
A Novel Key Management Mechanism

for Dynamic Hierarchical Access Control
Based on Linear Polynomials

Vanga Odelu1, Ashok Kumar Das2, and Adrijit Goswami3

1 Department of Mathematics
Rajiv Gandhi University of Knowledge Technologies, Hyderabad 500 032, India

odelu.vanga@gmail.com
2 Center for Security, Theory and Algorithmic Research

International Institute of Information Technology, Hyderabad 500 032, India
iitkgp.akdas@gmail.com, ashok.das@iiit.ac.in

3 Department of Mathematics
Indian Institute of Technology, Kharagpur 721 302, India

goswami@maths.iitkgp.ernet.in

Abstract. Several key management schemes for dynamic access con-
trol in a user hierarchy are proposed in the literature based on elliptic
curve cryptosystem (ECC) and polynomial interpolation. Since the el-
liptic curve scalar multiplication and construction of interpolating poly-
nomials are time-consuming operations, most of the proposed schemes
require high storage and computational complexity. Further, most of the
proposed schemes are vulnerable to different attacks including the man-
in-the-middle attacks. In this paper, we propose a novel key management
scheme for hierarchical access control based on linear polynomials only.
We show that our scheme is secure against different attacks including
the man-in-the-middle attack, which are required for an idle access con-
trol scheme. Moreover, the computational cost and the storage space
are significantly reduced in our scheme while compared to the recently
proposed related schemes.

1 Introduction

In a user hierarchy, the users and their own information items are divided
into a group of disjoint security classes. Each user is then assigned to a se-
curity class. Let SC be a set of such N disjoint security classes, say SC =
{SC1, SC2, . . . , SCN} which forms a partially ordered set (poset, in short) with
a binary relation “≤”. In a poset 〈SC,≤〉, if SCi and SCj be two security classes
with the relationship SCj ≤ SCi, then the security level of SCi is higher than
or equal to that for SCj . We call SCi as predecessor of SCj , and SCj as suc-
cessor of SCi. We denote such a relationship by (SCi, SCj) ∈ Ri,j , which means
that SCj ≤ SCi. Hierarchical access control is an important research area in
computer science, which has numerous applications including schools, military,

S.M. Thampi et al. (Eds.): SNDS 2012, CCIS 335, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 V. Odelu, A.K. Das, and A. Goswami

governments, corporations, database management systems, computer network
systems, e-medicine systems, etc.

In a hierarchical access control, a trusted central authority (CA) distributes
keys to each security class in the hierarchy such that any predecessor of a suc-
cessor class can easily derive its successor’s secret key. Using that derived secret
key, the predecessor class can decrypt the information encrypted by its succes-
sor. However, the reverse is not true in such access control, that is, no successor
class of any predecessor will be able to derive the secret keys of its predecessors.
Consider a simple example of a poset in a user hierarchy in Fig. 1. In this fig-
ure, we have the following relationships: SC2 ≤ SC1, SC3 ≤ SC1, SC4 ≤ SC1,
SC5 ≤ SC1, SC6 ≤ SC1, SC7 ≤ SC1; SC5 ≤ SC2; SC5 ≤ SC3, SC6 ≤ SC3;
SC7 ≤ SC4.

SC

SC SC SC

SC SCSC

1

2 3 4

5 6 7

Fig. 1. An example of a poset in a user hierarchy

1.1 Related Work

Akl and Talor [2] first introduced the cryptographic key assignment scheme in
an arbitrary poset hierarchy. Since then several different solutions to solve access
control problem have been proposed in the literature. Chung et al. [5] proposed
an efficient key management scheme for solving dynamic access control problem
in a user hierarchy based on polynomial interpolation and elliptic curve cryp-
tography (ECC). However, Das et al. in [6] showed that when a new security
class is added into the hierarchy, any external attacker who is not a user in any
security class can easily derive the secret key of a security class using the root
finding algorithm. In order to withstand this security flaw found in Chung et
al.’s scheme, they proposed an improved dynamic access control solution. Jeng-
Wang’s scheme [7] is based on ECC and it requires to regenerate keys for all the
security classes when a security class is inserted into or removed from the exist-
ing hierarchy. Lin and Hsu [8] later showed that Jeng-Wang’s scheme is insecure

A Novel Key Management Mechanism 3

against a compromised attack in which the secret key of some security classes
can be compromised by an attacker if some public information are modified. In
order to remedy this security flaw, Lin and Hsu [8] proposed a key management
scheme for dynamic hierarchical access control based on polynomial interpola-
tion and ECC. However, their scheme requires high storage and computational
complexity. Wu and Chen [13] proposed a key management scheme to solve dy-
namic access control problems in a user hierarchy based on hybrid cryptosystem
in e-medicine system. Though their scheme improves computational efficiency
over Nikooghadam et al.’s scheme [11], it still suffers from large storage space
for public parameters in public domain and computational inefficiency due to
costly elliptic curve point multiplication operations. Recently, Nikooghadam and
Zakerolhosseini [10] showed that Wu-Chen’s scheme is vulnerable to the man-
in-the-middle attack. In order to remedy this security weakness in Wu-Chen’s
scheme, they further proposed a secure access control scheme using mobile agent,
which is again based on ECC. However, their scheme requires huge computa-
tional cost for providing verification of public information in the public domain
as their scheme uses ECC digital signature for verifying the public information
by the security classes. Atallah et al. proposed a dynamic efficient access control
scheme [3], [4] based on one-way hash functions. However, as pointed out in [9],
their scheme is not suitable for a deep tree hierarchy or in a situation where a
tree contains complex relationships.

1.2 Motivation

Symmetric key cryptosystem is more efficient than public key cryptosystem.
Though several key management schemes for dynamic access control in a user
hierarchy are proposed in the literature, most schemes are based on elliptic curve
cryptosystem (ECC) and polynomial interpolation. Due to time-consuming op-
erations of elliptic curve scalar multiplication and construction of interpolating
polynomials, most of the proposed schemes require high storage and computa-
tional complexity. Moreover, majority of such schemes are vulnerable to different
attacks including active attack called the man-in-the-middle attack. In this pa-
per, we aim to propose a novel key management scheme for hierarchical access
control based on linear polynomials. Our scheme does not require any polynomial
interpolation and ECC operations. We make use of symmetric key cryptosystem
along with efficient hash function so that our scheme will require minimum stor-
age and computational complexity. We further show that our idle access con-
trol scheme is secure against different attacks including the man-in-the-middle
attack.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we describe our
proposed scheme. In Section 3, we discuss dynamic access control problems of
our scheme. Security analysis of our scheme is provided in Section 4. We compare

4 V. Odelu, A.K. Das, and A. Goswami

the performance of our scheme with other related schemes in Section 5. Finally,
we conclude the paper in Section 6.

2 Our Proposed Scheme

We assume that there are N security classes in the hierarchy which form a set
SC = {SC1, SC2, . . ., SCN}. We use the following notations for describing our
scheme. H(·) is a secure one-way hash function (for example, SHA-1 hash func-
tion [12]), Ω a symmetric key cryptosystem (for example, AES symmetric-key
block cipher [1]), Ek(·)/Dk(·) the symmetric-key encryption/decryption using
key k, IDCA the identity of CA, and || the bit concatenation operator. Our
scheme consists the following three phases, namely the relationship building
phase, key generation phase, and key derivation phase.

2.1 Relationship Building Phase

CA builds the hierarchical structure for controlling access according to the given
relationships among the security classes in the hierarchy. Assume that SCi ∈ SC
and SCj ∈ SC be two security classes such that SCj ≤ SCi, that is, SCi has a
higher security clearance than that for SCj . We say that a legitimate relationship
(SCi, SCj) ∈ Ri,j between SCi and SCj exists if SCi can access SCj .

2.2 Key Generation Phase

CA executes the following steps in order to complete this phase:

Step 1. CA chooses a secure hash function H(·), a finite field GF (m) with m
is either odd prime or prime power, and a symmetric key cryptosystem Ω.

Step 2. CA randomly selects its own secret key kCA. CA then selects randomly
the secret key ski and sub-secret key di for each security class SCi (1 ≤ i ≤
N) in the hierarchy.

Step 3. For each security class SCi, CA computes the signature Signi on ski as
Signi = H(IDCA||ski) for the purpose of signature verification of the secret
key ski. CA then publicly declares them.

Step 4. For each SCi such that (SCi, SCj) ∈ Ri,j , CA constructs the linear
polynomials fi,j(x) = (x − H(IDCA||Signj||di)) +skj (modm), and de-
clares them publicly.

Step 5. Finally, CA sends di to SCi via a secure channel.

At the end of this phase, CA encrypts di of SCi as Si = EkCA(di), computes
its signature Sdi as Sdi = H(IDCA||di) for the signature verification of di and
stores the pair (Si, Sdi) in the public domain. CA then deletes all the secret
keys ski and di. Note that whenever CA wants to update the secret keys ski’s,
CA first obtains di’s from public parameters Si’s by decrypting them with its
secret key kCA and then verifies signatures by calculating the hash values as
Sd

′
i = H(IDCA||di), and checks if Sd′i = Sdi. If it matches, CA confirms that

derived secret key di is legitimate.

A Novel Key Management Mechanism 5

2.3 Key Derivation Phase

If the security class SCi wants to derive the secret key skj of its successor SCj

with (SCi, SCj) ∈ Ri,j , SCi needs to proceed the following steps:

Step 1. SCi first computes the hash value H(IDCA||Signj||di) using its own
sub-secret key di, signature Signj and IDCA publicly available in the public
domain.

Step 2. SCi obtains secret key skj ofSCj ’s (includingSCi) as skj = fi,j(H(IDCA

||Signj||di)). CA then verifies signature of skj as follows. CA computes Sign
′
j

= H(IDCA||skj) and checks if Sign
′
j = Signj. If it holds, SCi assures that

the derived secret key skj is correct.

3 Solution to Dynamic Key Management

The solution to dynamic access problem in user hierarchy for our scheme such
as adding a new security class into hierarchy, deleting an existing security class
from the hierarchy, modifying the relationships among the security classes and
updating secret keys are given below.

3.1 Adding a New Security Class

Suppose a security class SCl with SCj ≤ SCl ≤ SCi be added into the hierarchy.
CA needs the following steps to manage the accessibility of SCl:

Step 1. CA randomly needs to select the secret key skl and the sub-secret key
dl for SCl.

Step 2. For SCl, CA needs to compute the signature Signl on skl as Signl =
H(IDCA ||skl) for signature verification of skl and publicly declares it.

Step 3. For each SCi such that (SCi, SCl) ∈ Ri,l in the hierarchy, CA will
construct the linear polynomials fi,l(x) = (x − H(IDCA||Signl||di)) + skl
(modm), and declares them publicly.

Step 4. For each SCj such that (SCl, SCj) ∈ Rl,j , CA will construct the linear
polynomials fl,j(x) = (x−H(IDCA||Signj||dl))+skj (mod m), and declares
them publicly.

Step 5. CA finally sends dl to SCl via a secure channel.

At the end of this phase, CA encrypts dl of SCl as Sl = EkCA(dl), computes
signature Sdl as Sdl = H(IDCA||dl) for signature verification of dl and stores
the pair (Sl, Sdl) in the public domain, and then deletes secret keys skl and dl
for security reasons.

3.2 Deleting an Existing Security Class

Suppose the security class SCl with SCj ≤ SCl ≤ SCi be removed from the hi-
erarchy. CA needs the following steps to remove SCl so that the forward security
is preserved.

6 V. Odelu, A.K. Das, and A. Goswami

Step 1. CA needs to remove all parameters corresponding to SCl.
Step 2. After that CA renews secret keys skj ’s of successors SCj ’s of SCl as

sk∗j , and signatures Signj’s as Sign∗
j = H(IDCA||sk∗j) and replaces Signj

with Sign∗
j in the public domain.

Step 3. For each SCi such that SCj ≤ SCi (�= SCl) in the hierarchy, CA
constructs the linear polynomials f∗

i,j(x) = (x−H(IDCA||Sign∗
j ||di)) + sk∗j

(modm) and declares them publicly.

3.3 Creating a New Relationship

Assume that SCj ≤ SCi represents a new relationship between two immediate
security classes SCj and SCi. Further, assume SCi ≤ SCl and SCy ≤ SCj (SCy

is not successor of SCl before creating relationship). CA needs to compute linear
polynomials fl,y(x) = (x − H(IDCA||Signy||dl)) + sky (modm) and publicly
declares them.

3.4 Revoking an Existing Relationship

Suppose the relationship between two immediate security classes SCj and SCi

with SCj ≤ SCi be deleted from the hierarchy. Let SCj ≤ SCl (�= SCi) and
SCy ≤ SCj . CA then removes all parameters corresponding to the keys sky
(including skj). CA also renews secret keys sky as sk∗y and updates signatures
Signy as Sign∗

y = H(IDCA||sk∗y) in the public domain. Finally, CA constructs
public polynomials f∗

l,y(x) = (x−H(IDCA||Sign∗
y||dl)) + sk∗y (modm).

3.5 Changing Secret Keys

Suppose we want to change the secret key skj of SCj , where SCj ≤ SCi. CA
needs to renew the secret key skj as sk∗j and update the signature Signj as
Sign∗

j = H(IDCA||sk∗j), compute the corresponding polynomials f∗
i,j(x) = (x−

H(IDCA||Sign∗
j ||di)) + sk∗j (modm) and declare them publicly.

4 Security Analysis

In this section, we show that our scheme is secure against the following attacks.

4.1 Contrary Attack

Suppose SCj ≤ SCi and the successor class SCj tries to derive the secret key
ski of its predecessor class SCi from the available public parameters fi,i(x) =
(x−H(IDCA||Signi||di)) +ski (mod m) and fi,j ’s. However, without knowledge
of the sub-secret key di of SCi, SCj cannot compute H(IDCA||Signi||di) and
as a result, the secret key ski. One important observation is that the pairs
(Signj, di) used in the construction of linear polynomials are distinct for two
different polynomials. Even from the public parameter Si = EkCA(di), SCj or
any other user (except CA) cannot retrieve di without knowing CA’s private key
kCA. Therefore, our scheme is secure against this attack.

A Novel Key Management Mechanism 7

4.2 Exterior Collecting Attack

This potential attack is from an external adversary. The question is that whether
an external intruder can derive the secret key from lower level security classes
through the accessible public parameters? However, to compute the secret key of
a security class is computationally infeasible due to collision-resistant property
of the one-way hash function H(·). Thus, no external intruder can retrieve the
secret key of any security class. Our scheme is thus secure against such an attack.

4.3 Collaborative Attack

In this attack, several users in a hierarchy try to collaborate to launch an attack
in order to compute their predecessor’s secret key. Let SCj and SCl be two
immediate successor classes of a predecessor class SCi and they try to hack the
secret key ski of SCi. First, they can exchange secret keys with each other and
derive the sub-secret key di of SCi in order to derive the secret key ski of SCi

through the public linear polynomials fi,j(x) = (x−H(IDCA||Signj||di)) + skj
(modm) and fi,l(x) = (x − H(IDCA||Signl||di)) + skl (modm). However, di
is masked with one-way hash function H(·), and thus, determination of di is
a computational infeasible problem due to hash function properties. Hence, no
successor class can obtain the secret key of a predecessor class by collaborating
each other and then our method is secure under this attack.

4.4 Equation Attack

Suppose a security class SCj has common predecessors SCi and SCl, where
SCi does not have an accessibility relationship with SCl. Let SCi try to access
the secret key skl of SCl through the public linear polynomials fl,j(x) = (x −
H(IDCA||Signj||dl)) + skj (modm) and fl,l(x) = (x −H(IDCA||Signl||dl)) +
skl (modm). SCi can compute H(IDCA||Signj||dl) from fl,j(x) by using the
derived secret key skj of SCj , but SCi cannot compute the skl from fl,l(x),
since the hash values H(IDCA||Signj||dl) and H(IDCA||Signl||dl) are different.
Therefore, the polynomials corresponding to one security class cannot be solvable
by other security classes. As a result, our scheme is also secure against this attack.

4.5 Forward Security of Successors While Changing
SCj ≤ SCk ≤ SCi to SCj ≤ SCi

Assume that the relationship SCj ≤ SCk ≤ SCi is modified to another re-
lationship SCj ≤ SCi after removing the security class SCk from an existing
hierarchy. Then CA not only deletes the accessibility relationship SCj ≤ SCk,
it also updates the accessibility-link relationship between SCi and SCj . CA fur-
ther renews the secret keys skj ’s of SCj ’s and the corresponding linear polyno-
mials as f∗

i,j = (x−H(IDCA||Sign∗
j ||di)) + sk∗j (mod m). Since the hash values

H(IDCA||Sign∗
j ||di) can be computed only by the security class SCi, the se-

curity class SCk cannot hack the updated key sk∗j of SCj later. Therefore, the
authority of SCk over SCj is terminated, and our scheme preserves the forward
security property.

8 V. Odelu, A.K. Das, and A. Goswami

4.6 Man-in-the-Middle Attack

As in [10], we refer the “man-in-the-middle” attack as the masquerade attack.
Suppose an attacker wants to be represented as an authorized central authority.
Though the public domain is write-protected, we assume that the attacker can
update somehow the information in the public domain. Let the attacker change
the public linear polynomials fi,j(x)’s in the public domain. The derivation of
the secret key skj of a security class SCj becomes a computationally infeasible
problem since the sub-secret key dj is only known to SCj . As a result, the
attacker does not have any ability to change properly the signatures Signj =
H(IDCA||skj) and Sdj = H(IDCA||dj) in the public domain. Hence, our scheme
protects against such an potential attack.

5 Performance Comparison with Other Schemes

Let TMUL, TADD and TINV denote the time complexity of executing modular
multiplication, modular addition and modular inversion in GF (2163), respec-
tively. We denote TECMUL and TECADD for time complexity of executing a point
multiplication and a point addition in elliptic curve over GF (2163). TSHA1 de-
notes the time complexity of hashing 512-bit message block using hash function,
SHA-1 and TAES for the time complexity of encrypting/decrypting 128-bit mes-
sage block using AES with a 128-bit key.

From the analysis provided in Table 1 [13], it is noted that TINV , TECMUL ,
TECADD , TSHA1 and TAES require approximately 3, 1200, 5, 0.36 and 0.15 field
multiplications in GF (2163), respectively, whereas TADD is negligible.

Table 1. Time complexity of various operations in terms of TMUL

TINV ≈ 3TMUL TECMUL ≈ 1, 200TMUL

TECADD ≈ 5TMUL TSHA1 ≈ 0.36TMUL

TAES ≈ 0.15TMUL TADD is negligible

We consider a hierarchy with N security classes SC1, SC2, . . ., SCN . Each
security class SCi has vi predecessors. Comparison of storage complexity among
various schemes is shown in Table 2. In our scheme, each key length is 128-bit
since we have used AES algorithm. We see that the storage space of our scheme
is reduced significantly compared with other schemes. In Table 3, we have com-
pared the computational complexity and rough estimation in terms of field multi-
plications of our scheme with other schemes. In our scheme, key generation phase
requires NTSHA1 +

∑N
i=1(vi + 1)(TADD + TSHA1) and N(TSHA1 + TAES) op-

erations for computing signature, constructing linear polynomials and the pairs
(Si, Sdi), whereas key derivation phase requires

∑N
i=1(vi + 1)(TADD + TSHA1)

operations. Thus, the total computational cost for our scheme is
∑N

i=1(vi +
1)(2TADD + 3TSHA1) + 3NTSHA1 + NTAES . It is also clear to observe the

A Novel Key Management Mechanism 9

Table 2. Comparison of storage space among various schemes

Schemes CA’s private domain SCi’s private domain Public domain

[7] 163(2N + 1) 163 163(
∑N

i=1(vi + 1) + 6N + 2)

[5] 163(2N + 1) 163 163(
∑N

i=1(vi + 1) + 6N + 2)

[11] 163N 163 163(2
∑N

i=1(vi + 1) + 2N)

[13] 128 + 163 163 128(
∑N

i=1(vi + 1) +N)+
163(2N + 2)

[10] 163(N + 1) 163 163(
∑N

i=1 vi + (5N + 2))

[8] 163 163 163(
∑N

i=1 vi + 3N + 4)

Ours 128 128 128(
∑N

i=1(vi + 1) + 3N + 1)

Table 3. Comparison of computational costs among different schemes for key genera-
tion and key derivation phases

Scheme Time complexity Rough estimation

[7]
∑N

i=1 2(v
2
i + vi).TMUL + 2N.TECADD (

∑N
i=1(2v

2
i + 2, 402vi)

+(4N + 2
∑N

i=1(vi + 1)).TECMUL +7, 210N).TMUL

+2
∑N

i=1(vi + 1).TSHA1

[5]
∑N

i=1 2(v
2
i + vi).TMUL + 2N.TECADD (

∑N
i=1(2v

2
i + 2, 402vi)

+(3N + 2
∑N

i=1(vi + 1)).TECMUL+ +6, 010N).TMUL

2
∑N

i=1(vi + 1).TSHA1

[11] N.TINV + (N + 2
∑N

i=1(vi + 1)) (
∑N

i=1 2, 400vi + 3, 603N).TMUL

.TECMUL + (N +
∑N

i=1(vi + 1)).TSHA1

[13] (2N + 1).TECMUL+ (
∑N

i=1 0.3vi + 2, 401N

2(N +
∑N

i=1(vi + 1)).TAES + 2N.TSHA1 +1, 200).TMUL

[10] (2
∑N

i=1 vi).TXOR+ (N +
∑N

i=1 vi) (
∑N

i=1 4800.72vi + 2402.36N+

.TADD + (2N +
∑N

i=1 vi).TMUL 1200).TMUL

+((2N + 1) + 4
∑N

i=1 vi).TECMUL

+(N + 2
∑N

i=1 vi).TSHA1

[8] N(3TECMUL + 2TMUL + 3TSHA1+ (N
∑N

i=1 1.72vi + vi+

TINV +
∑N

i=1 vi(TMUL + 2TSHA1))+ 3606.08N + 0.72)TMUL

viTMUL + TSHA1

Ours
∑N

i=1(vi + 1)(2TADD + 3TSHA1)+

3NTSHA1 +NTAES (
∑N

i=1 1.08vi + 1.95N)TMUL

the computational complexity of our scheme is reduced significantly compared
to other schemes proposed recently. Further, our scheme, [8] and [10] are secure
against possible attacks as compared to other schemes [5], [7], [11], [13]. However,
[8] and [10] require very high storage and computational overheads compared to
our scheme. Moreover, dynamic access control problems in our scheme are solved
efficiently as compared to other schemes. Considering security and low storage
and computational complexity, our scheme is significantly better than all other
schemes [5], [7], [8], [10], [11], [13].

10 V. Odelu, A.K. Das, and A. Goswami

6 Conclusion

In this paper, we have proposed a novel efficient key management method to
solve dynamic access control problems in a user hierarchy. We have utilized
the linear polynomials along with symmetric-key cryptosystem to achieve the
required goals for an idle access control scheme with low computational cost and
small storage space. Further, our scheme is also secure against known attacks
including the man-in-the-middle attack. Hence, our approach is more effective
than previously proposed methods for practical applications.

References

1. Advanced Encryption Standard: FIPS PUB 197, National Institute of Stan-
dards and Technology (NIST), U.S. Department of Commerce (November 2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in a
hierarchy. ACM Transactions on Computer Systems (TOCS) 1(3), 239–248 (1983)

3. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and Efficient Key Man-
agement for Access Hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), Article 18,
198–208 (2009)

4. Atallah, M., Frikken, K., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: ACM Conference on Computer and Communications
Security (CCS 2005), pp. 190–202 (2005)

5. Chung, Y.F., Lee, H.H., Lai, F., Chen, T.S.: Access control in user hierarchy based
on elliptic curve cryptosystem. Information Sciences 178(1), 230–243 (2008)

6. Das, A.K., Paul, N.R., Tripathy, L.: Cryptanalysis and improvement of an access
control in user hierarchy based on elliptic curve cryptosystem. Information Sci-
ences 209, 80–92 (2012)

7. Jeng, F.G., Wang, C.M.: An efficient key-management scheme for hierarchical ac-
cess control based on elliptic curve cryptosystem. Journal of Systems and Soft-
ware 79(8), 1161–1167 (2006)

8. Lin, Y.L., Hsu, C.L.: Secure key management scheme for dynamic hierarchical
access control based on ECC. Journal of Systems and Software 84(4), 679–685
(2011)

9. Lo, J.W., Hwang, M.S., Liu, C.H.: An efficient key assignment scheme for access
control in a large leaf class hierarchy. Information Sciences 181(4), 917–925 (2011)

10. Nikooghadam, M., Zakerolhosseini, A.: Secure Communication of Medical Informa-
tion Using Mobile Agents. Journal of Medical Systems (2012), doi:10.1007/s10916-
012-9857-8

11. Nikooghadam, M., Zakerolhosseini, A., Moghaddam, M.E.: Efficient utilization of
elliptic curve cryptosystem for hierarchical access control. Journal of Systems and
Software 83(10), 1917–1929 (2010)

12. Secure Hash Standard: FIPS PUB 180-1, National Institute of Standards and Tech-
nology (NIST), U.S. Department of Commerce (April 1995)

13. Wu, S., Chen, K.: An Efficient Key-Management Scheme for Hierarchical
Access Control in E-Medicine System. Journal of Medical Systems (2011),
doi:10.1007/s10916-011-9700-7

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	A Novel Key Management Mechanism
for Dynamic Hierarchical Access Control Based on Linear Polynomials
	Introduction
	Related Work
	Motivation
	Organization of the Paper

	Our Proposed Scheme
	Relationship Building Phase
	Key Generation Phase
	Key Derivation Phase

	Solution to Dynamic Key Management
	Adding a New Security Class
	Deleting an Existing Security Class
	Creating a New Relationship
	Revoking an Existing Relationship
	Changing Secret Keys

	Security Analysis
	Contrary Attack
	Exterior Collecting Attack
	Collaborative Attack
	Equation Attack
	Forward Security of Successors While Changing SCj SCk SCi to SCj SCi
	Man-in-the-Middle Attack

	Performance Comparison with Other Schemes
	Conclusion
	References

