelled
linearization1 which performs a linearization on the modular equation and so
exploits induced relations of the linearization itself. These relations were later
used for the generation of a lattice. Although their technique did not exceed

1 The technique of unravelled linearization was originally introduced for exploiting
output bits in power generators [5].
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the bound given by Boneh and Durfee, they provided a new elegant solution to
create an appropriate lattice without any complicated restrictions.

In this paper we extend the proposed adapted unravelled linearization method
by Herrmann and May [6] for small prime difference in the RSA cryptosystem.
Then we discuss properties of the adapted unravelled linearization for small
prime difference, compare this technique to other known approaches, explain
limitations of geometrically progressive matrices used in the improved Boneh-
Durfee attack and finally derivate new improved asymptotic bound where the
RSA cryptosystem could still be broken in polynomial time.

The rest of the paper is organized as follows: In Section 2 we will review some
preliminaries on lattices followed by the Small Inverse Problem in Section 3 and
ideas realized in Boneh-Durfee attack revisited by de Weger in Section 4. Before
we present our approach in Section 5 we briefly review the adapted unravelled
linearization. In the same Section we also discuss limitations of improved Boneh-
Durfee attack and adapted unravelled linearization. Section 6 demonstrates
experimental results and the last Section 7 summarizes our work and proposes
future work.

2 Short Preliminaries on Lattices

A lattice L is a set of all integer linear combinations of linearly independent
vectors u1, u2 . . . , uw ∈ Z

n with w ≤ n. One can also describe a lattice by its
basis matrix B consisting of all the vectors u1, u2 . . . , uw as row vectors. The
dimension of a lattice, denoted dim(L), is dim(L)=w. The determinant of the
lattice L is defined as

det(L) =

w∏
i=1

||u∗
i ||

where ||.|| denotes the Euclidian norm and u∗
1, u

∗
2, . . . , u

∗
w are vectors from

applying Gram-Schimdt orthogonalization to the basis vectors. If w = n, then
the lattice is full rank and the absolute value of the determinant of a lattice
basis matrix is equal to the determinant of a lattice. Since all lattices obtained
from the adapted unravelled linearization are always full rank and in addition
triangular, the determinant is the product of the elements on the diagonal.

Lattices are not restricted to a constant dimension and as the dimension
increases, the best reduction algorithm which finds a basis with short vectors
of L runs in exponential time. However, for many cryptographic approaches
it is sufficient to find only a good approximation of the shortest vector in a
basis of a lattice L. One of the most powerful algorithms is the LLL algorithm
[8] which reduces and generates a new basis v1, v2 . . . , vw of the same lattice
L with a good approximation of the shortest vector in a reduced basis B′

satisfying ||v1|| ≤ 2
w
2 det(L)

1
w in polynomial time. The second shortest vector

in the reduced basis B′ is ||v2|| ≤ 2wdet(L)
2

w−1 [1].
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3 The Small Inverse Problem

Recall the RSA and the modulus N which is a product of two primes p and
q. Then we denote the prime difference of p and q as Δ = |p − q|. The small
prime difference is often rewritten to Δ = Nβ for β = [ 14 ,

1
2 ] [14]. Note that we

start from β = 1
4 because of Fermat’s factoring technique [9]. In order to observe

dependencies between the small prime difference and small private key d, we
define the private key in terms of N , concretely d = N δ for δ ∈ [0, 1].

Lemma 1. Let p and q be two primes of about the same size of a modulus N
and Nβ = Δ = |p− q|. Then p+ q ≈ N2β− 1

2 .

Proof. We sketch a proof similar to de Weger [14]. We have Δ2 = (p+ q)2 − 4N
= (p+ q − 2

√
N)(p+ q + 2

√
N). We know that 2

√
N < p+ q < 3√

2

√
N . Then

p+ q − 2
√
N = Δ2

p+q+2
√
N

< Δ2

4
√
N
, p+ q + 2

√
N = Δ2

p+q−2
√
N

> Δ2

4
√
N
.

Therefore, p+ q ≈ Δ2

4
√
N

± 2
√
N ≈ N2β− 1

2 . �

Boneh and Durfee rewrote the common RSA modular key generation equation
into its equivalence and substituted terms N + 1 for A and −(p+ q) for y.

ed = 1 (mod (p− 1)(q − 1))
ed = 1 + x(p− 1)(q − 1)
ed = 1 + x(N + 1 + (−p− q))
0 = 1 + x(A+ y) (mod e)

Now, if modulus N has the same order of magnitude as public key e (e ≈ Nα,
α ≈ 1) then we can solve the Small Inverse Problem for a given polynomial
f(x, y) = 1 + x(A+ y) (mod e) satisfying

f(x0, y0) ≡ 0 (mod e) where |x0| < N δ and|y0| < N2β− 1
2 .

The general idea of solving the Small Inverse Problem is to generate a set of
coprime polynomials to the input polynomial f(x, y) which contains the same
roots over integers and then use basis reduction and root finding techniques
to reveal exact roots over integers. On the other side, if N is significantly
larger than e, then also x is and the roots over integers and (mod e) are
not identical. Then the roots are only linear combinations of e. Fundamental
properties for an arbitrary polynomial f(x, y), which has roots over integers,
specify the Howgrave-Graham theorem [7] originated from the Coppersmith’s
method [4].
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Theorem 1 (Howgrave-Graham). Let m be a positive integer and F (x, y) be
a bivariate monic polynomial. Suppose that

(1.) F (x, y) = 0 mod Nm and |x0| ≤ X, |y0| ≤ Y ,
(2.) ||F (xX, yY )|| < Nm√

dim(L)
,

then F (x0, y0) has a solution over the integers.

For the proof, we refer the reader to the original paper [7].

4 Geometrically Progressive Matrices
in the Boneh-Durfee Attack

The Boneh-Durfee attack is based on the Small Inverse Problem and factorizes
a modulus N in the RSA cryptosystem when the private key d is smaller than
N0.292 [1]. Our aim is to briefly review, examine and join the trivial and improved
attack introduced by Boneh and Durfee with de Weger’s approach targeting
small difference of primes p and q [14]. Hence, let us first recall the initial RSA
key generation equation:

ed+ k︸︷︷︸
x

(N + 1︸ ︷︷ ︸
A

−(p+ q)︸ ︷︷ ︸
y

)− 1 = 0.

Then the root of the bivariate modular polynomial f(x, y) = x(A + y) − 1 = 0
mod e is bounded by |x0| < X and |y0| < Y . Recall that upper bounds X
and Y are always smaller than e. Next, if we could generate a set of polynomials
satisfying Howgrave-GrahamTheorem 1, then we could apply the LLL algorithm
on a lattice consisting of polynomials with the same root as f(x, y) and obtain
a reduced basis matrix. Row vectors of this reduced basis would lead to a
polynomial F (x0, y0) = 0 with a solution over integers. For the same reason
Boneh and Durfee defined the polynomials

gi,k(x, y) = xifk(x, y)em−k for k = 0, . . . ,m and i = 0, . . .m− k and
hj,k(x, y) = yjfk(x, y)em−k for k = 0, . . . ,m and j = 0, . . . t

for some positive integer m and t and within the same roots as f(x, y). Note
that the gi,k(x, y) polynomials form the set of all so-called x-shifts while hj,k(x, y)
form the set of all y-shifts because they shift each variable x and y, respectively.
Then a lattice spanned by the coefficient vectors of these polynomials gi,k(x, y)
and hj,k(x, y) where each coefficient vector represented a row of the basis matrix
always has a lower triangular structure. The determinant det(L) is determined
only by the entries on the diagonal. An example of a lattice L with parameters
m = 2 and t = 2 is depicted in Figure 1. For a better determinant calculation,
Boneh and Durfee divided the whole matrix into two submatrices with respect
to each shift. Then the determinant corresponding to all x-shifts equals
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1 x xy x2 x2y x2y2 y xy2 x2y3 y2 xy3 x2y4⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2 e2

xe2 e2X
fe e eAX eXY
x2e2 e2X2

xfe eA eAX2 eX2Y
f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

ye2 e2Y
yfe eAXY eY eXY 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

y2e2 e2Y 2

y2fe eAXY 2 eY 2 eXY 3

y2f2 A2X2Y 2 2AXY 2 2AX2Y 3 Y 2 2XY 3 X2Y 4

Fig. 1. Boneh-Durfee basis matrix for m=2, t=2

detx = e
1
3m(m+1)(m+2)X

1
3m(m+1)(m+2)Y

1
6m(m+1)(m+2).

Until now, we have followed the Boneh and Durfee paper [1]. However, if we

generalize the determinant for values |p+ q| = N2β− 1
2 ≈ e2β−

1
2 , then the result

includes also properties of modulus N with small prime difference [14]. Plugging

values N , e ≈ N , d = N δ ≈ eδ and |p+ q| = N2β− 1
2 ≈ e2β−

1
2 into the detx leads

to

detx = e
1
3m(m+1)(m+2)e

δ
3m(m+1)(m+2)e(

β
3 − 1

12 )m(m+1)(m+2) = e(
δ
3+

β
3 +

1
4 )m

3+o(m3).

Boneh, Durfee and later de Weger analyzed and evaluated the bound obtained
only from the submatrix related to x-shifts and noticed that one would recover
the Wiener’s bound δ ≤ 3

4 − β. Hence, taking only x-shifts into consideration
cannot exceed Wiener’s bound. With the help of tedious arithmetic, Boneh with
Durfee computed the determinant corresponding to y-shifts and also the whole
determinant of a lattice. This led to the bound δ < e0.284 which is equivalent to
δ < 1

6 (4β + 5)− 1
3

√
(4β + 5)(4β − 1) according to de Weger [14].

Each basis matrix has w row vectors with the largest constant equal to em.
Therefore, the norm of the first shortest vector v1 in each reduced basis should
not be much larger than em

w when we want to solve the Small Inverse Problem. In

addition, recall the LLL algorithm which returns a vector ||v1|| ≤ 2
w
2 det(L)

1
w .

Combining these two facts and omitting all negligible values compared to e
leads to a weaker condition on determinant. Thus, for the rest of this paper we
will assume that each determinant det(L) ≤ emw and each monomial on the
diagonale which contributes to the determinant with a factor smaller than em

improves the overall bound on X and contrarily, each larger value decreases the
bound.
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Boneh und Durfee examined entries on the diagonal (see Figure 1) and realized
that all the underlined values in Figure 1 are exceeding em and, therefore, are
more destructive than beneficial. Hence, they eliminated row vectors involving
these larger values and were able to manage a better bound on private key
δ < 0.292 [1]. Unfortunately, by removing some of these rows from the lattice,
they violate the advantageous triangular structure. Consequently, the resulting
determinant of a new created lattice L

′
become more complex and much harder

to compute. In order to formulate a new determinant det(L
′
) for each non

triangular lattice L
′
they introduced geometrically progressive matrices.

Definition 1. Let a, b be positive integers and let C,D, c0, c1, c2, c3, c4, α be real
numbers with C,D, α ≥ 1. Then an (a + 1)b × (a + 1)b matrix M is said
to be geometrically progressive with parameters (C,D, c0, c1, c2, c3, c4, α) if the
following conditions are satisfied for all i, k = 0, . . . , a and j, l = 1, . . . b :

1. |M(i, j, k, l)| ≤ C ·Dc0+c1i+c2j+c3k+c4l,
2. M(k, l, k, l) ≤ Dc0+c1i+c2j+c3k+c4l,
3. M(i, j, k, l) = 0 for each i > k or j > k,
4. αc1 + c3 ≥ 0 and αc2 + c4 ≥ 0.

Each geometrically progressive matrixM is equivalent to lattice L
′
and is divided

into two subparts Mx and My based on the corresponding shift.

Lemma 2. The matrix My is geometrically progressive with parameters (m2m, e,
m, δ + 2β − 1

2 , 2β − 3
2 ,−1, 1, α) for all positive integers m and t [14].

De Weger verified the geometrically progressive submatrix My against all condi-
tions in adapted settings for small prime differences. The first three conditions
are always satisfied. However, the last condition holds only for δ > 2− 4β.

α(δ + 2β − 1

2
)− 1 ≥ 0 α(2β − 3

2
) + 1 ≥ 0︸ ︷︷ ︸

δ>2−4β

As we mentioned above, with the help of geometrically progressive matrices,
Boneh and Durfee managed to improve their bound from δ < 0.284 to δ < 0.292.

Also de Weger determined a more general bound on private key δ < 1−
√
2β − 1

2 .

However, δ must always stay bigger than 2 − 4β. Otherwise, one could not
generate a proper geometrically progressive matrix. Since the condition is con-
tradictory for each β < 3

8 , de Weger’s method exceeds the original bound only
for δ ≤ 1

2 as illustrated in Figure 2. The bold black line represents the final
bound achieved by de Weger2.

2 Note that for β = 1
2
de Weger would recover Boneh and Durfee results.
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Fig. 2. Both Boneh-Durfee attacks revisited by de Weger

5 The Adapted Unravelled Linearization with Small
Prime Difference

Cryptanalysis of RSA with small private key [1] was simplified by Herrmann
and May [6]. They revisited an approach called unravelled linearization and
manipulate the underlying polynomial so that the geometrically progressive
basis matrix described in the previous section becomes triangular with the
same asymptotic determinant. Now, we introduce the method of unravelled
linearization, explain its always triangular basis matrix, illustrate the similarities
to the original Boneh-Durfee attack and discuss an extended attack against the
RSA cryptosystem.

Boneh and Durfee improved their attack by removing some of the polynomials
that introduced a large factor to the determinant. Consequently, the basis matrix
in improved Boneh-Durfee case lost its triangularity and the computing of a
determinant became a very complex task. Fortunately, Herrmann and May
subtly modified the original equation and performed a more suitable modification
of the underlying polynomial which gave them an additional option to eliminate
all damaging shifts and led to a low-dimensional sublattice with a triangular
basis matrix. The only approach known to the author which effectively reduces
row polynomials so that each polynomial in basis matrix contributes to the
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determinant with value smaller than em and keeps triangular structure at the
same time is the unravelled linearization method. In this approach Herrmann
and May joined together the monomials of an underlying bivariate polynomial

1 + xy︸ ︷︷ ︸
u

+Ax mod e (1)

and obtain a linear polynomial f̄(x, u) = AX + u mod e. Then they fixed an
integer m and generated x-shifts identical to Boneh-Durfee approach.

ḡi,k := xif̄kem−k for k = 0, . . . ,m and i = 0, . . . ,m− k

Coefficients of ḡi,k represent basis (row) vectors of a lattice. Recall that a lattice
spanned only by x-shifts cannot exceed the Wiener bound. Thus, they included
y-shifts with an parameter t which will be determined later.

h̄j,k := yj f̄kem−k for j = 1, . . . , t and k =
⌊
m
t

⌋
j, . . . ,m

The crucial observation is that we have a different set of y-shifts polynomials
where each polynomial h̄j,k satisfies the second Howgrave-Graham condition in
Theorem 1. In addition, each generated polynomial h̄j,k introduces only one new
monomial yjuk and all other terms are already known from previous polynomials
or can be substituted by the term u− 1 obtained from the original linearization
(1) where Herrmann and May [6] substituted u = xy + 1. Then the lattice is
formed by a lower triangular matrix and entries on the diagonal indicate the
determinant that is now trivial to compute.

Now, we explain the preservation of a triangular basis matrix in the adapted
unravelled linearization in detail. First, we consider the x-shifts in the standard
lexicographic monomial order. The coefficients of powers of f̄ are determined by
Pascal’s triangle. The left diagonal of Pascal’s triangle corresponds to the term
AnXn for n = 1, . . . , k while the right diagonal corresponds to the coefficient of
Un, where U denotes the upper bound on u. The next diagonal from the left
corresponds to the coefficient of An−1Xn−1 and so on. It is also worth noticing
that each power of f̄ increases the number of terms in a row by one.

f̄(xX,uU) AX U
f̄2(xX, uU) A2X2 2AXU U2

f̄3(xX, uU) A3X3 3A2X2U 3AXU2 U3

f̄4(xX, uU) A4X4 4A3X3U 6A2X2U2 4AXU3 U4

...
...

f̄n(xX, uU) AnXn
(
n
1

)
An−1Xn−1U . . .

(
n

n−1

)
AXUn−1 Un

Fig. 3. Coefficients of power of f̄n
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1 x u x2 ux u2 x3 ux2 u2x u3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e3 e3

xe3 e3X
f̄e2 e2AX e2U

x2e3 e3X2

xf̄e2 e2AX2 e2UX
f̄2e eA2X2 2AUX eU2

x3e3 e3X3

x2f̄ e2 e2AX3 e2UX2

xf̄2e eA2X3 2AUX2 eU2X
f̄3 A3X3 3A2UX2 3AU2X U3

Fig. 4. A lattice only with x-shifts (m = 3)

One can rewrite each polynomial f̄ l in Pascal’s triangle by a polynomial with
smaller power f̄ l−l′ for k = 0, . . . ,m multiplied by xi for i = 0, . . . ,m− k and
adding additionally several terms containing U . The total degree of a polynomial
f̄ l is then l − l′ + i and the number of missing terms involving U is equal
to i. These coefficients are U l,

(
l
1

)
AXU l−1, . . . ,

(
l

l−1

)
Ai−1X i−1U . The x-shifts,

which are split into sub-blocks depending on the total degree of xif̄ l−l′ , form
a collection of polynomials consisting of all combinations of x and f̄ so that
the sum of exponents is n for n-th sub-block starting from n = 0. In addition,
although polynomials in each sub-block have a different number of terms, they
always form a triangular submatrix. A lower triangular submatrix generated
from ḡi,k for parameter m = 3 is represented in Figure 4.

The y-shifts are more complex and, therefore, we clarify the dependence of
consecutive polynomials by an expansion of yj f̄ lem−l for j = 1, . . . , t. First we
state that each polynomial yj+1f̄ lem−l has only one new monomial compared to
yj f̄ lem−l and then the same for yj f̄ l+1em−l−1. In order to gain a better focus
on variables x, y and u, we will omit all constants and upper bounds. It is also
worth noticing that we first perform y-shifts for lower powers of y and f̄ . Thus,
our sufficient condition is to check whether there is only one new term larger3

than the monomials we already know from previous polynomials or not. This
restriction is also called an increasing pattern [3]. Let

yj f̄ l = ulyj + ul−1xyj + . . .+ uxl−jyj + xlyj .

Then

yj+1f̄ l = ulyj+1 + ul−1xyj+1 + . . .+ xlyj+1

= ulyj+1 + ul−1yj · xy + . . .+ xl−j(xy)j

= ulyj+1 + ul−1yj(u− 1) + . . .+ xl−j(u− 1)j

= ulyj+1 + ulyj − ul−1yj + . . .+ ujxl−j − uj−1xl−j . . .± xl−j

3 Terms are in lexicographic monomial order.
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1 x u x2 ux u2 uy u2y u2y2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2 e2

xe2 e2xX
f̄e eAxX euU
x2e2 e2x2X2

xf̄e eAx2X2 euUxX
f̄2 A2x2X2 2AuUxX u2U2

yf̄e −eA eAuU uUyY
yf̄2 −A2xX −2AuU A2uUxX 2Au2U2 u2U2yY
y2f̄2 A2 −2A2uU A2u2U2 −2AuUyY 2Au2U2yY u2U2y2Y 2

Fig. 5. A lattice using unravelled linearization with parameters m = 2 and t = 2

Indeed, the equation introduces exactly one new monomial ulyj+1 compared
to yj f̄ l. The sum of all exponents in all the other terms is smaller than j + l.
Another way to acquire y-shifts is to increase the power of f̄ .

yj f̄ l+1 = ul+1yj + ulxyj + . . .+ xl+1yj

= ul+1yj + ulyj−1(u− 1) + . . .+ xl+1yj

= ul+1yj + ul+1yj−1 − ulyj−1 + . . .+ xl+1yj

The polynomial yj f̄ l+1 contributes to the y-shifts with ul+1yj , while the mono-
mials ul+1yj−1, −ulyj−1, . . . emerge first in other polynomials e.g. yj−1f̄ l+1,
yj−1f̄ l, etc. The above statements are only true for l + 1 ≥ j. Otherwise, we
would get xl+1yj = (xy)l+1yj−l−1 = (u − 1)lyj−l−1 − . . . ± yj−l−1 in the last
monomial. And as we can see in Figure 5, our y-shifts contribute to the basis
matrix only with monomials in a form yjul due to j starting from index one and
not zero. Another proof, however not as detailed as the aforementioned one, is
given in [6].

Notice that if polynomial yj f̄k for k ∈ {
⌊
m
t

⌋
j, . . . ,m} is an y-shift, then all of

yj−if̄k−i for k− i ∈ {
⌊
m
t

⌋
j− i, . . . ,m− i} and also k− i ∈ {

⌊
m
t

⌋
(j− i), . . . ,m}

are already included in a lattice. A relation between the two different k − i sets
states the following inequality [6]⌊

m
t

⌋
(j − i) ≤

⌊
m
t

⌋
j − i

i(1−
⌊
m
t

⌋
) ≤ 0

⌊m
t

⌋
≥ 1. (2)

We proceed with calculating the determinant of the lattice according to
Herrmann and May [6]. They also performed rounding compared to large m
and t in exponent and suggested a new variable τ = t

m which avoided long,
tedious computations. Then the determinant of the lattice det(L) corresponded
to

det(L) < XsxY syUsuese (3)
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where sx, sy, su, and se are the contributions of the upper bounds X ,Y ,U and e
from all polynomials defined by ¯gi,k and ¯hj,k.

sx =
m∑

k=0

m−k∑
i=0

i =
1

6
m3 + o(m3)

sy =

τm∑
j=1

m∑
k= 1

τ
j

j =
τ 2

6
m3 + o(m3)

su =

m∑
k=0

m−k∑
i=0

k +

τm∑
j=1

m∑
k= 1

τ
j

k =

(
1

6
+

τ

3

)
m3 + o(m3)

se =

m∑
k=0

m−k∑
i=0

(m− k) +

τm∑
j=1

m∑
k= 1

τ
j

(m− k) =

(
1

3
+

τ

6

)
m3 + o(m3)

dim(L) =
m∑

k=0

m−k∑
i=0

1 +
τm∑
j=1

m∑
k= 1

τ
j

1 =

(
1

2
+

τ

2

)
m2 + o(m2)

The plus operator in su and se implies joining together the contributions from
both shift sets. Recall that our main goal is to examine the impact of adapted
unravelled linearization on small prime differences. Therefore, we adjust the
original upper bounds X = N δ, Y = N

1
2 , U = N δ+ 1

2 from [6] for Y = N2β− 1
2

and U = N δ+2β− 1
2 and so involve the small prime difference of p and q. We

do not need to update X = N δ, since we operate only with prime difference
affecting only y-shifts. This leads us to a more general determinant. For more
details on determinant calculation we refer the reader to [6].

det(L) < edim(L)m XsxY syUsuese ≤ edim(L)m

δsx + (2β − 1
2 )sy + (δ + 2β − 1

2 )su + se ≤ dim(L)m

m3
(

δ
6 + (2β − 1

2 )
τ2

6 + (δ + 2β − 1
2 )(

1
6 + τ

3 ) +
1
3 + τ

6 − 1
2 − τ

2

)
≤ 0

m3(τ2(4β − 1) + x(4δ + 8β − 6) + 4δ + 4β − 3) ≤ 0

which is minimal for τ = 3−2δ−4β
4β−1 . Plugging the optimized τ back to the

equations leads to

m3(−4δ2 + 8δ + 8β − 6) ≤ 0

δ ≤ 1−
√
2β − 1

2 .

We let the reader to check that for β = 1
2 one will recover the bound

δ ≤ 1−
√
2
2 ≈ 0.292 from the original improved Boneh-Durfee attack.

Although with the aid of unravelled linearization we are able to avoid pro-
gressive matrices, for a successful generation of a triangular basis matrix from
polynomials ḡi,k and h̄j,k, τ = t

m should remain positive and smaller than one.
Otherwise, we would get more than one new term and destroy the triangular
structure in the y-shifts. Recall that the adapted unravelled linearization can
only be applied for a triangular basis matrix (see Equation 2).
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Fig. 6. Improved bound with respect to small prime difference

Then 3−2δ−4β
4β−1 ≤ 1 implies that our condition on τ is fulfilled only for interval

β ∈ [ 38 ,
1
2 ] or analogously for δ ≤ 1

2 . Recall that these intervals can also be
achieved by an improved Boneh-Durfee attack with small prime differences [14]
and that geometrically progressive matrices are strictly defined for δ ≤ 0.5 [14].
On the other hand, our adapted unravelled linearization solution for small prime
difference has also one restriction (τ ≤ 1) which is satisfied for values δ ≤ 0.5
and after reaching this point δ = 0.5 we are “stopped” only due to the inability
of generating an adequate τ . However, if we continue with δ > 0.5 for constant
τ = 1 and omit that the method won’t be optimized anymore, then we obtain a
subtle benefit. The exact impact on boundary function is shown in Figure 6. The
shaded area, starting from β < 0.375, depicts the concrete advantage compared
to the (improved) Boneh-Durfee attack and de Weger’s result. The dotted line
shows the improved boundary function on δ. Since the new boundary function
with unoptimized τ is only linear, our approach intersects the lower Boneh-
Durfee boundary function at the point β = 0.3125 and δ = 0.625, which seems
to be more suitable for very small prime differences. Hence, from this point on
we continue with the lower Boneh-Durfee function.
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Fig. 7. Improved bound on δ for parameters m = t = 6 and m = t = 8

6 Experimental Results

Our implementation of unravelled linearization specialized for small prime diffe-
rence reduces a basis matrix by the LLL algorithm, extracts the first two shortest
vectors and computes the original p+ q value. Since our approach mainly deals
with low level arithmetic functions over big integers we include the NTL library
[11] which claims to provide one of the fastest polynomial arithmetic and lattice
reductions. In our case, we chose the block Korkin-Zolotarev reduction [12] which
yields better quality of the reduced matrix than the classical LLL algorithm.
Unfortunately, the NTL library does not support bivariate modular polynomials.
Therefore, we are forced to use an additional computer algebra system called
PARI/GP [10] designed for fast computations in number theory.

We prove our theoretical assumptions by running dozens of experiments. All
tests ran on a 2.66 GHz Intel Xeon processor with 8 GB RAM. For each test,
we generate a private key d, primes p and q so that p+Δ < q. We repeat each
test several times in order to improve the quality of respective tests.

Recall that the improved Boneh-Durfee attack revisited by de Weger ends at
point β = 0.375 and δ = 0.5 due to the definition of geometrically progressive
matrix while the weaker Boneh-Durfee attack continues asymptotically to δ = 1.
Hence, our priority is to evaluate the region between where the improved Boneh-
Durfee attack revisited by de Weger ends, but adapted unravelled linearzation
continues. This area of interest is illustrated in Figure 7. Let us first describe
the depicted data. The black bold line represents our asymptotic improved
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bound on delta, while the dashed line is the lower asymptotic boundary function
given by de Weger. The dotted line denotes its lower version precomputed and
optimized for parameter m = 6. Circles denotes our tests. We evaluate lattices
with parameters m = t = 6 and m = t = 8 generated by optimized parameters
for discussed region. The black-filled circles indicate parameters where we are
still able to successfully recover the private key within the smaller lattice with
parameter m = t = 6. In addition, black-filled triangles determine the benefit
which is obtained by choosing a larger lattice with m = t = 8. As we can see
in Figure 7, results from both lattices are parallel to the derived asymptotic
bound for adapted unravelled linearization. Hence, we proved our claim. The
empty circles indicate failure solutions in a sense we were not able to obtain the
original private key from the reduced basis matrix.

While performing the experiments we observed that the runtime changes every
time and is dependent on parameters. Thus, we measured the time during the
experiments for respective δ and β. Monotone increasing average times in seconds
are shown in the Table 1. Note that β and δ values are identical to circles in
Figure 7.

Table 1. Running time for small prime difference

β 0.3 0.31 0.32 0.33 0.34 0.35 0.36
δ 0.62 0.595 0.58 0.56 0.54 0.52 0.5

m = t = 6 96s 89s 82s 73s 69s 63s 56s
m = t = 8 1418s 1292s 1175s 1102s 981s 876s 817s

7 Summary

This paper evaluates the region between where the improved Boneh-Durfee ends,
but lower Boneh-Durfee attack still continues for small prime differences. There-
fore, we reviewed the fundamental ideas behind the original and improved attack
and also adapted unravelled linearization. We proved that adapted unravelled
linearization holds triangular structure for each τ ≤ 1. We described an unique
solution which exceeds the de Weger’s bound on δ asymptotically although
the adapted unravelled linearization lattice is equivalent to the lattice used in
the improved Boneh-Durfee attack. Moreover, we did not only demonstrate the
correctness of our assumptions, but also give a general overview of running time
of the block Korkin-Zolotarev reduction concerning the small primes difference
as we could not find any relevant information about it in available literature.
Geometrically progressive matrices were not analyzed nor optimized for small
prime difference although they could have led to an equivalent bound. This idea
is left as an open problem for future research.
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Abstract. In this paper we present an approach for optimizing the
implementation of hardware multipliers in GF (2k). We investigate two
different strategies namely the reduction of the complexity of the multi-
plication methods and the combination of different multiplication meth-
ods as a means to reduce the area and/or energy consumption of the
hardware multiplier. As a means to explore the design space concerning
the segmentation of the operands and the selection of the most appropri-
ate multiplication methods we introduce an algorithm which determines
the best combination of the multiplication methods. In order to assess
the validity of our approach we have benchmarked it against theoretical
results reconstructed from literature and against synthesis results using
our inhouse 130 nm technology. The former revealed that our designs
are up to 32 per cent smaller than those given in literature, the latter
showed that our area prediction is extremely accurate.

Keywords: ECC, polynomial multiplication, hardware implementation.

1 Introduction

During recent years elliptic curve cryptography (ECC) has gained significant
attention especially for devices such as wireless sensor nodes. Due to their scarce
resources hardware implementations are considered important, if not the only
way to enable strong cryptographic support on such devices. When it comes to
hardware implementation of ECC, the polynomial multiplication in GF (2k) is
the operation which is investigated most since it is one of the most complex
field operations and executed very often. There exist many multiplication meth-
ods (MMs) for polynomials over GF (2k) that apply segmentation of both k-bit
long multiplicands into n parts (terms): the generalized Karatsuba MM [1] for
n > 1; Karatsuba MM [2] for 2- and Winograd MM [3] for 3-term operands,
that are both the special cases of the generalized Karatsuba MM; Montgomery
MM [4] for 5-, 6- and 7- term operands and many other MMs [5]-[8]. All these
MMs require less partial multiplications than the classical MM which in princi-
ple helps to reduce the chip parameters area and energy consumption. But these
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approaches require more XOR-operations than the classical MM so that the re-
duction of the number of partial multiplications does not in all cases improve
the the chip-parameter of the resulting multiplier. This holds especially true for
small operands for which the classical MM is the favorite. The reason for this
phenomenon is the fact, that the area of an AND gate is smaller than the area
of an XOR gate [9]. Thus, a combination of the classical MM for calculating
of small partial products with other MM can improve chip-parameters of the
resulting multipliers [10]. An additional means to improve the chip-parameters
of the multipliers is the reducing the number of additions (XOR-operations).
This reduction can be achieved by using pre-defined processing sequences for
additions of partial products [11]. If an optimal combination of several multipli-
cation approaches with a reduced number of XOR-operations is found, the area
and energy consumption is reduced significantly. In this paper we discuss two
approaches to reduce the complexity of polynomial multipliers which can be ap-
plied individually, but that result in an optimal result when used in combination.
First we describe our algorithm to determine an optimal combination of MM for
a given length of operands. In order to assess the complexity of an implemen-
tation proposal we need to provide our algorithm with a means to estimate it.
For the assessment of the chip parameters we use the number of XOR and AND
gates needed for the implementation. We are aware of the fact that gate prop-
erties are technology dependent. By initializing our algorithm with the specific
area or energy consumption of used gates it can be applied for each technology.
Second we explain how the number of XOR operations can be reduced by apply-
ing an optimized processing sequence when summing up the partial products.
We apply this approach to 6 MMs and we give their gate complexity with the
reduced number of XOR operations. Of course the so optimized MM can be used
by our algorithm so that the resulting multiplier also benefits from the reduced
number of XOR operations. In addition we thoroughly evaluated our approach
with two respects. First we benchmarked it against approaches discussed in lit-
erature which applied similar MMs or combinations of MMs respectively. Here
we used the provided information to reconstruct theoretical data for multipliers
relevant for ECC i.e. for operand lengths up to 600 bit. The comparison with
those data reveals that our approach leads to an up to 32 per cent reduced area
consumption. Second we synthesized the most promising results using our in-
house 130 nm technology to see the quality of our theoretical area assessment.
This experiment revealed that there is no measurable deviation. The rest of this
paper is structured as follows. In the next section we discuss our means to assess
the complexity of a certain multiplication method. In section 3 we introduce our
approach to reduce the complexity of the multipliers by determining an opti-
mized processing sequence for the summation of partial products. The following
section presents our algorithm for selecting the optimal combination of multipli-
cation methods. The evaluation of our approach against literature and synthesis
results is discussed in section 5. The paper concludes with a short summary of
our major findings.
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2 Complexity of Multipliers

First of all we give the definition of multiplications over extended binary fields
GF (2k). Let A(x) =

∑k−1
i=0 ai ·xi and B(x) =

∑k−1
i=0 bi ·xi be elements of GF (2k)

and f(x) be the irreducible polynomial of degree k generating GF (2k). The
multiplication of the elements over GF (2k) can be performed in two steps: the
calculation of the polynomial products C(x) of degree (2k− 2) and its reduction
to the degree k. In this paper we concentrate on the optimization of the first
step of the multiplication only, i.e. on the polynomial multiplication:

C(x) = A(x) ·B(x) =

2k−2∑
i=0

ci · xi, with ci =
⊕
i=j+l

aj · bl, ∀j, l < k (1)

The symbol
⊕

in (1) denotes the Boolean XOR operation.
We describe the complexity of polynomial multiplications (1) by the exact

numbers of the Boolean XOR and AND operations, denoted as #XOR and
#AND, respectively. This corresponds to the number of XOR and AND gates
of the resulting multipliers. The exact gate complexity (GC) of a certain multi-
plication method (MM) for k-bit long operands can be expressed by a tuple as
follows:

GCMM
k = (#AND; #XOR) (2)

The optimization parameters of a hardware multiplier, such as its area and the
average energy consumption one of a single clock cycle, can be calculated based
on its gate complexity and on the area and/or the energy consumption of the
used gates (AreaAND, AreaXOR and EAND, EXOR):

Area = #AND ·AreaAND +#XOR ·AreaXOR

Energy = #AND · EAND +#XOR ·EXOR

(3)

The reduction of the gate complexity improves directly the area and energy,
i.e. the both optimization parameters at the same time. MMs for large k-bit
polynomials normally use segmentation of the polynomials into n smaller m-
bit terms which are then multiplied. To get the result the partial products are
added (i.e. XORed). If this principle of divide and conquer is applied to an k-bit
multiplier the resulting ASIC (Application-Specific Integrated Circuit) consist
of a certain number of m-bit partial multipliers with their own gate complexity
GCMM

m :
GCMM

k=nm = (#MULT ·GCMM
m ; #XOR) (4)

The number of partial multiplications #MULT and the number of XOR gates
#XOR depend on the selected multiplication method MM and on the seg-
mentation of the operands, i.e. on the number n. The knowledge of the gate
complexity of each partial multiplier as tuple (2) allows to calculate the gate
complexity of full k-bit multipliers also as tuple (2). Each partial multiplication
can be implemented by any multiplication method or even by any combination
of multiplication methods. In order to optimize the complexity of a polynomial
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multiplier it is necessary to determine the optimal combination of different MMs.
Formula (4) shows the assessment function that allows comparing different MMs
given the fact that the segmentation and the type of the used partial multipliers
are the same. In the next section we determine the gate complexity according
to (4) for 6 MMs using the usual straight forward implementation for adding
the partial products and discuss the reduction of the gate complexity using
our predefined processing sequence. The algorithm for determining of optimal
combination of MMs is presented in section 4.

3 Optimizing Processing Sequences for Polynomial
Multiplication Based on the Table Representation

In this section we present how we optimized the processing sequence for different
MMs. We determined the optimized processing sequence and its gate complexity
according to (4) for the following MMs: classical MM, Karatsuba MM by seg-
mentation of operands into 4 terms [12], Montgomery multiplication formulae for
5-, 6- and 7-term operands [5] and the generalized Karatsuba (genKar) algorithm
[1]. In order to do so we represented each MM as a table. This section explains
this table representation of a multiplication formula. This table representation
(TR) helps to find the same sums of partial products and to prevent their multi-
ple calculation. We explain the table representation of a multiplication formula
using the classical MM for 2-bit and for 2-terms long polynomials as example.
Table 1 is the table representation of the classical multiplication formula for
2-bit long polynomials (5). The leftmost column of the TR shows all 1-bit long
partial products from (5). All other columns correspond to an individual 1-bit
long product term ci, where 0 ≤ i ≤ 2. If the product term ci is calculated by
adding a partial product PPj , the cell of the TR with ’coordinates’ (PPj , ci) is
filled with a ⊕. Otherwise the cell is empty.

C(x) = A(x) ·B(x) = a1a0 · b1b0 = (a1 · 2⊕ a0) · (b1 · 2⊕ b0) =

= a1 · b1︸ ︷︷ ︸
c2

·22 ⊕ (a0 · b1 ⊕ a1 · b0)︸ ︷︷ ︸
c1

·21 ⊕ a0 · b0︸ ︷︷ ︸
c0

= c2c1c0. (5)

Table 1. TR of the classical MM for 2-bit long polynomials

a0 · b0 ⊕
a0 · b1 ⊕
a1 · b0 ⊕
a1 · b1 ⊕

c2 c1 c0

TR of the classical multiplication formula for 2-term polynomials looks a bit
more complicated, because each operand term Ai or Bi is now m-bit long and



Combining MM for Polynomial Multiplier in GF (2k) 141

each partial product Ai · Bj is (2m− 1)-bit long:

C(x) = A(x) · B(x) = A1A0 · B1B0 = (A1 · 2m ⊕A0) · (B1 · 2m ⊕B0) =

= A1 · B1︸ ︷︷ ︸
CS2

·22m ⊕ (A0 · B1 ⊕A1 · B0)︸ ︷︷ ︸
CS1

·2m ⊕A0 · B0︸ ︷︷ ︸
CS0

= C3C2C1C0. (6)

The highest segment C3 of the polynomial product C(x) in (6) is (m − 1)-
bit long and all other segments Ci, for 0 ≤ i ≤ 2, are m-bit long. All these
product segments can be calculated from segments of (2m − 1)-bit long terms
CSi. Formula (7) represents each term CSi as the sum of its segments: the
segment consisting of the most significant bits CSi[1] is (m−1)-bit long and the
other segment CSi[0] is m-bit long:

CSi = CSi[1] · 2m ⊕ CSi[0] (7)

Each partial product Ai ·Bj in (6) can be represented in the same way:

Ai · Bj = AiBj [1] · 2m ⊕AiBj [0] (8)

Formula (9) represents the polynomial product from (6) as the sum of the partial
product segments in the notation of (8):

C(x) = (A1B1[1] · 2m ⊕A1B1[0])︸ ︷︷ ︸
CS2

·22m⊕

⊕
(
(A0B1[1] · 2m ⊕A0B1[0])⊕ (A1B0[1] · 2m ⊕A1B0[0])

)
︸ ︷︷ ︸

CS1

·2m⊕

⊕ (A0B0[1] · 2m ⊕A0B0[0])︸ ︷︷ ︸
CS0

=

= A1B1[1]︸ ︷︷ ︸
C3

·23m ⊕ (A1B1[0]⊕A0B1[1]⊕A1B0[1])︸ ︷︷ ︸
C2

·22m⊕

⊕ (A0B0[1]⊕A0B1[0]⊕A1B0[0])︸ ︷︷ ︸
C1

·2m ⊕A0B0[0]︸ ︷︷ ︸
C0

.

(9)

Table 2 is the table representation of formula (9). The leftmost column shows
both segments PPj [0] and PPj [1] of all partial products PPj , i.e. PPj [d], where
1 ≤ j ≤ #MULT , d ∈ {0, 1}. All other columns correspond to an individual
product term Ci, where 0 ≤ i ≤ 2n− 1. If the product term Ci is calculated by
adding a partial product segment PPj [d], the cell of the TR with ’coordinates’
(PPj [d] , Ci) is filled with a ⊕. Otherwise the cell is empty.

The table representation of a multiplication formula is much easier to as-
sess than its algebraic representation if the length k (or the segmentation n)
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Table 2. TR of the classical MM, 2-term operands

A0B0 [0] ⊕
A0B0 [1] ⊕
A0B1 [0] ⊕
A0B1 [1] ⊕
A1B0 [0] ⊕
A1B0 [1] ⊕
A1B1 [0] ⊕
A1B1 [1] ⊕

C3 C2 C1 C0

of operands is big. The reduction of the complexity of a multiplication formula
using an optimized calculation sequence will be shown using the TR of the
generalized Karatsuba MM for 4-bit long operands (see (10)) as example.

C(x) = A(x) · B(x) = a3a2a1a0 · b3b2b1b0 = c6c5c4c3c2c1c0 =

= a0 · b0︸ ︷︷ ︸
c0

⊕ (a0 · b0 ⊕ a1 · b1 ⊕ (a0 ⊕ a1) · (b0 ⊕ b1))︸ ︷︷ ︸
c1

·21⊕

⊕ (a0 · b0 ⊕ a1 · b1 ⊕ a2 · b2 ⊕ (a0 ⊕ a2) · (b0 ⊕ b2))︸ ︷︷ ︸
c2

·22⊕

⊕
(a0 · b0 ⊕ a1 · b1 ⊕ a2 · b2 ⊕ a3 · b3⊕
⊕(a0 ⊕ a3) · (b0 ⊕ b3)⊕ (a1 ⊕ a2) · (b1 ⊕ b2)

)
︸ ︷︷ ︸

c3

·23⊕

⊕ (a1 · b1 ⊕ a2 · b2 ⊕ a3 · b3 ⊕ (a1 ⊕ a3) · (b1 ⊕ b3))︸ ︷︷ ︸
c4

·24⊕

⊕ (a2 · b2 ⊕ a3 · b3 ⊕ (a2 ⊕ a3) · (b2 ⊕ b3))︸ ︷︷ ︸
c5

·25 ⊕ a3 · b3︸ ︷︷ ︸
c6

·26

(10)

Table 3 is the TR of formula (10). In the rest of this section we denote the
first 4 lines of Table 3 as part1 of the TR and remaining lines as part 2 of the
TR. The usual way to calculate product segments is the addition of all their
partial products. This requires 15 XOR gates in total for the calculation of all
ci, for 0 ≤ i ≤ 6 (see Table 3). In this case each product segment is calculated
individually, i.e. no already calculated partial sums are re-used. In the rest of
this article we call this way to calculate product segments separately. Figure 1
illustrates this calculation way.

Another way to calculate these product segments is the iterative calculation.
It exploits the fact, that many TR-columns contain the same sums of partial
products. For example, each column value of the part 1 of the TR (see Table
3) can be calculated as a sum of its neighbor-columns and only one additional
partial product as it is shown in Figure 2.
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Table 3. TR of the generalized Karatsuba multiplication formula for 4-bit long
operands

Fig. 1. Usual calculation way: each product segment ci, for 0 ≤ i ≤ 6, in Table 3 is
calculated separately of other product segments. It requires 15 XOR in total

Fig. 2. Optimized processing sequence for iterative summation of partial products
from part 1 of Table 3. The arrows indicate the sequence in which columns are used
to calculate their neighbors. The summation requires only 5 XOR gates: s1 = a0 · b0 ⊕
a1 · b1, s2 = s1 ⊕ a2 · b2, s3 = s2 ⊕ a3 · b3, s4 = a3 · b3 ⊕ a2 · b2, s5 = s4 ⊕ a1 · b1
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The optimized processing sequence for calculating the product segments of the
whole TR (see Table 3) can be described by the following two steps:

1. iterative calculation of all column values from part 1
2. addition of partial products from part 2 to the values obtained in step 1

The summation using the processing sequence shown in Figure 2 requires only
5 XOR-gates. In addition 6 XOR-gates are needed for the summation of partial
products from part 2 of the TR. So, it requires only 11 XOR-gates in total.
Figure 3 illustrates the calculation of the product segments of the whole TR
using the optimized processing sequence. If segments of operands are more than
1 bit long, the table representation looks a bit more complicated, but the opti-
mized processing sequence which prevents the multiple calculation of the same
sums of partial products can be determined. Only for the classical MM the pro-
cessing sequence cannot be optimized. We determined the optimized processing
sequence for all MMs listed in Table 4. Table 4 shows the gate complexity of
these MMs, with and without using the pre-defined optimized processing se-
quences. The first column of Table 4 shows for each MM the used segmentation,
i.e. shows in how much terms both multiplicands are segmented. Note, that the
2-term Karatsuba MM and the 3-term Winograd MM are special cases of n-
term generalized Karatsuba MM. For the Karatsuba MM with segmentation of
operands into 4 terms we use the optimized processing sequence presented by

Fig. 3. Calculation of product segments of TR (see Table 3) using the optimized pre-
defined processing sequence. This calculation way exploits the fact, that many TR-
columns contain the same sums of partial products. It requires only 11 XOR-gates
together.
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us in [12]. We use the gate complexity of all these MM with optimized process-
ing sequence in Algorithm 1 to find the optimal combination of MMs. The next
section describes this algorithm.

Table 4. Gate Complexity of investigated MMs

n MM #MULT #XOR, #XOR,
usual calculation way calculation with optimized

processing sequence

2 Karatsuba 3 8m − 4 7m − 3

3 Winograd 6 24m − 11 18m − 6

4 Karatsuba 9 40m − 16 34m − 11

5 Montgomery 13 94m − 40 66m − 23

6 Montgomery 17 130m − 57 96m − 34

7 Montgomery 22 184m − 80 133m − 47

n classical n2 2mn(n− 1) − n2 + 1 2mn(n− 1)− n2 + 1

n gen.Kar. n2+n
2

4mn(n− 1)− 3n2−n
2

+ 1 m(2n2 + n− 3) − n2+n
2

4 Algorithm for Determining Optimal Combination
of MMs

Designing an optimal k-bit multiplier requires to know the gate complexity of
those m-bit partial multipliers, which might be used. These m-bit partial mul-
tipliers should already be optimized. The same holds true for optimizing the
m-bit partial multiplier and so on. So, to determine the optimal combination
of MMs Algorithm 1 is starting from 1-bit polynomials to up to k-bit polyno-
mials. It is essential to determine all possible segmentations for each length of
polynomials i, 1 < i ≤ k . The gate complexity of i-bit multipliers is calculated
for each investigated MM considering all possible segmentations of i. The final
loop of Algorithm 1 tests, whether the area of the recently determined opti-
mal i-bit multiplier is smaller than the area of the (i − 1)-bit multiplier, and
if so, it replaces the latter with the former. This condition is checked for all
s-bit multipliers of smaller length, which are used as optimal m-bit multipliers
in the following processing steps of Algorithms 1. This idea improves the results
of the combining algorithm from [10] where the optimal combination of MMs
for FPGA-implementation of polynomial multiplication is searched. Note that
our Algorithm 1 is designed for searching the optimal combination of MMs for
ASICs. In addition it can be used for the search of optimal combination of MMs
for FPGA after initializing the variables: AreaAND = 1, AreaXOR = 1. In this
case the calculated area of multipliers represents the total number of AND and
XOR gates.
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While Algorithm 1 itself is technology independent, there are two technol-
ogy dependent parameters to be considered. Technology dependent values such
as AreaAND, AreaXOR (or EAND, EXOR respectively) are input variables. De-
pending on the optimization goal - area or energy - we use respective parts of
eq. (3).

Algorithm 1

Input : AreaAND, AreaXOR //if optimization goal is area

MM = {MMclas,MM2,MM3, ...} //set of MMs with optimized

//processing sequence

Output : MMopt(i), 1 ≤ i ≤ k //i.e. area, GC and the combination of MMs

//that results this area

Initialization : MMopt(1) = MMclas(1); MMopt(i) = empty, 2 ≤ i ≤ k

Calculation :

for 2 ≤ i ≤ k //all operands of smaller length

for n|2 ≤ n ≤ i, n divides i //all possible segmentations

for each element MMj from MM

calculate Area(GC
MMj

i=nm) //see (2), (3), (4) and Table 4

if MMopt(i) = empty or Area(GC
MMj

i=nm) < Area(GC
MMopt(i)
i )

MMopt(i) = MMj

end if

end for

end for

for s|i > s > 0 //all operands of smaller length

if Area(GCMMopt(s)
s ) > Area(GC

MMopt(s+1)
s+1 )

MMopt(s) = MMopt(s+ 1)

end if

end for

end for

5 Evaluation of the Optimization Results

In order to benchmark our results we are using results from [1]1 and [10]. Since
we are mainly interested in ECC we are investigating polynomials with a length
of up to 600 bits. In order to compare our results with those presented in [1] and

1 By results of [1] we denote those provided in [1] for the recursively applied generalized
Karatsuba MM with minimal number of AND and XOR gates.
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[10] we reconstructed their results for polynomials with a length up to 600 bits.
In order to do so we strictly followed the calculation procedures described in [1]
and [10]. The reconstructed data for polynomials up to 128 bits are the same
as those given in [1] and [10], which makes us confident that our reconstruction
yields correct results.

Figure 4 shows the calculated area of multipliers for polynomial length up
to 600 bit for all three approaches. The dashed curve in Figure 4 depicts the
chip-area of multipliers that we calculate from [1]. The gray curve in Figure 4
depicts the results from [10]. The area consumption of our approach (black curve,
Figure 4) is 32% smaller than the results represented by the dashed curve and
about 10% smaller than the results represented by the gray curve. Table 5 shows

Fig. 4. Calculated area of multipliers for the polynomial length up to 600 bits

the gate complexity and calculated area of multipliers for ECC-relevant operand
lengths for all three approaches. Please note that the number of AND and XOR
gates of our combinations of MMs are selected based on the results of Algorithm
1, i.e. they reflect the number of gates for the smallest polynomial multipliers for
the IHP technology [13]. For this technology the area of AND and XOR gates are
8.069 μm2 and 13.45 μm2, respectively. When comparing the results it became
apparent that the number of AND gates is smallest for [1]. But our approach
and the approach from [10] require by far less XOR gates. This is the reason for
the much smaller area of our multipliers. For the evaluation of our theoretical
results we synthesized the polynomial multipliers for 3 ECC-relevant lengths of
operands: 163, 233 and 283 bits. Table 6 shows the optimal MM-combinations
determined by our algorithm and their gate complexities. The area of the mul-
tipliers calculated based on their gate complexity and the synthesis results are
also given in Table 6. The area of all synthesized multipliers is smaller than the
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Table 5. Gate complexity and calculated area of polynomial multipliers for ECC-
relevant operand lengths

reconstructed reconstructed our combination
k, from [1] from [10] of MMs with optimized

processing sequence
bits #AND #XOR area, #AND #XOR area, #AND #XOR area,

mm2 mm2 mm2

163 4536 23417 0.3516 7938 12820 0.2365 7938 11751 0.2221

233 6561 37320 0.5549 12150 23468 0.4137 12150 21066 0.3814

283 8748 48485 0.7227 13122 34108 0.5646 13122 30091 0.5106

409 17496 98039 1.4598 26244 67420 1.1186 29700 54418 0.9716

571 26244 147755 2.1991 39366 104704 1.7259 37179 93383 1.5560

Table 6. Comparison of theoretical and practical results; the name in brackets after
segmentation shows the used MM: ’Kar’ means the Karatsuba MM, ’Win’ means the
Winograd MM and ’clas’ means the classical MM

k, Optimal combination of MMs #AND #XOR area, mm2

bits theor. synthes.

163 4(Kar) · 2(Kar) · 3(Win) · 7(clas) 7938 11751 0.22 0.20

233 4(Kar) · 4(Kar) · 3(Win) · 5(clas) 12150 21066 0.38 0.36

283 2(Kar) · 4(Kar) · 4(Kar) · 3(Win) · 3(clas) 13122 30091 0.51 0.48

theoretically calculated area. This can be explain by the following fact: the cal-
culation of the area of multipliers is based on the area of only 2-inputs-AND and
2-inputs-XOR gates. In reality each technology provides also other gate types.
For example, the IHP 130 nm technology [13] has also a 3-inputs-XOR gate.
The Synopsis-tools [14], that we use for the synthesis of multipliers, apply often
one 3-inputs-XOR gate instead two 2-inputs-XOR gates resulting in a reduced
area. With the goal to confirm this hypotheses, we implemented a single 8-bit
multipliers twice. Both designs of the multiplier are implemented as a combi-
nation of the classical MM and the 2-term Karatsuba MM with an optimized
processing sequence. First the design was synthesized using only 2-inputs AND
and XOR gates. Second the design was synthesized without any restriction of
the gate types. Table 7 shows the theoretically calculated area of this multiplier
and area of both synthesized versions. The area of the design synthesized using
only 2-inputs AND and XOR gates is the same as the theoretically predicted
area. The reduction of the area using all available gate types is about 8 per cent.
We assume that the percentage of the area reduction, introduced by the tool op-
timizations, is independent of the size of of the operands. For the evaluation of
our theoretical data with the practical results we calculate the relation between
areas of all synthesized multipliers. We use the area of the 163-bit multiplier as
the ”norm”. We expect that the relation between theoretical calculated areas of
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Table 7. Comparison of theoretical and practical results for 8-bit polynomial multiplier

k, combination theoretical data Area of synthesized designs
bit of MMs #AND #XOR Area, 2-inputs AND and XOR all available

μm2 gates only gate typs

8 2(Kar) · 4(clas) 48 55 1087 1087μm2 995μm2

Table 8. Area relations for theoretical and synthesized results for multipliers from
Table 6

k, area relations
bit theoretical synthesized

163 1 1

233 1.7 1.7

283 2.3 2.4

multipliers and between areas of synthesized designs are approximately same.
Table 8 shows these relations. So the synthesis results confirm the theoretical
data.

6 Conclusion

In this paper we have elaborated how an optimal hardware multiplier can be con-
structed. In order to allow a fair comparison of different multiplication methods
we defined the gate complexity, a tuple that represents the number of required
AND and XOR gates as the assessment function of the area of the resulting
hardware multiplier. In addition we investigated how individual multiplication
methods can be optimized by taking into account that some partial products are
used to calculate several partial sums. I.e. we determined processing sequences
which help to reduce the number of required XOR gate. In order to ensure an
optimal combination of MMs we designed and presented an algorithm that de-
termines the optimal segmentation of operands and an optimal combination of
multiplication methods from a set of investigated multiplication methods. Please
note that the MMs with optimized processing sequences (i.e. with reduced num-
ber of XOR gates) are used as input for this algorithm. In order to evaluate our
findings we compared our results with results given in literature revealing that
our approach leads to a 32 per cent and 10 per cent reduced area consumption
compared to [1] and [10] respectively. In addition we compared our area predic-
tion with synthesis results for our inhouse technology. This revealed that there
is no measurable deviation if the type of gates used for synthesis is restricted to
2-input XOR and 2 input AND gates. If all types of gate are allowed for syn-
thesis the resulting area is even smaller than the calculated one. To summarize
our approach provides extremely accurate prediction of the area consumption of
investigated multiplier designs and improves the required area of the multipliers
significantly.
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