
Chapter 15
Non-rigid Shape Correspondence Using
Pointwise Surface Descriptors and Metric
Structures

Anastasia Dubrovina, Dan Raviv, and Ron Kimmel

Abstract Finding a correspondence between two non-rigid shapes is one of the
cornerstone problems in the field of three-dimensional shape processing. We
describe a framework for marker-less non-rigid shape correspondence, based on
matching intrinsic invariant surface descriptors, and the metric structures of the
shapes. The matching task is formulated as a quadratic optimization problem
that can be used with any type of descriptors and metric. We minimize it using
a hierarchical matching algorithm, to obtain a set of accurate correspondences.
Further, we present the correspondence ambiguity problem arising when matching
intrinsically symmetric shapes using only intrinsic surface properties. We show that
when using isometry invariant surface descriptors based on eigendecomposition
of the Laplace-Beltrami operator, it is possible to construct distinctive sets of
surface descriptors for different possible correspondences. When used in a proper
minimization problem, those descriptors allow us to explore a number of possible
correspondences between two given shapes.

15.1 Introduction

Three-dimensional shape processing became increasingly popular in the last decade.
One of its corner-stone tasks is detecting a correspondence between two given
shapes. It is essential for shape comparison, retrieval, shape morphing and defor-
mation, or shape calculus [5], etc. The most interesting yet complex task is
automatic non-rigid shape matching. In this work we address the problem of
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matching non-rigid approximately isometric shapes. We perform the matching using
certain surface properties that remain invariant under isometric transformations. In
particular, we use two types of such properties – pointwise surface descriptors, and
distances measured between pairs of points on the surface. We show how these
two properties can be incorporated into a measure of dissimilarity between the
shapes, which can be written as a quadratic function of the correspondence. We
then minimize this dissimilarity measure in order to find the minimal dissimilarity
correspondence.

Another important issue we address here is the correspondence ambiguity present
when matching intrinsically symmetric shapes. In this case, there may exist several
correspondences minimizing the proposed dissimilarity measure. We show that this
ambiguity can be resolved by constructing distinct sets of symmetry-aware surface
descriptors. By employing them within the proposed framework it is possible to find
several matchings between the shapes.

The rest of the paper is organized as follows: in the next section we review the
related work on matching non-rigid shapes. In Sect. 15.3 we describe the proposed
problem formulation. In Sect. 15.4 we describe the possible choices of metric and
descriptors. In Sect. 15.5 we describe the correspondence ambiguity problem and
the construction of the symmetry-aware surface descriptors. In Sect. 15.6 we present
the matching results obtained with the proposed framework combined with different
descriptors and distances measures. We summarize the paper and discuss future
research directions in Sect. 15.7.

15.2 Related Work

Zigelman et al. [43] and Elad and Kimmel [9] suggested a method for matching
isometric shapes by embedding them into a Euclidian space using multidimensional
scaling (MDS), thus obtaining isometry invariant representations, followed by rigid
shape matching in that space. Since it is generally impossible to embed a non-flat
2D manifold into a flat Euclidean domain without introducing some errors, the
inherited embedding error affects the matching accuracy of all methods of this
type. For that end, Jain et al. [13], Mateus et al. [19] and Sharma and Horaud
[34] suggested alternative isometry-invariant shape representations, obtained by
using eigendecomposition of discrete Laplace operators. The Global Point Signature
(GPS) suggested by Rustamov [33] for shape comparison employs the discrete
Laplace-Beltrami operator, which, at least theoretically, captures the shape’s geome-
try more faithfully. The Laplace-Beltrami operator was later employed by Sun et al.
[35], and Ovsjanikov et al. [25], to construct their Heat Kernel Signature (HKS)
and Heat Kernel Maps, respectively. Zaharescu et al. [41] suggested an extension of
2D descriptors for surfaces, and used them to perform the matching. While linear
methods, such as [25, 41] produce good results, once distortions start to appear,
ambiguity increases, and alternative formulations should be thought of. Adding
the proposed approach as a first step in one of the above linear dense matching
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algorithms can improve the final results. Hu and Hua [12] used the Laplace-Beltrami
operator for matching using prominent features, and Dubrovina and Kimmel
[8] suggested employing surface descriptors based on its eigendecomposition,
combined with geodesic distances, in a quadratic optimization formulation of the
matching problem. The above methods, incorporating pairwise constraints, tend
to be slow due to high computational complexity. Wang et al. [40] used a similar
problem formulation, casted as a graph labeling problem, and experimented with
different surface descriptors and metrics.

Memoli and Sapiro [22], Bronstein et al. [4], and Memoli [20, 21] compared
shapes using different approximations of the Gromov-Hausdorff distance [10].
Bronstein et al. [6] used the approach suggested in [4] with diffusion geometry,
in order to match shapes with topological noise, and Thorstensen and Keriven [37]
extended it to handle surfaces with textures. The methods in [20–22] were intended
for surface comparison rather than matching, and as such they do not produce
correspondence between shapes. At the other end, the GMDS algorithm [6] results
in a non-convex optimization problem, therefore it requires good initializations in
order to obtain meaningful solutions, and can be used as a refinement step for most
other shape matching algorithms. Other algorithms employing geodesic distances to
perform the matching were suggested by Anguelov et al. [1], who optimized a joint
probabilistic model over the set of all possible correspondences to obtain a sparse
set of corresponding points, and by Tevs et al. [36] who proposed a randomized
algorithm for matching feature points based on geodesic distances between them.
Zhang et al. [42] performed the matching using extremal curvature feature points
and a combinatorial tree traversal algorithm, but its high complexity allowed them
to match only a small number of points. Lipman and Funkhouser [18] used the
fact that isometric transformation between two shapes is equivalent to a Möbius
transformation between their conformal mappings, and obtained this transformation
by comparing the respective conformal factors. However, there is no guarantee that
this result minimizes the difference between pairwise geodesic distances of matched
points.

Self-similarity and symmetry detection are particular cases of the correspon-
dence detection problem. Instead of detecting the non-rigid mapping between two
shapes, [14, 17, 24, 28] search for a mapping from the shape to itself, and thus are
able to detect intrinsic symmetries.

15.3 Matching Problem Formulation

The suggested problem formulation is based on comparison of shape properties
that remain approximately invariant under non-rigid �-isometric transformations,
specifically – distances between the points on the shape, and pointwise surface
descriptors defined at every point of the shape. We assume to be given shapes repre-
sented by sampled surfaces, which is one of the common 3D shape representations.
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In this work shapes were represented by triangular meshes, but the following
discussion is not limited to some specific sampled surface representation.

Given a shape X , we assume that is endowed with a distance measure dX W
X � X ! R

C [ f0g, and a set of pointwise d -dimensional surface descriptors
fX W X ! R

d . Given two shapes X and Y , we define a correspondence between
them by a mapping P W X � Y ! f0; 1g, such that

P.x; y/ D
�

1; x 2 X corresponds to y 2 Y ;

0; otherwise
(15.1)

We can measure the dissimilarity introduced by the mapping P into the surface
descriptors and the metric structures by

dis.P / D
X
x2X
y2Y

kfX .x/ � fY .y/kF P.x; y/ C ˛ �
X

x;Qx2X
y; Qy2Y

jdX.x; Qx/ � dY .y; Qy//j P.x; y/P. Qx; Qy/; (15.2)

where k�kF is a norm in the descriptor space. The first term of the dissimilarity
measure is a linear function of the mapping P , and it expresses the pointwise
surface descriptor dissimilarity. This term provides a The second term of dis.P /

is a quadratic function of the mapping P , and it expresses the metric structure
dissimilarity. The parameter ˛ � 0 determines the relative weight of the second
term in the total dissimilarity measure.

Note that by setting ˛ D 0 we obtain the linear matching method used by
[25, 41]. When the descriptors of different points on the shape are not unique
or sufficiently distinct, say due to numerical inaccuracies, the correspondences
obtained by minimizing only the linear part of the dissimilarity measure may not
be consistent in terms of pairwise relationships between f the matched points. By
adding the quadratic term in Eq. (15.2) we ensure that the optimal correspondence
preserves also these pairwise relationships. On the other hand, by choosing ˛ � 1

we obtain a problem similar to the one addressed in [4, 20, 22], and, since the
problem is non-convex, a good initialization is required in order to obtain a close-
to-global minimizer. This is achieved by adding the linear term as in Eq. (15.2).

The optimal matching, which we denote by P �, is obtained by minimizing the
dissimilarity

P � D argminP WX�Y !f0;1g fdis.P /g : (15.3)

In order to avoid a trivial solution P � � 0, we constrain P to the space of valid
correspondences. Note that the above problem formulation allows us to consider
different types of possible correspondences between the two shapes. For example,
when a bijective mapping from X to Y is required, the constraints on P are

X
x2X

P.x; y/ D 1; 8y 2 Y;
X
y2Y

P.x; y/ D 1; 8x 2 X: (15.4)
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For a surjective mapping we relax the constraints to be

X
x2X

P.x; y/ D 1; 8y 2 Y: (15.5)

Thus, the resulting optimization problem is

P � D argminP WX�Y !f0;1g fdis.P /g s:t: suitable constrains on P. (15.6)

15.3.1 Quadratic Programming Formulation

When the two shapes X and Y are represented by a finite number of points N , the
mapping P is a binary matrix of size N 2. In order to convert the problem into a
more convenient quadratic programming form we reshape the matrix P by taking
its columns and concatenating them, thus obtaining a vector p of dimension N 2,
referred to as a correspondence vector. Thus, k-th entry of the vector p corresponds
to some entry .i; j / in the matrix P – we will denote these corresponding indices
by .ik; jk/. The vector entry pk encodes the correspondence between the points xik

and yjk
.

Similarly, we introduce the following notations for the metric and the descriptor
dissimilarity

bk D ��fX .xik / � fY .yjk
/
��

F
; Qkl D ��dX .xik ; xmk

/ � dY .yjl
; ynl

//
�� :

(15.7)

The vector b 2 R
N 2

represents the pointwise descriptor dissimilarity, and the matrix
Q 2 R

N 2�N 2
represents the metric structure dissimilarity.

Lastly, we re-write optimization problem (15.6) in the quadratic programming
form

p� D argmin
p2f0;1gN 2

˚
bT p C � � pT Qp

�
s.t. Sp D 1; (15.8)

where Sp D 1 is the matrix form of the constraints in Eqs. (15.4) or (15.5).

15.3.2 Hierarchical Matching

The optimization problem in Eq. (15.8) belongs to the class of NP -hard Integer
Quadratic Programming (IQP) problems. There exist different techniques for
approximating its solution, [2, 38] among them, which are able to solve only
moderate size IQPs. The implication on the matching problem is that the algorithm
will be able to find only small number of correspondences – up to several tens
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Fig. 15.1 In the first step (left) we construct a quadratic correspondence matrix from all points
in X into all points in Y . In each iteration (right) we search for possible matches between points
in X from the previous iteration (blue circle) and new sampled points in X (green Xs) and their
corresponding neighborhoods (black circles) in Y

of points. In addition, prior to the matching the algorithm has to choose the initial
set of N candidate points on each one of the shapes X and Y . The simplest way to
choose these points is by using the Farthest Point Sampling technique [11], and the
sampling density will determine the accuracy of the matching.

In order to overcome these limitations we use the hierarchical matching tech-
nique introduced in [29]. It exploits the shapes’ geometric structures to reduce the
number of potential correspondences, and thus is able to find a denser matching,
with improved accuracy. Since the problem is not strictly combinatorial by nature,
but rather derived from a smooth geometric measure. At the first step we follow
[8] and solve (15.6) using a branch-and-bound procedure [2]. Each point x 2 X

is now matched to a point p.x/ 2 Y by the mapping P . We denote y D p.x/

if P.x; y/ D 1. In each iteration we search for the best correspondence between
x and p.x/ neighborhood, instead of all points y 2 Y , in a manner similar to
[39]. Between iterations we add points x 2 X and y 2 Y using the two-optimal
Farthest Point Sampling (FPS) strategy [11], evaluate the neighborhood in Y of
the new points, reevaluate the neighborhood of the old points, and continue until
convergence. In Fig. 15.1 we show a diagram of the process.

We solve the relaxed version of (15.6), using quazi-Newton optimization, and
project the solution to integers between iterations. Convergence is guaranteed, but
only to a local minimum, as for all QAP problems.

A different approach for approximating the solution of the IQP in Eq. (15.8) can
be, for instance, using the relaxation technique of Bronstein et al. [4] and solving
the problem on a continuous domain. The optimization problem can also be solved
using the approach for graph matching by Torresani et al. [38]. Both can reduce the
complexity of the solution. We will explore these directions in the future research.

15.4 On the Choice of Metric and Descriptors

The above formulation of the matching problem can be used with any type of
surface descriptors or distance measure. Below we describe different descriptors
and metrics that can be employed in the proposed framework.We start with a brief
review of the Laplace-Beltrami operator, and later use concepts related to it for both
metric and descriptor definition. Note that both metric definitions and some of the
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descriptor definitions are given in terms of continuous surface representation (or 2D
Riemannian manifolds). For each one of them we state the discrete approximation
we used for numerical evaluation.

15.4.1 Laplace-Beltrami Operator

The Laplace-Beltrami operator is a generalization of the Laplacian operator from
flat domain to compact Riemannian manifolds. Given a manifold M , its Laplace-
Beltrami operator �M is given by

�Xf D �divX .rX f / ; f W X ! R: (15.9)

The divergence and the gradient operators, divX and rX respectively, are defined by
the intrinsic geometry of the manifold X . Explicitly, the Laplace-Beltrami operator
of a function f W X ! R defined on the manifold X equipped with a Riemannian
metric g is given by

�X f D � 1p
det g

X
j;k

@

@xj

�
gjk

p
det g

@f

@xk

�
: (15.10)

In the above equation, det g D det.gij / and the gjk are the elements of g�1. For
more details see [30].

Consider the Laplace-Beltrami operator eigenvalue problem given by

�X�i D �i�i : (15.11)

f�i g are the eigenfunctions of �X , corresponding to the eigenvalues f�i g. The
spectrum of the Laplace-Beltrami operator consists of positive eigenvalues (see, for
example, [30]). When X is a connected manifold without boundary, then �X has
additional eigenvalue equal to zero, with corresponding constant eigenfunction. We
can order the eigenvalues as follows

0 D �0 < �1 � �2 � �3 � : : : (15.12)

The set of corresponding eigenfunctions given by

f�1; �2; �3; : : :g (15.13)

forms an orthonormal basis defined on X with inner product induced by the
metric g.

There exist various approximations for the Laplace-Beltrami operator. In this
work we used the cotangent weight scheme [23, 26].
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15.4.2 Choice of Metric

Geodesic distance: The simplest intrinsic metric defined on a surface X is the
geodesic metric. It measures the lengths of the shortest paths on the surface X

dX.x; x0/ D inf
�2� .x;x0/

`.�/: (15.14)

� .x; x0/ is the set of all admissible paths between the points x and x0 on the surface
X , with a length of a path � given by `.�/. In order to calculate the geodesic
distances we used the fast marching method [15], which simulates a wavefront
propagation on a triangular mesh, and associates the front arrival time with the
distance traveled by it.

Diffusion geometry: The diffusion of heat on surface X is governed by the heat
equation, �

�X C @

@t

�
u.x; t/ D 0; (15.15)

where a scalar field u W X � Œ0; 1/ ! R is the heat profile at location x and time t ,
and �X is the Laplace-Beltrami operator.

The heat kernel ht .x; z/ describes the amount of heat transferred from a point
heat source located at x to another point z at time t , and can be written as

ht .x; z/ D
1X

iD0

e��i t �i .x/�i .z/: (15.16)

The diffusion distance can then be defined as a cross-talk between two heat
kernels [3, 7]

d 2
X;t .x; y/ D kht .x; �/ � ht .y; �/k2

L2.X/

D
Z

X

jht.x; z/ � ht .y; z/j2d z

D
1X

iD0

e�2�i t .�i .x/ � �i.y//2 : (15.17)

Since the heat flow on the surface is governed entirely by its intrinsic geometry,
the diffusion distance defined above is an intrinsic property of the surface, and,
according to [3, 7], also fulfills the metric axioms.

We approximate the diffusion distances using a finite number of the eigenvalues
and the eigenvectors of the discretized Laplace-Beltrami operator. Specifically, we
used several hundred eigenvalues with the smallest magnitude and their correspond-
ing eigenvectors.
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15.4.3 Choice of Descriptors

Distance histograms: Given a shape X and the corresponding distance dX , the
distance histogram descriptor [27, 28, 32] is constructed as follows

fX .x/ D hist fdX .x; Qx/ j dX .x; Qx/ � dmax; Qx 2 Xg ; (15.18)

where dmax controls the local support of the descriptor. If two shapes are represented
by differently sampled surfaces, the descriptors can be normalized to have L1-norm
equal to one. The descriptor comparison can be performed using either an Lp-norm,
or some measure of distances between histograms, such as the earth moving
distances (EMD) [31].

Heat kernel signatures and heat kernel maps: Local descriptors based on the heat
equation were presented by Sun et al. in [35] and Ovsjanikov et al. in [25]. The
heat kernel signature (HKS) is constructed using the diagonal of the heat kernel
ht .x; x/ (15.16) at multiple times t

fX .x/ D �
ht1.x; x/; ht2 .x; x/; : : : ; htd .x; x/

�
: (15.19)

The heat kernel map (HKM) is constructed using the heat kernel values with a pre-
specified heat source x0

fX .x/ D �
ht1.x0; x/; ht2 .x0; x/; : : : ; htd .x0; x/

�
: (15.20)

For the latter descriptors, the heat sources chosen for the two shapes we want to
match must be in correspondence in order to produce consistent descriptors. One
can choose the heat source x0 either as proposed by the authors of [25], or by
some different method. Both HKS and HKM remains invariant under isometric
deformations of X , and are insensitive to topological noise at small scales.

To compute HKS and HKM we used eigenvalues and eigenfunction of the
discretized Laplace-Beltrami operator, similar to the diffusion distance calculation.

15.5 Matching Ambiguity Problem

The matching ambiguity problem arises when matching intrinsically symmetric
shapes [24,27,28]. Given a shape X , we say that it is intrinsically symmetric if there
exists a mapping S W X ! X that preserves all the geodesic distances between the
corresponding points

dX .x; Qx/ D dX .S.x/; S. Qx// ; 8x; Qx 2 X: (15.21)
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If the shape X is intrinsically symmetric, and S W X ! X is its intrinsic
symmetry, then the surface descriptors mentioned in the previous section are also
symmetric functions with respect to S . That is, for each of their components f

.i/
X

the following holds

f
.i/

X .x/ D f
.i/

X .S.x// : (15.22)

From the Eq. (15.21) and the above property of the descriptors it follows that if
P �.x; y/ D argmin fdis.P /g, then P �.S.x/; y/ also minimizes the dissimilarity
dis.P /, with the same minimal value. Thus, when matching intrinsically symmetric
shapes, the optimization problem (15.8) has multiple solutions, and by minimizing
dis.P / we can obtain only one of them.

In order to overcome the above problem, a technique for construction of
symmetry-aware surface descriptors was suggested in [8]. These descriptors are
based on the eigendecomposition of the Laplace-Beltrami operator, and exploit the
important property of the eigenfunctions of �X , described by Ovsjanikov et al.
in [24]. As stated in Theorem 3.1. of [24], eigenfunctions corresponding to non-
repeating eigenvalues of the Laplace-Beltrami operator of an intrinsically symmetric
shape exhibit reflection symmetry, with respect to the shape’s intrinsic symmetry.
That is, such an eigenfunction � can be either symmetric of anti-symmetric with
respect to S

�.x/ D �.S.x// or �.x/ D ��.S.x//: (15.23)

As described in [8], the symmetry-aware surface descriptors are constructed as
follows

fX .x/ D Œ�X
1 .x/; �X

2 .x/; : : : ; �X
d .x/�; (15.24)

and

fY .y/ D Œs1�Y
1 .y/; s2�Y

2 .y/; : : : ; s3�Y
d .y/�: (15.25)

In the above,
˚
�X

i

�d

iD1
and

n
�Y

j

od

j D1
are the eigenfunctions corresponding to the first

d non-repeating eigenvalues of the Laplace-Beltrami operators of the two shapes,

respectively. The values of
n
�Y

j

od

j D1
are then multiplied by the sign sequence

˚
sj

�d

j D1
, to obtain consistent descriptors for X and Y .

Figure 15.2 shows an example of two human shapes colored according to the
values of the first three eigenfunctions of their corresponding Laplace-Beltrami
operators. It is easy to see that the eigenfunctions of the lower shape have to be
multiplied by a sequence ŒC; �; C�, in order to be equal to the eigenfunctions of
the upper shape in the corresponding points. But it is also possible to multiply them
by a sequence ŒC; C; ��, and thus obtain eigenfunctions reflectionally symmetric
to the eigenfunctions of the upper shape. In general, the number of different sign
sequences, and thus different sets of descriptors for the shape Y , is determined by
the number of intrinsic symmetries of the shape. Using these sets of descriptors in
the optimization problem (15.6) allows us to find several different correspondences
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Fig. 15.2 Two articulations of a human shape, colored according to the values of the first three
eigenfunctions of their Laplace-Beltrami operators, from left to right. The two possible sign
sequence relating the two groups of the eigenfunctions are ŒC; �; C� and ŒC; C; ��

between the two shapes. The exact algorithm for the sign sequence detection and its
limitations are presented in details in [8].

15.6 Results

In this section we provide several matching results obtained with the proposed
framework. All the shapes we used in our tests were represented by triangulated
meshes with several thousand vertices. We further sub-sampled the shapes using
the Farthest Points Sampling algorithm [11], to obtain sets of matching candidate
points. In each one of our tests, we performed the matching using ten points at the
coarse scale, and 30–64 points at the finest scale. Note that the later sub-sampling
affects the accuracy of the matching, and the denser the sub-sampling is the more
accurate the obtained correspondences are.

Figures 15.3 and 15.4 present the results of matching �-isometric shapes using
the proposed framework combined with different distance measured and descriptors,
at several hierarchies, where the correspondences are shown by Voronoi cells of
the matched points, corresponding patches having the same color. The matches in
Fig. 15.3a–c are the symmetrical ones, which is one of the possible matchings in
this case, as explained in Sect. 15.5. Some matching inaccuracies, e.g. inaccurate
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Fig. 15.3 Matching results obtained with the proposed framework combined with different
descriptors and metrics, at several hierarchies. (a) and (b) Geodesic distance and geodesic
distance-based histogram descriptor; (c) diffusion distance and diffusion distance-based histogram
descriptor; (d) Diffusion distance and Heat Kernel Signatures

correspondences between the cats’ ears in Fig. 15.4a, appear when the algorithm
converges to local minima.

In order to find dense correspondence between all the points on the shapes, the
above matching results can be used as a input for algorithms such as described in
[25] or [16].
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Fig. 15.4 Matching results obtained with the proposed framework combined with geodesic
distance metric and the Laplace-Beltrami operator-based descriptors; upper row – same orientation
correspondence, lower row – the reflected one

15.7 Conclusions

In this paper we have presented a method for automatic correspondence of non-
rigid �-isometric shapes, based on comparison of surface descriptors and distance
structures, and tested it with different choices of the latter. In addition, we have
formulated the matching ambiguity problem arising when matching intrinsically
symmetric shapes, and showed that the proposed framework combined with certain
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descriptors allows us to detect multiple possible correspondences. In future work
we intend to adapt the proposed framework for partial shape matching and extend it
to shapes that are not necessarily �-isometric.
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