

S.M. Thampi et al. (Eds.): SNDS 2012, CCIS 335, pp. 45–53, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Protocol for Secure Submissions into Learning
Management Systems

Manjunath Mattam

MSIT Division, International Institute of Information Technology,
Gachibowli, Hyderabad 500 032, Andhra pradesh, India

manjunath.m@iiit.ac.in

Abstract. This paper proposes a model (architecture and protocol) that will
help in securing assignment submissions into learning management systems. A
client server architecture that uses cryptography is proposed to transform a
regular assignment deliverable into a secure deliverable. A protocol is devised
between client and server such that faculty and students can securely obtain
symmetric keys to either encrypt or decrypt an assignment deliverable.

Keywords: application specific protocols, learning management systems,
secure protocol, symmetric key exchange mechanism, client server architecture,
plagiarism check, confidentiality in transit, confidentiality in storage, integrity
of deliverables.

1 Introduction

Information and communication technologies have transformed the way we teach and
way we learn. These technologies opened avenues for remote learning, digital
learning (e-learning) and automation of processes in conventional education systems.
In this context, deliverables (worked out assignment answers that are submitted after
completion) play major role in student assessments. For managing the deliverables
and course content most universities use learning management systems (example
Moodle, other university specific applications). Learning management systems (LMS)
provide users with options to upload the deliverables. Majority of the learning
management systems operate on HTTP (web based - plain text).

Plagiarism is one of the primary concerns in student assessment, although most
universities operate tools to detect copied deliverables majority of these cases go
undetected. My assumption here is reputed universities give assignments that are
designed specifically for enrolled students and therefore solutions are not available on
the internet. Copied deliverables can be classified based on whether student
deliberately shared his work output, or the deliverable is copied without authors notice.

Consider two given scenarios: (1) A student shares his worked out deliverable after
uploading it in LMS, by giving away his login details. Ultimately claiming my account
is hacked, if he gets caught. (2) Other students can use network traffic sniffers (like
wireshark, libcap) to read ongoing traffic, and pick up deliverables without authors

46 M. Mattam

consent. Because most LMS are not HTTPS enabled (reasons being certificates are
expensive, and performance intense). It is possible to pick up deliverables that are
transferred in regular HTTP traffic (plain text). In scenario 2 students gets punishment
without his/her fault, if he/she gets caught.

This paper proposes an approach, which minimizes problems created by above
mentioned two scenarios. Over all goals are, if an assignment deliverable is copied
then it is due to willful sharing of students (not on transit or at server), making students
accountable. A client server architectural approach & application specific protocol is
proposed that will ensure secure deliverable submissions (capable of confidentiality,
integrity, authentication, and non repudiation of each deliverable).

2 Crypto Primitives

This application uses cryptographic primitives to achieve secure deliverable
submissions. Each (secure) deliverable submitted by a student is encrypted with
industry adopted symmetric key crypto algorithms that have received substantial public
review and have been proven to work effectively like AES with substantial key size
(256 bits). When encrypted deliverable is submitted to LMS over open network, it is
hard for packet sniffers to retrieve plain text (high level crypto with large key size
makes it almost impossible).

Managing the symmetric key is the challenging part of these kinds of applications.
Alternative approaches with asymmetric key cryptography are available using public
key infrastructure (proven with other electronic commerce applications), which is not
recommended in this scenario because (1) it involves issuing certificates to all the users
including students (2) public key algorithms need funding and they are expensive (3)
computationally performance intense, and consume lot of time.

To open the decrypt deliverables faculty will need same symmetric key used by
students for encryption. Transferring the symmetric key unprotected is almost
equivalent to no encryption. Stand alone client server program is proposed for secure
key transfer and key management. Server acts as trusted third party for all the users (in
this case students and faculty). Server generates, issues, stores, and manages symmetric
keys. All communication between server and client software is protected by protocol
designed specifically for this kind of applications.

The proposed model does not involve asymmetric key cryptography hence the
computation required for encrypting or decrypting a deliverable is relatively lower.
Client program is not responsible for creation of symmetric keys hence at user
computer this computation is saved.

3 Client Server Program

Client server programming model is most appropriate for managing keys; socket
programming is best suited for sending/receiving messages between client and server.
All communication is encapsulated in application layer, rest of the internet layers are

 Protocol for Secure Submissions into Learning Management Systems 47

constructed by network sockets. Server waits for client's request on a designated port
number. Server program is capable of understanding application specific pre-defined
codes that corresponds to type of client requests (for example: request for creation of
symmetric key, request for using existing symmetric key, change of user password etc.
all are pre-defined constants). Server is also capable of performing role based
operations, (for example: if client software is logged-in by student it generates
symmetric key and if client software is logged-in by faculty it retrieves already
generated symmetric key).

Given below is an image that illustrates (at high level) how client and server
program is used for this process. Server interface in client program does the socket
communication. Client interface in client program is responsible for encrypting and
decrypting the deliverables. Server program is responsible for key management.

Fig. 1. Model architecture for secure assignments submission. Assignment submission in LMS
is as usual. Client server program will help convert regular derliverable into secure deliverable.

3.1 The Server Program

Server is programmed to store, search, retrieve, respond based on user request type.
Server is programmed to concurrently handle multiple client programs connected at
one point in time. Server stores application details with-in, this storage can be made
either in database or inside regular text files (additional security measures are required
for data that is stored inside flat files implementation). Users of this application are
registered with the server therefore login details like user id, password, role in
organization, login status etc. are stored and maintained by the server. Passwords used
for authenticating a user must adhere with server specified size, usage of alpha
numerals etc.

All communications between clients and server are encrypted, symmetric key that is
required to encrypt or decrypt communication is called shared key between client and
server. Server stores all the shared keys along with time stamp, corresponding user
identification in its data store, as represented in table 1 below. Server will need to

48 M. Mattam

Table 1. Example data structure at the server to store user shared keys

User Identifier Time Stamp Shared key between client and server

define time threshold, indicating how long a shared key is valid. If this time threshold
expires, client will need to request for a new shared key.

Apart from above mentioned details, server will also store all the symmetric keys
required to encrypt assignment deliverables. These symmetric keys are generated by
the server upon request from user with a student role on client program. These
symmetric keys are used by client programs to encrypt a deliverable. Because there
is no time limitation for how long a deliverable is maintained in LMS, server may
have to stored these keys for longer period of time like till the end of academic year.
For faster retrieval of these keys, each of these symmetric keys is uniquely identified
with an ID number. Server maintains key details corresponding to each user, that is
User id, message digest of the file, IP/MAC address from which deliverable is
uploaded, unique id given for the key, the symmetric key required for the
deliverable. Fixed size symmetric keys are generated using simple programming
logic for faster execution (for example: Message Digest of (Random Number || User
ID || File message digest || Unique file identifier || Time stamp)). Higher the key sizes
better the security measures.

Table 2. Example data structure at the server to store symmetric keys to encrypt or decrypt
deliverables

Symmetric
key unique
identifier

Symmetric
key

User
identifier

Message
Digest

MAC
address

If the unique identifier for symmetric key are sequential in nature then data is

stored in sorted order, hence it is faster to retrieve specific symmetric key using
key identifier with search algorithms. If all the values are stored inside data base
management systems, then symmetric keys can be retrieved even faster as values
are indexed by DBMS software that can scale up to billions of deliverable
symmetric keys.

Connection time required for client server communication is low, as maximum
number of message exchanges is 4. This way server wait queue is processed quickly.
With help of socket programming concurrency techniques like threads server can scale
up to thousands of users or more.

 Protocol for Secure Submissions into Learning Management Systems 49

3.2 The Client Program

Client program must be installed by all the users (faculty and students). Client program
always initiates the connection, this request starts with a user log-in. Client program
provides interface for login with username and password. Client software is configured
to accept a strong password that includes alpha numeral characters and special symbols
with minimum number of letters for password. Client programs can also be configured
to bring users to assigned/specific work stations, such that a student can upload
deliverables from his/her designated computer only (however this functionality is
optional). Client program can send workstation specific information like IP address or
MAC address to know location from where user is uploading the deliverable. Client
program provides interface to browse and select a file from the resident computer.
Once a file is selected client program is capable of encrypting or decrypting that file
using symmetric key assigned by server. Based on the user role like (1) students will
use client software for encrypting deliverables. (2) Faculty will use client software for
decrypting deliverables.

For a student after selecting the deliverable that is choosing the file from local
computer he will need to use encryption options, output of the program is saved in
same directory with server sent symmetric key unique identifier as file extension (for
example: rollno2_program3_dotc.2342313, here 2342313 is symmetric key identifier).
This is the output file, and it can be uploaded in learning management systems (LMS),
as deliverable. Uploading into the LMS is out of scope for the proposed system, this is
the usual procedure a student follows to submit their assignments / deliverables.

Faculty can download student's deliverable from LMS with the usual procedure.
Faculty also uses client program because he needs to evaluate the encrypted
deliverable. After login a faculty can select downloaded deliverable using client
program browse interface. To obtain the plain text (un-encrypted) original file (in our
previous example: rollno2_program3_dotc) faculty end client program must send
symmetric key identifier to the server. If symmetric key identifier is not present on the
deliverable file name, offline communication is needed to obtain the key ID from the
student. Client program at faculty must recognize key ID from the deliverable or
provide interface for the user to input. Faculty end client program receives symmetric
key to decrypt secure deliverable from the server that is symmetric key corresponding
to unique key identifier of the deliverable.

Client software must be capable of calculating message digests or hash functions
before and after cryptographic process. Deliverable integrity checks are done by
comparing (string compare) fixed length hash function output strings.

4 The Protocol

Client and server exchange messages based on rules and formats mentioned below.
Application specific protocol messages are explained here using formal methods as
specified in reference [1]. First step in this protocol is shared key establishment; in
this phase client and server arrive upon a shared key which is used as encryption key
for all subsequent communication.

50 M. Mattam

4.1 Shared Key Establishment

Given here is the formal method, please note enclosed in curly brackets { } means
encrypted, with a key that is mentioned outside brackets, T means time stamp, N
represents nonce, MAC represents media access control address used for identifying a
network interface, U represents username.

C --> S: U, {U, Mac AddressC, Nc, T}Password
S --> C: {U,Mac AddressS,Nc,Ns, Kcs, T}Password
C --> S: {U, Ns, Nc1, T}Kcs
S --> C: {Nc1}Kcs

Client initiates the connection by sending username (in plain text), encrypted
authentication information, the user id, client MAC address, a random number
(nonce), and time stamp, all this information is encrypted with user password. Here
password is used as encryption key. Server decrypts received information with
password corresponding to username. This is an attempt to authenticate user without
actually having to transfer password (on wire) in plain text. Decryption can only
happen when user password stored in server is equal to password client program used
for encryption, if server can decrypt information it only mean username password are
correct. If user password stored in server data store does not match with password
used as key, generated output will have all garbage values. Server can respond
authentication failure and close the connection.

Once authenticated, server responds to client with Username, server MAC address,
nonce sent by client, server random number (nonce), shared key, server time stamp all
this information is again encrypted by user password. Client software can decrypt this
communication with user password. Nonce is a random number used for freshness of
message and for verification. By observing these nonce, client and server can be sure
the messages are corresponding to current session, not the once stored from previous
client and server communications (this ensures protection against replay attacks). After
this step client has the shared key sent by the server therefore all further client server
messages are encrypted with the shared key.

Next two messages are used for confirmation, which is agreeing upon the shared
key. Client sends to the server username, server nonce, a new client nonce, time stamp
all this information encrypted with the shared key. This is confirmation that client has
agreed to use server given shared key. Server sends back the new client nonce
(encrypted with shared key) indicating successful establishment of shared key.

If client or server nonce does not match then shared key establishment is failure or
incomplete. Similarly if client program does not demonstrate the knowledge of share
key then server does not engage / communicate with the client. Server also returns pre
defined code for in correct shared key usage.

4.2 Symmetric Key Management

Learning management systems (LMS) usually provide students option for uploading
single or multiple files. Where ever necessary, students will have to zip (compress or

 Protocol for Secure Submissions into Learning Management Systems 51

combine) all files before uploading into one submit-able file, the deliverable. These
deliverables are encrypted with symmetric key algorithms. In cryptography, symmetric
key means same (one) key for both encryption and decryption process.

4.2.1 At Student, the Symmetric Key Is Requested for Encrypting
Client program requests server for symmetric key and server program responds with
unique identifier and the symmetric key. Given here is a formal method for clients
requesting symmetric key to encrypt a deliverable:

Message 1 C --> S: U, {CODE, U, H(X), T}Kcs

Message 2 S --> C :{ Id, K, {Ns} K, T} Kcs
Message 3 C --> S :{ Ns} Kcs

Here U represents user id, CODE is pre-defined number indicating client is requesting
for symmetric key (for example: 511525), H(X) represents hash function output of
given deliverable, T represents timestamp, K represents symmetric key, N represents
nonce, and Kcs is shared key between client and server.

In message 1, Client communicates with the server by sending user name in plain
text, and remaining sent information is encrypted with the shared key, that is request
code for symmetric key, user name, message digest of deliverable, time stamp. Server
can decrypt this client communication with user’s corresponding shared key. In
message 2, server generates the fixed length symmetric key, unique symmetric key
identifier, a nonce (encrypted with symmetric key for verification), and time stamp. All
this information is encrypted with shared key before sending to client. In message 3,
client obtains the symmetric key, stores key identifier and decrypts server nonce (that
was previously encrypted and sent in message 2). This decrypted nonce is sent back to
server, which is now verified (if Ns match - client has got the right symmetric key).

4.2.2 At Faculty, the Symmetric Key Is Requested for Decrypting
Server is programmed to retrieve symmetric key only if key identifier is provided.
Server responds to key requests based on user name, and its role. Request for
decryption key (with key identifier) is possible only for owner of the deliverable and
users with faculty role. Given here is a formal method for clients requesting symmetric
key to decrypt a deliverable:

Message 1 C --> S: U, {CODE, U, Id, T} Kcs

Message 2 S --> C: {Id, K, {Ns} K, T} Kcs
Message 3 C --> S: {Ns} Kcs

Here U represents user id, CODE is pre-defined number indicating client is requesting
for symmetric key (for example: 411525), Id is the identifier of symmetric key, T
represents timestamp, K represents symmetric key, N represents nonce, and Kcs is
shared key between client and server.

In message 1, client (at faculty end) requests to server by sending user name in
plain text, and remaining sent information is encrypted with shared key, that is request
code for symmetric key, user name, unique id of the symmetric key, time stamp.

52 M. Mattam

Server can decrypt this client communication with corresponding shared key. In
message 2, server retrieves symmetric key corresponding to unique key identifier.
Server sends to client identifier, key, a nonce (encrypted with this symmetric key for
verification), and time stamp. All this information is encrypted with shared key before
sending to client. In message 3, client obtains the symmetric key, stores key identifier
and decrypts server nonce (that was previously encrypted and sent in message 2). This
decrypted nonce is sent back to server, which is now verified (if Ns match - client has
got the right symmetric key).

Faculty can now use this symmetric key to decrypt student's deliverables.

5 The Integrity Check

Message integrity checks are required to verify completeness and consistency. Many
hash functions like message digest are used to generate message integrity codes. Client
software will verify if the intended communication is complete. It is important for the
faculty to know, that a deliverable is not altered during communication or storage.

Client software applies hash function before a deliverable goes through encryption
process. A deliverable, and its message digest are part of the plain text. After
decryption, the deliverables and message digest are saved in the faculty computer.
Client software verifies file message digest with decrypted message digest. If they are
exactly same this means deliverable is not altered in transit or storage.

6 Other Applications

Security modules in existing learning management systems are either SSL/TLS based
or LMS specific proprietary security (lock-in) mechanisms. With SSL / TLS based
encryptions all educational institutions need digital certificates for assignments purpose
(and will need effective certificates management) which is expensive as specified in
section 2 (crypto primitives). Learning management system specific security solutions
work only in that LMS environment and may be difficult to migrate (to other LMS)
later on.

Architecture discussed in this paper will work in assignment submissions scenario
and can be applied to all group (1 to many) based circulation of confidential
information like securing digital notice boards, securing office documents where one
party acts at encryption end while other party obtains key using role based
authentication at decryption end. For the submissions that do not require secure
transfer, proposed model can be bypassed and users can continue with the usual /
regular mode of submissions.

7 Conclusion

Secure assignment (deliverables) submission architecture & protocol will help in
achieving confidentiality of student deliverables on wire & LMS storage through

 Protocol for Secure Submissions into Learning Management Systems 53

cryptography, authentication is achieved through passwords and machine specific
information like MAC address, integrity of the deliverable is achieved using hash
functions and non repudiation is achieved using shared keys & client software. This
process will rule out chances of copying deliverables on wire and from learning
management systems.

Long passwords must be used to avoid dictionary attacks before establishing shared
key. Hashing is used by student client program while uploading the deliverable this is
used in avoiding corrupted files occasionally created by network transfers. This is
because network protocols verify packet level integrity not at file/deliverable level.

Existing learning management systems need not be changed or modified to
incorporate this solution. This solution can also avoid writing numerous plug-ins for
different kinds of Learning Management Systems, secure transfers. Simple applications
like these can enhance universities deterrence toward plagiarism check.

References

1. Abadi, M., Needham, R.: Prudent Engineering Practice for Cryptographic Protocols. In:
IEEE Computer Society Symposium on Research in Security and Privacy (1994)

2. Anderson, R., Needham, R.: Programming Satan’s Computer. Cambridge University
Computer Laboratory

3. Bellovin, S.M., Merrit, M.: Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks. In: 1992 IEEE Computer Society Symposium on Research in
Security and Privacy (1992)

4. Richard Stevens, W.: UNIX Network Programming: Networking APIs: Sockets and XTI,
2nd edn., vol. 1. Prentice Hall (1998) ISBN 0-13-490012-X

5. Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis of
Authentication and Key Exchange Protocols. In: Proc. of the 30th STOC. ACM Press, New
York (1998)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against
Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 139–155. Springer, Heidelberg (2000)

7. Morris, R., Thompson, K.: Password security: a case history. Communications of the
ACM 22, 594–597 (1979)

8. Glass, E.: The NTLM authentication protocol (2003)

	Protocol for Secure Submissions into Learning Management Systems
	Introduction
	Crypto Primitives
	Client Server Program
	The Server Program
	The Client Program

	The Protocol
	Shared Key Establishment
	Symmetric Key Management

	The Integrity Check
	Other Applications
	Conclusion
	References

