
Chapter 2
Geodesic Regression and Its Application
to Shape Analysis

P. Thomas Fletcher

Abstract In this chapter, I present a regression method for modeling the
relationship between a manifold-valued random variable and a real-valued
independent parameter. The principle is to fit a geodesic curve, parameterized by the
independent parameter, that best fits the data. Error in the model is evaluated as the
sum-of-squared geodesic distances from the model to the data, and this provides an
intrinsic least squares criterion. Geodesic regression is, in some sense, the simplest
parametric model that one could choose, and it provides a direct generalization
of linear regression to the manifold setting. A generalization of the coefficient of
determination and a resulting hypothesis test for determining the significance of the
estimated trend is developed. Also, a diagnostic test for the quality of the fit of the
estimated geodesic is demonstrated. While the method can be generally applied
to data on any manifold, specific examples are given for a set of synthetically
generated rotation data and an application to analyzing shape changes in the corpus
callosum due to age.

2.1 Introduction

Regression analysis is a fundamental statistical tool for determining how a measured
variable is related to one or more potential explanatory variables. The most
widely used regression model is linear regression, due to its simplicity, ease of
interpretation, and ability to model many phenomena. However, if the response
variable takes values on a nonlinear manifold, a linear model is not applicable.
Such manifold-valued measurements arise in many applications, including those
involving directional data, transformations, tensors, and shape. For example, in
biology and medicine it is often critical to understand processes that change
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the shape of anatomy. The difficulty is that shape variability is inherently high-
dimensional and nonlinear. An effective approach to capturing this variability has
been to parameterize shape as a manifold, or shape space.

Statistical analysis of manifold data has been developed by several authors. The
seminal work of Fréchet [10] generalized the concept of expectation from linear
spaces to general metric spaces. This opened up the possibility of computing a
sample mean statistic from a set of data on a manifold using the geodesic distance as
metric. The Fréchet mean of a set of points, y1; : : : ; yN ; in a Riemannian manifold
M is given by

� D arg min
y2M

NX

iD1

d.y; yi /
2;

where d is the geodesic distance between points on M . This equation generalizes
the principle of least squares to the metric space setting. Karcher [12] provided
conditions guaranteeing the existence and uniqueness of the Fréchet mean, which
were later improved by Kendall [14]. Second-order statistics such as generalizations
of principal components analysis [8] and Gaussian covariances [21] have also been
developed and applied in the domain of image analysis. Related work includes
statistical analysis of directional data (e.g., spheres) [16] and analysis on shape
manifolds [5], where statistics are derived from probability distributions on specific
manifolds (for example, the Fisher-von Mises distribution on spheres).

Several works have studied the regression problem on manifolds. Jupp and
Kent [11] propose an unrolling method on shape spaces. Regression analysis on
the group of diffeomorphisms has been proposed as growth models by Miller [18],
nonparametric regression by Davis et al. [2], and second-order splines by Trouvé
and Vialard [23]. Durrleman et al. [6] construct spatiotemporal image atlases from
longitudinal data. Finally, Shi et al. [22] proposed a semiparametric model with
multiple covariates for manifold response data. None of these methods provide a
direct generalization of linear regression to manifolds. The purpose of this work
is to develop such a generalization, called geodesic regression, which models the
relationship between an independent scalar variable with a dependent manifold-
valued random variable as a geodesic curve. Like linear regression, the advantages
of this model are its simplicity and ease of interpretation. As will be shown, the
geodesic regression model also leads to a straightforward generalization of the R2

statistic and a hypothesis test for significance of the estimated geodesic trend. This
chapter is an expanded exposition of the geodesic regression method first introduced
in [7]. Niethammer et al. [20] independently proposed geodesic regression for the
case of diffeomorphic transformations of image time series.

2.2 Multiple Linear Regression

Before formulating geodesic regression on general manifolds, we begin by
reviewing multiple linear regression in R

n. Here we are interested in the relationship
between a non-random independent variable X 2R and a random dependent
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variable Y taking values in R
n. A multiple linear model of this relationship is

given by
Y D ˛ C Xˇ C �; (2.1)

where ˛ 2 R
n is an unobservable intercept parameter, ˇ 2 R

n is an unobservable
slope parameter, and � is an R

n-valued, unobservable random variable representing
the error. Geometrically, this is the equation of a one-dimensional line through
R

n (plus noise), parameterized by the scalar variable X . For the purposes of
generalizing to the manifold case, it is useful to think of ˛ as the starting point
of the line and ˇ as a velocity vector.

Given realizations of the above model, i.e., data .xi ; yi / 2 R � R
n, for i D

1; : : : ; N , the least squares estimates, Ǫ ; Ǒ; for the intercept and slope are computed
by solving the minimization problem

. Ǫ ; Ǒ/ D arg min
.˛;ˇ/

NX

iD1

kyi � ˛ � xi ˇk2 : (2.2)

This equation can be solved analytically, yielding

Ǒ D
1
N

P
xi yi � Nx Ny

P
x2

i � Nx2
;

Ǫ D Ny � Nx Ǒ;

where Nx and Ny are the sample means of the xi and yi , respectively. If the errors
in the model are drawn from distributions with zero mean and finite variance,
then these estimators are unbiased and consistent. Furthermore, if the errors are
homoscedastic (equal variance) and uncorrelated, then the Gauss-Markov theorem
states that they will have minimal mean-squared error amongst all unbiased linear
estimators.

2.3 Geodesic Regression

Let y1; : : : ; yN be points on a smooth Riemannian manifold M , with associated
scalar values x1; : : : ; xN 2 R. The goal of geodesic regression is to find a geodesic
curve � on M that best models the relationship between the xi and the yi . Just as in
linear regression, the speed of the geodesic will be proportional to the independent
parameter corresponding to the xi . Estimation will be set up as a least-squares
problem, where we want to minimize the sum-of-squared Riemannian distances
between the model and the data. A schematic of the geodesic regression model is
shown in Fig. 2.1.

Before formulating the model, we review a few basic concepts of Riemannian
geometry. We will write an element of the tangent bundle as the pair .p; v/ 2 TM ,
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Fig. 2.1 Schematic of the
geodesic regression model

where p is a point in M and v 2 TpM is a tangent vector at p. Recall that for any
.p; v/ 2 TM there is a unique geodesic curve � , with initial conditions �.0/ D p

and � 0.0/ D v. This geodesic is only guaranteed to exist locally. When � is defined
over the interval Œ0; 1�, the exponential map at p is defined as Expp.v/ D �.1/.
In other words, the exponential map takes a position and velocity as input and
returns the point at time 1 along the geodesic with these initial conditions. The
exponential map is locally diffeomorphic onto a neighborhood of p. Let V.p/

be the largest such neighborhood. Then within V.p/ the exponential map has an
inverse, the Riemannian log map, Logp W V.p/ ! TpM . For any point q 2 V.p/

the Riemannian distance function is given by d.p; q/ D kLogp.q/k. It will be
convenient to include the point p as a parameter in the exponential and log maps,
i.e., define Exp.p; v/ D Expp.v/ and Log.p; q/ D Logp.q/.

Notice that the tangent bundle TM serves as a convenient parameterization of the
set of possible geodesics on M . An element .p; v/ 2 TM provides an intercept p

and a slope v, analogous to the ˛ and ˇ parameters in the multiple linear regression
model (2.1). In fact, ˇ is a vector in the tangent space T˛R

n Š R
n, and thus .˛; ˇ/ is

an element of the tangent bundle TR
n. Now consider an M -valued random variable

Y and a non-random variable X 2R. The generalization of the multiple linear model
to the manifold setting is the geodesic model,

Y D Exp.Exp.p; Xv/; �/; (2.3)

where � is a random variable taking values in the tangent space at Exp.p; Xv/.
Notice that for Euclidean space, the exponential map is simply addition, i.e.,
Exp.p; v/ D p C v. Thus, the geodesic model coincides with (2.1) when M D R

n.

2.3.1 Least Squares Estimation

Consider a realization of the model (2.3): .xi ; yi / 2 R � M , for i D 1; : : : ; N .
Given this data, we wish to find estimates of the parameters .p; v/ 2 TM . First,
define the sum-of-squared error of the data from the geodesic given by .p; v/ as

E.p; v/ D 1

2

NX

iD1

d.Exp.p; xi v/; yi /
2: (2.4)
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dpExp dvExp

Fig. 2.2 Jacobi fields as derivatives of the exponential map

Following the ordinary least squares minimization problem given by (2.2), we
formulate a least squares estimator of the geodesic model as a minimizer of the
above sum-of-squares energy, i.e.,

. Op; Ov/ D arg min
.p;v/

E.p; v/: (2.5)

Again, notice that this problem coincides with the ordinary least squares problem
when M D R

n.
Unlike the linear setting, the least squares problem in (2.5) for a general manifold

M will typically not yield an analytic solution. Instead we derive a gradient descent
algorithm. Computation of the gradient of (2.4) will require two parts: the derivative
of the Riemannian distance function and the derivative of the exponential map.
Fixing a point p 2 M , the gradient of the squared distance function is rxd.p; x/2 D
�2Logx.p/ for x 2 V.p/.

The derivative of the exponential map Exp.p; v/ can be separated into a derivative
with respect to the initial point p and a derivative with respect to the initial
velocity v. To do this, first consider a variation of geodesics given by c1.s; t/ D
Exp.Exp.p; su1/; tv.s//, where u1 2 TpM defines a variation of the initial point
along the geodesic �.s/ D Exp.p; su1/. Here we have also extended v 2 TpM to a
vector field v.s/ along � via parallel translation. This variation is illustrated on the
left side of Fig. 2.2. Next consider a variation of geodesics c2.s; t/ D Exp.p; su2 C
tv/, where u2 2 TpM . (Technically, u2 is a tangent to the tangent space, i.e.,
an element of Tv.TpM /, but there is a natural isomorphism Tv.TpM / Š TpM .)
The variation c2 produces a “fan” of geodesics as seen on the right side of
Fig. 2.2.

Now the derivatives of Exp.p; v/ with respect to p and v are given by

dpExp.p; v/ � u1 D d

ds
c1.s; t/

ˇ̌
ˇ
sD0

D J1.1/

dvExp.p; v/ � u2 D d

ds
c2.s; t/

ˇ̌
ˇ
sD0

D J2.1/;
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where Ji .t/ are Jacobi fields along the geodesic �.t/ D Exp.p; tv/. Jacobi fields
are solutions to the second order equation

D2

dt2
J.t/ C R.J.t/; � 0.t// � 0.t/ D 0; (2.6)

where R is the Riemannian curvature tensor. For more details on the derivation of
the Jacobi field equation and the curvature tensor, see for instance [3]. The initial
conditions for the two Jacobi fields above are J1.0/ D u1; J 0

1.0/ D 0 and J2.0/ D 0,
J 0

2.0/ D u2, respectively. If we decompose the Jacobi field into a component
tangential to � and a component orthogonal, i.e., J D J > C J ?, the tangential
component is linear: J >.t/ D u>

1 C tu>
2 . Therefore, the only challenge is to solve

for the orthogonal component.
Finally, the gradient of the sum-of-squares energy in (2.4) is given by

rp E.p; v/ D �
NX

iD1

dpExp.p; xi v/�Log.Exp.p; xi v/; yi /;

rv E.p; v/ D �
NX

iD1

xi dvExp.p; xi v/�Log.Exp.p; xiv/; yi /;

where we have taken the adjoint of the exponential map derivative, e.g., defined
by hdpExp.p; v/u; wi D hu; dpExp.p; v/�wi. As we will see in the next section,
formulas for Jacobi fields and their respective adjoint operators can often be derived
analytically for many useful manifolds.

2.3.2 R2 Statistics and Hypothesis Testing

In regression analysis the most basic question one would like to answer is whether
the relationship between the independent and dependent variables is significant.
A common way to test this is to see if the amount of variance explained by the model
is high. For geodesic regression we will measure the amount of explained variance
using a generalization of the R2 statistic, or coefficient of determination, to the
manifold setting. To do this, we first define predicted values of yi and the errors �i as

Oyi D Exp. Op; xi Ov/;

O�i D Log. Oyi ; yi /;

where . Op; Ov/ are the least squares estimates of the geodesic parameters defined
above. Note that the Oyi are points along the estimated geodesic that are the best
predictions of the yi given only the xi . The O�i are the residuals from the model
predictions to the true data.
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Now to define the total variance of data, y1; : : : ; yN 2 M , we use the Fréchet
variance, intrinsically defined by

var.yi / D min
y2M

1

N

NX

iD1

d.y; yi /
2:

The unexplained variance is the variance of the residuals, var. O�i / D 1
N

P kO�i k2.
From the definition of the residuals, it can be seen that the unexplained variance is
the mean squared distance of the data to the model, i.e., var.O�i / D 1

N

P
d. Oyi ; yi /

2.
Using these two variance definitions, the generalization of the R2 statistic is then
given by

R2 D 1 � unexplained variance

total variance
D 1 � var.O�i /

var.yi /
: (2.7)

Fréchet variance coincides with the standard definition of variance when M D R
n.

Therefore, it follows that the definition of R2 in (2.7) coincides with the R2 for linear
regression when M D R

n. Also, because Fréchet variance is always nonnegative,
we see that R2 � 1, and that R2 D 1 if and only if the residuals to the model
are exactly zero, i.e., the model perfectly fits the data. Finally, it is clear that the
residual variance is always smaller than the total variance, i.e., var.O�i / � var.yi /.
This is because we could always choose Op to be the Fréchet mean and v D 0 to
achieve var.O�i / D var.yi /. Therefore, R2 � 0, and it must lie in the interval Œ0; 1�,
as is the case for linear models.

We now describe a permutation test for testing the significance of the estimated
slope term, Ov. Notice that if we constrain v to be zero in (2.5), then the resulting least
squares estimate of the intercept, Op; will be the Fréchet mean of the yi . The desired
hypothesis test is whether the fraction of unexplained variance is significantly
decreased by also estimating v. The null hypothesis is H0 W R2 D 0, which is the
case if the unexplained variance in the geodesic model is equal to the total variance.
Under the null hypothesis, there is no relationship between the X variable and the
Y variable. Therefore, the xi are exchangeable under the null hypothesis, and a per-
mutation test may randomly reorder the xi data, keeping the yi fixed. Estimating the
geodesic regression parameters for each random permutation of the xi , we can cal-
culate a sequence of R2 values, R2

1; : : : ; R2
m, which approximate the sampling distri-

bution of the R2 statistic under the null hypothesis. Computing the fraction of the R2
k

that are greater than the R2 estimated from the unpermuted data gives us a p-value.

2.4 Testing the Geodesic Fit

In any type of regression analysis, a choice is made as to the type of model
that is fit to the data, whether it be linear, polynomial, or perhaps nonparametric.
An important step in the analysis is to verify that the selected model is in fact
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appropriate. In linear regression, for example, one would want to test several
assumptions: (1) that the trend in the data is truly linear, (2) that the error is
homoscedastic, (3) that the model fit is not led astray by outliers, (4) that the errors
are Gaussian distributed, etc. Several graphical and quantitative heuristic tests have
been developed to test these assumptions. For a detailed treatment of these methods,
see [9].

In this section we develop a diagnostic test of the model assumptions for geodesic
regression. We focus on the following question: is a geodesic curve an appropriate
model for the relationship between the independent and dependent variables? A
geodesic curve is, in some sense, the “straightest” path one can take on a manifold.
This begs the question if a more flexible model would do a better job at fitting the
data. This is analogous to the model selection problem for real-valued data when
one is making the choice between a linear model and something more flexible, such
as a higher-order polynomial model. Of course, if a model is made more flexible
there is a danger that the data will be overfit. One way to test if a model is “flexible
enough” is to plot the residuals of the model versus the independent variable. If
the model has captured the relationship between the independent and dependent
variables, then the residuals should show no obvious trend. If they do show a
trend, then a more flexible model is needed to capture the relationship between the
data. However, for regression on manifolds, this is a difficult test to apply because
the residuals are high-dimensional tangent vectors and are thus difficult to plot
versus the independent variable. One solution might be to plot the magnitude of
the residuals instead, but this loses most of the information contained in the residual
vectors.

Instead, we will use nonparametric regression as a comparison model to test
if a geodesic is sufficient to capture the relationships in the data. Nonparametric
regression models, such as the kernel regression method described below, are
highly flexible. Because there is no parametric model assumed for the functional
relationship between the independent and dependent variables, these models can
adapt to highly complex functions given enough data. Given a method to visualize
the results of a manifold-valued regression, the diagnostic test is as follows. First,
compute both a geodesic regression and a nonparametric regression of the data.
Second, visualize the results of both regression methods. If the nonparametric
regression trend is similar to the estimated geodesic, then this provides strong
evidence that the geodesic model is sufficient. If the nonparametric trend deviates
significantly from the estimated geodesic, then this indicates that the geodesic model
is too inflexible to capture the relationship between the two variables.

An example of this procedure is given for synthesized univariate data in Fig. 2.3.
The left figure shows data generated from a noisy linear trend. In this case the linear
model and the nonparametric model give similar answers. The right figure shows
data generated from a noisy nonlinear (sinusoidal) trend. Here the nonparametric
regression adapts to the nonlinearities in the data, and the inadequacy of the
linear trend can be seen as a difference between the two regression models. Of
course, in the univariate case we can easily see that a linear trend is inadequate
just by plotting the data even without comparing it to a nonparametric regression.
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Fig. 2.3 Comparison of linear (black) and nonparametric (red) regressions as a test of fit. When
the data is generated from a linear model (left), the two regression methods produce similar results.
When the data is generated from a nonlinear model (right), the difference in the two models helps
detect that a linear model is insufficient

However, for high-dimensional manifolds this type of plot is not available. This
is where a comparison to a nonparametric trend is highly useful. In the results
below (Sect. 2.6.2) we give an example of how this comparison to nonparametric
regression can be used as a diagnostic of model fit in shape analysis applications.
The nonparametric regression method that we use for comparison is the one given
by Davis et al. [2], which we review now.

2.4.1 Review of Univariate Kernel Regression

Before reviewing the manifold version, we give a quick overview of univariate
kernel regression as developed by Nadaraya [19] and Watson [25]. As in the
linear regression setting, we are interested in finding a relationship between data
x1; : : : ; xN 2 R, coming from an independent variable X , and data y1; : : : ; yN 2 R,
representing a dependent variable Y . The model of their relationship is
given by

Y D f .X/ C �;

where f is an arbitrary function, and � is a random variable representing the error.
Contrary to linear regression, the function f is not assumed to have any particular
parametric form.

Instead, the function f is estimated from the data by local weighted averaging.

Ofh.x/ D
PN

iD1 Kh.x � xi /yiPN
iD1 Kh.x � xi /

:

In this equation, K is a function that satisfies
R

K.t/ dt D 1 and Kh.t/ D 1
h
K. t

h
/,

with bandwidth parameter h > 0. This is the estimation procedure shown in Fig. 2.3
(red curves).
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2.4.2 Nonparametric Kernel Regression on Manifolds

The regression method of Davis et al. [2] generalizes the Nadaraya-Watson kernel
regression method to the case where the dependent variable lives on a Riemannian
manifold, i.e., yi 2 M . Here the model is given by

Y D Exp.f .X/; �/;

where f W R ! M defines a curve on M , and � 2 Tf .X/M is an error term. As in
the univariate case, there are no assumptions on the parametric form of the curve f .

Motivated by the definition of the Nadaraya-Watson estimator as a weighted
averaging, the manifold kernel regression estimator is defined using a weighted
Fréchet sample mean as

Ofh.x/ D arg min
y2M

PN
iD1 Kh.x � xi /d.y; yi /

2

PN
iD1 Kh.x � xi /

:

Notice that when the manifold under study is a Euclidean vector space, equipped
with the standard Euclidean norm, the above minimization results in the Nadaraya-
Watson estimator.

2.4.3 Bandwidth Selection

It is well known within the kernel regression literature that kernel width plays a
crucial role in determining regression results [24]. In particular, it is important to
select a bandwidth that captures relevant population-wide changes without either
oversmoothing and missing relevant changes or undersmoothing and biasing the
results based on individual noisy data points. The ‘Goldie Locks’ method of tuning
the bandwidth until the results are most pleasing is a common subjective method
for bandwidth selection. However, non-subjective methods may be required, for
example, when kernel regression is part of a larger statistical study. A number
of automatic kernel bandwidth selection techniques have been proposed for this
purpose [24].

One classic method for automatic bandwidth selection is based on least squares
cross-validation. This method is easily extended to the manifold regression setting
in the following way. The least squares cross-validation estimate for the optimal
bandwidth h is defined as

OhLSCV D arg min
h2RC

1

N

NX

iD1

d
� Of

.i/

h .xi /; yi

�2

;
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where

Of
.i/

h .t/ D arg min
y2M

 PN
j D1;j ¤i Kh.x � xj /d.y; yj /2

PN
j D1;j ¤i Kh.x � xj /

!

is the manifold kernel regression estimator with the i -th observation left out. This
cross-validation method was used to select the bandwidth for the kernel regression
example in Fig. 2.3.

2.5 Results: Regression of 3D Rotations

2.5.1 Overview of Unit Quaternions

We represent 3D rotations as the unit quaternions, Q1. A quaternion is denoted as
q D .a; v/, where a is the “real” component and v D bi Ccj Cdk. Geodesics in the
rotation group are given simply by constant speed rotations about a fixed axis. Let
e D .1; 0/ be the identity quaternion. The tangent space TeQ1 is the vector space
of quaternions of the form .0; v/. The tangent space at an arbitrary point q 2 Q1

is given by right multiplication of TeQ1 by q. The Riemannian exponential map is
Expq..0; v/ � q/ D .cos.�=2/; 2v � sin.�=2/=�/ � q, where � D 2kvk. The log map is
given by Logq..a; v/ � q/ D .0; �v=kvk/ � q, where � D arccos.a/.

Being a unit sphere, Q1 has constant sectional curvature K D 1. In this case the
orthogonal component of the Jacobi field equation (2.6) along a geodesic �.t/ has
the analytic solution

J.t/? D u1.t/ cos .Lt/ C u2.t/
sin .Lt/

L
;

where u1; u2 are parallel vector fields along � , with initial conditions u1.0/ D J.0/?
and u2.0/ D J 0.0/?, and L D k� 0k. While the Jacobi field equation gives us
the differential of the exponential map, we really need the adjoint of this operator
for geodesic regression. However, from the above equation it is clear that dpExp
and dvExp are both self-adjoint operators. That is, the above Jacobi field equation
provides us both the differential and its adjoint.

2.5.2 Geodesic Regression of Simulated Rotation Data

To test the geodesic regression least squares estimation on Q1, synthetic rotation
data was simulated according to the geodesic model (2.3). The intercept was the
identity rotation: p D .1; 0; 0; 0/, and the slope was a rotation about the z-axis:
v D .0; 0; 0; 	=4/. The xi data were drawn from a uniform distribution on Œ0; 1�.
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Fig. 2.4 Results for simulated rotation data: MSE of the geodesic regression estimates for the
intercept (left) and slope (right) as a function of sample size

The errors in the model were generated from an isotropic Gaussian distribution in
the tangent space, with 
 D 	=8. The resulting data .xi ; yi / were used to compute
estimates of the parameters . Op; Ov/. This experiment was repeated 1,000 times each
for sample sizes N D 2k , k D 2; 3; : : : ; 8. We would expect that as the sample size
increases, the mean squared error (MSE) in the estimates . Op; Ov/, relative to the true
parameters, would approach zero. The MSE is defined as

MSE. Op/ D 1

M

MX

iD1

d. Opi ; p/2; MSE.Ov/ D 1

M

MX

iD1

kOvi � . Op�1
i p/ � vk2;

where M D 1,000 is the number of repeated trials, and . Opi ; Ovi / is the estimate from
the i th trial. Notice the multiplication by . Op�1

i p/ in the second equation is a right-
translation of Ovi to the tangent space of p. Figure 2.4 shows plots of the resulting
MSE for the slope and intercept estimates. As expected, the MSE approaches zero as
sample size increases, indicating at least empirically that the least squares estimates
are consistent.

2.6 Results: Regression in Shape Spaces

One area of medical image analysis and computer vision that finds the most
widespread use of Riemannian geometry is the analysis of shape. Dating back to
the groundbreaking work of Kendall [13] and Bookstein [1], modern shape analysis
is concerned with the geometry of objects that is invariant to rotation, translation,
and scale. This typically results in representing an object’s shape as a point in a
nonlinear Riemannian manifold, or shape space. Recently, there has been a great
amount of interest in Riemannian shape analysis, and several shape spaces for
2D and 3D objects have been proposed [8, 15, 17, 26]. We choose here to use
Kendall’s shape space, but geodesic regression is applicable to other shape spaces
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as well. It could also be applied to spaces of diffeomorphisms, using the Jacobi
field calculations given by Younes [27]. In fact, Niethammer et al. [20] recently
independently developed geodesic regression for diffeomorphic transformations of
image time series. They solve the gradient descent problem with an elegant control
theory approach, constraining the regression curve to be a geodesic using Lagrange
multipliers. The resulting update to the geodesic’s initial conditions involves a
numerical integration of an adjoint equation backwards along the geodesic with
jump conditions at the data points.

2.6.1 Overview of Kendall’s Shape Space

We begin with derivations of the necessary computations for geodesic regression on
Kendall’s shape space. A configuration of k points in the 2D plane is considered as
a complex k-vector, z 2 C

k . Removing translation, by requiring the centroid to be
zero, projects this point to the linear complex subspace V D fz 2 C

k W P zi D 0g,
which is equivalent to the space C

k�1. Next, points in this subspace are deemed
equivalent if they are a rotation and scaling of each other, which can be represented
as multiplication by a complex number, �ei� , where � is the scaling factor and � is
the rotation angle. The set of such equivalence classes forms the complex projective
space, CP k�2. As Kendall points out, there is no unique way to identify a shape
with a specific point in complex projective space. However, if we consider that
the geodesic regression problem only requires computation of exponential/log maps
and Jacobi fields, we can formulate these computations without making an explicit
identification of shapes with points in CP k�2.

Thus, we think of a centered shape x 2 V as representing the complex line Lx D
fz � x W z 2 Cnf0g g, i.e., Lx consists of all point configurations with the same shape
as x. A tangent vector at Lx 2 V is a complex vector, v 2 V , such that hx; vi D 0.
The exponential map is given by rotating (within V ) the complex line Lx by the
initial velocity v, that is,

Expx.v/ D cos � � x C kxk sin �

�
� v; � D kvk: (2.8)

Likewise, the log map between two shapes x; y 2 V is given by finding the initial
velocity of the rotation between the two complex lines Lx and Ly . Let 	x.y/ D
x � hx; yi=kxk2 denote the projection of the vector y onto x. Then the log map is
given by

Logx.y/ D � � .y � 	x.y//

ky � 	x.y/k ; � D arccos
jhx; yij
kxkkyk : (2.9)

Notice that we never explicitly project a shape onto CP k�2. This has the effect that
shapes computed via the exponential map (2.8) will have the same orientation and
scale as the base point x. Also, tangent vectors computed via the log map (2.9) are
valid only at the particular representation x (and not at a rotated or scaled version
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of x). This works nicely for our purposes and implies that shapes along the estimated
geodesic will have the same orientation and scale as the intercept shape, Op.

The sectional curvature of CP k�2 can be computed as follows. Let u; w be
orthonormal vectors at a point p 2 CP k�2. These vectors may be thought of as
vectors in C

k�1 Š R
2k�2. Writing the vector w as w D .w1; : : : ; w2k�2/, define the

operator
j.w/ D .�wk; : : : ; �w2k�2; w1; : : : ; wk�1/:

(This is just multiplication by i D p�1 if we take w as a complex vector with the
k � 1 real coordinates listed first.) Using this operator, the sectional curvature is
given by

K.u; w/ D 1 C 3hu; j.w/i2:

When k D 3, CP 1 is the space of triangle shapes and is isomorphic to the sphere,
S2, and thus has constant sectional curvature, K D 1. For k > 3, CP k�2 has
sectional curvature in the interval K 2 Œ1; 4�. Furthermore, let u 2 TpCP k�2 be
any unit length vector. If we decompose the tangent space into an orthonormal basis
e1; : : : ; e2k�2, such that e1 D j.u/, then we have K.u; e1/ D 4 and K.u; ei / D 1

for i > 1. This leads to the following procedure for computing the Jacobi field
equation on CP k�2 along a geodesic � . Given initial conditions for J.0/? and
J 0.0/?, decompose J.0/? D u1 C w1, so that u1 is orthogonal to j.� 0/ and w1

is tangential to j.� 0/. Do the same for J 0.0/? D u2 C w2. As before, extend these
vectors to parallel fields, ui .t/; wi .t/, along � . Then the orthogonal component of
the Jacobi field along � is given by

J.t/? D u1.t/ cos .Lt/ C u2.t/
sin .Lt/

L
C w1.t/ cos .2Lt/ C w2.t/

sin .2Lt/

2L
:

As was the case for rotations, both dpExp and dvExp are self-adjoint operators.

2.6.2 Application to Corpus Callosum Aging

The corpus callosum is the major white matter bundle connecting the two hemi-
spheres of the brain. A midsagittal slice from a magnetic resonance image (MRI)
with segmented corpus callosum is shown in Fig. 2.5. Several studies have shown
that the volume of the corpus callosum decreases with normal aging [4]. However,
less is known about how the shape of the corpus callosum changes with age.
Understanding shape changes may provide a deeper understanding of the anatomical
and biological processes underlying aging. For example, does the corpus callosum
shrink uniformly in size, or do certain regions deteriorate faster than others? This
type of question can be answered by geodesic regression in shape spaces.

To understand age-related changes in the shape of the corpus callosum, geodesic
regression was applied to corpus callosum shape data derived from the OASIS
brain database (www.oasis-brains.org). The data consisted of MRI from 32 subjects

www.oasis-brains.org
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Fig. 2.5 Corpus callosum segmentation and boundary point model for one subject

19 20 20 21 23

24 24 24 38 46

47 48 48 49 52

55 55 58 60 63

64 65 67 69 73

74 77 80 81 83

86 90

Fig. 2.6 The input corpus callosum shape data and corresponding subject ages in years

with ages ranging from 19 to 90 years old. The corpus callosum was segmented
in a midsagittal slice using the ITK SNAP program (www.itksnap.org). These
boundaries of these segmentations were sampled with 128 points using ShapeWorks
(www.sci.utah.edu/software.html). This algorithm generates a sampling of a set of
shape boundaries while enforcing correspondences between different point models
within the population. An example of a segmented corpus callosum and the resulting
boundary point model is shown in Fig. 2.5. The entire collection of input shapes and
their ages is shown in Fig. 2.6 (boundary points have been connected into a boundary
curve for visualization purposes). Each of these preprocessing steps were done
without consideration of the subject age, to avoid any bias in the data generation.

Geodesic regression was applied to the data .xi ; yi /, where xi was the i th
subject’s age, and yi was the i th subject’s corpus callosum, generated as above
and represented as a point in Kendall’s shape space. First, the average age of the
group, Nx, was subtracted from each xi , which was done to make the intercept term
correspond to the shape at the mean age, rather than the shape at age 0, which would
be far outside the data range. Least squares estimates . Op; Ov/ were generated accord-
ing to (2.5), and using the above calculations for CP k�2. The resulting estimated
geodesic is shown in Fig. 2.7 as a sequence of shapes: O�.tk/ D Exp. Op; .tk � Nx/Ov/, for

www.itksnap.org
www.sci.utah.edu/software.html
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Fig. 2.7 Geodesic regression
of the corpus callosum. The
estimated geodesic is shown
as a sequence of shapes from
age 19 (blue) to age 90 (red)

20 yrs.

66 yrs. 90 yrs.

44 yrs.

Fig. 2.8 Comparison of geodesic regression (solid black) and nonparametric kernel regression
(dashed red) of the corpus callosum shape versus age

tk D 19; 36; 54; 72; 90. The shape trend shows a very clear thinning of the corpus
callosum, with the largest effects in the posterior part of the body and in the genu
(anterior end).

The statistical significance of the estimated trend was tested using the permu-
tation test described in Sect. 2.3.2, using 10,000 permutations. The p-value for
the significance of the slope estimate, Ov, was p D 0:009. The coefficient of
determination (for the unpermuted data) was R2 D 0:12. The low R2 value must be
interpreted carefully. It says that age only describes a small fraction of the shape
variability in the corpus callosum. This is not surprising: we would expect the
intersubject variability in corpus callosum shape to be difficult to fully describe
with a single variable (age). However, this does not mean that the age effects are not
important. In fact, the low p-value says that the estimated age changes are highly
unlikely to have been found by random chance.

Finally, the appropriateness of the resulting geodesic model fit was tested
using a comparison to nonparametric regression, as outlined in Sect. 2.4. First,
a nonparametric kernel regression of the corpus callosum data versus age was
computed using the method developed by Davis et al. [2] and reviewed in Sect. 2.4.2.
The kernel regression was performed on the same Kendall shape space manifold
and the bandwidth was chosen automatically using the cross-validation procedure
described in Sect. 2.4.3. Next, the resulting corpus callosum shape trend generated
by the kernel regression method was compared to the result of the geodesic
regression. This was done by again generating shapes from the geodesic model
O�.tk/ at a sequence of ages, tk , and overlaying the corresponding generated shapes
from the kernel regression model at the same ages. The results are plotted for ages
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tk D 20; 44; 66; and 90 (Fig. 2.8). Both regression methods give strikingly similar
results. The two regression models at other values of ages, not shown, are also
close to identical. This indicates that a geodesic curve does capture the relationship
between age and corpus callosum shape, and that the additional flexibility offered
by the nonparametric regression does not change the estimated trend. However, even
though both methods provide a similar estimate of the trend, the geodesic regression
has the advantage that it is simpler to compute and easier to interpret, from the
standpoint of the R2 statistic and hypothesis test demonstrated above.

2.7 Conclusion

We introduced a geodesic regression analysis method for Riemannian manifolds.
The geodesic regression model is the natural generalization of linear regression and
is parameterized by an intercept and slope term. We also developed a generalization
of the R2 statistic and a permutation test for the significance of the estimated
geodesic trend. There are several avenues for future work. First, the hypothesis
test presented here could be extended to test for group differences, for example,
to test if age-related anatomical changes are different in a disease population
compared to controls. Second, theoretical properties of geodesic regression, such as
unbiasedness and consistency, would be of interest. Finally, regression diagnostics
and model selection procedures need to be developed to assess the appropriateness
of a geodesic model for a particular data set.
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