
Chapter 7
Orientation and Anisotropy of Multi-component
Shapes

Joviša Žunić and Paul L. Rosin

Abstract There are many situations in which several single objects are better
considered as components of a multi-component shape (e.g. a shoal of fish), but
there are also situations in which a single object is better segmented into natural
components and considered as a multi-component shape (e.g. decomposition of
cellular materials onto the corresponding cells). Interestingly, not much research has
been done on multi-component shapes. Very recently, the orientation and anisotropy
problems were considered and some solutions have been offered. Both problems
have straightforward applications in different areas of research which are based on
a use of image based technologies, from medicine to astrophysics.

The object orientation problem is a recurrent problem in image processing and
computer vision. It is usually an initial step or a part of data pre-processing, implying
that an unsuitable solution could lead to a large cumulative error at the end of the
vision system’s pipeline. An enormous amount of work has been done to develop
different methods for a spectrum of applications. We review the new idea for the
orientation of multi-component shapes, and also its relation to some of the methods
for determining the orientation of single-component shapes. We also show how the
anisotropy measure of multi-component shapes, as a quantity which indicates how
consistently the shape components are oriented, can be obtained as a by-product of
the approach used.
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7.1 Introduction

Shape is one of the object characteristics which enables many numerical character-
izations suitable for computer supported manipulations. Because of that, different
shape concepts are intensively used in object recognition, object identification or
object classification tasks. Many approaches to analyse and characterise shapes have
been developed. Some of them are very generic, like moment invariants or Fourier
descriptors, while others relate to specific object characteristics, e.g. descriptors
like convexity, compactness, etc. Another distinction among these approaches is
based on which points of shapes are used for analysis. Some approaches use all
shape points (area-based ones), other use boundary information only (boundary-
based ones), but there are methods which use only specific shape points (convex
hull vertices or boundary corners) or hybrid methods (shape compactness is often
computed from the relation between shape perimeter and shape area).

In the most research and applications to date, shapes are treated as single objects,
even if very often several objects form a group (vehicles on the road, group of
people, etc.), and thus, it could be beneficial to consider them as multi-component
shapes.

It is not difficult to imagine situations in which it is better to decompose a single
shape into its naturally defined components and then, by treating it as a multi-
component shape, take some advantage over those methods that treat it as a single
shape. There are many more situations where a multi-component shape approach
may be appropriate – e.g., when analysing video sequences, multiple instances of
objects over time can be grouped together and analysed as a multi-component shape.
Several situations where it can be useful to treat objects as multi-component ones
are displayed in Fig. 7.1.

Here we consider the multi-component shape orientation problem. We overview
recently introduced methods (area-based and boundary-based) for the computa-
tion of orientation of multi-component shapes and its relation to the most standard
shape orientation method (based on the computation of the axis of the least second
moment of inertia). As a by-product of the new method for the computation of
orientation of compound shapes, an anisotropy measure of such shapes can be
derived. This is a first shape measure defined for multi-component shapes and it
indicates the consistency of a set of shape component orientations.

All discussions are illustrated with suitably selected experiments. Strict proofs
are omitted and for them the readers are referred to the source references.

7.2 Shape Orientation

Computation of shape orientation is a common problem which appears in a large
number of applications in both 2D and 3D, and also in higher-dimensional spaces.
Due to the variety of shapes as well as to the diversity of applications, there is
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Fig. 7.1 First row: a group of static objects (flowers), a group of moving objects (birds), a group
of different objects (blood cell) make multi-component objects. Second row: the tissue and texture
displayed are sometimes better to be decomposed and analysed as multi-component objects. Third
row: the appearance of a moving object, in a frame sequence, can be considered and analysed as
a multi-component object. Fourth row: different arrangements of a simple object make two multi-
component objects with perceptually different orientations [14]

no single method for the computation of shape orientation which outperforms the
others in all situations. Therefore, many methods have been developed, and different
techniques have been used, including those based on complex moments [20],
Zernike moments [7], Fourier analysis [1], algebraic arguments [10], etc. The
suitability of those methods strongly depends on the particular situation to which
they are applied, as they each have their relative strengths and weaknesses. Due
to new applications and increasing demands for better computational efficiency, in
addition to the previously established methods, there are also many recent examples
[3, 5, 11, 12, 16, 24, 27].

Several methods are defined by using a common approach: Consider a suitably
chosen function F.S; ˛/ which depends on a given shape S and rotation angle ˛,
and define the orientation of S by the angle which optimizes F.S; ˛/; i.e. by the
angle ˛ for which F.S; ˛/ reaches its minimum or maximum. The most standard
method for the computation of the shape orientation is such a method. More
precisely, this method defines the orientation Ost .S/ of a given shape S by the, so
called, axis of the least second moment of inertia, i.e. by the line which minimises



140 J. Žunić and P.L. Rosin

. .

.
.

..

Fig. 7.2 The standard
method defines the
orientation of a given shape
by the line which minimizes
the integral of squared
distances of the shape points
to the line

the integral of the squared distances of the shape points to the line (see Fig. 7.2).
Simple algebraic manipulation shows that such a line passes through the shape
centroid. Note that the centroid of a given shape S is defined as

.xS ; yS / D
�RR

S xdxdyRR
S

dxdy

RR
S ydxdyRR
S

dxdy

�
: (7.1)

So, in order to compute the orientation of a given shape S it is sufficient to find the
minimum of the function

Fst .S; ˛/ D
ZZ

S

r.x; y; ˛/2dxdy (7.2)

where r.x; y; ˛/2 is the perpendicular distance of the point .x; y/ to the line which
passes thought the centroid .xS ; yS / of S and has a slope ˛: If we assume that
the centroid of S coincides with the origin, i.e., .xS ; yS / D .0; 0/; r.x; y; ˛/2

becomes .x � sin ˛ � y � cos ˛/2; and the optimizing function Fst .S; ˛/ in (7.2)
can be expressed as

Fst .S; ˛/ D
ZZ

S

r.x; y; ˛/2dxdy

D �2;0.S/ � sin2 ˛ C �0;2.S/ � cos2 ˛ � �1;1.S/ � sin.2˛/; (7.3)

where �p;q.S/ are the well-known centralised geometric moments [21] defined, for
all p; q 2 f0; 1; 2; : : :g; as

�p;q.S/ D
ZZ

S

.x � xS /p.y � yS /qdxdy: (7.4)

Now, we come to the following definition of the orientation of a given shape.
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Definition 7.1. The orientation of a given shape S is determined by the angle ˛

where the function Fst .S; ˛/ reaches its minimum.

This standard method defines the shape orientation in a natural way – by the
line which minimizes the integral of the squared distances of shape points to this
line. Such a definition matches our perception of what the shape orientation should
be. Also, there is a simple formula for the computation of such orientation. It is easy
to check [21] that the angle which minimizes Fst .S; ˛/ satisfies the equation

tan.2 � O.S// D 2 � �1;1.S/

�2;0.S/ � �0;2.S/
: (7.5)

These are desirable properties, but there are some drawbacks too. The main
problem is that there are many situations where the method fails [23,28] or does not
perform satisfactorily. The situations were the method fails are easy to characterise.
Indeed, considering the first derivative of Fst .S; ˛/ (see (7.3))

dFst .S; ˛/

d˛
D .�2;0.S/ � �0;2.S// � sin.2˛/ � 2�1;1.S/ � cos.2˛/; (7.6)

and looking for the conditions when dFst .S; ˛/=d˛ vanishes, it is easy to see that
for all shapes S satisfying

�2;0.S/ � �0;2.S/ D 0 and �1;1.S/ D 0 (7.7)

the function Fst .S; ˛/ is constant and consequently does not tell which angle
should be selected as the shape’s orientation. N -fold rotationally symmetric shapes
are shapes which satisfy (7.7) but there are many other (irregular) shapes which
satisfy (7.7) and consequently could not be oriented by the standard method given
by Definition 7.1.

In order to overcome such problems, [23] suggested a modification of the
optimizing function Fst .S; ˛/ by increasing the exponent in (7.2). The method
from [23] defines the orientation of a given shape S whose centroid coincides with
the origin, by the angle which minimizes

FN .S; ˛/ D
ZZ

S

r.x; y; ˛/2N dxdy (7.8)

for a certain exponent 2N . In such a way, the class of shapes whose orientation
can be computed is expanded. On the other hand, there is not a closed formula
(analogous to (7.5)) for the computation of the shape orientation by using FN .S; ˛/;

for an arbitrary N .
Notice that difficulties in the computation of the shape orientation can be caused

by the nature of certain shapes. While for many shapes their orientations are
intuitively clear and can be computed relatively easily, the orientation of some other
shapes may be ambiguous or ill defined. Problems related to the estimation of the
degree to which a shape has a distinct orientation are considered in [29].
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7.3 Orientation of Multi-component Shapes

As discussed before, there are many methods for the computation of the orientation
of single-component shapes. On the other hand, as mentioned earlier, in many
situations, several single objects usually appear as a group (e.g. the shoal of fish
in Fig. 7.4, flock of birds in Fig. 7.1, vehicles on the road, etc.). Also, in many
situations, it is suitable to consider a single object as a multi-component one,
consisting of suitably defined components (as cells in embryonic tissue displayed
in Fig. 7.1, or material micro structure elements, etc.). In addition, the appearances
of the same object at different times can be also considered as components of a
multi-component shape. Some examples where treating objects as multi-component
shapes becomes very natural are in Fig. 7.1 and also in the forthcoming experiments.

In this section we consider the method for the computation of the orientation
of multi-component shapes introduced by Žunić and Rosin [26]. Before that, note
that most of the existing methods for the computation of the orientation of single
component shapes do not have a (at least straightforward) extension which can be
used to compute the orientation of compound shapes. The main reason for this is that
most of the existing methods have a 180ı ambiguity about the computed orientation.
That is because they define the shape orientation by a line, not by a vector. Thus,
the orientations of ' degrees and the orientation of ' C 180ı are considered to be
the same. A consequence of such an ambiguity is that natural ideas how to compute
the orientation of a multi-component shape from the orientations assigned to its
components, do not work. For example, if S1, S2; : : : ; Sn are components of a
multi-component shape S; then most of the existing methods would compute their
orientations as '1 Ca1 �180ı; '2 Ca2 �180ı; : : : ; 'n Can �180ı; where the numbers
a1; a2; : : : ; an are arbitrarily chosen from f0; 1g: Thus if, in the simplest variant, the
orientation of multi-component shape S D S1 [ S2 [ : : : [ Sn is computed as the
average value of the orientations assigned to its components, then the orientation of
S would be computed as

.'1 C a1 � 180ı/ C : : : C .'n C an � 180ı/

n
D '1 C : : : C 'n

n
C .a1 C : : : C an/ � 180ı

n

and obviously, for different choices of a1; a2; : : : ; an; the computed orientations are
inconsistent (i.e. they could differ for an arbitrary multiple of the fraction 180ı=n).
This is obviously unacceptable.

Now we consider the method for the computation of multi-component shapes
described in [26]. The authors define the orientation of a multi-component shape by
considering the integrals of the squared length of projections of all edges whose end
points belong to a certain component. Before a formal definition, let us introduce
the necessary denotations (see Fig. 7.3 for an illustration):

– Let �!a D .cos ˛; sin ˛/ be the unit vector in the direction ˛I
– Let jpr�!a ŒAB�j denote the length of the projection of the straight line segment

ŒAB� onto a line having the slope ˛.
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Fig. 7.3 The orientation of
multi-component shapes is
defined by the direction ˛

which minimizes the integral
of squared projections of line
segments whose end points
belong to a certain
component

Definition 7.2. Let S be a multi-component shape which consists of m disjoint
shapes S1; S2; : : : ; Sm: Then the orientation of S is defined by the angle that
maximises the function Gcomp.S; ˛/ defined by

Gcomp.S; ˛/ D
mX

iD1

Z Z
AD.x;y/2Si
BD.u;v/2Si

Z Z
jpr�!a ŒAB�j2dx dy du dv: (7.9)

The previous definition is naturally motivated, but also enables a closed formula
for the computation of the orientation of multi-component shapes. This is the
statement of the following theorem.

Theorem 7.1. The angle ˛ where the function Gcomp.S; ˛/ reaches its maximum
satisfies the following equation

sin.2˛/

cos.2˛/
D

2 �
mP

iD1

�1;1.Si / � �0;0.Si /

mP
iD1

.�2;0.Si / � �0;2.Si // � �0;0.Si /

: (7.10)

To prove the theorem it is sufficient to enter the following two trivial equalities

jpr�!a ŒAB�j2 D ..x�u/�cos ˛C.y�v/�sin ˛/2; for A D .x; y/; B D .u; v/ (7.11)

and Z Z
S�S

ZZ
xpyqurvt dx dy du dv D �p;q.S/ � �r;t .S/ (7.12)
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into the optimizing function Gcomp.S; ˛/: After that, simple calculus applied to the

equation
dGcomp.S; ˛/

d˛
D 0 establishes the proof. For more details we refer to [26].

The orientation of multi-component shapes computed by optimizing the function
Gcomp.S; ˛/ is theoretically well founded and because of that it can be well
understood. Some of properties are a direct consequence of the definition and can
be proved by using basic calculus. We list some of them.

Property 7.1. If the method given by Definition 7.2 is applied to a single compo-
nent shape, then the computed orientation is the same as the orientation computed
by the standard definition, i.e. by the optimizing the function Fst .S; ˛/ (see (7.2)
and (7.5)). Note that the optimizing function G.S; ˛/ D Gcomp.S; ˛/, specified for
single component shapes, and the optimizing function Fst .S; ˛/ are different, but
they are connected with the following, easily provable, equality

G.S; ˛/ C 2 � �0;0.S/ � Fst .S; ˛/ D 2 � �0;0.S/ � .�2;0.S/ C �0;2.S//: (7.13)

Since the right-hand side of (7.13) does not depend on ˛ we deduce that the
maximum of G.S; ˛/ and the minimum of Fst .S; ˛/ are reached at the same point.
In other words, the direction ˛ which defines the orientation of S by applying the
standard method is the same as the direction which defines the orientation of S if
the Definition 7.2 is applied to single component shapes.

Property 7.2. As it is expected, there are situations where the method given by
Definition 7.2 fails. Due to the definition of the optimizing function Gcomp.S; ˛/,
a simple characterization of such situations is possible. Indeed, by using (7.11)
we deduce:

Gcomp.S; ˛/ D cos2 ˛ �
mX

iD1

2�0;0.Si /�2;0.Si / C sin2 ˛ �
mX

iD1

2�0;0.Si /�0;2.Si /

C sin.2˛/ �
mX

iD1

2�0;0.Si /�1;1.Si /: (7.14)

The last equality says immediately that the first derivative
dGcomp.S; ˛/

d˛
is iden-

tically equal to zero (i.e. Gcomp.S; ˛/ is constant) if and only if the following two
conditions are satisfied

mX
iD1

�0;0.Si / � �1;1.Si / D 0 and
mX

iD1

�0;0.Si / � .�2;0.Si / � �0;2.Si // D 0:

(7.15)

So, under the conditions in (7.15) the optimizing function is constant and no
direction can be selected as the shape orientation.
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The Eq. (7.14) also says that the components Si of a multi-component shape
S D S1 [ : : : [ Sm which satisfy

�1;1.Si / D 0 and �2;0.Si / � �0;2.Si / D 0;

(i.e. the shapes are not orientable by the standard method) do not contribute to
the Gcomp.S; ˛/ and because of that, such components Si , can be omitted when
computing the orientation of S .

Notice that in case of Gcomp.S; ˛/ D constant we can increase the exponent in
(7.9) and define the orientation of S by the direction which maximizes the following
function

Gcomp;N .S; ˛/ D
mX

iD1

Z Z
AD.x;y/2Si
BD.u;v/2Si

Z Z
jpr�!a ŒAB�j2N dx dy du dv:

In this way the class of multi-component shapes whose orientation is well defined
would be extended. A drawback is that there is no closed formula (similar to
(7.10)) which enables easy computation of such a defined multi-component shape
orientation.

The next property seems to be a reasonable requirement for all methods for the
computation of the orientation of multi-component shapes.

Property 7.3. If all components Si of S D S1 [ : : : [ Sm have an identical orien-
tation ˛, then the orientation of S is also ˛:

To prove the above statement it is sufficient to notice that if all components Si

have the same orientation (see Property 7.1), then there would exist an angle ˛0 such
that all summands Z Z

AD.x;y/2Si
BD.u;v/2Si

Z Z
jpr�!a ŒAB�j2dx dy du dv: (7.16)

in (7.9) reach their maximum for the angle ˛ D ˛0. An easy consequence is that
˛ D ˛0 optimizes Gcomp.S; ˛/ D Pm

iD1

RR
AD.x;y/2Si
BD.u;v/2Si

RR jpr�!a ŒAB�j2dx dy du dv; as

well. This means that the orientation of S coincides with the orientation of its
components Si :

Property 7.4. The method established by Definition 7.2 is very flexible, in that
the influence of the shape component’s size (to the computed orientation) can vary.
In the initial form in Definition 7.2 the moments �1;1.Si /; �2;0.Si / and �0;2.Si /

are multiplied with the size/area of Si ; i.e. by �0;0.Si /. But the method allows
�0;0.Si / to be replaced with �0;0.Si /

T for some suitable choice of T . In this way the
influence of the shape components to the computed orientation can be controlled.
The choice T D �2 is of a particular importance. In this case the size/area of the
shape components does not have any influence to the computed orientation. This
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Fig. 7.4 Real images are in the first row. After thresholding, the image components are treated as
components of a multi-component shape and then oriented by the method given by Definition 7.2 –
the orientations computed are presented by short dark arrows. Long grey arrows represent the
orientations computed by the standard method where all components are taken together to build a
single shape

is very suitable since objects, which are of the same size in reality, often appear
in images at varying scales since their size depends on their relative position with
respect to the camera used to capture the image.

7.3.1 Experiments

This subsection includes several experiments which illustrate how the method for
the computation of the orientation of multi-component shapes works in practice.
Since this is the first method for the computation of the orientation of such shapes,
there are no suitable methods for comparison. In the experiments presented, together
with the orientations computed by the new method, the orientations computed by the
standard method, which treats all the multi-component objects as a single object,
are also displayed. However, orientations computed by the standard method are
displayed just for illustrative purposes, not for qualitative comparison against the
new method.

In the first example in Fig. 7.4 three images are displayed. In all three cases
the objects that appear (humans, fish and blood cell components) are treated as
components of a multi-component shape (a group of people, a shoal, a blood
sample) and are then oriented. In the case of the group of people and the fish
shoal the computed orientations (by the new method) are in accordance with our
perception. As expected the computation by the standard method (i.e. treating the
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Fig. 7.5 The orientation computed by the method from Definition 7.2 for halves and the whole
shape illustrate the “Frame independence” property of the new method for the orientation of multi-
component shapes

multi-component shapes as single ones) does not lead to orientations which match
our perception. The same could be said for the third example (blood cell) even
though the our perception of what the orientation should be is not as strong as in
the first two examples.

The next figure illustrates a very nice and useful property of the new method.
It illustrates that for multi-component shapes whose components are relatively
consistently oriented, the computed orientation of a subset of such shapes coincides
with the orientation of the whole shape. Somehow it could be said that the computed
orientations do not depend much on the frame used to capture a portion of the multi-
component shape considered. The humans and fish shoal images (in Fig. 7.5) are
split onto two halves. The halves are treated as multi-component shapes and oriented
by the new method. The computed orientations are shown by the short dark arrows.
As it can be seen such computed orientations are consistent – i.e. the orientations
of the halves coincide with the orientation of the whole multi-component shape.
As expected, the orientations computed by the standard method (long grey arrows)
do not coincide.

The third example in this subsection illustrates a possible application of the
method to the orientation of textures. Wood textures, displayed in the first row
in Fig. 7.6, are not multi-component objects with clearly defined components.
Nevertheless, after suitable thresholding the components become apparent, and the
orientation of such obtained multi-component shapes can be computed. The results
are in the third row and it could be said (in the absence of ground truth) that the
orientations obtained are in accordance with our perception.

The last example in this subsection is somewhat different from the previous ones.
In this case, a gait sequence is taken from NLPR Gait Database [25] and each
appearance of a human silhouette in the sequence of the frames is considered as
a component of the multi-component shape analysed. So, in this case the shape
components are distributed temporally across the sequence (not spatially over
the image, as in the previous examples). After segmentation many errors, which
typically appear, have been removed using standard morphological techniques.
However, several large errors remain and the task was to detect them. Due to
the nature of the shapes it is expected that all components (i.e. silhouettes) are
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Fig. 7.6 Texture images, in the first row, are thresholded and their orientation is then computed
as the orientation of multi-component shapes which correspond to the black-and-white images
in the second row. The images in the third row are re-oriented in accordance with the computed
orientations

Fig. 7.7 The extracted silhouettes from a gait sequence are displayed (the first row) and
underneath is an intensity coding of each silhouette to show its degree of being an outlier (dark
means high likelihood). A magnified view of the most outlying silhouette and its neighbours is in
the third row

fairly consistently oriented if they are extracted properly. Thus, we make the
hypothesis that the silhouettes with orientations inconsistent with the majority of
silhouettes suffer from segmentation errors. The difference in multi-component
shape orientation caused by removing the least consistent component has been used
as a criterion to find possible outliers. In the example given, due to the errors in the
processing chain that produced the sequence of binary images, the person’s leading
leg has been displaced and this silhouette/frame has been detected as an outlier, as
shown in Fig. 7.7.
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7.4 Boundary-Based Orientation

So far we have considered area-based methods only, i.e. the methods which use all
the shape points for the computation of (in this particular case) shape orientation.
But boundary-based methods for the computation of shape orientation are also
considered in the literature. Apart from the fact that some area-based methods for
the computation of the shape orientation have a straightforward extension to their
boundary-based analogues, there are some boundary-based methods which cannot
be derived in such a way – some examples are in [12, 27].

The methods considered in the previous section have an easy extension to
boundary-based methods. For example, an analogue to the standard method for
the computation of shape orientation is the method which orients a given shape
by the line which minimizes the integral of the squared distance of the boundary
points to this line. Since only the boundary points are used for the computation,
this method is considered as a boundary-based one. The line which minimizes the
optimizing integral can be obtained by following the same formalism as in the case
of the standard method, but the appearing area integrals should be replaced by line
integrals.

So, first we have to place S such that its boundary-based centroid coincides with
the origin. The boundary-based centroid .x@S ; y@S / is defined as the average of the
boundary points. This means that

.x@S ; y@S / D
�R

@S
x.s/dsR
@S

ds

R
@S

y.s/dsR
@S

ds

�
: (7.17)

where the boundary @S of S is given in an arc-length parametrization: x D x.s/;

y D y.s/; s 2 Œ0; perimeter of S�: Note that such a choice of the boundary
representation is suitable because it preserves rotational invariance – i.e. if the shape
is rotated for a certain angle, then the computed orientation is changed by the same
angle. In the rest of this chapter an arc-length parametrization of the appearing
boundaries/curves will be always assumed, even not mentioned.

Next, in order to compute the boundary-based orientation of a given shape S; we
have to find the minimum of the function

Lbo.@S; ˛/ D
Z

@S

r.x; y; ˛/2ds (7.18)

where r.x; y; ˛/ is, as in (7.2), the orthogonal distance of the point .x; y/ to the line
passing through the origin and having the slope ˛:

The optimizing function Lbo.@S; ˛/ can be expressed as

Lbo.@S; ˛/ D �2;0.@S/ � sin2 ˛ C �0;2.@S/ � cos2 ˛ � �1;1.@S/ � sin.2˛/; (7.19)

where �p;q.@S/ are the normalised line moments [2] defined as

�p;q.@S/ D
Z

@S

.x � x@S /p.y � y@S /qds; (7.20)

for all p; q 2 f0; 1; 2; : : :g.
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Fig. 7.8 On the left: The standard method defines the orientation of the shape by the line which
minimizes the integral of squared distances of the shape boundary points to the line. On the
right: the boundary-based method for computation of the orientation of multi-component shapes
considers the projections of edges whose end points belong to the boundary of a certain component

Finally, the maximum of the optimizing function Lbo.@S; ˛/ is reached for ˛ D
Obo.@S/ which satisfies the following equation:

tan.2 � Obo.@S// D 2 � �1;1.@S/

�2;0.@S/ � �0;2.@S/
: (7.21)

The equality (7.21) is an obvious analogue for the equality (7.5) related to the
standard area-based method. This is as expected because the same formalism is
used in both area-based and boundary-based cases.

The idea used in Sect. 7.3 to define the orientation of multi-component shapes
also has a boundary-based analogue. The problem is studied in detail in [15].
Following the idea from [26], the authors consider the projections of the edges
whose end points belong to the boundary of a certain component of a given multi-
component shape and define the shape orientation by the line which maximises the
integral of the squared values of the projections of such edges to the line. The formal
definition follows.

Definition 7.3. Let S D S1 [ : : : [ Sm be a multi-component shape and let the
boundary of S be the union of the boundaries @Si of the components of S : @S D
@S1[: : :[@Sm: The orientation of S (Fig. 7.8) is defined by the angle that maximises
the function Lcomp.@S; ˛/ defined as follows

Lcomp.@S; ˛/ D
mX

iD1

Z
s2Œ0;per.Si /�
l2Œ0;per.Si /�

Z
jpr�!a ŒAi .s/Bi .l/�j2ds d l: (7.22)

Definition 7.3 enables easy computation of the angle which defines the orienta-
tion of @S; as given by the following theorem.
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Theorem 7.2. Let S be a multi-component shape whose boundary is @S D @S1

[ : : : [ @Sm. The angle ˛ where the function Lcomp.@S; ˛/ reaches its maximum
satisfies the following equation

tan.2˛/ D
2 �

mP
iD1

�1;1.@Si/ � �0;0.@Si /

mP
iD1

.�2;0.@Si / � �0;2.@Si // � �0;0.@Si /

: (7.23)

Being derived in an analogous way as the area-based method for the computation
of the multi-component shapes, the method given by Definition 7.3 also satisfies
the Properties 7.1–7.4 listed in Sect. 7.3, before the experimental section. It is worth
mentioning that the method also enables the control of the influence of the perimeter
of the shape components to the computed orientation. If, for some applications, such
an influence should be ignored then the moments �1;1.@Si /; �2;0.@Si/; and �0;2.@Si /

which appear in (7.23) should be multiplied by .�0;0.@Si//
�2.

To close this section, let us mention that (in general) boundary-based approaches
to define the orientation of shapes allow some extra generalizations. One such
generalisation was considered in [12]. Therein the shape orientation is computed
based on the projections of the tangent vectors at the shape boundary points,
weighted by the suitably chosen function of the boundary curvature at the corre-
sponding points. The advantage of such an approach is not only that the boundary
curvature, as an important shape feature, is involved in the computation of the
shape orientation. This also provides an easy approach to overcome situations were
the orientations are not computable. It is sufficient to modify the curvature based
weighting function, and shapes which were not “orientable” by an initial choice of
the weighting function can become orientable with another choice. The computation
of the shape orientation remains possible by a closed form formula whether the
weighting function is changed or not. For more details see [12].

7.4.1 Experiments

In this section we have two examples to illustrate how the boundary-based method
(established by Definition 7.3) works.

First we consider the embryonic tissue displayed in Fig. 7.9. Cell boundaries
are extracted and then the boundary-based method for the computation of the
orientation of multi-component shapes is applied. The orientations are computed for
the whole image and also separately for the upper and lower parts. The computed
orientations are consistent (presented by short dark arrows) which actually implies
that the tissue displayed has an inherent consistent orientation. The orientations
computed by the boundary-based analogue (by optimizing Lbo.@S; ˛/ from (7.18)),
are different (long grey arrows), as it was expected.
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Fig. 7.9 Boundaries of cells of an embryonic tissue (on the left) are extracted, and then split onto
an “upper” and “lower” part (on the right). Orientations computed by optimizing Lcomp.@S; ˛/ all
coincide (short dark arrows). The orientations by the analogue of the standard method are shown
by long grey arrows

Fig. 7.10 Figure: Signatures of subject s048 from Munich and Perona [13]. Signatures in the top
row are re-oriented according to the standard method while the bottom row displays the same
signatures re-oriented according to the multi-component method

In the second example the boundary-based method for multi-component shapes
(Definition 7.3) has been used to compute the orientations of signatures. Better
results were obtained than when the orientations were computed by the standard
boundary-based method. Figure 7.10 displays signatures of subject s048 from
Munich and Perona [13]. In the first row the signatures are oriented by applying the
standard boundary-based method and the problems are obvious. Signatures are not
oriented consistently, which is a problem because the similarity measure used in [13]
was not rotationally invariant. In the second row are the same signatures but oriented
by the boundary-based multi-component method. Prior to the computation of the
orientation, the signatures were segmented at the vertices with small subtended
angles. The obtained orientations are very consistent, as required.

7.5 Anisotropy of Multi-component Shapes

In all the methods presented here, shape orientation is computed by optimizing
a suitably chosen function which depends on the orientation angle and the shape
considered. Depending on the method selected, either the angle which maximizes
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the optimizing function or the angle which defines the minimum of the optimizing
function is selected as the shape orientation. To have a reliable method for orienting
the shape it is important to have distinct minima and maxima of the optimizing
function. This is because in image processing and computer vision tasks we deal
with discrete data and very often in the presence of noise. Thus, if the optima
of the optimizing function are not distinct significant values then the computed
orientations could arise due to noise or digitization errors, rather than from inherent
properties of the shapes. Note that for a fixed shape the difference of maxima and
minima of the optimizing function could dependent strongly on the method applied.
That is why most of the methods only suit certain applications well. The question
of whether a shape possess an inherent orientation or not is considered in [29]. The
authors have introduced a shape orientability measure as a quantity which should
indicate to which degree a shape has a distinct orientation.

The ratio Est .S/ of the maxima and minima of the optimizing function Fst .S; ˛/,
in the case of the standard method, is well studied and widely used in shape based
image analysis. The quantity

Est .S/ D �2;0.S/ C �0;2.S/ C p
4 � .�1;1.S//2 C .�2;0.S/ � �0;2.S//2

�2;0.S/ C �0;2.S/ � p
4 � .�1;1.S//2 C .�2;0.S/ � �0;2.S//2

: (7.24)

is well-known as the shape elongation measure. Est .S/ ranges over Œ1; 1/ and takes
the value 1 if S is a circle. A problem is that there are many other shapes whose
elongation equals 1. In addition, Est .S/ is invariant with respect to translation,
rotation and scaling transformations and is easily and accurately computable from
the object images [8, 9].

The elongation measure Est .S/ has its boundary-based analogue – the area
moments in (7.24) have to be replaced with the corresponding line integrals along
the shape boundaries. Another elongation measure is suggested by Stojmenović and
Žunić [22].

Another related property is shape anisotropy. It has a natural meaning for single
component shapes. For example, for a shape centred at the origin in both 2D and
3D; it could be inversely related to the degree to which the shape points are equally
distributed in all directions [18, 19]. It has been used as a useful feature in shape
(object) classification tasks but also as a property which highly correlates with some
mechanical characteristics of certain real objects and materials [4, 6]. It is also of
interest when analyzing tracks of different species of animals [17].

The anisotropy measure of multi-component shapes has not been considered
before, but it seems that it should be given different meaning than in the case of
single component shapes. Our understanding is that an anisotropy measure for the
multi-component shapes should indicate how consistently the shape’s components
are oriented. It has turned out that a quantity defined as the ratio between the
maxima and minima of the function Lcomp.@S; ˛/ from Definition 7.3 provides such
a measure. So, we give the following definition.
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Definition 7.4. Let S1; : : : ; Sm be components of a compound shape S . Then the
anisotropy A .S/ of S is defined as

A .S/ D max˛2Œ0;2�/ Lcomp.@S; ˛/

min˛2Œ0;2�/ Lcomp.@S; ˛/
D max˛2Œ0;2�/ Lcomp.@S1 [ : : : [ Sm; ˛/

min˛2Œ0;2�/ Lcomp.@S1 [ : : : [ Sm; ˛/
:

(7.25)

The anisotropy measure A .S/ for multi-component shapes ranges over Œ1; 1/

and is invariant with respect to translations, rotations and scaling transformations.
It also enables an explicit formula for its computation. By basic calculus it can be
shown that the maxima and minima of Lcomp.@S; ˛/ are:

max
˛2Œ0;2�/

Lcomp.@S; ˛/ D C C
p

A2 C B2; min
˛2Œ0;2�/

Lcomp.@S; ˛/ D C �
p

A2 C B2

where the quantities A; B; and C are

A D
mP

iD1

.�2;0.@Si / � �0;2.@Si// � �0;0.@Si /;

B D
mP

iD1

2 � �1;1.@Si / � �0;0.@Si /;

C D
mP

iD1

.�2;0.@Si / C �0;2.@Si // � �0;0.@Si/:

We illustrate how the anisotropy measure A .S/ acts by two examples. Notice
that the anisotropy measure, as defined here, also depends on the elongation of the
shape components, not only on their orientations. This also seems acceptable, e.g.
a stereotype for a multi-component shape with a high anisotropy A .S/ is a shape
whose components have high elongations and the same orientation.

The first example is in Fig. 7.11. The shapes in both rows are treated as a multiple
component object (e.g. a herd of cattle and a group of cars). The anisotropy was first
computed for just the cattle, giving a value of 3:49: The anisotropy of the cattle’s
shadows alone increases to 7:57 since the shadows are more consistently orientated,
and are also slightly more elongated. Merging the cattle and their shadows produces
even more elongated regions, which lead to an increase of the herd’s anisotropy to
12.08. The anisotropy of the cars (in the second row) is 1:38, which is very small.
This is to be expected since the orientations of the individual cars vary strongly.

The second example which indicates how the anisotropy measure A .S/ acts is
in Fig. 7.12, in which anisotropy is used to select appropriate elongated regions to
enable skew correction of the document. The first image (on the left) in the first row
is the original image. Its components are letters whose orientations vary strongly, but
also many of the letters have a low elongation. This results in a very low anisotropy
of this image, as it can be seen from the graph given in the second row.

After blurring is applied to the image the characters start to merge into words,
which are both more consistently oriented and more elongated. This leads to an
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Fig. 7.11 Object boundaries are extracted from the original images and considered as components
of the boundary of a multi-component shape. The highest anisotropy of 12:08 is measured if the
cattle and their shadows are merged and considered as individual components of multi-component
shapes. A low anisotropy measure of 1:38 is computed for the compound shape in the second row
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Fig. 7.12 The image on the
left is blurred and
thresholded, and the resulting
component anisotropy is
plotted. Three of the
thresholded images are shown
demonstrating that maximum
anisotropy is achieved when
many of the words are
merged into lines

increase of the anisotropy (see the second image in the first row). If enough blurring
is applied to merge characters/words into continuous lines the anisotropy increases
dramatically (see the third image in the first row).
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More blurring is counter productive to the task of skew correction, as sections
of adjacent lines merge, and their anisotropy quickly drops (the last image in the
first row).

7.6 Conclusion

Multi-component shapes have not been considered much in literature. This is
somewhat surprising since there are many situations in which objects act as a part
of a very compact group, or where single objects need to be decomposed onto
components for analysis. There are also some less obvious situations were the multi-
component approach can be useful.

We have focused on two problems related to multi-component shapes: computing
orientation and anisotropy. Both problems have only recently been considered
[15, 26] and some solution were offered. These problems do not have analogues
in the existing single-component shape based methods. Thus, new ideas have to be
developed.

The obtained results are promising, and have been justified with a number of
experiments. The extension to the other shape based techniques will be investigated
in the future. Due to the variety of ways that a multi-component shape can be
defined, there are plenty of different demands which have to be satisfied by the
methods developed. Moreover, there are some specific demands which do not exist
when dealing with single-component shapes. To mention just two of them, which
have been discussed in this chapter: the frame independence property and the
tunable influence of the component size to the method performance.
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29. Žunić, J., Rosin, P.L., Kopanja, L.: On the orientability of shapes. IEEE Trans. Image Process.

15, 3478–3487 (2006)


	Chapter7 Orientation and Anisotropy of Multi-component Shapes
	7.1 Introduction
	7.2 Shape Orientation
	7.3 Orientation of Multi-component Shapes
	7.3.1 Experiments 

	7.4 Boundary-Based Orientation
	7.4.1 Experiments

	7.5 Anisotropy of Multi-component Shapes
	7.6 Conclusion
	References


