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Abstract. Although they have been being intensely studied, there remain 
numerous open questions around prime numbers. For example, no known 
formula exists that yields all of the prime numbers and no composites. Due to 
this uncertainty surrounding the theory of prime numbers, popular algorithms 
proposed in literature till date, rely heavily on probabilistic methods to 
determine primality. The paper proposes a new theory on the nature of prime 
numbers. In particular the paper proposes new theorems by which any prime 
number can be calculated from the knowledge of any other prime number of 
lower value in a simple way. It is shown in the paper that, in so doing, the 
theorems prove to be a common thread through which all the prime numbers of 
a number system can be related. Based on the theorems, a new prime number 
generating algorithm and a new purely deterministic method to test primality is 
explained and illustrated with the help of examples. 
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1 Introduction 

A prime number (or a prime) is a natural number such that it has exactly 
two distinct natural number divisors: 1 and itself. An infinite number of prime 
numbers exists and this fact has been demonstrated as early as 300 BC by Euclid [1]. 
Any nonzero natural number n can be factored into primes; that is; these can be 
written as a product of primes or powers of different primes. This factorization is 
unique except for a possible reordering of the factors. 

Although they have been intensely studied, there remain numerous open questions 
around prime numbers. For example, no known formula exists that yields all of the 
prime numbers and no composites. For more than a century,  the Goldbach's 
conjecture which asserts that any even natural number bigger than two is the sum of 
two primes, or the twin prime conjecture which says that there are infinitely many 
twin primes (pairs of primes whose difference is two), have remained unresolved, 
notwithstanding the simplicity of their statements. However, it has been demonstrated 
by mathematicians that the distribution of primes or in other words the statistical 
behaviour of primes in the large can be modelled. For instance, the prime number 
theorem, says that the probability that a given, randomly chosen number n is prime is 
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inversely proportional to the logarithm of n. The unproven Riemann hypothesis [2] 
implies a refined statement concerning the distribution of primes and though it has 
been unproven since its inception in 1859.  

Primes have been applied in several fields in information technology, such as 
public-key cryptography, which makes use of the difficulty of factoring large 
numbers into their prime factors. Searching for big primes, often using distributed 
computing, has stimulated studying special types of primes, chiefly Mersenne primes 
whose primality is comparably quick to decide. As of 2011, the largest known prime 
number has about 13 million decimal digits [3]. 

The property of being prime is called primality. The simplest method for verifying 
the primality of a given number n can be done by trial division. The method tests 
whether n is a multiple of an integer m between 2 and √n. If n is a multiple of any of 
these integers then it is a composite number, and so not prime; if it is not a multiple of 
any of these integers then it is prime. As this method requires up to √n trial divisions, 
it is only suitable for relatively small values of n. More sophisticated algorithms, 
which are much more efficient than trial division, have been devised to test the 
primality of large numbers. 

Different methods have been proposed in literature to test primality, for example 
the latest methods by Shafi Goldwasser & Joe Kilian [4]; M.Aggrawal & S.Biswas 
[5]; Rene Shoof [6]; etc. A common feature of all these latest algorithms, is that they 
rely primarily on probabilistic methods to determine primality and use deterministic 
methods only as a secondary instrument.  

The paper proposes a new theory on the nature of prime numbers. In particular the 
paper proposes new theorems by which any prime number can be calculated from the 
knowledge of any other prime number of lower value in a simple way. It is shown in 
the paper that, in so doing, the theorems prove to be a common thread through which 
all the prime numbers of a number system can be related. Based on the theorems, a 
new prime number generating algorithm and a new purely deterministic method to 
test primality is explained and illustrated with the help of examples. 

Section 1 has provided the introduction. The proposed theorem and its proof are 
given in Section 2. The proposed algorithms for generating prime numbers and for 
testing primality are described in Section 3. Examples illustrating the operation of the 
proposed algorithms are shown in Section 4. Section 5 provides the concluding 
remarks. 

2 Proofs 

Our objective is to first prove a theorem by which any prime number can be 
calculated from the knowledge of any other prime number of lower value. Let us 
begin by proving some smaller theorems and see how these theorems lead us to our 
final objective.  

 
Theorem 1: 
A number P of the form  

P = 3a, 
is an odd number, for any odd number a. 
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Proof 1: 
We know that any odd number O can be expressed in the form: 

O = 2n + b,                 (1)

where n is any integer and b is an odd integer. 
Now, a number of the form P = 3a, where a is an odd number, can be written as 

P = 3a, 
           = 2a + a 
Since P is a number expressible in the form given by equation (1), we can say that 
P = 3a is an odd number. 
Hence the theorem is proved. 
 
Corollary to theorem 1: 
Theorem 1 implies that non-prime numbers of any other form are interspersed 
between non-prime odd numbers of the form P = 3a, a being an odd number. It is, 
therefore, easy to see that a non-prime number Q of the form 

Q = C2,  
where C is a prime number, occurs in between two non-prime odd numbers, say, 3a1 
and 3a2, where a1 and a2 are two consecutive odd numbers.  

These facts are illustrated below in Table 1, where a set of contiguous non-primes 
are listed out along with their factors 

Table 1. A set of contiguous non-primes and their factors 

Odd non-primes Factors
 

             9  3 × 3
           15  3 × 5
           21  3 × 7
      → 25  5 × 5
           27  3 × 9
           33  3 × 11
           35  5 × 7
           39  3 × 13
           45  3 × 15
      → 49  7 × 7
           51  3 × 17
           55  5 × 11
           57  3 × 19

→ : indicates odd non-prime numbers of the form P = C2, where C is a prime number. 
 

Another fact that emerges (which can be easily verified) is that between two non-
prime odd numbers of the form 3a, say, 3a1 and 3a2, where a1 and a2 are two 
consecutive odd numbers, there can occur just two other odd numbers, both of which 
will, obviously, be of some other form. For example, between 3 × 17 and 3 × 19, the 
two odd numbers are 53 and 55. Therefore, between 3a1 and 3a2 there can occur just 
one number Q of the form 

Q = C2, where C is prime,               (2)
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because Q ± 2 which can be the only other odd number that can occur between 3a1 
and 3a2 is obviously not of the form given by equation (2). In other words, two 
‘square of prime’ numbers cannot occur between 3a1 and 3a2, where a1 and a2 are two 
consecutive odd numbers. 

Recapitulating, the two facts that emerge are: 
a) Non-prime odd numbers of the form 

Q = C2, where C is prime 
occur between non-prime odd numbers of the form 3a,say, 3a1 and 3a2, 
where a1 and a2 are two consecutive odd numbers. 

b) Between two non-prime odd numbers of the form 3a,say, 3a1 and 3a2, where 
a1 and a2 are two consecutive odd numbers, there can occur just one odd 
number of the form 

Q = C2, where C is prime. 
 
Theorem 2: 
If a non-prime odd number Q of the form  
    Q = P2,  
where P is a prime number greater than or equal to 5, is such that it occurs between 
two non-prime odd numbers of the form 3a, say, 3a1 and 3a2, where a1 and a2 are two 
consecutive odd numbers with a2 > a1; and two integers x1 and x2 are such that 

x1 = Q – 3a1, 
x2 = 3a2 – Q, 

then, 
x1 = 2x2 

 
Proof 2: 
Any odd number N > 1 can be expressed as 

N = (2n + 1), 
where n is any integer greater than 0. 

Now, prime numbers are all odd and the square of any prime number P > N 
can be expressed in terms of N as follows: 
           Q = P2 = (2(n+k) + 1), where k is some integer greater than 0. 
          = 2n + 1 + 2k 
          = N + 2k 

Suppose N is of the form 3a (where a is odd). Now, let us consider two odd 
numbers of the form 3a (where a is odd) in terms of k such that they are closest to Q 
= P2 and one number is greater than Q and the other is lesser than Q. It is easy to 
verify that the smaller number is 

A = N      (of the form 3a, where a is odd) 
And the greater number is 
    B = N + 3k (of the form 3a, where a is odd) 
Now, when k = 2; A and B are equal to, say, 3a1 and 3a2 respectively such that a1 and 
a2 are two consecutive odd numbers with a2>a1. Also, it follows from theorem 1and 
its corollary that only one number of the form   

Q = P2 
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can exist between them. Therefore, the value of k = 2 is the only value of k that 
concerns us. 
Let us define the differences 

x1 = Q – A  
And                  x2 = B – Q  
From the foregoing statements regarding the values of k, A and B; replacing the 
values of these in the above two equations we have: 

x1 = Q – 3a1 = 2k = 2 
And                  x2 = 3a2 – Q = k = 1   
 
Therefore the ratio  
                   x1 : x2 = 2 : 1                                    
Hence the theorem is proved. 
 
Theorem 3: 
The difference between the square of two prime numbers that are each greater than or 
equal to 5 is always divisible by 3. Or, if a number T is such that  

T = abs(N1
2 – N2

2) 
then T is always divisible by 3 if both N1 and N2 are dissimilar prime numbers and 
have values greater than or equal to 5. 
 
Proof 3:  
Let us consider two odd non-primes N1

2 and N2
2 such that N1 and N2 are both prime 

numbers. By theorem 1 and its corollary, N1
2 and N2

2 are located amidst non-prime 
odd numbers of the form 3a, a being odd. Let us assume that N1

2 is located between 
numbers 3a1 and 3a2; and N2

2 is located between numbers 3a3 and 3a4 such that a1 < 
a2 < a3 < a4 and; (a1, a2) and (a3, a4) are consecutive odd number pairs. 
Let us define numbers x1, x2, x3, x4 such that 

x1 = 3a1 – N1
2 

x2 = N1
2 – 3a2 

x3 = 3a3 – N2
2 

x4 = N2
2 – 3a4 

This is graphically shown below in Fig. 1: 

 

Fig. 1. Graphical illustration 
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Theorem 2 states that for N1, N2 ≥ 5, 
x1 = 2x2 

   and  x3 = 2x4 
Thus,   

x2 = (1/3)(x1 + x2) 
         = (1/3)(3a2 – 3a1) 
         = (a2 – a1) 
Similarly,    x3 = (2/3)(x3 + x4) 
         = (1/3)(3a4 – 3a3) 
         = 2(a4 – a3) 
 
Since (a1, a2) and (a3, a4) are consecutive odd number pairs, 

a2 – a1 = a4 – a3 = 2 
Therefore,  
     x2 = 2 
and      x3 = 2×2 = 4 
 
Now, (making use of the figure 1 above) 
   T = abs(N1

2 – N2
2) = abs(x2 + (3a2 -3a3) + x3)  

                                        = abs(3a2 -3a3 + x3 + x2) 
Or, replacing the values of x2 and x3,               = abs(3a2 -3a3 + 6) 
 
T = abs(N1

2 – N2
2) is thus always divisible by 3. 

Hence the theorem is proved. 
 
Theorem 4: 
If P is a prime number greater than or equal to 5, and if P2 is expressed as  

   P2 = (a52t + …+ b52n + …+ c52 + 3d)  

where a, b, c, etc; are integers such that each of them has a value less than 3×52 and d 
is an integer with value less than 52, and t, n, etc; are integers such that t >…> n 
>…>2; then the coefficient of 52, c, is  a non-zero integer that is never divisible by 3. 

 
Proof 4: 
Using theorem 3, a prime number P greater than or equal to 5, can be written as 

    P2 = (P1
2 + 3i1) 

where i1 is an integer and P1 is some prime number. 
Let us choose P1 as the least prime number for which theorem 3 is applicable, i.e., 

let P1 = 5. Then,  
   P2 = (52 + 3i1) 
        = (3s52t + …+ 3r52n + …+ (3k + 1)52 + 3i)  
because 3i1 can be expressed as: 3i1 = 3s52t + …+ 3r52n + ….+ 3k52 + 3i, where i, s, r, 
k, etc; are integers such that each of them has a value less than 52 and t, n, etc; are 
integers such that t >…> n >…>2. Thus, P2 can be written as:    
     P2 = (a52t + …+ b52n + …+ c52 + 3d)  
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where a, b, c, etc; are integers such that each of them has a value less than 3×52 and d 
is an integer with value less than 52,and the coefficient of 52, c, is never divisible by 3. 
Hence the theorem is proved. 
 
Theorem 5: 
If C is an odd composite number such that it is a product of two or more prime 
numbers with values other than 3 and 5, and if C2 is expressed as  
   C2 = (a52t + …+ b52n + …+ c52 + 3d)  
where a, b, c, etc; are integers such that each of them has a value less than 3×52 and d 
is an integer with value less than 52, and t, n, etc; are integers such that t >…> n 
>…>2; then the coefficient of 52, c, is always either 0 or divisible by 3. 

 
Proof 5: 
Using theorem 3, the square of an odd composite number C that is a product of two or 
more prime numbers with values other than 3and 5, can be written in the general form 
as 
   C2 = (P2 + 3i1)

l(P2 + 3i2)
m........ 

where i1, i2, l, m, ...etc; are all integers and P is some prime number. 
Let us choose P as the least prime number for which theorem 3 is applicable, 

i.e., let P = 5. Then,  
   C2 = (52 + 3i1)

l(52 + 3i2)
m........ 

        = 52n + 3ie 
        = (3s52t + …+ (3r + 1)52n + …+ 3k52 + 3i)  
because 3ie can be expressed as: 3ie = 3s52t + …+ 3r52n + …+ 3k52 + 3i where ie is an 
integer and i, s, r, k, etc; are integers such that each of them has a value less than 52 
and t, n, etc; are integers such that t >…> n >…>2. Thus, C2 can be written as:    
     P2 = (a52t + …+ b52n + …+ c52 + 3d)  
where a, b, c, etc; are integers such that each of them has a value less than 3×52 and d 
is an integer with value less than 52, and the coefficient of 52, c, is always either 0 or 
divisible by 3. 
Hence the theorem is proved. 

 
Thus, since numbers in a number system are either prime or are a product of two or 
more prime numbers with one or more of them having values equal to 3 or 5 or are a 
product of two or more prime numbers with values other than 3 and 5; the following 
corollary to theorems 4 & 5: 
 
Corollary to theorems 4 & 5: 
Theorems 4 & 5, thus, imply that if a number Q is an odd number and Q is not 
divisible by 3 and 5 and if Q2 is expressed as  
   Q2 = (a52t + …+ b52n + …+ c52 + 3d)  
where a, b, c, etc; are integers such that each of them has a value less than 3×52 and d 
is an integer with value less than 52 and t, n, etc; are integers such that t >…> n 
>…>2, then Q is a prime number if the coefficient of 52, c, is a non-zero integer that 
is never divisible by 3. 
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This corollary is the basis for developing the primality algorithms that follow. 

3 Algorithms 

By theorems 4 & 5, it is possible to calculate the next prime number in the sequence 
from a prime number whose value is known. 

The algorithm to calculate the next prime number from a previously known prime 
number is as follows: 

 
Algorithm 1: 

 
1. Let  M is a known prime number. 
2. Find the value of k(i) from the formulae 

      k(i) = (O(i-1) + 2), 
 using the value of O(i-1)  as  
      O(i-1) = M. 

3. If k(i) is divisible by 3 or 5, then O(i) is non-prime. Proceed to step 6. 
4. If k(i) is not divisible by 3 and 5, express k(i) 2 as  

  k(i)2 = (a52t + …+ b52n + …+ c52 + 3d)  
where a, b, c, etc; are integers such that each of them has a value less than 
3×52 and d is an integer with value less than 52 and t, n, etc; are integers 
such that t >…> n >…>2.  

5. The current value of O(i) which is 
    O(i) = O(i-1) + 2  

is a prime number if the coefficient of 52, c, is  a non-zero integer that is not 
divisible by 3, by theorems 4 & 5. Output O(i) as the result and stop. If c is 0 
or divisible by 3, then O(i) is non-prime by theorems 4 & 5. Proceed to step 
6. 

6. Calculate the new value of k(i) using  
          k(i) = (O(i-1) + 2), 

the new value of O(i-1) being 
O(i-1) = O(i). 

7. Go to step 3. 
 
From the nature of the algorithm, it is clear that, starting from a prime number of 
lowest value, any prime number of any desired value can be calculated with the help 
of theorems 4 & 5. Therefore, theorems 4 & 5 serve as a link by which all prime 
numbers in a number system can be related. Prime numbers, which were hitherto 
considered to be distributed throughout the number system following no particular 
rule, seem to follow the rules set by theorems 4 & 5. 

Theorems 4 & 5 can also be used to formulate a simple procedure to check the 
primality of any odd number. Suppose X is the odd number whose primality needs to 
be checked. The procedure is as follows: 
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Algorithm 2: 
 

1. If X is divisible by 3 or 5, then X is non-prime.  
2. If X is not divisible by 3 and 5, express X2 as  

  X2 = (a52t + …+ b52n + …+ c52 + 3d)  
where a, b, c, etc; are integers such that each of them has a value less than 
3×52 and d is an integer with value less than 52 and t, n, etc; are integers 
such that t >…> n >…>2. 

3. X is a prime number if the coefficient of 52, c, is a non-zero integer that is 
not divisible by 3, by theorems 4 & 5.  

4 Examples 

Suppose a prime number 79 is given and it is required to find the value of the next 
highest prime number. Following Algorithm 1 of the previous section we have: 

1. M = 79 
2. Putting the value of O(i-1) = M in equation  

k(i) = (O(i-1) + 2)  
         we have               
            k(i)2 = 812  = 6561 

3. Value of k(i) = 81 is divisible by 3. So, 
O(i) = O(i-1) + 2 = 81 

                      is not prime. 
4. The new value of k(i) is obtained by putting O(i-1) = O(i) in the 

equation 
k(i) = (O(i-1) + 2) =83 

        Or, 
k(i)2 = 832 = 6889 

5. k(i) is not divisible by 3 and 5 and k(i)2 can be expressed as  
k(i)2 = 832 = 3×3×54 + (3×16 + 1)×52  + 3×13,  

        which is of the form, 
    k(i) 2 = (a52t + …+ b52n + …+ c52 + 3d)  

where a, b, c, etc; are integers such that each of them has a value less 
than 3×52 and d is an integer with value less than 52 and t, n, etc; are 
integers such that t >…> n >…>2, as required by theorems 4 & 5. 

6. Since the coefficient of 52, c =  (3×16 + 1), is  a non-zero integer that is 
not divisible by 3, hence, by theorems 4 & 5,  

O(i) = O(i-1) + 2 = 83, 
        is the next highest prime number. 

 
In order to test the primality of an odd number, say, X = 187, following algorithm 2, 
we have: 
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1. X is not divisible by 3 and 5 and X2 can be expressed as  
X2 = 1872 = (3×18 + 1)×54 + 3×7×52  + 3×23,  

        which is of the form, 
    X2 = (a52t + …+ b52n + …+ c52 + 3d)  

where a, b, c, etc; are integers such that each of them has a value less 
than 3×52 and d is an integer with value less than 52 and t, n, etc; are 
integers such that t >…> n >…>2, as required by theorems 4 & 5. 

2. Since the coefficient of 52, c = 3×7, is divisible by 3, hence, by theorems 
4 & 5, X is not a prime number. 

5 Conclusion 

The paper proposes a new theory on the nature of prime numbers. In particular the 
paper proposes new theorems by which any prime number can be calculated from the 
knowledge of any other prime number of lower value in a simple way. It is shown in 
the paper that, in so doing, the theorems prove to be a common thread through which 
all the prime numbers of a number system can be related. Based on the theorems, a 
new prime number generating algorithm and a new method to test primality is 
explained and illustrated with the help of examples. 
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