
Chapter 18
Incremental Level Set Tracking

Shay Dekel, Nir Sochen, and Shai Avidan

Abstract We consider the problem of contour tracking in the level set framework.
Level set methods rely on low level image features, and very mild assumptions
on the shape of the object to be tracked. To improve their robustness to noise and
occlusion, one might consider adding shape priors that give additional weight to
contours that are more likely than others. This works well in practice, but assumes
that the class of object to be tracked is known in advance so that the proper shape
prior is learned. In this work we propose to learn the shape priors on the fly. That
is, during tracking we learn an eigenspace of the shape contour and use it to detect
and handle occlusions and noise. Experiments on a number of sequences reveal the
advantages of our method.

18.1 Introduction

Contour tracking is a task in which the contour of the object(s) of interest has to be
extracted for each frame in a video in a way which is robust to noise and clutter.
This task is different from object tracing in which a bounding box that contains the
object is sought or segmentation in which the contour in a given image is extracted.
The main issues that we address in this paper is the robustness to noise, clutter
and occlusions on one hand and the ability to deal with shape/behavior change.
Accordingly, this paper introduces a way to achieve such a robustness as a matter
of principle without paying too much attention to the quality of segmentation. The
way it is done is via variational and level-set methods.
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Level set methods are a convenient way to parameterize and track object
contours. They work by evolving a contour which tightly encloses the deformable
object to be tracked. However this method cannot handle missing or misleading
information due to noise, clutter or occlusions in the input images. In order to over-
come these problems one can derive a parametric model for implicit representation
of the segmentation curve by applying low dimensional subspace representation,
such as Principle Component Analysis (PCA) to a specific collection of training
set images before the tracking begins. In this case the evolving curve has limited
degrees of freedom since the curve lies on the PCA subspace. This property enables
the segmentation to be robust to noise and partial occlusions. However this model
relies on a fixed training set and assumes that the object class to be tracked is known
in advance.

We present an extension that deals with these shortcomings. Our approach learns,
on line, a shape prior that is then used during tracking. This enables our tracker to
overcome occlusions and, unlike previous algorithms, it does not demand a specific
predefined training set.

We formulate the tracking process as a mixture of two major models: In the
On-line Learning Model, we perform region-based segmentation on each frame
using the Chan-Vese approach [3] together with the edge-based approach which is
based on the Geodesic Active Contour [2]. The segmentation results are then used
to incrementally learn an on-line low dimensional subspace representation of the
objects’ contour, efficiently adapting to changes in the appearance of the target.

In case of occlusion, the eigencoordinates of the segmented shape will differ
considerably from those obtained so far and, in that case, we switch to the
PCA Representation Model that tracks the object using the currently available
PCA space. This PCA eigenbase representation together with the temporal prior
representation allows us to limit the degree of freedom of the evolving contour
which enables it to cope with missing or misleading information due to occlusions,
partial occlusions and noise. Once the object reappears we switch back to the online
learning model and keep updating our representation model. Hence, we can properly
track deformable objects through occlusion and noise.

We provide experimental results that present several properties of our method:
We show that our method can cope with partial or total occlusions, as well as exam-
ples in which the images are severely contaminated with strong Gaussian noise.
In addition, we show that our algorithm can adapt to considerable deformations in
shape.

18.2 Background

Contour tracking via variational methods and level-sets is based on the seminal
works [1, 3, 18] and many more; see [6] for a very nice overview and for further
references on level-set based tracking.
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Several authors combined prior shape information into level-set-based segmenta-
tion. Leventon et al. [11] incorporated a training set information as a prior model to
restrict the flow of the geodesic active contour using Principle Component Analysis
(PCA). Tsai et al. [25] used only the first few eigenmodes by performing optimiza-
tion. Rousson et al. [20, 21] introduced shape information on the variational level.
Chen et al. [4] imposed shape constraints directly on the contour. However these
authors ignored the temporal coherence of the shapes which leads to degredation in
performance when dealing with occlusions.

Cremers [5] proposes to model the embedding functions by a Principle Com-
ponent Analysis (PCA) and to use dynamical shape prior. He learns a specific
set of training shapes before the tracking begins and also exploits the temporal
correlations between consecutive shapes. This enables him to handle occlusions
and large amounts of noise. His method is well-suited for specific tracking missions
where a pre-defined training set can be performed off-line.

Another approach is presented in the work of Fussenegger et al. [7]. In that work
a level-set method is combined with PCA decomposition of shape space. This is
very similar and relevant to this paper. The difference is in the aim and type of video
treated. In Fussengger et al. there are many, mainly rigid, objects to segment such
that each individual shape doesn’t change too much from frame to frame. Our paper
deals with mainly one object with changing shape and the main focus is on the way
to deal with occlusions and changes of shape along the video.

Our work is motivated in part by the power of subspace representation and
exploits the temporal correlations between consecutive shapes following the work
of Cremers [5]. But in contrast to eigentracking algorithms, our algorithm does not
require a specific training set before tracking begins. It learns the eigenbase on-line
during the object tracking process, thus eliminating the need to collect the training
images prior to tracking.

18.2.1 Integrated Active Contours

We start with a generic algorithm for data-based segmentation. The model is
formulated in variational way and we use the Integrated Active Contour model
[19, 22] that combines region-based and edge-based segmentation via the level-set
formulation. In order to perform region-based segmentation in each frame we use
the Chan-Vese algorithm which attempts to partition the image into two regions
according to common image properties. Then we add to the functional an edge-
based term which is based on the Geodesic Active Contour (GAC).

Let It W ˝ ! IR be the image at time t that assigns for each pixel x 2 ˝ � IR2

a real value grey level. A contour that separates the object (or objects) from the
background is encoded as a zero level-set of a function �t W ˝ ! IR. The contour
at frame t is Ct D f.x; y/j�t.x; y/ D 0g. We denote the region inside the zero-
level set by ˝C D f.x; y/j�t.x; y/ > 0g and similarly the region outside the zero
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level-set ˝� D f.x; y/j�t .x; y/ < 0g . The probability of the contour �t , given the
previous contours and all the measurements ŒI0.x/ : : : It .x/� using the Bayes rule is:

P.�t jI0Wt ; �0Wt�1/ / PC.It j�t/
„ ƒ‚ …

Target

�P�.It j�t/
„ ƒ‚ …

Background

� P.�0Wt�1j�t/
„ ƒ‚ …

Shape

� P.�t /
„ƒ‚…

Smoothness

(18.1)

Here P˙ are the probability distributions of the grey value intensities inside and
outside of the zero level-set of �t .

While P˙ can be quite involved in real-life applications we choose here to stick
to the simple Gaussian model in order to concentrate on the tracking part. This
choice leads to the Chan-Vese model. In this approach we find a contour, represented
by �.x/, that partitions the image into two regions ˝C and ˝�, that describe
an optimal piecewise constant approximation of the image. We also assume that
the intensities of the shape and the background are independent samples from two
Gaussian probabilities, therefore:

P˙.It j�t/ D
Y

x2˝˙

1
q

2˘�2˙
exp

� .It�C˙
/2

2�2
˙ (18.2)

Thereby C˙ and �˙ are the mean and standard deviation of the intensities inside
and outside of the zero level-set of �t .

The region-based energy is defined as

ERB.�t ; CC; C�/ D � logfPC.It j�t / � P�.It j�t /g (18.3)

The contour with the highest probability is the one that minimizes the following
region-based energy functional:

ERB.�t ; CC; C�/ D
Z

˝

f 1

2�2C
.It .x/ � CC/2 C 1

2
log.2��2C/gH.�t .x//dx

C
Z

˝

f 1

2�2�
.It .x/ � C�/2 C 1

2
log.2��2�/gf1�H.�t .x//gdx (18.4)

whereH.�t .x// is the Heaviside step function:

H.�t .x// D
�

1 if �t .x/ > 0
0 if �t .x/ 0 0

(18.5)

The smoothness prior is taken to be the Geodesic Active Contour (GAC) term [2].
This term defines the object boundaries as a (locally) minimal length weighted by
the local gradients. In other words it is a geodesic over a Riemannian manifold
whose metric is defined via the gradients of the image. It leads to the following
functional:
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EGAC.�t / D
Z

˝

gGAC .jrI j/jrH.�t.x//jdx (18.6)

where gGAC D 1=.1C jrI j2/.
Finally, the Integrated Active Contour functional EIAC is obtained by the

summation of the region-based energy ERB (18.4) and the edge-based geodesic
active contour energyEGAC (18.6) as:

EIAC.�t ; CC; C�/ D ERB.�t ; CC; C�/C �EGAC .�t / (18.7)

with the Euler-Lagrange equation:

ıEIAC

ı�t
D

h

log.
�C
��
/C 1

2�2C
.It .x/ � CC/2

� 1

2�2�
.It .x/ � C�/2 � �div.gGAC .jrI j/ r�t.x/

jr�t.x/j /
i

ı.�t .x// (18.8)

18.2.2 Building the PCA Eigenbase

The shape term, as explained earlier, is an on-line learning model that produces
and updates an eigenbase representation during tracking. We work here with
a PCA decomposition, where we first build a PCA eigenbase from the first n
frames of the sequence and then incrementally update it as new m observations
arrive. For efficiency we use an incremental PCA algorithm and only keep the
top k eigenvalues. The corresponding eigenvectors are denoted by  i . This PCA
eigenbase,  i , will help us cope with occlusions in the PCA representation model.
Each shape is represented as:

�i .x/ D N�0.x/C
k

X

jD1
˛ij  j (18.9)

where �i .x/ represents the i -th shape from the PCA subspace model, N�0.x/ is the
mean shape and ˛ij is the PCA coefficient of the i -th shape.

18.2.2.1 First PCA Eigenbase

We produce the first PCA eigenbase from the previous n segmentation results of the
On-Line Learning model. Let A D f�1.x/; �2.x/ : : : �n.x/g be the previous n level
set function segmentations. Each data element, �i.x/, is a d �1 vector that contains
the level set function of the i -th shape. We calculate the mean shape �A.x/ as:
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N�A.x/ D 1

n

n
X

iD1
�i .x/ (18.10)

Then we apply singular value decomposition (SVD) on the centered n previous level
set functions

UA˙AV
T
A D SVDf�1 � N�A; �2 � N�A; : : : ; �n � N�Ag (18.11)

Here UA and ˙A contain the eigenvectors and the eigenvalues, respectively. Then
the first PCA eigenbase denoted as  A.x/ D U

.1Wk/
A contains the eigenvectors cor-

responding to the k largest eigenvalues, i.e. vectors of UA. These terms  A.x/ and
˙A will serve as initialization to the incremental PCA algorithm.

18.2.2.2 Updating the Eigenspace

Incremental PCA combines the current eigenbase with new observations without re-
calculating the entire SVD. Numerous algorithms have been developed to efficiently
update an eigenbase as more data arrive [8, 9]. However, most methods assume
a fixed mean when updating the eigenbase. We use the Sequential Karhunen-
Loeve (SKL) algorithm of Levy and Lindenbaum [12]. They present an efficient
method that incrementally updates the eigenbase as well as the mean when new
observations arrive. They also add a forgetting factor f 2 Œ0; 1� that down-weights
the contribution of the earlier observations. This property plays an important role
in the on-line learning. As time progresses the observation history can become very
large and the object may change its appearance, and the forgetting factor allows us to
strengthen the contribution of the current data such that the updated PCA eigenbase
will be able to cope with that change. This algorithm allows us to update the PCA
eigenbase online while tracking using the segmentation results during the on-line
learning model.

18.2.2.3 Detection of Occlusion

In the on-line learning model we performed region-based segmentation in each
frame and incrementally updated the PCA eigenbase. We want to know when the
current contour encounters an occlusion in order to switch to the PCA representation
model. Then, after the occlusion ends we switch back to the on-line learning model
to keep updating our representation model.

For this purpose, we rely on the PCA coefficients that represent the current shape
and observe that under occlusions these coefficients are farther away from the mean
PCA coefficients.
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During the on-line learning model we project each contour segmentation �t on
the current PCA subspace �.x/ to obtain its current PCA coefficient ˛t . Then we
measure the Mahalanobis distance between the current PCA coefficient ˛t and the
mean PCA coefficient N̨ :

Dt.˛t / D
p

.˛t � N̨ /T S�1.˛t � N̨ / (18.12)

Here N̨ is the mean PCA coefficient and S is the covariance matrix. These two
terms were obtained by collecting only the good PCA coefficients every frame
during the on-line learning model. From (18.12), if Dt.˛t / > Th our method
switches to the PCA representation model and when Dt.˛t / < Th we return back
to the on-line learning model.

Experimental results show that if the scene is free of occlusions, the Mahalanobis
distance is usually Dt.˛t / < Th. Figure 18.1 shows the Mahalanobis distance in
each frame during the two models. We can see that during the on-line learning model
the contour encounters an occlusion and its appropriate Mahalanobis distance is
above Th (the peaks in the blue bars in the middle), in that moment we switch to the
PCA representation model and see the improvement in the Mahalanobis distances
during the occlusion (the red bars in the middle). Then we switch back to the on-line
learning model when the coefficients are below Th.

18.2.3 Dynamical Statistical Shape Model

Once the algorithm detects an occlusion, it switches to the PCA representation
model with the updated PCA eigenbase. But before we switch to the PCA
representation model, we want to exploit the temporal correlations between the
shapes. As explained in Eq. (18.9) we can represent each shape using the PCA
eigenbase and the mean shape. Therefore the segmentation in the current frame
�t .x/ can be represented by the PCA coefficient vector ˛t . This will lead us
to write the probability of the shape prior from (18.1) as: P.˛t j˛0Wt�1/ instead
of P.�t j�0Wt�1/. In addition during the on-line learning model, we ignored the
correlation between the frames since we assumed that the object wasn’t occluded
and therefore no temporal prior information was needed. In the PCA representation
model, where the deformable object may be occluded, we have to obtain more
powerful prior which relies on the correlation between consecutive frames. For this
reason we can represent each shape by a Markov chain of order q in a manner similar
to Cremers [5]. More formally, the current shape at time t can be represented by the
previous shapes using an Auto Regressive (AR) model as follows:

˛t D # C A1˛t�1 C A2˛t�2 : : :C Aq˛t�q C � (18.13)
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Fig. 18.1 The Mahalanobis distance between the current PCA coefficient ˛t and the mean PCA
coefficient N̨ in each frame during the two models on-line learning model (blue) and PCA
representation model (red)

Here � is Gaussian noise with zero mean and covariance matrix 	, Ai are the
transition matrices of the AR model. and # is the mean of the process. With this
AR model we can determine the probability P.˛t j˛0Wt�1/ for observing a particular
shape ˛t at time t given the shapes estimated on the previous frames as follows:

P.˛t j˛0Wt�1/ / exp.�1
2
!T	�1!/ (18.14)

Where:
! D ˛t � # �A1˛t�1 �A2˛t�2 : : : �Aq˛t�q (18.15)

Various methods have been proposed in the literature to estimate the model
parameters: �, 	 and Ai . We applied a Stepwise Least Squares algorithm as pro-
posed in [16]. The order q determines the accuracy of the AR model approximation
and its value depends on the input sequence. In order to estimate its value we use
the Schwarz Bayesian Criterion [23].

18.3 PCA Representation Model

The algorithm switches to that model only if it detects an occlusion. Once detecting
an occlusion, it continually tracks the same target using the PCA eigenbase and the
AR parameters which were obtained in the on-line learning model. As explained
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in Sect. 18.2.2, according to (18.9) the segmentation in the current frame �t .x/ can
be represented by the PCA coefficient vector ˛t . Therefore we actually exchange in
(18.1) each level set function � by the appropriate shape vector representation ˛:

P.˛t jI0Wt ; ˛0Wt�1/ / PC.It j˛t /
„ ƒ‚ …

Target

�P�.It j˛t /
„ ƒ‚ …

Background

� P.˛t j˛0Wt�1/
„ ƒ‚ …

Shape Prior

(18.16)

This will lead us in this model to focus on estimating the shape vector
representation ˛t by minimizing the following energy functional:

EPCA.˛t ; CC; C�/ D �log.P.˛t jI0Wt ; ˛0Wt�1//
D � log PC.It j˛t / � P�.It j˛t /

„ ƒ‚ …

Data

� log P.˛t j˛0Wt�1/
„ ƒ‚ …

Shape Prior

(18.17)

Thereby the probabilities P˙.It j˛t / are similar to the Chan-Vese probabilities
(18.2), except that �t .x/ is determined by ˛t as (18.9).

Applying these probabilities and (18.14)–(18.17) leads to the following energy
functional:

EPCA.˛t ; CC; C�/ D 1

2�2
C

Z

˝
.It .x/� CC/

2H.�.˛t //dx C 1

2
log.2��2C/

Z

˝
H.�.˛t //dx

C 1

2�2�

Z

˝
.It .x/� C�/

2.1�H.�.˛t ///dx C 1

2
log.2��2�/

Z

˝
.1�H.�.˛t ///dx C 


1

2
!T	�1!

(18.18)

Here 
 is an additional parameter that allows relative weighting between data
and prior and �.˛t / is the level set estimation which is determined by ˛t . The
segmentation in each frame requires the estimation of the shape vector ˛t , which
is done by minimizing (18.18) with respect to ˛t using gradient descent strategy.

18.4 Motion Estimation

In each frame we estimate the translation positions .u; v/t and use this to translate
the previous contour �t�1 as initialization to estimate the current contour. In the
On-Line Learning model the segmentations aren’t sensitive to the initial contour
since we assume that the object isn’t occluded. Therefore we use Lucas-Kanade
approach [13] to estimate the translation position .u; v/t by minimizing

ELK.u; v/t D KW � .Ixu C Iyv C It /
2 (18.19)

where KW � .�/ denotes the convolution with an integration window of size W .
Ix; Iy are the x; y derivatives of the image in each axis and It is the derivative
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Fig. 18.2 Comparison between our algorithm (Green) and Chan-Vese (Red) on walking man
sequence (319 frames) with full occlusion. In the on-line learning model (frame 22) and in the
PCA representation model (frames: 153,161,165,176,266). As can be seen, the Chan-Vese model
cannot handle the case of occlusion

between two consecutive frames. In the on-line learning model we also learn the
temporal translations between consecutive frames to build a motion prior. This is
done by collecting all the translations seen so far and build it into a AR model in the
same way as we build the shape prior (18.13)

�

u
v

�

t

D
� Nu

Nv
�

C B1

�

u
v

�

t�1
C B2

�

u
v

�

t�2
C : : : Bq

�

u
v

�

t�q
C �pos

Here �pos is Gaussian noise with zero mean with covariance matrix	pos , Bi are
the transitions of the AR model, and .Nu; Nv/ are the mean values of u and v.

In the PCA representation model, when the object is occluded we use the learned
AR motion parameters Bi , 	pos and .Nu; Nv/ to estimate u and v in each frame,
.up; vp/, as a prior and combine this to the LK functional (18.19):

ELK�PRIOR.u; v/t D ELK.u; v/C �..u � up/
2 C .v � vp/

2/ (18.20)

This addition prevents the estimation of .u; v/ during occlusion from being too
far from their prior estimations.

18.5 Results

We tested our algorithm on different sequences with a deformable shape that are
partially or fully occluded.

In each example the on-line learning model provides the contour based segmen-
tations of the deformable shape and incrementally constructs the PCA eigenbase.
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Fig. 18.3 Results of our algorithm on walking man sequence (200 frames) with partial traffic
occlusions (yellow and silver car). The algorithm automatically switches from on-line learning
(frame 60) to PCA representation as soon as occlusion is detected (frames: 11,66,68,70,77,84)

Fig. 18.4 Results of our algorithm on walking man sequence (173 frames) with full occlusion
(walking woman hides the target). The algorithm automatically switches from on-line learn-
ing (frame 95) to PCA representation as soon as occlusion is detected (frames: 35,100,101,
103,104,109)

When it detects an occlusion, it estimates the AR parameters that capture the
temporal dynamics of the shapes evolution seen so far and switches to the PCA
representation model. The PCA model uses the current PCA eigenbase and the
estimated AR prior parameters to keep segmenting the deformable shape during
occlusion. Finally, when the target reappears it switches back to the on-line learning
model and keeps tracking the target and updating the PCA eigenbase. We can see
that it maintains the appropriate contours when the shape is totally or partially
occluded.
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Fig. 18.5 Results of our algorithm on jumping man sequence (225 frames) with full occlusion
(walking man hides the target). Frames: 103,120,121,122,124,125

Fig. 18.6 Results of our algorithm on running horse sequence (290 frames) with one partially long
period (synthetic) occlusion (20 frames with white label hides partially the target). We showed
that our method was able to remain locked onto the target and illustrate the appropriate contours.
Frames: 10,89,115,119,120,124

First, we compared our method to a stand-alone Chan-Vese algorithm on a
sequence of walking man with one occlusion (left column). As can be seen in
Fig. 18.2, the Chan-Vese model could not handle the occlusion properly, while
our method kept tracking the person through the entire sequence and was able to
illustrate the appropriate shapes when the man was totally occluded by the left
column (Figs. 18.3–18.6).

Finally, in Fig. 18.7 we examined our method on a noisy sequence of a jumping
man with additive Gaussian noise (SNR D15), and, as can be seen, our algorithm is
able to cope with Gaussian noise and occlusion as well.



18 Incremental Level Set Tracking 419

Fig. 18.7 Results of our algorithm on jumping man sequence with additive Gassuan noise
(SNR D 15) and full occlusion (walking man hides the target). Frames: 119,120,121,132,134,142

18.6 Conclusions

We have extended level-set tracking to learn an eigenbase on the fly. This was
then used to handle occlusions by switching from a Chan-Vese-based algorithm
to a PCA-based representation that is more robust to noise and occlusions. In
addition, we have shown that the proposed incremental level-set tracking can adjust
to changes in the appearance of the object. This results in a robust tracker that can
handle never-seen-before objects and deal with partial or full occlusions and noise.
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