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Abstract. Near Field Communication (NFC) has reinvigorated the
multi-application smart card initiative. The NFC trials are relying on
an extension of Issuer Centric Smart Card Model (ICOM) referred as
Trusted Service Manager (TSM) architecture, which may create mar-
ket segregation. Where the User Centric Smart Card Ownership Model
(UCOM) takes an opposite approach of delegating the smart card own-
ership to its users. Therefore, to reconcile these two approaches we pro-
posed the Coopetitive Architecture for Smart Cards (CASC) that avoids
market segregation, increase revenue generation, and provide flexibil-
ity, robustness, and scalability. To support the CASC framework in this
paper, we propose an application installation protocol that provides
entity authentication, trust assurance and validation, mutual key and
contractual-agreement generation. The protocol is compared with exist-
ing protocols on its performance, stated security, and operational goals.
Furthermore, CasperFDR is used to provide a mechanical formal analysis
of the protocol.

1 Introduction

In late 1990s, the multi-application smart card initiative enabled heterogeneous
applications to co-exist and share resources in a secure and reliable manner [1].
At the time, it was envisioned that diverse organisations would converge with
their services on a single device [2]; however, the reality has been different.

The issues related to the card ownership, marketing potential of the card sur-
face, customer loyalty, and potential revenue stream, hindered any meaningful
collaboration effort [3]. In addition, there were other voices mainly concerned
with the security implication [4]. The enthusiasm died quickly until a new tech-
nology termed as Near Field Communication (NFC) emerged that enables a
mobile phone to emulate a contact-less smart card [5]. Since 2007, NFC based
mobile services with applications like banking, telecom, and transports are in
trial around 38 countries [6]. In these trials, the smart card management ar-
chitecture is based on the framework that has been deployed in the smart card
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industry since its inception, namely Issuer Centric Smart Card Ownership Model
(ICOM). In the ICOM, smart cards are issued and controlled by a centralised au-
thority known as a card issuer. Application providers require prior-authorisation
from the card issuers to install their applications. The extension of the ICOM
deployed in the NFC based trials is termed as Trusted Service Manager (TSM)
architecture [7]. The TSM is an entity that can be either a card issuer or an
independent third party. It manages the card platform, and relationship with
individual stakeholders.

In contrast, User Centric Smart Card Ownership Model (UCOM) [3] is based
on the citizen ownership architecture. In this model, cardholders (users) own
smart cards, and they have the choice to install or delete any application. To
reconcile between the UCOM and TSM, we proposed the Coopetitive Architec-
ture for Smart Card (CASC)1 that merges the TSM and UCOM frameworks,
thus increasing the overall scalability of the multi-application smart card archi-
tecture, and possibly provide more revenue-generating opportunities than the
TSM can individually achieve.

1.1 Contributions

In this paper, based on the CASC architecture, we propose a trusted and se-
cure entity authentication, key generation, and contractual-agreement protocol
for application download referred as Application Acquisition and Contractual
Agreement Protocol (ACAP). The contractual-agreement guarantees to the par-
ticipating entities that they have executed the protocol and as a successful out-
come, an application is installed (and the application is operational).

1.2 Organisation

In section two, we provide a brief motivation behind the coopetitive architecture.
A succinct discussion on the smart card architecture that supports the CASC
framework is provided in section three. In this section we only discuss elements
of the smart card design that is required to support the proposed protocol. These
two sections set the background on which we base the security and operational
requirements of the proposed protocol. Next in section four, the description of
the ACAP is provided. Section five analyse the ACAP to see whether it meets the
stated goals and requirements in comparison to existing protocols. In addition,
we discuss the implementation experience and performance measurement of the
ACAP along with formal analysis based on the CasperFDR. Finally, in section
six we provide concluding remarks and list future research directions.

2 Motivation for Coopetitive Architecture

The TSM architecture, in a simplistic form, is illustrated in figure 1. In such
an environment, a customer of a Mobile Network Operator (MNO) that has a
1 To facilitate the blind reviewing process, references to CASC are removed.
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relationship with the TSM-1 will only be able to have applications from Card
Issuing Bank (CIB), Transport Service Provider (TSO) and leisure centres that
are associated with the TSM-1. However, if the respective customer CA does
banking with the CIB2 that is associated with the TSM-2 (figure 1) then either
she has to acquire a new smart card from the TSM-2 or change bank. Therefore,
in such a scheme, there is a potential for the segmentation of the market.

One possible option is to have all application providers maintain relationships
with all or most of the TSMs. For example, in figure 1, the CIB1 of TSM-1
should also have a relationship with the TSM-2. Another possible option is to
create a syndicated scheme in which multiple TSMs participate.

Therefore, any application

CIB1MNO1 TSO1

Leisure
Centre 1

CIB2MNO2 TSO2

Leisure
Centre 2

TSM-1 TSM-2

CA CB Cc CD CE CF

Fig. 1. Trusted Service Manager Architecture

provider affiliated with one
TSM will be able to issue its ap-
plication to a customer of any
syndicated TSM. Both scenar-
ios can be argued to be work-
able, but they also suffer from
limited scalability, flexibility,
and ubiquity of the framework.

The limited scalability roots
from: (a) not all application
providers could establish or
manage relationships with every possible TSM, and (b) not all TSMs would
be part of a single syndicated TSM. In addition, to be part of a collaborative
scheme a TSM might require subscription fee from application providers. There-
fore, small or medium-scale organisations like local libraries, universities, and
health centres, etc., may not be able to afford it. We consider that such a barrier
to enter the scheme reduces its flexibility. Furthermore, it lacks true ubiquity as
different countries might opt for having their own independent TSMs. Thereby,
tourists or business travellers would face difficulty in acquiring applications (e.g.
TSO’s application) in a foreign country. These issues are on top of the ones
that are discussed in [4] including ownership privileges, customer loyalty and
relationship management, card surface marketing, and revenue generation [3].

In the UCOM, most of the issues discussed above are not present [3]. We
consider that UCOM itself will be a preferable solution, but it is difficult to
conceive that it can have a widespread acceptance in the business community.
Therefore, a compromise between the TSM and UCOM is referred as Coopetitive
Architecture for Smart Cards (CASC).

The coopetitive architecture focuses on the core competences of individual
companies and leaves other areas to the organisations that have expertise in
them. For example, an MNO in the coopetitive architecture can be a TSM and
even have the ability to form alliance with other companies to provide their
services via the respective smart cards. In addition, it also enables the users to
download applications they like from any of the application providers of their
choice. The main stake the MNO has is to generate maximum revenue out of its
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investment in the secure element, and its security. Therefore, if there is a way in
which an application can be securely downloaded onto a smart card that does
not have any prior relationship with the particular application provider and the
MNO charges the customer for acquiring the application. Then in such a model,
there is a probability that customers would actually generate higher revenue for
the respective card issuer or TSM than in the traditional architecture based on
the ICOM.

3 Coopetitive Architecture for Smart Cards

In this section, first we discuss the coopetitive architecture and then briefly
describe the multi-application smart card architecture to support it.

3.1 Smart Card Architecture Overview

A generic architecture is illustrated in figure 2, for brevity we will only discuss
those components that are related to this paper. On top of the hardware layer
is the Trusted Environment & Execution Manager (TEM), which is discussed in
the next section.

Above TEM is the smart

Trusted Environment & Execution Manager

Smart Card Runtime Environment

Smart Card Firewall

Smart Card Virtual Machine

System Classes Application Programming Interfaces (APIs)

Card
Privileges
Manager

Application
A

Smart Card Hardware

Native Code

Platform’s Space

Subscription
Manager

Application Installation &
Deletion Manager

Application
B

Application
C

Application
D

TSM’s Space Cardholder’s Space

Fig. 2. Generic Smart Card Architecture for
Coopetitive Framework

card runtime environment that
might conform to any of the
smart card platforms or oper-
ating systems (e.g. Java Card
[8] or Multos [9]). The smart
card firewall manages the inter-
application communication
and access to the platform ser-
vices (i.e. APIs). The top most
layer is partitioned into three
sections separated by the fire-
wall mechanism: namely the
Platform’s, TSM’s, and Card-
holder’s space. The Platform’s space holds the platform APIs, where application
related to individual entities (e.g. TSM and cardholder) are in their respective
spaces.

3.2 Trusted Environment and Execution Manager (TEM)

A TEM provides a platform independent dynamic, runtime, and remote – secu-
rity and reliability assurance mechanism for the UCOM based smart cards. In a
naive manner, we can term it as a trusted platform base for the smart cards; how-
ever, TEM’s functionality differs from the traditional Trusted Platform Module
[10]. For the sake of concision, we will only discuss the TEM component referred
as the attestation handler in this section that is directly related to this paper.
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The attestation handler implements the security-assurance and validation
mechanism that certify to the requesting entity (e.g. Service Provider: SP) that
the smart card’s state is as it was at the time of a third party evaluation and
stated by the evaluation certificate [11]. An evaluation certificate is a crypto-
graphically signed certificate issued by an evaluation body, and the respective
card manufacturer places it on the platform. The evaluation certificate will cer-
tify a unique signature key pair of the Smart Card Manufacturer (SCM). The
SCM will use the signature key to issue certificates to the manufactured smart
cards that conform to the evaluated product (see figure 3). A point to note is
that at present Common Criteria (CC) [12] or any other evaluation scheme, for
that matter, does not provide any such service but proposals presented in [11]
and [13] can be utilised.

The process initiated by the attestation handler validates both the hardware
and software state of the platform. It is a two-part mechanism: tamper-evidence
and reliability assurance. To make a smart card tamper-resistant, the respec-
tive SCM implements hardware based tamper protections. The tamper-evidence
process verifies whether the implemented tamper-resistant mechanisms are still
in place and effective. The reliability assurance process verifies that the soft-
ware part of the smart card platform is not been tampered/modified. For the
description of the TEM and implementation of the attestation handler see [14].

4 Application Acquisition and Contractual Agreement
Framework

In this section, we detail the security and operational goals for the Application
Acquisition and Contractual Agreement protocol (ACAP) that facilitates applica-
tion installation/deletion in the CASC, and propose a protocol that meets them.

4.1 Security and Operational Goals

An ACAP for the CASC should meet sixteen goals stated in [14] along with the
additional goals listed as below:

G17) Platform & Application User Separation (PAU) Attack: A malicious user
provides access credentials of a genuine user to an SP and downloads the
application on her smart card [14]. A protocol should tie a platform with its
respective card-owner (user) to avoid platform & application user separation
attack.

G18) Contractual Agreement: On the successful execution of the protocol, the
communicating entities will mutually sign a contractual agreement. This
will act as a proof that a particular application was installed on a smart
card.

G19) Proof of Transaction: The smart card will notify the TSM about the ap-
plication installation. Depending upon the TSM’s policy, it will charge the
user’s account and notify the smart card to activate the application so it
can execute.
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For formal definition of the italicised terms in the above list, readers are advised
to refer to [15]. Later, we will revisit these goals for the protocol comparison (see
table 3).

4.2 Enrolment Phase

A Smart Card Manufacturer (SCM) will get their smart card product certified
from a certification authority that would issue a Product Evaluation Certificate
(PEC), as shown in figure 3. It will endorse that the platform conforms to the
stated security and operational requirements [14], along with the attestation
process and its effectiveness.

The SCM may deliver the

Common Criteria
Certification Authority

Card Manufacturer

PEC

Smart Card Signature
Key Pair Certificate

Smart Card Encryption
Key Pair Certificate

Smart Card User Signature
Key Pair Certificate

Scheme Manager (i.e. TSM)

Chain1

Chain 2

Fig. 3. Certificate Hierarchy in the Coopetitive
Framework

smart cards to a card issuer (e.g.
a TSM) that will also certify
the smart card signature key
pair. Now, it will have two cer-
tificates, one issued by the SCM
and second by the TSM. Finally,
the respective smart card will
be acquired by a cardholder who
will then initiate the ownership
acquisition process, which would
generate a user signature key pair, certified by the smart card.

There are two roots in this hierarchy (figure 3), the CC certificate authority,
and the TSM. The reasons for having two separate roots are: a) to provide
privacy protection to users who do not want to reveal the identity of their TSMs,
and b) smart cards may not be permanently bonded with a particular TSM.

Depending upon the association of an SP with the TSM of a smart card, the
appropriate chain of certificates will be provided by the smart card. If the SP is
not an associate of the TSM, then the certificate chain 1 (figure 3) with the CC
certification authority as a root will be used; otherwise, chain 2 will be used.

4.3 Proposed Protocol

Software on a mobile phone that supports the application installation process is
referred as Card Application Management Software (CAMS) [16] in the UCOM.
A cardholder requests the respective SP to download an application that initiates
the ACAP protocol. The notation used to describe the ACAP is listed in table
1, where ACAP messages are listed in table 2 and discussed as below:
Message 1. The SP will initiate the ACAP by generating a random number
(NSP ) and Diffie-Hellman exponential (gsp) [19]. For computational efficiency,
the SP might have a pre-computed buffer of random numbers and Diffie-Hellman
exponentials. To avoid DoS attacks, the SP will compute a Session Identifier
(SID) by SID = HSPk

(gsp|NSP |SCIP ). The key (HSPk
) used to generate the

HMAC is not shared with any-other entity and SCIP is the current Internet
Protocol (IP) address of the respective smart card. When an SP will receive a
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Table 1. Protocol Notation

SP :Denotes a Service Provider.
SC :Denotes a smart card.
T :Denotes the enrolled TSM.
U :Denotes a cardholder (user).
App :Denotes the downloaded application contents.
Xi :Represents the identity of an entity X.
gx :Current Diffie-Hellman exponential (mod p) generated by the entity X.
CX :Signature key pair certificate of an entity X.
NX :Random number generated by an entity X.
A → B :Message sent by an entity A to an entity B.
X|Y :Represents the concatenation of the data items X, Y in the given order.
SigX(Z) :Is the signature on data Z by an entity X using a signature algo [17].
H(Z) :Is the result of generating a hash of data Z.
Hk(Z) :Is the result of generating a keyed hash (HMAC) of data Z using k.
[M ]

eKX−Y

aKX−Y
:Message M encrypted by the encryption key eKX−Y and then MAC is
computed using the key aKX−Y , shared between entities X and Y.

DHG :Details the Diffie-Hellman group that is used to generate the gSP [18].
ALP :SPs defines the Application Lease Policy (ALP) [16] that states the

minimum security and operational requirements an SC has to meet to
get the application lease. The application can be downloaded only after
the SC satisfies the lease requirements [3].

ReqV :The message sent by the respective SP to a SC requesting to provide a
current state validation.

CAR :List of cryptographic algorithms supported by the respective SP.
CAS :List of cryptographic algorithms selected by the respective smart card

from the CAR.
ParOpt :Optional parameters of the protocol messages.
AppDoD :An anonymised message that details the application properties (e.g.

size) and it is used for charging purposes by the scheme manager.

message from the SC, it will first verify the SID. If the SID corresponds to an
open session, and it computes correctly for the stated IP address (from where
the message is received), then the SP will proceed with processing the message.

Message 2. On receipt, the SC will first check the DHG whether support the
selected group or not. If it cannot support the selected group then the smart
card will sends a rejection message that lists the DH groups supported by the
smart card. The SC then verifies whether it satisfy the ALP requirements. In
addition to the security and operational requirements, the ALP also stipulates
the required memory to install the application. The SC checks, whether it has
enough available space to accommodate the requested application. If the SC
cannot satisfy the ALP, it will terminate the protocol and notify the cardholder.

Otherwise, the SC will then generate a random number (NSC) and Diffie-
Hellman exponential (gsc). It can now also generate the shared key (i.e. DH =
(gsp)sc mod p) and from this key, the SC will generate the session encryption
Ke = HDH(NSP |NSC |0) and MAC key Ka = HDH(NSP |NSC |1). Session keys
for the application download process can also be generated in the similar fashion.
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Table 2. Application and Contractual Agreement Protocol (ACAP)

M1. SP → SC : NSP |gsp|DHG|ALP |SID
M2. SC → SP : NSC |gsc|[SignU (SCi|Ui|gsp|gsc|NSP |NSC |PEC)|CU ]

eKSC−SP

aKSC−SP
|SID

M3. SP → SC : RV | [SignSP (SPi|Appi|gsp|gsc|NSC |NSP )|CSP |CAR|PO]
eKSC−SP

aKSC−SP

M4. SC → SP : [SignSC(SCi|Ui|NSC |NSP |PO)|CAS|CSC ]
eKSC−SP

aKSC−SP
|SID

M5. SC → SP : [SignSC(H(App)|SPi|Appi|ALP |SCi|Ui|NSC |NSP )]
eKSC−SP

aKSC−SP
|SID

M6. SP → SC : [SignSP (H(App)|SCi|Ui|SPi|NSC |NSP |PO)|CSP ]
eKSC−SP

aKSC−SP

M7. SC → T : CardID| [Ti|SCi|Ui|AppDoD|N ′
SC ]

eKSC−T

aKSC−T
|SIDT−SC

M8. T → SC : [SignT (Ti|SCi|Ui|NT |N ′
SC |TC|ActApp)|Card′ID|SID′

T−SC ]
eKSC−T

aKSC−T

The SC will sign the data containing the PEC (Product Evaluation Certifi-
cate) with user’s signature key, then it is concatenated with the user’s certificate.
The entire message is encrypted and MACed, and appended to the gSC and NSC .

Message 3. The SP will retrieve the gsc and calculateDH = (gsc)sp mod p. Similar
to the SC, the SP will also generate the session encryption and MAC keys.

The SP verifies the user’s certificate, and the details of the cardholder listed
in the user’s certificate should match the SP’s authenticated customer that re-
quested the application download. This is to avoid users from installing applica-
tions for which they are not authorised (i.e. see requirement 17 in section 4.1).
The SP verifies the signature and checks whether the PEC meets the minimum
security-requirement set out in the SP’s ALP. If it does not, the SP will terminate
the protocol.

If there is no error, the SP will request (i.e. RV ) the SC to provide a proof that
it complies with the stated PEC. The SP then appends the encrypted message
that contains cryptographic algorithms supported (CAR) by the SP (i.e. for use
in application download), and an optional parameter (PO). The PO field is used
by the SP if its application also has a third party evaluation certificate that is
attached the certificate with message.

Message 4. On receipt of the message 3, the smart card verifies whether it
supports the cryptographic algorithms listed in the CAR. If not, then the SC
will send a list of cryptographic algorithms supported by the SC. If the SP does
not support any of them, it can terminate the protocol and notify the user.

Otherwise, the SC will check whether the SP’s identity is included in the
associated SP’s list (section 4.2). If it is included, the application will be installed
in the TSM’s space (section 3.1). If the SP’s identity is in the list, then in
the response message the SC will include the TSM’s identity as an optional
parameter (PO).

The SC will then initiate the platform attestation process as discussed in sec-
tion 3.2. A correct signature that includes the protocol related data (i.e. random
numbers and identities) will ascertain that the smart card is still in conformance
with the evaluated state. The SC also includes the list of cryptographic algo-
rithms (CAS) selected from the CAR list for the application download process.
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Up to this point, the protocol achieves the entity authentication (e.g. SC,
user, and SP), provides SC trust validation proof, and has generated session
keys. For performance comparison (table 4), we refer to the message 1-4 as AKG
(Authentication, Key Generation and Trust Validation) phase. After receiving
the message 4, the respective SP will initiate the application download pro-
cess, which is beyond the scope of this paper. However, for completeness, the
communicating parties may choose one of the symmetric key-based application
download protocol from the GlobalPlatform specification [20].

Message 5. Once the application download is completed, the SC will generate
a message that acts as an SC to SP contract. The SC will generate the hash
of the downloaded application and sign it with identities of the SP, downloaded
application, SC, and the user.

Message 6. The SP verifies the H(App) generated by the SC and activates the
application lease to the user on the SP’s server. The application lease activation
does not mean that the respective SC can be used to access SP’s services. The
access to services is only activated at the successful conclusion of the ACAP,
when the SC activates the application and it dials back home to activate the
access to sanctioned services. Similarly, the SP’s application is not activated on
the SC; it is in the blocked (dormant) state. If the SP is not associated with the
scheme TSM, then the SP will sign the message containing H(App).

To activate an application, the SC requires the scheme TSM’s authorisation.
If the SP is associated with the TSM, it will send the identities of the SC,
user, and downloaded application to the respective TSM. The TSM in reply will
generate the ActApp = SignT (Appi|SPi|SCi|Ui|NSP |NSC). The ActApp acts
as an application activation message and it will be included in the message 6 as
an optional parameter (ParOp). In this scenario, the last two messages will be
redundant and will not be executed. This message acts as an SP to SC contract.

Message 7. In scenarios where the SP is not a member of the TSM, the user has to
pay for the application download as per TSM policy and after this the TSM will
issue the ActApp. The SC will request the TSM to issue ActApp by sending the
above message. The SC will use a one-time pseudo card identity (CardID) (i.e.
privacy reason) so that an eavesdropper may not be able to match the CardID
uniquely to the SCi. The SC will encrypt the message containing the identities
of TSM, SC, and user. It then appends the application details (AppDoD) and
a new random number generated by the SC. The AppDoD will not have any
details of the application that can help the TSM to uniquely identify either the
SP or the application. It will include the memory occupied by the application,
and if the TSM charges the user according to the space usage then this data will
be used to calculate the charge. Finally, the SC uses the one-time SIDT−SC that
is generated in previous protocol runs with the TSM, to avoid the DoS attack
on the TSM’s server; . The process to generate the CardID and SIDT−SC is
explained in the next message.
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Message 8. The TSM will first verify whether the CardID and SIDT−SC cor-
responds to the values in its database so that it will process the transaction
and charge the user’s account. Afterwards, the TSM will sign the message
that includes the transaction certificate of the charge performed by the TSM
and the ActApp. The ActApp is generated similarly as detailed in the mes-
sage 6; however, the value in the Appi is a pseudo value that has no relation
with the actual identity of the downloaded application. Finally, the TSM will
generate the SID for the next session SID′

T−SC = HKT (Card′ID|Ti|SCi) and
Card′ID = H(Ti|SCi|N ′

SC |NT ). The TSM will store the generated Card′ID and
SID′

T−SC in the internal database.
After the SC receives the ActApp, it activates the application and notifies the

cardholder about the successful outcome of the application installation, and any
incurred charge. The charging mechanism for the individual transactions is on
sole discretion of the respective TSM.

5 Analysis of the ACAP Protocol

In this section, we analyse the proposed ACAP in terms of informal analysis,
mechanical formal analysis (CasperFDR), and practical implementation with
performance comparison.

5.1 Brief Informal Analysis of the Protocol

In this section, we constantly refer to the protocol requirements and goals for the
ACAP; therefore, here onward any reference to a goal or requirement number
refers to the listed item in section 4.1.

As shown in the table 3, the most promising results were from the ASPeCT
and JFK protocols that meet a large set of goals. The T2LS protocol [28] meets
the trust assurance goal by default, but similar to SCP81 it is based on the TLS
protocol, which does not meet most of the requirements. A note in favour of
the SCP10, SCP81, MM, and SM protocol is that they were designed with the
assumption that an application provider has a prior trusted relationship with the
smart card issuer; thus implicitly trusting the respective smart card. Whereas,
the proposed ACAP protocol meets all the listed goals.

5.2 Protocol Verification by CasperFDR

The CasperFDR approach was adopted to test the soundness of the proposed
protocol under the defined security properties. In this approach, the Casper com-
piler [29] takes a high-level description of the protocol, together with its security
requirements. It then translates the description into the process algebra of Com-
municating Sequential Processes (CSP) [29]. The CSP description of the protocol
can be machine-verified using the Failures-Divergence Refinement (FDR) model
checker [29]. The intruder’s capability modelled in the Casper script for the pro-
posed protocol is as: 1) an intruder can masquerade any entity in the network,
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Table 3. Protocol comparison on the basis of the stated goals (see section 4.1)

Gs Protocols
STS[21] AD[22] ASPeCT[23] JFK[24] T2LS SCP81[25] MM[26] SM[27] ACAP

G01. ∗ ∗ ∗ ∗ ∗ ∗ −∗ −∗ ∗
G02. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G03. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G04. ∗ ∗ ∗ ∗ ∗ ∗ ∗
G05. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G06. ∗ ∗ ∗ ∗ −∗ ∗
G07. ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G08. ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗
G09. ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G10. ∗ ∗ ∗ ∗ ∗ ∗
G11. ∗ (∗) +∗ ∗ ∗ ∗ +∗ +∗ ∗
G12. (∗) (∗) (∗) (∗) (∗) ∗
G13. ∗ −∗ ∗
G14. ∗ ∗
G15. (∗) ∗ ∗ ∗
G16. −∗ ∗
G17. ∗
G18. ∗
G19. ∗ +∗ +∗ +∗ +∗ ∗

Note: ∗ means that the protocol meets the stated goal, (∗) shows that the protocol
can be modified to satisfy the requirement, +∗ shows that protocol can meet the stated
goal but requires an additional pass or extra signature generation, and −∗ means that
the protocol (implicitly) meets the requirement not because of the protocol messages
but because of the prior relationship between the communicating entities.

2) (s)he can read the messages transmitted by each entity in the network, and
3) (s)he cannot influence the internal process of an agent in the network.

The security specification for which the CasperFDR evaluates the network
consists of: 1) the protocol run is fresh and both applications were alive, 2) the
key generated by the SP and SC is not known to the intruder, 3) entities have
mutually authentication and key assurance at the conclusion of the protocol,
4) long terms keys of communicating entities are not compromised, and 5) the
user’s identity is not revealed to the intruder. The CasperFDR tool evaluated
the protocol and did not find any feasible attack(s).

5.3 Practical Implementation

The proposed ACAP does not provide any specific details of the cryptographic
algorithms to be used during the protocol run. This choice is left to the respec-
tive SPs and smart cards. To provide a performance measure for the ACAP,
we have used Advance Encryption Standard (AES) [30] 128-bit key symmetric
encryption with Cipher Block Chaining (CBC) [15] without padding for both en-
cryption and MAC operations. The signature algorithm is based on the Rivest-
Shamir-Aldeman (RSA) [15] 512-bit key. We have used SHA-256 [31] for the
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Table 4. Protocol Performance Measures (Milliseconds)

Protocols \Phases SSL [32] TLS [33] Kerberos [34] ACAP
Card One Card Two

32-bit 32-bit 32-bit 16-bit 16-bit
AKG Phase (M1-4) 4200 4300 4240 3395 3559
Contract Phase (M5-6) - - - 1253 1294
Charge Phase (M7-8) - - - 1407 1470
Total (M1-8) - - - 6055 6323

hash generation by the TEM. For Diffie-Hellman key generation we used 2058-
bit group with 256-bit prime order subgroup specified in the RFC-5114 [18].

The architecture of the ACAP test-bed is based upon three entities: a smart
card, an SP and a TSM. The entities SP and TSM are implemented on a laptop
with 1.83 GHz processor, and 2 GB of RAM, running on Windows XP. The
smart card entity is implemented on a 16-bit Java Card and the implementation
takes 9799 bytes of memory space. The implemented protocol was executed for
1000 iterations and time taken to complete individual iteration was recorded.
The performance measures are taken from two different 16-bit Java Cards, and
an average of recorded measurements for both cards is listed in table 4. For
comparison, we have selected the SSL performance measured by Pascal Urien
[32], TLS from Urien and Elrharbi [33], and (public key based) Kerberos by
Harbitter and Menascé [34].

The rationale behind the choice of SSL and TLS for comparison lies in the
GlobalPlatform’s SCP81 [25], which specifies the adoption of the TSL for the
NFC based mobile service architecture (i.e. TSM Framework discussed in section
2). Whereas, public key based Kerberos is suitable for the Multos application
management architecture [35]. Table 4 show that the proposed protocol perform
better than other listed protocols, which are either already adopted in case of
the SCP81 or can be adopted in the smart card industry.

6 Conclusion and Future Research Directions

In this paper, we proposed a protocol referred as ACAP that provides the en-
tity authentication, trust validation, mutual key and the contractual-agreement
generation. The ACAP was then compared with existing protocols ranging from
the internet-based protocols to ones that were specifically designed for the smart
card environment. We have implemented the protocol and provided its perfor-
mance measure. At the time of writing, authors were not aware of any other
protocol that satisfies the same number of security and operational goals within
the performance matrix of the ACAP.

As part of the future research direction, first we would like to provide a de-
tailed formal analysis of the protocol. In addition, we consider that one of the
important topics is how we can avoid the simulator problem and provide assur-
ance to an SP that a smart card is a tamper-resistant, tamper-evident and a
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reliable device. In addition, we will look into the platform and runtime environ-
ment architecture that supports the TSM’s and cardholder’s space on the same
device. Furthermore, we will analyse the prospects of extending the coopetitive
framework to general purposes tamper-resistant devices.
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